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Abstract 

Some New Results on Nonlinear Filtering with Point Process 

Observations 

Shu Zhang 

The problem of stochastic filtering is concerned with estimating a signal based upon 

the partial and noisy observations of the signal. The nonlinear filtering theory has 

been applied in variety of fields including target detection and tracking, communica­

tion networks, mathematical finance, medical sciences, etc. In this thesis, we present 

some new results on nonlinear filtering with point process observations. These results 

are motivated by some problems from mathematical finance (cf. Zeng (2003)) and 

are based upon the novel techniques developed recently by Hu, Ma and Sun (2007). 

First, we rigorously derive the filtering equations with point process observations 

under conditions which are weaker than the usual assumptions. Then, we investigate 

the uniqueness of solutions to the filtering equations, in particular, we obtain the 

Poisson expansions for the unnormalized optimal filters. Finally, we introduce a 

recursive numerical method to approximate the unnormalized optimal filters. 
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Chapter 1 

Introduction 

In early studies, Brownian motion was one of the most popular continuous-time 

stochastic processes. This model has many real world applications such as medelling 

stock market fluctuations and describing evolution of physical characteristics in the 

fossil record, etc. However, sometimes Brownian motion is just used for the sake of 

convenience rather than accuracy. In recent studies, people are becoming more and 

more interested in discrete-valued stochastic processes, e.g. the point processes. The 

point processes have lots of applications. For example, we can use point processes to 

model asset prices, stock prices, exchange rates and commodity prices, etc. 

In this thesis, we consider the doubly stochastic Poisson process, which is an 

important class of point processes. Let (N(t))t>0 = (Ni(t), N2(t),..., Nn(t))t>0 be n 

independent standard Poisson processes. We consider 

/ 

Y(t) = 

V 

YiW 

Yn(t) 

\ ( N1(J*X1(X{s))ds) \ 

{Nn(f*\n(X(s))ds) ) 

Herein, X(t) can be used to model the evolution of the intrinsic values of some stock, 



while Y(t) denotes the cumulative numbers of trades occurred at n price levels up to 

time t. This is a partially observed model, which has been adopted in many fields of 

applications, such as economics, engineering, informatics, etc. 

Note that although we can construct the Poisson process model for stock trading 

prices, and the complete information of the prices and trading times can be captured 

through the observations, it does not mean that the intrinsic values of the stock are 

known easily. To well distinguish the stock intrinsic values from stock trading prices, 

we refer the readers to the Macromovement and Micromovement models introduced 

in [Zeng (2003)]. The macromovement model refers to the closing price behavior while 

the micromovement model refers to the transactional price behavior. It is also pointed 

out in [Zeng (2003)] that noise would create the major distinction between these 

mac- and micromovement models, and they could not be ignored when we estimate 

the intrinsic values from stock trading prices, especially in the high-frequency data. 

Discrete noise, clustering noise and nonclustering noise are the three main types of 

noise, which normally comes from either noised trading or the trading mechanism. 

Therefore, in the mathematical finance studies, it is more meaningful for the investors 

to investigate a stock's intrinsic values rather than its trading prices. 

Since the stock intrinsic values are not observable, we need to utilize the informa­

tion of the stock prices and trading times to estimate them. In this thesis, we will 

apply the theory of nonlinear filtering to this problem. In particular, we will apply 

the novel techniques recently developed by Hu, Ma and Sun (cf. Hu et al. (2007)). 

Note that although Poisson process and Brownian motion are qualitatively different, 

they present striking similarities when the martingale point of view is adopted. The 

martingale theory and the Ito's differential equations can be parallelly generalized for 
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the Poisson process system. In fact, it has been found that the role of the Stieltjes 

integration in the Poisson process theory is similar to that of the Ito's stochastic 

integration in the Wiener system (cf. Protter (1990)). Besides, almost all results 

for Brownian motion can be found the counterparts in the setting of Poisson pro­

cess. Therefore, it is quite worthy to review the Wiener system and its corresponding 

filtering theory, even though it is not the central topic of this thesis. 

Let (fi, .F, P) be a probability space endowed with history {Ft)t>o- A (P, Ft)-

Wiener process is a continuous process (Bt)t>o such that Bt is adapted to Tt for all 

t > 0 and, for all 0 < s < t, 

Bt — Bs is P — independent of Fs, 

Bt — Bs is Gaussian (0, t — s). 

If (Bt)t>o is a (P, JIi)-Wiener process, it is easy to verify that Bt and B\ — t are 

(P, Ft)-martingales. By virtue of Brownian motion, we can consider the stochastic 

differential equation: 

dXt = b(t,Xt)dt + a(t,Xt)dBt, 

equivalently, the stochastic integral equation: 

Xt = X0+ f b(s,Xs)ds+ f a{s,Xs)dBs. 
Jo Jo 

Now, we are ready to state the filtering problem with respect to Wiener process. 

We refer the readers to [Xiong (2008), pp. 1-3] for related examples such as the wireless 

communication and the environment protection, etc. A filtering model consists of 

two parts: one is the signal process which we will estimate, and the other one is the 

observation process which provides the information about the signal. 
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The signal process Xt is normally a d-dimensional process which is governed by 

the stochastic differential equation: 

dXt = b(t, Xt)dt + a(t, Xt)dBt, 

where b : M.+ x Rd —»• Rd, a : R+ x Rd —>• Rn are continuous maps, and B is an 

n—dimensional Brownian motion. The observation process Yt is an m-dimensional 

process governed by the stochastic equation: 

= f h(Xs)d& 
Jo 

ft 

Yt = I h(Xs)ds + Wt, 
'o 

where h : M.d —• M.m is a continuous map and W is an m-dimensional Bronian motion 

that is independent of B. 

Denote Tj :— a({Ys,0 < s < t},Af), where Af is the collection of P-null sets. 

Then the goal of filtering is to estimate the conditional distributions 

Kt{-):=P{Xte-\Tj), t > 0 . 

We define 

Lt = exp U {h(Xa), dYs) - i J \h(Xs)\
2ds 

= Lt. 
Tt 

and 

dP 

dQ 

Under reasonable conditions, it can be shown that Q defines a probability measure. 

Denote by E the expectation with respect to Q and define crt(/) = E{f [X^L^Y]-

Then, we have 

iTt is called the optimal filter and ot is called the unnnormalized optimal filter. 



It can be shown that Tvt satisfies the Kushner-FKK (Fujisaki-Kallianpur-Kunita) 

equation (cf. Fujisaki et al. (1972)) and at satisfies the Zakai equation (cf. Zakai 

(1969)): 

**(/) = *o(f) + / vs{Lf)ds + / (ns(hf) - Tra(h)na(f))dls, 
Jo Jo 

<rt(f)=<ro(f)+ I <rs(Lf)ds+ f as(hf)dYs, 
Jo Jo 

where L is the generator of X, f is any bounded function belonging to the domain 

of L, and Is = Ys — JQ
S nu(f)du is the innovation process. There are many different 

ways to prove the uniqueness of solutions to the above filtering equations (cf. e.g., 

Kurtz and Ocone (1988), Bhatt et al. (1995) and Kurtz (1998)). In Hu, Sun and Ma 

(2007), the authors use an interesting Wiener chaos expansion method to establish 

the uniqueness of solutions of the filtering equations under very weak conditions on 

the observation function h. 

In this thesis, we first derive the Zakai equation with respect to Poisson process 

in Chapter 2. To this end, we introduce the setting of the thesis at the beginning. 

Then we derive two equivalent forms of the Zakai equation by replacing Yt in the 

Wiener system with Yt — t in the Poisson system. In Chapter 3, we use the Poisson 

expansion, which is parallel to the Wiener chaos expansion, to prove the uniqueness 

of solutions to the Zakai equation. For simplicity, we consider one dimensional case 

(one stock) only, however, all the results hold for the multi-dimensional case (multi-

stocks). In Chapter 4, the objective is to compute the unnormalized optimal filters. 

Under certain assumptions, we drive a recursive expansion for the unnormalized filter 

density. Moreover, we introduce a numerical algorithm with bounded error. For the 

future work, it worthy to do some simulation for the proposed model. It will show 
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whether the stock value process Xt can be well estimated from the stock trading price 

Yt. 
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Chapter 2 

Filtering Equations 

2.1 Model and Reference Measure 

Throughout this chapter, we assume that E is a complete separable metric space 

with Borel a-algebra 13(E). Let (X(t))t>o be a cadlag time-homogeneous Markov 

process taking values in E and living on a complete probability space (CI, J7, P). 

(X(t))t>o is called the signal process, which cannot be observed directly. Denote 

by P>b(E) the family of bounded Borel measurable functions on E and denote by 

P(t, x,T) (t > 0, x G E, r G B(E)) the transition function for X. Then, we have the 

transition semigroup (Tt)t>0 defined by Ttf(x) = JE f(y)P(t,x,dy) for / G Bb(E). 

Set C := {/ e Bb(E) : limao Ttf(x) = f(x), Vx G E}. Then C D Cb(E), the family of 

bounded continuous functions on E. Define 

V=S.feC:3LfeC s.t. Ttf(x) = f(x) + J (TaLf)(x)ds^x G E\ . 

L is called the weak generator of X and V is its domain (cf. Kouritzin and Long 

(2003)). Note that T> is bounded pointwise dense in Bb(E) and hence measure deter­

mining. 
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Let (N(t))t>o = (Ni(t), Na(t),..., Nn(t))t>o be n independent standard Poisson 

processes on (fl,J-, P), which are assumed to be independent of (X(t))t>o. Suppose 

that for 1 < i < n, \ : E —•>• (0, oo) is Borel measurable and 

/ \(X(s))ds < oo, P - a . s . , V i > 0. 
Jo 

(2.1) 

Let the observation process (Y(t))t>0 be a doubly stochastic Poisson process as fol­

lows: 
/ 

Y(t) = 

V 

Yl(t) 

Yn{t) 

\ ( 

) \ 

N1(f^X1(X(S))ds) 

Nn(f*\n(X(s))ds) 

\ 

J 
D e n o t e d := (T({Y(S), 0 < s < t},N), F£ := a({X(s),0 <s< oo},7V) where TV i is 

the collection of P-null sets, and Tt := T* V J7^. Then, we have 

E^eiu
T(Y(t)-Y(S))^ = eE"=i(e^-l)/;A,-(X(«))dV> y ^ e Rn_ 

Note that X, Ni, iV2 , . . . , Nn are independent under P. However, this does not 

imply that X, Yi, Yj , . . . , Yn are independent under P. In the following, we will show 

that there exists a probability measure Q on (Q, J7) such that X, Yi, Y2,..., Yn are 

independent and Yi, Y2, • • •, Yn are standard Poisson processes. 

Lemma 2.1.1 For 1 < i < n, let (T)c(z))^1 be the jump times of (Y"j(t))t>0. Define 

the process (L(t))t>o by 
n 

L(t):=n^(*)» 

where 

Li{t) •= Y[tM(Tk(i))l{Tk(i)<t}exp I / (1 - /Xi(s))Ai(X(s))ds 

and 
fe>i 

Mi(*) = 
1 

A,(X(t))-



Then (L(t))t>0 is a (P, .^-martingale. 

Proof. By [Bremaud (1981), pp.165-166], (L(t))t>o is a nonnegative (P,^)-local 

martingale and hence a (P, .Fj-supermartingale. It suffices to show that E[L(t)] — 1 

for t > 0. Let Px and PN be the marginal probabilities with respect to X and N, 

respectively. Note that L is pathwise defined. We need to show that EN[L(t)\ = 1, 

Px-a.s., for t > 0. Since 

L(t) = 1 + J2 J L(s-)Ms) - l)d (^(s) - J"Xt(X(u))du\ , 

EN[L(t)] < 1, P*-a.s. By assumption (2.1), we get 

/ EN[L(t)] • K^s) - l)Xi(X(s))\ds < oo, Px - a.s. 
Jo 

Then L is a (P^ , J^)-martingale, Px-a.s. and hence EN[L(t)] = 1, Px-a.s., for t > 0. 

Therefore, E[L(t)] — 1 for t > 0. The proof is complete. 

Now we can define g | ^ t = L(i) for t > 0. Then Q can be extended to be a 

probability measure on (O, !F) and F is a standard Poisson process under Q. Define 

L(t) = 1/L(t) and denote by E® the expectation with respect to Q. Then ^\rt — 

L(t) and EQ[L{t)] = 1 for £ > 0. For / e Bb(E), we define 

nt(f) = E[f(Xt)\^}-

(7r*)t>o is called the optimal filter. By Bayes' formula, we get 

, m ^ [ / W L ( t ) | j y ] .. * ( / ) f n . 
Mf)- EQ[L(t)\^] "<rt(lY

 { } 

(at)t>o is called the unnormalized optimal filter. 
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2.2 Zakai Equation 

We will derive the Zakai equation for (at)t>o- Fix a constant T > 0 and denote by 

Mb(E) the family of finite signed measures on (E, B(E)). 

Lemma 2.2.1 Let (vt)o<t<T be an Jvtb(E)-valued cadlag process. Suppose that 

Then 

n r pT 

y^Q / | v , | ( |A i - l | ) d s<oo = 1. 

n
 rt f ' . rt 

vt(f) = v0(f)+ vs{Lf)ds + T Vs-KX, - I)MY^-s), 
Jo i=1 Jo 

Q-a.s., V / G P (2.3) 

is equivalent to 

vt(f) = v0(Ttf) + f] [ Vs-iiXi-lW-sfMYiW-s), Q-a.s., 

V/ G B6(£). (2.4) 

Proof. Without loss of generality we consider only the one-dimensional case, i.e. 

n = 1. For f EV, define 

*,(*,/) = v0(Ttf)+ f vs4(X-l)Tt_sf]d(Ys-s) 
Jo 

-iMf) + J vs(Lf)ds + J vs.[{\-l)f]d{Ys-s)\ 

= [vQ(TJ)-v0(f)} + 

| y ^ s _ [ ( A - l)Tt_J]d(Ys ~s)-f vs4(\ - l)f]d(Y8 - s ) l 

- fvs{Lf)ds. (2.5) 
Jo 

Note that Ttf - f = f*T,Lfds. We obtain by Fubini's Theorem that 

v(t, f)= f v0(TsLf) ~ ( vs(Lf)ds + I(t, Lf), (2.6) 
Jo Jo 

10 



where 
t ft — S 

/ ( * , / ) : = .[{X-l)Trf]drd(Ya-s). 
o JO 

For n € N, define the stopping time Tn by 

Tn := inf <̂  0 ^ t € T J \vs\(\\-l\)ds>n\. (2.7) 

Then T„ | T as n -> oo, Q-a.s. We also define 

rtAT„ rt-s 

' ( * , / , " ) := / / u8_[(A - l)Trf]drd(Ys - s), 
Jo Jo 

v(t,f,n) := / v0(TsLf) - f va{Lf)ds +I{t,Lf,n). 
Jo Jo 

(2.8) 

Part I First, suppose that (2.3) holds. Let / e V. By the stochastic Fubini's 

theorem, (2.7) and (2.3), we get 

I(t,f,n) = f f rI{s<Tn}Vs-((\-l)Trf)d(Ys-s)dr 
Jo Jo 

"(t-r)AT„ 

= / V(t-r)ATn(Trf) -v0(Trf) - / vs(LTrf)ds 
Jo Jo 

The last term of (2.9) is equal to 

/ / I{s^t-r}I{s^Tn}Vs(LTrf)dsdr = I{s^Tn}I{r^t_s}vs(LTrf)drds 
Jo Jo Jo Jo 

rtATn / /•• 

Jo \Jo 

dr. (2.9) 

LTrfdr J ds 

vs(Tt_J)ds- / vs(f)ds. 
o Jo 

Consequently, 

I(t,f,n) = I vsATn(Tt_sf)ds - / v0(Tsf)ds 
Jo Jo 

ptATn rtAT„ 

- vs(Tt.J)ds+ vs(f)ds. 
Jo Jo 

We complete the proof through the following three steps. 
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(a) Let / = Raip for some a > 0 and </? e V. Hereafter Ra :— J0 e atTtdt, a > 0, is 

the resolvent of (Tt)t>0. Then we obtain by (2.8) that 

v(t,f,n)= / I{s>Tn}VTn{Tt„sLf)ds - / I{s>Tn)vs{Lf)ds. 
Jo Jo 

Letting n —> oo, we get v(t, f) = 0. 

(b) Let / G V. Define fk := /ci?&/, A: G N. Note that fk -> / boundedly and 

pointwise as A; —> oo. By the bounded convergence theorem, Vo(Ttfk) —> v0(Ttf) and 

vt(fk) —*• ^t(/) as A: —• oo. Moreover, by (2.7), we get 

rt/\i„ rt/\in 

/ ^S_((A - l)Tt_a/fc)d(Ys - 5) - / us_((A - l)Tt_J)d(Ys - s) 
Jo Jo 

0 

as k —* oo for each n. Then v(t, f) = 0, (J-a.s, on {t < Tn}. Thus v(t, f) = 0, Q-a.s. 

Therefore (2.4) holds for any / G P by (2.5) and (2.3). 

(c) Let / G Bb(E). Since £> is bounded pointwise dense in B(,(E), there exists a 

sequence {/n}n>i C V such that supn>1 ||/n||oo < oo and limn^oo fn = f boundedly 

and pointwise. Therefore (2.4) holds for / by (b), the dominated convergence theorem 

and the stopping time argument (cf. (b)). 

Part II Conversely, suppose that (2.4) holds for any / G Bb(E). Let / G V. We 

obtain that 

/ vs(Lf)ds= f v0(TsLf)+ f rVa-[(\-l)Tu-aLf]d(Ya-s)d 
Jo Jo Jo Jo 
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Hence, by (2.6), we get 

v(tj) = I(t,Lf)- / va4(\-l)Tu_8Lf]d(Y8-s)du 
Jo Jo 

= J J vs_[{\ - l)Tu^sLf]dud(Ys - s) 

- ! [Uvs4(\-l)Lf}d(Ys-s)du 
Jo Jo 

v(tj,n) = J J I{a^Tn}va4(X-l)Tu.aLf]dud(Ya-s) 
ft fU 

- / vs-[(\-l)Tu_sLf]d(Ys-s)du 
Jo Jo 

rt ruATn 

= / / vs_[(\ - l)Tu_sLf]d(Ys - s)du 
Jo Jo 

/•t pu 

- / / vs-[(X — l)Tu-sLf)d(Ys — s)du —» 0 as n —» oo, Q — a.s. 
Jo Jo 

Therefore (2.3) holds. 

Theorem 2.2.2 Suppose that 

n pT 

J2 / E[\i(X(t))]dt < oo. (2.10) 
t = i Jo 

Then, for 0 < t < T, we have 

crt(f) = <*,(/) + I °s(Lf)ds + V / as_[(Ai - l ) / ] ^ ( s ) - s), V/ G P . (2.11) 
Jo i = 1 7o 

Proof. Note that (2.10) is equivalent to 

n rT 

< OO. £ / ^[L(t)|A,(X(t))-l|]dt 

Following the proof of [Bremaud (1981), R9, pp.177], we can show that 

n ft 
at(f) = <To(Ttf) + J2 Vs-{(^-m-sf}d(Yz(s)-s), Q-a.s., Vf e Bb(E). 

Therefore, the proof follows from Lemma 2.2.1. 

13 



Chapter 3 

Uniqueness of Solutions to the 

Zakai Equation via Poisson 

Expansions 

To simplify notation, we consider only the one dimensional case, i.e. n = 1, through­

out this chapter. But the similar results hold for general n. 

Theorem 3.1 Let (vl)o<t<r, i = 1)2, be two Alfe(5')-valued cadlag processes. Sup­

pose that for all n G N, 

/ / • • • / i /2(r t T l( |A-l |T t B_1_ t n( |A-l | - --r t l |A-l | ) ))dtn_1- . .dt2dt1<oo, (3.1) 
Jo Jo Jo 

and the following conditions hold for i = 1, 2. 

(i) v0 = v. 

(ii) For t £ [0,T], v\ is jF^-measurable. 

(in)S*El[\v\\\\\-l\)]dt<<x>. 

14 



(iv) For any / G T>, {vl
t(f)}o<t<T is an {Fj}o<t<T semi-martingale with 

4(f) = v'oif) + [ <{Lf)ds + fvliiX - l)f]d(Ys -s), Q- a.s. 
Jo Jo 

Then v] — v\ for all t G [0, T]. Moreover, we have the unique Poisson expansion 

vi(f) = u(Ttf) + ! u(Ttl[(X - l)Tt.tJ])d(Ytl - h) 
Jo 

+ I f1^Tt2[(X-l)Ttl_t2[(X-l)Tt_tlf]])d(Yt2-t2)d(Ytl-t1) + ---, 
Jo Jo 

Q-a.s., VfeBb(E). (3.2) 

Proof. Set vt = v] or vt = v2
t for t G [0,T]. Then J^ E^[\vt\

2(\X - l\)]dt < oo by 

condition (in). Let / G Bb(E). By Lemma 2.2.1, vt{f) G L2(n,Ft,Q) for t G [0, T] 

and 

vt(f) = v0(Ttf) + [ vtl[(X - l)Tt.tlf]d{Ytl - h), Q - a.s. 
Jo 

Denote (A — l ) n := ((—n) V (A — 1)) A n, n G N. Then, by the dominated convergence 

theorem, we get 

vt(f) = v0{Ttf) + lim / vtl[(X - l)nTt-tlf]d(Ytl - h), Q - a.s. 
n-°°7o 

Hereafter the limit is taken in the L2-sense. 

Apply the above argument to (A — l) n T t _ t l / . By JQ EQ[\vt\
2(\X — l\)]dt < oo, the 

dominated convergence theorem and (3.1), we get 

vt(f) = v0(TJ) + lim / vQ(Ttl[(X - l)nTt.tJ}d(Ytl - h) 

+ lim lim f f ' vt2[(X - l)niTtl^t2[(X - l)nTt_tJ]d(Yt2 - t2)]d(Ytl - tx) 

= v0(Ttf) + [ v0(Ttl[(X - l)Tt.tJ}d(Ytl - h) 
Jo 

+ lim lim / f\t2[{X-l)niTtl_t2[{X-l)nTt_tJ}\d{Yt2-t2)d{Ytl-tl), 

Q—a.s. 
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Then, by orthogonality, the first two terms of the above summation must be the 

first two terms of the unique Poisson expansion of vt(f). Repeat this procedure, by 

induction, we obtain the unique Poisson expansion (3.2) oivt(f). Therefore, v] = v\ 

for all* € [0,T]. 

Corollary 3.2 Suppose that JQ
T E[X(X(t))]dt < oo and 

00 ft fh ftn 
E / / • • • / ^ (Tt„ ( |A- l | r t B _ 1 _ t B ( |A- l | - - -T t l |A- l | ) ) )d t B _ 1 . . -d« 2 dt i 
n=1 Jo Jo Jo 

< 00. (3.3) 

Then {o~t}o<t<T is the unique A4b(S)-valued solution to the Zakai equation (2.11). 

Moreover, we have the unique Poisson expansion 

°t(f) = u(Ttf) + f u(Ttl[(X - l)Tt.tlf])d(Ytl - tr) 
Jo 

+ I f1u(Tt2[^-l)Th-t2[^-m-t1f]])d(Yt2-t2)d(Ytl-t1) + ---} 
Jo Jo 

Q-a.s. VfeBb{E). (3.4) 

Proof. By Theorems 2.2.2 and 3.1, we only need to show that 

rT 

EQ[[ {at(\\-l\)}
2dt]<oo. 

Jo 

Define (A - l ) n := ( ( -n) V (A - 1)) A n for n E N. Let {at
(A~1)n}0<i<T be the 

unnormalized filtering process with respect to (A — l) n , i.e. 

a ( A - D „ ( / ) . = j B Q , ( A - i ) . [ / ( x W ) L ( A - i ) „ ( i ) | ^ r , ( A - i ) „ ] ) f G Bb{E) 

Hereafter, we use Yt
{x~1)n, J^y,(A"1)n, Q^'1^ and E^x-1^ to denote respectively Yu 

Tj, Q and EQ corresponding to the observation function (A — 1)„. Since X and 
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Y* are independent under Q*, by Fatou's Lemma, Theorem 2.2.2, Theorem 3.1 and 

dominated convergence theorem, we get 

EQ 
T 

{at(\X-l\)}2dt 

T1 / \ 2 

= / [([ \X-l\(Xt)LtdQxj dQYdt 

< J™_ f f ( / lA - l\(Xt)L
{
t
x'l)ndQx J dQYdt 

= g™. f f ( f \X-l\(Xt)L
{
t
x-1)ndQ^-^A2dQ^-^Ydt 

fT{at{\\-l\)fdt 
Jo 

f{at(\{\-l)ni\Ydt 
Jo 

lim EQ'{x-1)n 

< lim lim EQ'{x~1)n 

n—>oo n\—»oo 

°° ~T rti 

^ £ / / •••/ ^(^(lA-llT^^dA-ll...^ 
n = 1 Jo Jo Jo 

\h\))) 

•dtn-i • • • dt2dti 

< oo, 

where Q*,x and Q*,Y denote the marginal probabilities of X and Y with respect to 

Q*, respectively. 

Remark 3.3 The assumptions of Corollary 3.2 are weak and can be verified for a 

large class of unbounded intensity functions A. For example, suppose that dv — u0dm 

with 1*0 € L2(E; m), (Tt)t>0 is a contraction semigroup on L2(E; m) and h := (A — 1) 6 

L2n+l(E;m) for any n € N. Then (3.3) holds. In fact, noting that (Ttf(x))n = 
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(Ex[f(Xt)})n < Ex[fn{Xt)] = TJn(x) for any / > 0 on E and n e N, we get 

"(Ttn+l{\h\Ttn-tn+l(\h\Ttn-l-tn " " 0 ) ) 

= / u0Ttn+1{\h\Ttn_tn+l(\h\Ttn^-tn • • • ))dm 

< ( j f ^ d r o ) (JE\h\4dm) [JE(Ttn.tn+1(\h\Ttn_^tn...)Ydm^ 

< (f^ldmj 2 (^l^l4^)1 4 (^(^-^(l/irCT^^...)2))^ 

< (fE4dm) U\h\4dm) n\h\8dm) (JjTtn_l„tn---fdr^\ 

< oo. 

Another example is as follows. If df = itodm with UQ G L2(E; m), h := (A — 1) G 

L4(E;m) and the semigroup (Tt)i>0 satisfies 

im/ | | i 4 < c||rt/|Ua, V/ e L2(£:;m), 0 < i < T 

for constant c > 0, then we have 

Y, / • • • / iy2(Ttn(\h\Ttn_^tn(\h\---Ttl\h\)))dtn.1-..dt2dt1<oo. 
n_1 Jo Jo Jo 
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Chapter 4 

Recursive Poisson Expansions for 

the Unnormalized Optimal Filters 

In order to use the established Poisson expansion (3.4) for practical computations, 

we must approximate the multiple Poisson integrals by truncation. In this chapter, 

we will develop a recursive algorithm for computing an approximation of the unno-

malized optimal filter. To make the presentation more transparent, we consider a 

time-homogeneous diffusion signal. 

Let (Vt^^V) be a complete probability space. Suppose (B(t))t>o and (N(t))t>o 

are standard one-dimensional Brownian motion and Poisson process on (fi,J-, V), 

respectively. The signal (X(t))t>o and observation (Y(t))t>o are given as follows. 

X{t) = X{0)+ [ b{X(s))ds+ f a(X(s))dB(s), 
Jo Jo 

Y(t) = N ( f \(X(s))ds) . 

The following conditions are assumed: 

(i) (B(t))t>o and (N(t))t>0 are independent of each other and of X(Q). 
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(ii) The functions b, a, and A > 0 on 1 are infinitely differentiable and all the 

derivatives are bounded. 

(iii) X(0) has a density p with respective to the Lebesgue measure dx and p is a 

smooth rapidly decreasing function on R. 

By (2.2), we have 

*«(/) = EQ[f(Xt)L(t)\Tp 
at(l) EQ[L{t)\Tj W ) = T7TT = d o r r M i r y i ' V ' G B& 

Similar to [Zakai (1969), pp.232], one finds that under assumptions (i)-(iii) there 

exists a random field u(t, x), t > 0, x G R, such that 

at(f)= [ u(t,x)f(x)dx, VfGBb 

u(t, x) is called the unnormalized filtering density function. 

Denote by Ttip the solution of the equation 

dv(t, x) _ ld2(a2(x)v(t,x)) d(b(x)v(t,x)) 
dt 2 dx2 dx 

v(0,x) = <p(x). 

t > 0, 

Let T > 0 be a fixed constant and consider a partition 0 = to < t\ < • • . < £M = T of 

[0, T\. Denote Aj = U — tj_i. Then, we obtain the following result by Corollary 3.2. 

Theorem 4.1 Under Assumptions (i)-(iii), we have 

u(t0,x) = p{x), 

u(ti,x) = Ttu(ti-ir)(x) 
/•At pst rs?. 

+ £ / / •••/ T^Sk(X-l).-.(X-l)Tslu(U-u-)(x) 
k>1 Jo Jo Jo 

d{Y^{sl)-s1)---d{Y^{sk)-sk) 

for i = 1 , . . . , M, where y « ( i ) = Y{t + t^) - Y(U-i), 0 < t < A8. 
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To simplify notation, for an ^_x-measurable function g — g(x, to) and 0 < t < A,, 

we define 

F^(t,g)(x) := Ttg{x) 

lf(t,g){x) := f r... fVSfe(A-l)---(A-l)Tsl5(x), 
Jo Jo Jo 

d(Y^(Sl)-Sl).-.d(Y^(sk)-sk), k>l. 

Then 

u(U,x) = J2Fk\AiMU-i, •))(*), i = l , . . . ,M. 
fc>0 

Denote by || • ||0 and (•, -)0 the norm and the inner product of L2(R, dx), respec­

tively. Then, there exists a constant c > 0 such that (cf. [Rozovskii (1990)]) 

\\Ttip\\o < ect |M|0. 

By induction, for every t € [0, Aj], i — 1 , . . . , M and k > 0, the operator g —> -Ffc (i, (?) 

is linear and bounded from L2(Q, Q; L2(M, da;)) to itself and 

E^\\FJp(t,g)\\l<^[(ct)k/k\\Efl\\g\\l 

This implies that u{U, •) G L2(R, dx), Q-a.s. By Theorem 4.1 and induction, we get 

the following result. 

Theorem 4.2 If {en} is an orthonormal basis in L2(R,dx) and random variables 

ipn(i), n > 0, i — 0,..., M are defined recursively by 

V'n(O) = (jp,en)0, 

fc>0 V > 0 / 
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then 

(*t, •) = ^i>n(i)en, P-a.s. 
n > 0 

Now we can use Theorem 4.2 to develop a recursive algorithm for (crt)t>o- For 

simplicity, we assume that the partition of [0,T] is uniform, i.e. A; = A for all 

i — 1 , . . . , M. Let {en} be the Hermite basis in L2(R, dx): 

C n ^ = /o 1/9 , e ~ x 2 / 2 ^(x) , 
V2n7r1/2n! 

where Hn(x) is the n-th Hermite polynomial defined by 

Hn{x) = {-lYe*2— e ^ 2 , n > 0 . 

Recursive algorithm: Given a positive integer K, define random variables ip^kii), 

n = 0 , . . . , K, i = 0 , . . . , M, by 

•0n,/c(O) = ( P ^ e n ) o , 

+ (1/2)(TA(A - l)2eh e„)o((y(ti) - y f t - i ) - A)2 - A))^„,«(i - 1), 

i = l , . . . , M . 

Then 

UK(ti,x) = J ^ ^ n A ^ ) 6 " ^ ) -
n = 0 

Remark 4.3 Similar to [Lototsky et al. (1997) and Lototsky and Rozovskii (1997)], 

the following type of error bound can be established. 

^ a x ^ yjEQ\\uK(ti,-)-u{tir)\\l <cA + 
0(7) 

K 7 - 1 / 2 A ' 
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Then, by appropriate choice of the parameters A and K, we can make the errors to be 

arbitrary small. The above algorithm looks especially promising if the parameters of 

the model, i.e. b, a, A and p, are known. In this case, the values of (TAQ, en)0, (TA(A — 

l)e;, en)0 and (TA(A — l)2e;, en), n, I = 1 , . . . , K, can be pre-computed and stored. So 

only increments of the observations are required at each step of the algorithm, which 

largely increases the on-line speed of the algorithm. 
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