CYBER-FORENSIC LOG ANALYSIS

ASSAAD SAKHA

A THESIS
IN

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF APPLIED SCIENCE (INFORMATION SYSTEM SECURITY)
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

SEPTEMBER 2008

© ASSAAD SAKHA, 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-45501-2
Our file Notre référence
ISBN: 978-0-494-45501-2

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, €lectronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Cyber-Forensic Log Analysis

Assaad Sakha

Forensic examination of logs plays a big role in modern computer security. Due to the sheer
amount of data involved and the evolving complexity of computer systems, the forensic examination
of logs is a time consuming and daunting task. Information stored in logs of a computer system
is of crucial importance to gather forensic evidence of investigated actions or attacks against the
system. Analysis of this information should be rigorous and credible, hence it lends itself to formal
methods. In this thesis, we propose a model checking approach to the formalization of the forensic
log analysis. In order to provide a structure to the log events, we express each event as a term of
a term algebra. The signature of the algebra is carefully chosen to include all relevant information
necessary to conduct the analysis. Properties of the model are expressed as formulas of a logic having
dynamic, linear, temporal, and modal characteristics. A tableau-based proof system is provided for
this logic upon which a model checking algorithm can be developed. In order to illustrate the
proposed approach, the Windows XP auditing system is utilized. The properties that we capture
in our logic include invariant properties of a system, forensic hypotheses, and generic or specific
attack signatures. Moreover, we discuss the admissibility of forensics hypotheses and the underlying
verification issues. _

Throughout 'our_ réseéich we realized the significance the Windows registry can provide when
correlated with the logs. The registry, being a source of system and application information, provides
a reference point when detecting anomalies in the logs. Correlating the registry with the logs
leverages the forensic analysis adding evidence to the investigation. We present the method of the

correlation as well as a proof-of-concept implementation of the correlation of logs with the registry.

iii

Acknowledgments

This dissertation could not have been written without the help and support of Dr. Mourad Debbabi
and Dr. Amr Youssef who not only served as my supervisor but also encouraged and supported
me throughout my academic program. They have been great teachers and managers during my
Masters degree and I thank them for their endless patience, enlightening guidelines and unconditional
support. I convey special acknowledgement to the Faculty of Engineering and Computer Science,
Concordia Institute for Information Systems Engineering and the funders of the project namely Bell
Canada and the Department of National Defense for providing the financial means and laboratory
facilities. Finally, I take this opportunity to express my profound gratitude to my beloved parents

for their moral support and patience during my study at Concordia University.

iv

Contents

List of Figures

List of Tables

1 Inroduction

2 Log Analysis Approaches

2.1
2.2
2.3
24
2.5
26
2.7
2.8
2.9

Deterministic Log Analysis,

Artificial Intelligence

State-Based Analysis »

Temporal Sequence Learning,

Statistical Analysis

Log Correlation ittt

Cyber Forensics v o v v v ittt e e e e e e e e

3 Windows Logging System

31 Event Tracing Sessions v i i ittt e e e e
32 Event Types. . o o vttt ittt e e e e
33 EventLoggingElements 00

331 EventlogKey
332 EventSources.ttt e
333 MessageFile
3.34 Event Categoriesttt e
335 EventIdentifiers

ix

© O D

10
11
13
14
18
21

336 EventLog i e e 27

33.7 EventData e 27
34 EventLoggingModel. 28
34.1 WritingtotheEventLog 28
342 ReadingfromtheEventLog 28
343 ViewingtheEventLog. 28
3.44 Event Logging Security 29
35 Typesof WindowsLogs nnnn.. 30
351 Bootlog......... e 30
3.52 Windowsservices e e 31
353 Windowssetup i e e 33
354 Softwareupdates 33
3.5.5 Active Directory domain controllers M
356 GroupPolicy, 35
3.5.7 Internet Information Services (IIS) 35
358 WMI (Windows Management Instrumentation) 35
3.5.9 Miscellanéous 36
36 Security Log. oo e e e e e 36
Windows Events and Processes 40
41 ModelingLogs e e 42
42 LogFunctionso i ittt ittt e e e e e 55
421 Secumity LOZ . . v v it e e 56
422 FirewallLogo v vv vttt ... 69
423 ApplicationLog L e 69
424 System <SYS> 70
Formal Framework 73
51 Definitions [1] 73
5.2 FormalModel e 75
5.3 Logicfor Log Properties v i it ittt e e 76
831 Syntax. e e 76
532 Semantics e 78
5.3.3 Tableau-based Proof System 80

5.3.4 Properties of Tableau System 82

54 Modeling Traces i i ittt e e 83

6 Correlation of Registry and Log Files for Forensic Analysis 92
6.1 Introduction............ e e e e e e e e e 92
6.2 Correlation Methodology, 94
6.2.1 Determining the Audit Policy from the Registry 94

6.2.2 The Registry as a Log File . . . o oo oot 96

6.23 System Startup e 96

6.24 System Information, 97

6.2.5 User Activity e e e e e e e e e 102

626 Mounted Devices 106

6.2.7 InstallingaService 107

628 Network e 109

6.29 Imternet Explorer i, 110

6.2.10 Most Recently Used (MRU) List and Recent Documents 111

6.2.11 User Assist i 113

6.2.12 Firewall Policy Change0¢cuuueernnnn. 114

7 Design and Implementation 115
71 Formal Log Analysis it 115
7.2 Methodology for Registry and Log Correlation and Analysis 119
7.3 Registry and Log Correlation: Case Study oo v v v e en .. 121
74 Log Analysis: Case Study vt ittt e e e e e 125

8 Conclusion and Future Work 130
Bibliography 132
A Proofs 139
| Al Proofof Finiteness 139
A2 ProofofSoundness e 141
A3 Proofof completeness 142

vii

B Log Models 144

Bl Start-up e e 144
B2 LogonModel, 149
B.3 Initializing Servicesat Startup 150 -
B.4 Account Creation, Modification, and Deletion 153
B5 PolicyChange. ittt e 156
B.6 Firewall Startupo\ v vttt e e 158
C Registry Correlation: USB Mounting Related Keys 160

viii

List of Figures

—

© 000 N M A W N

et el
N = O

Writingtothe Event Log 28
Reading Fromthe Event Log 29
IPSEC Policy Agent Process v v v v i i vttt e e e ie e e 32
Interaction between Windows Logon Components [2] 49
StatisticsCharts 116
Actions PieChart i, 117
Typeof Packets Bar Chart it ittt et eeennn. 117
Number of Events per IP Bar Chart o v oo v oo s e e e e 118
Number of Events per Hour Bar Chart 118
Correlation System e 121
CaseScenario 126
Attack Scenario L e e e e e 129

List of _Tables

O 0 9 O W B W N e

P e e et b e bk ped e
© 00 N AW N = O

Event Table [3] 24
Contents of the Message File [3] 26
Event Identifier [4] e 27
Access Rights for Event Logging Functions [4] 29
Account AccessRights [4] e . 30
Account Rights [5] e e 46
Windows Account Privileges 1/2 3] 47
Windows Account Privileges 2/2(3] e 48
Service Accounts Settings [2] 55
Kerberos Network Authentication Service Failure Codes 2] 58
Logon Types [3]. it i e 59
Service Type . . . v ot vt i e e e e e e e e 62
Service Start Type v ittt e e e e e e 62
FirewallPolicyLoaded fields 6] 67
Sortsof the Algebra e 84
Audit Ca.tégories 7] 95
Lég FilesintheRegistry [7] i 95
Service Values in Tl}e Registry [5]. i 98

Builtin Local Groups [8] o oo ettt e 103

Chapter 1

Inroduction

Attacks on IT systems are increasing in number, and sophistication at an alarming rate. These
systems now range from servers to mobile devices and the damage from such attacks is estimated
in billions of dollars. However, due to the borderless nature of cyber attacks [9], many criminals
and offenders have been able to evade responsibility due to the lack of supporting incriminating
evidence. In this context, cyber forensics play a major role by providing scientifically proven methods
to gather, procéss, interpret, and present digital evidence to bring a conclusive description of cyber
crime activities. The development of forensics IT solutions for law enforcement has been limited.
Although outstanding results have been achieved for forensically sound evidence gathering, little
has been done on the automatic analysis of the acquired evidence. Furthermore, limited efforts
have been made into formalizing the digital forensic science. In many cases, the forensic procedures
employed are constructed in an ad-hoc manner which impedes the effectiveness and the integrity of
the investigation.

One of the most éommon sources of evidence that an investigator should analyze is logged events
from the activities of the system that are related to the incident in question. Indeed, having the
logs from all system events during the incident will reduce the process of forensics analysis to event
reconstruction. However, log analysis depends largely on the analyst’s skills and experience to
effectively decipher complex log patterns and determine what information is pertinent and useful to
support the case at hand. Despite the paramount importance of this aspect, insufficient research
effort has been dedicated to the automation of forensic log analysis. The main purpose of this thesis

is to introduce a formal and automatic log analysis techniqué. The advocated approach caters for:

¢ Modeling of events and logical representation of properties that should be satisfied by the

traces of logged events.

e Formal and automatic analysis of the logs identifying specific pattern of events or verifying a

particular forensic hypothesis.

Further to the above mentioned, in our work we present two types of correlation:

1. correlation of events from different log files (“Event Correlation”) and,

2. correlation of events from log files and Windows registry (“Event with Object Correlation”).

Event correlation aims to identify relationships between events from different log files. If event x
occurs in log file A and event y occurs in log file B, ‘where z and y have a relationship r, then events
« and y can be correlated and hence adding value to the investigation. We present event correlation
between different log files through our proposed formal approach, whereby, a correlation rule can be
modeled using a logical expression.

As for event with object correlation, the Windows registry contains a wealth of information rel-
evant to a forensic investigation. Data obtained from the registry can be used to construct models
of the system at hand. These models have a significant role in the detection of log file tampering.
Furthermore, the models constructed from the registry can be correlated with events stored on a log
file. One of the benefits of this correlation is elimination of doubtful and ambiguous sets of actions
related to a malicious incident. The registry can be correlated with more then just log files, however,

we limit the scope of our research to show the usefulness of such a correlation only.

The contribution of this thesis is the better use of evidence gathered during an investigation to
prove or disprove facts, determine if the evidence is corrupted, and get the most out of the resources
at hand. This is done through the proposition of two approaches for the forensic analysis of logs. The
ﬁrst being a formal approach to the problem of analyzing logs with the purpose of gathering forensic
evidence. The second is the correlation of logs with the registry to provide further evidence that
will levefage a forensic invesfigation. Besides the uniqueness of our two approaches, they el}able the
forensic analyst to establish reliable evidence to present in a court of law. The registry correlation
approach can be used to gather system information such as: which logs are enabled and would be
expected to be found, what services are installed along with their configuration, the user accounts on
that méchine and their access privileges, etc. This information gives the analyst the required system
background and may be used to validate the authenticity of the ldgs. sting this information, the
analyst can search for incidents related to the compromise of the system by constructing hypotheses

using our formal approach or using the predefined rules. We also discuss the implementation of an

automated system for correlation and analysis whereby the correlation rules are defined in XML and
a verifier component which gets the rules as input from the XML parser and verifies if these rules

are satisfied.

This thesis is organized into eight chapters. In Chapter 2, we discuss the approaches for log anal-
Yysis including selected papers on cyber forensics, We also discuss an approach for the generalization
of logs which we assessed to determine if it can be used to facilitate our analysis methodology. Chap-
ter 3 provides the background required .to construct windows related log models. We conducted an
extensive analysis of the Windows logging system as well as Windows security related components
in order to understand how processes work in a Windows operating system. Chapter 4 is devoted to
the logic used to express properties of the model using the Windows logs, namely the security log,
application log, system log and the Windows firewall log. In Chapter 5 we present our approach to
the formal modeling of logs. Chapter 6 introduces a new concept which is correlating the Windows
registry with the Windows logs. Chapter 7 is devoted to the implementation of a framework that
can be used to parse the logs and the registry. Included in the framework is the log analysis using
the formal approach discussed in Chapter 5, and the correlation with the registry approach discussed
in Chapter 7. Aﬁer the discussion about eabh implementation, we present a case study to further
elaborate our proposed approaches. Finally, Chapter 8 brings us to the conclusion of the thesis

where we also discuss possible improvements and future work.

Chapter 2

Log Analysis Approaches

Log analysis has been a topic dealt with over many years. The techniques used, the types of logs
analyzed and the purpose of the analysis are all factors contributing to the wealth of work in this
area. In this section, we present the different approaches used in log analysis. The different categories
of log analysis we discuss are: deterministic log analysis, artificial intelligence, state-based analysis,
statistical log analysis, temporal sequence learning, and log correlation. As this thesis deals with
cyber forensics it is beneficial that we present some related cyber forensic approaches which we came
across during the course of our research. Finally, in this chapter we present formal approaches in

log analysis as well as generalization of the logs.

2.1 Deterministic Log Analysis

Deterministic log analysis is based on the fact that events or sequence of events have inevitable
consequence of antecedent states. The correct next step depends only on the current state. This
contrasts with an algorithm involving backtracking where at each point there may be several possible

actions and no way to chose between them except by trying each one and backtrack if it fails.

General and Systematic Methods for Intrusion Detection

The authors in [10] have developed some general and systematic methods for intrusion detection.
They have built a framework using data mining techniques to discover consistent and useful pat-
terns of system features that describe program and user behavior. To detect anomalies and known
intrusions, they have used a set of relevant system features to compute (with inductively learned)

classifiers. The two major data mining algorithms they have implemented are: the association rules

algorithm and the frequent episodes algorithm, which are used to recognize intra- and inter-audit
record patterns. To meet the challenges of both efficient learning (mining) and real-time detection,
they ha&e proposed an agent-based architecture in which the learning agents continuously compute
and provide the updated models, while a detection agent is equipped with a learned and periodically
updated rule set from the remote learning agent. This research is still at its initial stage; Imple-
mentation and validation of the methodology details still need to be done and hence not much can

. be determined in terms of solid opinions at this point.

Rule-Based Audit Trail Analysis

Mounji et al [11] developed a system for on-line analysis of multiple distributed data streams. The
system uses the rule-based language from the ASAX project [12] to filter audit data at each mon-
itored host and to analyze filtered data gathered at a central host. The motivation for using the
ASAX project to develop a distributed audit trail analysis system is mainly due to the advantages
of correlation. The correlation of user actions at different hosts could reveal a malicious behavior
while_z the same actions may seem legitimate if considered at a single host. The advantages of using
ASAX, according to the authors, are universa.lit&, the RUSSEL language, and efficiency. Univer-
sality is achieved through Normalized Audit Data Format, NADF, which allows straightforward
translation of native files and fast processing of NADF records by the universal evaluator. Further-
more, the RUSSEL language “is a novel language specifically tailored to the problem of searching
arbitrary patterns of records in sequential files” [11]. Furthermore, RUSSEL’s built in C-routines
makes extending the language quite easy. Lastly, the ASAX project is efficient due to the efficiency
of RUSSEL. The operational semantics of RUSSEL exhibits a bottom-up approach in constructing
sgarched record patterns. Furthermore, optimization issues are carefully addressed in RUSSEL. Al-
though RUSSEL provides efficient analysis, the language itself has usability issues. The granularity

of rules defined in RUSSEL is limited in comparison to other approaches which we will discuss later.

| RUSSEL, being a rule-based language designed for analysis of sequential files in one pass, has
Been used in numerous projects, other then the above mentioned, supporting rule-based analysis.
For example, in [12], the authors provided a brief survey of problems related to audit trail analysis
as well as some approaches to deal with these problems. The authors then present the ASAX project
which is supposed to deal with these problems providing an advanced tool to support rule-based
analysis using RUSSEL. The discussed problems are: the disparity of security breach scenarios, the

huge amount of data involved in audit trails, reusability of audit trail and analysis tools, and finally

the conviviality of the interface supplied to the security manager. In the proposed solution, the
ASAX project, a standard format for audit trails is developed. An audit trail is transformed to the
NADF by format adaptors. The query language developed using RUSSEL is not meant to be used
by security officers until a higher level query language, RUSSELZ, is developed. The disadvantage
of RUSSEL? is that predefined rules using RUSSEL have to be developed and stored in a database
for use during the analysis. The type of rules generated by the security officers using RUSSEL2
is determined by the predefined rules stored in the database. This places a limitation to creating

customized rules which may be case specific.

Another research in the line of rule-based analysis which we found interesting is P-BEST. P-
BEST is an expert system development toolset called the Production-Based Expert System Toolset.
The work in [13] describes P-BEST and how it is employed in the development of a modern generic
signature-analysis engine for computer and network misuse detection. They present rule sets for
detecting subversion methods against which there are few defenses (specifically, SYN flooding and
buﬂer over-runs) and provide performance measurements. They claim that the simplicity of the
P-BEST la.nguage and its close integration with the C programming language makes it easy to use

while still bemg very powerful a.nd flexible.

2.2 Artificial Intelligence

Artificial Inteiligence (AI) can be seen as an abstract agent with functional intelligence. Al is used
in cases where human intelligence would be required to solve a problem. In log analysis, Al has been
used to simulate the analysis that would be required by a person, but in a more structured manner.

In this section, we present some of the approaches used and evaluate a predominant few.

SmartSifter

The SmartSifter [14] is an outlier detection system based on unsupervised learning of the underlying
mechanism for data generation. By using outlier, which is a fundamental issue in data mining,
Smartsifter can be used for different purposes such as fraud detection, network intrusion detection
and network monitoring. The mechanism is based on a probabilistic model which useé a finite mix-
ture model. Each new input datum is examined to see how much it has deviated from a normal
pattern. At the same time, an on-line learning algorithm is employed to update the model. The

datum is given a score showing how many changes have happened after learning. A high score means

that the datum is an outlier. The work presented in [14] distinguishes itself from other such tools in
that it is on-line, meaning the detection is in real-time, in contrast to other work on outlier detection
in statistics and data mining which use batch-detection processing. The approach used by the au-
thors of [14] is that every time a datum is input, SmartSifter employs an on-line learning algorithm
to update the model. Then SmartSifter scores the input datum based on the learned model which
indicates how much the model has changed. A high score would indicate a high possibility that the
datum is an outlier. Given the usability of SmartSifter for intrusion detection, its success was more

in the area of sorting through large matrices.

Artificial Anomalies

In [15], the authors have proposed an algorithm to generate artificial anomalies to force the inductive
' learner to find out a more accurate boundary between known classes (normal connections and known
intrusions) and anomalies. Their experiment on the KDD99 [16] data set shows that the model is
‘capable of detecting more than 77% of all unknown intrusion classes with over 50% accuracy per

intrusion class. However, the way to generate anomalies is not clear.

Log Analysis-Based Intrusion Detection via Unsupervised Learning

In [17], an intelligent log analyzer that can detect known and unknown network intrusions was de-
veloped. The log analyzer uses a data mining framework and is trained with unsupervised learning
algorithms, the k-means algorithm and Autoclass. The author’s proposed approach using unsuper-
vised learning and then capture via supervised labelling is claimed to be working with the help from
some pre-labelled data, assuming that those pre-labelled data are representative enoughbto cover
clusters with intrusions. This method is suitable for detecting intrusions data with limited labelled
data. It may not be able to detect those unknown attacks if the clusters containing unknown attacks

are not marked out by the given labelled data.

Features and Models for Intrusion Detection

The main contribution of [18] is an automatic feature creation scheme, where featuré extractors
are created by using various datamining techniques. After the extraction process, it uses machine
~ learning algorithms to the processed audit records to generate intrusion detection rules. It looks at
- the IDS from the network layer and all the way up to the application layer. The approach used here
significantly reduces the manual analysis and encoding of intrusion patterns. Furthermore, the fact

that the resultant models are computed and validated using large amount of audit data makes them

more effective.

Neural Networks

In [19] a new way of applying neural networks to detect intrusions is proposed. A user leaves a print
when using the system; a neural network can be used to learn this print and identify each user much
like detectives use thumb prints to place people at crime scenes. If a user’s behavior does not match
his print, the system administrator can be alerted of a possible security breach. A back propagation
neural network called NNID (Neural Network Intrusion Detector) was trained in the identification
task and tested experirﬁenta]ly on a system of 10 users. The problem with this approach is that
with the increase in the number of users, the number of false alarm increases. Thus as the num-

ber of users increases it will take more time to train the network and a larger network will be required.

In {20] a machine learning approach is utilized to reconstruct a post event timeline. This time-
line will be applied during a forensic investigation as a method of presenting evidence, as well as
being provided as evidence in and of itself. This is accomplished by monitoring file system accesses,

. taking file system snapshots at discrete time intervals, and using this data to generate a recurrent
neural network to recognize execution patterns of individual applications. Using machine learning to
close gaps generated temporary information timeouts reflecting in an incomplete timeline is a useful
technique. However, training separate neural networks is required for different applications and a

new set of clean-state instances of file systems manipulation would be required for newer versions of

applications.

Multiple Self-Organi_zing Maps for Intrusion Detection _

Neﬁrdl netwofks capable of unsupervised learning can provide a powerful supplement to current
intrusion detection techniques [21]. After learning the characteristics of normal traffic or user be-
havior, these networks can identify abnprma.lities without relying on expectations of what abuse
will look like. [21] analyzes the potential of the Kohonen self-organizing map, which is a powerful
mechanism for automatic mathematical characterization of acceptable system activity, to narrow the
intrusive behaviors that would not be caught by a detection system. The advantage of this approach
is by using the self-organizing map whereby intrusion behaviors don’t need to be specified. This
is especially useful for zero-day attacks when it comes to intrusion detection. Considering this for
forensic log analysis is only useful where only an automated analysis is required. Hypothesis testing

is not possible with this approach.

Agent-Based

In [22], the authors present the frameworks of distributed agent-based real time network intrusion
forensics system. The framework dumps the misbehavior packets traffic based on filtering rules,
analyzes the overall log data and traffic data to discover the potential misbehavior, and launches the
investigation at the intrusion time. They also addresse some novel approaches for network foren-
sics such as: network forensics server, network forensics database, network forensics agents, and real
time network investigation. Network forensics server integrates the forensics data and analyzes them,
manages the network packet filter and captures behaviors on the network monitor, and launches the
investigation program. Network monitor captures network traffic. Network investigator provides
mapping topology data, actively investigates a target when prompted by the server, and can launch
the real time investigation in response to a network intrusion. Distributed agents gather evidence
from the distributed hosts. The evidence includes IDS logs, system logs, and sensitive or critical file
signature on the hosts. Through this framework, when an intrusion is detected, the forensics server
starts a “forensic investigation” to determine malicious activity rising from the intrusion through

data mining analysis.

Anomaly Detection

The theorem proposed in [23] guarantees that the audit trail has repeating patﬁems. Based on fuzzy-
rough set theory, hidden fuzzy relationships in audit data are uncovered. The information about
the repeating data and fuzzy relationships reflect patterns of users’ habits. The author presents two
types of soft patterns: repeating records and fuzzy relationships between data. Since audit data can
be interpreted as an infinite input stream of records of a database, repeating patterns are guaranteed.
Mhermore, the fuzzy-rough set methodology is used to prove the repeating fuzzy relationships in
the audit trails. Based on these findings, the author proves that rules can be extracted from audit
trails. However,'besides mathematical examples, no real world examplqs are provided to illustrate

the theories,

2.3 State-Based Analysis

STATL [24] is an extensible state/transition-based attack description language designed to support
intrusion detection. The language allows one to describe computer penetrations as sequences of

actions that an attacker performs to compromise a computer system. A STATL description of an

attack scenario can be used by an intrusion detection system to analyze a stream of events and detect
possible ongoing intrusions. It defines domain-independent features of attack scenarios and provides
constructs for extending the language to describe attacks in particular domains and environments.
The STATL language has been successfully used in describing both network-based and host-based
attacks, and it has been tailored to very different environments, e.g., Sun Microsystems Solaris and
Microsofts Windows NT. An implementation of the runtime support for the STATL language has
been developed and a toolset of intrusion detection systems based on STATL has been implemented.
The toolset was used in a recent intrusion detection evaluation effort, delivering very favorable

results.

2.4 Temporal Sequence Learning

Intrusion detection through system call traces was discussed in [25]. Unusual behavior within a
computer system can be detected by monitoring the system calls being executed by a program.
Depending on the auditing used, data recorded in logs can encompass the usage of system recourses
and system calls made by some collection of processes. To study the structure of normal traces and
determine how the structure is violated during an intrusion a deterministic finite automata (DFA)
was used based on the repetitive long system calls in the sendmail log.

The work in [26] presents an approach on the basis of instance-based learning (IBL) techniques.
In order to transform the anomaly-detection task in an IBL framework, the authors employed an
approach that transforms temporal sequences of discrete, unordered observations into a metric space
via a similarity measure that encodes intra-attribute dependencies. Classification boundaries were
selected from an a posteriori characterization of valid user behaviors, coupled with a domain heuris-
tic. An empirical evaluation of the approach on user command data demonstrated that they can
accurately differentiate the profiled user from alternative users when the available features encode
sufficient information. Furthermore, the authors demonstrated that the system detects anomalous
conditions quickly, which is an important quality for reducing potential damage by a malicious user.
Thus they preseﬁt several techniques for reducing data storage requirements of the user profile,

including instance-selection methods and clustering.

10

2.5 Statistical Analysis

P. Helman et al. [27] model computer transactions as generated by two stationary stochastic pro-
cesses, the legitimate (normal) process N and the misuse process M. They demonstrate that the
accuracy of misuse detectors is bounded by a function of the difference of densities of the process of
N and M over the space of transactions.

. In[28], the authors discuss SRI International’s real-time intrusion-detection expert system (IDES)
system which contains a statistical subsystem that observes behavior on a monitored computer sys-
tem and adaptively learns what is normal for individual users and groups. The statistical subsystem
also monitors observed behavior and identifies behavior as a potential intrusion (or misuse by au-
thorized users) if it deviates significantly from expected behavior. The multivariate methods used
to profile normal behavior and identify deviations from expected behavior are explained in details.
The statistical test for abnormality contains a number of parameters that must be initialized and
the substantive issues related to setting those parameter values are discussed.

The authors in [29] discuss Wisdom and Sense (W&S), a computer security anomaly detection
system. W&S is statistically based. It automatically generates rules from historical data and, in
terms of those rules, identifies computer transactions that are at variance with historically established
usage patterns. Issues addressed include how W&S generates rules from a necessarily small sample
of all possible transactions, how W&S deals with inherently categorical data, and how W&S assists
system security officers in their review of audit logs. Preliminary results with W&S show that the
software does periodically detect anomalies of high interest even in data though to be free of such
events.

Obstacles to achieving anomaly detection in real time include the large volume of data associated
with user behavior and the nature of that data. The work in [30] describes preliminary results from
a research projecﬁ which is developing a new approach to handling such data. The approach involves
nonparametric sfa.tistica.l methods which permits considerable data compression and which supports
pattern recognition techniques for identifying ﬁser behavior. This approach applies these methods
to a combination of measurements of resource usage and structural information about the behavior
of processes. Preliminary results indicate that both accuracy and real time response can be achieved
using these methods.

In [31], anomaly and misuse detection approaches were developed and applied to the Basic
Security Model (BSM) of Suns Solaris operating environment. The anomaly detection approach

uses the statistical likelihood analysis of system calls, while the misuse detection approach uses a

11

neural network which is trained on groupings of system calls. Needless to say, each of anomaly and
misuse detection have their inadequacies.' The aim of this research is to combine both approaches to
overcome the drawbacks of each method. By combining the end results of these two methods, the
false negative and false positive rates are improved.

To get the desired result for anomaly detection, training data had to be produced. A program
called praudit was used to translate the BSM audit data binary file into a readable format for
parsing. A Perl script. then separated audit signals of different users into respective files. For each
user file, the entire sequence of audit events was converted into a file of correlated numbers that
represent signal events. Once the time-stamped signal files have been created for each of the users,
the training data in the form of feature vectors with all the possible signals is then produced. The
entire sequence of signals is stored in an array fashion. Given the entire sequence of signal numbers
for a user, a sliding window was created to determine how many signals to consider in one pattern.
Through tests, it is shown that the optimal sequence window lengths vary per user and the respective
normal profile size. As for the misuse detection, instead of learning the behavior of users over time,
this method learns an entire event and creates a feature vector from‘ this. For example, instead of
the sliding window used in the anomaly detection approach, a sequence of signals was grouped into
an event. An event ls uséd to mean the collection of signals associated with a particular command
or action. To generate the events, the collected signals of both user and system level events from the
same audit source as the training source are used. Feature vectors were generated as before using
all possible signals. An event is extracted from the BSM audit log by combining all signals within
several microseconds that have the same audit session id. Each event pattern was then classified as
normal or abnormal system behavior with a 0 or 1 respectiQely. The results of the testing showed
tha.t combmmg anomaly and misuse detection drastically reduced fa.lse nega.tlve errors. The output
of the detectlon models shows overlapping in the graphed results. Merging the several outputs
provided by this app_roa.ch better shows areas that need human audit to determine if a real attack
has taken place.

This approach introduces an interesting idea that may be worth investigating for the sake of
forensics. Using misuse and anomaly detection approaches to reduce the false negatives and better
represent the data statistics to narrow down the possible occurrences of an incident is an innovative
approach. The problem would remain to train the detection engines and provide the proper test

data. If the test data is flawed, this will affect all the analysis.

12

2.6 Log Correlation

There has been a considerable number of approaches on log analysis and correlation, though the
direction was in the interest of intrusion detection rather than forensic log analysis. The difference
is that intrusion detection aims to detect events that indicate an attack has been made or is in
progress. Forensic log analysis on the other hand would look for events that led to the attack as well
as events related to the consequences of the attack. Intrusion detection approaches for log analysis
and correlation can be extended for the purpose of digital forensics, but the approach “as-is” is not
sufficient.

Through our research, we came across a correlation approach based on triggering events and
common resources [32]. The concept used is to partition sets of alerts into different clusters such
that alerts in the same cluster may correspond to the same attack. Each set of attacks are consistent
with relevant network and host configurations. The correlation of alerts is done in three stages. In
the first stage, events observed by security systems that trigger an alert is gathered, these are
called triggering events. The type of events that are focused on are low-level events such as TCP
connections. In the second stage, alerts are examined to determine their consistency with relevant
network and host configurations. In the last stage, attack scenarios are built through the input
and output resources. Input resources being the events and the output resources being the alerts.
Informally, input resources are the necessary resources for an attack to succeed, and output resources
are the resources an attack can supply if successful.

An interesting concept mentioned in [32] is inference between events: two events are similar if
théy have the same event type, attribute name, and values. However, considering the existence
of implication relationships between events (the occurrence of one event implies the occurrence of
another evenf;), we realize that the concept of similarity can be extended beyond this intuition to
_@ccommodate event implication. Besides their concept of inference, they extend their correlation
by identifying casual relationships between attacks through discovering common resources between
input and output resources. If one attack’s input resources include one resource in another attack’s
input resources, they can correlate these two attacks together.

The disadvantage of the approachés discussed above is that it does not support an automated
procedure. The analysis of events and alerts to construct attack signatures and correlation is a very
tedious task especially since the logs of IDSs can grow tremendously in size and filtering out the
unrelated information and all the false positives is quite time consuming. Although constructing the

signatures is a one time task, updating the signature database will require the same task again.

13

In terms of other approaches in log correlation, research on alert correlation can be classified into

four categories based on [32]:

o Similarity based approaches [33, 34, 35, 36]. These approaches group alerts based on the sim-
ilarity between alert attributes, i.e. they are essentially clustering analysis. Other techniques
also include alert clustering, which uses a novel similarity measure: triggering events. Trigger-
ing events are similar to root cause [34) concept in that they represent the reason why the alerts
are flagged. However, triggering events focus on low-level events (though high-level events are
possible). Furthermore, an assumption is made which states that security systems or domain
knowledge can tell us triggering event types for each alert type, while root cause analysis con-
centrates on high-level events and clustering techniques are used to discover root causes. In
[33], Cuppens proposes to use alert clustering to identify “the same attack occurrence”, where
expert rules are used to specify the similarity requirement between alerts.

* Predefined attack scenario based approaches [37, 38}, which detect attacks according to well
defined attack scenarios. However, they cannot discover novel attack scenarios.

e Pre/post condition based approaches [39, 40, 41). Through (partially) matching the post-
condition of one attack with the pre-condition of another, these approaches can discover novel
attack scenarios. However, specifying pre-conditions and post-conditions for each attack is
ﬁme-cpnsuming and error-prone. Our techniques on building attack scenarios fall into this
pré/post-condition based category. However, since our approach uses resources to specify
pre/post-conditions, coﬁpued with the predicate based specification [39, 40], it is easy to
specify and partially match input and output resources, and easy to accommodate new gttacks.

e The multiple information sources based approaches [42, 43, 44] that are concerned with dis-
tritbuted attack discovery. The mission-impact-based approach [43] ranks the alerts based on
the overall impabt to the mission of the networks. The M2D2 approach [42] proposes a formal
model to describe the concepts and relations about various security systems. The DOMINO
approach [44] is a distributed intrusion detection architecture targeting at coordinated attack
detection with potentially less false positives. We consider these techniques as complementary

to ours.

2.7 Cyber Forensics

The main purpose of our log analysis is for cyber forensics, therefore previous work on cyber forensic

analysis coincides with our research. Digital forensic analysis is still at its infancy therefore not

14

much research had been dedicated to forensics directly. In the following section we discuss some
selected approaches used for analysis which can be comparable to our intended purpose.

The work presented in [45] proposes an approach to post-incident root cause analysis of dig-
ital incidents through a separation of the information system into different security domains and
modeling the transactions between these domains. The proposed approach is best suited for large
and complex investigations. To justify their claim, the authors present a case study of a SQLSlam-
mer worm infection on a large multinational enterprize. The enterprize network was designed for
high availability with little consideration of security. The worm could have infected the internal
network through different entry point. The aim of the investigation was to determine the exact
entry point and apply appropriate countermeasures. Based on the Digital Forensic Research Work-
shop (DFRWS) investigative framework, the authors developed an End-to-End Digital Investigation
(EEDI) approach supported by a Digital Investigation Process Language (DIPL). The components

of the investigative process are as follows:

¢ Problem Statement - this is a component required to have a structured and formal investigation

process.

e The DFRWS Framework - the framework defines the actions or “elements” necessary in each

stage or “class” in an investigation.

¢ The End-to-End Investigation Process - a collection of generalized steps to be taken in con-
junction with the DFRWS framework. Some of the important steps it addresses are event
normalization and de-confliction as well as two levels of correlation. One level prior to event

normalization and the second level considers both nqrmalized and non-normalized events.

Lastly the corroboration step which considers only non-normalized events.

¢ The Digital Investigation Process Language [46] - the purpose of which is to allow a structured
~ description of the investigative process. It provides semi-formal description using Semantic

Identifiers vocabulary arranged in s-expressions to describe tasks, functions and actions.

¢ Colored Petri Net Modelling (CPN) [47] - this leads to a formal model and in some cases
possible outcomes. The CPN modeler has been used for this purpose. The modeler is used
for two purposes. The first purpose is to create a model of the DIPL investigation and output
probable outcomes of a set of investigative actions. The second purpose is to validate the

DIPL.

15

This approach is very structured and a good part of the investigation is automated and hence facil-
itates the work of the investigator. In an ideal scenario, this approach is very effective constructing
the DIPL process given that the evidence is complete. However, in most cases, the evidence is
not complete and the gathered actions might not be complete to construct a DIPL process so the

modeler will fail to provide its outcome and will fail to validate the DIPL process.

The timeline analysis approach [48] consists of analyzing digital evidence from multiple sources
such as the computer system, network, and peripheral devices to develop a timeline of the events
that led to the incident. The work in this paper provides a process for extracting the digital evidence
and correlating it with external evidence such as phone records, testimonies, and physical evidence
to construct a timeline of the events. This timeline is a historical road map that provides detailed
information relevant to the investigation. They begin by determining what evidence could be used
to extract reliable evidenée for the purpose of timelining. This reliable evidence is determined to
be the following: files and documents, e-mail, login/logout events, and web access. The next step
is to correlate the gathered evidence along with whatever physical evidence is available. When
correlating different types of evidence the issue of different time zones arises. Specific attention
should be directed to this issue to ensure that the timeline reflect the correct sequence of events.

The process discussed is determined to be a brief introduction to timeline analysis. Besides the
issue of different time zones, there is the issue of different time stamps. Even within logs, each log
type may use a different time and date format. The fact is, if the digital evidence is complete and
not tampered with, timeline analysis will provide the exact historical road map of events that led
to.a certain incident as well as the actions taken after the incident. Furthermore, correlating this
timeline analysis with physical evidence will recreate an undebatable sequence of events pertaining

to the crime. Needless to sé,y, more work needs to be invested in this area.

- With the increased size and complexity of digital evidence to analyze and with the increased
complexity of attacks, an automated expert system is required, as stated in [49]. With the use of
an automated expert system, the reliance on technical expertise is reduced. Rather than having an
opinion based on a person’s best effort and limited recourses, an automated analysis is used where
the reasoning process is fully documented, tra.nsba.rent and deterministic. The approach presented in
[49] is an expert system with a decision tree that uses predetermined invariant relationships between
redundant digital objects to detect semantic incongruities. The approach is based on the fact that

even if an attacker tries to modify the system to conceal evidence of the attack, side effects of his

16

presence may still exist. Only the perfect attacker will be able to flawlessly recreate the state of the
system as it was before her violation [49].

In the proposed approach, the automated system first finds data objects with redundancies that
- must exist in a secure system. Once this is done, the next step is to search through evidence col-
lected from the compromised system for contradictions. Once raw data is collected and breserved,
it must be aggregated in a rational way into abstract objects. Operating systems and their applica-
tions build digital objects using lower level abstraction. Some objects may be duplicated to increase
performance or for security purposes. The authors noted different examples of ways used by the
system to detect incongruities and anomalies within the digital evidence. However, the advantage
of their system is the ability to learn invariant relationships of custom software which is harder for
an attacker to know about. If an attacker modifies data related to the custom software chances,
are that she will not be able to modify all the data due to insufficient knowledge of its whereabouts
or even existence. Based on these contradictions and readily available information it is possible to
identify reasonable explanations or evidence of malicious activity. This approach shows the pos-
sibility to answer useful forensic questions by using data from common mechanisms that may not
have been i_ﬁtended for security purposes. It is possible to do so with no preparation before an at-
tack. This post-facf analysis is an extensible approach that can be evolved to include more semantic
data relationships specific to host, network and application abstraction layers. In addition, these
relationships may be detected and verified in an automated fashion in systems that have functional
redundancies. Although it is possible that the minimum amount of information may not exist to

completely solve the crime, an imperfect attacker will leave clues.

Baseline analysis is another approach used for cyber forensic investigations. A study of system
baselining was ‘presented in [50] where the authors discuss different approaches to demonstrate the
utility of baseling. The authors also present FTime, a system baselining and evidence collection tool
which is well suited to handle the types of applications and environments incident l}a.ndlers are likely
to encounter. The work presented in this paper gives a very comprehensive idea about the concept
of baselining. The authors have defined baselining terminology, explained mechanics of baselining,
and compares different baselining techniques.

The main idea of baselining is to capture a snapshot of a system to create a baseline, which is a
set of critical observations or data used for comparison. There are four factors involved in baselining;:
provenance, perspective, acuity, and integrity. Provenance is the origin or source of an object. One

way to determine the provenance of a given object is to compare its hash to a previously recorded

17

hash of the object in question. Perspective is the capability of vieing objects in their true relations
or relative importance. Acuity is keenness of perception, the relative ability of a tool to resolve
detail. Last but not least, integrity which is an unimpaired condition or the quality or state of being
complete or undivided. The integrity of a baselining tool along with its input and output must be
protected throughout the baselining process to ensure the reliability of the baseline.

As far as baslining techniques, we will just mention them briefly without going into much details.
The are four different techniques used for baselining are: alternate platform, alternate operating .
system, single-user mode, and multi-user mode. Alternate platform involves using a dedicated stand-
alone system which has been configured specifically to mount and scan disks extracted from subject
systems. Alternate operating system whereby the subject system is mounted into an alternating
operating system that can access and scan subject file systems. Single-user-mode is a simpler
technique used where the single-user mode of the subject system is used. This technique can not
be used on all system, depending if the operating system supports such a mode. Multi-user-mode
on the other hand is when a baseline is created undér normal system operation. This technique is
the least sound, yet due to operational constraints, it may be the only possible technique to create

a baseline of the subject system.

2.8 Cyber Forensic Formalization

Our main concern is formalization of forensic log analysis. To this date there has not been much effort
invested in this area. Even the work on formal digital forensics is still in its early stages. One of the
most significant and most related research in this area is presented in [51], where Pavel Gladyshev
proposed a formalization of digital evidence and event reconstruction based on finite state machines.
In his work, the behavior of the system is modeled as a state machine and a recursive model-checking
procedure is proposed to verify the admissibility of a forensic hypothesis. However, in the real world,
modeling the behavior of a complex system such as an operating system as a state machine diagram
is burdensome and sometimes impossible to achieve because of complexity issues. Other research on
formalized forensic analysis include the formalization of event time binding in digital investigation
[52, 53], which proposes an approach to constructing formalized forensic procedures. Nevertheless,
the science of digital forensics still lacks a formalized approach to log analysis.

Formal log analysis and hypothesis verification is of paramount importance to forensic science.
As an example, invariant properties of the system cannot be modeled and analyzed through most

of the approaches mentioned earlier in this chapter. The absence of a satisfactory and a general

18

methodology for forensic log analysis has resulted in ad-hoc analysis techniques such as the log
analysis presented in [54] and operating system-specific analysis discussed in [55]. In what follows, we
discuss the more prominent approaches of formal log analysis that we came across while conducting
our research. ’ »

Roger et al. [56] exploit the idea that signatures are best expressed in a logical language in-
cluding temporal connectives to express ordering of events. Roger et al. propose a logic consisting
of flat, Wolﬁerstyle linear-time formula. They demonstrated the possibility of on-line detection of
‘complex correlation of events using a declarative style of signatures, expressed in a suitable variant of
temporal logic. In their approach, the authors interpret the logs as Kripke models. They show that
the classic linear-time logic proposed in [57] does not fit their needs suggesting that a propositional
temporal logic is insufficient. The temporal logic should have first order variables to be able to check
that a user X copying a file, for example, is the same one that set the file’s setuid bit. Their optimized
implementation had successful results in terms of performance. However, this is an exponential-time
algorithm, as the log file size increases, the time to analyze it increases exponentially. Nonetheless,
detection of complex correlations of events is feasible and comparable to simpler intrusion detection
systems that only do ﬁlteriﬁg and couﬁting. As far as usability is concerned, generating complex
signatures causes combinatorial explosions if an error was made while writing the signatures. Thus

a signature should be accurate no matter how complex it is, otherwise the system will crash.

In [58], a temporal logic approach was adopted for signature-based intrusion detection. Intrusion
patterns were specified as formulas in expressively rich and efficient moniterable logic. EAGLE, the
iogic utilized, support;é data~values and pa.rametefized reéursive equa,tidns and allows the expression
of security attacks with complex temporal event patterns as well as attack signatures which are in-
herently statistical in nature. The proposed approach is implemented in a prototybe called MONID
which detects intrusions either online or offline. The design of the framework is as follows: informa-
tion about system-level events are sent to the server. These events are obtained either from offline
log files or generated online by appropriately vinstrumented application code. The server merges
the events from various sources by timestamp and preprocesses them into an abstract intermediate
form to generate a single event trace. The monitor subsequently monitors this event trace against a
given specification and raises an intrusion alert if the specification is violated. The propositions or
expressions of an EAGLE formula are assumed to be specified with respect to the fields of the event
record. At every event the algorithm evaluates the monitored formuls on the event and generates

another formula. At the end of the event sequence, the value of the evolved formula is determined.

19

If the value is true the formula is satisfied by the event sequence, otherwise the formula is violated.
It should be noted that the logic EAGLE has a finite trace semantics. The monitoring algorithm
can determine the satisfaction or the violation of a formula at the end of a trace only. However,
in intrusion detection, end of trace makes no sense as the sequence of events can be theoretically
infinite. In that situation, an alarm has to be triggered as soon as a property is violated. This is
done by checking after every event if the formula becomes satisfiable, rather than waiting for the end
of the trace. Still this technique does not seem too promising when dealing with large traffic. The
offline monitor would be pretty efficient since there is no real-time analysis involved which might
cause the monitor to crash due to any error. The logic, although not too elegant, can be used to
model signatures, but a smarter monitor would be required for heavier traffic of events since the

current monitor has a finite trace semantics.

A logic more expressive than [58] was used in the works of Goubault et al. [56]. The proposed
logic allows attack signatures involving real time constraints and statistical properties to be ex-
pressed. The idea was to specify the intended behavior of security-critical programs as temporal
formulas inflolving statistical predicates, and monitor the system execution to check if it violates the
formula. By so doilig, attacks can be detected even if they are previously unknown. For basic for-
mulas, this proi)osed logic is easy. However, as the formula becomes more complicated, representing

them in the logic represents a challenge for some users who have no background in logic.

The use of Interval Temporal Logic (ITL) in modeling temporal properties of multi-event attack
signa.tuf$ was presented in [59]. Misuse detection rather than anomaly detection approe.ch was
used for intrusion detection where attacks were assumed to be well-known sequences of actions.
The proposed model is based on a high-le&el declarative Interval Temporal Logic (ITL) which is an
ekpressive and well;studied formalism that is successﬁllly applied to different areas of specification
and verification of real-time systems. Moreover, ITL provides & straightforward method to define
complex temporal features and has been used formerly in attack specifications. The use of a temporal
logic introduced operators such as 'always’, ’sometime’, and ’at the next moment’. In the context
of misuse detection, time is considered as a discrete and linear structﬁre. Thus by using ITL, the
authors were able to use the notion of satisfaction by an interval which is a finite discrete linear
structure.

The proposed model aims to support the task of modeling time relations between events in multi-

event attack signatures. However, the work in this paper relies on the fact that interval temporal

-20

logic formalism has already been proven to be a convenient and expressive modeling tool. Thus
they do not discuss any proof of concept implementation to demonstrate performance, efficiency,

and accuracy nor do they present a case study to elaborate on the use of their proposed method.

2.9 Generalization of Log Events: The Common Base Event

In an attempt to have a generic log event in order to facilitate the correlation, IBM has come
up with the Common Base Event [60]. The purpose of the Common Base Event is to facilitate
intercommunication between different enterprize components that support logging. It is very efficient
in regards to monitoring, tracing, and managing performance of different components. By creating
a generic event format, all the component logs can be translated to this format which provides ease
of manipulation and analysis. In addition to generating a common format for logs, IBM has created
APIs and tools to parse, correlate, and analyze common base events.

The Commoh Base Event tool has six components that are responsible for reading and parsing

a raw log format:

_® Adapter - this is a configuration file used to parse and convert log files to the Common Base
Event. Each configuration file contains one or more context, and each context is related
to a specific log file. The context describes ordered components which are used for log file

processing.
o Sensor - reads the content of the log file for processing.

e Extractor - the sensor outputs a collection of lines to the extractor, which separates them into
message boundaries. By default, the extractor class uses regular expressions to parse each line,

- however, the extractor class can be changed or customized as needed.

o Parser - the role of the parser is to take the messages that have been separated by the extractor

and maps string values to the Common Base Event attributes.
o Formatter - takes the output provided by the parser and builds the correct Java object instance.
¢ Outputter - writes Common Base Event records provided by the formatter.

Once we have the Common Base Event, we can now easily correlate, log type and analyze
them, all by the use of APIs and tools provided by IBM. As mentioned earlier, the Common Base

Event is ideal for monitoring, profiling, and testing in the context of performance. We tried to

21

incorporate it for forensic analysis, however the structure of the event as modeled by IBM provides
little significance for forensics. Fields that are important for a forensic investigator might be of no
meaning for someone trying to monitor performance, and vice versa. We considered remodeling the
Common Base Event for the use of forensics, but found that to do so, we will need to specify a
generic event for different categories of logs. An IDS log event is very different from a system log

event. We did not further investigate research in this area since this is out of the scope of this thesis.

22

Chapter 3

Windows Logging System

The Windows Event Logging service [61] enables an application to process, publish, and access
events. The events are stored in event logs and can be checked by an administrator or monitoring
tool to detect occurrences or problems on a computer and to monitor performance and accesses.

Many applications log events in various proprietary logs. These proprietary logs have different
formats and display different user interfaces, mainly depending on the purpose of the log. Moreover,
you cannot merge the data to provide a complefe report. Therefore, you need to check a Variety
of sources to diagnose problems. Windows event logging provides a standard, centralized way for
applications (and the operating system) to record important software and hardware events. The
- event-logging service stores events from various sources in a single collection called an event log.
Furthermore, Event Tracing for Windows (ETW) provides APIs for application programmers to
instrument event auditing controls for an application.

» In the following sections of this chapter we discuss the details of the Windows logging system -
and the events generated. Specifically, we discuss the event tracing sessions, event types and event
logging elements to understand the nature of events in a WindoWs environment. Then we discuss
the event logging model which specifies how events are read and written. Finally, we list the types

of logs that can be found in a Windows operating system emphasizing on the security log.

3.1 Event Tracing Sessions

A controller defines the session, which typically includes specifying the session and log file name,
type of log file to use, and the resolution of the time stamp used to record the events. Event

tracing sessions record events through the controllers from one or more providers. The session is

23

Event type Description

Error An event that indicates a significant problem. For example, if a service
fails to load during startup, an Error event is logged.
Warning An event that is not necessarily significant, but may indicate a possible

future problem. For example, when disk space is low. If an application
can recover from an event without loss of functionality or data, it can
generally classify the event as a warning event.

Information An event that describes the successful operation of an application, driver,
or service. For example, when a network driver loads successfully.
Success Audit | An event that records an audited security access attempt that is
successful. For example, a user’s successful attempt to log on to the
system.

Failure Audit | An event that records an audited security access attempt that fails. For
example, if a user tries to access a network drive and fails.

Table 1: Event Table [3]

also responsible for managing and flushing the buffers.
Event Tracing supports a maximum of 64 event tracing sessions executing simultaneously. The
64 tracing sessions are divided into special and general purposes. There are two special purpose

sessions and the rest of the sessions are available for general use. The special purpose sessions are:

e Global Logger Session - records events that occur early in the operating system boot process,

such as those generated by device drivers.

¢ NT Kernel Logger Session - records predefined system events generated by the operating

system, for example, disk IO or page fault events.

3.2 Event Types

There are five types of events that can be logged. All event classifications/types have well-defined
common data and can optionally include event-specific data. The application indicates the event

type when it reports an event. Table 1 describes the event types used in event logging.

3.3 Event Logging Elements

The following are the major elements used in event logging: Eventlog key, Event sources, Event
categories, Event identifiers, Message files, Event log records, and Event data [4]. These elements

are elaborated in the following sub-sections:

24

3.3.1 Eventlog Key

The Eventlog registry key contains several sub-keys called logs. Each log subkey contains information
that the event logging service uses to locate resources when an application writes to and reads from
the event log.

The event log contains three standard logs (Application, Security, and System), as well as custom

logs. The structure of the Eventlog key is as follows:

HKEY LOCAL.MACHINE
SYSTEM
CurrentControlSet
Services
FEventlog

Application
Security
System
CustomLog

3.3.2 Event Sources

Each log key contains subkeys called event sources, which is the name of the software that logs the
event. It is often the name of the application, or the name of a subcomponent of the application if
the application is large.

The Security log is for system use only. Device drivers should add their names to the System

log. Applications and services add their names to the Application log, or create a custom log. The

25

Registry Value Description

CategoryCount Number of event categories supported.
CategoryMessageFile | Path for the category message file. A category message
file contains language-dependent strings that describe
the categories.

EventMessageFile Path for the event message file. Multiple files listed

are separated by semicolons.

ParameterMessageFile | Path for the parameter message file. A parameter message
file contains language-independent strings that are to be
inserted into the event description strings.
TypesSupported Can be one or more of the following values:
EVENTLOG_AUDIT_FAILURE
EVENTLOG_AUDIT_SUCCESS
EVENTLOG_ERROR.TYPE
EVENTLOG_INFORMATION_TYPE
EVENTLOG.WARNING_TYPE

Table 2: Contents of the Message File [3]

structure of the event sources is as follows:

HKEY LOCAL.MACHINE
SYSTEM
CurrentC@trol Set
Services
EventLog

Application
AppName

Security

» System
DriverName

CustomLog '
AppName

3.3.3 Message File

Each event source contains information specific to the software that will be logging the events, such

as a message file, as shown in table 2,

26

Sev C R Facility Code

Sev Severity. The severity is defined as follows:
00 - Success

01 - Informational

10 - Warning

11 - Error

C Customer bit. This bit is defined as follows:
0 - System code

1 - Customer code

R Reserved bit.

Facility | Facility code. This value can be FACILITY NULL
Code Status code for the facility.

Table 3: Event Identifier [4]

3.3.4 Event Categories

Categories help organize events so that Event Viewer can filter them. Each event source can define its
own numbered categories and the text strings to which they are mapped. Common event categories

are: error, warning, information, success and failure.

3.3.5 Event Identifiers

Event identifiers uniquely identify a particular event. Each event source can define its own numbered
events and the description strings to which they are mapped in its message file. Table 3 illustrates

the format of an event identifier.

3.3.6 Event Log

Recorded Information about each event is stored in the event log, namely, event log record. The

event log record includes time, type, and category information.

3.3.7 Event Data

Each event can have event-specific data associated with it. The Event Viewer does not interpret this
data; it displays extra data only in a combined hexadecimal and text format. For example, many

network-related events include network control blocks (NCB) as event-specific data.

27

3.4 Event Logging Model

The Event Logging Model is comprised of the components used for reading from and writing to the

event logs. In the following, we illustrate how this is done and discuss the security related to reads

and writes of the event logs.

3.4.1 Writing to the Event Log

When an application calls the ReportEvent function to write an entry to the event log, the system
passes the parameters to the event-logging service. The event-logging service uses the information

to write an EVENTLOGRECORD structure in the event log. Figure 1 illustrates this process.

Application ReportEvent

Event Logging
Service

EVENTLOGRECORD

og
File

Figure 1: Writing to the Event Log

3.4.2 Reading from the Event Log

An event viewer application uses the OpenEventLog function to open the event log for an event
source. The event viewer can then use the ReadEventLog function to read event records from the
log. ReadEventLog returns a buffer containing an EV ENTLOGRECORD structure and additional

information that describes a logged event. Figure 2 illustrates this procéss.

3.4.3 Viewing the Event Log

When the user starts Event Viewer to view the event log entries, it calls the ReadEventLog function
to obtain the EVENTLOGRECORD structures. The Event Viewer uses the event source and
event identifier to get message text for each event from the registered message file (indicated by the

EventMessageFile registry value for the source). The Event Viewer uses the LoadLibraryEx function

28

Event Logging
Service

Registry message Event
n::e- T Viewer [@—Readventlog.

essage Table
Text
EventMessagerFile EVENTLOGRECORD EVENTLOGRECORD
valve Plus message

<L -

Regwsiry Y Message Log File |

Event Datails DL
Dialog Box ‘
Figure 2: Reading From the Event Log
Access right Description

ELF.LOGFILE_.CLEAR (0x0004) Required ClearEventLog
ELF_LOGFILE_READ (0x0001) | Required by OpenBackupEventLog and OpenEventLog
ELF.LOGFILE_WRITE (0x0002) Required by RegisterEventSource

Table 4: Access Rights for Event Logging Functions [4]

to load the message file. The Event Viewer then uses the FormatMessage function to retrieve the
base description string from the loaded module. Finally, the Event Viewer replaces the insertion

parameters in the base description string to yield the final message string.

3.4.4 Event Logging Security

The Security log is designed for use by the system. However, users can read and clear the Security
log if they have been granted the SE.SECURITY_NAME privilege which is the manage auditing
and security log user right. As for write permission, only the Local Security Authority (Lsass.exe)
has write permission for the Security log.

Access to the Application log, the System log, and custom logs is restricted. The system grants
access based on the access rights granted to the account under which the thread is ranning. Table 4
shows which types of access are required by the event logging functions, and Table 5 describes the

access rights granted for each account on each log for Windows XP/2000/NT.

29

Log Account te Clear

Application Administrators (system)
Administrators (domain)
LocalSystem
Interactive user

System Administrators (system)
Administrators (domain)
LocalSystem
Interactive user

Custom Administrators (system)
Administrators (domain)
LocalSystem
Interactive user

><><><><><><><><><><><><§
PR ><><.‘><><><§
AR XX X

Table 5: Account Access Rights [4]

3.5 Types of Windows Logs

The log files that can be found on Windows are surprisingly many. However not all logs are enabled
by default in order not to over-flood the storage space with logs. Following is a list of the logs that

can be found on a Windows system as specified by [62].

3.5.1 Boot log

Windows has the option of creating a boot log, which regards numerous fine points of the startup
process. This can be extremely valuable in various kinds of troubleshooting and system analysis.
To generate a boot log on a given occasion, bring up the Boot Menu during startup, select Option
2 (to create a boot log), then let Windows continue its startup. The file BOOTLOG.TXT is created
in the root folder of the C: partition. If a boot log already exists, the old one is first backed up to a
file named C:\ BOOTLOG.PRV (PRV meaning previous). v
It is also possible to have a new boot log automatically generated every time Windows starts up
by editing the C:\MSDOS.SYS file and adding the four lines shown below to MSDOS.SYS.
BootMenu=1
BootMenuDefault=2
BootMenuDelay=1
DisableLog=0
Line 1 guarantees that the Boot Menu comes up every time. Line 2 says the Boot Menu should
always take option 2, which is to create a boot log. Line 4 may not be needed, but was recommended,

and may be needed on some systems according to some peoples reports (or it may just be a precaution

30

in case you had a DisableLog=1 that you missed earlier in the file). It prevents the disabling of the
boot log.

Line 3 is the key one, and has advantages and disadvantages. Forcing the selection of option 2
will not work until the Boot Menu was up for some period of time. BootMenuDelay=1 says that
the Boot Menu will appear and wait for 1 second, the minimum. But the disadvantage is that, if
you want to manually bring up the Boot Menu for some other reason, you only have 1 second to
pick th_e right number when the menu pops up, and that usually is not enough time. So you might
want to set it a little higher, say, at 5 seconds, or whatever you want just knowing that this adds 5
seconds to your startup time.

All of the above, also, will slightly slow down startup. Again, we are talking only a few seconds.
This is only true when a BOOTLOG.TXT or BOOTLOG.PRYV already exists, and the slowdown is
not in the forming of the boot log, but in the brief processes of deleting the existing .PRYV file and
backing up the existing BOOTLOG.TXT file before opening the new boot log.

3.5.2 Windows services
Task Scheduler service

The Task Scheduler service uses a log file, SchedLgU.txt, and the location of this file is specified in
the LogPath registry value:

Key:HKLM\SOFTWARE\Microsoft\SchedulingAgent
Value: LogPath (REG.SZ)

Default value:%SystemRoot%\SchedLgU.txt (W2K, WXP),
%SystemRoot\ Tasks\SchedLgU.txt (W2K3)

IPSEC Services/IPSEC Policy Agent service

The PolicyAgent service supports logging in a file named oakley.log, empty by default. To enable

logging, the following registry value must be set to 1:

Key: HKLM \ SYSTEM \ CurrentControlSet \ Services \ PolicyAgent \ Oakley
Value: EnableLogging (REG_DWORD)

Additional logging can be specified by setting the following registry value to 1:

Key:HKLM\SYSTEM\CurrentControlSet\Services\ Policy Agent
Value: Debug (REG.DWORD)

31

The purpose of the IPSec Policy Agent is to retrieve policy information and pass it to other IPSec

components that require this information to perform security services, as shown in figure 3.

Figure 3: IPSEC Policy Agent Process

DNS Client service

The DNS Client service does not log by default. However, if a file named
%systemroot%\system32\dnsrslvr.log is manually created, this file is used by the service to log

debug information

DHCP Client service

Manages network configuration by registering and updating IP addresses and DNS names. A file
named %systemroot%\system32\asyncreg.log can be manually created to enable logging of dnsapi

functions.

Windows Time service
Windows Time service supports logging in a text file. The FileLogName registry value must be

explicitly added:

Key: HKLM\SYSTEM\CurrentControlSet\Services\W32Time\Config
Value: FileLogName (REG.SZ)

32

Cluster service

Windows cluster service links individual servers so they can perform common tasks. Should any one
server stop functioning, a process called failover automatically shifts its workload to another server

to provide continuous service [63].

Windows Image Acquisition (WIA) service

Provides image acquisition services for scanners and cameras.

3.5.3 Windows setup
Following is a list of logs related to Windows setup:
o Windows installation log
e Windows installation errors log
¢ Information (.inf) files installation log
o COM+ setup log
¢ Windows domain configuration change log
¢ Log of administrative actions realized using the Configure Your Server Wizard

- Dynamic update log

3.5.4 Software updates

Software update that is managed by Windows, Windows Operating System, and security updates
are all logged into the corresponding logs, listed below:

o Detailed li;t of software update managed by Windows Update
¢ Service Pack installation log

e Software update installation log

¢ Update Rollup Package installation log

e Software update slipstreaming log

o Software update log

33

¢ Catalog file registration log

¢ Windows XP pre-SP1 hotfixes log

3.5.5 Active Directory domain controllers
Domain Controller promotion (dcpromo.exe)

The dcpromo.exe program is used to promote or demote an Active Directory domain controller.

When dcpromo is used, log files are generated.

Security Account Manager (SAM)

The sam.log file is used to log account lockout related events. When the SamLogLevel registry value

is present and set to 1, the SAM creates a sam.log file:

Key: HKLM\SYSTEM\CurrentControlSet\Control\Lsa
Value: SamLogLevel (REG_DWORD)

Local Security Authority (LSA)

In Windows Server 2003, both the Kerberos authentication package and KDC service can be config-
ured to log debug information, in a file named Isass.log. To enabled logging in a file, the LogToFile

registry value must be set to 1:

Key: HKLM\SYSTEM\CurrentControlSet\Control\Lsa\ Kerberos\Parameters
Value: LogToFile (REG.DWORD)
Content: 1 (to enable logging)

Then, the KerbDebugLevel registry value must be added and configured to specify what kind of

Kerberos events must be logged:

Key: HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Kerberos\Parameters
Value: KerbDebugLevel (REG_DWORD)

Netlogon

The Netlogon service can be configured to log debugging information to a log file, named netlogon.log.

34

File Replication Service

The NT File Replication Service (NTFRS) service creates text-based log files in the

%Systemroot%\Debug folder for troubleshooting NTFRS replication problems. The NTFRS ser-
vice builds two types of text-based log files: Ntfrs_000n.log and Ntfrsapi.log. The Ntfrsapi.log file
contains events that take place during promotion and demotion, namely creating the NTFRS reg-
istry keys. The Ntfrs_000n.log file stores transaction and event details in the Ntfrs_0001.log through
Ntfrs_0005.‘log files. The most recent NTFRS transactions and events are written to the log with

the highest version number in existence at that time [64].

3.5.6 Group Policy

The group policy log
¢ Group Policy Object Editor (Core specific entries)
e Group Policy Object Editor (CSE specific entries)
¢ Group Policy Folder Redirection CSE log
° Soﬂ;wa.re Installation CSE log
e LSA API log used by GPO

e Security settings implemented during setup log

3.5.7 Internet Information Services (IIS)

During the installation of IIS 5.0, IIS 5.1 and IIS 6, events are logged in the iisb.log or iis6.log. By
default, Internet services (HT'TP, FTP, SMTP, NNTP) log requests in files stored under the LogFiles
directory - Tracing for the RRAS service is typically enabled using netsh (set tracing command in
the ras context). For each RRAS component that supports tracing, a registry key is stored under
the Tracing key: Key: HKLM\SOFTWARE\Microsoft\Tracing

For each component, file logging is enabled when the EnableFileTracing registry value is set to 1

and when a tracing mask is specified in the FileTracingMask value.

3.5.8 WMI (Windows Management Instrumentation)

The WMI framework manages several log files. The Logging Directory registry value specifies the

directory where these files are stored:

35

Key: HKLM\SOFTWARE\Microsoft\WBEM\CIMOM
Value: Logging Directory (REG_SZ) Default value: %SystemRoot%)\system32\WBEM\Logs

3.5.9 Miscellaneous

e Log file for the SamChangePasswordUser2 API (used by the Change Password dialog box
available after the Control-Alt-Delete sequence)

e User environment settings debugging System shutdown log

o Windows firewall log
e MS DTC service installation log

e Terminal Service installation log

3.6 Security Log

The security log contains the most important operating system events under a Windows operating
system. Since it is the operating system log, all significant activities should be recorded there. given
that the audit policy is configured properly. Thus we need to emphasize on the structure of this log
and the meaning of the events logged. Documentation about the security log by Microsoft is not
detailed enough to fully understand the events and their link between each other. The best reference
we were able to find is an e-book by R.F Smith [3] which explains, to some extent, the meaning of
the security events. To begin with, the security log is divided into nine categories based on the nine
audit policies on & Windows system: Account Logon, Logon/Logoff, Account Management, Object
Access, Detailed Tracking, System Events, Directory Service, Privilege Use, and Policy Change.

Account Logon

This categdry includes log-on attempts for local accounts stored in the local computer’s SAM. On
a Domain Controller (DC), this category will include all attempts to log on with a domain user
account, regardless of where the log-on attempt originates from. Most common events you would
see in this category is event ID 680 (Account used for logon by) and event ID 681 (Account logon
failure). On a DC, you would expect to see events authentication and service tickets being granted,

renewed, or revoked.

36

Logon/Logoff

Events logged for this category all attempted log-ons (success and failure) or log-offs to the local
computer. If the computer is being used to log on to a DC, for example, that even will not be logged
as part of this category. For the log-on failure events, the reason the log-on failed will be recorded,

e.g. event ID 529 is logged whenever unknown username or bad passwords are known.

Account Management
When the Audit Account Management policy is enables, any changes related to user accounts and
groups are logged. Example of such events are: password reset, newly created accounts, and users

added or removed to/from a group.

Object Access

In Windows operating system, everything is classified as an object. For example, object access
events would log access to files, folders, registry keys, printers, and services. By default most objects
are not audited for the reason of not over flooding the logs. Auditing certain objects can easily be
configured, however, only critical objects should be audited. The specific access to be audited is also

configurable, depending on the sensitivity of the object. In most cases only write access is audited.

Detailed Tracking

Events logged‘ in this category provides the ability to track programs executed on the system and to
link those process events to log-on sessions logged by Logon/Logoff events and to file access events
generated by the object access category. More details of the use of this category will be provided

when discussing the log analysis.

Systém Events
Events directly related to the system are logged in this category. Such events would include Win-

dows startup/shutdown, clearing of the audit log, and system time changes.

Directory Service

Directory Service events are related only to Active Directory and they provide low-level auditing for
all types of objects in the Active Directory. Directory Service events not only identify the object
that was accessed and by whom, but also document exactly which object properties were accessed,

very similar to Object Access events. The two events that are logged in this category are event ID

37

565 (Object Open) and event ID 566 (Object Operation).

Privilege Use
Audits to user rights defined in the Local Security Policy are logged in this category. Three events
are logged under this category: event ID 567 (Special privileges assigned to new logon), event ID

577 (Privilege service called), and event ID 578 (Privilege object operation).

Policy Change
The Policy Change category provides logged events of changes to important security policies, such
as system’s audit policy, or in the case of a Domain‘ controller, to trust relationships.

Each event logged is a separate entry in the log file. The way an analyst or system administrator
can link these events is by the process ID, logon ID, or handle ID. In the Windows event viewer,
this can be done by searching through each event at a time. Thus a tool is needed to facilitate the
analysis process. With the current ad-hoc based tools, an investigator must independently make
decisions based oh his knowledge and experience.

It is possible to link the events using the unique identifiers that Windows generates for specific
events. For example, when a user logs on a unique identifier (logon ID) is assigned for that logon
éession. Then any events triggered by that user are logged with the logon ID. If the user starts a
process, the process is assigned a process ID. This event is logged with the user who created this
process and the triggering process. For example, a user logs on and she is assigned logon ID =
123456. This user runs command.exe (Process ID = 8713) to run telnet (process ID = 991). If an

analyst wanted to determine who/what ran telnet she would look at the telnet event which contains:

ProcessID : 991
ImageFileName : telent.exze
Creator ProcessID : 8713
ClientLogonID : 123456

Then the analyst would look for a logon event with logon ID = 123456 and find out who the user
was and how did that user logon (logon type).

In this manner it is possible to link the events to get a detailed scenario of what has happened
at a specific time or during a specific event. It should be noted that if the audit policy is not set

properly some crucial events will be missing. For example, if an attacker modified a registry hive

and set a malicious program to load at startup, the logs will not show any trace of this activity if

there was no audit policy set on the related registry hive.

39

Chapter 4

Windows Events and Processes

In the previous chapter, the Windows logging system, log structure and the different logs available
in a Windows environment were introduced. In this éhapter we go further and discuss the Windows
events and processes. In the first section we discuss how the logs can be modeled fof use in our
framework. Then we discuss some essential elements that will help in understanding the Windows
processes. Examples of these elements are the basic security system components, as well as services
and service accounts. Iﬁ the following section, the concept of Log Functions is introduced. These
functions are used in the log analysis model as well as in the implementation. Before proceeding
further, it is essential to discuss first the different types of cases that a forensic investigator might face.
The types of investigations and cases can vary tremendously from zero-knowledge cases to internal
investigation cases. The zero-knowledge case is the worst case scenario. As its name implies, this
refers to the case where the investigator has no information about the system specifics: types of
applications, computer and audit policies, or networks. On the other hand, internal investigation
refers to the case where the investigator knows specific details about the environment she is about to
analyze. The latter case relates more to corporate fraud and legal cases against a company employee.

When dealing with a zero-knowledge case, the investigator has to assume an uncontrolled en-
%/ironment where audit policies are probably not set and logging configurations are the default
configuration as set by the software or operating system upon installation. Furthermore, depending
on the suspect’s corﬁputer skills, the logs can be tampered with or cleared. Thus the investigator
needs to establish the authenticity and congruency of the logged events. Certain log properties can
be used in this case such as the sequence of events, time gaps, meaningful correlation between logs

if possible, and existing events that are expected to be in a log.

40

In such a case, the investigator has to explore the logs and collect data that may lead to the
evidence required to prove or disprove accusations against the suspect. Techniques which the in-
vestigator can use to carry out this task may vary. The end result is what matters the most. The
investigator has to gather sufficient evidence to back up his conclusion and formalize the findings to
be represented in a court of law. In this thesis we propose a method to deal both with gathering
the evidence and formalizing the facts.

In a corporate or internal investigation, the investigating party can be either internal to the
company or an external third party. In either case, the investigator is given insight about the
system at hand by the IT or system administrator. This information can be extremely important in
aiding the investigation: the type of operating system, patches, network, audit and logging policy,
and critical resources. By knowing specifics about the system at hand, the investigator knows what
to look for and what to expect. For example, a security or computer policy can be modeled and
compared with the logged events. Any behavior out of the norm will be located instantaneously.

In 1997, Marcus Ranum developed a theory called Artificial Ignorance (AI), which states that if
you remove all legitimate activity from the Web server logs, what you have left should be unusual
[5]. Such a techniqﬁe is a common practice for anomaly detection mainly for IDS logs. Bringing this
theory into practice for forensic analysis can reveal most or part of the malicious behavior. Given
the policy and architecture of the system, an investigator can build a model of that system in normal
working conditions. The seized logs can be also modeled and a comparison of the two models is
done. The difference of the two models should be the abnormal activity the investigator is looking

for.

Through our proposed approach we present different methods to deal with the different types of
in&estigations. We also present the methodology to construct models which can be used for base-
liniﬁg or to apply the Artificial Ignorance theory or to construct “attack signatures”. Furthermore,
we present, through our approach, event correlation between different log sources. On any system,
numerous logs caﬂ be obtained and can relate to each other in some way. Upon the correlation of
log files, a new trace of events can be obtained revealing information about the period at which
a malicious action has taken place. Correlation can be done in two ways: correlation based on
time only, or correlation based on time and specific properties. In the latter case, a property is
deﬁned as the logical sequence of events as they are supposed to happen in normal circumstances.
For example, a new process creation event in the security log should be followed by a service start
event in the system log followed by a service started event in the application log, given that the new

process created is a service. The time gap between these events, ideally, should be less then one

41

minute. For specific properties and time based correlation a comprehensive knowledge of the system
and sequence of events is required. However, when dealing with terabytes of log files, having these

properties will facilitate the work tremendously.

4.1 Modeling Logs

In this section we show how logs can be modeled. To begin with, we model the normal behavior of
a system. A normal system is a system that has not been tampered with and contains no malicious
activity of any kind. In other words, the system behaves in a contingent and safe manner. Our
model is based on a Windows XP - service pack 2 operating system. It should be noted that there
might be minor changes between different versions of Windows operating system, but the main
concepts remain the same. We assume that the audit policy is set to audit all nine categories of the
security log (account logon, account management, detailed tracking, directory services, logon /logoff,
object access, policy change, privilege use, and system events) for both failure and successful events.
Furthermore, the Windows Firewall is configured and logging is enabled. The model we present is
based on the correlation of four logs: security log, system log, application log, and the firewall log.
Although more logs can be correlated, we simplify our model by limiting the correlation to only
four logs as a proof of concept. As will be shown in the model, the security log contains the most
pertinent events and is used as a backbone for our correlation. Every event that occurs on the system
has at least one corresponding event logged in the security log. This fact is useful to determine any
log tampering. Many attackers try to cover their tracks by deleting the logs. However, due to the
abundant logs on a Windows machine, the attacker might not be able to delete all logs. Moreover,
if proper log management is implemented and maintained, the attacker will not be able to destroy
all the logs.

The model consists of a log trace, which can be numerous traces combined in the proper sequence.
A frace represents a run of _fhe system, which is a sequence of consecutive events. A complete run
is defined as the run beginning when the Windows operating system loads till it shuts down. We
divide a complete run into smaller multiple runs, thus providing an easier modeling technique. The
small runs or traces are logically combined to model a complete run, or a segmented run of interest
to the examiner. Examples of a complete run can be startup, service initialization, logon initial-
ization, user logon, firewall initialization, processes executing, network connections, object use, and
system shutdown. However, in order to properly model the exact system behavior, a comprehensive

knowledge of processes and event sequences of the specific operating system at hand is required.

42

In the following we present the background information needed to build the model and show how

events are modeled and correlated.

Security System Components
In order to fully grasp Windows processes, we first need to discuss the security system components

that are responsible of Window’s low level security. The core components and databases that

implement Windows security, are [2]:

e Security reference monitor (SRM) - (\Windows\System32\Ntoskrnl.exe) responsible for
defining the access token data structure, performing security access checks on objects, manip-

ulating privileges/user rights, and generating corresponding security audit messages.

¢ Local security authority subsystem (Lsass) - (\Windows\System32\Lsass.exe) a user-
mode process that is responsible for the local system security policy, user authentication, and
sending security audit messages to the Event Log. Lsass loads the local security authority
service (Lsasrv-\Windows\System32\Lsasrv.dll), which implements most of this functionality.
Lsass uses a policy database (stored in the registry under HKLM\SECURITY), which is a
database that contains the local system security policy settings. It contains information such
as trusted domains used to authenticate logon attempts, permissions for system access and
the permitted method (interactive, network, and service logons), privileges, and the security

auditing to be performed.

¢ Security Accounts Manager (SAM) service - the SAM is a set of subroutines responsible
for managing the database containing the usernames and groups defined on the local machine.
It is implemented as \Windows\System32\Samsrv.dll which runs in the Lsass process. The
SAM database is stored in the registry under HKLM\SAM. The database that contains the
defined local users and groups, along with their passwords and other attributes. However, on
domain controllers the SAM stores the system’s administrator recovery account definition and

password.

¢ Active Directory (\Windows\System32\Ntdsa.dll, runs in the Lsass process) - a directory
service containing a database that stores information about objects in a domain. The domain
is defined as a collection of computers and their associated security groups. They are managed
as a single entity. The objects in a domain include users, groups, and computers. The Active

Directory is replicated across the computers that are designated as domain controllers of the

43

domain.

¢ Authentication packages - dynamic-link libraries (DLLs) that run both in the context of
the Lsass process and client processes and that implement Windows authentication policy. An
authentication DLL checks whether a given username and password match. If so, it returns in-
formation detailing the user’s security identify to the Lsass. LSASS then uses that information

to generate a token.

¢ Logon process (Winlogon - \Windows\System32\ Winlogon.exe) - a user-mode process that

is responsible for responding to the SAS and for managing interactive logon sessions.

¢ Graphical Identification and Authentication (GINA) - A user-mode DLL that runs
in the Winlogon process and that Winlogon uses to obtain a user’s name and password or

smartcard PIN. The standard GINA is \ Windows\System32\Msgina.dll.

¢ Network logon service (Netlogon - \Windows\System32\Netlogon.dll) - a service that sets
up the secure channel to a domain controller to send security requests, such an interactive -

logon or LAN Manager and NT LAN Manager (v1 and v2) authentication validation.

 Kernel Security Device Driver (KSecDD - \Windows\System32\Drivers\Ksecdd.sys) - a
kernel-mode library that implements the local procedure call (LPC) interfaces. It is used by

kernel-mode security components to communicate with Lsass in user mode.

Logon Process

The logon process is composed of multiple steps and involves multiple processes which are triggered
during a logon process. In order to understand the exact process we have to understand tokens,
impersonation, account rights and privileges [2]. We discuss these components prior to discussing

the actual logon process. Then we explain the process involved during a winlogon and a userlogon.

Tokens

To identify the security context of a process or thread the Security Reference Monitor (SRM) uses a
token, also known as access token. A security context contains the privileges, accounts, and groups
associated with the process or thread. When a logon occurs, Winlogon creates an initial token to
represent the user logging on and attaches the token to the initial process it starts, by default,
Userinit.exe. Every processes created afterwards, by default, inherits a copy of the token of its

creator, therefore all processes in the user’s session run under the same token.

44

Two components of the token are used by the security mechanisms in Windows to determine
object access and secure operations. The first component is the token’s user account SID and group

SID fields and the second component is the privilege array.

Impersonation

Impersonation is used mainly in a client/server programming model. This feature enables a server
to temporarily adopt the security profile of a client making a resource request. The server can then
access resources on behalf of the client, and the SRM carries out the access validations. Usually,
a server has access to more resources than a client does and loses some of its security credentials
during impersonation. However, the reverse can be true: the server can gain security credentials
during impersonation.

After the server thread finishes its task, it reverts to its primary security profile. These forms
of impersonation are convenient for carrying out specific actions at the request of a client and for
ensuring that object accesses are audited correctly. However, impersonation does not hold for the
entire run of an application. If an entire application must execute in a client’s security context or
must access network resources, the client must be logged on to the system. The LogonUser Windows
API function enables this action. A server thread can adopt the token as an impersonation token, or
the server can start a program that has the client’s credentials as its primary token. From a security
standpoint, a process created using the token returned from an interactive logon via LogonUser

looks like & program a user starts by logging on to the machine interactively.

Acéouht Rigﬁts

Account Rights are not enforced by the SRM, nor are they stored in tokens. The function responsible
for logon is LsaLogonUser. WinLogon, for example, calls the LogonUser API when a user logs on
interactively to a computer and LogonUser calls LsaLogonUser. The function takes a parameter
that indicates the type of logon being performed, which includes interactive, network, batch, service,
terminal server client, and unlock.

In response to logon requests, the LSA retrieves account rights assigned to a user from the LSA -
policy database at the time that a user attempts to log on to the system. LSA checks the logon
type against the account rights assigned to the user account logging on and denies the logon if the
account does not have the right that permits the logon type or it has the right that denies the logon

type. Table 6 lists the user rights defined by Windows.

45

User Right Role

Deny logon interactively, Used for interactive logons that
Allow logon interactively originate on the local machine
Deny logon over the network, Used for logons that originate
Allow logon over the network from a remote machine

Deny logon through Terminal Services, | Used for logons through a
Allow logon through Terminal Service | Terminal Server client

Deny logon as a service, Used by the Service Control Manager when
Allow logon as a service starting a service in a particular user account
Deny logon as a batch job, Used when performing a logon

Allow logon as a batch job of type batch

Table 6: Account Rights [5]

Privileges

The number of privileges defined by the operating system has grown over time. Unlike user rights,
which are enfbrced in one place by LSA, different privileges are defined by different components and
enforced by those components. For example, the debug privilege, which allows a process to bypass
security checks when opening a handle to another process with the OpénProc%s Windows AP], is
checked for by fhe_ Process Manager. Table 7 and 8 is a full list of privileges, and it describes how
and when system components check for them.-

Whgn a component wants to check a token to see whether a privilege is present, it uses the Privi-
legeChecl;_or LsaEnume;ateAccountRights APIs if running in user mode and SeSinglePrivilegeCheck
or SePrivilegeCheck if running in kernel mode. The privilege-related APIs are not account-right
aware, but the account-right APIs are privilege-aware,

Unlike account rights, privileges can be enabled and disabled. For a privilege check to succeed,
the privilege must be in the specified token and it must be enabled. The idea behind this scheme is
that privileges should be enabled only when their use is required so that a process cannot inadver-

tently perform a privileged security operation.

Logon
Interactive logon occurs through the interaction of: (1) the logon process Winlogon, (2) Lsass, (3)
one or more authentication packages, and (4) the SAM or Active Directory.

Authentication packages are DLLs that perform authentication checks. The two main authenti-
cation packages are Kerberos and MSV1.0. Kerberos is responsible for interactive logon to a domain,
and MSV1.0 is responsible for interactive logon to a local computer, for domain logons to trusted
pre-Windows 2000 domains, and for when no domain controller is accessible.

Winlogon is a trusted process that coordinates logon, starts the user’s first process at logon,

46

Privilege User Right Privilege Use

SeAssignPrimaryTokenPrivilege | Replace a Checked for by various components,
process-level such as NtSetInformationJob, that
token set a process’s token.

SeAuditPrivilege

SeBackupPrivilege

SeChangeNotifyPrivilege
SeCreateGlobalPrivilege

SeCreatePagefilePrivilege

SeCreétePermanentPrivilege

SeCreateTokenPrivilege

SeDebugPrivilege

SeImpersonatePrivilege

SeIncreaseBasePriorityPrivilege

SeIncreaseQuotaPrivilege

SeLoadDriverPrivilege

SeLockMemoryPrivilege

Generate security
audits

Backup files and
directories

Bypass traverse
checking

Create global
objects

Create a pagefile

Create permanent
shared objects
Create a token
object

Debug programs

Impersonate a
client after
authentication

Increase scheduling
priority

Adjust memory
for a process

Load and unload
device drivers
Lock pages in
memory

Required to generate events for

the Security event log.

Causes NTFS to grant the following
access to any file or directory,
regardless of the security

descriptor that’s present:

READ_CONTROL, ACCESS_SYSTEM.

SECURITY, FILE_.GENERIC.

READFILE.-TRAVERSENote that when

opening a file for backup, the

caller must specify the FILE_
FLAG_BACKUP_SEMANTICS flag.
Used by NTFS to avoid checking
permissions on intermediate
directories of a multilevel

directory lookup.

Required for a process to create
section & symbolic link objects

in the directories of the Object
Manager namespace are assigned to
different session than the caller
Checked for by NtCreatePagingFile,
which is the function used to

create a new paging file.

Checked for by the object manager
when creating a permanent object.
NtCreateToken, the function that
creates a token object, checks for
this privilege.

If the caller has this privilege
enabled, Process Manager allows
access to any process using
NtOpenProcess, regardless of the
process’s security descriptor.
Process Manager checks for this
when a thread wants to use a token
for impersonation and the token
represents a different user than

the thread’s process token.

Checked for by the Process Manager.
Required for raising process priority
Enforced when changing a process’s
working set thresholds, and a
process’s paged and nonpaged

pool quotas.

Checked for by the NtLoadDriver and
NtUnload- Driver driver functions.
The kernel implementation of
VirtualLock.

Table 7: Windows Account Privileges 1/2 [3]

47

Privilege

User Right

Privilege Use

SeMachineAccountPrivilege

SeManageVolumePrivilege

SeProfileSingleProcessPrivilege
SeRemoﬁeShutdownPrivilege

SeRestorePrivilege

SeSecurityPrivilege

SeShutdownPrivilege
SeSyncAgentPrivilege
SeSystemEnvironmentPrivilege
SeSystemProfilePrivilege

SeSystemtimePrivilege
_SeTakeOwnership

SeT'cbPrivilege

SeUndockPrivilege

Add workstations
to the domain

Perform volume
maintenance tasks

Profile single
process

Force shutdown
from a remote
system

Restore files &
directories

Manage auditing &
security log

Shut down the
system

Synchronize
directory
service data

Modify firmware
environment

variables

Profile system
performance

Change system time

.} Take ownership of

object
Act as part of the
operating system

Remove computer
from a docking
station

Checked for by the Security Accounts
Manager on a domain controller when
creating a machine account in a domain
Enforced by file system drivers during

a volume open operation, required to
perform disk checking and defragmenting
activities.

Checked for by prefetcher’s function

that returns prefetch information for

an individual process.

Winlogon checks that remote callers of

the InitiateSystemShutdown function have
this privilege.

Causes NTFS to grant the following

access to any file or directory

regardless of the security descriptor:
WRITE_DAC, WRITE_.OWNER,
ACCESS_SYSTEM_SECURITY,
FILE.GENERIC_.WRITE,
FILE_ADD_FILE,
FILE_ADD_SUBDIRECTORY,
DELETENote

Required to access the SACL of a

security descriptor, read & clear the
security event log.

This privilege is checked for by
NtShutdownSystem and NtRaiseHardError,
which presents a system error dialog box
on the interactive console.

Required for the LDAP directory
synchronization services and allows the
holder to read all objects and properties

in the directory.

Required by NtSetSystemEnvironmentValue
and NtQuerySystemEnvironmentValue to
modify and read firmware environment
variables using the HAL.

Checked for by NtCreateProfile, the
function used to perform profiling of

the system.

Required to change the time or date.
Required to take ownership of an object
without being granted discretionary access
Checked for by the Security Reference
Monitor when the session ID is set in a
token, by the Plug and Play Manager for
Plug and Play event creation and management,
the Windows 2000 implementation of
LogonUser, BroadcastSystemMessageEx when
called with BSM_ALLDESKTOPS, and
LsaRegisterLogonProcess.

Checked for by the user-mode Plug and Play
Manager when either a computer undock is

initiated or a device eject request is made.

Table 8: Windows Account Privileges 2/2 [3]

48

handles logoff, and manages various other operations relevant to security. The Winlogon process
must ensure that operations relevant to security are not visible to any other active processes.
Graphical Identification and Authentication (GINA) DLL is a dll used by Winlogon to obtain a
user’s account name and password. The default GINA is Msgina (\Windows\System32\ Msgina.dll).
Msgina presents the standard Windows logon dialog box. After obtaining a username and password
from the GINA, Winlogon calls Lsass to authenticate the user attempting to log on. If the user
is authenticated, the logon process activates a logon shell on behalf of that user. The interaction

between the components involved in logon is illustrated in Figure 4.

logon 4 N Event
w e
. isass 1 Logger
Msgina ‘
Active
Netiogon || 1y, ctory
LSA SAM
Server Server
o
Msvi _O.di
Kerberos.dif
System
Threads User Mode
Kernel Mode

Figure 4: Interaction between Windows Logon Components [2]

Winlogon Initialization
During system initialization, i.e. before any user applications are active, Winlogon performs the

following steps to ensure that it controls the workstation once the system is ready for user interaction

49

[2]:

1. Creates and opens an interactive window station to represent the keyboard, mouse, and mon-
itor. Winlogon creates a security descriptor for the station that has one and only one ACE
containing only the System SID, which ensures that no other process can access the workstation

unless explicitly allowed by Winlogon.

2. Creates and opens two desktops: an application desktop and a Winlogon desktop. The security
on the Winlogon desktop is created so that only Winlogon can access that desktop. The other
desktop allows both Winlogon and users to access them. By doing so any time the Winlogon
desktop is active, no other process has access to any active code or data associated with the
desktop. Windows uses this feature to protect the secure operations that involve passwords

and locking and unlocking the desktop.

3. Before anyone logs on to a computer, the visible desktop is Winlogon’s. After a user logs on,
pressing Ctrl+Alt+Delete switches the desktop from Default to Winlogon. Thus, the SAS

always brings up a secure desktop controlled by Winlogon.

4. Establishes an LPC connection with Lsass’s LsaAuthenticationPort. This connection will be
used for exchanging information during logon, logoff, and password operations and is made by

calling LsaRegisterLogonProcess.

Winlogon then performs the following Windows operations to set up the window environment:

5. Initializes and registers a window class data structure that associates a Winlogon procedure

with the window it subsequently creates.

6. Registers the SAS associating it with the window just created, guaranteeing that Winlogon’s
window procedure is called whenever the user enters the SAS. This measure prevents Trojan

horse programs from gaining control of the screen when the SAS is entered.

7. Registers the window so that the procedure associated with this window gets called if a user
logs off or if the screen saver times out. The Windows subsystem checks to verify that the

process requesting notification is the Winlogon process.

Once the Winlogon desktop is created during initialization, it becomes the active desktop. When
the Winlogon desktop is active, it is always locked. Winlogon unlocks its desktop only to switch to

the application desktop or the screen-saver desktop. (Only the Winlogon process can lock or unlock

50

a desktop.)

User Logon Steps
When a user presses the SAS (Ctrl+Alt+Delete) the logon process begins in the following steps,

assuming that the correct credentials are provided at login [2]:
¢ Winlogon:
— Calls the GINA to obtain a username and password and

— Creates a unique local logon SID for this user that it assigns to this instance of the
desktop.

— Passes this SID to Lsass as part of the LsaLogonUser call, this SID will be included in

the logon process token.

— Retrieves a handle to a package by calling the Lsass function LsaLookupAuthentication-
Package. Authentication packages are listed in the Registry under HKLM\SYSTEM)\

CurrentControlSet\Control\Lsa.

— Passes logon information to the authentication package via LsaLogonUser. As discussed
earlier, two authentication packages are mainly used: MSV1.0 and Kerberos.
Case MSV1.0: |
The MSV1.0 authentication package takes the username and a hashed version of the pass-
word and sends a request to the local SAM to retrieve the account information, which
includes the password, the groups to which the user belongs, and any account restrictions.
MSV1.0 first checks the account restrictions, such as hours or type of accesses ‘allowed.
If the user can’t log on because of the restrictions in the SAM database, the logon call
fails and MSV1.0 returns a failure status to the LSA.
MSV1.0 then compares the hashed password and username to that stored by the SAM.
In the case of a cached domain logon, MSV1.0 accesses the cached information by using

Lsass functions that store and retrieve “secrets” from the LSA database (the SECURITY

hive of the registry). If the information matches, MSV1.0 generates an LUID for the
logon session and creates the logon session by calling Lsass, associating this unique iden-
tifier with the session and passing the information needed to ultimately create an access
token for the user.

If MSV1.0 needs to authenticate using a remote system, as when a user logs on to a

51

trusted pre-Windows 2000 domain, MSV1.0 uses the Netlogon service to communicate
with an instance of Netlogon on the remote system. Netlogon on the remote system
interacts with the MSV1.0 authentication package on that system, passing back authen-
tication results to the system on which the logon is being performed.

Case Kerberos:

The basic control flow for Kerberos authentication is the same as the flow for MSV1.0.
However, in most cases, domain logons are performed from member workstations or
servers (rather than on a domain controller), so the authentication package must commu-
nicate across the network as part of the authentication process. The package does so by
communicating via the Kerberos TCP/IP port (port 88) with the Kerberos service on a
domain controller. The Kerberos Key Distribution Center service (Windows\System32\
Kdcsve.dll), which irﬂplements the Kerberos authentication protocol, runs in the LSASS
process on domain controllers. After validating hashed username and password infor-
mation with Active Directory’s user account objects (using the Active Directory server
Windows\System32\Ntdsa.dll), Kdcsvc returns domain credentials to LSASS, which re-
turns the result of the authentication and the user’s domain logon credentials (if the logon -

was successful) across the network to the system where the logon is taking place.

o After a logon has been authenticated, LSASS looks in the local policy database for the user’s
allowed access, including interactive, network, batch, or service process. If the requested logon
doesn’t match the allowed access, the logon attempt will be terminated. LSASS deletes the
newly created logon session by cleaning up any of its data structures and then returns failure to
Winlogon, which in turn displays an appropriate message to the user. If the requested access
is allowed, LSASS adds the appropriate additional security IDs (such as Everyone, Interactive,
and the like). It then checks its policy database for any granted privileges for all the IDs for

this user and adds these privileges to the user’s access token.
e LSASS then calls the executive to create the access token.

e The executive creates a primary access token for an interactive or service logon and an imper-

sonation token for a network logon.

e After the access token is successfully created, LSASS duplicates the token, creating a handle
that can be passed to Winlogon, and closes its own handle. i necessary, the logon operation

is audited. At this point, LSASS returns success to Winlogon along with a handle to the

52

access token, the LUID for the logon session, and the profile information, if any, that the

authentication package returned.

e Winlogon then looks in the registry at the value HKLM\SOFTWARE\Microsoft\ Windows
NT\Current Version\Winlogon\Userinit and creates a process to run whatever the value of
that string is. The default value is Userinit.exe, which loads the user profile and then creates a
process to run whatever the value is of HKCU\SOFTWARE\Microsoft\Windows NT\Current
Version\Winlogon\Shell, if that value exists. That value does not exit by default. If it doesn’t
exist, Userinit.exe does the same for HKLM\SOFTWARE\Microsoft\Windows N'T\Current
Version\Winlogon\Shell, which defaults to Explorer.exe. Userinit then exits (which is why

Explorer.exe shows up as having no parent when examined in Process Explorer.

Services and Service Accounts|65]

Services are a very attractive door for attacks since services run unattended at startup, a user
can be unaware that a service is running. For example, Internet worms such as Nimda exploit the
fact that users can unknowingly run Web servers on their workstations. The infected workstations
spread the worm to thousands of computers across the Internet.

Furthermore, security exposure occurs whenever a service is configured to log on as a user. The
user name and password information for each service that uses a domain or local user account is
stored in the registry. Any user having administrative access to the computer can easily exploit this

vulnerability.

System Accounts

A service must log on as an account to access resources and objects on the operating system. If you
assign an account to a service that does not have appropriate permissions to log on, the Services snap-
in for the Microsoft Management Console (MMC) automatically grants that account the required
Log on as a Service user right on the computer being managed. Microsoft Windows Server 2003
includes the following three built-in local accounts used as the logon accounts for various system

services:

e Local System account
- The Local System account is a powerful account that has full access to the computer, including
the directory service when used for services running on domain controllers. It can start a service

and provide the security context for that service. It The account acts as the host computer

53

account on the network and as such has access to network resources just like any other domain
account. The actual name of the account is NT AUTHORITY\System, on the network, this
account appears as DOMAIN\ < machine name >. If a service logs on using the Local
System account on a domain controller, it has Local System access on the domain controller

itself, which, if compromised, could allow malicious users to change anything in the domain

they wanted.

¢ Local Service account
The Local Service account has reduced privileges similar to an authenticated local user account.
This limited access helps safeguard the computer if an attacker compromises individual services

or processes. The actual name of the account is NT AUTHORITYLocalService.

o Network Service account
The Network Service account has reduced privileges similar to an authenticated user account.
This limited access helps safeguard the computer if an attacker compromises individual services
or processes. A service that runs as the Network Service account accesses network resources
using the credentials of the computer account in the same manner as a Local System service

does. The actual name of the account is NT AUTHORITY\NetworkService.

User Accounts
Several categories of user accounts can log on as a service. Each category has its own capabilities

and privileges:

e Local User Accounts
This category contains the accounts that you create locally on a computer. These accounts
have very limited privileges on the local computer unless you specifically grant them higher

privileges or add them to groups that already possess those privileges.

¢ Local Administrator Accounts
This category includes the built-in Administrator account that you create and use when you

first install Windows. It includes any other user accounts that you subsequently create and
add to the built-in Administrators group. Members of this group have full and unrestricted

access to the local computer.

e Domain User Accounts

This category includes accounts that you create in the domain, for example, by using the

54

Service Name Log On As
Alerter Local Service
Application Layer Gateway Service Local Service
Remote Registry Local Service
Smart Card Local Service
TCP/IP NetBIOS Helper Local Service
Telnet Local Service
Uninterruptible Power Supply Local Service
WebClient Local Service
Windows Image Acquisition (WIA) Local Service
Windows Time Local Service
WinHTTP Web Proxy Auto-Discovery Service | Local Service
DHCP Client Network Service
Distributed Transaction Coordinator Network Service
DNS Client Network Service
License Logging Network Service
Performance Logs and Alerts Network Service
Remote Procedure Call (RPC) Locator Network Service

Table 9: Service Accounts Settings [2]

Active Directory Users and Computers management console. These accounts have limited
privi]eges in the domain unless you speciﬁcally grant them higher privileges or add them to

groups that already possess those privileges.

¢ Domain Administrator Account
This category includes the built-in domain Administrator account that you create and use when
you first install Active Directory. It includes any other user accounts that is subsequently
created a,nd added to the built-in local Administrators group or to the Domain Admins or
Enterprise Admins groups. Members of these groups have complete and unrestricted access to

the domain and, in the case of the Enterprise Admins group, to the entire forest.

Instead of using the Local System account, many common services now use the Local Service
or Network Service account. These accounts have a much lower level of privileges than the Local
System account and, therefore, present a lower security threat. Some services and their default logon

accounts are listed in table 9.

4.2 Log Functions

In this section we present how event functions can be used to represent events in a more readable
and usable form. Having a function called Success ful Logon, for example, is easier to understand

and use over calling it Event]D528. Furthermore, these functions are that same functions used in

55

the implementation. In the following we present some event, functions from the security, application,

system and firewall logs. Following each event function is an explanation to illustrate its use.

4.2.1 Security Log

Domain Controller Functions
The following functions will only be logged on domain controllers through the use of Kerberos

authentication system. In Windows categorization, these are under the category of Account Logon.

AuthenticationTicketGranted(user, realmName, userl D, serviceName, servicel D,

ticketOptions, pre AuthenticationType, client Address,sORf) — EventID 672

This event only appears on domain controllers when a Kerberos TGT is granted and is shown
typically when a server restarts or when a workstation boots up. Three fields are of main importance,
user, realmName, and clientAddress. The user along with the realmName are used to identify
the user who logged on. The userID is the user name and the realm name in the NT format,
for example, “S-1-5-21-2121316058-685099279-904526279-500”. The client Address is the IP address
from where the user logged on. Finally the sORf field represents a success or failure audit. This

field is common for all the functions/events.

ServiceTicketGranted(user, domain, serviceN ame, ticketOptions, client Address, sOR f)

— EventID 673

A service ticket is obtained any time a user or computer accesses a server on the network. The user
and domain identify the user or computer accessing the server, and the clientAddress specifies the

IP address of the user. The serviceName identifies the server name.

Tz'cketGrantRehewed(user, domain, serviceN ame, ticketOptions, client Address, sORf)
— EventID 674

This event is logged whenever the ticket expires, as Kerberos limits the time a ticket can be valid.

The fields are the same as ServiceTicketGranted.

PreAuthenticationFailed(user, service Name, preAuthenticationType, failureCode,

clientAddress) — EventID 675

56

When a user attempts to log on to a domain controller and fails for some reason, this event will
be recorded on the domain controller’s logs. The reason for this log-on failure is recoded in the
failureCode field. The failure codes are based on RFC 1510, Kerberos Network Authentication

Service (V5), and are shown in table 10.

In some cases the user’s initial logon might fail due to reasons other then those mentioned in

table 10. When this happens AuthenticationTicketRequestFailed is logged.

AuthenticationTicket Request Failed(user, realm Name, serviceName, failureCode,
clientAddress) — EventID 676
ServiceT'icket RequestFailed(user, realmName, serviceName, failureCode,

clientAddress) — EventID 677

Logon Attempt(user, logon Account, logon Attempt By, sSORf) — EventID 680

A LogonAttempt event is used for NTLM authentication attempts and is logged on both the do-
main controller and the local machine. This event is used frequently when a service needs to execute
under certain privileges. In such as case, this event is used to log on the account with the privi-
leges authorized for the service, and the service is given a token with the corresponding privileges.
The logonAttemptBy field identifies the authentication package that processed the authentication

request.
Logon/Logoff
Success ful Logon(user, session, logonProcess, typeO f Logon) — EventID 528

Whenever an account logs on to a local computer using a local SAM account or a domain logon, this
events appears in the security log. The user indicates the account used for logon. In a given log a
user may have several logon sessions at different times. Each session is identified by a logon session
identifier, session. The logonProcess can be any of: KSecDD (Kernel Security Device Driver),
RASMAN (Remote Access Service Manager), Secondary Logon Service, LAN Manager Workstation
Service, CHAP, DCOMSCM, Winlogon, or Winlogon\MSGina. As for the typeOf Logon field, this
specifies which type of logon was used such as interactive or remote. A complete list of logon types

are shown in table 11.

57

Failure Code

Kerberos RFC Description

Notes

1

OOt W N

10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
31
32
33

36
37

38
39
40
41
42
44
45
46
47
48
49
50
60
61

Client’s entry in database has expired

| Server’s entry in database has expired

Requested protocol ver § not supported
Client’s key encrypted in old master key
Server’s key encrypted in old master key
Client not found in Kerberos database

Server not found in Kerberos database

Multiple principal entries in database
The client or server has a null key

Ticket not eligible for postdating
Requested start time is later than end time
KDC policy rejects request

KDC cannot accommodate requested option
KDC has no support for encryption type
KDC has no support for checksum type
KDC has no support for padata type
KDC has no support for transited type
Clients credentials have been revoked
Credentials for server have been revoked
TGT has been revoked

Client not yet valid - try again later
Server not yet valid - try again later
Password has expired

Pre-authentication information is invalid
Additional pre-authentication required
Integrity check on decrypted field failed
Ticket expired

Ticket not yet valid

Request is a replay

The ticket isn’t for us

Ticket and authenticator don’t match
Clock skew too great

| Incorrect net address

Protocol version mismatch

Invalid msg type

Message stream modified

Message out of order

Specified version of key is not available
Service key not available

Mutual authentication failed

Incorrect message direction

Alternative authentication method required
Incorrect sequence number in message
Inappropriate type of checksum in message
Generic error (description in e-text)

Field is too long for this implementation

Bad user name, or new computer/user
account has not replicated to DC yet
New computer account has not
replicated yet or computer is pre-w2k

Administrator should reset the password
on the account

Workstation/logon time restriction

Account disabled, expired, or locked out

The users password has expired
Usually means bad password

Frequently logged by computer accounts

‘Workstations clock too far out of
sync with the DCs
IP address change

May be a memory allocation failure

Table 10: Kerberos Network Authentication Sefvice Failure Codes [2]

58

Logon Type | Description _

2 Interactive (logon at keyboard and screen of system)

3 Network (i.e. connection to shared folder on this computer from elsewhere on
network or IIS logon - Never logged by 528 on W2k and forward. See event 540)
4 Batch (i.e. scheduled task)

5 Service (Service startup)

7 Unlock (i.e. unnattended workstation with password protected screen saver)

8 NetworkCleartext (Logon with credentials sent in the clear text. Most often
indicates a logon to IIS with “basic authentication”)

9 NewCredentials
10 Remotelnteractive (Terminal Services, Remote Desktop or Remote Assistance)
11 CachedlInteractive (logon with cached domain credentials such as when logging on

to a laptop when away from the network)

Table 11: Logon Types [3]

LogonF ailure(user, typeO f Logon, logon Process, reason)

There are multiple events logged that indicate an account logon failure. The EventID is based on
the reason for the logon failure. If the failure is due to a bad password or user name, EventID 529
is logged. If an account is disabled and the user tried logging on to that account, EventID 531 is
logged. Sometimes the policy set on accounts can cause a logon failure, such as, the user is trying
to logon during a restricted time period (EventID 530), the user account had been expired and
the user tries to logon (EventID 532), a user is not allowed to logon on the computer in question
(EventID 533), a user has not been granted the requested logon type on the machine (EventID 534),
the account’s password has been expired (EventID 535), or the account has been locked out possibly

due to multiple failure logons (EventID 539).

NetworkLogon(user, session, domain) — EventID 540

When a user on the network logs on to a resource, e.g., a printer or a shared folder, this event
appears in the log. The logon type is always 3 indicating a network logon, hence it’s not included
with the fields.

UserLogof f (user, session, typeO f Logon) — EventID 538

This event is logged for any account logon, whether it is for an interactive user logon or a network
logon to connect with a shared folder on the network. It should be noted that if a computer

is turned off before an account is logged off, Windows logging system might not log it until the

59

computer restarts, so it’s not out of the normal to see a logoff far down the log. That is why it is

important to track a logoff using the session ID.

WinstationSession Reconnect(user, session, domain, client N ame, client Address)

— EventID 682

Windows logs this event in case a a user reconnects to a disconnected terminal server session.
EventID 528 will only log a new session, but does not log the event in the case of reconnection.

The user field indicated the account used to log on, however the clientName indicated the computer

name from which the user logged on.

WinstationSessionDisconnected(user, session, domain, client N ame, client Address)

— EventID 683

Windows logs this event when a user disconnects from a terminal server (aka remote desktop) session

as opposed to an full logoff which triggers event 538.

Account Management

AccountCreated(user, session, newAccountName, newAccount Domain) — EventID 624
AccountChanged(user, session, target Account, target Domain, accountChahge)

— EventID 642

PasswordChange(user, session, target Account, target Domain, sORf) — EventID 627

When a user account is created, three events will bé logged. The first is AccountCreated, followed by
an AccountChanged Event with the accountChange field being “account created”, then a Password-
Change event if a password was set. The user field is the account from which the new user account
was created and the session indicates the logon session ID. Needless to say, user and session fields
in the three events should be the same. The newAccountName and newAccountDomain in the

AccountCreated event should be the same as the targetAccount and targetDomain fields in the
AccountChanges and PasswordChange events. It should be noted that if the AccountCreated and

AccountChanged events appear in the log, this means that the event was successful. This is not the

60

case for PasswordChange event which can be either successful or a failure, hence the sORf field.

Account Enabled(user, session, target Account, target Domain) — EventID 626
AccountDisabled(user, session, target Account, target Domain) — EventID 629
AccounDeleted(user, session, target Account, target Domain) — EventID 630

PasswordSet(usér, session, target Account, target Domain) — EventID 628

The difference between a PasswordSet event and a PasswordChange event is that the former event
indicated a password rest, which does not require the knowledge of the current password. A Pass-
wordChange event is logged in two cases only, when a new account is created, or when a user is
changing his own password. Account enabled, disabled, and deleted are self-explanatory, however,
some versions of windows might not log them despite of Windows documentation. These events are

logged effectively in Windows 2003 server and after.

Account LockedOut(user, session, target Account, target Domain) — EventID 644

An account can be locked out due to multiple reasons, one of which is consecutive failed logon
attempts. This event is followed by an AccountChanged event with the accountChange field being

“account, locked”.

GroupCreated(user, session, groupN ame, groupDomain) — EventID 635, 648, or 653
GroupDeleted(user, session, groupName, groupDomain) — EventID 634, 638, or 652
GroupM ember Change(user, session, groupM ember, groupName, groupDomain,
addedORremoved) — EwventlD 636, 637, 650, or651
-GroupChanged(user, session, groupN ame, groupDomain)

— EventID 639, 641, 649, or 654

Detailed Tracking

ProcessCreated(user, session, process Name, processID, createdBy) — EventlD 592
ProcessExited(user, session, processName, processI D) — EventID 593
ProcessTokenAssignment(user, assigningProcess, newProcessName, new Process] D,

SORf) — EventID 600

When a program executed, a ProcessCreated event is logged. This process has to run using the

privileges of the account it operates under, so a token is assigned to that process. The token contains

61

Type of Service Value Description

SERVICE_WIN32_.OWN_PROCESS 0x00000010 | A Microsoft Win32 service that runs its own
process.

SERVICE.WIN32.SHARE_PROCESS | 0x00000020 | A Win32 service that shares a process.
SERVICEINTERACTIVE_PROCESS | 0x00000100 | A Win32 service that interacts with the desktop.
This value cannot be used alone and must be
added to one of the two previous types.

The StartName column must be set to
LocalSystem or null when using this flag.

Table 12: Service Type

Type of Service : Value Description

SERVICE_AUTO.START 0x00000002 | A service start during startup of the system.
SERVICE_.DEMAND_START | 0x00000003 | A service start when the service control manager calls the
StartService function.

SERVICE_DISABLED 0x00000004 | Specifies a service that can no longer be started.

Table 13: Service Start Type

the privileges authorized for the process and is passed from one process to another. This is reflected
through the ProcessTokenAssignment event. The process that assigns the token, assigningProcess,
is the process that created the new process. The processName is the name and path of the process,
while the processID is the process identifier. The same process can be executed multiple times

concurrently, the processID is used to differentiate the different runs of the process.

InstallService(user, session, serviceName, serviceFile, serviceType, serviceStartType,

serviceAccount, sORf) — EwventID 601

This event is actually an attempt to install a service, the attempt might be a failure or success, SORf.
The serviceN ame is the name of the service as it might appear in the services control manager, while
the serviceFile is the complete path and file name of the installed service. For the serviceType and
serviceStartType refer to tables 12 and 13 respectively. Finally, the serviceAccount is the account

that the service is specified to run under.

ScheduledT askCreated(user, session, fileN ame,command, triggers, time, targetU ser)

— EventID 602

This event is logged when a task is created and when changes are made to existing tasks. The field
fileName indicates where the task definition file is stored, it’s of type JOB. The command field

is what will be executed when the task begins, the full path of the executable is shown here. The

62

event that will trigger the task is indicated in the trigger field. As for the targetUser, this is the

user under which the task will be executed.

Object Access

ObjectOpen(user, session, objectType, object Name, handlel D, processI D, access, sORf)
— EventID 560

Everything in Windows comes down to an object. The objctType indicates the type of object, for
example, a file or a registry key. If a process began and an operation was to be done on that process,
a handle handleID should be given to that process with the privileges requested. The processID
here indicqtes which process opened the object, and the access indicates what the process is re-
questing to perform on the object. However, that access actually executed on the object are logged

in another event:

Object Access(objectType, handlel D, processID, access, sORf) — EventID 567

Notice that the object name does not appear in this event, however, we can track the access through

the handlelD.

HandleClose(handleI D, processID) — EventID 562

A HandleClose event is the same as an object close event. As mentioned earlier, when an object
is opened, a handle is passed to it to perform whatever operations necessary. When the handle is

closed, no operations can be preformed on that object until another handle is assigned.

ObjectOpenForDel ete(user, session, objectN ame, objectType, handlel D, processI D)
— EventlI D 563
ObjectDeleted(handlel D, processID) — EventID 564

To delete an object there are two possible methods, the ObjectOpenForDelete and ObjectDeleted.
In the case of the former, the FILE_DELETE.ON_CLOSE flag is set and this is the only way to
delete objects opened exclusively by another progra.fn, when installing an application for example.
The ObjectDeleted event is the more common way that an object would be deleted, and the event is

logged when the object is actually deleted. In the case of ObjectDeleted event, there should appear

63

an ObjectOpen event prior to the ObjectDeleted event. If a user wants to delete a file, in most cases
she will select the object and hit the delete button. In terms of Windows processes, ObjectOpen

event followed by ObjectDeleted.

Policy Change

U ser Rights Assigned(user, session, assignedT o, rights) — EventID 608

U ser Rights Removed(user, session, removedFrom, rights) — EventID 609

These two events indicate changes to user rights. The assignedT'o and removedFrom fields show
which user account has been modified, and the rights field indicates the rights that have been
assigned or removed from the user. If these events appear in the log, this indicated that the operation

was successful, it is not logged otherwise.

Audit PolicyChange(user, session, changes) — EventID 612

When a change is made to the audit policy, the event plus the changes are logged. The changes
field is the list of changes made. If a policy was added, a plus sign will appear before the policy.
Likewise, if a policy was removed, a minus sign will appear in front of the policy. For example,

changes{+ + Logon/Logof f, — — Object Access, — — AccountManagment, ...}.

SysSecurityAccessGranted(user, session, accountModi fied, access) — EventID 621

SysSecurity Access Removed(user, session, accountModi fied, access) — EventID 622

These two events indicate the granting or removing logon rights such as accessing a computer from
the network or logging on as a service. The UserRightAssigned event does not log such events,

whereas these two events are strictly for logon rights.

User Account Enabled(user, session, target AccountID) — EventID 625

The target AccountI D here is the target user name and the domain, in the form of username\domain.

64

Privilege Use

PrivilegeAssigned(assignedTo, privilege) — EventID 576
PrivilegeServiceCalled(user, serviceName, privilege, sORf) — EventID 577
PrivilegeServiceCalled(user, server, serviceName, privilege, sSORf) — EventID 577
PrivilegeObjectOperation(user, process, privilege, sORf) — EventID 578

Event PrivilegeServiceCalled and PrivilegeObjectOperation indicate that the user exercised the
rights specified in the privilege field. Whereas, PriviledAssigned is triggered after a logon and

indicates the rights authorized for the user, but not necessarily the rights that the user accessed.

System Events

WindowsStartingup() — EventID 512

WindowsShutDown() — EventID 513

NotificationPackageLoaded(user, packageName) — EventID 518
AuthenticationPackageLoaded(user, session, packageN ame); — EventI D 514

The AuthenticationPackageLoaded event is logged at startup once for every authentication package
loaded. An authentication package is a DLL for authenticating NTLM or Kerberos for example.

T'rustedLogonProcess(user, session, processName) — EventID 515

A logon process is a trusted part of the operating system and handles the overall logon function for
different logon methods including incoming RAS connections, RunAs, interactive logons initiated

by CtrlAltDel, and network logons (as in drive mappings).

AuditLogCleared(user, session) — EventID 517
SystemTimeChanged(user, session, oldTime, newTime) — EventlD 520
ResourcesExhausted() — EventID 516

Internal resources allocated for the queuing of audit messages have been exhausted, leading to the

loss of some audits. This is due to an extremely high period of activity which prevented Windows

65

from logging security events.

Windows Firewall

Firewall PolicyLoaded(user, groupPolicy Applied, inter face, operational Mode,
fileAnd PrintSharing, remote Desktop, U PnP, remote Admin, unicast Response,
logDroppedPackets, logSuccessConn, ICMP_SET) — EventID 848

Wherel CM PsET = {inEchoReq, inTimeStampReg, inM ask Req, inRouter Req,
outDestUnreachable, outSourceQuench, out Parameter Prob, outTimeExzceeded,
redirect}

W F L ApplicationException(user, applicationPath, state, scope) — EventID 849

W FLPortEzception(user, name, port Number, protocol, state, scope) — EventID 850

W F L ApplicationORServiceListening(user, appOrServiceN ame, path, processl D, service,
rpcService, ipVer, portNo, allowed, user Notified) — EventID 861

FirewallPolicyLoaded event displays the startup configuration of the Windows Firewall. This event
appears in general at startup or when the Windows Firewall is enabled and starts or restarts. It
is followed by WFLApplicationException and WFLPortException events. The WFLApplicationEx-
ception event is an application which is listed as an exception in the firewall configuration, and
WFLPortException is a port exception in the firewall configuration. The state field in these two
events Specifies whether the application is enabled or disabled in the exceptions list, where as the
scope field Specifies the conditions under which the application is processed as an exception. As
for the fields for FirewallPolicyLoaded, they are described in table 14. Finally, the WFLApplica-
tionORServiceListening event will most likely appear after these events for a service or application

trying to connect through the network but is not on the exception list.

66

Field Possible Values Description

groupPolicyApplied | Yes/No Specifies whether Group Policy is applied.

interface All/<interface name> | Specifies the network adapter (interface) to
which the settings apply.

operationalMode On/Off Specifies which mode Windows Firewall is in.

fileAndPrintSharing | Enabled/Disabled Specifies whether File and Printer Sharing is
enabled or disabled.

remoteDesktop Enabled/Disabled Specifies whether Remote Desktop is enabled or
disabled.

. UPnP Enabled/Disabled Specifies whether UPnP is enabled or disabled

in the exceptions list.

remoteAdmin Enabled/Disabled Specifies whether Remote Assistance is
enabled or disabled.

unicastResponse Enabled/Disabled Specifies whether Windows Firewall will allow
unicast traffic that is in response to multicast
or broadcast traffic through the Firewall

logDroppedPackets | Enabled/Disabled/- Log dropped packets.

logSuccessConn Enabled/Disabled/- Log successful connections.

inEchoReq Enabled/Disabled/- Allow incoming echo request - ICMP.Set

inTimeStampReg Enabled/Disabled/- Allow incoming timestamp request - ICMP_Set

inMaskReq Enabled/Disabled/- Allow incoming mask request - ICMP_Set

inRouterReq Enabled/Disabled/- Allow incoming router request - ICMP_Set

‘outDestUnreachable | Enabled/Disabled/- Allow outgoing dest. unreachable - ICMP_Set

outSourceQuench Enabled/Disabled/- Allow outgoing source quench - ICMP _Set

outParameterProb | Enabled/Disabled/- Allow outgoing parameter problem - ICMP Set

outTimeExceeded Enabled/Disabled/- Allow outgoing time exceeded - ICMP_Set

redirect Enabled/Disabled/- Allow redirect - ICMP Set

Table 14: FirewallPolicyLoaded fields [6]

67

W F L Application ExceptionChange(policyOrigin, profileChanged, changeType,
newAppName, new Path, newState, newScope, old AppN ame, old Path, oldState,
oldScope) — EventID 851 '

W F L PortEzceptionChange(policyOrigin, profileChanged, changeType, inter face,
newName, newPort, new Protocol, newState, newScope, oldName, old Port,
oldProtocol, oldState, oldState) — EventID 852

W F LOperationM odeChange(policyOrigin, profileChanged, inter face,
newOperationMode, OldOpemtz'ohM ode) — EventlD 853

W FLLoggingSetChange(policyOrigin, profileChanged, newLogDropped Packets,
newLogSuccess fulConnections, oldLogDropped Packets,
oldLogSuccess fulConnections) — EventID 854

W FLICM PSetChange(policyOrigin, profileChanged, inter face, newICM P_SET,
oldICMP_SET) — EventID 855

W F LUnicast ResponseChange(unicast Response) — EventID 856

W EL RemoteAdminSetChange(policyOrigin, profileChanged, new Remote AdminSet,

 oldRemoteAdminSet) — EventID 857

W FLGroupPolicy Applied() — EventI D 858

W F LGroupPolicyRemoved() — EventID 859

WFLProfileChange(activeProf iie) — EventID 860

" These set of events indicate any changes made to the Windows Firewall. In most cases the name
implies what the event logged means, but we will mention them briefly. WFLApplicationException-
Change or WFLPortExceptionChange indicate a change in either the application or port exception
list. WFLOperationModeChange event shows that there were some changes to the operational mode
of windows firewall. WFLLoggingSetChange reflects a change in the logging setting of windows fire-
wall, for example not logging successful connections to connect remotely without being noticed.
WFLICMPSetChange events indicates changes made to the ICMP settings, ICMP settings are men-
tioned in table 14. WFLUnicastResponseChange displays a change made to the Windows Firewall:
Prohibit unicast response to multicast or broadcast requests Group Policy setting. A change to
either enable or disable remote administration is shown by event WFLRemoteAdminSetChange. As

for WFLGroupPolicyApplied and WFLGroupPolicyRemoved, the windows firewall policy as any

68

policy on Windows operating system can be a per-user policy or a group policy. These two events
indicate if a group policy was applied or removed for the user currently logged on. Finally, the
WFLProfileChange event simple indicates a change in the windows firewall profile. A profile here is

defined as a set of settings and configurations.

4.2.2 Firewall Log

The structure of events in the Windows Firewall log differs from the structure of events in the
Windows security log. Events are not based on EventIDs.

The prefix <FWL> will be used to denote the Windows Firewall Log when constructing the models.

U DPReceive(sourcel P, destinationl P, action, sourcePort, destinationPort, size)
UDPOpen(sourcel P, destinationI P, source Port, destinationPort, size)
UDPClose(sourcel P, destinationl P, sourcePort, destinationPort, size)

UDP Drop(sourcel P, destinationl P, sourcePort, destination Port, size)
TCPOpen(sourceI P, destinationlI P, sourcePort, déstinatz'onPort, size)
TCPClose(sourcel P, destinationl P, source Port, destination Port, size)
TCPDrop(sourcel P, destinationl P, sourcePort, destinationPort, size)

DROP indicates a packet blocked.
OPEN indicates the normal opening of a connection using either TCP or UDP protocols.
CLOSE indicates a normal closure of a TCP connection that was opened in the firewall. This is

only logged when “Log successful connections” is checked.

4.2.3 Application Log

The Windows Application log records events generated by application which are configured to write
to the application log. Events stored in this log are application specific, meaning that every ap-
plication logs its specific data using the chosen event ID. The number of event IDs that are the
same for all applications is very limited hence it is not feasible to model every possible event in the
application log. In the following we provide a short list of events based on what was recorded in our

logs. For future reference, the Windows application log will be denoted by <APP>.

69

S erviceStaft(serviceN ame)

ApplicationHang(applicationName, hangAddress) — EventID 1002

ApplicationHang is an error message logged in the application log due to numerous reasons. In
general this means that the application is busy with some processing and is not responding any-
more due to some software error, incompatibility issues, or RAM problems. The applicationName
indicates which application stopped responding, and the hangAddress is the hexadecimal address

of the offset.

ApplicationStoppedUnexpectedly(applicationName, faultingModule, fault Address)
— EventID 1000

This indicates a program stopped unexpectedly. The message contains details on which program
and module stopped. A matching event with Event ID 1001 might also appear in the event log.

This matching event displays information about the specific error that occurred.

4.2.4 System <SYS>

NeworkLocationAwarness(source, action) — — EventID 7036
ApplicationLayerGateway(source, action) — — EventI D 7036
ApplicationLayerGateway(source, action) — — EventID 7035
RemoteAccessConnection(source, action) — — EventID 7036
ServiceStopped(serviceName) — — EventID 6006 (seen on Event Log Service)
ServiceStarted(serviceName) — — EventID 7039

EventFailedT oRenew(networkCardAddress, error) — — EventID 1003

The latter event (Event]I D1003) is a warning generated by the Dynamic Host Configuration Protocol
(DHCP), indicating that the DHCP Client service on the computer did not receive a response from
the DHCP server to renew the computer’s IP address lease. The client still has a valid IP address and
periodically will try to get an address lease extension. This could be caused by network connectivity
issues, a DHCP server or relay malfunction, firewall issues, or a malfunction of the computer’s

network interface card or driver.

70

M sgSzsFunctionCallFail(source, function, usedFor, errorMsg) — EventID 59

This depicts a component or manifest that could not be activated. The possible causes include: the
component or manifest depends on another program or component that is not installed, the manifest
contains XML content that is not valid, or the user does not have the correct permissions. In our
* case this event was preceded by eventID 58. Windows support does not provide any information

related to this event and is apparently source dependant. However we model it as such:

FileSyntazError(source, file, error Pointer) — EventID 58

In our logs these two events were showen as follows:

FileSyntazError(SideBySide, “C : \Progrdeiles \ AppleSoftwarel pdate\
Plugins \ M SIInstall Plugin.dll.Manifest”, “line2”)

M sgSzsFunctionCall Fail(Side BySide, “GenerateActivationContext”, “C : \Program
Files\ AppleSoftwareUpdate \ Plugins \ MSIInstall Plugin.dll.Manifest’,
“The operation completed success fully”)

EventID 58, FileSyntaxError, was not documented by Microsoft. Through our analysis we deter-
mined that EventID 58 indicates where the error is located in the Manifest file which generated a

MsgSxsFunctionCallFail error event.

Authentz'caticmRequestFailure(scmrce,Ie'rrorM 8g9) — EwventID 40968

This event is generated by SPNEGO which provides a Single Sign-on (SSO) capability for Windows.
When this event appears in the logs it means the Security System has received an authentication

request that could not be decoded. However, this is not logged as an error, just a warning. In many

cases SPNEGO is“used when protected objects are accessed using Internet Explorer.

Updates Downloaded(source, updateList) — EventI D17

71

Whenever updates for Windows are downloaded an information event under the category of instal-
lation is logged. This event provides details on patches and updates for the Windows Update Agent.
The updateList is the list of downloaded updates. However, the System Log does not indicate if the
updates were actually installed. This is determined from the Security log. Correlating these two logs
helps us determine if the computer is properly patched and updated. This is especially important if

there is a security policy that mentions patch management.

TimeSynchronized(timeSource) —~ EventID 35

When the Windows Time Service is synchronized, it logs an event indicating when it has been

synchronized and the time source from which it acquired the time stamp.

UnsynchronizedT'ime(unsyncTime) — EventID 36

This is a warning event generated by the Windows Time Service when it cannot synchronize with
it’s time source. When a computer cannot synchronize with its source for a period of time, it will not
provide the time to requesting clients. The local computer time cannot be updated until successful
communication with the time source resumes. Usually, this messa,ge does not indicate an immediate
problem. However, it represents a condition that can cause problems if it continues for an extended

period of time.

72

Chapter 5

Formal Framework

In the previous chapters we have provided a background about the different previously proposed
approaches dealing with forensics and log analysis, and introduced the Windows logging system and
the Windows events and processes along with the log functions we will use. Having the necessary
building blocks, we now demonstrate how the logs can be modeled. Information stored in logs of
8 computer system is of crucial importance to gather forensic evidence of investigated actions or
attacks against the system. Analysis of this information should be rigorous and credible, hence
it lends itself to formal methods. We prop;ose a model checking approach to the formalization of
the forensic analysis of logs. In this chapter we begin by presenting some basic definitions, then
we proceed to explain our formal framework and demonstrate its use through examples. Proof of

fitness, soundness and completeness are provided in the appendix.

5.1 Definitions [1]

A multi-sorted signature ¥ is a pair < S,F >, where S i3 a set of sorts and F is a set of operator
symbols. For each operator symbol f, the function arity : F — N maps f to a natural number
called the arity of f. Moreover, for any operator symbol f € F of arity n, we have the functions
dom(f) € S” and cod(f) € S, where §° = §, S! =S, and S"*1 = S x §". For an operator symbol f,
where dom(f) = S; X Sz... x Sy, and cod(f) = S, f is called an operator of sort S and we write
f:81%x8S2...x S, = 8. In the case where arify(f) =0, and cod(f) = S, f is called a constant
symbol of sort S, the set of constants of sort S is written Cg. Also, for each sort S, we define an

infinite set Xs of countable elements called variables of sort S, such that XsNCs = 0. For a certain

signature X, we define the set T (S, X) of free terms of sort S inductively as follows (the symbol

73

‘=’ is for logic implication):

(XsUCs) C T=(S,X)
f:.S'1 XSz... XSn—>S=>f(t1,...tn)€Tz(S,X)

where each t; is a term of sort S;

The set Tx(X) of free terms over the signature ¥ is defined as Uses T=(S, X). The set of ground
terms Ty C Tx(X) includes all terms that do not contain any variables. |

An algebra A of a signature £ (called a E-algebra) is a pair < A,F4 >. The I-algebra A assigns
to each sort S in the signature ¥ a set Ag called the carrier of sort S, where A = Uses As. Also for
each operator symbol f: Sy xS;...xS, = 8, A assigns a function f4 : Ag, x Ag, ... x Ag, — Ag,
F 4 is the set of all functions f4. A homomorphism is a function between Y-algebras that reserves
their structure. If A and B are two S-algebras having the same signature, h : A — B is a called a

¥-homomorphism iff:

Vf € F.h(falai,az,...a,)) = fe(h(a1), h(az),... h(an))

A X-algebra provides an interpretation for a certain signature, where each sort is interpreted as a set
and each operator symbol as a function. The free term algebra 75(X) associated with a signature
¥ is a special kind of -Algebra in which each carrier set Ag of the sort S and each function

Sryx) 1 As, X Ag, ... X Ag, — Ag are defined as:

Vi e Tg(S, X) &>t € Ag

CImoo(tutz, .. t0) = fti, te,.. . te)

where, t; € Ag,, i.e., each term is taken to be its own interpretation

The term algebra 7 can be obtained from 75(X) by removing any terms that contain variables.
A substitution 8, : Xg — Tg(S,X) is a mapping from variables to terms of the same sort. A
ground substitution maps variables to ground terms. A substitution is generally extended to a

homomorphism in the following way:

0; : X5 — Tx(S, X) is extended to
é;c : TE(S’ X) it TE(81 X)
0z (c) = ¢ where c is a constant

e;(f(tl, ta,:.. tn)) = f(é;:(tl): o;'(t2)7 ree é—z(tn))

74

Usually we write 8, for 6,. As a simple example, consider the signature
< {User, File, Bool}, {CreateFile, DeleteFile} >, where CreateFile : User — File, and DeleteFile :
User x File — Bool. Now suppose we have the constants u;,us of the sort User and ly,13 of the sort

File, so we can have the terms CreateFile(u;), DeleteFile(uy, CreateFile(u1)) [1]

5.2 Formal Model

In this section, we propose a model for logs that will be used for our analysis. Analyzing the model
amounts to a model checking problem where we express desired model properties using a logic that
will be detailed below. The tableau-based proof system [1] of the logic can be further developed
into a model checking algorithm. We view a log as a sequence of log entries, each entry consists of
a certain term ¢ € Ty, [1]. The signature ¥ is chosen such that each event monitored by the logging
system cﬁn be represented as a term t € Ty. We define the log model L as a finite sequence over
Ts, ie., L € Ty. In other words, the log model is a sequence that represents logged events in the
system ordered temporally. Graphically, the log model is é. trace whose edges are labeled by terms
of Tx. However, many systems may have more than one log, where each log is dedicated to a certain
category of events. Moreover, we may be faced by situations where it is necessary to inspect logs
from different machines. For instance, in a computer system, one log can monitor operating system
events such as file backup while another log can monitor security related events. We assume that,
in the presence of more than one log in the system, all logs are handled in parallel, i.e., there is no
synchronization between logs. In order to model a log system consisting of more than one log, and in
the presence of concurrent actions in the logs, the model becomes a tree. In order to illustrate this,
assume we have a sequence of actions a.b in one log and another sequence c.d in another. Temporally,
we assume that a occurred first then c, then b and d occurred at the same time. The combined
trace of the two logs will be a tree having the followihg traces {a,a.c,a.c.b,a.c.d,a.c.b.d,a.c.d.b},
i.e., we considered the two possible interleavings of the concurrent events b and d. The same idea is
used to construct synchrbnization trees of process calculi. We define the interleaving of two logs Ll.
and Ly to be L ||Ly C (Tg; UTs2)* which represents all possible interleavings of concurrent events
from both logs. Here, we assumed that each log has its own signature. The definition can be easily
genera.]ized» in the case of a finite number of logs. Defined this way, a log system of more than one
log is graphically represented as a tree whose branches are labeled by terms of term algebras. Our
model consists of this log tree along wiﬁh a mapping orig that maps terms to their respective logs.

For instance, in the example above, we have orig (a) = L;. For a sequence s € L, we define s | P,

75

where P is a set of individual logs, to be the sequence obtained‘from 8 by removing any terms ¢,
such that orig (t) ¢ P. We overload the | operator by defining L | P to be the set {s [P | s € L}.
In the example above, we have: L | L; = {a,a.b}, L | Ly = {c,c.d}, and L | {L1, L2} = L. We note
here that L | P is also a tree [1].

5.3 Logic for Log Properties

In this section, we present a new logic for the specification of properties of the log model. The logic
is based on ideas from the ADM logic [66}, with some basic differences. First, ADM is trace-based
while the logic we present is tree-based, therefore we can quantify existentially and universally over
traces. Moreover, this gives us the opportunity to express branching-time properties. Second, the
actions in ADM are atomic symbols whereas the actions in our logic have a structure since they are
terms of a term algebra. The choice of ADM in the first place is motivated by the fact that is based
on modal p-calculus with its known expressive power. Most importantly, the properties we would
like to express are over traces of the log tree model, ADM has all the expressive power we need for

this task including counting properties [66].

5.3.1 Syntax

Before presenting the syntax of formulas, we present the concept of a sequence pattern r. A sequence

pattern has the following syntax [1]:

ru=e¢lar|z.r ax=t| [t] 1)

- Here a represents a term in Tx(X) and has the form ¢ or [¢t]. Intuitively, a represents a term in
the log tree model., where this term is either ¢ or a term containing t. The term [¢t] is defined as ¢
or f(t1,%2,...1y,) such that 3t;.t; = [t]. Here f € X is any function symbol in the signature of the
algebra. The variable z, represents a sequence of terms of zero or any finite length, the subscript
r is added to avoid confusion with variables x of the message algebra. The sets of variables and
terms in r are writteh var(r) and trm(r) respectively. Moreover, for any pattern r, the symboi rli '
represents the variable or move at position 3 of r, where i € {1,...n}.

We define the substitution 6, : var(r) — T3; that maps variables z, in a sequence pattern to
sequences of terms, this is not to be confused with the substitution 6, that maps variables inside

messages into terms of Tx(X).

76

We define the predicate match(o, r,6,,, 8,), which is true when a sequence ¢ = $1.82...8y in

the log tree matches a pattern r, € is the empty sequence:

match(e, ¢,0,,,0,) = true
match(o, €,0,,,8,) = false if s#e
match(o, a.r,0,,0;) = (81 = amm) A match(sz ... s,,7,0,,8,)

match(o, z,.1,0m,6,) = 3j < n. (2,0, = 31...8;) Amatch(sjy1...50,7,0m,6;)

A substitution 6 : R — Ty, from patterns to sequences of terms, where § = 0, U8,, is defined as

follows:
0(e) = €

8(a.r) O (a).0(r)
0(zrr) = O.(x,).0(r)

In the above defintions, we follow the usual notation for substitutions and write r for 6(r). From
the definitions of of the predicate match and the substitution above, we notice that the condition
for a match between a pattern and a sequence is the existence of one or more substitutions 8, we

can therefore write the predicate as match(a, -, §).

The syntax of a formula ¢ is expressed by the following grammar:

pu=Z|-w|lpiApz|[rn P rie|vZe (2
We require the following two syntactic conditions:
o In [ry & ry), Vi (r1]i € var(ry) & rili = rali) A (r1)i € trm(ry) & r1)i = roli Vol = ®).
¢ In vZ.p, any free Z in ¢ appears under the scope of an even number of negations.

The first condition above means that r; is obtained from r; by replacing some of the terms of
71 by the dummy symbol ®, where §(®) = ® . This condition is necessary to ensure that 18 and
r20 have the same length. Hence, we can .replace r16 by r20 and still get a tree, which is written
L" = L[rz0/r16], where L is the tree model of the log. The second condition is necessary for the
semantic interpretation function as will be explained in the semantics section.

Intuitively, the formula [r; % 9]y is true if there is a sequence in the log tree that matches r;

and when modified to match rp will satisfy . The rest of the formulas have their usual meaning in

modal p-caleulus [67).

7

5.3.2 Semantics

A formula in the logic is interpreted over a log tree. Given a certain log tree L, a substitution 8, and
a an environment e that maps formulae variables to sequences in L, the semantic function [¢]f

" maps a formula ¢ to a set of sequences S C L [1].

(2] = e2)
[~} = L\[¢)¢
[einel = [e)n[e]?

[%rz]go]f {o € L | V6. match(o,r,6) = 0’ € [&p]f'}
where ¢’ = 120 and L' = L{r.0/r,6]
[vZo) = USSLISCIelin.q}

From the semantic equations above it can be seen that the meaning of the recursive formula
vZ.p is taken to be the greatest fixpoint of a function f : 2% — 2, where f(S) = [¢]f[z»-. s+ The
function f is defined over the lattice (2£, C,U,N), the syntactic condition on ¢ (X appears under the
scope of an even number of negations) ensures that f(S) is monotone [67] and hence has a greatest
fixpoint.

We use the following shorthand notations:

(w1 Ap2) = o1V
piVyr = @1 =2
S P = (n + r2)p
wZ~p[-Z/Z] = pZ.y

We also define ¥Z.Z to be tt, where [tt]f =L and pZ.Z to be £f, where [££]f =@. In the

following, we prove some important results regarding the logic.

Lemma 5.3.1 [¢[¥/Z11¢ = [¢ 1, 1,15

The proof is done by structural induction over ¢.

proof

Base case: ¢y =2Z
[v/21 =191

We demonstrate two cases and the other cases can be easily proved:

78

Case: ¢ =vZ.¢’ and X is free in ¢
[el/X11 =S S L | S C o'/ X] 1505}
By induction hypothesis:
G - C 21
Lelv/ X1 =US S LIS S0 Ny gru o,)
Since ¥ does not contain Z as free variable, which can be assured by renaming of the bound variable
Z, we have:
G _ L
Lele/X112 =UIS S L1 S S [9W/X 15, g o)
g _ L
[(p[¢/X] Be - ﬁ ‘PBe[xH['[’Bf]

Case: ¢ = [r1 P 1)y’
[¢[/2))¢ = {o € L | v8.match(s,r1,0) = o’ € [¢'[v/2]]}
By induction hypothesis:
[olg/2]) = {o € L | V6. match(o,r1,0) = o’ € [¢/ Vo g0}

g _ L
As a result, we have [vZ.p]g = [plvZ.0/Z]]g This follows from the fact that [vZ.¢]lg =

[0)eizry, where T=U(S C L | S C [izg) = [vZ0)C.
We can now prove that the semantics of the expression uZ.p defined earlier as -wZ.~p[~Z/Z]

is the least fixpoint of the function f S)y=1l¢]}i’[28]

L\U{S C L|SCl-¢[-2/2])z.5)
L\U{SCL|SCL\[¢}*

e[z[-z]:(z»-.sll}

- L\U{sngSQL\hP]f[z»L\Sl}

[-vZ--2/2])¢

1l

For any set of sequences S C L, let $¢= L\ S. By De Morgan laws, for any two sets A and B:
(ANB)°*=A°UB°, (AUB)° = A°NB°, AC B= B° C A°.

(UIL\S S L| S S (19)izms)D*
UL\ S°C L | [o }izaseg € S°
= NUL\S S L|[¢)z.5q S S
NS¢ S L] [¢Tezsq S 5

[-~vZ.~[-Z/2] }

i

I

79

Moreover, we investigate the semantics of the the expression (r; o r9)¢ as defined above:

[l % o]~ 19

{o € L'| -v8.match(c,r1,0) = o’ € L\ [tp]f’}
= {o € L] -V8.match(o,ry,0) => -0’ €[y]f')}
{o € L | -V8.~(match(o,r,0) Ac' € [y]f’.o)}
{o €L|39.(match(o,r,8)Ad’ €[y Mx,o)}

[{ri9m)pl?

i

In the derivation above we used the sequent ¥ = - F (¥ A), which can be easily proved by
propositional calculus. We also used the fact that for any set of sequences §, SN(L\ S) = 0. It is
worth noting here that the semantics of (r; 9 r3)¢ is consistent with the definition of the modality

() from modal p-calculus.

5.3.3 Tableau-based Proof System

Before we present the rules of the tableau, we define the immediate subformula relation [67] <; as:

@ <1 —p @ <1 [r Py
vi<1pe1Ape 1€{1,2} @ < vZ.p

We define < to be the transitive closure of <y and < to be its transitive and reflexive closure. A
tableau based proof system starts from the formula to be proved as the root of a proof tree and
proceeds in a top down fashion. In every rule of the tableau, the conclusion is above the premises.
Each conclusion of a certain rule represents a node in the proof tree, whereas the premises represent
the children to this node. In our case, the proof system proves sequents of the form H oo e€ o,
which means that under a set H of hypotheses and the symbol b, then the sequnce o satisfies the
property ¢. The set H contains elements of the form ¢ : vZ.p and is needed for recursive formulas.
Roughly, the use of H is to say that in order to prove that a sequence o satisfies a recursive formula
rec, we must prove the following: Under the hypothesis that o satisfies @c, then o also satisfies
the unfolding of re.. We also define the set HrvZ.p={c € L|o:vZyp € H}. The use of H,

80

and b will be apparent after we state the rules of the proof system:

R H,blF o€y
B HIb{,t_-bi-oego
y 0, 0 €3 Ao
=b
Ba H,bll—aewl H,bgFUE(pQ by x by
R HbFoevZy oivZe ¢ H
v H’U{a:uZ.go},bl—-aEcp][uZ.go/Z] vae
Ry Hbkoein s rlp Condition

& & .6

Where, H'=H\{o':T |vZ.¢ <T}
&L =Hblrbiep
V8; » match (o,74,6;)
condition =< A by xby...x b, =b
A n>0
The first rule concerns negation of formulas where b € {¢, ~} serves as a “memory” to remember
negations, in this case ep = . We define ée =€, €7 = =€ = -, and - = e. Moreover, we define
€X€=¢ €X=-Xe=-,and - x = = -, The second rule says that in order to prove the
conjunction, we have to prove both conjuncts. The third rule concerns proving a recursive formulas,
where the construction of the set H, via H’, ensures that the validity of the sequent H,b+ o € vZ.¢
is determined only by subformulas of ¢ [67). The fourth rule takes care of formulas matching
sequences to patterns. Starting from the formula to be proved at the root of the proof tree, the tree
grows downwards until we hit a node where the tree cannot be extended anymore, i.e., a leaf node.
A formula is proved if it has a successful tableau, where a successful tableau is one whose all leaves

are successful. A successful leaf meets one of the following conditions:
. H,el-oéZanda’G[ZBg.
e H-FoecZando¢[Z].
e HeloevZypando:vZpeH.
¢ Hielo€[r1 % r)pand {oc€L|30. match (0,71,0)} = 0.

In the next section, we prove that any formula ¢ has a finite tableau and that the proof system

is sound and complete.

81

5.3.4 Properties of Tableau System

We would like to prove three main properties, namely the finiteness of the tableau for finite models,
the soundness, and the completeness [1]. Soundness and completeness are proved with respect to
a relativized semantics that takes into account the set H of hypotheses. The proofs are shown in
Appendix: Proofs. The new semantics is the same as the one provided above for all formulas except

for recursive formulas where is it defined as:

[vz.e Bf'H =(v[e];’g..,sUs/]) us’
where, §' = H PvZ.p

In the equation, the greatest fixpoint operator is applied to a function f(S) = [¢]f[’zeH 5] Whose
argument is S U S’. Since the function is monotone over a complete lattice, as mentioned earlier,
then the existence of a greatest fixpoint is guaranteed. We now list some results regarding the proof

system. The detailed proofs are provided in the appendix.

Theorem 5.3.1 Finiteness. For any sequent H,b - o € ¢ there exists a finite number of finite

tableauz.

The idea of the proof is that for any formula at the root of the proof tree we begin applying the
rules R, R\, Ry, and R,. The application of the first three rules results in shorter formulas, while
the application of the Rv results in larger hypothesis sets H. The proof shows that shortening a
formulas and increasing the size of H cannot continue infinitely. Hence no path in the tree will have
infinite length. Branching happens in the proof tree whenever we have an expression of the form
¢1Apaor [r1 7). Finite branching is guaranteed in the first case by the finite length of any

expression and in the second case by the finiteness of the model.
Theorem 5.3.2 Soundness. For any sequent H,b\- o € ¢ with a successful tableau, o € [¢]:”H

The idea behind the proof is to show that all the successful leaves described above are valid and

that the application of the rules of the tableau reserves semantic validity.

Theorem 5.8.3 Completeness. If for a sequence 0 € L, o € [¢]f H then the sequent H,b -

o € ¢ has a successful tableau.

The proof relies on showing that we cannot have two successful tableaux for the sequents H, bl o € ¢

and H,bt o € —p.

82

5.4 Modeling Traces

Now, after we have provided the fundamental concepts, we can present our event traces. The traces
presented here are a sample of the traces mostly used, and using them we can build other traces. In
the following, we identify a set of sample processes such as start-ups, locking/unlocking a session,
and changing a policy. We first present the steps required, through functions, for each process to
take place. The return value of the functions is of type boolean, returning either true or false.
Given these functions we show how they can be used to model traces from multiple log files. The
functions/steps required for each process will be discussed prior to presenting the functions. More
processes could be found in the Appendix section of this thesis.

To begin with, we define a list of sorts which will be used in the algebra to specify details for the

events/functions in concern, table 15.

Initializing Services at Startup

When a service starts, as mentioned previously, it has to start under an account to use its
privileges. What should appear in the logs is a successful log on, followed by a privilege assignment
for that log on. Then the service is executed and a ProcessBegin appears in the security log, followed
by a service start which can be logged either in the application log, or the system log, depending on
the service. For the complete listing of this process please refer to Appendix: Initializing Services

at Startup.

< SEC > SuccessfulLogon(NT Authority \ LocalService, sess; Advapi, 5)

< SEC > Privilege Assigned(NT Authority \ LocalService, {Se Audit Privilege,
SeAssignPrimaryTokenPrivilege, SeChangeNoti fyPrivilege}, s)

< SEC > ProcessCreated(NT Authority \ System, sess;, serviceName, pidz,c : \windows\
system32 \ services.exe)

< SEC > ProcessTokenAssignement(NT Authority \ System, sess1,c : \windows\
system32.\ services.exe, serviceName, pid.., s)

< APP > ServiceStart(serviceName)

Using the formal framework, we model this trace as explained above. However, the events might not occur
all consecutively due to multi-threading in Windows. The order of events is what we are mainly looking for,

if another unrelated event(s) interrupts sequence but the order remains the same, the signature is still valid.

Sorts Constants Variables
file fl)f?)-“’fn f-’tsflhfl;"'
user Us, Uye o ey Un Uz, Uy, Uz, ...
object 01,02,...,0n 02,0y, 0z,. ..
objectiD olD1,0ID2,...,0IDn | 01Dz,01Dy,0ID,,...
processName PR, P2, .oy Plin Plia, Plly, Pz, .. .
processiD pID1,pIDy,...,pIDy | pIDg,pIDy,pID,,...
service 81,82y.++48n 82,8y, 8zy. ..
service_type st1,8t2,...,8tn 8tz,8ty,8tzy. ..
registry_key 13725003 n TzyTysTzyees
operation ODREAD; OPWRITE OPzy 0Py, OPz; - +.
executable ej,ea,...,en €z,€y,€zy. ..
privilege PUADMIN DUz, PUy, PUzy ...
Access ACN_Allowed, aCzy GCy, GCzy . -+
GCALLOWED
port PtPoRT.NO Ptz,pty, ptz, ...
protocol procupp, procz, procy,
ProCTCPy .y lUn procz,...
ipAddress p1,1p2,. .. ,i0n 1Dz, iPy, Dz, . . .
sourcelP sip1, 8ip2,...,8ipn 8Pz, 81Dy, 81Pz, . .
destinationiP dip,dip2,...,dipy dipe, dipy, dip,, ...
soucePort 8P1,8P2,...,8pn SPz, 8Py, 8Pzy -
destinationPort dp1,dp2,...,dpy dpz, dpy, dps,. ..
dateTime dty,dta,... dt, dtz, dty,dt.,...
logonType UINTERACTIVE, itz lty,lt,,...
ltremore, ...
logoniD UDy,UDsa,...,lIDy | UDg Dy UD,...
logonProcess Ips,lp2,...\lpn Ipz, lpy, lp; . ..
logonSession 8e881,8€882,...,5€83n | 8€83:,8€88y,8€88; ...
domain dy,da,...,dy dz,dy,d.... -
size/type stpop... Stz,8ty,8.1s,...
args G1,02,...,8n Gz, 8y, 0z,. ..
error €r1,€r2,...,€ry €Tz, €Ty, ers ...
bool Tr, Fl

bz,by,bz, see

Table 15: Sorts of the Algebra

Hence the event z represents any unrelated event that might interrupt the sequence as shown below:

(z1.(SEC)) Success ful Logon(uz, se382,Ipadv, itservicE)-2.(SEC)Y) Privilege Assigned(us, ax8srvc, 8).
z3.{SEC)) ProcessCreated(us, sess1, piisn, pids, pPisrve) 4.
{SEC)) ProcessTokenAssignment(us, $€s81, Pisrvc, Pon, Pids, 8).T5.
{APP) ServiceStart(pngn).xe &)tt

Where:

U = NT Authority\ System

Uz = NT Authority\ Local Service

us = NT Authority\ Network Service

QTS srye = {SeAuditPrivilege, SeAssignPrimaryTokenPrivilege, SeChangeNotifyPrivilege}
PNisrve = c:\windows\system32\services.exe

Plisn = serviceName

peay = ADVAPI

ltservice = Service logon, type = 5

Note about services: if there is an event in the system log or the application log of a services being
started and no process begin event in the security log for the same service at the same time then
this is a suspicious occurrence. It means that the security log has been tampered with. However,

this is not applicable for eventLog startup event in the system log.

Start-up

First the LSASRV.dll authentication package is loaded. NETWORK SERVICE account logs on
and is assigned the required privileges. A set of authentication packages are loaded starting with Ker-
beros.dll and MSV1.0.dll, followed by schannel.dll which is & TCP/SSL Security Provider Library,
wdigest.dll which is the Digest Authentication Protocol library and is used for HT'TP and SASL
(Simple Authentication Security Layer), and finally setuid.dll Winlogon and Winlogon\MsGina, reg-
ister with the Local Security Authority KSecDD, Kernel Security Support Provider Interface, also
registers with the LSA SAM loads a notification package scecli (Security Configuration Editor Client
Engine). After logon is initialized, the services begin to load and an instance of svchost.exe is cre-
ated by services.exe and run under services.exe privilege (by being passed a token from services.exe).
Then, depending on the type of service and the privileges that it should run under, we should see an
account logon followed by the service created. The accounts that logon are the local services account

and the network services account. The execution of the process is shown in Appendix: Start-up.

- 85

Clear Logs

Windows logs an event called AuditLogCleared that indicates when a user deleted the security log.
The easiest and most straight forward method to clear the logs is through the Microsoft Event
Viewer, otherwise one has to use a program which will clear the logs manually and not through
Windows. In such a case, Windows will not log if the the events have been cleared. However, it is
easy to know if the logs were cleared.

Clearing the logs through Microsoft Event Viewer first triggers the event AuditLogCleared. The
account used to clear the logs is always NT Authority \ system the session number is a variable
and in this case we use 020, 0x3E7. Then a PrivilegeObjectOperation is triggered for the services
process under the user Elabeth\ Administrator where Elabeth is the domain of the account used for
our experimentation. This operation requires SeSecurityPrivilege which is the privilege required
for reading and clearing the security log. It gives access to manage the computer auditing and to

manage the security log. Therefor, in the logs we will see these two events:

AuditLogCleared(NT Authority \ system, “0z0,0z3E7")
PrivilegeObjectOperation(Elabeth \ Administrator, services.eze, pidseo,
SeSecurityPrivilege, s)

These two events are modeled through our proposed algebra as follows:

(z1.{SEC)) AuditLogCleared(us, sessy).xa.
z3.(SEC)) PrivilegeObjectOperation(uy, s€s81, Parve, Pl Dggo, TT).z4. & €)tt

Where:

uy = Elabeth\ Administrator

U2 = NT Authority\ system

sessy = Logon session, in this case “0z0,0z3E7’

Plsrve = c:\windows\system32\services.exe

pU1 = SeSecurityPrivilege

pIDggp = Process ID given at the time the process was created
Tr = Boolean indicating a successful event s

Session Unlocking

Logon Type 7 identifies a workstation unlock event. When a user locks the session on her workstation,

86

or when a password protected screen saver is triggered and the user returns to her station to continue
working, she has to logon again. This event is logged as a logon attempt with logon type 7.

If a screen saver is triggered, we will see the following events preceeding the session unlock event:

ProcessCreated(NT Authority \ system, “0z0,0z3E7", ¢ : \windows\
system32 \ logon.scr, pidaggs, winlogon.exe)
ProcessTokenAssignment(NT Authority \ system, “0x0,0z3E7”, ¢ : \windows\

system32 \ winlogon.exe,c : \windows \ system32 \ logon.scr, pidaggs, 8)

Right before the session unlock events we will see that the screen saver has been stopped. Since
stopping the screen saver is a user initiated action, a user either presses any button or moves the
mouse, we will see that the screen saver has been stopped by the user, although it was started my

the system. Following this event is the session unlock process as follows:

ProcessEzited(Elabeth \ Administrator,c : \windows \ system32\
“logon.scr, pidaggr)

LogonAttempt(NT Authority \ system, administrator,
MICROSOFT AUTHENTICATION PACKAGE.V1.0,s)

Success ful Logon(Elabeth \ Administrator, “0x0,0x14CCAD2” ,user32,7)

Privilege Assigned(Elabeth \ Administrator, {SeChangeNotifyPrivilege,
SeBackupPrivilege, SeRestore Privilege, Se Debug Privilege})

UserLogof f(Elabeth \ Administrator, “0z0,0z14CCAD2",7)

Upon analyzing this session unlock logon, we realize that there is a user logoff right after the logon.
This does 'not‘ indicate that the user actually logged off. When the user unlocks the session we
will always see these four events (disregarding the stopping of the screen saver). What is yet more
interesting is that the logon session assigned in this logon is different than the logon session assigned
at initial logon, but after the logoff the initial logon session is used and not the new one. This is
‘ better illustrated by an example: a user comes in to her office in the morning, she turns on this
computer and logs on. When he logs on, she is assigned a logon session, let’s call it session 1. The
user then goes to get a coffee and chats with her co-workers. When she returns to her computer,
she finds that the password protected screen saver has been started. She unlocks her session and is
assigned logon session 2. Now she wants to start doing her job, she opens outlook and starts going

through her emails. Now in the logs, we will see outlook has been opened with session 1 and not

87

session 2. This is simply because session 2 was only used to unlock session 1.
Modeling the session unlocking using our algebra is as shown below, note that since all the events

are from the security log, we denote this by placing (SEC)) in the beginning for the trace:

(SEC)(z1.ProcessCreated(usy, sess,, PMiogon Pid29g2, PRwiniogon)-L2-
ProcessTokenAssignment(ua, sess2, Puiniogon PRiogon, TT).-Z3.
ProcessExited(u1, pniogon, pidagez).T4.LogonAttempt(ug, u1, Ippms_avrH, Tr).xs.
Success ful Logon(uy, sess1, Ipyseraz, 7).z6. Privilege Assigned(uy , pv;).z7.

UserLogof f(Elabeth \ Administrator, sess1,ltspss.ynt)-Ts. & €)tt

Where:

uy = Elabeth\ Administrator

Uy - = NT Authority\ system

sessy = Adminisrator logon session, in this case “0z0,0x14CCAD2”
sesssy = System logon session, in this case “0z0,0z3E7”

Plsrvc = c:\windows\system32\services.exe

Pliogon = ¢:\windows\system32\logon.scr

PNwinlogon = ¢:\windows\system32\winlogon.exe

Ilpms_avte = MICROSOFT._AUTHENTICATION_PACKAGE_V1.0 logon process

Ipusers2 = User32 logon process

ltspssunt = Logon type 7 which is seesion unlocking

v = {SeChangeNotifyPrivilege, SeBackupPrivilege, SeRestorePrivilege,

SeDebugPrivilege}

Scheduling and Executing a Task
Neither of scheduling or executing a task can be determined by one event. The process of scheduling
a task is logged as an explorer process creating another explorer windows. An explorer windows
does not prove or disprove anything, but the events that follow narrow down the possibilities. When
you schedule a task, the task needs to execute under some account, for that to happen you need to
provide the password. Thus we will see a logon attempt by the system to which ever account the
task should execute under. Assuming that we want to schedule a command prompt task to open
under administrative privileges. So we will see a logon attempt by the system to the a;dministratot
account, followed by a network logon to the administrator account followed by a logoff. Now what

task has been created is never shown. We can just deduce that there is a big likelihood that a task

88

has been created. These events are shown below:

ProcessCreated(Elabeth \ Administrator, “0z0,0x200A7”, ¢ : \windows\
explorer.exe, pidy23z, ¢ : \windows \ ezxplorer.eze)

ProcessExzited(Elabeth \ Administrator, “020,02200A7", ¢ : \windows\
explorer.exe, pid;230

NetworkLogon(Elabeth \ Administrator, “0z0,0z18 EC33A2”, Elabeth)

PrivilegeAssigned(Elabeth \ Administrator, SedhangeN oti fyPrivilege,
SeBackupPrivilege, SeRestorePrivilege, Se Debug Privilege})

UserLogof f(Elabeth \ Administrator, “0z0,0z18 EC33A2”)

Modeling the session unlocking using our algebra is as follows:

(SEC))(z1.ProcessCreated(us, s€381, Phesplorer, Pith1232, PRespiorer)-L2.
ProcessEzited(u1, 3€381, Peapiorer, Pid1232).T3. NetworkLogon(u,, sesss, d).x4.
Privilege Assigned(uy, pv;).zs.Success ful Logon(uy, sessy, Ipugersz, 7).Z¢.

Privilege Assigned(uy, pv;).z7.UserLogof f(uy, sessy).xg. 4 €)tt

Where:

Uy = Elabeth\ Administrator

8essy = Administrator logon session, in this case “0x0, 0x200A7”

sessy = Network logon session, in this case “0x0, 0x18EC33A42"
Pliezplorer = C:\windows\explorer.exe

dy = Logon domain, in this case Elabeth wich is our testing domain
pv1 = {SeBackupPrivilege, SeRestorePrivilege, SeDebugPrivilege,

As for task execution, we have a more accurate sequence of events especially since we can correlate
with the scheduled task log. Continuing with the example given above, the scheduled task execution
begins by a logon attempt by the system to the administrator account. This is followed by a

successful logon to the administrator account through logon type 4 which is a bach logon used for
scheduled tasks. Then the scheduled tasks, the command prompt process is created. Finally, the

started task is logged in the scheduled tasks log. Note that whenever it is not indicated the events

89

pertain to the security log.

LogonAttempt(NT Authority \ system, Administrator,
Microsoft_Authentication_Package_V'1.0)

Success ful Logon(Elabeth \ Administrator, “0x0,018 E62458”, Advapi, 4)

PrivilegeAssigned(Elabeth \ Administrator, SeChangeN otifyPrivilege,
SeBackupPrivilege, Se Restore Privilege, Se Debug Privilege})

ProcessCreated(NT Authority \ system, “020,0z3E7”, cmd.exe, pid;3ss, suchost.exe)

< SCH > TaskStarted(cmd.exe)

Modeling the session unlocking using our algebra is as follows:

(x1.{SEC)) Logon Attempt(u1, lpms_avTH).2.
(SEC)) SuccessfulLogon(ui, sessy, ady, loatch)-T3-
{SEC) PrivilegeAssigned(us, pv;).z4.
(SEC) ProcessCreated(uy, sess2, pliema, Pidiass, Pavchost)-T5-
{SCH)TaskStarted(ur, pnema).z6. b €)tt

Where: v

w = Elabeth\ Administrator

ug = NT Authority\ system

8€es8s; = Administrator logon session, in this case “0z0,018E£62458"

sessy - = Network logon session, in this case “0z0,0z3E7"

IpMs.avry = MICROSOFT_AUTHENTICATION_PACKAGE_V1.0 logon process
!Padv = ADVAPI ' '

Woaten - = Logon type 4 known as Batch logon

Plemd = cmd.exe

Psvchost = svchost.exe

pv1 = {SeChangeNotifyPrivilege, SeBackupPrivilege, SeRestorePrivilege,

SeDebugPrivilege}

Windows Shut-Down
When the user hits the command to shut down his computer, the command executed requests a
SeShutdownPrivilege, this appears as privilege object operation in the security log. Following this

request is the user initiated logoff event. This shows us that the system was turned off and not

90

crashed for example. In the firewall logs we should see TCP connections being closed. Following
there should be at least one, if not a series, process exit event in the security log. Then Windows
shut down event is logged in the security log indicating that all logon sessions are being terminated.

The last event to be logged is in the system log and it indicates the Event Log Service being stopped.

< SEC > PrivilegeObjectOperation(user, process, SeShutdownPrivilege, 3)
< SEC > UserInitiatedLogof f (username)

< FWL > TCPClose(localIP, ~,—,—)

< SEC > ProcessExited(user, sess:, processName, pidz)

< SEC > WindowsShutDown()

< SY 8 > ServiceStopped(“EventLogService”)

Note the dashes (-) in TCPClose, this indicated that we do not care what the value of that field
is. When representing this in the algebra we use variable, as noted in table 15. Hence the Windows

shut-down trace is represented as follows:

(z1.(SEC)) PrivilegeObjectOperation(uy, pny, pv1, Tr).xs.
(SECYUserInitiatedLogof f(u1).zs.
{FW L)YTCPClose(sipy, dipg, 8z, sporty, dport,, s.1,).x4.
{SEC) ProcessExited(uy, sessy, png, pidy).xs.
(SEC)WindowsShut Down().zs.(SY S)) ServiceStopped(s;).z7. b €)tt

Where:

uy = user pny = process

PNy = any process U1 = {SeShutdownPrivilege}
Tr = Boolean indicating a successful event 81 = Event Log Service

sipy = the source IP is locallP dip, = any destination IP

8Py = any source port dp; = any destination port
sport, = any source port dport, = any destination port
sty = any size sessy = any logon session

91

Chap‘ter 6

Correlation of Registry and Log

Files for Forensic Analysis

6.1 Introduction

Since Windows 95, Microsoft started storing information about the operating system and installed
applications in a single repository, the registry[68]. Prior to that, Windows was using .ini files, but
as more and more applications were installed, managing all the .ini files was near impossible. For
example, an application’s .ini file is not necessarily placed in its home folder. By introducing the
registry into the operating system, Microsoft provided a solution for storing all critical system infor-
mation in a centralized location. The registry became Window’s hierarchial database[8] containing
information such as system configurations, hardware devices, applications and services, user data
and profiles, temporai'y data, and recently used files. The registry is composed of generally five root
keys, called hives. Each hive begins with HKEY, which is an abbreviation for Handle to a Key. Of
the five hives, there are two main hives which are: HKEY Users and HKEY Local_machine. The
rest of the keys namely HKEY _Classes_Root, HKEY Current_User, and HKEY _Current_Config, are
duplicates of the two main hives used for quick access and performance improvement.

Needless to say, all the information that can be retrieved from the registry is extremely useful for
a forensic investigation and even to system and security administrators. However, our main focus
is how this data be correlated with logs to leverage the forensic analysis. The fact is, information
gathered from the registry can be used to validate logs and provide a better understanding of the

system. What we mean by validation here is that events occurring in the log files can be verified

02

through the registry to determine if the logs have been tampered with. When a user carries out
some kind of malicious activities on a system, the first thing that comes to mind is covering any
incriminating traces. The easiest and most straightforward way is deleting or modifying the logs,
and maybe the registry. But unless the attacker is extremely careful and knows the system inside
out, she is bound to leave some footprints, especially since the registry has duplicate key entries.
Even using anti-forensic tools, some evidence is left out as shown in [69]. Even when an application
is uninstalled, it is very rare that the uninstall does a complete job of removing all the entries in
the registry related to that application[8]. Thus correlating multiple sources of evidence can help
reconstruct the attack. ‘

Furthermore, since the registry stores systems information, we can use that fact to construct
a model of the system determining regular events and procedures. Thus this suggests the use
of anomaly-detection techniques, whereby, models of normal behavior are constructed and subse-
quently checking observed behavior against these models. The models we construct are rules and
relationships such that when they are not satisfied, an alert is triggered indicating an anomaly.

As far as related work in this area, some minor work has been done on the registry, from a
forensic standpoint, mainly motivating further research and the significance of the registry. A paper
presented by H.Cavery [70] briefly explains the structure of the registry ahd gives some examples of
the type of information that can be found in the registry. Similar work has been done in [71], which
gives an iﬁsight to the potential use of the registry within an investigation related to the internet
usage. The latter also discusses the tools that are useful for such an investigation. However, in both
papers, the work presented was merely an insight. They do not dig into details, but rather state
some examples a,_nd hives that can be of interest. ‘ ’

Another paper that instigates work on registry, and more importantly correlation, is the work
f)resented in [69]. This work motivates registry analysis since it shows that even with counter-forensic
tools some evidence remains in the registry. The author analyzes 13 commercial counter-forensic
tools and shows that there is significant evidentiary data. The study presented does not revolve
around the registry only, but it shows the residual data in different areas after using counter-forensic
tools. In all cases the registry contained some evidence of recent usage.

There has been some work done in the area of anomaly detection using the Windows registry like
in [72]. The registry was used to detect malicious software by using a host-based IDS for Microsoft
Windows. The Registry Anomaly Detection (RAD) system presented monitors the accesses to the
registry in realtime detecting any actions performed by malicious software. Since most system

activities interact with the registry, a sensor was built on the registry and the information gathered

93

was used to detect anomalies. The anomaly detection algorithm is a registry-specific version of
PHAD (Packet Header Anomaly Detection) which was originally used to detect anomalies in packet
headers. In another paper, [73], a comparative study of two algorithms for Windows registry anomaly
detection was conducted. The first algorithm evaluated was the one used in [72]. The second
anoinaly detection algorithm evaluated uses a One-Class Support Vector Machine (OCSVM) to
detect anomalous activities using different kernel functions. The evaluation shows that probabilistic
anomaly detection é.lgorithm performs better in accuracy and computational complexity over support
vector machine implementation under three different kernel functions. The result of this comparative
evaluation is confirmed in [74].

Following in this chapter, we discuss how the registry can be correlated with the logs and how
the data gathered from the registry can leverage log analysis. In some cases we will briefly explain

how the correlation can be implemented providing detailed examples to illustrate our point.

6.2 Correlation Methodology

In this section we present some correlation of the Windows registry and logs. The purpose is to

demonstrate the usefulness of such a correlation and the added value it presents.

6.2.1 Determining the Audit Policy from the Registry

Before we begin analysis and correlation, we must know which logs are available on the system. Most
logs are not enabled by default, even the audit policy for the security log is set to no audit by default.
The audit policy can be determined from the Policy key in the security hive [7). Administrators do
not have access to this key by default since it is in the Security hive. To view this key from the

registry editor, you need to change the permission to have read access. The location of this key is:
HKEY LOCAL.MACHINE \ Security \ Policy\ PolAdtEv
The key value is in the form of:

02211400 04000000 08000000 0C000000 00000000 0£000000 0F 000000 0G000000 07000000

According to Microsoft [7], the value contains seven values: A to G, each being a different policy.

However, the security log has nine categories and not seven, hence the values should be A to I. After

94

Value Category

A Audit System Events

B Audit Logon Events

C Audit File and Object Access

D Audit Privilege Use

E Audit Process Tracking

F Audit Policy Change

G Audit Account Management

H Audit Directory Service Access

I Audit Account Logon Events

Z Determines if the policy is enabled or disabled
Table 16: Audit Categories [7]
Log Type Key Value Data
Scheduled HKLM\ Software\ Microsoft %SysRoot%\Schedlg. txt,
Tasks \Scheduling Agent LogPath %SysRoot%\ Tasks
\Schedig.txt

IPSEC HKLM\System\ CurrentControlSet

\Services\Policy\Oakley EnableLogging | 1
Time Service | HKLM\System\CurrentControlSet

\Services\W32Time\Config | FileLogName | logName
SAM - Acc. | HKLM\System\CurrentControlSet
Lockouts \Control\Lsa SamLogLevel | 1
LSA HEKY\System\CurrentControlSet

' \Control\Lsa\Kerberos LogToFile 1

\Parameters '
Windows HKLM\Software\Microsoft\WBEM | Logging- %SysRoot%\system32
Management \CIMOM Directory \WBMEM\ Logs

Instr. (WMI)

Table 17: Log Files in the Registry (7]

examining the registry, the actual value is in the form of:

0Z 211400 0A000000 — 0B 000000 0C 00 00 00
0D 000000 OE 000000 — OF 000000 0G 0000 00
0H 0600000 01060000 — 07 0000 00

The values of A, B, C, D, E, F, G, H, and I correspond to a number between 0 and 3. 0 meaning

that no audit is enabled for that category. 1 specifies that only success audits are enabled to be

logged. 2 means only failure audits are enabled. Lastly, 3 specifies that both audits and success are

enabled for that category. The categories corresponding to each letter is in table 16.

Other than the security log, there are other logs that can be determined from the registry. Table

17 lists some of the log files that are enabled through the registry and their keys.

95

6.2.2 The Registry as a Log File

The registry keys have a value associated with them called the LastWrite. This is similar to the last
modification time of a file. The LastWrite value can be used to determine last logons, for example,
to correlate with logs to determine any signs of log tampering. Changes to the registry are actually
stored in a log file. Under Windows XP the log files are stored in c:\windows\system32\config. But
as most log files used by the system, they cannot be accessed directly. However, if you export the
registry to a text file using regedit.exe, the last write time and date are exported with it. This can
prove extremely useful if we know the exact or at least the approximate date of an incident. We
can retrieve all the changes made to the registry during that period and compare it with the logs.
Another way to get the LastWrite time is by using a tool such as Keytime.exe [68].

One limitation to the LastWrite time is that you can retrieve the time a key was modified, but
not for the specific values. So unless the Key has one value, you cannot determine which value was
modified. This is where correlation comes in handy. Assume in an investigation you find that the
Run Key has been modified and during the same time there was a File Open event or an Object
Open event in the security log. If that file name is a value in the Run Key, then we conclude that

it was the value that has been modified.

6.2.3 System Startup

-When Windows starts up, the pré‘cedures and order of execution are found in the registry. For
example, which boot file to use, auto start programs, services to be initialized and executed. Using
this information along with some knowledge about windows start up, we can determine exactly what
should be in the log file. For example, assume the registry indicates that there are four applications
and ten services that load at start-up, while the log files shows three applications started and nine
services initialized, this could indicate that the missing application and service might be some kind

of malware or the log file has been tampered with.

Auto Start Locations

Auto start locations are one of the first places an investigator might want to look for any malware
that is set to initialize at system boot up and is running in the background without the user’s
knowledge. This is normally the case for services. A user might never know if a service is initialized

at startup if it is set to run in the background.

96

The auto startup keys are the following:

HKEY _LOCAL.MACHINE\ SOFTW ARE \ Microsoft\ Windows \ Run

HKEY LOCAL.MACHINE\ SOFTW ARE \ Microsoft \ Windows \ Runonce

HKEY CURRENT.USER\ Software \ Microsoft \ Windows \ CurrentVersion \ Run
HKEY CURRENT.USER\ Software \ Microsoft \ Windows \ CurrentVersion \ Runonce
HKEY USERS\ .DEFAULT \ Software \ Microsoft \ Windows \ CurrentVersion \ Run
HKEY USERS\ S —1— 5 — 18\ Software \ Microsoft \ Windows \ CurrentVersion \ Run
HKEY USERS\ S —1-5-19\ Software \ Microsoft \ Windows \ CurrentVersion \ Run
HKEY USERS\ S —1-5-20\ Software \ Microsoft \ Windows \ CurrentVersion \ Run
HKEY USERS\ S —1—-5 —zzz \ Software \ Microsoft \ Windows \ CurrentVersion \ Run

Services

The Services key contains a long list of installed services. However, not all of them might be running.
The list of subkeys under the Services key can easily exceed 200, these are only the Windows services.
The fact that services can run in the background with no need for any user intervention and no
visiual indication that the service is running opens a window of opportunity for malware to operate.
Correlating the Services key with the logs not only serves to ensure the integrity of both sources
of evidence, but also provides a means for determining if any backdoor, for example, is loaded at
startup.
The path of the Services key in the registry is:

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Services

The values of any service in the registry[75] are shown in table 18.
In order to construct a startup model, first we need to get all the services with Start = 2,
then we need to get all their dependencies. These services are set to load automatically and their

dependencies should be reflected in the security log, system log, and the application log.

6.2.4 System Information
Time Settings .

One of the main elements of concern in correlation and analysis is the time stamps. If the system

time is changed, this can cause ambiguity and inaccurate analysis. Thus it is important to check

97

Value

Type

Data

Description

DependOnGroup

DependOnService
Description
DisplayName
ErrorControl

Group
ImagePath

ObjectName

Start

REGMULTISZ

REG_MULTISZ
REG.SZ
REG.SZ
REG.WORD

REG.SZ
REG_EXPAND.S

REG.SZ

REG_WORD

REG_WORD

S 0O B D

20

Specifies zero or more group names. If one

or more groups is listed, at least one

service from the named group must be loaded
before this service is loaded.

(Same as above)

Service description.

Display name of the service.

Ignore: If driver fails to load/initialize,
startup proceeds, no warning message appears
Normal: If driver fails to load/initialize,
startup proceeds, warning message appears.
Severe: If driver fails to load/initialize,
declares startup as failed and restarts by
using the LastKnownGood control set.
Critical: If driver fails to load/initialize,
declares startup as failed & restarts using
LastKnownGood control set. If it’s already
used, stops startup & runs debugging

The group of which a service is a member
Full path of executable & command to execute
If this is a driver, the image name is *.SYS
Contains account name for services or driver
object that the I/O manager uses to load.
Boot: Loaded by kernel loader.

System: Loaded by 1/O subsystem, the driver
is loaded at kernel initialization.

Automatic: Loaded by the Service Control
Manager

Manual: The service does not start until

user starts it manually

Disabled: Specifies that the service should

not be started

A kernel-mode device driver.

A file system driver.

A set of arguments for an adapter

A file system driver service. :
A Win32 program that can be started by the
Service Controller and obeys its protocol. This
type of service runs in a process by itself.

A Win32 service that can share a process with
other Win32 services.

Table 18: Service Values in The Registry [5]

98

the time settings and when was the last time this was modified. The time settings can be found in

the following key:

HKEY Local_Machine \ System \ CurrentControlSet \ Control \ TimeZonelIn formation \ bias
ActiveTimeBias i3 the number of minutes (+ or —) to add to UTC

TimeZoneln formation key also holds data pertaining to any daylight saving quirks

System Crash

Since the registry maintains most of the system information, this information is useful for correlation
in a sense that it provides guidelines for analysis. For example, if the Windows operating system was
terminated unexpectedly, this is logged in the system log. We assume that an investigator is trying
to determine the preliminary phase of an attack, and on his check list is an unexpected termination
of Windows. However, if this option was not enabled, the event will never be logged. The first thing

would be to confirm that this event is set to be logged. This can be confirmed from the following

registry key:

HKEY _LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Control \ CrashControl
KeyValue : LogEvent =1

Environment Variables

The environment key is another key of significant importance. According to Microsoft [76], the
default permissions enable the group 'Everyone’ full access on the system root folder. The system
root is invoked under certain conditions, for example when a user logs on. Thus a malicious user
with minimal privileges can modify the system root and replace a commonly used program by a
malware with the same name. When another user logs on and executes that program, the malware

executes instead with the privileges of that user. Therefore, correlating the environment key:

HKEY LOCAL_.MACHINE\ SY STEM \ CurrentControlSet \ Control \ SessionManager

\Environment

with the events relating to that malware will clarify the origin of the attack. Furthermore, using
the “LastWrite” date and time of that key, we can determine when the environment variable was

modified and locate, from the security log, the user logged on at that time.

99

Changing The Environment Variable

When a single environment variable is changed, the entire key values pertaining to the environment
variables are refreshed. This being the case, it is not possible to determine which environment
variable has been modified from the registry and logs alone. However, we can still determine if
any modification hés been made by correlating the security log and the registry. Since all the
environment variables are refreshed in the registry, the security log will record two privilege object
operations (Event ID 578) for each environment variable, one to delete the value, and one to set the
new value. However, we will not show all the privilege object operations, instead wé will represent

them by only one event for simplicity. The correlation is as follows:

Process Created(EventID 592) :
File name : c: \windows \ system32 \ rundll32.exe
Creator process : explorer.exe
User name : Administrator
LogonID : z (x here represents a constant logonl D)
Privilege Object Operation(EventID 578) :
Object server : SC Manager
PID : the PID pertains to services.exe
User name : Administrator
LogonID : z
Privileges : SeTakeOwnershipPrivilege
Object Open(EventI D 560) :
Object server : Security Account Manager
Object type: SAM_ALIAS
Object name : Domains \ Builtin \ Aliases \ 00000228
File name : c: \windows \ system32 \ lsass.exe

Accesses : AddMember, RemoveMember, ListMembers, ReadInformation

The reason for these accesses is to list the user environment variables.

100

Handle Closed(EventI D 562) :

File name : ¢ : \windows \ system32 \ lsass.exe
Privilege Object Operation(EventID 578) :

Object server : Security

PID : the PID pertains to rundll32.exe

User name : Administrator

LogonID : x

Privileges : SeTakeOwnershipPrivilege

Up till here, these events were only to get the current environment variables. Now to do any
modification we need to get the corresponding privileges these privileges are obtained from the

Network Services account

Success ful Logon(EventID 528) :
User name : Network Services
Logon type : 5 (Service Logon)
Logon process : Advapi
Special Privileges Assigned to New Logon(EventID 576) :
User name: Network Services
Privileges : SeAudit Privilege, SeAssignPrimaryTokenPrivilege, SeChangeNoti fyPrivilege
Process Created(EventID 592) :
File name : c: \windows \ system32 wbem \ wmiprvse.eze
User name : System
Primary Token Assigned To Process(EventID 600) :
File name : c: \windows \ system32 wbem \ wmiprvse.eze
Assigning process : ¢ : \windows \ system32 svchost.exe

User name : System

101

Privilege Object Operation(EventID 578) :
Object server : Security
PID : the PID pertains to rundll32.exe
User name : Administrator
LogonID : z
Privileges : SeTakeOwnershipPrivilege
Registry Key Changed :
Key: H KEY Current.User \ Environment
Registry Key Changed :
Key: HKEY _Local_Machine \ System \ CurrentControlSet \ Control\

SessionManager \ Environment\

6.2.5 User Activity

NTUSER.DAT holds all the registry settings for a user as well as actions taken. The contents of
this file are mapped to the HKEY_USERS\SID registry hive. This registry hive is used to create the
HKEY_CURRENT_USER hive when the corresponding user logs in. However, data found in this hive
is related only to the local user. If for example, the current user created another user, this will not

be reflected in this hive. Such a user activity will be found in the HKEY.LOCAL_MACHINE_SAM

hive.

Creating a User

When a user is created, evidence of this activity will be found in the security log and the registry.
The Security Account Manager (SAM) contains users created in the local domain. Under the SAM
key, there is the Domains\Accounts which contains almost everything regarding users and groups
[8]. This key contains three subkeys: Aliases, Groups, and Users. Under Aliases there are subkeys
for each group. Aliases\Members lists the user IDs for each of the aliases. Aliases\Names lists the
names for each of the aliases. In Windows XP Groups contains only one subkey which is 000000201.
This subkey relates to the None group which contains ordinary users [8]. The Users subkey lists an
entry for each user defined in the SAM. The first two subkeys are created by the system and are
000001F4, administrator account, and 000001F5, the guest account. When a user is created, the
new user data is added into two values, F and V. These values contain information such as group
membership, privileges, passwords, and all other data specified by the administrators [8].

Another subkey in SAM key is Domains\Builtin, which contains the same subkeys as

102

Subkey Name Builtin Local Group

SID

00000220
00000221
00000222
00000223
00000224
00000225
00000226
00000227
00000228
0000022B
0000022C

Builtin\ Administrators
Builtin\Users
Builtin\Guests
Builtin\Power Users
Builtin\ Account Operators
Builtin\Server Operators
Builtin\Print Operators
Builtin\Backup Operators
Builtin\Replicator
Builtin\RemoteDesktopUser
Builtin\Network
Configuration Operators

S-1-2-32- XXX XXX XX - XXX XXX XXX X-XXXXXXXXXX-544
5-1-2-32- XX XXX XXX X-XXXXXXXX XX -XXXXXXKXXX-545
S-1-2-32- XX XXX KKX- XXX XXX XXX - XX XKXXXXXX~546
S-1-2-32- XXX AKX XX~ XXX KX XXX XK -XXXXXXXXXK-54T
S-1-2-32- XXX XX AKX XK - XXX XXX XXX X- XX XK XXX XXK-548
5-1-2-3 2- XXX XXX AKX KX XXX AKX X - XX XXX XX XX K-549
S-1-2-3 2- XXX XXXX XK~ XXX XXX XX X-XXXXXXXXXX-550
S-1-2-32-XXXXXXXXX-XX XX XXX XXX -XXXXXXXXXX-551
8-1-2-32- XXX X XXX XX~ XXX XX XXX XX-XXXXKXXXXX-HH2
S-1-2- 3 2- XX XXX~ XXX KK XXX XK -XX KKK XXXXX-DDD
S-1-2-32-X X XXX XK= KKK KX XK K- XX XK XKXXXX-HDH6

Table 19: Builtin Local Groups [8]

Domains\Accounts. However, the subkeys contain different data. The subkeys Groups and Users

are empty, and the subkey Aliases contains the builtin local group. When an account is created

and added to one of the local groups, the new account data is added (value name is C) to the

corresponding group under Domains\Builtin\ Aliases. Table 19 lists the builtin local groups defined
in Windows XP.

Creating, deleting, or modifying a user will be carried out by the Local Security Authentication

Service (Isass.exe). When a user is created, the security log will indicate an Object Open Event

(Event ID 560 and object type is SAM_DOMAIN) showing that a handle has been given to lsass.exe

with access to read password parameters, create user, and lookup IDs. Then a Security Enabled

Global Group Member is added (Event ID 632) with member ID = Domain\NewA ccountName, and

then the user account is created (Event ID 624). In the registry, the following key will be created:

HKEY LOCAL.MACHINE\ Sam\ Sam \ Domains \ Account \ Users \ NewAccountName

After the key is created, the account is enabled (Event ID 626) and changed (Event ID 642).

When these two events are logged, additional registry keys are created and their values set:

103

HKEY LOCAL.MACHINE\ SAM \ SAM \ Domains \ Account \ Groups\ HEX VALUE_1

Value=C

HKEY LOCAL.MACHINE\ SAM \ SAM \ Domains \ Account \ Users\ HEX VALUE.2

Valuel = F

Value2 =V

HKEY LOCAL MACHINE\ SAM \ SAM \ Domains \ Account

Value=F

HKEY LOCAL_MACHINE\ SAM \ SAM \ Domains \ Builtin \ Aliases \ Member
\NewMemberSID\ HEX_.VALUE2

Value = (Default)

HKEY LOCAL.MACHINE\ SAM \ SAM \ Domains \ Builtin \ Aliases
\Member \ NewMemberSID

Value = (Default)

The first stage of creating the user is finished, so the handle created by lsass.exe for SAM._Domain
can be closed (Event ID 562). However, creating a user takes a little more then just adding the
name in the SAM. Another object is opened by lsass.exe (Event ID 560), this time the object is
of type SAM.ALIAS to access Domains\Builtin\Aliases\00000221. Then a security enabled local
group member is added (Event ID 636) and the handle is closed to that object (Event ID 562). As

a result to this event, the following keys are modified:

HKEY LOCAL_MACHINE\ SAM \ SAM \ Domains \ Builtin \ Aliases \ 00000221

Value=C

HKEY _LOCAL.MACHINE\ SAM \ SAM \ Domains \ Builtin \ Builtin

Value=F

HKEY LOCAL MACHINE\ SAM \ SAM \ Domains \ Account \ Users\ HEX VALUE2

Valuel = F

Value2 =V

HKEY LOCAL.MACHINE\ SAM \ SAM \ Domains \ Builtin \ Aliases \ Member
\NewMemberSID\ HEX_V ALUE.2

Value = (Default)

104

For the last stage of creating a user, another object is opened by lsass.exe, object type is
SAM_ALIAS, for Domains\Builtin\Aliases \00000220. As in the previous stage, a security enabled
local group member is added and the handle is closed. The registry keys that are modified are:

HKEY LOCAL.MACHINE\ SAM \ SAM \ Domains \ Builtin \ Aliases \ 00000220
Value=C

HKEY LOCAL.MACHINE\ SAM \ SAM \ Domains \ Builtin \ Builtin
Value=F

Deleting a User

In the case of deleting a user, we will delete the user we just created. This process is just the reverse
of creating a user. Three objects need to be opened: Domains\Account Users\HEX_VALUE_2 with
access to delete, Domains\Builtin\Aliases \00000221 with access to remove member, and object
Domains\Builtin\ Aliases \00000220 also with access to remove member. The user must be removed
from whatever groups he was added to before being deleted.

Thus the security log will show an object open event (Event ID 560), opened by lsass.exe,
of type SAM_USER, to access Domains\Account Users\HEX_VALUE_2 with access delete. Then
another object open event, opened by the same process, of type SAM_ALIAS to handle
Domains\Builtin\ Aliases\00000221 with access to remove member. Using this handle a security
enabled member is removed (Event ID 637) from Builtin\Users and the handle is closed. Another
object is opened also of type SAM_ALIAS to handle Domains\Builtin\ Aliases\ 00000220 with ac-
cess to remove member. . Using this handle, a security enabled member is removed from Builtin
\Administrators and that handle is closed. Now using the first handle that was opened a security
enabled member is removed from Domain\None. At this point the user has been removed from all
the groups and from the domain, now the account can be deleted (Event ID 630) and the handle is
closed.

As far as the registry is concerned, we will not go into each key that is modified for the de-

referencing of the user. Instead we will just mention the keys that have been deleted to remove the

105

user.

HKEY LOCAL.MACHINE\ SAM \ SAM \ Domains \ Builtin \ Aliases \ Member
\NewMemberSID\ HEX_VALUE_2
HKEY_LOCAL_MACHINE\ SAM \ SAM \ Domains \ Account \ Users\ Names

\AccountName

HKEY LOCAL.MACHINE\ SAM \ SAM \ Domains \ Account \ Users\ HEX_VALUE_2

6.2.6 Mounted Devices

Every removable device that is mounted during the existing logon session is stored in the registry in

the following key:

HKEY CURRENT_.USER)\ Software \ Microsoft\ Windows \ CurrentVersion \ Ezplorer
\MountPoints2\ CPC \ Volume

The sub-keys of this key contain each device mounted including USB removable disks and

DVD/CDROM drives. The sub-key value, named Data, contains information specifying what kind
of device was mounted along with device’s GUID(Globally Unique Identifiers). Another registry
that could supplement information about removable devices specifically USB devices and external

memory cards is the:

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USBSTOR

This key contains all the USB devices that have been plugged into the system regardless of the
session.

The importance of these two keys becomes evident when an attacker installs a backdoor, for
example, from a removable device then leaves. The information from these two keys along with
the LastWrite time of the corresponding keys can be correlated with the security log to prove such
a scenario. If such a scenario occurred, the security log will show an Object Open event (Event
ID 560) or Process Begin event (Event ID 592) with the path of the file indicating a non-existing
removable device. The registry will show that at that particular time a removable device has been
used. The type of device and the GUID can be also used as part of the evidence if needed. To
further illustrate this, we will give an example of what is exactly modified in the registry and what

is logged when a USB device is connected.

106

The USB key we use is a standard 256MB flash stick, so there is no advanced drivers or libraries
that need to run. When the USB device is plugged in, we will see in the security log that the
process rundll.exe started (Event ID 592) and the process that created it was svchost.exe. As for
the registry, the number of keys created and set is quite a numerous. The list of keys can be found

in Appendix: Registry Correlation: USB Mounting Related Keys.

6.2.7 - Installing a Service

Anonymous services installed on the system constitute a high security risk. More importantly is
determining when the service was installed and who installed it. In this section we will continue
from the previous example (mounting a device) to illustrate how to determine details about services
installed. From the mounted device, USB device, we will install mySQL service. The correlation in
this case includes application, system, and security logs as well as the registry.

When the user runs the mySQL setup.exe file from the registry, the security log records a new pro-
cess created (Event ID 592) and the file name is: \Device\Harddisk\DP(1)0-0+f\mysql\setup.exe,
with the creator process being explorer.exe. Note the “f” in the file name, this indicates the drive
from which the file was executed. This will be seen in the registry and will be used to further link this

event with the registry. In the registry, explorer.exe sets three values in two places in the registry:

HKEY CURRENT .USER\ Software \ Microsoft \ Windows \ ShellNoRoam \ MUICache

Value : F : \mysql \ setup.exe

HKEY CURRENT.USER\ Software \ Microsoft \ Windows \ CurrentVersion \ Explorer
\UserAssis \ {GUID}

Two values stored here in the GUID beginning with 750, refer to section on User Assist

Setup.exe then creates a new process, msiexec.exe, which belongs to the Windows Installer Compo-
nent. After creating this new process, setup.exe exits (Event ID 593). In the system log, two events
are logged indicating that the windows installer is starting. Event ID 7035, the windows installer
service was successfully sent a start control, and Event ID 7036, the windows installer service entered

the running state. MSlexec.exe then creates numerous keys in the registry, of which we will only

107

mention the most important:

HKEY LOCAL.MACHINE\ Software \ Microsoft \ Windows \ CurrentVersion \ Installer
\Folders .

Value : ¢ : \ProgamFiles \ MySQL

HKEY LOCAL.MACHINE\ Software \ Microsoft \ Windows \ CurrentVersion \ Installer
\UserData\ S — 15— 18\ Products \ HEXvalue; \ Install Properties

Set of values speci fying the installation properties

When the installation is completed, this event is logged into application log as event 11707. Now
that the installation is completed, the service will be installed. In the security log, a new process is

created which is the MySQLInstanceConfig.exe and in the registry, a new value is set:

HKEY CURRENT_.USER)\ Software \ Microsoft \ Windows \ ShellNoRoam \ MUICache
Value : c: \ProgramF'iles \ MySQL \ MySQLServer \ bin \ MySQLInstanceConfig.exe

When the service is being installed, it sets an environment variable and its configuration in the
Services key, and since the MySQL server connects to the localhost or any other host, the TCPIP
settings also need to be modified. Lastly, MySQL logs to the Application event log, so that also

needs to be set:

HKEY LOCAL_.MACHINE\ System \ CurrentControlSet \ Control \ SessionManager
\Environment

HKEY LOCAL.MACHINE \ System \ CurrentControlSet \ Services \ MySQL

HKEY _LOCAL_.MACHINE \ System \ CurrentControlSet \ Services \ Tcpip \ Parameters

HKEY LOCAL_MACHINE \ System \ CurrentControlSet \ Services \ EventLog
\Application \ MySQL

Now that the service has been installed, it can be started. When it is started, a new process is created
in the security log, the process is mysqld-nt.exe. Following this event are two events logged in the
system log which are: évent 7035, MySQL service was sent a start control, and event 7036, MySQL
service entered the running state. Now the service has started and it will connect to the host, so
in the security log an event indicating Firewall detected an application listening for incoming traffic
(Event ID 861) is logged and the application log will record that mysqld-nt is ready for connections
(Event ID 100).

108

6.2.8 Network

Network Configuration Information

It is always helpful to have the network configuration information handy. The Network key shown
below contains several CLSID-named objects with their corresponding network configuration infor-
mation. This key also includes the following subkeys: Connections, NcQueue, and SharedAccess-
Connection (which determines if a shared connection is enabled). The path of this Network key

is:
HKEY_.LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Control \ Network

Recent Network Settings

Imagine examining the Windows process firewall log from the image of a machine without any
knowledge about the network(s) that the machine was connected to. The firewall log alone can
be somewhat confusing if you are not very knowledgable in networks. But knowing which net-
work adapters are or were installed on the machine along with their respective IP addresses and
default gateway can provide a well established starting point. The registry stores recent network
adapter settings, even though a network connection is disconnected, the settings are retained. This

information can be found under the following key:

HKEY LOCAL.MACHINE\ System \ CurrentControlSet \ Services \ Tcpip \ Parameters
\Inter faces \ GUID

You can also know the system’s IP address and default gateway information through the following

key:

HKEY LOCAL.MACHINE\ SY STEM \ CurrentControlSet \ Services \ adapterGUID
\Parameters\ TCPIP

109

Wireless Network

In regards to wireless network connections, if the adapter is using Windows Wireless Zero Configu-

ration Service, the network information will be found in the following key:

HKEY _LOCAL.MACHINE\ SOFTW ARE \ Microsoft \ WZCSVC \ Parameters
\Inter faces\ GUID '

Mapped Network Drives

Another two keys of interest here are the Map Network Drive MRU and the MountPoints2 keys,
shown below. The former provides a list of the mapped network drives along with the server
name and the shared folder. The MountPoints2 key contains permanent subkeys regarding mapped
network drives. These subkeys can only be removed by opening the regedit.exe and manually
removing them.

The two registry keys discussed are the following:

HKEY CURRENT.USER\ Software \ Microsoft \ Windows \ CurrentVersion
\Ezplorer \ MapN etwork DriveM RU

HKEY CURRENT .USER\ Software \ Microsoft \ Windows \ CurrentVersion
\Ezplorer \ MountPoints2

6.2.9 Internet Explorer

In case the user was using Internet Explorer to browse the internet we can retrieve the browser
settings, web form data, auto complete passwords and web addresses, a list of the last typed URLs,
and the default download directory.

The browser settings can provide information as to what is the start page, local page directory,
and search bar. Some trojan horses are placed in these locations and are executed whenever IE is
executed. If any suspicious names are found, this information can be correlated-with the security
log or in some cases with the firewall log. For example, if we find that there is a frequent connection
to some IP address in the firewall log, we check the time each time this connection is opened. If we
find that it is the same time as when the Internet Explorer is started, then we assume that either the
user always goes to that website, or that there is a malware. From the information collected from
the Internet Explorer settings’ registry key we find that the start page is the same as the mysterious

recurring IP address.

110

The registry key where we can get the Internet Explorer setting is:

HKEY _CURRENT_.USER\ Software\ Microsoft\ InternetExplorer \ Main

In regards to the web form data, auto complete passwords and auto complete web addresses,
these are very case specific, so we will not go over the correlation for the time being but just point

their locations:

HKEY CURRENT.USER\ Software \ Microsoft\ ProtectedStorageSystemProvider \ SID
\InternetEzplorer \ InternetExplorer — g

HKEY CURRENT.USER\ Software\ Microsoft \ ProtectedStorageSystemProvider \ SID
\InternetExplorer \ InternetExplorer — URL

HKEY CURRENT.USER\ Software\ Microsoft \ InternetExplorer \ IntelliForm

HKEY CURRENT.USER\ Software \ Microsoft \ ProtectedStorageSystem Provider

The list of last typed URLs can be correlated with the firewall log to get the exact time of access
for each URL. As explained earlier, the registry will record the last access time of the key, but if
the key contains more then one value we cannot find the access time unless we correlate with the

firewall log. The key that contains the last accessed. URLs is:

HKEY CURRENT USER\ Software\ Microsoft\ InternetExplorer \ Main

The default download directory can be of use to determine a file’s origin. For example, if we
are monitoring some file activity in the security log, and we know that the file is in the download
directory, we can assume that the user downloaded it voluntarily. Although this is not solid proof,
but it adds to the facts gathered about a case. The default download directory can be found in the

following key:
HKEY CURRENT.USER\ Software\ Microsoft\ InternetExplorer

6.2.10 Most Recently Used (MRU) List and Recent Documents

Most recently used items are stored in different locations in the registry depending on their context.
MRUs are of great importance for investigators and are the most suitable for correlation. In the

following we list some MRUs of interest and elaborate on their usage.

111

HKEY CURRENT.USER)\ Software \ Microsoft\ Windows \ CurrentVersion
\Ezplorer \ ComDlg32 \ OpenSaveM RU

This key lists the files that have been opened and/or saved using the Windows Explorer dialog box.
Subkeys of this key are all the extension types and the corresponding files that have been opened/and
or saved. Correlating these keys with the Windows security log enables us to know when these files
were opened. Furthermore, correlating these two sources helps us determine any incongruence in

either the registry or the log file.

HKEY CURRENT.USER\ Software \ Microsoft \ Windows \ CurrentVersion
\Ezplorer \ RunM RU

Anytime a user executes a command from the Start— > Run command line, the executed commands
are stored in this key. Correlating this with the log files does not reveal much significant information,
it just provides a stronger evidence to confirm the source of command execution. The security log
records this information in a different way. When a command is executed, some object has to be
opened, so Object Open event is logged (Event ID 592) and the object that opened this new object
will be explorer.exe. But no indication that it was or was not executed through Start— >Run.

There are numerous application based MRUs, for example, if a user modified a word document
a.hd used the “SaveAs” option to save the document after modification, the name of the file is listed
in the corresponding MRU. Again correlating this with the Object Open event in the security log,
we can determine when the file was opened. The key that lists this type of MRU file is:

HKEY CURRENT USER\ Software \ Microsoft\ Of fice \ 10.0 \ Common \ OpenFind
\M icrosoftWord\ Settings \ SaveAS \ FileNameMRU

Another example of the usefulness of MRUs for correlation is the following: assume the user had
VNC installed and was logging on remotely to another machine. The log files will show an instance
of VNC opening, then the firewall log will indicate a connection from the machine to some address.
Now the registry’s VNC MRU list will indicate the name of the hosts that were connected to using
the VNC viewer. This latter piece of evidence will show that VNC was actually used to connect to

the host. Without this link, the evidence will be questionable. The key containing the VNC’s MRU

112

list is:
HKEY CURRENT.USER \ Software \ ORL\ V NCviewer \ MRU

RecentDocs is a key that falls under this category, although it is not directly called MRU. This
key is similar to the OpenSaveMRU key. It contains recently opened files which are categorized
based on their extension. The data stored in this key is in bina.ry format which corresponds to the
filename. To further elaborate on the RJecentDocs‘key we will give an example of opening a text -
document in notepad.exe. When the file is opened, the security log will record that the process

notepad.exe has been created, then the RecentDocs key will be updated:

Process Created(Security Log EventID 592) :
Process FileName : notepad.exe
Creator Process : explorer.eze
Registry Key Changed :
Key: HKEY Current User \ Microsoft \ Windows \ CurrentVersion \ Ezplorer\
RecentDocs \ #
Value : name of TXT file

6.2.11 User Assist

This is a key in the registry that maintains a list of objects the user has accessed. It is found in the

following location:

HKEY CURRENT .USER\ Software \ Microsoft \ Windows \ CurrentVersion
\Ezplorer \ UserAssist

There are two subkeys under this key. The subkeys are in the form of GUID. The first key (beginning
with “SE6”) contains recent accessed objects corresponding the Internet Explorer toolbar. The
second key (beginning with “750”) contains recent accessed objects of the Active Desktop [5]. The
data in this key is encrypted with a very basic encryption algorithm called ROT-13. The algorithm
substitutes each character by another character 13 positions away.

This key can be correlated with Object Open event from the security log giving us the time
the object was opened and a confirmation of the authenticity of both pieces of evidence since the

occurrence in one is confirmed by the occurrence in the other.

113

6.2.12 Firewall Policy Change

In a number of attacks the firewall needs to be deactivated in order for the malicious activity to
be successful and not be detected. When a firewall is deactivated, the firewall policy is changed to
have the operational mode set to off. Such an activity is logged in the security log, and the registry
key pertaining to the policy is modified. The sequence of events leading to firewall deactivation is

as follows:

Process Created(Security Log EventID 592) :
Process FileName : c: \windows \ system32 \ rundll32.exe
Creator Process : explorer.exe
Registry Key Changed :
Key: HKEY Local_Machine \ system \ CurrentControlSet \ SharedAccess \ Parameters)\
StandardProfile \ EnableFirewall
Val'ue : 0
Windows Firewall Operational Mode Changed(Security Log EventID 853) :
Policy Origin : Local Policy
Profile Changed : Standard (or whatever the profile name is)
Interface : All Inter faces
New Setting : Operation mode: OFF
Old Setting : Operation mode: ON
Process Ezited(Security Log EventID 593) :

Process FileName : c¢: \windows \ system32 \ rundll32.exe

114

Chapter 7

Design and Implementation

In this chapter we discuss the design and implementation of both of our proposed approaches. We
use Java as our implementation programming language for the log analysis due to the choice of
used APIs. This implementation is built as plug-in for the digital forensic framework developed
in our Computer Security Laboratory. The functionality implemented is a proof-of-concept, thus

the functionality is limited to serve only the purpose of verifying that both of our approached are

successful.

7.1 Formal Log Analysis

To analyze the logs we parsed each log format as-is into a mySQL database. The choice of having the
logs in a database rather than XML, for example, is due to the benefits of quick and easy queries. It
is much faster querying a database rather then searching though an XML file. We limit our analysis
to Windows system, security, application, and firewall logs. The system, application, and security
logs have the same fields with the exception of the description field. Each of the three logs stores
different types of information into the description field, and in most cases this is the most important
field as it contains the details of the events. When looking for a specific entry in the description
field we simply search through the text. Although a string search is an expensive operation, we first
search for all the fields besides the description minimizing the number of string searches required to
a sub-query.

An additional feature we added to this implementation was statistical analysis. The statistical
analysis performed is basic but statistical graphs which enable an analyst to pinpoint any suspicious

narrowing down a segment of the logs that needs to be analyzed. To draw the charts we used the

115

REXXASET RS

s

8 UOEN © £X 1S MLLOSE » 12880 HONOP » Ixap
4 QREMINROD » § 958 & NFD-EVENTSLO5T » 88

Figure 5: Statistics Charts

open source Java API JFreeChart, which provides a straightforward interface for representing the
statistical analysis. An example of the statistic charts GUI is shown in figure 5 where events can
be shown by required week, month, and year. For example, an investigator knows that the attack
happened in a specific month, but no specific date is determined. Rather than having to analyze a
month worth of events, the analyst can perform the statistics on the month in question. Based on
those results, the analyst might want to look at a specific week where there seems to be abnormal
activity. By looking at the charts for one week, the analyst is even able to limit the scope of the
investigation to a couplé of days thus reducing the analysis time significantly. We provide some
visual exa.mpie of these chars: Figure 6 shows us the type of actions in the events represented in a
pie graph, having lots of dropped packets can allude to suspicious or in some cases reconfiguration,
however, if the trends of dropped packets in a certain time period is different then the rest this
increases the likelihood of suspicious activity. Figure 7 shows the number of UDP and TCP packets
per day. Figure 8 shows the number of events per destination IP for the desired time period enabling
us to see which IP or possibly websites are access the most. Finally Figure 9 shows the number of
events per hour which is especially useful if there was a lot of activity outside the regular operational

hours.

116

o 0PEN = 6710 # CLOSE < 12850 # DROP = 33,487 & OPENNBOUND = 6,668 & INFO-EVENTS.LOST = 58] -

Figure 6: Actions Pie Chart

. Gategory Bar Chart

Figure 7: Type of Packets Bar Chart

117

esas00 8T I
20740211290
212.88.240.920

Figure 8: Number of Events per IP Bar Chart

Figure 9: Number of Events per Hour Bar Chart

118

7.2 Methodology for Registry and Log Correlation and Anal-
ysis

In this section we present an approach for correlation which will be used to find relationships and
check rules defined for different sources of evidence. If a rule or relationship is not satisfied, an alert
should be triggered to inform of a possible anomaly. From hereon, rules and relationships will be
called rules since a relationship can be defined in rules.

Rules can be divided into three categories: 1- Rules that are executed at initialization, these
rules serve to give the analyst an overall idea of the system and configuration at hand. 2- Rules that
are executed upon user request and support variables, for example the result of the first category of
rules shows a suspicious service set to initialize at startup, the analyst may wish to check rules that
apply to that service only. 3- Rules created by users, these rules are mainly composite rules built at

runtime as the analyst goes through the analysis, she may wish to check case specific rules.

Rules are defined in XML files. To demonstrate this, we will use as an example the rule defined in
Firewall Policy Change. The time attribute is used to determine the time gap, in minutes, between
the events listed in the rule. In this example, the time is ¢, in all events, meaning that the events
occur consecutively with less then a minute difference. Assuming that an event A occurs and than

we are looking for event B with max time difference of 2 minutes, the time for A would be ty, and

119

the time for B would be (t; + 1).

<?X M Lversion = “1.0”?7 >
< RULE name = “Firewall Policy Change >
< SOURCE name = “Security Log” >
< EVENT id = “592” >
< NAME > Process Created < \NAME >
< FILE NAME > c: \windows \ system32 \ rundil32.exe < \FILE.NAME >
< CREATORpROCESS > explorer.eze < \CREATORpROCESS >
<TIME > t; <\TIME > ‘
<\EVENT >
< \SOURCE >
< SOURCE name = “Registry” >
< KEY > HKEY _Local_Machine \ system \ CurrentControlSet \ SharedAccess\
Parameters \ StandardProfile <\KEY >
< VALUE > EnableFirewall < \VALUE >
< DATA>0<\DATA>
<TIME > t; <\TIME >
<\SOURCE >
< SOURCE name = “Security Log” >
< EVENT id = “853” >
< NAME > Windows Firewall Operational Mode Changed < \NAME >
< POLICY_.ORIGIN > LocalPolicy < \POLICY.ORIGIN >
< PROFILE.CHANGED > Standard < \PROFILE.CHANGED >
< INTERFACE > All Inter faces < \INTERFACE >
< NEW_SETTING > Operation mode : OFF < \NEW _SETTING >
< OLD_SETTING > Operation mode : ON < \OLD_SETTING >
<TIME > t; <\TIME >
<\EVENT >
< \SOURCE >
<\RULE >

After the XML file is passed to the parser, all the source elements are extracted and passed
to the verifier. The verifier processes the source elements based on their name to determine what
attributes to check for. The first source is checked, if it exists, we get the time and look for the

second source in the given time frame. If the second source exists, we check the third and so on. If

120

" Evidence

Figure 10: Correlation System

any of the sources do not exist, then the rule all together does not hold. Figure 10 shows the overall

system and how the different components interact.

7.3 Registry and Log Correlation: Case Study

In this case study we show the benefits of correlating the registry with the logs as opposed to relying
only on the logs for the analysis. The use of the registry should provide details not found in the logs
and a means to verify the authenticity of the evidence at hand. The scenario we used for our case
study is as follows:

Mr. Smith always seems to have problems with his computer and resorts to the IT administrator
for assistance. The administrator was getting fed up of Mr. Smith’s continuous complaints and
lack of basic computer knowledge to resolve intrinsic problems. One day Mr. Smith goes to the IT
administrator, as usual, requesting some work to be done on his machine. Mr. Smith was going
to be out of the office for the rest of the day, so he let the administrator log on remotely and do
whatever she needed to does to resolve the problem.

When the administrator logged on remotely, she saw that Mr. Smith’s-outlook was left opened
and there was a progress report in the drafts folder addressed to the manager which has not been
sent yet. The administrator decided to get back at Mr Smith for all the unnecessary hassle he causes.
After finishing the work she had to do for Mr. Smith, she wrote a word document addressed to the
manager, allegedly signed by Mr. Smith himself, and attached the document to the drafted email.
The document was called details.doc, so it appeared as if it is the details of the progress report but

contained a letter complaining about the manager’s lack of competency and threatening him to go

121

to upper management. When Mr. Smith returned, he automatically updated the outlook mail, as
he normally does, and the progress report was sent to the manager. Upon receiving this email, the
manager wanted to fire Mr. Smith for his outrageous behavior. However, Mr. Smith refused to be
accused of such an act since he was sure he had done no such thing. The email was sent from his
account, but he claims that someone had framed him. An exterhal third party was called upon to
resolve this dispute, and an investigator was assigned to examine Mr. Smith’s claim.

The investigator iméges Mr. Smith’s hard disk, getting the registry and the log files. First thing
he needs to determine if Mr. Smith actually wrote that letter. Knowing that it is a word document

he checks the registry key:

HKEY Current.User \ Software \ Microsoft\ Windows \ CurrentVersion \ Ezplorer
' \RecentDocs \ .doc

This key shows the recently opened files. The investigator finds a value showing the filename
details.doc. So the file was at least opened on that machine. The way this key functions is there is
a value MRUListEx under the same key which determines the order in which the files were opened.
The investigator looks at this value and finds that the details.doc is the second on the list. If it was
first on the list, the investigator would have just looked at the last write time of the key and checked
the log to determine who was logged in at that time. '

Knowing that there was another word document opened after Details.doc, the investigator now
has to look at the security log file to find when this file could have been last accessed. The security
log indicates that there are two “process begin” events (Event ID 592) with the process name being
winword.exe at different times. The event of interest is the first occurrence of the two events.
However, the time of that event is the time that Mr. Smith claims to be out of the office. If
that is the case, only the administrator could have logged in remotely. To test this hypothesis, the
investigator checks for a remote log on rule around the time of the first occurrence of winword.exe
process begin and the time that Mr. Smith left the office. Assuming the time the Mr. Smith left

the office is ¢; the rule will be as follows:

122

Process Created (EventI D 592)
User : NT Authority \ System
Process name : ¢ : \windows \ system32 \ winlogon.eze
Creator process : smss.exe
Logon ID : z
Time 2 >> ty
Session Disconnected Sfrom Winstation (EventID 683)
User : NT Authority \ System
Session user : administrator
LogonID: Y
Session name : console
Client name : ——
Client address : ——
Time: ta >t
Process Created (EventI D 592)
User : NT Authority \ System
Process ndme : ¢ : \Program Files\ PC Connectivity Solution \ Ncllnstaller.eze
Creator process : serviceLayer.eze
Logon ID : z
Time: ta >t
Session Reconnected to Winstation (EventI D 682)
User : NT Authority
Session user : administrator
LogonID:Y
Session name : RDP_TC P43
Client name : administrator’'s machine
Client address : administrator’'s IP address
Time: ta >t
Process Exited (Eventl D 593)
User : NT Authority\ System
Process name : ¢ : \windows \ system32 \ winlogon.eze
Time: t2 >
123

The time in all the events is: ¢, > t;, meaning the time (in minutes) after Mr. Smith left his office.
The rule verifier component searches for a process created event with process name = winlogon.exe
occurring after the time Mr. Smith left his office. Winlogon is the process used for Windows logons
and logoffs. When the event is found. its time is recorded and the events that follow should all be
within the same minute. Normally these 5 events would occur even in the same second, but we take
into consideration that Windows is a multi-threaded operating system, thus there might be other
threads occurring at the same time. After the process winlogon.exe begins, it disconnects the console
session so that the remote session (RDP_TCO}3) can be connected. The process Ncllnstaller.exe
then is executed which is used to establish the connection for remote desktop. This is the normal

execution path for a remote desktop connection. The rule continues as such:

Process Created (Event]D 592)
User : administrator

Process name : ¢ : \Program Files\ Microsoft Of fice \ Of ficell \ winword.eze

LoginID: Y
Time: t3
Registry Key Set

Key: HKEY .Current User \ Software \ Microsoft\ Windows \ CurrentVersion
\Ezplorer \ RecentDocs \ .Doc
Value : valueNumber
Data : Hex value of the file name (Details.doc)
Time: t4
Registry Key Changed
Key: HKEY Current.User \ Software \ Microsoft \ Windows \ CurrentVersion
\Ezplorer \ RecentDocs \ .Doc
Value: MRUListEz
Time: t4
Process Exited (EventlD 593)

User : administrator
Process name : c: \Program Files \ Microsoft Of fice \ Of ficell \ winword.exe

Time: tg

124

Session Disconnected from Winstation (Eventl D 683)
User : NT Authority\ System
Session user : administrator
LogonID: Y
Session name : RDP_.TCP}3
Client name : administrator’s machine
Client address : administrator's IP address
Time: tg
Registry Key Changed :
Key: HKEY Current User \ Software \ Microsoft \ Windows \ CurrentVersion
\Ezplorer \ Remote
Time: tg
In this part of the rule, the investigator is for a winword.exe process begin that occurred at
¢.3 which is the event that should have opened details.doc, thus it would have been recorded in
the RecentDocs key of the registry. The last “key changed” event of the rule shown above is used
to validate that the evidence has not been tampered with. When a remote desktop session is
initialized, this registry key is set and system information related to this remote connection is stored
there. When the session ends, the values are deleted, hence the last write time of this key should be

the samestime as the remote desktop session ended.

Results

‘The analysis of this case study was confirmed using regmon.exe from SysInternals [2]. This tool
provided considerable help throughout the entire registry analysis as it shows the keys that are
being accesses either for reads, writes, or deletes. We implemented the case study gathering both
the logs and the registry and preformed the analysis. After getting the results, we confirmed them
by redoing the scenario this time with live monitoring of the logs and registry. The comparison

showed the same results we had.

7.4 Log Analysis: Case Study

To better comprehend the power of our approach, we will consider the following case: In an office

environment, there are several hosts connected to a database server. An intrusion detection system

125

is setup as a security measure for the server. The server can be accessed from outside the company

so that the employees can connect to the server from client offices. Figure 7.4 depicts the scenario.

Server with
Snort installed

Malicious
Technical
Support

Figure 11: Case Scenario

The network administrator discovers that there was a denial of service attack on the server. The
IDS (SNORT) determines a SYN attack which caused the server to halt. An investigator is called

upon to investigate this incident and prosecute the liable person.

The investigator gathers the server network logs and starts searching for possible clues. Generally,
when analyzing logs, an investigator will either scan through the logs manually using a simple ed-
itor which may provide some filtering capabilities, or create a script to serve his purpose. Using
our methodology, the investigator only defines a trace he wants to look for, and since the logs are
correlated, he doesn’t even need to jump from one log file to another. In this case the system admin-
istrator has reported a SYN attack which is detected by SNORT and logged with SID = 1:526 [77].
To locate the occurrence of this attack the administrator uses the following trace from the SNORT

logs:

{SNORT)(z,. Attack(tdy, sID;, sIP,,dI P,).z2 9 g)tt
Where sID; = 1:526

126

Once found the investigator examines the event and realizes that this IP is within the same network
of the company. Knowing the date and time of the first occurrence of the attack the investigator
looks for connections opened on the same date and time from that host to the server.

Until now, the events have been mostly gathered from the IDS logs. A glimpse of the advantage and
ease of our system in correlation is shown here. In the following, the Windows system, application,
and security logs are correlated along with the network logs. The logs being correlated into the same
tree, we can define our trace and the model checker will search for it through the tree. However,
to improve efficiency, we can specify which log we want to examine thus reducing the scope of our
search. This can be done by adding {(LogSource)) right before the corresponding pattern or trace.
LogSource in this case being SNORT (like in the pattern above), SEC (security log), SYS (system
log), or APP (application log). It is possible to specify more then one log e.g. {SYS,SECY)), or all
logs excluding one specific log e.g. ({(L\SNORT).

Getting back to our case, the event reflecting opening a connection can be found using:

(SEC, SY S, APP)){(z,.OpenConnection(p, ptz, procrcp, ul Dy, ipy acg,dty).xo 3 €)tt
Where : ip, i3 the server's I P and dt, is the time from the previous step
Looking at the process that opened the connection, it seems to be some unknown executable. The
investigator decides to see what process executed this executable. The first step is to find where the

executable was initialized:

(SEC))(z1.ProcessBegin(py, uz, CPg, Pus, €5).T2 b €)tt
Where : p; is the malware

Once found, the caller of this process can be determined from the event, which is the cp;. Using
the same trace as the above but with p; = callerprocess the investigator can find out the name and
executable file of this process. Once found, it turns out to be BKO.eze, which is the executable file
of backOrifice2000, a backdoor. The next step is to track down the first time the back door has

been executed which can be determined through the following:

(SECY(21.Logon(ue,uID,, gy, dy, pe, lts).2a.
ProcessBegin(p, g, Cps, pcs.€z).z3.Logof f (u) 3 z1)tt
—(z4.Process Begin(py, uz, cpz, pcy-€;).T5 £)tt
Where : py = Bo2k.eze

The first part of the above query looks for sub-traces containing a session, which is specified

127

between a login and a logout, during which the back door process has been executed. The second
part of the query limits the response to the first occurrence of the pattern by enforcing the constraint
that no ProcessBegin event has happened before the selected sub-trace can contain a ProcessB egin
event for the back door.

Since at each log on to the system, the back door program is executed, the investigator suspects
that there is an entry in one of the start-up registry keys or files of the system for Bo2k.exe. Searching
through these start-up places which are fortunately limited to a limited registry keys and few files,
the investigator ﬁnds the entry for the back door executable i‘n the run registry key. Therefore, it
remains to track down the first session before the first execution of the back door program during

which the run registry key has been modified. To do so, the investigator submits the following query:

(SEC)(z1.Logon(uz, ul Dy, gy, dy, g, lts).205.
ProcessBegin(p;, g, Py, pCz-€z).T3.Logof f(u) & x1)tt
—(z4.Process Begin(p;, uz, cpy, pCy.€5).T5 I €)tt
A(ze.logon(uy,ul Dy, gy, dy, py, It,).z7.0bjectOpen(o1, p,, pn,, tp,, L1 D,).zs.
ObjectOperation(oy, opser).xg.logof f(uy) 3 £ > tt
Where: 0y = RUN_REG

The first two parts of the query have been explained before whereas the third part returns the
session during which the malicious attacker has changed the registry key to install the back door
program. Submitting the above query, the investigator can extract the user name of the mal user
as the criminal from the substitution set.

Thus this trace shows that this user was not responsible for the attack, although she could have
been easily framed. As it was shown, using our approach not only will the investigator be able to
verify the admissability of his hypothesis, but she will also be capable of extracting information

through the use of unbound variables in his queries. This attack scenario is depicted in figure 12

128

Logon(urechsupport dtRemote)
Printerrelatedevent
objectOpen(opRUN.REG)
objectOperation(opuN_REGOPSET)
logof f(¥TechSupport)

Logon(uuser)

logof f(tuser)
SystemShutdown()

SystemStartup()
Logon (‘lluaer)
ProcessBegin(poko.exe)

ProcesﬂBegin(pmul.ezc yCPbko.eze)

C(mnecticmOpen(pma:,ﬂu ,de-”lpservcr)
9

Attck(SY Ng OS,sourcel Pyyser)

Attck(SY NpOS,sourcel Pyyser)

Figure 12: Attack Scenario

129

Chapter 8

Conclusion and Future Work

In this thesis we proposed a model checking approach to the problem of formal analysis of logs. We
model the log as a tree labeled by terms from a term algebra that represents the different actions
logged by the logging system. The properties of such a log are expressed through the use of a
logic that has temporal, modal, dynamic and computational characteristics. Moreover, the logic
is provided by a sound and complete tableau-based proof system that is the basis for verification
algorithms. The Windows logging system was studied as a use case through which we presented
ideas about properties of logs such as attack traces and invariant properties. We also demonstrated
how our system can be used to express signatures of malicious code and hypothesis through our case
study. One question that often arises when dealing with log Ana.lysis is the integrity of the logs. In
our work we demonstrate through the use of invariant properties and baselining how the integrity
of the logs can be verified. A different approach can be used such as in [78] & method for making
all log entries generated prior to the logging machine’s compromise is described. This makes it
impoésible to read, modify or destroy the logs. This approach or any other similar approach for en-

suring the integrity of the logs is out of our scope since we deal with logs and incidents after the fact.

We also proposed a registry correlation approach which supplements the former mentioned ap-
proach. Although the registry is used mainly to store system information, the amount of data that
could be extracted from it was quite surprising. Bearing in mind that what we showed in the registry
correlation chapter was what can be used for correlation with the logs, however Windows registry
analysis by itself is a different issue and a different area of research. Correlation with the registry

provides information that otherwise would not be available. As shown in the case study, for example,

130

we can determine that a word document was opened, who opened it and at what time. However,
without the registry it would have been impossible to know from the logs which word document was

actually opened.

One of the options we considered for when implementing the log analysis was to generalize the
logs. Instead of having to deal with different types of logs, we would have a generic log format and
all the logs will be parsed to that format. The problem we faced was that the fields of a system
log are different then the fields of a firewall log, for example. One of the solutions we thought of
was to create a generic format for the different categories of log. The fields of logs within the same
category can be mapped to a generic format while respecting the context of each field. Further
research would be required to have the best optimized generic log format that would facilitate the

analysis by eliminating the requirement of having log specific rules.

Future research efforts could also be invested in the statistical analysis we implemented. Statis-
tical analysis can be used to complement the approaches discussed throughout this thesis. A visual
representation of the logs based on statisticai analyéis will serve to pinpdint any suspicious activity
narrowing down the analysis to a specific éegment of the logs. This will minimize the time required

and increase the efficiency of the analysis.

131

Bibliography

(1] M. Saleh and A. R. Arasteh and A. Sakha and M. Debbabi. Forensic analysis of logs: Modeling
and verification. Knowledge-Based Systems, 20(7):671-682, October 2007.

(2] M. E. Russinovich and D. A. Solomon. Microsoft Windows Internals. Microsoft Press, 2004.
(3] R. F. Smith. Windows server 2003 security log revealed. MTG Press, 2005.

[4] Microsoft Developer Network. Windows Event Log Reference. MSDN, 2008. Last Visited: July
08, 2008.

(5] H. Carvey. Windows Forensic Analysis DVD Toolkit. Syngress Publishing, Inc., 2007.

[6] Microsoft. Troubleshooting Windows Firewall settings in Windows XP Service Pack 2 for ad-
vanced users. MS Help and Support, id 875357 edition, November 2007. Last accessed: July
08, 2008.

(7} Microsoft. How To Determine Audit Policies from the Registry. http:// support.microsoft.

com/kb/246120, note = "Last accessed: July 08, 2008”, 2006.
[8] P. Hipéoh. Mastering Windows XP Registry. Sybex Inc, 2002.

[9] A.J.Marcellaand R. S. Greenfield. Cyber Forensics : a Field Manual for Collecting, Examining,

and Preserving Evidence of Computer Crimes. Auerbach Publications, 2001.

[10] W. Lee and S. Stolfo. Data Mining Approaches for Intrusion Detection. Jn Proceedings of the
7th USENIX Security Symposium, 1998.

(11] A. Mounji and B. L. Charlier and D. Zampunieris and N. Habra. Distributed Audit Trail
Analysis. Proceedings of the 1995 Symposium on Network and Distributed System Security -
IEEE Computer Society, 102, 1995.

132

(12] N. Habra and B. L. Charlier and A. Mounji and I. Mathieu. ASAX: Software Architecture and
Rule-Based Language for Universal Audit Trail Analysis. European Symposium on Research in

Computer Security (ESORICS), 648:435-450, 1992.

[13] U. Lindqvist and P.A Porras. Detecting Computer and Network Misuse Through the
Production-basedexpert System Toolset (P-BEST). Proceedings of the 1999 IEEE Symposium
on Security and Privacy, 146-161, 1999.

[14] K. Yamanishi and J. Takeuchi and G. J. Williams and P. Milne. Online Unsupervised Out-
lier Detection Using Finite Mixtures With Discounting Learning Algorithms. In Knowledge
Discovery and Data Mining, 320-324, 2000. v

[15] W. Fan and M. Miller and S. J. Stolfo and W. Lee and P. K. Chan. Using Artificial Anomalies
to Detect Unknown and Known Network Intrusions. JCDM, 123-130, 2001.

[16] H. Carvey. KDD-99. The Fifth International Conference on Knowledge Discovery and Data
Mining, 1999. Last accessed: July 08, 2008.

[17] P. Ma. Log Analysis-Based Intrusion Detection via Unsupervised Learning. Master’s thesis,
School of Infonhatics, University of Edinburgh, 2003.

(18] W. Lee and S. J. Stolfo. A Framework for Constructing Features and Models for Intrusion
Detection. ACM Transactions on Information and System Security (TISSEC), 3(4):227-261,
November 2000.

(19] J. Ryan and M.J. Lin and R. Miikkulainen. Intrusion Detection with Neural Networks. Advances
in Neural Information Processing Systems, 943 - 949, 1998.

[20] M. N. A. Khan and I. Wakeman. Machine Learning for Post-Event Timeline Reconstruction.
The 7th Annual PostGraduate Symposium on The Convergence of Telecommunications, Net-

working and Broadcasting, 2006.

[21] H. Gunes Kayacik and A. Nur Zincir-Heywood and Malcolm I. Heywood. Multiple Self-
Organizing Maps for Intrusion Detection. Engineering Applications of Artificial Intelligence,

20(4):439-451, 2007.

[22] W. Ren and H. Jin. Distributed Agent-Based Real Time Network Intrusion Forensics System
Architecture Design. AINA, Proceedings of the 19th International Conference on Advanced
Information Networking and Applications, 1(177-182), 2005.

133

[23] T.Y. Lin. Anomaly Detection: A Soft Computing Approach. Proceedings of the 1994 Workshop
on New Security Paradigms, 44-53, 1994.

[24] S. T. Echmann and V. Giovanni and R. A. Kemmerer. STATL: An Attack Language for State-
Based Intrusion Detection. ACM Workshop on Instrusion Detection Systems, 10(1-2):71 - 103,
2002.

[25] A. P. Kosoresow and S. A. Hofmeyr. Intrusion Detection via System Call Traces. JEEE Com-
puter Society Press, 14(5):35-42, 1997.

[26] T. Lane and C. Brodley. Temporal Sequence Learning and Data Reduction for Anomaly De-
tection. ACM Transactions on Information and System Security, 2:295 — 331, 1999.

[27] P. Helman and G. E. Liepins. Statistical Foundations of Audit Trail Analysis for the Detection
of Computer Misuse. IEEE Transactions on Software Engineering, 19(9):886-901, 1993.

[28] H. S. Javitz and A. Valdes. The SRI IDES Statistical Anomaly Detector. Proceedings of the
IEEE Sympos‘_ium on Research in Security and Privacy, 316-326, 1991.

[29] H. S. Vaccaro and G. E. Liepins. Detection of Anomalous Computer Session Activity. Proceed-
ings of the IEEE Symposium on Research in Security and Privacy, 280-289, 1989.

[30] L. Lankewicz and M. Benard. Real-time Anomaly detection Using a Nonparametric Pattern
Recognition Approach. Proceedings of the of 7th Computer Security Applications Conference,
85:160-165, 1991.

(31} D. Endler. Intrusion Detection: Applying Machine Learning to Solaris Audit Data. Proceedings
of the Computer Security Applications Conference, 80-89, 1998.

{32] D. Xu and P. Ning. Alert Correlation through Triggering Events and Common Resources.
Proceedings of the 20th Annual Computer Security Applications Conference - ACSAC 04, 360-
369, 2004.)

[33] F. Cuppens. Managing Alerts in a Multi-intrusion Detection Environment. volume 10 of 14,
pages 22-31. In Proceedings of the 17th Annual Computer Security Applications Conference,
December 2001.

[34] K. Julisch. Clustering Intrusion Detection Alarms to Support Root Cause Analysis. volume 6

of 4, pages 443-471. ACM Transactions on Information and System Security, Nov 2003.

134

[35] S. Staniford, J. Hoagland, and J. McAlerney. Practical Automated Detection of Stealthy
Portscans. Journal of Computer Security, 10(1/2):105136., December 2002.

[36] A. Valdes and K. Skinner. Probabilistic Alert Correlation. volume 2212, pages 54-68. In
Proceedings of the 4th International Symposium on Recent Advances in Intrusion Detection

(RAID 2001), LNCS, 2001.

[37] H. Debar and A. Wespi. Aggregation and Correlation of Intrusion-detection Alerts. In Recent
Advances in Intrusion Detection, LNCS, 2001.

{38] B. Morin and H. Debar. Correlation of Intrusion Symptoms: an Application of Chronicles.
In Proceedings of the 6th International Conference on Recent Advances in Intrusion Detection

(RAIDO03), September 2003.

[39] F. Cuppens and A. Miege. Alert Correlation in a Cooperative Intrusion Detection Framework.

In Proceedings of the 2002 IEEE Symposium on Security and Privacy, May 2003.

[40] P. Ning, Y. Cui, and D. S. Reeves. Constructing Attack Scenarios Through Correlation of
Intrusion Alerts. page 245254. In Proceedings of the 9th ACM Conference on Computer and

Communications Security, Washington, D.C., November 2002,

[41] S. Templeton and K. Levitt. A Requires/Provides Model for Computer Attacks. pages 31-38.
In Proceedings of New Security Paradigms Workshop, September 2000.

[42] B. Morin, L. Me, H. Debar, and M. Ducasse. M2D2: A Formal Data Model for IDS Alert
Correlation. volume 2516, pages 115-137. In Proceedings of the 5th International Symposium
on Recent Advances in Intrusion Detection (RAID 2002), 2002.

[43] P. Porras, M. Fong, and A. Valdes. A Mission-impact-based Approach to INFOSEC Alarm
Correlation. volume 2516, pages 95-114. In Proceedings of the 5th International Symposium
on Recent Advances in Intrusion Detection (RAID 2002), 2002.

[44] V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion Detection in the Domino Overlay
System. volume 30 of 8, pages 877-809. In Proceedings of the 11th Annual Network and
Distributed System Security Symposium (NDSS04), Feburary 2004.

[45] P. Stephenson. Modeling of Post-incident Root Cause Analysis. International Journal of Digital
Evidence, 2(2):43-54, 2003.

135

[46] P. Stephenson. Introduction to the Digital Investigation Process Language. CSI 30th Annual
Conference, 2003.

[47) P. Lor}". A Coloured Petri Net Trust Model. 14th International Workshop on Database and
Expert Systems Applications, 415-419, 2003.

[48] C. Hoémer. Time Lining Computer Evidence, 1998. Last accessed: July 08, 2008.

[49] T. Stallard and K. Levitt. Automated Analysis for Digital Forensic Science: Semantic Integrity

Checking. In 19th Annual Computer Security Applications Conference, pages 160-167, Las
Vegas, NV, USA, December 2003.

[50] K. Monroe and D. Bailey. System Base-lining: A forensic perspective, 2003. Last accessed:
July 08, 2008.

[51] P. Gladyshev and A. Patel. Finite State Machine Approach to Digital Event Reconstruction.
Digital Investigation Journal, 1(2), 2004.

[52] P. Gladyshev and A. Patel. Formalising Event Time Bounding in Digital Investigations. Digital
| Investigation Journal, 4(2), 2005.

[53] R. Leigland and A. W. Krings. A Formalization of Digital Forensics. Digital Investigation
Journal, 3(2), 2004.

[54] C. Peikari and A. Chuvakin. Security Warrior. O'Reilly, 2004.

[55] W. Kruse and J. Heiser. Computer Forensics: Incident Response Essentials. Addison-Wesley,
, Boston, MA, 2002. Last accessed: July 08, 2008.

[56] M. Roger and J. Goubault-Larrecq. Log Auditing through Model-Checking. Proc. 14th IEEE
Computer Security Foundations Workshop (CSFW’01), 220-234, June 2001.

[57] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer, 427, 1991.
[58] P. Naldurg and K. Sen and P. Thati. A Temporal Logic Based Framework for Intrusion Detec-
tion. Formal Techniques for Networked and Distributed Systems FORTE 2004, 3235:359-376,
2004,

[59] E. Nowicka and M. Zawada. Modeling Temporal Properties of Multi-event Attack Signatures in
Interval Temporal Logic. In the Proceedings of the IEEE/IST Workshop on Monitoring, Attack
Detection and Mitigation (MonAM 2006), 89-93, ISBN 3-937201-02-5, September 2006.

136

[60] D. Ogle and H. Kreger and A. Salahshour and J. Cornprost and E. Labadie and M. Chessell and
B. Horn and J. Greken and J. Schoech and M. Wamboldt. Canonial Situation Data Format:
The Common Base Event V1.0.0. International Busines Machine Corporation, 2004.

[61] R. A. Magalhaes. Understanding Windows Logging. Windows Security, OS Security, 2004.

[62] Herv Schauer Consultants. Windows log files. Online Document, 2005. Last accessed: July 08,
2008.

[63] IBM. Windows Cluster Service. Last accessed: July 08, 2008.
[64] Microsoft. Microsoft - Help and Support. Online Help Website. Last accessed: July 08, 2008.
{65] Microsoft. Services and Service Accounts Security Planning Guide. Microsoft Technet, 2005.

(66] K. Adi, M. Debbabi, and M. Mejri. A New Logic for Electronic Commerce Protocols. Interna-
tional Journal of Theoretical Computer Science, TCS, 291(3):223-283, 2003.

[67] R. Cleaveland. Tableau-based Modeél Checking in the Propositional Mu-calculus. Acta Infor-
matica, 27(8):725-748, 1990. ’

[68] K. Ivens. Admin911: Windows 2000 Registry. Osborne/McGraw-Hill, 2001.

[69] M. Geiger. Counter-Forensic Tools: Analysis and Data Recovery. 18" Annual FIRST Confer-
ence, 2006.

[70] H. Carvey. The Windows Registry as a forensic Resource. Digital Investigation, 201-205, 2005.

[71] V. Mee and T. Tryfonasa and I Sutherland. The Windows Registry as a Forensic Artefact:
Nlustrating Evidence Collection for Internet Usage. Digital Investigation, 3(3):166-173, 2006.

[72] F. Apap and A. Honig and S. Hershkop and E. Eskin and S Stolfo. Detecting Malicious Software
by Monitoring Anomalous Windows Registry Accesses. Recent Advances in Intrusion Detection

: 5th International Symposium, RAID 2002, Zurich, Switzerland, , 2516:36-53, October 2002.

[73] S. J. Stolfo and F. Apap and E. Eskin and K. Heller and S. Hershkop and A. Honig and K.
Svore. A Comparative Evaluation of Two Algorithms for Windows Registry Anomaly Detection.
Journal of Computer Security, 13(4):659-693, 2005.

(74] K. A Heller and K. M Svore and A. D. Keromytis and S. J. Stolfo. One Class Support Vector
Machines for Detecting Anomalous Window Registry Accesses. 3rd IEEE Conference Data
Mining Workshop on Data Mining for Computer Security, 458-461, 2003.

137

[75) Microsoft. CurrentControlSet\Services Subkey Entries. http://support .microsoft.com/kb/
103000, 2006. Last accessed: July 08, 2008.

[76] Microsoft. Microsoft Security Bulletin MS02-064. http://www.microsoft.com/technet/

security/Bulletin/MS02-064.mspx, note = ”Last accessed: July 08, 2008”, 2003.
[77] Snort - sourcefire inc. http://www.snort.org. Last accessed: July 08, 2008.

[78] B. Schneier and J. Kelsey. Secure Audit Logs to Support Computer Forensics. ACM Transac-
tions on Information and System Security (TISSEC), 2(2):159-176, May 1999.

138

Appendix A

Proofs

A.1 Proof of Finiteness
‘We will need the following definitions:

Definition A.1.1 Closure. The closure CL(y) of a formula ¢ is a set of formulas that is defined
as:

CL(Z)={Z}

CL(~¢) = {-p} UCL(y)

CL(p1 A p2) = {1 A 02} UCL(p1) UCL(p3)

CL([r1 ¥ ra]p = {[r1 % a2} UCL(yp)

CL(vZ.p) = {vZ.9} UCL(plvZ.9/Z))

Definition A.1.2 Size. The size |¢| of a formula is a positive integer:
1Z]=1

1=l =1+]g|

le1 Apa| =1+ [p1] + |2l

[lrs % ool =1+ o

vZ.ol =1+]p|

Definition A.1.3 H-Ordering. Between hypothesis sets, we define the relation Ey, relative to a
Jormula @, where M is the set of all hypothesis sets:
; z= H x H

Eﬂ‘Pl =E¢’

139

Eqp;/\qu:gﬁpl NCy,

Eirarlor=Cy

Coz.o={(Hy,H2) €Ty | (Hay, Hy) €Cpr= Hy PvZ.¢' C Hy PvZ.40'}
Hy=, Hy< HyC, HAH, C, Hy

HiC,Hy < HyC, HyAH; #, Hy

Vo' € CL(p) Hi Ty Hy = Hy < Hy

Hy=,Hy & H SH,AHy S H,

HyQHy & Hy<H, AHy $ Hy

From the definitions above, it is clear that Vi, ¢’ . ¢’ <1 ¢ =C,CC,. The following results about

C, are proved in [67]:
e L, is reflexive and transitive, i.e., a preorder.
e HCyz, H'U{o:vZ.¢}, where H' = H\ {0’ :T | vZ.¢ < T}
® [, has no infinite ascending chains.

Definition A.1.4 Sequent ordering For any two sequents m, = Hj, b, F o1p1 and 1o = Hy,bo
0292, such that g € CL(varphi,), the relation 71 < 73 holds, whenever one of the following holds:
- Hy <y, Hp

- Hy =y, Hy Algp2| < |l

Lemma A.1.1 The sequent ordering relation < has no infinite ascending chain.

Proof. Suppose we start by 79 = Ho,by F 0 € @0, the chain 73 < 71 < taug... cannot ascend
infinitely, the proof follows form the facts that |CL(po)| is finite, <y, has no infinite ascending

chains, and Yy’ € CL(varphi). |¢'| < o). O

Theorem A.1.1 Finiteness. For any sequent 7 = H,b '\ o € ¢ there ezists a finite number of

finite tableauz.

Proof. The proof is by well-founded induction on the inverse of the sequent ordering relation, since
< has no infinite ascending chain, then <~! has no infinite descending chain.

Induction hypothesis: for all 7/ such that 7 < 7/, 7/ has a finite number of finite tableaux.
Required: for any , the applicable rule of the tableau will produce a finite number of 7’ , where

r<7.

140

We consider here two cases: 7 = H,b}t o € [r; % r)p and 7 = H,b } o € vZ.p since the other
cases are straightforward.

Case 1: T=H,bto €r; b rop

The only applicable rule is Ry, it generates sequents of the form 7; = H;,b; + 0; € ¢, where
i € I C N, N is the set of natural numbers. For all i H; = H, moreover ¢ € CL([r; % r2]p) and
Il < |[r1 & r2]e|, hence 7 < 7;. The set I is determined by the set © = {6; | match (r1,0,6;) =
tt}, where |If = |©|. Therefore we need to prove that © is finite, which follows from the fact that ¢
is finite since we are dealing with finite models. So we can write ¢ € {0,1,.. n} The other condition
of the rule is that b; X bg... x b, = b, the number of combinations if finite (2'1[') and each of these
combinations produce a different tableau.

Case 2: 7= H,bFvZ.p

The only applicable rule is R,, which produces only one sequent 7’ = H’,bF p[vZ.¢/Z], using the
results about T, above and the definition of the sequent order relation, it is easy to prove that

T<7]

A.2 Proof of Soundness

To prove the soundness, we have to prove that all successful leaves are semantically sound and that
all rules of the tableau reserve soundness. We consider two cases here and the rest of the cases can

be easily proved.
Theorem A.2.1 Soundness. For any sequent H,bl- o € ¢ with a successful tableau, o € { ¢]f’H

Proof. We consider the two following cases of successful leaves and rules:

Case 1: The sequent H,¢ F o € [r; > 2], is a successful leaf when V8. match (o,7,,0)} = ££.

This agrees with the semantics [[r; & 7o)y]f’H = {0 € L | V6. match(o,r,0) =0’ € ¢]f’H},

since the implication (=) will evaluate to tt. Moreover, the rule Rjj reserves soundness since it is

just an expression of the semantics of V from first order logic.

Case 2: The sequent H,e I 0 € vZ.p is a successful leaf when o : vZ.p € H. We recall the

definition of R, and the relativized semantics of vZ.¢:

HbroevZy
H'U{o:vZp}, bl a € plvZ.p/Z)
LH _ L.H ’

[l/Z.(p]e - (V[4]e[ZHSUS’}) U S

o:vieo¢H

141

where, H' = H\ {0’ : T | vZ.9o < T} and §’ = H PvZ.¢. So, what we would like to prove is that
[elvz.v/2) f’H'U{‘""z“”} =]y]f'[’g_,SU{a}]) U {o}. The proof relies on lemma 5.3.1 and on the

properties of fixpoints. It is detailed in [67].

A.3 Proof of completeness

The proof depends on the following theorem:

Theorem A.3.1 The sequent T = H,bF o € ¢ has a successful tableau if and only if v/ = H,b

0 € — has no successful tableau

Proof.

Step 1: =

Suppose that both 7 and 7/ have successful tableaux, then by the soundness theorem o € [be]f’H
and o € [by]f” , which implies ¢ € [=by]:"H. From the definition of the semantics, we will
have o € [bp }2" and o ¢ [by]f’H, which is a contradiction.

Step 2: «

We would like to prove that if T has no successful tableau then 7 has a succggsful tableau. We do
this by induction on the height of proof tree, starting from the leaves, i.e., prove that unsuccessful
leaves imply ¢ € —yp and whenever a node in the proof tree implies ¢ € —y its parent implies
the same thing. We consider here the case for the unsuccessful leaf H,—~ + o € fr1 & r2)p and
{c € L'| 30. match (0,71,0)} = @ and the rule Rj. The rest of the cases match those proved in
[66]. By definition, we have H,—} o € [r; 9 r3lp = H,eF o € =[r; % o) which is a successful .

leaf to prove that o € =[r; & r3]yp. Now for the rule Ry:

H,bloe[rd rap
& & ...6p

By the rule Ry, if.any & = H,b; I ¢’ € ¢ does not have a successful tableau, then r = H,bl o €
[r1 % ro]p does not have a successful tableau. In this case, by induction hypothesis, ¢ = H, b;
o' € -y has a successful tableau. By definition, we have H,—-b; - ¢’ € ¢ has a successful tableau.
But b=b; xby... x b;... X by, so the term by x by...x =b;...b, will equal —b (by definition of the
x operation), which means that H,~b} ¢ € [ry 9 73], will have a successful tableau, or in other

words H, b}t o € —[r; % r2]p will have a successful tableau. o

Theorem A.3.2 Completeness. If for a sequencec € L, o € [o]f’”, then the sequent H,b

142

o € ¢ has a successful tableau.

Proof. The proof follows from theorems A.2.1 and A.3.1 by contradiction.

143

O

Appendix B
Log Models

B.1 Start-up

First the LSASRV.dll authentication package is loaded. NETWORK SERVICE account logs on and
is assigned the required privileges.

A set of authentication packages are loaded starting with Kerberos.dll and MSV1.0.dll, followed
by schannel.dll which is a TCP/SSL Security Provider Library, wdigest.dll which is the Digest
Authentication Protocol library and is used for HTTP and SASL (Simple Authentication Security
Layer), and finally setuid.dll Winlogon and Winlogon\MsGina register with the Local Security
Authority KSecDD, Kernel Secﬁrity Support Provider Interface, also registers with the LSA SAM
loads a notification package scecli (Security Configuration Editor Client Engine).

After logon is initialized, the services begin to load and an instance of svchost.exe is created
by services.exe and run under services.exe privilege (by being passed a token from services.exe).
Then, depending on the type of service and the privileges that it should run under, we should see an
account logon followed by the service created. The accounts that logon are local service and network
service.

The process is executed by the following set of functions:

144

AuthenticationPackageLoaded(NT Authority \ System, sess1,C : \windows \ system32\
LSASRV.dIL : Negotiate)

SuccessfulLogon(NT Authority \ Network Service, sesss, advapi, 5)

Privilege Assigned(NT Authority \ Network Service, {SeAudit Privilege,
SeAssignPrimaryTokenPrivilege, SeChangeNoti fyPrivilege})

Authentication PackageLoaded(NT Authority \ System, sessi,c : \windows \ system32\
kerberos.dll : Kerberos)

AuthenticationPackageLoaded(NT Authority \ System, sessy,c: \windows \ system32\
msvl 0.dll : NTLM)

AuthenticationPackageLoaded(NT Authority \ System, sessy,c : \windows \ system32\
schannel.dll : MicrosoftUni fiedSecurity Protocol Provider)

AuthenticationPackageLoaded(NT Authority \ System, sessy,c : \windows \ system32\
wdigest.dll : W Digest)

Authentication PackageLoaded(NT Authority \ System, sess1,c : \windows \ system32\
msvl.0.dll : MICROSOFT_AUTHENTICATION _PACKAGE.V1.0)

AuthenticationPackageLoaded(NT Authority \ System, sess1,c : \windows \ system32\
setuid.dll : Setuid)

PrivilegeServiceCalled(NT Authority \ System, sessy, NT Local Security Authority,
LsaRegister LogonProcess(), SeTchPrivilege, s)

TrustedLogonProcess(NT Authority \ System, sess1, Winlogon)

TrustedLogonProcess(NT Authority \ System, sessy, Winlogon \ MSGina)

PrivilegeServiceCalled(NT Authority \ System, sess1, NT Local Security Authority,
LsaRegister LogonProcess(), SeTchPrivilege, s)

TrustedLogonProcess(NT Authority \ System, sessy, K SecDD)

NotificationPackageLoaded(NT Authority \ System, sessy, scecli)

~ — this package will be notified of any password changes

PrivilegeServiceCalled(NT Authority \ System, sess1, NT' Local Security Authority,
LsaRegister LogonProcess(), SeT'cbPrivilege, s)

145

Services start to load

ProcessCreated(NT Authority \ System, sess1, ¢ : \windows \ system32\
suchost.exe, pid;, ¢ : \windows \ system32 \ services.eze)
TrustedLogonProcess(NT Authority \ System, sess;, DCOMSCM)
PrivilegeServiceCalled(NT Authority \ System, sess:, LsaRegister LogonProcess(), SeTchPrivilege, s)
ProcessCreated(NT Authority \ System, sessy, ¢ : \windows \ system32 \ svchost.exe, pida,
¢ : \windows \ system32 \ services.eze)
ProcessTokenAssignment(NT Authority \ System, sess1,c : \windows \ system32 \ services.exe,
¢ : \windows \ system32 \ suchost.eze, pidz, s)
ObjectOpen(NT Authority \ Network Services, sessz, SC_ManagerObject, Services Active,
hidz, pida, “READ_CONTROL Connect to service controller Lock
servicé database for exclusive access”,s)
SuccessfulLogon(NT Authority \ Local Service, sesss, Advapi, 5)
Privilege Assigned(NT Authority \ Local Service, {SeAuditPrivilege,
SeAssign PrimaryTokenPrivilege, SeChangeNotif yPrivilege})
ProcessCreated(NT Authority \ System, sess1, serviceName, pid.,c : \windows \ system32\
services.exe)
ProcessTokenAssignement(NT Authority \ System, sess1, ¢ : \windows \ system32\
services.exe, serviceName, pid,, 8)
Success fulLogon(NT AUTHORITY \ Network Service, sessa, Advapi, 5)
Privilege Assigned(NT Authority \ NetworkService, {SeAudit Privilege,
SeAssignPrimaryTokenPrivilegé, SeChangeN otifyPrivilege})
ProcessCreated(NT Authority \ System, sessy, serviceName, pidy, c : \windows \ system32\
services.ezxe) _
ProcessTokenAssignement(NT Authority\ System, sess1, ¢ : \windows \ system32\

services.exe, serviceName, pidy, s)

The following set of functions are dependant on the configurations, services and applications
are loaded along with their required libraries and other file dependencies. A list of what should be

loaded can be maintained from the registry. Now the trace will be modeled as such:

146

Using the formal framework, this is how the process will be expressed:

{SEC)){x1.AuthenticationPackageLoaded(u1, sess1, dllLsarv).xa.
SucessfulLogon(us, sesss, lpapv,5).Privilege Assigned(uz, a28srvc)-
x3. Authentication Package Loaded(uy, sessy, dllkerberos)-Ta.
AuthenticationPackage Loaded(u , sess1, dlnTia).Ts.
AuthenticationPackage Loaded(u;, sess1, dllschannet)-T6.
Authentication Package Loaded(us, sessy, dllzgigest)-27.
AuthenticationPackage Loaded(us, sess1, dlipap).zs.
Authentication Package Loaded(u1, sess1, dll setuid) 2o.
PrivilegeServiceCalled(u1, 3€881, 8UrLs A, SNLogon, PUSeTch, 8)-T10.
TrustedLogonProcess(u1, se$s1, PRWiogon)-T11.TrustedLogonProcess(uy, s€$81, PRMSGina)
-z12.PrivilegeServiceCalled(uy, sess1, SUrLsa, $NLogon, PVseTch, 8)-L13-
TrustedLogonProcess(ui, €881, PlisecD)-L14.
NotificationPackageLoaded(u1, sessy, pkgscecii) - T15:
PrivilegeServiceCalled(us, s€881,8UrLsA, 8MLogon, PUSeTcb, 8)-L16-
ProcessCreated(uy, sess1, Plisucost, Pidz, Plisrve)-T17. TrustedLogon Process(ui, 8es81, pPacom)
-z18.PrivilegeServiceCalled(u,, sess1, SurLsa, 8NLogon, PVSeTcbh, 8)-T19.
ProcessCreated(us, 8€831, Plrsvcost , Pidz, Pservices)-T20-
ProcessTokenAssignment(u1, 3€381, Plisrucy Plisvcost, Pid2, 8).221.
ObjectOpen(uz, se382, 0tmo, ONtsrvc, hidz, Pidz, GZSsrvcConn, 8).T22 P €)tt A

v X (Success ful Logon(us, sesss,Ipapv, 5).x23. Privilege Assigned(us, azssrvc). 24
ProcessCreated(us, sessy, serviceName, pidz, prsrve) Z25.
ProcessTokenAssignment(u1, Prisrvc, 86381, serviceName, pidz, 8).226 + €)tt A

vX (Success ful Logon(uz, sessa, papv, 5).227. Privilege Assigned(uz, ax8smve)-228.
ProcessCreated(u, sess1, serviceName, pidy, prisrvc).T20.

ProcessToken Assignment(uy, €881, PgrvcConn, service Name, pidy, 8).x30 £)tt

147

Where:

uy = NT Authority\ System

u2 = NT Authority\ Network Service

us3 = NT Authority\ Local Service

dliLsasry = c:\ windows)\ system32\ LSASRV .dll:Negotiate

Alkerberos = c:\ windows\ system32\ kerberos.dll:kerberos

dlinrim = c:\ windows\ system32\ msv1.0.dI:NTLM

dllschannet = c:\ windows\ system32\ schannel.dll:Microsoft Unified Security Protocol Provider
dllwpigest = c:\ windows\ system32\ wdigest:WDigest

dlipap = c:\ windows) system32\ msv1.0.dll:Microsoft_Authentication_Package.V1.0
dllsetuia = c:\ windows\ system32\ setuid.dll:setuid

Ipapv = ADVAPI |

ATSsrve = {SeAuditPrivilege, SeAssignPrimaryTokenPrivilege, SeChangeNotifyPrivilege}

6TSsrocconn = {READ_CONTROL, Connect to service controller,

Lock service database for exclusive access}

svrrsa | = NT Local Security Authority

ST Logon = LasRegisterLogonProcess()

PUseTch = SeTcbPrivilege

PNuwiogon = WinLogon

PNMSGina = WinLogon\ MSGina

PNsecD = KSecDD

PMsuchost = c:\ windows\ system32\ svchost.exe
Phsrve = c:\ windows\ system32\ services.exe
PN Dcom = DCOMSCM

Pkgscecti = scecli

Olmo = SC_ManagerObject

OMservices = Services Active

148

B.2 Logon Model

The detailed explanation of the Logon process is found in Chapter 5, User Logon Steps. The sequence

of functions required for this process are as follows:

TrustedLogonProcess(NT Authority \ System, seesi, Winlogon)
TrustedLogonProcess(NT Authority \ System, sessy, Winlogon \ M SGina)
PrivilegeServiceCalled(NT Authority \ System, NT Local Security Authority/
Authentication Service, LsaRegister LogonProcess(), SeTcbPrivilege, 8)
PriviiegeServiceCalled(N T Authority \ System, NT Local Security Authority/
Authentication Service, LsaRegister LogonProcess(), SeT'cbPrivilege, s)
TrustedLogonProcess(NT Authority \ System, sessy, K SecDD)
Noti ficationPackageLoaded(NT Authority \ System, scecli)
— — this package will be notified of any password changes
PrivilegeServiceCalled(NT Authority \ System, NT Local Security Authority/
‘ Authentication Service, LsaRegister LogonProcess(), SeT chPrivilege,)
< Here there can be quite a few events in between >
Successf dlLogan(N T Authority \ Network Service, sessa Advapi, 5)
PrivilegeAssigned(NT Authority \ Network Service, { SeAudit Privilege,
SeAssignPrimaryTokenPrivilege, SeChangeNoti fyPrivilege}, s)
LogonAttempt(NT Authority \ System, user,
MICROSOFT_AUTHENTICATION_PACKAGE_V10,s)
Success ful Logon(user, sesss, User32, 2)
Privilege Assigned(user, {SeChangeNoti fyPrivilege, Se BackupPrivilege, Se Restore Privilege,
SeDebugPrivilege}, s)

ProcessCreated(NT Authority \ System, sess1, C : \windows \ system32 \ userinit.exe, pida,
C :\WINDOW S \ system32 \ userinit.exe)
ProcessTokenAssignment(NT Authority \ System, sesss, ¢ : \windows \ system32\

winlogon.exe, ¢ : \windows \ system32 \ userinit.exe, pida, 8)

149

Using the formal framework, this is how the process will be expressed:

{SEC) z1.TrustedLogonProcess(ui, 3€881, Pliwign)-T2.
TrustedLogonProcess(u1, s€s81, Piasgina).23.
PrivilegeServiceCalled(u, sessy, sess1, SUrLs A, M Logon; PUSeTchy 8)-24.
PrivilegeServiceCalled(u;, sess1, sess1, SUTLsA, SNLogon, PUSeTchy 8)-T5-
TrustedLogonProcess(ui, sess1, Piigecn).xs. Noti ficationPackage Loaded(u1, pkgscecit)-
z7.PrivilegeServiceCalled(u1, sess1, sess1, SUTLs A, SNLogon, PUSeTch, 8).-Ts-
Success ful Logon(uz, sessz, Ipady)-xo. Privilege Assigned(uz, az8srvc)-T10-
LogonAttemp(ul, uz, lpmap, 8).211.Success ful Logon(uz, 8€88z, Ipus2, 2).212.
Privilege Assigned(uz, ax8admin, 3)-213.ProcessCreated(uy, $€381, Priuserinit, Pidz, Plwiniogon).

am.ProcessTokenAssignment(u;) 8€881, Plwinlogon, Plluserinit, Pide).Z15 ¢ €)tt

Where:

Uz = NT Authority \ System

Uz = NT Authority \ Network Service
PNwign = Winlogon

PAMsGine = Winlogon\MSGina

PNsecD = KSecDD

Puserinit = c:\ windows \ system32\ userinit.exe

PNuinlogon = C:\ windows \ system32\ winlogon.exe

sUrLSA = NT Local Security Authority\Authentication Service
SN Logon = LsaRegisterLogonProcess()

PUSeTch = SeTcbPrivilege

Pkgocects = scecli

pado = ADVAPI

Ipmar - = Microsoft_Authentication_Package V1.0

Ipus2 | = User32

aZ8sryuc = {SeAuditPrivilege, SeAssignPrimaryTokenPrivilege, SeChangeNotifyPrivilege}

aTSadmin = {SeChangeNotifyPrivilege, SeBackupPrivilege, SeRestorePrivilege, SeDebugPrivilege}
B.3 Initializing Services at Startup

When a service starts, as mentioned earlier, it has to start under an account to use its privileges.
What should appear in the logs is a successful log on, followed by a privilege assignment for that

log on. Then the service is executed and a process begin appears in the security log, followed by a

150

service start which can be logged either in the application log, or the system log, depending on the
service.
Windows being a multi-threaded operating system, some logged events might not appear in

the exact sequence as they should. Through our experimentation we have noticed this and we

demonstrate the four possible ways that this can be modeled.

< SEC > Success fulLogon(NT Authority \ LocalService, sessz Advapi, 5)

< SEC > PrivilegeAssigned(NT Authority \ LocalService, {SeAudit Privilege,
SeAssignPrimaryTokenPrivilege, SeChangeNotifyPrivilege}, s)

< SEC > ProcessCreated(NT Authority \ System, sessy, serviceName, pidz, ¢ : \windows\
system32 \ services.exe)

< SEC > ProcessTokenAssignement(NT Authority \ System, sessy, ¢ : \windows\
system32 \ services.eze, serviceName, pid,, 8)

< APP > ServiceStart(serviceName)

151

OR

< SEC > Success fulLogon(NT Authority \ Network Service, sessy Advapi, 5)

< SEC > PrivilegeAssigned(NT Authority \ Network Service, {SeAuditPrivilege,
SeAssignPrimaryTokenPrivilege, SeChangeNotifyPrivilege}, s)

< SEC > ProcessCreated(NT Authority \ System, sessy, serviceName, pidz, c : \windows\
system32 \ services.eze)

. < SEC > ProcessTokenAssignement(NT Authority \ System, sess1, ¢ : \windows\
system32 \ services.exe, serviceName, pid.., s)

< APP > ServiceStart(serviceName)

OR _

< SEC > Success ful Logon(NT Authority \ Local Service, sessz, Advapi, 5)

< SEC > PrivilegeAssigned(NT Authority \ Local Service, {SeAuditPrivilege,
SeAssignPrimaryTokenPrivilege, SeChangeNotifyPrivilege}, s)

< SEC > ProcessCreated(NT Authority \ System, sessy, serviceName, pide, ¢ : \windows\
system32 \ services.eze) ‘

< SEC > ProcessTokenAssignement(NT Authority \ System, sesss,c : \windows\
system32 \ services.exe, serviceName, pidy, s)

< 8Y § > ServiceStart(serviceName)

OR

< SEC > Success fulLogon(NT Authority \ Network Service, sessz, Advapi,5)

< SEC > PrivilegeAssigned(NT Authority \ Network Service, {SeAudit Privilege,
SeAssignPrimaryTokenPrivilege, SeChangeNotifyPrivilege}, s)

< SEC > ProcessCreated(NT Authority \ System, sess;, serviceName, pidz, ¢ : \windows\
system32 \ services.eze)

< SEC > ProcessTokenAssignement(NT Authority \ System, sessi, ¢ : \windows\
system32 \ services.exe, service Name, pidy, s)

< 8Y S > ServiceStart(serviceName)

152

Using the formal framework, this is how the process will be expressed:

{@1.(SEC))Success ful Logon(usz, s€ssz, lpadv, 2).z2.{SEC)) Privilege Assigned(uz, azssrye, 8).
23.((SEC)) ProcessCreated(ui, sess1, plisn , Pide, Pisrvc).24.25.
(SEC) ProcessTokenAssignment(ui, $€381, Plsrvc, Plsn, Pide, 8).
{APP) ServiceStart(pnsn).ze & £)tt

V(z1.{SEC) Success ful Logon(us, sesss, ipadv, 2).x2.{SEC) Privilege Assigned(us, axssrvc, 5)-
z3.{(SEC)) ProcessCreated(u, 8€581, Pien, Pide, Plisrve).L4.
{SEC)) ProcessTokenAssignment(uy, s€s81, Psrve, Plisn, Pids, 8).Ts.
{APP)ServiceStart(pnsn).xe % €)tt

V{z1.{SEC)) Success ful Logon(uz, sessz, lpady, 2).x2.(SEC) Privilege Assigned(uz, azxssruc, 3).
z3.(SEC)) ProcessCreated(u1, 3881, DN sn, pide, Pisrve) L4.
{SEC) ProcessTokenAssignment(ui, 8€881, Plsrve, Psn, pidz, 8).25.
((SYS))ServiceStart(pn,,.).xs % g)tt

V({z1.{SEC))Success fulLogon(us, sesss, Ipadv, 2).z2. (S EC)) Privilege Assigned(us, azssme, 8).
23.{(SEC)) ProcessCreated(uy, 8€881, Plsn, Pide, Plisrve)-24.
{SEC) ProcessTokenAssignment(uy, $€881, Pisrvc, Ptsn, Pide, 8).Ts.
{SY S) ServiceStart(pnsn).xe 3+ €)tt

Where:

uy =NT Authority\ System

Uz = NT Authority\ Local Service

u3 = NT Authority\ Network Service

azserve = {SeAuditPrivilege, SeAssignPrimaryTokenPrivilege, SeChangeNotifyPrivilege}
Psyve = c:\windows\system32\services.exe

Pnsn = serviceName

lpadv - = ADVAPI

B.4 Account Creation, Modiﬁcétion, and Deletion

To add a user, a handle must be given to access the domain to which the user will be added with
access right to cre'ate a user, read the password parameter to change the password, and lookup
account IDs to create a new ID. The account we create here is called user and once we create the
account, we set a password immediately. So the log should indicate user being added to group
Elabeth, which is the domain in this case. Following in the log there should be an account created,

enabled, changed, and the password set. Once this is done, the handle which was opened for that

153

purpose is closed. After the user has been created and the password set, the new password and
user have to be registered in the SAM_USERS and SAM_ALIAS respectively, and the account
is added to Users group, which is a default setting. Note that in some cases an object is opened
and a handle is assigned to change an account, for example, but the change is logged right after the
handle is closed. This is a normal behavior, some events are logged after the even, not while it’s
being done. In this case, the log indicates an account changed and a handle with access rights to

perform the necessary changes. In such cases we use common sense.

ObjectOpen(Elabeth \ Administrator, “0z0,0z200A7”, SAM _DOMAIN
Elabeth, hidre24s0, pidsr2, { Read Password Parameter, Createl ser,
LookuplI Ds}, s)
GroupMemberChange(Elabeth \ Administrator, Elabeth \ user, Elabeth \ None, added)
AcountCreated(Elabeth \ Administrator, “020,0c200A7", user, Elabeth)
AccountEnabled(Elabeth \ Administrator, “020,02200A7”, user, Elabeth)
AccountChanged(Elabeth \ Administrator, “020,0x200A7”, user, Elabeth)
PasswordSet(Elabeth \ Administrator, “0z0,02200A7” , user, Elabeth)
HandleClose(hidzez4s0, pidrss)
AccountChanged(Elabeth \ Administrator, “0x0,0x200A7", user, Elabeth)
ObjectOpen(Elabeth \ Administrator, “020,0x200A47", SAM _USER,
Domains \ Account \ Users \ 0000458, hidga; 536, pid572
{READ_CONTROL,W RITE_DAC,WritePreferences, Read Account,
WriteAccount, Set Password(withoutknowledgeofoldpassword)})
HandleClose(hidgsis36, pidrss)
AccounfChanged(Elabeth \ Administrator, “0z0,0c200A7” , user, Elabeth)
GroupMemberChange(Elabeth \ Administrator, “0z0,02200A7”, Elabeth \ user,
Builtin \ Users, added)
Obj edOpen(Elabéth \ Administrator, “0x0,02200A7", SAM_ALI AS,
Domains \ Builtin \ Aliases \ 0000221, hidrsz4s0, pidsr2, { AddMember,
RemoveM ember, ListMembers, ReadIn formation}, s)

HandleClose(hidzsaag, pidsrs)

After creating the user, we want to add him to the administrator group to have administrative

privileges. In this case we should see in the log a object opened with privileges to add, remove, and

154

list members as well as read information. Following this event we should see a user added to the
group in concern. As mentioned earlier, the log might show that the handle has been closed before
the group member added event, but we rely on the type of object added and the access it has since

the sequence of events is not always accurate.

Obj ectOpen(Elabeth \ Administrator, “0x0,02200A7", SAM_ALIAS,
Domains \ Builtin \ Aliases \ 0000221, hidg2o4s6, pidsre, { AddMember,
RemoveMember, ListMembers, ReadInf ormdtz'on}, 8)

HandleClose(hidgaosss, pidsro) |

GroupM emberChange(Elabeth \ Administrator, “0x0,02200A7”, Elabeth \ user,
Builtin \ Administrators, added) |

So far we have seen how a user is created, setting the password, and giving a.dministra.tive
privileges or adding the user to a group of administrators. Now we will see what happens when a
user is deleted. The deletion of a user is logically the reverse process of creating a user. When we
created the user and added him to the administrators group, he was actually added to Users group,
Administrators group, Elabeth domain, SAM _USER, and two places in SAM _ALIAS. The user

has to be removed from all these locations before the account can be deleted. The process below

155

depicts this account deletion:

OpenObject(Elabeth \ Administrator, “0z0,0x200A7”, SAM _.USER,
Domains \ Account \ Users \ 0000458, hidggsaos, pidsra, { Delete}, s)
OpenObject(Elabeth \ Administrator, “020,02200A7", SAM _ALI AS,
Domains \ Builtin \ Aliases \ 0000221, hid; 435088, pidg}g, {RemoveMember}, s)
HandleClose(hidi43s0ss, pidsra)
GroupMemberChange(Elabeth \ Administrator, “0x0,0z200A7”,
“S —1-5—21— 631774309 — 52733966 — 2344899341 — 112", Builtin \ Users,
removed) .
OpenObject(Elabeth \ Administrator, “0x0,0c200A7", SAM _ALI AS,
Domains \ Builtin \ Aliases \ 0000220, hid, 438088, pidsra, {RemoveMember}, s)
GroupMemberChange(Elabeth \ Administrator, “0z0, 0z200A7",
“S —1-5~—21- 631774309 — 52733966 — 2344899341 — 112", Builtin\
Administrators, removed)
HandleClose(hid; 43g08s, pidsrs)
GroupM emberChange(Elabeth \ Administrator, “0z0,0z200A7",
“S —1-5-21 - 631774309 — 52733966 — 2344899341 — 112", Elabeth \ None,
removed) |
AccountDeleted(Elabeth \ Administrator, “0x0,0x200A7”,
“S —1-5—21- 631774309 — 52733966 — 2344899341 — 112”, user, Elabeth)
Object Deleted(hidgsszos, pidsra)
HandleClose(hidgssaos, pidsr2)

B.5 Policy Change

Some policy changes are very simple and straightforward especially since they are logged in a ded-
icated event indicating the change. For example, assume a user wants to get access to remotely
login through terminal services. He has to open the Microsoft Management Console (mmc.exe) to

get access to the local security settings. After which he will change the access. This is indicated

156

through these two events:

ProcessCreated(Elabeth \ Administrator, “0z0, 0x200A7", ¢ : \windows
system32 \ mme.exe, pidsgrs, ¢ : \windows \ system32 \ explorer.exe)

SysSecurity AccessGranted(Elabeth\, “0z0,0x200A7”, Elabeth \ Administrator
SeRemotelInteractiveLogonRight)

However, there are some policy changes that are not as obvious such as modifications to the security
option: “Network Security: Do not allow anonymous enumeration of SAM accounts”. To identify
such a policy change we have to look for a process begin where the process name is mmc.exe. This
process opens two objects, SAMgERV ER and SAMpOMAIN. This is the same for all “Security

Options” policy modifications:

ProcessCreated(Elabeth \ Administrator, “0z0,02200A7", ¢ : \windows
system32 \ mme.exe, pidsgre, ¢ : \windows \ system32 \ explorer.exe)

ObjectOpen(Elabeth \ Administrator, “020,200A7”, SAM_SERV ER, hidrs24s0,
¢ : \windows \ system32 \ lsass.exe, pidgry, {DELETE,

READ CONTROL,WRITE_DAC,WRITE.OWNER,
ConnectT oServer, ShutdownServer, InitializeServer, CreateDomain,
EnumerateDomains, LookupDomain, $)

ObjectOpen(Elabeth \ Administrator, “0z20,200A7", SAM . _.DOM AIN, hidzg24s0,
¢ : \windows \ system32 \ Isass.exe, pidgre, {DELETE, READ_CONTROL,
WRITE_DAC,W RITE_OW NER, ReadPasswordParameters,
WritePasswordParameters, ReadOther Parameters, CreateU ser,

 WriteOther Parameters, CreateLocalGroup, List Accounts,
GetLocalGroupMembership, Lookupl D, Administer Servers}, s)
HandleClose(hidzsasso, pidsrs)
HandleClose(hidre2480, pidsr2)

157

B.6 Firewall Startup

< SEC > ProcessCreated(NT Authority \ System, sessy, ¢ : \windows\
system32 \ alg.exe, pidy,c: \windows \ system32 \ services.exe)
< SEC > ProcessTokenAssignment(NT Authority \ System, sessy, ¢ : \windows\
system32 \ services.exe, ¢ : \windows \ system32 \ alg.eze, pid;, 3)
< S8Y S > NeworkLocation Awarness(Service Control Manager, entered running state)
< SYS > RemoteAccessConnection(Service Control Manager, entered running state)
< SYS > ApplicationLayerGateway(Service Control Manager, sent a start control)
< SYS > ApplicationLayerGateway(Service Control Manager, entered running state)
< FWL > UDPReceive(192.168.130.1, 239.255.255.250, DRO P, 1034, 1900, 153)
< SEC > FirewallPolicyLoaded(NT Authority \ System, NO, Standard, ON, Enabled,
Enabled, Enabled, Enabled, Disabled, Enabled, Enabled, ICM PsET)
Where ICMP_SET = {Enabled, Disabled, Disabled, Disabled, Disabled,
Disabled, Disabled, Disabled, Disabled, Disabled, }
< SEC > WF LApplicationException(NT Authority \ System, Local Policy, Standard,
_ appPath, Enabled, Allsubnets)
< SEC > WFLPortEzxception(NT Authority \ System, Local Policy, Standard,
inter face, port Number, protocol, enabled, scope)

{z1.{(SEC)) ProcessCreated(u1, sess1pnalg, pidi, Psrvc) . Z2.
{(SEC)) ProcessTokenAssignment(u, S€381, Pliarvc, Pllalg, Pidi, $).23.
{SY S)) NetworkLocation Awareness(srcscm, actrun)-T4.
{(SY S)) Remote AccessConnection(srcsom, actrun).Ts.

{(SY S)) ApplicationLayer Gateway(sre

where:

U1 = NT AuthoritysetminusSystem

PNaig = c:setminuswindowssetminussystem32setminusalg.exe
PNsrve = c:setminuswindowssetminussystem32setminusservices.exe
srcscm = Service Control Manager -

actrun = Entered running state

actstart = Sent a start control
After the firewall starts up and the firewall policy is loaded, exceptions for applications and ports that need
to connect to the network are loaded as well. First the set of permitted applications and ports are loaded,

starting with the all applications followed by the ports.
It’s important to note that is a policy is loaded at startup as a group policy, and any exception was added

158

as a local policy, this is a suspicious event. It might mean a malicious user is trying to enable a restricted
port or an application to connect for malicious purposes. Another issue of concern is the path of the loaded
application. In Windows Vista, for example, if the application path was changed, the application will not
be allowed to pass through the firewall and connect to the network. Hence the path of the application must

me checked to see if it is a legitimate application or some trojan horse.

159

Appendix C

Registry Correlation: USB

Mounting Related Keys

The USB key we use is a standard 256MB flash stick, so there is no advance drivers or libraries that need to
run. When the USB device is plugged in, we will see in the security log that the process rundll.exe started
(Event ID 592) and the process that created it was svchost.exe. As for the registry, the number of keys

created and set is quite a numerous as shown below:

HKEY _LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USB
\Vid_zzzzPid xxzz \ GUID

HKEY_LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USB
\Vid_zzzzPidxzzz \ GUID \ LocationInformation

HKEY _LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USB
\Vid_zxzzPid_zzzz \ GUID \ Capabilities

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USB
\Vid_zzzzPid_rzzz \ GUID \ UINumber

HKEY _LOCAL_MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USB
\Vid zzzzPid_zzzz \ GUID \ Control

HKEY_LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USB
\Vid_zzzzPid_zzxz \ GUID \ LogConf ‘

160

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum\USB
\VidzzzzPid_rzzz \ GUID \ DeviceParameters

HKEY _LOCAL MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USB
\VidzzzzPid xzzz \ GUID \ Hardwarel D

HKEY_LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USB
\VidzzzzPid_zrzzz \ GUID \ CompatibleI Ds

HKEY _LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Services \ USBStor \ Enum

HKEY _LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USB
\Vid_zzxzPid_zrzzz \ GUID \ Control \ ActiveService

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum\ USB
\Vid_zzz2zPid_rzxz \ GUID \ DeviceParameters

HKEY_LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USB
\Vid_xzzzPid_xzzz \ GUID \ DeviceParameters \ SymbolicName

HKEY .LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USBStor
\Disk&Ven_&Prod_USB_Drive&Rev.2\ GUID&0

HKEY LOCALMACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USBStor
\Disk&V en_&Prod_USB_Drive& Rev_2 \ GUID&0 \ Capabilities

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USBStor
\Disk&V en_& Prod.USB.Drive& Rev-2 \ GUID&0\ UINumber |

HKEY _LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USBStor
\Disk&V en & Prod-USB_Drive&Rev.2 \ GUID&0 \ Control

HKEY _LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USBStor
\Disk&Ven & Prod_USB._Drive&Rev.2 \ GUID&0\ LogConf

HKEY _LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USBStor
\Disk&Ven_& Prod.USB_Drive& Rev.2 \ GUID&0 \ HardwarelD

HKEY _LOCAL.MACHINE \ SYSTEM \ CurrentControlSet \ Enum \ USBStor
\Disk&Ven & Prod_USB_Drive&Rev2\ GUID&0 \ Compatible] Ds

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ USBStor
\Disk&Ven & Prod.USB_Drive& Rev2 \ GUID&0 \ LogConf \ BootConfig

HKEY LOCAL.MACHINE \ SYSTEM \ CurrentControlSet \ Enum\ USBStor
\Disk&V en_&Prod_-USB._Drive&Rev.2 \ GUID&O0 \ DeviceParameters

161

HKEY _LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Control \ DeviceClasses
\CLSID

HKEY _LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ Storage
\Removable Media \ z&zxrrrrra&r& RM

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ Storage
\RemovableMedia \ z&rzxrzzrrdec& RM \ Capabilities

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ Storage
\RemovableMedia \ v&zrrrrrez&z& RM \ UI Number

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ Storage
\RemovableMedia \ z&zzrrrrerdz&e RM \ Control

HKEY .LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ Storage
\RemovableMedia \ z&zrrrezca&zde RM \ LogConf

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ Storage
\RemovableMedia \ z&zrrrrrradez& RM \ Hardwarel D

HKEY LOCAL.MACHINE\ SYSTEM \ CurrentControlSet \ Enum \ Storage
\RemovableMedia \ z&zzzzrrredz& RM \ Compatiblel Ds

HKEY CURRENT .USER\ Software\ Microsoft\ Windows \ CurrentVersion \ Ezplorer
\MountPoints2 \ CPC \ Volume \ {CLSID}

HKEY CURRENT.USER\ Software\ Microsoft\ Windows \ CurrentVersion \ Ezplorer
\MountPoints2 \ CPC \ Volume \ {CLSID}\ Data

HKEY_CURRENT_USER\ Software \ Microsoft \ Windows \ CurrentVersion \ Explorer
\MountPoints2 \ CPC \ Volume \ {CLSID} \ Generation

HKEY .CURRENT.USER\ Software \ Microsoft\ Windows \ CurrentVersion \ Explorer
\MountPoints2 \ {CLSID}

HKEY CURRENT.USER\ Software\ Microsoft\ Windows \ CurrentVersion \ Explorer
\MountPoints2 \ {CLSID} \ BaseClass

HKEY CURRENT.USER\ Software \ Microsoft\ Windows \ CurrentVersion \ Explorer
\MountPoints2 \ {CLSID} \ Shell

HKEY CURRENT.USER\ Software\ Microsoft\ Windows \ CurrentVersion \ Explorer
\MountPoints2 \ {CLSID} \ Shell \ Autoplay

162

