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ABSTRACT 

Differential Gene Expression in Arabidopsis thaliana in Response to 

Methyljasmonate and 12-Hydroxyjasmonate Treatments 

Irina Gaber 

Jasmonic acid (JA) and its derivatives occur naturally in Arabidopsis 

thaliana (A. thaliana), and regulate the expression of a number of genes such as 

the ones involved in flowering, defence response and senescence. Additionally, 

precursors and downstream components of the JA pathway have been shown to 

elicit some of the responses previously attributed to JA. Of interest to our lab was 

to investigate the effect of a compound downstream of JA, 12-

hydroxyhjasmonate (12-OHJA), on gene expression as well as the phenotypic 

effect of accumulating higher internal levels of the compound. This was based on 

previous data showing that, while most genes are co-regulated by JA and 12-

OHJA, Thi2.1, one of the marker genes of JA induction, is not upregulated upon 

12-OHJA treatment. Furthermore, exogenous application of this compound 

shares only some of the phenotypes of JA. In order to gain further insight into the 

molecular function of the two compounds, we investigated the effects of 4h 

treatments with each compound on gene expression using the Affymetrix® A. 

thaliana full genome array. The data demonstrates that there are subsets of 

genes that are specifically induced or repressed by each of the two compounds, 

pointing to the possibility of two differentially regulated pathways. 

12-OHJA was recently shown to be sulfonated in vitro by one of the 

eighteen A. thaliana sulfotransferases, AtST2a (Gidda et al, 2003). To gain 

further insight of the function of AtST2a and its homologous gene AtST2b (whose 

substrate is yet to be identified), knockout plants in each of the genes were 

in 



isolated and subjected to phenotypic analyses. The results demonstrate that the 

AtST2b-KO mutant flowers earlier and has more leaves than wildtype or AtST2a-

KO under short days. Combined with metabolite analysis of mutants, the data 

suggests that another compound, maybe an isomer of 12-OHJA, is responsible 

for the control of flowering time in short days. 
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1.0 Introduction 

Not only source of great joy, purely for their often majestic beauty, plants 

are much more than this for many species, including our own: they are a source 

of food, and thus, a source of life. Their importance in our everyday life ranges 

quite a lot, from necessity in areas where they provide the sole or main part of 

the diet (cereals), to flowers wilting on our loved one's graves, purely for our 

hedonistic delight, passing through a diversity of commodities, such as furniture, 

adornments and drugs. In a world where "natural" is the new trend, even 

pharmaceutical companies are slowly changing their approach to drug design 

and are developing a growing interest in medicinal plants as a new source of 

income. As a consequence of this huge economical impact, a lot of money has 

and continues to be put into plant research, but their complexities are so puzzling 

that a great deal still remains to be uncovered. 

Many factors limit plant growth in certain geographic areas, and yet more 

restrain even the usable areas to only several months a year. Furthermore, with 

a growing population in a restricted environment, the hunger rates are rising 

every year, even in our own hometowns. We will soon have no choice but to re

evaluate our dependency on the land in a different way that might have to 

eliminate, or at least drastically reduce our use of it for sustaining meats to 

provide to a minority of the population, and use it instead to grow crops that could 

feed the entire population. What we, as researchers, can do, while waiting for the 

masses to understand the need to change, is work at our own achievable goals: 

improving the use of land, by manipulating plants to better adapt to extreme 
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weather conditions (eg. cold, drought or dry) and so expand production to 

uncultivated areas, or, ameliorating crop production, either by increasing 

productivity or genetically improving the nutritional content of the crops. 

But in order to achieve this, first we need to understand and piece 

together all the intricate mechanisms that dictate plant development in the 

wildtype. Only then can we apply this knowledge to accelerate evolution for what 

suits our needs as a species. The current thesis deals only with the research 

level, more precisely so with the understanding of a class of plant hormones, 

called jasmonates, their role in photoperiod perception and flower development. 

The implications of understanding these processes can then be applied to any of 

the previously discussed levels, in a continuous process of discovery and 

advancement. 
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1.1. Plant life and Flowering: An Introduction 

The life cycle of flowering plants can generally be divided into four growth 

phases: vegetative, reproductive, senescence and dormancy (Poethig 1990). As 

senescence is the process that occurs near the end of a plant's active life, and 

dormancy is a state of suspension of physiological activity, we can say that the 

two major phases in plant life are the vegetative and reproductive ones. Two 

groups of continually dividing, meristematic cells give rise to all of the structures 

of the adult flowering plant: the shoot apical meristem (SAM) and the root 

meristem. These cells are laid down in the developing embryo and form the 

source for all postembryonic plant organs (Campbell and Reece, 1999). Thus, 

unlike what is seen in animal morphogenesis, plants retain throughout their lives 

the ability to continually develop due to these groups of dividing undifferentiated 

cells. 

In the beginning of the vegetative phase, the SAM (figure 1) generates 

leaves, or the energy harvesting organs. Upon receiving the appropriate 

environmental and developmental signals, the plant switches to floral or 

reproductive growth, and the SAM enters the inflorescence phase (h), giving rise 

to an inflorescence with flower primordia (Weberling, 1989). During this phase, 

the fate of the SAM and the secondary shoots that arise in the axils of the leaves 

is determined by a set of meristem identity genes, some of which prevent and 

some of which promote the development of floral meristems (Weberling, 1989). 

3 



Figure 1: Shoot apical meristem representation (a) (available online at 
http://users.ox.ac.uk/~sann2453/research images/SAM.jpg) and electron 
microscope image (b) (available online at http://www.botany.unibe.ch/deve/ 
research/projects/leafdeve.php). 

1.2. The Switch to Flowering 

Flowering plays a primordial role in plant development and survival, as it is 

what ensures reproductive success. In higher plants, flowering involves the 

transition from the vegetative phase (generating the leaves and stem) to a 

reproductive phase (giving rise to the flowers and fruits). The timing and 

transition to flowering is determined by the interaction of an intricate number of 

endogenous pathways and exogenous environmental cues that together signal 

the plant the most appropriate time to flower. All of these efforts are orchestrated 

in order to increase the chances of successful reproduction. The flowering 

pathway has been most extensively studied in the model plant organism A. 

thaliana. A. thaliana is an obvious choice of study in plant biology due to its many 

advantages: small size, rapid generation time, fecundity and ability to self-
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fertilize, small and fully sequenced genome since 2000 by the A. thaliana 

Genome Initiative (AGI, 2000) and ease of mutagenesis being only few of such 

examples. Furthermore, the flowering behaviour of A. thaliana, as many other 

processes at both phenotypic and genotypic levels, mimics that of many other 

plants, making it an excellent organism for plant studies. 

1.3 Early and late flowering mutants 

A lot of the knowledge available to us so far comes from reverse genetic 

studies on plant mutants. Indeed, another incentive of working with A. thaliana is 

the great availability, both in wild life and through induced mutagenesis, of 

mutants in genes spanning over 30% of its genome (The A. thaliana Biological 

Resource Center- ABRC). By looking at mutants affected in their flowering time, 

scientists have been able to identify many of the transcriptional factors involved 

in the elaborate process of flowering, enabling us to have a slight idea of how 

different paths and stimuli interact. Through the study of such mutants, 

researchers have isolated a number of genes thought to sequentially act to 

influence flowering. These genes could be grouped into three classes. The first 

class comprises genes collectively known as flowering time genes, which 

sense the factors to prepare for the switch of the meristem. In the second one, 

we find the floral meristem identity genes that make the actual switch of the 

apical meristem to reproductive phase. Finally, the last class includes genes that 

direct the formation of flower, i.e. the flower organ identity genes (Levy and 

Dean, 1998). 
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1.4 Flowering Time Genes 

An extensive number of genes (>80) have been identified to participate in 

the switch to flowering (reviewed by Simpson et al., 1999). Regulation of these 

genes was shown to occur through a network of four genetic pathways, where 

three of them mediate responses to environmental cues: photoperiodic promotion 

under long days, gibberelin dependent pathway under short days and 

vernalization, where flowering is promoted in response to a period of seeds' 

exposure to cold (Levy and Dean, 1998). The other two function independently of 

such signals: the autonomous pathway promotes flowering under all conditions, 

and the repression pathway comprises genes that repress initiation of flowering. 

1.4.1 The photoperiod pathway 

The photoperiod pathway is one of the most important factors controlling 

flowering time in temperate regions. A. thaliana is a facultative long-day plant, 

which flowers earlier under long days but eventually flowers even under short 

days. Molecular-genetic approaches have identified genes required for the 

daylength response. Some of these encode regulatory proteins specifically 

involved in the regulation of flowering, while others encode components of light 

signal transduction pathways or are involved in circadian clock function. An 

overview of the complexity of the interactions of the genes responding to 

photoperiod can be seen in figure 3 and is extensively reviewed in Blazquez et 

al, 2000. Only few key factors will be discussed for the purpose of this thesis. 
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Figure 2: Flower development pathways (from Blazquez, 2000). In red are the 
photoreceptors and light-activated facultative long-day path. If the photoperiod is 
short, flowering depends exclusively on a gibberellin-dependent pathway (shown 
in yellow) and on a photoperiod-independent pathway that is primarily responsive 
to temperature (shown in blue). In purple are the genes in the nutrient pathway, a 
reflection of the metabolic state of the plant and thus also flower-promoting. The 
ultimate targets for the flowering-time pathways are the floral meristem identity 
genes (shown in green), whose activity confers floral identity to newly emerging 
primordia. In brown are shown floral meristem identity genes, floral organ identity 
genes, and mutual interactions between these, which ultimately direct the correct 
arrangement of floral organs. 
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1.4.1.1 Long day pathway 

The genes involved in the LD pathway comprise the photoreceptors and 

the circadian clock genes, and directly influence CONSTANS (CO) and other 

genes downstream from it such as FLOWERING LOCUS T (FT) and 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) (see figure 2). 

CO is the most extensively studied of the A. thaliana flowering time genes. 

Inactivation of this gene was shown to cause late flowering, while its 

overexpression induces early flowering (Putterill et al, 1995; Simon et al, 1996; 

Onouchi et al, 2000), implying a key role for this gene in the control of flowering 

time. 
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Figure 3: Signaling Pathways Involved in the Regulation of Flowering by 
Photoperiod in A. thaliana. From Mouradov et al, 2002. "A diagram showing the 
putative relationships among genes involved in the photoperiod pathway. On the 
basis of the phenotypes of known mutants, genes shown in red generally repress 
flowering, whereas those in green promote it. Small upright arrows indicate the role of 
the genes as determined by overexpression in transgenic plants. Arrows between 
genes represent a promotive effect, whereas lines ending with a bar represent a 
repressive effect, and simple lines represent protein-protein interactions. Arrows 
from the clock indicate that the expression of the gene is circadian clock controlled. 
Arrows to the clock indicate that the gene lengthens period length, while 
perpendicular lines indicate that it shortens period length." The numbers refer to the 
references in the original publication. 
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The acceleration of flowering time by long days in A. thaliana results in 

part from the direct effect of light, perceived by cryptochrome 2 and phytochrome 

A, on the expression of FT, a gene that triggers the transition from vegetative to 

reproductive development when expressed above a certain threshold level. This 

direct effect of light on FT expression requires CO - a Zn-finger transcriptional 

regulator (Puettrill et al, 1995)- whose expression is regulated by the clock such 

that the overlap between high levels of CO mRNA and the illuminated part of the 

day is minimal on short days and maximal on long days. So, FT mRNA levels 

accumulate to levels that are sufficient to promote flowering only under the latter 

condition (Valverde et al, 2004). Although the level of FT transcription is 

extremely sensitive to CO levels and is induced rapidly in response to increasing 

CO expression, CO is not predicted to bind directly to the FT promoter but 

probably acts within a protein complex that includes a DNA binding protein that 

enables attachment of the complex to the FT promoter (Wenkel et al, 2006). 

CO is also known to act directly on SOC1, a MADS-box flowering-time 

gene regulated by several pathways and proposed to coordinate responses to 

environmental signals. SOC1 is directly activated by CO in long photoperiods 

and is repressed by FLOWERING LOCUS C (FLC), a component of the 

vernalization pathway (Hepworth et al, 2002). 
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1.4.1.2 Short day pathway (Gibberellin pathway) 

The gibberellic acid (GA) pathway is thought to be a signalling path 

essential for flowering under SD conditions. This is based on the fact that the GA 

biosynthetic gal mutant of A. thaliana never flowers under such conditions 

(Wilson et al, 1992). The phenotype could be rescued with exogenous 

application of GA. A gibberellin acid insensitive (gai) mutant fails to respond to 

GA treatment and flowers later than wildtype in SD, but does flower (Wilson et al, 

1992). The fact that a loss of function mutation in GA signalling (gai) could 

rescue the gal phenotype, leads to the conclusion that the GA signal (not the 

molecule) provides the information for the up-regulation of the SD flowering 

pathway (Wilson et al, 1992). 

1.4.2 Autonomous pathway 

Mutations that delay flowering under any photoperiod and still responds to 

vernalization (the requirement of a period of low winter temperature to initiate or 

accelerate the flowering process) were placed in the autonomous pathway. The 

autonomous pathway comprises a combination of factors involved in RNA 

processing and epigenetic regulation that downregulate the floral repressor, FLC 

(figures 2 and 3). The autonomous pathway includes many genes, mutations in 

each of which lead to an increase in the levels of FLC mRNA and FLC protein 

(Michaels and Amasino, 1999; Sheldon et al, 1999; Rouse et al., 2002). Most of 

the genes in this group have been cloned and the results suggest that the 

autonomous pathway represents different biological processes. FCA contains an 
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RNA binding motif and a WW domain, which is thought to be involved in protein-

protein interactions (Macknight et al., 1997). For example, FCA is able to bind to 

RNA in vitro (Macknight et al., 2002) and regulate its own expression by 

promoting cleavage and polyadenylation of its own third intron (Quesada et al., 

2003). Expression of the FLC repressor is mediated by its positive regulator, 

FRIGIDA (FRI). This coiled-coil domain protein is mutated in early-flowering 

ecotypes such as Columbia 0 (ColO), Landsberg erecta (Ler) and Wassilewskija 

(WS), suggesting the gene's wildtype role to induce the flowering repressor FLC 

(Quesada et al., 2003). 

1.5 Leaf to Shoot: the 'Florigen' story 

We have seen that a variety of factors such as photoperiod, temperature, 

nutrients and gibberellins coordinate to regulate the floral transition. All of these 

environmental factors are not perceived by the same plant organs; for example, 

daylength is perceived by mature leaves and winter cold by the shoot apex 

(Bernier, 1988). Since flowering occurs in the shoot apical meristem (SAM), floral 

signals, also called the 'floral stimulus' or 'florigen', are supposed to be produced 

in response to daylength and translocated from the leaves to the SAM where 

they induce floral evocation that switches the SAM from leaf production to the 

initiation of flower buds (see figure 4) (Bernier and Perilleux, 2005; Corbesier and 

Coupland, 2006). 

The physiological study of the floral transition has led to the identification 

of several putative floral signals such as sucrose, cytokinins, gibberellins, and 
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reduced N-compounds that are translocated in the phloem sap from leaves to the 

shoot apical meristem in response to exposure to appropriate day lengths 

(Corbesier and Coupland, 2006). Grafting experiments have clearly 

demonstrated that, in response to induction, floral signals are indeed produced in 

the leaves. For example, in Perilla, grafting of a single induced leaf onto an 

uninduced shoot was sufficient to induce flowering (Zeevaart, 1958). The pattern 

and velocity of movement of the floral stimulus also appeared to be very similar 

to that of assimilates, indicating that it is transported through the phloem (King et 

a/., 1968; King and Zeevaart, 1973). 
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Figure 4: Genetic model for floral induction and morphogenesis in A. thaliana. 
From Fig 24.32 Taiz & Zeiger. 
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Although transport of the floral stimulus across graft junctions could be followed 

indirectly by its effect on flowering, the identity of the stimulus was difficult to 

establish despite extensive studies that mainly revealed correlations more than 

direct identification of a causal agent (reviewed in Bemier and Perilleux, 2005; 

Corbesier and Coupland, 2006). Additional grafting experiments between 

photoperiod-insensitive plants and photoperiod sensitive plants, or between 

photoperiod-insensitive plants, gave the same results (i.e. floral induction) (Lang, 

1977). 

Interestingly, the identified compounds (sucrose, cytokinins, gibberellins, 

etc) induce in the SAM some of the cellular and molecular events typical of floral 

evocation (reviewed in Bernier and Perilleux, 2005). However, all these signals 

do not act, or are not all of equal importance in all species studied. For example, 

despite GAs being a primary factor in Lolium temulentum (King et al., 2001), they 

are not involved in Sinapis alba (Corbesier et al., 2004). This supported a theory 

known as the "multifactorial control hypothesis" which proposed that several 

factors, promoters and inhibitors, belonging to the classes of nutrients and 

hormones, are involved in the control of the SAM floral transition 

A similar mechanism is seen in the case of tuberization and the "tuberonic 

acid" signal that incorporates physical signals to a cascade of internal stimuli. 

Tuberization in potato plants is controlled by photoperiod and temperature (with 

short days promoting and long days inhibiting tuberization). It was demonstrated 
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that the tuberization stimulus is formed in the leaves under short days and is 

transmitted to the underground parts to induce tuberization. 

This "tuberization stimulus" was later shown to comprise 12-hydroxy 

jasmonic acid glucoside and its methyl ester, known collectively as "tuberonic 

acid". This group of four stereoisomers was found to stimulate tuberization in 

potato and Jerusalem artichoke plants (Koda, 1992). Naturally occurring 

tuberonic acid is found only in the cis conformation and it was shown to exhibit a 

much stronger activity than the trans isomer. The c/s-tuberonic acid and the 

glucoside of the tuberonic acid are derived from a known plant hormone, 

jasmonic acid (figure 5), but in contrast to their precursor, the former have no 

inhibitory effects on plant growth (Koda, 1992). 

o o o R« 

Jasmonic acid Methyl jasmonate Hydroxyjasmonic acid 
(11- annd 12- isomers) 

Figure 5: Biochemical structure of J A, Me J A and 12-OHJA 

This leads to an interesting question on the more global role of jasmonic 

acid and its derivative in the context of a network-acting "florigen" signalling and 

as an integrator of exogenous and endogenous pathways. 
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1.6 Jasmonic Acid and its Known Roles 

1.6.1 Introduction 

Jasmonates are signaling molecules that mediate responses to both 

mechanical trauma and pathogens (Farmer and Ryan, 1992) as well as 

regulating developmental processes such as germination, flowering time, flower 

development, fruit ripening and senescence (Van der Fits and Memelink, 2000). 

Their mode of action seems to be through interactions with receptors in the cells 

that trigger signalling pathways resulting in transcription, translation and other 

processes. JA is easily transformed by methylation to its more volatile derivative-

MeJA, which has been shown to act as a signal molecule in interplant 

communication (Weber, 2002). The JA transduction pathway is still largely 

unknown, due in part to the lipophylic and volatile natures of JA and MeJA, 

making direct analysis of JA receptors difficult. Many of the responses were 

monitored under exogenous application of jasmonates, sometimes only 

confirmed at genetic levels. Interactions between jasmonates and other signalling 

molecules and regulators make assignment of physiological roles for JA even 

more complex. Additionally, although most of these responses are observed 

following plant treatment with MeJA, it is not yet known if MeJA, JA or other 

derivatives of JA are actually responsible for these phenomena, and it is possible 

that different roles can be assigned to different components of the jasmonate 

pathway. 
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1.6.1.1 Seed Germination and Growth 

JA has an opposite role on dormant and non dormant seeds. While it 

stimulates the germination of dormant seeds (Ranjan and Lewak, 1992), it 

inhibits that of non-dormant seeds (Corbineau et al., 1988; Daletskaya and 

Sembdner, 1989). The latter (usually inhibited by JA) submitted to dessication 

increase their concentration of MeJA and JA before the loss of seed viability 

(Finch-Savage et al, 1996). This increase was correlated to lipid peroxidation in 

the seeds, linking the process of jasmonate production and response to 

membrane damage rather than germination itself (Finch-Savage etal, 1996). 

1.6.1.2 Vegetative Storage Proteins and Sinks 

Plants are able to accumulate large amounts of carbon and nitrogen in 

specific cells and tissues, and can mobilize these materials for use in any part of 

the plant. These abilities are especially useful during seed formation and 

germination when nutrients need to be concentrated in specific parts of the plant. 

A role for jasmonates in protein storage comes from their presence in high levels 

in vegetative sinks. High levels of JA are also present in developing reproductive 

structures, especially pods, with lower levels in seeds (Koda Y. 1992). Tuberonic 

acid, a jasmonate derivative, has been proposed to play a role in the formation of 

tubers, a special type of vegetative sink (Pelacho and Mingo-Castel, 1991). 
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1.6.1.3 Photosynthesis and Senescence 

When JA is applied to plant leaves, expression of nuclear and chloroplast 

genes involved in photosynthesis is decreased (Weidhase et al, 1987). JA 

treatments also cause loss of chlorophyll from leaves or cell cultures (Weidhase 

et al, 1987), relating this ability to cause chlorosis to the jasmonates' role in plant 

senescence (Ueda et al, 1981). To reconcile this with the fact that JA levels are 

high in zones of cell division, young leaves and reproductive structures, it has 

been proposed that JA inhibits the synthesis of chloroplast proteins during an 

early phase of leaf formation where cell division and import of nutrients are very 

active (Creelman and Mullet, 1997). 

1.6.1.4 Insect and Disease Resistance 

Several lines of evidence support JA's role in plant insect and disease 

resistance. For example, JA accumulates in wounded plants (Creelman et al, 

1992) and in plants or cell cultures treated with pathogen elicitors (Gundlach et 

al, 1992). JA also induces genes encoding protease inhibitors that help protect 

plants from insect damage (Johnson et al, 1989), as well as genes encoding 

antifungal proteins such as thionin (Becker and Apel, 1992), osmotin (Xu et al, 

1994) and PDF (Penninckx et al, 1996). Furthermore, the oxylipin pathway that 

leads to the formation of JA is also the source of other volatile aldehydes and 

alcohols that function in plant defence and wound healing (Deng et al, 1993; 

Hildebrand et al, 1993). Finally, analysis of plants having modified levels of JA 

also indicates a role for JA in defence and pest resistance. For example, 
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treatment of potato with JA increases resistance to Phythophthora infestans 

(Cohen et al, 1993). The tomato mutant JL5, inhibited in the conversion of 13-

hydroperoxylinolenic acid to 12-oxophytodienoic acid (OPDA), is more 

susceptible to damage by Manduca sexta (Hove et al, 1996). 

1.6.1.5 JA in flowering 

Jasmonates' role in flower, fruit and seed development was deduced 

based on their high levels in the reproductive tissues, as well as by the 

phenotype of JA-defficient mutants. The presence of jasmonates and other 

related volatile fatty acids is thought to be involved in insect attraction and pollen 

dispersal, and as thus, a strategy for survival. Combined with JA's role in 

vegetative storage protein (VSP) induction, as temporary source of carbon and 

nitrogen, JA ultimately play a role in viable seed formation. This is based on the 

observation that the JA insensitive mutant coil lacks these VSP proteins and 

fails to produce viable pollen unless supplied with JA or a precursor in the JA 

biosynthesis pathway, such as oxophytodenoic acid (OPDA) (McConn and 

Browse, 1996). The same is true of the JA biosynthesis mutant 12-

oxophytodienoate reductase 3 (opr3), which lacks the enzyme required to turn 

the OPDA into the next JA precursor. Exogenously applied JA, but not OPDA, 

can rescue the male sterile phenotype of this mutant (Stintzi and Browse, 2000) 
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1.7 JA Biosynthesis 

Plants, like animals, are subjected to external and internal stimuli 

throughout their lives, thus evolution has had to develop multiple ways to 

respond to these incentives. One path, which bears similarities between the 

animal and plant kingdoms, is through compounds derived from the oxidative 

metabolism of polyunsaturated fatty acids. Extensive studies on members of the 

eicosanoid family of lipid mediators biosynthesized from C20 fatty acids have 

shown the latter to play a role in regulation of cell differentiation, immune 

responses and homeostasis in animal systems (Smith et al, 2000). In plants, 

oxygenated derivatives of C18 and C16 fatty acids regulate numerous defense-

related and developmental processes (Howe, 2001). Researchers of fatty-acid 

based signaling in plants have focused upon one hormonally active compound: 

jasmonic acid (JA) and its derivatives, collectively called jasmonates. 

1.7.1 The Jasmonate Pathway 

The biosynthesis of JA and its methyl ester was elucidated by Vick and 

Zimmerman (1983) and Hamberg and Hughes (1988). The main pathway 

through which JA is synthesized is through the octadecanoid pathway from 

linolenic acid (LA) (Fig. 9). Synthesis begins with phospholipase A1-release of 

LA, followed by oxygenation by 13-lipoxygenase (13-LOX) (Ishiuro et al, 2001). 

The resulting 13-hydroperoxide is dehydrated by allene oxide synthase (AOS) to 

an unstable epoxide (Hamberg and Fahlstadius, 1990), which then reacts readily 

with allene oxide cyclase (AOC) to form the cyclopentenone ring-containing 
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OPDA. This compound can further be metabolized by reduction of the ring 

double bond, reaction catalyzed by OPR3, yielding a cyclopentanone 

intermediate. Following three rounds of B-oxidation, this intermediate is 

converted to jasmonic acid, the best-known jasmonate regulator (Creelman and 

Mullet, 1997). Both OPDA and JA have multiple fates within the plant tissues. 

They can either be conjugated by esterification to other molecules such as 

galactolipids in the case of OPDA (Stelmach et al, 2001) and various amino acids 

or simply a methyl group in the case of JA (Creelman and Mullet, 1997). 

Mutants that are defective in either the biosynthesis or perception of JA 

are dramatically compromised in resistance to many plant stresses (Howe et al, 

1996, McConn et al, 1997 and others). These studies have led to the general 

assumption that JA is the physiological signal for wound and pathogen induced 

responses. Further studies on an A. thaliana opr3 mutant, in which OPDA is not 

transformed into JA, show that these plants also elicit defense response (Stintzi 

et al, 2001), and thus, OPDA is also active as a signal, without prior metabolism 

to JA. This in turn points to the possible role of other components of the JA 

pathway as signalling molecules. 
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Figure 6: Scheme of J A biosynthesis and further 13-LOX products derived from 
cr-LeA, 13-HPOT and (9Z,11E,15Z)-13-keto-(9,11,15)-octadecatrienoic acid (13-
KOT). Identical reactions occur with LA as substrate, whereas the corresponding 9-
derivatives are formed via 9-LOX catalysis. From Stenzel et al, 2003. 
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1.7.2 JA metabolites 

In fact, although JA biosynthesis is well studied, the metabolic pathways 

downstream of JA are less understood. The function of particular modifications 

remains unclear, as there are many contradictory data on the biological activity of 

JA metabolites. For example, JA, MeJA and 12-OHJA induce tuber formation in 

potato (Solarium tuberosum! (Koda et al, 1991), but the latter fails to activate the 

JA-sensitive element in the promoter of cathepsin D inhibitor, while MeJA is as 

effective as JA in promoting its activity (Ishikawa et al, 1994). 12-OHJA is also 

inactive in the assay for tendril coiling, a typical response to octadecanoids 

(Blechert et al, 1999). As such, not all the activities associated with JA are 

shared by its metabolites. 

One more example of this exclusivity of response is the JA's ability to 

arrest tobacco Bright Yellow-2 (BY-2) cells in the G2 phase of the cell cycle 

(most effectively so when applied 4 hours prior to the G2/M transition) None of its 

metabolites can elicit the same cell-cycle arrest (Swiatek ef al, 2004). 

Another debated issue was wether MeJA or JA is the active form in 

inducing jasmonate-specific responses. Studies of a mutant overexpressing the 

JA-induced methyltransferase (JIMT) lead to the conclusion that MeJA is an 

active compound, independently of its hydrolysis to JA. This was based on the 

observation that in the jimt mutant, the JA responsive genes were induced, as 

well as the endogenous levels of MeJA, while the JA levels in the plant were 

unaffected (Seo et al, 2001). On the other hand, JA- and MeJA-feeding 

experiments demonstrate that the latter compound was rapidly hydrolyzed to JA 
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and further processed as JA (Swiatek et al, 2004). Thus, although the effect of 

MeJA, might be due to its hydrolysis to JA, a direct effect of MeJA cannot be 

excluded. 

A study of the uptake of JA and its metabolism in tobacco (Nicotiana 

tabacum) BY-2 cultures reveals that JA is taken up from the medium and 

converted into several, more polar, compounds (see figure 7; Swiatek et al, 

2004). 
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Among these, free hydroxylated JA was the preferential fraction in the 

medium of the BY-2 cells treated with different JA metabolites, but not in the cell 

extracts. This extracellular accumulation makes them a good candidate for long

distance transport and/or removal of superfluous jasmonates. OHJAs have also 

recently been identified to be a natural constituent in plants as distantly related 

as potato, A. thaliana and barley, indicating the widespread occurrence of 

hydroxyjasmonates in the plant kingdom (Gidda et al, 2003). Its presence in non 

tuber-forming plants points to other roles for this molecule, outside of its tuber-

inducing properties. For example, a hydroxyjasmonate sulfotransferase in A. 

thaliana was shown to be induced by both JA and 12-OHJA (Gidda et al, 2003). 

In conclusion, there seem to be at least two types of jasmonate effects: some, 

such as tuber formation, are triggered by a family of structurally related 

compounds, whereas others, such as G2 arrest, look more specific to JA and 

MeJA, and so might function through a different signal transduction pathway. 
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1.8 Sulfotransferases and the Sulfonation Reaction 

1.8.1 Roles of Sulfonation 

Sulfonation is an important reaction in the metabolism of a wide range of 

xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes 

called sulfotransferases (SULTs) catalyze this reaction (1s t reported by Baumann, 

1876). All SULTs use 3'-phosphoadenosine 5'-phosphosulphate (PAPS) as the 

sulfuryl donor and transfer the sulfonate group to an appropriate hydroxyl group 

of several classes of substrates (Weinshilboum et al, 1997). They have highly 

conserved domains and can be found in all organisms from eubacteria to 

eukaryotes (Klein and Papenbrock, 2004). Most of the time, the addition of a 

sulfonate moiety to a compound increases its water solubility and decreases its 

biological activity (Klaassen and Boles, 1997). However, many of these enzymes 

are also capable of bioactivating procarcinogens to reactive electrophiles (Falany, 

1997a; Weinshilboum et al., 1997) or can be responsible for the development of 

hormone-responsive tumours in humans (Duanmu etal, 2001). 

1.8.2 A. thaliana Sulfotransferases 

As mentioned before, in mammals SULTs have been shown to be 

involved in the transformation of xenobiotics, and to modulate the biological 

activity of hormones and neurotransmitters (Vargas et al, 1994; Falany, 1997b; 

Weinshilboum et al, 1997). In plants, these reactions play a role in plant growth, 

development and adaptation to stress (Klein and Papenbrock, 2004). In total, the 

A. thaliana SULTs family comprises 18 members (based on sequence similarity 
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of nucleotide and translated products) (Klein and Papenbrock, 2004), of which 

only few have been fully characterized. All of them have been categorized as 

cytosolic SULTs, referring to their ability to be extracted from cells in a soluble 

form. Most of the SULTS have been grouped based on the small organic 

molecules that they sulfonate. 

1.8.3 The A thaliana AtST2 Subgroup and its Regulation 

Two of the 18 sulfotransferases, At5g07010 (AtST2a) and At4g07000 

(AtST2b) have been grouped in the same subgroup based on their high 

sequence similarity (85% identity and 92% similarity at the amino acid level). 

Despite this, genetic analyses have shown that the two enzymes are differentially 

regulated and are highly selective in their choice of substrate, AtST2b not 

exhibiting any activity with the substrate of AtST2a (Levitin, A; personal 

communication). In fact, not much is known about the former. AtST2a has been 

shown to sulfonate 12-OHJA, with the proposed role of either participating in the 

inactivation of JA or, as a mean of controlling the biological activity of 12-OHJA 

(Gidda et al, 2003). 

1.8.4 12-hydroxyjasmonate as a Signalling Molecule 

JA can be transformed by hydroxylation, to result in the 11- or 12-OHJA 

derivatives. 12-hydroxyjasmonate, also known as tuberonic acid, was first 

isolated from Solanum tuberosum and was shown to have tuber-inducing 

properties (Yoshihara, et al. 1989/ Our lab has shown that 12-OHJA occurs 
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naturally in A. thaliana, and has proposed that MeJA and 12-OHJA act through 

separate pathways. This conclusion has been achieved after treating plants with 

exogenous 12-OHJA and finding that the expression of the methyljasmonate-

responsive gene Thi2.1, is not induced (Gidda et al, 2003). Furthermore, 12-

OHJA has been proposed to act as a signal that promotes the transition from 

vegetative to reproductive growth when A. thaliana is exposed to an inductive 

photoperiod (Gidda et al, 2003). 

1.9 Purpose of Current Work 

Based on the previous observations of a separate pathway for 12-OHJA, 

and the study of its sulfonation by the AtST2a sulfotransferase, we wanted to 

further investigate gene regulation by JA and 12-OHJA, and determine if indeed 

they regulate separate sets of genes, or Thi 2.1 was just an exception. In order to 

do this, we performed microarray experiments to compare transcript levels in 

treated and untreated plants. We also investigated the phenotypes of AtST2a 

and AtST2b knockout plants by observing development of tissues or organs 

known to express AtST2a at the highest levels, and monitoring flowering time 

under SD and LD conditions. The results of these experiments are presented in 

the current thesis. 
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2.0 Materials and Methods 

2.1. Materials 

Columbia 0 (ColO) and Landsberg erecta (Ler) wildtype A. thaliana seeds 

and C24 seeds (a near wildtype strain of A. thaliana which contains a FRIGIDA 

(FRI) allele that causes late flowering and an FLC allele which suppresses the 

late-flowering phenotype of FRI) from Lehle seeds (http://www.y4. thaliana.com). 

The CO-2 (Ler), Fca1 (Ler), Fca2 (Ler) and Tod (C24) mutant lines were 

obtained from ABRC (http://www.biosci.ohio-state.edu/ -plantbio/Facilities/ 

abrc/abrchome. htm). Coronatine insensitive 1-16 (Coi1-16) homozygous mutant 

seeds were kindly donated by Dr. Turner, University of East Anglia, Norwich, 

England. AtST2a (At5g07010) heterozygous T2 knockout seeds (AtST2a- KO) 

line 149G04 were obtained from the GABI-Kat seed collection in Germany. 

At2T2b (At5g07000) heterozygous T2 knockout seeds (AtST2b- KO) line 

SALK_009093.54 were obtained from the SALK T-DNA seed collection 

(http://www.gabi-kat.de/db/seed request.php). Both mutants were generated in 

a ColO background. 
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2.2 Methods 

2.2.1 Microarray experiment 

2.2.1.1 Seed sterilization and Plant growth 

A. thaliana (ecotype Columbia-0) seeds were treated for 30s with 70% 

ethanol, followed by 5 min shaking in a sterilizing mix (10% bleach, 0.02% SDS) 

and then washed 3 times with sterile dH20 and placed for 2-4 days at 4°C for 

stratification (treatment meant to simulate winter conditions). Sterilized seeds 

were then grown in Magenta boxes on MS media (Murashige and Skoog, 1962) 

to 16 days of age, under a 16-h light photoperiod. The plants were then treated 

for four hours with methanol (control), 50uM MeJA or 100uM 12-OH-JA dissolved 

in methanol, by spraying the solutions on the plates, in the case of the control 

and 12-OHJA treatment, and placing the appropriate amount on filter paper 

inside the plates, for the MeJA treatment 

2.2.1.2 RNA extraction 

The tissue was collected, ground to powder in liquid nitrogen and RNA 

was extracted by a modification of the phenol-chloroform method (Maliga et al, 

1995). Each extraction consisted of material from 20-25 plants (representing 

approximately 3g of fresh tissue). The powder was then transferred to an equal 

volume of extraction buffer (Tris HCI pH 9.0 0.2M, NaCI 0.4M, MgOAc 0.02M, 

sucrose 0.5M) to which 1/10 volume of 10% SDS and 1/20 volume of EDTA 

32 



400mM has been added. The two components were mixed well and 1 volume of 

phenol (25): chloroform (24): iAA (1) mixture was added. This was then agitated 

vigorously without stopping for 20 minutes and centrifuged 15 min at 4000 rpm. 

The aqueous phase was transferred to a new tube, extracted with equal volume 

of phenol: CHCb: iAA, then shaken again for 20 min, and centrifuged as above. 

Following the second centrifugation, the aqueous phase was transfered to a new 

tube, and precipitated with 0.6 volume of isopropanol for 30 min on ice or at 4°C. 

The RNA was collected by centrifugation at 13 000 rpm for 12 min at 4°C. The 

aqueous phase was discarded and the pellet re-suspended in DEPC-treated H20 

with 2M LiCI (final concentration) and incubated overnight at 4°C. The next day, 

the mixture was spun at 9000 rpm for 20 min at 4°C and the pellet re-suspended 

in DEPC H20 to which was added 1/10 volume NaOAc 3M (pH5.2) and 2 

volumes of 95% ethanol (EtOH). Following a last overnight precipitation at -20°C, 

the mixture was centrifuged 20 min at 13 000 rpm (4°C), the pellet was washed 

with 70% EtOH, spun down as above (13 000 rpm) for 5 min, dried and re-

suspended in 20 pi DEPC H20. 

Triplicate extractions from two individual experiments were pooled 

together to generate the sample used for the microarray hybridization experiment 

on the A. thaliana ATH1 Genome Array (Affymetrix®). Technical replicates were 

generated as each sample was used for two distinct microarray experiments. The 

quality and quantity of RNA were confirmed by agarose gel electrophoresis, 

absorbance 260/280 as well as the Agilent 2100 Bioanalyzer version A.01.16, 

prior to probe synthesis. 
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2.2 A.Z Microarray analysis using the A. thaliana ATH1 

Genome Array 

The cRNA synthesis, labeling and chips hybridization were performed as 

per Affymetrix®'s protocols (McGill University and Genome Quebec Innovation 

Center). Briefly, this consists of reverse transcription of the target RNA into 

cDNA, followed by in-vitro transcription as to generate biotin-labeled cRNA. After 

overnight hybridization, the chips were stained with streptavidin-phycoerythrin 

and arrays were scanned using a GeneArray Scanner at an excitation 

wavelength of 488nm. The data was generated by recording the light emission at 

570nm, which is proportional to the bound target at each oligonucleotide position 

on the GeneChip® array. In this study, the Affymetrix® ATH1 Genome Array 

GeneChip® was used, containing probe sets for approximately 24,000 predicted 

and known expressed A. thaliana genes. The sequences of E. coli genes bioB, 

bioC, bioD, B. subtilis gene lysA and the phage P1 ere gene were used as 

negative controls, along with the A. thaliana maintenance genes GAPDH, 

Ubiquitin and Actin. 

2.2.1.4 Data analysis 

The intensities read by the GeneArray Scanner were used as relative 

expression units and further processed to generate clusters of genes regulated 

by either one or both of the metabolites. High density oligonucleotide arrays 

typically use oligonucleotides of around 25 bases and each gene is generally 
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represented by 11 pairs of oligonucleotides, or probe sets (Irizarry et al, 2003). 

Of interest to us is to combine the values for these probe pairs to obtain a 

measure of expression that represents the amount of corresponding mRNA. The 

analysis process consists of three steps: 

Low-level normalization 

In order to have confidence in the end result of our analysis, of crucial 

importance is this first step of normalization. This step allows us to differentiate 

between "obscuring variation"- due to technical variation such as labeling, 

hybridization or scanning, and "interesting variation"- that which occurs as a 

direct effect of the treatment. Many software-based programs have been 

designed to computerize this step. In Affymetrix chips, each oligonucleotide pair 

is represented by a perfect match (PM) oligonucleotide (i.e. identical to the gene) 

and a mismatch (MM) component, which contains one mutation in the middle 

(13th) base. The difference in intensities between the two members of a pair allow 

for non-specific binding measurement. Some software use the difference 

between the PM and the MM intensities as a measure of normalizing the data, 

but this has proven obsolete, and newer analysis methods rely on the PM values 

solely. One such method developed specifically for Affymetirx GeneChips® is the 

Robust Multichip Average (RMA) analysis. This technique allows probe-specific 

background correction to compensate for nonspecific binding using PM 

distribution rather than PM-MM values and multichip quantile normalization to 

unify PM distributions across all chips in the experiment. Additionally, it provides 
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robust probe-set summary of log-normalized probe level data by median 

polishing. 

Identification of differentially expressed genes 

Once the data had been normalized, we needed to extract only 

"significantly regulated genes", and then organize them according to their 

regulation pattern. This filtering process was performed using the GeneCluster 

version 2.1.7 (Tamayo et al, 1999) software according to the following 

parameters: min value= 50; max value= 20,000; max/min= 3 max-min= 100, The 

normalization step combined with this filtering step allowed us to work only with 

reproducible probes exhibiting ^ 2-fold difference in average between the MeJA-

or 12-OHJA-treated, and the mock-treated plants. 

Clustering Analysis and Functional Interpretation 

Finally, these genes were clustered with the software's self organizing 

maps (SOMs) function into related subsets based on a distance metric across 

elements. Basically, this allows easy visualization of similarly expressed patterns. 

The genes were the organized into 2 SOM rows, 4 SOM columns (resulting in 8 

clusters). Except for the rows and columns specifications, the basic and 

advanced parameters were left as standardized by the program. The clusters 

were then organized by their biological process using the Data Mining Tool 

available from the Affymetrix Netaffx Analysis center (http://www.affymetrix.com/ 
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analysis/index.affx) and manual functional assignment into categories based on 

their biological function. 

2.2.2 Reverse-Transcription PCR 

Plants (ecotype ColO and coi1-16) were grown and treated as previously 

described, and the RNA was used to synthesize the cDNA template for PCR 

validation of the microarray experiment. Two ug of RNA prepared as above (2 to 

17.8 uL, depending on the concentration of RNA) were added to 2 uL Expand 

Reverse Transcriptase (RT) Buffer 5x (Roche Applied Science) and 0.2 pi RNase 

free DNasel 40U/ul_ (Roche Applied Science). The volume was adjusted to 20 uL 

using DEPC-treated water. The reaction was incubated 15 min at room 

temperature, and then 2 uL 30mM EDTA was added. After another incubation of 

10 minutes at 65°C to inactivate the DNase, the tubes were put on ice for 2 min 

and centrifuged briefly. Following the DNase treatment, 8 pL of 50 uM Oligo dT 

(15mers) was added to each of the reactions and the tubes were incubated 10 

min, at 65°C, then put on ice for 2 min and centrifuged briefly. A mix of 10 uL 

Expand RT Buffer 5x, 5 pL dTT (100mM), 2 pL dNTP (25 mM), 1.25 pL RNase 

inhibitor 40U/pL and 2.5 pL Expand RT (for positive RT reactions) 50U/pL (all 

from Roche Applied Science) was added to each reaction, followed by a 60min 

incubation at 43°C. The cDNA was then used in several polymerase chain 

reactions (PCRs) to validate the results of the microarray experiment. The 

internal control Actin4 gene, as well as a pair of universal primers for 8 of the 
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actin genes were used to equalize the quantity of cDNA of the different samples 

and selected genes were tested to confirm the gene expression pattern observed 

in the microarray experiment. 

2.2.3 Phenotype analysis 

2.2.3.1 Plant growth conditions 

Plants were grown in soil (Fafard Agromix #2) in environmental A. thaliana 

growth chambers (Conviron S15) under a light intensity of 50uM m"1 s"1. For the 

long day (LD) conditions, 16h of light and 8h of dark were provided in order to 

mimic summer time conditions. For the short day (SD) conditions, 8h of light and 

16h of dark were provided, to simulate wintertime conditions. In both cases 

temperature was kept at 22°C in the night time period, rising gradually in the last 

hour of dark to reach 24°C during the daytime period. Plants were provided with 

a solution of 4g/l 15-30-15 N-P-K fertilizer every two weeks to ensure proper 

nutrients delivery at all times. The day of the first flower and the total leaf number 

was recorded for 32 plants from each genotype, both under LD and SD. 

2.2.3.2 Genomic DNA extraction 

One leaf from each, ColO, AtST2a-KO plants 1-24 and AtST2b- KO plants 

25-48 was collected, ground in liquid nitrogen and resuspended in 2X CTAB 

buffer. The mixture was incubated at 65°C for 40 min with vortexing once after 20 

min. The aqueous phase was then extracted with equal volume of phenol-
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chloroform (1:1), followed by chloroform and then precipitated overnight with 1/10 

volume NaOAc 3M pH 5.2 and 0.6 volume isopropanol at -20°C. The next day, a 

70% EtOH wash was performed and the genomic DNA (gDNA) was 

resuspended in water. 

2.2.3.3 Confirmation of Homozygous Mutant 

Polymerase chain reaction was performed on 50ng gDNA from each of 

the three samples using the following gene primers: 

Table 1: Oligonucleotide sequences used for homozygous confirmation 

Gene 

Actin2(At3g18780) 

AtST2a(At5g07010) 

T-DNA LB 

AtST2b (At5g07000) 

T-DNA 

Sequence 

F 5' GCTGATGGTGAAGACATTCA 3' 

R 5' CATAGCAGGGGCATTGAAAG 3' 

F 5' GGAGAGAGGATGGAGAAC 3' 

R 5' ATCCACTAAGGCTGACAATC 3' 

hb ' CAI I IGGACGIGAAIGIAGA3' 

F 5' TTGACACATTCATCTCCATG 3' 

R 5' CATTTAGCTACATACATACATGCATGA 3' 

R 5' CAAACAGGATTTTCGCCT 3' 



2.2.3.4 Methyljasmonate and 12-Hydroxyjasmonate 

Treatments 

Sterilized seeds were grown vertically on Murashige-Skoog medium with 

0.1% ethanol (control), 100uM MeJA and 100uM 12-OHJA (dissolved in 0.1% 

EtOH) in large (15cm diameter) petri dishes. Root length analysis and 

germination rates were determined for wildtype, coil-16, AtST2-a KO and 

AtST2b- KO plants. 

2.2.4 Gene Expression Analysis of AtST2a and AtST2b KOs 

PCR was performed on cDNA samples from ColO, coi1-16, AtST2a- KO 

and AtST2b- KO plants grown under LD conditions (control) or exposed to dark 

for 48 h. The following primers were used for amplification: 

Table 2: Oligonucleotide sequences for gene expression analysis of KOs 

Gene 

PORA(At5g54190) 

AOS (AT5G42650) 

AOC4(AT1G13280) 

OPR3 (AT2G06050) 

Sequence 

k b ' A I I IGGACI IGGCGICI I IG3' 

R: 5' AGGGAAGAGGGTACGGAAAA3' 

F: 5'GTCAGAACTCCTGATCTAACCG 3' 

R: 5'GGTACGAGAGGATACGGTAGC 3' 

F: 5'AGGAACCTCTCTCGCAATCA3' 

R: 5'GAAGCTTCAAAGCGATCACC3' 

F: 5'CCAATACGGAGGATCCATTG3' 

R: 5'GGGAAAAAGGAGCCAAGAAA3' 
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2.2.5 Mass Spectrometry 

A. thaliana ecotype ColO, AtST2a-KO and AtST2b-KO seeds were planted 

on MS Petri dishes and grown to 16 days of age. Prior to extraction, plants were 

treated for 48 h with 100pM MeJA to ensure sufficient levels of 12-OHJA sulfate 

detection (in wildtype). On the day of extraction, approximately one gram of 

tissue was ground to a fine powder in liquid nitrogen and homogenized in 50% 

methanol (ca 5 ml per gram tissue). The homogenate was centrifuged at 10,000 

RPM for 5 minutes to remove the cellular debris. The methanol was removed 

from the clarified extract by evaporation under reduced pressure. The remaining 

aqueous solution was extracted with one volume of butanol and the butanolic 

fraction containing the jasmonate derivatives was lyophilized using a SpeedVac 

concentrator. The lyophilized samples were resuspended in 100 pi of 50% 

methanol for HPLC purification 

2.2.5.1 HPLC Fractionation of Wildtype, AtST2a- KO and 

AtST2b- KO Extracts 

The 50% methanolic extracts (ca. 100 pi) were fractionated by reverse 

phase chromatography on a NovaPack Ci8 column (Waters, USA). The 

separations were performed on a Waters 625 HPLC system using the following 

gradient: 
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0 - 1 0 minutes isocratic 100% A 

10-50 minutes from 0 to 70% B 

50-60 minutes from 70% to 100% B 

Flow rate 0.5 ml per minute, fraction size 1 minute. 

Solvent A = water containing 0.05% acetic acid and 5 mM ammonium acetate 

Solvent B = methanol containing 0.05% acetic acid 

The retention time of 12-OHJA sulfate was determined by the injection on the Cis 

column of the reaction product catalyzed by AtST2a with an authentic sample of 

12-OHJA in presence of [35S]-labeled PAPS. 200 ul of each fraction was mixed 

with 3 ml of scintilation fluid and counted for radioactivity on a liquid scintilation 

counter. 

2.2.5.2 Neutral loss mass spectrometry of purified 

meatabolites from wildtype, AtST2a and AtST2b 

extracts. 

The HPLC-purified fractions were analysed using neutral loss ESI-mass 

spectrometry in the negative mode in search of a parent ion with a molecular 

mass at 305 (M-1) which gave a neutral loss of 80 mass unit. The analysis was 

performed on a Quattro triple quadrupole mass spectrometer (Micromass, UK) 

using a cone voltage of 20V and a colision energy of 35V. The spectra were 

acquired with a duration of 2 seconds and an interscan delay of 0.1 second. In 

42 



order to validate the structure of the compounds identified by neutral loss mass 

spectrometry, the same extracts were analyzed by ESI-MS/MS on a Q-Tof 2 

spectrometer in the negative mode (Micromass, UK). The samples were 

processed using a cone voltage of 10V and collision energy of 35V. The spectra 

were acquired using the Masslink software form Micromass. 
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3.0 Results 

3.1 Effect of MeJA and 12-OHJA on Gene Expression 

3.1.1 Introduction 

Previous experiments have shown that MeJA and 12-OHJA do not elicit 

the same morphological responses in plants (Gidda et al, 2003, Levitin, 2004), 

and that genes might be differentially regulated by the two metabolites (Gidda et 

al, 2003). The data support the possibility of a separate role for these 

metabolites in plant growth. Our objective was to test this hypothesis in order to 

better understand the biological function of the two metabolites, by looking for 

genes, if any, which are regulated exclusively by one of the two compounds, 

versus those which behave similarly. This, in turn, would indicate the presence of 

separate regulatory pathways responding to the two metabolites. The obvious 

choice to perform such an experiment was the use of microarray, in our case the 

Affymetrix® ATH1 full genome array. This method was justified by the genome-

wide effects that can be monitored, and was used to investigate gene regulation 

after 4h MeJA or 12-OHJA treatments, as compared to the 4h mock-treatment 

on wildtype A. thaliana (Columbia 0). A relatively short time point was selected 

based on previous information that this was enough to induce marker genes such 

as TN2.1, as well as genes in the JA biosynthetic pathway (Gidda et al, 2003, 

Levitin, 2004). Furthermore, MeJA is known to regulate a series of transcriptional 

cascades which impact on later developmental and physiological changes, 

biasing the data after longer time treatments. The plants were grown to 16 days 
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of age, before the dramatic change in the internal level of jasmonates associated 

with flowering. 

3.1.2 Microarray Analysis 

Following data analysis (see Materials and Methods), 1763 genes (7.75% 

of the total number of genes) showed a significant increase or decrease in 

expression of at least two fold following one of the treatments, as compared to 

the control and are referred to as "significantly regulated genes". 

The genes were organized into clusters with the main goal to detect sets 

of genes regulated differently by the two metabolites (Tables 3-8). Cluster 

analysis results are summarized in Figure 8. 

In total, 376 genes were induced exclusively by MeJa (cluster 0), while 

412 genes were inhibited exclusively by MeJA (cluster 7). Only 45 genes were 

found to be exclusively induced by 12-OHJA (cluster 6) and 7 genes were 

repressed solely by the latter compound (cluster 1). Finally, 152 genes were 

induced (cluster 5) and 134 genes were repressed (cluster 2) following treatment 

with both compounds. 

The twenty genes in each cluster that were induced or repressed by the 

greatest amount are presented in Tables 3 to 8. The full list of genes included in 

the analysis can be found in Annex 1. Tables 9 and 10 compare known regulated 

genes (Zimmermann et al, 2004) to our own results, for added confidence in the 

microarray results. 
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Ctrl MeJA 12-OHJA 

Figure 8: Cluster analysis of differentially expressed genes in A. thaliana 
control, 4h JAME or 4h 12-OH-JA treatments, represented by the three 
dots respectively. Clustering was performed using GeneCluster 2.1.7. The 
number above each graph indicates the number of genes in the respective 
cluster. The middle line shows the average gene expression pattern for the 
cluster, whereas the two outer lines represent the standard deviation in gene 
expression among the components of the clusters. Cluster 1 and 6 are 
especially interesting for the purpose of our analysis, as they indicate sets of 
genes regulated exclusively by 12-OHJA. 
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3.1.3 RT-PCR Validation of Microarray Data 

To ensure that the microarray results are reliable, we needed to verify 

them by the use of another method to prove that the genes are indeed behaving 

according to the reported patterns. Our method of choice was RT-PCR, an easy 

and cheap method, once a good internal control is achieved. Since optimization 

using one internal control gene (Actin 4) proved troublesome, new primers were 

designed to amplify 8 of the actin genes at the same time, in order to reduce 

variance (individual actin gene expression may fluctuate between the treatments 

used in this study). We selected genes representative of different clusters, mRNA 

levels were detected and the results compared to the Affymetrix data. RT-PCR 

results and associated microarray values can be seen in Figure 9 and Table 11, 

respectively. 
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Actin 

AtST2a 

AtST2b 

Thi2.1 

Short chain-type dehydrogenase 

Leucoanthocyanidin dioxygenase 

Senescence associated protein 

Chlorophyll AB binding protein 

CBL-interacting protein kinase 

MYB related transcription factor 

Figure 9: RT-PCR validation of microarray experiment in ColO ecotype for 
control and plants treated with 50uM Me J A or IOOUM 12-OHJA for 4 hours. 

Table 11: Affymetrix array expression values 

Gene 

AtST2a 

AtST2b 

Thi2.1 

Short chain-type dehydrogenase 

Leucoanthocyanidin dioxygenase 

Senescence associated protein 

Chlorophyll AB binding protein 

CBL-interacting protein kinase 

MYB related transcription factor 

Gene # ID 

At5g07010 

At5g07000 

At1g72260 

At3g04000 

At3g55970 

At2g 17850 

At3g27690 

At5g45820 

At1g18710 

Mean 
Control 

119.8 

236.4 

104.4 

175.5 

130.1 

68.2 

23907.7 

3066.4 

390.8 

Mean 
MeJA 
9743.6 

389.7 

3487.2 

3747.6 

6956.3 

93.4 

235.7 

30.8 

331.4 

Mean 12-
OHJA 
222.9 

182.7 

64.4 

364.9 

90.1 

4.6 

24915.5 

2578.2 

29.3 

Ctrl 50^M IOOuM 
MeJA 12-OHJA 
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3.1.4 Biological functions of various clusters 

To gain further insight into the function of the genes regulated by each of 

the compounds, the1763 significant genes were manually categorized into a 

maximum of 10 functional groups using the gene ontology (GO) annotation data 

from the Affymetrix web site at http://www.yA. f/?a//anai.org/tools/bulk/go/index.isp, 

combined with some manual modifications. The exact distribution of genes in 

these biological processes can be seen in Figures 10, 11 and 12. 
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A. Cluster 0 (| MeJA) 

Biotic and Abiotic 

stimuli 

Unknc 

Development 

Transporter 

Transcription fact 

Hormone responsive 

Signal transduction 

m y Metabolism 

Protein Metabolism 

Total # of genes : 376 
Total # of matching probes : 365 

B. Cluster 7 ( j MeJA) 

Biotic and Abiotic 
stimuli 

Unknov 

Transporter 

Transcription factor 

Development 

Energy 

Hormone responsive 

Signal transduction 
Metabolism 

Protein Metabolism 

Total # of genes : 412 
Total # of matching probes : 411 

Figure 10: Classification of A) 365 MeJA up-regulated and B) 411 MeJA 
down-regulated genes into functional groups based on their known, 
predicted and/or putative biological function. 
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A. Cluster 6 (t 12-OHJA) 

Unkn—.- .. - . ; -M 
. » r . i •• B 

MS 

Transporter 

Transcriptbn factor 

•' sH 

S A . K B 

•feJL— • . ' ISSJMI 

L 

Biotic and Abbtic 
stimuli 

IP^v. 
HJp: to\ v \ 

V .1V HH 

Development 

\ Hormone responsive 

Hi ^ 
Signal transduction^ 

Protein Metabolism Metabolism 

Total # of genes : 45 
Total # of matching probes : 45 

Cluster 1 (i 12-OHJA) 

B. 
Unknown 

Transporter 

Total # of genes : 7 
Total # of matching probes : 7 

Development 

Metabolism 

Protein Metabolism 

Figure 11: Classification of A) 45 12-OHJA up-regulated and B) 7 12-OHJA 
down-regulated genes into functional groups based on their known, 
predicted and/or putative biological function. 

60 



A. Cluster 5 ( | | MeJA and 12-OHJA) 

Biotic and Abiotic 

stimuli 

Unknown 

Development 

Energy 1 % 

Transporter 1 § ^ ^ ^ ^ ^ 

Transcription factor 

Signal transduction 

Total # of genes : 152 
Total # of matching probes : 145 

Protein Metabolism 

Hormone responsive 

Metabolism 

B. Cluster 2 (U MeJA and 12-OHJA) 

Unkni • • 

L 

. 

£ 

s*f. "̂ 1 

' M W 

1 

KyjK ^ 

£>-'""' 

3totic and Abiotic 
stimuli 

^ k Develop ment 

m 
^ i | f c ^ Hormone responsive 

Transporter 

• n 
Transcription factor 

Signal transduction I Protein Metabolism 

Total # of genes : 134 
Total # of matching probes : 120 

Metabolism 

Figure 12: Classification of A) 145 up-regulated and B) 120 down-regulated 
genes in response to both MeJA and 12-OHJA treatments into functional 
groups based on their known, predicted and/or putative biological function. 
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3.2 Positioning of the AtST2a and AtST2b genes in the floral 

pathway 

In addition to being induced by the two aforementioned compounds, MeJA 

and 12-OHJA, AtST2a is known to be regulated by photoperiod, by also being 

induced following 8 h of dark treatment (Levitin, 2004). Nothing was known prior 

to this study regarding regulation of AtST2b. In order to determine more 

precisely where these two genes are situated in the flower regulation pathway 

(see Figure 2), the gene expression profile of AtST2a and AtSt2b was 

determined under wildtype and 48h dark treatment conditions in various flowering 

time mutant plants. The mutants were selected either for their mutation in the 

internal clock response to light (CO-2, Tod), or in the temperature signal 

integration on growth {Fca1, Fca1- different alleles of the same mutation). The 

wild-type background for each mutant was included as control, and the results 

are seen in Figure 13. 

Lev CO-2 Fcal Fca2 C24 Tocl gDNA 

C D48 C D4S C D48 C D4S C D48 C D48 

Figure 13: Patterns of AtST2a and AtST2b gene expression in different 
flowering time mutants and their wildtype background. Plants exposed to 
wildtype (control- C) conditions or dark-treated for 48 h (D48) were studied for the 
expression patterns of AtST2a and AtST2b mRNA. 
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The results show that AtST2a is no longer induced in the dark in the 

light perception mutants CO-2 and Tod, but is still responsive to the 

treatment in the autonomous pathway mutants, Fca1 and Fca2. 
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3.3 Molecular and Phenotypic Characterization of AtST2a and 

AtST2b Knockout Lines 

3.3.1 Introduction 

Histochemical analysis of plants transformed with the GUS reporter fused 

to the AtST2a promoter revealed the regions of expression of the AtST2a gene 

(Levitin, A, 2004). The plants showed the highest GUS levels in mature seeds, 

but not immature seeds, emerging leaves, tips of growing leaves, base of 

trichomes, root apical meristem and emerging lateral roots, plant apical meristem 

and floral primordia (Levitin, A, 2004), all sites of cell division and/ or 

differentiation. This points towards a possible role for its substrate, 12-OHJA, in 

these processes and the compound's regulation through sulfonation by AtST2a. 

Additionally, transgenic lines carrying the AtST2a gene in the sense and 

antisense orientation showed differential flowering time compared to wildtype 

plants (Gidda, S, 2003). Under short days, plants overexpressing the enzyme 

flowered later, whereas plants expressing the gene in the antisense orientation 

flowered early. There seems to be therefore a link between 12-OHJA and/or 12-

OHJA-SO4 levels and flower initiation. 

The accumulating evidence toward a role for 12-OHJA in plant 

development made us seek knockout lines to investigate the phenotype of 

increased and decreased 12-OHJA sulfate levels in an AtST2a- KO plant. 

Furthermore, we wanted to compare the AtST2a- KO phenotype with the one of a 

loss of function in a highly similar sulfotransferase, AtST2b, whose substrate is 
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yet to be identified. Previous data allowed us to better direct our phenotypic 

studies towards the sites of expression determined by the G\JS-AtST2a promoter 

analysis, and investigate the phenotype that seemed to characterize the 

transgenic lines, i.e. flowering time. 

3.3.2 Molecular Characterization of AtSt2a- and AtSt2b- KO 

lines 

The T-DNA mutants at the Salk Institute come with an alignment and 

annotation of the insertion site and the best approximation of where the T-DNA 

insert is located (5'UTR, exon, intron, 3'UTR). Gene annotation is then made 

accessible via a web-interface to researchers with ease of access to mutants in 

their gene of interest. Exact positioning of the insertion site is possible through 

sequence alignments of the sequencing product with the A. thaliana genome. 

Investigators are cautioned to confirm the presence of the expected T-DNA 

insertion using PCR, and any additional method available to test the disruption of 

the gene is encouraged. 

Seeds obtained from the GAB-KAT collection for the AtST2a-KO and the 

Salk Institute for the AtST2b-KO were grown in soil until enough material was 

available for gDNA extraction. PCR experiments on samples from 20 plants of 

each mutant were conducted in order to find a homozygous mutant for each 

gene. Several homozygous mutants were identified, and two were selected for 

further studies. 
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AtST2a- KO plant 15 and AtST2b- KO plant 45, as well as their progeny, 

were confirmed homozygous KOs by triplicate PCRs. Figure 14 shows a 

fragment when the gDNA was amplified with the appropriate gene-specific and T-

DNA specific primers, but no band was observed with the gene specific primers 

only. Actin4 primers were used as positive control for amplification, while the 

ColO ecotype was the control for the gene and T-DNA specificity. 

Plant15 Plant 45 
AtST2a-KO Col° AtST2b-KO Col° 

ACT 2A T-DNA ACT 2A T-DNA ACT 2B T-DNA ACT 2B T-DNA 

Figure 14: PCR determination of homozygous AtST2a and AtST2b mutant 
lines. The results show that although the AtST2a primers were functional (ColO-
2A lane), no amplification is seen in the AtST2a- KO plant 15 (hereon referred to 
as AtST2a- KO). The same is true for the AtST2b gene in the AtST2b-KO Line 45 
(hereon AtST2b- KO). When appropriate gene-specific and the T-DNA left border 
primer were used, a band is seen in both mutants confirming the presence of an 
insert in the gene, both by the presence and the size of the PCR product. 

3.3.3 Genetic analysis of AtST2a-KO and AtST2b-KO 

In order to gain more insight into the functions of our two 

sulfotransferases, we looked at the regulation of genes in the JA pathway in the 

two mutants, as compared to their wildtype background, ColO (Figure 15). The 

coil-16 mutant was included as a comparison for what is expected in a JA 

deficient mutant, versus a mutant which accumulates one of the downstream 

members of the JA-family, 12-OHJA. The PorA gene was included in the RT-
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PCR for its known repression in the dark, in light of our own genes' regulation by 

photoperiod, as control for the dark treatment. 

ColO Coil AtST2AKO AtST2B KO 
gDNA 

Ctrl D48h Ctrl D48h Ctrl D48h Ctrl D48h 

Actin 

AtST2A 

AtST2B 

For A 

AOS 

AOC 4 

OFR3 

Figure 15: RT-PCR results of gene expression patterns of photoperiod 
(PorA) and jasmonate pathway (AOS, AOC4 and OPR3) genes in wildtype, 
coH-16, AtST2a-KO and AtST2b-KO. 

3.3.4 Metabolite Characterization of AtST2a and AtSt2b KO 

lines 

Investigating the metabolite content of the KO lines in terms of 12-OHJA-

SO4 has a dual role: first to verify by yet another means that the function of 

AtST2a is indeed to sulfonate the 12-OHJA molecule, and second, to confirm that 

the function is disrupted in our mutant line. AtST2b -KO was also included in the 

analysis to detect any possible differences in terms of the two metabolites 

mentioned above, although the data so far indicates no function for this enzyme 

in 12-OHJA metabolism. 
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In order to do this, wildtype and knockout plants were grown for 16 days, 

treated for 48 h with 100uM MeJA for AtST2a induction in the control, and total 

metabolites were extracted. Following HPLC purification, samples were injected 

on a Quattro triple quadrupole mass spectrometer (Micromass, UK) using neutral 

loss ESI-mass spectrometry in the negative mode, in search of a parent ion with 

a molecular mass at 305 (M-1), losing a neutral fragment of 80 Daltons, 

corresponding to the sulfuryl group. 

3.3.4.1 HPLC Purification 

The first thing to determine was the elution time of I2-OHJA-SO4 in the 

HPLC gradient (see Materials and Methods). A sample of the reaction product 

catalyzed by AtST2a with 12-OHJA in the presence of [35S]- labelled PAPS was 

thus analyzed and the results can be seen in Figure 16. 

1200 

10 20 30 40 50 

Retention time (min) 

60 70 

Figure 16: HPLC elution profile of 12-OHJA-35S04. Fractions 29, 30 and 31 
were shown to contain the radioactive product. 
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3.3.4.2 Mass Spectrometry of Purified Fractions 

Having determined that 12-OHJA-S04 elutes in fractions 29-31 allowed us 

to isolate these fractions from the pool of metabolites present in the three 

extracts (ColO, AtST2a- KO and AtST2b- KO) and subject them to mass 

spectrometry. The results of neutral loss MS spectras in negative mode can be 

seen in Figure 17. 
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As expected, the peak at 305 (M-1), corresponding to the sulfonation 

product of 12-OHJA by the AtST2a enzyme is missing in the AtST2a- KO 

background, but is present both in wildtype and AtST2b- KO. Additionally, a peak 

at 307 has been observed in all three extracts. To investigate if the new peak 

belongs to the jasmonates family, or is something else that just elutes at the 

same time in the HPLC gradient, the MS-MS fragmentation pattern for both 

peaks was determined on a MS spectrometer (Figure 18). 

The fragmentation pattern of the 305 ion was found to correspond exactly 

to the fragments obtained with authentic 12-OHJA sulfate. Interestingly, the 

fragmentation pattern of the 307 ion gave some fragments identical to the ones of 

the 305 ion. The other fragments have an additional 2 Daltons in their mass, 

corresponding to the presence of 2 hydrogen atoms. This new metabolite is thus 

proposed to be the reduced form of 12-OHJAS04 (see Figure 19). 

Metabolite analysis of transgenic lines previously available in the lab 

overexpressing the two genes in the sense or antisense orientation was also 

performed (Figure 20). The results confirmed that the AtST2a overexpressing line 

(S9) was true, but expressing the gene in the antisense orientation (733) was not 

enough to remove any traces of 12-OHJA sulfate. Overexpression of AtST2b in 

the sense (S6-6) or antisense (16-6) modified the relative pools of 305 and 307 

ions present, but more analysis is required to understand the significance of this. 
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Figure 19: Exact mass of 12-OHJA-S04 and broken down fragments 
in negative mode. Left: double bond in the side chain Right: reduced double 
bond in the side chain 

73 



Columbia 0 
305.06 

370 
. A . . 

308.07 
108 

337,08, 
2522 

306.94 
203 

308.09 
460 
A 

AtST2a OX sense m 0 6 

3313 

304,07 
806 

307,08 

306,09 
1370 

306.95 
563 | | 

\ •J' V 
•••'•" """'1 ••' 

307.07. 
625S3 

307-92 
use .308.09 

A j \ j i 8 5 J i . 

C24 

305.06 
15643 

A_ 
AtST2a OXantisense 

306.07 
2924 
f-

308 08 
9849 

T 

308.08 
6518 

T "— 

305.06 
•12728 

A 

307.07 
41152 

306.06 
2139 

Columbia 0 

AtST2b OX sense 

305.06 
345 

307.08 
2360 

306.07 
_J[g5__ 

303 09 
416 

307.08 
11722" 

305.08 
1011 

306.09 
434 

308.08 
1909 

1:77) 
AtST2b OX antisense 

305,07 
2263 

304.09 
23S 

307,08. 
3919 

306,08 
596 

. . r f Ji-ra.ri.ii 

308.09 
733 

304 305 306 307 308 

Figure 20: Mass spectra of AtSt2a and AtST2b overexpressing and 
antisense lines and their respective wildtype control, in negative mode. 
Comparing the metabolite content of the AtSt2 transgenic lines to their 
wildtype background in terms relative abundance of the two related 
compounds allowed us to determine that some lines are real transgenic (eg. 
AtST2a OX sense), while others aren't (eg. AtST2a OX antisense). The 
results for the AtST2b OX lines suggest an implication of AtST2b in the 
sulfonation of the new metabolite, with overlap of function with AtST2a. 

74 

http://Ji-ra.ri.ii


3.4 Phenotypic Analysis of AtST2a and AtSt2b KO lines 

3.4.1 Effect on Germination Time 

Following the isolation of homozygous KO lines for both genes, we looked 

first at their germination time and percentile, based on the fact that AtST2a 

mRNA accumulated in mature seeds, and previous AtST2a antisense line 

showed a drastically reduced germination rate. For both KO lines, average seed 

germination time (Table 12) and percentile (Table 13) were identical to the 

wildtype. 

Table 12: Knockout plants grown in soil, independently of photoperiod, 
germinate at the same time as the wildtype control. 

Ecotype 
( N=32) 

ColO 
AtST2a-KO 
AtST2b-KO 

Germination day and probability (p) value as 
compared to wildtype 

Long Day 
2.866 
3.063 (p=0.0969) 
2.725 (p=0.1238) 

Short Day 
3.125 
3.312 (p=0.1957) 
3.063 (p=0.1214) 

Once the average germination time had be determined, we decided to 

investigate the percent seed germination on that day on regular growth medium 

(MS) or media supplemented with various concentrations of MeJA. The results 

can be seen in Table 13, and Figure 21. Due to the known insensitivity of the 

coil-16 mutant to the presence of MeJA, this ecotype was included in the 

experiment as a negative control for the effect of MeJA on germination. Both 

AtST2a and AtST2b KO lines showed increased sensitivity to increasing 
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concentrations of MeJA (figure 22), suggesting that they might play a role in the 

detoxification of excess jasmonates. 

Table 13: Percent germination assessed on day 3 on MS medium, or MS 
media supplied with 25, 50 or 100uM MeJA (n=12). 

Ecotype 

Columbia 0 
AtST2a-KO 
AtST2b-KO 
coi1-16 

MS 
(control) 

100 
90 
92 

100 

MS+ 25uM 
MeJa 

92 
89 
92 

100 

MS+ 50uM 
MeJa 

100 
73 
67 

100 

MS+ 100uM 
MeJa 

100 
70 
25 

100 

©Columbian 

•AtST2A- KO 

•AtST2B- KO 

Dcoi1-16 

Control 25(jMMeJa 50|jMMeJa 100pMMeJa 

Figure 21: Graphical representation of the germination percentile of the wildtype 
ecotype Columbia 0, as well as the AtST2a- and AtST2b- KOs and the JA-
insensitive coi'1-16 mutant on MS media and MS medium containing various 
concentrations of MeJA. 
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3.4.2 Effect on Root Emergence 

We further observed that seeds that had germinated in the two knockout 

mutants on MS media supplemented with 100uM MeJA lacked roots, so the 

percentile of wildtype and mutants that had an observable root was derived from 

the data. The data and associated graphical representation can be seen in Table 

14 and Figure 22. Again, a significant effect on root growth is observed in the two 

KO lines, with the AtST2b- KO line being the most affected. 

Table14: Percent of plants showing visible roots on day 3. 

Ecotype 

Columbia 0 
AtST2a-KO 
AtST2b-KO 
coil-16 

MS media 
(control) 

100 

90 

92 

100 

MS+ 100uM 
MeJa 

67 

20 

8 

100 

Columbia 0 AtST2A-KO AtST2B-KO coi1-16 

I Control 

MOOuMMeJa 

Figure 22: Percentage of plants with visible roots on day 3 (germination day) in 
wildtype and mutants on MS media as compared to MS +100uM MeJA. 
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3.4.3 Effect of different growth media on root length 

Since jasmonates are known to have a growth inhibitory effect, you may 

recall that one possible role for AtST2a is to participate in the inactivation 

mechanism, where JA is transformed to 12-OHJA, which is in turn modified by 

the addition of the sulfuryl group. The roots of both the AtST2a-KO and AtST2b-

KO lines are more severely affected in the presence of 100uM MeJA than the 

wildtype. coi1-16 is, as expected, less sensitive to MeJA root inhibition (see 

Table 15). All genotypes behave the same in the control or 100 uM 12-OHJA 

experiments. These results indicate that 12-OHJA does not inhibit growth, as is 

the case with JA or MeJA, and that the function of AtST2a and AtST2b might be 

to participate in the inactivation of excess JA. 

Table 15: Root length measurements of ten days old coil-16, AtST2a-KO, 
AtST2b-KO and their wildtype background, ColO on MS media, or media 
supplied with 100 uM MeJA or 100 uM 12-OHJA 

Genotype 

ColO 
Coil 

AtST2A KO 
AtST2B KO 

Control 
length 
(cm) 

7.0(±0.7) 

7.0 (±0.8) 
6.9 (±1.2) 
7.4 (±1.0) 

P 
Value 

-
1 

0.7152 
0.2424 

100uM 
MeJA 
(cm) 

1.1 (±0.3) 

3.9 (±1.2) 
0.8 (±0.2) 
0.6 (±0.4) 

p Value 

-

5.525-
09 

0.0089 
0.0027 

100uM 
12-OHJA 

(cm) 
6.8(±1.1) 

7.1 (±1.0) 
7.3 (±1.0) 
7.3 (±0.6) 

p Value 

-

0.4109 

0.2498 
0.1445 
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3.4.4 Effect of different photoperiod conditions on root 

growth 

Light is known to inhibit root length growth in several plant species 

(Webb, 1983; Saugy et al., 1989) and most A. thaliana studies link this process to 

an increase in ethylene levels. In view of the differential regulation of Atst2a and 

AtST2b in response to light and dark treatments (Levitin, 2004), and the 

knowledge that AtST2a is expressed in the root apical meristem and emerging 

lateral roots (Levitin, 2004), we investigated the effects of photoperiod on root 

length under continuous light or continuous dark, and compared it to wildtype 

grown plants. The coi1-16 mutant, which is insensitive to the exogenous 

application of coronatine or JA, lacks the induction of AtST2a in the dark, 

suggesting an interaction between the photoperiod and JA pathways (Levitin, 

2004). The coi1-16 mutant was included as a plant which naturally lacks the 

ability to induce AtST2a, to compare with the /\fST2a-deficient line. Roots of 

AtST2a- KO, AtST2b- KO and coi1-16 grow significantly longer under continuous 

dark than does the ColO wildtype, but the differences disappear when placed 

back into light (see Table 15). All genotypes are significantly inhibited in their root 

growth under continuous light, but no difference is seen among genotypes. The 

results indicate that the an increase of internal 12-OHJA levels is not involved in 

the light-dependent control of root growth. 

The experiment was conducted for two weeks, the first week, the plants 

were placed in one of the two conditions (continuous light or continuous dark), 

and the root length was measured. The following week, the plants were placed 
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into the opposite condition, i.e. if week 1 was continuous dark, the plants were 

placed under continuous light for the next week, and the opposite for the light 

grown plants. All differences among genotypes seemed to disappear or became 

insignificant in the second week, so the data for the second week was not 

included. 

Exposing the plants to continuous light resulted in root inhibition that was 

consistent throughout the genotypes. In turn, exposing the plants to continuous 

dark also resulted in root inhibition that was stronger in the wildtype than it was in 

any of the JA mutant lines, with AtST2b- KO being again the least sensitive to 

dark. This draws another link between JA and the response to photoperiod. 

Table 16: Root length measurements under different photoperiods of 7 
days old coh-16 AtST2a-KO and AtST2b-KO plants as compared to ColO. 

Experiment 

LD(16h light 8h 
dark) Root 
24h Light 
Root 
24h Dark 
Root 
24h Dark 
Hypocotyl 

Length (cm) and probability 
type (Col 

ColO 

3.91 

2.83 

1.27 

1.921 

AtST2a-KO 

4.00 

2.97 
(p= 0.322) 

1.88 
(p=0.003) 

1.800 
(p=0.137) 

value as compared to wild-
0) (N=24) 

AtST2b-KO 

4.02 

3.03 
(p= 0.190) 

1.98 
(p=0.001) 

1.731 
(p=0.102) 

coi1-16 

4.37 

2.92 
(p= 0.543) 

1.58 
(p=0.026) 

1.958 
(p=0.728) 
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3.4.5 Morphological studies 

The studies on the histochemical distribution of AtST2a promoter fused to 

the GUS gene revealed very high levels of the gene in mature seeds, as well as 

dark-germinated, 2 days old seedlings (Figure 23), and young seedlings placed 

in dark for 48h (Figure24) (Levitin, 2004). In was therefore of great interest to 

analyze the effect that a mutation in AtST2a would have on the plant at these 

various stages of development. 

1 2 3 4 

A 

B 

Figure 23: A) Seeds and B) 2 days old (dark-treated) seedlings of 1) GUS-
AtST2a promoter transgenic plants, 2) ColO, 3) AtST2a -KO and 4) AtST2b-
KO. 

No phenotype was observed other than a possible increased sensitivity to 

dark of AtST2a-KO and decreased sensitivity to dark in AtST2b-KO (Figure 23b). 

A lengthier and more systematic study should be done to confirm this phenotype. 



A 

C 

B 

% 

D 

Figure 24: Twelve days old seedlings in A) GUS-AtST2a promoter 
transgenic plants, B) ColO, C) AtST2a -KO and D) AtST2b- KO, dark-treated 
for 48h 

Jasmonates also influence flower development both by controlling pollen 

maturation and anther dehiscence, two uncoupled processes. This conclusion 

has been reached based on the phenotype of the male sterile OPDA-reductase 3 

(opr3) mutant, which lacks the 12-oxophytodienoic acid reductase required for 

jasmonate synthesis. Its male sterile phenotype was shown to be rescued by the 

exogenous application of MeJA, but not OPDA (Stintzi and Browse, 2000). 

Additionally, it was shown that fertility could be restored by spraying the sterile 

flowers with 12-OHJA (Levitin, A, 2004). 

82 



Based on the knowledge that jasmonates are thus required for flower 

development, we wanted to investigate if an excess of 12-OHJA, as would be the 

case in the AtST2a-KO mutant, would also affect anther development. Careful 

flower dissection under the microscope confirmed that pollen maturation and 

anther dehiscence were not affected in either of the mutants (see Figure 25c), 

indicating that an excess of 12-OHJA has no effect on anther development. The 

role of 12-OHJA would have to be tested in a mutant lacking the enzyme that 

catalyzes the conversion of JA to 12-OHJA, but that enzyme is yet to be 

identified. 

We also looked at organ development to see if differences were observed 

in the AtST2a and AtST2b- KO lines. However, no variance was seen in leaf, 

trichomes, lateral roots and root tips, or flower morphology between either of the 

three genotypes (Figure 25). 
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•all 

B 

ffi: * 

* 

Figure 25: Mature A) apical meristem, B) leaves, C) flowers and D) siliques 
of 1) GUS-AtST2a promoter transgenic plants, 2) ColO, 3) AtST2a -KO and 
4) AtST2b- KO. 
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3.4.6 Effect on Flowering Time 

The next phenotype we wanted to investigate was the flowering time and 

developmental stage at flowering time (based on total leaf number) of the two KO 

lines under different photoperiods. 12-OHJA has been previously shown to have 

tuber-inducing properties in Solanum tuberosum. If we transpose this to our 

model organism, the accumulation of 12-OHJA in the floral meristem suggests 

that it might play a role in the vegetative to floral transition, if we assume that the 

end process affected lies in the generation of offspring. Indeed, previous 

flowering time analyses on sense and antisense lines showed differential 

photoperiod-dependent timing: under LD, sense lines flower later than wildtype, 

while under SD antisense lines flower early compared to the wildtype. We 

therefore decided to study the effect of knocking out the AtST2a or the AtST2b 

gene on A. thaliana flowering time under both long and short day conditions. 

Thirty-two plants each of ColO, AtST2a-KO and AtST2b-KO were grown for each 

of the two experiments and monitored daily for the appearance of the first flower 

bud. When this was seen, the day and total leaf number was noted, and the 

averages used to evaluate flowering time and growth stage. 
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3.4.6.1 Long Day Analysis 

RT-PCR results show that AtST2a is normally not expressed under 

inductive (LD) photoperiod, pointing towards a requirement of 12-OHJA in the 

flowering process. Based on this, we do not expect the mutant lines to act any 

different than the wildtype under these conditions. Indeed, the average (n=30) 

flowering time varies only minutely, from 19.7 days in wildtype, to 20.1 and 20.8 

days in the AtST2a-KO and AtST2b-KO lines respectively, and the plants seem 

to be in the same developmental stage at the onset of flowering, based on the 

total number of leaves (see Table 17). 

Table 17: Number of days to the first flower and total leaf number for ColO, 
AtST2a- KO and AtST2b- KO under long day conditions 

Genotype 
(N=30) 

ColO 
AtST2A KO 
AtST2B KO 

# Days to first 
flower 

19.7 (±2.4) 
21.1 (±2.9) 
21.8 (±2.8) 

p Value 

-

0.4130 
0.1908 

# leaves upon 
first flower 
11.6 (±1.1) 
10.9 (±1.2) 
10.4 (±1.6) 

p Value 

0.2400 
0.1803 

3.4.6.2 Short Day Analysis 

Although not normally expressed under LD conditions, AtST2a is induced 

upon exposure to dark for longer than 8 consecutive hours (Levitin, A. 2004). In 

contrast, AtST2b is known to be slightly repressed by dark (Genevestigator: 

ctrl/dark ratio=0.77) Previous flowering time studies using antisense AtST2a lines 

showed the mutant to flower significantly earlier only under SD conditions. 

Contrary to what we would have expected, in the current experiment, only the 

AtST2b- KO shows an altered phenotype in both flowering early at 50 days 
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compared to 56 days for the wildtype and having more leaves upon flowering 

(see Table 18). The contradictory results seen in the antisense line and the 

knockout lines are most likely a consequence of the antisense line still having the 

sulfated form of 12-OHJA. 

Table 18: Number of days to the first flower and total leaf number for ColO, 
AtST2A KO and AtST2B KO under short day conditions 

Genotype 
(N=30) 

ColO 
AtST2A KO 
AtST2B KO 

# Days to first 
flower 

56.3(±2.5) 
55.1 (±4.0) 
50.2(±3.7) 

p Value 

-

0.3540 
1.234E-11 

# leaves upon 
first flower 
41.6 (±2.7) 
41.9 (±4.0) 
43.3 (±3.7) 

p Value 

0.6938 
3.647E-02 

Together, the number of leaves upon flowering and flowering time analysis 

indicate that at the same age, AtST2b-KO is in a later stage of development than 

its wildtype counterpart or the AtST2a-KO in SD conditions. 

3.4.7 Seed production 

Finally, based on the high levels of GUS stain seen in mature seeds of 

plants whose AtST2a promoter was linked to the GUS reporter gene, fertility was 

further tested in terms of seed production (see Table18). No significant difference 

in seed number was observed between the genotypes. The experiment was 

conducted only under LD growth conditions, so further investigation is needed to 

confirm that no phenotype is visible under SD as well. 
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Table 19: Seed production in terms of number of seeds per silique of 
mature (45 days old) plants. 

Ecotype 
ColO 
AtST2a KO 
AtST2b KO 

# seeds/ silique 
32.3 

32.7 (p= 0.724) 
35.1 (p= 0.227) 
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4.0 Discussion 

Sulfotransferases are enzymes with highly conserved structures present in 

all organisms studied to date, from prokaryotes to eukaryotes. This high level of 

conservation throughout organisms and across kingdoms indicates a crucial role 

for the reaction they catalyze. These reactions have been shown to range in 

function from the inactivation of bioactive metabolites (such as hormones, small 

drugs and xenobiotics), to, the activation of compounds such as prodrugs, 

procarcinogens or some neuropeptide hormones (Falany, 1997a, b, Duanmu et 

al, 2001). With few exceptions, sulfotransferases tend to be highly specific in their 

substrate preference. 

Compared with the large body of information available on animal 

sulfotransferases, little is known regarding their function in plants. The availability 

of the genome sequence of A. thaliana makes it the model of choice to initiate a 

functional analysis of the sulfotransferases present in a flowering plant. The 18 

sulfotransferases present in the A. thaliana genome have been grouped into 10 

families based on their amino acid sequence alignment. Of these, AtSt2a has 

been shown to sulfonate specifically 11- and 12-hydroxyjasmonic acid with a 

higher affinity for the latter (Levitin, A., 2004). Its homolog, AtSt2b, the only other 

member of the AtST2 family, did not show any enzymatic activity in the presence 

of these jasmonates. Despite considerable efforts, previous studies did not define 

the substrate preference of this enzyme. 

AtST2a expression was shown to be regulated by the light perception 

pathway. Significant mRNA and protein levels were only detected when the 
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plants were exposed to a period of dark lasting at least 8h (Levitin, 2004). 

AtST2a expression is also induced by the exogenous application of 12-OHJA and 

MeJA (Levitin, 2004). Localization studies using an /4rST2apromoter::Gl/S 

fusion have shown expression in seedlings, young developing leaves, shoot and 

root apical meristem, flower organs and at the base of siliques (Levitin, A., 2004). 

Transgenic plants carrying an additional copy of AtST2a in the sense or 

antisense orientation were shown to be affected in their flowering time. Plants 

overexpressing AtST2a in the sense orientation under the CaMV 35S constitutive 

promoter flower later than wildtype in flower-inducing conditions (i.e. long days), 

while plants carrying AtST2a in the antisense orientation flowered earlier than 

wildtype in flowering repressive conditions (i.e. short days) (Levitin, A., 2004). 

The results of these functional studies point toward an important role for 12-

OHJA in the control of flowering time and suggest that its biological activity is 

modulated by the sulfonation reaction catalyzed by AtST2a. However, other 

experimental evidences suggest that 12-OHJA might simply be an intermediate 

in the catabolism of excess jasmonic acid and that the sulfonation reaction is just 

another step in the inactivation mechanism. 

In agreement with this latter hypothesis, studies of the uptake and 

metabolism of JA and MeJA in tobacco BY2 cells have shown that 11- and 12-

OHJA were the preferential metabolites excreted in the medium, followed by 

glycosyl esters of hydroxyjasmonates (Swiatek et a/, 2004). The levels of the 

hydroxylated and glycosylated metabolites in the cell extracts were below 

detection limit. These results suggest the presence in plant cells of an active 
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mechanism that deals with excess JA by its excretion following hydroxylation and 

glycosylation. Unfortunately, in this experiment the researchers did not quantify 

specifically the levels of 11- or 12-OHJA-S04 in the cell extracts and in the 

growth medium making it impossible to confirm that the sulfonation reaction 

catalyzed by AtST2a is part of this excretion pathway. 

In light of the seemingly contradictory evidences available so far, we 

decided to investigate in more detail the function of 12-OHJA and determine if it 

has an intrinsic biological activity, or if it is only an intermediate in the catabolism 

of JA. To conduct these studies we used two approaches. First, we performed 

microarray experiments on plants treated with MeJA or 12-OHJA to determine if 

12-OHJA regulates its own subset of genes. Second, we took advantage of 

available T-DNA insertion mutant lines in the AtST2a gene to investigate the 

effect on growth and development of a reduction in the endogenous level of 12-

OHJA sulfate. We also included in the latter analyzes a T-DNA insertion line in 

the AtST2b gene to try to define its biochemical and biological function. 

4.1 12-OHJA has a biological role, independent of MeJA 

To find out if 12-OHJA has a biological activity independent from MeJA, 

mRNA extracted from untreated plants or plants treated with either compound 

were subjected to microarray analysis. The experiment was carried out on the 

Affymetrix GeneChip ATH22K array, which contains probes for nearly all protein-

coding genes of Arabidopsis. Four hours following treatment, 1763 transcripts 
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met our criteria for differential expression (displaying ratios £1.5-fold induction 

and < 0.5-fold repression). 

Figure 8 shows that 45 genes are induced and 7 genes are repressed 

exclusively in response to 12-OHJA treatment (clusters 1 and 6). The small 

number of genes present in these clusters as compared to the ones regulated by 

MeJA alone, or by MeJA and 12-OHJA (which range in the hundreds of genes) 

may be due to a more restricted function of 12-OHJA as compared with MeJA, or 

to higher concentrations or time of treatment required for a more robust effect of 

12-OHJA on gene expression. It is important to note that the addition of an 

hydroxyl group on JA reduces its diffusion through membranes. Because of this 

difference in the solubility and permeability of the two molecules, a direct 

comparison of the effect on gene expression at the same concentration cannot 

be made. The identification of genes responding exclusively to MeJA or to 12-

OHJA indicates the presence of separate pathways responding to these 

molecules and suggests that the two molecules have different functions in A. 

thaliana. To better understand the function of 12-OHJA, it would be interesting to 

study the impact on growth, development and adaptation to stress of a loss of 

function mutation in the enzyme that hydroxylates JA to 12-OHJA. Efforts are 

underway for identifying such gene, directed by the data from the microarray 

experiment (Kappert, T.L., personal communication). 

To validate our data, we compared our results with the ones reported in 

the literature for genes that are known to be regulated by MeJa (Zimmermann et 

al, 2004). The results presented in tables 9 and 10 confirm the validity of our 
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results, as the selected genes show patterns similar to what is reported in the 

literature. For example, genes in the response to wounding such as vegetative 

storage protein (VSP), the defense response genes thionin 2.1 (TN2.1) and the 

plant defensin gene 1.2 (Pdf1.2), other known regulated genes such as 

chlorophyllase (CLH), myrosinase-binding protein (MBP) or genes of the JA 

biosynthetic pathway (LOX, OPR, AOS, AOC) are all induced in our experiments, 

(table 9), while genes involved in photosynthesis and carbohydrate assimilation, 

as well as transcription factors are generally repressed (table 10). 

We further compared the results of the microarray experiments to those 

obtained by RT-PCR and found that the profiles were consistent. The level of 

expression of our two SULTs of interest, the marker gene Thi2.1, as well as 6 

other randomly selected genes from different clusters was tested by RT-PCR. 

The results were then compared to the intensity values from the microarray data, 

which are presented in table 10. When comparing those values to the intensity of 

the fragments amplified by PCR presented in figure 9, we see that similar results 

are obtained with both experiments. 

As reported earlier in the literature, MeJA induces genes in signal 

transduction pathways and hormone responsive categories, and slightly those 

involved in biotic and abiotic responses (figure 10 A). In turn, it represses 

transporters and genes involved in energy production, and slightly represses 

developmental genes as well as genes in the protein and plant metabolism 

categories (figure 10 B), while an equal number of transcription factors are 

induced or repressed by MeJA. 12-OHJA also induces genes involved in signal 
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transduction, as well as genes in the biotic and abiotic response pathway (figure 

11 A), while the most drastic repression is seen in transporters, followed by 

genes encoding proteins involved in hormone response and development (figure 

11 B). A relatively limited number of genes are present in the clusters 

representing genes responding only to 12-OHJA making it difficult to extract 

meaningful information as to the processes that are mostly affected by the 

exogenous application of 12-OHJA. Taken together, the results suggest the 

presence of individual pathways responding to MeJA and 12-OHJA and of a 

pathway responding to both molecules. The significance of the overlapping 

(figure 12) and unique (figures 10 and 11) functions of each compound remains 

to be characterized. To be able to address specifically this question, the 

characterization of a loss of function mutant unable to convert JA into 12-OHJA is 

required. 

4.2 Expression of JA- biosynthesis genes in AtST2a- and 

AtSt2b-KO plants 

It has been shown previously that the modulation of the endogenous 

levels of JA has an effect on the expression of genes involved in its biosynthesis 

(Creelman and Mullet, 1997). Furthermore, it has been shown that the 

expression of these genes is repressed in the dark (Zimmermann et at, 2004). In 

contrast, AtST2a was shown to be induced in the dark (Levitin, A., 2004). 

According to its biochemical function, we can predict that the AtST2a-KO plant 

might have increased accumulation of 12-OHJA and we have shown a drastic 
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decrease in the accumulation of its sulfonated derivative (Gidda et al, 2003). We 

wanted to test if the accumulation of abnormal levels of the two metabolites in 

vivo has an impact on the expression of genes involved in JA biosynthesis. The 

protochlorophyllide oxidoreductase A (PORA) gene was used in this study to 

ensure that the mutants were not affected in their response to dark. 

The results of figure 15 show that the light-dependent expression of PORA 

is not affected in the AtST2a- and AtST2b-KO plants, being repressed by dark in 

both mutants. The jasmonic acid biosynthesis pathway genes AOS, AOC4 and 

OPR3, are expressed in the light and repressed in the dark in wildtype plants 

(Zimmermann et al, 2004). The same pattern is observed in the AtST2a- and 

AtST2b-KO, as well as the coi1-16 mutant. Assuming that the intensities of the 

bands reflect accurate mRNA levels, it seems that the AtST2b-KO compensates 

by producing more AtST2a under control conditions than a wildtype plant, and 

the same is true for the AtST2b gene in the AtST2a-KO background. 

Furthermore, genes in the JA-pathway seem to be upregulated in both AtST2a-

and AtST2b-KOs as compared to wildtype plants. Quantification of the levels of 

JA and 12-OHJA in mutant and wildtype plants will be required to understand the 

basis of this deregulation of JA biosynthetic genes in the mutants. 

4.3 The function of AtST2a is to sulfonate 12-OHJA and is 

disrupted in the AtST2a-KO mutant 

12-OHJAS04 was shown to elute on HPLC between fractions 29 and 31 

(figure 16). These fractions were thus collected from metabolite extracts from 
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wildtype, AtST2a- and AtST2b-K0 plants, and verified for the presence of 12-

OHJASO4 by mass spectrometry. The profiles seen in figure 17 show the 

presence of an ion with a mass of 305 [M-1], corresponding to the predicted 

mass of I2-OHJASO4 in the negative mode (Gidda et al, 2003. The identity of 

this molecule was further confirmed by MS/MS by comparison with authentic 12-

OHJA (figure 18). This ion is also present in the extract form an AtST2b-KO 

plant indicating that AtST2b is not involved in the sulfonation of 12-OHJA in-vivo. 

As expected, the ion is absent from the AtST2a-KO extract. The data therefore 

confirms the results of in-vitro studies and indicate that AtST2a is catalyzing the 

sulfonation of 12-OHJA in-vivo. Furthermore, the results indicate that the other 

member of the AtST2 family, AtST2b, does not have the same biochemical 

function. 

The figure also shows the presence of another more abundant ion with a 

mass of 307 [M-1]. Further investigation of the fragmentation pattern of this 

metabolite shows that some fragments are identical to those of I2-OHJASO4, 

while others contain an additional mass of two daltons, corresponding to the loss 

of the double bond in the side chain of 12-OHJAS04 (Figure 19 right). It is the 

first time that this jasmonate is reported to occur in plants. The presence of this 

highly related compound in our profiles gives rise to an interesting question: 

Which sulfotransferase of Arabidopsis is involved in its synthesis? When we 

consider the high level of structural similarity between the two metabolites and 

the two enzymes, we can hypothesize that both AtST2a and AtST2b are involved 

in the sulfonation of this new metabolite while AtST2a would be the only enzyme 
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able to sulfonate 12-OHJA. A careful examination of the mass spectra reveals 

that the ratio between the relative abundance of the 305 and 307 ions increases 

when we compare AtST2b-KO and wildtype plants suggesting that the synthesis 

of the 307 ion is decreased in the mutant. In the future, we will purify this 

compound and assay its desulfated derivative with recombinant AtST2a and 

AtST2b enzymes to confirm this hypothesis. 

4.4 Decreased internal levels of 12-OHJAS04 do not give rise 

to a visible phenotype in the AtST2a-KO line 

Phenotypic analysis of AtST2a and AtST2b loss of function mutants was 

performed at different growth stages. This analysis was performed to try to define 

their biological function. Unfortunately, the tight linkage between the two genes 

did not allow the production of the double mutant by genetic crosses. 

Germination 

Histochemical studies using the GUS gene linked to the AtST2a promoter 

showed high expression in mature seeds (Levitin, A. 2004). To find out if seed 

maturation was affected in the two mutants, we investigated the germination time 

and viability of AtST2a- and AtST2b-KO seeds. The results show that the two 

mutants were not affected in their germination time (Table 12) or in the 

germination percentile (Table 13). We also quantified the number of siliques and 

seeds per silique for the two mutants and compared it to wildtype plants. The 

results show no significant difference between the different lines (Table 19). 
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Despite high level of expression in mature siliques, the function of AtST2a and 

AtST2b does not seem to be linked to seed yield. 

In view of a possible role of 12-OHJA and its sulfated derivative in the 

inactivation of excess JA, we analyzed germination time and percentile of the two 

mutants when grown in presence of MeJA. If indeed AtST2a or AtST2b are 

involved in a detoxification process, we would expect the mutants to be more 

sensitive to the exogenous presence of MeJA. The MeJa insensitive coi1-16 

mutant was included as a control since it should not be affected by the presence 

of MeJA in the growth media (Feys et al, 1994). As expected, the percent 

germination of the coi1-16 mutant is always 100% regardless of the medium 

tested (see table 13). Interestingly, the AtST2b-KO mutant, which was not 

expected to show a phenotype in the presence of MeJA, since the gene is not 

induced by the hormone, is more affected than AtST2a-KO and wildtype plants. 

Furthermore, whereas both wild type and coi1-16 mutant plants have clearly 

visible roots after germination, none or fewer roots are visible in both AtST2a-

and AtST2b-KO seedlings. These results suggest that AtST2a and AtST2b might 

participate in a pathway that eliminates excess JA. The fact that the AtST2b-KO 

line exhibits the strongest phenotype suggests that its role is crucial in this 

process. Unfortunately, since we do not know exactly the biochemical function of 

this enzyme, it is difficult to explain the reason for the increased sensitivity of this 

mutant to exogenous JA. However, the results suggest that AtST2b might be 

involved in the sulfonation of a jasmonate derivative. 
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Root growth 

Based on previous results showing high level of expression of AtSt2a in 

root apical meristem and emerging lateral roots, we studied root growth in this 

mutant. We also studied the effect on root growth of a loss of function mutation in 

AtST2b. The analyses were done under different light regimes which are known 

to affect the expression of AtST2a. 

Continuous light consistently reduces the root length in all genotypes, but 

no significant difference is seen when we compare the two mutants and wildtype 

plants. On the other hand, under continuous dark the roots of AtST2a-KO, 

AtST2b-KO and coi1-16 mutant plants grow, to different extent, longer than the 

wild type ones. The results suggest that the sulfonation of jasmonates is 

involved in root growth inhibition in the dark. It is important to note that in wildtype 

plants only AtST2a expression is induced in the dark suggesting that the 

sulfonation of 12-OHJA plays a role in the control of root growth and that this 

control is modulated by photoperiod. However, the results presented in table 15 

demonstrate that the exogenous application of 12-OHJA has no effect on root 

growth suggesting that the effect that we observe cannot be explained by the 

increased accumulation of 12-OHJA in the AtST2a-KO plants. It is possible that 

the inhibitory effect is due to the accumulation of 12-OHJAS04 in the dark or by 

another uncharacterized sulfonated jasmonate. To test this hypothesis, we will 

have to quantify the different jasmonates and their sulfonated derivatives under 

different light regimes and try to relate their relative abundance with the growth 

behaviour of the plants. 
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Flowering time 

In order to position AtST2a and AtST2b in the pathways controlling 

flowering initiation, their expression pattern in wild type and dark treated plants 

was determined in the light perception mutants tod and co, and in the 

autonomous pathway mutants fcal and fca2. 

The expression of AtST2a is no longer induced in the dark in a co mutant, 

indicating that it is downstream of CO in the photoperiod promotion pathway 

(Figure 14). The fact that AtST2a expression is still induced in the dark in a fca 

mutant suggests that it is positioned upstream of the point where the temperature 

pathway (fca) meets the photoperiod pathway (co) (Figure 2). As expected, the 

expression of AtST2a is no longer induced in the dark in the tod mutant, as this 

gene is situated upstream of co in the photoperiod pathway. In contrast, the 

expression of AtST2b is unaffected in a co mutant background, but seems to be 

induced by dark treatment in a toe mutant. This result is unexpected, since TOC 

1 is known to be upstream of CO in the photoperiod pathway (Blazquez et al, 

2000). It also seems that the expression of AtST2b is reversed in an fca-1 

mutant, and disappears entirely in a fca-2 mutant. These results suggest that the 

expression of AtST2b is regulated by the autonomous pathway downstream of 

FCA. Although some results are inconsistent with what is expected based on the 

known position of genes in the flower development pathway, they have been 

confirmed by RT-PCR multiple times and were always consistent. To clarify this 

situation, further studies using other mutants in the light perception pathway such 

as tfl2, and in the autonomous pathway such as flc and Ify might prove more 
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useful to position the AtST2b gene in the photoperiod and in the autonomous 

pathway. 

The flowering time experiments were carried out under both LD and SD 

photoperiods. The total leaf number at the time of flowering was also recorded to 

compare the developmental stage of the plants when the inflorescence emerges 

from the rosettes. Based on the fact that the AtST2a mRNA level seems to 

increase only after 8h of dark exposure, the effect on flowering of the 

accumulation of higher 12-OHJA level in the AtST2a-KO mutant is expected to 

be more apparent, if any, in SD grown plants. 

In fact, what tables 17 and 18 show is exactly this, but not for the line we 

expected. Flowering time and development stage at the time of flowering is 

unaffected in any of the KO lines as compared to the wild type under a long day 

photoperiod (table 17). Under short days though, it is the AtST2b-KO, not the 

AtST2a-KO that shows an altered flowering time (table 18). Furthermore, it also 

has approximately 2 more leaves than wild type at the time of flowering indicating 

that growth is accelerated in this mutant. It is surprising to see that the loss of 

AtST2a has almost no impact on flowering time since this gene is regulated by 

the photoperiod promotion pathway. In view of the relatively mild effect on 

flowering time of the mutation in AtST2a and AtST2b, it is difficult to assign a 

function for these genes in this flower initiation. The subtle phenotype of the 

individual mutants could be due to the fact that the two genes might have a 

partially redundant function. The construction of the AtST2a and AtST2b double 
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mutant will be required to find out if these genes are really playing an important 

function in the control of flowering time. 

Other morphological Analysis 

The results of previous studies conducted with the GUS protein expressed 

under the control of the AtST2a promoter were used to focus on specific tissues 

or organs during our morphological observations under the microscope. 

Unfortunately, and despite numerous attempts, we did not observe any 

modification of the plant morphology at any of the investigated sites. 

5.0 Concluding Remarks and Future Work 

Our results indicate that plants respond specifically to 12-OHJA by 

inducing or repressing the expression of a small number of genes. Unfortunately, 

the function of these genes has not been characterized making it difficult to 

predict the function of this metabolite in the growth or development of the plants. 

Furthermore, some of the results suggest that the only function of AtST2a and 

AtST2b is to cope with an excess of JA. More studies will be required to better 

understand the function of these genes. 

In the future, we will concentrate our efforts on: 

- The characterization of the biochemical function of AtST2b 

- The construction of the AtST2a and AtST2b double mutant line using RNA 

interference (RNAi). 
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The availability of the double mutant will allow us to find out if the two enzymes 

have redundant function in vivo by comparing their sulfonated metabolomes. In 

addition, phenotypic analyses of the double mutant should clarify the function of 

these genes in root growth and in the control of flowering time. 
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