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Abstract

Plan-based Axiom Absorption for Tableau-based Description

Logics Reasoning

Jiewen Wu

Description logic knowledge bases traditionally contain a set of axioms (Tbox) describing back-
ground knowledge. DL reasoners generally handle axioms by using the lazy unfolding technique,
which reduces the nondeterminism introduced by axioms. Axiom absorption is an optimization
technique that rewrites axioms into the unfoldable part of the Tbox suitable for lazy unfolding.

Absorptions are generally employed in DL reasoners in a mostly uniform way regardless of the
characteristics of an input knowledge base. Though there exist a number of absorptions, their overall
effectiveness remains to be improved, especially when a large quantity of complex axioms are present
in the knowledge bases, which is well beyond the capability of any single absorption technique.

To ameliorate absorption techniques, this thesis presents a framework applying AI planning
to axiom absorption. In this framework, a state space planner is used to encode state-of-the-art
absorption techniques. Some designed heuristics concerning the characteristics of an input KB are
utilized for the cost estimation during planning. The planner first applies appropriate absorptions to
axioms, then it produces a solution with a minimized cost. Such a solution automatically organizes
absorptions in a certain sequence to maximize the number of axioms for absorptions. Compared to
a predetermined or fixed order of applying absorption techniques, the proposed framework benefits
from the advantages to consider more absorption alternatives, which tends to be more flexible and

effective.

iii
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Chapter 1

Introduction

The Semantic Web [Berners-Lee et al., 2001], envisioned as an evolution of the existing Web and
an infrastructure for knowledge exchange, gives rise to the popularity of ontologies that can be
used to formalize digital contents over the Web. An ontology, formally defined by Gruber [1993]
as an “explicit specification of a conceptualization”, is designed for sharing resources and reusing
components. Nowadays, ontologies can be seen in a variety of domains, such as bioinformatics,
medicine, user interfaces, linguistics and so on. At present, ontologies are designed using languages
such as the Web Ontology Language (OWL) [Dean and Schreiber, 2004} to represent terminologies

in a machine-understandable manner.

As a consequence, reasoning services to obtain (implicit) knowledge from ontologies are indis-
pensable for knowledge understanding. Typically, Description Logics (DLs) play a key role in such
reasoning services because of their relationship with OWL. OWL, on the one hand, provides a pow-
erful mechanism to describe terminologies; one the other hand, it restricts its constructors to allow
for decidable reasoning. Particularly, OWL-DL, one sub-language of OWL, closely corresponds to
the description logic SHOZN (D). Description logics are considered to well accommodate reasoning

about ontologies in the context of the Semantic Web.



1.1 Motivation

1.1.1 DL Reasoning and Optimizations

It is hard for description logic reasoning to remain tractable without compromising the expressiveness
of the logic. An intuition is that intractability may lead to limited practicality of realistic reasoning
systems. For example, Schmidt-Schauss and Smolka [1991] proved that checking coherence and
subsumption in the fundamental DL ALC are already PSPACE-complete problems. Nebel [1990]
argued that a number of strategies, some of which restrict the expressiveness of DLs, can be used to
deal with intractability and practicality. Nevertheless, restrictions imposed on the expressiveness of
DLs might result in unpractical representation languages. Thus, Nebel [1990] further showed that
although reasoning in theory may be intractable for the worst case, in practice DL reasoning can
be handled in polynomial time with optimization techniques due to rare occurrences of worst cases.
Actually, existing highly optimized reasoners demonstrated their acceptable reasoning performance,
even for very expressive DLs [Horrocks, 2003]. The reason is that optimization techniques are
essential for DL systems to be practical. Under the development of DLs, well-known DL reasoners
such as Racer [Haarslev and Moller, 2001b], FaCT++ [Tsarkov and Horrocks, 2006}, and Pellet
[Sirin and Parsia, 2006] adapt and implement a wide range of optimization techniques.
Simultaneously, ontologies emerging from application domains, however, have the tendency to
stress or even exceed the capabilities of highly optimized DL reasoners because they are too com-
plicated (such as GALEN [Rector and Horrocks, 1997] or FMA [Rosse and Mejino, 2003]) so that
dedicated optimization techniques are required. It is reasonable to believe that ontologies developed

in relevant domains in the near future could even be harder.

Absorptions as Optimizations The difficulty for DL reasoners to reason about ontologies has
various sources, among which the presence of a large number of axioms is considered to be one of
the major factors [Tsarkov et al., 2007]. To better deal with axioms, DL reasoners employ a typical
optimization technique, called absorption, to rewrite general axioms into special forms for easy
manipulation while preserving their semantics. For instance, Horrocks and Tobies [2000] showed
enhanced reasoning performance of FaCT by applying this rewriting technique.

It remains to be discussed why axioms significantly increase reasoning difficulty in the absence of
certain optimizations. Since the underlying idea of tableau algorithms has not yet been presented,

we briefly discuss why axioms could lead to an exponential growth of search spaces for a tableau



algorithm. A tableau algorithm proves the satisfiability of a concept C' by constructing a tableay,
which is represented by a labeled graph (usually a tree) with nodes corresponding to individuals
(elements in the domain) and edges corresponding to relationships between individuals. For a DL
axiom of the form C C D, to ensure this axiom holds, a tableau algorithm adds a disjunctibn -CUD

to every node of the tableau completion graph.

Consequently, for every node in the graph a tableau algorithm has to randomly choose either
—-C or D; such a choice is an obviously nondeterministic behavior, which degrades the performance
when there exist a large number of axioms and nodes. For example, for a completion graph with ¢
nodes and one axiom, it already leads to 2¢ choices. However, various absorption techniques can be

used to maximally reduce this kind of nondeterminism.

Although a variety of absorption techniques have been presented in the literature (see Chapter
3), few of them are universally applicable and effective alone. Some absorptions can be applied
to almost all known ontologies, however they cannot absorb all the axioms for some complicated
ontologies. For this reason, it is desirable to design some absorption techniques that can eliminate
general axioms. Horrocks and Tobies [2000] demonstrated through empirical studies that absorptions

which rewrite as many general axioms as possible generally outperform other strategies.

1.1.2 Objectives

A normal question would be whether there exists some absorption that is able to absorb every axiom.
Although no explicit proof or explanation has ever been presented, previous works [Horrocks and
Tobies, 2000; Hudek and Weddell, 2006; Baader et al., 2006; Motik et al., 2007; Tsarkov et al., 2007]
about optimizing DL reasoning over axioms have observed or implied that some axioms cannot
be absorbed by any present absorptions. We conjecture that such axioms are likely inherently
unabsorbable for DL reasoning, as we will detail in Section 3.3. The possibility that some general
axiom cannot be absorbed is due to the characteristics of the domains to be modeled. So far as
we know, one typical example, presented by Areces et al. [1999], is the BCS5 ontology modeling
feature interaction problem in the telecommunication domain, whose general axioms fail any known
absorption techniques.

Why absorption techniques that have been used in DL reasoners are not always satisfactory?
First, we are aware that absorptions are nondeterministic, that is, the same absorption can absorb

an axiom in a number of ways, each of which might lead to a different level of difficulty for DL



reasoning. The randomness of axiom absorption grows markedly when various absorptions are
applied to all axioms of some KB. We believe that among the many possibilities of absorptions some
of them can result in a more preferable KB in terms of its runtime performance of DL reasoning.
Secondly, not all absorptions are extensively implemented in present DL reasoners, for example,
FaCT++ at present uses two main absorption techniques out of many choices. There could be
many reasons why DL reasoners do not use all the absorption techniques. However, one typical
reason may be that no single absorption always generates desired results for arbitrary input KBs.
In order to utilize several absorption techniques in one DL reasoner in an effective manner, the
developer must decide how to organize the applications of these techniques by using some heuristics
based on the input KBs.

Bearing the above observations in mind, we, from a different perspective, present our solution
featured by taking advantage of existing absorption techniques rather than inventing novel ones. The
idea is to apply classical planning to different absorption techniques to solve the problems we have
considered above. On the one hand, planning well offsets the limitation of one absorption technique
by employing another one, for instance, if some axiom cannot be absorbed by the first absorption,
planning will try another absorption. On the other hand, the cost metric that maps the hardness
of an input knowledge base approximately can lead to heuristic absorptions for the input KB. In
summary, a solution produced by planning will automatically organize absorptions in a certain way

to meet a predefined goal.

1.2 Contributions

This thesis collects the researches done since the start of the author’s program. The contributions

can be summarized as follows:

1. Contributions to specific absorption techniques. First, the absorption technique IRBA (cf.
Section 3.2.3) using the property of constraint back-propagation inverse roles has been derived
from our research paper [Ding, Haarslev, and Wu, 2007]. Second, we have extended binary
absorption [Hudek and Weddell, 2006] in several aspects to make it more suitable and adaptable

in general cases, as described in Chapter 4.

2. The main contribution of this thesis is our proposed framework of applying classical planning

to axiom absorption [Wu and Haarslev, 2008]. To the best of our knowledge, our framework



is the first to propose a cost-based organization of absorptions to facilitate DL reasoning. In
addition, this thesis also provides experimental results using our system PAR, which implements

our proposed framework.

1.3 Thesis Organization

There are occasions that readers may not read this thesis in the way as is presented. Hence, Figurel

delineates the dependency between different chapters.

Chapter 2 Chapter 1
Preliminaries Introduction
S
‘Chzf;pmr 3\ Umgt::r 4 Chapter 6
Review of Extensions of g N
. . System Evaluation
Absorptions Absorptions
\ )
™~
¥
e Chapter 6
F hapter Mam—" System
Framework ‘ .
Implementation

)

M

Chapter 7
Conclusions and
Future Work

Figure 1: Thesis Organization

The thesis starts with the motivation (this chapter) to demonstrate the significance of studying
absorption techniques using classical planning. Then, the thesis presents the necessary background
(Chapter 2) on description logics and classical planning. If readers already have sufficient knowledge
of these topics, they can directly jump to Chapter 3 for a complete survey of state-of-the-art absorp-
tions. Chapter 4 details how binary absorption can be extended to a general n-ary variant. At this
point all the preliminaries for the proposed framework have been presented. Consequently, Chapter

5 describes the framework for planning of axiom absorption, the central part of this thesis. An



implementation of the framework as well as empirical studies are described in Chapter 6. Chapter

7 concludes this thesis and discusses possible refinements to the framework.



Chapter 2

Preliminaries

This chapter mainly presents some basic notions for description logics and planning. Section 2.1
discusses how a DL knowledge base is formed (Section 2.1.1) and the syntax, semantics, and infer-
ences of the fundamental DL AL and its extensions (Section 2.1.2). At the end of Section 2.1, a
tableau algorithm for ALC is presented. Following that, Section 2.2 provides a summary of general
planning, focusing on classical planning. Section 2.2.1 introduces classical planning and its restric-
tions, then Section 2.2.2 provides a comparison between state and plan space planning. Section 2.2.3

summarizes the complexity of classical planning,.

2.1 Description Logics

Description logics, a family of knowledge representation (KR) formalisms, date back to the late
1970’s with the initial name terminological systems to place emphasis on their definitions of the
basic terminology in an application domain [see Baader et al., 2003, Chapter 1]. Later, DLs were
also labeled concept languages to emphasize their concept constructs in the language. The recent
advances in underlying logical systems introduce the nafne Description Logics, indicating that DLs
are equipped with a formal logic semantics.

DLs mostly study a decidable fragment of the first-order predicate logic (FOL). Thus, decidability,
complexity and expressiveness w.r.t. the reasoning problems characterize the theoretical research
on DLs, for example, to seek decision procedures which always terminate in “reasonable” time. As
briefly discussed in Section 1.1, the fundamental DL ALC, in which atomic concepts correspond

to unary predicates and atomic roles to binary predicates in FOL, is a notational variant of the



propositional modal logic K(n), revealed by Schild [1991]. By this correspondence to modal logic,
theoretical results for K, are directly applicable to ALC, and thus testing subsumption in ALC
is PSPACE-complete [Schild, 1991]. It is easy to see that very expressive DLs will probably be
even undecidable while weak DLs may be insufficient to model an application domain. Meanwhile,
practical DL systems require an efficient reasoner without compromising the expressiveness of logics.
In fact, this is achieved through the use of optimization techniques since a high worst-case complexity

is rather common.

2.1.1 DL Knowledge Base

A knowledge base (KB) can be viewed as a mechanism storing machine-readable knowledge for
reasoning. Such knowledge is defined by some languages, like DLs, to characterize a KB precisely.
A KB distinguishes between intensional knowledge and extensional knowledge of a domain, which is
clearly reflected in DL knowledge bases. For a DL knowledge base, intensional knowledge, contained
in a TBox, describes the structure of the domain, while extensional knowledge, expressed as an
ABox, describes instances in the domain [Baader et al., 2003]. Later we shall see that the distinction

between a TBox and an ABox can be blurred by introducing the logic constructor O.

TBox The TBox contains knowledge as a Terminology with concepts specifying common prop-
erties of instances. It is represented by a set of axioms. A concept in a TBox is defined in terms
of previously defined concepts. For example, concepts GraduateStudent (la) and Chair (1b) are

defined as follows, taken from [Guo et al., 2005].

GraduateStudent T Person M 3 takesCourse.GraduateCourse (1a)

Chair = Person M 3 headOf. Department (1b)

In this example, GraduateStudent has only necessary conditions, but Chair has both necessary
and sufficient conditions. In this thesis, concept definitions of the former form (i.e., only with
necessary conditions) are called inclusions; concept definitions of the second form are equivalences,
which are abbreviations for a pair of necessary and sufficient conditions for a concept. Both inclusions
and equivalences are azioms. Further, there are two assumptions made about a DL TBox [see Baader

et al., 2003, Chapter 1] for this TBox to be unfoldable:

e Only one unique definition for every concept name in this TBox is allowed. That is, a concept



name can occur at most once on the left-hand side (LHS) of all axioms in the TBox. Note

that several axioms could be merged into one single axiom, such as A T C1 and A C C; are

combined into A C C; M Cs.

e The TBox is acyclic. In other words, concepts are not defined in terms of themselves, whether

directly or indirectly.

Suppose a TBox 77 only consists of axioms (1a) and (1b), then 77 is unfoldable, while any TBox

containing the following axiom (2) becomes not unfoldable.

Human C 3 hasParents.Human (2)

ABox ABoxes are formed by Assertions about individuals of the universe of discourse. For in-
stance, it can be asserted that JASON is a person who took a graduate course BIOINFORMATICS, as

shown below.

Person(JasoN), GraduateCourse(BIOINFORMATICS), (3a)

takesCourse(JASON, BIOINFORMATICS). (3b)

Assertions of the form (3a) specifying that individuals are instances of some concept are called
concept assertions. Differently, assertions of the form (3b) specifying the relationship between indi-

viduals are thus called role assertions, where roles indicate relationships between individuals.

2.1.2 Basic Logic AL and Its Extensions

So far, we already know that a DL KB consists of two (possibly empty) components: a TBox and
an ABox. Description logics are then used to build these two components. However, DLs consist of
a family of logics, which are distinguished by the constructors they provide. In this section, we first
introduce the fundamental DL AL, then additional concept constructors are introduced to describe

more complex concepts.

AL Language

The fundamental DL AL, the attributive language [Schmidt-Schauss and Smolka, 1991], describes

concepts inductively as follows.



Syntax Note that A, B denote concept names or atomic concepts, C, D arbitrary concepts or

concept expressions, R role names or atomic roles.

C,D:= A| (atomic concept)
T (top concept)
1] (bottom concept)
—A| (atomic negation)
CnDj (conjunction)
VR.C| (universal restriction)
JR.T| (limited existential quantification)

In AL, negations are only applied to atomic concepts, and existential quantification is limited to

top concept over some role. However, these restrictions can be relaxed in more expressive logics.

Semantics The formal semantics of AL concepts is defined by an interpretation Z. An interpre-
tation Z = (AZ, ) consists of the domain AZ, a non-empty set as the universe of discourse, and
a mapping function -Z, which assigns to every concept A a set A7 C AT and to every role R a set

RT C AT x AT, Specifically, the function - is extended to concepts as follows.

TI=at
1T=9
(-A)F = aT\AT
(cnbD¥=0tnp?
(VR.C)T = {a € AT | Vb.(a,b) € RT - be CT}

(BR.T)? = {a € AT | 3b.(a,b) € RT}

Concept Constructors

More expressive DLs are obtained by adding more concept constructors to AL. Though there exist
a number of constructors, only those of our particular interest, like Z [Horrocks et al., 1999] and O

[Schaerf, 1994], are presented here in Table 1.

10



Constructor Name Syntax Semantics

Disjunction (i) cCuD (CuD)yf =CctuD?

Full Existential Quantification (€) JR.C (3R.C)T = {a € AT|3b.(a,b) € RT Ab e CF}
Negation (C) -C (=C)t = AT\C*

Inverse Role (Z) R~ (a,b) € R iff (b,a) € r-t

Nominal (O) {a1,...,a,} {a1,...,a.}  =af U...UdZ

Table 1: Concept Constructors. R~ is used to denote the inverse of role R and ay (1 < k < n) refers
to some individual in the ABox.

A combination of AL with above constructors yields more expressive logics:

ALIUTECIIZIO],

however, it should be noted that some strings may identify the same logic. For example, negation (C)
can be used to express disjunction (/) and full existential quantification (£): CU D = —(=CM-=D)
and 3R.C' = -VR.~C. Hence, we could use C to replace € in language names, for instance, we
write ALC instead of ALUE.

One more note is that by introducing nominals (O) we are able to define concepts in terms of
individuals, i.e., a TBox is then not separate from an ABox. Though such concepts are collections
of individuals, they can be used wherever an ordinary concept can be used. An interpretation not
only maps concepts and roles to sets and relations, but in addition maps individual names to an
element o € AZ. Moreover, an implicit assumption can be imposed on this mapping: the unique

name assumption (UNA), i.e., a® # b7 if a, b are different individual names.

Semantics of Axioms and Assertions

We have seen in Section 2.1.1 examples for axioms and assertions. Here we present the semantics of
axioms in a TBox and assertions in an ABox using an interpretation Z, as summarized in Table 2.
The semantics for axioms and assertions are quite straightforward, which together provide the
semantics for the knowledge base. Conventionally, an axiom C C D, where C' and D are arbitrary
concepts, is called a general concept inclusion (GCI). Then, the equivalence axiom C' = D is con-

sidered as an abbreviation for the two GCIs {C' C D, D C C}. In this sense, we say that a set of
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Name Syntax Semantics
inclusions cch cTcop?
equivalences Cc=D C*=D7

concept assertions C(a) af € C%

role assertions R(a, b) (a%, b%)e R?

Table 2: Semantics of Axioms and Assertions. R denotes some role and «, b refer to some individuals
in the ABox.

GCIs forms a TBox. Note that the semantics for a GCI is the same as for any other axiom, i.e., an

interpretation T satisfies a GCI C C D if C* C D7,

Inferences

A description logics KB stores knowledge in its TBox and ABox, hence it is very likely to con-
tain implicit knowledge that can be made explicit through inferences. For instance, we can infer
that JASON is a graduate student because this individual complies with the definition of Gradu-
ateStudent from the example in Section 2.1.1. Formally, we can add an assertion to the ABox:
GraduateStudent(JASON), which has never been explicitly stated in that KB.

Although a DL system is able to infer implicit knowledge from both the TBox and the ABox, in
this thesis we are only interested in TBox inferences. Consequently, only reasoning tasks regarding
TBoxes or concepts are discussed in this section. Intuitively, a concept only makes sense when it
denotes a nonempty set in the domain of discourse. Following this intuition, we proceed by defining

the satisfiability of a concept, which is the key inference for a TBox 7.

Satisfiability Concept C is satisfiable with respect to 7 (“w.r.t. a TBox 7 is dropped if 7 is
clear from the context, as is the case in this thesis) if there exists an interpretation Z of 7

such that C7 is nonempty. Such an interpretation Z is a model of C.

Subsumption Concept C is subsumed by concept D if CT C DZ holds for every model of T,
denoted by 7 = C C D.

Equivalence Two concepts C and D are equivalent if CT = DT holds for every model of 7, denoted

by T =EC=D.
Disjointness Two concepts C and D are disjoint if CZ N D% = § holds for every model of 7.
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The inference of satisfiability shows how to define a model of a concept. We can also state that
an interpretation Z satisfies a Thox 7 if it satisfies every GCI in 7, and such an interpretation is
called a model of T. Moreover, T is said to be consistent if there exists a model of 7. Actually, a
subsumption test could become the basic inference provided by DL reasoners due to the fact that
other inferences can be reduced to the subsumption check between concepts, as shown in Proposition

2.1.1. Tt should be noted that all these inferences can be reduced to (un)satisfiability as well.

Proposition 2.1.1. (Reduction to Subsumption) The following statements hold for arbitrary con-

cepts (with respect to a TBox):
e C is unsatisfiable iff C is subsumed by L;
o C and D are equivalent iff C is subsumed by D and D is subsumed by C;

o C and D are disjoint iff C T D is subsumed by L.

Tableau Algorithm

We have seen so far the key inferences considered for TBox reasoning, which can all be reduced to
testing subsumption, i.e., whether C C D holds. Alternatively, such a subsumption test amounts to
check whether C M —D is unsatisfiable. This underlying idea yields a widely used algorithm for DL
reasoners, the tableau! algorithm.

A tableau-based satisfiability algorithm for ALC tries to construct a tableau by applying a set
of tableau rules. We present below (Table 3) the tableau rules for basic ALC. The tableau rules for
more expressive logics are beyond the scope of this thesis.

A tableau algorithm works on a completion graph (usually a tree) [See Horrocks and Sattler, 2005,
Definition 5], where every node a represents some element of AZ and every edge (a,b) denotes some
role relationship. Both nodes and edges are labeled by concepts and roles respectively, for example,
C € L(a) means C(a); R € L({a,bd)) indicates R(a,b). The completion graph is then expanded using
tableau rules. Hence, these tableau rules are also called completion rules. Particularly, the Li-rule
is non-deterministic in the sense that a tableau has to randomly choose C; or Cy as C. A tableau
is called complete when either a clash, i.e., {4,~A} C L{a) or L C L(a), is encountered or no more
tableau rules are applicable to it. In the latter case, the completion tree is clash-free, and we can

state that the given concept is satisfiable.

1As a rule, tableau is used as an adjective and tableauz is used only to refer to more than one tableau, however,
they are considered interchangeable in this thesis.
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M-rule
Conditions: C1MCs € L(a) and {C4,C2} € L(a)
Actions: L(a) = L(a) U{C1,C2}

U-rule
Conditions: C;UCs € L(a) and {C1,C2}NL(a) =0
Actions: L(a) = L(a) U{ C} for some C € {C1,C>}

3-rule
Conditions: 3R.C € L(a) and there is no individual ¢ s.t. R € L({a,c)) and C € L(c)
Actions: create a new node b with £({a,b)) = {R} and L(b) = {C}

Y-rule
Conditions: VR.C € L(a) and there is an individual b with R € £({(a,b)) and C ¢ L(b)
Actions: L(b) = L(b) U{C}

Table 3: Tableau Rules for ALC. R denotes some role, C, Cy, Cy concepts and a, b, ¢ individuals.

We conclude this section by showing soundness and completeness [Schmidt-Schauss and Smolka,

1991] of the tableau algorithm we have introduced.

Proposition 2.1.2. An ALC concept is satisfiable iff it has a clash-free completion tree by applica-

tions of tableau rules in Table 3. Such a tableau algorithm is sound, complete and terminating.

2.2 Planning

This section summarizes the background of planning that is needed to generalize and formalize our
specific problems. First, the representation scheme and subcategories of the classical planning are
presented in Section 2.2.1. Then, we introduce the ideas of state space and plan space planning
(Section 2.2.2). At the end of this section, a brief investigation on the complexity of planning is
offered to give readers an impression how hard planning itself could be (Section 2.2.3). Most of the
notation and definitions involved in this section are attributed to [Ghallab et al., 2004], though some
particular references are given as well.

Planning is an abstract process of organizing actions by anticipating some expected outcomes.
Though there exists various forms of planning because of different types of actions, planning is
generally concerned with choosing actions for changing the states of a system. Hence, a model called
state transition system (Definition 2.2.1), a terminology commonly used in theoretical computer

science, is used to describe most planning approaches.
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Definition 2.2.1. A state transition system is a 3-tuple & = (S, A,v), where:
o S ={s1,...} is a finite set of states,
o A={a1,...} is a finite set of actions,
o v: S x A— 2% is a state transition function.

Given the above ¥, the purpose of planning is to find which actions to apply to which states
toward an objective. Note that a state transition system can be represented by a directed graph

whose nodes are states and arcs are state transitions.

2.2.1 Classical Planning

The conceptual model, i.e., state transition systems, is usually subject to some restrictive assump-
tions to be operational. Particularly, most present AI planners adapt the ideas from [Fikes and
Nilsson, 1971], resulting in restricted state transition systems. A restrictive state transition system
requires the planning domain to be deterministic, static, finite and fully observable [see Ghallab
et al., 2004, Chapter 1]. Classical planning, or STRIPS planning [Fikes and Nilsson, 1971], then

refers to planning for restricted state transition systems.

Offline Planning is one of the restrictive assumptions applied to classical planning as opposed to
online planning. Offline planning ignores any change that may occur in the state transition system
Y during the planning. In other words, offline planning assumes that the knowledge about the
planning problem and environment is complete, so it plans for the given states regardless of any
current dynamics. On the contrary, online planning has to consider how the system will evolve,

which can not be handled directly within a restricted model.

Classical representation

Representation of an input problem for classical planning is necessary to compute states and state
transitions easily. Among possibly many ways of representing an input, the classical representation
is chosen in the following descriptions. This is reasonable since different representation methods
are of the same expressive power. In the subsequent sections, the classical representation scheme is
defined via a (first order) language L.

We stipulate that there are finitely many predicate symbols, constant symbols and no function

symbols in £. As defined in FOL, every term appearing in L is either a variable symbol or a constant
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symbol. An atom, or an atomic formula, is a formula that contains no logical connectives, thus it
is the simplest well formed formula of £. A ground term contains no variables at all. Atoms and

negated atoms are called positive and negative literals respectively.

States and Operators In the classical representation, a state s is a set of ground atoms. Note
that atoms may have different truth values from state to state. An atom p holdsin siff p€s. If g
is a set of literals, s satisfies g when there is a substitution ¢ s.t. every positive literal of o(g) is in
s and no negative literal of o(g) is in s. It is easy to see that the set of all possible states are finite
due to the absence of function symbols in L.

In the representation of states, it is assumed that the closed-world assumption is to be used.
In other words, literals, unless explicitly expressed positively, are considered negative. For states,
negative literals will be disallowed by strictly applying this assumption.

Operators in the classical representation are defined as follows.
Definition 2.2.2. A planning operator can be represented as o triple (Name, Prec, Effc), where:

o Name is the operator name expressed as n(x1,...,Tx), where n is a unigue operator symbol,

x1,...,Tk are all the variable symbols occurring in the operator;
e Prec and Effc are sets of literals used to generalize the preconditions and effects, respectively.

An qction is just a ground instance of the planning operator. If the conditions of some state s
are met in an action a, then we say a is applicable to s, and the result of the application is another

state.

Planning Problems and Solutions The planning domain is independent of any particular goal
or initial state, while the planning problems will include a domain, an initial state and a goal. First,

the definition of a planning domain is given as follows.

Definition 2.2.3. A classical planning domain in L is a restricted state transition system ¥ =

(S, A,~), where:

e SC o{all ground atoms of £},

o A={all ground instances of operators};

o v is the state transition function which leads to a new state v(s,a) if a € A is applicable to

s € 8. Note that S is closed under .
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A classical planning problem can thus be defined based on the classical planning domain.
Definition 2.2.4. A classical planning problem is described as P = (X, so, g), where:

e X is the classical planning domain;
o 3g 18 the initial state, which could be any state in S;

e g, the goal, is a set of ground literals.

When a state satisfies g, this state becomes a goal state. There could exist more than one goal
state.

Now it comes to define a plan and a solution. A plan is a sequence of actions 7 = (a1,...,a;),
where i > 0, a; € A. The length of a plan is the number of actions. A plan 7 is a solution for a
planning problem P if a goal state can be reached from the initial state sy by applying actions along
.

Up till now, the classical representation has been introduced. In practice, planning domains and
problem descriptions are standardized by some description languages. One of the popular languages
is PDDL [Gerevini and Long, 2005], developed for planning competitions?, which contains STRIPS
formalisms and more, so that classical planning problems can be stated in PDDL. In fact, most

planners do not support full PDDL but only its STRIPS subset.

2.2.2 State Space and Plan Space Planning

Classical planning problems can be considered as the search for some path in the graph representing
a state transition system X. State space search and plan space search are two categories of classical

planning algorithms, as elaborated in this section.

State Space Planning These algorithms are the simplest classical planning algorithms, where
the search space is a subset of the state space. Nodes of the search space are states of the domain;
arcs are state transitions (or actions); a plan is a sequence of actions corresponding to a path from
the initial state to a goal state.

State space planning is commonly (but not necessarily) associated with total order planning
[Minton et al., 1994}, such as STRIPS. A plan, considered as an ordered set of actions, is totally
ordered if every action is ordered w.r.t. every other action. For state space planning, there are two

main approaches as search: progression and regression.

2More information available at http://ipc.icaps-conference.org/

17



Progression, or forward search, is the simplest planning algorithm, which can be any search
methods, such as breadth-first search (BFS), depth-first search (DFS) and A*, following these ideas:
(1) starting from the initial state, compute whether or not a state is a goal state, (2) find the set of
all actions applicable to a state, and (3) compute a successor state which is the result of applying
an action to a state. Conversely, regression (or backward search) starts at the goal and applies the
inverse® of the operators to produce subgoals, stopping if a set of subgoals satisfied by the initial

state are produced. Both progression and regression algorithms are sound and complete.

Plan Space Planning These algorithms search in a space where nodes are partial-order plans.
Arcs are plan refinement operations to further complete a partial plan. Intuitively, plan space
planning is generally associated with partially ordered planning in the sense that a refinement
operation does not add to the partial plan any constraints that are not strictly necessary. This
principle is known as the principle of least commitment (Definition 2.2.5), the key difference between
plan space and state space planning.

The principle of least commitment, also named principle of procrastination, was embraced early
in planning research, stating that a planner should always avoid making decisions unless required
to do so. In particular, partial-order planners have the objective to avoid unnecessary ordering

commitments. We rephrased this principle, stated by Marr [1976], as follows.

Definition 2.2.5. The Principle of Least Commitment states that one should never become prema-

turely committed to something that subsequent discoveries may force one to undo.

As opposed to least commitment planning, state space planners make commitments about the
order of action as they try to find a solution and therefore may make mistakes from poor guesses
about the right order of actions.

Plan space planning also differs from state space planning in the definition of a solution plan.
A plan is defined as a set of planning operators together with ordering constraints and binding
constraints [see Ghallab et al., 2004, Chapter 5], which may not correspond to a sequence of actions.
Partial order planning algorithms are also sound and complete, and POP and UCPOP algorithms

can be considered major contributions to plan space planning.

Remarks It has been controversial whether plan space planning is more efficient than state space

planning. Although plan space planning, for a while, outperformed state space planning, the former

3To apply the inverse of an operator means to choose an operator that will satisfy one of the goals, then replace
that goal with the operator’s preconditions.
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ignores the notion of explicit states along the plan. As a result, state space planner are able to make
use of domain-specific heuristics to scale up to very large problems. The framework presented is not

affected by the choice between these two approaches, but really depends on concrete implementations.

2.2.3 Complexity of Planning

The computational complexity regarding planning is one of the main research topics. One should
note that it is the expressive power of the representation schemes that matters. That is, planning
algorithms are independent of the representation schemes themselves. This section adapts studied

results on complexity of planning. First, let us simplify a planning problem into a decision problem:

PLAN-EXISTENCE(P) indicates whether P represents a solvable planning problem. When it is

obvious what P is, it is omitted.

It is established [see Ghallab et al., 2004, Chapter 3] that PLAN-EXISTENCE in ordinary classical
planning remains decidable, but extending classical planning to allow function symbols makes PLAN-
EXISTENCE semidecidable, i.e., a procedure can be found to terminate and return yes if P is solvable,
but never return yes if P is unsolvable. Table 4 summarizes the computational complexity of classical

planning problems in the classical representation scheme, depending on different conditions.

How operators are given Negative effects? Negative preconditions? Complexity

Yes Yes/No ExPSpACE-Complete
In the input Yes NExpSpPACE-Complete
No No ExpPSprACE-Complete
No* PSpPACE-Complete
Yes Yes/No PSpACE
In advance Yes NP
No No P
No* NLOGSPACE

* No operator has more than one precondition.

Table 4: Complexity of PLAN-EXISTENCE for Classical Planning [Ghallab et al., 2004, Chapter 3].

The results we have shown state that the worst-case complexity of classical planning is rather
high, even if restrictions are made. However, the results do not necessarily depict the complexity of

any particular planning domain since they are only worst-case results.
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Chapter 3

Lazy Unfolding and Axiom

Absorption

In this chapter, we will survey a number of related works on absorption techniques, which are
optimizations on handling axioms. Section 3.1 first states why axioms need special care in DL
reasoning, followed by existing absorptions covered in Section 3.2. Finally, Section 3.3 shows a
map of various absorptions, and discusses a general form of axiom absorption in the hypertableaux
reasoning.

The definitions and notations shown in the following paragraph will be used throughout the
thesis unless otherwise specified. Special attention should be paid to the division of a TBox of a DL

KB, which will be frequently referred to in this thesis.

Definitions and Notations The set of concept names is denoted by AC including T and 1, and
the set of negated concept names by NA. A concept is called a simple concept if it is a member of
either AC or NA. We denote by A, B and A4; (1 < ¢ < n for some integer n) concept names in AC,
by C, D and C; (1 < i < n for some integer n) arbitrary concept expressions, and by R, S some
roles and R™, S~ the inverse relations of R, S, respectively. Sig(7") (or Sig(C)) is the signature, i.e.,
the set of concept and role names, of some TBox T (or concept expression C).

A Tbox T is divided such that 7 = TAUTZ, 4 UT] UT,UT,, where 7. and 7 4 contain axioms
of the forms A C C and —A T C respectively (Section 3.2.1), 7,)" consists of axioms in the form of

A1N...NA; T C, where ¢ > 2 (Proposition 4.1.1), T, is composed of equivalence axioms of the form
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A = C (Section 3.2.7), and Ty consists of all other axioms that are normally called general axioms.
In contrast to 7y, all TBoxes TA, T-A, T and 7T, are unfoldable, i.e., each of them is a subset
of 7,,. The unfoldable TBox T, and the general TBox 7, are such that 7 = 7, U7, and 7, N 7T,
= (. Moreover, it is assumed that every axiom belongs to 7, before the input KB is preprocessed.
At this stage, every axioms can be considered for absorptions. General axioms become unfoldable

when they have been successfully absorbed into some 7.

3.1 Lazy Unfolding

As Tsarkov et al. [2007] argued, TBox axioms, if dealt with in a cursory way, i.e., by applying the

C-rule as shown in Figure 2, can lead to a catastrophic degradation in reasoning performance.

C-rule:

if (01 c Cz) S T,

and {_|Cl,02} N E(X) =0,

then L(x) = L(x) U {C} for some C € {-C1,Cs}

Figure 2: Tableau Expansion Rules for Axioms

For example, axiom A T C will be first transformed to T C —A U C, then concept —A LI C is
added to every node of the completion graph. It is easy to see that each such axiom would enforce
an addition of a disjunction, which results in an enormous non-deterministic expansion of the search
space. Conversely, there might exist a solution such that all axioms can be lazily unfolded during

the tableau expansion without resorting to the C-rule [Baader et al., 1994].

Definition 3.1.1. Lazy unfolding is used to deal with azioms of the form AT Cor A= Cina
TBor T such that:

Case1 ifAcL(zx), (A=C)or (AT C) €T and C¢ L(z), then L(z) = L(z) U {C}; Or
Case 2 if-AcL(z), (A= C) e T and ~C ¢ L(z), then L(z) = L(z) U {-C}.

Instead of adding unnecessary disjunctions caused by axioms, lazy unfolding is capable to handle
axioms in a deterministic manner such that the possible exponential explosion of the search space is
prevented. Lazy unfolding, in its essence, is a typical application of the principle of least commitment

(see Definition 2.2.5).
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It is the appropriate time to introduce lazy unfolding for axioms in different TBoxes. 7, consists
of axioms that can be unfolded, while 7, contains axioms which lazy unfolding is not applicable
to. With the help of these notions, lazy unfolding, formulated in Figure 3 as two tableau expansion

rules for 7, and 7 respectively, becomes a proper substitute for the C-rule in Figure 2 [Horrocks,

2003].
Cy-rule: Eg-rule:
ifCq e ﬁ(X), (Cl C Cz) (S 7;,,, if (Cl C CQ) S 7;,
and Co N L(x) =0, and {-C1,Ca} N L(x) = 0,
then L(x) = L(x) U {C2} then L(x) = L(x) U {C} for some C € {—-C1,C>}

Figure 3: Tableau Expansion Rules for Axioms in 7, and 7,

Note that Figure 3 does not show the case for equivalence axioms of the form A = C as discussed
in Definition 3.1.1. The reason is that an axiom of the form A = C is just an abbreviation of two

inclusion axioms A C C and C C A, which the tableau rules in Figure 3 are applicable to.

3.2 Absorption Techniques

Since lazy unfolding, in contrast to the application of the C-rule, is quite effective in practice, nat-
urally we expect that as many axioms as possible can be lazily unfolded during tableau expansions,
i.e., the size of 7, can be shrunk minimally. To facilitate lazy unfolding, researchers later imple-
mented an optimization technique, absorption, which rewrites axioms in order to fit them to the
definition of some 7,,. A way toward defining the absorption technique is provided in Definition

3.2.1.

Definition 3.2.1. Absorption is a rewriting technique that transforms any aziom C C D to a

suitable form for any unfoldable TBox T, while the following two conditions hold:
e the semantics of the axiom is preserved after transformation;
e T, remains unfoldable when the absorbed axiom is added.

Roughly speaking, absorptions aim to relocate general axioms from 7, to some 7,. For some
axiom, there may exist more than one way to absorb it to some 7, depending on how the 7, is

defined. More precisely, the LHS of axioms defined in 7, determines what kind of absorptions
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should be employed for axioms. Corresponding to the various forms of LHS admissible in 7;, is a
list of different absorptions, as detailed in subsequent sections.

The advantages of absorptions can be viewed in several ways. Practically, reasoning systems that
employ absorptions outperforms those that do not because the search space of the completion graph
is significantly reduced. Considering a completion graph containing n nodes and a KB with & general
axioms, a total of (kxn) disjunctions will be added and expanded in 2¥*" ways non-deterministically
if the C-rule is naively used rather than absorptions.

Although a number of absorptions have been presented in the literature [Horrocks and Tobies,
2000; Haarslev and Méller, 2001a; Tsarkov and Horrocks, 2004; Hudek and Weddell, 2006; Zuo and
Haarslev, 2006; Ding et al., 2007; Sirin et al., 2006], they come into effect insofar as the general
axioms are of specified uniform forms and/or of a moderate quantity. Ipso facto, some absorptions
enjoy prevalence among almost all known ontologies, but their effectiveness might deteriorate on
some emerging large and complicated ontologies, for example, some axioms in BCS35 cannot be
absorbed by present absorptions. It then becomes natural to seek a good absorption among all the
possibilities. Yet, there is even no exact description of what a good absorption ought to be. A rule of
thumb to guide absorption behaviors, as Horrocks and Tobies [2000] observed, is to leave 7, empty
or as small as possible. This coincides with the discussion in Section 3.1 that lazy unfolding should

be exploited in a TBox for better reasoning performance.

3.2.1 Concept Absorption (CA)

Concept absorption is formally presented in [Horrocks and Tobies, 2000; Horrocks, 2003] to absorb
a general axiom into another one whose LHS is either a concept name A or a negated concept name
—-A. Horrocks [2003] also provided a restrictive but effective procedure to apply absorptions. The

transformation rule w.r.t. concept absorption is summarized below.

Proposition 3.2.1. Concept absorption is based on the following transformation rule:

CinC,EDCiE-CyUD
4)
C=D&sCCEDand-CC-D
An observation is that the transformed axiom should have its LHS in conformity with the defi-

nition of some 7,,. In this case, absorptions can absorb axioms into a 7, with its LHS being concept

names. Some systems, such as RacerPro [cf. Haarslev and Moller, 2001a], have been extended to
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support negated concept names as well. To ease our presentation, the concept absorption that
absorbs into concept names only are denoted by CAP, while the one that absorbs into negated
concept names are denoted by CAN. The case that both A and —A are defined in the same TBox
is valid only when these two axioms could be merged into a definition of the form A = C (i.e., an

equivalence axiom).

3.2.2 Enhanced Concept Absorption (ECA)

An immediate question arising from the concept absorption in Section 3.2.1 is whether absorptions
can have both A and —A be defined in the same TBox even if they can not form the axiom A = C.
Zuo and Haarslev [2006] generalized this idea by constructing new axioms to ensure the correctness
of absorptions. The introduction of fresh axioms, at first sight, seems ineffectual. According to the
results in [Zuo and Haarslev, 2006], however, this absorption surpasses the others in certain cases.
As a complementary strategy to concept absorption, the main idea of the so-called enhanced concept

absorption has been recapped as follows.
Proposition 3.2.2. Enhanced concept absorption can be applied in the following situations:

1. If an aziom —A © C already exists in T,,, then the absorption that absorbs some axiom as an

axiom of the form AT D (into T,) is correct if another axiom T T C LU D is added to Ty.

2. If azioms A C Cy and A C Cy already exist in T, then the absorption that absorbs some
aziom as an aziom of the form A T D (into T,) is correct if another aziom T T Co U D is

added to 7.

A procedure for this absorption is illustrated in [Zuo, 2006] where potential defects of the proce-
dure are exhibited as well. One imperfection of this idea is obviously that newly introduced axioms
may be even more difficult for absorptions than the original ones. If so, the effect of this absorption
is then detrimental. Another consequence of this procedure is that non-termination will probably
occur if not all the new axioms can be completely absorbed. After all, this absorption is of potential
use if there are remedies for its drawbacks.

Another contribution of Zuo [2006] is to improve heuristic choices during absorptions. As shown
from the beginning, absorption procedures are themselves non-deterministic. Hence, the heuristic is
applied to the entire TBox instead of a single axiom to decrease the non-determinism of absorptions.

Through the use of the occurrence-based counting of (negated) concept names, the absorption tends
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to choose the most frequently occurring (negated) concept name in order to maximize the number

of absorptions.

3.2.3 Inverse Role Based Absorption (IRBA)

The expressiveness of inverse roles (Z) consists in the capability of propagating constraints to the
predecessors of nodes of the completion graph. It is the propagation that yields a dual representation
of exactly the same information. For DLs in the presence of inverse roles, Ding and Haarslev [2005]

briefly mentioned an elegant equivalence, which turns out to be quite useful in practice.

Proposition 3.2.3. For DLs having Z, the equivalence
CLCVR.D<« -DLCVR .~C (5)

holds for some role R and its inverse R™.

Hudek and Weddell [2006] made the first attempt to use a variant of this equivalence in their
absorption framework. Two features of this variation as an absorption catch the attention. First,
fresh concept names are used to supplement binary absorptions (Section 3.2.5). Second, new axioms
are also introduced to deal with back-propagation information. They are explained in Figure 4

showing how inverse roles are used in absorptions.

TE =4; U-As U-Bi UVRYS.—-By U3R.C

- TE-A;U-As U~By U-A'"U3R.C Introduce a fresh concept A' € AC
TCEVS-B, UVR™.A’ Introduce a new axiom

A" C -A; U=-A U =By LU3R.C  Safely absorb to A’ by concept absorption

~ < TE-A"UVR A Introduce a fresh concept A” € AC
TE-ByvYS—. A" Introduce a new aziom
A'C —=A; U=A3U~B; U3R.C Safely absorb to A’ by concept absorptions
~<¢ A'"CEVR A Safely absorb to A" by concept absorptions
B, CVS—. A" Axiom 1

Figure 4: Usage of Inverse Roles in Absorptions [Hudek and Weddell, 2006].

We add a few comments about Figure 4 to present the basic idea. For every universal restriction

of the form VR.C, where R is some role and C is an arbitrary concept expression, a fresh concept
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name A (corresponds to A’ and A” in Figure 4) will be introduced such that its negation replaces
the universal restriction in the original general axiom, and an additional general axiom of the form
T E CUVR™.A" will be generated. If C is still a universal restriction (like VS.=Bsy), then it is
subject to the same processing as well.

Similarly, Ding et al. [2007] generalized the usage of equivalence (5) to map the DL ALCZ to
ALC by introducing new named concepts. Another absorption could be derived from that paper by

using inverse roles, as described in Figure 5.

TE-A; U-A U-By UVRYS.-By U3R.C
~ By CVS™VR™.(A U-A4yU-ByU3RC) Axziom 2

Figure 5: Usage of Inverse Roles in Absorptions [Ding et al., 2007].

Through a comparison between Figure 4 and Figure 5 it is easy to see that on the one hand,
Aziom 1 and Aziom 2 can possibly be achieved by concept absorption. If both of them need to be
safely absorbed, concept name By must comply with the conditions for concept absorptions. On the
other hand, Aziom 2 in Figure 5 is essentially the same as Axiom 1 in Figure 4, because it can be

obtained from Aziom 1 by unfolding concept names (i.e., A’ and A”) within the TBox in Figure 4.

3.2.4 Domain and Range (Role) Absorptions (DRA)

The domain and range are important properties of roles in DLs. Haarslev and Méller [2001a] first

presented that the domain and range of some role R can be determined by axioms, as shown in (6).

Proposition 3.2.4. Let C and D be some concepts, R some role, then:

if C is the domain of R, then IR T C C :

if D is the range of R, then T CVR.D ©

Note that such general axioms are not amenable to concept absorptions, thus Haarslev and
Moéller [2001a] used a special treatment to deal with domain restrictions by adding C to the domain
of R. Every existential restriction of the form 3R.C; adjoins the domain of R, C, as a conjunction
C N 3R.Cy during unfolding. Despite the fact that a range restriction adds no disjunctions, it was

pointed out that the range restriction of R could also be resolved by associating with every existential
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restriction, 3R.C1, the range restriction to form a conjunction VR.D M 3R.C;. Afterward, Tsarkov

and Horrocks [2004] formalized and extended this idea to the role absorption, as depicted in (7).

Proposition 3.2.5. Eztended role absorptions can rewrite axioms as follows:

3R.C E D is absorbed into D UVR.-C, added to the domain of R ™
7
D EVR.C is absorbed into =D UVR.C, added to the domain of R
We can observe from (7) that role absorption does not completely absorb axioms in the sense

that nondeterminism is merely localized in the domain of roles.

3.2.5 Binary Absorption (BA)

Hudek and Weddell [2006] proposed a framework of absorptions with a new absorption intended for
axioms of the form AMB T C. This absorption, called binary absorption, apparently cuts down the
number of disjunctions in general axioms. It is proved that new internal named concepts introduced
in the course of binary absorptions can be utilized to further absorb axioms. We take the same
example from Section 3.2.3 to show how binary absorption works with the aid of inverse role based

absorption (see Figure 6).

TC-4;U-4,U-B; UVYRVYS.-B, U3R.C

AiMA, C A Introduce a fresh concept A’ € AC
TCE-A"U-B; UVRVS.~By U3R.C The aziom changes
AiMA C A

~< A'nMByC A" Introduce a fresh concept A" ¢ AC
TCE-A"UVYRVS.~By, LU3R.C The aziom changes
AiMA C A
A'MB; C A

TERA"U=A" U3R.C Introduce a fresh concept A" ¢ AC
T EVS-By UVR™.A"  Introduce a new aziom, as shown in Figure

...... Repetition of steps shown above and in Figure 4

Figure 6: Binary Absorptions with Inverse Role Based Absorptions. We assume that A;, Az, and
Bj have no equivalence definitions in the TBox, i.e., they are real candidates for binary absorptions.

The basic idea of binary absorption is that whenever a disjunction of two negated concept names
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such as ~AU—B is found on the RHS of some general axiom, binary absorption will be considered!.
This pair of negations form a binary aziom of the form AN B C A', where A’ is a fresh concept
name introduced by the absorption. At the same time, the negation of the fresh concept name, i.e.,
-A’, will replace the appropriate part (the disjunction of the pair) of the original axiom, as can be
seen in Figure 6.

Figure 6 does not show the full picture of the process of binary absorptions, but it is clear that
inverse role based absorptions supplement binary absorptions by introducing unique fresh concept
names, which can be safely used by all absorptions. From this perspective, inverse role based absorp-
tion described in Figure 5 may not be preferred due to its inability to support binary absorptions.

Binary absorptions impose a new requirement for lazy unfolding: DL reasoners need to deal with
axioms of the form AM B C C in a deterministic fashion. In other words, lazy unfolding will be
applicable not only to axioms with (negated) concept names on the LHS, but also to axioms having
a conjunction of two concept names. Technically, the C,-rule in Figure 3 allows C; to be concepts
of the form A;MAs, where A; and A; are concept names. Additionally, another question about how
to efficiently utilize this kind of lazy unfolding is posed. For instance, DL systems must single out
all the pairs of concept names that can be unfolded from a pool of concept names. So far, existing

DL reasoners have not yet widely taken advantage of binary absorptions.

3.2.6 Nominal Absorption (OA)

Nominals, also named enumerated classes, form the important concept constructor @ for DLs. Sirin
et al. [2006] presented a suite of optimization techniques for nominals, including nominal absorptions.
Nominal absorption, as the name implies, tries to resolve the non-determinism from general axioms

containing nominals. Two transformation rules are described below.

Proposition 3.2.6. Nominal absorption states that

C = {a1,...an} is logically equivalent to
(8)
CLC {a1,...an} and C(a1),...,C(as)

JR.{o} C C is logically equivalent to {0} CVR™.C 9)

Since nominals can be viewed as concepts sui generis, the above absorptions resemble typical

! Restrictions on such negated concept names apply, as reported in [Hudek and Weddell, 2006].
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absorptions for some ordinary concepts C. For example, (8) acts the same way as how concept

absorptions treat equivalence axioms, while (9) is an application of inverse role based absorption.

3.2.7 Equivalence Absorption (EA)

It can be shown that concept names, when chosen as the LHS of some absorbed axioms, should
not have an equivalence definition in order to maintain the unfoldability of the TBox. Given this
requirement, the treatment for equivalence axiom turns out to be quite important. An immediate
solution to equivalence definitions could be to leave them intact in 7.. The number of equivalence
definitions in a TBox is then inversely proportional to the number of concepts that could be used in
absorptions. Hence, it is better if the size of 7, can be reduced.

To remedy the deficiency caused by equivalence definitions, the preprocessing can revert them
into ordinary subsumption axioms as shown in (4), i.e., C = D is of the same effect as C T D and
—-C C -D. Being traded for two general axioms, an equivalence axiom probably brings in a higher
degree of nondeterminism. Nevertheless, an additional “absorption” can always be used to cope
with these general axiom. The strategy is to piece together axioms to form as much new equivalence
definitions as possible.

We abuse the term absorption for dealing with equivalence axioms, which refers to this special
case of the enhanced concept absorption: through the enhanced concept absorption the axioms
A C C and —A C C can be absorbed into an equivalence A = C whereas the introduced (trivial)
axiom T E AU -A can be discarded. Equivalence absorption differs from general ECA in that the

former generates no new axioms and thus complies with classical planning.

3.3 Remarks

We have discussed a number of absorptions developed for tableau-based DL reasoning, of which
some are well known and extensively applied, meanwhile, others are restrictively employed in existing
reasoners. In real applications, normalization and/or other syntactic transformations usually precede
absorptions. Almost all the absorptions discussed earlier assume that the concepts in the axioms
are in NNF, that is, negations occur only in front of concept names. We refer readers to [Horrocks,
2003; Tsarkov et al., 2007] for a full description of common normalizations and simplifications.
Another point is that axioms are usually to be re-structured to facilitate absorptions. For ex-

ample, a general axiom is transformed in such a way that the LHS becomes T and the RHS is
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decomposed into a set of basic units [see Horrocks, 2003]. Absorptions are, in principle, applied by
examining individual elements of this set. To distinguish between a concept and the elements in
such a set, the latter are called items. For instance, axiom dR.C C A is rewrittenas T C VR.-CU A,
where VR.-~C, A are items in the set (VR.-C, A).

To adopt for a particular reasoner the most appropriate absorptions, as we argue here, one
probably has to consider some properties of the knowledge base. We construct the map (Table 5)

to summarize these absorptions.

Acronym Target Logic LHS of Notes
Items Constructs Generated Axioms
CA Aor-A Any -Aor A Absorb to A or —A exclusively

Termination not guaranteed;

ECA Aand =4 Any T New general axioms introduced
IRBA YR.C z -C

DRA VR.C Any None Disjunctions added

BA -A and -B Any ANB A new tableau rule required
OA VR.—{o} IO {o}

EA A and —A Any 4 Special case of ECA;

No general axioms introduced

Table 5: Map of Known Absorptions. Target items refer to items that are to be selected for
absorptions.

Note that this map uses the abbreviations to denote absorptions. Through the survey on cur-
rently available absorptions, it could be argued that absorptions may be dependent on some logical
constructs (and thus certain logic), for example IRBA requires the concept constructor Z.

An important observation from Table 5 is that presently there exist no absorption techniques to
target items in the form of existential restrictions (3R.C"). We conjecture that no absorption can
resolve existential restrictions (universal restrictions) on the RHS (LHS) of any axiom because they

are inherently unabsorbable.

IRBA, DRA and OA Inverse role based absorption (IRBA) shows that the inverse roles play a
key role in aiding the absorption of general axioms. Following the equivalence described in Section
3.2.3, the universal qualification can be directly used, if it is a concept name or a negated concept

name, to avoid generating fresh concepts. Then, a universal qualification now plays the same role
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as a (negated) named concept does. Consequently, the possibility of extracting qualifications in
universal restrictions is the key for inverse role based absorptions.

Domain and range absorptions (DRA) displaces the disjunctions to the domain of roles rather
than eliminate them. In (7), 3R.C C D is essentially identical to the general axiom T C VR.-CU D,
whose disjunctions will be moved to the domain of R instead. If such a general axiom is handled
by inverse role based absorption, no disjunction is retained as long as the universal qualification is a
(negated) concept name: =D T VR™.-C for D a (negated) concept name. In addition, it is possible
to recursively extract the universal qualifications, if necessary, until some (negated) concept name
is found.

For nominal absorptions, the behaviors of equivalence (9) can also be imitated by concept ab-

sorptions and inverse role based absorptions if nominals are treated as ordinary concepts.

3.3.1 Hyperresolution and Absorption

Recently, Motik et al. [2007] developed for DL reasoning a hypertableauz calculus based on hyper-
resolution, which can be viewed as a hybrid of resolution and tableau. In their calculus, axioms in
a DL TBox are first transformed to special Horn DL-clauses: universally quantified implications of
the form A U; — \/Vj;, where hyperresolution inferences derive some V; only if all U; are satisfied
by some individuals.

During the translation into DL clauses, axioms are actually absorbed in a special way. For
instance, an axiom JR.A C B is translated to a DL clause R(z,y) A A(y) — B(z); an axiom
3R.-A C B is translated to R(z,y) — A(y) vV B(z); an axiom T C —A4; U -Ay LI3R.A; is translated
to Ai(z) A Az(z) — JR.As(z). Such translations in the hypertableaux calculus clearly resemble
absorptions in a tableau calculus. The difference is that absorptions can allow negated concept
names on the LHS. Furthermore, the translations in hypertableaux still cannot “absorb” existential
restrictions on the RHS of some axioms. Since the discussion of hypertableaux and hyperresolution

is outside the scope of this thesis, readers are referred to [Motik et al., 2007] for details.
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Chapter 4

Extension of Absorptions

The last chapter (Chapter 3) provided a brief overview of present absorptions, particularly, binary
absorption (Section 3.2.5) draws our attention. Although binary absorption seems to function well in
DL reasoning, it can be extended to allow for other forms of absorptions. Additionally, absorptions
have to conform to certain conditions in order to be properly used as operators in a classical planner,
like offline planning, while binary absorptions violates offline planning by adding new concepts to the
planning domain. This chapter first extends binary absorption to conjunctive absorption (Section
4.1), then it generalizes conjunctive absorptions to allow negated concept names on the LHS (Section

4.2).

4.1 Conjunctive Absorption

4.1.1 From Binary to Conjunctive Absorption

Recall that binary absorptions, motivated to utilize axioms of the form Ay M A3 C C, where only
concept names are allowed on the LHS, seem to be very straightforward. As we have pointed out, new
named concepts will be needed to supplement the procedure of binary absorptions. An interesting
observation is that one binary absorption cascades another (via the connection of newly introduced
concepts) to deal with an axiom that demands more than one binary absorption, as illustrated
in Figure 7a. Naturally, a one-step absorption could be formed in this case to avoid unnecessary
internal named concepts. A theorem (Theorem 4.1.1) is then given to show an alternative solution

to axioms that can be absorbed by binary absorptions.
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Theorem 4.1.1. An arbitrary concept D is satisfiable with respect to TBox Ty =T U{A1MA2MA3 C
C} iff D is satisfiable with respect to TBox Ty = T U {A1 M Ay C By,B1 M Az T C}, where By ¢
Sig(T1).

Theorem 4.1.1, with its formal proof, were first presented in Hudek and Weddell [2006]. Thus,
the proof is omitted here. Instead of cascading binary absorptions to deal with the axioms in
Figure 7a, this theorem provides us with another absorption to resolve a qualified axiom without
introducing new concept names, as described in Figure 7b. Consequently, binary absorption can be
safely extended to the latter one that is named conjunctive absorption. A definition of conjunctive

absorption follows below (Definition 4.1.1).

A1MA C By
A3MN By C By AlMAMNA3 CVR.C
By, CVR.C
(a) Binary Absorption (b) Conjunctive Absorption

Figure 7: Binary vs. Conjunctive Absorptions on axiom (-A;, =4z, ~As,VR.C). Note that B; and
B, denote internal concept names.

Definition 4.1.1. Let T =T, U Ty, where T, =0 and Ty = {T C =4; U...U-A4; UC,i > 2} for
A€ AC, 1<k <i; thenT' =T, UT, where T,/ = {A1N...NA; T C,i >2and 35,1 < j < i such
that =A; never occurs on the LHS of T} and T = 0 is a correct absorption of T. Such absorptions

are named conjunctive absorptions.

Notably, the extension does not generate new internal concept names, so, it conforms to the
offline requirement during planning. This is especially desirable for a classical planner.

Since conjunctive absorption is directly derived from binary absorption, it makes sense to think
that conjunctive absorption is a special case of binary absorption. A more general statement is made
about the relationships among conjunctive absorption (CJA), binary absorption (BA) and concept
absorption (restricted to allow concept names on the LHS, i.e., CAP), as described in Proposition

4.1.1.

Proposition 4.1.1. CJA is a special case of BA, and both of them are special cases of CAP.
The three absorptions only differ in the number of disjunctions on the RHS they can resolve in one

absorption.

Proposition 4.1.1 implies that CJA and BA can be derived from CAP. Intuitively, any general

axiom that can be absorbed by conjunctive or binary absorptions (CJA or BA) is a candidate for
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concept absorptions (CAP) as well. Hence, the extension of conjunctive absorption actually cannot
guarantee to absorb more general axioms than the other two absorptions, but it enjoys the advantage
of reducing the number of disjunctions in a more straightforward way.

Prior to this extension in tableau based DLs, some other works already presented a similar idea
of conjunctive absorptions, although not necessarily for tableau based reasoning. First, Baader et al.
[2006] presented one normal form for ££ in a conjunctive format, i.e., A1 M...M A, E B, where
Ay, 1 <k <n and B are all concept names. Such a normal form has its origin in a binary normal
form in Baader et al. [2005]. Further, as discussed in Section 3.3.1, Motik et al. [2007] generalized
the idea of conjunctive absorption in hyperresolution by translating axioms into DL clauses of the
form AU; — \V;, where U; can be A(z) or R(z,y). However, none of the above generalization is
aimed for tableau-based reasoning, thus the extension presented in this chapter becomes necessary

for tableau-based DL reasoners.

4.1.2 Subset Testing during the Tableaux Expansion

Conjunctive absorptions, as well as binary absorptions, require a new unfolding rule. These two
rules are denoted by conjunctive and binary expansion rules respectively. The only difference is that
conjunctive rules enables C; to be concepts of the form A; M...M A,, where A; to A, are concept
names, as in the C,-rule in Figure 3.

For both binary and conjunctive absorptions, DL reasoning needs to take some special actions
when some named concept is assigned to the label of one node during tableau expansions. The reason
is that binary or conjunctive absorptions introduce a number of axioms (to ease our presentation,
such axioms are called binary azioms and conjunctive azioms, respectively), which have several
concept names on the LHS. Normally, a DL reasoner has to decide whether the set of named
concepts currently belonging to the label of this node covers any set of named concepts occurring
on the LHS of these axioms. Without loss of generality, the following example details the subset
testing (or matching) in a tableau expansion.

Assuming that binary and conjunctive absorptions are respectively applied to an axiom in the
set notation (-4, Az, —A3,—A44,-As5,C)!. In this example, conjunctive absorptions produce one
conjunctive axiom while binary absorptions produce 4 binary axioms.

We now consider the number of matches required for different nodes in tableau expansions. The

scenario is described as follows. For some node in the tableau model, it initially has only A; in its

1Hence the axiom is of the form T T —A; LI ~Ag L —Agz L =Ay LI =Ag LI C.
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label. Every time a new named concept is added to this node, a reasoner has to check if all named
concepts in the label of this node cover any LHS of some binary or conjunctive axioms. Let us
assume that every conjunctive axiom in the TBox has at least 3 and at most 5 named concepts on
the LHS, that is, subset testing for conjunctive axioms will only be triggered if a node has 3 or more
named concepts in the label. Table 6 records the number of subset tests for both binary axioms

(produced by BA) and conjunctive axioms (produced by CJA).

Node Labels (new concepts are BA CJA
appended to the end of the labels) # of subset testing/matching
{Ad} 0 0

{41, 42} 1 0

{41, Ay, A3} 2 C?=1

{A1, Ag, A3, A4} 3 C3+C2=4
{A1, Aa, As, A, A5} 4 Ci+Ci+Ci=11

TOTAL 10 16

Table 6: Naive Matching Strategy for Binary and Conjunctive Axioms

Table 6 raises the question about the practicality of subset testing (or matching) in tableau-
based DL reasoners. For binary absorptions, binary axioms uniformly have their LHS consist of two
concept names. In every subset testing, the reasoner only needs to match every pair of the newly
added named concept and an existing concept name in the label with the LHS of all binary axioms.
Conjunctive axioms, in contrast to binary axioms, have different numbers of concept names on their
LHS, for example, the above example presumes that conjunctive axioms have 3, 4 or 5 concept
names on the LHS. In either case, this nalve subset testing algorithm hardly achieves satisfactory
performance in real reasoners. A remedy could be obtained from Yellin {1992], which indexes binary
(conjunctive) axioms through all involved concept names.

We continue by giving another practical algorithm (Figure 8) to deal with subset testing, which
stems from the watched literal algorithm initially used in the SAT solver Chaff [Moskewicz et al.,
2001].

The original algorithm is slightly modified in order to suit our needs. The basic idea is that
every conjunctive axiom is minimally indexed in the sense that it is indexed by only one (possibly

different) concept name occurring in it at all times. Consequently, a set of concept names indexes all
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Input: Conjunctive axioms Axiomyg ...Axiom,,, where concept names are elements in a set;
A queue of concept names CN in the label of node n;
Output: Conjunctive axiom(s) to be unfolded in node n;

1: {Initialize indexes of every axiom;}

2: for all 7 such that 0< 7 <m do
A’ := pickOneElement(set(Axiom;));
indexes(A’) := indexes(A") U {i};

end for

: {Update indexes of axioms dynamically;}

7. while not empty(CN) do

8: B « pop(CN);

9:  CheckedConcepts := CheckedConcepts U {B};

10:  while not empty(indexes(B)) do

1L k «— fetch(indexes(B));

D oo W

12: hit « true;

13: for all concept names A in Axiomy do
14: if A # B and A not in CheckedConcepts then
15: indexes(B) := indexes(B) — {k};
16: indexes(A) := indexes(A4) U {k};
17: hit « false;

18: end if

19: end for

20: if hit then

21: Results := Results U {k};

22: end if

23:  end while
24: end while
25: return Results;

Figure 8: Online Indexing Algorithm for Subset Testing

the axioms. During a tableau expansion, a new concept added to the label of some node needs not
to be checked unless it indexes some axiom. Once a concept name indexing some axioms has been
checked, these axioms will then be indexed by another concept name that has not yet occurred in
the label of this node. When all concept names in some conjunctive axiom have been checked, this
axiom should be triggered in this node, and thus the conjunctive rule applies. Axioms are indexed

in such a circulating fashion that unnecessary subset testing can be avoided.

An illustration of the algorithm is provided in Figure 9. Suppose that there are two conjunctive
axioms in the present node, concept names are added to the label of the node in the sequence of
Ay, Az, As. Finally, the algorithm reveals that the first conjunctive axioms should be applied to this

node.
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Al A | As A, oceurs in the
label

Ay

Ay | Ay Ay | As Ay
OCCLrS
in the

As ocours'in the
‘ iabel
G v

Ay | Ay

Concept names that have
already occurred in the label

Concept names that have
not oceurred in the label

Ay

Figure 9: Matching Algorithm for Conjunctive Axioms in Tableau Expansions

Binary versus Conjunctive Absorption

A misleading conclusion might be drawn from Table 6 that conjunctive absorptions push more
overhead to the reasoning than binary absorptions?. However, it may be the case that conjunctive
absorptions are favored. Observe that the number of subset tests in Table 6 only describes local
information, i.e., subset testing is restricted to one node. Conversely, a global consideration of
subset testing in all nodes could, in some case, prefer to use conjunctive axioms. A brief explanation
toward this statement is that the chance of executing the conjunctive expansion rule is smaller than

that of the binary expansion rule. An explanatory scenario follows (Figure 10).

It is easy to see that the general axiom can be absorbed by conjunctive absorption. Obviously,
the produced conjunctive axioms will be triggered only if there are at least four concept names
in the node labels during concept satisfiability tests. For this KB, no subset testing (and thus no
application of the conjunctive expansion rule) will be triggered to check satisfiability of concepts
D, E, F. On the contrary, subset testing is always necessary if the general axioms are absorbed

into 3 binary axioms. Nevertheless, to degrade the performance of conjunctive absorptions of this

?Naively implemented, the number of subset tests for binary axioms is quadratic to the total number of concept
names in the label of some node, while it could be exponential for conjunctive axioms.
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T, = {T C ~A; U-As U—A3 -4, UC}
T ={

D C Ay M Ay

E T Ay M Ay As;

F T Ay M Ay Ay

-}

Figure 10: A Sample KB Suitable for Conjunctive Absorptions

KB is quite easy: add to 7; an axiom of the form T E —-A4; LI-A; LI Cy, then subset testing become
unavoidable for all concept satisfiability tests.

To sum up, the choice between conjunctive absorption and binary absorption largely depends
on the characteristics of the axioms of an input KB. It should be pointed out that our experiments
implied that for either binary absorption or conjunctive absorption the overhead of subset tests can

not be ignored in practice.

4.2 Extended Conjunctive Absorption

Note that binary absorptions do not permit negated concept names to occur on the LHS of binary
axioms, moreover, one of the concept names, let us say A, on the LHS of some binary axiom
should not have its negation —A defined in any unfoldable TBoxes. The same rules apply to the
conjunctive absorption: not all the negations of the conjuncts on the LHS are allowed to be defined
in an unfoldable TBox, as seen in Proposition 4.1.1. In other words, at least one of the negated
conjuncts never occurs on the LHS of any unfoldable TBox. Such a restriction, however, can be
relaxed by using the enhanced concept absorption (see Section 3.2.2), which resolves negations by
introducing extra axioms.

Is it really necessary to introduce new, very likely not absorbable, axioms to ensure the correctness
of absorptions when both concept names and their negations are defined in unfoldable TBoxes due
to absorptions? A counterexample can show a plausible reason why additional axioms need to be
introduced, as described in Figure 11.

The last concept in Figure 11 is actually unsatisfiable in the TBox before absorption, but it turns

out to be satisfiable w.r.t. the TBox in tableau based reasoning due to the problematic absorptions.
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T,={TC-AUBUC}
T/ ={ AC Cy; BC Cs3}

Absorption adding no axiom:

T, =0

TA ={AC Cy; BC C3;}
T.'={AN-BC Cy;}

Satisfiability of concept A M —Cy M ~C57

Figure 11: A Counter Example

However, the correctness of the absorption is regained by adding an extra axiom A C C; UCs, which

is exactly the negation® of the target concept. This observation is generalized in Theorem 4.2.1.

Theorem 4.2.1. Let T =T, UT,, where T, = {-A; T C1,B1 E Co} and Ty = {T £ —A; LU—-A4z L
B1LIC} for A1, A2, By € AC; then T'=T,/UT, where T,/ = {~A1 T C1,B1 C Cy, A1MA2M-B; C
C} and T, = {A2 T C U Cy U Ca} is a correct absorption of T .

Proof. This amounts to prove that both 7 =7’ and 7/ E T hold.

First, let us prove 7/ £ 7. Every axiom in 7 trivially follows from its corresponding axiom in
T'. Hence, TBox T follows from 7.

Then we prove 7 E 7’. Every axiom in 7’ except As C C U C; U Cs trivially follows from its
corresponding axiom in 7', so we only need to prove axiom A; C C'UC; UCs follows from T as well.
Since the enhanced concept absorption is a correct absorption, we base our remaining proof on that
absorption.

We rewrite (similar to applying concept absorption CAP) the general axioms in 7 so that
7, = {-A; C C1,B; C Cy} and 7Ty = {A; C -4y U By U C}, to which the enhanced concept
absorption is applicable. After an application of the enhanced concept absorption, 77 = 7, : {—=A;1 C
C1,Bi1 CCy, A C A UBUCUT,: {TC C;U-AyLI By UC}. Again, the general axiom
could be rewritten (similar to applying concept absorption CAN) as ~B; C C; LU-As LU C to enable
another application of the enhanced concept absorption, which results in the following TBox: 75 =
T, : {~A1 EC1,B; ECy,A; C ~AUBUC, By E C1U-AUCY U T, : {T E C1U-A,UC, LICY.

Now it is evident that axiom A, T C U Cy U Cs trivially follows from 75 because of that general

3Because the negation of the target concept is ~(AM—=C1 M=C3), ie.,, TC~ALC: UCs.
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axiom in 75. Since 7 is merely a variant of the original TBox 7, axiom A; C C U C; U C; follows
from T as well, which proves that every axiom in 7’ follows from 7, i.e. 7 &= T".

O

To add additional axioms is not desirable, and it can be avoided sometimes. A special case

avoiding adding axioms is described in Corollary 1.

Corollary 1. Let T =T,UT,, where T, = {—~A1 EC1,B1 C C2} and Ty = {T C ~AUB,U-Cy U
—102} forAy,By € AC; thenT' = %/UT_(}/, where T, = {—\A1 CCy,BiEC0;, AiN-B; C —\Clu—loz}

and T,' = 0, is a correct absorption of T .

Proof. This is an immediate consequence following from Theorem 4.2.1 because the additional axiom

T E T is trivial and unnecessary. ]

It is worth noting that the enhanced concept absorption (ECA) naturally follows from the proof
of Theorem 4.2.1. Evidently, as long as some concept name and its negation occur on the LHS of two
axioms (in one unfoldable TBox), it is valid to “resolve” both axioms by introducing an additional
axiom whose LHS is the resolvent of the LHS of the previous two axioms and whose RHS is the
disjunction of the RHS of those two axioms.

Due to their tight relationship with the resolution method, we refer to the extended conjunctive
absorption and the enhanced concept absorption as the resolution based absorptions. Given the
purpose of absorptions, the resolution based absorptions seem to be out of the scope of absorptions
because they add extra, very likely complicated, general axioms to a TBox. Nonetheless, they can
serve as auxiliary absorptions once the new general axioms, if introduced, can be easily absorbed by

other absorption techniques.
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Chapter 5

A Framework for Planning of

Absorption

As the first attempt to apply planning to axiom absorption, our research paves the way for further
improvement of optimization techniques, especially absorptions. This chapter presents a framework
for planning of axiom absorptions, which has two main components: the classical planner and the
dedicated DL reasoner. Based on the proposed framework, implementation can be easily achieved.

To best illustrate this framework, this chapter is structured as follows. The next section (Section
5.1) describes the overall architecture of the framework as well as a glimpse of individual components’
functions. Following that, other sections elaborate the preprocessing (Section 5.2), the planner

(Section 5.3) and the DL reasoner (Section 5.4).

5.1 Architecture

The framework, a typical process of dealing with axioms of a knowledge base, in itself is easy to
follow, as shown in Figure 12. A TBox in a KB can be viewed as a set of axioms. Normally, the
terminological axioms are first preprocessed, such as simplification and normalization, to facilitate
processes afterward. The preprocessed axioms are then fed into the planner for planning. This
planning process is the key component of the framework, which produces a solution (plan) depending
on whether a preset goal has been reached. In any case, the output plan is deemed to be the

most economical one in terms of cost estimations. Meanwhile, the planner puts those axioms into
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appropriate sub-Tboxes, i.e., T, and Ty, so that a DL reasoner can seamlessly take over the whole
knowledge base for reasoning.

Being quite self-evident, both preprocessing and planning of the framework give rise to an (in-
ternal) knowledge base that may be different from the input. However, note that all processes are

satisflability-preserving syntactical transformations.
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. R N

The Planner
J
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Figure 12: Framework Architecture

Expressiveness Identifier The component named expressiveness identifier is designed to filter
KBs that could be handled differently because of their expressiveness. This expressiveness checker
identifies the expressiveness of an input KB before the KB is fed into the planner and reasoner. The
expressiveness of a KB matters in the following two aspects.

On the one hand, some absorptions only work with special concept constructors, for instance,
nominal absorption requires the logic to support O, so, the identification of concept constructors can
decide which absorptions should be used as operators during the planning. Unnecessary operators
will thus remain inactive in the planning in order to avoid potential overhead or even misleading
solutions.

On the other hand, some applications or reasoners may require or prefer a particular set of logics
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of the input KB. For example, Baader et al. [2005] proposed the logic ££, which is prevailing in
life science domains. A notable feature of ££ is that it supports no disjunctions, which means that
applying absorptions to ££ KBs jeopardize their original characteristics because disjunctions will
be added normally. A KB affected in this way not only changes its expressiveness but also fails to
maintain its tractable reasoning in the dedicated ££++ reasoner CEL [Baader et al., 2006]. From

this perspective, the expressiveness identifier also helps to preserve the logic during absorptions.

5.2 Preprocessing

Preprocessing is motivated to minimize the computational overhead which would otherwise be amor-
tized in subsequent reasoning services. In the scope of DL reasoning, preprocessing has been devised
to change the KB due to the fact that a DL KB, usually designed by users of a particular domain,
makes sense for human beings but may deter easy manipulation for machines. Normalization and
absorption are two main techniques in this sense.

In this framework, preprocessing can facilitate both DL reasoning and planning. Consequently,
various preprocessing techniques could be adopted for planners. Well-founded preprocessing tech-
niques of DL reasoning are usable as well. In this framework, preprocessing with the planner serve
as the preprocessing for DL reasoning.

We maintain that preprocessing techniques to be used rely upon the planner, but a few common
ones can be named. This section thus discusses some key preprocessing techniques for the framework,
though concrete implementation can use as many preprocessors [see Tsarkov et al., 2007, Section 3]

as necessary.

5.2.1 Normalization

Normalization, on top of everything else, can put concepts into normal forms to ease certain oper-
ations over axioms, for example, structural analyses of axioms. Prior to normalization, all axioms
could be uniformly rewritten so that the LHS of every axiom is T, and the RHS is ready for normal-
ization (see Figure 13). To refine the process of normalization, it is acceptable to denote the RHS
in sets.

Negation Normal Form is a well-known normal form such that negations occur directly before
concept names. This is achieved through a translation between dual pairs of operators (3 and V,

M and L, etc.) by applying De Morgan’s Laws. Horrocks [2003] presented two functions to obtain
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Figure 13: Normal Forms in Preprocessing

NNF with additional simplification given some concept expressions.

CNF and DNF have been quite influential as well. The former consists of a conjunction of clauses,
and the latter is made up of a disjunction of terms. Every concept, in principle, can be converted

to its equivalent concept in CNF (DNF).

We assume that above normal forms suffice for this framework, but other normal forms may be
needed in some cases. Fortunately, Darwiche and Marquis [2002] studied a considerable number of

normal forms to help decide which to use for different applications.

5.2.2 Synonym Replacement

Synonyms refer to concept names A that have a definition of the form A = B, where B is a concept
name as well. Obviously, A and B are synonyms because they are just two names for the same
concept. Without proper treatment, these definitions are deemed as equivalence axioms, each of
which might contribute two unnecessary general axioms. Moreover, synonyms may introduce fake

cycles or unnecessary dependencies into the TBox.

Actually, a TBox could be further simplified by replacing every occurrence of B with A. For
instance, if a TBox contains the following axiom {A = B, T C B U 3R.C}, it is reduced to {T C
AU3R.C} by substituting B with A. Practically, every synonym definition of A4 is removed from

the TBox, and all occurrences of the synonyms of A are superseded by A.

During synonym replacement, a TBox must always satisfy the default assumptions introduced in
Section 2.1.1. In other words, applications of synonym replacement should not break the assumptions

for an unfoldable TBox.
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5.3 Planner Architecture

Preprocessing tailors an input KB for the subsequent planning that may stipulate axioms in certain
format. No specific format is suggested in this framework, yet it is possible to select a representative
for our discussions. In the following sections, after the normalization phase, all the axioms are
assumed to be represented as sets whose elements are disjuncts of those axioms. In fact, one axiom
in CNF can produce more than one set by separating its conjuncts. The consequence of this notation
is that disjunctions, which are frequently referred to during planning, can be easily identified. The
elements in a set, when no ambiguity is caused, are called items of the original axiom.

Any general planner is applicable to this problem despite a few minor changes to be noted.

Without loss of generality, Figure 14 delineates an adaptable generic planner.

" Cieneral Axioms
Absorbed Axioms

Operator 1
Absorbed Axioms

State 1

GOAL

>

Flan with Minimal Costs

General Axioms
Absorbed Axioms
Final State

General Axioms ™
Absorbed Axioms

\ State N J

Figure 14: The Architecture of a Generic Planner

Operator N

The following sections manifest the architecture of the planning framework by introducing the
representation of the planning problem. At the end of this section, a planning procedure simulating
the work flow of this planning system is presented, along with specific considerations to build a

practical planner.

5.3.1 States

As discussed in Section 2.2.1, literals are shown later in constructing states and the preconditions
and effects of operators.
In our framework, variable symbols are denoted by three or less characters, possibly with sub-

scripts, in the slanted shape, such as geci. Constant symbols can be easily identified because they are
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just AC, NA! and names of TBoxes, for example 7;. Predicates are denoted in typewrite font; a
typical predicate would be isGeneral. As a convention in FOL, an atomic formula (atom) is formed
by applying some predicate to constants and /or variables. Furthermore, atoms and negated atoms
are called literals, for example, isGeneral(gci) is a positive literal. The list of literals devised in

this thesis are depicted in Table 7.

Literal Name Explanation
equals(x, y) true if concept x is the same as concept y.
belong(x, AC (or NA)) | true if concept x is a (or negated) concept name.
simpleCon(x) true if either belong(x, AC) or belong(x, NA) hold.
univRes(x) true if concept x is a universal restriction.
hasQual(x, y) true if univRes(x) holds and y is the qualification of x.
isGeneral(gci) true if axiom gci is in 7Ty, i.e., gci is a general axiom.
hasDisjunct(gcl, x) true if concept x is a disjunct of axiom gci.
definedIn(x, 7) true if concept x is defined in TBox 7, i.e., it appears on the LHS of
some unfoldable axiom(s) in 7. 7 could be any unfoldable TBoxes.
extract(x, y) true if either of the following hold:
1. both hasQual(x, y) and simpleCon(y) hold; or
2. both hasQual(x, z) and extract(z, y) hold.

Table 7: Definitions of Literals

A typical state looks like s; = {isGeneral(aziom), hasDisjunct(aziom, A), simpleCon(A)}.

Initial State

An initial state can be any state, which usually contains all the necessary ground atoms to express
relevant background knowledge. In this framework, an initial state is always the one describing the
original input knowledge base. Designers should ensure that all the necessary knowledge will be
encoded in states while irrelevant conditions will not.

For our planning problem, an initial state usually describes every axiom occurring in an input
KB. Each axiom could be considered as a candidate for absorptions unless it is naively put into some
unfoldable TBox through preprocessing. For example, the preprocessor may move all equivalence
definitions directly to 7. This preprocessor augments T, hence an initial state should also depict
7. appropriately. An initial state must encode TBox information, such as which TBox every axiom
belongs to. Other than that, an initial state has to encode elements of every general axiom repre-
sented as set. Such elements are the direct sources of absorptions. Note that other extensions to

this framework might require additional KB descriptions such as ABox assertions. Figure 15 serves

1Recall that AC is the set of concept names, and NA is the set of negated concept names.
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as a template for designing initial states in implementations. At present, ABox assertions are not

considered by our framework.

: {Describes the status of axioms; n: # of general axioms, n > 0}
: for all £ such that 1< k <n do
isGeneral(gciy) « true
{Describes items in each general axiom; m: # of items of axiom k, m > 0}
for 0<i<mdo
hasDisjunct(gcik, ;) « true
end for
end for
: {Describes the status of unfoldable TBoxes}
: for all non-empty unfoldable TBoxes 7 do
for all x defined in 7 do
definedIn(x, 7) « true
end for
end for

© oD Ty

= = = e b
> w9

Figure 15: Template for Designing an Initial State

5.3.2 Operators and Actions

An operator is a representation of some absorption using defined literals. The following discussion
details the formulation of operators, which includes concept absorption (CA), conjunctive absorption
(CJA), and inverse role based absorption (IRBA). Note that the enhanced concept absorption
(ECA) is not part of the formulation due to its violation of classical planning restrictions. The
same reason goes for the extended conjunctive absorption. Nominal absorption (OA), although
suitable for a classical planner, are omitted in the formulation because they can be simulated by

CA and IRBA. To be more rigorous, we have incorporated the absorption on equivalence axioms.

Operator Formulation

Planning operators are instantiated into actions to be applied to states. Intuitively, every absorption
can be formulated as one or more operators depending on the preconditions and effects of these
operators. Similar to the representation of states, preconditions and effects are just sets of literals.
Observe that there is no requirement to prohibit positive literals here, but rigid relations, which are
invariant over all states, never appear in the effects.

Table 8 formally presents operators to cover currently known absorptions through the use of

literals defined in Table 7. In this table, —x refers to the normalized negation of some concept name
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x. For instance, if x is —=A, then —x becomes A instead of ——A. Thus, if x belongs to NA, —x

belongs to AC, and vice versa.

CONCEPTABSPOS | To move an axiom gci from 7 to 7.7,

(gci, z)

Preconditions isGeneral(gci); hasDisjunct(gci, x); belong(x, NA); ~definedIn(—x,
7.); ~definedIn(x, 7,'4)

Effects definedIn(x, 7./'); ~isGeneral(gci)

CoNCEPTABSNEG | To move an axiom gci from 7y to 7%

(gci, , 1, ..., Zp)

Preconditions isGeneral(gci); hasDisjunct(gci, x); belong(x, AC); ~definedIn(x, 7.);
—definedIn(x, 7;*); when definedIn(xMzy M...M @y, 7,'), then 3 i
—~definedIn(-z;, 7,4), 1<i<n

Effects definedIn(x, 7, “); —isGeneral(gci)

CoNJUNCTIVEABS | To move an axiom gci from 7, to 7, ;

(gci, T1y ...y Tn)

Preconditions isGeneral(gci); hasDisjunct(gci, £1); ... ; hasDisjunct(gci, z,) where
n>2; belong(z;, NA), 1 < ¢ < n; ~definedIn(—z;, T¢), 1 <i < n; 3j, 1<
j< n, ~definedIn(z;, 7,7*)

Effects definedIn(ziM...Mzy, 7.'); ~isGeneral(gci)

INVERSEROLEABS | To move an axiom gci from 7, to T2 [or 7,4];

(gci, z, y)

Preconditions isGeneral(gci); hasDisjunct(gci, x); extract(x, y); belong(y, AC |[or
NA)); ~definedIn(y [or ~y], 7¢); ~definedIn(y, 7,2 [or 7,"4])

Effects definedIn(y, 7,4 [or 7,2]); —isGeneral(gci);

EQUIVALCENABS To move two axioms gci; and gciz from 7y to Ze;

(gCila 90127 z, y)

Preconditions isGeneral(gciy); isGeneral(gcis); hasDisjunct(geiy, x); belong(x, AC);
hasDisjunct(gcis, y); belong(y, NA); ~definedIn(x, 7.); equals(-x, y);
—definedIn(~y, 7e);

Effects definedIn(x, 7.); —isGeneral(gcii); ~isGeneral(gciz)

Table 8: Formulation of Operators

As can be seen from Table 8, the restriction of the classical representation formalism has ac-

tually been relaxed by allowing expressions that are more general than just sets of literals in the
preconditions and effects. More precisely, the operator formulation in this framework is extended to
allow conditional expressions (for instance, when...then) and quantified expressions (for example,
V and J). Together with other extensions, the extended representation formalism can also be used
to describe states. In particular, quantified expressions are sometimes convenient for specifying the

initial state and the goal.
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5.3.3 Goal

A classical planning problem can be expressed by the initial state, the operators, and the goal, of
which the first two have been shown in Sections 5.3.1 and 5.3.2 respectively. In this section, we

study the goal of our planning problem.

A goal is not a state in a planning problem, instead, it is a set of ground literals. In this
framework, ideally, a goal should contain no general axioms, all of which should have been absorbed,
for any given KB. However, as is noted from the very beginning, such an ambitious goal may be
unreachable. That is, there exist KBs whose general axioms can not be completely absorbed by
any absorption. In a concrete implementation, an alternative would be to approximate the goals to
guarantee its reachability. For instance, the goal can be set in such a way that a small percentage

of the total number of axioms can remain in 7.

5.3.4 Planning Procedure

After concentrating our attention on details of the planner, this section depicts how a classical
planner absorbs general axioms. When a KB is fed into the planner, it is preprocessed to determine
the initial state. This initial state should contain sufficient knowledge to describe axioms in the KB
that might affect absorptions. Starting from this initial state, operators, i.e., absorptions formulated
in the planner, will be subsequently applied to states once their preconditions are met. Meanwhile,

more states will be created due to successful applications of the operators.

Note that a state transition function is responsible to select states to form a solution. As it is
possible that one or more operators are applicable to one general axiom in a state, there will be a
number of states available to be selected by this state transition function. Instead of trying every
possibility for a solution, state selection heuristics are generally used to resolve these nondeterministic
choices. Cost estimations are then introduced to serve as a part of such heuristics. With the help
of heuristics, the planner determines its most promising successor for a solution without randomly
choosing from multiple possibilities. As is recognized, sometimes a solution that empties the 7; is

not accessible, then a plan with minimized cost totaled along the path is presented as the solution.

Before devising a new planner, we decided to evaluate known general purpose Al planners to

analyze their feasibility and scalability in the DL domain.
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Evaluation of SGPlan

One of the most competitive planners, SGPlan 5 [Hsu et al., 2006], has been selected as the repre-
sentative for general classical planners to show if it scales up to large planning problems in the DL
domain.

For the scalability experiments, a simple Thox containing seven axioms represented in PDDL 3.0
[Gerevini and Long, 2005] is constructed, as shown in Figure 16. At the same time, we define three
operators: concept absorption (allowing absorptions into both concept names and their negations),
binary absorption, and role absorption. Note that binary absorptions introduce dynamics into
the planning domain, which amounts to require online planning (Section 2.2.1), hence if binary
absorptions are to be defined as established in [Hudek and Weddell, 2006], they are beyond the

expressive power of PDDL 3.0 because offline planning applies to the PDDL specification.

TBox # Content Absorptions

1 TE-CU-EUD ~ Concept Absorption over ~E

T 2 TC-BU-CUEUVYRF ~» Role Absorption over VR.F
3 TCE-EUVR.F ~+ Concept Absorption over —E or

Role Absorption over VR.F

4 —=BC...

T 5 -CC...
6 ELC...

7. 7T D=...

Figure 16: TBox Designed to Test SGPlan5. We assume that B,C, D, E, F are concept names, and
R arole name. 7, contains general axioms, 7, is the unfoldable TBox, and 7 consists of equivalence
axioms.

‘The desirable application of absorptions is listed on the right hand side of Figure 16. Obviously,
all three general axioms can be absorbed. Then, all the seven axioms are replicated, i.e., only the
concept names are changed correspondingly in each axiom, to increase the size of this planning
problem. The experiments showed that a replication of around 50 copies (150 general axioms) costs
around 10 seconds for SGPlan 5, but 60 copies (180 general axioms) could lead to a failure of this
planner in the sense that SGPlan 5 is unable to return a solution within 15 minutes. We thus argue
that even sophisticated classical planners do not scale up well in the DL domain because a Tbox with
hundreds or even thousands of general axioms is not uncommon. To avoid the issue on scalability,

a dedicated planning approach as described in the following section is considered.
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Scalable Planning

We have just demonstrated that efficient classical planners designed in the Al community rarely
enjoy scalability for our problem domain. Given that a planner implemented in this framework is
usually incomparable to those planners, we can not expect the planner to scale well if it is designed

in the conventional manner. Thus, it makes sense to adjust the framework to allow scalable planning.

We maintain that a planner that absorbs all axioms should produce a solution within reasonable
time to make up for the overhead that would otherwise have been incurred by reasoning on general
axioms. An immediate answer could be to reduce the number of states in a state-transition systems.
Considering a planner of m operators and a state with n general axioms, a conventional planner,
in the worst case where all operators are applicable to every axiom, would normally create m x n
successors of this node. Given the possibility of a large quantity of general axioms in real ontologies,
the planner could be designed to behave in such a manner that fewer states need to be generated,

slightly different from the above-mentioned conventional planner.

Particularly, scalable planning amounts to apply one operator to a group of general axioms
rather than a single one and leads to the creation of fewer new states. Actually, during this process,
a number of actions, i.e., instances of this operator, are executed. Normally, every action results
in a new state, as in an ordinary planner, however, in this case, only one successor state will be
introduced by all these actions of this operator. Evidently, this strategy is just an approximation of

conventional classical planning, so, the precision might be affected.

Figure 17 depicts a scenario where scalable planning has a coarser granularity than ordinary
planning. The generated states are marked by the absorption and the planning applied to it. For
instance, the top-left state marked “CJA + Scal.” means that this state is obtained by using

conjunctive absorption and scalable planning.

In scalable planning, axioms have a uniform structure if successfully absorbed, that is, the ab-
sorbed axioms will have the same structure, for instance, the LHS consists of the same number of
concept names in the above example. Conversely, ordinary planning is able to produce all possible
states, where the axioms resulting from absorptions can have different structures, as shown in the
state marked “CJA + CA + Ord.”. Despite the unavoidable loss of coarseness (more precisely,
the loss of completeness), scalable planning presented in this framework, however, tends to be more

feasible in practice compared to the ordinary one.
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CJA + CA + Ord.

Figure 17: Scalable vs. Ordinary Planning. Each framed box denotes a state, and only represen-
tative results are shown. Two operators are considered here: conjunctive absorption and concept
absorption.

5.3.5 Cost Mapping

This section extends the previous discussion on the planning framework to allow cost-based optimal
planning. Rather than being satisfied by any arbitrary sequence of actions that leads to the goal set,
sometimes it is desirable to optimize some criterion, such as the quality of the generated knowledge
base. The distinction between optimal and non-optimal planning is not always a concern, yet it is
relevant in practice. To address optimal planning in our problem, we start with the cost accumulation
during the plan execution.

Let us assume the main motivation of absorptions is that the absorbed knowledge base should
facilitate reasoners. The question of cost consideration becomes to what degree this motivation could
be reflected by the cost. It is accepted that reasoning performance is attributed to many factors, and
general axioms are said to be one of the main sources of nondeterminism. Due to lack of sufficient
knowledge about these factors, the cost mapping presented here only contributes to an estimation
of the real cost.

This section focuses on the structure of axioms for an estimation of the real cost, which projects
the hardness of reasoning about a KB onto structural analyses. At present, the schema for estimating
the difficulty of reasoning over a KB is proposed below. It describes what aspects will be considered

in a tableau-based reasoning procedure.
Expansion Rules In a tableau-based reasoner, expansion rules are used to “draw” a tableau, i.e.,
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how to expand a concept to detect potential conflicts by taking into account relevant TBox
information. Usually, an expansion rule to deal with disjunctions or conjunctively absorbed

axioms produces overhead that can not be ignored in practice.

TBox Interactions There can be a number of small unfoldable TBoxes, each of which has its own
requirements. Additionally, all the unfoldable TBoxes must maintain unfoldability whenever
an absorption adds some axioms to them. For instances, 7,4 assumes that its axioms cannot
have the negations of their LHS defined in 7."4. Similar interactions also exist between 7,74

and 7.

Branching During a tableau expansion, reasoners may face non-deterministic choices where they
should try various branches to exhaust all possibilities. The main source of branching is from
disjunctions. Consequently, disjunctions occurring in axioms have to be considered in a proper

manner.

Unfolding Unfolding, with the help of absorptions, plays a key role in efficient tableau-based
reasoning. However, no reasoner expects to be effective if it has to unfold numerous times
or it unfolds to add a large amount of concepts to the label of some nodes for one concept
satisfiability testing. The underlying question would be how absorptions can heuristically take

advantage of unfolding.

A number of factors could be presented other than the aforementioned concerns, but there still exists
great difficulty to map these factors appropriately and reasonably onto cost estimations. It remains

to be seen if the cost evaluation ameliorates if more factors are mapped.

5.3.6 Cost Metrics

Cost mapping is designed to monitor the hardness of reasoning over some KB, and cost metrics are
used to quantitatively represent the hardness. For structures of axioms, the left-hand side (LHS)
and the right-hand side (RHS) are separately studied. For absorbed axioms, this section provides
a thorough analysis on how to project KB hardness onto cost. Cost estimation on general axioms

and other factors are presented at the end of this section.
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Cost Analysis on the LHS

The principle of the cost analysis on the LHS, roughly speaking, is to assess the gains and side
effects after applying an action to some general axioms. For instance, if an application of concept
absorption absorbs a general axiom to B in '];A, then one of the gains is that this general axiom
is resolved, however one of its negative impacts is that other general axioms lose the chances to be
absorbed to —B in 7,# based on the operator formulation. The associated action, which results in
some follow-up state, is called an ingress action w.r.t. that state.

Sequentially, this section presents the cost metrics for different concepts occurring on the LHS
of some absorbed axiom. Naturally, the type of concepts discussed reveals their correspondence to

relevant unfoldable TBoxes.

I. Concept A on the LHS General axioms that have been successfully absorbed by the ingress
action are called processed (general) axioms. The generated axioms then define A in 7. At the
same time, some general axioms are blocked by this ingress action because otherwise they can be
absorbed to axioms of the form —A in 7,74. These general axioms are called blocked (general) axioms
to indicate the negative impact of executing this action.

A partial cost estimation can now be made by counting the difference between the number of
processed and blocked axioms. Every time an action is activated and finished in some state, the
counting result is recorded. Observe that this counting is not accurate, thus a weight needs to be
assigned to this counting to adjust the offset. This counting is suitable for both scalable and ordinary

planning.

I1. Concept —A on the LHS In this case, processed axioms, defined in a similar way as in
case I, will have —A defined in 7,74, which block two kinds of (blocked) axioms. First, contrary to
blocked axioms in case I, general axioms which are able to define A in 7,4 are blocked. Second, some
general axioms that can be conjunctively absorbed may be blocked as well, as can be seen in the
preconditions of conjunctive absorption in Table 8. Considering a general axiom that is to define
A1MA;M Az in T, if —A; and — A, already have their definitions in %“A, then a definition of — A3
in 7,74 obviously keeps this axiom from being amenable to conjunctive absorption. As a result, this
general axiom is blocked by this action as well.

Similarly, the cost can be quantified by counting processed and blocked axioms, with a preset

weight for cost adjustments.
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II1. Concept A;M...MA, on the LHS Let us assume there are n general axioms Gcy; (1< ¢ < n)
to define —A; to =4, in ’];fA of some state s. In addition, s contains GCl; and another general
axiom that can have A; M...M A, defined in 7. In order to absorb the second axiom into 7', at
least one of GCI; needs to be blocked, and hence becomes a blocked axiom. It is easy to see that the
probability to block GCI; is very low because this would require that all other axioms GCI; (i # k)
have no definitions of —=4; (i # k) in 7,7*. Hence, the quantification of cost can be obtained by the

counting, a weight, and the probability.

Cost Analysis on the RHS

The RHS of an absorbed axiom can be evaluated by considering disjunctions and unfolding. The
former causes branches to increase non-determinism, while the latter may unfold a long chain of

concepts. Both can jeopardize the reasoning performance to some degree.

I. The number of disjunctions Disjunctions are one of the main concerns of optimizations.
Generally, the fewer disjunctions on the RHS of an axiom, the fewer branches in tableau expansions.
The simplest way to compute this cost is counting the number of disjuncts. Prior to that, one has

to make sure that axioms are normalized so that no redundant disjunctions are added to the cost.

I1. Saturation of concepts Unfolding alone only introduces superclass concepts of the present
concept. It may happen that some concept, directly or indirectly, is unfolded to a set of concepts
containing itself. Although this situation could be handled by other optimizations in DL reasoners,
a solution to prevent such cyclic references is to saturate every concept. In this way, the overhead
of cyclic unfolding is pushed to absorptions instead of to tableau expansions.

To terminate the cyclic introduction of some named concept itself, a procedure called saturation
can be introduced. That is, every named concept keeps track of its named superclass concepts until
it encounters itself. The cost on the RHS is then determined after all named concepts have been
saturated.

The method to quantify the cost related to unfolding varies in different implementation. For
example, for some saturated named concept A, one can calculate its unfolding cost by measuring the
size of the set that all the named superclass concepts of A belong to. One can also compute the cost
of A by measuring the levels of saturation. Considering the following three axioms: A; C AxM...,

Ay C AsM...and A3 T Cn..., if C is a concept expression that requires no more unfolding, then
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Ajg is saturated directly, which has only one level of saturation, whereas Az (A4;) has two (three)

levels of unfolding in order to be saturated.

Other Metrics

Apart from cost metrics about an absorbed axiom, cost metrics are attached to absorptions them-
selves. Recall that the axioms resulting from some absorption need to be expanded by tableau rules,
each of which might require a different cost. To slightly reflect this idea, every absorption itself
can be assigned a weight (intuitively, the priority). For example, compared to concept absorption,
conjunctive absorption can be assigned a lower weight to indicate that it generates axioms to be
dealt with by a relatively more expensive tableau expansion rule.

Occurrences of named concepts (and their negations) are good candidates for cost metrics as
well. An absorption process itself is non-deterministic, for example, when a general axiom has
more than one (negated) concept name amenable to the concept absorption, concept absorption
seems impartial in selecting any of these concepts. An intuition is that some concepts may have
more beneficial effects for subsequent absorptions than others. In view of this fact, the frequency
of all possible (negated) named concepts occurring in a TBox may be used as a clue to select a
more suitable absorption concept. An underlying notion is that such statistics about occurrences
is readily applicable to cost metrics. For instance, concept absorption has the option to absorb a
general axiom into A or —A, then occurrences of A and A appearing in all general axioms give the
absorption a hint which one can be chosen to minimize the number of general axioms that could
have been blocked by the choice. However, it should be noted that absorptions allowing A and - A
to be considered as two different operators (i.e., CAP and CAN) in the planning do not need such
counting of occurrences because planning tries all situations and always selects the one with the
least cost.

Similar observation holds for lazy unfolding. Suppose that an absorption has to randomly absorb
a general axiom into either A or B, the number of occurrences of some concept name in unfoldable
TBoxes indicate if this concept will bring in lots of additional concepts during tableau expansions.
Consequently, if B scarcely appears in any unfoldable TBox, the absorption can absorb general
axioms to B to avoid introducing a large amount of concepts to a node in tableau expansions.
Otherwise, axioms can be absorbed to A by incurring some cost. Above strategy applies to binary
absorption too. Though it is unavailable in classical planning, binary absorption can take advantage

of occurrences of concepts to guarantee that the LHS of an absorbed axiom is the most frequently
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used concepts.

The overall cost in one state can be calculated easily by a function alike to this:

CostInState = Z WeightO fOp; X (|GainsOfOp;| — |LossO fOp;|) (10)

Opi€Operators

5.4 DL Reasoner

So far, our illustration is on the preprocessing level. Figure 12 detaches the planning component
from the DL reasoner so that the planning component can be coupled to various DL reasoners
as long as the reasoners meet specific requirements imposed by the planning component. Some
requirements are imposed only when corresponding operators are formulated in the planning, while
other requirements are fundamental ones for a tableau-based DL reasoner. This section specifies

what functionality might be needed for a DL reasoner to work in the framework.

Expressiveness As has been argued, some known absorptions are associated with special logic
constructors. In this framework, Z and O are explicitly demanded by inverse role based
absorptions and nominal absorptions respectively. The consequence is that a DL reasoner

must be able to reason about KBs residing in the expressiveness of ALCT or ALCZO.

Preprocessing Though the planning component serves as one of the preprocessors, i.e., an ab-
sorption preprocessor, of a DL reasoner, additional preprocessing, such as simplification and
normalization, are performed to simplify the input KB into a form to facilitate reasoning.
Tsarkov et al. [2007] surveyed effective optimizations for this purpose, including taxonomic

encodings and synonym replacement, told cycle elimination and so on.

Tableau Rules For any working DL reasoners that deal with KBs in ALCZ, the only requirement
on tableaux rules is the addition of another rule for conjunctive axioms. Typically, the rule
should be triggered when a node containing a set of concept names covers the LHS of some

conjunctive axiom in 7;;'. The details are available in Section 4.1.

For inferences, the DL reasoners should at least be able to check concept satisfiability, otherwise
it is hard to compare reasoning performance with other reasoners. Although there is no require-
ments for optimization to be implemented, some basic ones, such as blocking, which guarantees

terminations of tableau algorithms, should be considered.
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Chapter 6

System Description and Evaluation

This chapter describes an implemented system for planning of axiom absorptions. The system design
follows the suggested architecture in Chapter 5, which has two major parts: a planning component
and a DL reasoner. In the first phase, an input KB is examined to identify its expressiveness. Then,
general axioms are recognized and processed in an appropriate way, i.e., by planning. Immediately
after that, a DL reasoner performs reasoning on the modified knowledge base.

To ease the presentation, this system is named PAR. The first part (Section 6.1) of this chapter
gives a description of the system implementation, while Section 6.2 analyzes the proposed framework

with empirical observations.

6.1 System Description

The implementation of the framework is for conducting experiments about absorptions, hence, it
is quite straightforward. An absorption planning system can be implemented in any programming
language. This system is implemented in Java because the OWL API [Bechhofer et al., 2003], an

influential interface for parsing OWL ontologies, is used in this system as the parser.

6.1.1 The Classical Planner

The implemented planner is a classical state-space planner. Particularly, both ordinary planning
and scalable planning as presented in Section 5.3.4 are implemented for comparison. This section

describes the decisions and assumptions made in practical aspects.
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Expressiveness Identifier

PAR has a module to identify the expressiveness of a given KB, though only ££ and non-£L are
distinguished for an input KB. If the KB is non-£L, the system will then proceed by applying
planning using all the available operators, otherwise only conjunctive absorptions will be applied to
this KB. This identifier can be disabled as needed to ignore the logic restrictions, thus, all ontologies

can be exposed to planning with all operators.

Preprocessing

Upon entering the system, a general axiom is transformed in such a manner that its LHS becomes
T. Subsequently, its RHS is decomposed into one or more concepts. The LHS of each axiom is T
and the RHS is a number of disjuncts denoted as sets. For example, a general axiom -A = BMVR.C
is eventually rewritten to two axioms T T AU B and T C AUVR.C, represented as sets {A, B}
and {A, VR.C?} respectively. Normalization is simultaneously achieved in the course of representing

the axioms.

Operators, States and the Goal

Operators that are formulated in this planner consist of concept absorptions (CAP and CAN),
conjunctive absorption (CJA), inverse role based absorption (IRBA) and equivalence absorption
(EA). As stated in the framework, domain and range absorptions (DRA) and nominal absorption
(OA) can be simulated by inverse role based absorption, and the latter (requiring ©O) can not be
dealt with in the implemented DL reasoner, and thus is not considered.

A state in this planner is a set of positive literals, the same as described in the framework. The
system imposes no extra conditions on the initial state either. The goal of the planner is designed
to allow one percent of the total number of general axioms® to remain unabsorbed. The goal is
regarded appropriate because this system is not expected to be powerful enough to successfully

absorb all general axioms in every KB.

Planning Algorithm and Heuristics

Our implementation adopts state space planning, where the process of planning turns out to be

a search problem in a graph. The search algorithm implemented in this system is A*, one of the

1The number of general axioms might increase after preprocessing. Here, we count the number of axioms before
preprocessing in order not to overestimate it.
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best-established forward search algorithms. Although it is known that A* is complete, this planner
adapts scalable planning described in Section 5.3.4 in the framework, which may overlook some

combinations of absorptions and possibly result in incomplete plans.

The cost function f(n) = g(n) + h(n) is formulated, where g(n) is to calculate the cost-so-far of
a node n, h(n) is the heuristic to estimate the distance from node n to the goal, and f(n) is the total
cost for node n. Specifically, g(n) is the cost along the path to n using the cost metrics described in

Section 5.3.5, and h(n) is the number of remaining general axioms in the current node n.

The function f(n) mainly computes the cost of applying some absorption to one general axiom.
Note that each absorption has been preset to some weight, and the final cost is divided by the weight
of the applied absorption. Then, the weight of one absorption is inverse proportional to the final

cost, hence, a higher weight of some absorption gives this absorption certain priority in planning.

The heuristic function h(n) is deliberately designed so as not to overestimate the cost of reaching
the goal, in other words, h(n) must be admissible for A* in order to be optimal. In this way, the
heuristic avoids finding a suboptimal goal with the A* algorithm. In our implementation, h(n)
estimates that the cost to reach the goal is the number of remaining general axioms. However, the
actual cost to absorb all these axioms (i.e., to reach the goal) will be greater than this estimation
because many other factors will be considered other than the number of remaining general axioms,
hence, the actual cost is underestimated by h(n). Consequently, the heuristic function h(n) used in

our implementation is admissible, which also guarantees that the algorithm is complete.

Complexity We have seen in Section 2.2.3 that the worst-case computational complexity of clas-
sical planning is quite high. In our implementation, the planning operators are given in advance
and have both negative preconditions and negative effects, hence the complexity of planning in our
problem is at most PSPACE as shown in Table 4. However a lower complexity can generally be
obtained in domain-specific planning algorithms. In our case, the number of nodes expanded is
exponential in the length of the solution in the worst case. Note that the length of the solution is
shortened to a few steps in scalable planning. Furthermore, scalable planning can help to enhance

runtime performance by reducing the size of the search space?.

2 A* in principle is more problematic with its memory usage, which fortunately is not a problem in scalable planning.
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6.1.2 The ALCZ DL Reasoner

We continue by presenting a DL reasoner supporting KBs of the expressiveness ALCZ. At this
point, preprocessors, such as simplification and normalization, become redundant because the KB
will have been preprocessed by the planner.

This reasoner, implemented in a straightforward way, has only limited optimizations built in3,
such as (equality and subset) blocking strategies, to enhance its performance. Additionally, it is
only capable of deciding the satisfiability of concepts. As a research prototype, this reasoner can be
extensively used for experiments on newly designed techniques, but it is not comparable to existing
popular reasoners, such as Racer (Haarslev and Mdller [2001b]), FaCT++ (Tsarkov and Horrocks
[2006]), and Pellet (Sirin and Parsia [2006]), in terms of reasoning services or efficiency.

The implementation of tableau expansion rules for ALCZ follows Baader et al. [2003], together
with a special rule to expand conjunctive axioms in 7. Because the classical planner asks for
conjunctive absorptions, this underlying DL reasoner used the conjunctive expansion rule instead of
the binary expansion rule. As reported earlier, conjunctive axioms take up a considerable amount
of time in subset testing, and this reasoner implemented the algorithm in Yellin [1992] to minimize

this kind of overhead.

6.2 Empirical Studies

This section presents some representative experimental results and analyses. We categorize these
experiments according to the type of input KBs, which may be domain specific ontologies or synthetic

ontologies used for testing only.

Environment Unless otherwise specified, all the empirical data is collected through the environ-
ment, described here. The experiments are conducted under Windows on a standard PC: Dual Core
(2.40 GHz) Pentium processor and 3 GB of physical memory. To ensure impartial comparisons, we
use the latest releases (at the time of writing this thesis) of influential DL reasoners such as RacerPro
1.9.2 Beta, Pellet 1.5.2, and FaCT++ 1.1.11. All reasoners, if ever used in the testing, are allocated
physical memory up to 1.2 GB if possible. To keep the data consistent, every testing guarantees at
least 5 independent runs of all the systems.

Although we also evaluate other factors of the system performance, most of the data is for runtime

3 A complete list of optimizations for DL reasoners is available at: http://dl.kr.org/dig/optimisations.html
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performance, which is given in seconds in general. Sometimes the system issues a timeout (T0), which
may be set to different values from one ontology to another, to terminate the testing. Reasoners
might issue an out of memory message, denoted by OOM, if they cannot process the input ontology
after consuming the allocated memory. The “—” indicates that the particular reasoner could not
process the input knowledge base.

Note that PAR employs the following absorptions in its planner: concept absorptions (CA)4,
inverse role based absorption (IRBA), and conjunctive absorption (CJA). Domain and range ab-
sorptions are actually replaced by IRBA,; equivalence axioms are usually put into 7, without further
absorptions, however, sometimes they are transformed into inclusions to evaluate the performance
of the planner. When the number of general axioms in PAR is used in the experiments, axioms are
counted after preprocessing by PAR (Section 6.1.1), thus it may differ from other reasoners. If this

number is not available in other reasoners due to some reason, then it is marked by a “x”.

6.2.1 DM Ontologies

We have tested a series of ontologies named DM (Ben-David et al. [2007]), which model the domain
of bounded model checking. There also exist two digits in the names of these ontologies, for example
DM5-10, separated by a dash. The first digit indicates the size of the model in terms of a “cell”
that contains 17 state-variables, i.e., DM5-10 has “5 cells” including 85 state-variables. The second
digit in DM5-10 such as 10 stands for the bound. The larger the size and the bound, the harder
the ontology. These ontologies are listed in an increasing order of the hardness: DM5-5, DM5-10,
DM5-15, DM16-5 and DM16-10.

During testing the DM ontologies, we compared the absorption effectiveness and reasoning per-
formance of the planner and arbitrary absorptions. A timeout (T0) of 1000 seconds was used, as is
seen in Table 9. Runtime performance of RacerPro, Pellet and FaCT++ are based solely on concept
satisfiability tests, i.e., all other processes, such as loading and preprocessing, are excluded from the
time calculation.

As expected, when the planner of PAR is substituted by any other single absorption techniques,
the performance deteriorates substantially. For DM ontologies, the number of axioms tends to
dominate the time for reasoning. For example, PAR runs fastest when all axioms are absorbed, i.e.,
the number of axioms becomes 0. Notwithstanding, reasoning performance is not totally determined

by the number of general axioms, which can be seen from the experimental results as well. For

4Concept absorptions are in fact formulated as {CAP, CAN}, as depicted in the framework.
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DM5-5 DM5-10 DM5-15 DM16-5 DM16-10

PAR with the planner 0.10/0 0.11/0 0.20/0 1.72/0 2.92/0
PAR with CA 14.3/110  16.3/110  16.5/110  T0/352 T0/325
PAR with CJA 22.9/170  36.3/170  64.5/170  TO/544 TO/544
PARr with IRBA 10.5/130  14.2/129  30.9/129  350.6/394 444.1/409
RacerPro TO T0 T0 T0 TO

Pellet 0.25 0.27 0.44 1.53 1.67
FaCT++ 0 0 0.02 0.08 0.08

Table 9: Thox Coherence Check / # Axioms Unabsorbed. The time used for planning range from
0.4 seconds (for DM 5-5) to 3.4 seconds (for DM16-10).

instance, PAR using conjunctive absorption (CJA) leaves the same number of axioms unabsorbed
(170) for ontologies DM5-5, DM5-10 and DM5-15, but the runtime for reasoning about the three

ontologies is quite different.

For DM ontologies, RacerPro seems incapable of checking their concepts satisfiability within a
span of 1000 seconds. Pellet and FaCT++, on the contrary, respond rapidly. Given Table 9, it
may be argued that the runtime performance of PAR using the planner suggest that the planning
approach is not very competitive. However, the fact that PAR with few optimizations other than a
planning system for axiom absorptions is comparable to Pellet (and far better than RacerPro) for

DM ontologies already implies the significance of such an absorption planner.

6.2.2 More Realistic Ontologies

Ontologies are nowadays popular in many fields, especially in the biomedical domain. The exper-
iments in this section focus on several ontologies designed for different purposes. Note that only
some representative ontologies are selected because the current system implementation only covers

ontologies within the expressiveness of ALCZT.

Other than to show how effective and efficient planning is, experiments also demonstrate that
axiom absorption does not always benefit from classical planning, just like any other optimizations.
Such fact does not contradict the purpose of our work in any aspect, as shown in our analyses in

this section.
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BCS Ontology

Areces et al. [1999] described an ALC ontology, the basic call services (BCS), as the formal spec-
ification of telephone feature interactions. It has been shown that one subscriber of BCS adds an
exponential number of new interactions. We observed that BCS 5, indicating five subscribers, cannot

be dealt with by almost all existing DL reasoners within a few hours except RacerPro 1.9.2 Beta.

# General Axioms  Planning Time Unabsorbed Axiom  Coherence Check Time

I 45 0.156 5 TO
II 2330 39.6 5 TO

Table 10: Experiments with BCS5. TO = 1000 seconds, and all times are in seconds. RacerPro:
75.453 seconds, Pellet: TO, and FaCT++: TO.

The data in Table 10 indicates the effectiveness of applying absorption planning to BCS5. In
the first case (I), only general axioms are fed into the planner, while in case II, equivalence axioms
are transformed into inclusions, then all the axioms are fed into the planner.

It can be observed that absorptions do not aid in reasoning for BCS 5 because it is still difficult
to check the coherence of the KB even if most axioms have been resolved. We conjecture that the
remaining 5 axioms greatly contribute to the difficulty of reasoning. These axioms have the form
TC A U...UA,, where every —A;,1 < i < n occurs on the LHS of some unfoldable TBoxes.
Hence, such axioms are not amenable to absorptions. Table 10 also suggests that the proposed
scalable planning is feasible and practical. For case II, the planner spends less than 1 minute on

more than 2000 axioms, showing its scalability to a large quantity of axioms (cf. Section 5.3.4).

BFO Ontology

Basic Formal Ontology (BFO) is a neat .ALC ontology first presented in [Grenon et al., 2004]. In

the experiments, BFO (Version 1.1) was used with the results shown in Table 11.

# Axioms Planning Time # Unabsorbed Check Time Y Time

CAP 42 — 35 0.160 0.160
I 42 0.047 7 0.094 0.141
II 103 0.266 7 0.078 0.324

Table 11: Experiments with BFO. Times in seconds.
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Table 10 shows that if only concept absorptions (CAP) are used, most axioms cannot be ab-
sorbed, which slightly degrades the runtime performance compared to the cases where planning is
used. In the experiments, two different strategies of dealing with equivalence axioms are employed.

In case I, equivalence axioms are directly put into an unfoldable TBox so that none of them needs
to be further absorbed. Following the discussions in Section 3.2.7, case II alternatively converts each
equivalence axiom to two inclusions, and an additional operator that is used to “merge” inclusions
into equivalences are introduced in planning. In the first case, 35 axioms are absorbed by using
concept absorptions CAP, while both binary absorption (BA) and concept absorption (CAN) are
used in the second case.

In both cases, seven axioms are left unabsorbed, which indicates that the newly introduced
operator is actually ineffective for the BFO ontology because it is never encoded in any solution
plan but increases the overhead for planning. As a matter of fact, in the first case, the planning is
merely as effective as the single absorption CAP. Clearly, for ontologies like BFO, where axioms
are not complicated, planning does not show any advantage over predetermined applications of
absorption techniques.

Let us further analyze the reason why such axioms fail absorptions. Though all these axioms are
simply of the form T E —A; U —Ag, where A; and A are named concepts, such named concepts or
their negations occur on the LHS of some other unfoldable TBoxes like 7,4 or 7, which prevents
these axioms from being absorbed in order to achieve unfoldability of the TBox. However, it can
be observed from Table 11 that the remaining general axioms do not significantly affect reasoning

about BFO because this ontology itself is not very challenging.

GALEN Ontology

The GALEN [Rector and Horrocks, 1997] ontology is considered a benchmark that is difficult for
sophisticated tableau-based® reasoners. We show in Table 12 the experimental results of the GALEN
ontology®. The original full GALEN ontology is quite difficult and cannot be classified by existing
DL reasoners. However, it does not contain any general axiom, thus absorptions are not needed
at all. An old version of full GALEN, named GALEN._Original, is also used for DL reasoners. A
simplified version of GALEN_Original by removing some axioms has been frequently tested by DL

reasoners as well, which is named GALEN_Simp in Table 12.

5Some non-tableau-based reasoners, however, sometimes use GALEN as the benchmark to show their advantages
over traditional tableau-based systems as well.
6 Available at http://www.opengalen.org
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KB DL Size Plan # Axioms Time

Full GALEN ALEHTF 23136 Classes — Total: 0 0
950 Object Properties
OWL File: 20.1 MB

GALEN Original ALEHIF 2748 Classes IRBA: 111  Total: 363 2.09
413 Object Properties CAP: 244 Remain: 8
OWL File: 1.58 MB

GALEN_Simp ALEHIF 2748 Classes IRBA: 105  Total: 357 2.11
413 Object Properties CAP: 244 Remain: 8
OWL File: 1.49 MB

Table 12: The GALEN Ontology. The column “Plan” shows the solution, and the column “Time”
indicates runtime for planning in seconds.

Table 12 shows that all three versions of the GALEN ontology have the expressiveness of
ALEHIF. On the one hand, PAR can apply absorptions freely to these KBs, it cannot reason
about them because it only supports KBs with expressiveness ALCT or less. On the other hand, it
has been shown that PAR is able to absorb most general axioms within 3 seconds, and the remaining
8 axioms are the same for both GALEN_Simp and GALEN_Original. Through further analyses,
we found that these 8 axioms actually could be absorbed by breaking certain equivalence axioms,
similar to what has been implemented in Racer. However, in our implemented system PAR, this is

not achievable due to the offline requirement of classical planning.

Other Ontologies

We have seen previously the BFO ontology and the GALEN ontology, both of which are from the
biomedical domain. In this section, we show our experiences with some other biomedical ontologies
obtained from two major on-line ontology repositories: the Open Biomedical Ontologies” (OBO)
and the Protégé Ontology Library®.

Nearly all the ontologies (over 50 ontologies) in the above two repositories have been tested.
Since the expressiveness of a large amount of these ontologies is outside the scope of ALCZ, we only
provide a qualitative analysis based on their axioms. These ontologies can be categorized into the

following three groups:

1. Ontologies do not have any general axioms. Most ontologies fall in this category, hence there

7 Available at http://www.berkeleybop.org/ontologies
8 Available at http://protegewiki.stanford.edu/index.php/Protege.Ontology_Library
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is no need to use any absorptions on them. Typical ontologies include “Biological Process”,
“Human Disease”, “National Cancer Institute Thesaurus (NCI)”, “Foundational Model of

Anatomy (subset) (FMA_Lite)” and so on.

2. Ontologies have several but trivial general axioms. Ontologies in this group can be trivially
absorbed by one absorption alone (in most cases concept absorption CAP suffices), that is,
the planner of PAR always uses only one operator. For such ontologies, we are unable to
gain performance w.r.t. axiom absorption. “Gene Regulation”, “Sequence”, “Biochemical

Reaction” and some more ontologies are of this type.

3. Ontologies have some general axioms, but the axioms do not affect the reasoning significantly.
Certain ontologies contain general axioms that can not be absorbed by any existing absorp-
tions. For instance, the “Molecule-Complex-2.0” ontology (with complex concept definitions
in version 2.0) has two axioms of the form T C —A U ~B, where both A and B are defined
in an unfoldable TBox ’Z;A, hence such axioms can not be absorbed by absorptions available
in PAR®. Our observation is that the existence of these unabsorbed axioms hardly affects the

difficulty of the tableau-based reasoning.

To sum up, we find that compared to some predetermined application of absorptions, planning of
axiom absorptions does not show great advantages for absorptions on ontologies from OBO and the
Protégé Ontology Library. The reasons, as have been discussed, are closely related to the ontologies
themselves: either they have only trivial (or even not any) general axioms or their general axioms

will not significantly affect concept satisfiability tests.

6.2.3 Synthetic Ontologies

The planner does not significantly improve reasoning for ontologies where general axioms do not
matter significantly in the reasoning, for example, axioms are simple or of a small quantity. For
the experimental analysis, it is reasonable to synthesize ontologies featuring relatively complicated
general axioms. Here, a series of knowledge bases, all of which base themselves on the same paradigm
(cf. Figure 18) with only distinct replications of that paradigm, i.e., only the role names and concept
names in each axiom are changed correspondingly in each replication.

The pattern for constructing axioms can be called the Absorb or Death test case. Intuitively, every

9These axioms may be absorbed by the enhanced concept absorption (ECA), which, however, is only available in
an online planner.

67



I. TE-AUu-BU-CU3R3R".D
II. TCAU3R.AUSR3IRVR.CUIR.DUIR EUIR.F
III. TC BU3IR.BUIR3IRVRAUIR.DUIREUIRF
IV. TC CUVR~DU3IRIRC

Figure 18: A Pattern for General Axioms

axiom can be absorbed via concept absorptions without considering the whole KB. Unfortunately,
the restriction that concept absorptions cannot absorb into a concept name and its negation at the
same time applies to this small KB. Hence, some of these axioms cannot be absorbed by concept
absorptions. If some axiom is not absorbed, it makes reasoning much harder due to its high degree
of non-determinism. Thus, this example is given the name “absorb or death”. A number of KBs
can be synthesized by replicating N copies of this schema with a name SampleN. For instance, KB
Sampleb has 5 replications of the pattern totaling to 20 axioms. Note that concept names will be

automatically replaced by fresh ones for each replication.

In Table 13, the runtime performance really reflects the absorption effectiveness of all reasoners
because for concept satisfiability tests the reasoners find these KBs difficult only if some axioms

cannot be absorbed (that is, the “death” of the reasoners).

The planner can completely absorb axioms of the patterns shown in Figure 19. As long as
the replications follow this pattern, all the axioms can undoubtedly be absorbed by PAR using the
planner. In the phase of concept satisfiability tests, lazy unfolding rarely occurs so that PAR achieves

the result effortless.

I. ANBNCC3R3R-.D

II. ~AC 3R.AU3R3RVYR.CLUIRDU3REUIRF
III. -BC 3R.BU3IRIRVR.ALUIR.DUIREUIRF
IV. DCVR-.(CLU3IR3IR.0)

Figure 19: Planning Absorption on the Pattern (cf. Figure 18)
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KB Name RacerPro Pellet FaCT++ PAR with the planner

Samplel 0.031/1 0.016/x* 0/x* 0/0
Sample2 0.063/2 oOoM 0/* 0/0
Sample3 1.875/3 — 0/% 0.015/0
Sampled 154.2/4 — 0/ 0/0
Sample5 OOM — 0/* 0.016/0
Sample6 . — 0/* 0/0
Samplel0 — —_ 0.016/x 0/0
Sample30 — e 0/% 0.016/0
Sample50 — — 0.016/x 0.016/0
Sample100 — — 0.016/x 0.094/0
Sample250 — — 0.109/x 0.25/0

Table 13: Concepts Satisfiability Test Time / # Axioms Unabsorbed. The planning time does not
exceed 10 seconds for any sample KB.

From Table 13, it can be seen that both Pellet and RacerPro are incapable to deal with these
general axioms. However, RacerPro outperforms Pellet due to its absorptions, which resolve almost
all axioms except those of the type IV. On the contrary, Pellet can only handle the basic pattern,
i.e., 4 axioms. Noticeably, the reasoning performance of FaCT++ remains nearly unaffected even
when the size of the ontologies grows gradually. We conjecture that Pellet possibly has a weak form
of absorption preprocessing, and FaCT++, in contrast to Pellet, may have its own strategy such as

ordering to organize different kinds of absorptions.

6.2.4 Experiments on Some Components

The framework adapts the classical planning to bypass the scalability issue. This section then tests
in practice if such adaptation is more efficient compared to ordinary planning. Cost mapping is
essential in planning since it projects approximately the real cost (the hardness for reasoning) of a

KB onto manageable cost. Experiments regarding the cost mapping are also reported in this section.

Experiments on Scalable Planning

In Section 5.3.4, the idea of scalable planning was presented to allow for efficient planning. Until

this point, we have not yet witnessed the necessity of scalable planning. This section then presents
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a few findings regarding our planning approaches, as described in Figure 20.

Samplel Sample2 Sample3 Sampled Sample5 Samplef Sample? Sample8  Sampled Samplel0
100

;

10 4

0.1 W= = ~@ ==~
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-
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= W = Scalable Planning e O dinary Planning

Figure 20: LogTime Performance of Two Planning Approaches on Synthetic Ontologies. The X axis
represents runtime performance, and the Y axis shows the KB name.

Figure 20 represents times of planning using a logarithmic scale to reduce the large range of values:
from less than 30 millisecond to more than 80 seconds. Note that for both planning approaches, all
axioms can be completely resolved.

Obviously, ordinary planning outperforms scalable planning only in the first two test cases,
where less than 10 axioms exist. When the difficulty of the DM ontologies increases, the runtime
performance of scalable planning remains nearly stable, while the runtime performance of ordinary
planning grows significantly. On average, all other things being equal, scalable planning improves
by several orders of magnitude compared to ordinary planning.

An observable conclusion from experiments is that ordinary planning creates far more states
than scalable planning. Especially for the DM ontologies, our experiments on DM5-5, the easiest
one in the series of DM ontologies, demonstrated that ordinary planning absorbs only one tenth of
all axioms, then it runs out of memory leading to a failure with more than 56000 states created

for this planning problem. For the same ontology, scalable planning takes only a few seconds to
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completely absorb all axioms by building a state-transition system of less than 30 states. Again,
though our test cases show no evidence that scalable planning will be less effective than ordinary
planning, ontologies that can prove this point do exist. For instance, we can easily synthesize an
ontology discussed in Section 5.3.4 to show that scalable planning may be incomplete in the sense

that it might overlook some situations of absorptions.

Experiments on Cost Mapping

As we have seen in Section 5.3.5, cost mapping of the framework is only proposed as an estimation of
the real cost, however, an intuition is that a more realistic projection from real cost onto estimated
cost could lead to better solutions. The PAR system strictly follows the architecture of the proposed
framework, hence the cost estimation is based on several factors: the weight of a particular absorption
(Section 6.1.1), weights assigned to disjunctions and so on. Accordingly, our following experiments
first evaluate the cost assignments to absorptions in our implementation, then other factors are

considered as well.

Evaluating Absorptions Absorptions could be assigned different weights for cost accumulation
because each of them leads to different behaviors of unfolding. In PAR, every absorption has a weight
w € [0,3]. By default, all of them have an equal weight of 1.5. The reasons for such settings can
be found in the experiments. A setting that enables a weight of 0 for some absorption might still
produce a solution containing that absorption. In this case, the absorption is found indispensable
in order to fully absorb the TBox, however, the solution has infinite cost along the path. Table 14
shows whether planning is affected when the weight varies in different cases.

It is impossible to evaluate all settings, as a result, only seven representative settings are given
in Table 14. The data can be explained as follows. In setting 1, every absorption is assigned the
same weight 1.5 (the default case), which leads to a total cost of 344.27. After planning, all 270
general axioms are absorbed, among which 16 axioms are absorbed by CAP, 100 axioms by CJA

and the remaining 154 axioms by IRBA. Further, the DL reasoner spends 0.080 seconds to test the
concepts satisflability of a TBox like this.

Nevertheless, Table 14 describes exclusively DM5-5 ontology, for some ontology, weights may
not affect planning if, for example, there exists only one way to completely absorb that ontology
because the planner will eventually select that solution in order to achieve the goal. The synthetic

ontologies described in Figure 18 exactly fall into this category. By observation, a few conclusions
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No. | Weights w Assigned to Absorptions | Cost # Absorbed Axioms Distribution | Time
CAP CAN CJA IRBA CAP CAN CJA 1IRBA
1 1.5 1.5 1.5 1.5 344.27 | 16 0 100 154 0.080
2 1.0 1.0 1.2 1.5 391.04 | 16 0 100 154 0.094
3 1.5 1.0 2.0 1.0 404.77 | 16 0 100 154 0.094
4 1.0 2.5 1.0 1.0 415.60 | 0 190 0 80 0.910
5 0.5 1.0 0.5 2.0 528.31 1 5 85 40 140 0.984
6 1.0 1.0 3.0 0.5 644.67 | 0 138 100 32 1.969
7 2.0 1.0 1.5 2.5 262.76 | 16 0 100 154 0.078

Table 14: Absorptions with Varying Weights on DM5-5 (with 270 general axioms). Cost refers to
the final numerical value along the path of the solution; times (in seconds) in the last column is for
concept satisfiability tests.

can be drawn regarding the weight assignment to absorptions.

e Minor differences in assigning weights to different absorptions will not significantly affect plan-
ning, as in settings {1, 2, 3}. The costs of these three setting are close to each other, so is
the reasoning runtime performance. By contrast, planning is very likely to be affected if one
absorption has a weight several times (>2) the weight of another one, as can be seen in settings

{4, 5, 6}.

o The default setting, i.e., all absorptions have the same weight, is probably the safest practice
for all ontologies, but may not result in the best setting w.r.t. a specific ontology. For DM5-5,
setting 7 is slightly better w.r.t. runtime performance than setting 1. However, the best setting
depends on the input, thus it is hard to determine the best setting prior to any empirical studies

over the input.

¢ CAN (negative concept absorption) tends to degrade runtime performance if assigned a higher
priority. Settings {4, 5, 6}, which degrade runtime performance by one order of magnitude
compared to settings {1, 2, 3, 7}, have a large number of axioms produced by CAN. However,
we argue that this does not imply that CAN should always be given a lower weight than
CAP due to their polarity, since such choices really depend on how frequently concept names

or negated concept names will be unfolded during reasoning.

The observations do not indicate that CJA is a relatively “expensive” absorption due to the
subset testing of conjunctive axioms. The reason is that conjunctive axioms are rarely triggered

during reasoning for DM ontologies (see Section 4.1.2), which in turn proves that conjunctive
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absorption is favored in absorbing DM ontologies.

e Cost mapping seems to be reasonable in our settings. As already discussed, the chosen cost
mapping is aimed to project the hardness of absorbed TBoxes onto path cost in order to guide
(possibly optimal) planning. The total cost (solution cost) is proportional to the runtime per-
formance of reasoning (hardness of TBoxes), hence we conclude that the cost implementation

of PAR seems to be effective.

Evaluating Weights of Disjunctions It should be noted that every implementation of the
framework has its own unique consideration of evaluation factors. For example, in PAR, factors
that contribute to the total cost includes the number of disjunctions in absorbed axioms, the choice
of (negated) concept names in absorptions, and so on. A discussion of all factors is trivial and
unnecessary, instead, this section selects the dominant factor, disjunctions, for evaluation. It is clear
that disjunctions (thus non-determinism) is the motivation for axiom absorption, thus this selection

is plausible. Figure 21 depicts the evaluation of DM5-5.
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Figure 21: Evaluation of Weights of Disjunctions.
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Note that in Figure 21 the dotted line (the hardness of the TBox) represents the runtime perfor-
mance of reasoning over DM5-5 , while the straight line (the estimated cost for planning) reflects the
implemented costs in PAR. There are two Y axes. The left Y axis indicates the runtime performance
of DM5-5 in milliseconds, while the right one represents the virtual cost value produced in planning.
The X axis shows the different weights assigned to disjunctions in different experiments.

The selection of weights can be simplified as the following statement: weights should help to map
the estimated cost as closely onto the actual cost as possible. Here, the actual cost is considered as
the hardness of absorbed TBox because a better absorption is expected to result in a simpler TBox
for reasoning. Further observations from Figure 21 reveal that the actual cost tends to saturate
(remains stable) when the weight assigned to disjunctions are greater than 0.5, while mapped cost
increases slightly after its significant increase from 0.1 to 0.5. Bearing the selection criteria in mind,
it is easy to select value “0.5” as the weight. However, it does no harm to select some values greater
than 0.5 as long as the gap between the actual cost and the mapped cost is not large. In PAR, the

default weight of disjunctions is set to “1”.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions and Discussions

Description logic reasoners adopt a wide variety of optimization techniques to accommodate them-
selves to emerging large and complex ontologies such as FMA and GALEN. It is not hard to find
ontologies with a considerable amount of complex axioms that are very likely, once fed into present
reasoners, to degrade the runtime performance of the reasoners by several orders of magnitude. For
one thing, most DL reasoners use absorptions in such a fixed or predetermined fashion that this
may lead to an incomplete absorptions of all axioms. For another thing, if all axioms are fully
absorbed, there is no explanation toward why this particular absorbed TBox is obtained instead of
other possibilities that could have been obtained due to the intrinsic nondeterminism of absorptions
themselves.

One might argue that a novel absorption could be our solution, however, as we conjecture,
some axioms may be inherently unabsorbable, i.e., they cannot be absorbed by any (at least already
known) absorptions. Taking above comments into consideration, it would be interesting to make
absorptions deterministic so that DL reasoners show a preference toward some absorbed TBox which
they consider to be easier for reasoning services. This potential idea propels us to be realistic to
take advantage of existing absorptions rather than finding the silver bullet.

This thesis then showed the first attempt to build a framework incorporating adapted general Al
planning to guide absorption techniques. The proposed framework mainly defines how planning and
heuristics are to be designed in order to provide a solution containing the types of absorptions with

a preferred sequence to apply. The solution is repeatable for the same input and settings because
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nondeterminism is thus removed due to the heuristics.

We also implemented the framework as a research prototype for evaluation. Extensive exper-
iments have been carried out to show how the underlying ideas work on ontologies of different
characteristics such as the domain modeled by ontology, the size of the ontology, the number of
general axioms and so on. On the one hand, it can be seen that some ontologies such as BCS5
and BFO are not completely absorbable, which makes sense because the framework is totally based
on some existing absorptions. On the other hand, experimental results imply that planning of ax-
iom absorption tends to lead to a more effective absorbed TBox compared to usual application of

absorptions, at the cost of some overhead in planning itself.

FaCT++, a very efficient and highly optimized DL reasoner, seems to have a quite efficient
absorption module because it is the only existing reasoner that can survive the so-called “Absorb
or Death” ontologies (cf. Section 6.2.3). An explanation toward this phenomenon is that FaCT++
has its own strategy (with a lot of hard-coded heuristics) to organize its implemented absorption
techniques, which shares the identical idea with planning, i.e., arrange absorptions in such a heuristic
way that the generated TBox meets certain preset goals.

Racer also implements a very effective absorption preprocessor, which utilizes nearly all known
absorptions. Racer seems to have no mechanism to arrange absorptions systematically though it uses
certain heuristics that might occasionally absorb axioms better than our system PAR. For instance,
Racer is capable of absorbing all general axioms of the simplified GALEN ontology (cf. Section
6.2.2), while PAR leaves seven general axioms unabsorbed. For this ontology, Racer transforms
equivalence axioms into inclusion axioms only when there are still general axioms left after all other
absorptions have been tried. In this case, only equivalence axioms whose LHS has occurred in the
remaining general axioms will be transformed. The transformation of equivalence axioms on demand

is a feature not achievable in PAR because of the offline restriction.

The experimental results, though not always satisfactory in terms of performance gain, demon-
strate that the framework we have proposed in this thesis is a good start point for future refine-
ment of optimizations about DL reasoning. This framework can also be viewed as a generaliza-
tion/categorization of currently known absorption techniques, which thoroughly studies the under-
lying ideas of different kinds of absorptions. At the same time, this framework also reveals its

drawbacks in both theoretic and practical aspects, as can be seen from the empirical studies.

e Classical planning restricts the types of absorption that can be used. For example, enhanced
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concept absorptions and enhanced conjunctive absorptions are excluded from this framework.
It is the offline requirement that limits the use of these absorptions, hence it is worth considering

to ease this restriction by extending the framework.

o Experiments witness no significant improvement when planning is applied to KBs with a small
number of uncomplicated axioms. For these ontologies, the overhead of applying planning may

neutralize the insignificant achievement the system obtains in absorptions.

The first problem mentioned above can be extended in the future research, as discussed in the
next section; for the second one, we argue that a more sophisticated implementation of the framework
on existing DL reasoners can improve reasoning performance for current and for emerging ontologies

that have difficult general axioms.

7.2 Future Work

There exist a number of ways to extend or improve the framework presented in the thesis, however,
most of them require further investigation before they can be directly applied to the framework.
Some of the interesting extensions and/or improvement strategies are named in this section as

future work.

7.2.1 Optimizing the DL Reasoner

The experiments demonstrate that for some ontologies our system PAR, which even lacks sophisti-
cated optimizations, is comparable to existing highly optimized DL reasoners in some aspects, but
it would be more interesting to examine the results if the DL reasoner in PAR were highly opti-
mized. Given the planner as an processor of axioms, an optimized reasoner could be more practical
for future ontologies. Another option can be to incorporate such a preprocessor into present DL
reasoners, particularly the open source ones like Pellet and FaCT++. Armed with a more practical
absorption module, the reasoners can expect to deal with general axioms in a more effective way for
some KBs.

As the planner, which can serve as a typical preprocessor, is independent from specific DL

reasoners, it can be implemented as a plug-in to Protégé!. Note that developers are expected to use

1Developing Protégé plug-ins: http://protege.stanford.edu/doc/dev.html
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the Protégé-OWL API and Java. After implementing such a plug-in, DL reasoners supported by

Protégé can use this plug-in when needed.

7.2.2 Improving Cost Mapping

Cost metrics presented in the framework may be sufficient for a prototype system like our imple-
mentation PAR to examine the effectiveness of the framework, but experiments, as can be seen in
Section 6.2.4, suggest that a better setting of weights of all factors can lead to a more realistic cost
mapping, thus the precision of mapping needs to be enhanced as well.

Our experiments, through trial and error, define a reasonable setting for some ontologies, however,
this setting of cost mapping may not be optimal at all for other ontologies. This naturally inspires us
to consider improving such settings for all ontologies through learning. Given a dataset of ontologies
with their settings of cost mapping, the system can be trained to find a setting impartial to any
specific ontologies. In the near future, we expect to see more ontologies that are amenable to the

axiom planning system in order to maintain a training dataset in moderate size.

7.2.3 Online Planning

We have seen that the framework is based on the classical planning, which is restricted to offline
planning. The consequence is that binary absorption, the enhanced concept absorption and the
enhanced conjunctive absorption cannot be directly employed as operators in the planner. While
binary absorption is replaced by conjunctive absorption in the classical planner, it should be noted
that for some KBs binary absorption may be preferred, as discussed in Section 4.1.2. The enhanced
concept absorption is actually resolution based, and the same methodology is used for extending
conjunctive absorptions.

If all the absorptions need to be considered in the planner, online planning is usually required.
Though a planner may not have to worry about all the details of the actual dynamics, at least, it
needs to check online whether a solution plan remains valid and, if needed, to revise it or re-plan.
The demanding requirement of online planning could also be indirectly handled, which we have
initially attempted in our work. The lessons we learned is that online planning is also an advanced
research topic in planning, thus the trade-off between the cost and the gains of applying online

planning must be balanced for a practical system.
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List of Abbreviations

ABOX «.iiiiiiiii i Assertion Box

BA Binary Absorption

CA Concept Absorption

CAN .. Negative Concept Absorption
CAP .. Positive Concept Absorption
CIJA Conjunctive Absorption

CNE . Conjunctive Normal Form

DL o Description Logic

DNFE .. Disjunctive Normal Form
DRA .. Domain and Range Absorptions
EA o Equivalence Absorption

ECA .. Enhanced Concept Absorption
FOL ... First Order Logic

GCIL General Concept Inclusion
IRBA ... Inverse Role Based Absorption
KB o Knowledge Base

KR oo Knowledge Representation
LHS ..o Left-hand Side

NNF ......... B Negation Normal Form

OA Nominal Absorption

OWL ... Web Ontology Language

RHS .. Right-hand Side

TBOX «ioii et Terminology Box

UNA Unique Name Assumption
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