
On General Multi-Quadratic Function Field Extensions in the GHS Attack

Ahmad Lavasani

A Thesis

in the Department of

Mathematics and Statistics

Presented in Partial Fulfillment of

the Requirements for the Degree of

Master of Science (Mathematics)

at

Concordia University

Montreal, Quebec, Canada

July 2008

© Ahmad Lavasani, 2008.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45468-8
Our file Notre reference
ISBN: 978-0-494-45468-8

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i i i

A b s t r a c t

On General Multi-Quadratic Function Field Extensions in the GHS Attack

Ahmad Lavasani

To date, elliptic curves offer the most efficient cryptographic solution. Particularly

efficient among elliptic curves, are those defined over binary composite finite fields, such

as GF((2r)n). These curves were no longer considered secure when, in 1998, Gerhard

Frey innovated a concept which paved the road for the GHS attack. The idea behind

the GHS attack is to map the Discrete Logarithm Problem (DLP) over such a curve

to an equivalent DLP over the jacobian of another curve, defined over the smaller field

GF(2r).

In this thesis, we study the theoretical structure of the GHS attack for elliptic

curves defined over fields of arbitrary characteristics. We study the GHS attack using

general quadratic extensions for elliptic curves defined over composite fields of even

characteristic and we estimate the genus of resulting function field. We also implement

the GHS attack and present some computational results.

Keywords : GHS Attack, Elliptic Curve Cryptography, Function Fields.

iv

Resume

Sur les extensions multi-quadratiques des corps de fonctions dans l 'attaque GHS

Ahmad Lavasani

Jusqu'a present, les courbes elliptiques offrent la solution cryptographique la plus

efficace. En particulier, les courbes elliptiques qui sont definies sur des corps binaires

comme GF((2r)n) sont encore plus efficace. Ces courbes ne sont plus considerees secu-

ritaires apres l'innovation de l'idee de l'attaque GHS par Gerhard Frey en 1998. L'idee

principale de l'attaque GHS est de transferer le probleme du logarithme discret (PLD)

sur une courbe elliptique de cette famille a un PLD equivalent sur la jacobienne d'une

autre courbe qui est definie sur le corps le plus petit GF(2r).

Dans ce memoire, nous etudions la structure theorique de l'attaque GHS pour les

courbes elliptiques definies sur les corps de n'importe quelle caracteristique. Nous etu

dions l'attaque GHS en utilisant des extensions quadratiques generates pour les courbes

sur les corps de caracteristique paire et nous estimons le genre de la courbe. Nous

presentons aussi le resultat de nos implementations de l'algorithme de GHS.

M o t s Cles: Attaque GHS, Cryptographie sur les Courbes Elliptiques , Corps de Fonctions.

To

My mother, FSM and Pickle

vi

Copyright © 2008, Ahmad Lavasani.

Permission is granted to copy, distribute and/or modify this document under the terms

of the GNU Free Documentation License, Version 1.2 or any later version published by

the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and

no Back-Cover Texts [Fre02].

The program codes included in this thesis are free software: you can redistribute it

and/or modify them under the terms of the GNU General Public License as published

by the Free Software Foundation, either version 3 of the License, or (at your option)

any later version.

These codes are distributed in the hope that they will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT

NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details [Fre07].

Preface

In 2005 I was a research assistant of Prof. Taraneh Eghlidos in Cipher Lab of Sharif

ERC. I was assigned the task of comparing the efficiency of the arithmetic of different

elliptic curves for processors with limited resources. The result of my implementation

was unanimously in favor of elliptic curves over finite field extensions with composite

degree. I wrote a report and I recommended them for their efficiency [ELS06]. A

week later, after submitting my report, I leafed through a guide for choosing elliptic

curves for cryptography. It was suggested in the guide, that those finite fields are not

recommended for cryptographic purposes, as they are subject to Weil Descent attack. It

is not a good feeling to submit something and then find evidence against it. I felt a mix

of sadness and curiosity. I was determined to know what this attack was, that ruined

the pleasure of using those nice curves. I immediately submitted a research proposal to

Dr. Eghlidos to study the Weil Descent attack. I should thank her for accepting it and

for her support in that research [EGL07]. In the short period of time that I had, I got

acquainted with the attack, but I had still a long way to study it.

When I began my Master's in Concordia, I didn't feel like leaving my research

half unfinished. I talked to my supervisor, Prof. Chantal David, about my personal

attachment to GHS attack. She was very kind to accept my proposal, even though she

had another proposal for me and the GHS attack was not her main interest. I would like

to thank her, not only for accepting my proposal, but also for her continuous support;

for reading papers with me line-by-line and for going through the proofs together, for

her help in solving my financial problems, and for reading and correcting my messy

viii Chapte r 0. Preface

thesis drafts line by line. Above all, I should thank her for thinking with me about the

problems I faced, which I think is very important point.

I also should thank Ann-Marie Agnew, our kind graduate assistant of the Math

Department of Concordia University, for her continuous support during my two years

of Master's study.

I am thankful to the other members of the thesis committee: Prof. David Ford,

Prof. Hershy Kisilevsky and Prof. Francisco Thaine, who agreed to evaluate my work

under time pressure.

On the path to preparing this work I am indebted to several people who, either

listened to my problems and/or suggested solutions, including: Ferenc Balogh, Marco

Bertola, Noam Elkies, Florian Hess, Jorge Jimenez Urroz and Nicolas Theriault.

I should especially thank my linguist friend Natalie Kershaw who, by helping me

with the grammar of this thesis, also proved her theory in the disability of the human

brain in learning new language after losing its neuro-plasticity. I should also thank

Valerie Hudon for helping me with the french abstract.

I would like also to thank my uncle, Abbas Beheshti and my aunt for helping me

financially in the application and visa processes.

Last but not least, I would like to express my appreciation to Pickle who almost

constantly kept me company while I was writing my thesis, even though occasionally I

had to bribe him with pieces of carrot to keep him interested.

Contents

Preface vii

List of algorithm xiii

List of diagrams xv

1 Introduction 1

1.1 History 1

1.1.1 Algebraic geometry 1

1.1.2 Cryptography 2

1.1.3 The GHS Attack 4

1.2 Outline 6

2 DLP over the jacobian of curves 9

2.1 Divisor class group and jacobian 10

2.2 Complexity of the DLP over the jacobian of a curve 13

2.3 Index calculus attack 14

2.3.1 The algorithm 14

2.4 Index calculus for jacobians 17

2.4.1 Jacobian of hyperelliptic curves 17

2.4.2 Jacobian of a general curve 18

2.4.3 Infeasibility of index calculus method for elliptic curves 19

3 GHS and its function fields 21

3.1 The GHS attack in nutshell 22

3.2 Criteria of K{C) 24

X Contents

3.3 The field theoretic structure 26

3.3.1 Notations 26

3.3.2 Fields K, k and extension K/k 27

3.3.3 Extensions K(z)/k(z), K{E)/K{z) and K{E)/k{z) 27

3.3.4 Extension K(C)/k(C0) 31

3.4 Algorithmic Construction 33

3.4.1 The magic number "m" 35

3.5 The Genus of resulting curves 37

3.6 Mapping the DLP 38

3.6.1 Mapping the DLP faithfully 39

3.6.2 Mapping Cl°(K{E)) to Cl°(K(C)) 41

3.6.3 Mapping Cl°{K(C)) to Cl°(k(C0)) 44

4 Even characteristic function fields 47

4.1 Finding a suitable K{C) 48

4.2 Minimal cr-polynomial 50

4.3 General quadratic extensions 56

4.4 Genus of K(C) 60

4.5 Artin-Schreier extensions 62

4.5.1 Elliptic curve equation in Artin-Schreier form 64

4.5.2 The GHS attack with Artin-Schreier extensions 65

4.6 Security evaluation of composite fields 67

4.6.1 Security of coefficients of f(z) 67

4.6.2 On polynomial tn + l 68

4.6.3 The structure of K+ as a F2-module 69

4.6.4 Field security evaluator 70

Contents xi

5 Computational result 73

5.1 Choosing the computer algebra system 73

5.2 Security evaluator 74

5.2.1 Implementation of the security evaluator 74

5.3 Computational result of field evaluator 76

5.3.1 Case n = 5 76

5.3.2 Casen = 7 77

5.3.3 Case n = 31 78

5.3.4 Field security table 80

5.4 The GHS attack 80

5.4.1 Implementation of the attack 80

5.5 Computational result of running the attack 85

5.5.1 Case n = 3 86

5.5.2 Case n = 7 88

5.5.3 Case n = 31 90

6 Conclusion and further work 93

Bibliography 95

List of Algorithms

2.1 Index Calculus - given the factor base 16

3.1 Constructing K(C) 34

3.2 Constructing K(C) and computing m 35

4.1 Finding K(C) using general extension 57

4.2 Finding the generators of weakest submodules 70

List of Diagrams

3.1 Extension K/k 27

3.2 The series of function field extensions to reach K(C) 31

3.3 The series of function field extensions to reach K(C) 36

3.4 The relation of function field extensions in the GHS attack 37

3.5 The map <f>* 42

4.1 The induction tower 62

CHAPTER 1

Introduction

1.1 History

1.1.1 Algebraic geometry

In the ancient past, it was too difficult for the Greeks to look at algebra and geometry

as two different fields of mathematics since they were thinking about algebra "geomet

rically". Rather than "calculating" with numbers they were "measuring" magnitude and

searching for relations. Multiplying two values meant computing the area that two

"lengths" make. Therefore the Greeks considered area as a magnitude of a different

type. This made the notion of polynomials not very meaningful for them [DD85].

However, this geometric view of algebra helped them to excel in algebraic geometry

in that very early age. The intensive usage of the geometric methods can be found in

"Konika" of Apollonius of Perga (262-190 BCE) in his thorough study of conic sections.

Half a millennium later, Diophantus of Alexandria (about 200- about 284) wrote his

series of Arithmetica. He was aware of the group operation on the points of elliptic

curves and used this operation to find new rational points on these curves. This was

probably the first time in history that elliptic curves appeared in the literature [vdW83].

Omar Kayyam (1048-1122) was the first one who made a clear distinction between

"Numerical Algebra" and "Geometrical Algebra" and tried to prove some of Euclid's

theorems using purely numerical quantities. Nevertheless, his algebra was mainly geo-

2 Chapter 1. Introduction

metric; for example, he solved cubic equations by intersecting conies [DD85]. Following

Kayyam, algebra and geometry started to grow in different directions. Mathematicians

started avoiding geometric methods when studying algebraic problems. In this way, the

reunification of algebra and geometry was postponed until the 19th century.

In the late 18th and early 19th century, prominent mathematicians such as Leonhard

Euler (1707-1783), Joseph Lagrange (1736-1813) and especially Adrien-Marie Legendre

(1752-1833) tried unsuccessfully to find solutions for indefinite elliptic integrals. Their

failed efforts did, however, lead to the theory of "elliptic functions", which are double

periodic functions on complex plane. These functions were the first instance of "abelian

varieties" later named as such by Solomon Lefschetz(1884-1972). Niels Abel (1802-1829)

and Carl Jacobi (1804-1851) independently generalized this theory for higher periods.

These works led to the invention of another class of abelian varieties called "jacobian of

hyperelliptic curves" which are one of main objects studied in our work.

During the 19th century, algebraic methods in geometry made considerable progress,

mainly due to the work of Bernhard Riemann (1826-1866) and his successors [DD85].

Algebraic geometry was reborn as mathematicians started to use geometric methods to

study "abelian functions" again. It was Weil in the 1940s who gave abelian varieties

their modern foundations in the language of algebraic geometry.

Abelian varieties are geometric objects, such as curves and surfaces, which are alge

braic groups at the same time. At the end of the 20th century, abelian varieties became

the intersection point between an ancient branch and a recent branch of mathematics:

algebraic geometry and cryptography.

1.1.2 Cryptography

Less than 3 decades after the birth of cryptography as a science through Claude Shan

non's seminal paper [Sha48] on information theory, cryptography reached an inflection

1.1. History 3

point. Martin Hellman discovered that a public-key cryptosystem would be possible if

there exists a problem which is hard in one way and easy in other way. A Public-key

cryptosystem is a system which allows everybody to send an encrypted message to Alice

that no one else can decrypt but Alice. It is sometimes called asymmetric cryptography.

Ralph Merkle, suggested to Hellman that the "Discrete Logarithm Problem (DLP)" in

Z/pZ is a good choice [DH76].

Since then, the DLP has become a popular problem in designing public key cryp-

tosystems. The popularity of the DLP in cryptography motivates both cryptographers

and cryptanalysts. While cryptographers have been searching for groups in which solv

ing the the DLP is hard, cryptanalyzers, on the other hand, have been trying to find

faster algorithms to solve the DLP on those groups. It was there that algebraic geometry

and cryptography were tied together.

As abelian varieties provide a rich supply of algebraic groups, they attracted the

attention of the cryptographers in their search for harder instances of the DLP. Neal

Koblitz [Kob87] and Victor Miller [Mil86] (independently) suggested using the group

of points of an elliptic curve over a finite field. The contribution of algebraic ge

ometry to cryptography, however, is wide-reaching and did not stop at that point.

Koblitz later also proposed the use of the jacobian of a hyperelliptic curve for the

same purpose [Kob89]. Other examples are torus-based cryptography proposed by Al

ice Silverberg and Karl Rubin [RS03] or the usage of a generalized jacobian by Isabelle

Dechene [Dec05].

On the other side of the race, cryptanalysts were trying to develop algorithms to

solve the DLP over different groups. Victor Shoup proved [CFA06] that a generic DLP

solver (according to the definition of generic DLP solver in Theorem 19.2 [CFA06])

can not be less complex than 0(V'Group Size). To solve the DLP faster, cryptanalysts

started to look for algorithms which exploit the structure of the underlying group. At

4 Chapter 1. Introduction

the end of the 70's, the index calculus algorithm was introduced for solving the DLP

over the multiplicative group of Z/pZ in subexponential time, based on the idea of

A. E. Western and J. P. C. Miller. This idea can be generalized to the multiplicative

group of any finite field. Later in 1999, Leonard Adleman, Jonathan DeMarrais and

Ming-Deh Huang designed the index calculus algorithm for jacobians of hyperelliptic

curves [ADH94]. To date, index calculus algorithms are the strongest algorithms for

solving the DLP in many groups.

In spite of the successful application of the index calculus attack to many groups,

there are still some groups on which this attack is not applicable. The failure to find a

fast algorithm for solving the DLP on these groups has been the motivation for studying

isomorphism attacks. These attacks try to find an efficiently computable map from a

group with no known fast DLP solver to another group which admits a fast DLP solver

such as index calculus. In the presence of such a map, one can solve the DLP in the

range group to solve the DLP in the domain.

The group of points on a general elliptic curve is a prominent example of groups

for which no successful subexponential DLP solver has been found yet. As a result, in

order to solve the DLP problem on elliptic curves, mathematicians try the option of the

isomorphism attack. Two examples of an isomorphism attack which are applicable to

special groups of elliptic curves, are [MV091] and [Sma99], however neither of these is

applicable to a significant number of curves.

1.1.3 T h e G H S Attack

The difficulty of the elliptic curve DLP (ECDLP) made elliptic curves very interesting

objects for cryptography. Among all kinds of elliptic curves, the cryptographers were

particularly interested in curves defined over binary finite fields with a composite exten

sion degree , i.e. GF((2r)n), because of the fast algorithms existing for the arithmetic on

1.1. History 5

these fields. Examples of practical interest in these curves can be found in the internet

protocol standard RFC4212 [Orm98] and also in [PSR97], [GP97], [PFR98], [AMV93]

and [PFSR99].

As the elliptic curves over composite finite fields were gaining popularity, Gerhard

Frey took mathematical cryptography to a higher level of sophistication by opening a

new trend of isomorphism attacks for elliptic curves over composite fields [Kob07]. He

proposed a method to map the DLP over elliptic curves defined over composite fields to

the DLP over a higher-dimensional abelian variety, which is called the Weil restriction

of the curve. In this way solving the DLP over the resulting variety became equivalent

to solving the DLP over the curve [Fre98].

In [GS99], Nigel Smart and Steve Galbraith studied different aspects of the method

in the case of characteristic 2. They proposed a way to find an algebraic curve over

the Weil restriction and a way to transform the DLP from the elliptic curve to the new

curve. They experimentally discovered that the resulting curve is usually hyperelliptic.

Later Pierrick Gaudry, Florian Hess and Smart used the idea of [GS99] but worked

with the function fields of the curves instead of the curves themselves. The basic idea

in [GHS02b] was to extend the function field of the elliptic curve iteratively to reach

a function field corresponding to a curve suitable for an index calculus attack. This

became known as the GHS attack. The function field is extended with a series of

Artin-Schreier extensions and the authors were able to prove that the function field

resulting from the extension process belongs to a hyperelliptic curve. As the index

calculus for the jacobian of an hyperelliptic curve is a well studied problem [CFA06],

the GHS attack provides a way to solve the DLP over such elliptic curves with exactly

computable complexity.

The method of [GHS02b], although it was applicable to elliptic curves defined over

the majority of composite fields, resulted in an easier DLP only for a small proportion

6 Chapter 1. Introduction

of these curves. This difficulty arises because most of the time, the genus of the ex

tended function field is very large, which means that the jacobian of its defining curve

would be large. In such situations, the subexponential index calculus algorithm for this

jacobian cannot out-perform the exponential algorithm over the original elliptic curve.

In [GHS02a] Galbrith, Hess and Smart devised a method to solve this problem to some

extent. If the elliptic curve under attack results in an unreasonably large genus curve,

the method tries to find an isogenous elliptic curve which results in a lower genus under

the GHS method.

Hess in [Hes04] showed that using more general forms of Artin-Schreier extensions

can improve the performance of the attack by finding a function field of smaller genus.

However, when one uses this general form of the GHS attack, there is no guarantee that

the resulting curve is hyperelliptic. As the complexity of the index calculus attack for

a general (non-hyperelliptic) curve is not a well-studied subject, the exact complexity

of the attack proposed in [Hes04] cannot be determined.

1.2 Outline

In the generalized GHS attack of [Hes04], Hess used Artin-Schreier extensions to build

the extended function field. However, by choosing other extensions for special elliptic

curves, we might end up at a less complex DLP using the GHS construction.

In this work, our main goals are to explain the GHS attack as it is introduced

in [Hes04] and [BSS05] with more emphasise on studying the function field structure of

the attack. We want also to study the GHS attack when general quadratic extensions

are used to construct function fields. We also propose a way to rank the elements of a

finite field according to their security against GHS attack.

In Chapter 2, we present the jacobian of an algebraic curve and the DLP problem

over it. We also present the index calculus algorithm for the jacobian of curves. Finally,

1.2. Outline 7

we discuss the applicability and complexity of this algorithm to the jacobian of different

curves to rank the difficulty of the DLP over them.

In Chapter 3, we explain the general algorithm of the GHS attack as it is explained

in [Hes04], [Die03] and [BSS05]. We discuss each step of the attack separately and

we explain the algebraic properties of the function fields we encounter in the attack.

We also discuss conditions under which the attack can be carried out theoretically

(independent of its efficiency).

In Chapter 4, we limit ourselves to elliptic curves over fields of even characteristic.

In this chapter we want to evaluate the security of different field extensions against the

GHS attack. However, unlike [Hes04], we do not limit ourselves to the Artin-Schreier

extensions and we generalize some of results related to the complexity of GHS attack

proved in [Hes04], [BSS05], [MQ01] and [MT06] for more general quadratic extensions.

Using this information, we study the security of elements of finite fields with prime

extension degree. We also propose an algorithm to find weak elements of a field against

GHS attack.

In Chapter 5, we include and explain our implementation both for the attack and

for the weak element finder. We present some examples of running these implementa

tions and we discuss their results. We also present the evaluation of security of finite

extensions of prime degree of even characteristics finite fields.

In Chapter 6, we discuss the result and the impact of the GHS attack on the cryp

tographic world. We also discuss future work that can be done to improve the GHS

attack in more general situations.

The beauty of the GHS attack, independent of its application to the real world,

is in its deep interaction between two exciting fields of mathematics, namely algebraic

geometry and cryptography.

CHAPTER 2

Discrete Logarithm Problem over

Jacobian of Curves

The problem of solving the logarithm can be discussed in any group. However, the

difficulty of solving discrete logarithm vs. the efficiency of cryptographic algorithms

guides cryptographers to choose one group over another.

Miller and Koblitz independently proposed the idea of using the group of points on

an elliptic curve in cryptography [Mil86][Kob87]. Unfortunately, the fantastic property

that the points on elliptic curves form a group, does not hold for other kind of curves.

Nonetheless we can assign to any curve a group called the jacobian. In all the following,

a "curve" will be a non-singular complete, projective curve as defined in Definition

V.10.3 [Lor96].

The index calculus attack provides a subexponential algorithm to solve the DLP

for the jacobian of curves of large genus in several cases. The idea behind the GHS

attack is to map the elliptic curve discrete logarithm problem(ECDLP) to the jacobian

of another curve and try to break the new DLP using index calculus attack.

In this chapter, we define and study the jacobian group and we study the DLP on

the jacobian. We explain the index calculus attack and the different ways that index

calculus strategies can be applied to different types of jacobians.

10 Chapter 2. DLP over the jacobian of curves

2.1 Divisor class group and jacobian

The set of points on an elliptic curve form an abelian group. The group structure is

based on the fact that every straight line meets the curve in 3 (not necessarily distinct)

points P\,P2, Pz in the projective plane. Looking at each line and defining P\+P2+P3 =

0, the addition of two points can be defined as Pi + P2 = —P3- This fact comes from

the famous Bezout theorem in algebraic geometry:

Theorem 2.1.1 (Corollary 1.7.8 in [Har97]) Bezout theorem Let C\ and C2 be

two distinct curves in P2 , having degrees d\, d2 respectively and let C\ PI C2 =

{Pu...,Pn}. Then
n

J > (C i , C 2 : Pi) = eM2

where i(Ci,C2 '• Pj) is the multiplicity of intersection of C\ and C2 at Pj.

For curves of higher genus (and then higher degree), instead of considering each

point as an element of the group, we consider the formal sum of points as an element

of the group.

Therefore any formal sum of points would be an element of our group. Each instance

of such formal sum of points is called a divisor:

Definition 2.1.2 Divisor (Over a smooth curve): The divisor group of a curve

C, denoted by Div(C) is the free abelian group generated by the points of C. Thus if
n

P\,..., Pn be points on curve C and rii € Z, then D := 2~_,niPi J5 called a divisor over
i = l

C.

Similar to the case of elliptic curve where the lines that intersect the curve were

defining the relations on the group, we need to defines the same kind of relations over

this group to obtain a group which is useful for our purpose. However, we need to

2.1. Divisor class group and jacobian 11

consider more general objects than just straight lines to have a well-defined group.

These general objects are rational functions defined in the function field of the curve.

Definition 2.1.3 ([Sil94]) Function field and rational functions Suppose that K

is a field and C is a curve defined by irreducible equation p(x,y) € K[x,y]. The integral

domain K{x,y]/p(x,y), denoted by K[C], is called the coordinate ring of C. The field

of fractions of K[C], denoted by K{C), is called the function field of C. Elements of

K(C) are called rational functions.

In this thesis we only consider the case that K is a finite field. This assumption

holds for all cryptographic applications.

We consider the intersection points of each rational function in the projective plane

with the curve as a defining relation for the group. In this way we can define the divisor

class group as the quotient of Div(C) by one of its subgroup (defined below).

Definition 2.1.4 (Definition 1.4.3 [Sti93]) subgroup of principal divisors To

each rational function f(x,y) in K(C), we associate a divisor

div(f) = J2 vf(Pi)Pi
Pi€C

where Vi(Pi) is the signed multiplicity of Pi over f (either as a pole or zero). Such a

divisor is called a principal divisor. The set of principal divisors forms a group which

we denote by PK{C) •

Definition 2.1.5 Divisor Class Group The divisor class group of C is

Cl{C) := Div{C)/VK{c).

We denote the divisor class represented by divisor D, by [D].

12 Chapter 2. DLP over the jacobian of curves

Definition 2.1.6 (1.3 [Sil94]) Degree of a Divisor The degree of a divisor D =

deg(D) := ^ v{

PteC

The degree of a principal divisor is 0 (See II.6.10 [Har97]) and therefore the degree

depends only on [D] and not on the representing divisor D. This mean that the degree

is well-defined over Cl(C) as well.

Definition 2.1.7 Jacobian of C For curve C we define following set as "The degree

0 part of divisor class group" as follows:

Cl°(C):={{D}eCl(C)\deg([D}) = 0}

Till now, to define a divisor we have considered points on C with coordinates defined

in K, the algebraic closure of the constant field of C. For cryptographic purpose,

however, it is important to confine ourselves for the divisor which are defined over the

constant field.

n

Definition 2.1.8 Divisor defined over K We say that divisor D := 2_.niPi l's

i = l
defined over K if

n

Da = Y1 nipi = D f°r dl a e Gal(K/K)
z = l

In this way we define the jacobian of C defined over K as follows:

Definition 2.1.9 The jacobian of curve C defined over K denoted by Cl°(K(C)), is a

subgroup ofCl°(C) which contains all divisor class [D] such that [D] is equivalent to a

divisor class [DQ] such that Do is defined over K.

It can be shown that Cl°(K(C)) is a finite subgroup of Cl(C) and therefore one can

study the DLP on this group.As the jacobian of curve C defined over K is the finite

2.2. Complexity of the DLP over the jacobian of a curve 13

group that we are always interested in, from now on we simply call it the jacobian of

C.

2.2 Complexity of the DLP over the jacobian of a curve

The complexity of the general attack to solve a DLP over a general cyclic group depend

only on the size of the group. Indeed, the best general attack known for solving the

DLP over a general cyclic group is Pollard's p algorithm [MV096]. The complexity of

the attack is 0(y/n) in which n is the order of the group. This is better than the 0(n)

exhaustive search, but it is still is exponential in the bit-length of n. As the complexity

of the general attack only depends on the group size it is important to estimate the size

of the group whose security is to be analyzed.

As we said, estimating the size of the jacobian of a curve is the first step in evaluating

its security. Corollary VIII.6.3 [Lor96] gives an estimate for the size of Cl°(K(C)).

Theorem 2.2.1 Suppose C is a curve of genus g, defined over a finite field K of size

q. Then:

(l-VQf9<\Cl°(K(C))\<(l + ^)2^

Using the above theorem we conclude that the size of the jacobian of a curve is of

order q9. Consequently, the complexity of the Pollard's p attack for the jacobian of

curve C is 0{q9/2). This means that the best known general attack to the DLP over

Cl°(K(C)) is exponential in term of its genus. Actually this was one of the advantages

of hyperelliptic curve cryptography over elliptic curve cryptography [CFA06].

By studying the size of the group Cl°(K(C)), we dealt with assessing the resistance

of the DLP over this group against general attacks. However, the strongest attack in

many practical cryptographic intersting situations is the index calculus attack. For

14 Chapter 2. DLP over the jacobian of curves

this reason in the remainder of this section, we study the index calculus attack and its

applicability to the Cl°{K(C)) for different curves C.

2.3 Index calculus attack

The family of index calculus algorithms are the most powerful algorithms known to solve

the DLP over different groups. In many groups, including the multiplicative group of

finite fields, the index calculus method gives a subexponential algorithm to solve any

instance of the DLP.

Despite of all successes of the index calculus attack during recent years, there is still

no index calculus attack to solve the DLP over a general elliptic curve in subexponential

time. In the next sections, we describe the index calculus algorithm in general and for

specific groups.

2.3.1 The algorithm

Let G —< P > be an additive cyclic group and suppose that Q € G is given. The DLP

is to find n such that

Q = nP. (2.1)

As we mentioned before, index calculus is not applicable to a generic cyclic group. The

group needs a special property which we call the factor base property.

2.3.1.1 Factor base property

There is a formal technical definition for the factor base, which is beyond the scope of

this work. We refer the interested reader to [CFA06]. However, we give a more intuitive

definition here parallel to the idea of [HMV03].

2.3. Index calculus attack 15

Definition 2.3.1 Factor base Let G be an abelian group. A factor base B =

{P i , . . . , Pm} C G for the index calculus algorithm is a (finite) subset of G such that a

randomly chosen element Q G G can be efficiently expressed in terms of element of B

as

m

Q = Yjm
pi (2-2)

with a significant probability.

The elements in the factor base should be chosen in a way to increase the efficiency

mentioned in Definition 2.3.1. The word "efficiently" in the above definition could be

defined precisely. However, we shall only give an intuitive idea of what efficiency means

here. For a given factor base, and for several random <5's, we want to find m values

of nj's such that Q = X)2a niPi- Therefore, the elements of the factor base should

be special elements such that this operation is "efficiently" possible and it should be

possible for a "significant" number of randomly chosen Q's.

The elements of the factor base are called primes as the prime elements of Z were

used as factor base elements to solve the DLP in (Z/pZ)* when index calculus was

applied for the first time. An element Q £ G is called B-smooth if it is expressible in

terms of elements of factor base B as in (2.2).

We say that a group G has the factor base property if there is a fast algorithm to

find an efficient factor base for the DPL problem in G.

The efficiency of a factor base B depends on its "size" and the "probability of finding

a .B-smooth element". There is a natural trade-off between the size and the probability

that a random element is B-smooth. The greater the factor base, the more likely that

a random element is i?-smooth. On the other hand, the index calculus needs to gather

more relations (as defined in following section) to solve the DLP and this decreases

16 Chapter 2. DLP over the jacobian of curves

the efficiency of the algorithm. However, the smaller the factor base, the smaller the

probability that a randomly chosen Q be a .B-smooth. If this probability is low, the

index calculus algorithm wastes time on choosing a lot of useless elements until it finds

enough .B-smooth elements. Therefore the definition of an efficient factor base is group-

dependent or even implementation-dependent.

The problem of finding an efficient factor base for a specific group is non-trivial. In

other words for each group, we need a specific method to find an efficient factor base.

For the case (Z/pZ)*, it is easy to prove that the primes form an efficient factor base.

On the other hand, in the case of the group of points on a general elliptic curve, the

question has still not been solved.

Under the assumption of having an efficient factor base, the index calculus algorithm

can be applied to any group without difficulty. Algorithm 2.1 describes the index

calculus for a general additive group when the factor base is found:

A l g o r i t h m 2.1 INDEX CALCULUS - GIVEN THE FACTOR BASE

Require: : P, Q and B := {P i , . . . , Pm} an efficient factor base.
Ensure: : Find n such that Q = nP.

l: for i in { 1 , . . . , m + N} such that iV is a small integer do
2: repeat
3: Generate (Regenerate) random 6j
4: until biP is B—smooth
5: Qi *- biP
6: Compute e;j for 1 < j < m such that Qi — b{P — Y^jLi ei,jPj
7: end for
8: A^ (e,-j)
9: b <- (6,-)

10: Solve the linear system Ax = b (Now we have Xj such that Pj = XjP.)
ll: repeat
12: Generate random r
13: until rQ is B—smooth
14: Compute rj for 1 < j < m such that rQ — Y^JLi rjPj — Yl^Li rjxjP
l S . - n - r - ^ E ^ i W)

2.4. Index calculus for jacobians 17

The N extra 5-smooth elements are chosen in the loop in Line 1 of Algorithm 2.1

to make sure that the linear system is solvable with high probability. The Line 15 of

Algorithm 2.1, is valid because Q — nP, so for a random r, we have rQ = rnP =

(EJLi W) P .
The basic idea of the algorithm is as follows: First one can solve the DLP for the

factor base quite easily and then using that information one can solve the DLP for the

specific element Q. As the index calculus is applicable as soon as a factor base is found

for a specific group, the question of solvibility of the DLP in a specific group using index

calculus boils down to the question of finding a suitable factor base in that group. In

the following sections, we discuss the problem of finding a suitable factor base in the

groups that will be involved in the GHS attack.

2.4 Index calculus for the DLP over the jacobian of curves

In order to find a suitable factor base we need to study the structure of Cl°(K(C)). In

this section we first discuss the problem of finding the factor base for a special family

of curves called "hyperelliptic curves" [CFA06]. Then we explain how to find the factor

base on a general curve. At the end, we discuss the case where a factor base cannot be

found with current knowledge.

2.4.1 Jacobian of hyperelliptic curves

In the case of hyperelliptic curves we have a nice representation for the elements of

divisor class group. This representation called the Mumford representation, can be

defined according to Proposition 2.4.1:

Proposit ion 2.4.1 (VII.l [BSS05]) Let C be a hyperelliptic curve of genus gc de

fined over a field K with equation Y2 + H(X)Y = F(X). Then the elements of the

18 Chapter 2. DLP over the jacobian of curves

jacobian of C that are defined over K are in one-to-one correspondence with the pairs

of polynomials (a(X),b(X)) with coefficients in K, such that deg(b) < deg(a) < gc and

such that the polynomial a is monic and a divides b2 + bH — F.

We denote the divisor class that corresponds to a pair (a(X),b(X)) by div(a,b).

The factorization of the polynomial a(X) is compatible with the divisor group operation

and this leads to the idea of defining a prime element in the divisor class group of a

hyperelliptic curve

Definition 2.4.2 Let [D] be the divisor class corresponding to div(a, b) by Proposi

tion 2.4.1- [D] is said to be prime if the polynomial a is irreducible over K.

Under this condition an efficient factor base can be defined for Cl°(K(C))

Definition 2.4.3 Let B be an integer. The set of all divisors div(a,b) such that a

is irreducible in K and is of degree < B, make a factor base for index calculus on

Cl°(K(C)). A divisor D € Cl°(K(C)) is B-smooth if it can be written in terms of

element of this factor base.

In [BSS05] it is shown that if the genus of the hyperellptic curve C is large enough

(compared to the size of K), using above factor base, index calculus can provide a

subexponential attack.

2.4.2 Jacobian of a general curve

As it is mentioned in Definition 2.1.2, a divisor in Cl°(K(C)) can be represented as

the sum of finite many points. This idea is parallel to the idea of primes in Z. In Z

every integer can be uniquely written as a product of primes. In the same way, we can

write each divisor as a sum of closed points or prime divisors [Die08]. In the index

calculus algorithm, we expect that the elements of factor base belong to the group

2.4. Index calculus for jacobians 19

under attack. However, for a prime divisor class [P] we may have deg(P) 7̂ 0 and

therefore [P] g Cl°(K(C)). To cure this problem, we fix a divisor class [Do] of degree

1 and whenever we face such a problem we consider divisor class [P] — deg(P)[Do] m

the factor base instead.

Using this factor base, it is shown in [Die08] that the index calculus algorithm is

subexponential in the genus of curve C as the genus of C approaches infinity.

2.4.3 Infeasibility of index calculus method for elliptic curves

Despite of several attempts, there is still no practical factor base for the DLP on elliptic

curves.

The factor base of Definition 2.4.3 is useless when one looks at an elliptic curve as

a hyperelliptic curve of genus 1. With the Mumford representation, all divisors in the

class group of an elliptic curve have a(X) polynomial (in the div(a, b) representation of

the divisor) of degree < g = 1. This means that they all are irreducible polynomials

by definition. Therefore all the divisors in the class group are prime and should be

employed in the factor base which is absurd.

Looking at elliptic curves as general curves also does not help. As stated in Theorem

III.3.4 [Sil94], for elliptic curve E, we have E 9* Cl°(E). Therefore, all elements of

Cl°(E) are primes, which is the same problem as the case of hyperelliptic factor base.

Another approach is to lift the elliptic curve defined over a finite field to an elliptic

curve defined over Q and search for the factor base elements there. The Xedni-Calculus

attack mentioned in [SilOO] is an example of such an effort.

However, in contrast to the fact that lifting an element of (Z/pZ)* to Q is a trivial

fact, it is not the case for points on an elliptic curve. It is claimed in [HMV03] that

this approach fails because there is no efficient algorithm to lift a point from an elliptic

curve defined over a finite field to Q. In addition we are only able to lift those points

20 Chapter 2. DLP over the jacobian of curves

to Q efficiently whose canonical height over lifted curve (over Q) is small. However it

is proved that the number of such points on a general elliptic curve is negligible.

Another possible approach is lifting the curve to a local field as well [Gau04].

However, [Gau04] introduced a factor base for the same family of curves that we

study in this thesis. The method is based upon Weil Descent attack which is also a

basis for the GHS attack. Although the method is less efficient than the GHS attack,

it can be applied in more general cases.

The lack of a general index calculus attack for elliptic curves was the primary moti

vation for mapping the group of points of elliptic curves to other groups were the index

calculus is feasible. The GHS attack which we discuss in next chapter is an example of

such attack.

CHAPTER 3

GHS Attack and Its Function Field

Structure

In previous section, we studied the DLP over different curves. We also studied

the attacks which are applicable to them. The difference in the complexity of the

DLP solvers over different groups, encourages studying the so-called "isomorphism at

tacks" [HMV03]. The isomorphism attacks try to find efficiently computable maps

between a group with a "hard" instance of the DLP and an "easier" one. Obviously, the

underlying instance of the DLP should stay invariant under these maps. Weil [MV091]

and Tate [FR94] pairing attacks are some examples of this category.

The purpose of this work is to study another instance of this category of attacks,

called the GHS Weil Descent attack. The primary motivation for designing the GHS

attack was the absence of subexponential algorithm to solve the DLP over the group

of points of an elliptic curve. In this attack, we try to find a homomorphism from the

group of points on an elliptic curve to the jacobian of another curve such that:

• The solution of the DLP remains the same under the homomorphism. This means

that we can use the solution of the DLP in the jacobian of the new curve to solve

the DLP over the elliptic curve.

• The DLP in the new group, is easier to solve (usually provided by an index calculus

attack).

22 Chapter 3. GHS and its function fields

The GHS attack, first proposed in [GHS02b], exploits the relationship between func

tion fields of curves to find a map to transform the DLP from the elliptic curve group

to the jacobian of a new curve. In this section, we first study the general process of

the GHS attack for finding the DLP transformer map using the relation between the

function fields. After that we focus on each function field involved in the attack and

we study its properties. Finally we describe the homomorphisms which transform the

DLP to an easier instance.

It is worthy of mention that the GHS attack can be applied to solve the DLP on the

jacobian of hyperelliptic curves [Die03], [Hes04]. In this work, we restrict ourselves to

the case of elliptic curves. In this case, the group of the points of the elliptic curve E and

the jacobian of the elliptic curve Cl°(E) are isomorphic (See for example Proposition

III.3.4 [Sil94]).We will always use the notation Cl°(E) for the group of the points of E.

3.1 The GHS attack in nutshell

The ultimate goal of the GHS attack is to find a homomorphism between the jacobians

of two curves. This map should preserve the DLP. Suppose we want to attack curve E

using curve C. The original DLP is to find n such that:

[D2] = n[Di] where [D2], [A] <E Cl°(E) ~ E

We want to find a homomorphism <f> such that:

4>: Cl°(E) - • Cl°(C)

The general process of finding such a homomorphism <f>, known as the GHS attack

([GHS02b] and [Hes04]), is to find it by extending the function field of the curve under

3.1. The GHS attack in nutshell 23

attack. Let K(E) be the function field of the curve under attack. In the GHS attack

the field K(E) is extended to F. The resulting field is a function field of another curve

C (according to Proposition 3.3.5), so we have F = K(C). The function field extension

K{C) needs to satisfy a series of criteria in order to transfer the DLP successfully.

These criteria are discussed in Section 3.2. The GHS attack consists of an algorithm to

extend K(E) and construct K{C). The extension process involves choosing a series of

irreducible polynomials and adding their roots to K{E). The process of choosing such

polynomials and constructing K(C) are discussed in Section 3.4.

After finding K(C), we need a map to transfer the DLP to C. Since K(E) C K(C),

the injection between these function fields induces a map between the ideal groups of

their coordinate rings and consequently their jacobians. In this situation, any ideal in

the coordinate ring of E can be regarded as an ideal in the coordinate ring of C, parallel

to that, any divisor class in Cl°(K(E)) can be regarded as a divisor class in Cl°(K(C)).

In this way we can map the DLP to Cl°(K(C)).This map is called the "Conorm map"

in the GHS literature (for example in [GHS02b] and also in [Che51]). We will study

the map in more detail in Section 3.6.

The fact that the genus of K{C) is larger than the genus of K(E) makes the index

calculus algorithm available to solve the DLP over Cl°(K(C)). However, as K{C) and

K{E) has the same constant fields, while the function field K(C) is larger than K(E),

solving the DLP over Cl°(K(C)), is harder than the original DLP, despite using index

calculus.

The whole scenario would be then useless, unless we can find a smaller constant

field k C K on which C is defined. This is achieved by using a special automorphism

a over K(C). We set F' := K{C)<a> in which by K{C)<<T> we mean the fixed field of

a. In Section 3.3.4 we see that indeed F' has a smaller constant field. If k C K is the

constant field of F' and Co is the curve for which F' = k(Co), we can solve the DLP in

24 Chapter 3. GHS and its function fields

Cl°(k(C0)).

At this stage, we reach a smaller function field with a curve with higher genus. The

last step is to find another map ip : Cl°(K(C)) —> Cl°(k(Co)) to transfer the DLP from

Cl°(K(C)) to Cl°{k(C0)). For this part of the process we use the norm function from

the large extentended field K(C) to the smaller subfield k(Co) fixed by a. The norm

function induces a homomorphism between jacobian of C and jacobian of Co- We will

discuss this function in Sections 3.6.3.

In following sections, we study each step of the GHS attack in more detail. The

most important step in the GHS attack is to find a suitable function field extension

K(C). In next section we describe the criteria of function field K(C). In Section 3.3.1,

we define the algebraic objects that we encounter in the GHS attack.

In Section 3.3, we assume that we have the whole structure needed for the attack,

and we study the properties of this structure. This would help us to prove that the

GHS attack can successfully transform the DLP into an easier problem.

In Section 3.4, we describe how to generally construct the extension K(C) which is

needed for the attack.

In Section 3.5, We discuss the genus of extended function fields K(C) and k(Co).

In Section 3.6, We describe the homomorphism which transform the DLP from

Cl°{K{E)) to Cl°(K(C)) and from Cl°(K(C)) to Cl°(k(C0)).

3.2 Criteria in choosing the extended function field K{C)

As we mentioned in previous section, the GHS attack consists of extending the function

field of the elliptic curve to the function field of another curve C and then finding a

subfield of K(C) on which the DLP is easier to solve.

There are three main concerns in choosing K(C):

3.2. Criteria of K(C) 25

• Faithfulness of the DLP mapping As we discuss in Section 3.6, we always

need to check that the homomorphism we use to transfer the DLP, does not have

a large kernel. So, we should not use an extension of K(E) in which the induced

map from Cl°(K(E)) —> Cl°(K(C)) has a large kernel. However, it is shown in

Section 3.6.2 that this map seldom has a large kernel in a practical cryptographic

case. Therefore, this concern does not really put a limitation on choosing the

extension K(C).

• Existence of a suitable field automorphism After constructing K(C), we

use an automorphism a such that k(Co) = K(C)<a>, for some curve Co defined

over k.

In order for a to be effective in lowering the constant field of K(C), a should

not fix K, otherwise, K C K(C)<a>, therefore K(K(C)<a>) = K(C)<a> which

means that K is the constant field K(C)<a>. This means there k = Ka is a

subfield of K. The GHS attack is then ineffective against curves defined over the

prime field.

Choosing a also defines the norm function of K(C)/k(Co). The norm function

induces the homomorphism between the jacobians of the fields. We choose <r to

ensure that we get a homomorphism with desirable small kernel.

• The lowest genus possible The jacobian of curve Co is the group on which we

aim to run the index calculus attack. As we will see in Section 3.5 the genus of

Co is equal to the genus of C. As all index calculus algorithms known for solving

the DLP over jacobians, are at best subexponential in the genus of the underlying

curve, we want to find the extension with the smallest genus possible to increase

the efficiency of the attack. On the other hand, we do not want that the genus

of C be very small (1, 2 or 3) as there is no efficient index calculus algorithm for

26 Chapter 3. GHS and its function fields

the DLP over these curves.

3.3 The general field theoretic structure of the attack

In this section we discuss the properties of all fields involved in the GHS attack and

their relationship to each other, i.e. the extensions in detail. We establish the notations

and the definitions related to the GHS attack in Section 3.3.1. The new notation we

develop in this section remains valid in the remainder of the thesis.

The discussion in this section is more theoretical than the discussion in Section 3.4,

which shows how algorithmically we can build the K{C).

3.3.1 Notat ions and assumptions on structure of the GHS attack

Assumption 3.3.1 Algebraic Structure of the GHS attack

• E: the curve that we want to attack. Form now on we suppose that E is an elliptic

curve.

• K: a finite field of characteristics p, K is the constant field of K(E) and the field

of definition of E.

• F — K(C): is a regular finite extension of function field K(E) of degree dc/E :=

[K(C) : K(E)]. We fix a defining curve of this function field and we call it C.

Also we require that K(C) has automorphism a as defined below.

• a is an automorphism of K(C) that does not fix K. The existence of such a is

necessary for the GHS attack.

• n :— ord(a).

• k C K is a subfield of K which is the constant field of K(C)

3.3. The field theoretic structure 27

• F' — k(Co) = K(C)<cr> is the subfield of function field K{C) that is fixed by a.

3.3.2 Fields K, k and extension K/k

Let k be the subfield of K fixed by a (Assumption 3.3.1). By the fundamental theorem

of Galois theory [Mor96], [K : k] = n. By theory of finite fields [Mor96], we know that k

has pr elements for some integer r. Consequently \K\ = (pr)n. By the Corollary II.6.7

of [Mor96], Gal(K/k) is cyclic of order n generated by the Frobenius automorphism of

K/k. Therefore, by possibly replacing a by one of its powers, we can assume that O\K

is the Frobenius automorphism of K over k. From now on, we denote the Frobenius

automorphism of K/k with a as well, whenever it does not cause ambiguity. By the

above discussion we know that:

Va €K,a(a) = apr.

The extension K/k is depicted in Diagram 3.1.

K := ¥gn

n Gal{K/k)=<a>

k := ¥q:=pr

Diagram 3.1: Extension K/k

3.3.3 Extens ions K(z)/k(z), K(E)/K(z) and K{E)/k(z)

The GHS attack proposes a special way to choose the extended function field K(C) as

well as constructing the a automorphism. Although it is not the only way that one can

achieve a suitable K(C) such that it satisfies the criteria of Section 3.2, it is a concrete

way to do so.

28 Chapter 3. GHS and its function fields

The first step in building K(C) is to choose a rational subfield of K(C) [BSS05].

This means to choose any function z € K(E) and write the new equation of the curve

in term of this function. This results in a new defining equation of the curve g(z,y).

Choosing this element determines K{C), the whole algebraic structure and consequently

the complexity of the attack. Therefore choosing the function z is considered as the

most important step in implementing the attack on a special curve.

In [GHS02b] and [Hes04], z is chosen such that K{E)/K{z) is an Artin-Schreier

extension (of degree 2). We discuss this case in more detail in Section 4.5. In [Die03]

and [The03], z is chosen such that K(E)/K(z) is a Kummer extension. As we want to

study the general quadratic extensions in this thesis, we assume [K(E) : K(z)] = 2.

After choosing z as above, we are able to define k(z) as well as K(z) as follows.

Definition 3.3.2 Function z in the GHS attack Element z 6 K(E) is a transcen

dental element over K such that K(E) is a quadratic elliptic extension of K(z) where

K(z) is the rational function field in z over K.

Let k(z) be the rational function field in z over k. It is easy to prove that K{z)/k{z)

is a finite Galois extension of degree n with cyclic Galois group generated by an extension

of the Frobenius automorphism of K/k such that it fixes z. Also we also have K(E) =

K(z)[y]/g(z,y), which means K(E)/K(z) is an algebraic extension with degree d :=

\K{E) : K(z)] = degKrz\iyi(g(z,y)). As we limit ourselves to quadratic extensions,

we know that d — 2. Therefore K(E)/k(z) is an algebraic extension and we have

[K[E] : k(z)] = 2n.

For the GHS attack, we also need to put an extra condition to assure that our attack

would be successful.

Assumption 3.3.3 The GHS Strong Assumption Let n = [K : k] = ord(a), and

3.3. The field theoretic structure 29

2 := [K(E) : K(z)]. We assume that:

(2,n) = l

Remark. We close this section by emphasizing that the size of the orbit of y when a

acts on Galois closure of K(E)/k{z) is of most importance in the GHS attack as you

will be seen in Section 3.3.3.1.

3.3.3.1 Function field K(C) and automorphism a

In the GHS attack we want to define the function field K(C) as an extension of K(E).

However, the definition of a function field in 2.1.3 is based on a defined curve. In the

case of K(C) we do not build K{C) using an existing curve C. In contrast, we define

it as an extension of K(E). Therefore we need a more general definition of a function

field, which does not depend on the defining curve.

Definition 3.3.4 (Definition 1.1.1. [Sti93]) Function field of one variable An

algebraic function field F/K of one variable over K is an extension field F D K,

such that F is a finite algebraic extension of K(x) for some element x € F which is

transcendental over K.

As in this thesis, we just deal with algebraic function fields of one variable, here after

we simply use the term "function fields" to refer to them. Although these two definition

of function fields seems different, in the case that K is a prefect field it is easy to prove

that they are equivalent.

Proposition 3.3.5 Let F be a function field over K in the sense of Definition 3.3.4,

there is a curve C such that F = K{C).

Proof. Given function field F, one can construct C as follows. As F/K(x) is a finite

extension and K is prefect, Corollary 1.5.7 [Mor96], assures that F is a simple extension

30 Chapter 3. GHS and its function fields

of K(x), i.e. there exists y G F such that such that F = K(x, y). Let p(X, Y) e K[X, Y]

be the irreducible polynomial of y over K(x). Let K{C) be the function field of the curve
d

C defined by p(X,Y). Now writing each element / 6 F as / = ^ / , (x) y 4 € /f(C)
2=0

define an isomorphism between F and K(C), and therefore -ft'(C) = F.

a

Proposition 3.3.5 allows us to talk about an algebraic extension of K(E) and call it

K(C) without defining curve C a priori. In the GHS attack we define K(C) as follows.

Definition 3.3.6 K(C) is defined to be the splitting field of K(E)/k(z).

We can now define a easily. As K(C) is the splitting field of some extension, by

definition K{C)/k(z) is normal. On the other hand K(z)/k(z) and K(E)/K{z) are

separable and by Proposition 1.4.21 [Mor96] K(E)/k(z) is separable. By definition

of separability, this means K{C)/k{z), the splitting field of K{E)/k(z) is separable.

Therefore K(C)/k(z) is Galois. So we can look at Gal(K(C)/k(z)). We need to choose

a such that it satisfies following condition:

• ord(cr) = n

• a\K(z) — Probenius automorphism of K(z)/k(z).

We need to make sure that we are always able to find such a. Consider following

exact sequence:

1 - • Gel(K(C)/K(z)) -> Gal(K(C)/k(z)) -»• Gal(K(z)/k(z)) -» 1 (3.1)

Let us examine the case when this sequence splits. According to Theorem VI.1.18

[Hun03], we know that the above sequence splits if and only if

Gal{K(C)/k(z)) ~ Ga\(K(C)/K(z)) x Gal(K{z)/k{z))

3.3. The field theoretic structure 31

In that case we can simply choose a € Gal(K(C)/k(z) = 1K(C)/K(Z) X aK{z)/k(z) which

has order n. Therefore the fact that this sequence splits is sufficient for us to carry

out the attack. For that it is sufficient that the elements of Gal(K(C)/K(z)) and

Gal(K(z)/k(z)) have different orders.

K(C)

d'=\Gal(K(C)/K(E))\

K(E)

2

K{z)

n

k(z)

Diagram 3.2: The series of function field extensions to reach K(C)

According to Diagram 3.2, the sequence splits when (2d',n) = 1. By Assump

tion 3.3.3 we knew that (2,n) = 1. Proposition 3.4.2 assures that using the GHS

construction the above sequence splits.

3.3.4 Extension K(C)/k(C0)

Since curve C has higher genus than E, the index calculus attack is applicable to

Cl°(K(C)). However, no matter what the genus of C is, if we run the index calculus

attack on Cl°(K(C)), we always expect worse running time than running generic attacks

on Cl°(K(E)) such as Pollard's p attack. This is because K(C) and K(E) both have

the same constant field K. Although the index calculus attack is subexponential in

genus of the curve under attack, it is fully exponential in the size of its constant field,

i.e. O(q) if q is the size of the constant field. However, Pollard's p method takes

only 0(^/q) < 0{q). This means that if we increase the genus while keeping the same

constant field, we end up with a worse time for the attack. The whole point of the GHS

32 Chapter 3. GHS and its function fields

attack is to decrease the constant field size at the cost of not extending the genus too

much. For this reason, we still need to transform the DLP to another curve whose genus

is higher than E and at the same time its constant field is smaller than the constant

field of E.

To find this final function field to attack, we need to use the automorphism a we

found in last section. Having a, we simply set F' := K(C)<a>. However to assure that

index calculus is efficient on F' we need to prove:

Proposition 3.3.7 K(C) is a constant field extension of F''.

Proof. Suppose / 6 F' is a rational function. Since fa — f means that / is

defined over k, and therefore F' is defined over k(z). This means that there exists a

curve Co defined over k, such that F' = k(Co). Now we want to look at the function

field Kk(Co). We know that the extending polynomial of K/k is irreducible over k(Co)

as its roots are not fixed by a. However, these roots are in K C Kk{Co). Therefore

[Kk(C0) : k(C0)] > n. Now considering the definition of k(C0) = K(C)<a> and the

fact that ord(a) = n, we know [K{C) : k(C0)} = n, so K(C) = Kk(C0) = K(C0).

Therefore K(C) is a constant field extension of k{Co).

•

As the constant field of F' is k, we can find a curve Co defined over k such that F' =

k(Co). From now on we denote this function field as &(Co). Using Proposition 3.3.7,

we know that K{C) = Kk(C0) = K(C0).

3.4. Algorithmic Construction 33

3.4 Algorithmic construction of K(C) and the automor

phism a

The Frobenius automorphism of Kjk is the heart of the GHS attack. This is the funda

mental reason that there is no obvious way to generalize the GHS attack to prime fields

as in that situation there is no Frobenius automorphism. We use this automorphism to

find fc(Cb), a subfield of K{C).

To emphasize the importance of the extended Frobenius automorphism, we remark

that when this automorphism is determined (or equivalently z is chosen), the whole

structure of k(Co) can be determined, including the genus of C which determines the

difficulty (including the success/failure) of the attack.

In Chapter 4, we discuss the problem of choosing a suitable z for the even char-

acterstic case. However here, we assume that we have chosen z as it is discussed in

Section 3.3.3, and therefore we can compute the Frobenius automorphism <JK(z)/k{z)-

Therefore the goal of this section is to describe the algorithm which constructs the

extension K{C) given z.

To understand the process of constructing K{C) in [GHS02b] and [Hes04], one can

look at the construction of K(E). Since yo := y is algebraic over K(z) of degree 2,

we have the quadratic equation /(yo) = 0 such that f(Y) € K(z)[Y}. K{E) is simply

K(E) := K(z)[Y]/f(Y). Now to extend K{E) we need another polynomial.

l

Definition 3.4.1 Let f(Y) = 'S^aiY1 e K[Y] be a polynomial and a be an automor-
t=0

phism of K. We denote the action of a on f(Y) by

e
r(Y) = Y/a(ai)Y

i.
t=0

Let f(Y) e K[Y] be a quadratic polynomial with root y0 G K{E) as defined above,

34 Chapter 3. GHS and its function fields

and let K0 := K{E). Let MY) := fa(Y). If MY) is irreducible over K0, then we add

its root, yi, to KQ and we construct K\ := Ko(yi), otherwise K\ := K$. Continuing

this procedure we can extend K(E) to K(C) with the desired properties. As a has

order n, the procedure stops after at most n iterations. Algorithm 3.1 is the complete

procedure of constructing K(C).

Algorithm 3.1 CONSTRUCTING K(C)
Require: f(Y) € K(z)[Y] be the defining equation of elliptic curve E such that

f(yo) — 0, o~ be the Frobenius automorphism of K/k.
Ensure: Kn = K{C)

1

2

3

4

5

6

7

8

9

10

KQ <- K{E)
for all i such that 1 < i < n do

fi(Y)^r'(Y)GK(z)[Y]
if fi(Y) is irreducible over jKi_i then

Ki <- KiMVi) s u c l 1 that /i(y,) = 0.
else

Ki <— if j - i
end if

end for
return Kn

After generating K(C) using Algorithm 3.1 or equally using the theoretical proce

dure discussed in Section 3.3.3.1, we need an element a € Gal(K(C)/k(z)) such that

a has order n over K(C). This is because we want that \K(C) : K(C)<a>] = n.

According to Proposition 3.4.2 such an element exists.

Proposition 3.4.2 If n is odd and K(C) is constructed by Algorithm 3.1, there exists

a which satisfies the conditions stated in Section 3.3.3.1.

Proof. Using field theory we know:

n-l

{K(C):K(E)} = l[[Ki:Ki-1}.

As deg(fai) = 2 for all i, [Ki : Kt-i] is either 2 or 1. Therefore d' = [K(C) : K(E)} = 2m

3.4. Algorithmic Construction 35

for some integer m. By Assumption 3.3.3 we know that (2, n) — 1, so (d', n) = (2m, n)

1. This means that the sequence of (3.1) splits, which is sufficient for existence of a.

•

3.4.1 The magic number "m"

In Step 2 of Algorithm 3.1, each time we face the question: is fa'(Y) irreducible over

Ki-i or not? The number of times that we answer positively to this question, determines

the difficulty of the GHS attack to E using the chosen subfield K{z). For that reason,

we refer to it as the magic number associated to extension K{E)/K(z) and denote it

by m as it is traditional in the GHS literature. Algorithm 3.2 computes the value of m

along constructing K(C).

Algorithm 3.2 CONSTRUCTING K(C) AND COMPUTING m

Require: f(Y) G if(.2)[Y] be the defining equation of elliptic curve E such that

f(yo) = o
Ensure: Km = K(C)

1

2

3

4

5

6

7

8

9

10

K0 <- K{E)
m <— 0
for all i such that 1 < i < n do

fi(Y)^(fr(Y)€K(z)[Y}
if fi(Y) is irreducible over -fQ-i then

m <— m + 1
Km <- Km-i{ym) such that fi{ym) = 0.

end if
end for
return Km

Diagram 3.3 shows the procedure of generating K(C) using Algorithm 3.2. Finally

we close this subsection by proving that Algorithm 3.2 construct K(C) according to its

theoretical definition.

Proposition 3.4.3 The field generated by adding yi,i = 0 , . . . , m to K(z) resulted from

Algorithm 3.2 and the field K(C) defined in Definition 3.3.6 are isomorphic.

36 Chapter 3. GHS and its function fields

Kn = K(E)(y0,yi,y2, ...,ym)

K2 = K(z)(y0,yi,y2)

K^KMyoM)

K0 = K(E) = K(z)(y0)

K(z)

Diagram 3.3: The series of function field extensions generated by algorithm 3.2 to reach K{C)

Proof. First we want to show that K{C) contains the splitting field of m^(2)(y), i.e.

all of its roots. As PE is not defined over any subfield of K(z), we know that Pg (y)

are different for 0 < i < n — 1. We define

M(Y):=l[PE
i(Y)

i=0

As this polynomial is invariant under action of a, it is defined over k(z). On the other

hand rnMz\{Y) \ M(Y) because y is a root of M(Y). Using the GHS algorithm we

know that M(Y) has all of its roots in K(C), because the algorithm makes sure that all

PE
l (Y) (which are quadratic) are reducible before stopping. Now M(Y) is a polynomial

of degree 2n because it consists of n quadratic factors, therefore M(y)|mfc(2)(F). This

means that M(Y) = mk^{Y) and therefore K(C) is the splitting field of extension

K(E)/k(z).

•

As the result of Proposition 3.4.3 we name both of these fields as K(C). Diagram 3.4

shows the relation of all function fields involved in the GHS attack:

3.5. The Genus of resulting curves 37

K{C)

2 m - l

K(E) k{C0)

2 2 m

K(z) :

oo

Diagram 3.4: The relation of function field extensions in the GHS attack

3.5 The Genus of resulting curves

The genus plays an important role in the complexity of attack. The final complexity of

attack depend on two major facts,

• The size of Cl°(k(C0)).

• The effectiveness of index calculus attack over Cl°(k(Co)).

Both of these parameters depends on the genus of the curve Co- As it is mentioned in

Theorem 2.2.1, the size of Cl°(k(Co)) is of 0(q9) where g is the genus of Co- Therefore

is exponentially related to the genus of Co- Also the type of index calculus attack to

be chosen depend on the genus of CQ.

As we generate K(C) explicitly and defined k(Co) as the fixed field of K(C) by a

it is easier from a computational point of view to investigate the genus of K{C). The

following proposition from [Ros02] shows that we merely need to study the genus of

K(C) as it is equal to the genus of k{Co):

Proposition 3.5.1 Let k be a prefect field and let K/k be a finite extension. Suppose

38 Chapter 3. GHS and its function fields

that k(Co) is a function field whose constant field is k. Let K(C) = Kk(Co) be a

constant field extension ofk(Co). Then the genus of K{C) considered as function field

over K is equal to the genus of k(Co).

Therefore we only need to compute the genus of the curve C which we obtained

through Algorithm 3.2.

The genus of the extended function field, depends on the method of extending the

function field of elliptic curve E. The genus can be computed in special cases when we

extend K(E) using specific polynomials. Two specific methods are discussed for even

and odd characteristics in [GHS02b][Die03]. However, in more general cases as dealt

in [Hes04], we can merely find upper and lower bounds on the genus of C.

Finding the genus of general extension in the GHS attack is still an open problem.

In next chapter we study the situation when an Artin-Schreier extension is used to find

the descend. In that situation the genus is computed in [GHS02b], [Hes04].

In next chapter we find an upper bound for the case p = 2.

3.6 Mapping the discrete logarithm problem

The focus of this work is on studying the suitable function field extensions for the attack.

Nevertheless, the final goal is to solve the DLP which is responsible for the security of

the cryptographic system. All the tedious search to find a suitable function fields would

be useless, if we can not find a suitable map to transfer the DLP to a group where it

is easier to be solved. In this regard, we devote this section to go through the mapping

process.

The function field structure is built in order to help us to find the suitable map which

can transfer the discrete logarithm over the Elliptic Curve E (or equivalently over the

divisor class group, Cl°(K(E))) to the discrete logarithm problem over Cl°(k(Co)). We

3.6. Mapping the DLP 39

use the extension/subfield relations between K(E),K(C) and k(Co) to construct that

map. This process consists of two steps:

• Mapping a divisor in Cl°(K(E)) (or equivalently a point on E) to a divisor over

Cl°(K(C))

• Mapping a divisor in Cl°(K(C)) to a divisor over Cl°(k(Co)).

Both of these maps are derived using the relationship between function fields we

built in this chapter. In following two sections we deal with these maps separately.

3.6.1 Mapping the D L P faithfully

Suppose we want to attack curve E using curve C. The original DLP is to find n

such that [D2] = n[D{\ : [D2], [Di] € Cl°(K{E)) ~ E. Suppose we have found a

homomorphism <f> such that

4>: Cl°(K(E)) -» Cl°(K(C)).

Now we have

\D2)-n[D1] = 0

=> <j>{[D2] - n[D1}) = 0

=» <f>([D2]) - n^([A]) = 0

In presence of such homomorphism, suppose that we have a feasible algorithm to solve

the DLP 4>{[D2}) = m<f>{[Di]) over the Cl°(K(C)). By running that algorithm over

40 Chapter 3. GHS and its function fields

Cl°(K(C)) we obtain m such that:

<f>([D2}) - m ^ p i]) = 0cp{K(O)

=> <t>{[D2] - m[Di\) = Oci°(K(Q)

=> [D2] - m[A] € Ker{4>)

As 0 is a homomorphism, its kernel is a group. If we have g — \Ker(<f>)\, the order of

this group, by lagrange theorem in group theory [Mor96] then we have

g([D2] - m[Di]) = g[D2] - 0m[I>i] = 0clo{K{E)).

On the other hand the DLP over Cl°(K(E)) says that

\D2) - n[Di] = 0clo{K{E)) =¥ g([D2] - n[Di\) = g[D2] - gn{Dx} = 0CP(K{E))

Subtracting these two equations we get

gnlDi] - gm[Di] - g(n - m)[A] = 0clo{K{E)) =» ordc,o(jr(B))([£)i]) | g{n - m) (3.2)

However, if ord([Z?i]) as the generator of the DLP group is not a prime, the Pohlig-

Hellman attack is applicable [MV096] to the DLP on E, which break down the discrete

logarithm in the Sylow subgroups of < [D\] > efficiently then deduce the DLP on E.

As solving the DLP over each of those Sylow subgroups, actually consists of solving the

DLPs over subgroups of prime order, the complexity of the problem reduces to the diffi

culty of solving the DLP over a group whose number of elements is equal to the largest

prime which divide | < [D\] > |. Therefore, it does not make sense to choose ord([£>i])

to be composite. In the other words if we choose ord([Di]) to be composite number we

3.6. Mapping the DLP 41

increase the complexity of encryption/decryption process, however the security of the

system remains as low as the time that we choose the group order as the largest prime

dividing ord([£>i]). In this regard, we can safely assume that p = ord([Di]) is a large

prime number.

Now if p is a prime number, equation 3.2 results in p | g or p \ n — m. in the second

case it means m = n{ mod p) and it means that we have solved the original DLP. On

the other hand, if p \ g. This means that </> has a large kernel, because p should be

large, (of order 0(2160)), to ensure the security of the system. So in search of such

homomorphism to attack the Cl°(K(E)) we should keep away from homomorphisms

with large kernel.

In a nutshell, if we can find a map between the jacobians of two curves, under the

condition that the map does not have large kernel, solving the DLP over the jacobian

of the new curve, solves the original DLP as well. In this regard the goal of the attack

is to find an algorithm to compute such a map.

3.6.2 Mapping Cl°(K(E)) to Cl°(K(C))

Using the theory of function fields we have following theorem:

Proposition 3.6.1 Let E/K and C/K be curves as defined in this chapter, such

that K(E) C K(C) and X : K(E) '-* K(C) be the embedding map. Then there

exists a morphism of curves (j> : C —* E which induce the group homomorphism

4>* : Cl°(K(E)) - • Cl°(K(C)).

Proof. First we need to build a map between curves using the embedding of the function

fields. According to Theorem II.2.4 of [Sil94], let X(x) and \(y) be images oix,y € K{E)

in K{C) respectively, in this regard we define <f> := (X(x),\(y)). We claim that ^ is a

morphism of curves. Suppose that f(X, Y) 6 K[X, Y] is the defining equation of curve

E, therefore we have f(x,y) = 0 6 K{E) => X(f(x,y)) = f(X(x),X(y)) = 0 6 K(C).

42 Chapter 3. GHS and i ts function fields

Now V(x,y) E C => <l>(x,y) = (X(x),\(y)) =• f(X(x),X(y)) = 0 => (A(x), Afo)) G £ .

According to [Sil94][P.33], the morphism $, induces a group morphism (f>* such that:

0* : Div(E) -> Div(C)

<KQ) - VP<*-HQMP)(P)

Proposition II.3.6 [Sil94] says that deg(<f>*(D)) = deg(4>)deg(D). Therefore <f>* maps

degree zero divisors to degree zero divisors. So it is induce a map on Cl°(K(E)) —>

C7°(tf(C)).

•

According to Proposition 3.6.1 We have following commutative diagram

0 >• # (£) —^Divo(K(E)) i Cl°(K(E)) 0

4>* <£* <A*

0 A"(C) —^Div0{K(C)) i C/°(K(C)) *• 0

D i a g r a m 3.5: The map <j>*

Therefore </>* can serve us as a map to transform the discrete logarithm problem

from E to C.

The chosen homomorphism to map the DLP in class groups is called "4>*" in [SH94],

"TT*" in [MWZ96] and "Conorm" in [Che51] and [MTW04]. Moreover the literature on

the GHS attack uniformly call it "Conorm" function as well.

3.6.2.1 Preservat ion of the DLP under conorm map

We found a homomorphism to map the class groups, however we should make sure that

the solution of the mapped DLP over Cl°(K(C)) is a solution of the original DLP over

3.6. Mapping the DLP 43

Cl°(K(E)). Suppose we try to solve the DLP for [P], [Q] € Cl°(K(E)), in which [P]

and [Q] are the divisor classes corresponding to points P and Q respectively over curve

E. The correspondence provided by the isomorphism between points on the elliptic

curves and its jacobian. The DLP means we want to find s such that [Q] = s[P] in

Cl°(K(E)). Instead we want to solve <f>*({P}), <f>*([Q]).

Suppose the DLP under attack, is defined in a subgroup H < Cl°(K(E)) with prime

order s.

Therefore we transfer the problem to 4>*{H) and we want to solve the problem.

As (f>* is a homomorphism, we know that ker((f>*(H)) < H therefore \ker(<f>*(H))\ |

\H\. Now because H has prime order we can deduce that either ker(cj)*(H)) = 0 or

ker{(f>*(H)) = H.

In the first case we have ker{cj)*{H)) = 0, it means that (f>* is an isomorphism and

the DLP is transferred faithfully. So, the solution of the DLP over Cl°(K(C)) is the

same as the solution for Cl°(K(E)) and the subgroup 4>*(H) = H and particularly has

the same order. In this case the DLP is preserved completely.

In the second case, however, the whole subgroup is mapped to the identity element

of Cl°(K(C)). In this case we lose the DLP completely. So the <t>* drags the whole

subgroup to the kernel and therefore the DLP is not transformable to Cl°(K(C)) using

Now we want to study under what condition we face the second case and conse

quently a failure in our attack. To investigate the situation, we apply function, 4>* to

the image of 0*. So in the undesirable case that (f>*{[P}) = 0 =» </>*(<̂ >*([.P])) = 0. Now

according to following proposition (proposition II.3.6 [Sil94]), </>* o<̂>* can be simplified:

Proposition 3.6.2 Let E and C be two curves and 4> : C —> E be a non-constant map

44 Chapter 3. GHS and its function fields

from C to E. Then for any divisor class[D] e Cl°(K(E), we have:

^ o ^ (p]) = [deg(̂)][JD]

Therefore we have [deg(4>))[P] = 0, As [P] was not originally 0 divisor class (the

identity element of the group), we see that P should be a [de(/(0)]-torsion point. By

definition deg(<j>) = \K(C) : <j>*{K(E))}. In addition we know that </>* is simply embed

ding of K(E) in K(C) so it means deg((f>) = \K{C) : (f>*{K{E))] = \K{C) : K(E)]. In

Section 3.3.3.1 we chose K(C) so it would be the splitting field of K(E)/k(z). We used

m different copies of K(E)/K(z) to construct K(C). So we have deg{4>) = \K(C) :

K(E)} | [K(E) : k(z)]m~1. So if the divisor class corresponding to point P get killed

by <f>* we should have:

[deg(0)][P] = 0 => ord([P]) = s | deg(</>) | \K{E) : k{z)]m-1 =>

s | \K{E) : k(z)}

However, in the case of cryptographic interest s is a very large prime (of 0(2160))

and to have a practical attack we want that the order of [K(E) : k{z)} be very small

(~ 2). Therefore, it is impossible in practical situation that <f> does not transform the

DLP to Cl°(K(C)) faithfully.

3.6.3 Mapping Cl°(K(C)) t o Cl°(k(C0))

In this side of tower, as k(Co) C K(C), one may find it natural to use the Proposi

tion 3.6.1 in the same way used in Section 3.6.2 and then use 0* to map the DLP.

However, as the underlying function fields are defined over different constant field this

time, the proposition is not applicable. Instead, we use simple Norm map of the field

extention.

3.6. Mapping the DLP 45

The norm map of extension K(C)/k(Co), Nx{c)jk(C0)^ induces a norm map from

C/K to Co/k in following way

n

VP e C/K,NK{C)/k{Co)(P) = £ V (P) . (3-3)
i = l

Then one can naturally (additively) extend the norm function to the Div(K(C)).

3.6.3.1 Preservation of the DLP under the norm map

In the case of Norm function, it is proved in [Die03] that the kernel of Norm function

does not have a subgroup of large prime order if there is no intermediary field L such

that k C L C K. If there is such a intermediary field, we can replace n by n', a prime

divisor of order n, in order to get rid of such an intermediary field and make sure that

the DLP got preserved under this map.

CHAPTER 4

Even Characteristic Function Fields

In this chapter we study the problem of attacking the DLP of elliptic curves defined

over a field of even characteristic. This is a critical case because such elliptic curves are

of special attention for cryptographers, due to the computational advantage.

Therefore in this chapter we suppose that all fields have characteristic 2 and our

prime base finite field is F2. Parallel to the notations we defined in section 3.3 we have

k = ¥21- and K = F ^) " • E is an elliptic curve defined over the field K.

As we mentioned in the previous chapter, to attack a curve we need to accomplish

the following two steps:

1. Find a function field extension of K(E), namely K{C).

2. Find an automorphism of K(C), namely a such that a\K = a^/k € G&l(K/k),

and ord(<j) = n

These two are not totally independent steps. We cannot expect that for a random

general extension K(C), we succeed to find such an automorphism like a. However, with

Hypothesis 3.3.3, that we assume in this thesis, we can guarantee that the Frobenius of

K/k can be extended to such an automorphism. In [Hes04] the procedure of the GHS

attack is studied in detail for a special set of rational subfields of K(E). We describe

this work in this chapter. We also generalize some of the result to more general rational

subfields of K(E).

48 Chapter 4. Even characteristic function fields

We start this chapter with a concrete example of going through the algorithm. We

then define the concept of minimal cr-polynomial and we study the if-module related

to it. We discuss the implementation of the GHS attack by using quadratic extensions.

This generalizes the case of Artin-Schreier extensions discussed in [GHS02b], [BSS05]

and [Hes04]. In this chapter, we also discuss the result of [BSS05] for Artin-Schreier

extensions. Finally, we discuss the security of a function field against the GHS attack

and we define a field security index to assess it.

4.1 Finding a suitable K{C) as an extension of K(E)

To construct K(C), we find K(z) such that equation of E in terms of z has cr-polynomial

with the smallest degree possible. We will define the concept of "cr-polynomial" in

Section 4.2, but we illustrate the concept by a complete example before formally define

it. Let

k:=¥2

n:=7

K := k{9) such that 0€k satisfies 97 + 9 + 1 = 0

E/K :=y2 + xy + x3 + 0

We choose here z = x. Now we want to extend the field extension K(E)/K(z) using

the procedure described in last chapter. Let

P(Y) := Y2 + zY + z3 + 9 € K(z)[Y]

4.1. Finding a suitable K(C) 49

Let 2/0 = V- Polynomial P(Y) is reducible over K(E) since yo is a root of P(Y). Let <x

acts on on P{Y) by acting on its coefficients, Then

P°(Y) = Y2 + zY + z3 + e2

is irreducible over K{E). We can extend K(E) by adding a root of this polynomial,

say yi, to get K\ := K{E)(y\). Continuing the procedure, we consider

P°2(Y) = Y2 + zY2 + z3 + 64e K(z)[Y\.

This polynomial is irreducible over K\ :— K(E)(yi). Let K2 := Ki(y2), where y2 is a

root of PCT (F). Now we consider

P°\Y) = Y2 + zY + z3 + 08 G A"(«)[y]

which is irreducible over K2. Let ^ 3 = K2{y%) where 2/3 is a root of PCT (y) .

We now consider

Pa\Y) = Y2 + zY + z3 + 016 G K(z)[Y].

This polynomial is reducible over K3. Indeed, adding the three equations

vl + zy0 + x3 + 6 = 0

2/| + zy2 + x3 + 64 = 0

yl + zj/3 + x3 + 08 = 0

50 Chapter 4. Even characteristic function fields

and considering the fact that we work in characteristic 2, we get

{y + Vi + yzf + x{y + y2 + y3) + x3 + (9s + 94 + 9) = 0.

Since

98 + e4 + e = e4 + e2 = (e2 + 9f = (98)2 = e16 mK = w2{9),

we have

(y + 2/2 + yzf + x{y + y2 + y3) + x3 + 9w = 0

Then y+y2+yz is a root of Pa (Y), and Pa (Y) is reducible in K3 = K(z)(y0, yi,y2, yz)-

The good news is that no matter what power of o more than 4 we apply, we still get

reducible polynomial. This will be proved in Theorem 4.3.1.

The above example shows a desirable situation in which K(C) = K% is of degree

23 = 8 over K(E) and not 26 = 32. In this way, C should have smaller genus and it

should be easier to attack.

Obviously one can choose another equation for E and one would not get a reducible

polynomial before you extend the function field 7 times. In this regard, it is important

to find z such that the defining polynomial of K(E)/K(z) becomes reducible after

smaller number of application of a. In next section we will study the defining equation

from this perspective.

4.2 Minimal cr-polynomial

To study the complexity of the attack, we need to formalize the example of the previous

section. We stopped the process of extending the function field as soon as we had a

4.2. Minimal cr-polynomial 51

linear combination of conjugates of the curve's equation equal to zero. To formalize

the procedure we define a Fa[£]—module over the additive group K+ of K, following

[BSS05].

Proposi t ion 4.2.1 Let K+ be the additive group of K and let F2[t] act on K+ by

e £
f(t) * b := J2 OiO-^b) forbeK and f(t) = ^ atf G ¥2[t}.

i=0 i=0

This makes K+ into an ¥2[t]-module.

Proof. First we prove the distributivity. We have

e
f(t)*(b1+b2) = ^ o ^ b i + ba)

i=0

t=0

e e
= ^ O i a ^ b ^ + ^ a i c r ^ b s)

i=0 i=0

= /(*) * b ! + f(t) * b2(fi(t) + h{t)) * (b)
e

= Y2(au + °2iK(b)
=o
t £

= ^ a H C T ^ + ^ T a ^ C b)
2=0 1=0

= / i (t) * b + / 2 («)*b

52 Chapter 4. Even characteristic function fields

For the associativity, first we prove the result for monomials. Suppose / = X]i=oa^>

then for a general monomial te we have:

e e e
te * (f(t) * b) = if * 5>a*"(b) = al'^aia

i{h)) = 5>cr i+*'(b) = (^/(t)) * b
i=0 i=0 i=0

For the general case, we use induction over the degree of / . For degree 0 polynomials *

is trivially associative. Suppose for all / ' such that deg(/') < £ and / ' = f'2f'\ we have

for all b € K

f(t)*b = f!i(t)*(fi(t)*b).

Suppose that f(t) — f2(t)fi(t) such that deg(/) = £. We want to prove that f(t) *b =

f2(t) * (h(t) * b). Suppose that deg(/2) = £' and f2(t) = te' + g{t)

(f2)(fi)*b = (ti'+g(t))(f1)*b = (/) (/ i) *b + g(t)(f2)*b.

The first term of the right hand of the equality is equal to (tl * (fi) * b) as te is a

monomial and we proved the associativity when one of the factors is monomial. And

the second one is equal to g(t) * ((/i) * b) by induction as the degree g(t)(fi) is strictly

less than deg(/). So we have

(/ 2) (/ i) * b = / * ((/ i) * b) + 5 (*) * ((/ i) * b)

= (lf+g(t))*((fi)*b) = (f2)*((f1)*b).

•

Definition 4.2.2 Let f(t) G ¥2{t]. We define a ¥2[t]-linear map, Lj^, on the module

defined in Proposition 4-8.1 by

Lf(t)(b):=f(t)*b

4.2. Minimal cr-polynomial 53

The kernel of £/(t) is a submodule of K+ denoted by Sf.

It is straightforward that

• K — S^+i-

. f{t) | g{t) =>SfC Sg.

The other proprieties that we are interested in are as follows:

Proposition 4.2.3 Suppose that f,g are two polynomials in ¥2[t] and [f,g] is their

least common multiple. We have

Sf®Sg = S[fjg]

Proof. Let / ' , g' be such that, [/, g] = f'f — g'g for some polynomials / ' ,</ .

(C) For all bj G S/ ,b 2 G Sg,[f,g] * (bi + b2) = [f,g] * (bi) + [f,g] * (b2) =

f'f * bi + g'g * b 2 = / ' * (/ * bj) + g' * {g * b2) = 0 + 0 = 0 therefore, b2 + b 2 G S[Lg].

Q) First we treat the case that (f,g) = 1 this means [f,g] = fg- Now for all

b 6 Sfg we have g{t)f{i) * b = 0, by definition of Sjg and associativity of *, this means

that f(t) * h G Sg. Similarly we have g(t) * b G 5 / . Now as (f,g) — 1, there exist

polynomials hi,h\ such that fhi + g/i2 = 1. Additionally we have f(t) * b G Sg So

(hif)*h = (/ i^^C/^b) € 5 5 as Sg is a F2-submodule. Similarly we have p/i2*b G 5 / .

This two tells us that

fhi*b + gh2*b = (fhi + gh2) * b

= l*b = b<= Sf®Sg.

Now suppose that h = (/,g), using Lemma 4.2.4, we can write h = h\h,2 such that

(f/hi,g/h2) = 1 and [f,g] = [f/h1,g/h2] = (f'/h1)(g/h2). Using the co-prime case

54 Chapter 4. Even characteristic function fields

we know that 5[y)fl] = Sf/hl © Sg/h2. But we know that Sf/hl C Sf and S//h2 C Sg,

therefore, S ^ Q Sf ® Sg.

D

Lemma 4.2.4 Suppose that f,g are two elements of a unique factorization domain U,

and h = gcd(f,g). We can always decompose h — hih.2 such that (f/hx,g/h2) = 1 and

[f/hi,g/k2] = [f,g].

Proof. Suppose that / = p"1...p°n,g = pl{1...p^n be the prime decomposition of / ,g in

£7. Then h = p™inlai,^1\..;?™inlQ!1'^1\ Now set /ii := 1, and follow following algorithm

For 1 < i < n : if at < A such that tn := hi x p™in(Q''ft)

Then we set /12 := h/h\. Now suppose that p\{f /h\,g/h,2) this means that there exists

prime p\ such that Pi|(/, g). Now if a, < A =*• Pi t / / ^ l - Otherwise /% < c^ therefore

pf* I /i2 so j>j \ g/1%2 which is a contradiction.

•

Proposition 4.2.5 For any b 6 K, there is a unique monic polynomial f(t) € ¥2[t]

with minimal degree such that b e Sf. Furthermore, if g(t) * b = 0 £/jen /(£) divides

9(t).

Proof. Suppose i" = {g(t) € F2[i] such that g(t) * b = 0} the range of degree function

on set I is well-ordered and we can choose f(t) as one of those who has minimum degree.

Now suppose that g(t) * b = 0. By minimality of degree, we have, deg(g) > deg(/),

dividing by f(t) we have g(t) = q(i)f{t) + r(t) such that deg(r(f)) < deg(/(i)) therefore

0 = g{t) * b = q{t)f{t) * b + r(t) * b. But we know that f(t) * b = 0 so we must have

r(t) * b = 0 which contradict the minimality condition of / . So f(t) is unique up to

multiplication of a unit element. However being monic, make f(t) is unique.

4.2. Minimal cr-polynomial 55

D

Based on Proposition 4.2.5, we define the concept of "minimal cr-polynomial".

Definition 4.2.6 Minimal cr-polynomial For any element b € K+, the minimal cr-

polynomial ofb is the unique monic polynomial f(t) G F2[t] with minimal degree such

that f(t) * b = 0.
m

We can extend the definition of operation * between f(t) — Y^ ait1 and a rational

function g(z) 6 K(z) as follow

m

f(t)*g(z) = 52aig°i(z).

Definition 4.2.7 For a rational function g(z) G K{z), the minimal a-polynomial of

g{z) is monic polynomial rng(t) with minimal degree such that mg(t) * g(z) = 0.

Knowing the minimal cr-polynomial of the coefficient of a polynomial g(z), Corol

lary 4.2.8 to Proposition 4.2.3 helps us to find the the minimal cr-polynomial of g(z).

e
Corollary 4.2.8 Let g(z) — V^bj-z-7 6 K[z] be a polynomial. Then mg(t) = [m^

such that for 0 < j < £] and Smg = ® , = i Smb..

It is worthy of mention that unlike the case of minimal polynomial for an element

of an algebraic extension, f(t) is not necessarily irreducible. For example consider

k = F2 and K = F(0) where 02 + 9 + 1 = 0. We know that a2(9) = 6>4 = (0 + l)2 =

92 + l = 9=$>6€ St2+1. It is clear that t2 + 1 is not irreducible over F2, however we

claim it is the minimal cr-polynomial of 9. If not, then there exists a f{t) such that

deg(f(t)) < 2 and f(t) * 9 = 0, however by uniqueness condition of Proposition 4.2.5,

deg(/(i)) =̂ 2. The set of monic polynomials of degree 1 over K is {t, t + 1}. Similarly

since a{d)2 = 92 = 9 + 1^9,9<£ St+i. Similarly 92 ^ 0 implies that 9 0 St. So, the

a—minimal polynomial of 0 is the reducible polynomial t2 + 1.

56 Chapter 4. Even characteristic function fields

4.3 General quadratic extensions

Now that we have developed the theory of our submodules, we use it to study the

complexity of the GHS attack for different curves. Suppose that E is defined by the

equation

PE • Y2h(z) + Yg{z) + f{z) = 0 such that f(z) G K{z),h(z),g(z) G k{z) (4.1)

Then K{E) — K(z)(yo) where j/o is a root of (4.1). We do not confine ourself to

represent the equation of the curve in Weierstrass form or any other special form,

because we want to allow the attacker to use the form which gives the opportunity of

reaching the "best" extension K{C) for attacking the original curve. The only constrains

are:

• we require that the equation of the curve is quadratic in Y. This allows us to use

the linearity of square in characteristic 2 to implement a simpler attack.

• We require that h(z),g(z) be in k(z). This also important for the algorithm of

the attack.

Also if in (4.1) the rational function, f(z) is defined as

Hz) = ^~

such that q(z) $ k[z], we can replace it with

NormK(:)/k{z)(g(z))

f(z) = qM _ .
NormK(z)/k{z)(q(z))

So we can suppose that all rational functions in (4.1) have denominators in k[z].

4.3. General quadratic extensions 57

We also assume that (4.1) is not defined over any proper subfield of K(z), otherwise

one can simply replace K(z) with that subfield.

Let a be as defined in Chapter 3. Then

P% = Y2h{zY + Yg{zY + f{zf = Y2h(z) + Yg(z) + f(z) = 0.

in which

7 l } q°{z)

If P | is irreducible over K(z, yo), we add its root y\ and we continue by acting on coef

ficient of Pg. This leads to Algorithm 4.1 for finding K(C). This algorithm guarantees

that [K(C) : K(z)] does not exceed 2m , where m is the degree of rrif(t) the minimal

cr-polynomial of f(z) in(4.1).

Algorithm 4.1 FINDING K(C) USING GENERAL EXTENSION

Require: K(E) an elliptic function field.
K(z) a rational subfield of K(E) such that K(E) — K(z)(yo) is a quadratic exten
sion of K(z).
PE{Y) € /T(z)[Y] the minimal polynomial of yo over K(z), under form(4.1).

Ensure: Km = K{C) (as defined 3.3.3.1) such that [K{C) : K(z)] < 2m.

1: Compute mf(t) £ F2[i] be the minimal cr-polynomial of f(z), where f(z) is given
by (4.1).

2: m <— deg(mj(t))
3: K0^-K(z)(y0) = K(E)
4: for all i such that 1 < i < m do
5: Pg-1 <~ Y2h(z) + y5(z) + (/ r " 1 (*) ^
6: Ki <— Ki-i(yi) where yj is a root of P | |
7: end for
8: return Km

We now need to prove that using the above algorithm, we find the function field

K(C) of the original GHS attack so it has same useful properties which allow us to

descend it to k(CQ) and transfer the DLP to Cl°{k(C)).

58 Chapter 4. Even characteristic function fields

Theorem 4.3.1 Validity of Algorithm 4.1 for general quadratic extensions If

rrif is irreducible in K[t] then the outputs of Algorithm 3.1 and Algorithm 4-1 are equal.

Proof. The Algorithm 4.1 is essentially a special case of Algorithm 3.1, beside the fact

that it stops after m steps and unlike to algorithm 3.1, it does not loop for n steps.

We argue that if Algorithm 4.1 does not stop (and continue as Algorithm 3.1 does)

we would get exactly the same result. In the context of Algorithm 4.1, this means that

the polynomials Pg € K(z)[Y] are reducible over ifm[y] for i = m,... , n. First we

prove that if we apply a m times we get a reducible polynomial over Km. In the other

words we want to show that

am(Y2h(z) + Yg(z) + f(z)) = Y2h(z) + Yg(z) + am(f)(z) (4.2)

is reducible over Km.

According to the equation 4.1, my * h{z) = h(z),m,f * g(z) — g(z). Therefore after

running the loop for m times (i = 0 . . .m — 1), we have following relationships which

all defined over Km = K(z,y0,..., ym-i)

ylh{z) + y0g(z) + f(z) = 0

y\h{z) + yl9(z) + a{f){z) = 0

y2
3h(z) + yig(z) + a2(f)(z) = 0

y2
m^h{z) + ym_! *g(z) + am~l{f){z) = 0.

Now we know that my * / = 0. So we have

4.3. General quadratic extensions 59

ao(yoh(z) + vog(z) + /(«)) +

a^yjhiz) + yl9(z) + a(f)(z)) +

a2{y2
2h{z) + yig(z) + a2(f)(z) +

am^(y'm_1h(z)+ym-1g(z)+(rm-1(f)(z)) = 0

Distributing a;'s we get

m m—1 m—\ m—\

i=0 i=0 i=0

Using the fact that we are in characteristic 2 we can write the sum of squares of y[s as

square of their sum.

m— 1 m—1 m—1

(J2 <HVi?Kz) + (£ aivMz) + E ^'"(/X*) (4-3)
i=0 i=0 i=0

Let p(z) = X^7=o bj^J ' . as the denominator of q(z) G k[z] we deduce that m,f(t) = mp(t).

By definition of m/, we know that for

For 0 < j < I we have my * bj — 2~\o-i<yl{hj) = 0
i=0
m—1

*=0
* £ ro-1

j=0 j=0 1=0

60 Chapter 4. Even characteristic function fields

Now because a is isomorphism we can write the last equality as follows

TO—1

p°m{z) = E a ^ ^
i=0

Now dividing both side by q{z) considering the fact that qa{z) — q(z), we get

m— 1

/*"(*) = E^r1**)
i=0

Substituting this equality in 4.3 we get

m— 1 m—1

(E am)2^w + (E WW*) + r » = o
i=0 i=0

This means that J ^ L Q 1 aiVi 1S a r o o t f° r (Y^Hz) + V g ^) + f(z))am and therefore this

equation is not irreducible.

•

4.4 Genus of K(C)

The main appeal of Artin-Schreier and Kummer extensions considered in [Hes04]

and [Die03], is that it is relatively easy to compute the genus of K{C) in these cases.

However, there is no known method to compute the genus of K{C) in the general case

of the GHS attack.

In the case of quadratic extensions, however, we can compute an upper bound for

the genus of K(C).

Proposition 4.4.1 Let K{C) be the function field provided by Algorithm 4-1 and let

gc be its genus. Then

gc < m2m+1 + 1.

4.4. Genus of K{C) 61

Proof. For i € {0, . . . ,m}, let F* := K(z,yi) with t/j is defined in Algorithm 4.1.

It is easy to see that for i € {l , . . . ,m}, Ki — K(yo,...,yi) is equal to /fi_iF,, the

compositum of .£Q_i and F,. We want to find an upper bound for gi, the genus of K{.

We can use Theorem III.10.3 of [Sti93], which bounds the genus of compositum of Ki-\

and Fi by their genera and the extension degree of K,. This gives

9i < [Ki : #i_i]<fc_i + [Ki : Fi]gFi + ([Ki : K^] - l)([Ki : Fi] - 1). (4.4)

The GHS construction is done by quadratic extensions so [Ki : jftTj-l] — 2. Also we

know that Ki = Fi(yo,yi,..-,yi — 1) so [-FQ : Fj] = 2*. Moreover, Fi ~ K(E), a function

field of genus 1. Substituting these in (4.4), we get the recursive bound

gi < 2#_i + 2* + 2* - 1 = 2#_i + 2 m - 1. (4.5)

Using induction, we climb the tower of paired function fields shown in Diagram 4.1 to

get the explicit bound

9i < i2i+1 + 1.

For i = 1, the recursive bound and explicit bound are the same and show that g\ < 5.

Now assuming the explicit bound for <ft_i and using the recursive bound for gi, we have:

gi < 2^_ x + 2 i + 1 - l

=>9i < 2 ((z - l) 2 (i - 1) + 1 - l)) + 2 m - l

= (i - 1)2*+1 + 2 + 2 i + 1 - 1

= i2i+1 + l.

Using i = m we get the result.

62 Chapter 4. Even characteristic function fields

•

K0 = F0

Diagram 4.1: The induction tower used in the proof of Proposition 4.4.1.

4.5 Artin-Schreier extensions

In the last section, we considered the GHS attack for an elliptic curve equation which

is written in the form of (4.1). However, if we limit the type of the intermediate

extension, i.e. K\/K(z),K2/K\,..., Km/Km-\, we can prove more precise results. The

two special extensions which are studied in the GHS attack literature are the Artin-

Schreier extensions ([GHS02b], [Hes04]) and the Rummer extensions ([Die03], [The03]).

If the elliptic curve is given by (4.1), the extension K(E)/K(z) and consequently

Ki's are not Kummer extensions, since the degree of extension and the characteristic

of the base field should be co-primes.

Additionally, according to [The03] there is no non-supersingular elliptic curve over

characteristic 2 whose function field is a Kummer extension over some rational subfield

4.5. Artin-Schreier extensions 63

K(z).

However, the case of Artin-Schreier extensions for the GHS attack for even charac

teristic function fields, is well studied and there is a rich literature on this subject for

example [GHS02b], [Hes04], [BSS05]. We discuss the main features of this approach,

mostly from [BSS05].

Definition 4.5.1 Artin-Schreier extensions for fields of even characteristics

Suppose that F is a function field of characteristic 2, and g E F is an element such that

for all h G F we have g ^ h2 — h, Therefore the polynomial

Y2 - Y - u = 0 (4.6)

does not have any root in F. Let F' = F(y), where y is a root of (4-6). Then F1 /F is

called Artin-Schreier extension

If we work in a characteristic p ^ 2 then the definition of Artin-Schreier extensions

remains the same except that (4.6) would change to Yp — Y — u = 0. These extensions

have many nice properties. For example, an Artin-Schreier extension is always Galois.

To see that, suppose y is a root of 4.6. Then we have

(y + If - (y + 1) - u = yp + lp - y - 1 - u = y? - y - u = 0,

and y + 1 is a root of that equation as well. Inductively y + i such that 0 < i < p

are roots of this equation. Therefore by adding one root of this equation, it happens

that all other roots also belong to the same extension, which means the extension is the

splitting field of the equation with p different roots, and is Galois consequently.

Although any separable quadratic extension is Galois, the fact that the 2 roots are

y and y + 1 is special to Artin-Schreier extensions, and will be important for us. In

64 Chapter 4. Even characteristic function fields

characteristic 2 we can change also the general form of Artin-Schreier equation to

Y2 + Y + u = 0 (4.7)

4.5.1 Elliptic curve equation in Artin-Schreier form

We want to show that all elliptic curves can be described by an Artin-Schreier equation

by means of a simple change of variables. Proposition A.1.1 [Sil94] says that any elliptic

curve over a field characteristic two can be defined using either of the following equations

depending on the value of j(E)

• Y2 + a3Y = x3 + aAx + a6 if j(E) = 0

• Y2 + xY = x3 + a2x
2 + a6 if j(E) ^ 0

For the case that j(E) = 0 we have

Y2 + a3Y = x3 + a4x + a6. (4.8)

One can replace Y' = Y/a^ =» Y = a^Y' and the result would be

a\Y'2 + a2Y' = x3 + a4x + a6

Dividing both side by a\ we get

Y'2 + Y' + g{x) = 0 where g(x) := {x3 + a4x + a6)/a3, (4.9)

which is in the Artin-Schreier form.

On the other hand, if j(E) ^ 0, we can describe E with following equation

Y2 + xY = x3 + a2x
2 + a6 such that j(E) = l /a6 . (4.10)

4.5. Artin-Schreier extensions 65

In this case, as it is done in [BSS05], we can write Y = ^Y'/z + a§ ,x = 7/2. We

get
2y,2 y , 2 af 2

zz z* z z*

2

Cancelling ag from both side and multiplying both side by % we get

y'2 + Y' + 4 /2/7 = 7 / z + a2,

and rearranging the terms we get

y/2 + y/ + j ^ = Q g u c h t h a t j - ^ . = 7 + flV2^ + ^ ^ 4 > n j

which is also an Artin-Schreier equation.

Elliptic curves with zero j-invariant are not considered secure in cryptogra

phy [HMV03] and for that reason we do not consider that case in following process.

4.5.2 The GHS attack with Artin-Schreier extensions

To implement the GHS attack with Artin-Schreier extension we use the Algorithm 4.1,

however assume that E is given by an equation of type 4.11. This means that we make

a set of Artin-Schreier equations

Y2 + Y + f(z) = 0

Y2 + Y + f"(z) = 0

Y2 + Y + r2(f)(z) = 0

Y2 + Y + rm~\z) = 0,

66 Chapter 4. Even characteristic function fields

and we want to extend K(E) to a field Km = K{C), such that all these equations has a

roots. Using the result of Theorem 4.3.1, we know that the remaining n — m equations

y2 + y + /ffm(z) = o

Y2 + Y + rm+1(z) = 0

Y2 + Y + rn~1(z) = 0

also have roots in Km. Moreover, for any d e K(z) we know that the equation Y2 +

Y + d2 + d has a solution d.

Finally, it is easy to see that if Km contains roots of different Artin-Schreier equa

tions such as y\ + y\ + a = 0 and y% + y2 + b = 0 then

(yi + yif + (yi + 2/2) + a + b = 0

therefore it also has roots of Y2 + Y + a + b — 0. Therefore, independently of how we

define and construct Km, we can redefine it as follow: Let A be the F^i]—submodule

generated by all elements d2 + d for any d £ K(z) and f(z). Then Km is the smallest

field such that for any b e A , Y2 + Y + h = 0, has a root in Km.

The fact that A is defined an F2[i]-submodule means that A is closed under operator

*, therefore Y2 + Y + ax(f)(z) has solution in Km for any i. This shows that the field

Km generated by above procedure contains the K(C) needed for the GHS attack.

The following theorem from [BSS05] and [Hes04], describes completely the situation

when the extension Km/K(z) is formed by Artin-Schreier intermediate extensions.

Theorem 4.5.2 The GHS attack for Artin-Schreier extensions Suppose E is an

elliptic curve defined using Equation ^.11. Let (3 := y/a^/q. Let m7 , mp and mf(z) be

4.6. Security evaluation of composite fields 67

the minimal a-polynomials 0/7 and (3 and f(z) respectively. Let Co be the curve defined

over k (as defined in Section 3.3.1), such that K{CQ) = K(C) = Km, Then we have

• if there exists d 6 K such that 0,2 — d2 + d, then ra/(2) — [m7, mp]; otherwise

mm = K , mp,t + i\.

• the genus of Co is equal to

2deg([m7,ro /3]) _ 2deg([m 7 ,m 0]) -deg(m 7) _ 2deg([ro7 ,m / S])-deg(m / 3) _^_ -^

• if 7 € k or j3 € k then Co is hyperelliptic.

4.6 Security evaluation of composite fields

We now want to investigate how secure is a specific even characteristic field with com

posite degree against the GHS attack. The security of these fields is studied in [JMS01],

[BSS05], [SmaOl], [MTW04], [MMT01], and [MT06] [MQ01] for the GHS attack using

Artin-Schreier extensions. However, here we consider that our curve is defined in the

more general form of (4.1) and we do not confine our study to curves with Artin-Schreier

equation.

According to Theorem 4.3.1, the final factor that defines the efficiency of attack is

the degree of my in Algorithm 4.1.

4.6.1 Security of coefficients of f(z)

we know that mf(t) is the minimal degree among the polynomials which annihilate all

coefficients of numerator of f(z).

The Corollary 4.2.8, means that a curve with low security (by low security, we mean

small m) is a curve which is expressible as (4.1) such that

68 Chapter 4. Even characteristic function fields

• All coefficients of f(z) have minimal <7-polynomial of low degree.

• The least common multiplier of those polynomials have small degree.

In following sections we focus on the first condition. The second condition, however, is

more complicated and need more research.

4.6.2 On polynomial tn + 1

Clearly, for all b G K we have an(b) + b = 0, so b e St^+i and by Proposition 4.2.5,

nib | tn + 1. Therefore the factorization of tn 4- 1 is related to the size of ro = deg(m/).

Lemma 4.6.1 (Lemma 2, [MQ01]) Let n be an odd prime. Let d = ordn(2) be the

order of2 € Z/nZ. Write n = ds + 1. Then tn + 1 = fo{t)h{t) • • • fs(t) over ¥2[t}.

where

• For 1 < i < s,fi(t) is irreducible over¥2-

• For 1 < i < s.deg(fi) = d.

• For iy£ j we have (ft, fj) = 1.

To categorize the elements of K according to their security level toward the GHS

attack, we associate following set to each element.

Definition 4.6.2 Suppose n is prime, and the fi's are as defined in Lemma 4-6.1. We

define set If, for any element b £ K by

/ b = {̂ such that fi(t) divides mb(t)}

4.6. Security evaluation of composite fields 69

Fixing an odd prime n, the number of elements of i& is a measure of the degree of

mi)(t) which is related to m = deg(m/(£)). As an attacker, we want m to be small. We

now compare the various elements b of a given field K from that point of view. The least

secure elements among the elements of K, are those with 1^ = 1. Another interesting

questions, is to consider a specific subset S C {0 , . . . , s}, and ask what are the elements

b such that Ij, = S. To answer these questions we need to study the submodules of the

F2-module defined in Section 4.2.

4.6.3 The structure of K+ as a F2-module

As it is mentioned in Section 4.6.2, when n is an odd prime, for any f(t) G F2[i], Sj has

one of 2S + 1 submodules. Therefore we want to study these submodules to understand

the security of different elements of the field against the GHS attack.

The following lemma allows us to generalize idea of I\, to submodules of K+.

Lemma 4.6.3 Let S be an ¥2[t]—submodule of K+. Suppose that S can be generated by

bi , . . . ,b^ . Then for any b € S, we have deg(m;>(£)) < deg([mbi, • • • ,rribe])- Moreover,

Proof, bj 6 S'TOb. and as it is a submodule therefore < bj >C Smb. therefore <
e z

b i , . . . , b „ >C (|) S m b . by proposition 4.2.3 we have < b i , . . . , b n >C S[m b i v . .) m b j

but b G< b i , . . . , b „ > therefore mi, | [mb,,...,mbB]. Now the statement about if, is

clear by definition.

•

Definition 4.6.4 Let S be a ¥2$]—submodule of K+ generated byb\,...,be we define

LS := UU/fc-

70 Chapter 4. Even characteristic function fields

If there is another generating set for S, we can conclude with double inclusion that

the 7g for the new generating set would be the same which assures that Definition 4.6.4,

is well-defined.

The submodules which have \I§\ = 1 are the most interesting submodules for us as

they contain the least secure elements of the field. To implement an algorithm to find

these submodules, we use linear algebra to analyze the Probenius automorphism which

is a linear operator over K as a k vector space. Let A be the matrix representing this

Frobenius operator. By the Normal Basis Theorem [Mor96], the minimal polynomial

oiAistn + l.

A l g o r i t h m 4 . 2 FINDING THE GENERATORS OF WEAKEST SUBMODULES

1: Compute the matrix A, the matrix of Frobenius automorphism as a linear operator
of K/k.

2: Factorize tn + l = (t+ l)/i(«) • • • f3(t)
3: for all i E. { 1 , . . . ,s} do
4: Compute fi(A).
5: Use Gaussian Elimination to compute a basis for the kernel of fi(A).
6: Print out the basis elements, which are generators of the unsecure submodule.
7: end for

Although the basis elements contains a basis for a subspace of K, we know that the

submodule generated by these elements also has \Is\ = 1 and is annihilated by fi(t).

Therefore the algorithm print out generator of submodules which contains elements of

m = i.
We implemented this algorithm and applied it to different fields. Those results are

presented in 5.3.

4.6.4 Field security evaluator

The method presented above can determine if the defining equation of an elliptic curve

is weak against the GHS attack of the DLP. However, this method cannot assure us of

the security of the curve, because one can presumably write another equation for the

4.6. Security evaluation of composite fields 71

curve with coefficients which are weak against the GHS. How can we then make sure

that a chosen elliptic curve is secure?

A partial answer to above question could be as follow: if the curve is defined over a

field in which all the elements are secure, then no matter how we change our equation

we get a secure equation again. In language of the GHS attack, this means that all

element of the field should have a minimal cr-polynomial of high degree. The weakest

elements of the field are those whose minimal cr-polynomial is of degree d as defined

in Lemma 4.6.1. Therefore we can evaluate the security of a field against the GHS by

considering the parameter d of that field. When d — n — 1, we have highest expected

security. If we systematically choose n an odd prime such that ord„(2) = n — 1, then

mb{t)\(t + l) / i (i) for all beK. Since mh(t) + 1 if b ^ 0 and mb(t) ^{t + l)ifbgk,

this mean fi(t) | m^t) for all b. Therefore the deg(m/) as defined in Algorithm 4.1,

is either n or n — 1. Presumably the genus of K{C) would be high in that case. This

mean that for a reasonably large n, the GHS attack does not work for the curve.

According to Lemma 4.6.1, we get a fields with d = n — 1 whenever 2 has order

n — 1 in (Z/nZ)* for a prime n. The question of identifying the odd primes n such that

2 has order n — 1 is a well-known question in number theory, called the Artin primitive

root conjecture. Let a e Z be square free and not ±1 . Artin conjectured that there are

infinity many primes n such that the order of a is n — 1.

Let Na(x) = # { n < x : a has order n - 1 in (Z/nZ)*}. It is proved in [Hoo67] that

under General Riemann Hypothesis we have

Na(x) - C(a)n(x),

in which C(a) is a positive constant and 7r(x) is the number of primes up to x. Uncon

ditional results were first obtained in [GM84], and improved afterwards. To this day,

we know that there are at most 2 odd primes for which Artin conjecture fails [HB86].

72 Chapter 4. Even characteristic function fields

We have done the numerical analysis for all extension of F2 whose degree is a prime

less than 512 and we represent it in Section 5.3.4.

CHAPTER 5

Implementation and Computational

Result

In this section we discuss implementation of the attack and the field evaluator. First

we see the implementation the "Evaluator" and we bring the result of execution of the

implementation for n 6 [3..512] : n is prime. This range of n is of cryptographic interest.

After that we will see the implementation of the general attack. Then we run our

attack on some simple example and we see the property of resulting curve C and its

function field extension K{C).

5.1 Choosing the computer algebra system

We considered "Sage", "Kash" and "Magma" computer algebra systems for our imple

mentations.

Sage is free software licensed under GNU General License [Fre07] and therefore open

source. For that reason many mathematicians, and more specifically number theorist

contributed to its development in recent years. We implement our primarily implemen

tation of the attack in Sage. However, Sage has a serious limitation in multiple extension

of function field which made the implementation of the complete attack impossible.

Kash is a computer algebra system which is free (but not a free software) and so it is

not an open source software. GHS attack as it is described in [GHS02b] was originally

74 Chapter 5. Computational result

implemented in Kash. Therefore it was natural that we considered Kash as our second

option. However, Magma, the third candidate of Computer Algebra System, contains

Kash completely and one can run any capability of Kash in Magma. Magma is not free

software nor free.

All the implementation is done in Magma which is the most comprehensive computer

algebra language for making computation in algebraic function fields and working with

curves, As it is described above.

5.2 Security evaluator

Using algorithm 4.2 we can find the unsecure subspaces of K/k. In this sense we can

rank finite fields according to their security against GHS attack. This also helps us to

find the unsecure subspaces which means if the coefficient of f(z) in Equation 4.1 are

all in one of these subspace, we would finish with a unsecure elliptic curve.

We also use the result of this attack to construct a low security curves to be attacked

in Section 5.5.

5.2.1 Implementat ion of the security evaluator

Listing 5.1: 'Magma implementation for finding the generators of the least secure mod

ules'

1 /******** WeakElementFinder .m *********
2 * This program is intended to find the elements in a f in i t e f ie lds
3 * for if they are used as coef f ic ien ts of an e l l i p t i c curve
4 * defining polynomial the GHS at tack with r e l a t i ve ly low genus
5 * would be possible to the curve.
6 *
7 * The algorithm isfor finding unsecure elements in the field . The
8 * t r ick is to look at Frobenius as a l inear operator and find the
9 * kernel of i r r educ ib l e factors of t"n + 1.

10 */

5.2 . Security evaluator 75

11

12 /********Bas ic D e f i n i t i o n s and I n i t i a l i z a t i o n ********/

13 c l e a r ;

14

15 / * As def ined in T h e s i s : example r*n = 155 => r = 15 n = 3 1 * /

16 p := 2;

17 r := 1;

18 n := 3 1 ;

19

20 k := F i n i t e F i e l d (p , r) ;

21

22 IP<Theta> := I r r e d u c i b l e P o l y n o m i a l (k, n) ;

23 kT<T> := P a r e n t (I P) ;

24

25 p r i n t "Bas ic P a r a m e t e r s : p = " , p , " , r = " , r , " , n = " , n ;

26 p r i n t "Ex tend ing po lynomia l I P : " , I P ;

27

28 K<t> := ext<k | I P > ;

29

30 /**** Computing F roben ius Matr ix ****/

31 A := T r a n s p o s e (M a t r i x (k , n , n , /

32 [E]emen tToSequence ((t~ i) ~ (2)) : i in [0 . . n - l]])) ;

33 p r i n t " F r o b e n i u s M a t r i x : " ,A;

34

35 / * F a c t o r i n g the F roben iu s Minimal P o l y n o m i a l * /

36 if (I s P r i m e (n)) then

37 ZnZ := F i n i t e F i e l d (n) ;

38 p r i n t " M u l t i p l i c a t i v e o rde r of 2 in Z/nZ i s : " , Order (2*ZnZ. 1) ;

39 end if ;

40

41 FroMini := T~n + 1;

42 F roMin iFac t s := F a c t o r i z a t i o n (F r o M i n i) ;

43

44 p r i n t " F a c t o r i z a t i o n of", F roMin i , " : " ;

45 p r i n t F r o M i n i F a c t s ;

46

47 for CurFact in F roMin iFac t s do

48 p r i n t "Cur r en t F a c t o r : " , CurFact [1] ;

49 CurMat := E v a l u a t e (CurFac t [1] , A) ;

76 Chapter 5. Computational result

50 CurKer := Nullspace (CurMat);
51
52 print CurKer;
53
54 end for ;

5.3 Computational result of field evaluator

To work with a computational sample data. We worked with K G {F25,F27,F23i}. It is

worthy of mention that no matter what r is in k = ¥pr the security level of K = F(pr)n

just depends on n. This is because we look at decomposition of tn + l over F2. Therefore

in the following we assume that we treat the simplest case which is r = 1:

5.3.1 Case n — 5

In the case n = 5, as you can see we get min(ra) = d = ords(2) = 4 which make the

extension degree \K{C) : K] = 24 which means that the field is secure:

Basic Parameters: p = 2 , r = l , n = 5
Extending polynomial IP: T~5 + T~2 + 1
Frobenius Matrix:
[1 0 0 0 1]
[0 0 0 1 0]
[0 1 0 0 1]
[0 0 0 1 1]
[0 0 1 0 0]
Factorization of T"5 + 1:
[
<T + 1, 1>,
<T~4 + T~3 + T~2 + T + 1, 1>

]
Current Factor: T + 1
Vector space of degree 5, dimension 1 over GF(2)
Echelon basis:
(10 0 10)
Current Factor: T~4 + T~3 + T~2 + T + 1
Vector space of degree 5, dimension 4 over GF(2)
Echelonized basis:
(0 1 0 0 0)

5.3. Computational result of field evaluator 77

(0 0 1 0 0)
(0 0 0 1 0)
(0 0 0 0 1)

5.3.2 Case n = 7

In this case we get min(m) = d = ord7(2) = 3 with subspace of dimension 3. This

means that if it happens that the coefficients of f(x) in Equation 4.1 are in one of these

two subspace, the extension degree of \K(C) : K] = 23 instead of expected 26, which

much less secure.

B a s i c P a r a m e t e r s : p = 2 , r = 1, n = 7
Extend ing po lynomia l I P : T~7 + T + 1
F roben ius M a t r i x :
[1 0 0 0 0 0 0]
[0 0 0 0 1 0 0]
[0 1 0 0 1 0 0]
[0 0 0 0 0 1 0]
[0 0 1 0 0 1 0]
[0 0 0 0 0 0 1]
[0 0 0 1 0 0 1]
M u l t i p l i c a t i v e o r d e r of 2 i n Z/nZ i s : 3
F a c t o r i z a t i o n of T~7 + 1:

[
<T + 1, 1>,
<T~3 + T + 1, 1>,
<T~3 + T~2 + 1, 1>

]
Cur r en t F a c t o r : T + 1
Vector space of d e g r e e 7 , d imension 1 over GF(2)
Eche lon ized b a s i s :
(1 0 0 0 0 0 0)
Current Factor: T~3 + T + 1
Vector space of degree 7, dimension 3 over GF(2)
Echelonized basis:
(0 1 0 0 1 1 0)
(0 0 1 0 1 1 1)
(0 0 0 1 1 1 1)
Current Factor: T~3 + T~2 + 1
Vector space of degree 7, dimension 3 over GF(2)
Echelonized basis:
(0 0 0 1 0 0 0)
(0 0 0 0 0 1 0)

78 Chapter 5. Computational result

(0 0 0 0 0 0 1)

5.3.3 Case n = 31

This case is the most interesting case among our example, one may expect that size of

\K(C) : K(z)} = 231 usually, however, we have six, 5-dimensional unsecure subspaces.

Even if it happens that the coefficient of f(z) are in two different subspaces still we can

attack using \K{C) : K] = 210 which is significantly less than 230.

Basic : Parameters p =
Extending polynomial
Frobenius Matrix
[1 0
[0 0
[0 1
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0
[0 0

0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

= 2
I P :

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

, r =

r
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

L . n = = 31
-31 + T~3 +

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

L

0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0

0 0 0]
0 0 1]
0 0 0]
0 0 0]
0 0 1]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
0 0 0]
1 0 0]
0 0 0]
0 1 0]
1 0 0]
0 0 1]
0 1 0]

5.3. Computational result of field evaluator 79

1, 1>,
+ T~2 + 1, 1>,
+ T~3 + 1, 1>,
+ T"3 + T~2 + T +
+ T~4 + T~2 + T +
+ x~4 + T~3 + T +
+ T~4 + T~3 + T~2

1, 1>,
1, 1>,

1, 1>,
+ 1, 1>

M u l t i p l i c a t i v e o r d e r of 2 in Z/nZ i s : 5
F a c t o r i z a t i o n of T~31 + 1

[
<T +
<T~5
<T~5
<T~5
<T"5
<T~5
<T~5

]
Cur r en t F a c t o r : T + 1
Vec tor space of d e g r e e 3 1 , d imens ion 1 over GF(2)
Eche lon ized b a s i s :
(1 0)
Cur r en t F a c t o r : T~5 + T"2 + 1
Vec tor space of d e g r e e 3 1 , d imens ion 5 over GF(2)
Eche lon ized b a s i s :
(0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0)
(0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 1)
(0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0)
(0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0)
(0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 0 1)
Cur r en t F a c t o r : T~5 + T~3 + 1
Vec tor space of d e g r e e 3 1 , d imens ion 5 over GF(2)
Eche lon i zed b a s i s :
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(0 1 0 0 0 0 0 0 0)
(0 1 0 0 0)
(0 1 0)
(0 1)
C u r r e n t F a c t o r : T~5 + T~3 + T~2 + T + 1
Vector space of d e g r e e 3 1 , d imension 5 over GF(2)
Eche lon ized b a s i s :
(0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
(0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
C u r r e n t F a c t o r : T~5 + T~4 + T~2 + T + 1
Vector space of d e g r e e 3 1 , d imension 5 over GF(2)
Eche lon i zed b a s i s :
(0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1
(0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
(0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1
(0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0
(0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

1
0
0
1
1

0
0
0
0
0

1
0
1
1
1

1
1
1
0
0

0
0
1
0
1

0
0
0
0
0

0
1
1
1
0

1
1
0
1
0

1
1
1
0
1

0
1
0
0
1

0
1
1
0
0

1)
1)
0)
1)
1)

0
0
0
1
1

0
0
1
1
0

1
1
0
1
0

1
0
1
1
1

1
1
0
0
0

1
0
1
1
0

1
1
1
1
0

1
0
0
0
1

0
1
0
1
1

1
0
1
1
1

1
0
1
1
0

1
1
1
1
0

1)
0)
0)
0)
1)

80 Chapter 5. Computational result

Current Factor: T~5 + T~4 + T~3 + T + 1
Vector space of degree 31, dimension 5 over GF(2)
Echelonized basis:
(0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1)
(0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1)
(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1)
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1)
Current Factor: T~5 + T~4 + T~3 + T~2 + 1
Vector space of degree 31, dimension 5 over GF(2)
Echelonized basis:
(0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0)
(0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0)
(0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1)
(0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1)
(0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1)

5.3.4 Field security table

In this section we check all primes in [3, ...,512] against applicability of GHS attack.

The chosen interval is particularly of cryptographic interest. In Table 5.1 one can see

the minimum m that a curve can have on the specified field:

5.4 The GHS attack for general function field extensions

Using Algorithm 4.1 we can find K(C) efficiently. However, this algorithm needs to

know exact degree of mj as it is defined in Section 4.3. We can run Algorithm 4.2

for each coefficients of f(z) and then uses Theorem 4.2.3 to find exact degree of m.

Therefore in this implementation we suppose that m is given:

5.4.1 Implementation of the attack

Listing 5.2: 'Magma implementation for the function field K(CY

1 //FCompositonKash .m
2
3 / / I n i t i a l i z i n g the program

5.4. The GHS attack 81

Table 5.1: The security of weakest elements of extensions of F2 with prime degree
< 1000. The smallest field extension can be achieved using Algorithm 4.1 is of degree
2d over K(z). The fields which admit non-trivial factorization of tn + 1 are noted by *
in NT column.

n
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97

d
2
4
3
10
12
8
18
11
28
5
36
20
14
23
52
58
60
66
35
9
39
82
11
48

NT

*

*

*

*

*

*

*

*

*

*

*

*

n
101
103
107
109
113
127
131
137
139
149
151
157
163
167
173
179
181
191
193
197
199
211
223
227

d
100
51
106
36
28
7
130
68
138
148
15
52
162
83
172
178
180
95
96
196
99
210
37
226

NT

*

*

*

*

*

*

*

*

*

*

*

*

n
229
233
239
241
251
257
263
269
271
277
281
283
293
307
311
313
317
331
337
347
349
353
359
367

d
76
29
119
24
50
16
131
268
135
92
70
94
292
102
155
156
316
30
21
346
348
88
179
183

NT
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

n
373
379
383
389
397
401
409
419
421
431
433
439
443
449
457
461
463
467
479
487
491
499
503
509

d
372
378
191
388
44
200
204
418
420
43
72
73
442
224
76
460
231
466
239
243
490
166
251
508

K\

*

*

*

*

*

*

*

*

*

*

*

*

*

*

82 Chapter 5. Computational result

4 c l e a r ;

5 / / To whether check if t h e r e s u l t i n g curve is h y p e r e l l i p t i c or not

6 H y p e r e l l i p t i c C h e c k := t r u e ;

7

8 / / D e f i n i n g the f i e l d s

9 p — 2;

10 r — 1;

11 n := 3;

12

13 m_fDegree := 2;

14

15 / / C o n s t r u c t i n g the F i e l d s and the Homomorphisms between them

16 k := F i n i t e F i e l d (p , r) ;

17 kx<x> := R a t i o n a l F u n c t i o n F i e l d (k) ;

18 kxT<T> := P o l y n o m i a l R i n g (k x) ;

19

20 IP<Theta> := I r r e d u c i b l e P o l y n o m i a l (k , n) ;

21 kT<Theta> := P a r e n t (I P) ;

22 p r i n t "Bas ic P a r a m e t e r s : p = " , p , " , r = " , r , " , n = " , n ;

23

24 EmbkTkxT := hom< kT-> kxT | T>;

25 TIP := EmbkTkxT(IP);

26

27 p r i n t "Ex tend ing K/k w i t h " , T IP ;

28 K<t> := ext<k | I P > ;

29 Kx<x> :- R a t i o n a l F u n c t i o n F i e l d (K);

30

31 kxbyb<y> := P o l y n o m i a l R i n g (k x) ;

32 KxbYb<Y> := Polynomia lRing (Kx);

33

34 kxy<yp,xp> :— P o l y n o m i a l R i n g (k , 2) ;

35 KbXYb<YP,XP> : = P o l y n o m i a l R i n g (K , 2) ;

36

37 / / D e f i n i n g the curve

38 / / N o i r r e d u c i b i l i t y check!

39

40 At t ackedCurves := {Y~2 + x*Y + t*x~3 + t / * , Y ~ 2 + Y + 1/x + t * x ,

41 Y"2 + x*Y + x ' 3 + 1 * / } ;

42

5.4. The GHS attack 83

43 for E in At tackedCurves do

44 p r i n t "" ;

45 p r i n t "********";

46

47 p r i n t "The O r i g i n a l Curve under a t t a c k , E i s : " ;

48 p r i n t E;

49

50 mCounter := 0; //How many t imes we extend our b a s i c c u r v e ' s f . f .

51

52 ExtendingCurve := E;

53 FR := [KxbYb];

54 F := [F u n c t i o n F i e l d (Ex tend ingCurve : Check := f a l s e)] ;

55

56 / / E x t e n d i n g F roben ius

57 sigmaK := hom<K->F[l] | t ' (p ' r) > ;

58 sigmaT :— hom<Kx->F [1] | sigmaK , Kx. 1 >;

59 sigmaE := [*hom<F[l] ->F[1] | s igmaT, F [l] . l > *] ;

60

61 for nCounter in [l . . n —1] do

62

63 CurRing<YP> : = PoIynomia lRing(F[mCounter + l] : Global := f a l s e) ;

64 Append(~FR, CurRing) ;

65

66 AssignNames(~FR[nCounter + 1] , [n w " * I n t e g e r T o S t r i n g (nCounte r)]) ;

67

68 sigmaEP := hom<FR[nCounte r+ l] ->FR[nCounte r+ 1] | sigmaE [mCounter+ 1],

69 FR[nCounter + l] . l > ;

70 ExtendingCurve := sigmaEP (Ex tend ingCurve) ;

71

72 p r i n t "Applying s i g m a ' " , nCoun te r , " r e s u l t s in e q u a t i o n ";

73 p r i n t Ex tend ingCurve ;

74

75 mCounter := mCounter + 1;

76 Append(~F, F u n c t i o n F i e l d (Ex tend ingCurve : Check := f a l s e)) ;

77

78 / / E x t e n d i n g F roben ius

79 CurK := hom<K->F[mCounter + l] | s i g m a K (t) > ;

80 CurT := hom<Kx->F[mCounter+ 1] | CurK, K x . l > ;

81 for i in [1 . . mCounter] do

84 Chapter 5. Computational result

82 CurT := hom<F[i] ->F[mCounte r + l] |CurT , F [i] . l > ;

83 end for ;

84 Append(~sigmaE , hom<F[mCounter+l]—>F[mCounter + l] | CurT,

85 F[mCounter + l] . l >) ;

86

87 if (mCounter eq m_fDegree — 1) then

88 b r e a k ;

89 end i f ;

90

91 end for ;

92

93 p r i n t "Compositon degree [K(C):K(E)J = 2 ~ " , mCounter;

94

95 KC := A b s o l u t e F u n c t i o n F i e l d (F [m C o u n t e r + l]) ;

96 PC<yp,xp> := Def in ingPo lynomia l (KC) ;

97

98 p r i n t "The genus of the func t i on f i e l d K(C) i s : " , Genus(KC);

99

100 / /Map PC to a u n i v a r i a t e - l o o k i n g Ring!

101 CanKbXYbKxbYb := hom<KbXYb - > KxbYb | Y, x > ;

102 C := CanKbXYbKxbYb (PC);

103 p r i n t "C i s " , C;

104

105 / / R e d e f i n i n g KC d i r e c t l y with t he d e f i n i n g e q u a t i o n : j u s t for

106 / / e f f i c i e n c y .

107 KGcY> := F u n c t i o n F i e l d (C : Check := f a l s e) ;

108 KCbWrxtt£> : = PolynomialRing (KC);

109

110 FroKKxbYb : = hom<K->FR[1] | s i g m a K (t) > ;

111 FroKxKxbYb : = hom<Kx->FR[1] | FroKKxbYb, K x . l > ;

112 FroKxbYbKxbYb := hom<FR[l]->FR[1] | FroKxKxbYb, F R [1] . 1 > ;

113

114 ImgC := FR[1] ! C;

115 ProdC := C;

116 for i in [l . . n —1] do

117 ImgC — FroKxbYbKxbYb (ImgC);

118 ProdC *:= ImgC;

119

120 end for ;

5.5. Computational result of running the attack 85

121

122 p r i n t "Prod_{i = l . . n}S igma(C(Y)) = ";

123 p r i n t ProdC;

124

125 p r i n t "Complete F a c t o r i z a t i o n of above Produc t over KC[W]: " ;

126 p r i n t F a c t o r i z a t i o n (KCbWb ! P rodC) ;

127

128 if (H y p e r e l l i p t i c C h e c k) then

129 P2<Z,Y,x> := P r o j e c t i v e S p a c e (K , 2) ;

130

131 AI := i dea l <KbXYb| [PC] >;

132 KXYZcZ,Y,x>, hm :- Homogenizat ion (A I) ;

133 PPC := Bas i sE lement (hm(AI) , 1) ;

134

135 C := Curve(P2 ,PPC) ;

136 h p i c i t y , HC,hmp := I s H y p e r e l l i p t i c

137 if (h p i c i t y) then

138 p r i n t "C is h y p e r e l l i p t i c . C is

139

140 e l s e

141 p r i n t "C is NOT h y p e r e l l i p t i c . " ;

142

143 end if;

144

145 end if;

146

147 end for ;

5.5 Computational result of running the attack

In this section investigate some individual examples of curves over different field. For

this reason we chose n 6 3, 7 ,31.

(C) ;

" , HC;

86 Chapter 5. Computational result

5.5.1 Case n = 3

In this section we attack the curve Y2 + xY — x3 + tx2 + 1 such that k = ¥2 is extended

to K(t) such that t3 + t + 1. The minimal polynomial of Frobenius is factorized as

tz + 1 = (f + l)(t2 + t + l). Now f(x) = X 3 + to2 + 1. So we have mx = < + 1 and

mt(t) =t2 + t + l. This mean m} = [t + 1, t2 +1 + 1} = i3 + 1. Therefore deg(m/) = 3.

By running the attack we get following result:

Basic Parameters: p = 2 , r = l , n = 3

Extending K/k with T~3 + T + 1

The Original Curve under attack E is:

Y~2 + x*Y + x~3 + t

Applying sigma" 1 results in equation

wl~2 + x*wl + x~3 + t~2

Applying sigma~ 2 results in equation

w2~2 + x*w2 + x~3 + t~4

Compositon degree [K(C):K(E)] = 2" 2

The genus of the function field K(C) is: 3

C is Y~8 + (t~2*x~7 + t~4*x~6 + t~6*x~5 + t*x~4)*Y~4 + (t~3*x~7 +
t~5*x~6)*Y~2 + (x~14 + t~2*x~13 + t~4*x~12 + t~6*x"ll + t*x~10 +

t~3*x~9 + t~5*x~8)*Y + t~3*x~20 + t~3*x~18 + t*x~17 + t~6*x~16 +
t*x~15 + t~5*x~14 + t~4*x~13 + x~12 + t~2*x~ll + t~3*x~10 + t~3*x~9
+ x~8 + t~2*x~7 + t~6*x~6 + t*x~5 + t~4*x~4 + t~4
Prod_-Ci = i..n}Sigma(C(Y)) =

Y~24 + x~5*Y~20 + (x~7 + x-~6)*Y~18 + (x~14 + x~ll + x~9 + x"8)*Y~17

+ (x~20 + x~18 + x~16 + x~13 + x~6)*Y~16 + (x~14 + x~12 + x~ll +

x~10)*Y~14 + (x~16 + x"14 + x~13 + x~12)*Y~13 + (x~27 + x~26 + x~22

+ x~21 + x~20 + x~18 + x~15 + x~13 + x~12 + x~ll + x~9 + x~8 +

x~7 + x~5 + x~4)*Y"12 + (x~20 + x~18 + x~17 + x~16)*Y~ll + (x~28 +
x~25 + x~22 + x~21 + x~20 + x~17 + x~15 + x~14 + x~12 + x~7)*Y~10

+ (x~33 + x~32 + x~28 + x~26 + x~24 + x~23 + x~20 + x"*18 + x~16 +

x~15 + x~13 + x~ll + x"10 + x~9)*Y~9 + (x~36 + x~34 + x~33 + x~32

+ x~31 + x"28 + x~27 + x~26 + x~23 + x~22 + x~17 + x~16 + x~15 +

x-13 + x-11 + x~9 + x~7 + x~6 + x"5 + 1)*Y~8 + (x~28 + x~26 + x~25
+ x~24)*Y~7 + (x~32 + x~31 + x~30 + x~28 + x~26 + x~25 + x"24 + x~21

+ x~19 + x~17 + x~13 + x-10)*Y"6 + (x~41 + x~40 + x~36 + x~33 +
x~32 + x~25 + x~22 + x~18 + x~15 + x~12)*Y~5 + (x~47 + x~45 + x~43
+ x-42 + x-40 + x~37 + x~33 + x~32 + x~27 + x~26 + x~25 + x~22 +
x~21 + x~19 + x~17 + x~16 + x~15 + x~14 + x~12 + x~7 + x~6)*Y~4
+ (x~42 + x~39 + x~38 + x~35 + x~34 + x~33 + x~30 + x~29 + x"28 +
x~27 + x~26 + x~25 + x~23 + x~21 + x~19 + x~16)*Y~3 + (x~48 + x~45
+ x"44 + x"43 + x~42 + x~41 + x~40 + x~39 + x~38 + x~37 + x"36 +

5.5. Computational result of running the attack 87

x"35 + x~34 + x~32 + x~30 + x~27 + x~26 + x~25 + x"24 + x~22 + x*21

+ x"20 + x~17 + x~14 + x~13 + x~ll + x~7)*Y~2 + (x~53 + x~51 +

x~50 + x~40 + x~39 + x~38 + x~36 + x~35 + x~34 + x"33 + x~32 + x~30

+ x~27 + x~25 + x~24 + x~20 + x~18 + x"16 + x~15 + x"14 + x~12 +

x~9)*Y + x~60 + x~58 + x~57 + x~55 + x"54 + x~52 + x"49 + x~48

+ x~47 + x"46 + x~45 + x~41 + x~39 + x"38 + x~35 + x~33 + x~30

+ x~29 + x~28 + x~26 + x~23 + x~22 + x~21 + x~20 + x~19 + x~18

+ x~17 + x~15 + x~14 + x~13 + x~12 + x~9 + x~7 + x"4 + 1

Complete Factorization of above Product over KC[W]:

[
<W + Y, 1>,
<W + Y + x-2, 1>,

<W + Y + t*x~2 + t~4*x, 1>,

<W + Y + t~2*x~2 + t~6*x, 1>,

<W + Y + t~3*x~2 + t~4*x, 1>,

<W + Y + t~4*x~2 + t~3*x, 1>,

<W + Y + t~5*x~2 + t~3*x, 1>,

<W + Y + t~6*x~2 + t~6*x, 1>,

<W + (t*x~3 + t~6*x~2 + t~6)/(x~9 + t~5*x~8 + t"2*x"7 + t*x"6 +

t~2*x~5 + t~2*x~4)*Y~4 + (t"3*x~5 + t~3*x~4 + x~3 + t~3*x~2 + t"5*x
+ t~3)/(x~7 + t~5*x~6 + t~2*x~5 + t*x~4 + t~2*x~3 + t~2*x~2)*Y~2

+ (t*x~6 + t~5*x~5 + t~2*x~4 + t~5*x~3 + t~4*x~2 + t~3*x +
t~5)/(x~6 + t"5*x~5 + t~2*x~4 + t*x~3 + t~2*x~2 + t~2*x)*Y +
(t~6*x~12 + x~ll + t*x~10 + t~5*x~9 + t~6*x~8 + t~6*x~7 + t~3*x~6 +
t~3*x~5 + x~4 + x~3 + x~2 + t~5*x + t~3)/(x~8 + t~2*x~6 + t~3*x~5 +
t~4*x~4), 1>,

<W + (t~3*x~3 + t~3*x~2 + t~6)/(x~9 + x~d + t~3*x~7 + x~6 + t"5*x~5

+ t~6*x~4)*Y~4 + (t*x~5 + x~4 + t*x~3 + x"2 + t~5*x + t~3)/(x~7

+ x~6 + t~3*x~5 + x~4 + t~5*x~3 + t~6*x"2)*Y~2 + (t*x~6 + t~2*x~5 +

t*x~4 + t~3*x~3 + x + t~5)/(x~6 + x~5 + t~3*x~4 + x~3 +

t~5*x~2 + t"6*x)*Y + (t*x~12 + t~2*x~ll + t~6*x~10 + t~3*x~9 + x"8

+ x~7 + t~4*x~6 + t~6*x~5 + x~4 + t~2*x~3 + t~3*x~2 + t~5*x +

f3)/(x~8 + t~4*x~7 + t~5*x~6 + t*x~5 + t*x~4), 1>

]

C is hyperelliptic.

The product of a images of C has coefficient in k(x) and is completely factored in

K(C). Therefore, K{C) is splitting field of nr=o ^(C) over k(x) and hence is Galois

over it. Therefore it is meaningfull to talk about K(C)a = k(C). The equation of the

88 Chapter 5. Computational result

curve C is defined over K. However in [GHS02b] and [Hes04], there are algorithm to

explicitly compute C such that C is defined over k as well.

As deg(my) = 3, the equation of the curve is considered secure against GHS attack.

However, there is no guarantee that one can not write K(E) with another equation

whose deg(ra/) = 2. But 2 is the absolute lower bound. It is important to notice that

the resulting curve is hyperelliptic.

5.5.2 Case n = 7

In this case we attacked Curve Y2 + xY + tx3 + t. K = k(t) such that t7 + t + 1. The

factorization of the minimal polynomial of the Frobenius is not trivial as discussed in

Section 5.3.2. Now f(x) := tx3 4-1. So the only coefficient is t, so rrif(t) = mt(t). Due

to the result of Section 5.3.2, we know that mt(t) = t3 + t + 1 and that means that

deg(mt(t)) = deg(m/(*)) = 3:

Basic Parameters: p = 2 , r = l , n = 7
Extending K/k with T~7 + T + 1

The Original Curve under a t tack E i s :
Y"2 + x*Y + t*x~3 + t
Applying sigma" 1 results in equation
wl~2 + x*wl + t~2*x~3 + t~2
Applying sigma" 2 results in equation
w2~2 + x*w2 + t~4*x~3 + t"4
Compositon degree [K(C):K(E)] = 2" 2

The genus of the function field K(C) is: 7
C is Y~8 + (t~124*x~8 + t~23*x~7 + t~48*x~6 + t~71*x~5 + t~62*x~4)*Y-4

+ (t"5*x-12 + t~84*x~il + t~61*x~10 + t~42*x~8 + t~48*x"7 +
t-116*x"6)*Y"2 + (t~lll*x~14 4 t~103*x~13 + t~71*x~12 + t~113*x~ll +
t~91*x~10 + t~73*x~9 + t~113*x~8 + t~123*x~7)*Y + t~98*x~20 +
t~4*x~18 + t~121*x~17 + t~90*x~16 + t~59*x~15 + t~74*x~14 + t~75*x~13

+ t~125*x~12 + t~102*x-il + t~126*x~10 + t-100*x~9 + t~34*x~7
+ t-85*x~6 + t~31*x~5 + t~120*x~4 + t~47
Prod_{i = l..n}Sigma(C(Y)) =
Y~56 + (x~8 + x~4)*Y-52 + (x~ll + x"10 + x~8)*Y~50 + (x~14 + x~13 +
x~9 + x~7)*Y~49 + (x~17 + x~16 + x"14 + x~ll + x~9 + x~6 + x~5 +
l)*Y~48 + (x~19 + x~18 + x~16 + x~15 + x~14 + x~10)*Y~46 + (x~21 +

5.5. Computational result of running the attack 89

x~20 + x~19 + x~18 + x~15 + x~13 + x~12 + x~ll)*Y~45 + (x~28 +
x~27 + x~26 + x~25 + x~23 + x~21 + x~20 + x~19 + x~16 + x~15 + x~14
+ x~13 + x~12 + x~ll + x~10 + x~9 + x~8 + x~7 + x~6 + x~4)*Y~44 +
\vdots
x~53 + x~52 + x~51 + x~50 + x~48 + x~47 + x~44 + x~43 + x~40 + x~37

+ x~35 + x~34 + x~24 + x~19 + x"17 + x~15 + x"14 + x~13 + x~12 +
x~ll + x~10 + x~8 + x~6 + x~5 + x~4 + 1

Complete Factorization of above Product over KC[W]:

[
<W + Y, 1>,
<W + Y + t~5*x~2 + t~77*x, 1>,
<W + Y + t~8*x~2 + t~125*x, 1>,

<W + Y + t~68*x~2 + t~69*x, 1>,

<W + Y + t~81*x~2 + t~102*x, 1>,

<W + Y + t~86*x~2 + t~57*x, 1>,

<W + Y + t~121*x~2 + t~55*x, 1>,

<W + Y + t~123*x~2 + t~19*x, 1>,
<W + (t~4*x~4 + t~57*x~3 + t~126*x~2 + t~27*x + t~91)/(x~10 +
t~119*x~9 + t~87*x~8 + t~2*x~7 + t~107*x~6 + t~89*x~5 + t~2*x~4 +
t~12*x~3)*Y~4 + (t"91*x-6 + t~34*x~5 + x~4 + t~35*x~2 + t~66*x +

t~75)/(x~8 + t~119*x~7 + t~87*x~6 + t~2*x~5 + t~107*x-4 +
t~89*x~3 + t~2*x~2 + t~12*x)*Y~2 + (t~99*x~7 + t~85*x~6 + t~103*x~5
+ t~48*x~4 + t~2*x~3 + t~78*x~2 + t~54*x + t~113)/(x~7 +

t~119*x~6 + t~87*x~5 + t"2*x~4 + t~107*x~3 + t~89*x~2 + t"2*x +

t~12)*Y + (t~53*x~14 + t~56*x~13 + t~25*x~12 + t"99*x~ll +
t~83*x~10 + t~22*x~9 + t~78*x~8 + t~39*x~7 + t~110*x~6 + t~109*x~5
+ t~64*x~4 + t"96*x"3 + t~9*x~2 + f~114*x + t~51)/(x~10 +
t~119*x~9 + t~87*x~8 + t~2*x~7 + t"107*x"6 + t~89*x~5 + t"2*x~4 +
t-12*x~3), 1>,

<W + (t~106*x~4 + t~38*x~3 + t~35*x~2 + t~61*x + t~92)/(x~10 +
t~119*x~9 + t~87*x~8 + t~2*x~7 + t~107*x~6 + t~89*x~5 + t~2*x~4 +
t~12*x~3)*Y~4 + (t~21*x~6 + t~123*x~5 + t~84*x~4 + t~114*x~2 +
t"38*x + t~92)/(x~8 + t~119*x~7 + t~87*x~6 + t~2*x~5 + t~107*x~4
+ t~89*x~3 + t~2*x~2 + t~12*x)*Y~2 + (t~40*x~7 + t~126*x~6 +
t~50*x~5 + t"62*x~4 + t~118*x"3 + t~lll*x~2 + t~118*x)/(x~7 +
t~119*x~6 + t~87*x~5 + t~2*x~4 + t~107*x~3 + t~89*x~2 + t~2*x
+ t"12)*Y + (t~28*x~14 + t~22*x~13 + t~83*x~12 + fl24*x~ll +
t~50*x~10 + t~26*x~9 + t~67*x~8 + t~57*x~7 + t~121*x-6 + t~58*x~5
+ t~59*x~4 + t~29*x~3 + t~119*x~2 + t~21*x + t~52)/(x~10 +
t~119*x~9 + t~87*x~8 + t~2*x~7 + t~107*x~6 + t~89*x~5 + t~2*x~4 +
t~12*x~3), 1>
]
C is NOT hyperelliptic.

90 Chapter 5. Computational result

The resulting curve is of degree 23 instead of secure degree 27 and therefore this

curve is not secure for cryptographic purpose. K{C) is not hyperelliptic which means

that the implementation of index calculus attack against k(C) is not as efficient as the

hyperelliptic case.

5.5.3 Case n = 31

We attack the curve Y2 + xY + x3 +1 defined over K = k(t) such that t3l + t2 + 1 = 0

so n = 31. f(x) = x3 + t . The coefficients are l,t and rrif(t) = [m\,mt\. m\ = t + 1

as Probenius fix 1. mt(t) = = t5 -j- t2 + 1 using result from Section 5.3.3. Therefoe

mf(t) == [t + l,f5 + t2 + 1] = (t + l)(t5 + t2 + 1) therefore deg(my) = 6. Knowing

these facts we can run the attack:

Basic Parameters: p = 2 , r = l , n = 3 1
Extending K/k with T~31 + T~3 + 1

The Original Curve under attack E i s :
Y~2 + x*Y + x~3 + t
Applying sigma" 1 results in equation
wl~2 + x*wl + x~3 + t~2
Applying sigma" 2 results in equation
w2"2 + x*w2 + x~3 + f~4
Applying sigma" 3 results in equation
w3"2 + x*w3 + x"3 + t~8
Applying sigma" 4 results in equation
w4"2 + x*w4 + x"3 + t~16
Applying sigma" 5 results in equation
w5~2 + x*w5 + x"3 + t"4 + t
Compositon degree [K(C):K(E)] = 2" 5
The genus of the function field K(C) is: 31
C is Y~64 + Y\"{}32((t"30 + t~29 + t"28 + t"27 + t"26 + t"22 + t~21
+ t"20 + t~18 + t"17 + t"15 + t~12 + t"7 + t + l)*x"64 + (t~29 +
t"26 + t"25 + t~22 + t"21 +

(t"27 + t"26 + t~24 + t~22 + t"17 + t~16 + t~15 + t~9 + t~8 +
t"7 + t~6 + t"5 + t~2)*x~33 + (t~29 + t"25 + t~24 + t~23 + t~21 +
t~18 + t~14 + t~12 + t~10 + t~7 + t~6 + t~5 + t"4 + t"2 + t + l)*x~32

5.5. Computational result of running the attack 91

+ t~27 + t~24 + t~23 + t~22 + t~20 + t~19 + t"16 + t~13 + t~7 +
t~6 + t~4 + t

The result is a curve of degree 64 = 26, However a secure curve should result in a

curve of degree 230 = 1073741824. Therefore this curve is significantly less secure than

it is expected to be.

CHAPTER 6

Conclusion and Further Work

A decade has been passed since introduction of the idea of the GHS method. During

this decade, the attack was improved from a mere idea to a standard technique to attack

curves defined over composite fields. The progress of the GHS attack also influenced

other area of cryptography and algorithmic number theory such as hyperelliptic curve

cryptography, algorithmic study of class group of algebraic curves and function fields.

The purpose of this work was to study the GHS attack in more general form, both

from theoretical and practical view. We presented the basic foundation of GHS attack,

namely solving the discrete logarithm over jacobian of a general curve. Then we de

scribed the theoretical aspect of GHS attack to an elliptic curve defined over a finite

field of arbitrary characteristics.

We then studied more practical aspects of the GHS attack. In this stage, we re

stricted ourselves to even characteristic and we considered more general quadratic ex

tensions than [Hes04]. We showed that the same method of <x-polynomial that is used

in [Hes04] can be used to analyze the degree of the extension K{C) and we devel

oped an upper bound for the genus of K(C). We also studied the structure of K as a

F2[i]—module and we gave an algorithm to find the least secure elements of a composite

field for the GHS attack.

Finally, we brought the implementation of the main algorithms described in this

paper along with the example of computational results of these algorithms.

The fundamental idea behind the GHS attack, namely mapping the DLP over the

94 Chapter 6. Conclusion and further work

jacobian of a curve to an easier instance of DLP over jacobian of another curve using

the relationship between their function fields, is vast and has the potential of deeper

studies.

By studying the inverse image of the factor base of the CI°(CQ), it could be possible

to find a method to build a factor base for elliptic curve DLP. Similar approach using

Weil Descent idea (the geometric parallel of the GHS) is studied in [Gau04].

Because of the GHS attack, it is now standard to avoid composite finite fields for

elliptic curve cryptography. It would be interesting to extend some of ideas of the

GHS to attack other cases of the DLP. True subfield curves used over a large prime

extensions, such as Koblitz curves [HMV03] are still in use and attract considerable

interest due to their performance. The method described in this work is not applicable

to these curves. However, considering other isogenous curve may lead to an efficient

attack against these curves. Partial work on this issue has been done in [DS03].

Optimal Extension Fields (OEFs) [HMV03], are extensions of a prime fields whose

characteristics occupies all most one machine words (e.g. 64 bits). These fields are also

known to have efficient finite field operation algorithm. The study of the GHS attack

against curves defined over these fields is also an interesting problem.

The above examples are a few open problems centered on the study of the GHS

attack. The final word is that the GHS attack opened the flood-gates for the use

function field arithmetic in cryptography.

Bibliography

[ADH94] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang, A

subexponential algorithm for discrete logarithms over the rational subgroup

of the jacobians of large genus hyperelliptic curves over finite fields, ANTS-I:

Proceedings of the First International Symposium on Algorithmic Number

Theory (London, UK), Springer-Verlag, 1994, pp. 28-40.

[AMV93] Gordon B. Agnew, Ronald C. Mullin, and Scott A. Vanstone, An implemen

tation of elliptic curve cryptosystems over /2155, IEEE Journal on Selected

Areas in Communications 11 (1993), no. 5.

[BSS05] Ian Blake, Gadiel Seroussi, and Nigel Smart (eds.), Advances in elliptic curve

cryptography (london mathematical society lecture note series), Cambridge

University Press, New York, NY, USA, 2005.

[CFA06] Henri Cohen, Gerhard Frey, and Roberto Avanzi, Handbook of elliptic and

hyperelliptic curve cryptography: Theory and practice, CRC Press, Inc., 2006.

[Che51] Claude C. Chevalley, Introduction to the theory of algebraic function of one

variable, American Mathematical Society, 1951.

[DD85] Jean Dieudonne and Suzanne Dieudonne, History of algebraic geometry: An

outline of the history and development of algebraic geometry, CRC Press,

Inc., 1985.

[Dec05] Isabelle Dechene, Generalized jacobians in cryptography, Ph.D. thesis, McGill

University, 2005.

96 Bibliography

[DH76] Whitfield Diffie and Martin E. Hellman, New directions in cryptography,

IEEE Transactions on Information Theory IT-22 (1976), no. 6, 644-654.

[Die03] Claus Diem, The GHS attack in odd characteristic, Journal of

the Ramanujan Mathematical Society 18 (2003), 1-32, URL:

http:/ /www.math.uni-leipzig.de/ diem/preprints.

[Die08] _____, On arithmetic and the discrete logarithm problem in class groups of

curves, 2008, Habilitation, University of Leipzig.

[DS03] Claus Diem and Jasper Scholten, Cover attack, A report for the AREHCC

project, preprint., October 2003.

[EGL07] Taraneh Eghlidos, Amir Ghadermarzi, and Ahmad Lavasani, Evaluating the

security of the elliptic curves based on efficient composite binary fields against

weil decent attack, Tech. report, February 2007.

[ELS06] Taraneh Eghlidos, Ahmad Lavasani, and Laleh Samarbakhsh, Study of the

methods of finding secure and efficient elliptic curves for cryptographic ap

plications, Tech. report, Electronics Research Center, Sharif University of

Technology, February 2006.

[FR94] Gerhard Frey and Hans-Georg Ruck, A remark concerning m-divisibility and

the discrete logarithm in the divisor class group of curves, Math. Comput.

62 (1994), no. 206, 865-874.

[Fre98] Gerhard Frey, How to disguise an elliptic curve, Talk at ECC '98, Waterloo,

1998.

[Fre02] Free Software Foundation Inc., The gnu free documentation license - version

1.2, November 2002, http://www.gnu.org/licenses/fdl.html.

http://www.math.uni-leipzig.de/
http://www.gnu.org/licenses/fdl.html

Bibliography 97

[Fre07] Free Software Foundation Inc., Gnu general public license - version 3.0, June

2007, http://www.gnu.Org/licenses/gpl-3.0.html.

[Gau04] Pierrick Gaudry, Index calculus for abelian varieties and the elliptic curve

discrete logarithm problem, Cryptology ePrint Archive (2004), Cryptology

ePrint Archive: Report 2004/073.

[GHS02a] Steven D. Galbraith, Florian Hess, and Nigel P. Smart, Extending the GHS

weil descent attack, Theory and Application of Cryptographic Techniques,

2002, pp. 29-44.

[GHS02b] Pierrick Gaudry, Florian Hess, and Nigel P. Smart, Constructive and de

structive facets of Weil descent on elliptic curves, Journal of Cryptology: the

journal of the International Association for Cryptologic Research 15 (2002),

no. 1, 19-46.

[GM84] Rajiv Gupta and Ram Murty, A remark on artin's conjecture, Invent. Math.

78 (1984), no. 1.

[GP97] Jorge Guajardo and Christof Paar, Efficient algorithms for elliptic curve

cryptosystems, Lecture Notes in Computer Science 1294 (1997).

[GS99] Steven D. Galbraith and Nigel P. Smart, A cryptographic application of weil

descent, Proceedings of the 7th IMA International Conference on Cryptog

raphy and Coding (London, UK), Springer-Verlag, 1999, pp. 191-200.

[Har97] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics,

Springer-Verlag, 1997.

[HB86] Roger Heath-Brown, Artin's conjecture for primitive roots, Quart. J. Math.

Oxford Ser. (2) 37 (1986), no. 145, 27-38.

http://www.gnu.Org/licenses/gpl-3.0.html

98 Bibliography

[Hes04] Florian Hess, Generalising the ghs attack on the elliptic curve discrete loga

rithm problem, LMS Journal of Computation and Mathematics 7 (2004).

[HMV03] Darrel Hankerson, Alfred J. Menezes, and Scott A. Vanstone, Guide to ellip

tic curve cryptography, Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2003.

[Hoo67] Christopher Hooley, On artin's conjecture, J. Rein Angew Math. 225 (1967).

[Hun03] Thomas Hungerford, Algebra, Graduate Texts in Mathematics, Springer-

Verlag, 2003.

[JMS01] Michael Jacobson, Alfred J. Menezes, and Andreas Stein, Solving ellip

tic curve discrete logarithm problems using weil descent, Cryptology ePrint

Archive, Report 2001/041, 2001, http://eprint.iacr.org/.

[Kob87] Neal Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48

(1987), 203-209.

[Kob89] , Hyperelliptic cryptosystems, J. Cryptol. 1 (1989), no. 3, 139-150.

[Kob07] Neal Koblitz, The uneasy relationship between mathematics and cryptogra

phy, Notices of the AMS 54 (2007), no. 8, 973-979.

[Lor96] Dino Lorenzini, An invitation to arithmetic geometry, Graduate Studies in

Mathematics, American Mathematical Society, 1996.

[Mil86] Victor S. Miller, Uses of elliptic curves in cryptography, 1986, pp. 417-426.

[MMT01] Markus Maurer, Alfred J. Menezes, and Edlyn Teske, Analysis of the GHS

Weil descent attack on the ECDLP over characteristic two finite fields of

composite degree, Lecture Notes in Computer Science 2247 (2001), 195-??

http://eprint.iacr.org/

Bibliography 99

[Mor96] Patrick Morandi, Field and galois theory, Graduate Texts in Mathematics,

vol. 167, Springer-Verlag, 1996.

[MQ01] Alfred J. Menezes and Minghua Qu, Analysis of the weil descent attack of

gaudry, hess and smart, CT-RSA 2001: Proceedings of the 2001 Conference

on Topics in Cryptology (London, UK), Springer-Verlag, 2001, pp. 308-318.

[MT06] Alfred J. Menezes and Edlyn Teske, Cryptographic implications of hess' gen

eralized ghs attack, Appl. Algebra Eng., Commun. Comput. 16 (2006), no. 6,

439-460.

[MTW04] Alfred J. Menezes, Edlyn Teske, and Annegret Weng, Weak fields for ecc,

Topics in Cryptology, ch. Weak Fields for ECC, Springer-Verlag, 2004.

[MV091] Alfred J. Menezes, Scott A. Vanstone, and Tatsuaki Okamoto, Reducing el

liptic curve logarithms to logarithms in a finite field, STOC '91: Proceedings

of the twenty-third annual ACM symposium on Theory of computing (New

York, NY, USA), ACM, 1991, pp. 80-89.

[MV096] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot, Handbook

of applied cryptography, CRC Press, Inc., Boca Raton, FL, USA, 1996.

[MWZ96] Alfred J. Menezes, Yi-Hong Wu, and Robert J. Zuccherato, An elemen

tary introduction to hyperelliptic curve, Tech. report, University of Waterloo,

1996.

[Orm98] H. Orman, The oakley key determination protocol-rfc2412, Tech. report, The

Internet Society, 1998.

[PFR98] Christof Paar, Peter Fleischmann, and Peter Roelse, Efficient multiplier ar

chitectures for galois fields GF(2 4n) , IEEE Transactions on Computers 47

(1998), no. 2, 162-170.

100 Bibliography

[PFSR99] Christof Paar, Peter Fleischmann, and Pedro Soria-Rodriguez, Fast arith

metic for public-key algorithms in galois fields with composite exponents,

IEEE Transactions on Computers 48 (1999), no. 10, 1025-1034.

[PSR97] Christof Paar and Pedro Soria-Rodriguez, Fast arithmetic architectures for

public-key algorithms over Galois fields GF((2")m), Lecture Notes in Com

puter Science 1233 (1997).

[Ros02] Michael Rosen, Number theory in function fields, Springer-Verlag, 2002.

[RS03] Karl Rubin and Alice Silverberg, Torus-based cryptography, In Advances in

Cryptology (CRYPTO 2003), Springer LNCS, Springer-Verlag, 2003.

[Sha48] C. E. Shannon, A mathematical theory of communication, Bell system tech

nical journal 27 (1948).

[Sil94] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in

Mathematics, Springer-Verlag, 1994.

[SilOO] , The xedni calculus and the elliptic curve discrete logarithm problem,

Designs, Codes and Cryptography 20 (2000), no. 1, 5-40.

[Sma99] Nigel P. Smart, The discrete logarithm problem on elliptic curves of trace

one, Journal of Cryptology: the journal of the International Association for

Cryptologic Research 12 (1999), no. 3, 193-196.

[SmaOl] , How secure are elliptic curves over composite extension fields?, Lec

ture Notes in Computer Science 2045 (2001).

[Sti93] H. Stichtenoth, Algebraic function fields and codes, Springer-Verlag, 1993.

[The03] Nicolas Theriault, Weil descent attack for kummer extensions, Journal of the

Ramanujan Mathematical Society 18 (2003), no. 3.

Bibliography 101

[vdW83] Bartel van der Waerden, Geometry and algebra in ancient civilizations,

Springer-Verlag, 1983.

