Robust Stabilization of Interconnected Systems by Means
of Structurally Constrained Controllers

Somayeh Sojoudi

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

July 2007

(© Somayeh Sojoudi, 2007



3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-45504-3
Qur file  Notre référence
ISBN: 978-0-494-45504-3

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



ABSTRACT

Robust Stabilization of Interconnected Systems by Means of Structurally

Constrained Controllers

Somayeh Sojoudi

This dissertation deals with performance analysis and robust stabilizability verification of
large-scale interconnected systems with respect to the class of linear time-invariant (LTT)
decentralized controllers. These problems are formulated and tackled in four phases. First,
an interconnected system with some unstable decentralized fixed modes (DFM) is consid-
ered. It is well-known that there is no stabilizing LTI decentralized controller for such a
system; hence, a method is proposed to change the structure of the controller from de-
centralized to a proper overlapping form, with respect to which the system is stabilizable.
This change in the control configuration is carried out by introducing some interactions
among the isolated controllers, which leads to the elimination of the undesirable DFMs.
The approach utilized in this thesis is based on the graph theory and, in fact, transforms
the knowledge of the system into a number of bipartite graphs. A simple combinatorial
algorithm is subsequently proposed to address the problem under consideration.

The second problem investigated here is the characterization of all classes of LTI
structurally constrained controllers with respect to which a given interconnected system
has no fixed modes. Similar to the ideas and notions proposed to handle the preceding
problem, an efficient method is presented to tackle the problem in this case. Since estab-
lishing a transmission link between a pair of local controllers would certainly incur cost, an
implementation expenditure is attributed to cach possible link. The proposed approach can
also be used to attain the implementation cost associated with any suitable class of con-

trollers obtained. As a by-product of this result, all classes of LTI stabilizing structurally



constrained controllers with the minimum implementation cost can be characterized ac-
cordingly.

A LTI structurally constrained control system is considered next, which is subject to
parametric uncertainties. Moreover, a region of uncertainty in the form of a semi-algebraic
set is envisioned to parametrize the range of variations for uncertain parameters. It is as-
serted that if the system is stabilizable via a given constrained controller at the nominal
point, then it is almost always stabilizable at any operating point in the region of uncer-
tainty. In other words, the points for which the system has some persistent fixed modes lie
on an algebraic variety. A method is subsequently proposed to derive this variety.

In the end, it is assumed that a stabilizing decentralized controller isdesigned for a
pseudo-hierarchical large-scale system based on its hierarchical approximation. A LQ cost
function is defined to evaluate the effectiveness of this indirect controller design for the
system. It is shown that a reasonably tight upper bound on this performance index can be
straightforwardly obtained by solving a constrained optimization problem with only three

variables.
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Chapter 1

Introduction

The problem of controlling large-scale interconnected systems has been of increasing inter-
est in the past few decades due to its striking applications in many real-world systems such
as cooperative robots, communication networks, power systems, to name only a few. The
control of this type of systems is often carried out by applying a local controller to each in-
teracting subsystem. In the case when the local controllers are permitted to fully exchange
information, the corresponding controller is, in fact, centralized. A centralized controller
normally outperforms all other control structures with respect to any given cost function.
Nevertheless, due to many practical limitations, it often turns out that the local controllers
are restricted to communicate only partially with each other. This may degrade the perfor-
mance of the system and, more importantly, make the system lose stabilizability. The latter
case is sometimes referred to as structurally constrained control. Decentralized control is
a special type of constrained controllers, where the local controllers are prohibited from
exchanging information and are totally isolated. In this case, each local controller observes
only the output of a single subsystem to construct the control command for the same sub-
system. In some control applications such as formation flying, the local controllers are

neither isolated nor fully interacting with each other. This kind of control configuration is



often referred as a decentralized overlapping control structure.

The notion of decentralized fixed modes (DFM) was introduced in the literature to
characterize those modes of a LTI system which are fixed with respect to any LTI de-
centralized controller. Analogously, the notion of a decentralized overlapping fixed mode
(DOFM) introduced in prior literature characterizes those modes of the system (if any),
which are immovable with respect to all classes of LTI structurally constrained controllers.

This work mainly concentrate on investigating different aspects of decentralized and
decentralized overlapping controller design, and in particular the robustness and stabiliza-
tion properties. To this end, three chapters are provided in the remainder of the thesis to
elaborate on these problems, which will be outlined next.

The problem of eliminating the unwanted DFMs of a system is tackled in Chapter 2,
using an efficient graph-theoretic method. The core idea of this part of the dissertation is
to establish new links between certain pairs of local controllers in order to change the con-
trol configuration from decentralized to decentralized overlapping. This technique leads
to characterizing all the decentralized overlapping control structures with respect to which
the system has no undesirable fixed modes. It is noteworthy that this result is primarily
obtained based on a graph-theoretic approach and different notions for bipartite graphs.
Furthermore, a cost is attributed to each communication link in order to take the imple-
mentation expenditure for any link into account. Among the obtained classes of control
structures, all the ones with the minimum implementation cost have also been systemati-
cally identified.

In Chapter 3, a novel technique is proposed to obtain all classes of LTI structurally
constrained controllers with respect to which the system has no fixed modes. This problem
is in particular important for interconnected systems with several subsystems, where iden-
tifying the classes of controllers which fit into the control objectives is a formidable task,

in light of the fact that the number of all classes of controllers exponentially depends on the



number of subsystems. The classes of LTI stabilizing structurally constrained controllers
with the minimum implementation cost are then characterized. It is shown how a notice-
able amount of time can be saved in order to obtain these classes, if a certain technique
proposed in this chapter is utilized.

In Chapter 4, the robust stabilizability of uncertain LTI systems with respect to any
class of structurally constrained controllers is investigated. To this end, it is assumed that
the system is polynomially uncertain, and that the corresponding region of uncertainty is a
semi-algebraic set. It is proved that if the system has no DOFMs at some point belonging to
the uncertainty region, then the points for which the system has a DOFM lie on an algebraic
variety. As a result, if a system has no DOFM at a given nominal point, it almost always has
no DOFMs at any operating point. Furthermore, since finding the exact algebraic variety
can be formidable in general, a simple method is proposed to compute a dominant subset
of it, in the sense that the dimension of this subset is greater than that of its complement.

In Chapter 5, it is assumed that a decentralized controller has been designed for
the hierarchical model of a pseudo-hierarchical system which meets certain control objec-
tives. Moreover, it is supposed that this controller stabilizes the pseudo-hierarchical sys-
tem, while it may deteriorate the overall performance. A LQ performance index is defined
to assess the discrepancy between the pseudo-hierarchical system and the corresponding
reference hierarchical model under this decentralized controller. An optimization problem
with only three variables is derived whose solution is indeed an upper bound on this cost
function. It is subsequently proved that as the pseudo-hierarchical system approaches the
corresponding reference hierarchical model, this bound goes to zero, and in the ideal case,

the bound is equal to zero.
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Chapter 2

Elimination of Decentralized Fixed
Modes of a System by Employing

Optimal Information Exchange

2.1 Abstract

This work deals with the stabilizability of interconnected systems via linear time-invariant
(LTI) decentralized controllers. Given a controllable and observable system with some
distinct decentralized fixed modes (DFM), it is desired to find a desirable control structure
(in terms of information flow) for it. Since a decentralized controller consists of a number
of non-interacting local controllers, the objective here is to establish certain interactions
between the local controllers in order to eliminate the undesirable DFMs. This objective
is achieved by translating the knowledge of the system into some bipartite graphs. Then,
the notions of minimal sets and maximal subgraphs are introduced, which lead to a sim-
ple combinatorial algorithm for solving the underlying problem. Moreover, the proposed

technique can be applied to the quotient system corresponding to the strongly connected



subsystems, to displace the quotient fixed modes (QFM). The efficacy of the results ob-

tained is demonstrated in two illustrative examples.

2.2 Introduction

Numerous real-world systems can be modeled as the interconnected systems consisting of
a number of subsystems. The control of an interconnected system is often carried out by
means of a set of local controllers, corresponding to the interacting subsystems [7; 26; 15].
It is sometimes assumed that the local controllers can fully communicate with each other
in order to elevate their effectiveness over the entire system cooperatively. However, this
design technique is often problematic as the required data transmission between two par-
ticular local controllers (or equivalently, two subsystems) can be unjustifiably expensive or
occasionally infeasible. Consequently, it is normally desired that the local controllers ei-
ther exchange partial information or act independently of each other. The latter case, where
the overall controller consists of a set of isolated local controllers, is referred to as decen-
tralized control in the literature [22; 7; 26]. The control structure in a decentralized control
system is, in fact, block-diagonal. It is to be noted that the decentralized control theory has
found applications in large space structures, power systems, communication networks, etc.
[20; 12; 9; 21]. A wide variety of properties of the decentralized control systems are ex-
tensively studied in the literature and different design techniques are proposed [16; 8; 17].

One of the important problems in decentralized control design for interconnected
systems is the stabilizability verification. The notion of a decentralized fixed mode (DFM)
was introduced in [29] to identify those modes of a system which are fixed with respect to
any LTI decentralized controller. Since a DFM may be movable with respect to a nonlinear
or time-vary decentralized controller, the notion of a quotient fixed mode (QFM) was in-

troduced in [10] to identify those modes of the system which are fixed with respect to any



general decentralized controller (not merely LTI ones).

Various methods are introduced in the literature to characterize DFMs and QFMs
[7; 2; 3; 6; 18]. For instance, the method given in [7] provides the existence conditions
for DFMs in terms of the rank of a set of matrices. As a computationally more efficient
technique, the papers [18; 19] propose simple graph-theoretic approaches to verify whether
an unrepeated mode of the system is a DFM or a QFM.

Given an interconnected system with at least one unstable DFM, the question arises:
Can a stabilizing LTI controller be designed for this system by establishing new informa-
tion flow channels in the control configuration (which will roughly possess a decentralized
structure)? This question has been addressed in a number of papers to some extent by
making certain permissible interactions between the local controllers. The work [4] uses
this idea to tackle the underlying problem, but it fails to obtain the minimum number of
required interactions to achieve stabilizability. This shortcoming limits the effectiveness
of the method in practical applications considerably. The paper [28] deals with the pole-
assignability problem for interconnected systems by means of partially interacting LTI
local controllers. A cost is first attributed to the communication link between any pair
of local controllers in order to formulate the implementation expenditure. Nevertheless,
the work [28] considers only a particular class of the modes, due to the complexity of the
problem in the general case. This particular class is, in fact, the fixed modes which result
from the structure of the system, rather than an exact matching of the parameters of the
system. This class of fixed modes is referred to as structurally fixed mode (SDFM) [24].
The method proposed in [28] leads to a near-optimal solution by solving two separate op-
timization problems. A simpler method t6 handle the same problem (i.e., eliminating the
SDFMs of a system) is more recently presented in [5]. _

The work [30] tackles the problem of eliminating the DFMs by introducing a cen-

tralized controller (i.e. interactions between all subsystems). The advantage of this method



is that the controller obtained is robust. Although this work introduces several interactions,
it attempts to justify the underlying idea by utilizing the notion of low-rank matrices.

When some local controllers are capable of interacting with each other, the overall
controller is said to be a decentralized overlapping controller [13]. The stabilizability of
an interconnected system by means of LTI decentralized overlapping controllers has been
investigated thoroughly in [13; 14; 27] using the new notions of decentralized overlap-
ping fixed mode (DOFM) and quotient overlapping fixed mode (QOFM). It is to be noted
that the decentralized overlapping control theory was initially introduced for the systems
with some overlapping subsystems. For this type of systems, it is often desired to design
decentralized overlapping controllers whose overlapping structure coincides with that of
their corresponding subsystems [25]. The analysis and design of this class of decentralized
overlapping control systems has been intensively studied in the literature, primarily in the
Expansion-Contraction framework [1 ‘l ].

In the present work, it is assumed that the given interconnected system has some dis-
tinct undesirable DFMs. A cost is assigned for establishing a link between any pair of local
controllers. This can, for instance, reflect the data transmission cost required for a commu-
nication link between the control stations. The ultimate goal can be described in two steps.
The first step is to characterize all the decentralized overlapping control structures with re-
spect to which the system has no undesirable fixed modes. The second step is to determine
the optimal overlapping structure which minimizes the implementation cost (associated
with establishing new links between local controllers). To this end, it is first shown that
the unrepeated fixed modes of the system with respect to any overlapping control structure
can be identified using a graph-theoretic approach. Then, the notions of minimal sets and
maximal graphs are introduced to present a simple procedure for solving the problem un-
der study. As a by-product of the proposed development, all the decentralized overlapping

control structures whose implementation cost are less than any given value and are capable



of eliminating the undesirable DFMs can also be characterized efficiently. Finally, similar

ideas are employed to displace the distinct QFMs of the system.

2.3 Preliminaries

Consider a LTI interconnected system . consisting of v subsystems Sy, 52, ...,Sy with the

following state-space representation for its i-th subsystem (i € V := {1,2,...,v}):

%i(t) = Auxi(t) + Biui(t) + filx(t),u(t))
2.1)

yi(t) = Cigxi(t) + Diui(t) + gi(x(t), u(t))
where x;(t) € R™, u;(r) € R™ and y;(r) € R" are the state, the input and the output of the
subsystem S;, respectively, and f;(x(¢),u(r)) and gi(x(¢), u(t)) denote the effect of the other

subsystems on S; through its incoming interconnections. Assume that:
\4 \4
[@u@) =Y ApO)+ Y, Biju(),
J=1, j#i J=1, j#i
v v

gilx(t),u())= Y, Ciyxjt)+ Y, Diju;(t)

J=1, j#i j=1 j#i

for any i € V. The state-space model of the system . can be rewritten as:

() =Ax(t) + Y By 1)
= 2.3)

\4

yi(t) = Cix(t) + )" Dijuj(t), i€V
Jj=1

2.2)

where A is a matrix with (i, j) block entry A;;, for any i, j € ¥, and:

T
J J J 2.4)

Ci= [cj Cp -+ Cjy ], JEV
A structurally constrained controller for the system . consists of v local controllers,
partially interacting with each other. The following definition will prove convenient in
formulating the interaction policy between different subsystems (or equivalently, between

the local controllers).

10



Definition 1 Given a structurally constrained controller, define the control interaction set
K associated with this controller as a set which contains the entry k;j, i, j € V, if and only

if yj(t) can contribute to the construction of u;(t) in the controller.

Define the set Ky := {k13,k22,....,kyv}. Any controller whose structure complies
with K, is composed of v isolated (non-interacting) local controllers; i.€., there is no data
transmission between the local controllers. A controller with this structure will be referred
to as a decentralized controller throughout the work [15]. Moreover, any controller whose
interaction set K is not equal to K; but includes it (i.e., K # K;, K4 C K) is called an
overlapping controller [13].

The DFMs of . are indeed the modes of the system which are fixed with respect
to all LTI controllers complying with the control interaction set K; [7]. Furthermore, in
the case of an overlapping controller with the interaction set K, the DOFMs of the system
& wrt. K are the modes of the system which are fixed under any LTI controller whose

structure complies with K [13].

2.4 Main results

Consider the system % given by (2.3), and assume that it has some distinct undesirable
DFMs. It is desired to displace these undesirable fixed modes using a proper control struc-
ture, in order to meet the design specifications. Let these undesirable modes be denoted by
0y, 02, ...,0y. By definition, there is no LTI controller complying with Ky to displace any
of these modes. Hence, it is desired to expand the control interaction set K; by adding an-

other set K, to it such that none of these unwanted modes will be immovable with respect
to the new control interaction set K; UK,. This problem is investigated in the sequel for a

particular case first, and then is extended to the general case.

11



2.4.1 Displacing a single unrepeated DFM
Assume that o is an arbitrary unrepeated mode of the system .. One possible state-space
realization for this system is given by:

0 v
=7 " | xe)+ Y Bu(0)
Jj=

0 A 2.5)

v
}’i(t) = C,‘X(I) + Z'D,‘juj(t), i€V
=1

where the matrices A,B;,C; and D;j, i, j € V can be obtained by using a proper similarity
transformation, but their exact form is not essential in the main development (it is to be

noted that DFMs are invariant under any similarity transformation). Define the matrix M

as follows:
C
0 0
0 (A-ol)™!
Cy
2.6)
Dy Dyy
I)vl va

Note that since the multiplicity of o is assumed to be 1, it is not an eigenvalue of the matrix
A. Denote the (i, j) block entry of M with M;; € R"*™/, forany i,j € V.
A procedure will be introduced next, to construct the graphs required to verify which

modes of the system are DFMs.

Procedure 1 [18]
Construct a bipartite graph & with two sets of vertices ¥ (set 1) and ¥ (set 2)
and the tagged vertices 1,2,...,V in each of the two sets. For any i,j € V, carry out the

following steps:
1) Connect vertex j of the set ¥ to vertex i of the set ¥ if M;; = 0.

12



2) Mark vertex i of the set V' if the first column of the matrix C; is a zero vector.

3) Mark vertex j of the set ¥ if the first row of the matrix B j Is a zero vector.

Definition 2 Consider an arbitrary graph 4 with § vertices in any of its two sets, labeled
1,2,...,§. A subgraph of 9 is said to span the vertices of 9, if the labels of its vertices are

distinct and form the set {1,2,...,C}.
Identify every subgraph of & which satisfies the following criteria:

i) Itis a complete bipartite subgraph.
i) All of its vertices are marked.

iii) It spans the vertices of the graph .

Denote all such subgraphs with ¢,%,, ...,%,,. Moreover, denote set 1 and set 2 (see Proce-
dure 1) of the graph ¢; with ¥#; and ¥}, respectively, for any j € {1,2,...,w}.

As an example, assume that the graph ¢ for the mode ¢ of a given system which is
obtained from the procedure 1, is the one depicted in Figure 2.4. It can be easily observed
from this graph that vertices 1 and 2 of the set # and vertices 3 and 4 of the set ¥ fulfill the
three criteria pointed out earlier. Therefore, o is a DFM of the system (note that marked
vertices are denoted by filled circles).

i 2

G2
+a

Figure 2.1: The graph ¢ of a given system.

The following lemma is elicited from [18].

13



Lemma 1 The mode o is a DFM of the system  if and only if the nonnegative integer w

is strictly positive.

Assume for now that w is strictly positive, and consequently the mode o is fixed with
respect to any LTI controller complying with K. It is desired to obtain all overlapping

control structures which are able to displace this mode.

Procedure 2 For any given set {ki,j, ki, j,. .- ki j, }, form a bipartite graph 4 ({k;, j, ki, ,,

ki, }) as follows:
e Put vz vertices in set 1 and set 2 of the graph 4 ({ki, j,,.--. ki j, })-
o Assign the labels 1,2,...,V, ji, ja2,..., j; to the vertices of set 1.
e Assign the labels 1,2,...,V,i},iy,...,i; to the vertices of set 2.

e Consider any two arbitrary vertices of the graph 4 ({ki, j,,...ki,j,}) which do not
pertain to the same set of vertices. Let the labels of these two vertices be Ay (in
set 1) and Ay (in set 2). Connect these two vertices to each other in the graph
94 ({kiyj;»--»ki,j,}) if and only if there is an edge between vertex Ay of ¥ and vertex

Ay of ¥ in the graph 4.

It is notable that some labels in the graph & ({ki, j ki, ,, ---.ki,j, } ) are recurrent. The
next theorem proposes a simple method to verify whether or not the mode o is a DOFM of

the system . with respect to a given control interaction set.

Theorem 1 Given the set {kp,q,,kp,q,>--»Kpaqq }» the mode o is not a DOFM of the system
& wrt. KgU{kp,q,--rkpaqa} if and only if the graph G ({kp,q;--s kpaqq}) does not
contain a complete bipartite subgraph with all vertices marked, which spans its vertices

(see Definition 2).

14



Sketch of the proof: The proof will be given here for & = 1, as its generalization is
straightforward. By obtaining two transformation matrices discussed in [13] and pursuing
the approach given therein, it can be easily verified that o is a DOFM of the system .
w.r.t. the control interaction set K4 U {kp,4, } if and only if it is a DFM of the following
system:

(1) =A%(t)+ Y Bjiij(t) + By, iiy+1(t)
=
\%
§i(t) = Cx(t)+ Y Dijiij(t) + Dip,fiv11(t), i€V 2.7
j=1

\4
Fyv+1(1) = Cg %(t) + ) Dg, () + Dgypyfiv+1 (1)

J=1
Note that this system has one input and one output more than the system .. The proof

follows by applying the graph-theoretic approach given in [18] (which was explained in
Lemma 1 for the system %) to the system given in (2.7). ]

To clarify the result of Theorem 1, consider again the system whose graph ¢ is
depicted in Figure 2.4. Assume that it is desired to verify if ¢ remains a fixed mode after
adding the controller k)4 to the decentralized control structure to obtain K = K, U {k14}.
For this purpose, consider the graph ¢4 ({k14}) sketched in Figure 2.2. This graph does not
comprise a subgraph with the properties pointed out in Theorem 1. Therefore, the mode ¢

is not a DOFM of the system w.r.t. K;U {kj4}.

I 2 3 4 4
(o] O
1 2 3 4 1

Figure 2.2: The graph 4({k14}) derived from the graph ¢ in Figure 2.4.

15



So far, it is shown how the existence of a DOFM can be concluded from a bipar-
tite graph. This result will be used next to characterize all desirable overlapping control

structures.

Definition 3 The set {kp,q,,kpyq2+ - Kpaqa } 1S said to be minimal w.r.t. o if and only if the
mode & is not a DOFM of the system . w.r.t. KgU {kp,q,,kpyq> -1 Kpaqa }» While it is a

DOFM of & w.rt. KgU {kpg--skp;_1q;-11Kpj4 19410 -+ Kpaga } fOr any j € {1,2,...,a}.

Definition 4 A subgraph of the graph 9 is said to be maximal if:
i) It is a complete bipartite subgraph.
ii) All of its vertices are marked.

iii) The set of the labels of its vertices is equal to the set V (note that this condition is

slightly different from spanning the vertices, as the labels can be recurrent here).

iv) The graph 4 has no other subgraph satisfying criteria (i), (ii) and (iii) given above

such that it includes this subgraph.

Using the combinatorial algorithms, the maximal subgraphs of ¢ can be easily iden-
tified (analogously to the algorithms for finding the complete bipartite graphs with maxi-
mum number of edges). Denote éuch subgraphs with 4. %, ..., 9. Moreover, denote set 1
and set 2 of vertices of the graph S?J with "17J and “17-, respectively, for any j € {1,2,...,w}.
It is to be noted that the number W is typically small, due to the generic property of the

fixed modes. The subsequent remark aims to present a bound on the number Ww.

Remark 1 From the definition of a maximal graph, the sets of vertices A, ..., Y are all
distinct. Moreover, it is straightforward to show that one of the sets Y1, 74, ..., Y, is exactly

the same as ¥}, for any j € {1,2,...,w}. These two facts point to the inequality w < w.
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Consider again the system whose graph ¢ is depicted in Figure 2.4. The graph ¢ ({k13,k24})
derived from ¢ is depicted in Figure 2.3. It can be easily verified that this graph does not
have any subgraph with the properties stated in Theorem 1. Hence, o is not a DOFM of this
system. In contrast, if any of the control components k;3 or ky4 is deleted from the control
structure, the mode ¢ will become a DOFM. As aresult, the set {k;3,kz4} is minimal w.r.t.

o in this example.

1 2 3 4 3 4
o o
1 2 3 4 1 2

Figure 2.3: The graph ¥ ({ki3,k24}) derived from the graph ¢ in Figure 2.4.

Theorem 2 Assume that the set {kp,q,,kp,q---»kpagq } is minimal w.r.t. the mode . Then,

the number o is less than or equal to w.

Proof: From the definition of a minimal set, the mode & is a DOFM of the system
& w..t. the control interaction set Ky U {kp,q;, ""kpj—lqj-l Kkpi1gin wrkpoge }» for any
j€{1,2,...,a}. Hence, it can be concluded from Theorem 1 that the graph 4 ({kp,4,,---,
kp;1gi-1:Kp;110;01> -1Kpaga }) has a complete bipartite subgraph with marked vertices,
which spans the vertices of the graph. This subgraph should include either the dupli-
cated vertex g; in its set 1 or the duplicated vertex p; in its set 2, for all i € {1,2,...,j—
1,j+1,...,a}. On the other hand, it is étraightforward to show that there exists an inte-

ger fj € {1,...,w} such that this subgraph is included in E!”}j (in light of the definition of a

maximal graph). Thus, one comes to the conclusion immediately that the following logic
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statement is true:
(4 € ) V (pi € Fgp)s Vi€ (1,2, j = Lt 1oy} (28)

where V is the logic operation OR. Now, to prove Theorem 2 by contradiction, assume that
W < a. Since all the natural numbers f1, f, ..., fo belong to the set {1,2,...,w} and also
the inequality w < & holds, it can be concluded from the Dirichlet’s Principle that at least
two of the values fi, f»,..., fo are identical. Without any loss of generality, assume that
fi1 = f» = f for some positive number f. Consider the relation (2.8) for the values j =1
and j = 2. The amalgamation of these two sets of relations will arrive at the following true

statement:

(g€ (pie¥), Vie{l,2,..,a} (2.9)

The relation (2.9) yields that the graph & ({kp,q,,kp,q2, ---»Kpaqe }) includes a complete
bipartite subgraph with the properties pointed out in Theorem 1. This implies that the
mode © is a DOFM w.rt. KyU {kp,q,,kp,q0+ -1 Kpaqe }» Which contradicts the original
assumption of minimality. ]

Theorem 2 states that if by adding more than w communication links to the decentral-
ized control structure the mode o is no longer fixed, then some of the links are redundant
and have no contribution in displacing the mode. It is worth mentioning that the result of
Theorem 2 significantly diminishes the computational burden of finding all the minimal
sets. One can use the following theorem to develop an algorithm for finding the minimal

sets systematically.

Theorem 3 The set {kp,q,:kpygy»---1kpaqe } is minimal w.r.t. © if and only if the criteria

given below both hold:
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e For any j € {1,2,...,a}, there exists an integer f; € {1,...,W} such that the state-

ments:
(i € V5)) V(P € V) Vi€ {1, j— L j+1,..,a}

(a5 ¢ 7s)) A (Pi & i)

are true, where f1, fa, ..., fiv are all distinct (note that A is the logic operation AND).

(2.10)

e There exists no integer f € {1,...,Ww} such that the following logic statement is true:

(gi € 75)V (pie ), Vie{1,2,..,a} 2.11)

Proof: The proof of this theorem follows directly from the discussions given in the
proof of Theorem 2. The details are omitted here. |
Theorem 3 implicitly proposes a simple method to compute all the minimal sets w.r.t.

to the fixed mode ©.

Remark 2 Although graph-based problems are computationally intractable in general
and hence very difficult to solve, the graph component of the technique proposed here has
a very particular form and the existing SOS methods can be employed to efficiently handle
it. This can be carried out, for instance, in line with the ideas used in [23] for solving the

MAX-CUT problem in graph theory.

2.4.2 Displacing multiple unrepeated DFMs

The methodology presented in the preceding subsection will be deployed here to charac-
terize all the control interaction sets K, such that the DFMs 0y, 03, ..., 0y are all movable
w.r.t to K;UK,. Although the mode o;, i € {1,2,...,i}, is by assumption an unrepeated
DFM of the system .#, its multiplicity as a regular mode of the system can be greater than
1. In this case, the aforementioned method cannot be applied to the system directly. As

a remedy for this problem, one can consider a generic static decentralized controller and
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apply it to the system . so that the multiplicity of the mode o;, i € {1,2,..., 1}, will be
exactly equal to 1 in the resultant system [7; 1]. Therefore, with no loss of generality,
assume henceforth that the mode o, i € {1,2,..., 1}, is not only an unrepeated DFM but

also an unrepeated mode of the system ..

Remark 3 Since the costs attributed to communication links are fixed and time-invariant,
they normally depend on some exterior factors such as the distance between subsystems
or the capacity of a channel. This implies that although these costs are defined for the
original system, the same values can also be considered for the system obtained by ap-
plying a generic decentralized controller (used to reduce the multiplicity of the repeated
modes of the original system, if any, to 1), and the two systems have the same cost-optimal

configuration.

For any i € {1,2,...,u}, obtain all minimal sets associated with the mode o; using
the approach given in the previous subsection, and denote them with K4 ,Kf;z, ...,Kﬂ’z‘ .

The following corollary states how the underlying problem can be treated.

Corollary 1 Given the control interaction set K., none of the modes 0y,0,,...,0, are
DOFMs of the system . w.r.t. K; UK, if and only if there exist integers g1,82,...,8u With

the following property:
{K;,gl UKg’gz U...qu’g“} CK, 2.12)

Proof: The proof follows immediately from the definition of a minimal set. n
In practice, it is desired that the addition of the set of interconnection links K, to
the control structure be as inexpensive as possible. In order to take the expenditure of this
inclusion into account, it is assumed that the cost of implementing the communication link
kij is prespecified by the designer, and is denoted by %, for any i,j € V. Note that this

cost should normally be defined in terms of the exterior factors associated with the system
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such as the distance between the subsystems or the nature of the outputs to be transmitted
to the other subsystems. This restriction results from the fact that different state-space
representations are used throughout the work for different modes, which may lead to the
inconsistency in the cost evaluation. By virtue of Corollary 1, finding the least costly
K. with the aforementioned property (displacing certain fixed modes) can be translated
into obtaining all the sets K, representable as Kl’g Ty KE& U---UKE®* for some integers
81,82, ---,8u, and computing their associated costs accordingly to determine which one is

the least expensive.

Remark 4 It may turn out that certain communication channels between some of the sub-
systems cannot be established by any means. In order to take this constraint into account,
two strategies can be pursued. First, one can allot very large cost values to impermissible
links so that they do not appear in the optimal configuration. Alternatively, one can first
obtain all the minimal sets, and then rule out the ones containing inadmissible channels.
In other words, the optimization must be carried out over the minimal sets with permissible

elements.

2.4.3 Displacing Quotient Fixed Modes (QFM)

The following procedure provides the steps to construct the graphs required to verify which

modes of the system are QFMs.

Procedure 3 [18]
Construct a bipartite graph 4 with two sets of vertices ¥ (set 1) and Y (set 2)
and the tagged vertices 1,2,...,V in each of the two sets. For any i,j € V, carry out the

following steps:

1) For any Uy, Uz € V, connect vertex |1} of set V' to vertex Ly of set ¥ if either the j-th

column of Cy, or the j-th row of By, is a zero vector for all j € {1,2,...,n}.
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2) Mark vertex [y of set V' if the i-th column of the matrix Cy, is a zero vector, for any

Hr €V.

3) Mark vertex L1, of set ¥ if the i-th row of the matrix By, is a zero vector, for any

eV

Although two different procedures are introduced to construct the associated graphs
of DFMs and QFMs, it is shown in [18] that the two graphs constructed by following Pro-
cedures 1 and 3 should satisfy exactly the same properties in order for a mode of the system
to be a DFM or QFM. Therefore, all the results obtained in the previous subsections for
displacing DFMs can be extended to QFMs using the same framework (and the same ter-
minology). However, one should note that there are some fundamental differences between
the control components in the two cases. More specifically, the elements of the control in-
teraction sets are non-LTI for QFMs, in general, while the corresponding elements are LTI
in the case of DFMs.

Note that the necessary and sufficient condition for the displaceability of QFMs (us-
ing the proposed method) is that they are distinct DFMs (this comes from the fact that each
QFM is also a DFM). Then, the procedure given in the previous subsection to displace

multiple unrepeated DFMs can be employed to treat the problem.

Remark 5 It is worth mentioning that if a DFM is not a QFM, it can be displaced by using
a proper non-LTI controller (such as sampled data controller under some mild conditions).
Thus, if the cost of a communication link outweighs that of a more sophisticated control
law (nonlinear or time-varying), one can employ a controller with a more complex function

and a less complex communication structure.

2.5 Numerical examples

Example 1: (Displacing DFMs)
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Let . be a system consisting of four single-input single-output (SISO) subsystems

with the following decoupled state-space matrices:

1000 3 0
0200 4 2
A: 731: ,B2: 2
0030 0 0
000 4 1 6
R I L (2.13)
0 0
7 0
B3 = » Ba=
9 8
-5 7
and -
Ci=|0 2 4 3},Cz=[0 6 0 8]7
G=|0 4 0 —9},C4=[5 10 7],
Dy = -5, D1y =10, D3 =27, D4 =123, (2.14)

Dy; =32, Dy =60, Dy3= -3, Dy =56/3,

D3y = =25, D3y = —62, D33 =43, D3g = —21,

D4y = —4.5, Dgy =40, Dy3 =16, Dsgg =1,
Consider now the mode o = 1. The graph ¢ associated with this mode (by following the
steps given in Procedure 1) is depicted in Figure 2.5(a). This graph contains a complete
bipartite subgraph with vertex 1 from set 1 of ¢ and vertices 2, 3 and 4 from set 2 of ¥
such that its vertices are all marked and also it spans the vertices of 4. Therefore, it results
from Lemma 1 that the mode 1 is a DFM of the system. Likewise, it can be shown that
the mode 3 is also a DFM of the system, while the modes 2 and 4 are not. Note that the
control interaction set corresponding to a decentralized controller in this example is equal
to Ky = {ki1,k22,k33,ka4}.
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It is desired now to expand the structure of the control system from decentralized to
overlapping so that both of these unstable DFMs can be displaced. Let the mode ¢ = 1 be
treated first. It is straightforward to obtain the relation w = 2 from the graph & in Figure

2.5(a). Therefore, the subgraphs ¥4 and %, will have the following sets of vertices:

% ={1}, %=1{234}, %»={1,23}, %={4} 2.15)

On the other hand, the graph ¢ has two maximal subgraphs which are the same as % and

%,. It can now be concluded from Theorem 3 that the minimal sets w.r.t. o = 1 are:
KM = {kis}, K% ={kip,ksa}, Ki?={ki3,kos} (2.16)

Note that as expected from Theorem 2, these sets have at most 2 elements, due to the

relation w = 2. Analogously, the minimal sets w.r.t. ¢ = 3 can be obtained as:
K3 = {ks1}, K}*={ka} (2.17)

(note that w for the mode o = 3 is equal to 1). It results from Corollary 1 that the modes 1
and 3 are not DOFMs of the system w.r.t. the control interaction K; UK, if and only if the

following condition is satisfied for the set K,:
A €{1,2,3}, 3L e{1,2}:  {KIMO UKD} CK, (2.18)

Assume now that all of the communication links have the same cost, i.e., €;; =1, i,j €
{1,2,3,4}. In this case, the least costly K, will be {k14,k31} or {kj4,ks1} with the im-
plementation cost of 2. The graph ¥ ({k14,k31}) corresponding to the modes 1 and 3 are
depicted in Figures 2.5(b) and 2.5(c), respectively. It can be easily verified that none of
these graphs has a subgraph with the properties mentioned in Theorem 1. This validates

the obtained result stating that the modes 1 and 3 are not the DOFMs of the system . w.r.t.

Ky U {ki4,k31}.
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Figure 2.4: The graph ¢ of a given system.

To show the effect of implementation expenditure on obtaining the set K., assume

that:
Glua=5, =2, 634=2, 613=1,
(2.19)
Cu=1, 631 =5, Cy=4
In this case, the set K, will be equal to {k13,k24,k41 } With the implementation cost of 6.

Example 2: (Displacing QFMs)
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Let .# be a strictly proper system consisting of three two-input two-output subsys-

tems with the following state-space matrices:

A =diag(]1,2,3,4,5]),

—0 0- _0 oﬂ -1 11
0 0 2 1 -1 -1
Bi=|0 0 |,B:=]00}|,Bs=| 1 -1},
2 -1 12 -1 1
0 0 0 0 -1 -1 (2.20)
- -T - 1T - 1T
1 -1 2 3 5 6
-1 1 0 0 0 0
Ci=|l1 =1|.CG=]00]| ,CG=] 0 0
-1 1 0 0 0 0
1 -1 11 | -1 -1 |

The graphs corresponding to different modes of the system are depicted in Figures 2.6,
2.7 and 2.8. It can be concluded that o = 2 is a QFM of the system, as the vertices 2
and 3 from set 1, and vertex 1 from set 2 along with their edges form a complete bipartite
subgraph such that its vertices are all marked, and moreover it spans the vertices of ¢
(see Definition 2). It can be easily verified that the mode ¢ = 3 is also a QFM, and that
none of the remaining modes is a QFM of the system .. It is to be noted that the control
interaction set corresponding to a decentralized controller in this example is equal to Ky =
{k11,k22,k33,kaa,kss }.

Let the mode o = 2 be treated first. It can be easily observed that the subgraph %

will have the following sets of vertices:

1 =1{2,3}, %={1} (221)
Hence, % is the only maximal subgraph of the graph ¢. It can be concluded from Theorem
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3 that the minimal sets w.r.t. ¢ = 2 are:
K2 = {kn}, K&*={kn} (2.22)
Analogously, the minimal set w.r.t. o = 3 is obtained as:
K> = {ks} (2.23)

Since the mode ¢ = 3 has merely one minimal set Kg’ o1 , therefore this set must be
included in the control interaction set K,. On the other hand, this set is also minimal for
the mode ¢ = 2, implying that both QFMs can be displaced simultaneously by employing
the control interaction set K; U {k3;}. It is to be noted that the link K¢ is only effective
in displacing the mode ¢ = 2, and hence implementing it along with K;j’ ! to obtain KgU
{k31,k21} would incur a redundant cost (as a result of Corollary 1).

If it is practically not possible to establish the communication link k3 (as a result of
Corollary 4), the minimal sets k2 =k = {k31} must be passed over, and hence ¢ = 2

would be the only displaceable QFM; i.e., in that case ¢ = 3 cannot be displaced.

2.6 Conclusions

This work tackles the stabilizability problem for an interconnected system with a num-
ber of distinct undesirable decentralized fixed modes (DFM), by means of the structurally
constrained controllers. It is well-known that a linear time-invariable (LTI) decentralized
controller comprising a set of isolated local controllers cannot displace any DFMs. Thus,
the objective of this work is to establish some interactions between the local controllers in
order to displace the undesirable DFMs. To this end, the knowledge of the system is trans-
formed into a number of bipartite graphs (corresponding to the unwanted DFMs). Subse-
quently, the notions of minimal sets of interactions and maximal subgraphs are introduced.

A simple procedure is then proposed to characterize all the possible sets of interactions
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which maintain the mentioned property. It is also shown that the results can be extended

to consider the displacement of quotient fixed modes (QFM), which by definition are im-

movable with respect to any type of decentralized control law (nonlinear or time-varying).

The numerical examples provided elucidate the efficacy of the present work.

Bibliography

(1]

[2]

[3]

[4]

[5]

[6]

A. G. Aghdam and E. J. Davison, "Discrete-Time Control of Continuous Systems

with Approximate Decentralized Fixed Modes,” Automatica, no. 1, pp. 75-87, 2008.

B. D. O. Anderson and D. J. Clements, ”Algebraic characterizations of fixed modes

in decentralized systems,” Automatica, vol. 17, no. 5, pp. 703-712, 1981.

B. D. O. Anderson, "Transfer function matrix description of decentralized fixed
modes,” IEEE Transactions on Automatic Control, vol. 27, no. 6, pp. 1176-1182,

1982.

V. Armentano and M. Singh, A procedure to eliminate decentralized fixed modes
with reduced information exchange,” IEEE Transactions on Automatic Control, vol.

27, no. 1, pp. 258-260, 1982.

A. Belmehdi and D. Boukhetala, ”"Method to eliminate structurally fixed modes in
decentralized control systems,” International Journal of Systems Science, vol. 33, no.

15, pp. 1249-1256, 2002.

E. J. Davison and S. H. Wang, ”A characterization of decentralized fixed modes in

terms of transmission zeros,” IEEE Transactions on Automatic Control, vol. 30, no.

1, pp. 81-82, 1985.

28



[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

E. J. Davison and T. N. Chang, "Decentralized stabilization and pole assignment for

general proper systems,” IEEE Transactions on Automatic Control, vol. 35, no. 6, pp.

652-664, 1990.

Z. Duan, J. Z. Wang, and L. Huang, ”Special decentralized control problems and ef-
fectiveness of parameter-dependent Lyapunov function method,” in Proc. 2005 Amer-

ican Control Conference, vol. 3, pp. 1697-1702, 2005.

A. Fay and 1. Fischer, "Decentralized control strategies for transportation systems,”
International Conference on Control and Automation, Budapest, Hungary, pp. 898-

903, 2005.

Z. Gong and M. Aldeen, "Stabilization of decentralized control systems,” Journal of

Mathematical Systems, Estimation, and Control, vol. 7, no. 1, pp. 1-16, 1997.

M. Ikeda, D. D. Siljak and D. E. White, “Decentralized control with overlapping
information sets,” Journal of Optimization Theory and Applications, vol. 34, no. 2,

pp. 279-310, 1981.

M. E. Khatir and E. J. Davison, "Decentralized control of a large platoon of vehi-

cles operating on a plane with steering dynamics,” in Proc. 2005 American Control

Conference, Portland, OR, pp. 2159-2165, 2005.

J. Lavaei and A. G. Aghdam, "Control of continuous-time LTI systems by means of

structurally constrained controllers,” Automatica, vol. 44, no. 1, pp. 141-148, 2008.

J. Lavaei and A. G. Aghdam, On structurally constrained control design with a pre-
specified form,” Proceedings of the 2007 American Control Conference, New York,

NY, pp. 1501-1507, 2007.

29



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J. Lavaei and A. G. Aghdam, “Decentralized control design for interconnected sys-
tems based on a centralized reference controller,” in Proc. 45th IEEE Conference on

Decision and Control, San Diego, CA, pp. 1189-1195, 2006.

J. Lavaei and A. G. Aghdam, Simultaneous LQ control of a set of LTI systems using
constrained generalized sampled-data hold functions,” Automatica, vol. 43, no. 2, pp.

274-280, 2007.

J. Lavaei and A. G. Aghdam, ”Optimal periodic feedback design for continuous-time
LTI systems with constrained control structure,” International Journal of Control,

vol. 80, no. 2, pp. 220-230, 2007.

J. Lavaei and A. G. Aghdam, “"Characterization of decentralized and quotient fixed

modes via graph theory,” Proceedings of the 2007 American Control Conference,

New York , NY, pp. 790-795, 2007.

J. Lavaei and A. G. Aghdam, ”A Graph Theoretic Method to Find Decentralized
Fixed Modes of LTI Systems,” Automatica, vol. 43, no. 2, pp. 2129-2133, 2007.

H. Li and Y. Wang, “Nonlinear robust decentralized control of multimachine power

systems,” in Proc. 7th International Power Engineering Conference, pp. 1-6, 2005.

B. A. Movsichoff, C. M. Lagoa, and H. Che, "Decentralized optimal traffic engineer-
ing in connectionless networks,” IEEE Journal on Selected Areas in Communications,

vol. 23, no. 2, pp. 293-303, 2005.

A. B. Ozgﬁler,”Global stabilization via local stabilizing actions,” IEEE Transactions

on Automatic Control, vol. 51, no. 3, pp. 530-533, 2006.

30



[23] P. A. Parrilo, "Structured semidefinite programs and semialgebraic geometry meth-

ods in robustness and optimization,” Ph.D. thesis, California Institute of Technol-

0gy,2000.

[24] M. E. Sezer and D. D. Siljak, ”Structurally fixed modes,” Systems & Control Letters,
vol. 1, no. 1, pp. 60-64, 1981.

[25] D.D. giljak and A. L. Zecevic, “Control of large-scale systems: Beyond decentralized

feedback,” Annual Reviews in Control, vol. 29, no.2, pp. 169-179, 2005.

[26] D.D. Siljak, Decentralized control of complex systems, Cambridge: Academic Press,

1991.

[27] S. Sojoudi, J. Lavaei and A. G. Aghdam, "Robust control of LTI systems by means of

structurally constrained controllers,” IEEE Transactions on Automatic Control, vol.

52, no. 9, pp. 1721-1726, 2007.

[28] K. Unyelioglu and E. Sezer, "Optimum feedback patterns in multivariable control

systems,” International Journal of Control, vol. 49, no. 3, pp. 791-808, 1989.

[29] S.H. Wang and E. J. Davison, ”On the stabilization of decentralized control systems,”

IEEE Transactions on Automatic Control, vol. 18, no. 5, pp. 473-478, 1973.

[30} A. I Zecevic and D. D. §iljak, ”Global low-rank enhancement of decentralized con-
trol for large-scale systems,” IEEE Transactions on Automatic Control, vol. 50, no. 5,

pp. 740-744, 2005.

31



(a) 1

ta

0.

O
)] 2 3 4

(b)
H 2 3 4 i 4
O O
O O
t 2 3 4 3 1

()

Figure 2.5: a) The graph ¢ associated with the mode ¢ = 1; b) the graph ¥ ({k14,k31})

corresponding to the mode ¢ = 1; c) the graph ¢ ({ki4,k31}) corresponding to the mode

o=3.
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Figure 2.6: The graphs associated with the modes ¢ = 1 and ¢ = 2 are sketched in (a) and

(b), respectively.
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Figure 2.7: The graphs associated with the modes ¢ =3 and ¢ = 4 are sketched in (a) and

(b), respectively.
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Figure 2.8: The graph associated with the mode 0 =5
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Chapter 3

Characterizing all Classes of LTI
Stabilizing Structurally Constrained

Controllers by Means of Combinatorics

3.1 Abstract

The focus of this work is directed towards the problem of characterizing the information
flow structures of all classes of LTI structurally constrained controllers with respect to
which a given interconnected system has no fixed modes. Any class of structurally con-
strained controllers can be described by a set of communication links, which delineates
how the local controllers of any controller in that class interact with each other. To achieve
the objective, a cost is first attributed for establishing any communication link in the con-
trol structure. These costs are part of deign specifications and represent the expenditure
of data transmission between different subsystems. A simple graph-theoretic method is
then proposed to characterize all the relevant classes of controllers systematically. As a by-

product of this approach, all classes of LTI stabilizing structurally constrained controllers
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with the minimum implementation cost are attained using a novel algorithm. The primary
advantages of this approach are its simplicity and computational efficiency. The efficacy

and importance of this work are thoroughly illustrated in a numerical example.

3.2 Introduction

A great number of real-world plants can be regarded as interconnected systems with several
interacting subsystems [1]. A typical controller for an interconnected system is composed
of a set of local controllers corresponding to different subsystems. Normally, each local
controller should receive some information from all the subsystems in order for the resul-
tant controller to achieve best possible performance. This case is referred to as the central-
ized control strategy in the literature. Most of the control design techniques spontaneously
arrive at centralized controllers, which may have practical problems as far as control im-
plementation is concerned [2]. More precisely, there are some practical issues which may
hinder employing a general centralized controller for an interconnected system. The pri-
mary reason is that the transmission of information from a subsystem to a local controller
of another subsystem may be infeasible or quite costly. Such problems appear, for instance,
in formation flying where the shadow phenomenon occurs for a specific time interval [3].
The case when some transmission links are remarkably costly comes about in the systems
whose subsystems are geographically remote, e.g., in a power system with several stations
in different cities. Furthermore, for a system consisting of several subsystems, the com-
putational complexity associated with the centralized control structure can be quite high.
These practical restrictions introduce the motivation for utilizing structurally constrained
controllers [4].

Decentralized control is a particular type of structurally constrained controllers which

has attracted a considerable amount of interest in the control community. A decentralized

35



controller is the union of a number of local controllers which do not exchange information
[5; 6]. Decentralized control theory has found applications in a wide range of real-world
systems such as communication networks, power systems and traffic networks. Different
decentralized design techniques have thoroughly been investigated and well-documented
[7;8;9; 10].

In many control applications, there may exist overlapping between certain subsys-
tems of an interconnected system. In such systems, it is often desired to design a struc-
turally constrained controller whose local controllers partially interact with each other with
the same overlapping topology as their corresponding subsystems. This conceptual notion
is envisaged as decentralized overlapping control strategy in the literature. This class of
structurally constrained controllers has been studied intensively, mostly in the framework
of Expansion-Inclusion principle [11; 12; 13].

The most important problem in conjunction with the structurally constrained control
design is the stabilizability verification. To address this problem, the notion of a decentral-
ized fixed mode (DFM) was introduced in [14] to identify the modes of the system which
are fixed with respect to any LTI decentralized controller. Several methods are proposed
accordingly to characterize the DFMs of a system efficiently. For instance, the paper [7]
proposes a simple graph-theoretic approach to obtain the unrepeated DFMs of a system
without having to experience numerical difficulties. Since a DFM may be eliminated by
means of a nonlinear or time-varying decentralized controller, the notion of quotient fixed
modes (QFM) was introduced in [15] to characterize all the modes of a system which are
immovable with respect to any nonlinear and time-varying decentralized controller.

More recently, the notion of decentralized overlapping fixed modes (DOFM) was
introduced in [16] to mathematically describe the fixed modes of a system with respect
to any given class of structurally constrained LTI controllers. A method is also proposed

in [16] to obtain the DOFMs of the system efficiently. One should take note of the fact

36



that DOFMs do not necessarily correspond to the overlapping systems discussed earlier,
and is defined for any arbitrary system. In addition, the notion of a quotient decentralized
overlapping fixed mode (QOFM) was introduced in [17] as an extension of the notion of a
QFM to the overlapping control structure.

Consider an interconnected system with v subsystems. It can be easily verified that
there exist 2("") — 1 classes of structurally constrained controllers for this system. Since
this number grows exponentially with v, choosing the classes which fit into the control ob-
jectives may be a formidable task. It is worth mentioning that several approaches have been
proposed in the literature for the design of structurally constrained controllers to achieve
any objective such as pole-placement or LQ optimality. However, all of these methods
require that the structure of the desired controller be known a priori.

Given an interconnected system, the focal problem of this work is to find all classes
of LTI structurally constrained controllers with respect to which the system has no fixed
modes. To handle this problem, the main concept of the graph-theoretic approach of the
recent paper [18] has been exploited. Note that the work [18] addresses the problem of
eliminating undesirable DFMs of a system, by adding some transmission links between
the local controllers. Modified definitions of the notions of maximal graph and minimal
set introduced in [18] are utilized here to address the underlying problem. Moreover, a
cost is attributed to establish a communication link between any pair of local controllers.
The classes of LTI stabilizing structurally constrained controllers with the minimum im-
plementation cost are then obtained. This is achieved by proposing an efficient method
which avoids unnecessary computations. The technique introduced in this work is also ap-
plicable to the approach given in [18] for finding the optimal control interaction sets which

eliminate the unwanted DFMs.
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3.3 Problem formulation

Consider a LTI interconnected system . consisting of v subsystems 1,5, ...,Sy. Let the

th subsystem of ., i € v :={1,2,...,v}, be modeled as:

xi(t) = A,-,-x,-(t) +B,',-ui(t) +ﬁ(x(t), u(t))

yi(t) = Cixi(t) 4 Dizui(t) + 8i(x(t),u(?))

3.1

where x;(t) € R™, u;(t) € R™ and y;(t) € R’ are the state, the input and the output of the
subsystem S;, respectively. Moreover, fi(x(¢),u(t)) and gi(x(t),u(t)) in the above state-
space representation are the interconnection signals which account for the effect of differ-
ent subsystems on S; through its incoming interconnections. Assume that these intercon-
nection signals can be represented by:
\4 \4
filx(t),u(r)) = ): Ayjxj(r) + Z Bijuj(1),
J=1, j#i j=1, j#i
\4 \4
gi(x(2),u(t)) = Z Cijxj(t) + Z Dijjuj(t)

Jj=1, j#i j=1, j#i

3.2)

for any i € V. Now, the model of the system .% will be as follows:
\4
X(t) =Ax(t) + Y Bjuj(r)
j=1

\4
y,‘(l‘) = C,'X(I)-i- ZDijuj(t), i€V
J=1

(3.3)

where:
T
o T pT
Bj= { Bl; B} - BY; ] ,
(3.4)
CjI[le Cp - ij}a JEV
Denote the modes of the system . with G}, 02, ..., 0y, and assume that all the modes are

distinct. As a consequence of this assumption, one can suppose with no loss of generality

that the matrix A is equal to:

A :d]ag({ol y 02y vy Gn]) (3.5)
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(this can be achieved by using a proper similarity transformation, if necessary). Any struc-
turally constrained controller for the system . comprises v control agents corresponding
to various subsystems as well as a number of transmission links. Each transmission link
provides the output of a certain subsystem to a specific control agent which will be used
to construct its control signal. The symbol k;; (i, j € V) is used throughout the work to
describe the link which transmits the output of the j* subsystem to the i control agent (or
equivalently, the i subsystem).

Any class of structurally constrained controllers is formulated in [18] via a set, re-

ferred to as control interaction set. This concept will be clarified in the following definition.

Definition 1 Given a class of structurally constrained controllers, define its associated
control interaction set K as a set which includes only the symbols k;j, i, j € V whose cor-

responding transmission links exist in the control structure.

Consider any arbitrary control interaction set K. It is well-known that certain modes
of the system . may be fixed under all LTI controllers belonging to the class of struc-
turally constrained controllers defined by K. These fixed modes (if any) are referred to as
decentralized overlapping fixed modes (DOFM) w.r.t. (with respect to) K.

Assume henceforth that the system .% is controllable and observable (the results
obtained can be easily extended to the case when the system is detectable and stabilizable).
Let %;; denote the pre-specified cost of establishing the transmission link k;j, for any i, j €
v. The implementation cost associated with any set K is clearly equal to the sum of the
costs of its components. Note that in the case when a communication link cannot exist (due
to the reasons pointed out earlier such as the shadow phenomenon), its associated cost is

infinity. The problems explained below will be addressed in the next section:

e Since any class of structurally constrained controllers is useful only when the system

is stabilizable with respect to that class, it is first desired to characterize all classes
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of LTI structurally constrained controllers with respect to which the system % has

no DOFMs.

e The second objective is to seek the class(es) of LTI structurally constrained con-
trollers (among the ones characterized by addressing the above problem) whose cor-

responding implementation cost is minimum.

3.4 Main results

The following procedures are essential in developing the main results of this work.

Procedure 1 ([7]) Corresponding to the mode o;, i € fi .= {1,2,...,n}, construct a bipar-
tite graph &; with two sets 'V (set 1) and ¥ (set 2). Put Vv vertices in each of these sets and

label them as 1,2,...,v. For any A, Ay € V, carry out the steps given below:

o Connect the vertex Ay of the set 'V to the vertex Ay of the set ¥ if and only if the

following equation holds:

1 1
Cy. xdi . — 0,
b % zag([o_l_o_i, ' 0i-1— O;

1 1

_, X By, —D =0
Oi+1—0i’ ’%—G}) Tk

(3.6)

o Mark the vertex Ay of the set ¥ if the i column of the matrix C 4, IS a zero vector.
Likewise, mark the vertex Ay of the set ¥ if the i row of the matrix B A, IS a zero

vector.

Procedure 2 For a given control interaction set K = {kp 4,1 kp,4y1--sKpaqq } and any i €,
construct a bipartite graph ¥4;(K) with two sets of o vertices. Label the vertices in set 1
with q1,q2,...,qa and the vertices in set 2 with py,pa,...,pa. Mark all vertices in set 1
of 9:(K) whose corresponding vertices in set 1 of 9; (the ones with the same labels) are

marked. Mark the vertices of set 2 in a similar fashion. Moreover, connect two vertices
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of set 1 and set 2 of 4,(K) if the vertices with the same labels in ¥; are connected to each

other.

Since qy,493,.--,qq are not necessarily distinct numbers, the labels in set 1 of the
graph %;(K) formed in Procedure 2 can be recurrent. The same argument holds true for its
second set of vertices. It can be observed that &; acts as a look-up table for constructing
the graph &;(K). As an example to clarify this point, assume the graph ¢ to be the one de-
picted in Figure 3.1. By considering K as {k;1,k2,k13}, the graph ¢ (K) can be obtained
easily in terms of ¢ as shown in Figure 3.2.

1 2 3

Figure 3.1: The graph ¢ for a certain system.

(S
[

(¥}

Figure 3.2: The graph ¢;(K) corresponding to the set K = {kj1,k22,k;3} and the system

with the graph % sketched in Figure 3.1.

Lemma 1 The mode o;, i € i, is a DOFM of the system . with respect to the set K =
{kprar1kpagzs---skpaga } if and only if its corresponding graph ¥4,(K) satisfies any of the
following properties:

i) All vertices in set 1 of 4,(K) are marked.
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ii) All vertices in set 2 of %;(K) are marked.

iii) %K) includes a complete bipartite subgraph for which both of the conditions given
below hold:
— All its vertices (in both sets) are marked.

— Forany j € {1,2,...,}, the j™ vertex of either set 1 or set 2 of 4(K) is in-

cluded in the subgraph.

Proof: The proof can be derived straightforwardly from the results of [7] and [16].

The details are omitted here (see Theorem 1 in [18] for a similar result). [ ]

Definition 2 The control interaction set K = {kp,4,,kp,q5+ -+ Kpagq } is said to be minimal
w.r.t. 0;, i € i, if and only if ©; is not a DOFM of the system . w.rt. K, while it is a DOFM

w.rt. K—{kp.4:} forany j € {1,2,...,a}.

The important property of a minimal set is that it has no redundant transmission
link, in the sense that all transmission links in the set contribute to the stabilizability of
the system. As an example, consider again the system whose corresponding graph ¥ is
depicted in Figure 3.1. It is easy to verify that {kj1,k2,k13} is not a minimal set for this
system, while {k1},k23} is a minimal one.

Definition 3 A subgraph of the graph %, i € A, is said to be maximal if:
i) It is a complete bipartite graph.

ii) All of its vertices in both sets are marked.

iii) The properties (i) and (ii) given above will not hold if any new vertex is added to the

subgraph from the graph ;.

iv) It includes at least one edge.
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Using a proper combinatorial algorithm, these subgraphs of the graph ¥; can be eas-
ily identified (analogously to the algorithms developed for finding the complete bipartite
subgraphs with maximum number of edges). Denote such subgraphs with &{,¥, ..., ¥},
for any i € ii. Moreover, denote set 1 and set 2 of the vertices of the graph gﬂj’ with 7 'J and
“/:/'j respectively, for any i € aand j € {1,2,...,w;}.

To clarify Definition 3, consider ¢ as the graph sketched in Figure 3.3. This graph

has two maximal subgraphs with the following sets of vertices:

o 7} ={1}and 7} = {2,3}.

o 7,={1,2}and 7} = {2}.

Figure 3.3: A graph ¢ with two maximal subgraphs.

Theorem 1 Assume that the control interaction set K = {kp,q,,kprqzs-->Kpaqq ) is minimal

w.rt. ©;, i € ii. Then, & is less than or equal to w; + 2.

Proof: From the definition of a minimal set, the mode o; is a DOFM of the system

w.rt. K/ :=K—{k, .} forany j € {1,2,...,a}. Hence, at least one of the properties (i),

4
(i1) or (iii) mentioned in Lemma 1 is satisfied for the graph %’,-(Kf ) (introduced in Procedure
2) for any j € {1,2,...,a}. Proof of the theorem will be provided now by contradiction.
Therefore, assume that & > w; + 2.

Suppose that there are two distinct numbers jj, j» € {1,2,..., 0t} so that property (i)

of Lemma 1 is met for both of the graphs %;(K/1) and ¢;(K/2). Hence, all the vertices in
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set 1 of the graph %;(K) are marked. This implies that the system % has a DOFM w.r.t
the set K (by virtue of Lemma 1). This contradiction means that condition (i) of Lemma 1
can be true for at most one of the graphs %(K'),%(K?),...,%(K%). The same argument
can be made for condition (ii) of Lemma 1. Therefore, condition (iii) of Lemma 1 is true
for more than w; graphs of %(K!), %(K?), ...,%(K%) (note that & —2 > w;). With no loss
of generality, assume that each of the graphs %(K'),%(K?),...,%(K") has a complete
bipartite subgraph satisfying property (iii) of Lemma 1, where A = w; + 1. Every of these
complete bipartite subgraphs is also a subgraph of one of the graphs E?l' , ~2i, ...,ng,i. Since
there are A complete bipartite subgraphs‘ while the number of these graphs is less than
A (note that w; < A), it can be concluded from Dirichlet’s Principle that the subgraphs
of two of the graphs %(K!),%(K?),...,4(K?") correspond to the same maximal graph.
Without any loss of generality, assume that %;(K!) and %;(K?) both have complete bipartite
subgraphs with the properties mentioned in condition (iii) of Lemma 1, which are included

in ffl’ . Thus:

N

gs SV or pg SV, VB €{2,3,4,...a} 3.7)

and:

a5 SV or ps SV, VB €{1,3,4,...,} (3.8)

It follows from (3.7) and (3.8) that:

N

g ¥\ or pg SV, VB €{1,2,3,4,...,a} (3.9)

Using the above relation, one can conclude from Lemma 1 that the mode o; is a DOFM of
the system . w.r.t. K, because the graph &;(K) encompasses a complete bipartite subgraph
satisfying the third property of the lemma. This contradicts the initial assumption, and
hence completes the proof. ]

Theorem 1 introduces an important property of maximal sets. Moreover, its proof

implicitly proposes a simple method to compute all the minimal sets corresponding to the
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mode 0;, denoted by Kf,’,] , K£;,2, ...,Kf,’fi , for any i € Ai. Assume for now that all of these sets
are attained. The question arises: how can one obtain a set K such that the system %’ has
no DOFMs with respect to the control interaction set K? This question will be answered

in the next corollary.

Corollary 1 For any control interaction set K, the system . has no DOFMs w.r.t. K if

and only if there exist distinct integers ji, ja, ..., jn With the following property:
(Krln’j] UK;’jZU---UK;',;j") CK (3.10)
where 1 < j; <z, foranyi€n.

Proof: The proof is straightforward, and is omitted here. ]

Remark 1 Since the minimal sets K;;,I,K;,’,z, ....Ky4, i € i, have already been identified,
Corollary 1 can be utilized to attain all the control structures with respect to which the
system has no fixed modes. For any control interaction set K obtained, one can take ad-

vantage of the method given in [16] to design a LTI structurally constrained controller

complying with K so that all the modes of the system are placed at any desirable locations.

3.4.1 An efficient algorithm to obtain the optimal control interaction
set(s)

It is evident that the implementation cost corresponding to a control interaction set K =
{kp1g1skpagas - kpage } 18 €qual to Y | €., The objective here is to obtain all the optimal
control interaction set(s), i.e. the ones with the properties that not only does the system &/
have no DOFMs with respect to them, but their corresponding cost is also minimum.
Consider a control interaction set K. It can be inferred from Corollary 1 that if this

set is optimal, then there exist distinct integers ji, ja, ..., jn such that
1) j 27 j k] ‘n
K=K, "UK»2U-. - UK}/ (3.11)
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Now, draw a table 7 with n columns so that the minimal sets K& K57, .., K}7 are placed

in the i™ column of 7 in an arbitrary order, for any i € {1,2,...,n}. As a result of the
equation (3.11), the most straightforward way to obtain the optimal control interaction
set(s) is to consider all the possible ways that n sets can be chosen from different columns
of 7, and for each of the selections, to compute the cost associated with the union of the
chosen sets to observe which one has the least cost. This would result in z; X 23 X -+ X 2
combinatorial operations. A method will be proposed next to significantly reduce this
number, in general.

To cast light on the idea here, let start with a particular case. Assume that z; =25 =
.-+ =z, = 7, and that K,2n’1 - K,]n’l. The latter relation means that not only the mode o7,
but also the mode &, is movable with respect to the interaction set K%', An indication of
the fact is that if the set K,],,’] is chosen from the first column of the table 7, there is no
need to opt a set from the second column, as it just incurs cost. Hence, in this case, the
number of ways in which K,l,,’1 is selected from column 1 is equal to 7"~2, rather than 7%~ !.
Consequently, if it is known that the relation K,z,,’1 C K%' holds, computing z*~2(z — 1)
combinations is obviated. Typically, there are several such relations (not just one), which
makes the method computationally more efficient. Consequently, it is very important to
find out the relations such as K%' C K5;'. This can be done by carrying out (%) operations,
where every operation considers two sets from different columns of the table 7 and verifies
whether one of them is a subset of the other one. It is worth mentioning that since (') is
much smaller than z"~2(z — 1) in general, this “so-called” pre-processing which aims at
finding the desired relations is quite advantageous.

Attribute a set T"/ to each minimal set Kinj ,foranyien, je€ {1,2,...,z}, such that
the set T/ contains a number 7 if and only if at least one of the sets in the 7™ column of
the table is a subset of K&/, As pointed out earlier in a particular case, the sets T"/’s can be

constructed by carrying out (21“2;“"'“") operations. The aforementioned discussion leads
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to the following corollary.

Corollary 2 Consider a control interaction set K. The system . has no DOFMs w.rt. K

if and only if there exist integers iy, iz, ...,i; and iy ,ib,...,i’; (j < n) such that:
y g (A tAd ] 122 J ]

(iRt k) cx an
where:
TR UT2R Y- UTH = {1,2,....n} = {i1, iz, -} (3.13)

Moreover, if the relation (3.12) turns to an equality, i.e.:
BAUKE2U-- UK =K (3.14)

then K is a cost optimal candidate.

The main advantage of the relation (3.14) over (3.11) to obtain the optimal control
interaction set K is that j can be noticeably less than n. Note that in the case when j
is solely one unit less than n, as asserted earlier, there is still a significant saving in the
computation time. At this point, a simple algorithm can be devised to obtain all the sets K

representable as (3.14).

Remark 2 In this work, a mode is considered as being either fixed or movable. In other
words, the problem is formulated by giving a binary status to each mode, in terms of being
or not being a DOFM. However, a mode which is not a DOFM, can be very close to being
a DOFM. In this case, the input energy to displace this mode can be undesirably huge
[19]. This can cause important practical problems such as input saturation. In order to
take this grave issue into consideration, one can define an inherent cost, aside from the
implementation cost. This cost should reflect how flexible the modes of the system are. For
instance, the notion of approximate decentralized fixed modes (ADFM) introduced in [20]

can be used for this purpose. In that case, in the last stage where a control interaction set
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is to chosen from the possible sets resulted from Corollary 2, both of the implementation

cost and the inherent cost should be considered.

3.5 Numerical example

Consider a system . consisting of three single-input single-output (SISO) subsystems

with the following decoupled state-space matrices:

Dy;

1 00 1 0
020¢|,Bi=|1]|,B=]3],

0 03 0 5

0

0 7C1:[061:|

6 (3.15)

0 0 4}; C3:[10 3 0]
=—1, D;p=23, D13=3,

= =3, Dy =20, Dy3=10,

D31 =—15, D3 =5, D33 = -8,

It is desired now to characterize all control interaction sets with respect to which the system

% has no DOFMs. The graphs ¢, % and %; correspondingto 01 =1, 6, =2 and 03 =3

are depicted in Figures 3.4, 3.5 and 3.6, respectively.

The graph ¢ has two maximal

subgraphs with the following sets of vertices:

I

71 ={1}, 16
1,2}, 73=1{2}

=1
/1/2 {7

fl
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Figure 3.4: The graph % corresponding to the mode o7 = 1 of the system given in (3.15).

w
w2

N

Figure 3.5: The graph &, corresponding to the mode o, = 2 of the system given in (3.15).

Analogously, it can be easily verified that the graphs % and %3 have no maximal subgraphs.
Therefore:

wi=2, wy=0, w3=0 (3.17)

Using the method proposed in this work, all the minimal sets with respect to different
modes of the system .% can be obtained straightforwardly based on the maximal graphs
found. These sets are tabulated in Table 3.1.

It results from Corollary 1 that the system . has no DOFMs with respect to a control
interaction set K if and only if there exit integers 7 € {1,2} and p, 713 € {1,2,...,8} such
that:

(KIMukKZRUK®) CK (3.18)

As stated in Subsection A of Section III, in order to characterize the desired sets K, all
possible ways of choosing three sets from different columns of Table 3.1 should be con-
sidered and for each of them, their corresponding union must be computed. This results

in 2 x 8 x 8 = 128 combinations. Nonetheless, Corollary 2 can be exploited to diminish
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Figure 3.6: The graph ¢; corresponding to the mode g3 = 3 of the system given in (3.15).

the number of possible combinations. To this end, one may take note of the fact that for
any choice of K,l,,’] in column 1 of the table, there is no need to choose a set from col-
umn 2 (because of the relation K,ln’1 = K,2,,’3). Moreover, it can be deduced from the relation

12 526 138 e l2

n =K =K that if K,;“ is chosen from column 1, no sets are needed to be chosen
from the remaining columns. This exposition is indeed the interpretation of Corollary 2.
Hence, it suffices to merely consider the union of the first set in column 1 with all sets in
column 3 as well as the second set of column 1 itself. In other words, 9 combinations are

required to be constructed using Corollary 2, while Corollary 1 requires 128. Obtaining

Table 3.1: Minimal sets corresponding to different modes

o =1 oy =2 o3 =3

kn' ={ki3} | kn ={kn} |k ={ka)}

kn” = {kiz,k33} | kni” ={ka1) ki = {ka1}
ke’ ={kis} |k = {ka}
k! = {ka3} kit = {k}

k= {kx,k33}
K35® = {ki2,k33}
K = {ks1,k12}

k%% = {ky,k31}

Ky = {ki2,kz3}
kni” = {ku1,k23}
Ky = {ki1,k33}
Ky = {ki2,k33}
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the 9 resultant sets and eliminating the identical ones will lead to the fact that the system
has no DOFM with respect to a control interaction set K if and only if K includes at least

one of the 8 sets given below:

{ki3,k21}, {kiz,ks1}, {kis,k22}, {ki3,k32},
{ki3,k12,k23}, {kis,ki1,k23}, {k13,k11,k33}, (3.19)

{k12,k33}

It is worth mentioning that there exist 20" — 1 = 511 classes of structurally constrained
controllers for this example. However, the desired ones are characterized here as only 9
minimal sets.

Now, it is desired to obtain the cost optimal control interaction set(s). Assume that
%ij=1, i,j€{1,2,3}, which implies that establishing any of the transmission links would
incur the same cost. As discussed earlier, among the sets given in (3.19), the ones whose
corresponding costs are minimum should be identified. In this case, the five sets which

have only 2 elements are the cost optimal ones with the minimum cost 2.

3.6 Conclusions

This work aims to obtain all classes of LTI structurally constrained controllers with respect
to which a given interconnected system has no fixed modes. To this end, the notions of
maximal graph and minimal set are exploited to formulate the problem in the graph theory
framework. A cost is then allocated for establishing a communication link between any pair
of controllers. An algorithm is subsequently developed to identify the stabilizing control
structures with the minimum implementation cost. The significance of this contribution
is illustrated in a numerical example. This work takes advantage of the recent results

presented in the literature to handle similar problems.
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Chapter 4

Robust Control of LTI Systems by
Means of Structurally Constrained

Controllers

4.1 Abstract

This work investigates the stabilizability of uncertain LTI systems via structurally con-
strained controllers. First, a LTI uncertain system is considered whose state-space matrices
depend polynomially on the uncertainty vector, defined over some region. It is shown that
if the system is stabilizable by a structurally constrained controller in one point belonging
to the region, then it is stabilizable by a controller with the same structure in all points be-
longing to the region, except for the ones located on an algebraic variety. Thus, if a system
is stabilizable via a constrained controller at the nominal point, then it is almost always
stabilizable at any operating point around the nominal model. It is also shown how this
algebraic variety (or the dominant subvariety of it) can be computed efficiently. The results

obtained in this work encompass a broad range of the existing results in the literature on
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robust stability of the LTI systems.

4.2

INTRODUCTION

Numerous real-world systems can be envisaged as interconnected systems consisting of a

number of subsystems [1]. The overall controller for such a system is often composed of

a set of local controllers corresponding to the individual subsystems. In an unconstrained

control structure, the outputs of all the subsystems are accessible by any local controller.

This type of controller is referred to as a centralized controller. However, in many control

applications, each local controller can only use the information of a subset of subsystems.

This control constraint is due, primarily, to some practical issues discussed below:

i)

iif)

Interconnected systems often have several subsystems. Hence, a centralized con-
troller for such large-scale systems can potentially be costly, in light of the required
computations and transmission of information between the subsystems. In order to
reduce the control expenditure for this type of systems, it is desirable to impose cer-
tain constraints on the control structure. A manifest example of this case is the traffic

control system [2].

For the interconnected systems with geographically distributed subsystems, trans-
mission of information between two specific subsystems can be quite costly and
prone to reliability problems. This is the case, for instance, in power systems, where

the interacting power stations are located in remote places.

In some interconnected systems, the output of certain subsystems may be inaccessi-
ble for some other subsystems in specific time intervals. For example, this can occur

frequently in the flight formation problem, due to the shadow phenomenon [3].
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It follows from the above discussion that a constrained control structure is often more
desirable for the interconnected systems [4]. The structure of such a controller is sometimes
represented by a binary matrix, referred to as the information flow matrix [5]. Note that the
information flow matrix corresponding to any system is part of the design specifications
and is contingent upon the characteristics of the system and the control implementation
cost as noted above.

A special case of structurally constrained controllers, often referred to as decentral-
ized control, has been extensively studied in the literature [6; 7]. A decentralized controller
comprises a number of non-interacting local controllers, which implies that the correspond-
ing information flow matrix is block diagonal. Another type of structurally constrained
control is the one in which some local controllers overlap in accordance with the overlap-
ping structure of their corresponding subsystems [8; 9]. This class of control structure is
called decentralized overlapping structure, and has been investigated in the literature in the
Expansion-Inclusion framework [10].

The problem of stabilizability of systems (with known parameters) with respect to
LTI decentralized and decentralized overlapping controllers has been investigated inten-
sively, and several methodologies are presented accordingly for controller design [5; 11;
12; 13]. The notion of decentralized fixed modes (DFM) was introduced in [6] to identify
those modes of a LTI system (if any) which cannot be shifted by using any LTI decen-
tralized controller. As a generalization of DFM, the notion of decentralized overlapping
fixed modes (DOFM) was introduced in [13] to characterize those modes of a LTI system
which are immovable with respect to the class of LTI structurally constrained controllers
with a given information flow matrix (of any arbitrary structure). A simple graph-theoretic
approach is also provided in [13] to obtain the DOFMs of any system efficiently.

The papers surveyed so far have merely considered the problem of structurally con-

strained stabilization for systems with known parameters. However, the real-world systems
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are uncertain to some degree. Under this circumstance, a region of uncertainty is usually
envisaged to describe the range of uncertainty, along with a set of relations to characterize
the uncertain parameters of the system.

In the early works, the region of uncertainty was assumed to be the whole space and
besides the uncertain parameters of the system were considered uncorrelated. The notions
of structural controllability and structurally fixed modes were then defined based on these
assumptions. Structural controllability was introduced in [14] to determine whether the
uncontrollability of a LTI system is resulted from its structure or from the exact parameter
matching in the system. Structural controllability is studied in several papers, e.g. see
[15; 16; 17; 18]. Furthermore, the notion of structurally fixed modes was defined in [19]
to characterize those DFMs that are resulted from the structure of the system, and hence
remain fixed regardless of the numerical values of the system’s nonzero parameters.

Although the notions of structural controllability and structurally fixed modes are
very useful in robust control design problems, they fail to address the very important practi-
cal issue of correlation between the nonzero parameters of the system [18]. In other words,
in many practical problems different parameters of the system are correlated to each other,
and belong to known regions in the parameter space. As a simple example, consider a RLC
circuit and assume that the numerical values of its elements are known with a maximum
error of 10%. In this case, every coefficient of the system transfer function can be written
parametrically in terms of three quantities: the resistance, the capacitance and the induc-
tance. This implies that all the coefficients of the transfer function are correlated, and that
the uncertainty region is, indeed, a cube.

This work deals with the robust stabilizability of LTI systems via structurally con-
strained controllers. It is assumed that the state-space matrices of the system are polynomi-
ally uncertain, and that the uncertainty variables of the system belong to a known region.

It is shown that if the system has no DOFMs at some point belonging to the region, then
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the points for which the system has a DOFM lie on an algebraic variety. As a result, if
a system has no DOFM at its nominal point, it almost always has no DOFMs at any op-
erating point. Furthermore, since finding the exact algebraic variety can be formidable in
general, a simple method is proposed to compute a dominant subset of it, in the sense that
the dimension of this subset is greater than that of its complement. It is noteworthy that
the robust stabilizability problem has been investigated in a number of papers, e.g. see
[20; 21; 22; 23; 24; 25; 26]. Nonetheless, these works formulate the problem in some
special cases, e.g. SISO systems, centralized controllers or polytopic uncertainties. In
contrast, this work tackles the robust stabilizability problem in the most general case. The
results provided here encompass the ones presented in the literature for structural control-

lability and structurally fixed modes.

4.3 ROBUSTNESS PROPERTY OF THE MODES OF A

LTI SYSTEM

Consider an uncertain LTI interconnected system . (¢) with unknown, nevertheless fixed
(or slowly time-varying) parameters, consisting of v subsystems with the following state-
space representation:
\4
(1) = A(a)x(t) + ;Bi(a)ui(t)

v 4.1)
yi(t) = C(a)x(t) + Y. Dij(a)uj(t), i€ v:={1,2,..,v}

Jj=1

where:

e x(t) € R" is the state, and u;(z) € R™ and y;(t) € R", i € V, are the input and output

of the i? subsystem of .% (), respectively.
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a=|o o -+ o ] represents the vector variable corresponding to the un-

certainty in the system, and belongs to a given region 2 of dimension L.

A(@), Bi(a), Ci(a) and Djj(), i, j € ¥, are matrix polynomials of the variable o.
Define now the following matrices:

B(a) is a block matrix whose i block column is equal to B;(a), for any i € V.

C(c) is a block matrix whose i block row is equal to Ci(a), for any i € V.

D(a) is a block matrix whose (i, j)™ block entry is equal to D;j(ax), for any i, j € V.

Assume that the system .(a) is to be controlled by means of a structurally con-
strained controller. The constraint on the control structure determines which outputs y;(t) (i €
¥) are available to construct any specific input u;(t) (j € V) of the system (as the local
control command). In order to simplify the formulation of the control constraint, a block
matrix J¢ with binary entries is defined, where its (i, j) block entry, i, j € V, is a m; X r;
matrix with all elements equal to 1 if the output of the j® subsystem can contribute to
the construction of the input of the i subsystem, and is a m; X r; zero matrix otherwise.
The matrix J¢ represents the control constraint, and is referred to as the information flow
matrix [5]. In the special case, when the entries of the matrix ¢ are all equal to 1, the
corresponding controller is centralized, when J¢ is block diagonal, the corresponding con-
troller is decentralized.

Consider the system . () for an arbitrary value of @, namely a. The notion of
decentralized fixed modes (DFM) introduced in [5] for general proper systems corresponds
to the modes of the system . (atp) which are fixed w.r.t. (with respect to) a block-diagonal
information flow matrix J#. Decentralized overlapping fixed modes (DOFM) were then
defined in [13] to identify those modes of the system () which are immovable w.r.t.

any LTI controller complying with the given information flow matrix J¢".
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Let K denote the set of all constant matrices of dimension (my +---+my) X (r; +
---+ry) with the property that their zero entries coincide with those of the matrix . In
fact, the set K parameterizes all the structurally constrained static controllers complying

with the information flow matrix J¢".

Lemma 1 Given ag € 9, assume that ¢ is a mode of the system .#(0). There exists no
static or dynamic LTI structurally constrained controller complying with X~ to move the

mode G if and only if the following relation holds:
o € sp{A(ao)+B(ao)K(I —D(ap)K)'C(ag)}, VKeK 4.2)

Proof: For the case when % is block diagonal, the proof follows from the result
obtained in [5], which states that if a mode is fixed w.r.t. the static LTI decentralized
controllers, then it is also fixed w.r.t. the dynamic LTI decentralized controllers. The proof
can be extended to the general case of non-block diagonal information flow structure, on
noting that there exists a bijective morphism between DFMs and DOFMs (as substantiated
in [13]). ||

The following definitions will prove convenient in presenting the main results of this

work.

Definition 1 An algebraic variety refers to the set of common zeros of a number of poly-
nomials. The notation ¥ (fi(t),..., f(&)) will be used throughout this work to refer to

the algebraic variety generated by the common roots of the polynomials fi(ct),..., fo ().
Definition 2 An irreducible algebraic variety is said to be an affine variety.

In this work, only varieties in the real space (as opposed to the complex space) are
considered. Hence, the term “real space” describing the type of said varieties will be

omitted hereafter for simplicity. It is worth mentioning that an algebraic variety generated

61



by a set of p-variate polynomials is of dimension y — 1. Nonetheless, this variety can be
considered as the union of a number of affine varieties such that some of them are of pure

dimension g — 1 and the others have smaller dimensions.

Notation 1 Given the variables &, 0, ..., 0y, all the monomials of maximum degree p in
the form ofaf' (Jtz‘oz...()zf{1 are denoted (in an arbitrary order) by <I>,]) (aq,..., (xl),d)’z, (apy..., ),

i+A—1
---yq)g(al EARLY) al)’ where 5 = Z?:O (l A-1 )
The next theorem presents the main result of this chapter.

Theorem 1 The following statements are true for the robust stability of the system 7 ()

in the region 9:

a) Assume that the system . (a*) has no DOFM w.r.t. ¢, for some o* € 9. There ex-
ists an algebraic variety of dimension L — 1 such that for any arbitrary 0 belonging
10 9, the system () does not have any DOFM w.r.t. ¢ if and only if 0t does

not pertain to this variety.

b) If there exists a point &* € 9 such that the system #(a*) has no DOFMs w.rt.

A, then for almost all values of ot belonging to 9, the system . (0) also has no

DOFMs w.rt. X .
Proof of part (a): Define the following:
q(s, &, K) = det (sI — A(at) ~ B(a)K(I - D(@)K)~'C(ax)) det(I - D()K) ~ (4.3)

It is straightforward to show that g(s,@,K) is a polynomial in terms of the variables s,
and K, which are a scalar, a vector and a matrix, respectively. It results from Lemma 1
that the system (o) has no DOFM w.r.t. 2 if and only if there exists a matrix Ko € K
such that the polynomials g(s, o, Ko) and g(s, &, 0x,) (Which are functions of s only) are

coprime, where Ok, denotes a zero matrix with the same size as Ky. Note that the zeros of
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the polynomial g(s, &g, O, ) are indeed the modes of the system (). The coprimeness
of these two polynomials will be formulated next.

One can rewrite the polynomial ¢(s, o, K) as:
n I3
q(s,a,K) = Zqi(a,K)s' 4.4)
i=0

for some polynomials go(, K), ...,gn(, K). Construct a 2n x 2n Sylvester matrix by using
the following rule:

Consider the first row of this matrix as:

[q,,(a,K) gn-1(a,K) --- go(o,K) O--- 0} 4.5)

and the (n+1)" row as:

[qn(a,OKo) Qn—l(a,OKo) qO(a,OKO) 0--- O} (46)

Now, for any i € {2,3,...,n,n+2,...,2n}, the i row of the Sylvester matrix is obtained
from the (i — 1)™ row by shifting it by one to the right and circularly shifting the rightmost
entry to the leftmost position. Denote the determinant of the resultant Sylvester matrix by
the polynomial r(a,K). It can be inferred from Sylvester’s theorem that the polynomials
q(s, g, Ko) and q(s, &g, 0k, ) are coprime if and only if (0, Ko) # 0. One can conclude
from this result and the existence condition given earlier for DOFMs of the system .& (o),
that the system .# (o) has no DOFMs w.r.t. ¢ if and only if there exists a matrix Kp € K
such that the polynomial r(cg, Ko) is nonzero. This condition will be further simplified in
the sequel.

Assume that the matrix J¢ has j nonzero entries. Denote the nonzero scalar variables
of the matrix variable K € K with kj,k,...,k;, in an arbitrary order. One can decompose
the polynomial r{a, K) as follows:

z
r(a,K) = Z:’)ri(a)d);(kl,kz,...,kj) 4.7
i=
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for some polynomials ri(@),...,rz(o), where z = n(r;+---+ry) and 2=} 4 (’t’_’ll)
It is notable that the polynomials ry(¢t), ...,rz(a) cannot be all identical to zero. This fact
results from the assumption that the system . (a*) has no DOFMs over the region 2 w.r.t.
¢, which implies that r(a*,K*) # 0 for some K* € K. On the other hand, it can be easily
verified that for a given scalar ag, there exists a matrix Ko € K for which r(0a, Ko) # 0 if
and only if the polynomials ri(ct),...,rz(a) are not concurrently equal to zero at & = Q.

The aforementioned results can be summarized as follows: The system .# (o) has
no DOFMsw.rt. X if and only if 0ig does not pertain to the algebraic variety ¥ (ri(a), ..., rz(@)).
This completes the proof of part (a).

Proof of part (b): The proof follows from part (a) and on noting that the dimension

of the algebraic variety ¥ (r;(@),...,rz(c)) is equal to g — 1, while that of the region Z is

known to be equal to p. n

Remark 1 As an illustrative example of the above results, assume that the region 9 is an
oval in a plane. Theorem 1 implies that there are three possible scenarios regarding the
DOFMs of the system in this region (DOFMs are represented by black points, while the

non-DOFMs are shown by gray points):

1) All points inside the region are DOFMs (Figure 4.1).

Figure 4.1: Explanation of DOFMs for the example given in Remark 1.

2) None of the points inside the region are DOFMs (Figure 4.2).
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Figure 4.2: Explanation of DOFMs for the example given in Remark 1.

Figure 4.3: Explanation of DOFMs for the example given in Remark 1.

3) Almost all of the points inside the region are not DOFMs (Figure 4.3).

Motivated by the results of Theorem 1, the notion of structurally robust fixed modes

(SRFM) will now be introduced.

Definition 3 The uncertain system () is said to have no SRFM in the region 2 w.r.t.
X, if there exists an o belonging to 9, denoted by a*, such that the system /' (*) does
not have any DOFM w.rit. the information flow matrix 2. Note that if #(Q) has some
SRFMs, then for any o belonging to the region 2, the system .#(0o) has at least one

DOFM w.rt. X .

Corollary 1 If the system . () has at least one SRFM over the region 9 w.rt. JX', then

it also has some SRFMSs over the whole space w.r.t. X .

Proof: A proof by contradiction will be provided here. Assume that the system .% (o) has

no SRFM over the whole space w.r.t. ¥, while it has some SRFMs over the region 2. It
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can be concluded from part (a) that there exists an algebraic variety such that the system
#(c) has DOFMs only for the uncertainties in this variety. Since the dimension of this
variety is 1 — 1 (and that of the region 2 is 1), the region 2 is not contained by this variety.
As a result, there exist infinitely many poin{s belonging to 2, which do not belong to this
algebraic variety, and consequently, their corresponding systems do not have any DOFMs.
This contradicts the initial assumption that the system .%(c) has some SRFMs over the

region Z w.rt. X . L

Remark 2 As a by-product of part (b) of Theorem 1, if the system () has no DOFMs at
the nominal point 0. = o*, then the system almost always has no DOFMs at any operating

point &0 = Qg either.

Theorem 1 states that there is an algebraic variety whose intersection with the region
2 leads to the points o for which the system .#(a) has some DOFMs w.r.t. 2. Hence,
identification of this variety can be helpful to provide a precise insight into the robust
stabilizability of the system. This algebraic variety is characterized by the polynomials
ri(a),ry(a),...,rs(a). Since 7 is typically a very large number, finding all these polyno-
mials and the geometric shape of their common zeros is quite cumbersome. It is desired
now to present a simple algorithm to obtain a dominant subset of this algebraic variety.

In light of the discussion given earlier, the algebraic variety ¥ (r1 (@), ..., rz(@)) is the
union of a number of affine varieties. Some of these affine varieties are of pure dimension
it —1 and the remaining ones are of dimensions less than p — 1. More precisely, the
dimensions of the latter subvarieties normally do not exceed max(0, it — Z) (rather than
1L —2), and since Z is typically much greater than p, these subvarieties are likely to be
empty in general [27]. Hence, one can come to the conclusion that the affine varieties of
pure dimension u — 1 play the primary role in the robust stabilizability of the system S,
and the effect of the other affine varieties (if any) is negligible. The following theorem

states how the dominant part of ¥ (r;(a), ..., rz(@)) can be identified efficiently.
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Theorem 2 Let two generic matrices Ky and K, be chosen from the set K. Compute first
the function q(s, e, K;) and subsequently r(a,K;) in terms of g, for i = 1,2. Denote the
greatest common divisor (gcd) of r(, K1) and r(a,Ky) with h(a). The variety 7 (h(ct))
is included in the variety ¥ (ri(@),...,rz()), and also contains all the affine varieties of

¥ (ri(t),...,rz(@)) with the pure dimension |1 — 1.
Proof: Define the following polynomial:

[(a) = gcd(ri(a),ra(a),...,rz(a)) (4.8)

By virtue of the celebrated results on algebraic sets, one can conclude that not only is
the variety ¥ (I()) a subset of the variety ¥ (r1(a),...,rz(@)), every affine variety in
¥ (r1(@),...,rz(@)) of pure dimension y — 1 is also a subset of ¥ (I(«)) [27]. Therefore,
to prove the theorem, it suffices to substantiate that /() is identical to h(c) for generic
choices of K; and K». This can be easily shown by commencing from (4.7) and performing
some additional manipulations. The details are omitted here for brevity. ]

Theorem 2 proposes a simple method to obtain the dominant component of said va-
riety, which broadly speaking, causes the uncertain system .# () not to be stabilizable
by means of LTI structurally constrained controllers. It is to be noted that the varieties
¥ (r1(a),...,rz(@)) and ¥ (h(c)) are the same in the univariate case (1L = 1), but not nec-
essarily the same in the multivariate case. This results from the fact that a set of multivariate

polynomials can be relatively prime, while they have some common roots.

Remark 3 The notion of structurally fixed modes introduced in [19] characterizes those
modes (if any) of a system which continue to be DFMs after arbitrarily perturbing the
nonzero parameters of the system matrices. For a deterministic system &, assume that
the system matrices A,B,C and D have accumulatively e nonzero entries. Let the region

D be Re. It is desired now to construct the uncertain replica of ./, denoted by S().
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Define the vectoratas | q; oy --- o, |» and replace each nonzero entry of the system
matrices with one of the variables Qy, 0%, ..., 0t so that none of these variables is recurrent.
Denote the new matrices with A(@),B(e),C(c) and D(), and the corresponding system
with S(c). It can be easily shown that the notion of a structurally robust fixed mode for
the system () is the same as the notion of a structurally fixed mode for the system Z.
This implies that the robust stabilizability framework introduced here encompasses one of
the relevant well-known results in the literature. In this case, Theorem 1 conforms to the

famous result that a system with no structurally fixed modes has generically no DFMs.

Remark 4 Using a technique similar to the one exploited in Remark 3, it can be easily
shown that the formulation presented in this work and the subsequent developments encom-
pass the existing results on structural controllability. In this case, the result of Theorem 1
is in accordance with the celebrated result that if a system is structurally controllable, then

almost all systems with the same structure are also controllable.

4.3.1 Practical applications
A number of immediate applications of this work are encapsulated below:

e The prevailing method for controlling an uncertain interconnected system with un-
known, nevertheless fixed (or slowly time-varying) parameters by means of a struc-
turally constrained LTI controller is adaptive control [28; 29; 30]. Nevertheless, an
adaptation law is feasible only if the system is stabilizable over the uncertainty re-
gion w.r.t. the desirable class of controllers. The present work provides a systematic
method to check this feasibility criterion. The results obtained can also be used to

develop more effective adaptation laws, compared to the existing ones.

e The problem of robust stability w.r.t. parameter variation is widely studied in the lit-

erature. It aims to discover whether a controller designed for a system in the nominal
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point can stabilize it over the whole region of uncertainty [31; 32]. However, robust
stabilizability is a prerequisite for any relevant technique; i.e. the system is required
to be stabilizable over the uncertainty region. Consequently, the present work pro-
vides a technique to verify structural stabilizability as a necessary condition for the

robust stability of the system.

In some real-world applications involving interconnected systems such as formation
flight of spacecraft, the control structure is to be devised first. To attain this primary
objective, the matrix ¢ should undoubtedly be found in such a way that the system
will be stabilizable w.r.t. the corresponding class of controllers. Therefore, different
forms for the matrix ¢ can be considered, and the method proposed here can be
pursued to explore which information flow matrix leads to an effective controller

from the robust stabilizability perspective.

The robust stabilizability problem tackled here is closely related to the problem of
sensitivity analysis w.r.t. the parameters of a system. Thus, the results attained in
the present work can be exploited to carry out sensitivity analysis, which manifestly

plays an important role in studying how reliable the designed controller is in reality.

69



44 NUMERICAL EXAMPLE

Consider an uncertain third-order system .7 (), 0 = { o o ] , with the following state-

space matrices:

(% 0 @ -ad |

A)=1| 0 o oy—o0p (4.92)
i 0 o 0
o O 0 ]

Bla)=| a? 0 0 (4.9b)
i 0 a a+oy |

o 0 0

C@=|0 0 a?+x (4.9¢)
_al 0 0
_al 0 0

D(@)=10 0 o (4.9d)
o 0 o

L

(the system consists of three SISO subsystems). Define now two regions of uncertainty as

follows:

D ={a:1<02-20f <2, 04 >0, 0 >0} (4.102)

D={a:1<a?-20} <2, 04>0, 0p>0} (4.10b)

It is desired to check the robust stabilizability of the system .% over the regions 2 and 2.

To this end, two different control structures are delineated below:

70



1. Let the information flow matrix £ be:

1 01
=100 0 4.11)

0 0O

In light of Theorem 2, two generic matrices should be chosen first. Let these matrices

be:
-1 0 6 10 0 2
Ki=1 0 00}, K2=]10 00 4.12)
0 00 0 00

The polynomials r(s,K;) and r(s,K3) can be simply obtained as:

r(s, K1) = —ag 0 (—ou — o+ 0f 0 + 05 01 + 03)
X ((XQZ + 00 + a%)2(6a1 - a2)3(a1 — (X2)3,
4.13)
r(s,Ky) = —-80’;0613(—-061 — a2+a,2a22+a§’a1 +Oo§)

x (02 + oy o + )2 (50 + o) (g — op)?

Consequently:

h(a) = ged(r(s, K1), r(s,K2))

= 0‘3%3(‘0‘1 - 0‘2+0‘120°z2+0‘30‘1 +O°§)(%2+a1052+0512)2(0¢1 - )’
4.19)

Since only the real values of ¢ are of importance, one can consider the variety

¥ (p(@)), instated of ¥ (h(at)), where:
p(a) = ayon(—0y — o+ alad + ooy + 03 ) (o — o) (4.15)

It is worth noting that the curves o — 0 = 0 and &; = 0 correspond to the specific
perturbations which make the system unobservable or uncontrollable (and hence the
corresponding DOFMs are, in fact, centralized fixed modes as well), while the curves

o, =0 and —oy — o + 07 + a5 0y + a; = 0 represent the perturbations which
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generally lead to observable and controllable fixed modes. One can verify that for
this example, the exact algebraic variety ¥ (ri(@), ..., rz(@)) introduced in Theorem

1 is the same as ¥ (p(a)) over the field of real numbers.

In order to discover whether or not the system #(¢) has some DOFMs over the
region 97 w.r.t. J, it suffices to check if the polynomial p(a) takes zero values in
this region. For any point (¢, ;) belonging to 2, the inequalities o > V20 and
a, > 1 both hold. The first inequality implies that @; — 0 # 0. On the other hand, it
follows directly from the second inequality that —o; — o + a%a% + O(.g’ocl +a; >0.
This means that p(¢) cannot vanish in the region 2, or equivalently, that the system
() has no DOFM in the region 2; w.r.t. . In contrast, it is easy to show that
the polynomial p(a) is equal to zero for (o, 0p) = (1.5312,0.75). Since this point
belongs to the region 2, the system .# () has some DOFM:s for certain points in

the region 2, w.rt. .

. Assume now that the information flow matrix J¢ is:
1 01
HK=1010 (4.16)

1 01

Pursuing the methodology outlined in the previous case, it can be easily deduced
that:

h(a) = oy (0 — ap) (4.17)

Hence, the variety ¥ (r; (@), ..., rz(e)) includes two lines and some affine varieties of
dimensions less than  — 1 = 1. This implies that any of these affine varieties should
be of dimension 0, and hence would comprise a finite number of points. On the other
hand, none of the regions 2 and 2, has an intersection with the line @ — 0 = 0.
This means that the system .# () has no DOFMs w.r.t. J¢ for every o pertaining

to either 2; or 9, except possibly for a finite number of points .

72



4.5 CONCLUSIONS

This work investigates the robust control of LTI systems subject to polynomial uncertainties
over a given region. It is shown that if the system is stabilizable at some point in the
given region by means of a structurally constrained controller, then it is also stabilizable
via a controller of the same structure at any point in the region, as long as those points
do not lie on an algebraic variety. This result shows that if the nominal model of the
system is stabilizable by means of a structurally constrained controller, so is the system at
almost all operating points. A numerical example is given to illustrate the importance of the
results obtained and their efficacy in dealing with the most general forms of uncertainties.
The proposed formulation and the subsequent developments encompass the existing results

reported in prior literature on the structural controllability and structurally fixed modes.
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Chapter 5

Performance Evaluation of
Decentralized Controllers Designed
Based on a Hierarchical Approximation

of the System Model

5.1 Abstract

This work is concerned with decentralized controller design for large-scale interconnected
systems of pseudo-hierarchal structures. Given such a system, a decentralized controller
can be designed for the hierarchical model of the system, as opposed to the original pseudo-
hierarchical one, by means of the available techniques. Although this indirect controller
design is often fascinating for the sake of computational simplicity, it may not provide the
desired performance for the original pseudo-hierarchical system, as the controller has been
designed for its hierarchical model. In order to make certain that this approach is appropri-

ate for the system, a LQ cost function is defined to evaluate the discrepancy between the
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pseudo-hierarchical system and its hierarchical model under the designed decentralized
controller. To compute this performance index, a discrete Lyapunov equation should be
solved; due to the large-scale nature of the system, this equation by no means can be han-
dled for many real-world systems. This gives rise to attaining an upper bound on this cost
function, as opposed to its exact value. For this purpose, a novel technique is proposed,
which only requires solving a simple constrained optimization problem with three vari-
ables. It is also proved that as the pseudo-hierarchical system approaches its hierarchical

model, this bound goes to zero; and in the ideal case, the bound will become zero.

5.2 Introduction

Large-scale systems often appear in reality and, consequently, they constitute an impor-
tant class of systems [1]. Since such systems normally comprise many subsystems, their
control is intricate. To alleviate the issue, the decentralized theory was developed in the lit-
erature and its distinctive aspects have been exhaustively investigated through the last three
decades [2; 3]. A decentralized controller is indeed composed of a number of isolated local
controllers corresponding to the subsystems (or control channels) of a large-scale system.
To further diminish the complexity of the decentralized controller design, it is desired that
the large?scale system possesses a hierarchical structure [4; 5]. In this case, the design
problem for the system can be broken down into a number of parallel design subproblems
corresponding to diverse subsystems. The benefit of this design technique is twofold. In-
deed not only is handling everything with the order of subsystem far simpler than with the
order of the large-scale system (as the subsystems are likely modest-sized), the parallel
computation is also intriguing.

Many real-world systems associated with remarkable applications, such as forma-

tion flight, underwater vehicles, automated highway, robotics, satellite constellation, etc.,
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maintain a leader-follower or equivalently hierarchical structure [6; 7; 8]. Furthermore, it is
shown in [9] there is a broad class of continuous-time non-hierarchical system whose struc-
tures can be converted to hierarchical ones in the discrete-time domain after discretization.
For a hierarchical system, designing a decentralized stabilizing controller is tantamount to
designing a set of stabilizing local controllers corresponding to different subsystems, after
removing all the existing interconnections between the subsystems [5]. This worthwhile
result is quite beneficial as it noticeably simplifies the decentralized stabilizability prob-
lem. In addition, a technique is provided in [10] to design a near-optimal decentralized
controller for hierarchical systems. This idea is developed in [11] to decentralize any given
centralized controller without losing its fundamental properties. These points reveal that
designing a decentralized controller for a hierarchical system with the aim of achieving
certain design specifications has been a focal problem in the past several years and there
are some concrete methods to do so. In contrast, there are only a few fledgling controller
design techniques for general large-scale systems, which are not satisfactorily efficient.
Although many systems possess a hierarchical structure either originally or after dis-
cretization, there exist numerous non-hierarchical systems which tend to be hierarchical.
More precisely, such systems either have a few weak interconnections between their sub-
systems whose removal will make the system maintain a hierarchical structure, or their
discrete-time models have this characteristic [12]. This type of systems will be referred to
as pseudo-hierarchical systems throughout this work. Given a pseudo-hierarchical large-
scale system, decentralized controller design can be performed for its hierarchical model,
as opposed to itself, by exploiting the available techniques. Even though this straight-
forward approach is appealing, the decentralized controller designed may not have the
required properties for the pseudo-hierarchical system. As one possible scenario, the con-
troller may even destabilize the original system, whereas it definitely stabilizes its hier-

archical model. Apart from this stabilizability issue, which rarely occurs if the removed
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interconnections are weak enough, the performance of the pseudo-hierarchical system un-
der this controller can be undesirably different from what expected to be. In this regard,
it is desired to undergo a performance analysis for the system in order to make certain
that this indirect design technique is suitable for the given pseudo-hierarchical large-scale
system.

This work deals with the above-mentioned problem. To this end, it is assumed
that a decentralized controller has been designed for the hierarchical model of a pseudo-
hierarchical system to attain specific control objectives. Moreover, it is supposed that this
controller stabilizes the pseudo-hierarchical system, while it may deteriorate the required
performance. A LQ cost function is appropriately defined to assess the discrepancy be-
tween the pseudo-hierarchical system and its hierarchical model under this decentralized
controller. The smaller this performance index is, the closer to each other the two closed-
loop system are. Obtaining this cost function involves solving a discrete Lyapunov equa-
tion; as a result of the large-scale nature of the system, this equation by no means can be
handled. This gives rise to attaining an upper bound on this cost function, as an alternative
goal. For this purpose, a novel technique is proposed and it is subsequently shown that an
optimization problem with solely three variables needs to be solved in order to compute
this bound. The main distinguishing feature of this work is to present a simple optimiia-
tion problem. To elucidate that the obtained bound is not unnecessarily conservative, it
is proved that as the pseudo-hierarchical system approaches its hierarchical model, this

bound goes to zero; and in the ideal case, the bound is equal to zero.
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5.3 Preliminaries and problem formulation

Consider a large-scale interconnected system .% consisting of v subsystems, where its i'®
subsystem S; is represented as:

xilk+1] =Y Aijx;[k] + Biui[Kk]
=t ¢.1D

yilk] = Cixj[k], iev={1,2,---,v}
In the above equation, x;[k] € R™, u;[k] € R™ and y;[k] € R" stand for the state, the input
and the output of S;, respectively. Sketch now a digraph ¥ associated with the system

as follows:
e Put v vertices corresponding to different subsystems of the system ..
e Forany i, j€ v, i # j, connect vertex i to vertex j with a directed edge if A;; # 0.

e For any i, j € v, if there is an edge between vertex i and vertex j, attribute the weight

lAij||F to that edge, where || - | represents the Frobenius norm operator.

The graph ¥ specifies the topology of information transmission between the subsystems.
From this perspective, it plays an important role in the stability and stabilizability analyses
of the system. Whenever this graph has no directed cycles, the system . is said to be

hierarchal. For any i € v, define the isolated subsystem S; as below:

X,'[k -+ 1] = Ai,'.f,‘[k] + B,'ﬁ,'[k]
(5.2)
yilk] = Cixi[K]
This work is concerned with the decentralized control of the system .. For the case
when the graph ¢ is acyclic, designing a stabilizing decentralized controller is tantamount
to designing v local controllers separately such that the i local controller stabilizes the

isolated subsystem S;, for all i € v. This simple, nonetheless noticeable fact implies that

when the graph ¥ is acyclic, the decentralized controller design can be carried out very
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straightforwardly, compared to the general case. It is to be noted that as discussed earlier,
several methods are proposed in the literature to design a LTI decentralized controller for
a hierarchical system in order to achieve some pre-defined objectives.

The question arises what happens if the graph ¢ is not acyclic. In this case, some
of the edges of the graphs & should be removed in order to arrive at an acyclic graph.
However, this makes sense once the weights of the removed edges are not comparable with
those of the remaining ones as well as the values ||A11||F, ||A22||F, .., |Avv]|F. Itis stated
in [13] that there exist numerous systems for which all the edges of the graph & can be
removed. Nevertheless, in order convert the graph ¢ to an acyclic one, only a number of
the edges are required to be removed (which may be performed in a non-unique way).

Assume now that some of the edges are removed and for the resultant hierarchical
system, a LTI decentralized controller K is designed using the available approaches. This
controller is to be applied to the original system .. With no doubt, the closed-loop system
% might be unstable, or if not, its corresponding performance may be poor. Therefore,
it is desired in this work to evaluate the performance of the hierarchical system under its
associated controller K with respect to its counterpart (i.e. the original closed-loop system).
To this end, it is assumed that this closed-loop system is stable, as the more important
issue of performance degradation is central to this work. It is worth mentioning that this
closed-loop stability can be guaranteed using the available methods when the removed
interconnections are weak enough.

In the sequel, represent the hierarchical system under the designed LTI decentralized
controller K as:

Xp [k+ 1] = Ahxh[k] (5.3)

and the original system . under the same controller as:

xclk+ 1] = Acxc[k] (54)
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Note that x.[0] = x4[0]. With no loss of generality, the matrix A; can be assumed to be
lower-block diagonal. In order assess the closeness of the systems given in (5.3) and (5.4),
it is to be measured how close the states x;,[k] and x.[k] are. This can be evaluated through

the following performance index:

L]

Ja =Y (xelk) = xulk])T (xc[k] — x[K]) (5.5)
k=0

Definition 1: Define the performance indices J; and J; as below:
J, = Zxc TOx k], Jy= ):xh[k 17 Ox[K] (5.6)

Definition 2: The controller K is said to be y suboptimal, if the inequality % <
holds.

Some works, €.g. {13], define the suboptimality on the ratio §: as opposed to %.
However, it is manifest that the smallness of %ﬁ does not necessarily prove the closeness of
xc[k] and x,[k]. The objective of this work is to obtain a proper and easy-to-compute i by
which the controller K is suboptimal. Nevertheless, the following practical restrictions are
also made.

Assumption 1: A discrete Lyapunov equation with the order of any subsystem can be
obtained, whereas a discrete Lyapunov equation with the order of the system, i.e. v, cannot
be obtained due to the large-scale nature of the system.

Assumption 2: Although v is so large that a Lyapunov equation of order v cannot
be computed, lower and upper bounds on the eigenvalues of a matrix of order v can be
obtained.

Regarding Assumption 2, it is quite important to note that solving a Lyapunov equa-
tion of order v is much more difficult than estimating the eigenvalues of a matrix of order
v, as the former one is involved in v? variables but the latter one in v + 1 (regardless of
their linearity or bilinearity). In order to obtain the main results of this work, one more

assumption is required to be made. This will be explained next.
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It is evident that J, and J, satisfy the relations:
Tn = x[0T Poxa[0],  Jo = xc[0]7 Pexc[0] (5.7

where:

ATPA,—P,+1=0, ATPA~P.+I1=0 (5.8)

Assumption 3: The closed-loop system given in (5.4) is stable with the Lyapunov
function F.

It is to be noted that Assumption 3 is more restrictive than only the stability of the
system (5.4), and is met when the removed edges has no noticeable weights. There are
several sufficient conditions in the literature, each of which assures the validity of this

assumption.

5.4 Main results

In what follows, the performance deviation J; will be formulated.

Lemma 1 The performance index J4 can be written as

x4[0]
Ja= | x[0)7 x.[0)T |Fa (5.9)
xc[0]
where: r
A, 0O Ap O I -1
Py — P+ =0 (5.10)
0 A 0 A, i

Proof: Augmenting the closed-loop systems (5.3) and (5.4) results in:

xh[k+1] _ Ay O xh[k] 5.11)

xe[k+1] 0 Ac || xlK
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On the other hand, the performance index J;4 can be rewritten as:

o I I k
= X [l xcl] k] (5.12)
k=0 —1 1 xc[K]

It is well-known that the performance index J;, which also corresponds to the system , can
be written as (5.9) where its component P, satisfies the equation (5.10). This completes the
proof. ]

Due to Assumption 1, the performance deviation Fy cannot be directly computed
from Lemma 1 in order to compute the ratio §dh- precisely. Hence, the notion of ¢t optimality
is helpful here in order to obtain a reasonable upper bound on this ratio. This will be carried

out in the sequel.

Lemma 2 Given a matrix H of proper dimension, assume the following inequality is sat-

isfied:
T

Ap O Ap O I -1
H —H+ <0 (5.13)
0 A 0 A -1 1
Then, the inequality given below holds:
xn[0]

Ja < [xh[OlT xc[0)” }Pd 0 (5.14)

Proof: 1t can be concluded from the relations (5.10) and (5.13) that:

T

A, O Ar O
(H—Pd) - (H ——Pd) <0 (5.15)

0 A 0 A

Since both of the matrices A, and A;, are assumed to be Schur, it results from the above
inequality that P; < H. The proof follows immediately from this result on noting the

equation (5.9). |
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Theorem 1 Consider an optimization problem in three scalar variables ky,ky,k3 which
aims to compute the infimum of the objective function ky + 2k, + k3 subject to the matrix

inequalities ky > 1 and:
(ky —1) (ksRy +1) + (koRy —I) (kR —1) <0 (5.16)

where:

Ri=ATPA,—P, Ry=AlPA.-P, (5.17)

Denote the solution of this optimization problem with J.. The controller K is [l suboptimal.

Proof: Consider any ki, k; and k3 satisfying the inequalities given in Theorem 1. It

can be straightforwardly shown by utilizing the Schur complement formula that:

(ksRy+1) (ka2Ry =1

(5.18)
(keRT —1) (1 —k1)I
Obviously, the above inequality can be rearranged as:
1—k))I (koRY -1
=kl (el =1) | _, (5.19)
(kpRy —1) (k3R +1)
Combining the relations (5.8), (5.17) and (5.19) will lead to:
M(ATPA, —P)+1 k(ATRA.—P,)—1
i ) AiBie = Bo) <0 (5.20)
ky(ATPAL — B — 1 ks(ATPA.—Py) +1
The above inequality can be rewritten as:
T
A, O A, 0 1 I
H -H+ <0 (5.21)
0 A 0 A -1 I
where:
kiP, kP
Ho 1p Kol (5.22)
koPy, k3P
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Therefore, it can be inferred from Lemma 2 that:

x4[0]
Ja < | x[0]T x.[0]7 |H
xc[0]
(5.23)
= (k1 + 2k +k3)x3[0]T Pexy,[0]
= (k1 +2ky +k3)Jp
(note that x;[0] = x.[0]). Thus,
J,
f < ki + 2k + ks (5.24)
h

This inequality illustrates why the objective function k; + 2k, + k3 is to be minimized, and
completes the proof. u

Theorem 1 proposes a simple optimization problem associated with only three scalar
variables which is able to obtain an upper bound on the ratio f—z. In this regard, it is interest-
ing to note that the inequality constraints of this optimization problem are always feasible.
To prove this, it suffices to consider k; = 2, k, = 0 and k3 as a very large number; since it is
assumed in Assumption 3 that the Lyapunov function P, detects the stability of the system
(5.3), the matrix R, is negative define, which causes the inequality (5.16) to hold.

Due to the large-scale nature of the system % and Assumption 1, it may turn out
that the matrix inequality (5.16) not to be handleable. Thus, it is preferred to convert the
matrix inequality (5.27) into a scalar one. This goal is achieved by means of the following

theorem.

Theorem 2 Denote with i the infimum of the objective function ky + 2k, + k3 subject to

the matrix inequalities ky > 1 and:

(ky = 1) (=14 ksmy) — 1 — k3my —kom3 >0 (5.25)
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where,

my =A(—Rp) (5.26a)
my = A (RiR]) (5.26b)
m3=A(—R—R]) (5.26¢)

(the operators A(-) and A(-) represent the maximum and minimum eigenvalues of a matrix).

The controller K is [ suboptimal.

Proof: It is easy to verify that the matrix inequality (5.16) is guaranteed to hold, provided

the scalar inequality given below is satisfied:
A((ki —1)(=ksRy = 1)) > A((I—kaRy) (I — k2RT)) (5.27)

Consider now arbitrary scalar kj,ky,k3 satisfying the inequality (5.25). It can be deuced
from the above discussion and Theorem 1 that substantiating the validity of the inequal-

ity (5.27) proves this theorem. To show this, one can write:
A((ki=1)(~ksRa—1)) = (ks = 1) (—1 +k3m) (5.28)

Moreover, it results from Lemma 2.1 in [14] that:

A((I-kRy) (I—kRT)) =1

+A(ky (—R1 —RY) + 3R RY)

(5.29)
<1+kA(—Ri—R]) +KA(RR])
< 14 kymz + K3my
The inequalities (5.25), (5.28) and (5.29) all together lead to the relation (5.27). ]

Remark 1 As before, it can be simply shown that the inequalities given in Theorem 2 are
always feasible (by considering ky =2, k» = 0 and k3 as a large enough number). It is to

be noted that my is positive in light of Assumption 3.
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To solve the optimization problem given in either Theorem 1 or Theorem 2, an im-
portant quantity is to be obtained first. More specifically, the Lyapunov function P} is an
essential ingredient of these optimizations. As a consequence of Assumption 1, this ma-
trix cannot be computed using thé common methods. However, since its associated matrix
Ay, is assumed to be lower-block diagonal, it can be found by solving several successive
Lyapopuv and Sylvester equations of subsystems’ orders (as opposed to the system’s or-
der). To clarify this issue, assume that there are only two subsystems (i.e. Vv = 2). In this

case, the equation A,{PhAh — P, +1 = 0 can be equivalently decomposed as:

ALPAY —P+1=0 (5.30a)
Al P A+ AL P — P =0 (5.30b)

AT PAy 4+ AT PoAY, +AY PAy,

+ALPAYy — P +1=0 (5.30¢)
where:
P P
p=1" (5.31)
P B

Since the hierarchical closed-loop system is stable, the matrices A11 and Az; are both Schur.
At this point, the Lyapunov equation (5.30a), which is of subsystem’s order, can be solved
to find the matrix P;. Substituting the result in the equation (5.30b) will arrive at a Sylvester
equation, which has a unique solution P, (because the eigenvalues of Ay and Apy are
all inside the unit circle). At last, the Lyapunov equation (5.30c) can be solved for the
matrix variable P;. This illustrates how Assumption 1 can be bypassed here. It is worth
mentioning that in the general case, the corresponding Lyapunov and Sylvester equations
can be systematically obtained, which resemble the equations given in (5.30).

The question arises whether the it obtained in Theorems 1 or 2 is very conservative
or not. To answer this, an elegent result on the tightness of this bound will be presented

next.
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Theorem 3 The closer to each other the matrices Ay, and A, are, the smaller the |l obtained
from Theorems 1 or 2 is. In addition, whenever Ay and A; are identical, both of these

theorems arrive at the same solution L = 0.

Sketch of proof: The proof will be provided here by focusing on Theorem 2 and
for the case when A, = A.. For this purpose, one may notice that Ry = R, = —1, and
consequently, m; = my = 1 and m3 = 2. Now, Theorem 2 states (after some simplifications)

that gt is equal to the infimum of k; + 2k; + k3 under the inequality constraints k1 > 1 and:
kiks —ky —ks —2ky — k3 >0 (5.32)

The later inequality is equivalent to:

(ky — 1) (ks —1) > (kp+1)? (5.33)
Hence, u is equal to 0, and is attained once ky = k3 — 1" and k; = —1. This completes
this part of the proof. The remaining ones can be proved in a similar line. n

Remark 2 The results obtained in this work can be analogously developed to tackle the
following problem:

Assume that the system . is under perturbation. Design a LTI decentralized controller for
the nominal model of the system. Now, the matrices A, and A, correspond to the closed-
loop nominal and perturbed A-matrices, respectively. In this case, the ratio % describes the
closeness of the nominal closed-loop system and its perturbed counterpart. This ration is

again desired to be obtained.

5.5 Numerical example

Consider an interconnected system . with nine SISO subsystems of order 1, and assume

that the interconnections from subsystem i to subsystem j, Vi,j € {1,2,...,9}, i < j, are
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weaker than the remaining ones. Hence, to design a decentralized controller for the system
with nine local controllers, one can eliminate these weak interconnections and accomplish
the design procedure for the obtained hierarchical model. Assume now that a static decen-
tralized controller has been designed for the hierarchical model using this approach. To
perform the performance analysis for the pseudo-hierarchical system under the designed
controller, two different choices will be considered for the close-loop matrix A, in the
sequel.

Consider first the matrix A, as follows:

1 05 2 01 05 06 03 03 0.1
0 1 1.5 05 1 0 1 02 025
1 03 1 0 02 1 02 05 031

0 0 03 1 3 1 005 01 001
1
135 03 0 0 1 1 2 0 0 02
0 0 0 0 1 1 08 0 1
0 0 .04 05 06 0 05 1 1
001 O 0 01 01 0 05 1 2

04 09 004 003 0 03 005 1 0

It can be observed that the lower diagonal entries of this matrix have smaller values

than the upper diagonal ones in general, in light of the existing weak interconnections. The

hierarchical form of this matrix, denoted by Ay, in this work, will be obtained as:
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1 05 2 01 05 06 03 03 01
1 15 05 1 0 1 02 0325

0
0o 0 1 0 02 1 02 05 031
o 0 0 1 3 1 005 01 0.01
4—!33 0 0 0 o0 1 2 0 0 02
0o 6 0 0 0 1 08 0 1
0o 0 0 0 0 0 05 1 1
0o 0 0 0 o0 O 0 1 2
o 0 0 0 0 O 0 0 0

In can be concluded in this example that J; and Jj, are equal to 67.9336 and 38.6145,

respectively, which lead to the relation % = 1.7593. On the other hand, an upper bound on

Ja

7, can be attained from Theorem 1 by solving an optimization problem arriving at:

ky =2.131, kp = —1.7529, k3 =5.78%4

Due to the relation pt = min(k1 + 2k; + k3), the upper bound i on the ratio % is equal
to 4.4145, whereas its exact value has been computed to be 1.7593. Note that although
the obtained upper bound is at least twice greater than the exact value, it has been attained
through a quite simple procedure, which is helpful for large-scale systems. It is noteworthy
that these values point to the fact that the weak interconnections are not so weak that their
presence can be ignored. This originates from the existence of some large lower diagonal
entries, such as 4%%, which are comparable and greater than some of the upper diagonal
entries.

Since Theorem 1 proposes an optimization with matrix variables, its handling may
be formidable for certain large-scale problems. Thus, let the scalar optimization provided

in Theorem 2 be utilized here to obtain an upper bound p. In this case, the variables ky,k»
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and k3 will be obtained to be equal to 1.5206, -0.9144 and 5.2813, respectively, which cor-

respond to the upper bound limit it = 4.973. Even though the matrix optimization in The-

orem 1 seems to be oversimplified in Theorem 2, the reasonable closeness between 4.4145

and 4.973 indicates that Theorem 2 presents a very simple scalar optimization problem

without making the result noticeably conservative.

Consider now another scenario for the value of the matrix A, as follows:

[ 1 05 2 01 05 06 03

0 1 1505 1 0 1

0 0 1 0 02 1 02

o 0 0o 1 3 1 005

Z_—lég 0o 0 0 0 1 2 0
005 0 0 0 0 1 08

o 0 0 0 0 0 05

© 0 0 0 0 0 0

(0000 0 0 0 0 0 0

03 0.1
02 025
0.5 031
0.1 0.01
0 02
0 1
1 1
1 2
0 0

In this case, the previously weak interconnections have further been weakened in

order for the pseudo-hierarchical system to approach its hierarchical model. Notice that the

hierarchical model of this system is still given by the matrix A, presented for the previous

scenario. It can be observed that the quantities J; and Jj, are equal to 0.0117 and 38.6145,

respectively. The smallness of J; manifestly confirms the closeness of hierarchical and

pseudo-hierarchical models to each other. The upper bound limit 4 will be obtained as

0.0041 and 0.0671, using Theorems 1 and 2, respectively. These results are in accordance

with the statement of the Theorem 3.
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5.6 Conclusions

This work tackles the performance analysis for large-scale systems with pseudo-hierarchal
structures. It is assumed that a stabilizing decentralized controller has been designed for
such a system, based on its hierarchical model, to achieve some control objectives. Since
this indirect design technique may not result in a good performance for the real pseudo-
hierarchical system, this work aims to investigate the closeness of the system and its hierar-
chical model under the designed controller. For this purpose, a LQ cost function is properly
defined to measure the discrepancy between the closed-loop nominal system and its hier-
archical counterpart. Since computing the exact value of this cost function is involved with
solving a large-scale Lyapunov equation, it is desired instead to obtain an upper bound on
it. To this end, a simple optimization problem with only three variables is proposed here to
attain this upper bound. In addition, it is shown that the closer the pseudo-hierarchical sys-
tem to its hierarchical model is, the smaller this bound is; and in the case when the models
are identical, the bound is equal to zero. This demonstrates that the bound obtained through
a simple optimization problem is not unreasonably conservative. The ideas developed here

are illustrated in a numerical example in the end.
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