
On General Multi-Quadratic Function Field Extensions in the GHS Attack 

Ahmad Lavasani 

A Thesis 

in the Department of 

Mathematics and Statistics 

Presented in Partial Fulfillment of 

the Requirements for the Degree of 

Master of Science (Mathematics) 

at 

Concordia University 

Montreal, Quebec, Canada 

July 2008 

© Ahmad Lavasani, 2008. 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-45468-8 
Our file Notre reference 
ISBN: 978-0-494-45468-8 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



i i i 

A b s t r a c t 

On General Multi-Quadratic Function Field Extensions in the GHS Attack 

Ahmad Lavasani 

To date, elliptic curves offer the most efficient cryptographic solution. Particularly 

efficient among elliptic curves, are those defined over binary composite finite fields, such 

as GF((2r)n). These curves were no longer considered secure when, in 1998, Gerhard 

Frey innovated a concept which paved the road for the GHS attack. The idea behind 

the GHS attack is to map the Discrete Logarithm Problem (DLP) over such a curve 

to an equivalent DLP over the jacobian of another curve, defined over the smaller field 

GF(2r). 

In this thesis, we study the theoretical structure of the GHS attack for elliptic 

curves defined over fields of arbitrary characteristics. We study the GHS attack using 

general quadratic extensions for elliptic curves defined over composite fields of even 

characteristic and we estimate the genus of resulting function field. We also implement 

the GHS attack and present some computational results. 

Keywords : GHS Attack, Elliptic Curve Cryptography, Function Fields. 



iv 

Resume 

Sur les extensions multi-quadratiques des corps de fonctions dans l 'attaque GHS 

Ahmad Lavasani 

Jusqu'a present, les courbes elliptiques offrent la solution cryptographique la plus 

efficace. En particulier, les courbes elliptiques qui sont definies sur des corps binaires 

comme GF((2r)n) sont encore plus efficace. Ces courbes ne sont plus considerees secu-

ritaires apres l'innovation de l'idee de l'attaque GHS par Gerhard Frey en 1998. L'idee 

principale de l'attaque GHS est de transferer le probleme du logarithme discret (PLD) 

sur une courbe elliptique de cette famille a un PLD equivalent sur la jacobienne d'une 

autre courbe qui est definie sur le corps le plus petit GF(2r). 

Dans ce memoire, nous etudions la structure theorique de l'attaque GHS pour les 

courbes elliptiques definies sur les corps de n'importe quelle caracteristique. Nous etu

dions l'attaque GHS en utilisant des extensions quadratiques generates pour les courbes 

sur les corps de caracteristique paire et nous estimons le genre de la courbe. Nous 

presentons aussi le resultat de nos implementations de l'algorithme de GHS. 

M o t s Cles: Attaque GHS, Cryptographie sur les Courbes Elliptiques , Corps de Fonctions. 
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Preface 

In 2005 I was a research assistant of Prof. Taraneh Eghlidos in Cipher Lab of Sharif 

ERC. I was assigned the task of comparing the efficiency of the arithmetic of different 

elliptic curves for processors with limited resources. The result of my implementation 

was unanimously in favor of elliptic curves over finite field extensions with composite 

degree. I wrote a report and I recommended them for their efficiency [ELS06]. A 

week later, after submitting my report, I leafed through a guide for choosing elliptic 

curves for cryptography. It was suggested in the guide, that those finite fields are not 

recommended for cryptographic purposes, as they are subject to Weil Descent attack. It 

is not a good feeling to submit something and then find evidence against it. I felt a mix 

of sadness and curiosity. I was determined to know what this attack was, that ruined 

the pleasure of using those nice curves. I immediately submitted a research proposal to 

Dr. Eghlidos to study the Weil Descent attack. I should thank her for accepting it and 

for her support in that research [EGL07]. In the short period of time that I had, I got 

acquainted with the attack, but I had still a long way to study it. 

When I began my Master's in Concordia, I didn't feel like leaving my research 

half unfinished. I talked to my supervisor, Prof. Chantal David, about my personal 

attachment to GHS attack. She was very kind to accept my proposal, even though she 

had another proposal for me and the GHS attack was not her main interest. I would like 

to thank her, not only for accepting my proposal, but also for her continuous support; 

for reading papers with me line-by-line and for going through the proofs together, for 

her help in solving my financial problems, and for reading and correcting my messy 
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thesis drafts line by line. Above all, I should thank her for thinking with me about the 

problems I faced, which I think is very important point. 

I also should thank Ann-Marie Agnew, our kind graduate assistant of the Math 

Department of Concordia University, for her continuous support during my two years 

of Master's study. 

I am thankful to the other members of the thesis committee: Prof. David Ford, 

Prof. Hershy Kisilevsky and Prof. Francisco Thaine, who agreed to evaluate my work 

under time pressure. 

On the path to preparing this work I am indebted to several people who, either 

listened to my problems and/or suggested solutions, including: Ferenc Balogh, Marco 

Bertola, Noam Elkies, Florian Hess, Jorge Jimenez Urroz and Nicolas Theriault. 

I should especially thank my linguist friend Natalie Kershaw who, by helping me 

with the grammar of this thesis, also proved her theory in the disability of the human 

brain in learning new language after losing its neuro-plasticity. I should also thank 

Valerie Hudon for helping me with the french abstract. 

I would like also to thank my uncle, Abbas Beheshti and my aunt for helping me 

financially in the application and visa processes. 
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constantly kept me company while I was writing my thesis, even though occasionally I 
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CHAPTER 1 

Introduction 

1.1 History 

1.1.1 Algebraic geometry 

In the ancient past, it was too difficult for the Greeks to look at algebra and geometry 

as two different fields of mathematics since they were thinking about algebra "geomet

rically". Rather than "calculating" with numbers they were "measuring" magnitude and 

searching for relations. Multiplying two values meant computing the area that two 

"lengths" make. Therefore the Greeks considered area as a magnitude of a different 

type. This made the notion of polynomials not very meaningful for them [DD85]. 

However, this geometric view of algebra helped them to excel in algebraic geometry 

in that very early age. The intensive usage of the geometric methods can be found in 

"Konika" of Apollonius of Perga (262-190 BCE) in his thorough study of conic sections. 

Half a millennium later, Diophantus of Alexandria (about 200- about 284) wrote his 

series of Arithmetica. He was aware of the group operation on the points of elliptic 

curves and used this operation to find new rational points on these curves. This was 

probably the first time in history that elliptic curves appeared in the literature [vdW83]. 

Omar Kayyam (1048-1122) was the first one who made a clear distinction between 

"Numerical Algebra" and "Geometrical Algebra" and tried to prove some of Euclid's 

theorems using purely numerical quantities. Nevertheless, his algebra was mainly geo-
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metric; for example, he solved cubic equations by intersecting conies [DD85]. Following 

Kayyam, algebra and geometry started to grow in different directions. Mathematicians 

started avoiding geometric methods when studying algebraic problems. In this way, the 

reunification of algebra and geometry was postponed until the 19th century. 

In the late 18th and early 19th century, prominent mathematicians such as Leonhard 

Euler (1707-1783), Joseph Lagrange (1736-1813) and especially Adrien-Marie Legendre 

(1752-1833) tried unsuccessfully to find solutions for indefinite elliptic integrals. Their 

failed efforts did, however, lead to the theory of "elliptic functions", which are double 

periodic functions on complex plane. These functions were the first instance of "abelian 

varieties" later named as such by Solomon Lefschetz( 1884-1972). Niels Abel (1802-1829) 

and Carl Jacobi (1804-1851) independently generalized this theory for higher periods. 

These works led to the invention of another class of abelian varieties called "jacobian of 

hyperelliptic curves" which are one of main objects studied in our work. 

During the 19th century, algebraic methods in geometry made considerable progress, 

mainly due to the work of Bernhard Riemann (1826-1866) and his successors [DD85]. 

Algebraic geometry was reborn as mathematicians started to use geometric methods to 

study "abelian functions" again. It was Weil in the 1940s who gave abelian varieties 

their modern foundations in the language of algebraic geometry. 

Abelian varieties are geometric objects, such as curves and surfaces, which are alge

braic groups at the same time. At the end of the 20th century, abelian varieties became 

the intersection point between an ancient branch and a recent branch of mathematics: 

algebraic geometry and cryptography. 

1.1.2 Cryptography 

Less than 3 decades after the birth of cryptography as a science through Claude Shan

non's seminal paper [Sha48] on information theory, cryptography reached an inflection 
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point. Martin Hellman discovered that a public-key cryptosystem would be possible if 

there exists a problem which is hard in one way and easy in other way. A Public-key 

cryptosystem is a system which allows everybody to send an encrypted message to Alice 

that no one else can decrypt but Alice. It is sometimes called asymmetric cryptography. 

Ralph Merkle, suggested to Hellman that the "Discrete Logarithm Problem (DLP)" in 

Z/pZ is a good choice [DH76]. 

Since then, the DLP has become a popular problem in designing public key cryp-

tosystems. The popularity of the DLP in cryptography motivates both cryptographers 

and cryptanalysts. While cryptographers have been searching for groups in which solv

ing the the DLP is hard, cryptanalyzers, on the other hand, have been trying to find 

faster algorithms to solve the DLP on those groups. It was there that algebraic geometry 

and cryptography were tied together. 

As abelian varieties provide a rich supply of algebraic groups, they attracted the 

attention of the cryptographers in their search for harder instances of the DLP. Neal 

Koblitz [Kob87] and Victor Miller [Mil86] (independently) suggested using the group 

of points of an elliptic curve over a finite field. The contribution of algebraic ge

ometry to cryptography, however, is wide-reaching and did not stop at that point. 

Koblitz later also proposed the use of the jacobian of a hyperelliptic curve for the 

same purpose [Kob89]. Other examples are torus-based cryptography proposed by Al

ice Silverberg and Karl Rubin [RS03] or the usage of a generalized jacobian by Isabelle 

Dechene [Dec05]. 

On the other side of the race, cryptanalysts were trying to develop algorithms to 

solve the DLP over different groups. Victor Shoup proved [CFA06] that a generic DLP 

solver (according to the definition of generic DLP solver in Theorem 19.2 [CFA06]) 

can not be less complex than 0(V'Group Size). To solve the DLP faster, cryptanalysts 

started to look for algorithms which exploit the structure of the underlying group. At 
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the end of the 70's, the index calculus algorithm was introduced for solving the DLP 

over the multiplicative group of Z/pZ in subexponential time, based on the idea of 

A. E. Western and J. P. C. Miller. This idea can be generalized to the multiplicative 

group of any finite field. Later in 1999, Leonard Adleman, Jonathan DeMarrais and 

Ming-Deh Huang designed the index calculus algorithm for jacobians of hyperelliptic 

curves [ADH94]. To date, index calculus algorithms are the strongest algorithms for 

solving the DLP in many groups. 

In spite of the successful application of the index calculus attack to many groups, 

there are still some groups on which this attack is not applicable. The failure to find a 

fast algorithm for solving the DLP on these groups has been the motivation for studying 

isomorphism attacks. These attacks try to find an efficiently computable map from a 

group with no known fast DLP solver to another group which admits a fast DLP solver 

such as index calculus. In the presence of such a map, one can solve the DLP in the 

range group to solve the DLP in the domain. 

The group of points on a general elliptic curve is a prominent example of groups 

for which no successful subexponential DLP solver has been found yet. As a result, in 

order to solve the DLP problem on elliptic curves, mathematicians try the option of the 

isomorphism attack. Two examples of an isomorphism attack which are applicable to 

special groups of elliptic curves, are [MV091] and [Sma99], however neither of these is 

applicable to a significant number of curves. 

1.1.3 T h e G H S Attack 

The difficulty of the elliptic curve DLP (ECDLP) made elliptic curves very interesting 

objects for cryptography. Among all kinds of elliptic curves, the cryptographers were 

particularly interested in curves defined over binary finite fields with a composite exten

sion degree , i.e. GF((2r)n), because of the fast algorithms existing for the arithmetic on 
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these fields. Examples of practical interest in these curves can be found in the internet 

protocol standard RFC4212 [Orm98] and also in [PSR97], [GP97], [PFR98], [AMV93] 

and [PFSR99]. 

As the elliptic curves over composite finite fields were gaining popularity, Gerhard 

Frey took mathematical cryptography to a higher level of sophistication by opening a 

new trend of isomorphism attacks for elliptic curves over composite fields [Kob07]. He 

proposed a method to map the DLP over elliptic curves defined over composite fields to 

the DLP over a higher-dimensional abelian variety, which is called the Weil restriction 

of the curve. In this way solving the DLP over the resulting variety became equivalent 

to solving the DLP over the curve [Fre98]. 

In [GS99], Nigel Smart and Steve Galbraith studied different aspects of the method 

in the case of characteristic 2. They proposed a way to find an algebraic curve over 

the Weil restriction and a way to transform the DLP from the elliptic curve to the new 

curve. They experimentally discovered that the resulting curve is usually hyperelliptic. 

Later Pierrick Gaudry, Florian Hess and Smart used the idea of [GS99] but worked 

with the function fields of the curves instead of the curves themselves. The basic idea 

in [GHS02b] was to extend the function field of the elliptic curve iteratively to reach 

a function field corresponding to a curve suitable for an index calculus attack. This 

became known as the GHS attack. The function field is extended with a series of 

Artin-Schreier extensions and the authors were able to prove that the function field 

resulting from the extension process belongs to a hyperelliptic curve. As the index 

calculus for the jacobian of an hyperelliptic curve is a well studied problem [CFA06], 

the GHS attack provides a way to solve the DLP over such elliptic curves with exactly 

computable complexity. 

The method of [GHS02b], although it was applicable to elliptic curves defined over 

the majority of composite fields, resulted in an easier DLP only for a small proportion 
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of these curves. This difficulty arises because most of the time, the genus of the ex

tended function field is very large, which means that the jacobian of its defining curve 

would be large. In such situations, the subexponential index calculus algorithm for this 

jacobian cannot out-perform the exponential algorithm over the original elliptic curve. 

In [GHS02a] Galbrith, Hess and Smart devised a method to solve this problem to some 

extent. If the elliptic curve under attack results in an unreasonably large genus curve, 

the method tries to find an isogenous elliptic curve which results in a lower genus under 

the GHS method. 

Hess in [Hes04] showed that using more general forms of Artin-Schreier extensions 

can improve the performance of the attack by finding a function field of smaller genus. 

However, when one uses this general form of the GHS attack, there is no guarantee that 

the resulting curve is hyperelliptic. As the complexity of the index calculus attack for 

a general (non-hyperelliptic) curve is not a well-studied subject, the exact complexity 

of the attack proposed in [Hes04] cannot be determined. 

1.2 Outline 

In the generalized GHS attack of [Hes04], Hess used Artin-Schreier extensions to build 

the extended function field. However, by choosing other extensions for special elliptic 

curves, we might end up at a less complex DLP using the GHS construction. 

In this work, our main goals are to explain the GHS attack as it is introduced 

in [Hes04] and [BSS05] with more emphasise on studying the function field structure of 

the attack. We want also to study the GHS attack when general quadratic extensions 

are used to construct function fields. We also propose a way to rank the elements of a 

finite field according to their security against GHS attack. 

In Chapter 2, we present the jacobian of an algebraic curve and the DLP problem 

over it. We also present the index calculus algorithm for the jacobian of curves. Finally, 
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we discuss the applicability and complexity of this algorithm to the jacobian of different 

curves to rank the difficulty of the DLP over them. 

In Chapter 3, we explain the general algorithm of the GHS attack as it is explained 

in [Hes04], [Die03] and [BSS05]. We discuss each step of the attack separately and 

we explain the algebraic properties of the function fields we encounter in the attack. 

We also discuss conditions under which the attack can be carried out theoretically 

(independent of its efficiency). 

In Chapter 4, we limit ourselves to elliptic curves over fields of even characteristic. 

In this chapter we want to evaluate the security of different field extensions against the 

GHS attack. However, unlike [Hes04], we do not limit ourselves to the Artin-Schreier 

extensions and we generalize some of results related to the complexity of GHS attack 

proved in [Hes04], [BSS05], [MQ01] and [MT06] for more general quadratic extensions. 

Using this information, we study the security of elements of finite fields with prime 

extension degree. We also propose an algorithm to find weak elements of a field against 

GHS attack. 

In Chapter 5, we include and explain our implementation both for the attack and 

for the weak element finder. We present some examples of running these implementa

tions and we discuss their results. We also present the evaluation of security of finite 

extensions of prime degree of even characteristics finite fields. 

In Chapter 6, we discuss the result and the impact of the GHS attack on the cryp

tographic world. We also discuss future work that can be done to improve the GHS 

attack in more general situations. 

The beauty of the GHS attack, independent of its application to the real world, 

is in its deep interaction between two exciting fields of mathematics, namely algebraic 

geometry and cryptography. 





CHAPTER 2 

Discrete Logarithm Problem over 

Jacobian of Curves 

The problem of solving the logarithm can be discussed in any group. However, the 

difficulty of solving discrete logarithm vs. the efficiency of cryptographic algorithms 

guides cryptographers to choose one group over another. 

Miller and Koblitz independently proposed the idea of using the group of points on 

an elliptic curve in cryptography [Mil86][Kob87]. Unfortunately, the fantastic property 

that the points on elliptic curves form a group, does not hold for other kind of curves. 

Nonetheless we can assign to any curve a group called the jacobian. In all the following, 

a "curve" will be a non-singular complete, projective curve as defined in Definition 

V.10.3 [Lor96]. 

The index calculus attack provides a subexponential algorithm to solve the DLP 

for the jacobian of curves of large genus in several cases. The idea behind the GHS 

attack is to map the elliptic curve discrete logarithm problem(ECDLP) to the jacobian 

of another curve and try to break the new DLP using index calculus attack. 

In this chapter, we define and study the jacobian group and we study the DLP on 

the jacobian. We explain the index calculus attack and the different ways that index 

calculus strategies can be applied to different types of jacobians. 
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2.1 Divisor class group and jacobian 

The set of points on an elliptic curve form an abelian group. The group structure is 

based on the fact that every straight line meets the curve in 3 (not necessarily distinct) 

points P\,P2, Pz in the projective plane. Looking at each line and defining P\+P2+P3 = 

0, the addition of two points can be defined as Pi + P2 = —P3- This fact comes from 

the famous Bezout theorem in algebraic geometry: 

Theorem 2.1.1 (Corollary 1.7.8 in [Har97]) Bezout theorem Let C\ and C2 be 

two distinct curves in P2 , having degrees d\, d2 respectively and let C\ PI C2 = 

{Pu...,Pn}. Then 
n 

J > ( C i , C 2 : Pi) = eM2 

where i(Ci,C2 '• Pj) is the multiplicity of intersection of C\ and C2 at Pj. 

For curves of higher genus (and then higher degree), instead of considering each 

point as an element of the group, we consider the formal sum of points as an element 

of the group. 

Therefore any formal sum of points would be an element of our group. Each instance 

of such formal sum of points is called a divisor: 

Definition 2.1.2 Divisor (Over a smooth curve): The divisor group of a curve 

C, denoted by Div(C) is the free abelian group generated by the points of C. Thus if 
n 

P\,..., Pn be points on curve C and rii € Z, then D := 2~_,niPi J5 called a divisor over 
i = l 

C. 

Similar to the case of elliptic curve where the lines that intersect the curve were 

defining the relations on the group, we need to defines the same kind of relations over 

this group to obtain a group which is useful for our purpose. However, we need to 
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consider more general objects than just straight lines to have a well-defined group. 

These general objects are rational functions defined in the function field of the curve. 

Definition 2.1.3 ([Sil94]) Function field and rational functions Suppose that K 

is a field and C is a curve defined by irreducible equation p(x,y) € K[x,y]. The integral 

domain K{x,y]/p(x,y), denoted by K[C], is called the coordinate ring of C. The field 

of fractions of K[C], denoted by K{C), is called the function field of C. Elements of 

K(C) are called rational functions. 

In this thesis we only consider the case that K is a finite field. This assumption 

holds for all cryptographic applications. 

We consider the intersection points of each rational function in the projective plane 

with the curve as a defining relation for the group. In this way we can define the divisor 

class group as the quotient of Div(C) by one of its subgroup (defined below). 

Definition 2.1.4 (Definition 1.4.3 [Sti93]) subgroup of principal divisors To 

each rational function f(x,y) in K(C), we associate a divisor 

div(f) = J2 vf(Pi)Pi 
Pi€C 

where Vi(Pi) is the signed multiplicity of Pi over f (either as a pole or zero). Such a 

divisor is called a principal divisor. The set of principal divisors forms a group which 

we denote by PK{C) • 

Definition 2.1.5 Divisor Class Group The divisor class group of C is 

Cl{C) := Div{C)/VK{c). 

We denote the divisor class represented by divisor D, by [D]. 
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Definition 2.1.6 (1.3 [Sil94]) Degree of a Divisor The degree of a divisor D = 

deg(D) := ^ v{ 

PteC 

The degree of a principal divisor is 0 (See II.6.10 [Har97]) and therefore the degree 

depends only on [D] and not on the representing divisor D. This mean that the degree 

is well-defined over Cl(C) as well. 

Definition 2.1.7 Jacobian of C For curve C we define following set as "The degree 

0 part of divisor class group" as follows: 

Cl°(C):={{D}eCl(C)\deg([D}) = 0} 

Till now, to define a divisor we have considered points on C with coordinates defined 

in K, the algebraic closure of the constant field of C. For cryptographic purpose, 

however, it is important to confine ourselves for the divisor which are defined over the 

constant field. 

n 

Definition 2.1.8 Divisor defined over K We say that divisor D := 2_.niPi l's 

i = l 
defined over K if 

n 

Da = Y1 nipi = D f°r dl a e Gal(K/K) 
z = l 

In this way we define the jacobian of C defined over K as follows: 

Definition 2.1.9 The jacobian of curve C defined over K denoted by Cl°(K(C)), is a 

subgroup ofCl°(C) which contains all divisor class [D] such that [D] is equivalent to a 

divisor class [DQ] such that Do is defined over K. 

It can be shown that Cl°(K(C)) is a finite subgroup of Cl(C) and therefore one can 

study the DLP on this group.As the jacobian of curve C defined over K is the finite 
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group that we are always interested in, from now on we simply call it the jacobian of 

C. 

2.2 Complexity of the DLP over the jacobian of a curve 

The complexity of the general attack to solve a DLP over a general cyclic group depend 

only on the size of the group. Indeed, the best general attack known for solving the 

DLP over a general cyclic group is Pollard's p algorithm [MV096]. The complexity of 

the attack is 0(y/n) in which n is the order of the group. This is better than the 0(n) 

exhaustive search, but it is still is exponential in the bit-length of n. As the complexity 

of the general attack only depends on the group size it is important to estimate the size 

of the group whose security is to be analyzed. 

As we said, estimating the size of the jacobian of a curve is the first step in evaluating 

its security. Corollary VIII.6.3 [Lor96] gives an estimate for the size of Cl°(K(C)). 

Theorem 2.2.1 Suppose C is a curve of genus g, defined over a finite field K of size 

q. Then: 

(l-VQf9<\Cl°(K(C))\<(l + ^)2^ 

Using the above theorem we conclude that the size of the jacobian of a curve is of 

order q9. Consequently, the complexity of the Pollard's p attack for the jacobian of 

curve C is 0{q9/2). This means that the best known general attack to the DLP over 

Cl°(K(C)) is exponential in term of its genus. Actually this was one of the advantages 

of hyperelliptic curve cryptography over elliptic curve cryptography [CFA06]. 

By studying the size of the group Cl°(K(C)), we dealt with assessing the resistance 

of the DLP over this group against general attacks. However, the strongest attack in 

many practical cryptographic intersting situations is the index calculus attack. For 
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this reason in the remainder of this section, we study the index calculus attack and its 

applicability to the Cl°{K(C)) for different curves C. 

2.3 Index calculus attack 

The family of index calculus algorithms are the most powerful algorithms known to solve 

the DLP over different groups. In many groups, including the multiplicative group of 

finite fields, the index calculus method gives a subexponential algorithm to solve any 

instance of the DLP. 

Despite of all successes of the index calculus attack during recent years, there is still 

no index calculus attack to solve the DLP over a general elliptic curve in subexponential 

time. In the next sections, we describe the index calculus algorithm in general and for 

specific groups. 

2.3.1 The algorithm 

Let G —< P > be an additive cyclic group and suppose that Q € G is given. The DLP 

is to find n such that 

Q = nP. (2.1) 

As we mentioned before, index calculus is not applicable to a generic cyclic group. The 

group needs a special property which we call the factor base property. 

2.3.1.1 Factor base property 

There is a formal technical definition for the factor base, which is beyond the scope of 

this work. We refer the interested reader to [CFA06]. However, we give a more intuitive 

definition here parallel to the idea of [HMV03]. 
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Definition 2.3.1 Factor base Let G be an abelian group. A factor base B = 

{P i , . . . , Pm} C G for the index calculus algorithm is a (finite) subset of G such that a 

randomly chosen element Q G G can be efficiently expressed in terms of element of B 

as 

m 

Q = Yjm
pi (2-2) 

with a significant probability. 

The elements in the factor base should be chosen in a way to increase the efficiency 

mentioned in Definition 2.3.1. The word "efficiently" in the above definition could be 

defined precisely. However, we shall only give an intuitive idea of what efficiency means 

here. For a given factor base, and for several random <5's, we want to find m values 

of nj's such that Q = X)2a niPi- Therefore, the elements of the factor base should 

be special elements such that this operation is "efficiently" possible and it should be 

possible for a "significant" number of randomly chosen Q's. 

The elements of the factor base are called primes as the prime elements of Z were 

used as factor base elements to solve the DLP in (Z/pZ)* when index calculus was 

applied for the first time. An element Q £ G is called B-smooth if it is expressible in 

terms of elements of factor base B as in (2.2). 

We say that a group G has the factor base property if there is a fast algorithm to 

find an efficient factor base for the DPL problem in G. 

The efficiency of a factor base B depends on its "size" and the "probability of finding 

a .B-smooth element". There is a natural trade-off between the size and the probability 

that a random element is B-smooth. The greater the factor base, the more likely that 

a random element is i?-smooth. On the other hand, the index calculus needs to gather 

more relations (as defined in following section) to solve the DLP and this decreases 
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the efficiency of the algorithm. However, the smaller the factor base, the smaller the 

probability that a randomly chosen Q be a .B-smooth. If this probability is low, the 

index calculus algorithm wastes time on choosing a lot of useless elements until it finds 

enough .B-smooth elements. Therefore the definition of an efficient factor base is group-

dependent or even implementation-dependent. 

The problem of finding an efficient factor base for a specific group is non-trivial. In 

other words for each group, we need a specific method to find an efficient factor base. 

For the case (Z/pZ)*, it is easy to prove that the primes form an efficient factor base. 

On the other hand, in the case of the group of points on a general elliptic curve, the 

question has still not been solved. 

Under the assumption of having an efficient factor base, the index calculus algorithm 

can be applied to any group without difficulty. Algorithm 2.1 describes the index 

calculus for a general additive group when the factor base is found: 

A l g o r i t h m 2.1 INDEX CALCULUS - GIVEN THE FACTOR BASE 

Require: : P, Q and B := {P i , . . . , Pm} an efficient factor base. 
Ensure: : Find n such that Q = nP. 

l: for i in { 1 , . . . , m + N} such that iV is a small integer do 
2: repeat 
3: Generate (Regenerate) random 6j 
4: until biP is B—smooth 
5: Qi *- biP 
6: Compute e;j for 1 < j < m such that Qi — b{P — Y^jLi ei,jPj 
7: end for 
8: A^ (e,-j) 
9: b <- (6,-) 

10: Solve the linear system Ax = b (Now we have Xj such that Pj = XjP.) 
ll: repeat 
12: Generate random r 
13: until rQ is B—smooth 
14: Compute rj for 1 < j < m such that rQ — Y^JLi rjPj — Yl^Li rjxjP 
l S . - n - r - ^ E ^ i W ) 
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The N extra 5-smooth elements are chosen in the loop in Line 1 of Algorithm 2.1 

to make sure that the linear system is solvable with high probability. The Line 15 of 

Algorithm 2.1, is valid because Q — nP, so for a random r, we have rQ = rnP = 

(EJLi W ) P . 
The basic idea of the algorithm is as follows: First one can solve the DLP for the 

factor base quite easily and then using that information one can solve the DLP for the 

specific element Q. As the index calculus is applicable as soon as a factor base is found 

for a specific group, the question of solvibility of the DLP in a specific group using index 

calculus boils down to the question of finding a suitable factor base in that group. In 

the following sections, we discuss the problem of finding a suitable factor base in the 

groups that will be involved in the GHS attack. 

2.4 Index calculus for the DLP over the jacobian of curves 

In order to find a suitable factor base we need to study the structure of Cl°(K(C)). In 

this section we first discuss the problem of finding the factor base for a special family 

of curves called "hyperelliptic curves" [CFA06]. Then we explain how to find the factor 

base on a general curve. At the end, we discuss the case where a factor base cannot be 

found with current knowledge. 

2.4.1 Jacobian of hyperelliptic curves 

In the case of hyperelliptic curves we have a nice representation for the elements of 

divisor class group. This representation called the Mumford representation, can be 

defined according to Proposition 2.4.1: 

Proposit ion 2.4.1 (VII.l [BSS05]) Let C be a hyperelliptic curve of genus gc de

fined over a field K with equation Y2 + H(X)Y = F(X). Then the elements of the 
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jacobian of C that are defined over K are in one-to-one correspondence with the pairs 

of polynomials (a(X),b(X)) with coefficients in K, such that deg(b) < deg(a) < gc and 

such that the polynomial a is monic and a divides b2 + bH — F. 

We denote the divisor class that corresponds to a pair (a(X),b(X)) by div(a,b). 

The factorization of the polynomial a(X) is compatible with the divisor group operation 

and this leads to the idea of defining a prime element in the divisor class group of a 

hyperelliptic curve 

Definition 2.4.2 Let [D] be the divisor class corresponding to div(a, b) by Proposi

tion 2.4.1- [D] is said to be prime if the polynomial a is irreducible over K. 

Under this condition an efficient factor base can be defined for Cl°(K(C)) 

Definition 2.4.3 Let B be an integer. The set of all divisors div(a,b) such that a 

is irreducible in K and is of degree < B, make a factor base for index calculus on 

Cl°(K(C)). A divisor D € Cl°(K(C)) is B-smooth if it can be written in terms of 

element of this factor base. 

In [BSS05] it is shown that if the genus of the hyperellptic curve C is large enough 

(compared to the size of K), using above factor base, index calculus can provide a 

subexponential attack. 

2.4.2 Jacobian of a general curve 

As it is mentioned in Definition 2.1.2, a divisor in Cl°(K(C)) can be represented as 

the sum of finite many points. This idea is parallel to the idea of primes in Z. In Z 

every integer can be uniquely written as a product of primes. In the same way, we can 

write each divisor as a sum of closed points or prime divisors [Die08]. In the index 

calculus algorithm, we expect that the elements of factor base belong to the group 
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under attack. However, for a prime divisor class [P] we may have deg(P) 7̂  0 and 

therefore [P] g Cl°(K(C)). To cure this problem, we fix a divisor class [Do] of degree 

1 and whenever we face such a problem we consider divisor class [P] — deg(P)[Do] m 

the factor base instead. 

Using this factor base, it is shown in [Die08] that the index calculus algorithm is 

subexponential in the genus of curve C as the genus of C approaches infinity. 

2.4.3 Infeasibility of index calculus method for elliptic curves 

Despite of several attempts, there is still no practical factor base for the DLP on elliptic 

curves. 

The factor base of Definition 2.4.3 is useless when one looks at an elliptic curve as 

a hyperelliptic curve of genus 1. With the Mumford representation, all divisors in the 

class group of an elliptic curve have a(X) polynomial (in the div(a, b) representation of 

the divisor) of degree < g = 1. This means that they all are irreducible polynomials 

by definition. Therefore all the divisors in the class group are prime and should be 

employed in the factor base which is absurd. 

Looking at elliptic curves as general curves also does not help. As stated in Theorem 

III.3.4 [Sil94], for elliptic curve E, we have E 9* Cl°(E). Therefore, all elements of 

Cl°(E) are primes, which is the same problem as the case of hyperelliptic factor base. 

Another approach is to lift the elliptic curve defined over a finite field to an elliptic 

curve defined over Q and search for the factor base elements there. The Xedni-Calculus 

attack mentioned in [SilOO] is an example of such an effort. 

However, in contrast to the fact that lifting an element of (Z/pZ)* to Q is a trivial 

fact, it is not the case for points on an elliptic curve. It is claimed in [HMV03] that 

this approach fails because there is no efficient algorithm to lift a point from an elliptic 

curve defined over a finite field to Q. In addition we are only able to lift those points 
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to Q efficiently whose canonical height over lifted curve (over Q) is small. However it 

is proved that the number of such points on a general elliptic curve is negligible. 

Another possible approach is lifting the curve to a local field as well [Gau04]. 

However, [Gau04] introduced a factor base for the same family of curves that we 

study in this thesis. The method is based upon Weil Descent attack which is also a 

basis for the GHS attack. Although the method is less efficient than the GHS attack, 

it can be applied in more general cases. 

The lack of a general index calculus attack for elliptic curves was the primary moti

vation for mapping the group of points of elliptic curves to other groups were the index 

calculus is feasible. The GHS attack which we discuss in next chapter is an example of 

such attack. 



CHAPTER 3 

GHS Attack and Its Function Field 

Structure 

In previous section, we studied the DLP over different curves. We also studied 

the attacks which are applicable to them. The difference in the complexity of the 

DLP solvers over different groups, encourages studying the so-called "isomorphism at

tacks" [HMV03]. The isomorphism attacks try to find efficiently computable maps 

between a group with a "hard" instance of the DLP and an "easier" one. Obviously, the 

underlying instance of the DLP should stay invariant under these maps. Weil [MV091] 

and Tate [FR94] pairing attacks are some examples of this category. 

The purpose of this work is to study another instance of this category of attacks, 

called the GHS Weil Descent attack. The primary motivation for designing the GHS 

attack was the absence of subexponential algorithm to solve the DLP over the group 

of points of an elliptic curve. In this attack, we try to find a homomorphism from the 

group of points on an elliptic curve to the jacobian of another curve such that: 

• The solution of the DLP remains the same under the homomorphism. This means 

that we can use the solution of the DLP in the jacobian of the new curve to solve 

the DLP over the elliptic curve. 

• The DLP in the new group, is easier to solve (usually provided by an index calculus 

attack). 
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The GHS attack, first proposed in [GHS02b], exploits the relationship between func

tion fields of curves to find a map to transform the DLP from the elliptic curve group 

to the jacobian of a new curve. In this section, we first study the general process of 

the GHS attack for finding the DLP transformer map using the relation between the 

function fields. After that we focus on each function field involved in the attack and 

we study its properties. Finally we describe the homomorphisms which transform the 

DLP to an easier instance. 

It is worthy of mention that the GHS attack can be applied to solve the DLP on the 

jacobian of hyperelliptic curves [Die03], [Hes04]. In this work, we restrict ourselves to 

the case of elliptic curves. In this case, the group of the points of the elliptic curve E and 

the jacobian of the elliptic curve Cl°(E) are isomorphic (See for example Proposition 

III.3.4 [Sil94]).We will always use the notation Cl°(E) for the group of the points of E. 

3.1 The GHS attack in nutshell 

The ultimate goal of the GHS attack is to find a homomorphism between the jacobians 

of two curves. This map should preserve the DLP. Suppose we want to attack curve E 

using curve C. The original DLP is to find n such that: 

[D2] = n[Di] where [D2], [A] <E Cl°(E) ~ E 

We want to find a homomorphism <f> such that: 

4>: Cl°(E) - • Cl°(C) 

The general process of finding such a homomorphism <f>, known as the GHS attack 

([GHS02b] and [Hes04]), is to find it by extending the function field of the curve under 
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attack. Let K(E) be the function field of the curve under attack. In the GHS attack 

the field K(E) is extended to F. The resulting field is a function field of another curve 

C (according to Proposition 3.3.5), so we have F = K(C). The function field extension 

K{C) needs to satisfy a series of criteria in order to transfer the DLP successfully. 

These criteria are discussed in Section 3.2. The GHS attack consists of an algorithm to 

extend K(E) and construct K{C). The extension process involves choosing a series of 

irreducible polynomials and adding their roots to K{E). The process of choosing such 

polynomials and constructing K(C) are discussed in Section 3.4. 

After finding K(C), we need a map to transfer the DLP to C. Since K(E) C K(C), 

the injection between these function fields induces a map between the ideal groups of 

their coordinate rings and consequently their jacobians. In this situation, any ideal in 

the coordinate ring of E can be regarded as an ideal in the coordinate ring of C, parallel 

to that, any divisor class in Cl°(K(E)) can be regarded as a divisor class in Cl°(K(C)). 

In this way we can map the DLP to Cl°(K(C)).This map is called the "Conorm map" 

in the GHS literature (for example in [GHS02b] and also in [Che51]). We will study 

the map in more detail in Section 3.6. 

The fact that the genus of K{C) is larger than the genus of K(E) makes the index 

calculus algorithm available to solve the DLP over Cl°(K(C)). However, as K{C) and 

K{E) has the same constant fields, while the function field K(C) is larger than K(E), 

solving the DLP over Cl°(K(C)), is harder than the original DLP, despite using index 

calculus. 

The whole scenario would be then useless, unless we can find a smaller constant 

field k C K on which C is defined. This is achieved by using a special automorphism 

a over K(C). We set F' := K{C)<a> in which by K{C)<<T> we mean the fixed field of 

a. In Section 3.3.4 we see that indeed F' has a smaller constant field. If k C K is the 

constant field of F' and Co is the curve for which F' = k(Co), we can solve the DLP in 
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Cl°(k(C0)). 

At this stage, we reach a smaller function field with a curve with higher genus. The 

last step is to find another map ip : Cl°(K(C)) —> Cl°(k(Co)) to transfer the DLP from 

Cl°(K(C)) to Cl°{k(C0)). For this part of the process we use the norm function from 

the large extentended field K(C) to the smaller subfield k(Co) fixed by a. The norm 

function induces a homomorphism between jacobian of C and jacobian of Co- We will 

discuss this function in Sections 3.6.3. 

In following sections, we study each step of the GHS attack in more detail. The 

most important step in the GHS attack is to find a suitable function field extension 

K(C). In next section we describe the criteria of function field K(C). In Section 3.3.1, 

we define the algebraic objects that we encounter in the GHS attack. 

In Section 3.3, we assume that we have the whole structure needed for the attack, 

and we study the properties of this structure. This would help us to prove that the 

GHS attack can successfully transform the DLP into an easier problem. 

In Section 3.4, we describe how to generally construct the extension K(C) which is 

needed for the attack. 

In Section 3.5, We discuss the genus of extended function fields K(C) and k(Co). 

In Section 3.6, We describe the homomorphism which transform the DLP from 

Cl°{K{E)) to Cl°(K(C)) and from Cl°(K(C)) to Cl°(k(C0)). 

3.2 Criteria in choosing the extended function field K{C) 

As we mentioned in previous section, the GHS attack consists of extending the function 

field of the elliptic curve to the function field of another curve C and then finding a 

subfield of K(C) on which the DLP is easier to solve. 

There are three main concerns in choosing K(C): 
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• Faithfulness of the DLP mapping As we discuss in Section 3.6, we always 

need to check that the homomorphism we use to transfer the DLP, does not have 

a large kernel. So, we should not use an extension of K(E) in which the induced 

map from Cl°(K(E)) —> Cl°(K(C)) has a large kernel. However, it is shown in 

Section 3.6.2 that this map seldom has a large kernel in a practical cryptographic 

case. Therefore, this concern does not really put a limitation on choosing the 

extension K(C). 

• Existence of a suitable field automorphism After constructing K(C), we 

use an automorphism a such that k(Co) = K(C)<a>, for some curve Co defined 

over k. 

In order for a to be effective in lowering the constant field of K(C), a should 

not fix K, otherwise, K C K(C)<a>, therefore K(K(C)<a>) = K(C)<a> which 

means that K is the constant field K(C)<a>. This means there k = Ka is a 

subfield of K. The GHS attack is then ineffective against curves defined over the 

prime field. 

Choosing a also defines the norm function of K(C)/k(Co). The norm function 

induces the homomorphism between the jacobians of the fields. We choose <r to 

ensure that we get a homomorphism with desirable small kernel. 

• The lowest genus possible The jacobian of curve Co is the group on which we 

aim to run the index calculus attack. As we will see in Section 3.5 the genus of 

Co is equal to the genus of C. As all index calculus algorithms known for solving 

the DLP over jacobians, are at best subexponential in the genus of the underlying 

curve, we want to find the extension with the smallest genus possible to increase 

the efficiency of the attack. On the other hand, we do not want that the genus 

of C be very small (1, 2 or 3) as there is no efficient index calculus algorithm for 
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the DLP over these curves. 

3.3 The general field theoretic structure of the attack 

In this section we discuss the properties of all fields involved in the GHS attack and 

their relationship to each other, i.e. the extensions in detail. We establish the notations 

and the definitions related to the GHS attack in Section 3.3.1. The new notation we 

develop in this section remains valid in the remainder of the thesis. 

The discussion in this section is more theoretical than the discussion in Section 3.4, 

which shows how algorithmically we can build the K{C). 

3.3.1 Notat ions and assumptions on structure of the GHS attack 

Assumption 3.3.1 Algebraic Structure of the GHS attack 

• E: the curve that we want to attack. Form now on we suppose that E is an elliptic 

curve. 

• K: a finite field of characteristics p, K is the constant field of K(E) and the field 

of definition of E. 

• F — K(C): is a regular finite extension of function field K(E) of degree dc/E := 

[K(C) : K(E)]. We fix a defining curve of this function field and we call it C. 

Also we require that K(C) has automorphism a as defined below. 

• a is an automorphism of K(C) that does not fix K. The existence of such a is 

necessary for the GHS attack. 

• n :— ord(a). 

• k C K is a subfield of K which is the constant field of K(C) 
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• F' — k(Co) = K(C)<cr> is the subfield of function field K{C) that is fixed by a. 

3.3.2 Fields K, k and extension K/k 

Let k be the subfield of K fixed by a (Assumption 3.3.1). By the fundamental theorem 

of Galois theory [Mor96], [K : k] = n. By theory of finite fields [Mor96], we know that k 

has pr elements for some integer r. Consequently \K\ = (pr)n. By the Corollary II.6.7 

of [Mor96], Gal(K/k) is cyclic of order n generated by the Frobenius automorphism of 

K/k. Therefore, by possibly replacing a by one of its powers, we can assume that O\K 

is the Frobenius automorphism of K over k. From now on, we denote the Frobenius 

automorphism of K/k with a as well, whenever it does not cause ambiguity. By the 

above discussion we know that: 

Va €K,a(a) = apr. 

The extension K/k is depicted in Diagram 3.1. 

K := ¥gn 

n Gal{K/k)=<a> 

k := ¥q:=pr 

Diagram 3.1: Extension K/k 

3.3.3 Extens ions K(z)/k(z), K(E)/K(z) and K{E)/k(z) 

The GHS attack proposes a special way to choose the extended function field K(C) as 

well as constructing the a automorphism. Although it is not the only way that one can 

achieve a suitable K(C) such that it satisfies the criteria of Section 3.2, it is a concrete 

way to do so. 
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The first step in building K(C) is to choose a rational subfield of K(C) [BSS05]. 

This means to choose any function z € K(E) and write the new equation of the curve 

in term of this function. This results in a new defining equation of the curve g(z,y). 

Choosing this element determines K{C), the whole algebraic structure and consequently 

the complexity of the attack. Therefore choosing the function z is considered as the 

most important step in implementing the attack on a special curve. 

In [GHS02b] and [Hes04], z is chosen such that K{E)/K{z) is an Artin-Schreier 

extension (of degree 2). We discuss this case in more detail in Section 4.5. In [Die03] 

and [The03], z is chosen such that K(E)/K(z) is a Kummer extension. As we want to 

study the general quadratic extensions in this thesis, we assume [K(E) : K(z)] = 2. 

After choosing z as above, we are able to define k(z) as well as K(z) as follows. 

Definition 3.3.2 Function z in the GHS attack Element z 6 K(E) is a transcen

dental element over K such that K(E) is a quadratic elliptic extension of K(z) where 

K(z) is the rational function field in z over K. 

Let k(z) be the rational function field in z over k. It is easy to prove that K{z)/k{z) 

is a finite Galois extension of degree n with cyclic Galois group generated by an extension 

of the Frobenius automorphism of K/k such that it fixes z. Also we also have K(E) = 

K(z)[y]/g(z,y), which means K(E)/K(z) is an algebraic extension with degree d := 

\K{E) : K(z)] = degKrz\iyi(g(z,y)). As we limit ourselves to quadratic extensions, 

we know that d — 2. Therefore K(E)/k(z) is an algebraic extension and we have 

[K[E] : k(z)] = 2n. 

For the GHS attack, we also need to put an extra condition to assure that our attack 

would be successful. 

Assumption 3.3.3 The GHS Strong Assumption Let n = [K : k] = ord(a), and 
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2 := [K(E) : K(z)]. We assume that: 

(2,n) = l 

Remark. We close this section by emphasizing that the size of the orbit of y when a 

acts on Galois closure of K(E)/k{z) is of most importance in the GHS attack as you 

will be seen in Section 3.3.3.1. 

3.3.3.1 Function field K(C) and automorphism a 

In the GHS attack we want to define the function field K(C) as an extension of K(E). 

However, the definition of a function field in 2.1.3 is based on a defined curve. In the 

case of K(C) we do not build K{C) using an existing curve C. In contrast, we define 

it as an extension of K(E). Therefore we need a more general definition of a function 

field, which does not depend on the defining curve. 

Definition 3.3.4 (Definition 1.1.1. [Sti93]) Function field of one variable An 

algebraic function field F/K of one variable over K is an extension field F D K, 

such that F is a finite algebraic extension of K(x) for some element x € F which is 

transcendental over K. 

As in this thesis, we just deal with algebraic function fields of one variable, here after 

we simply use the term "function fields" to refer to them. Although these two definition 

of function fields seems different, in the case that K is a prefect field it is easy to prove 

that they are equivalent. 

Proposition 3.3.5 Let F be a function field over K in the sense of Definition 3.3.4, 

there is a curve C such that F = K{C). 

Proof. Given function field F, one can construct C as follows. As F/K(x) is a finite 

extension and K is prefect, Corollary 1.5.7 [Mor96], assures that F is a simple extension 
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of K(x), i.e. there exists y G F such that such that F = K(x, y). Let p(X, Y) e K[X, Y] 

be the irreducible polynomial of y over K(x). Let K{C) be the function field of the curve 
d 

C defined by p(X,Y). Now writing each element / 6 F as / = ^ / , ( x ) y 4 € /f(C) 
2=0 

define an isomorphism between F and K(C), and therefore -ft'(C) = F. 

a 

Proposition 3.3.5 allows us to talk about an algebraic extension of K(E) and call it 

K(C) without defining curve C a priori. In the GHS attack we define K(C) as follows. 

Definition 3.3.6 K(C) is defined to be the splitting field of K(E)/k(z). 

We can now define a easily. As K(C) is the splitting field of some extension, by 

definition K{C)/k(z) is normal. On the other hand K(z)/k(z) and K(E)/K{z) are 

separable and by Proposition 1.4.21 [Mor96] K(E)/k(z) is separable. By definition 

of separability, this means K{C)/k{z), the splitting field of K{E)/k(z) is separable. 

Therefore K(C)/k(z) is Galois. So we can look at Gal(K(C)/k(z)). We need to choose 

a such that it satisfies following condition: 

• ord(cr) = n 

• a\K(z) — Probenius automorphism of K(z)/k(z). 

We need to make sure that we are always able to find such a. Consider following 

exact sequence: 

1 - • Gel(K(C)/K(z)) -> Gal(K(C)/k(z)) -»• Gal(K(z)/k(z)) -» 1 (3.1) 

Let us examine the case when this sequence splits. According to Theorem VI.1.18 

[Hun03], we know that the above sequence splits if and only if 

Gal{K(C)/k(z)) ~ Ga\(K(C)/K(z)) x Gal(K{z)/k{z)) 
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In that case we can simply choose a € Gal(K(C)/k(z) = 1K(C)/K(Z) X aK{z)/k(z) which 

has order n. Therefore the fact that this sequence splits is sufficient for us to carry 

out the attack. For that it is sufficient that the elements of Gal(K(C)/K(z)) and 

Gal(K(z)/k(z)) have different orders. 

K(C) 

d'=\Gal(K(C)/K(E))\ 

K(E) 

2 

K{z) 

n 

k(z) 

Diagram 3.2: The series of function field extensions to reach K(C) 

According to Diagram 3.2, the sequence splits when (2d',n) = 1. By Assump

tion 3.3.3 we knew that (2,n) = 1. Proposition 3.4.2 assures that using the GHS 

construction the above sequence splits. 

3.3.4 Extension K(C)/k(C0) 

Since curve C has higher genus than E, the index calculus attack is applicable to 

Cl°(K(C)). However, no matter what the genus of C is, if we run the index calculus 

attack on Cl°(K(C)), we always expect worse running time than running generic attacks 

on Cl°(K(E)) such as Pollard's p attack. This is because K(C) and K(E) both have 

the same constant field K. Although the index calculus attack is subexponential in 

genus of the curve under attack, it is fully exponential in the size of its constant field, 

i.e. O(q) if q is the size of the constant field. However, Pollard's p method takes 

only 0(^/q) < 0{q). This means that if we increase the genus while keeping the same 

constant field, we end up with a worse time for the attack. The whole point of the GHS 
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attack is to decrease the constant field size at the cost of not extending the genus too 

much. For this reason, we still need to transform the DLP to another curve whose genus 

is higher than E and at the same time its constant field is smaller than the constant 

field of E. 

To find this final function field to attack, we need to use the automorphism a we 

found in last section. Having a, we simply set F' := K(C)<a>. However to assure that 

index calculus is efficient on F' we need to prove: 

Proposition 3.3.7 K(C) is a constant field extension of F''. 

Proof. Suppose / 6 F' is a rational function. Since fa — f means that / is 

defined over k, and therefore F' is defined over k(z). This means that there exists a 

curve Co defined over k, such that F' = k(Co). Now we want to look at the function 

field Kk(Co). We know that the extending polynomial of K/k is irreducible over k(Co) 

as its roots are not fixed by a. However, these roots are in K C Kk{Co). Therefore 

[Kk(C0) : k(C0)] > n. Now considering the definition of k(C0) = K(C)<a> and the 

fact that ord(a) = n, we know [K{C) : k(C0)} = n, so K(C) = Kk(C0) = K(C0). 

Therefore K(C) is a constant field extension of k{Co). 

• 

As the constant field of F' is k, we can find a curve Co defined over k such that F' = 

k(Co). From now on we denote this function field as &(Co). Using Proposition 3.3.7, 

we know that K{C) = Kk(C0) = K(C0). 
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3.4 Algorithmic construction of K(C) and the automor

phism a 

The Frobenius automorphism of Kjk is the heart of the GHS attack. This is the funda

mental reason that there is no obvious way to generalize the GHS attack to prime fields 

as in that situation there is no Frobenius automorphism. We use this automorphism to 

find fc(Cb), a subfield of K{C). 

To emphasize the importance of the extended Frobenius automorphism, we remark 

that when this automorphism is determined (or equivalently z is chosen), the whole 

structure of k(Co) can be determined, including the genus of C which determines the 

difficulty (including the success/failure) of the attack. 

In Chapter 4, we discuss the problem of choosing a suitable z for the even char-

acterstic case. However here, we assume that we have chosen z as it is discussed in 

Section 3.3.3, and therefore we can compute the Frobenius automorphism <JK(z)/k{z)-

Therefore the goal of this section is to describe the algorithm which constructs the 

extension K{C) given z. 

To understand the process of constructing K{C) in [GHS02b] and [Hes04], one can 

look at the construction of K(E). Since yo := y is algebraic over K(z) of degree 2, 

we have the quadratic equation /(yo) = 0 such that f(Y) € K(z)[Y}. K{E) is simply 

K(E) := K(z)[Y]/f(Y). Now to extend K{E) we need another polynomial. 

l 

Definition 3.4.1 Let f(Y) = 'S^aiY1 e K[Y] be a polynomial and a be an automor-
t=0 

phism of K. We denote the action of a on f(Y) by 

e 
r(Y) = Y/a(ai)Y

i. 
t=0 

Let f(Y) e K[Y] be a quadratic polynomial with root y0 G K{E) as defined above, 
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and let K0 := K{E). Let MY) := fa(Y). If MY) is irreducible over K0, then we add 

its root, yi, to KQ and we construct K\ := Ko(yi), otherwise K\ := K$. Continuing 

this procedure we can extend K(E) to K(C) with the desired properties. As a has 

order n, the procedure stops after at most n iterations. Algorithm 3.1 is the complete 

procedure of constructing K(C). 

Algorithm 3.1 CONSTRUCTING K(C) 
Require: f(Y) € K(z)[Y] be the defining equation of elliptic curve E such that 

f(yo) — 0, o~ be the Frobenius automorphism of K/k. 
Ensure: Kn = K{C) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

KQ <- K{E) 
for all i such that 1 < i < n do 

fi(Y)^r'(Y)GK(z)[Y] 
if fi(Y) is irreducible over jKi_i then 

Ki <- KiMVi) s u c l 1 that /i(y,) = 0. 
else 

Ki <— if j - i 
end if 

end for 
return Kn 

After generating K(C) using Algorithm 3.1 or equally using the theoretical proce

dure discussed in Section 3.3.3.1, we need an element a € Gal(K(C)/k(z)) such that 

a has order n over K(C). This is because we want that \K(C) : K(C)<a>] = n. 

According to Proposition 3.4.2 such an element exists. 

Proposition 3.4.2 If n is odd and K(C) is constructed by Algorithm 3.1, there exists 

a which satisfies the conditions stated in Section 3.3.3.1. 

Proof. Using field theory we know: 

n-l 

{K(C):K(E)} = l[[Ki:Ki-1}. 

As deg(fai) = 2 for all i, [Ki : Kt-i] is either 2 or 1. Therefore d' = [K(C) : K(E)} = 2m 
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for some integer m. By Assumption 3.3.3 we know that (2, n) — 1, so (d', n) = (2m, n) 

1. This means that the sequence of (3.1) splits, which is sufficient for existence of a. 

• 

3.4.1 The magic number "m" 

In Step 2 of Algorithm 3.1, each time we face the question: is fa'(Y) irreducible over 

Ki-i or not? The number of times that we answer positively to this question, determines 

the difficulty of the GHS attack to E using the chosen subfield K{z). For that reason, 

we refer to it as the magic number associated to extension K{E)/K(z) and denote it 

by m as it is traditional in the GHS literature. Algorithm 3.2 computes the value of m 

along constructing K(C). 

Algorithm 3.2 CONSTRUCTING K(C) AND COMPUTING m 

Require: f(Y) G if(.2)[Y] be the defining equation of elliptic curve E such that 

f(yo) = o 
Ensure: Km = K(C) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

K0 <- K{E) 
m <— 0 
for all i such that 1 < i < n do 

fi(Y)^(fr(Y)€K(z)[Y} 
if fi(Y) is irreducible over -fQ-i then 

m <— m + 1 
Km <- Km-i{ym) such that fi{ym) = 0. 

end if 
end for 
return Km 

Diagram 3.3 shows the procedure of generating K(C) using Algorithm 3.2. Finally 

we close this subsection by proving that Algorithm 3.2 construct K(C) according to its 

theoretical definition. 

Proposition 3.4.3 The field generated by adding yi,i = 0 , . . . , m to K(z) resulted from 

Algorithm 3.2 and the field K(C) defined in Definition 3.3.6 are isomorphic. 
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Kn = K(E)(y0,yi,y2, ...,ym) 

K2 = K(z)(y0,yi,y2) 

K^KMyoM) 

K0 = K(E) = K(z)(y0) 

K(z) 

Diagram 3.3: The series of function field extensions generated by algorithm 3.2 to reach K{C) 

Proof. First we want to show that K{C) contains the splitting field of m^(2)(y), i.e. 

all of its roots. As PE is not defined over any subfield of K(z), we know that Pg (y) 

are different for 0 < i < n — 1. We define 

M(Y):=l[PE
i(Y) 

i=0 

As this polynomial is invariant under action of a, it is defined over k(z). On the other 

hand rnMz\{Y) \ M(Y) because y is a root of M(Y). Using the GHS algorithm we 

know that M(Y) has all of its roots in K(C), because the algorithm makes sure that all 

PE
l (Y) (which are quadratic) are reducible before stopping. Now M(Y) is a polynomial 

of degree 2n because it consists of n quadratic factors, therefore M(y)|mfc(2)(F). This 

means that M(Y) = mk^{Y) and therefore K(C) is the splitting field of extension 

K(E)/k(z). 

• 

As the result of Proposition 3.4.3 we name both of these fields as K(C). Diagram 3.4 

shows the relation of all function fields involved in the GHS attack: 
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K{C) 

2 m - l 

K(E) k{C0) 

2 2 m 

K(z) : 

oo 

Diagram 3.4: The relation of function field extensions in the GHS attack 

3.5 The Genus of resulting curves 

The genus plays an important role in the complexity of attack. The final complexity of 

attack depend on two major facts, 

• The size of Cl°(k(C0)). 

• The effectiveness of index calculus attack over Cl°(k(Co)). 

Both of these parameters depends on the genus of the curve Co- As it is mentioned in 

Theorem 2.2.1, the size of Cl°(k(Co)) is of 0(q9) where g is the genus of Co- Therefore 

is exponentially related to the genus of Co- Also the type of index calculus attack to 

be chosen depend on the genus of CQ. 

As we generate K(C) explicitly and defined k(Co) as the fixed field of K(C) by a 

it is easier from a computational point of view to investigate the genus of K{C). The 

following proposition from [Ros02] shows that we merely need to study the genus of 

K(C) as it is equal to the genus of k{Co): 

Proposition 3.5.1 Let k be a prefect field and let K/k be a finite extension. Suppose 
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that k(Co) is a function field whose constant field is k. Let K(C) = Kk(Co) be a 

constant field extension ofk(Co). Then the genus of K{C) considered as function field 

over K is equal to the genus of k(Co). 

Therefore we only need to compute the genus of the curve C which we obtained 

through Algorithm 3.2. 

The genus of the extended function field, depends on the method of extending the 

function field of elliptic curve E. The genus can be computed in special cases when we 

extend K(E) using specific polynomials. Two specific methods are discussed for even 

and odd characteristics in [GHS02b][Die03]. However, in more general cases as dealt 

in [Hes04], we can merely find upper and lower bounds on the genus of C. 

Finding the genus of general extension in the GHS attack is still an open problem. 

In next chapter we study the situation when an Artin-Schreier extension is used to find 

the descend. In that situation the genus is computed in [GHS02b], [Hes04]. 

In next chapter we find an upper bound for the case p = 2. 

3.6 Mapping the discrete logarithm problem 

The focus of this work is on studying the suitable function field extensions for the attack. 

Nevertheless, the final goal is to solve the DLP which is responsible for the security of 

the cryptographic system. All the tedious search to find a suitable function fields would 

be useless, if we can not find a suitable map to transfer the DLP to a group where it 

is easier to be solved. In this regard, we devote this section to go through the mapping 

process. 

The function field structure is built in order to help us to find the suitable map which 

can transfer the discrete logarithm over the Elliptic Curve E (or equivalently over the 

divisor class group, Cl°(K(E))) to the discrete logarithm problem over Cl°(k(Co)). We 
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use the extension/subfield relations between K(E),K(C) and k(Co) to construct that 

map. This process consists of two steps: 

• Mapping a divisor in Cl°(K(E)) (or equivalently a point on E) to a divisor over 

Cl°(K(C)) 

• Mapping a divisor in Cl°(K(C)) to a divisor over Cl°(k(Co)). 

Both of these maps are derived using the relationship between function fields we 

built in this chapter. In following two sections we deal with these maps separately. 

3.6.1 Mapping the D L P faithfully 

Suppose we want to attack curve E using curve C. The original DLP is to find n 

such that [D2] = n[D{\ : [D2], [Di] € Cl°(K{E)) ~ E. Suppose we have found a 

homomorphism <f> such that 

4>: Cl°(K(E)) -» Cl°(K(C)). 

Now we have 

\D2)-n[D1] = 0 

=> <j>{[D2] - n[D1}) = 0 

=» <f>([D2]) - n^([A]) = 0 

In presence of such homomorphism, suppose that we have a feasible algorithm to solve 

the DLP 4>{[D2}) = m<f>{[Di]) over the Cl°(K(C)). By running that algorithm over 
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Cl°(K(C)) we obtain m such that: 

<f>([D2}) - m ^ p i ] ) = 0cp{K(O) 

=> <t>{[D2] - m[Di\) = Oci°(K(Q) 

=> [D2] - m[A] € Ker{4>) 

As 0 is a homomorphism, its kernel is a group. If we have g — \Ker(<f>)\, the order of 

this group, by lagrange theorem in group theory [Mor96] then we have 

g([D2] - m[Di]) = g[D2] - 0m[I>i] = 0clo{K{E)). 

On the other hand the DLP over Cl°(K(E)) says that 

\D2) - n[Di] = 0clo{K{E)) =¥ g([D2] - n[Di\) = g[D2] - gn{Dx} = 0CP(K{E)) 

Subtracting these two equations we get 

gnlDi] - gm[Di] - g(n - m)[A] = 0clo{K{E)) =» ordc,o(jr(B))([£)i]) | g{n - m) (3.2) 

However, if ord([Z?i]) as the generator of the DLP group is not a prime, the Pohlig-

Hellman attack is applicable [MV096] to the DLP on E, which break down the discrete 

logarithm in the Sylow subgroups of < [D\] > efficiently then deduce the DLP on E. 

As solving the DLP over each of those Sylow subgroups, actually consists of solving the 

DLPs over subgroups of prime order, the complexity of the problem reduces to the diffi

culty of solving the DLP over a group whose number of elements is equal to the largest 

prime which divide | < [D\] > |. Therefore, it does not make sense to choose ord([£>i]) 

to be composite. In the other words if we choose ord([Di]) to be composite number we 
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increase the complexity of encryption/decryption process, however the security of the 

system remains as low as the time that we choose the group order as the largest prime 

dividing ord([£>i]). In this regard, we can safely assume that p = ord([Di]) is a large 

prime number. 

Now if p is a prime number, equation 3.2 results in p | g or p \ n — m. in the second 

case it means m = n{ mod p) and it means that we have solved the original DLP. On 

the other hand, if p \ g. This means that </> has a large kernel, because p should be 

large, (of order 0(2160)), to ensure the security of the system. So in search of such 

homomorphism to attack the Cl°(K(E)) we should keep away from homomorphisms 

with large kernel. 

In a nutshell, if we can find a map between the jacobians of two curves, under the 

condition that the map does not have large kernel, solving the DLP over the jacobian 

of the new curve, solves the original DLP as well. In this regard the goal of the attack 

is to find an algorithm to compute such a map. 

3.6.2 Mapping Cl°(K(E)) to Cl°(K(C)) 

Using the theory of function fields we have following theorem: 

Proposition 3.6.1 Let E/K and C/K be curves as defined in this chapter, such 

that K(E) C K(C) and X : K(E) '-* K(C) be the embedding map. Then there 

exists a morphism of curves (j> : C —* E which induce the group homomorphism 

4>* : Cl°(K(E)) - • Cl°(K(C)). 

Proof. First we need to build a map between curves using the embedding of the function 

fields. According to Theorem II.2.4 of [Sil94], let X(x) and \(y) be images oix,y € K{E) 

in K{C) respectively, in this regard we define <f> := (X(x),\(y)). We claim that ^ is a 

morphism of curves. Suppose that f(X, Y) 6 K[X, Y] is the defining equation of curve 

E, therefore we have f(x,y) = 0 6 K{E) => X(f(x,y)) = f(X(x),X(y)) = 0 6 K(C). 
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Now V(x,y) E C => <l>(x,y) = (X(x),\(y)) =• f(X(x),X(y)) = 0 => (A(x), Afo)) G £ . 

According to [Sil94][P.33], the morphism $, induces a group morphism (f>* such that: 

0* : Div(E) -> Div(C) 

<KQ) - VP<*-HQMP)(P) 

Proposition II.3.6 [Sil94] says that deg(<f>*(D)) = deg(4>)deg(D). Therefore <f>* maps 

degree zero divisors to degree zero divisors. So it is induce a map on Cl°(K(E)) —> 

C7°(tf(C)). 

• 

According to Proposition 3.6.1 We have following commutative diagram 

0 >• # ( £ ) —^Divo(K(E)) i Cl°(K(E)) 0 

4>* <£* <A* 

0 A"(C) —^Div0{K(C)) i C/°(K(C)) *• 0 

D i a g r a m 3.5: The map <j>* 

Therefore </>* can serve us as a map to transform the discrete logarithm problem 

from E to C. 

The chosen homomorphism to map the DLP in class groups is called "4>*" in [SH94], 

"TT*" in [MWZ96] and "Conorm" in [Che51] and [MTW04]. Moreover the literature on 

the GHS attack uniformly call it "Conorm" function as well. 

3.6.2.1 Preservat ion of the DLP under conorm map 

We found a homomorphism to map the class groups, however we should make sure that 

the solution of the mapped DLP over Cl°(K(C)) is a solution of the original DLP over 
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Cl°(K(E)). Suppose we try to solve the DLP for [P], [Q] € Cl°(K(E)), in which [P] 

and [Q] are the divisor classes corresponding to points P and Q respectively over curve 

E. The correspondence provided by the isomorphism between points on the elliptic 

curves and its jacobian. The DLP means we want to find s such that [Q] = s[P] in 

Cl°(K(E)). Instead we want to solve <f>*({P}), <f>*([Q]). 

Suppose the DLP under attack, is defined in a subgroup H < Cl°(K(E)) with prime 

order s. 

Therefore we transfer the problem to 4>*{H) and we want to solve the problem. 

As (f>* is a homomorphism, we know that ker((f>*(H)) < H therefore \ker(<f>*(H))\ | 

\H\. Now because H has prime order we can deduce that either ker(cj)*(H)) = 0 or 

ker{(f>*(H)) = H. 

In the first case we have ker{cj)*{H)) = 0, it means that (f>* is an isomorphism and 

the DLP is transferred faithfully. So, the solution of the DLP over Cl°(K(C)) is the 

same as the solution for Cl°(K(E)) and the subgroup 4>*(H) = H and particularly has 

the same order. In this case the DLP is preserved completely. 

In the second case, however, the whole subgroup is mapped to the identity element 

of Cl°(K(C)). In this case we lose the DLP completely. So the <t>* drags the whole 

subgroup to the kernel and therefore the DLP is not transformable to Cl°(K(C)) using 

Now we want to study under what condition we face the second case and conse

quently a failure in our attack. To investigate the situation, we apply function, 4>* to 

the image of 0*. So in the undesirable case that (f>*{[P}) = 0 =» </>*(<̂ >*([.P])) = 0. Now 

according to following proposition (proposition II.3.6 [Sil94]), </>* o<̂>* can be simplified: 

Proposition 3.6.2 Let E and C be two curves and 4> : C —> E be a non-constant map 
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from C to E. Then for any divisor class[D] e Cl°(K(E), we have: 

^ o ^ ( p ] ) = [deg(̂ )][JD] 

Therefore we have [deg(4>))[P] = 0, As [P] was not originally 0 divisor class (the 

identity element of the group), we see that P should be a [de(/(0)]-torsion point. By 

definition deg(<j>) = \K(C) : <j>*{K(E))}. In addition we know that </>* is simply embed

ding of K(E) in K(C) so it means deg((f>) = \K{C) : (f>*{K{E))] = \K{C) : K(E)]. In 

Section 3.3.3.1 we chose K(C) so it would be the splitting field of K(E)/k(z). We used 

m different copies of K(E)/K(z) to construct K(C). So we have deg{4>) = \K(C) : 

K(E)} | [K(E) : k(z)]m~1. So if the divisor class corresponding to point P get killed 

by <f>* we should have: 

[deg(0)][P] = 0 => ord([P]) = s | deg(</>) | \K{E) : k{z)]m-1 => 

s | \K{E) : k(z)} 

However, in the case of cryptographic interest s is a very large prime (of 0(2160)) 

and to have a practical attack we want that the order of [K(E) : k{z)} be very small 

(~ 2). Therefore, it is impossible in practical situation that <f> does not transform the 

DLP to Cl°(K(C)) faithfully. 

3.6.3 Mapping Cl°(K(C)) t o Cl°(k(C0)) 

In this side of tower, as k(Co) C K(C), one may find it natural to use the Proposi

tion 3.6.1 in the same way used in Section 3.6.2 and then use 0* to map the DLP. 

However, as the underlying function fields are defined over different constant field this 

time, the proposition is not applicable. Instead, we use simple Norm map of the field 

extention. 
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The norm map of extension K(C)/k(Co), Nx{c)jk(C0)^ induces a norm map from 

C/K to Co/k in following way 

n 

VP e C/K,NK{C)/k{Co)(P) = £ V ( P ) . (3-3) 
i = l 

Then one can naturally (additively) extend the norm function to the Div(K(C)). 

3.6.3.1 Preservation of the DLP under the norm map 

In the case of Norm function, it is proved in [Die03] that the kernel of Norm function 

does not have a subgroup of large prime order if there is no intermediary field L such 

that k C L C K. If there is such a intermediary field, we can replace n by n', a prime 

divisor of order n, in order to get rid of such an intermediary field and make sure that 

the DLP got preserved under this map. 





CHAPTER 4 

Even Characteristic Function Fields 

In this chapter we study the problem of attacking the DLP of elliptic curves defined 

over a field of even characteristic. This is a critical case because such elliptic curves are 

of special attention for cryptographers, due to the computational advantage. 

Therefore in this chapter we suppose that all fields have characteristic 2 and our 

prime base finite field is F2. Parallel to the notations we defined in section 3.3 we have 

k = ¥21- and K = F ^ ) " • E is an elliptic curve defined over the field K. 

As we mentioned in the previous chapter, to attack a curve we need to accomplish 

the following two steps: 

1. Find a function field extension of K(E), namely K{C). 

2. Find an automorphism of K(C), namely a such that a\K = a^/k € G&l(K/k), 

and ord(<j) = n 

These two are not totally independent steps. We cannot expect that for a random 

general extension K(C), we succeed to find such an automorphism like a. However, with 

Hypothesis 3.3.3, that we assume in this thesis, we can guarantee that the Frobenius of 

K/k can be extended to such an automorphism. In [Hes04] the procedure of the GHS 

attack is studied in detail for a special set of rational subfields of K(E). We describe 

this work in this chapter. We also generalize some of the result to more general rational 

subfields of K(E). 
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We start this chapter with a concrete example of going through the algorithm. We 

then define the concept of minimal cr-polynomial and we study the if-module related 

to it. We discuss the implementation of the GHS attack by using quadratic extensions. 

This generalizes the case of Artin-Schreier extensions discussed in [GHS02b], [BSS05] 

and [Hes04]. In this chapter, we also discuss the result of [BSS05] for Artin-Schreier 

extensions. Finally, we discuss the security of a function field against the GHS attack 

and we define a field security index to assess it. 

4.1 Finding a suitable K{C) as an extension of K(E) 

To construct K(C), we find K(z) such that equation of E in terms of z has cr-polynomial 

with the smallest degree possible. We will define the concept of "cr-polynomial" in 

Section 4.2, but we illustrate the concept by a complete example before formally define 

it. Let 

k:=¥2 

n:=7 

K := k{9) such that 0€k satisfies 97 + 9 + 1 = 0 

E/K :=y2 + xy + x3 + 0 

We choose here z = x. Now we want to extend the field extension K(E)/K(z) using 

the procedure described in last chapter. Let 

P(Y) := Y2 + zY + z3 + 9 € K(z)[Y] 
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Let 2/0 = V- Polynomial P(Y) is reducible over K(E) since yo is a root of P(Y). Let <x 

acts on on P{Y) by acting on its coefficients, Then 

P°(Y) = Y2 + zY + z3 + e2 

is irreducible over K{E). We can extend K(E) by adding a root of this polynomial, 

say yi, to get K\ := K{E)(y\). Continuing the procedure, we consider 

P°2(Y) = Y2 + zY2 + z3 + 64e K(z)[Y\. 

This polynomial is irreducible over K\ :— K(E)(yi). Let K2 := Ki(y2), where y2 is a 

root of PCT (F). Now we consider 

P°\Y) = Y2 + zY + z3 + 08 G A"(«)[y] 

which is irreducible over K2. Let ^ 3 = K2{y%) where 2/3 is a root of PCT (y) . 

We now consider 

Pa\Y) = Y2 + zY + z3 + 016 G K(z)[Y]. 

This polynomial is reducible over K3. Indeed, adding the three equations 

vl + zy0 + x3 + 6 = 0 

2/| + zy2 + x3 + 64 = 0 

yl + zj/3 + x3 + 08 = 0 
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and considering the fact that we work in characteristic 2, we get 

{y + Vi + yzf + x{y + y2 + y3) + x3 + (9s + 94 + 9) = 0. 

Since 

98 + e4 + e = e4 + e2 = (e2 + 9f = (98)2 = e16 mK = w2{9), 

we have 

(y + 2/2 + yzf + x{y + y2 + y3) + x3 + 9w = 0 

Then y+y2+yz is a root of Pa (Y), and Pa (Y) is reducible in K3 = K(z)(y0, yi,y2, yz)-

The good news is that no matter what power of o more than 4 we apply, we still get 

reducible polynomial. This will be proved in Theorem 4.3.1. 

The above example shows a desirable situation in which K(C) = K% is of degree 

23 = 8 over K(E) and not 26 = 32. In this way, C should have smaller genus and it 

should be easier to attack. 

Obviously one can choose another equation for E and one would not get a reducible 

polynomial before you extend the function field 7 times. In this regard, it is important 

to find z such that the defining polynomial of K(E)/K(z) becomes reducible after 

smaller number of application of a. In next section we will study the defining equation 

from this perspective. 

4.2 Minimal cr-polynomial 

To study the complexity of the attack, we need to formalize the example of the previous 

section. We stopped the process of extending the function field as soon as we had a 
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linear combination of conjugates of the curve's equation equal to zero. To formalize 

the procedure we define a Fa[£]—module over the additive group K+ of K, following 

[BSS05]. 

Proposi t ion 4.2.1 Let K+ be the additive group of K and let F2[t] act on K+ by 

e £ 
f(t) * b := J2 OiO-^b) forbeK and f(t) = ^ atf G ¥2[t}. 

i=0 i=0 

This makes K+ into an ¥2[t]-module. 

Proof. First we prove the distributivity. We have 

e 
f(t)*(b1+b2) = ^ o ^ b i + ba) 

i=0 

t=0 

e e 
= ^ O i a ^ b ^ + ^ a i c r ^ b s ) 

i=0 i=0 

= /(*) * b ! + f(t) * b2(fi(t) + h{t)) * (b) 
e 

= Y2(au + °2iK(b) 
=o 
t £ 

= ^ a H C T ^ + ^ T a ^ C b ) 
2=0 1=0 

= / i ( t ) * b + / 2 (« )*b 
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For the associativity, first we prove the result for monomials. Suppose / = X]i=oa^> 

then for a general monomial te we have: 

e e e 
te * (f(t) * b) = if * 5>a*"(b) = al'^aia

i{h)) = 5>cr i+*'(b) = (^/(t)) * b 
i=0 i=0 i=0 

For the general case, we use induction over the degree of / . For degree 0 polynomials * 

is trivially associative. Suppose for all / ' such that deg(/') < £ and / ' = f'2f'\ we have 

for all b € K 

f(t)*b = f!i(t)*(fi(t)*b). 

Suppose that f(t) — f2(t)fi(t) such that deg(/) = £. We want to prove that f(t) *b = 

f2(t) * (h(t) * b). Suppose that deg(/2) = £' and f2(t) = te' + g{t) 

(f2)(fi)*b = (ti'+g(t))(f1)*b = ( / ) ( / i ) *b + g(t)(f2)*b. 

The first term of the right hand of the equality is equal to (tl * (fi) * b) as te is a 

monomial and we proved the associativity when one of the factors is monomial. And 

the second one is equal to g(t) * ((/i) * b) by induction as the degree g(t)(fi) is strictly 

less than deg(/). So we have 

( / 2 ) ( / i ) * b = / * ( ( / i ) * b ) + 5 ( * ) * ( ( / i ) * b ) 

= (lf+g(t))*((fi)*b) = (f2)*((f1)*b). 

• 

Definition 4.2.2 Let f(t) G ¥2{t]. We define a ¥2[t]-linear map, Lj^, on the module 

defined in Proposition 4-8.1 by 

Lf(t)(b):=f(t)*b 
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The kernel of £/(t) is a submodule of K+ denoted by Sf. 

It is straightforward that 

• K — S^+i-

. f{t) | g{t) =>SfC Sg. 

The other proprieties that we are interested in are as follows: 

Proposition 4.2.3 Suppose that f,g are two polynomials in ¥2[t] and [f,g] is their 

least common multiple. We have 

Sf®Sg = S[fjg] 

Proof. Let / ' , g' be such that, [/, g] = f'f — g'g for some polynomials / ' ,</ . 

(C) For all bj G S/ ,b 2 G Sg,[f,g] * (bi + b2) = [f,g] * (bi) + [f,g] * (b2) = 

f'f * bi + g'g * b 2 = / ' * ( / * bj) + g' * {g * b2) = 0 + 0 = 0 therefore, b2 + b 2 G S[Lg]. 

Q ) First we treat the case that (f,g) = 1 this means [f,g] = fg- Now for all 

b 6 Sfg we have g{t)f{i) * b = 0, by definition of Sjg and associativity of *, this means 

that f(t) * h G Sg. Similarly we have g(t) * b G 5 / . Now as (f,g) — 1, there exist 

polynomials hi,h\ such that fhi + g/i2 = 1. Additionally we have f(t) * b G Sg So 

(hif)*h = (/ i^^C/^b) € 5 5 as Sg is a F2-submodule. Similarly we have p/i2*b G 5 / . 

This two tells us that 

fhi*b + gh2*b = (fhi + gh2) * b 

= l*b = b<= Sf®Sg. 

Now suppose that h = (/,g), using Lemma 4.2.4, we can write h = h\h,2 such that 

(f/hi,g/h2) = 1 and [f,g] = [f/h1,g/h2] = (f'/h1)(g/h2). Using the co-prime case 
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we know that 5[y)fl] = Sf/hl © Sg/h2. But we know that Sf/hl C Sf and S//h2 C Sg, 

therefore, S ^ Q Sf ® Sg. 

D 

Lemma 4.2.4 Suppose that f,g are two elements of a unique factorization domain U, 

and h = gcd(f,g). We can always decompose h — hih.2 such that (f/hx,g/h2) = 1 and 

[f/hi,g/k2] = [f,g]. 

Proof. Suppose that / = p"1...p°n,g = pl{1...p^n be the prime decomposition of / ,g in 

£7. Then h = p™inlai,^1\..;?™inlQ!1'^1\ Now set /ii := 1, and follow following algorithm 

For 1 < i < n : if at < A such that tn := hi x p™in(Q''ft) 

Then we set /12 := h/h\. Now suppose that p\{f /h\,g/h,2) this means that there exists 

prime p\ such that Pi|(/, g). Now if a, < A =*• Pi t / / ^ l - Otherwise /% < c^ therefore 

pf* I /i2 so j>j \ g/1%2 which is a contradiction. 

• 

Proposition 4.2.5 For any b 6 K, there is a unique monic polynomial f(t) € ¥2[t] 

with minimal degree such that b e Sf. Furthermore, if g(t) * b = 0 £/jen /(£) divides 

9(t). 

Proof. Suppose i" = {g(t) € F2[i] such that g(t) * b = 0} the range of degree function 

on set I is well-ordered and we can choose f(t) as one of those who has minimum degree. 

Now suppose that g(t) * b = 0. By minimality of degree, we have, deg(g) > deg(/), 

dividing by f(t) we have g(t) = q(i)f{t) + r(t) such that deg(r(f)) < deg(/(i)) therefore 

0 = g{t) * b = q{t)f{t) * b + r(t) * b. But we know that f(t) * b = 0 so we must have 

r(t) * b = 0 which contradict the minimality condition of / . So f(t) is unique up to 

multiplication of a unit element. However being monic, make f(t) is unique. 
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D 

Based on Proposition 4.2.5, we define the concept of "minimal cr-polynomial". 

Definition 4.2.6 Minimal cr-polynomial For any element b € K+, the minimal cr-

polynomial ofb is the unique monic polynomial f(t) G F2[t] with minimal degree such 

that f(t) * b = 0. 
m 

We can extend the definition of operation * between f(t) — Y^ ait1 and a rational 

function g(z) 6 K(z) as follow 

m 

f(t)*g(z) = 52aig°i(z). 

Definition 4.2.7 For a rational function g(z) G K{z), the minimal a-polynomial of 

g{z) is monic polynomial rng(t) with minimal degree such that mg(t) * g(z) = 0. 

Knowing the minimal cr-polynomial of the coefficient of a polynomial g(z), Corol

lary 4.2.8 to Proposition 4.2.3 helps us to find the the minimal cr-polynomial of g(z). 

e 
Corollary 4.2.8 Let g(z) — V^bj-z-7 6 K[z] be a polynomial. Then mg(t) = [m^ 

such that for 0 < j < £] and Smg = ® , = i Smb.. 

It is worthy of mention that unlike the case of minimal polynomial for an element 

of an algebraic extension, f(t) is not necessarily irreducible. For example consider 

k = F2 and K = F(0) where 02 + 9 + 1 = 0. We know that a2(9) = 6>4 = (0 + l )2 = 

92 + l = 9=$>6€ St2+1. It is clear that t2 + 1 is not irreducible over F2, however we 

claim it is the minimal cr-polynomial of 9. If not, then there exists a f{t) such that 

deg(f(t)) < 2 and f(t) * 9 = 0, however by uniqueness condition of Proposition 4.2.5, 

deg(/(i)) =̂  2. The set of monic polynomials of degree 1 over K is {t, t + 1}. Similarly 

since a{d)2 = 92 = 9 + 1^9,9<£ St+i. Similarly 92 ^ 0 implies that 9 0 St. So, the 

a—minimal polynomial of 0 is the reducible polynomial t2 + 1. 
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4.3 General quadratic extensions 

Now that we have developed the theory of our submodules, we use it to study the 

complexity of the GHS attack for different curves. Suppose that E is defined by the 

equation 

PE • Y2h(z) + Yg{z) + f{z) = 0 such that f(z) G K{z),h(z),g(z) G k{z) (4.1) 

Then K{E) — K(z)(yo) where j/o is a root of (4.1). We do not confine ourself to 

represent the equation of the curve in Weierstrass form or any other special form, 

because we want to allow the attacker to use the form which gives the opportunity of 

reaching the "best" extension K{C) for attacking the original curve. The only constrains 

are: 

• we require that the equation of the curve is quadratic in Y. This allows us to use 

the linearity of square in characteristic 2 to implement a simpler attack. 

• We require that h(z),g(z) be in k(z). This also important for the algorithm of 

the attack. 

Also if in (4.1) the rational function, f(z) is defined as 

Hz) = ^~ 

such that q(z) $ k[z], we can replace it with 

NormK(:)/k{z)(g(z)) 

f(z) = qM _ . 
NormK(z)/k{z)(q(z)) 

So we can suppose that all rational functions in (4.1) have denominators in k[z]. 
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We also assume that (4.1) is not defined over any proper subfield of K(z), otherwise 

one can simply replace K(z) with that subfield. 

Let a be as defined in Chapter 3. Then 

P% = Y2h{zY + Yg{zY + f{zf = Y2h(z) + Yg(z) + f(z) = 0. 

in which 

7 l } q°{z) 

If P | is irreducible over K(z, yo), we add its root y\ and we continue by acting on coef

ficient of Pg. This leads to Algorithm 4.1 for finding K(C). This algorithm guarantees 

that [K(C) : K(z)] does not exceed 2m , where m is the degree of rrif(t) the minimal 

cr-polynomial of f(z) in( 4.1). 

Algorithm 4.1 FINDING K(C) USING GENERAL EXTENSION 

Require: K(E) an elliptic function field. 
K(z) a rational subfield of K(E) such that K(E) — K(z)(yo) is a quadratic exten
sion of K(z). 
PE{Y) € /T(z)[Y] the minimal polynomial of yo over K(z), under form( 4.1). 

Ensure: Km = K{C) (as defined 3.3.3.1) such that [K{C) : K(z)] < 2m. 

1: Compute mf(t) £ F2[i] be the minimal cr-polynomial of f(z), where f(z) is given 
by ( 4.1). 

2: m <— deg(mj(t)) 
3: K0^-K(z)(y0) = K(E) 
4: for all i such that 1 < i < m do 
5: Pg-1 <~ Y2h(z) + y5(z) + ( / r " 1 (*) ^ 
6: Ki <— Ki-i(yi) where yj is a root of P | | 
7: end for 
8: return Km 

We now need to prove that using the above algorithm, we find the function field 

K(C) of the original GHS attack so it has same useful properties which allow us to 

descend it to k(CQ) and transfer the DLP to Cl°{k(C)). 
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Theorem 4.3.1 Validity of Algorithm 4.1 for general quadratic extensions If 

rrif is irreducible in K[t] then the outputs of Algorithm 3.1 and Algorithm 4-1 are equal. 

Proof. The Algorithm 4.1 is essentially a special case of Algorithm 3.1, beside the fact 

that it stops after m steps and unlike to algorithm 3.1, it does not loop for n steps. 

We argue that if Algorithm 4.1 does not stop (and continue as Algorithm 3.1 does) 

we would get exactly the same result. In the context of Algorithm 4.1, this means that 

the polynomials Pg € K(z)[Y] are reducible over ifm[y] for i = m,... , n. First we 

prove that if we apply a m times we get a reducible polynomial over Km. In the other 

words we want to show that 

am(Y2h(z) + Yg(z) + f(z)) = Y2h(z) + Yg(z) + am(f)(z) (4.2) 

is reducible over Km. 

According to the equation 4.1, my * h{z) = h(z),m,f * g(z) — g(z). Therefore after 

running the loop for m times (i = 0 . . .m — 1), we have following relationships which 

all defined over Km = K(z,y0,..., ym-i) 

ylh{z) + y0g(z) + f(z) = 0 

y\h{z) + yl9(z) + a{f){z) = 0 

y2
3h(z) + yig(z) + a2(f)(z) = 0 

y2
m^h{z) + ym_! *g(z) + am~l{f){z) = 0. 

Now we know that my * / = 0. So we have 



4.3. General quadratic extensions 59 

ao(yoh(z) + vog(z) + /(«)) + 

a^yjhiz) + yl9(z) + a(f)(z)) + 

a2{y2
2h{z) + yig(z) + a2(f)(z) + 

am^(y'm_1h(z)+ym-1g(z)+(rm-1(f)(z)) = 0 

Distributing a;'s we get 

m m—1 m—\ m—\ 

i=0 i=0 i=0 

Using the fact that we are in characteristic 2 we can write the sum of squares of y[s as 

square of their sum. 

m— 1 m—1 m—1 

(J2 <HVi?Kz) + ( £ aivMz) + E ^'"(/X*) (4-3) 
i=0 i=0 i=0 

Let p(z) = X^7=o bj^J ' . as the denominator of q(z) G k[z] we deduce that m,f(t) = mp(t). 

By definition of m/, we know that for 

For 0 < j < I we have my * bj — 2~\o-i<yl{hj) = 0 
i=0 
m—1 

*=0 
* £ ro-1 

j=0 j=0 1=0 
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Now because a is isomorphism we can write the last equality as follows 

TO—1 

p°m{z) = E a ^ ^ 
i=0 

Now dividing both side by q{z) considering the fact that qa{z) — q(z), we get 

m— 1 

/*"(*) = E^r1**) 
i=0 

Substituting this equality in 4.3 we get 

m— 1 m—1 

( E am)2^w + (E WW*) + r » = o 
i=0 i=0 

This means that J ^ L Q 1 aiVi 1S a r o o t f° r (Y^Hz) + V g ^ ) + f(z))am and therefore this 

equation is not irreducible. 

• 

4.4 Genus of K(C) 

The main appeal of Artin-Schreier and Kummer extensions considered in [Hes04] 

and [Die03], is that it is relatively easy to compute the genus of K{C) in these cases. 

However, there is no known method to compute the genus of K{C) in the general case 

of the GHS attack. 

In the case of quadratic extensions, however, we can compute an upper bound for 

the genus of K(C). 

Proposition 4.4.1 Let K{C) be the function field provided by Algorithm 4-1 and let 

gc be its genus. Then 

gc < m2m+1 + 1. 
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Proof. For i € {0, . . . ,m}, let F* := K(z,yi) with t/j is defined in Algorithm 4.1. 

It is easy to see that for i € {l , . . . ,m}, Ki — K(yo,...,yi) is equal to /fi_iF,, the 

compositum of .£Q_i and F,. We want to find an upper bound for gi, the genus of K{. 

We can use Theorem III.10.3 of [Sti93], which bounds the genus of compositum of Ki-\ 

and Fi by their genera and the extension degree of K,. This gives 

9i < [Ki : #i_i]<fc_i + [Ki : Fi]gFi + ([Ki : K^] - l)([Ki : Fi] - 1). (4.4) 

The GHS construction is done by quadratic extensions so [Ki : jftTj-l] — 2. Also we 

know that Ki = Fi(yo,yi,..-,yi — 1) so [-FQ : Fj] = 2*. Moreover, Fi ~ K(E), a function 

field of genus 1. Substituting these in (4.4), we get the recursive bound 

gi < 2#_i + 2* + 2* - 1 = 2#_i + 2 m - 1. (4.5) 

Using induction, we climb the tower of paired function fields shown in Diagram 4.1 to 

get the explicit bound 

9i < i2i+1 + 1. 

For i = 1, the recursive bound and explicit bound are the same and show that g\ < 5. 

Now assuming the explicit bound for <ft_i and using the recursive bound for gi, we have: 

gi < 2^_ x + 2 i + 1 - l 

=>9i < 2 ( ( z - l ) 2 ( i - 1 ) + 1 - l ) ) + 2 m - l 

= (i - 1)2*+1 + 2 + 2 i + 1 - 1 

= i2i+1 + l. 

Using i = m we get the result. 
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• 

K0 = F0 

Diagram 4.1: The induction tower used in the proof of Proposition 4.4.1. 

4.5 Artin-Schreier extensions 

In the last section, we considered the GHS attack for an elliptic curve equation which 

is written in the form of (4.1). However, if we limit the type of the intermediate 

extension, i.e. K\/K(z),K2/K\,..., Km/Km-\, we can prove more precise results. The 

two special extensions which are studied in the GHS attack literature are the Artin-

Schreier extensions ([GHS02b], [Hes04]) and the Rummer extensions ([Die03], [The03]). 

If the elliptic curve is given by (4.1), the extension K(E)/K(z) and consequently 

Ki's are not Kummer extensions, since the degree of extension and the characteristic 

of the base field should be co-primes. 

Additionally, according to [The03] there is no non-supersingular elliptic curve over 

characteristic 2 whose function field is a Kummer extension over some rational subfield 
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K(z). 

However, the case of Artin-Schreier extensions for the GHS attack for even charac

teristic function fields, is well studied and there is a rich literature on this subject for 

example [GHS02b], [Hes04], [BSS05]. We discuss the main features of this approach, 

mostly from [BSS05]. 

Definition 4.5.1 Artin-Schreier extensions for fields of even characteristics 

Suppose that F is a function field of characteristic 2, and g E F is an element such that 

for all h G F we have g ^ h2 — h, Therefore the polynomial 

Y2 - Y - u = 0 (4.6) 

does not have any root in F. Let F' = F(y), where y is a root of (4-6). Then F1 /F is 

called Artin-Schreier extension 

If we work in a characteristic p ^ 2 then the definition of Artin-Schreier extensions 

remains the same except that (4.6) would change to Yp — Y — u = 0. These extensions 

have many nice properties. For example, an Artin-Schreier extension is always Galois. 

To see that, suppose y is a root of 4.6. Then we have 

(y + If - (y + 1) - u = yp + lp - y - 1 - u = y? - y - u = 0, 

and y + 1 is a root of that equation as well. Inductively y + i such that 0 < i < p 

are roots of this equation. Therefore by adding one root of this equation, it happens 

that all other roots also belong to the same extension, which means the extension is the 

splitting field of the equation with p different roots, and is Galois consequently. 

Although any separable quadratic extension is Galois, the fact that the 2 roots are 

y and y + 1 is special to Artin-Schreier extensions, and will be important for us. In 
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characteristic 2 we can change also the general form of Artin-Schreier equation to 

Y2 + Y + u = 0 (4.7) 

4.5.1 Elliptic curve equation in Artin-Schreier form 

We want to show that all elliptic curves can be described by an Artin-Schreier equation 

by means of a simple change of variables. Proposition A.1.1 [Sil94] says that any elliptic 

curve over a field characteristic two can be defined using either of the following equations 

depending on the value of j(E) 

• Y2 + a3Y = x3 + aAx + a6 if j(E) = 0 

• Y2 + xY = x3 + a2x
2 + a6 if j(E) ^ 0 

For the case that j(E) = 0 we have 

Y2 + a3Y = x3 + a4x + a6. (4.8) 

One can replace Y' = Y/a^ =» Y = a^Y' and the result would be 

a\Y'2 + a2Y' = x3 + a4x + a6 

Dividing both side by a\ we get 

Y'2 + Y' + g{x) = 0 where g(x) := {x3 + a4x + a6)/a3, (4.9) 

which is in the Artin-Schreier form. 

On the other hand, if j(E) ^ 0, we can describe E with following equation 

Y2 + xY = x3 + a2x
2 + a6 such that j(E) = l /a6 . (4.10) 



4.5. Artin-Schreier extensions 65 

In this case, as it is done in [BSS05], we can write Y = ^Y'/z + a§ ,x = 7/2. We 

get 
2y,2 y , 2 af 2 

zz z* z z* 

2 

Cancelling ag from both side and multiplying both side by % we get 

y'2 + Y' + 4 /2/7 = 7 / z + a2, 

and rearranging the terms we get 

y/2 + y/ + j ^ = Q g u c h t h a t j - ^ . = 7 + flV2^ + ^ ^ 4 > n j 

which is also an Artin-Schreier equation. 

Elliptic curves with zero j-invariant are not considered secure in cryptogra

phy [HMV03] and for that reason we do not consider that case in following process. 

4.5.2 The GHS attack with Artin-Schreier extensions 

To implement the GHS attack with Artin-Schreier extension we use the Algorithm 4.1, 

however assume that E is given by an equation of type 4.11. This means that we make 

a set of Artin-Schreier equations 

Y2 + Y + f(z) = 0 

Y2 + Y + f"(z) = 0 

Y2 + Y + r2(f)(z) = 0 

Y2 + Y + rm~\z) = 0, 
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and we want to extend K(E) to a field Km = K{C), such that all these equations has a 

roots. Using the result of Theorem 4.3.1, we know that the remaining n — m equations 

y2 + y + /ffm(z) = o 

Y2 + Y + rm+1(z) = 0 

Y2 + Y + rn~1(z) = 0 

also have roots in Km. Moreover, for any d e K(z) we know that the equation Y2 + 

Y + d2 + d has a solution d. 

Finally, it is easy to see that if Km contains roots of different Artin-Schreier equa

tions such as y\ + y\ + a = 0 and y% + y2 + b = 0 then 

(yi + yif + (yi + 2/2) + a + b = 0 

therefore it also has roots of Y2 + Y + a + b — 0. Therefore, independently of how we 

define and construct Km, we can redefine it as follow: Let A be the F^i]—submodule 

generated by all elements d2 + d for any d £ K(z) and f(z). Then Km is the smallest 

field such that for any b e A , Y2 + Y + h = 0, has a root in Km. 

The fact that A is defined an F2[i]-submodule means that A is closed under operator 

*, therefore Y2 + Y + ax(f)(z) has solution in Km for any i. This shows that the field 

Km generated by above procedure contains the K(C) needed for the GHS attack. 

The following theorem from [BSS05] and [Hes04], describes completely the situation 

when the extension Km/K(z) is formed by Artin-Schreier intermediate extensions. 

Theorem 4.5.2 The GHS attack for Artin-Schreier extensions Suppose E is an 

elliptic curve defined using Equation ^.11. Let (3 := y/a^/q. Let m7 , mp and mf(z) be 
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the minimal a-polynomials 0/7 and (3 and f(z) respectively. Let Co be the curve defined 

over k (as defined in Section 3.3.1), such that K{CQ) = K(C) = Km, Then we have 

• if there exists d 6 K such that 0,2 — d2 + d, then ra/(2) — [m7, mp]; otherwise 

mm = K , mp,t + i\. 

• the genus of Co is equal to 

2deg([m7,ro /3]) _ 2deg( [m 7 ,m 0 ] ) -deg(m 7 ) _ 2deg([ro7 ,m / S])-deg(m / 3) _^_ -^ 

• if 7 € k or j3 € k then Co is hyperelliptic. 

4.6 Security evaluation of composite fields 

We now want to investigate how secure is a specific even characteristic field with com

posite degree against the GHS attack. The security of these fields is studied in [JMS01], 

[BSS05], [SmaOl], [MTW04], [MMT01], and [MT06] [MQ01] for the GHS attack using 

Artin-Schreier extensions. However, here we consider that our curve is defined in the 

more general form of (4.1) and we do not confine our study to curves with Artin-Schreier 

equation. 

According to Theorem 4.3.1, the final factor that defines the efficiency of attack is 

the degree of my in Algorithm 4.1. 

4.6.1 Security of coefficients of f(z) 

we know that mf(t) is the minimal degree among the polynomials which annihilate all 

coefficients of numerator of f(z). 

The Corollary 4.2.8, means that a curve with low security (by low security, we mean 

small m) is a curve which is expressible as (4.1) such that 
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• All coefficients of f(z) have minimal <7-polynomial of low degree. 

• The least common multiplier of those polynomials have small degree. 

In following sections we focus on the first condition. The second condition, however, is 

more complicated and need more research. 

4.6.2 On polynomial tn + 1 

Clearly, for all b G K we have an(b) + b = 0, so b e St^+i and by Proposition 4.2.5, 

nib | tn + 1. Therefore the factorization of tn 4- 1 is related to the size of ro = deg(m/). 

Lemma 4.6.1 (Lemma 2, [MQ01]) Let n be an odd prime. Let d = ordn(2) be the 

order of2 € Z/nZ. Write n = ds + 1. Then tn + 1 = fo{t)h{t) • • • fs(t) over ¥2[t}. 

where 

• For 1 < i < s,fi(t) is irreducible over¥2-

• For 1 < i < s.deg(fi) = d. 

• For iy£ j we have (ft, fj) = 1. 

To categorize the elements of K according to their security level toward the GHS 

attack, we associate following set to each element. 

Definition 4.6.2 Suppose n is prime, and the fi's are as defined in Lemma 4-6.1. We 

define set If, for any element b £ K by 

/ b = {̂  such that fi(t) divides mb(t)} 
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Fixing an odd prime n, the number of elements of i& is a measure of the degree of 

mi)(t) which is related to m = deg(m/(£)). As an attacker, we want m to be small. We 

now compare the various elements b of a given field K from that point of view. The least 

secure elements among the elements of K, are those with 1^ = 1. Another interesting 

questions, is to consider a specific subset S C {0 , . . . , s}, and ask what are the elements 

b such that Ij, = S. To answer these questions we need to study the submodules of the 

F2-module defined in Section 4.2. 

4.6.3 The structure of K+ as a F2-module 

As it is mentioned in Section 4.6.2, when n is an odd prime, for any f(t) G F2[i], Sj has 

one of 2S + 1 submodules. Therefore we want to study these submodules to understand 

the security of different elements of the field against the GHS attack. 

The following lemma allows us to generalize idea of I\, to submodules of K+. 

Lemma 4.6.3 Let S be an ¥2[t]—submodule of K+. Suppose that S can be generated by 

bi , . . . ,b^ . Then for any b € S, we have deg(m;>(£)) < deg([mbi, • • • ,rribe])- Moreover, 

Proof, bj 6 S'TOb. and as it is a submodule therefore < bj >C Smb. therefore < 
e z 

b i , . . . , b „ >C ( | ) S m b . by proposition 4.2.3 we have < b i , . . . , b n >C S[m b i v . . ) m b j 

but b G< b i , . . . , b „ > therefore mi, | [mb,,...,mbB]. Now the statement about if, is 

clear by definition. 

• 

Definition 4.6.4 Let S be a ¥2$]—submodule of K+ generated byb\,...,be we define 

LS := UU/fc-
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If there is another generating set for S, we can conclude with double inclusion that 

the 7g for the new generating set would be the same which assures that Definition 4.6.4, 

is well-defined. 

The submodules which have \I§\ = 1 are the most interesting submodules for us as 

they contain the least secure elements of the field. To implement an algorithm to find 

these submodules, we use linear algebra to analyze the Probenius automorphism which 

is a linear operator over K as a k vector space. Let A be the matrix representing this 

Frobenius operator. By the Normal Basis Theorem [Mor96], the minimal polynomial 

oiAistn + l. 

A l g o r i t h m 4 . 2 FINDING THE GENERATORS OF WEAKEST SUBMODULES 

1: Compute the matrix A, the matrix of Frobenius automorphism as a linear operator 
of K/k. 

2: Factorize tn + l = (t+ l)/i(«) • • • f3(t) 
3: for all i E. { 1 , . . . ,s} do 
4: Compute fi(A). 
5: Use Gaussian Elimination to compute a basis for the kernel of fi(A). 
6: Print out the basis elements, which are generators of the unsecure submodule. 
7: end for 

Although the basis elements contains a basis for a subspace of K, we know that the 

submodule generated by these elements also has \Is\ = 1 and is annihilated by fi(t). 

Therefore the algorithm print out generator of submodules which contains elements of 

m = i. 
We implemented this algorithm and applied it to different fields. Those results are 

presented in 5.3. 

4.6.4 Field security evaluator 

The method presented above can determine if the defining equation of an elliptic curve 

is weak against the GHS attack of the DLP. However, this method cannot assure us of 

the security of the curve, because one can presumably write another equation for the 
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curve with coefficients which are weak against the GHS. How can we then make sure 

that a chosen elliptic curve is secure? 

A partial answer to above question could be as follow: if the curve is defined over a 

field in which all the elements are secure, then no matter how we change our equation 

we get a secure equation again. In language of the GHS attack, this means that all 

element of the field should have a minimal cr-polynomial of high degree. The weakest 

elements of the field are those whose minimal cr-polynomial is of degree d as defined 

in Lemma 4.6.1. Therefore we can evaluate the security of a field against the GHS by 

considering the parameter d of that field. When d — n — 1, we have highest expected 

security. If we systematically choose n an odd prime such that ord„(2) = n — 1, then 

mb{t)\(t + l ) / i ( i ) for all beK. Since mh(t) + 1 if b ^ 0 and mb(t) ^{t + l)ifbgk, 

this mean fi(t) | m^t) for all b. Therefore the deg(m/) as defined in Algorithm 4.1, 

is either n or n — 1. Presumably the genus of K{C) would be high in that case. This 

mean that for a reasonably large n, the GHS attack does not work for the curve. 

According to Lemma 4.6.1, we get a fields with d = n — 1 whenever 2 has order 

n — 1 in (Z/nZ)* for a prime n. The question of identifying the odd primes n such that 

2 has order n — 1 is a well-known question in number theory, called the Artin primitive 

root conjecture. Let a e Z be square free and not ±1 . Artin conjectured that there are 

infinity many primes n such that the order of a is n — 1. 

Let Na(x) = # { n < x : a has order n - 1 in (Z/nZ)*}. It is proved in [Hoo67] that 

under General Riemann Hypothesis we have 

Na(x) - C(a)n(x), 

in which C(a) is a positive constant and 7r(x) is the number of primes up to x. Uncon

ditional results were first obtained in [GM84], and improved afterwards. To this day, 

we know that there are at most 2 odd primes for which Artin conjecture fails [HB86]. 
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We have done the numerical analysis for all extension of F2 whose degree is a prime 

less than 512 and we represent it in Section 5.3.4. 



CHAPTER 5 

Implementation and Computational 

Result 

In this section we discuss implementation of the attack and the field evaluator. First 

we see the implementation the "Evaluator" and we bring the result of execution of the 

implementation for n 6 [3..512] : n is prime. This range of n is of cryptographic interest. 

After that we will see the implementation of the general attack. Then we run our 

attack on some simple example and we see the property of resulting curve C and its 

function field extension K{C). 

5.1 Choosing the computer algebra system 

We considered "Sage", "Kash" and "Magma" computer algebra systems for our imple

mentations. 

Sage is free software licensed under GNU General License [Fre07] and therefore open 

source. For that reason many mathematicians, and more specifically number theorist 

contributed to its development in recent years. We implement our primarily implemen

tation of the attack in Sage. However, Sage has a serious limitation in multiple extension 

of function field which made the implementation of the complete attack impossible. 

Kash is a computer algebra system which is free (but not a free software) and so it is 

not an open source software. GHS attack as it is described in [GHS02b] was originally 
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implemented in Kash. Therefore it was natural that we considered Kash as our second 

option. However, Magma, the third candidate of Computer Algebra System, contains 

Kash completely and one can run any capability of Kash in Magma. Magma is not free 

software nor free. 

All the implementation is done in Magma which is the most comprehensive computer 

algebra language for making computation in algebraic function fields and working with 

curves, As it is described above. 

5.2 Security evaluator 

Using algorithm 4.2 we can find the unsecure subspaces of K/k. In this sense we can 

rank finite fields according to their security against GHS attack. This also helps us to 

find the unsecure subspaces which means if the coefficient of f(z) in Equation 4.1 are 

all in one of these subspace, we would finish with a unsecure elliptic curve. 

We also use the result of this attack to construct a low security curves to be attacked 

in Section 5.5. 

5.2.1 Implementat ion of the security evaluator 

Listing 5.1: 'Magma implementation for finding the generators of the least secure mod

ules' 

1 /******** WeakElementFinder .m ********* 
2 * This program is intended to find the elements in a f in i t e f ie lds 
3 * for if they are used as coef f ic ien ts of an e l l i p t i c curve 
4 * defining polynomial the GHS at tack with r e l a t i ve ly low genus 
5 * would be possible to the curve. 
6 * 
7 * The algorithm isfor finding unsecure elements in the field . The 
8 * t r ick is to look at Frobenius as a l inear operator and find the 
9 * kernel of i r r educ ib l e factors of t"n + 1. 

10 */ 
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11 

12 /********Bas ic D e f i n i t i o n s and I n i t i a l i z a t i o n ********/ 

13 c l e a r ; 

14 

15 / * As def ined in T h e s i s : example r*n = 155 => r = 15 n = 3 1 * / 

16 p := 2; 

17 r := 1; 

18 n := 3 1 ; 

19 

20 k := F i n i t e F i e l d ( p , r ) ; 

21 

22 IP<Theta> := I r r e d u c i b l e P o l y n o m i a l ( k, n ) ; 

23 kT<T> := P a r e n t ( I P ) ; 

24 

25 p r i n t "Bas ic P a r a m e t e r s : p = " , p , " , r = " , r , " , n = " , n ; 

26 p r i n t "Ex tend ing po lynomia l I P : " , I P ; 

27 

28 K<t> := ext<k | I P > ; 

29 

30 /**** Computing F roben ius Matr ix ****/ 

31 A := T r a n s p o s e ( M a t r i x ( k , n , n , / 

32 [E ]emen tToSequence ( ( t~ i ) ~ ( 2 ) ) : i in [ 0 . . n - l ] ] ) ) ; 

33 p r i n t " F r o b e n i u s M a t r i x : " ,A; 

34 

35 / * F a c t o r i n g the F roben iu s Minimal P o l y n o m i a l * / 

36 if ( I s P r i m e ( n ) ) then 

37 ZnZ := F i n i t e F i e l d ( n ) ; 

38 p r i n t " M u l t i p l i c a t i v e o rde r of 2 in Z/nZ i s : " , Order (2*ZnZ. 1 ) ; 

39 end if ; 

40 

41 FroMini := T~n + 1; 

42 F roMin iFac t s := F a c t o r i z a t i o n ( F r o M i n i ) ; 

43 

44 p r i n t " F a c t o r i z a t i o n of", F roMin i , " : " ; 

45 p r i n t F r o M i n i F a c t s ; 

46 

47 for CurFact in F roMin iFac t s do 

48 p r i n t "Cur r en t F a c t o r : " , CurFact [ 1 ] ; 

49 CurMat := E v a l u a t e (CurFac t [1] , A ) ; 
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50 CurKer := Nullspace (CurMat); 
51 
52 print CurKer; 
53 
54 end for ; 

5.3 Computational result of field evaluator 

To work with a computational sample data. We worked with K G {F25,F27,F23i}. It is 

worthy of mention that no matter what r is in k = ¥pr the security level of K = F(pr)n 

just depends on n. This is because we look at decomposition of tn + l over F2. Therefore 

in the following we assume that we treat the simplest case which is r = 1: 

5.3.1 Case n — 5 

In the case n = 5, as you can see we get min(ra) = d = ords(2) = 4 which make the 

extension degree \K{C) : K] = 24 which means that the field is secure: 

Basic Parameters: p = 2 , r = l , n = 5 
Extending polynomial IP: T~5 + T~2 + 1 
Frobenius Matrix: 
[ 1 0 0 0 1] 
[ 0 0 0 1 0 ] 
[ 0 1 0 0 1 ] 
[ 0 0 0 1 1 ] 
[ 0 0 1 0 0 ] 
Factorization of T"5 + 1: 
[ 
<T + 1, 1>, 
<T~4 + T~3 + T~2 + T + 1, 1> 

] 
Current Factor: T + 1 
Vector space of degree 5, dimension 1 over GF(2) 
Echelon basis: 
(10 0 10) 
Current Factor: T~4 + T~3 + T~2 + T + 1 
Vector space of degree 5, dimension 4 over GF(2) 
Echelonized basis: 
( 0 1 0 0 0 ) 
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( 0 0 1 0 0 ) 
( 0 0 0 1 0 ) 
( 0 0 0 0 1 ) 

5.3.2 Case n = 7 

In this case we get min(m) = d = ord7(2) = 3 with subspace of dimension 3. This 

means that if it happens that the coefficients of f(x) in Equation 4.1 are in one of these 

two subspace, the extension degree of \K(C) : K] = 23 instead of expected 26, which 

much less secure. 

B a s i c P a r a m e t e r s : p = 2 , r = 1, n = 7 
Extend ing po lynomia l I P : T~7 + T + 1 
F roben ius M a t r i x : 
[ 1 0 0 0 0 0 0] 
[ 0 0 0 0 1 0 0 ] 
[ 0 1 0 0 1 0 0 ] 
[ 0 0 0 0 0 1 0 ] 
[ 0 0 1 0 0 1 0 ] 
[ 0 0 0 0 0 0 1 ] 
[ 0 0 0 1 0 0 1 ] 
M u l t i p l i c a t i v e o r d e r of 2 i n Z/nZ i s : 3 
F a c t o r i z a t i o n of T~7 + 1: 

[ 
<T + 1, 1>, 
<T~3 + T + 1, 1>, 
<T~3 + T~2 + 1, 1> 

] 
Cur r en t F a c t o r : T + 1 
Vector space of d e g r e e 7 , d imension 1 over GF(2) 
Eche lon ized b a s i s : 
( 1 0 0 0 0 0 0) 
Current Factor: T~3 + T + 1 
Vector space of degree 7, dimension 3 over GF(2) 
Echelonized basis: 
( 0 1 0 0 1 1 0 ) 
( 0 0 1 0 1 1 1 ) 
( 0 0 0 1 1 1 1 ) 
Current Factor: T~3 + T~2 + 1 
Vector space of degree 7, dimension 3 over GF(2) 
Echelonized basis: 
( 0 0 0 1 0 0 0 ) 
( 0 0 0 0 0 1 0 ) 
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( 0 0 0 0 0 0 1 ) 

5.3.3 Case n = 31 

This case is the most interesting case among our example, one may expect that size of 

\K(C) : K(z)} = 231 usually, however, we have six, 5-dimensional unsecure subspaces. 

Even if it happens that the coefficient of f(z) are in two different subspaces still we can 

attack using \K{C) : K] = 210 which is significantly less than 230. 

Basic : Parameters p = 
Extending polynomial 
Frobenius Matrix 
[1 0 
[0 0 
[0 1 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 
[0 0 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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0 
0 
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0 
0 
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0 
0 
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1, 1>, 
+ T~2 + 1, 1>, 
+ T~3 + 1, 1>, 
+ T"3 + T~2 + T + 
+ T~4 + T~2 + T + 
+ x~4 + T~3 + T + 
+ T~4 + T~3 + T~2 

1, 1>, 
1, 1>, 

1, 1>, 
+ 1, 1> 

M u l t i p l i c a t i v e o r d e r of 2 in Z/nZ i s : 5 
F a c t o r i z a t i o n of T~31 + 1 

[ 
<T + 
<T~5 
<T~5 
<T~5 
<T"5 
<T~5 
<T~5 

] 
Cur r en t F a c t o r : T + 1 
Vec tor space of d e g r e e 3 1 , d imens ion 1 over GF(2) 
Eche lon ized b a s i s : 
( 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 
Cur r en t F a c t o r : T~5 + T"2 + 1 
Vec tor space of d e g r e e 3 1 , d imens ion 5 over GF(2) 
Eche lon ized b a s i s : 
(0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0) 
(0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 1 ) 
(0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 ) 
(0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0) 
(0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1) 
Cur r en t F a c t o r : T~5 + T~3 + 1 
Vec tor space of d e g r e e 3 1 , d imens ion 5 over GF(2) 
Eche lon i zed b a s i s : 
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0) 
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0) 
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ) 
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1) 
C u r r e n t F a c t o r : T~5 + T~3 + T~2 + T + 1 
Vector space of d e g r e e 3 1 , d imension 5 over GF(2) 
Eche lon ized b a s i s : 
(0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
(0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
C u r r e n t F a c t o r : T~5 + T~4 + T~2 + T + 1 
Vector space of d e g r e e 3 1 , d imension 5 over GF(2) 
Eche lon i zed b a s i s : 
(0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 
(0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 
(0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 
(0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 
(0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 
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Current Factor: T~5 + T~4 + T~3 + T + 1 
Vector space of degree 31, dimension 5 over GF(2) 
Echelonized basis: 
(0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 ) 
(0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1) 
(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1) 
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1) 
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 ) 
Current Factor: T~5 + T~4 + T~3 + T~2 + 1 
Vector space of degree 31, dimension 5 over GF(2) 
Echelonized basis: 
(0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0) 
(0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 ) 
(0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1) 
(0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1) 
(0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 ) 

5.3.4 Field security table 

In this section we check all primes in [3, ...,512] against applicability of GHS attack. 

The chosen interval is particularly of cryptographic interest. In Table 5.1 one can see 

the minimum m that a curve can have on the specified field: 

5.4 The GHS attack for general function field extensions 

Using Algorithm 4.1 we can find K(C) efficiently. However, this algorithm needs to 

know exact degree of mj as it is defined in Section 4.3. We can run Algorithm 4.2 

for each coefficients of f(z) and then uses Theorem 4.2.3 to find exact degree of m. 

Therefore in this implementation we suppose that m is given: 

5.4.1 Implementation of the attack 

Listing 5.2: 'Magma implementation for the function field K(CY 

1 //FCompositonKash .m 
2 
3 / / I n i t i a l i z i n g the program 
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Table 5.1: The security of weakest elements of extensions of F2 with prime degree 
< 1000. The smallest field extension can be achieved using Algorithm 4.1 is of degree 
2d over K(z). The fields which admit non-trivial factorization of tn + 1 are noted by * 
in NT column. 

n 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
71 
73 
79 
83 
89 
97 

d 
2 
4 
3 
10 
12 
8 
18 
11 
28 
5 
36 
20 
14 
23 
52 
58 
60 
66 
35 
9 
39 
82 
11 
48 

NT 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

n 
101 
103 
107 
109 
113 
127 
131 
137 
139 
149 
151 
157 
163 
167 
173 
179 
181 
191 
193 
197 
199 
211 
223 
227 

d 
100 
51 
106 
36 
28 
7 
130 
68 
138 
148 
15 
52 
162 
83 
172 
178 
180 
95 
96 
196 
99 
210 
37 
226 

NT 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

n 
229 
233 
239 
241 
251 
257 
263 
269 
271 
277 
281 
283 
293 
307 
311 
313 
317 
331 
337 
347 
349 
353 
359 
367 

d 
76 
29 
119 
24 
50 
16 
131 
268 
135 
92 
70 
94 
292 
102 
155 
156 
316 
30 
21 
346 
348 
88 
179 
183 

NT 
* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

n 
373 
379 
383 
389 
397 
401 
409 
419 
421 
431 
433 
439 
443 
449 
457 
461 
463 
467 
479 
487 
491 
499 
503 
509 

d 
372 
378 
191 
388 
44 
200 
204 
418 
420 
43 
72 
73 
442 
224 
76 
460 
231 
466 
239 
243 
490 
166 
251 
508 

K\ 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 
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4 c l e a r ; 

5 / / To whether check if t h e r e s u l t i n g curve is h y p e r e l l i p t i c or not 

6 H y p e r e l l i p t i c C h e c k := t r u e ; 

7 

8 / / D e f i n i n g the f i e l d s 

9 p — 2; 

10 r — 1; 

11 n := 3; 

12 

13 m_fDegree := 2; 

14 

15 / / C o n s t r u c t i n g the F i e l d s and the Homomorphisms between them 

16 k := F i n i t e F i e l d ( p , r ) ; 

17 kx<x> := R a t i o n a l F u n c t i o n F i e l d (k ) ; 

18 kxT<T> := P o l y n o m i a l R i n g ( k x ) ; 

19 

20 IP<Theta> := I r r e d u c i b l e P o l y n o m i a l ( k , n ) ; 

21 kT<Theta> := P a r e n t ( I P ) ; 

22 p r i n t "Bas ic P a r a m e t e r s : p = " , p , " , r = " , r , " , n = " , n ; 

23 

24 EmbkTkxT := hom< kT-> kxT | T>; 

25 TIP := EmbkTkxT(IP); 

26 

27 p r i n t "Ex tend ing K/k w i t h " , T IP ; 

28 K<t> := ext<k | I P > ; 

29 Kx<x> :- R a t i o n a l F u n c t i o n F i e l d (K); 

30 

31 kxbyb<y> := P o l y n o m i a l R i n g ( k x ) ; 

32 KxbYb<Y> := Polynomia lRing (Kx); 

33 

34 kxy<yp,xp> :— P o l y n o m i a l R i n g ( k , 2 ) ; 

35 KbXYb<YP,XP> : = P o l y n o m i a l R i n g ( K , 2 ) ; 

36 

37 / / D e f i n i n g the curve 

38 / / N o i r r e d u c i b i l i t y check! 

39 

40 At t ackedCurves := {Y~2 + x*Y + t*x~3 + t / * , Y ~ 2 + Y + 1/x + t * x , 

41 Y"2 + x*Y + x ' 3 + 1 * / } ; 

42 
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43 for E in At tackedCurves do 

44 p r i n t "" ; 

45 p r i n t "********"; 

46 

47 p r i n t "The O r i g i n a l Curve under a t t a c k , E i s : " ; 

48 p r i n t E; 

49 

50 mCounter := 0; //How many t imes we extend our b a s i c c u r v e ' s f . f . 

51 

52 ExtendingCurve := E; 

53 FR := [KxbYb]; 

54 F := [ F u n c t i o n F i e l d (Ex tend ingCurve : Check := f a l s e ) ] ; 

55 

56 / / E x t e n d i n g F roben ius 

57 sigmaK := hom<K->F[ l ] | t ' ( p ' r ) > ; 

58 sigmaT :— hom<Kx->F [ 1 ] | sigmaK , Kx. 1 >; 

59 sigmaE := [*hom<F[l] ->F[ 1] | s igmaT, F [ l ] . l > * ] ; 

60 

61 for nCounter in [ l . . n —1] do 

62 

63 CurRing<YP> : = PoIynomia lRing(F[mCounter + l ] : Global := f a l s e ) ; 

64 Append(~FR, CurRing) ; 

65 

66 AssignNames(~FR[nCounter + 1] , [ n w " * I n t e g e r T o S t r i n g (nCounte r ) ] ) ; 

67 

68 sigmaEP := hom<FR[nCounte r+ l ] ->FR[nCounte r+ 1] | sigmaE [mCounter+ 1], 

69 FR[nCounter + l ] . l > ; 

70 ExtendingCurve := sigmaEP (Ex tend ingCurve ) ; 

71 

72 p r i n t "Applying s i g m a ' " , nCoun te r , " r e s u l t s in e q u a t i o n "; 

73 p r i n t Ex tend ingCurve ; 

74 

75 mCounter := mCounter + 1; 

76 Append(~F, F u n c t i o n F i e l d (Ex tend ingCurve : Check := f a l s e ) ) ; 

77 

78 / / E x t e n d i n g F roben ius 

79 CurK := hom<K->F[mCounter + l ] | s i g m a K ( t ) > ; 

80 CurT := hom<Kx->F[mCounter+ 1] | CurK, K x . l > ; 

81 for i in [ 1 . . mCounter] do 
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82 CurT := hom<F[ i ] ->F[mCounte r + l ] |CurT , F [ i ] . l > ; 

83 end for ; 

84 Append(~sigmaE , hom<F[mCounter+l]—>F[mCounter + l ] | CurT, 

85 F[mCounter + l ] . l > ) ; 

86 

87 if (mCounter eq m_fDegree — 1) then 

88 b r e a k ; 

89 end i f ; 

90 

91 end for ; 

92 

93 p r i n t "Compositon degree [K(C):K(E)J = 2 ~ " , mCounter; 

94 

95 KC := A b s o l u t e F u n c t i o n F i e l d ( F [ m C o u n t e r + l ] ) ; 

96 PC<yp,xp> := Def in ingPo lynomia l (KC) ; 

97 

98 p r i n t "The genus of the func t i on f i e l d K(C) i s : " , Genus(KC); 

99 

100 / /Map PC to a u n i v a r i a t e - l o o k i n g Ring! 

101 CanKbXYbKxbYb := hom<KbXYb - > KxbYb | Y, x > ; 

102 C := CanKbXYbKxbYb (PC); 

103 p r i n t "C i s " , C; 

104 

105 / / R e d e f i n i n g KC d i r e c t l y with t he d e f i n i n g e q u a t i o n : j u s t for 

106 / / e f f i c i e n c y . 

107 KGcY> := F u n c t i o n F i e l d ( C : Check := f a l s e ) ; 

108 KCbWrxtt£> : = PolynomialRing (KC); 

109 

110 FroKKxbYb : = hom<K->FR[ 1 ] | s i g m a K ( t ) > ; 

111 FroKxKxbYb : = hom<Kx->FR[ 1 ] | FroKKxbYb, K x . l > ; 

112 FroKxbYbKxbYb := hom<FR[l]->FR[ 1] | FroKxKxbYb, F R [ 1 ] . 1 > ; 

113 

114 ImgC := FR[1] ! C; 

115 ProdC := C; 

116 for i in [ l . . n —1] do 

117 ImgC — FroKxbYbKxbYb (ImgC); 

118 ProdC *:= ImgC; 

119 

120 end for ; 



5.5. Computational result of running the attack 85 

121 

122 p r i n t "Prod_{i = l . . n}S igma(C(Y) ) = "; 

123 p r i n t ProdC; 

124 

125 p r i n t "Complete F a c t o r i z a t i o n of above Produc t over KC[W]: " ; 

126 p r i n t F a c t o r i z a t i o n (KCbWb ! P rodC) ; 

127 

128 if ( H y p e r e l l i p t i c C h e c k ) then 

129 P2<Z,Y,x> := P r o j e c t i v e S p a c e ( K , 2 ) ; 

130 

131 AI := i dea l <KbXYb| [PC] >; 

132 KXYZcZ,Y,x>, hm :- Homogenizat ion ( A I ) ; 

133 PPC := Bas i sE lement (hm(AI) , 1 ) ; 

134 

135 C := Curve(P2 ,PPC) ; 

136 h p i c i t y , HC,hmp := I s H y p e r e l l i p t i c 

137 if ( h p i c i t y ) then 

138 p r i n t "C is h y p e r e l l i p t i c . C is 

139 

140 e l s e 

141 p r i n t "C is NOT h y p e r e l l i p t i c . " ; 

142 

143 end if; 

144 

145 end if; 

146 

147 end for ; 

5.5 Computational result of running the attack 

In this section investigate some individual examples of curves over different field. For 

this reason we chose n 6 3, 7 ,31. 

(C) ; 

" , HC; 
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5.5.1 Case n = 3 

In this section we attack the curve Y2 + xY — x3 + tx2 + 1 such that k = ¥2 is extended 

to K(t) such that t3 + t + 1. The minimal polynomial of Frobenius is factorized as 

tz + 1 = (f + l)(t2 + t + l). Now f(x) = X 3 + to2 + 1. So we have mx = < + 1 and 

mt(t) =t2 + t + l. This mean m} = [t + 1, t2 +1 + 1} = i3 + 1. Therefore deg(m/) = 3. 

By running the attack we get following result: 

Basic Parameters: p = 2 , r = l , n = 3 

Extending K/k with T~3 + T + 1 

The Original Curve under attack E is: 

Y~2 + x*Y + x~3 + t 

Applying sigma" 1 results in equation 

wl~2 + x*wl + x~3 + t~2 

Applying sigma~ 2 results in equation 

w2~2 + x*w2 + x~3 + t~4 

Compositon degree [K(C):K(E)] = 2" 2 

The genus of the function field K(C) is: 3 

C is Y~8 + (t~2*x~7 + t~4*x~6 + t~6*x~5 + t*x~4)*Y~4 + (t~3*x~7 + 
t~5*x~6)*Y~2 + (x~14 + t~2*x~13 + t~4*x~12 + t~6*x"ll + t*x~10 + 

t~3*x~9 + t~5*x~8)*Y + t~3*x~20 + t~3*x~18 + t*x~17 + t~6*x~16 + 
t*x~15 + t~5*x~14 + t~4*x~13 + x~12 + t~2*x~ll + t~3*x~10 + t~3*x~9 
+ x~8 + t~2*x~7 + t~6*x~6 + t*x~5 + t~4*x~4 + t~4 
Prod_-Ci = i..n}Sigma(C(Y)) = 

Y~24 + x~5*Y~20 + (x~7 + x-~6)*Y~18 + (x~14 + x~ll + x~9 + x"8)*Y~17 

+ (x~20 + x~18 + x~16 + x~13 + x~6)*Y~16 + (x~14 + x~12 + x~ll + 

x~10)*Y~14 + (x~16 + x"14 + x~13 + x~12)*Y~13 + (x~27 + x~26 + x~22 

+ x~21 + x~20 + x~18 + x~15 + x~13 + x~12 + x~ll + x~9 + x~8 + 

x~7 + x~5 + x~4)*Y"12 + (x~20 + x~18 + x~17 + x~16)*Y~ll + (x~28 + 
x~25 + x~22 + x~21 + x~20 + x~17 + x~15 + x~14 + x~12 + x~7)*Y~10 

+ (x~33 + x~32 + x~28 + x~26 + x~24 + x~23 + x~20 + x"*18 + x~16 + 

x~15 + x~13 + x~ll + x"10 + x~9)*Y~9 + (x~36 + x~34 + x~33 + x~32 

+ x~31 + x"28 + x~27 + x~26 + x~23 + x~22 + x~17 + x~16 + x~15 + 

x-13 + x-11 + x~9 + x~7 + x~6 + x"5 + 1)*Y~8 + (x~28 + x~26 + x~25 
+ x~24)*Y~7 + (x~32 + x~31 + x~30 + x~28 + x~26 + x~25 + x"24 + x~21 

+ x~19 + x~17 + x~13 + x-10)*Y"6 + (x~41 + x~40 + x~36 + x~33 + 
x~32 + x~25 + x~22 + x~18 + x~15 + x~12)*Y~5 + (x~47 + x~45 + x~43 
+ x-42 + x-40 + x~37 + x~33 + x~32 + x~27 + x~26 + x~25 + x~22 + 
x~21 + x~19 + x~17 + x~16 + x~15 + x~14 + x~12 + x~7 + x~6)*Y~4 
+ (x~42 + x~39 + x~38 + x~35 + x~34 + x~33 + x~30 + x~29 + x"28 + 
x~27 + x~26 + x~25 + x~23 + x~21 + x~19 + x~16)*Y~3 + (x~48 + x~45 
+ x"44 + x"43 + x~42 + x~41 + x~40 + x~39 + x~38 + x~37 + x"36 + 
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x"35 + x~34 + x~32 + x~30 + x~27 + x~26 + x~25 + x"24 + x~22 + x*21 

+ x"20 + x~17 + x~14 + x~13 + x~ll + x~7)*Y~2 + (x~53 + x~51 + 

x~50 + x~40 + x~39 + x~38 + x~36 + x~35 + x~34 + x"33 + x~32 + x~30 

+ x~27 + x~25 + x~24 + x~20 + x~18 + x"16 + x~15 + x"14 + x~12 + 

x~9)*Y + x~60 + x~58 + x~57 + x~55 + x"54 + x~52 + x"49 + x~48 

+ x~47 + x"46 + x~45 + x~41 + x~39 + x"38 + x~35 + x~33 + x~30 

+ x~29 + x~28 + x~26 + x~23 + x~22 + x~21 + x~20 + x~19 + x~18 

+ x~17 + x~15 + x~14 + x~13 + x~12 + x~9 + x~7 + x"4 + 1 

Complete Factorization of above Product over KC[W]: 

[ 
<W + Y, 1>, 
<W + Y + x-2, 1>, 

<W + Y + t*x~2 + t~4*x, 1>, 

<W + Y + t~2*x~2 + t~6*x, 1>, 

<W + Y + t~3*x~2 + t~4*x, 1>, 

<W + Y + t~4*x~2 + t~3*x, 1>, 

<W + Y + t~5*x~2 + t~3*x, 1>, 

<W + Y + t~6*x~2 + t~6*x, 1>, 

<W + (t*x~3 + t~6*x~2 + t~6)/(x~9 + t~5*x~8 + t"2*x"7 + t*x"6 + 

t~2*x~5 + t~2*x~4)*Y~4 + (t"3*x~5 + t~3*x~4 + x~3 + t~3*x~2 + t"5*x 
+ t~3)/(x~7 + t~5*x~6 + t~2*x~5 + t*x~4 + t~2*x~3 + t~2*x~2)*Y~2 

+ (t*x~6 + t~5*x~5 + t~2*x~4 + t~5*x~3 + t~4*x~2 + t~3*x + 
t~5)/(x~6 + t"5*x~5 + t~2*x~4 + t*x~3 + t~2*x~2 + t~2*x)*Y + 
(t~6*x~12 + x~ll + t*x~10 + t~5*x~9 + t~6*x~8 + t~6*x~7 + t~3*x~6 + 
t~3*x~5 + x~4 + x~3 + x~2 + t~5*x + t~3)/(x~8 + t~2*x~6 + t~3*x~5 + 
t~4*x~4), 1>, 

<W + (t~3*x~3 + t~3*x~2 + t~6)/(x~9 + x~d + t~3*x~7 + x~6 + t"5*x~5 

+ t~6*x~4)*Y~4 + (t*x~5 + x~4 + t*x~3 + x"2 + t~5*x + t~3)/(x~7 

+ x~6 + t~3*x~5 + x~4 + t~5*x~3 + t~6*x"2)*Y~2 + (t*x~6 + t~2*x~5 + 

t*x~4 + t~3*x~3 + x + t~5)/(x~6 + x~5 + t~3*x~4 + x~3 + 

t~5*x~2 + t"6*x)*Y + (t*x~12 + t~2*x~ll + t~6*x~10 + t~3*x~9 + x"8 

+ x~7 + t~4*x~6 + t~6*x~5 + x~4 + t~2*x~3 + t~3*x~2 + t~5*x + 

f3)/(x~8 + t~4*x~7 + t~5*x~6 + t*x~5 + t*x~4), 1> 

] 

C is hyperelliptic. 

The product of a images of C has coefficient in k(x) and is completely factored in 

K(C). Therefore, K{C) is splitting field of nr=o ^(C) over k(x) and hence is Galois 

over it. Therefore it is meaningfull to talk about K(C)a = k(C). The equation of the 
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curve C is defined over K. However in [GHS02b] and [Hes04], there are algorithm to 

explicitly compute C such that C is defined over k as well. 

As deg(my) = 3, the equation of the curve is considered secure against GHS attack. 

However, there is no guarantee that one can not write K(E) with another equation 

whose deg(ra/) = 2. But 2 is the absolute lower bound. It is important to notice that 

the resulting curve is hyperelliptic. 

5.5.2 Case n = 7 

In this case we attacked Curve Y2 + xY + tx3 + t. K = k(t) such that t7 + t + 1. The 

factorization of the minimal polynomial of the Frobenius is not trivial as discussed in 

Section 5.3.2. Now f(x) := tx3 4-1. So the only coefficient is t, so rrif(t) = mt(t). Due 

to the result of Section 5.3.2, we know that mt(t) = t3 + t + 1 and that means that 

deg(mt(t)) = deg(m/(*)) = 3: 

Basic Parameters: p = 2 , r = l , n = 7 
Extending K/k with T~7 + T + 1 

The Original Curve under a t tack E i s : 
Y"2 + x*Y + t*x~3 + t 
Applying sigma" 1 results in equation 
wl~2 + x*wl + t~2*x~3 + t~2 
Applying sigma" 2 results in equation 
w2~2 + x*w2 + t~4*x~3 + t"4 
Compositon degree [K(C):K(E)] = 2" 2 

The genus of the function field K(C) is: 7 
C is Y~8 + (t~124*x~8 + t~23*x~7 + t~48*x~6 + t~71*x~5 + t~62*x~4)*Y-4 

+ (t"5*x-12 + t~84*x~il + t~61*x~10 + t~42*x~8 + t~48*x"7 + 
t-116*x"6)*Y"2 + (t~lll*x~14 4 t~103*x~13 + t~71*x~12 + t~113*x~ll + 
t~91*x~10 + t~73*x~9 + t~113*x~8 + t~123*x~7)*Y + t~98*x~20 + 
t~4*x~18 + t~121*x~17 + t~90*x~16 + t~59*x~15 + t~74*x~14 + t~75*x~13 

+ t~125*x~12 + t~102*x-il + t~126*x~10 + t-100*x~9 + t~34*x~7 
+ t-85*x~6 + t~31*x~5 + t~120*x~4 + t~47 
Prod_{i = l..n}Sigma(C(Y)) = 
Y~56 + (x~8 + x~4)*Y-52 + (x~ll + x"10 + x~8)*Y~50 + (x~14 + x~13 + 
x~9 + x~7)*Y~49 + (x~17 + x~16 + x"14 + x~ll + x~9 + x~6 + x~5 + 
l)*Y~48 + (x~19 + x~18 + x~16 + x~15 + x~14 + x~10)*Y~46 + (x~21 + 
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x~20 + x~19 + x~18 + x~15 + x~13 + x~12 + x~ll)*Y~45 + (x~28 + 
x~27 + x~26 + x~25 + x~23 + x~21 + x~20 + x~19 + x~16 + x~15 + x~14 
+ x~13 + x~12 + x~ll + x~10 + x~9 + x~8 + x~7 + x~6 + x~4)*Y~44 + 
$\vdots$ 
x~53 + x~52 + x~51 + x~50 + x~48 + x~47 + x~44 + x~43 + x~40 + x~37 

+ x~35 + x~34 + x~24 + x~19 + x"17 + x~15 + x"14 + x~13 + x~12 + 
x~ll + x~10 + x~8 + x~6 + x~5 + x~4 + 1 

Complete Factorization of above Product over KC[W]: 

[ 
<W + Y, 1>, 
<W + Y + t~5*x~2 + t~77*x, 1>, 
<W + Y + t~8*x~2 + t~125*x, 1>, 

<W + Y + t~68*x~2 + t~69*x, 1>, 

<W + Y + t~81*x~2 + t~102*x, 1>, 

<W + Y + t~86*x~2 + t~57*x, 1>, 

<W + Y + t~121*x~2 + t~55*x, 1>, 

<W + Y + t~123*x~2 + t~19*x, 1>, 
<W + (t~4*x~4 + t~57*x~3 + t~126*x~2 + t~27*x + t~91)/(x~10 + 
t~119*x~9 + t~87*x~8 + t~2*x~7 + t~107*x~6 + t~89*x~5 + t~2*x~4 + 
t~12*x~3)*Y~4 + (t"91*x-6 + t~34*x~5 + x~4 + t~35*x~2 + t~66*x + 

t~75)/(x~8 + t~119*x~7 + t~87*x~6 + t~2*x~5 + t~107*x-4 + 
t~89*x~3 + t~2*x~2 + t~12*x)*Y~2 + (t~99*x~7 + t~85*x~6 + t~103*x~5 
+ t~48*x~4 + t~2*x~3 + t~78*x~2 + t~54*x + t~113)/(x~7 + 

t~119*x~6 + t~87*x~5 + t"2*x~4 + t~107*x~3 + t~89*x~2 + t"2*x + 

t~12)*Y + (t~53*x~14 + t~56*x~13 + t~25*x~12 + t"99*x~ll + 
t~83*x~10 + t~22*x~9 + t~78*x~8 + t~39*x~7 + t~110*x~6 + t~109*x~5 
+ t~64*x~4 + t"96*x"3 + t~9*x~2 + f~114*x + t~51)/(x~10 + 
t~119*x~9 + t~87*x~8 + t~2*x~7 + t"107*x"6 + t~89*x~5 + t"2*x~4 + 
t-12*x~3), 1>, 

<W + (t~106*x~4 + t~38*x~3 + t~35*x~2 + t~61*x + t~92)/(x~10 + 
t~119*x~9 + t~87*x~8 + t~2*x~7 + t~107*x~6 + t~89*x~5 + t~2*x~4 + 
t~12*x~3)*Y~4 + (t~21*x~6 + t~123*x~5 + t~84*x~4 + t~114*x~2 + 
t"38*x + t~92)/(x~8 + t~119*x~7 + t~87*x~6 + t~2*x~5 + t~107*x~4 
+ t~89*x~3 + t~2*x~2 + t~12*x)*Y~2 + (t~40*x~7 + t~126*x~6 + 
t~50*x~5 + t"62*x~4 + t~118*x"3 + t~lll*x~2 + t~118*x)/(x~7 + 
t~119*x~6 + t~87*x~5 + t~2*x~4 + t~107*x~3 + t~89*x~2 + t~2*x 
+ t"12)*Y + (t~28*x~14 + t~22*x~13 + t~83*x~12 + fl24*x~ll + 
t~50*x~10 + t~26*x~9 + t~67*x~8 + t~57*x~7 + t~121*x-6 + t~58*x~5 
+ t~59*x~4 + t~29*x~3 + t~119*x~2 + t~21*x + t~52)/(x~10 + 
t~119*x~9 + t~87*x~8 + t~2*x~7 + t~107*x~6 + t~89*x~5 + t~2*x~4 + 
t~12*x~3), 1> 
] 
C is NOT hyperelliptic. 
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The resulting curve is of degree 23 instead of secure degree 27 and therefore this 

curve is not secure for cryptographic purpose. K{C) is not hyperelliptic which means 

that the implementation of index calculus attack against k(C) is not as efficient as the 

hyperelliptic case. 

5.5.3 Case n = 31 

We attack the curve Y2 + xY + x3 +1 defined over K = k(t) such that t3l + t2 + 1 = 0 

so n = 31. f(x) = x3 + t . The coefficients are l,t and rrif(t) = [m\,mt\. m\ = t + 1 

as Probenius fix 1. mt(t) = = t5 -j- t2 + 1 using result from Section 5.3.3. Therefoe 

mf(t) == [t + l,f5 + t2 + 1] = (t + l)(t5 + t2 + 1) therefore deg(my) = 6. Knowing 

these facts we can run the attack: 

Basic Parameters: p = 2 , r = l , n = 3 1 
Extending K/k with T~31 + T~3 + 1 

The Original Curve under attack E i s : 
Y~2 + x*Y + x~3 + t 
Applying sigma" 1 results in equation 
wl~2 + x*wl + x~3 + t~2 
Applying sigma" 2 results in equation 
w2"2 + x*w2 + x~3 + f~4 
Applying sigma" 3 results in equation 
w3"2 + x*w3 + x"3 + t~8 
Applying sigma" 4 results in equation 
w4"2 + x*w4 + x"3 + t~16 
Applying sigma" 5 results in equation 
w5~2 + x*w5 + x"3 + t"4 + t 
Compositon degree [K(C):K(E)] = 2" 5 
The genus of the function field K(C) is: 31 
C is Y~64 + Y\"{}32((t"30 + t~29 + t"28 + t"27 + t"26 + t"22 + t~21 
+ t"20 + t~18 + t"17 + t"15 + t~12 + t"7 + t + l)*x"64 + (t~29 + 
t"26 + t"25 + t~22 + t"21 + 

(t"27 + t"26 + t~24 + t~22 + t"17 + t~16 + t~15 + t~9 + t~8 + 
t"7 + t~6 + t"5 + t~2)*x~33 + (t~29 + t"25 + t~24 + t~23 + t~21 + 
t~18 + t~14 + t~12 + t~10 + t~7 + t~6 + t~5 + t"4 + t"2 + t + l)*x~32 
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+ t~27 + t~24 + t~23 + t~22 + t~20 + t~19 + t"16 + t~13 + t~7 + 
t~6 + t~4 + t 

The result is a curve of degree 64 = 26, However a secure curve should result in a 

curve of degree 230 = 1073741824. Therefore this curve is significantly less secure than 

it is expected to be. 





CHAPTER 6 

Conclusion and Further Work 

A decade has been passed since introduction of the idea of the GHS method. During 

this decade, the attack was improved from a mere idea to a standard technique to attack 

curves defined over composite fields. The progress of the GHS attack also influenced 

other area of cryptography and algorithmic number theory such as hyperelliptic curve 

cryptography, algorithmic study of class group of algebraic curves and function fields. 

The purpose of this work was to study the GHS attack in more general form, both 

from theoretical and practical view. We presented the basic foundation of GHS attack, 

namely solving the discrete logarithm over jacobian of a general curve. Then we de

scribed the theoretical aspect of GHS attack to an elliptic curve defined over a finite 

field of arbitrary characteristics. 

We then studied more practical aspects of the GHS attack. In this stage, we re

stricted ourselves to even characteristic and we considered more general quadratic ex

tensions than [Hes04]. We showed that the same method of <x-polynomial that is used 

in [Hes04] can be used to analyze the degree of the extension K{C) and we devel

oped an upper bound for the genus of K(C). We also studied the structure of K as a 

F2[i]—module and we gave an algorithm to find the least secure elements of a composite 

field for the GHS attack. 

Finally, we brought the implementation of the main algorithms described in this 

paper along with the example of computational results of these algorithms. 

The fundamental idea behind the GHS attack, namely mapping the DLP over the 
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jacobian of a curve to an easier instance of DLP over jacobian of another curve using 

the relationship between their function fields, is vast and has the potential of deeper 

studies. 

By studying the inverse image of the factor base of the CI°(CQ), it could be possible 

to find a method to build a factor base for elliptic curve DLP. Similar approach using 

Weil Descent idea (the geometric parallel of the GHS) is studied in [Gau04]. 

Because of the GHS attack, it is now standard to avoid composite finite fields for 

elliptic curve cryptography. It would be interesting to extend some of ideas of the 

GHS to attack other cases of the DLP. True subfield curves used over a large prime 

extensions, such as Koblitz curves [HMV03] are still in use and attract considerable 

interest due to their performance. The method described in this work is not applicable 

to these curves. However, considering other isogenous curve may lead to an efficient 

attack against these curves. Partial work on this issue has been done in [DS03]. 

Optimal Extension Fields (OEFs) [HMV03], are extensions of a prime fields whose 

characteristics occupies all most one machine words (e.g. 64 bits). These fields are also 

known to have efficient finite field operation algorithm. The study of the GHS attack 

against curves defined over these fields is also an interesting problem. 

The above examples are a few open problems centered on the study of the GHS 

attack. The final word is that the GHS attack opened the flood-gates for the use 

function field arithmetic in cryptography. 
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