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ABSTRACT 

An Aspect-Oriented Framework for Systematic Security Hardening of 

Software 

Azzam Mourad, Ph.D. 

Concordia University, 2008 

In this thesis, we address the problems related to the security hardening of open source 

software. Accordingly, we first propose an aspect-oriented and pattern-based approach for 

systematic security hardening. It is based on the full separation between the roles and 

duties of the security experts and the developers performing the hardening. Such propo­

sition constitutes a bridge that allows the security experts to provide the best solutions to 

particular security problems with the details on why, how and where to apply them. More­

over, it allows the developers to use these solutions to harden open source software without 

the need to have high security expertise. We realize the proposed approach by elaborat­

ing a programming independent and aspect-oriented based language for security hardening 

called SHL, developing its corresponding parser, compiler and facilities and integrating all 

of them into a framework for software security hardening. We also illustrate the feasibil­

ity of the elaborated framework by developing several security hardening case studies that 

deal with known security requirements and vulnerabilities and applying them on large scale 
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software. Second, we enrich SHL and the aspect-oriented languages with new pointcut and 

primitive constructs (GAFlow, GDFlow, ExportParameter and ImportParameter) that pro­

vide features missing in the current AOP proposals and needed for systematic security 

hardening concerns. We also explore the viability of the proposed pointcuts and primitives 

by elaborating and implementing their algorithms and presenting the result of explanatory 

case studies. Finally, we improve the proposed framework by proposing a new approach 

for applying security hardening on the Gimple representation of software and elaborating 

formal syntax for SHL and Gimple together with an operational semantics for SHL weav­

ing based on Gimple. We realize our proposition by integrating into the GCC compiler 

few features described in the SHL weaving semantics and developing a demonstrative case 

study. 
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Chapter 1 

Introduction 

1.1 Motivations and Problem Statement 

The software market has been dominated by Commercial-Off-The-Shelf (COTS) products 

during the past two decades. These products offer a myriad of functionalities. However, 

their intrinsic limitations such as closed source code, expensive upgrades and lock-in ef­

fect have emerged over time. Moreover, some organizations, notably governments, require 

high-level of assurance for the security of systems, a need that simply may not be answered 

by some COTS software. The result was the development of a parallel economy based on 

Free and Open Source Software (FOSS). A great deal of production systems rely on FOSS 

for their operations, where source code is made available for use, modification and mainte­

nance without the expensive fees imposed by COTS software vendors. Some countries are 

taking advantage of this openness, as it answers their need for trustworthy and validated 
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software. Currently, a plethora of high-quality FOSS projects, that are implemented in dif­

ferent programming languages, mostly C, C++ and Java, are widely available for use and 

modification at no (or small) cost and are carried out via Internet collaboration. Many of 

these FOSS products are considered to be as mature as their equivalent COTS. They are 

now perceived as viable long-term solution that deserves careful consideration because of 

the potential for significant cost savings, improved reliability, and support advantages over 

proprietary software. 

In parallel, security is taking an increasingly predominant role in today computing 

world. The industry is facing challenges in public confidence at the discovery of vul­

nerabilities, and customers are expecting security to be delivered out of the box, even on 

programs that have not been designed with security in mind. The challenge is even greater 

when such systems must be adapted to networked/web environments, while they are not 

originally designed to fit into such high-risk environments. Tools and guidelines for secu­

rity have been available for developers for few years already, but their practical adoption 

is limited so far. Nowadays, software developers must face the challenge of improving the 

security of programs and are often under-equipped to do so. In some cases, little can be 

done to improve the situation, especially for COTS software products that are no longer 

supported, or their source code is not available. 

However, whenever the source code is present, as it is the case of open-source software, 

a wide range of security improvements could be applied once a focus on security is decided. 

On the other hand, the secure integration of FOSS in IT infrastructures is very demanding 

and requires the adoption of particular methodologies, tools and technical policies in order 
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to reliably compose large software systems. Moreover, many of those open source soft­

ware are designed without security in mind, their security models are not well developed 

and/or their code encloses low level security vulnerabilities, from which the need to find 

methodologies to improve the security of such software. 

As a result, integrating security into open source software becomes a very challeng­

ing and interesting domain of research. In this context, we first define software security 

hardening as any process, methodology, product or combination thereof that is used to add 

security functionalities and/or remove vulnerabilities or prevent their exploitation in ex­

isting sofhvare. Few concepts and approaches emerged in the literature to help and guide 

developers to secure software. We can distinguish from them the hardening methods at 

the operating system and network levels, secure programming solutions published in many 

books and reviews [15,50], security code injection using aspect-oriented programming 

(AOP) [20,31], security design patterns [70], security patches, etc. In the sequel, we sum­

marize and discuss briefly the propositions that can be relevant and noteworthy to build our 

framework for systematic security hardening of software. 

Security design patterns are proposed as part of the security engineering concept, which 

aims at considering security early during the development life cycle of software. They 

are considered as a guide to improve and integrate security during the architecture and 

design phases. They approach the problem by encapsulating expert knowledge in the form 

of well-defined solutions to common security problems. Many security design patterns 

are available to help software engineers in designing their security models and securing 

their applications [18,22,38,39,56,68,70,90]. Their concept of organizing and providing 

the solutions as patterns seems interesting and it can be adapted to be useful for security 
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hardening of existing software. 

Secure coding is another useful approach that presents either safe programming tech­

niques, or list of programming errors together with their corresponding solutions [15,16, 

50,73,87]. For instance, several publications compiled common errors and vulnerabilities 

in code production languages such as C and C++. Their intent is to instruct software de­

velopers to avoid these errors. They may also target the security of existing software by 

correcting manually the programming errors causing the vulnerabilities. 

More recently, few initiatives have been introduced for code injection, via an aspect-

oriented computational style, into source code for the purpose of improving its security 

[20,31,52,74,78]. This approach is based on the idea of separating out the security concerns 

from the rest of the application, such that they can be addressed independently and applied 

globally. Aspect Oriented Programming [55,79] is a relatively new programming paradigm 

that provides a more advanced modularization mechanism on top of the traditional object-

oriented programming (OOP). It is based on the idea that computer systems are better 

programmed by separately specifying the various concerns (i.e., separation of concerns), 

and then relying on underlying infrastructure called weaver to compose them together. The 

techniques in this paradigm were precisely introduced to address the development problems 

that are inherent to crosscutting concerns. This paradigm seems to be very promising for 

security hardening of code, and hence we can build on top of it to achieve systematic 

security hardening of software. 

These propositions, together with others that address specific security issues, are likely 

to provide solutions to several security problems and requirements, and hence yield valu­

able insights to build up the security hardening solutions. However, they have important 
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shortcomings regarding their methodologies for integrating the security solutions into soft­

ware. Their solutions are applied manually and in an ad-hoc manner and require high secu­

rity expertise, which contradict somehow the purpose of proposing them. None of them of­

fer the developers well-defined methodologies, mechanisms and/or frameworks that assist 

and lead them during the application and integration of the security modules into software. 

Moreover, most of them (e.g., security design patterns and secure coding) target security 

issues during the development of new software, which limit to some extent their usefulness 

to secure already developed code. 

Besides, security hardening has difficult and critical procedures. If applied manually, 

they often require important and significant implementation decisions to be taken by the 

developers, which entails high security expertise. They also require lot of time to be tack­

led and may create other vulnerabilities, especially when dealing with large scale software 

(e.g., thousands and millions lines of code). Moreover, there is always a difficulty in find­

ing the software engineers and developers who are specialized in both the security solution 

domain and the software functionality domain. In fact, this is an open problem raised 

by several IT managers (e.g., Bell Security Labs, Ericsson Research Labs). As such, any 

proposition for security hardening of open source software should address all the afore­

mentioned problems and take into consideration how to provide the hardening solutions 

for security problems, how to avoid the manual application of the hardening solutions and 

how to avoid the need to have high security expertise to apply the hardening solutions. 
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1.2 Objectives 

The primary intent of this thesis is to create and elaborate into a framework well-defined 

and organized methodology, language, mechanisms, compiler and facilities needed to harden 

systematically and consistently security models, components and code into open source 

software. More specifically, our objectives are: 

• Address the problems related to security hardening of open source software and elab­

orate a methodology for performing systematic hardening without the need to have 

high security expertise. 

• Elaborate a dedicated language to express in a perspicuous and elegant way the se­

curity hardening components. 

• Realize the elaborated methodology by designing and implementing its components 

and integrating them into the corresponding security hardening framework. 

• Ascribe a formal specification of the elaborated security hardening framework. 

• Demonstrate the relevance and usefulness of our propositions by developing several 

security hardening case studies and applying them on large scale software. 
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1.3 Approach Overview and Contributions 

To pursue our objectives and solve the aforementioned related problems, we elaborated 

and developed an approach, a language and a framework based on aspect-oriented pro­

gramming for systematic security hardening of software. We also addressed few limita­

tions of AOP for security hardening concerns by elaborating new pointcut and primitive 

constructs. Moreover, we enriched our framework by elaborating a new programming lan­

guage independent weaving approach and building a formal specification of weaving based 

on the Gimple representation of software. In the sequel, we discuss in details each of the 

aforementioned contributions. 

1.3.1 Aspect-Oriented and Pattern-Based Approach for Security Hard­

ening 

The primary contribution of this work is building the needed approach and facilities that 

allow the developers to perform security hardening of software by applying well-defined 

solutions and without requiring from the developer to have expertise in the security solution 

domain. At the same time, the security hardening is applied in an organized and systematic 

way. The related contributions are: 

• Proposing a methodology that provides an abstraction over the actions required to 

improve the security of a program and adopting AOP to develop and integrate the 

solutions. The developers, with no security expertise, will be able to specify the 

hardening plans that use and instantiate the security hardening patterns. The secu­

rity hardening patterns are well-defined solutions to well-known security problems, 
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including detailed information on how and where to inject each component of the 

solution into an application. The combination of hardening plans and patterns con­

stitutes the concrete security hardening solutions. 

• Elaborating a programming independent language for security hardening (SHL) that 

allows the developers to describe and specify the hardening plans and patterns needed 

to harden systematically security into software. It is a core language built on top of 

the current aspect-oriented technologies that are based on advice-poincut model. It 

can also be used in conjunction with them. 

• Designing and implementing into a framework the parser of SHL, compiler and in­

terface that realize the proposed methodology and allow specifying the plans and 

patterns and performing security hardening of software. 

• Developing several security hardening case studies and applying them on large scale 

software, which demonstrate the usefulness and relevance of the proposed frame­

work. 

1.3.2 New Aspect-Oriented Constructs for SHL Targeting Security 

Concerns 

The main contribution of this work is addressing two limitations of the current AOP tech­

nologies for security hardening concerns and building their corresponding solutions into 

SHL. Our experiments explored the usefulness of separating the security concerns from the 

other software features, then using AOP for weaving them together. On the other hand, we 



have also distinguished, together with other related work in the literature [21,47,54,58,61], 

the limitations of the available AOP technologies for few security issues. Indeed, some se­

curity hardening activities could not be applied due to such limitations. Adopting AOP into 

the elaborated framework makes dealing with these problems, or at least some of them, 

necessary to reach our objectives. The related achievements are: 

• Proposing AOP pointcuts {GAFlow and GDFlow) that allow to identify particular 

join points in a program control flow graph (CFG), exploring their usefulness and 

necessity for security hardening and elaborating their corresponding algorithms. 

• Proposing AOP primitives {ExportParameter and ImportParameter) that allow pass­

ing parameters between two pointcuts, exploring their usefulness and necessity for 

security hardening and elaborating their corresponding algorithms. 

1.3.3 Formal Semantics oiSHL Weaving 

The main contribution of this work is twofold. It provides a formal specification and weav­

ing semantics for the elaborated security hardening framework. Simultaneously, it consti­

tutes a novel approach for applying aspect-oriented weaving into the Gimple representation 

of software. The related achievements are: 

• Elaborating a formal specification of SHL weaving based on the Gimple represen­

tation of software. We built SHL formal syntax and formal semantics for Gimple 

weaving. This formal specification constitutes an initial attempt and a guide toward 

developing a complete weaver for Gimple. Moreover, it provides a potential model 

for verifying formally SHL security hardening solutions. 
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• Augmenting the security hardening framework by proposing a new aspect-oriented 

weaving approach for Gimple to be integrated into the GCC compiler. This approach 

allows compiling the security hardening pattern and applying the hardening on the 

Gimple representation (tree) of software instead of the source code. In other words, 

it allows bypassing the refinement of pattern into aspect for some security hardening 

solutions, and consequently avoids using the current AOP weavers to harden soft­

ware. This provides more systematization and automation to our original approach. 

Moreover, this approach allows exploiting the Gimple intermediate representation to 

weave an application written in a specific programming language with code written 

in a different one. 

• Realizing the proposed approach and semantics by implementing several described 

weaving capabilities, integrating them into the GCC compiler, and building a secu­

rity hardening case study to demonstrate the usability and relevance of the proposed 

approach and semantics. 

1.4 Thesis Organization 

The rest of this thesis is organized as follows. 

In Chapter 2, we present an overview of the current approaches for securing software. 

We first describe the different levels of computer and information security. Then, we pro­

vide a taxonomy for software security hardening. Afterwards, we discuss the security engi­

neering, security patterns and secure programming approaches, and highlight their relevant 

points and limitations for software security hardening. 
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In Chapter 3, we explore the relevance of AOP for security hardening. We first describe 

the AOP concepts, models and languages. Then, we provide AOP solutions for several 

security issues and present a literature review on the approaches related to this area. 

In Chapter 4, we present the core approach, components, language, compiler and im­

plementation of the systematic security hardening framework. In this context, we describe 

the proposed approach and the main framework components including the security hard­

ening plans, patterns and language. We also present the grammar, structure and informal 

semantics of the security hardening language SHL and provide the compilation phases and 

the implementation methodology of the proposed framework. Moreover, we explore the 

useability and relevance of our propositions by presenting security hardening case stud­

ies for different security issues and problems and illustrating the experimental results of 

applying them on large scale software. 

In Chapter 5, we address few limitations of the current AOP technologies and propose 

new pointcuts and primitives needed for security hardening concerns. In this context, we 

explore the limitations of the current AOP technologies for security and present the litera­

ture review related to this domain. We also describe the proposed pointcuts and primitives 

and illustrate into examples their necessity and usefulness for security hardening concerns. 

Moreover, we provide the methodology and algorithms for implementing our proposals and 

discuss their viability and correctness in case studies. 

In Chapter 6, we provide a formal specification and semantics for the elaborated se­

curity hardening framework and propose a novel approach for applying aspect-oriented 

weaving into the Gimple representation of software. In this context, we describe the Gim­

ple approach for systematic security hardening, the syntax of SHL and Gimple and the 
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operational semantics for Gimple weaving. We also provide the methodology and results 

of implementing several Gimple weaving capabilities into the GCC compiler together with 

a security hardening case study demonstrating their usability and correctness. 

In Chapter 7, we summarize briefly the achievements and contributions of this thesis, 

provide concluding remarks, state the plans for future work, and present the list of publica­

tions derived from this thesis. 
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Chapter 2 

Techniques for Securing Software: 

Background and Scope 

2.1 Introduction 

The primary objective of this thesis is to elaborate and develop the methodology and mech­

anisms needed to improve and add security at the software level. As such, we first identify 

the scope of software security with respect to the other fields of IT security. Then, we 

present an overview and assessment of the current literature on the approaches that may be 

useful for securing software, and thus guide us in developing our security hardening frame­

work. Accordingly, we highlight in this chapter the relevance and limitations of secure 

programming and security engineering using design pattern propositions. We leave the dis­

cussion about how aspect-oriented programming can be used for security code injection till 

the next chapter. 

The rest of the chapter is organized as follows. In Section 2.2, we provide a global 
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introduction on information and computer security. In Section 2.3, we introduce our main 

approach by providing a definition and a taxonomy for software security hardening. In Sec­

tion 2.4, we discuss the security engineering and security patterns approaches. Similarly, 

we offer in Section 2.5 a discussion about the secure programming techniques. Finally, in 

Section 2.6, we provide concluding remarks about what is covered in this chapter. 

2.2 Computer and Information Security 

Information security can be defined as follows: "security regards the protection of valuable 

information against different kinds of threats, such as disclosure, unauthorized access and 

use, modification, destruction and so forth" [31]. The aforementioned valuable information 

can be local data, data transmitted over the networks, data related to the core functionality 

of the software/application, etc. Information security is mainly concerned with the confi­

dentiality, integrity and availability of data. 

Computer security is a category of information security applied to computers. The aim 

of computer security is to prevent attackers from achieving their objectives through unau­

thorized access or unauthorized use of computers, networks and/or valuable assets [50,70]. 

This can be achieved by taking measures and precautions against theft, espionage and/or 

sabotage [31]. In this context, computer security imposes requirements in the form of -

constraints on what computers are not supposed to do. However, information security, 

computer security and information assurance are interrelated and frequently used inter­

changeably. They share the common objectives of protecting the confidentiality, integrity 

and availability of information. Their main differences lie in the methodologies used and 
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the area of concentration. 

Before explaining the approaches, layers and requirements of computer security, we 

provide in the sequel definitions for some security concepts and explore the relations be­

tween them. This is required as many different definitions are used in the security literature, 

so a clarification of the relations between these concepts help to get a better understanding 

of the overall computer security field. 

• Asset: An asset is an information or a resource that has value to an organization or 

person. Applications, systems and networks are counted as assets. The weak assets 

are those that have vulnerabilities. 

• Security Flaw. A security flaw is a defect that poses a potential security risk. A soft­

ware defect is the result of encoding of human error(s) into the software, including 

omissions. 

• Vulnerability: A vulnerability is a set of conditions that allows an attacker to violate 

an explicit or implicit security policy. Attackers exploit vulnerabilities to break the 

security of an asset. Not all the security flaws lead to vulnerabilities, however, a 

security flaw can cause a program to be vulnerable to attacks when executed in risky 

environment and conditions. In other words, a vulnerability is an exploitable flaw. 

• Risk: A risk is the probability that an attack to an asset succeeds. Vulnerabilities 

increase the risk of security breaches, while countermeasures reduce it. 

• Exploit: An exploit is a piece of software or technique that takes advantage of a 

security vulnerability to violate an explicit or implicit security policy. There are 

15 



different forms of exploits including worms, viruses, trojans, etc. 

• Security Objective: A security objective is a statement of intent to counter and ad­

dress threats and satisfy the identified security needs. The state of security is achieved 

when the protection against threats is guaranteed. 

• Security Requirement: A security requirement is a necessity for protecting an asset 

against exploitation and attacks. 

• Security Policy: A Security policy is a set of rules that specifies or regulates how a 

system or an organization provides security services to protect sensitive and critical 

resources. 

• Countermeasure or Mitigation: A countermeasure or mitigation is action(s) taken in 

order to protect an asset against exploits and attacks. In other words, they are meth­

ods, techniques, mechanisms, processes, tools, or runtime libraries that can prevent 

or limit exploits against vulnerabilities. Countermeasures reduce the risk of security 

breaches. 

There exist many and various security requirements for information and computer secu­

rity described in many documents, standards and books [50,70]. There is no consensus on 

a standard list of requirements, which are chosen according to the application domain and 

the desired security level. In the sequel, we briefly overview the most important high-level 

security requirements and we focus on the list provided by the ISO standard 7498-2 in the 

context of distributed systems [8,31]: 

• Authentication: Corroborating of the identity of an entity or source of information. 
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• Access Control: Restricting access to resources to privileged entities. 

• Data Confidentiality: Keeping information secret from all but those who are autho­

rized to see it. 

• Data Integrity: Ensuring that information has not been altered by unauthorized or 

unknown means. 

• Non-Repudiation: Preventing the denial of previous commitments or actions. 

Other requirements may exist in the security literature such as availability, anonymity, 

auditing, certification, privacy, revocation, freshness, etc. 

The enforcement of security requirements to protect valuable assets can be achieved 

at different levels and in different forms. In this context, many security mechanisms and 

countermeasures exist in the literature. We distinguish from them the encryption for confi­

dentiality, hash functions for integrity, message authentication code and digital signatures 

for authentication and so forth [50,70]. However, these security mechanisms may not al­

ways be sufficient to ensure the above requirements. For instance, some low level security 

problems such as buffer overflows are not covered by this list. The following sections 

discuss such problems in detail. 

Once the threats and/or the security requirements are well identified and categorized, 

it is possible to determine the appropriate technique(s) to mitigate and/or enforce them. 

The literature often portrays threats and vulnerabilities accompanied with a mapping to 

known counter-measures addressing them. Please refer to Table 1 for an instance of such a 

mapping. 
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Threat Type 
Spoofing Identity 
Tampering with Data 

Repudiation 
Information Disclosure 
Denial of Service 

Elevation of Privilege 

Mitigation Techniques 
Appropriate Authentication, Protect Secret Data 
Appropriate Authorization, Hashes, Message Au­
thentication Codes, Digital Signatures 
Digital Signatures, Timestamps, Audit Trails 
Authorization, Encryption, Protect Secrets 
Appropriate Authentication and Authorization, 
Filtering, Throttling, Quality of Service 
Run with Least Privilege 

Table 1: Mapping Between Threats and Mitigations (Excerpt from [50]) 

Apart from the physical protection of assets, typical approaches of improving computer 

security can be applied to different components of computer systems i.e., communica­

tion/network, hardware and software. In the following, we explain briefly each one of 

them: 

• Communication/Network level security consists of securing the network infrastruc­

ture, shared resources (e.g. printers, network-attached storage, etc.), and access to 

individual computers. 

• Hardware level security consists of imposing restrictions and rules on computer op­

erating system and software. 

• Software level security consists of improving the security of the software itself and 

the operating system through remedying existing vulnerabilities and/or adding secu­

rity features such as access control, authentication, encryption, etc. 

In this thesis, we are only concerned with software security and the problems and solu­

tions related to it. In this context, we provide in the following sections the methodologies 

and requirements addressing this field. 
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2.3 Software Security Hardening 

The security hardening term at the software/application level is relatively unknown in the 

current literature. As such, we define software security hardening as any process, method­

ology, product or combination thereof that is used to add security functionalities and/or 

remove vulnerabilities or prevent their exploitation in existing software. 

We also propose a taxonomy of security hardening methods that refer to area to which 

the solution is applied. We established our taxonomy by studying the solutions of software 

security problems in the literature. We also investigated the security engineering of appli­

cations at different levels, including specification and design issues [15,18,50]. From this 

information, our practical experiments, and some hardening advice existing in the litera­

ture, we were able to draw out the following classification of methodologies for software 

security hardening: 

Code-Level Hardening 

Code-Level hardening constitutes changes in the source code in a way that prevents vulner­

abilities without altering the software structure. During software creation, vulnerabilities 

are created and are a direct result of the programming phase of the project. Code level 

hardening constitutes of removing these vulnerabilities by implementing the proper coding 

standards that were not enforced originally. 
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Software Process Hardening 

Software Process hardening is the addition of security features in the software build process 

without changes in the original source code. Software process hardening considers choos­

ing appropriate platforms, library implementations, compilers, aspects, etc. that result in 

increased security. It is also possible to use compilers and aspects that add some protec­

tions in the object code, which were not specified in the source code, and that prevent or 

complicates the exploitation of vulnerabilities existing in the program. To a certain extent, 

it externalizes the security concerns from the program, but has the disadvantages of being 

harder to audit and may lack portability. 

Design-Level Hardening 

Design-Level hardening is the re-engineering of the application in order to integrate secu­

rity features that were absent or insufficient. It refers to changes in the application design. 

Some security vulnerabilities cannot be resolved by a simple change in the code or by a 

better environment, but are due to a fundamentally flawed design. Changes in the design 

are thus necessary to solve the vulnerability or to ensure that a given security policy is 

enforceable. Moreover, some security features need to be added for new versions of exist­

ing products. This category of hardening practices target more high-level security such as 

access control, authentication and secure communication. In this context, best practices, 

known as security design patterns [18], can be used to guide the redesign effort. Although 

such patterns are targeting the security engineering of new systems, such approach can also 

be redirected to cover deploying security into existing software. 

20 



Operating Environment Hardening 

Operating Environment hardening consists of improvements to the security of the execu­

tion context (network, operating systems, libraries, utilities, etc.) that is relied upon by the 

software. It impacts the security of the software in a way that is unrelated to the program 

itself. This addresses the operating system (typically via configuration), the protection of 

the network layer, the configuration of the middleware, the use of security-related operat­

ing system extensions, the normal system patching, etc. [6,87]. Many security appliances 

can be deployed and integrated into the operating environment in a way that provides some 

high-level security services. These hardening practices fall within the scope of proper 

management of an IT department and, as much as they can prevent exploitation of vulner­

abilities, they do not remedy them. 

2.4 Security Engineering Using Design Patterns 

Computer security professionals have been promoting, for many years, tools and best prac­

tices guidelines to be used by the software development industry [14,18,50,71]. Devel­

opers, often pressed by a dominating time-to-market priority, must deal with a large set 

of technical and non-technical issues, in which case security concerns are not thoroughly 

addressed. As such, the concept of security engineering has been proposed to explore the 

importance of addressing security issues early during software development and provide 

guidance. 

The initial proposals in this domain have been suggested and known as secure software 

design advices or tips. In this context, Bishop, in a set of instructional slides [14], offers 
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advice on dividing software in processes that have exactly the right level of privilege to 

perform their task. In [15], the reader will also learn secure software design from design 

principles and case studies. Howard and LeBlanc [50] suggest to use threat modeling as 

a tool for correctly choosing the right security mechanisms and their proper deployment 

into systems. They show how secure software should not be structured in an arbitrary 

manner, but that design decisions should be directly correlated with the requirements and 

policies. In [51], Howard and Lipner describe the process used by Microsoft to create 

secure software, named the Security Development Lifecycle (SDL). They insists on the 

need to create defense in depth, since code-based vulnerabilities are not fully avoidable in 

practice. As such, they show a methodology used within the SDL for design named attack 

surface reduction. Attack surface reduction is a strategy that dictates the reduction of entry 

points, privileges and amount of executing code. One particular concern that it deals with 

is the presence of anonymous paths that are of a higher risk. Graff and Wyk [42] have also 

written on the principles and practices behind the construction of secure software. Their 

book covers all the steps of the software development process, and includes a coverage of 

security architecture and design. 

All these books are useful, but often lack direct advice on how to well design applica­

tions while taking security into consideration. For a decade now, security design patterns 

have emerged in order to answer this need. Security design patterns have been proposed 

recently as a guide for the improvement of software security during the design phase. Since 

the appearance of this research topic in 1997, several pattern catalogs have emerged, and 

the security design pattern community has produced many contributions [18,38,71]. In the 

sequel, we present an overview of the pattern concepts and particularly security patterns. 
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2.4.1 Pattern Concepts 

Patterns are structured documentations that capture well-defined solutions to recurring 

problems. The basic idea is to write down best practices and lessons learned from a given 

problem domain in an organized way [70,71]. Christopher Alexander et al. [11] provided 

the first definition of a pattern and its structure in the field of building architecture, which 

was later reused in the object-oriented world: 

"Each pattern describes a problem, which occurs over and over again in our environment, 

and then describes the core of the solution to that problem...". 

"Each pattern is a three-part rule, which expresses a relation between a certain context, a 

problem, and a solution". 

The main concepts of the pattern idea are explored in the aforementioned definitions. 

According to Alexander [11], each pattern should have the same structure and template in 

order to achieve better comprehension, comparison, and usage of the patterns. The core 

elements of such template are the name, context, problem, trade-offs, and solution. Other 

elements could be added to give more detail and explanation on the pattern if needed. The 

following is a brief description of these elements: 

• Name: The name of the pattern is the common-usage short expression that encap­

sulates the pattern meaning. The name is determined and assigned according to the 

community to which the pattern belongs. It should be expressive, reflect clearly the 

content of the pattern, and easy to refer to. 
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• Context: The context describes the environment where the pattern could be applied. 

In other words, it explores when and where the pattern will work and the precondi­

tions under which the problem and its solution appear. 

• Problem: The problem is a short description of the problem that this pattern aims at 

solving. It describes the goals and objectives a pattern needs to achieve. 

• Trade-Offs: The trade-offs section aims at explaining in more details the nature of 

advantages and disadvantages of this pattern over quality attributes. 

• Solution: The solution is a textual description of the pattern that solves the prob­

lem. It is presented as a proven solution of the problem proposed by domain experts. 

Proven solution means that this solution worked at least once in a well defined envi­

ronment. The level of abstraction of the solution is directly related to the type of the 

problem. For instance, we can find some patterns that provide design level solutions, 

while others provides code level solutions. Typically, a problem can have more than 

one solution, and the best one is only determined by the context where the problem 

occurs. 

• Related Patterns: Patterns related to this pattern, or patterns that inspired this pattern, 

are listed in this section. Patterns do not exist in isolation, and the presentation of 

this relationship provides linkage to subsequent patterns of pattern collection. 

Pattern Organization 

Patterns do not exit in isolation, as such, there are different concepts for collecting and 

organizing them depending on the relationships among them. Pattern catalogs, pattern 
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systems, and pattern languages are the main approaches [24,70] that are adopted for pattern 

organization. The following is a brief description of these approaches: 

• Pattern Catalogs: A catalog of patterns consists of patterns belonging to the same 

community (e.g., security), without the necessity to have relationships among them. 

It is the result of merging several individual patterns into a bigger collection. A 

pattern catalog is more a loosely coupled set of patterns [70]. However, typically 

and not mandatory, the same template and structure is used for all the patterns of the 

catalog. 

• Pattern Systems: A pattern system for software architecture, as defined in [70], is 

a collection of patterns for software architecture, together with guidelines for their 

implementation, combination, and practical use in software development. It is a 

more tightly coupled set of patterns than a pattern catalog and it precisely describes 

and explores the relationships and interactions between individual patterns. These 

patterns work together to solve a more complex problem in a particular domain. 

• Pattern Languages: A pattern language consists of patterns that have a common pre­

defined goal and each one of them contributes to provide the solution to one overall 

problem. These patterns are composed together to form a big pattern that provides 

the solution for the problem. Each pattern, by itself, is not considered as a solution 

for a particular problem. We can notice that the meaning of a language in the domain 

of patterns is different than its conventional one. 
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Pattern Categories 

In [24], Buschman et al. divided the patterns into the following three categories: 

• Architectural Patterns: Architectural patterns address the problems faced during the 

architecture level of the software development process. They provide solutions about 

the structural organization of software systems and the relationships among their 

components. 

• Design Patterns: Design patterns address the problems faced during the design of 

software systems. Most of the patterns available in the literature belong to this cate­

gory. This type of patterns are still independent of the implementation. 

• Idioms or Implementation Patterns: Implementation patterns address the problems 

faced during the implementation of the software systems. They are mostly program­

ming language dependent. Very few implementation patterns exist in the literature. 

Pattern Mining and Quality Assurance 

The major claim of patterns is that they are proven solutions for recurring problems. How­

ever, this is difficult to be true and guaranteed, particulary because there is no well-defined 

procedure for assessment. The only way that is currently used is to publish the patterns 

and review them by a community of experts. On the other hand, there are several basic ap­

proaches for pattern mining, which may also be used to prove the validation of the proposed 

solutions. The following are the aforementioned approaches presented in [53]: 
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• Introspective: In this approach, the developers build their own systems, analyze them 

and identify the solutions that work well. Then, these solutions are written and pre­

sented as patterns. These patterns are limited to individual experience, as such, the 

authors need to make sure that the other experts agree on these solutions. 

• Art if actual: In this approach, the authors of the patterns are not among the people 

who design and develop the systems. In this case, the authors investigate the solu­

tions and write the corresponding patterns. There is a possibility that the authors 

are not experts in the pattern domain, and as such, the patterns may need additional 

refinements. 

• Sociological: In this approach, the resulted patterns are the most solid and guar­

anteed. Several experts contribute to building the patterns by developing several 

systems that solve a particular problem, discussing the proposed solutions and then 

determining the best one. The chosen solution will constitute the pattern. 

2.4.2 Security Patterns 

Security patterns are patterns that belong to the security community. They approach the 

problem from the same perspective, by encapsulating expert knowledge in the form of 

proven/well-defined solutions to common security problems. These patterns will fit at dif­

ferent levels of abstraction and areas of concerns. Schumacher provided in [70,71] the 

following definition for security patterns: 

"A security pattern describes a particular recurring security problem that arises in a spe­

cific context and presents a well-proven generic scheme for a security solution". 
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Security patterns have a structure similar to the one of design patterns, i.e., they have 

an expressive name, context, problem, solution, and their relation to other patterns. These 

components form together the template for security patterns. Like other patterns, there are 

also some optional elements, which can be used to improve the comprehension of a security 

pattern. The aim of the template elements is to explain the use of a pattern. For instance, 

if a developer wants to use a pattern, he first checks the context and problem, then, if they 

fit with his problem and context, he applied the provided solution. Moreover, all the issues 

of pattern organization, pattern categories and pattern mining and validation are applied to 

security patterns, with the only difference that they are applied to the IT security domain 

and community. 

2.4.3 Literature Review 

The current research in the domain of security patterns is characterized by various pub­

lications. However, the field is lacking a core reference similar to the "Gang of Four" 

patterns [40] in typical software design and has no established criteria for evaluation. This 

situation makes the security design patterns hard to use for software designers and main-

tainers alike, which limits their adoption in the industry, and thus lowers their positive 

impact on software security. 

In [90], Yoder and Barcalow introduced a 7-pattern catalog. In fact, their proposed 

patterns were not meant to be a comprehensive set of security patterns, rather just a starting 

point towards a collection of patterns that can help developers to address security issues 

when developing new applications. 
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Kienzle et al. [56] have created a 29-pattern repository, which categorized security pat­

terns as either structural or procedural patterns. Structural patterns are implementable pat­

terns in an application whereas procedural patterns are patterns that were aimed to improve 

the development process of security-critical software. The presented patterns were derived 

from the implementation of specific web application security policies. 

Romanosky [68] introduced another set of design patterns. The discussion however has 

focused on architectural and procedural guidelines more than security patterns. 

Brown and Fernandez [38] introduced a single security pattern, the authenticator, which 

described a general mechanism for providing identification and authentication to a server 

from a client. Although authentication is a very important feature of secure systems, the 

pattern, as was described, was limited to distributed object systems. Fernandez and Warrier 

extended this pattern recently in [39]. 

Braga et al. [22] also investigated security-related patterns specialized for cryptographic 

operations. They showed how cryptographic transformation over messages could be struc­

tured as a composition of instances of the cryptographic meta-pattern. 

The Open Group [18] has introduced an important list of security design patterns. Their 

catalog proposes 13 patterns, and is based on architectural framework standards such as the 

ISO/IEC 10181 [7]. 

The most recent work in this domain is from Schumacher et al. [71]. They offered into 

a book a list of forty-six patterns applied to different fields of IT security, however most of 

them are rewriting of previously proposed patterns. 
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2.4.4 Evaluation 

The design principles and patterns for secure systems development are quite sound but are 

not meant to deal with already developed software, although they could be useful guides 

for a system redesign. However, the basic principle of the pattern is promising and should 

be leveraged in order to clearly specify how security hardening is to be done. 

Security patterns are currently written in a way that requires manual adaptation and 

makes their usefulness limited. This seems more like a limitation of the expression format, 

and not of the concept itself. This conclusion brought us to adopt the idea of patterns as a 

way to specify the security hardening solutions, while also considering a new and extended 

form of pattern expression that we describe in Chapter 4. 

2.5 Secure Programming 

The field of secure programming is focused on avoiding common programming mistakes 

that result in security vulnerabilities. As such, this field is highly tied to the technology 

used, typically being the programming language and the operating system. 

A lot of research has been published in the field of secure programming for C and 

C++ programs, since a large amount of production-level software has been written in those 

languages [17,50,73,87]. The design of those languages also allows the existence of 

many types of security vulnerabilities that are not possible in modern languages. They 

require manual memory management and offer low type safety, both being sources of many 

programming errors. Furthermore, since these languages are capable of interacting with 

the operating system directly, they are able to use system resources in a manner that is not 

30 



always safe. It is thus very important to understand the security implications of improper 

C and C++ programming and learn good practices to avoid them. 

We will now proceed to a non-exhaustive survey of existing vulnerabilities and their 

corresponding available solutions. After that, we will examine the current contributions in 

the field. 

2.5.1 Security/Safety Vulnerabilities 

Regarding low level security, deploying security at that level is mainly categorized as Code-

Level and Software Process hardening. As such, this type of hardening will be extremely 

dependent on the programming language and the platform. In this context, the C and C+ + 

programming languages have a bad reputation in the security world because they were 

designed for maximal performance, at the expense of some safety-enhancing techniques. 

The C and C++ memory management left to the programmer discretion and the lack of type 

safety are the major causes of security flaws. Such flaws do not exist in the Java programs 

because the compiler takes care of most of the issues that cause these security problems 

and handles all the memory management operations. In the sequel, we list th~e major safety 

vulnerabilities that are introduced in the source code during the implementation and we 

discuss their impacts on software security. Moreover, we provide a brief description of the 

mitigation techniques used to remedy them. 

Buffer Overflow 

Buffer overflow exploit common programming errors that arise mostly from weak or non­

existent bounds checking of input being stored in memory buffers. Attacks that exploit 
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these vulnerabilities are considered as one of the most dangerous security threats since it 

can compromise the integrity, confidentiality, and availability of the target system. Buffers 

on both the stack and the heap can be corrupted [50,91]. The following are the common 

causes of buffer overflow: Boundary condition errors, input validation errors, assumption 

of null-termination, and improper format string. 

Many APIs and tools have been deployed to solve the problem of buffer overflow or 

to make its exploitation harder [13, 50, 60, 91]. In this context, the following are some 

design and programming tips and assumptions that can help to solve the buffer overflow 

problem [17]: 

• Always assume that input may overflow a buffer and design the program in a way 

that provide proper input validation conditions. 

• Use functions that respect buffer bounds such as fgets, strncpy, and strncat. 

• Ensure NULL-termination of strings, even if using those functions. 

• Invalidate stack execution, since stack-based buffer overflow are the easiest to ex­

ploit. 

• Check the number of arguments of printing functions to make sure that the format 

string argument is explicitly specified. 

Table 2 summarizes the hardening solutions for the buffer overflow security problems 

with respect to the aforementioned security hardening classification. 
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Hardening Level 
Code 

Software Process 

Design 
Operating Environment 

Product/Method 
Bound-checking, memory manipulation functions 
with length parameter, null-termination, ensuring 
proper loop bounds 
Compile with canary words, inject bound-
checking aspects 
Input validation, input sanitization 
Disable stack execution, use libsafe, enable stack 
randomization 

Table 2: Hardening for Buffer Overflows 

Integer Operations 

Integer security issues arise either on the conversion (either implicit or explicit) of inte­

gers from one type to another, or because of their inherently limited range [73]. C and 

C++ compilers distinguish between signed and unsigned integer types and silently perform 

operations such as implicit casting, integer promotion, integer truncation, overflows and 

underflows. Such silent operations are typically overlooked, which can cause various secu­

rity vulnerabilities. Integer vulnerabilities may be used to write to an unauthorized area of 

memory. A first instance, is the allocation of less memory than thought, allowing to write 

to unwanted parts of the heap. Another instance is to access invalid memory areas with a 

negative index or memory copying operation. In some cases, if the access is to an invalid 

page, the result will be a denial of service via an application crash. They can also cause 

other security problems by bypassing preconditions and expected protocol values that are 

specific to the program being exploited. The following are the common causes of these 

vulnerabilities: 
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• Integer Sign Conversion: Sign conversion errors occurs because the C and C++ lan­

guages conserve the bit pattern when converting between signed and unsigned inte­

gers of the same size, so we can find negative or unexpectedly large values when not 

expected. This is due to the fact that most processors store signed integers with the 

first bit as the sign bit, whereas the same bit is used by unsigned integers in the same 

way as other bits. 

• Integer Signedness Errors: Signedness errors occur when the program expects an 

unsigned value, but instead finds a signed one. Because of the inappropriate assump­

tion, the program does not validate if the value is positive, potentially resulting in a 

security vulnerability. These errors typically happen in conjunction with conversion 

errors. 

• Integer Truncation Errors: A truncation error occurs when an integer is converted to 

one of a smaller type. The bit pattern of a subset of the original integer is preserved 

as is. If the smaller type is signed, this may result in a negative value. 

• Overflow and Underflow: Integer overflow and underflow happen when adding or 

multiplying beyond the integer maximum value or dividing by -1 (overflow) or sub­

tracting below its minimal value (underflow). This will result in errors similar to 

integer "conversion. It is also noteworthy to remember that unsigned integers obey 

modular arithmetic rules in case of overflow, resulting in smaller values than ex­

pected, but that are still positive. 

Those vulnerabilities can be solved using sound coding practices. The generalized 

use of unsigned integers can simplify things for the programmer, and the addition of range 
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checking before sensitive operations can avoid unexpected results. Some compilers provide 

built-in supports for the detection of integer issues, and it is possible to replace integer 

operations with safer calls [73]. Table 3 summarizes the hardening solutions for the integer 

security problems with respect to the aforementioned security hardening classification. 

Hardening Level 
Code 

Software Process 

Design 
Operating Environment 

Product/Method 
Use of functions detecting integer overflow/un­
derflow, migration to unsigned integers, ensuring 
integer data size in assignments/casts 
Compiler option to convert arithmetic operation 
to error condition-detecting functions 
-
-

Table 3: Hardening for Integer Vulnerabilities 

Memory Management 

The C and C++ programming languages allow programmers to dynamically allocate mem­

ory for objects during program execution. C and C++ memory management is an enormous 

source of safety and security problems. The programmer is in charge of pointer manage­

ment, buffer dimensions, allocation and deallocation of dynamic memory space. Thus, 

memory management functions must be used with precaution in order to prevent memory 

corruption, unauthorized access to memory space, buffer overflow, etc. The following are 

the major errors caused by improper memory management in C and C++ 

• Using Uninitialized Memory: In C and C++ programming, the memory space pointed 

to by newly declared pointer is not initialized, and it typically points to a random 

location. The consequence of de-referencing these pointers include denial of service, 

information disclosure, and memory corruption. 
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• Accessing Freed Memory: A pointer on which the f r e e function was called can still 

be accessed. It is however possible that the memory range was allocated for another 

use, and that this access will result of reading invalid data or corrupting data used by 

another part of the process. 

• Freeing Unallocated Memoiy: The f r e e function must be called on a memory lo­

cation previously allocated using the a l l o c family of functions. Otherwise, freeing 

an unallocated memory location can cause memory corruption and denial of service. 

This problem arises because the free call is performed with the uninitialized pointer, 

either through programming error or a failed memory allocation. 

• Memory Leaks: The dynamically allocated memory must be freed after usage and 

before the pointer to its location goes out of scope. Failure to do so results in a 

memory leak. Memory leaks degrade performance and can cause a program to run 

out of memory and crash. 

There are no known API or library solutions solving such problems as a whole. How­

ever, hardened memory managers can prevent multiple freeing vulnerabilities. Other than 

that, only improvements in programming practices can be useful in hardening against such 

problems. The following are some hints and best practices: Initialize each declared pointer 

and make it point to a valid memory location, do not allow a process to de-reference or 

operate on a freed pointer, and apply error checking on memory allocation calls. Table 4 

summarizes the hardening solutions for the memory management security problems with 

respect to the aforementioned security hardening classification. 
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Hardening Level 
Code 

Software Process 

Design 
Operating Environment 

Product/Method 
NULL assignment on freeing and initialization, 
error handling on allocation 
Using aspects to inject error handling and as­
signments, compiler option to force detection of 
multiple-free errors 
-
Use a hardened memory manager (e.g. 
d m a l l o c , p h k m a l l o c ) 

Table 4: Hardening for Memory Management Vulnerabilities 

File Management 

The C and C++ programming language provides functions for creation, deletion and ma­

nipulation of files and directories. File management problems occur when an access to 

or a modification of a restricted file happens. Some problems are closely related to race 

conditions. File management errors can lead to many security vulnerabilities such as data 

disclosure, data corruption, code injection and denial of service. The following are two 

major sources of vulnerabilities in file management: 

• Unsafe Temporary File: Many programs use temporary files, with default access 

restrictions. If the access permissions are incorrectly set, it is possible for the tempo­

rary file to be used as an attack vector for the application or another system file [87]. 

Another contributing factor to this problem is the fact that the name of the temporary 

file could be predictable. 

• Improper File Creation Access Control Flags: A file is typically opened using the 

process default file creation bit mask. This mask is typically inherited from the 

launching process. An attacker could alter this mask to make the information ac­

cessible, whereas it should be protected. 
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Vulnerabilities related to unsafe temporary file creation can be minimized by using 

secure library calls [87]. In some cases, we can redesign the application to use inter­

process communication instead of temporary files. File creation mask vulnerabilities, in 

UNIX-like systems, can be resolved using proper file creation-related system calls and 

specifying appropriate access rights. Table 5 summarizes the hardening solutions for the 

file management security problems with respect to the aforementioned security hardening 

classification. 

Hardening Level 
Code 

Software Process 
Design 
Operating Environment 

Product/Method 
Use proper temporary file functions, default use 
of restrictive file permissions, setting a restrictive 
file creation mask 
Set a wrapper changing file creation mask 
Refactor to avoid temporary files 
Restricting access rights to relevant directories 

Table 5: Hardening for File Management Vulnerabilities 

2.5.2 Literature Review 

Currently, security solutions can be found in secure coding books [15,50], in program­

mer/reviewer checklists, and in the mind of many experts. The focus of this help is to allow 

the creation of new programs that are designed, implemented and maintained for security, 

but does not offer practical support on how to deal with legacy code and how to harden 

security systematically into existing software. On the topic of secure programming of C 

and C++ programs, developers are offered a good selection of useful and highly relevant 

books and other materials. 

One of the newest and most useful additions is from [73], which offers in-depth expla­

nations on the nature of all known low-level security vulnerabilities in C and C++ . Their 
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treatment of integer overflows is the best we found in the literature. 

Another common reference is from Microsoft [50], and includes all the basic security 

problems and solutions, as well as code fragments of functions allowing to safely imple­

ment certain operations (e.g., safe memory wiping). The authors also describe high-level 

security issues, threat modeling, access control, etc. 

Slides from Bishop, in addition to his landmark book [15,16], provide a comprehensive 

view on information assurance, as well as security vulnerabilities in C notably on the topic 

of environmental issues. In addition, he provides some hints and practices to solve some 

existing security issues. 

Wheeler [87] offers the widest-reaching book on system security available online. It 

covers operating system security, safe temporary files, cryptography, multiple operating 

platforms, spam, etc. We consider his solutions as the most relevant to the problem of 

insecure temporary files. 

The Secure Programming Cookbook for C and C++ [83] is a hands-on solution for 

programmers looking for direct solutions to typically-encountered security problems. The 

authors mention recipes for safe initialization, access control, input validation, cryptogra­

phy, networking, etc. 

2.5.3 Evaluation 

The field of secure programming offers many highly relevant, although sometimes repet­

itive, contributions that can drastically help programmers to write secure code. They are 

also of help for developers who need to improve manually the security of existing systems. 
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As such, the secure programming references could be used as a primary resource for the 

construction of security hardening solutions dealing with related low-level security issues. 

On the other hand, this approach aims at educating programmers about the causes of 

vulnerabilities in order to help remedying them. Its limitation is that the hardening solu­

tions are applied manually by developers and depends considerably on human decisions. 

This means that the developers responsible for performing the hardening should have high 

security expertise. Beside, due to the manual application of hardening, such approach can­

not prevent human errors and cannot be applied on large scale software (e.g., thousands or 

even million(s) lines of code). 

2.6 Conclusion 

We presented in this chapter the major approaches in the literature that are relevant some­

how for integrating security into software, and hence constitute together a guide to build 

on top of them and elaborate the intended systematic security hardening framework. First, 

we went trough the security engineering using design patterns approach, explained its con­

cepts and components and explored that the principle of pattern is promising and should be 

leveraged in order to clearly specify how security hardening is to be done. However, we 

concluded that this approach misses the methodologies required for applying the security 

solutions, which limits their usefulness by non experts in security. Beside, it addresses se­

curity during the design of new software. Second, we discussed the secure programming 

techniques and provided an overview of the security vulnerabilities that they deal with. 

This field offers many highly relevant contributions that can drastically help programmers 
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writing secure code. As such, the secure programming references should be used as a 

primary resource for the construction of security hardening solutions dealing with related 

lower-level security issues. However, we found also that secure programming practices 

are applied manually by programmers and are too reliant on their sagacity and decisions, 

which enquires high security expertise and limits their useability for systematic security 

improvements. Regarding the use of AOP for integrating security into software, this ap­

proach offers strong potential for systematic security code injection, and hence it will be 

discussed rigourously in the next chapter 
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Chapter 3 

Towards Security Hardening Via 

Aspect-Oriented Programming 

3.1 Introduction 

Software security hardening requires radical transformation of the original source code 

such as changing what is available, augmenting it, and/or even removing it. In this context, 

few initiatives have been introduced recently for code injection, via an aspect-oriented 

computational style, into source code for the purpose of improving a security requirement 

or remedying a vulnerability [20,31,52,74,78]. These approaches are based on the idea of 

separating out the security concerns from the rest of the application, such that they can be 

addressed independently and applied globally. However, the current corpus of research in 

AOP-based security is still recent and falls short of a well-defined and organized systematic 

solution usable for applying security hardening by developers non-expert in security. A 

developer still needs to build the security solution and specify it into aspect(s). 
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On the other hand, AOP offers the facilities that allow to select and match some join 

points in the code (e.g., function call, function declaration, class declaration, etc.), insert 

code before and/or after the matched join points and replace the matched join points with 

new code. This process of code matching and injection is called weaving. In this context, 

AOP seems to be very a promising paradigm that provides features required to elaborate 

our methodology, and hence we can build on top of it to achieve our intended framework 

for systematic security hardening of software. A detailed discussion about AOP and its 

usability and applicability for security hardening is provided in the this chapter. 

The rest of the chapter is organized as follows. We first present in Section 3.2 the 

existing AOP models, components, and languages. Then, we explore through practical 

examples in Section 3.3 its relevance for software security hardening. Afterwards, we 

provide in Section 3.4 the literature review related to this research domain. Finally, in 

Section 3.5, we provide concluding remarks about what is covered in this chapter. 

3.2 Aspect-Oriented Programming 

AOP is a relatively new programming paradigm that provides a more advanced modular­

ization mechanism generally on top of the traditional object-oriented programming. It is 

based on the idea that computer systems are better programmed by separately specifying 

the various concerns, and then relying on underlying infrastructure to compose them to­

gether into a big program. The techniques in this paradigm were precisely introduced to 

address the development problems that are inherent to crosscutting concerns. The foun­

dation of AOP is the principle of "Separation of Concerns", where issues that affect and 
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crosscut the application are addressed separately and encapsulated within aspects. Then, 

these aspects are composed and merged with the core functionality modules into one single 

application. This process of merging and composition is called weaving, and the tools that 

perform such process are called weavers. 

3.2.1 AOP Models 

There are many AOP models, the most important ones are the following: Pointcut-Advice, 

Multi-Dimensional Separation of Concerns and Adaptive Programming. Just to note that 

some references consider only the Pointcut-Advice model as AOP, while the other two are 

concepts similar to AOP [75]. 

Pointcut-Advice Model 

The approach adopted by most of the AOP languages is called the Pointcut-Advice model. 

The join points, pointcuts and advices constitute its main elements. To develop under this 

paradigm, one must first determine what code needs to be injected into the application. 

This code describes the behavior of the issues that affect and crosscut the application. Each 

atomic unit of code to be injected is called an advice. Then, it is necessary to formulate 

where to inject the advice into the program. This is done by the use of a pointcut expression, 

whose matching criteria restricts the set of a program join points for which the advice will 

be injected. A join point is an identifiable execution point in the application code and the 

pointcut constitutes the constructor that designates a set of join points. The pointcut expres­

sions typically allow to match on function calls and executions, on the control flow ulterior 

to a given join point, on the membership in a class, etc. At the heart of this model, is the 
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concept of an aspect, which embodies all these elements. Finally, the aspect is composed 

and merged with the core functionality modules into one single program. This process of 

merging and composition is called weaving, and the tools that perform such process are 

called weavers. AspectJ [55] and AspectC++ [79] are instances of the languages that are 

based on the pointcut-advice model. 

Multi-Dimensional Separation of Concerns 

The Multi-Dimensional Separation of Concerns (MDSOC) [64] approach provides devel­

opers with simultaneous separation of concerns in software according to multiple and ar­

bitrary dimensions of composition and decomposition. It treats all the concerns equally, 

and this includes the program components and aspects. On the other hand, most AOP ap­

proaches do not support composition between program components or between aspects and 

they only enable the aspects to be composed with components. In other words, the MDSOC 

is a symmetric approach, as opposite to the pointcut-advice one where aspects are woven 

in the original application. Hyper/J [80] is an instance of the languages that are based 

on Hyperspaces, which is a particular approach of MDSOC. In Hyperspaces, the software 

is modeled as a set of hyperslices, where each hyperslice is a set modules representing a 

single concern. 

Adaptive Programming 

The idea of AOP has been used several years ago before the proposition of AOP with this 

exact nomination. They have been proposed by Demeter group [43] in the Adaptive Pro­

gramming approach. The programming style rule for loose coupling between the structure 
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and behavior concerns is part of the demeter law. Following this rule in software devel­

opment results in a large number of small methods scattered throughout the program. To 

avoid such problem, adaptive programming with traversal strategies has been proposed to 

better support the loose coupling of concerns. The demeter methodology is defined in 

three steps [63]: Derive a class graph that captures the structure of the application, derive 

traversal methods by finding a traversal path for each program operation and derive visitor 

methods by attaching specific behavior to certain classes that are visited. 

3.2.2 AOP Languages 

There are many AOP languages that have been proposed. These languages are used for 

code implementation and are programming language dependent. We distinguish from them 

AspectJ [55] built on top of the Java programming language, AspectC [27] built on top 

of the C programming language, AspectC++ [79] built on top of the C++ programming 

language, AspectC# [57] built on top of the C# programming language, and an AOP version 

for Smalltalk [19]. AspectJ and AspectC++ are dominant propositions in the field of AOP. 

Other related and special purpose languages have been also proposed. Tribe [26] offers 

an approach based on virtual class families. The AWED language [62] was developed 

for distributed applications and it also supports sequences. TOSCANA [37] is a toolkit 

for kernel-level AOP programming. It allows to modify the memory kernel to perform 

autonomic (i.e., self-managing) computing. Their language is quite simple, but is restricted 

to C . The Arachne system [35], part of the OBASCO project is providing an interesting 

aspect-oriented language for which the sequence of events is encoded in the aspect. Their 
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approach is C-centric and works on the in-memory binary process. Since AspectJ and 

AspectC++ are quite similar, both are based on the pointcut-advice model and most of our 

experiment aspects are coded in AspectC++ language, we will discuss only AspectC++. 

The reader can also refer to [55] if needed to understand the examples implemented in 

AspectJ. 

3.2.3 AspectC++ Programming 

AspectC++ defines an aspect-oriented extension to the C++ programming language based 

on the pointcut-advice model. It also provides tool support for the modularization of cross-

cutting concerns. AspectC++ is similar to AspectJ, but, due to the natures of C++ and Java, 

in some regards it is fundamentally different. For instance, the weaving in AspectC++ is 

performed at the source code level, while in AspectJ it is applied at the bytecode level. In 

the sequel, we only explain the concepts and elements of the AspectC++ language that are 

important and needed for this thesis work. Detailed information on AspectC++ is available 

in [3,79]. 

AspectC++ supports the separate programming of crosscutting concerns. One can de­

fine additional behavior to be integrated and woven into the code of the original application 

using a special purpose tool, the AspectC++ weaver. The weaver must be provided with 

all the relevant application and aspect files. The result of the weaving process is a new set 

of source code files describing the weaved application. Figure 1 illustrates first the com­

pilation process alone, then the compilation and weaving processes together. Crosscutting 

behaviors in AspectC++ are specified using aspects, which enclose all the other elements 
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Figure 1: AspectC++ Weaving 

of the AspectC++ language. Aspects consist of advices that describe the behavior and 

pointcuts that specify the join points in the application code where this behavior must be 

weaved. 

Join Point and Pointcut 

As aforementioned in the pointcut-advice model, a join point is a location in the source 

code of the application where the code of the additional behavior should be inserted. This 

location could be static (e.g., function call) as well as dynamic (e.g., execution flows). In 

other words, a join point is the selected place for the composition of different concerns. 

Each join point can either refer to a function, an attribute, a type, a variable, or a point 

from which a join point is accessed, so that this condition can be for instance the event of 

reaching a designated code position. Matching a join point is mainly based on properties 

such as function name, object type, etc. 
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A pointcut constitutes the constructor that designates a set of join points to determine on 

which condition the aspect shall take effect. Depending on the kind of pointcuts, they are 

evaluated at compile time or at runtime. AspectC++ provides a set of predefined pointcut 

designators and functions that allows specifying the joint points to be matched in the code. 

They can have arguments to select particular join points out of the set of all available join 

points. Furthermore, pointcuts can be combined using logical operators. In the sequel, we 

present the most important pointcut designators and their corresponding functionalities as 

specified and presented in the AspectC++ language documentations [3]: 

• call(pointcut): Returns all the join points where the entity (i.e., class or function) 

specified in the pointcut is called. If the pointcut refers to a class, then all the calls to 

its methods will be provided by the designator. 

• execution(pointcut): Returns all the join points that refer to the implementation of 

the entity (i.e., class or function) specified in the pointcut. If the pointcut refers to a 

class, then all the implementation of its methods will be provided by the designator. 

• base(pointcut): Returns all the base classes of the ones specified in the pointcut. 

• derived(pointcut): Returns all the classes specified in the pointcut and all the ones 

derived from them. 

• cflow(pointcut): Returns all the join points that take place in the dynamic execution 

context of the entity (i.e., class or function) specified in the pointcut. The current 

AspectC++ language still has some restrictions with respect to the features that are 

used in the argument of the cflow pointcut. The cflow designator does not support an 
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argument list containing context variable bindings or other pointcut designator that 

needs to be evaluated at runtime like cflow itself. 

• within(pointcut): Returns all the join points that are within the entity (i.e., class or 

function) specified in the pointcut. 

• construction(pointcut): Returns all the join points where an instance of the class 

specified in the pointcut is constructed. This designator works even if there is no 

constructor defined explicitly. 

• destruction(pointcut): Returns all the join points where an instance of the class spec­

ified in the pointcut is destructed. This designator works although a destructor does 

not need to be defined explicitly. 

• thatftype pattern): Returns all the join points where the current this pointer refers to 

an instance of a type matching the one described in the pattern. 

• target(type pattern): Returns all the join points where the target object of a call is an 

instance of a type matching the one described in the pattern. 

• result (type pattern): Returns all the join points where the result object of a call/exe­

cution is an instance of a type matching the one described in the pattern. 

• argsftype pattern,...): Returns all the join points where their argument type(s) is(are) 

matching the one(s) described in the pattern(s). 

• pointcut && pointcut: Returns all the join points resulting from the intersection of 

the join points matched in both pointcuts. 
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• pointcut 11 pointcut: Returns all the join points resulting from the union of the join 

points matched in both pointcuts. 

• / pointcut: Returns all the join points resulting from exclusion of the join points 

matched in the pointcut. 

Advice and Join Point APIs 

In AspectC++, an advice is used to describe the behavior that needs to be merged at the 

matched join points specified in the pointcut. An advice is somehow similar to a function of 

a class that contains the code statements describing a behavior. However, it also specifies 

how these statements must be woven with respect to the join point (e.g., before the join 

point). Advices are divided into two categories: advices for the join points matched in the 

dynamic control flow of the running program (e.g., function call or execution), and advice 

for static join points (e.g., introductions into classes). If the aspect has header files included, 

in this case their code containing the advice definition is compiled prior to the affected join 

point location in both advice categories. There are three advice constructs depending on 

the place where the code needs to be added with respect to the matched join points: 

• before(...): Integrates the advice code before the matched join points specified in the 

pointcut. 

• after(...): Integrates the advice code after the matched join points specified in the 

pointcut. 

• around(...)\ Integrates the advice code in place of the matched join points specified 

in the pointcut. 
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Around advice can be considered as the combination of a before and an after advice, 

with the option to not invoke the original behavior. In order for the weaver to know where 

the behavior must be woven, an advice must always be accompanied by a pointcut. A point-

cut in this context might be a reference to a stand-alone pointcut, or it could be a nameless 

pointcut, which only contains a pointcut body. Within the boundaries of an around advice, 

AspectC++ provides a functionality (i.e., t j p - > p r o c e e d ( ) ) that is used to invoke the 

original behavior. 

AspectC++ provides also the JointPoint API to be used within the advice code body. 

The functions of this API are called through the built-in object tjp of the class JoinPoint. 

The JoinPoint API functions allow to manipulate the information related to the matched 

join points inside the code. For instance, the user can call a function that gets the pointer 

to the memory position holding the first argument in order to use it in the code of the 

advice body. In the sequel, we present the JoinPoint API functions and their corresponding 

functionalities as specified and presented in the AspectC++ language documentations [3]: 

• static AC: .Type type(): Returns the encoded C++ type of a matched join point. 

• static int args(): Returns the number of arguments of a function join point matched 

by a call or execution designator. 

• static AC .Type argtypeftnt number): Returns the encoded C++ type of the argument 

of a function join point matched by a call or execution pointcut designator. 

• static const char *signature(): Returns the textual description of a matched join point 

(e.g., function name, class name). 
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• static unsigned int id(): Returns the numeric identifier of a matched join point. 

• static ACr.Type resulttype(): Returns the encoded C++ type of the result of a function 

join point matched by the call or execution pointcut designator. 

• static AC::JPTypejptypeQ: Returns a unique identifier describing the type of the join 

point matched by the call or execution pointcut designator. 

• void *arg(int number): Returns a pointer to the memory position holding the ar­

gument value with index number of a function join point matched by the call or 

execution pointcut designator. 

• Result *result(): Returns a pointer to the memory location designated for the result 

value of a function join point matched by the call or execution pointcut designator or 

returns 0 if the function has no result value. 

• That *that(): Returns a pointer to the object initiating a function call or returns 0 if 

the called function is static or global. 

• Target *target(): Returns a pointer to the object that is the target of a function call or 

returns 0 if the called function is static or global. 

• voidproceedQ: Integrates the original code of a matched join point code and is only 

used in an around advice. 

• ACr.Action &action(): Returns the runtime action object that encloses the execution 

environment to execute the original code encapsulated by an around advice. 
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Figure 2: Aspect Structure / Matching and Weaving 

Aspect 

An aspect in AspectC++ is composed of zero, one, or more pointcuts and advices. In ad­

dition to this, we can use within an aspect, more specifically within the advice body, all 

the types and functionalities provided by the C and C++ libraries by including the required 

header files as in a standard C and C++ program. We can also add our own libraries by 

implementing them inside the aspect or including them as header files. Figure 2 describes 

the structure of an aspect and illustrates the matching and weaving mechanisms. The pre­

sented example shows a pointcut P matching the calls to a function f () and two advices 

to insert code before and after P respectively. 
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3.3 Appropriateness of AOP for Injecting Security Con­

cerns 

Adding security functionalities and remedying vulnerabilities into software requires a tech­

nology that enables selecting particular point(s) into a program, matching them into the 

original source code and allowing radical transformation over classes, functions, variables, 

statements, etc. Few contributions explored that AOP provides such kind of features and 

allows integrating security concerns into software [20,31,52,74,88]. They showed how 

AOP can be used to specify separately several security functionalities and then weave them 

with the needed components of the original programs (as illustrated in Figure 3). In the 

sequel, we explore through examples the appropriateness and applicability of AOP for se­

curity hardening by presenting and describing Aspect! and AspectC++ solutions for few 

security and safety issues. 

3.3.1 Adding Identification and Authentication Using JAAS 

We present in the following an example for adding identification and authentication to a 

bank client application. This solution has been presented in detail in [78] and its referenced 

citing. The corresponding bank client application is presented in Listing 3.1. 

The JAAS library [5] is used for authentication. The security manager should be ini­

tialized in order to authenticate the client application before its creation (i.e., configure a 

login module, create an instance of L o g i n C o n t e x t and l o g i n ) . Listing 3.2 illustrates 
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Figure 3: Separation of Security Concerns 

class BankClient { 

public static void main(String[ ] args) { 
// ... 
BankHome homeBank = (BankHome) ctx.lookup( "ejb/Bank" ); 
Bank bank = homeBank. create () ,-

System.out.println( bank.getAccountlnfo( "bill" ) ); 
// ... 

} 

} 

Listing 3.1: Bank Client 
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an Aspect! solutions describing these steps. The pointcut p o i n t c u t m a i n E x e c u -

t i o n ( ) : e x e c u t i o n ( p u b l i c s t a t i c v o i d main ( . . ) ) ; matches 

inside the function main. The first b e f o r e advice adds the code needed to authenticate 

the client of bank component at the beginning of ma in (i.e., before creating the applica­

tion), while the second a f t e r advice add the code needed to log out at the end of m a i n 

(i.e., after executing the application). 

aspect BankAspect { 

LoginContext lc = null; 

pointcut mainExecution() : execution ( public static void main( .. ) ) ; 

// Login before execution of main() 
before(): mainExecution() { 
AppCallbackHandler handler = new AppCallbackHandler( "scott", "echoman 

" ) ; 
try { 
lc = new LoginContext( "Bank", handler ); 
lc. login(); 

} catch( LoginException e ) { 
// ... 

} 
} 

// Logout after execution of main() 
after() returning: mainExecution() { 
try { 
lc.logout(); 
} catch( LoginException e ) { 
// ... 
} 

} 

J 
Listing 3.2: Aspect for Identification and Authentication 

Weaving the application in Listing 3.1 with the aspect in Listing 3.2 using Aspect! 

compiler produces a class file with same functionalities as the application presented in 

Listing 3.3. The code of authentication and identification mechanisms has been added 
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before and after the creation and execution of the bank application. 

class BankClient { 

LoginContext lc = null; 
public static void main(String[] 

{ 
// Callback to get username and 

args) 

password. Required by 
AppCallbackHandler handler = new AppCallbackHandler( 

1 i 

try { 
lc = new LoginContext( "Bank" 
lc.login (); 

} catch( LoginException e ) { 
// ... 

} 

// ... 
//Start Original Code 
BankHome homeBank = (BankHome) 
Bank bank = homeBank.create(); 

, handler ) 

ctx.lookup 

System.out.println( bank.getAccountInfo( ' 
//End Original Code 
// ... 

try { 
lc.logout(); 

} catch( LoginException e ) { 
// ... 

} 
} 

} 

i 

"ejb/Bank" 

bill" ) ); 

LoginContext 
'scott", 

); 

"echoman 

Listing 3.3: Weaved Bank Client 

3.3.2 Detecting SQL Injection 

SQL injection attack consists of embedding malicious SQL commands into the parameters 

of a query sent by a web application to a database [48]. This malicious query results 

in an attack that can corrupt, destroy and/or disclose the database contents. The most 

popular techniques used for SQL injection are tautology, union, additional declaration and 

comments. In the following, we present an Aspect! solution for detecting SQL injection. 
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This solution has been described in detail in [48] and used with the Tomcat application 

server and the MySQL database manager. The corresponding aspect, which needs to be 

weaved with the server application (i.e., Tomcat), is illustrated in Listing 3.4. 

aspect SQLInject ionAspect { 

pointcut d b W r i t e ( S t r i n g q u e r y ) : 
( c a l l ( * j a v a . s q l . S t a t e m e n t . a d d B a t c h ( S t r i n g ) ) 
| | cal l (* j a v a . s q l . S t a t e m e n t . e x e c u t e ( S t r i n g ) ) 
| | c a l l ( * j a v a . s q l . S t a t e m e n t . e x e c u t e Q u e r y ( S t r i n g ) ) 
| | c a l l ( * j a v a . s q l . S t a t e m e n t . e x e c u t e U p d a t e ( S t r i n g ) ) ) 
&& a r g s ( q u e r y ) ; 

pointcut getParameter(): 
call(String javax.servlet.http.HttpServletRequest.getParameter(String) 

); 

Object around(String query): dbWrite(query){ 
Object ret = validator.Validator().validateQuery(proceed()); 
return ret; 

} 

String around (): getParameter(){ 

return new validator.Validator().validate(proceed()); 

} 

J 
Listing 3.4: Aspect for Detecting SQL Injection Aspect 

The pointcut p o i n t c u t g e t P a r a m e t e r () allows intercepting all the calls to the 

HTTP requests parameters. These requests are preceded by a validation described in the 

advice corresponding to this pointcut. Another validation is also applied on the database 

queries. The pointcut p o i n t c u t dbWrite ( S t r i n g query) allows, intercepting the 

data base queries that have a query as parameter. The validation mechanism is described 

in the advice corresponding to this pointcut. The validation consists of verifying that the 

parameter or query is not malicious. More detail information and scenarios about SQL 

injection and detection can be found in [48]. 
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3.3.3 Securing Connection Using GnuTLS/SSL 

Securing channels between two communicating parties constitutes an approach to avoid 

eavesdropping, tampering with the transmission, or session hijacking. In the following, 

we present a solution that we have elaborated as part of a case study for securing the 

connection of client applications using GnuTLS/SSL library [4]. More detailed information 

about the complete solutions can be found in Chapter 4. The client application, which is 

presented in Listing 3.5, is implemented in C and C++ and allows to connect and exchange 

HTTP request and data with a web server. To ensure the flexibility and correctness of our 

hardening solution and cover as much as possible the implementation scenarios used in 

the current client applications, we implemented this program multiple times, with different 

internal structures. 

Listing 3.6 illustrates excerpt of an aspect developed using AspectC++ to secure the 

connections and data transmission for the client application presented in Listing 3.5, For 

detailed information, a complete aspect for securing the connections of client applications 

using GNUTLS/SSL, but with different target functions, is presented in Listings 4.14 and 

4.15 of Chapter 4. The first advice-pointcut matches the call to the content of the function 

main to initialize the GnuTLS API at the beginning and de-initialize it at the end. The 

second advice-pointcut intercepts all the calls to the function c o n n e c t , initializes the TLS 

session before and adds the TLS handshake after. The third advice-pointcut intercepts all 

the calls to the function s e n d and replaces each one by the function from TLS g n u t l s _ -

r e c o r d _ s e n d . Similarly, the fourth advice-pointcut intercepts all the call to the function 

r e c v and replaces each one by the function from TLS g n u t l s _ r e c o r d _ r e c v . The 
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#define MAX_MSG 100 
const char * HTTPreguest = "GET / HTTP/1.l\nHost: 

n\n" ; 

int dosend(int sd){ 
int re; 
re = send(sd, HTTPrequest, strlen(HTTPrequest) 
return re; 

} 

int doreceive(int sd, char * buffer, unsigned int 
int re; 
re = recv(sd, buffer, bufSize, 0); 
return re; 

} 

int main (int argc, char *argv[]) { 
int sd, rc; 
int server port = 443; 
struct sockaddr in localAddr, servAddr; 
struct hostent *h; 
const char * server = "www.encs.concordia.ca"; 
char buf[MAX_MSG]; 

/*get host via DNS*/ 

/•create socket data structure*/ 

/* create socket */ 

/* connect to server */ 
re = connect(sd, (struct sockaddr *) kservAddr, 

/* Sending*/ 
re = dosend(sd); 

/* Receiving 
re = doreceive(sd, buf, MAX MSG); 

/* Shutdown */ 
close(sd); 

return 0; 

} 

www.encs.concordia 

+ 1, 0) ; 

bufSize){ 

sizeof (servAddr) ) ,-

ca\ 

Listing 3.5: Http Client 
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reader will notice also the appearance of h a r d e n i n g _ s o c k i n f o_ t . . . . These are 

the data structure and functions that we developed to distinguish between secure and non 

secure channels and export parameters between the application components at runtime. 

Weaving the application in Listing 3.5 with the aspect in Listing 3.6 using AspectC++ 

compiler produces the application presented in Listings 3.7 and 3.8. The resulting applica­

tion supports https requests and data transmission through secure channels. 

3.3.4 Remedying Buffer Overflow Vulnerabilities 

Buffer overflow attacks exploit flaws that arise mostly from weak or non-existent bounds 

checking of input being stored in memory buffers. Attacks that exploit these vulnerabilities 

are considered as one of the most dangerous security threats since it can compromise the 

integrity, confidentiality and availability of the target system. We present in Listing 3.9 an 

aspect developed using AspectC++ as part of a complete case study applied on several soft­

ware and presented in Chapter 4. This solution addresses and remedies three vulnerabilities 

exploited by buffer overflow. The three advices-pointcuts illustrated in Listing 3.9 match 

respectively all the calls to the functions s p r i n t f , g e t s , and s t r c a t and replace 

them by their corresponding secure ones s n p r i n t f , f g e t s , and s t r n c a t . Many 

safety vulnerabilities can be remedied in similar ways. 
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a s p e c t S e c u r e C o n n e c t i o n { 
a d v i c e e x e c u t i o n ("% m a i n ( . . . ) " ) : around () { 

/ • I n i t i a l i z a t i o n of t h e API*/ 

tjp - > p r o c e e d () ; 
/ * D e - i n i t i a l i z a t i o n of t h e API*/ 

* t j p - > r e s u l t ( ) = 0 ; 

} 

advice call("% connect (...)") : around () { 
//variables declared 
hardening_sockinfo_t socketlnfo; 
const int cert_type_priority[3] = { GNUTLS_CRT_X5 09, 

GNUTLS_CRT_OPENPGP, 0} ; 

//initialize TLS session info 
gnutls_init (ksocketlnfo.session, GNUTLS_CLIENT); 

/ /Connec t 
tjp - > p r o c e e d () ; 
i f ( * t j p - > r e s u l t ( ) < 0 ) { r e t u r n ; } 

//Save the needed parameters and the information that distinguishes 
between secure and non-secure channels 

socketlnfo.isSecure = true; 
socketlnfo.socketDescriptor = *(int*)tjp->arg (0); 
hardening_storeSocketInfo (* (int *) tjp - >arg (0) , socketlnfo) ,-

//TLS handshake 
gnutls_transport_set_ptr (socketlnfo.session, (gnutls_transport_ptr) 

(* (int*) tjp->arg(0) ) ) ; 
*tjp ->result() = gnutls_handshake (socketlnfo.session); 

} 

//replacing send() by gnutls_record_send() on a secured socket 
advice call("% send(...)") : around () { 
//Retrieve the needed parameters and the information that 

distinguishes between secure and non-secure channels 
hardening_sockinfo_t socketlnfo; 
socketlnfo = hardening_getSocketInfo(* (int *)tjp->arg (0)) ; 

//Check if the channel, on which the send function operates, is 
secured or not 

if (socketlnfo.isSecure) 
*(tjp->result()) = gnutls_record_send(socketlnfo.session, *(char**) 

tjp->arg(l) , *(int *) tjp->arg (2) ) ; 
else 

tjp ->proceed () ,-

} 
//Same as the last advice for replacing recv() by gnutls_record_recv() 

h 
Listing 3.6: Excerpt of Aspect for Securing Connections 
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#define MAX_MSG 100 
const char * HTTPreque.st = "GET / HTTP/1.1 \nHost: www.encs.concordia.ca 

\n\n"; 

int dosend(int sd){ 
int re; 

hardening_sockinfo_t socketlnfo; 
socketlnfo = hardening_getSocketInf o (sd) ,-
if (socketlnfo.isSecure) 
re = gnutls_record_send(socketlnfo.session, HTTPrequest, strlen( 

HTTPreguest) + 1); 
else 
re = send(sd, HTTPreguest, strlen(HTTPrequest) + 1, 0); 

return re; 

} 

int doreceive(int sd, char * buffer, unsigned int. bufSize){ 
int re ,-

hardening_sockinfo_t socketlnfo; 
socketlnfo = hardening_getSocketInfo (sd) ,-
if (socketlnfo.isSecure) 
re = gnutls_record_recv(socketlnfo.session, buffer, bufSize); 

else 
re = recv(sd, buffer, bufSize, 0) ; 

return re; 

} 

int main (int argc, char *argv[]) { 
int sd, re; 
int server_port•= 443; 
struct sockaddr_in localAddr, servAddr; 
struct hostent *h; 
const char * server = "www.encs.concordia.ca"; 
char buf[MAX_MSG]; 

/•Initialization of the API*/ 

Listing 3.7: Weaved Http Client (Part 1) 
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/*get host via DNS*/ 

/•create socket data structure*/ 

/* create socket */ 

hardening_sockinfo_t socketInfo; 
const int cert_type_priority[3] = { GNUTLS_CRT_X509, 

GNUTLS_CRT_OPENPGP, 0}; 
gnutls_init (ksocketlnfo.session, GNUTLS_CLIENT); 

/* connect to server */ 
re = connect(sd, (struct sockaddr *) kservAddr, sizeof(servAddr)); 

socketlnfo.isSecure = true; 
socketlnfo.socketDescriptor = sd; // socket is a variable matched by 

sd 
hardening_storeSocketInf o (sd, socketlnfo) ,-
gnutls_transport_set_ptr (socketlnfo.session, (gnutls_transport_ptr) 

sd); // socket is a variable matched by sd 
re = gnutls_handshake (socketlnfo.session); 

/* Sending*/ 
re = dosend(sd); 

/* Receiving 
re = doreceive (sd, buf, MAX_MSG) ,-

/* Shutdown */ 
close(sd); 

/*De-initialization of the API*/ 

r e t u r n 0; 
} 

Listing 3.8: Weaved Http Client (Part 2) 
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aspect SafetyVul { 

advice call("% sprintf(.. 
snprintf((*(char **)tjp 

(*(char **)tjp->arg 

} 

advice call("% gets(...)' 
if (fgets ( ( (char *)tjp-

) == NULL) { 

.)") : around () { 
->arg(0)), strlen(( 
(1)), (*(char **)tjp 

) around () { 

k (cha 
->arg 

>arg(0)), strlen(( (char 

printf("diagnosed undefined behavior.\n" 

} 

advice call("% strcat(.. . 
strncat ( (* (char **)tjp-

)") : around () { 

; 

>arg(0)), (*(char **) tjp 
char **) tjp->arg(0)))-strlen((*(char ** 

} 

}; 

)*JP-

r * + )tjp ->arg(0)))+1, 
(2))); 

*)tjp ->arg(0)))-3,stdin 

->arg(l)) 
>arg(l))) 

strlen((*( 

-1); 

Listing 3.9: Aspect for Remedying some Safety Vulnerabilities 

3.4 Aspect-Oriented Approaches for Improving Security 

The research contributions in this domain are proposed as languages targeting security 

and/or case studies that explore the usefulness of AOP for developing and injecting secu­

rity concerns into code. These propositions are useful initiatives towards separating the 

security code from the rest of the application code and systemizing their merging process. 

However, they target particular security vulnerabilities or requirements and show their cor­

responding AOP solutions (mostly in AspectJ). Besides, none of them proposed a global 

methodology for performing security hardening systematically by developers non-experts 

in the security solution applied. A developer still needs to build the security solution and 

specify it into aspect(s). The later statement remains true for all the current approaches, 

which we overview in the following. 

Cigital labs proposed an AOP language called CSAW [74-76, 82], which is a small 
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superset of C programming language. Their work is mostly dedicated to improve the se­

curity of C programs. They presented typical aspects that defend against specific types of 

attacks and address local problems such as buffer overflow and data logging. These as­

pects were divided in the low-level and high-level categories. The low-level aspects target 

the problems of exploiting the environmental variables such as attacks against s e t u i d 

programs, the problems of format strings and variable verification that cause the buffer 

overflow attacks. Their high level aspects address the problems of event ordering, signal 

race condition, and type safety. This language is limited to C programming language and 

addresses priory defined set of related security vulnerabilities. 

De Win et al. discussed two aspect oriented approaches and explored their use in in­

tegrating security aspects within applications [31-33,81]. In their first approach, the in­

terception, they explored the need to secure all the interactions with the applications that 

cannot be trusted and they provided additional security measures for sensitive interactions. 

They used a coarse-grained alternative mechanism for interception that consists of putting 

an interceptor at the border of the application, where interactions are checked and approved. 

Their proposition is achieved by changing the software that is responsible for the external 

communication of the applications. Their second approach, the weaving-based Aspect-

Oriented Software Development (AOSD), is based on a weaving process that takes two or 

more separate views of an application and merge them together into a single artifact as if 

they are developed together. They used in this approach the advice and join points con­

cepts to specify the behavior code to be merged in the application and the location where 

this code should be injected. To validate their approach, they developed some aspects using 

Aspect! to enforce access control and modularize the audit and access control features of 
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an FTP server. This proposition is limited on exploring the usability of using AspectJ to 

implement access control concerns and integrate them into Java applications. 

In [20], Ron Bodkin surveyed the security requirements for enterprize applications and 

described examples of security crosscutting concerns. His main focus was on authentica­

tion and authorization. He discussed use cases and scenarios for these two security issues 

and he explored how their security rules could be implemented using AspectJ. He also 

outlined several of the problems and opportunities in applying aspects to secure web ap­

plications that are written in Java. This proposition is limited on exploring the usability of 

using AspectJ to implement authentication and authorization concerns and integrate them 

into Java applications. 

Another contribution in AOP security is the Java Security Aspect Library (JSAL), in 

which Huang et al. [52] introduced and implemented, in AspectJ, a reusable and generic 

aspect library that provides security functions. It is based on the Java Security packages 

JCE and JAAS. To make their aspects reusable, they left to the programmer the responsi­

bility to specify and implement the pointcuts. This approach is a useful first step, however 

it still requires the developer to be a security expert who knows exactly where each piece 

of code should be injected. Moreover, its claimed goal is to prove the feasibility of reusing 

and integrating pre-built aspects. 

Shlowikowski and Ziekinski discussed in [78] some security solutions based on J2EE 

and JBoss application server, Java Authentication and Authorization service API (JAAS) 

and Resource Access Decision Facility (RAD). These solutions are implemented in As­

pect!. They explored in their paper how the code of the aforementioned security technolo­

gies could be injected and weaved in the original application. This proposition is limited on 
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exploring the usability of using AspectJ to implement some security concerns and integrate 

them into Java applications. 

In [48], Hermosillo et al. proposed a security aspect called AProSec for detecting 

SQL injection and Cross Scripting Site (XSS). AProSec has been developed with AspectJ 

and JBoss to be weaved with web server applications. This aspect allows to intercept on 

the server side the HTTP requests parameters and the data base queries and pass them to a 

validation process depending on the options that the administrator selects in a configuration 

file. This proposition is limited on exploring the usability of using AspectJ to detect SQL 

injection into Java applications. 

3.5 Conclusion 

This chapter constitutes an introduction to our main approach for systematic security hard­

ening. We described AOP in detail and explored through practical examples its usability for 

injecting security concerns into software. We have concluded that AOP is a very promising 

paradigm that provides the required features and offers strong potential for systematically 

injecting security code into software. However, the current corpus of research in AOP-

based security is still recent and falls short of a well-defined and organized solution usable 

for applying security hardening systematically by non-experts. A developer needs to build 

the security solution and specify it into aspect(s), which still requires high security exper­

tise. Hence, adopting the AOP concept and benefiting from the advantages of the other 

approaches presented in Chapter 2 constitute a base to build on top of it and elaborate the 

intended framework for the systematic security hardening of software. 
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Chapter 4 

Aspect-Oriented and Pattern-Based 

Approach for Security Hardening 

4.1 Introduction 

Software security hardening is becoming a very challenging and interesting domain of 

research. Very few concepts and approaches emerged in the literature to help and guide 

developers to integrate security into software (e.g., security patterns, secure coding, etc.). 

However, security hardening is a difficult and critical procedure. Applying it manually 

requires high security expertise and lot of time to be tackled. Other vulnerabilities may 

also be created. Moreover, there is a problem resulting from the difficulty in finding the 

software engineers and developers who are specialized in both the security solution domain 

and the software functionality domain. In fact, this is an open problem raised by several 

IT managers (e.g., Bell Security Labs, Ericsson Research Labs). As such, any attempt to 

address security concerns must take into consideration the aforementioned problems. In 
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this context, the main intent of this research is to create methods and solutions to integrate 

systematically and consistently security models and components into software. 

One way of achieving these objectives is by separating out the security concerns from 

the rest of the application, such that they can be addressed independently and applied 

globally. More recently, several proposals have been advanced for code injection, via an 

aspect-oriented computational style, into source code for the purpose of improving its secu­

rity [20,31,52,74]. AOP is an appealing approach that allows the separation of crosscutting 

concerns. This paradigm seems to be very promising to integrate security into software. 

Our approach is based on AOP and inspired by the relevant methods and methodolo­

gies available in the literature, in addition to elaborating valuable techniques that permit 

us to provide a framework for systematic security hardening. The main components of 

our approach are the security hardening plans and patterns that provide an abstraction over 

the actions required to improve the security of a program. They should be specified and 

developed using an abstract, programming language independent and aspect-oriented (AO) 

based language. The current AO languages, however, lack many features needed for sys­

tematic security hardening. They are programming language dependent and could not be 

used to write and specify such high level plans and patterns, from which the need to elab­

orate a language built on top of them to provide the missing features. In this context, we 

propose a language called SHL (Security Hardening Language) for security hardening plans 

and patterns specification. It allows the developer to specify high level security hardening 

plans that leverage priori defined security hardening patterns. These patterns, which are 

also developed using SHL, describe the steps and actions required for hardening, including 

detailed information on how and where to inject the security code. 
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This chapter provides the core approach, components, language, compiler and imple­

mentation of the elaborated framework for the systematic security hardening of software. 

It also presents the case studies and experimental results that explore the usability and rele­

vance of the proposed approach and framework. The remainder of this chapter is organized 

as follows. In Section 4.2, we provide an overview of the approach for systematic security 

hardening. Afterwards, we describe the framework components, i.e., the security harden­

ing plans, patterns and language {SHL), in Sections 4.3, 4.4 and 4.5 respectively. We also 

present in Section 4.5 the grammar, structure and informal semantics of SHL. Then, we 

provide the SHL compilation phases and the framework implementation methodology in 

Section 4.6. After that, in Section 4.7, we illustrate the usability of the security hardening 

framework into case studies for different security issues and problems. Finally, we offer 

concluding remarks in Section 4.8. 

4.2 Approach 

This section illustrates a summary of our whole approach for systematic security hardening 

and also explores the need and usefulness of SHL to achieve our objectives. We elaborated 

an approach based on aspect orientation to perform security hardening in a systematic way. 

The approach architecture is illustrated in Figure 4. 

Each component participates by playing a role and/or providing functionalities in order 

to have a complete security hardening process. The developer is the person responsible of 

writing plans by deriving them from the security requirements. These plans contains the 

abstract actions required for security hardening and uses the security hardening patterns that 
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Figure 4: Framework Architecture 

are developed by security experts and provided in a catalog. The security APIs constitute 

the building blocks used by the patterns to achieve the desired solutions. The SHL language 

is used to define and specify the security hardening plans and patterns. 

The primary objective of this approach is to allow the developers to perform security 

hardening of open source software by applying well-defined solutions and without the need 

to have expertise in the security solution domain. At the same time, the security hardening 

is applied in an organized and systematic way. This is done by providing an abstraction 

over the actions required to improve the security of the program and adopting AOP to build 

and develop the solutions. The developers are able to specify the hardening plans that 

use and instantiate the security hardening patterns using the proposed language SHL. The 

combination of hardening plans and patterns constitutes the concrete security hardening 
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solutions. 

The abstraction of the hardening plans is bridged by concrete steps defined in the hard­

ening patterns using also SHL. This dedicated language, together with a well-defined tem­

plate that instantiates the patterns with the plan given parameters, allow to specify the pre­

cise steps to be performed for security hardening, taking into consideration technological 

issues such as platforms, libraries and languages. We built SHL on top of the current AOP 

languages. 

Once the security hardening solutions are built, the refinement of the solutions into as­

pects or low level code can be performed using a tool or by programmers that do not need 

to have security expertise. Afterwards, the framework compiler can be used to build and 

run the corresponding hardening plan and pattern and execute the appropriate AOP weaver 

(e.g., AspectJ, AspectC++) to harden the aspects into the original source code. As a result, 

the approach constitutes a bridge that allows the security experts to provide the best solu­

tions to particular security problems with all the details on how and where to apply them, 

and allows the software engineers to use these solutions to harden open source software by 

specifying and developing high level security hardening plans. We illustrated the feasibility 

of the whole approach by elaborating several security hardening solutions that are dealing 

with security requirements such as securing connections, adding authorization, encrypting 

some information in the memory and remedying low level security vulnerabilities. 
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4.3 Security Hardening Plans 

A security assessment brings any decision-maker to perform a risk analysis, which will 

finally determine the security requirements. A given set of security requirements may be 

implemented through different combinations of mechanisms and software improvements. 

As such, a software developer must select the combination of solutions deemed optimal 

for specific program to harden. This decision is written in a security hardening plan, ef­

fectively translating such requirements into a specification of software modifications. The 

plans are written as a list of parameterized patterns with a Where clause, which indicates 

where in the software the pattern is to be applied. Each pattern is responsible to document 

the parameters it requires and supports. The developer is able to write the different hard­

ening plans that are required for each part of the software. Example of a hardening plan is 

presented in Listing 4.10. 

4.4 Security Hardening Patterns 

We define security hardening patterns as well-defined solutions to known security prob­

lems, together with detailed information on how and where to inject each component of 

the solution into the application. Security hardening patterns specify the steps and actions 

needed to harden systematically security into the code. A security hardening pattern may 

also contain additional information illustrated into a template similar to the one used for 

security design patterns (Please see Chapter 2 for more information). This additional infor­

mation allows the user to understand the solution provided by the pattern, its applicability, 
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advantages, limitations, etc. Example of a hardening pattern is presented in Listings 4.11 

and 4.12. 

4.5 Security Hardening Language SHL 

The elaborated language, SHL, allows the description and specification of security harden­

ing patterns and plans that are used to systematically harden the security of code. It is a 

minimalist language built on top of the current AOP technologies that are based on advice-

pointcut model. It can also be used in conjunction with them since the solutions elaborated 

in SHL can be refined into a selected AOP language (e.g., AspectC++) as illustrated in Sec­

tion 4.7. We developed part of SHL with notations and expressions close to those of the 

current AOP languages, but with all the abstraction needed to specify the security hardening 

plans and patterns. These notations and expressions are programming language indepen­

dent and without referring to low-level implementation details. The following are the main 

features provided by SHL: 

• Automatic code manipulation such as code addition, substitution, deletion, etc. 

• Specification of particular code join points where security code would be injected. 

• Modification of the code after the development life cycle since we are dealing with 

already existing open source software. 

• Modification of the code in an organized and systematic way. 

• Description and specification of security hardening. 
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• Description and specification of reusable security hardening patterns and plans. 

• Instantiation of the security hardening patterns through the security hardening plans. 

• Independency of programming language. 

• High expressiveness and facility to use by non-security experts. 

• Intermediary abstractness between English and programming languages. 

• Ease translation to available AOP languages (e.g. Aspect! and AspectC++). 

4.5.1 Grammar 

In this section, we present the syntactic constructs of SHL and their informal semantics. 

Figure 5 illustrates the BNF grammar of SHL. The language that we arrived at can be used 

for both plans and patterns specification, with a specific template structure for each of them. 

Examples of using SHL for specifying security hardening plans and patterns are presented 

in Section 4.7. 

Hardening Plan Structure A hardening plan always starts with the keyword P l a n , fol­

lowed by the plan name and then the plan code that starts and ends respectively by the 

keywords B e g i n P l a n and EndPlan . Regarding the plan code, it consists of one or 

many pattern instantiations that allow to specify the name of the pattern and its parameters, 

in addition to the location where it should be applied. Each pattern instantiation starts with 
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Start : 

SHPlan 

PlanName : 
SHPlanCode : 

Pattern Instantiation : 

PatternName : 
Pattern Parameter : 
Parameter_Name : 
Parameter Value : 
Collection : 
Module identification : 

SHPattern : 

MatchingCriteria : 
SH Pattern Body : 

Location Behavior 

Behavior Insertion Point : 

1 
1 

Location : 
Location Identifier : 

1 
1 
1 
1 
1 
1 

Boolean Location : 

1 
1 

Signature : 
Primitive : 

1 
Arguments : 
BehaviorCode : 

:= SHPlan 
SHPattern 

:= P l a n PlanName 
SHPlanCode 

:= Identifier 
:= B e g i n P l a n 

Pattern Instantiation * 
E n d P l a n 

:= P a t t e r n N a m e PatternName 
( P a r a m e t e r s Pattern Parameter*)! 
Where Module Identification^ 

:= Identifier 
:= Parameter Name = Parameter Value 
:= Identifier 
:= Identifier | Integer \ Collection 
:= { ( Identifier \ Integer) (, Identifier \ Integer) *} 
:= Identifier 

:= Pa 1 1 e r n PatternName 
Matching Criteria? 
SH Pattern Body 

:= P a r a m e t e r s Pattern Parameter+ 
:= B e g i n P a t t e r n 

Location Behavior * 
E n d P a t t e r n 

:= Behavior Insertion_Point Location 
Primitive*? 
Behavior Code 

:= B e f o r e 
A f t e r 
R e p l a c e 

:= Location Identifier \ Boolean Location 
:= F u n c t i o n C a l l <Signature> {Arguments) ? 

F u n c t i o n E x e c u t i o n <Signature> (Arguments) ? 
W i t h i n F u n c t i o n <Signature> (Arguments) ? 
CFlow < L o c a t i o n I d e n t i f i e r > 
GAFlow < L o c a t i o n I d e n t i f i e r > 
GDFlow < L o c a t i o n I d e n t i f i e r > 

:= Location and Location 
Location o r Location 
n o t Location 

:= Identifier 
:= E x p o r t P a r a m e t e r < I d e n t i f i e r > 

I m p o r t P a r a m e t e r < I d e n t i f i e r > 

= ( Star_OrJdentifier(, StarOrldentifier)* ) 
= B e g i n B e h a v i o r 

Code Statement 
E n d B e h a v i o r 

Figure 5: SHL Grammar 

78 



the keyword P a t t e r n N a m e followed by a name, then the keyword P a r a m e t e r s fol­

lowed by a list of parameters and finally by the keyword Where followed by the module 

name where the pattern should be applied (e.g., file name). 

Hardening Pattern Structure A hardening pattern starts with the keyword P a t t e r n , 

followed by the pattern name, then the keyword P a r a m e t e r s followed by the matching 

criteria and finally the pattern code that starts and ends respectively by the keywords Be -

g i n P a t t e r n and E n d P a t t e r n . The matching criteria are composed of one or many 

parameters that could help in distinguishing the patterns with similar name and allow the 

pattern instantiation. The pattern code is based on AOP and consists of one or many Lo -

c a t i o n _ B e h a v i o r constructs. Each one of them constitutes the location and the inser­

tion point where the behavior code should be injected, the optional primitives that may be 

needed in applying the solution and the behavior code itself. A detailed explanation of the 

components of the pattern code will be illustrated in Section 4.5.2. 

4.5.2 Informal Semantics 

In this Section, we present the informal semantics of the important syntactic constructs in 

SHL language. 

Patternlnstantiation Specifies the name of the pattern that should be used in the plan 

and all the parameters needed for the pattern. The name and parameters are used as match­

ing criteria to identify the selected pattern. The module where the pattern should be applied 
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is also specified in the P a t t e r n _ I n s t a n t i a t i o n . This module can be the whole ap­

plication, file name, function name, etc. 

MatchingCriteria Is a list of parameters added to the name of the pattern in order to 

identify the pattern. These parameters may also be needed for the solutions specified into 

the pattern. 

LocationBehavior Is based on the advice-pointcut model of AOP. It is the abstract rep­

resentation of an advice-pointcut combination in an aspect. A pattern may include one or 

many L o c a t i o n _ B e h a v i o r . Each L o c a t i o n _ B e h a v i o r is composed of the Be-

h a v i o r _ I n s e r t i o n _ P o i n t , L o c a t i o n , one or many P r i m i t i v e and B e h a v -

i o r _ C o d e . 

BehaviorlnsertionPoint Specifies the point of code insertion after identifying the lo­

cation. The B e h a v i o r _ I n s e r t i o n _ P o i n t can have the following three values: Be­

f o r e , A f t e r or R e p l a c e . The R e p l a c e means remove the code at the identified 

location and replace it with the new code, while the B e f o r e or A f t e r means keep the 

old code at the identified location and insert the new code before or after it respectively. 

Locationldentifier Identifies the joint point or series of joint points in the program 

where the changes specified in the B e h a v i o r _ C o d e should be applied. The list of con­

structs used in the L o c a t i o n _ I d e n t i f i e r is left opened for any needed extension. 

Depending on the need of the security hardening solutions, a developer can define his own 
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constructs. However, these constructs should have their equivalent in the current AOP tech­

nologies or should be implemented into the weaver used. In the sequel, we illustrate the 

semantics of some important constructs used for identifying locations: 

• F u n c t i o n C a l l < S i g n a t u r e > : Provides all the join points where a function 

matching the specified signature is called. 

• F u n c t i o n E x e c u t i o n < S i g n a t u r e > : Provides all the join points referring to 

the implementation of a function matching the specified signature. 

• W i t h i n F u n c t i o n < S i g n a t u r e > : Filters all the join points that are within the 

functions matching the specified signature. 

• CFlow < L o c a t i o n > : Captures the join points occurring in the dynamic execution 

context of the join points specified in the input L o c a t i o n _ I d e n t i f i e r ( s ) . 

• GAf low < L o c a t i o n > : Operates on the control flow graph (CFG) of a program. 

Its input is a set of join points defined as a L o c a t i o n and its output is a single join 

point. It returns the closest ancestor join point to the join points of interest that is on 

all their runtime paths. In other words, if we are considering the CFG notations, the 

input is a set of nodes and the output is one node. This output is the closest common 

ancestor that constitutes (1) the closet common parent node of all the nodes specified 

in the input set (2) and through which passes all the possible paths that reach them. 

• GDFlow < L o c a t i o n > : Operates on the CFG of a program. Its input is a set of 

join points defined as a L o c a t i o n and its output is a single join point. It returns the 

closest child join point that can be reached by all paths starting from the join points 
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of interest. In other words, if we are considering the CFG notations, the input is a set 

of nodes and the output is one node. This output (1) is a common descendant of the 

selected nodes and (2) constitutes the first common node reached by all the possible 

paths emanating from the selected nodes. 

The L o c a t i o n constructs can be composed with algebraic operators to build up the 

B o o l e a n _ L o c a t i o n as follows: 

• L o c a t i o n && L o c a t i o n : Returns the intersection of the join points specified 

in the two L o c a t i o n _ I d e n t i f i e r constructs. 

• L o c a t i o n | | L o c a t i o n : Returns the union of the join points specified in the 

two L o c a t i o n _ I d e n t i f i e r constructs. 

• ! L o c a t i o n : Excludes the join points specified in the L o c a t i o n _ I d e n t i -

f i e r construct. 

Primitive Is an optional functionality that allows to specify the variables that should be 

passed between two L o c a t i o n constructs. The following are the constructs responsible 

of passing the parameters: 

• E x p o r t P a r a m e t e r < I d e n t i f i e r > : Defined at the origin L o c a t i o n . It al­

lows to specify a set of variables and make them available to be exported. 

• I m p o r t p a r a m e t e r < I d e n t i f i e r > : Defined at the destination L o c a t i o n . 

It allows to specify a set of variables and import them from the origin L o c a t i o n 

where the E x p o r t P a r a m e t e r has been defined. 
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Behavior_Code May contain code written in any language, programming language, or 

even informal e.g., English instructions to follow, depending on the abstraction level of the 

pattern. The choice of the language and syntax is left to the security hardening pattern de­

veloper. However, the code provided should be abstract and at the same time clear enough 

to allow a developer to refine it into low level code without the need to security expertise. 

Example of such code behavior is presented in Listings 4.11 and 4.12 in Section 4.7. 

4.6 SHL Compiler and Framework Implementation 

We implemented the BNF specification of SHL using ANTLR V3 Beta 6 and its associated 

ANTLRWorks development environment [66]. The generated Java code allows to parse 

hardening plans and patterns and verify the correctness of their syntax. We built on top of 

it a compiler that uses the information provided by the parser to build first its data struc­

ture, then reacts upon the provided values in order to run the hardening plan and compile 

and run the specified pattern and its corresponding aspect. Moreover, we integrated this 

compiler into a development graphical user interface for security hardening. The resulting 

system provides the user with graphical facilities to develop, compile, debug and run secu­

rity hardening plans and patterns. It allows also to visualize the software to be hardened 

and all the compilation and integration activities performed during the hardening. Figure 6 

shows a screenshot of this system where we can see a plan running and a pattern compiling, 

together with the software to be hardened. The compilation process is divided into many 

phases that are performed consequently and automatically. The success of one phase leads 

to execute the next one. In the sequel, we present and explain these phases. 
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Plan Compilation 

This phase consists of parsing the plan, verifying its syntax correctness and building the 

data structure required for the other compilation phases. Any error during the execution of 

this phase stops the whole compilation process and provide the developer with information 

to correct the bug. This statement also applies on all the other phases. 

Pattern Compilation and Matching 

A search engine has been developed to find the pattern that matches the pattern instan­

tiations requested in the hardening plan (i.e., pattern name and parameters). A naming 

convention composed of the pattern name and parameters has been adopted to differenti­

ate between the patterns with same name but different parameters. For instance, a pattern 

for the authentication of Java will be named AuthenticationJava.SHL, while another one 

of C++ will be named AuthenticationCPP.SHL. Once the pattern matching the criteria is 

found, another check on the name and parameters specified inside the pattern is applied in 

order to ensure that the matching is correct and there is no error in the naming procedure. 

This includes automatically parsing and compiling the pattern contents to check the cor­

rectness of its syntax, verify the matching result and build the data structure required for 

the running process. 

Aspect Matching 

Once the pattern is compiled successfully, a search engine similar to the aforementioned 

one is used to find the aspect corresponding to the matched pattern. However, the additional 

verification performed in pattern matching is not required here because the aspect will have 

85 



exactly the same name of the pattern but with different extension depending on the selected 

weaver. 

Plan Running and Weaving 

Plan running is the last phase of the compilation process. Once the corresponding aspect 

is matched, the execution command is constructed based on the information provided in 

the data structure, which is built during the previous compilation phases. Afterwards, the 

aspect is weaved with the specified application or module and the resulted hardened soft­

ware is produced. If the security hardening is applied on one or more modules of a bigger 

software, this module should be re-integrated in the original software that requires to be 

re-built for the hardening to take place. 

Aspect Generation 

Aspect generation is an additional feature launched separately to assist the developer during 

the refinement of a pattern by generating automatically part of the corresponding aspect. 

The same aforementioned compilation and matching mechanisms are used to compile the 

pattern specified in the plan. Then, each L o c a t i o n _ B e h a v i o r in the pattern is refined 

into a combination of pointcut declarations and an advice that contains the same body as 

the one of the B e h a v i o r _ C o d e . The generated poincuts and advices are enclosed into 

an aspect that has the same name as the pattern concatenated to its parameters and saved in 

a file with extension (.ah) for AspectC++ or (.aj) for AspectJ. The developer will have to 

refine the advice bodies into programming language code (i.e, C++ or Java) and then run 

the plan to apply the weaving. 
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4.7 Case Studies: Plans, Patterns and Aspects for Security 

Hardening 

We demonstrated the feasibility of our approach and framework for systematic security 

hardening by developing case studies that deal with security requirements such as secur­

ing connections, adding authorization, encrypting some information in the memory and 

remedying low level security vulnerabilities and applying them to developed and selected 

applications. During the course of our study, we developed plans, patterns, aspects in 

AspectC++ and AspectJ, utility functions in C, C++ and Java and example code that imple­

ment the security hardening of the aforementioned requirements and vulnerabilities. We 

will show some of our findings here. 

4.7.1 Hardening of Secure Connection Features into APT 

In this section, we illustrate our elaborated solutions for securing the connections of client 

applications by following our methodology and using the proposed SHL language and its 

corresponding framework. Securing channels between two communicating parties allows 

to avoid eavesdropping, tampering with the transmission, and session hijacking. In this 

context, we selected an open source software called APT to add HTTPS support and secure 

its connections using GnuTLS/SSL library [4]. We also applied similar experiments on 

client applications that we developed. 

APT is an automated package downloader and manager for the Debian Linux distribu­

tion [1]. It is written in C++ and is composed of more than 23 000 source lines of code 
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(based on version 0.5.28, generated using David A. Wheeler's 'SLOCCount'). It obtains 

packages via local file storage, FTP, HTTP, etc. APT is organized in few components that 

allow extensibility. All package acquisition methods are separated from the package man­

agement logic and are grouped individually as programs. The library (1 i b a p t ) creates the 

process of the method and communicates with it using the standard input and output of the 

created process. The library sends acquisition requests to the method, which will parse and 

process it. The acquisition method is responsible of writing the downloaded files to disk. 

The functions of the library can be used by different software packages, but the source code 

includes many command-line tools. In our case, we used the a p t - g e t command-line tool 

and we created an HTTPS method based on the existing HTTP method. In the sequel, 

we are going to present the hardening plans, pattern and aspect elaborated to secure the 

connections of APT. 

SHL Hardening Plan 

In Listing 4.10, we include an example of effective security hardening plan specified in 

SHL for securing the connection of APT. It contains the name of the pattern to select 

( S e c u r e _ C o n n e c t i o n _ P a t t e r n ) , parameters (Language , API, etc.) and com­

ponents/files where to apply the pattern ( h t t p . cc and c o n n e c t . cc) . 
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Listing 4.10: SHL Hardening Plans for Securing Connection 

SHL Hardening Pattern 

Listing 4.11 and Listing 4.12 present the pattern elaborated in SHL for securing the connec­

tion of client applications using GnuTLS/SSL. It contains the pattern name ( S e c u r e _ -

C o n n e c t i o n _ P a t t e r n ) , the parameters (Language , API, etc.) and a list of L o c a -

t i o n _ B e h a v i o r s . Each L o c a t i o n _ B e h a v i o r starts with a B e h a v i o r _ I n s e r -

t i o n _ P o i n t , followed by a L o c a t i o n , a P r i m i t i v e and a B e h a v i o r _ C o d e . The 

first L o c a t i o n _ B e h a v i o r matches the beginning of the function H t t p M e t h o d : : Loop 

to initialize the library, the second L o c a t i o n _ B e h a v i o r matches before the calls to the 

functions c o n n e c t to initialize the session, the third L o c a t i o n _ B e h a v i o r matches 

after the calls to the functions c o n n e c t to perform the handshake, the fourth L o c a -

t i o n _ B e h a v i o r matches the calls to the functions w r i t e to replace them by the secure 

ones, the fifth L o c a t i o n _ B e h a v i o r matches the calls to the functions r e a d to replace 

them by the secure ones, the sixth L o c a t i o n _ B e h a v i o r matches before the calls to 

the functions c l o s e to close the session and finally the seventh L o c a t i o n _ B e h a v i o r 

matches the end of the function H t t p M e t h o d : : Loop to de-initialize the library. 
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The code of the functions used in the B e h a v i o r _ C o d e parts of the pattern is illus­

trated in Listing 4.13. It is expressed in C++ because our applications are implemented 

in this programming language. However, other syntax and programming languages can 

also be used depending on the abstraction required and the implementation language of the 

application to harden. To generalize our solution and make it applicable on wider range 

of applications, we assume that not all the connections are secured, since many programs 

have different local interprocess communications via sockets. In this case, all the func­

tions responsible of sending and receiving data on the secure channels are replaced by the 

ones providing TLS. On the other hand, the other functions that operate on the non-secure 

channels are kept untouched. Moreover, we suppose that the connection processes and 

the functions that send and receive data are implemented in different components. This 

required additional effort to develop additional components that distinguish between the 

functions that operate on secure and non secure channels and export parameters between 

different places in the applications. 

Hardening Aspect 

We refined and implemented (using AspectC++) in Listing 4.14 and Listing 4.15 the cor­

responding aspect of the pattern presented in Listing 4.11 and Listing 4.12. The first 

advice-pointcut matches the content of the function Ht t p M e t h o d : : Loop to initialize the 

GnuTLS API at the beginning and de-initialize it at the end. The second advice-pointcut in­

tercepts all the calls to the function c o n n e c t , initializes the TLS session before and adds 

the TLS handshake after. The third advice-pointcut intercepts all the calls to the function 

w r i t e and replaces each one by the TLS function g n u t l s _ r e c o r d _ s e n d . Similarly, 
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Pattern Secure Connection Pattern 
Parameters 

Language = C/C++ 
API = GNUTLS 
Peer = Client 
Protocol = SSL 

BeginPattern 

Before 
FunctionExecution <HttpMethod::Loop> //Starting 
BeginBehavior 

// Initialize the TLS library 
InitializeTLSLibrary; 

EndBehavior 

Before 
FunctionCall <connect> //TCP Connection 
ExportParameter <xcred> 
ExportParameter <session> 
BeginBehavior 

// Initialize the TLS session resources 
InitializeTLSSession; 

EndBehavior 

After 
FunctionCall <connect> 
ImportParameter <session> 
BeginBehavior 

// Add the TLS handshake 
AddTLSHandshake; 

EndBehavior 

Replace 
FunctionCall <write> 
ImportParameter <session> 

Point 

Listing 4.11: SHL Hardening Pattern for Securing Connection (Part 1) 
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BeginBehavior 
// Change the send functions using that 
// socket by the TLS send functions of the -
// used API when using a secured socket 
SSLSend; 

EndBehavior 

Replace 
FunctionCall <read> 
ImportParameter <session> 
BeginBehavior 

// Change the receive functions using that 
// socket by the TLS receive functions of 
// the used API when using a secured socket 
SSLReceive; 

EndBehavior 

Before 
FunctionCall <close> //Socket 
ImportParameter <xcred> 
ImportParameter <session> 
BeginBehavior 

// Cut the TLS connection 

close 

CloseAndDealocateTLSSession; 
EndBehavior 

After 
Function Execution <HttpMethod: 
BeginBehavior 

// Deinitialize the TLS In 
DeinitializeTLSLibrary; 

EndBehavior 

EndPattern 

:Loop> 

brary 

Listing 4.12: SHL Hardening Pattern for Securing Connection (Part 2) 
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InitializeTLSLibrary 
gnutls_global_init(),-

InitializeTLSSession 
gnutls_init (session, GNUTLS_CLIENT); 
gnutls_set_default_priority (session),-
gnutls_certificate_type_set_priority (session, cert_type_priority); 
gnutls_certificate_allocate_credentials(xcred); 
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred); 

AddTLSHandshake 
gnutls_transport_set_ptr(session, socket); 
gnutls_handshake (session) ,-

SSLSend 
g n u t l s _ r e c o r d _ s e n d ( s e s s i o n , d a t a , d a t a l e n g t h ) ; 

SSLReceive 
g n u t l s _ r e c o r d _ r e c v ( s e s s i o n , d a t a , d a t a l e n g t h ) ; 

CloseAndDealocateTLSSession 
g n u t l s _ b y e ( s e s s i o n , GNUTLS_SHUT_RDWR); 
g n u t l s _ d e i n i t ( s e s s i o n ) ; 
g n u t l s _ c e r t i f i c a t e _ f r e e _ c r e d e n t i a l s ( x c r e d ) ; 

D e i n i t i a l i z e T L S L i b r a r y 
g n u t l s _ g l o b a l _ d e i n i t ( ) ; 

Listing 4.13: Functions Used in the Pattern for Secure Connection 
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the fourth advice-pointcut intercepts all the calls to the function r e a d and replaces each 

one by the TLS function g n u t l s _ r e c o r d _ r e c v . Finally, the fifth advice intercepts all 

the calls to the function c l o s e , terminates the TLS session before and de-initializes the 

created data structure after performing the call. 

The reader will notice the appearance of h a r d e n i n g _ s o c k i n f o_ t . These are the 

data structures and functions that we developed to distinguish between secure and non 

secure channels and export the parameter between the application components at runtime 

(since the primitives I m p o r t P a r a m t e r and E x p o r t P a r a m e t e r are not yet deployed 

into the weavers). We found that one major problem was the passing of parameters between 

functions that initialize the connection and those that use it for sending and receiving data. 

In order to avoid using shared memory directly, we opted for a hash table that uses the 

socket number as a key to store and retrieve all the needed information (in our own defined 

data structure). One additional information that we store is whether the socket is secured or 

not. In this manner, all calls to a s e n d () and r e c v () are modified for a runtime check 

that uses the proper sending/receiving functions. 

Experimental Results 

In order to validate the hardened APT software, we used the Debian apache-ssl package 

[2], an HTTP server that accepts only SSL-enabled connections. We populated the server 

with a software repository compliant with APT requirements, so that APT can connect 

automatically to the server and download the needed metadata in the repository. Then, 

we weaved (using AspectC++ weaver) the elaborated aspect with the different variants of 

APT. The resulting hardened software was capable of performing both HTTP and HTTPS 
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aspect https{ 

advice execution( "% HttpMethod::Loop()" ) : around () { 
//init gnutls lib 
hardening_initGnuTLSSubsystem(NONE); hardeninq_socketInfoStoragelnit(] 
tjp ->proceed () ; 
//deinit libs 
hardening_socketInfoStoraqeDeinit () ,- hardeninq_deinitGnuTLSSubsystem () ; 

} 

advice call("% connect(...)") : around () { 
//variables declared 
hardeninq_sockinfo_t socketInfo; 
const int cert_type_priority[3] = { GNUTLS_CRT_X509, 

GNUTLS_CRT_OPENPGP, 0}; 
//initialize TLS session info 
gnutls_init (ksocketlnfo.session, GNUTLS_CLIENT); 

gnutls_set_default_priority (socketInfo.session); 
gnutls_certificate_type_set_priority (socketlnfo.session, 

cert_type_priority); gnutls_certificate_allocate_credentials (& 
socketlnf o .xcred) ,-

gnutls_credentials_set (socketlnfo.session, GNUTLS_CRD_CERTIFICATE, 
socketlnfo.xcred); 

//check if non-blocking. If so, make blocking until we are done with 
the handshake 

int socketflags = fcntl(*(int *)tjp->arg(0),F_GETFL) ; 
if ((socketflags & 0_NONBLOCK) != 0) fcntl(*(int *)tjp->arg (0), 

F_SETFL, socketflags * 0_NONBLOCK); 
//Connect + Handshake 
tjp ->proceed () ; 
if (*tjp ->result () < 0) { 

if ((socketflags & 0_NONBLOCK) != 0) fcntl(*(int *)tjp ->arg (0) , 
F_SETFL, socketflags); 

return; 

} 
g n u t l s _ t r a n s p o r t _ s e t _ p t r ( s o c k e t l n f o . s e s s i o n , ( g n u t l s _ t r a n s p o r t _ p t r ) 

(* ( i n t *) t j p - > a r g ( 0 ) ) ) ; 
i n t r e s u l t = gnu t l s_handshake ( s o c k e t l n f o . s e s s i o n ) ; 
i f ( ( s o c k e t f l a g s & 0_NONBLOCK) != 0){ 

f c n t l ( * ( i n t * ) t jp ->arg(0) ,F_SETFL, s o c k e t f l a g s ) ; / / r e s t o r e non-
b l o c k i n g s t a t e i f i t was l i k e t h a t 

g n u t l s _ t r a n s p o r t _ s e t _ l o w a t ( s o c k e t l n f o . s e s s i o n , 0 ) ; / /now make 
g n u t l s aware t h a t we a r e d e a l i n g wi th non -b lock ing s o c k e t s 

} 

Listing 4.14: Aspect for Adding HTTPS Functionality (Part 1) 
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//Save Information in hash table 
socketlnfo.isSecure = true; socketlnfo.socketDescriptor = *(int *) 

tjp ->arg(0) ; 
hardeninq_storeSocketInfo(*(int *)tjp ->arg(0), socketlnfo) ; 
*tjp->result() = result; 

} 

//replacing write() by gnutls_record_send() on a secured socket 
advice call("% write(...)") : around () { 
hardening_sockinfo_t socketlnfo = hardeninq_qetSocketInfo(*(int *)tjp 

->arg(0)); 
if (socketlnfo.isSecure) 

*( tjp->result()) = qnutls_record_send(socketlnfo.session, *(char 
**) tjp->arg(l), *(int *) tjp->arg (2) ) ; 

else 
tjp ->proceed () ; 

} 

//replacing read() by gnutls_record_recv() on a secured socket 
advice call("% read(...)") : around () { 
hardening_sockinfo_t socketlnfo = hardeninq_qetSocketInfo(*(int *)tjp 

->arg(0)); 
if (socketlnfo.isSecure) 

*(tjp->result()) = qnutls_record_recv(socketlnfo.session, *(char 
**) tjp->arg(l), *(int *) tjp->arg (2) ) ; 

else 
tjp ->proceed () ; 

} 

advice call("% close(...)") : around () { 
hardeninq_sockinfo_t socketlnfo = hardeninq_qetSocketInfo(*(int *)tjp 

->arg(0)); /* socket matched by sd*/ 
if(socketlnfo.isSecure ){ 

qnutls_bye(socketlnfo.session, GNUTLS_SHUT_RDWR); 

} 
tjp ->proceed () ; 
if(socketlnfo.isSecure ){ 

qnutls_deinit(socketlnfo.session); 
gnutls_certificate_free_credentials(socketlnfo.xcred); 

hardening_removeSocketInfo(*(int *)tjp->arg(0)) ; 
socketlnfo.isSecure = false; socketlnfo.socketDescriptor = 0; 

} 
} 

h _ _ 
Listing 4.15: Aspect for Adding HTTPS Functionality (Part 2) 
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Time Soiree Destination Protocol JifL 
25 O.OS7553 1 9 2 . 1 6 8 . 1 3 : 8 2 . 2 1 1 . 8 1 . TCP 3803 > h t t p tSYN] Seq-0 Len-0 H5S»14eO ' 
27 0 .063259 1 9 2 . 1 6 8 . 1 3 : 2 1 6 . 1 2 0 . 2 5 TCP 2501 > h t t p [SYN] 5eq=0 Len=0 M55=146G " 
38 0.146S26 216 .120 ,25 1 9 2 . 1 6 8 . 1 s TCP h t t p > 2501 [SYN, ACK] Seq»0 Ack*l Win-
39 0.14S4S7 1 9 2 . 1 6 8 . 1 3 ; 216 .120 .25 TCP 2501 > h t t p {ACKJ Seq~l Ack^l Win=5840 I 

41 0.17X068 216 .120 ,25 1 9 2 . 1 6 8 , 1 3 TCP h t t p > 2501 J>0<3 Seq» l A<*»397 Win=»3?0> 
42 0.178142 8 2 . 2 1 1 . 8 1 . : 1 9 2 . 1 6 8 . 1 3 TCP h t t p > 3803 [SYN, ACK] Seq=0 Atk=l Win-
43 0.178324 192 .168 .13 : 8 2 . 2 1 1 . 8 1 . TCP 3803 > h t t p t*CK3 Seq-1 Aek-1 Wln»S840 I 
44 0 . 1 8 3 0 9 1 1 9 2 . 1 6 8 . 1 3 : 8 2 , 2 1 1 . 8 1 . HTTP GET h t t p : / / a r c h 1 v e . c a n o n 1 c a 1 . c o m / u b u n t u , 
45 0 .183659 8 2 . 2 1 1 . 8 1 . : 1 9 2 . 1 6 8 . 1 3 TCP h t t p > 3803 [ACK] Seq« l ACk»483 Wio»361. 
47 0.195954 1 9 2 . 1 6 8 . 1 3 : 9 1 . 1 8 9 . 8 8 . TCP 3809 > h t t p [SYN] Seq«0 ten=0 MSS»1460 " 

Figure 7: Packet Capture of Unencrypted APT Traffic 

package acquisition, based on the parameters in the configuration file. After building and 

deploying the modified APT package, we tested successfully its functionality by refreshing 

APT package database, which forced the software to connect to both our local web server 

(Apache-ssl) using HTTPS and remote servers using HTTP to update its list of packages. 

The experimental results in Figures 7, 8, and 9 show that the new secure APT software is 

able to connect using both HTTP and HTTPS connections, exploring the correctness of the 

security hardening process. 

In the sequel, we provide brief explanations of our results. Figure 7 shows the packet 

capture, obtained using WireShark software, of the unencrypted HTTP traffic between our 

version of APT and its remote package repositories. The highlighted line shows an HTTP 

connection to the w w w . g e t a u t o m a t i x . c o m APT package repository. On the other 

hand, Figure 8 shows the connections between our version of APT and the remote package 

repositories on the local web server. The highlighted lines show TLSvl application data 

exchanged in encrypted form through HTTPS connections, exploring the correctness of 

the security hardening process. Moreover, Figure 9 shows an extract of Apache access log, 

edited here for conciseness, where the package metadata was successfully obtained from 

our local server by the hardened software. 
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Time Source Destination I Protocol Info 

1 0 . 0 0 0 0 0 0 
i 2 0 . 0 0 0 3 0 6 

3 0.000490 

5 0.020212 

7 0.022877 

9 0.066300 

11 0.072780 

L3 0.102275 

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP 
1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP 
1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP 

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP 

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP 

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP 

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP 

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP 

1878 > h t t p s [SYkQ seq=0 Leri=i 
h t t p s > 1878 [SYN, ACK] seq=0 
1878 > ht tps [ACK] seq=l Ack=: 

h t tps > 1878 [ACK] 5eq=l Ack=: 

1878 > ht tps [ACK] Seq=76 Ack = 

h t tps > 1878 [ACK] seq=829 Act 

h t tps > 1878 [ACK] Seq=829 Ac! 

h t tps > 1878 [ACK] Seq=829 Ac! 

16 0.150342 1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP ht tps > 1878 [ACK] Seq=888 Ac! 

18 0.406324 1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP 
19 7.607625 1 2 7 . 0 . 0 . 1 1 2 7 , 0 . 0 . 1 TCP 
20 7 .649340: ^ 2 7 ; 0 . 0 . 1 X2WQ:0,1: TCP-' 
21 7.649554 1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP 

1878 > h t tps [ACK] seq=807 Acl 
1 8 7 8 > Fvttps IPlH, ACkl seq=8i 
Mtps; yWf&'itiii, =;AckJ Seq=£ 
1878 > ht tps [ACK] Seq=808 Aci 

ame 17 (412 bytes on w i r e , 412 bytes captured) 
nernet I I , S rc : 0 0 : 0 0 : 0 0 _ 0 0 : 0 0 : 0 0 ( 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 ) , Ds t : 00 :00 :00_00 
ternet Protocol, src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1) 

cure socket Layer 
TLSvl Record Layer: Application Data Protocol: http 
TLSVI Record Layer: Application Data Protocol: http 
content Type: Application Data (23) 
version: TLS 1.0 (0x0301) 
Length: 304 
Encrypted Application Data: 5B6300A4 5C27165BF3440D3A8A900014CE5534B55: 

7n.P 

Figure 8: Packet Capture of SSL-protected APT Traffic 

File Edit view Search Jools Documents Help 

New Open Save Print.. Undo 

[ J full_access.log £» j_j log_extract.txt O ! 

1 T O T S ? ! ""-""-" "[04/Apr/20G7 • l " l T 5 2 : 0 2 "'mBQ]'"'''' 
/'GET h t t p s 2 : / / l o c a l h o s t : 4 4 3 / a p t / d i s t s / d a p p e r / 
main/b inary- i386/Re" lease HTTP/1.1" 3Q4 - " - " 
"Debian APT-HTTP/1.3" " - " 

127 .0 .0 .1 - - [04/Apr /26O7:13:53:17 -G400] 
"GET h t t p s 2 : / A o c a l h o s t : 4 4 3 / a p t / d i s t s / d a p p e r / 
main/b inary- i386/Pack.aaes.a2 HTTP/1.1" 304 -
" - " "Debian APT -HTTP/1.3" " - " 

127 .0 .0 .1 - - [04/Apr /2G07:13:53:17 -0400] 
"GET h t t p s 2 : / / l o c a l h o s t : 4 4 3 / a p t / d i s t s / d a p p e r / 
ma in /b ina ry - i386 /Re lease HTTP/1.1" 304 - " - " 
"Debian APT-HTTP/1.3" " - " | 

Ln 5. Col 158 

Figure 9: Excerpt of Apache Access Log 
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4.7.2 Hardening of Low-Level Security Vulnerabilities in MySQL 

The C and C++ programming languages have been designed for maximal performance, 

at the expense of some safety-enhancing techniques. Keeping memory management left 

to the programmer discretion and the lack of type safety are the major causes of security 

vulnerabilities in C and C++ . Related security vulnerabilities and their causes have been 

published in books, papers and reviews. Detailed discussion about this issue has been pro­

vided in Chapter 2. In this section, we illustrate our elaborated solutions by adding several 

low-level security vulnerabilities into MySQL software and then remedying them through 

following the proposed methodology and using the SHL language and its corresponding 

framework. MySQL is a relational database management system that runs as a server pro­

viding multi-user access to a number of databases. It is written in C++ and is composed 

of more than 250 000 source lines of code. We added vulnerable pieces of code in diverse 

components that have direct impact on the execution of the software. This caused stack and 

memory crash and MySQL failed to continue its execution. 

SHL Hardening Plan 

In Listing 4.16, we include an example of effective security hardening plan specified in 

SHL for remedying low-level security vulnerabilities present in MySQL software. It con­

tains the name of the pattern to select (Saf e ty_Vul_MySQL_Pa t t e rn ) , the parameter 

(Language) and all the components/files of the application where to apply the pattern 

(* .cc ) . 
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PI 
Be 

En 

an Sa 
ginPlan 

fety_Vul_MySQL_ 

PatternName Saf 
Parameters 

Where 
dPlan 

L a n g u a g e 
* . c c 

e ty_ 

P l a n 

Vul_ 

= C/C++ 

_MySQL_ P a t t e r n 

Listing 4.16: SHL Hardening Plan for Remedying MySQL Safety Vulnerabilities 

SHL Hardening Pattern 

Listing 4.17 describes the hardening pattern elaborated in SHL for remedying several low-

level security vulnerabilities present in MySQL software. It contains the pattern name 

(Saf e ty_Vul_MySQL_Pa t t e rn ) , the parameter (Language) and a list of L o c a -

t i o n _ B e h a v i o r s . Each L o c a t i o n _ B e h a v i o r starts with a B e h a v i o r _ I n s e r -

t i o n _ P o i n t , followed by a L o c a t i o n , a P r i m i t i v e and a B e h a v i o r _ C o d e . The 

first four L o c a t i o n _ B e h a v i o r s match the calls to the functions s p r i n t f , g e t s , 

s t r c p y and s t r c a t and replace them by their secure ones. These functions do not 

apply bound checking and verification on the string parameters and arguments. These 

missing features constitute major vulnerabilities exploited by the buffer overflow attacks. 

Replacing these functions by secure ones, which are also provided by newer versions of the 

C and C++ libraries, is one solution to address such flaws. Another error related to memory 

management is double freeing the same pointer, causing memory corruption. The solution 

provided for such vulnerability consists of setting the pointer to NULL after freeing it, so 

in this case freeing it another time won't corrupt useable memory data. The fifth L o c a -

t i o n _ B e h a v i o r matches after the calls to the functions f r e e to set their arguments 

to NULL. The last addressed problems are related to renaming and accessing files. Set­

ting privileges and adding access restrictions are know solutions for such problems. The 
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last two L o c a t i o n _ B e h a v i o r s match before the calls to the functions r ename and 

f o p e n to address the aforementioned problems. 

Hardening Aspect 

We refined and implemented (using AspectC++) in Listing 4.18 the corresponding aspect of 

the pattern presented in Listing 4.17. The first four advices-pointcuts match respectively all 

the calls to the functions s p r i n t f , g e t s , s t r c p y a n d s t r c a t and replace them 

by their corresponding secure ones s n p r i n t f , f g e t s , s t r n c p y and s t r n c a t . 

The fifth adviee-pointcut matches before all the calls to the f r e e and sets its argument 

(pointer) to NULL. The sixth adviee-pointcut matches before all the calls to the function 

rename and add user and group privilege. The last adviee-pointcut matches before all the 

calls to the function f open and add access restrictions. 

Experimental Results 

In order to verify the provided hardening solutions, we ran first the vulnerable MySQL 

software and applied the attacks corresponding to the injected vulnerabilities. The software 

crashes and stop its execution. Then, we weaved our solutions into MySQL and ran again 

the same attacks. None of them succeeds and the hardened software continues its regular 

execution, exploring the absence of vulnerabilities, and hence the success of the security 

hardening process. 
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Pattern Safety_Vul_MySQL_Pattern 
Parameters 

Language = C/C++ 

BeginPattern 

Replace 
FunctionCall < s p r i n t f > 
BeginBehavior 

s n p r i n t f ; 
EndBehavior 

Replace 
FunctionCall <gets> 
BeginBehavior 

f g e t s ; 
EndBehavior 

Replace 
FunctionCall <s t rcpy> 
BeginBehavior 

s t r n c p y ; 
EndBehavior 

Replace 
FunctionCall < s t r c a t > 
BeginBehavior 

s t r n c a t ; 
EndBehavior 

After 
FunctionCall <free> 
BeginBehavior 

SetArgumentPointer toNul l , -
EndBehavior 

Before 
FunctionCall <rename> 
BeginBehavior 

ge tUse r lD ; 
Se tUser lD; 
getGroupID; 
SetGroupID; 

EndBehavior 

Before 
FunctionCall <fopen> 
BeginBehavior 

SetUserMask; 
EndBehavior 

Listing 4.17: SHL Hardening Pattern for Remedying MySQL Safety Vulnerabilities 
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aspect SafetyVul { 

advice call("% sprintf (...)") : around () { 

snprintf((*(char **)tjp->arg (0)) , strlen((*(char **) tjp - >arg (0) ) )+1, 
(*(char **)tjp->arg(1)), (*(char **)tjp->arg (2))); 

} 

advice call("% gets(...)") : around () { 
if (fgets(((char *)tjp->arg(0)), strlen(((char *)tjp->arg(0)))-3,stdin 

) == NULL) { 
printf("diagnosed undefined behavior.\n"); 

} 

advice call("% strcpy(...)") : around () { 
strncpy((*(char **)tjp->arg(0)), (*(char **)tjp->arg(1)), strlen((*( 

char **) tjp->arg (0) ) ) ) ,-
} 

advice call("% strcat(...)") : around () { 
strncat((*(char **)tjp->arg(0)), (*(char **)tjp->arg(1)) , strlen ((*( 

char **)tjp->arg(0)))-strlen((*(char **)tjp ->arg(1)))-1); 
} 

advice call("% free(...)") : after () { 
*(char **) (tjp->arg(0))=NULL; 

} 

advice call("% rename (...)") : before () { 
//Get the effective user of the running process. 
//This will be the program's user or group owner if setuid or setgid 

is used. 
uid_t init_uid = geteuidO; 
gid_t init_gid = getegidt); 
//Drop to the privileges of the user who is runnig the process, 
seteuid(getuid()); 
setegid(getgid()); 

} 

advice call("% fopen(...)") : before () { 
//Set the umask such that any files created won't allow the group or 

the world to read, write, or execute. 
umask(S_IRWXG | S_IRWXO); 

} 

h 
Listing 4.18: Aspect for Remedying Safety Vulnerabilities 
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4.7.3 Adding Authorization to Applications 

Adding authorization is a problem of authorizing or denying access to a resource or op­

eration (i.e., Access control). It requires to know which principal is interacting with the 

application, and what are its associated rights. In this section, we illustrate our elaborated 

solutions for adding authorization to applications by following our methodology and using 

the SHL language and its corresponding framework. In this context, we developed our own 

Java application, in which we decided to add authorization check on some of its methods. 

We implemented this program multiple times, with different internal structure, in order to 

ensure the flexibility of our hardening solution. We deal with one of them in this case study. 

SHL Hardening Plan 

In Listing 4.19, we include an example of effective security hardening plan specified in 

SHL for adding authorization into the aforementioned application. It contains the name of 

the pattern to select ( A d d _ A u t h o r i z a t i o n _ P a t t e r n ) , the parameters (Language , 

API a n d Type) and the component/file of the application where to apply the pattern 

( t e s t . j a v a ) . 

PI 
Be 

En 

an Own 
ginPlan 
PatternN 
Paramet 

Where 
dPlan 

Add Authorization 

ame Add Authorizat 
ers 
Language = 
API 
Type 
test.java 

Java 
JAAS 
ACL 

Plan 

ion Patt ern 

Listing 4.19: SHL Hardening Plan for Adding Authorization 
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SHL Hardening Pattern 

Listing 4.20 describes the hardening pattern elaborated in SHL for adding authorization to 

the aforementioned application. It contains the pattern name ( A d d _ A u t h o r i z a t i o n _ -

P a t t e r n ) , the parameters (Language , API a n d T y p e ) a n d a L o c a t i o n _ B e h a v -

i o r . The L o c a t i o n _ B e h a v i o r starts with a B e h a v i o r _ I n s e r t i o n _ P o i n t , fol­

lowed by a L o c a t i o n , a P r i m i t i v e and a B e h a v i o r _ C o d e . It matches the begin­

ning of the method do some t h i n g to get the user name, get the method permission and 

check for authorization. The Java code of the functions used in the B e h a v i o r _ C o d e 

parts of the pattern is illustrated in Listing 4.21. Its usage scenario assumes that interface 

changes are undesirable and that a policy is specified and loaded separately from what pro­

grammers can directly specify (which is the case for technologies like Java). It requires 

some forms of authentication in order to have the working user credentials that are used in 

the access control decisions. 

Pattern Add_Autho r i za t i on_Pa t t e rn 
Parameters 

Language = Java 
API = JAAS 
Typte = ACL 

BeginPattern 

Before 
FunctionExecution <dosomething> 
BeginBehavior 

/ / G e t t he u s e r name of 
GetUserName; 
/ / G e t t he p e r m i s s i o n name of t he matched methods 
GetMethodPermissionName ,-
/ /Check t h i s username has p e r m i s s i o n t o a c c e s s t h e method 
CheckPermi s s i o n ; 

EndBehavior 

EndPattern 

Listing 4.20: SHL Hardening Pattern for Adding Authorization 
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GetUserName 
Subjec t s u b j e c t = (Subjec t ) s u b j e c t s . g e t ( S y s t e m . g e t P r o p e r t y (" u s e r , 

name ") ) ; 

GetMethodPermissionName 
S t r i n g permissionName = ( t h i s J o i n P o i n t . g e t S i g n a t u r e ( ) ) . 

getDeclaringTypeName() . c o n c a t ( " . " . c o n c a t ( ( t h i s J o i n P o i n t . 
g e t S i g n a t u r e ( ) ) . g e t N a m e ( ) ) ) ; 

CheckPermsion 
AuthPermiss ion perm = new AuthPermiss ion (permissionName ) ; 
perm.checkGuard ( n u l l ) ; 

Listing 4.21: Functions Used in the Pattern for Adding Authorization 

Hardening Aspect 

We refined and implemented (using AspectJ) in Listing 4.22 the corresponding aspect of 

the pattern presented in Listing 4.20. The advice-pointcut match all the calls to the method 

d o s o m e t h i n g and replace them by new ones that check for authorization before pro­

viding the same functionalities. The resulting access control aspect uses Java Authen­

tication and Authorization service API (JAAS) for authorization. The rights are speci­

fied in a separate policy file. We assume a local login, in this case, and we obtain the 

user name from the virtual machine. The permissions are specified in the format p a c k ­

age . c l a s s . f u n c t i o n . 

Experimental Results 

We applied verification on the functional and security correctness of the hardened applica­

tion. This task has been performed by either adding or removing the access right to execute 

the target method in the policy file. The practical impact of removing the right and then 

executing the method threw an access right violation exception by the Java virtual machine, 

which illustrates the correctness of the authorization deployed. 
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public aspect AddAccessControl { 

protected static Hashtable subjects = new Hashtable () ,-
abstract class Action implements PrivilegedExceptionAction{}; 

pointcut test(): call(void doSomething()); 

String getPermissionName(Signature sig){ 

return sig.getDeclaringTypeName().concat(".".concat(sig.getName())); 

} 

void around(): test(){ 
try{ 

//get the Subject instance based on the current user name 
Subject subject = (Subject) subjects.get(System.getProperty(" 

user.name")); 

//anonymous inner class for the privileged action 
//however, we should have them static to avoid unnecessary 

overhead 
PrivilegedExceptionAction action = new Action() 

{ 
public Object run() throws Exception 

{ 
String permissionName = getPermissionName(thisJoinPoint. 

getSignature0 ) ; 
AuthPermission perm = new AuthPermission(permissionName); 
perm.checkGuard(null); //throws exception if not having 

permission 
proceed();//execute the original code that way 
return null; 

} 

}; 

// Enforce Access Controls 
Subject.doAs(subject, action); 

} 
catch (Exception e) {e .printStackTrace () ,-} 

} 

) 

Listing 4.22: Excerpt of an Aspect for Adding Authorization 
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4.8 Conclusion 

We addressed in this chapter the problems related to the current methodologies for perform­

ing software security hardening. In this context, we proposed an AOP and pattern-based 

approach for systematic security hardening. Our proposition allows the developers to per­

form the security hardening of software in a systematic way and without the need to have 

expertise in the security solution domain. At the same time, it allows the security experts 

to provide the best solutions to particular security problems with all the details on how and 

where to apply them. Moreover, we realized the proposed approach by elaborating the SHL 

language needed to describe the security hardening plans and patterns and developing its 

corresponding parser, compiler and facilities. The resulting framework allows to develop 

the components of a security hardening solution and perform all its required procedures. 

Beside, we explored the feasibility of the proposed approach by elaborating several case 

studies of security hardening and applying them on large scale software. 
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Chapter 5 

New Aspect-Oriented Constructs for 

SHL Targeting Security Concerns 

5.1 Introduction 

Our approach for systematic security hardening and the experiments presented in Chapter 4, 

together with other related proposals for security code injection via AOP [20,31,52,74,78], 

explored that AOP constitutes a promising paradigm for the systematic security hardening 

of software. However, AOP was not initially designed to address security issues, which 

resulted in some limitations in the current technologies [21,47,54,58,61]. Indeed, we were 

not able to apply some security hardening activities due to missing features. For instance, 

while implementing an AOP-based solution for securing the connections of client applica­

tions, we opted to intialize/de-initialize and build/de-build the data structures and objects 

needed for GNU/TLS security library in the main function (please see Listing 5.29 in Sec­

tion 5.5.3 for more detail). Although this solution works for small size applications with 
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single features, it is not applicable and relevant for large scale applications with multiple 

functionalities. Many APIs initialization and unneeded operations may be performed, even 

if their corresponding features (i.e., the features using them) are not called during an execu­

tion context of a program. Such solution could also be ruinable for embedded applications, 

where the energy and memory resources are limited. 

Moreover, during our security hardening experiments, we faced the problem of passing 

needed variables and parameters related to GNU/TLS library (e.g., TLS Session) between 

the application components. Such limitations forced us, when applying security hardening 

practices, to perform programming gymnastics (when possible), resulting in integrating 

additional modules and changing several functions in the application to pass the needed 

variables (please see Listing 5.29 in Section 5.5.3 for more detail). Such solution is not 

realistic in the case of large scale applications with multiple features, where there are com­

plex dependencies and relations between their components. Any changes in one component 

lead to apply several modifications in all its dependent ones, which requires many complex 

re-engineering actions to be performed. 

In this chapter, we present new pointcuts and primitives to SHL and AOP languages 

that are needed for systematic hardening of security concerns. The two proposed pointcuts 

allow the identification of particular join points in a program control flow graph (CFG). 

The first one is the GAFlow, Closest Guaranteed Ancestor, which returns the closest an­

cestor join point to the pointcuts of interest that is on all their runtime paths. The second 

one is the GDFlow, Closest Guaranteed Descendant, which returns the closest child join 

point that can be reached by all paths starting from the pointcut of interest. The two pro­

posed primitives are called ExportParameter and ImportParameter and are used to pass 
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parameters between two pointcuts. They allow to analyze a program call graph in order to 

determine how to change function signatures for passing the parameters associated with a 

given security hardening task. 

We find these pointcuts and primitives to be necessary because they are needed to per­

form many security hardening practices and, to the best of our knowledge, none of the 

existing AOP pointcuts and primitives and their combinations can provide their function­

alities. Although, the interest of the proposed pointcuts and primitives may cover other 

domains, we restrict ourselves to security and discuss only the utilities related to software 

security hardening. Moreover, we show the viability of the proposed pointcuts and primi­

tives by elaborating and implementing their methodologies and algorithms and presenting 

the result of explanatory case studies. 

This chapter provides the new contributions toward developing our AOP-based frame­

work for systematic security hardening framework. Adopting AOP in our approach makes 

enriching the AOP technology and SHL with new poincuts and primitives for security hard­

ening concerns an essential task to reach our objectives. The remainder of this chapter is 

organized as follows. Section 5.2 explores the limitations associated with the current AOP 

technologies for security as well as the related security pointcuts proposed for these con­

cerns. Then, a brief background on the program representation is presented in Section 5.3 

and the proposed pointcuts and primitives are defined and specified in Section 5.4. After­

wards, the usefulness of our propositions and their advantages are discussed in Section 5.5. 

In Section 5.6, the algorithms necessary for implementing the proposed pointcuts and prim­

itives are presented. This section also shows the implementation results via case studies. 

We move on to the conclusion in Section 6.8. 
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5.2 Security-Related Pointcuts 

Our experiments explored the usefulness of AOP in reaching the objective of having sys­

tematic security hardening. On the other hand, we have also distinguished, together with 

other documented related work [21,47,54,58,61], the limitations of the available AOP 

technologies and languages for some security issues. Addressing such limitations can be 

achieved by elaborating pointcuts and primitives that improve the conditions on which we 

can inject appropriately the security code. Many authors have made contributions in this 

field, which we will list now. 

A dataflow pointcut that is used to identify join points based on the origin of values is 

defined and formulated in [58] for security purposes. The authors expressed the usefulness 

of their pointcut by presenting an example on sanitizing web-applications. For instance, 

such a pointcut can detect if the data sent over the network depends on information read 

from a confidential file. This poincut is not fully implemented yet. 

In [47], Harbulot and Gurd proposed a model of a loop pointcut that explores the need 

for a loop join point that predicts infinite loops, which are used by attackers to perform 

denial of service attacks. Their approach for recognizing loops is based on a control-

flow analysis at the bytecode level in order to avoid ambiguities due to alternative forms 

of source-code that would produce identical loops. This model contains also a context 

exposure mechanism for writing pointcuts that select only specific loops. 

In [21], Boner discussed a poincut that is needed to detect the beginning of a syn­

chronized block and add some security code that limits the CPU usage or the number of 

executed instructions. The author also explores the usefulness of capturing synchronized 
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blocks in calculating the time acquired by a lock and thread management. This result can 

also be applied in the security context and can help in preventing many denial of service 

attacks. 

A predicted control flow (pcf low) pointcut was introduced by Kiczales in a keynote 

address [54] without a precise definition. Such pointcut may allow to select points within 

the control flow of a join point starting from the root of the execution to the parameter join 

point. In the same presentation, an operator is introduced in order to obtain the minimum 

of two pc f low pointcuts, but it is never clearly defined what this minimum can be or how 

can it be obtained. These proposals could be used for software security, in the enforcement 

of policies that prohibit the execution of a given function in the context of the execution of 

another one. 

Local variables set and get poincuts were introduced in [46] for increasing the efficiency 

of AOP for security concerns. They allow to track the values of local variables inside a 

method. It seems that these poincuts can be used to protect the privacy and integrity of 

sensitive data. Their idea is based on the approach presented in [61], which describe an 

extension of Java called JFlow. This language allows to statically checks information flow 

annotations within programs and provides several new features such as decentralized label 

model, label polymorphism, run-time label checking and automatic label inference. It also 

supports objects, sub-classing, dynamic type tests, access control, and exceptions. 

Aberg et al. presented in [9] an aspect system that addresses the crosscutting of event 

notifications scattered over kernel code to support Bossa, an event-based framework for 

process-scheduler development. This aspect system uses temporal logic to precisely de­

scribe code insertion points and sequences of instructions that require events to be inserted. 
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In each case, the choice of event depends on properties of one or a sequence of instructions. 

They propose to guide the event insertion by using a set of rules, amounting to an aspect, 

that describes the control flow contexts in which each event should be generated. 

In a position paper [29], Cottenier et al. argued that Aspect-Oriented Modeling (AOM) 

technologies have the potential to simplify the deployment and the ability to reason about 

a category of crosscutting concerns that have been categorized in the literature as stateful 

aspects. Stateful aspects trigger on a sequence of join points instead of a single join point. 

They identified three properties of AOM languages that enable them to provide more nat­

ural solutions to the stateful aspect problem. They also presented a JAsCo aspect example 

that captures a sequence of events(e.g., methodA - methodB - methodC) and at­

taches an advice to the last event (i.e., methodC). 

5.3 Program Representation 

Our propositions, together with their corresponding algorithms, are based and operate on 

the control flow and call graphs representation of software. In this context, we present in 

the following a brief background and some references to familiarize the reader with these 

concepts. 

5.3.1 Control Flow Graphs 

A control flow graph (CFG) is a representation, using graph notation, of all possible flow 

of execution that might be traversed through a program. A CFG is a cyclic directed graph 

that supports loops. Each node in the graph represents a basic block, which is composed of 
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one or more code statements without branching. Most CFG representations have the entry 

block, through which control enters in the flow graph, and the exit block, through which all 

control flows leave. The directed edges of the graph are possible transitions from one basic 

block to another in the control flow, typically due to a conditional branching (e.g. i f) or a 

function call. It is not possible to determine which path will be executed without the use of 

other techniques (e.g., data flow analysis). Control flow graphs can be used in optimizing 

compilers [10] as well as for certain static analysis methods [72]. 

Here are some references related to algorithms that operate on CFG and that can be 

useful for the elaborated algorithms of the pointcuts proposed in this chapter. In [28], the 

authors proposed a simple and fast algorithm to calculate the dominance information (e.g. 

dominator set) of CFG nodes. A dominator set of a node n (i.e., Dom(n)) contains the 

nodes that lie on every path from the entry node of the CFG to n. They also surveyed 

most of the related algorithms and approaches and compared them to their proposition. 

An implementation of one of these algorithm (Class Dominacelnfo) has been provided 

in [49] as part of the Machine-SUIF control flow analysis (CFA) library. It is built on 

top of the control flow graph (CFG) [49] library and provides dominance analysis and 

natural-loop analysis. Other approaches that use lattice theory allow to efficiently compute 

a Lower Upper Bound (LUB) ancestor and Greater Lower Bound (GLB) descendant over 

lattices [12]. However, their results do not guarantee that all paths will be traversed by 

the results of LUB and GLB, which is a central requirement for our related propositions. 

Moreover, the lattices do not support the full range of expression provided by the CFG, as 

the latter can be a directed cyclic graph. 

115 



5.3.2 Call Graphs 

A call graph is a potentially cyclic directed graph that is used to represent the calling struc­

ture between a program routines. Each node in a call graph represents a routine (procedure) 

and each edge (a,b) indicates that routine "a" calls routine "b". A cycle in the graph indi­

cates recursive procedure calls. Call graphs can be dynamic or static. A dynamic call graph 

only describes one run of the program. A static call graph is a call graph intended to rep­

resent every possible run of the program, which means every call relationship that occur 

is represented in the graph. Call graphs can also be either context sensitive or context-

insensitive. In a context-sensitive graph, for each procedure, the graph contains a separate 

node for each call stack this procedure can be activated with. In a context-insensitive, there 

is only one node for each procedure and all the calls targeting this procedure are related 

to this node. Context-insensitive call graph construction algorithms, such as the ones pro­

posed by Ryder [69], do not take into consideration the value of the variables used to call 

the functions. The elaborated algorithms of the primitives proposed in this chapter operate 

on context-insensitive call graphs. 

We provide here some references for algorithms that operate on call graphs. Ryder 

[69] provided one of the earliest contributions for efficient context-insensitive call graph 

construction in procedural languages, and this contribution was quickly followed by the 

notion of context sensitivity by Callahan et al. [25]. The construction of call graphs has 

been documented by Grove et al. [45] in the case of object-oriented languages, and an 

elaborated study of different algorithms was provided by Grove and Chambers in [44]. 
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5.4 Pointcut and Primitive Definitions 

In this section, we define the syntax and definitions of the proposed pointcuts and primi­

tives. Table 1 illustrates the syntax that defines a pointcut p and an advice declaration after 

adding GAFlow, GDFlow, ExportParameter and Importparameter. 

p ::= call(s) | execution(s) | GAFlow(p) | 

p&Scp 

advice <p> -. (before | after | around) [ : e 

{<advice-body>} 

e ::= ExportParameter (<paran?List>) 
i::= ImportParameter(<paramList>) 

paramList ::= parameter [,paramhist] 
parameter -.-.= <type> <identifier> 

GDFlow(p) 

I i | e,i] 

1 P \ \ P I 

Table 1: Syntax of the Pointcuts and Primitives 

A function signature is denoted by s. The GAFlow and the GDFlow are the new control 

flow based pointcuts. Their parameters are also pointcuts. The new primitives ExportPa­

rameter and Importparameter are e and / respectively. The arguments of ExportParameter 

are the parameters to pass, while the arguments of ImportParameter are the parameters to 

receive. In the following, we present the definition of each pointcut and primitive. 

5.4.1 GAFlow and GDFlow Pointcuts 

The GAFlow pointcut operates on the CFG of a program. Its input is a set of join points 

defined as a pointcut and its output is a single join point. In other words, if we are consid­

ering the CFG notations, the input is a set of nodes and the output is one node. This output 

is the closest common ancestor that is (1) the closest common parent node of all the nodes 
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specified in the input set and (2) through which all the possible paths that reach them pass. 

In the worst case, the closest common ancestor will be the starting point in a program. 

The GDFlow pointcut operates on the CFG of a program. Its input is a set of join 

points defined as a pointcut and its output is a single join point. In other words, if we 

are considering the CFG notations, the input is a set of nodes and the output is one node. 

This output (1) is the common descendant of the selected nodes and (2) constitutes the first 

common node reached by all the possible paths emanating from the selected nodes. In the 

worst case, the first common descendant will be the end point in a program. 

5.4.2 ExportParameter and ImportParameter Primitives 

The ExportParameter and ImportParameter primitives operate on the call graph of a pro­

gram to pass parameters between two pointcuts. They should always be combined and 

used together in order to provide the information needed for parameter passing from one 

join point to another. The origin node is the join point where ExportParameter is called, 

while the destination node is the join point where ImportParameter is called. 

5.5 Discussion 

This section discusses the usefulness, advantages and limitations of the proposed pointcuts 

and primitives. 
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5.5.1 Usefulness of GAFlow and GDFlow for Security Hardening 

Many security hardening practices require the injection of code around a set of join points 

or possible execution paths [16,50,73,87]. Examples of such cases would be the injection 

of security library initialization/deinitialization and data structure construction, privilege 

level changes, atomicity guarantee, logging, etc. The current AOP models allow us only to 

identify a set of join points in the program, and therefore inject code before, after and/or 

around each one of them. However, to the best of our knowledge, none of the current 

pointcuts enables the identification of a join point, common to a set of other join points 

and satisfying the criteria of GAFlow et GDFlow, where we can inject the code when it 

is needed and once for all of them. In the sequel, we present briefly the necessity and 

usefulness of our proposed pointcuts for some security hardening activities. 

Security Library Initialization/Deinitialization and Data Structure Construction 

During the development of an AOP-based solution for securing the connections of client 

applications, we intialiazed/de-initialized and built/de-built the data structures and objects 

needed for GNU/TLS security library in the main function. Such solution works for small 

size applications with single features. However, it is not relevant for large scale applica­

tions with multiple functionalities. Many APIs initialization and unneeded operations may 

be performed, even if their corresponding features are not called during an execution con­

text of a program. In the case of embedded applications where the energy and memory 

resources are limited, such solution could be ruinable. The proposed pointcuts allow to 

solve this problem by executing these operations for the branches of code where they are 
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needed by identifying their GAFlow and/or GDFlow. Having both pointcuts would also 

avoid the need to keep global state variables about the current state of library initialization. 

We use as an example a part of an aspect that we elaborated for securing the connections of 

a client application. With the current AOP pointcuts, the aspect targets the main function as 

the location for the TLS library initialization, deinitialization and data structure construc­

tion, as depicted in Listing 5.23. In listing 5,24, we see an improved aspect targeting the 

pointcuts GAFlow and GDFlow to perform these operations and offering more efficient and 

wider applicable results. 

advice execution ("% main (...) ' 
hardening 
hardening 

socketInfoStoragelnit 
) : around 

0 ; 
initGnuTLSSubsystem(NONE); 

*JP _ > proceed () ; 
hardening 
hardening 

deinitGnuTLSSubsystem 
socketInfoStorageDeina 

*tjp -> result () = 0; 

} 

0; 
t() ; 

o { 

Listing 5.23: Excerpt of Hardening Aspect for Securing Connections Using GnuTLS 

a d v i c e G A F l o w t c a l l ( " % c o n n e c t ! . . . ) " ) | | ca l l ("% s e n d ( . . . ) " ) | | ca l l ("% 
r e c v ( . . . ) " ) ) : before() { 

h a r d e n i n g _ s o c k e t I n f o S t o r a g e l n i t 0 ; 
hardening_initGnuTLSSubsystem(NONE); 

} 

a d v i c e G D F l o w ( c a l l ("% c o n n e c t ( . . . ) " ) | | ca l l ("% s e n d ) . . . ) " ) | | ca l l ("% 
r e c v ( . . . ) " ) | | c a l l ( " % c l o s e ( . . . ) " ) ) : a f t e r ( ) { 

hardening_deini tGnuTLSSubsystem () ,-
h a r d e n i n g _ s o c k e t I n f o S t o r a g e D e i n i t 0 ; 

} 

Listing 5.24: Excerpt of Improved Hardening Aspect for Securing Connections Using 
GnuTLS 
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Principle of Least Privilege 

For processes implementing the principle of least privilege, it is necessary to increase the 

active rights before the execution of a sensitive operation, and to relinquish such rights 

directly after its completion. Our pointcuts can be used to deal with a group of operations 

requiring the same privilege by injecting the privilege adjustment code at the GAFlow and 

GDFlow join points. This is applicable only in the case where no unprivileged operations 

are in the execution path between the initialization and the deinitialization points. The 

example in Listing 5.25 (made using combined code examples from [50]) shows an aspect 

implementing a lowering of privilege around certain operations. It uses restrict tokens 

and the SAFER API available in Windows XP. This solution injects code before and after 

each of the corresponding operations, incurring overhead, particularly in the case where 

the operations a, b and c would be executed consecutively. This could be avoided by using 

GAFlow and GDFlow, as we show in Listing 5.26. 

Atomicity 

In the case where a critical section may span across multiple program elements (such as 

function calls), there is a need to enforce mutual exclusion using tools such as semaphores 

around the critical section. The beginning and end of the critical section can be targeted 

using the GAFlow and GDFlow join points. 

Listing 5.27, although correct-looking, can create unwanted side effects if two calls 

(say, a and b) were intended to be part of the same critical section (i.e., in the same exe­

cution path), as the lock would be released after a, and acquired again before b, allowing 

121 



pointcut abc: call("% a(...)") || call("% b(...)") || call("% c(...)") ; 

advice abc: around (){ 
SAFER_LEVEL_HANDLE hAuthzLevel; 
// Create a normal user level. 
if(SaferCreateLevel(SAFER_SCOPEID_USER, SAFER_LEVELID_CONSTRAINED, 0, 

&hAuthzLevel, NULL)){ 
// Generate the restricted token that we will use. 
HANDLE hToken = NULL; 
if(SaferComputeTokenFromLevel(hAuthzLevel, NULL, khToken,0,NULL)){ 

//sets the restrict token for the current thread 
HANDLE hThread = GetCurrentThread(); 
if (SetThreadToken(&hThread,hToken)){ 

tjp ->proceed () ; 
SetThreadToken (&hThread, NULL) ,- //removes restrict token 

} 
else{//error handling} 

} 
SaferCloseLevel(hAuthzLevel); 

} 

J 
Listing 5.25: Hypothetical Aspect Implementing Least Privilege 

pointcut abc: call("% a(...)") || call("% b(...)") || call("% c(...)"); 

advice GAFlow(abc): before(){ 
SAFER_LEVEL_HANDLE hAuthzLevel; 
// Create a normal user level. 
if(SaferCreateLevel(SAFER_SCOPEID_USER, SAFER_LEVELID_CONSTRAINED, 0, 

khAuthzLevel, NULL)){ 
// Generate the restricted token that we will use. 
HANDLE hToken = NULL; 
if(SaferComputeTokenFromLevel(hAuthzLevel, NULL, SchToken,0,NULL)){ 

//sets the restrict token for the current thread 
HANDLE hThread = GetCurrentThread(); 
SetThreadToken(khThread,NULL); 

• } 

SaferCloseLevel(hAuthzLevel); 

} 
} 

advice GDFlow(abc): after(){ 
HANDLE hThread = GetCurrentThread(); 
SetThreadToken(khThread,NULL); //removes restrict token 

} 
Listing 5.26: Improved Aspect Implementing Least Privilege 
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static Semaphore sem = new Sema p h o r e d ) ; 

pointcut abc: call("% a(...)") || call("% b ( . . . ) " 

advice abc: before (){ 
try{ 

sem.acquire(); 
} catch(InterruptedException e) {//...} 

} 

advice abc: after (){ 
sem. release () ,-

} 

) || c a 11 (" % c ( . . .) " ) ; 

Listing 5.27: Aspect Adding Atomicity 

the execution of another unwanted critical section, possibly damaging b internal state. Im­

proving this aspect in order to handle this case requires foreknowledge of the program event 

flow, contradicting the core principle of separation of concerns and thus complicating fur­

ther maintenance activities and preventing aspect reuse. In contrast, by using our proposal, 

the lock is acquired and released independently of the individual join points while guaran­

teeing that they will be, altogether, considered as one critical section. Listing 5.28 shows 

this improvement. 

pointcut abc: call("% a(...)") || call("% b(. 

advice GAFlow(abc): before(){ 
static Semaphore sem = new Semaphore(1); 
try{ 

sem.acquire(); 
} catch(InterruptedException e) {//...} 

} 

advice GDFlow(abc) : after (){ 
sem.release(); 

} 

.)") | | call ("% c( . . . ) " ) ; 

Listing 5.28: Improved Aspect Adding Atomicity 
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Logging 

It is possible that a set of operations are of interest for logging purposes, but adding indi­

vidual log entry for each one of them would be redundant or of little use. This is why it 

is desirable to use GAFlow and/or GDFlow in order to insert log statements before and/or 

after a set of interesting transactions. 

5.5.2 General Advantages of GAFlow and GDFlow 

It is clear that the proposed pointcuts support the principle of separation of concerns by 

allowing to implement program modification on a set of join points based on a specific 

concern. We now present some general advantages of the proposed pointcuts: 

• Ease of use: Programmers can target places in the application control flow graph 

where to inject code before or after a set of join points without needing to manually 

determine the precise point where to do so. 

• Ease of Maintenance: Programmers can change the program structure without need­

ing to rewrite the associated aspects that were relying on explicit knowledge of the 

structure in order to pinpoint where the advice code would be injected. For example, 

if we need to change the execution path to a particular function (e.g., when perform­

ing refactoring), we also need to find manually the new common ancestor and/or 

descendant, whereas this would be done automatically using the proposed pointcuts. 

• Execution Time and Memory Consumption: Programmers can inject certain pre-

operations and post-operations where needed in the program, without having to resort 
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to injection in the catch-all main. This can improve the apparent responsiveness of 

the application since certain lengthy operations (such as library initialization) can be 

avoided if the branches of code requiring them are not executed, thus saving CPU 

cycles and memory usage. Also, this avoids the execution of the pre-operations and 

post-operations needed around each targeted join point, which is the default solution 

using the actual AOP techniques. This is replaced by executing them only once 

around the GAFlow and GDFlow. 

• Raising the Abstraction Level: Programmers can develop more abstract and reusable 

aspect libraries. 

5.5.3 Usefulness of ExportParameter and ImportParameter for Secu­

rity Hardening 

This section illustrates the necessity and usefulness of ExportParameter and ImportParam­

eter for some security hardening activities. This is done by (1) presenting an example 

that secures a connection using the current AOP technologies, (2) exploring the need for 

parameter passing and (3) presenting the solution of this example using our proposition. 

Securing Connection using the Current AOP Technologies 

Securing channels between two communicating parties is the main security solution ap­

plied to avoid eavesdropping, tampering with the transmission and/or session hijacking. 

The Transport Layer Security (TLS) protocol is widely used for this task. We thus present 

in this section a part of a case study, in which we implemented an AspectC++ aspect that 
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secures a connection using TLS and weaved it with client applications to secure their con­

nections. To generalize our solution and make it applicable on wide range of applications, 

we assume that not all the connections are secured, since many programs have different 

local interprocess communications via sockets. In this case, all the functions responsible 

of sending and receiving data on the secure channels are replaced by the ones provided by 

TLS. On the other hand, the other functions that operate on the non-secure channels are 

kept untouched. Moreover, we addressed also the cases where the connection processes 

and the functions that send and receive the data are implemented in different components 

(i.e different classes, functions, etc.). In Listing 5.29, we see an excerpt of AspectC++ code 

allowing to harden a connection. 

In Listing 5.29, the reader will notice the appearance of h a r d e n i n g _ s o c k i n f o _ t 

as well as some other related functions, which are underlined for the sake of convenience. 

These are the data structure and functions that we developed to distinguish between se­

cure and insecure channels and export the parameter between the application components 

at runtime. We found that one major problem was the passing of parameters between func­

tions that initialize the connection and those that use it for sending and receiving data. In 

order to avoid sharing memory directly, we opted for a hash table that uses the Berkeley 

socket number as a key to store and retrieve all the needed information (in our own defined 

data structure). One additional information that we store is whether the socket is secured 

or not. In this manner, all calls to a s e n d () are replaced at runtime by the secure sending 

functions if the the socket is protected. This effort of sharing the parameter has both devel­

opment and runtime overhead that could be avoided by the use of a primitive automating 
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aspect SecureConnection { 
advice execution ("% main (. . .) ") : around () { 
hardening_socketInfoStoragelnit(); 
hardening_initGnuTLSSubsvstem(NONE); 
tjp ->proceed () ; 
hardeninq_deinitGnuTLSSubsystem(); 
hardening_socketInfoStorageDeinit(); 

} 

advice call("% connect(...)") : around () { 
//variables declared 
hardeninq_sockinfo_t socketlnfo; 
const int cert_type_priority[3] = { GNUTLS_CRT_X509, 

GNUTLS_CRT_OPENPGP, 0}; 
//initialize TLS session info 
gnutls_init (&socketlnfo.session, GNUTLS_CLIENT); 
gnutls_set_default_priority (socketlnfo.session); 
gnutls_certificate_type_set_jpriority (socketlnfo.session, 

cert_type_priority); 
gnutls_certificate_allocate_credentials (ksocketInfo.xcred); 
gnutls_credentials_set (socketlnfo.session, GNUTLS_CRD_CERTIFICATE, 

socketlnfo.xcred); 
//Connect 
tjp ->proceed () ,-
if(*tjp->result()<0) {perror("cannot connect " ) ; 

exit(l);} 
//Save the needed parameters and the information that distinguishes 

between secure and non-secure channels 
socketlnfo.isSecure = true; 
socketlnfo.socketDescriptor=*(int *)tjp->arg (0) ; 
hardeninq_storeSocketInfo(*(int *)tjp->arg(0), socketlnfo); 
//TLS handshake 
gnutls_transport_set_ptr(socketlnfo.session, (gnutls_transport_ptr) 
(*(int *)tjp->arg (0))); 

*tjp->result () = gnutls_handshake (socketlnf o . session) ,-

} 

//replacing sendO by gnutls_record_send() on a secured socket 
advice call("% send(...)") : around () { 

//Retrieve the needed parameters and the information that 
distinguishes between secure and non-secure channels 

hardening_sockinfo_t socketlnfo; 
socketlnfo = hardening getSocketlnfo (* (int *) tjp ->arg (0) ) ,-
//Check if the channel, on which the send function operates, is * 

secured or not 
if (socketlnfo.isSecure) 

//if the channel is secured, replace the send by gnutls_send 
*(tjp->result()) = gnutls_record_send(socketlnfo.session, *(char**) 

tjp->arg (1) , *(int *) tjp->arg (2) ) ; 
else 

tjp ->proceed () ,• 

} 
h 
Listing 5.29: Excerpt of an AspectC++ Aspect Hardening Connections Using GnuTLS 
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the transfer of concern-specific data within advices without increasing software complex­

ity. Furthermore, other experiments with another security feature (encrypting sensitive 

memory) showed that the use of hash table could not be generalized. 

Need to Features for Passing Parameters 

Our study of the literature and our previous experiments presented in Chapter 4 showed 

that it is often necessary to pass state information from one part to another of the program 

in order to perform security hardening. For instance, in the example provided in Listing 

5.29, we need to pass the g n u t l s _ s e s s i o n _ t data structure from the advice around 

c o n n e c t to the advice around s e n d in order to properly harden the connection. The 

current AOP models do not allow to perform such operations. To address this limitation, 

we integrated additional modules and data structures and changed some functions within 

the application in order to pass the parameters. In the case of large scale applications with 

multiple features and complex dependencies and relations between their components, such 

solution is not realistic. It requires many complex re-engineering actions to be performed 

since any changes in one component lead to apply several modifications in all its dependent 

ones. 

Securing Connection using ExportParameter and ImportParameter 

We modified the example of Listing 5.29 by using the proposed approach for parameter 

passing. Listing 5.30 presents excerpt of the new code. All the data structure and algorithms 

(underlined in Listing 5.29) are removed. An ExportParameter for the parameters session 

and xcred is added on the declaration of the advice of the pointcut that identifies the function 
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connect. On the other side, an ImportParameter for the parameter session is added on the 

declaration of the advice of the pointcut that identifies the function send. 

5.6 Methodology, Algorithms and Implementation 

This section presents the elaborated methodologies and algorithms for dominator set, graph 

labeling, GAFlow, GDFlow, ExportParameter and ImportParameter. Algorithms that op­

erate on CFG have been developed for decades now, and many graph operations are consid­

ered to be common knowledge in computer science. Despite this theoretical richness, we 

are not aware of existing methods allowing to determine the GAFlow or GDFlow node for a 

particular set of nodes (i.e., join points) in a CFG by considering all the possible paths. On 

the other hand, the algorithms used to calculate the Dominator and Post-Dominator sets of 

a CFG node can be extended to consider such criteria and build the algorithms of GAFlow 

and GDFlow. 

In this context, we propose two different sets of algorithms for GAFlow and GDFlow. 

The first set is based on the Dominator and Post-Dominator algorithms of classical CFG, 

while the second one operates on labeled graph (i.e., a label is associated to each node). 

Choosing between these algorithms is considered only during the implementation phase 

and left for the developers. We assume that the CFG is shaped in the traditional form, with 

a single start node and a single end node. In the case of program with multiple starting 

points, we consider each starting point as a different program in our analysis. Most of these 

assumptions have been used so far [41]. With these statements in place, we ensure that our 

algorithms will return a result (in the worst case, the start node or the end node) and that 
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aspect SecureConnection { 

advice execution ("% main(...)") : around () { 
gnutls_global_init () ; 
tjp ->proceed () ; 

gnutls_global_deinit(); 

} 

advice call("% connect(...)") : around () : ExportParameter( 
gnutls_session session, gnutls_certificate_credentials xcred){ 

//variables declared 
static const int cert_type_priority[3] = { GNUTLS_CRT_X50 9, 

GNUTLS_CRT_OPENPGP, 0 } ; 
//initialize TLS session info 
gnutls_init (ksession, GNUTLS_CLIENT); 
gnutls_set_default_priority (session); 
gnutls_certificate_type_set_jpriority (session, cert_type_priority),-
gnutls_certificate_allocate_credentials (&xcred); 
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred); 
//Connect 
t jp - > p r o c e e d () ; 
i f (* t jp-> result () <0) { p e r r o r ("cannot connect "),- e x i t ( l ) ; } 
//TLS handshake 
g n u t l s _ t r a n s p o r t _ s e t _ p t r ( s e s s i o n , ( g n u t l s _ t r a n s p o r t _ p t r ) ( * ( i n t *)tjp 

- > a r g ( 0 ) ) ) ; 
* t j p - > r e s u l t ( ) = gnu t l s_handshake ( s e s s i o n ) ; 

} 

/ / r e p l a c i n g send() by g n u t l s _ r e c o r d _ s e n d ( ) . on a secured socke t 
advice call("% send ( . . . ) " ) : around () : Impor tParameter (gnut ls__session 

s e s s i o n ) { 
/ /Check i f t h e channe l , on which t h e send f u n c t i o n o p e r a t e s , i s 

s ecured o r not 
i f ( s e s s i o n != NULL) 

/ / i f t h e channel i s s ecu red , r e p l a c e t h e send by g n u t l s _ s e n d 
* ( t jp -> result () ) = g n u t l s _ r e c o r d _ s e n d (* se s s ion , * (char**) t jp->arg 

( 1 ) , * ( i n t *) t j p - > a r g ( 2 ) ) ; 
e l s e 

tjp ->proceed () ; 
} 
h 

Listing 5.30: Hardening of Connections using GnuTLS and Parameter Passing 
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this result will be a single and unique node for all the inputs. 

5.6.1 GAFlow and GDFlow using Dominator and PostDominator 

The problem of finding the dominators in a control-flow graph has a long history in the 

literature and many algorithms have been proposed, improved and implemented [28,49]. 

To compute dominance information, as presented in [28], the compiler can annotate each 

node in the CFG with a DOM and PDOM sets. 

DOM(b) A node n in the CFG dorninates b if n lies on every path from the entry node 

of the CFG to b. The set DOM(b) contains every node n that dominates b, including b. 

The dominators of a node n are given by the maximal solution to the following data-flow 

equations: 

Dom(entry) = {entry} (1) 

Dom(n) = I p | Dom(p) J \J{n} (2) 
\p£preds(n) I 

Where entry is the start node and preds(n) is the set of all the predecessors of n. The 

dominator of the start node is the start node itself. The set of dominators for any other node 

n is the intersection of the set of dominators for all predecessors p of n. The node n is also 

in the set of dominators for n. To solve these equations, the iterative algorithm presented 

in [28] can be used. 
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We elaborated and implemented Algorithm 1 to calculate the Dominator set. It is based 

on the mechanisms identifying the possible paths reaching one destination from one source 

node [34]. However, any other available algorithm that gives the same result can be useful. 

This choice is completely left for the developer who is expert in such domain. 

The proposed algorithm for finding the non-trivial dominator nodes of a node n, starting 

from an entry point node is based on finding all the connecting (execution) paths between 

node n and the entry Point node and then keeping only the common nodes of these paths. 

The algorithm used for finding the connecting paths is using a marking map overlay that is 

created recursively on the graph nodes starting from node n and finishing at the entry Point 

node or the root node. More precisely, at each marked node we have a map containing 

key and value pairs, with the keys corresponding to the previously connecting nodes and 

increasing marking values (except for node n which has a mark entry with itself as key and 

0 as the initial marking value) with respect to the corresponding connecting nodes. 

Once the marking is completed, we can trace the paths by exploring the markings in 

a recursive procedure that is tracking (adding the current node in the list upon entry and 

popping it before exiting) with each recursion the explored nodes in a list of ascendants 

constituting the currently explored path. The latter is added to the list of paths whenever 

the currently explored node is in fact the target (entryPoint) node. In essence, at every 

explored node, the markings of the parent node are iterated and compared against the mark­

ings of the current node in order to find an adjacent sequence of increasing values denoting 

an unvisited branch. Whenever one is found, the corresponding marking is removed from 

the marking map of the current node and the path tracing function is called recursively for 

the parent node. Upon return, the removed marking is restored in order to allow for the 
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Algorithm 1 Algorithm to Determine the Dominator Set 

1: Set DOM(Node entry Point N ode, Node n) 
2: mark(entryPointNode, n); 
3: Stack pathList = new Stack(); 
4: XracePath(entryPointNode, n, new Stack(), pathList); 
5: SetmeetSet = {}; 
6: if IpathList.isEmptyQ then 
7: meef5et.addAH(pai/iZ/ist.pop()); 
8: for each path pth in pathList do 
9: meetSet = meetSet p | (Set)p£/i 

10: end for 
11: end if 
12: return meetSet; 
13: 
14: markNode(Node targetNode, Node currentNode, Node branching Node, int 

marWncfer) 
if /3 currentN ode.pathM arkingM ap.g&HbranchingN ode) then 

currentNode.pathMarkingA4ap.put(branchingNode, marklndex); 
if currentNode != targetNode then 

marklndex = marklndex + 1; 
for each parent p in currentNode.parentList do 

markNode(£ar(7e£./VoGfe, p, currentNode, marklndex); 
end for 

end if 
end if 
t r a c e P a t h ( N o d e targetNode, Node currentNode, Stack ascendList, Stack pathList) 
ascendList.push(currentNode); 
if currentNode == targetNode then 

List pai/i = new List(); 
pa£/i.addAll(ascen<£Lis£); 
pa£/i.List.add(pa£/i); 

else 
for each parent p in currentN ode.parentList do 

if 3 p.pathMarkingMap.get(currentNode) then 
pathMarkValue=p.pathMarkingMap.get(currentNode); 
for each markingKey in currentNode.pathMaringMap.keySetQ do 

int markingValue = currentNode. pathMarkingMap.get(markingKey); 
if markingValue + 1 = = pathMarkValue then 

currentN'ode.pathMarkingMap.remove(markingKey); 
tracePath(targetNode, p, ascendList, pathList); 
currentNode.pathMarkingMap.put(mar king Key, markingValue); 
break; 

end if 
end for 

end if 
end for 

end if 
ascendList.popQ; 
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discovery of other paths passing through the same node. 

PDOM(b) A node n in the CFG post-dominates b if n lies on every path from b to the exit 

node of the CFG. The set PDOM(b) contains every node n that post-dominates b, including 

b. 

A simple method to calculate the post-dominator sets is to reverse the edge direction 

of the CFG, start from the exit node and apply the dominator algorithm [49]. The post-

dominator of the exit node is the exit node itself. In the case of multiple end points, we 

consider each ending point as different program in our analysis (in fact, each ending point 

will be a starting point after applying the CFG reverse edge direction mechanism). 

/ 
N5 

V. t&-
/ \ 

/ \ \ 
N6 

* 

entry 

1 ' 
N1 

1 ' 
N3 

5 * * 

N8 

1 ' 
:y'-N9fik; 

i 
N10 

i ' 
exit 

\ / 
N? 

N4 

Figure 10: Graph Illustrating the GAFlow and GDFlow of N2 and N7 
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Selected Nodes 
N2,N7 
N5,N6 
N4,N6,N10 
N8,N9 

Common Dominator Set 
entry, N1 
entry, N1,N2 
entry, Nl 
entry, N1 

GAFlow 
Nl 
N2 
Nl 
Nl 

Table 2: Results of the Execution of Algorithm 2 on the Graph of Figure 10 (a) 

Selected Nodes 
DOM(N4) 
DOM(N6) 
DOM(IO) 
CommonDominatorSet (N4, N6, N10) 
GAFLow 

N4, N6, N10 
entry, Nl 
entry, N1,N2 
entry, N1,N9 
entry, Nl 
Nl 

Table 3: Results of the Execution of Algorithm 2 on the Graph of Figure 10 (b) 

Pointcut GAFLow 

In order to compute the GAFlow, we developed a mechanism built on top of the dominator 

algorithm. First, we calculate the common dominator set of all the selected nodes specified 

in the parameter of GAFlow. Then we remove the selected nodes from the calculated set. 

The last node in this set will be returned by Algorithm 2 as the closest guaranteed ancestor. 

Algorithm 2 Algorithm to determine GAFlow using dominator 

Require: SelectedNodes is initialized with the contents of the pointcut match 
1: GAFlow(NodeSet SelectedNodes): 
2: CommonDomSet <— 0 
3: for all node € SelectedNodes do 
4: CommonDomSet <— CommonDomSet U (DOM(node) — node) 
5: end for 
6: return GetLastNode{CommonDomSet) 

We implemented Algorithm 1 to calculate the dominator set of a particular node. Then, 

we implemented on top of it Algorithm 2 and applied this implementation into several case 

studies, one of them is illustrated in Figure 10. The result and steps of calculating the 

GAFlow of some selected nodes is illustrated in Tables 2 and 3. 
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Selected Nodes 
N2, N7 
N4, N5, N6 
N6,N7 
N8,N9 

Common Post-Dominator Set 
N9,N10,exit 
N9,N10, exit 
N8,N9,N10, exit 
N10, exit 

GDFlow 
N9 
N9 
N8 
N10 

Table 4: Results of the Execution of Algorithm 3 on the Graph of Figure 10 (a) 

Pointcut GDFLow 

The closest guaranteed descendant is determined by elaborating a mechanism built on top 

of the post-dominator algorithms. First, we calculate the common post-dominator set of 

all the selected nodes specified in the parameter of GDFlow. Then we remove the selected 

nodes from the calculated set. The first node in this set will be returned by the Algorithm 3 

as the closest guaranteed descendant. 

Algorithm 3 Algorithm to determine GDFlow using post-dominator 

Require: SelectedNodes is initialized with the contents of the pointcut match 
1: GDFlow(NodeSet SelectedNodes): 
2: CommonPostDomSet <— 0 
3: for all node G SelectedNodes do 
4: CommonPostDomSet <— CommonPostDomSet U (PDOM {node) — node) 
5: end for 
6: return GetFirstNode{CommonPostDomSet) 

Similarly to Algorithm 2, we implemented Algorithm 3 by reversing the edge direction 

of the CFG, starting from the exit node and applying Algorithm 1 to calculate the post-

dominator set of a particular node [49]. Then, we applied this implementation on several 

case studies, one of them illustrated in Figure 10. The result and steps of calculating the 

GDFlow of some selected nodes is illustrated in Tables 4 and 5. 
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SelectedNodes 
PDOM(N4) 
PDOM(N5) 
PDOM(N6) 
CommonPostDominatorSet (N4, N5, N6) 
GDFLow 

N4, N5, N6 
N7,N8,N9,N10, exit 
N9,N10,exit 
N8,N9,N10, exit 
N9.N10, exit 
N9 

Table 5: Results of the Execution of Algorithm 3 on the Graph of Figure 10 (b) 

5.6.2 GAFlow and GDFlow using Labeled Graph 

As an alternate solution to determine the GAFlow and GDFlow, we also chose to use a 

graph labeling algorithm developed by our colleagues that we slightly modified in order to 

meet our requirements. This algorithm allows to associate a label to each node of a graph 

as depicted in Figure 11. Algorithm 4 describes the graph labeling method. 

entry[0] 

N1[0.0.] 

N2[0.0.0.] z\ N3[0.0.1.] 

N5[0.0.0.0.] N6[0.0.0.1.] N7[0.0.1.0., 0.0.2.0.] 

N9[0.0.0.0.0., 0.0.0.1.0.0., 0.0.1.0.0.0., 0.0.2.0.0.0.] 

N10[0.0.0.0.0.1., 0.0.0.1.0.0.1., 0.0.1.0.0.0.1., 0.0.2.0.0.0.1.] 

exit[0.0.0.0.0.1.0., 0.0.0.1.0.0.1.0., 0.0.1.0.0.0.1.0., 0.0.2.0.0.0.1.0.] 

Figure 11: Sample Labeled Graph 

Each node down the hierarchy is labeled in the same manner as the table of contents 
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Algorithm 4 Hierarchical Graph Labeling Algorithm 

1: l abe lNode (Nodes , LabeH): 
2: s.labels <— s.labels U {1} 
3: Node Sequence children = s.childrenQ 
4: for k = 0 to {children] — 1 do 
5: C/M/CZ <— c/i«Zdren[/c] 

6: if ihasProperPre fix(child, s.labels) then 
7: labelNode(child,l+ck+c""); 
8: end if 
9: end for 

10: 
11: h a s P r o p e r P r e fix(Node s, LabelSet parent Labels): 
12: if s.label — e then 
13: return false 
14: end if 
15: if 3s G Prefixes(s.label) : s € parentLabels then 
16: return true 
17: else 
18: return false 
19: end if 
20: 
21: P r e f ixe s (Labe l / ) : 
22: LabelSet labels <— 0 
23: Label current <—"" 
24: for i <— 0 to l.lengthQ do 
25: current.append(l.char At(i)) 
26: ifZafce/l.c/iar^tO') = '.' then 
27: labels.add(current.cloneQ) 
28: end if 
29: end for 
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Selected Nodes 
N2,N7 
N5,N6 
N4,N6,N10 
N8,N9 

G'A Flow 
Nl 
N2 
Nl 
Nl 

Table 6: Results of the Execution of Algorithm 5 on the Labeled Graph of Figure 11 

of a book (e.g., 1., 1.1., 1.2., 1.2.1., ...), as depicted by Algorithm 4, where the operator 

+ c denotes string concatenation (with implicit operand type conversion). To that effect, 

the labeling is done by executing Algorithm 4 on the start node with label "0.", thus 

recursively labeling all nodes. 

We implemented Algorithm 4 and tested it on a hypothetical CFG. The result is dis­

played in Figure 11. This example will be used throughout the rest of this chapter. 

Pointcut GAFlow 

In order to compute the GAFlow, we developed a mechanism that operates on the labeled 

graph. We compare all the hierarchical labels of the selected nodes in the input set and find 

the largest common prefix they share. The node labeled with this largest common prefix is 

the closest guaranteed ancestor. We insure that the GAFlow result is a node through which 

all the paths that reach the selected nodes pass by considering all the labels of each node. 

This is elaborated in Algorithm 5. Please note that the FindCommonPref i x function 

was specified recursively for the sake of simplicity and understanding. 

We implemented Algorithm 5 and we applied it on the labeled graph of Figure 11, We 

selected, as case study, some nodes in the graph with various combinations. Few results 

are summarized in Table 6 and Figure 12. 
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Algorithm 5 Algorithm to determine GAFlow using labeled graph 

Require: SelectedNodes is initialized with the contents of the pointcut match 
Require: Graph has all its nodes labeled 

GAFlow(NodeSet SelectedNodes): 
LabelSequence Labels <— 0 
for all node £ SelectedNodes do 

Labels <— Labels U node.labelsQ 
end for 
return GetNodeByLabel(FindCommonPrefix(Labels)) 

FindCommonPref i x (LabelSequence Labels): 
if \Labels\ = 0 then 

return error 
else if \Labels\ = 1 then 

return Labels.removeHeadQ 
else 

Label Labell <— Labels.removeHeadQ 
Label Labell <— Labels.removeHead() 
if \Labels\ = 2 then 

for i <— 0 to min(Label.lengthQ, Label2.length() do 
if Labell.charAt(i) ^ Labell.char At(i) then 

return Labell.substring(0,i - 1) 
end if 

end for 
return Labell.substring(0,min(Label.length(), Label2.lengthQ) 

else 
Label Partial Solution <— FindCommonPref ix(Labell,Label2) 
Label s.append(Partial Solution) 
return FindCommonPrefix(Labels) 

end if 
end if 
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entry[0.] 

N1[0.0] 

N5[0.0.0.0.] N6[0.0.0.1.] N7[0 010 0 0 2 0] 

N8[0.0.0.1.0., 0.0.1.0.0., 0.0.2.0.0.] 

Figure 12: Excerpt of Labeled Graph Illustrating the GAFIow of N2 and N7 

Pointcut GDFlow 

The same mechanism for reversing the edge direction of the CFG [49], that calculates the 

post-dominator set by using the dominator algorithm, can also be applied to determine the 

closest guaranteed descendant on a labeled graph (see Section 5.6.1 for more detail). Once 

the edge directions are reversed, labeling the CFG can be performed and then the same 

algorithm used for calculating the GAFLow (Algorithm 5) can be applied to determine the 

GDFLow. 

We used the same implementation of Algorithm 4 and case study illustrated in Figure 

11. Then, we applied the aforementioned mechanism and implemented Algorithm 5 to 

calculate the GDFlow for the selected nodes. Table 7 contains few results along with 

Figure 13. 
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Selected Nodes 
N2,N7 
N4, N5, N6 
N6,N7 
N8,N9 

GDFlow 
N9 
N9 
N8 
N10 

Table 7: Results of the Execution of Reverse Edge Direction and Algorithm 5 on the La­
beled Graph of Figure 11 

entry[0.] 

N1[0.0.] 

N5[0.0.0.0] N6[0.0.0.1.] N'[0 0 1 0 0 0 2 0 ] 

N9[0.0.0.0.0., 0.0.0.1.0.0., 0.0.1.0.0.0., 0.0.2.0.0.0.} 

Figure 13: Excerpt of Labeled Graph Illustrating the GDFlow of N2 and N7 

5.6.3 Primitives ExportParameter and ImportParameter 

This section presents the implementation methodology and algorithms of the proposed 

primitives responsible of passing parameters, together with the experimental results. These 

primitives are the ExportParameter and ImportParameter. The ExportParameter is used in 

the advice of the origin pointcut to make the parameters available, while the ImportParam­

eter is used in the advice of the destination pointcut to import the needed parameters. 

Algorithm 7 allows parameter passing between two nodes of the context-insensitive 
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call graph of a program [44], with each node representing a function and each arrow rep­

resenting a call site. To ensure the declaration and initialization of the passed parameter 

all the time, whatever the selected execution path, we elaborated on top of this algorithm a 

mechanism based on the GAFlow. This mechanism exports the parameter from the origin 

to the destination nodes. 

This is achieved by performing the following steps: (1) Calculating, using the CFG, the 

closest guaranteed ancestor {GAFlow) of the origin (ExportParameter) and destination join 

points (ImportParameter), (2) localizing the three nodes representing the origin, destination 

and GAFlow in the call graph, (3) declaring and initializing the parameter in the node 

representing the GAFlow in the call graph, (4) executing Algorithm 7 to pass the parameter 

from the origin node to the GAFlow node, and (5) executing again the same algorithm 

to pass the parameter from the GAFlow node to the destination node. This procedure is 

described in Algorithm 6 and operates on one parameter at a time. 

The GAFlow of a set of points is always called before the points themselves {GAFlow 

criteria). By passing the parameter from the origin to GAFlow and then to the destination, 

we ensure that the parameter will be definitely declared and initialized, even if the destina­

tion is called before the origin. Otherwise, the parameter could be communicated without 

initialization, which would create software errors and affect the correctness of the solution. 

However, in all the security hardening cases we have treated, the origin is always called 

before the destination. For instance, in the case study of securing the connection of appli­

cations, the functions responsible for establishing the connections are always called before 

the functions responsible for exchanging data, otherwise there will be an execution error. 

This also apply on all the cases where a sequence of operations should be executed in order 

143 



(3) ( 2 ; 

gaflow 

^ 1 

destination 

010 

origin 

1: Identify GAFlow 2: Origin —> GAFlow 3: GAFlow —> destination 

Figure 14: Parameter Passing in a Call Graph 

to provide a particular functionality (indeed, this is the only cases where we need to pass 

parameters between two points in a program). 

Figure 14 shows an illustration of Algorithm 6 on a call graph example. To pass the 

parameter from h to g, their GAFlow, which is b in this case, is first identified. Afterwards, 

the parameter is passed over all the call sites (paths) from h to b, then from b to g again 

over all the call sites. 

Algorithm 6 Algorithm to Pass the Parameter between two pointcuts 
1: function p a s s P a r a m e t e r ( N o d e origin, Node end, Parameter param): 
2: if origin = destination then 
3: return success 
4: end if 

5: start <— GuaranteedAncestor(origin, end) 
6: passParamOnBranch(start, origin,param) 
7: node.add,LocalVariable{param) 
8: passParamOnBranch(start, end,param) 

The proposed methodology presented in Algorithm 7 allows to modify the function 

signatures and calls in a way that would preserve the program syntactical correctness and 
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intent (i.e., would still compile and behave the same). It finds all the call sites (paths) be­

tween the origin node and the destination node in the call graph. For each one, it propagates 

the parameter from the called function to the caller, starting from the end of the path. In 

other words, the signatures of all the functions involved in the call graph between the ex­

porting and importing join points are augmented by a parameter i n o u t . All calls to these 

functions are modified to pass the parameter as is, in the case of the functions involved in 

this transmission path (e.g., nodes b, c,d,e and / of Figure 14). In order to be optimal in the 

presence of loops, it modifies all the callers only one time and keeps track of the modified 

nodes. 

We implemented a program similar to the scenario of the call graph illustrated in Figure 

14. This program, which is presented in Listing 5.31, is essentially a client application that 

establishes a connection, sends a request and receives a response from the server. Then, 

we simulated the execution of the proposed primitive algorithms and applied manually the 

aspects presented in Listings 5.30 on this application in order to secure its communication 

channels, producing the programme in Listing 5.32. We successfully tested the correctness 

of the hardened applications with SSL enabled web server by capturing the exchange of 

data packets, demonstrating that the communication was effectively encrypted. 

5.7 Conclusion 

AOP is a very promising paradigm for software security hardening. However, this tech­

nology was not initially designed to address security issues and many research initiatives 
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const char * HTTPreguest = "GET / HTTP/1.1 \nHost: localhost\n\n"; 

int. dosend(int sd, char * buffer, unsigned int bufSize){ 

return send(sd, buffer, bufSize, 0); 

} 

int doreceive(int sd, char * buffer, unsigned int bufSize){ 

return recv(sd, buffer, bufSize, 0); 

} 

int doConnect(int sd, struct sockaddr_in servAddr){ 

return connect(sd, (struct sockaddr *) kservAddr, sizeof(servAddr)); 

} . 

int main (int argc, char *argv[]) { 
/* ... */ 
/* create socket */ 

sd = socket(AF_INET, SOCK_STREAM, 0); 

/* connect to server */ 
rc= doConnect(sd, servAddr); 

/*send/receive*/ 
re = dosend(sd); 
fprintf (stderr, "Sent %u characters : \n%s\n" , re, HTTPrequest) ,-
memset((void *)buf, 0, MAX_MSG); 
rc=doreceive(sd, buf, MAX_MSG) ,-
fprintf(stderr,"Received %u characters:\n%s", re, buf); 

/* Shutdown */ 
close(sd); 

• / * . . . * / 

} 

Listing 5.31: Excerpt of a Program to be Hardened 
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const char * HTTPrequest = "GET / HTTP/1.1 \nHost: localhost\n\n"; 
int dosendfint sd, char * buffer, unsigned int bufSize, gnutls_session_t 

* session){ 
if(session != NULL) return gnutls_record_send(*session, buffer, 

bufSize); 
else return send(sd, buffer, bufSize, 0); 

} 
int doreceive(int sd, char * buffer, unsigned int bufSize, 

gnutls_session_t * session){ 
if(session != NULL) return gnutls_record_recv(tsession, buffer, 

bufSize),-
else return recv(sd, buffer, bufSize, 0); 

} 
int doConnect(int sd, struct sockaddr_in servAddr, gnutls_session_t * 

session, gnutls_certificate_credentials_t * xcred){ 
static const int cert_type_priority[3] = { GNUTLS_CRT_X509, 

GNUTLS_CRT_OPENPGP, 0}; 
int re; 
gnutls_init (session, GNUTLS_CLIENT); 
gnutls_set_default_priority (*session); 
gnutls_certificate_type_set_priority (*session, cert_type_priority),-
gnutls_certif icate_allocate_credentials (xcred) ,-
gnutls_credentials_set (*session, GNUTLS_CRD_CERTIFICATE, *xcred); 
re = connect(sd, (struct sockaddr *) kservAddr, sizeof(servAddr)); 
if(re >= 0){ 
gnutls_transport_set_ptr (tsession, (gnutls_transport_ptr) sd) ,-
re = gnutls_handshake (*session); 

} 
return re; 

} 
int main (int argc, char *argv[]) { 

gnutls_global_init (); 

/* create socket */ 
sd = socket (AF_INET, SOCK_STREAM, 0) ,-
if(sd<0) { 
perror("cannot open socket"); 
exit(l); } 

doConnect (sd, servAddr, ksession, &xcred) ,-
dosend (sd, HTTPrequest, strlen (HTTPrequest) + 1, &session) ,-
memset((void *)buf, 0, MAX_MSG); 
doreceive(sd, buf, MAX_MSG,&session); 
/* Shutdown */ 
close (sd) ,-
gnutls_bye(session, GNUTLS_SHUT_RDWR); 
gnutls_deinit(session); 
gnutls_certificate_free_credentials(xcred); 
gnutls_global_deinit(); 
return 0; 

] 
Listing 5.32: Resulting Hardened Program 
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Algorithm 7 Algorithm to Pass a Parameter Between Two Nodes of a Call Graph 

function passParamOnBranch(Node origin, Node destination, Parameter param): 
if origin = destination then 

return success 
end if 
paths <— findPathsBetween(origin, destination) 
for all path G paths do 

path. remove(ori gin) 
while -^path.isEmptyQ do 

currnode <— path.tailQ 
path.remove(currnode) 
if -mode.signature.isModifiedQ A 
^parameter 6 currnode.signature() : parameter = param then 

node.signature.addParameter(param) 
node.signature.markModified() 
modi f yFunctionsC all sTo 
(currNode, param) 

end if 
end while 

end for 
return success 

function m o d i f y F u n c t i o n s C a l l s T o ( N o d e currnode, Parameter param): 
for all caller G currnode.getCallersQ do 

for all call G caller. getC'all sTo(node) : ->call. modified do 
call.parameters.add(param) 
call.modified = true 

end for 
end for 

showed its limitations in such domain. Similarly, we explored in this chapter the limita­

tions of AOP in applying some security hardening practices. Consequently, this imposes 

restrictions to the proposed security hardening framework, from which the need to ex­

tend this technology with new pointcuts and primitives. In this context, we elaborated the 

following AOP pointcuts and primitives that enrich our proposed framework and AOP lan­

guages and provide features needed for systematic security hardening concerns: GAFlow, 
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GDFIow, ExportParameter and ImportParameter. The GAFlow returns the closest ances­

tor join point to the pointcuts of interest that is on all their runtime paths. The GDFIow 

returns the closest child join point that can be reached by all paths starting from the point-

cuts of interest. The two primitives pass parameters from one advice to the other through 

the program call graph. We explored the viability of the proposed pointcuts and primitives 

by (1) exploring their advantages for security hardening, (2) developing their corresponding 

algorithms and (3) presenting the results of explanatory case studies. 
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Chapter 6 

Formal Semantics of SHL Weaving 

6.1 Introduction 

The main intent of this chapter is to ascribe a formal semantics of the SHL language, and 

hence for the whole security hardening solutions performed by the proposed framework. 

The work performed to reach this objective results in two main contributions: 

• Elaborating a novel approach for applying aspect-oriented weaving on the Gimple 

representation of software. 

• Elaborating a formal semantics of SHL weaving based on the Gimple representation 

of software. 

The initial security hardening approach discussed in Chapter 4 is based on the follow­

ing components: Security Hardening Language (SHL), plans, patterns and their equivalent 

aspects. The combination of these components allows the developers to perform systematic 

security hardening of software by applying well-defined solutions and without the need to 
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have security expertise. In this approach, the security hardening solutions need to be re­

fined manually into the current AOP languages (e.g., AspectC++, AspectJ) before weaving 

the security components into the code. 

In this chapter, we extend our proposition by elaborating a new approach that allows 

to apply the hardening on the Gimple representation (tree) of software and avoid in some 

cases the refinement of pattern to the current AOP technologies. Gimple is an intermedi­

ate representation of a program. It is language-independent and tree-based representation 

generated by GNU Compiler Collection {GCC) during the compilation. We propose in 

this chapter novel weaving capabilities for Gimple to be integrated into the GCC compiler. 

These features allow to compile the security hardening patterns and inject them into the 

Gimple tree of a program during the GCC compilation. Beside, exploiting Gimple inter­

mediate representation enables to advise an application written in a specific language with 

code written in a different one. 

Regarding the formal specification of SHL, we present in this chapter a core syntax for 

Gimple, a core syntax for SHL syntax, and formal semantics for Gimple weaving. This for­

mal specification constitutes an initial attempt and a guide toward developing a complete 

weaver for Gimple. It also constitutes a base for applying formal verification on the per­

formed security hardening solutions. We demonstrate the feasibility of our propositions by 

providing the methodology and results of implementing into GCC some weaving features 

illustrated in the proposed semantics. This is followed by a case study for securing the con­

nections of client applications, where the hardening is applied on the Gimple representation 

and compiled using our extended GCC. 
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The remainder of this chapter is organized as follows. We provide in Section 6.2 a 

brief background on formal description and semantics and summarize in Section 6.3 the 

related work on AOP weaving semantics. Afterwards, in Section 6.4, we illustrate the new 

proposition for systematic security hardening where weaving is performed on the Gimple 

representation of a software by adopting an aspect-oriented style. Then, in Section 6.5, we 

present the syntax of SHL and Gimple and provide the operational semantics for Gimple 

weaving. After that, we explain briefly in Section 6.6 the methodology and results of imple­

menting several Gimple weaving capabilities into the GCC compiler. Finally, we illustrate 

in Section 6.7 a security hardening case study and offer in Section 6.8 some concluding 

remarks. 

6.2 Formal Semantics 

Formal semantics constitutes of rigorous mathematical study of the meaning of languages 

and models of computation [65,77]. It allows to prove the properties of a program. The 

formal semantics of a language is specified by a mathematical model that illustrates the 

possible computations described by the language. There are many approaches to formal 

semantics that belong to three major classes: Operational semantics, denotational seman­

tics and axiomatic semantics. These three classes are presented in the increasing order of 

abstraction with respect to the concepts of meaning underlying them. The following is a 

brief description for each one of them: 

• Operational semantics describes the execution of the language directly rather than 

by translation. It somehow corresponds to interpretation, where the implementation 
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language of the interpreter is a mathematical formalism. The operational semantics 

may define an abstract machine and give meaning to the transitions between its states. 

It may also be defined via syntactic transformations on phrases of the language itself. 

• Denotational semantics translates each phrase in the language to another phrase in 

another language. It somehow corresponds to compilation, where the target language 

is a mathematical formalism. 

• Axiomatic semantics gives meaning to phrases by expressing the logical axioms that 

apply to them. Axiomatic semantics does not distinguish between a phrase meaning 

and the logical formulas describing it. A phrase means exactly what can be proven 

about it in some logic. 

Since this chapter presents an operational semantics for SHL weaving, in the sequel we 

elaborate more about this approach and introduce the used structural operational seman­

tics. Operational semantics is considered as a method to give meaning to programs in a 

mathematically rigorous way. It describes how a valid program is interpreted as sequences 

of computational steps, which then constitute the meaning of the whole program. The final 

step in the terminating sequence returns the value of the program in the case of a functional 

program. A program could be also nondeterministic, in this context there may be many 

computation sequences and many return values. 

Structural operational semantics is an approach proposed to give logical means in defin­

ing operational semantics [67]. It consists of defining the behavior of a program in terms of 

the behavior of its parts. Hence, it provides a structural, a syntax oriented and an inductive 

view on operational semantics. Computation is represented by means of deductive systems 
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that turn the abstract machine into a system of logical inferences. This allows to apply 

formal analysis on the behavior of programs. The proofs of program properties are derived 

directly from the definitions of the language constructs because the semantics descriptions 

are based on deductive logic. 

With structural operational semantics, the behavior of a program is defined in terms 

of a set of transition relations. Such specifications take the form of inference rules. The 

valid transitions of a composite piece of syntax is defined into these rules in terms of the 

transitions of its components. Definitions are given by inference rules, which consist of a 

conclusion that follows from a set of premises, possibly under control of some conditions. 

An inference rule has a general form consisting of the premises listed above a horizontal 

line, the conclusion below, and the condition, if present, to the right, as follows [77]: 

premise i premise2 ... premisen 

conclusion 

If n=0, i.e., the number of premises is zero, then the line containing the premises is 

omitted, and we refer to the rule as an axiom. 

6.3 Related Work on AOP Weaving Semantics 

The related work that addresses AOP weaving semantics is presented in this subsection. 

None of them has defined a semantics that demonstrates how to weave in Gimple trees. 

The most prominent research proposals in this area are the contribution of Walker 

et al. [84] where the authors have defined the semantics of the aspect-oriented language 

MinAML, and the contribution of Dantas et. al. [30] where the authors have defined 
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PolyAML, a typed functional and aspect-oriented language. They have used labels to mark 

points where advices are going to be injected. Advices are applied to the arguments or to 

the result of a function. 

Tatsuzawa et al. [59] have implemented an aspect-oriented version of core O'Caml 

called Aspectual Caml. Aspectual Caml carries out type inference on advices without 

consulting the types of the functions designated by the pointcuts. In addition, there are no 

formal definitions for Aspectual Caml. 

Wand et al. [85] have presented a denotational semantics for pointcuts and advices 

of an AOP language defined in the Aspect Sand Box (ASB) project [36]. The language is 

untyped. The language of the pointcuts includes designators for procedure calls and control 

flows, but not for variable access or update. 

Wang et.al. [86] have provided seamless integration of AOP paradigm and strongly-

typed functional language paradigm through a static weaving process, which deals with 

around advices and type-scoped pointcuts in the presence of higher-order functions. How­

ever, their advice is scoped such that it is not possible to install advice that will affect 

already defined functions. 

It is noticeable that all the previous contributions target AOP with functional program­

ming. As a new idea, a name-based calculus fiABC [23] has been introduced in which 

aspects are the primitive computational entities. The authors have demonstrated its ex­

pressiveness by presenting encodings of various other languages into /xABC. In //ABC, 

computational events are messages sent from a source to a target. 
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6.4 Gimple Weaving Approach 

This section summarizes the approach for systematic security hardening and presents an 

extension to it based on Gimple weaving and needed to achieve our objectives. The whole 

approach architecture is illustrated in Fig. 15. 

In the original approach presented in Chapter 4, once the security hardening solutions 

are built, the refinement of the solutions into aspects or low level code can be performed 

by programmers who do not need to have any security expertise. Afterwards, an AOP 

weaver (e.g., AspectJ, AspectC++) can be executed to harden the aspects into the original 

source code. This task still requires human interaction to refine the patterns into aspects by 

providing some parameters needed for the implementation. 

We first provide in this chapter an extension to this approach, which allows bypass­

ing the refinement step from pattern into aspect, and consequently not using the current 

AOP weavers to harden the software. The hardening tasks specified into the patterns are 

abstract and programming language-independent, which makes the Gimple representation 

(i.e., Gimple Tree) of software a relevant target to apply the security hardening. 

In this approach, the SHL patterns and the original software are passed to an extended 

version of the GCC compiler, which generates the executable of the trusted software. An 

additional pass has been added to GCC in order to interrupt the compilation once the Gim­

ple representation of the code is completed. In parallel, the hardening pattern is compiled 

and a Gimple tree is built for each Behavior (Please see SHL syntax in Fig. 16) using 

the routines of GCC provided for this purpose. Afterwards, the generated security trees 

will be integrated in the tree of the original code with respect to the location(s) location 
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Figure 15: Approach Architecture 
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specified into each Location_Behavior of the pattern. Finally, the resulting GimpJe tree is 

passed again to GCC in order to continue the regular compilation process and produce the 

executable of the secure software. The added features was originally implemented by our 

colleagues [89] in order to insert code for monitoring. We have modified it in order to inject 

the security functionalities specified in the hardening pattern. 

Moreover, we have elaborated the formal specification of weaving an SHL pattern into 

the Gimple representation of a software. In this context, we provide in this chapter the 

syntax of SHL and Gimple, together with a formal operational semantics of the weaving 

capabilities. Providing such semantics allows to understand the inner working of Gimple 

procedures, and hence leads to complete implementation of the weaving capabilities for 

Gimple. Moreover, it may allow to formally verify the effect of applying the security 

hardening patterns and solutions into applications. 

Beside the fact that the contributions presented in this chapter improve the approach for 

systematic security hardening, it also constitutes by itself the first attempt towards adopting 

aspect-oriented programming on Gimple, exploring it into a formal operational semantics 

and exploiting Gimple intermediate representation to weave an application written in a 

specific programming language with code written in a different one. 

We have illustrated the feasibility of our propositions by developing several Gimple 

weaving features into GCC and elaborating a case study showing first the use of AOP (As-

pectC++) to secure the connections of an application implemented in C++ , then exploring 

the Gimple weaving of the extended GCC to integrate the same security code in the Gimple 

tree. The experimental results explore the relevance of applying both methods to harden 

security. 
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6.5 Formal Weaving Description 

In this section, we present part of the syntax of SHL and Gimple that serves our goals. 

Beside, the weaving semantics is provided. This semantics describes how to inject security-

related code at specific locations in the Gimple representation of programs. We first define 

the notations that are used along this section. 

Notations 

• Given a record space D = (/j : Dy, /2 : D2, • • ., /„ : Dn) and an element e of type 

D, the access to the field ft of an element e is written as e./j. 

• Given a type r , we write r- s e t to denote the type of sets having elements of type 

T. 

• Given a type T, we write r - l i s t to denote the type of lists having elements of type 

r . 

• The type Identifier classifies identifiers. 

6.5.1 SHL and Gimple Syntax 

In this subsection, we present only the parts of the syntax of SHL and Gimple necessary to 

ascribe the proposed weaving semantics. An environment is built from a Gimple program 

{Program) and a pattern (SHPattern). The SHL syntax describing a security hardening 

pattern is presented in Figure 16. We added labels to the syntax in order to use them in 

the semantics rules. A hardening pattern is based on the pointcut-advice model of AOP. 
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Environment 

SHPattern 

SH Pattern Body 

Location Behavior 

Location 

Location Identifier 

Boolean Location 

BehaviorCode 

Fname 

Vname 

'.'.— 

::= 

::= 

1 

' 1 
1 

1 

::= 
::= 

(program'. Program, 

pattern'. SH pattern 

P a t t e r n PatlernName 

Matching_Criteria? 

SH Pat tern Body 

Location Behavior - l i s t 

{insertionPoint'. b e f o r e | a f t e r | r e p l a c e , 

location'. Location, 

primitive'. Primitive - s e t . 

code'. Behavior Code ) 

Location Identifier j Boolean_Location 

(kind'. F u n c t i o n C a l l | 

F u n c t i o n E x e c u t i o n | W i t h i n F u n c t i o n , 

signature'. Fname) 

(kind'. s e t | g e t , 

signature! Vname) 

Location a n d Location 

Location o r Location 

n o t Location 

(iRetType'. i n t e g e r _ t y p e | r e a l _ t y p e 

b o o l e a n t y p e | v o i d t y p e , 

iName'. Fname ) 

Identifier 

Identifier 

(Environment) 

(Pattern) 

(Behavior) 

(location) 

(Code) 

Figure 16: SHL Syntax 

A SH Pattern includes a list of behaviors {Location Behavior). Each Location Behavior 

specifies where (insertionPoint) and what (code) to insert at specific location location. The 

behavior insertionPoint specifies the point of code insertion after identifying the location. 

The behavior insertionPoint can have the following three values: B e f o r e , A f t e r or 

R e p l a c e . The insertion point R e p l a c e means remove the code at the identified loca­

tion and replace it with the new code, while the B e f o r e or A f t e r means keep the old 

code at the identified location and insert the new code before or after it respectively. Lo­

cation is composed of one or more Locationldentifier that identify the joint points in the 
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program where the BehaviorCode should be integrated. The list of constructs used in Lo­

cation Identifier is left open for future extensions. Depending on the need of the security 

hardening solutions, a developer can define his own constructs. We consider the following 

base locations: 

• F u n c t i o n C a l l : picks out the join points where we call a specific function. 

• F u n c t i o n E x e c u t i o n : picks out the join points referring to the implementation 

of a specific function. 

• W i t h i n F u n c t i o n : picks out the join points within a specific function. 

• s e t : picks out the join points where we set a method local variable. 

• g e t : picks out the join points where we get a method local variable. 

The locations Location can be combined using logical operators to produce more complex 

ones. The code Behavior Code that is going to be weaved is specified by its name and its 

return type. Actually this code could be provided as an interface or a library, or left to be 

implemented by the user. 

Since Gimple contains a lot of constructs, only the ones needed to express the weaving 

semantics are chosen and presented in Figures 17 and 18. A Gimple program Program con­

sists of the following main parts: a set of function declarations fans, a set of types rypes, 

and a set of constants const. A function declaration specifies the function name fname, the 

function type ftype, the argument declarations args, the result declaration result, and the 

function block block. The function block Block represented by b i n d _ e x p r contains the 
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Program '. 

FunDecl '. 

Block I 

Stmt 

ModifySlmt '. 

CallSlmt : 

IJStmt I 

Lhs : 

Rhs : 

UnStmt '. 

BinSlmt '. 

AddrExpr '. 

'.— {funs', 

types', 

const'. l
l
l
l
l
l 

I = (ekind'. 

decl'. 

body'. 

I = Modify Stmt 

'.— {kind: 

ihs: 

rhs'. 

:= {kind: 

addrExpr'. 

arglist'. 

1= {kind: 

condition'. 

opi'. 

op2~-

I— ParmDecl \ 

'.= Const | Lhs 

:= {op: 

:= (op i : 

0P2'-

:= {kind: 

type'. 

op: 

FunDecl - s e t , 

Type - s e t , 

Const - s e t ) 

f u n c t i o n _ d e c l , 

Fname, 

FunType, 

ParmDecl - s e t , 

ResDecl, 

Block ) 

b i n d _ e x p r , 

VLDecl - s e t , 

S w w - l i s t ) 

| CallStmt | Block 

m o d i f y _ e x p r , 

Lhs, 

Rhs ) 

c a l l _ e x p r , 

AddrExpr, 

VPDecl - s e t ) 

c o n d _ e x p r , ( i f ) 

Condition, 

Stmt-list, 

Stmt-list ) 

VarDecl | IndirectRef 

CallStmt | UnStmt | BinSlmt 

Const \ParmDecl \ VarDecl 

Const \ParmDecl \ VarDecl 

Const \ParmDecl \ VarDecl 

a d d r _ e x p r , 

PointerType, 

VarDecl \ FunDecl ) 

AddrStmt 

AddrStmt ) 

| AddrStmt, 

AddrStmt ) 

(Program) 

(Function) 

(Block) 

(statement) 

(Assignment) 

(Function Call) 

Figure 17: Gimple Partial Syntax (Part 1) 
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Indirect Ref '. 

Condition '. 

RelStmt '. 

Type '. 

In tType '. 

RealType '. 

Boo/Type '. 

VoidType I 

PointerType '. 

FuncType I 

VLDecl : 

VPDecl I 

ParmDecl '. 

ResDecl '. 

VarDecl I 

La be I Dec! '. 

Const '. 

Pname '. 

Vname '. 

.__ 

:= 
\ 

i 
:= 
:= 
:= 
; = 

; = 
:= 

;= 
:= 
:= 

(kind: 

o P : 

i n d i r e c t _ r e f , 

VarDecl ) 

Const | ParmDecl \ VarDecl | RelStmt 

("Pi -

OP2-

Const | ParmDecl \ VarDecl \ AddrStmt, 

Const | ParmDecl | VarDecl | AddrStmt ) 

IntType | RealType \ Boo/Type 

VoidType | PointerType | FimType 

(kindl 

(kind: 

(kind: 

(kind: 

(kind: 

type: 

(kind: 

type'. 

LabelDecl 

ParmDecl 

(kind: 

name', 

type'. 

(kind: 

name', 

type'. 

(kind: 

name', 

type'. 

(kind: 

name', 

type'. 

Nat 

ldenlifer 

Identifer 

i n t e g e r t y p e ) 

r e a l _ t y p e ) 

b o o l e a n t y p e ) 

v o i d _ t y p e ) 

p o i n t e r _ t y p e , 

FunType \ IntType j RealType ) 

f u n c t i o n t y p e , 

IntType | RealType \ BoolType \ VoidType ) 

VarDecl 

VarDecl 

p a r m _ d e c l , 

Pname, 

IntType \ RealType \ BoolType | VoidType ) 

r e s u l t _ d e c l , 

Rname, 

IntType \ RealType | BoolType | VoidType ) 

v a r _ d e c l , 

Vname, 

IntType | RealType | BoolType \ VoidType ) 

l a b e l _ d e c l , 

Lname, 

VoidType ) 

_ 
Rname'.'.= ldenlifer 

Lname::— Identifer 

(Type) 

(Declaration) 

(Constant) 

Figure 18: Gimple Partial Syntax (Part 2) 
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declaration of the function variables and the function labels. In addition, multiple state­

ments at the same nesting level are collected into a list of statements as the body body of a 

block. 

There are several varieties of complex statements in Gimple. We consider statements 

that are shared between well-known programming languages such as assignment state­

ment ModijyStmt represented by modi f y _ e x p r , call statement CallStmt represented by 

c a l l _ e x p r , and conditional statements IfStmt represented by c o n d e x p r . The modify 

statement has two parts: the left-hand side statement Lhs and the right-hand side statement 

Rhs. The left-hand side can be a variable declaration VarDecl, a parameter declaration Par-

mDecl, or an indirect reference IndirectRef, whereas the right-hand side can be one of the 

kinds of the left-hand side statements, a constant Const, a call statement CallStmt, a unary 

statement UnStmt, a binary statement BinStmt, or an address expression AddrExpr. Unary 

statements represent unary operations that have one operand. Binary statements represent 

binary operations that have two operands. An indirect reference represents a pointer vari­

able defined using the indirect operator (*) in the C programming language and specified 

by i n d i r e c t r e f and a variable declaration in Gimple. The address expression repre­

sents the operator (&) in C programming language and specified by a d d r _ e x p r , a pointer 

type, and a variable declaration or a function declaration in Gimple. The call statement has 

two parts: the address expression AddrStmt and the function arguments VPDecl - s e t . 

The conditional statement has tree parts: the condition Condition and two statement lists 

S / w J - l i s t . The condition can be either a constant Const, a variable declaration VarDecl, 

a parameter declaration ParmDecl, or a relational statement RelStmt. Relational statements 

represent relational operations that have two operands. 

164 



The considered base types are integer type represented by i n t e g e r _ t y p e , real type 

represented by r e a l _ t y p e , boolean type represented by b o o l e a n t y p e , and void 

type represented by v o i d _ t y p e . Beside, there are two complex types: function type 

FuncType represented by f u n c t i o n _ t y p e and pointer type PoniterType represented by 

p o i n t e r t y p e . A pointer type can specify an integer type, a real type, or a function 

type, which in its turn specifies the function return type. 

Any declaration is specified by a kind, a name, and a type. The following declarations 

are considered: parameter declaration ParmDecl represented by p a r m d e c l , variable 

declaration VarDecl represented by v a r _ d e c l , result declaration ResDecl represented by 

r e s u l t _ d e c l , and label declaration LabelDecl represented by l a b e l _ d e c l . Finally 

constants Const are represented by natural numbers. 

6.5.2 Weaving Semantics 

In this subsection, we provide the rules that describe the weaving semantics. First, we 

begin with the matching and then we continue with the weaving. Notice that cs G CallStmt, 

loc G Location, fd G FunDecl, bfd G FunDecl, m,s G ModifyStmt, s G Stmt, t G Type, 

ft G FuncType, pt G PointerType, ae G AddrExpr, beh G Location Behavior, and £ G 

Environment. 

Matching Rules 

Rule 1 describes the case where the current statement in a function body is a call statement, 

the current location {Location Identifier) in a pattern is a function call location (Func-

tionCall), and the location signature is equal to the called function specified in the call 
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statement. In such a case, the call statement matches the function call location. 

cs.kind = c a l l _ e x p r 

loc. kind = Func t i onCa l l cs.addrExpr.op.fname — loc. signature (1) 

fd, CS )rmatch loc 

Rule 2 describes the case where the current statement in a function body is a call state­

ment, the current location {Location Identifier) in a pattern is a WithinFunction location, 

and the location signature is equal to the name of the function where the call statement 

exists. In such a case, the call statement matches the WithinFunction location. 

cs.kind = c a l l _ e x p r 

loc.kind = Wi th inFunc t ion f d.fname = loc. signature (2) 

fd, CS hmatch IOC 

Rule 3 describes the case where the current statement in a function body is an assign­

ment statement, the current location (Location Identifier) in a pattern is a set location, and 

the location signature is equal to the name of the variable being set. In such a case, the 

assignment statement matches the set location. 

ms.kind= modi fy_expr loc.kind = s e t 

ms.lhs.kind — var_decl ms.lhs.name = loc.signature (3) 

fd, ms \~ match loc 

Rule 4 describes the case where the current statement in a function body is an assign­

ment statement, the current location (Location Identifier) in a pattern is a get location, and 
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the location signature is equal to the name of the variable being get by a unary operation. 

In such a case, the assignment statement matches the get location. 

ms.kind — modify_expr loc.kind = g e t 

ms.rhs.kind — var_decl ms.rhs.name = loc. signature (4) 

fd, ms 
'match ^OC 

Rule 5 describes the case where the current statement in a function body is an assign­

ment statement, the current location (Locationidentifier) in a pattern is a get location, and 

the location signature is equal to the name of the variable being get. In such a case, the 

assignment statement matches the get location. 

ms.kind — modi fy_expr loc.kind = g e t 

ms.rhs.op.kind = v a r d e c l ms.rhs.op.name — loc. signature (5) 

fd, ms hmatch loc 

Rule 6 describes the case where the current statement in a function body is an assign­

ment statement, the current location (Location Identifier) in a pattern is a get location, 

and the location signature is equal to the name of the first variable being get by a binary 

operation. In such a case, the assignment statement matches the get location. 

s.kind = modify_expr loc.kind — g e t 

ms.rhs.op^ .kind — var_decl ms.rhs.opj .name = loc.signature (6) 

fd, ms I-match IOC 

Rule 7 describes the case where the current statement in a function body is an assign­

ment statement, the current location (Location Identifier) in a pattern is a get location, and 
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the location signature is equal to the name of the second variable being get by a binary 

operation. In such a case, the assignment statement matches the get location. 

ms.kind = modify_expr loc.kind — g e t 

ms.rhs.opz-kind — var_decl ms.rhs.op2.name = loc.signature (') 

fd, ms hmatch loc 

Rule 8 describes the case where the current statement in a function body is an assign­

ment statement, the current location {Location Identifier) in a pattern is a WithinFunction 

location, and the location signature is equal to the name of the function where the assign­

ment statement exists. In such a case, the assignment statement matches the WithinFunction 

location. 

ms.kind — modif y_expr 

loc.kind — Wi th inFunc t ion fd.fname = loc. signature (8) 

fd, ms \-match loc 

Rule 9 describes the case where the locations in a pattern are combined using the a n d 

logical operators. In such a case, the current statement in a function body should match 

both locations in order to match their and combination. 

fd, S y-match loCi fd, S \~match loCl 

(9) 
fd, s hmatch loc\ and I0C2 

Rule 10 describes the case where the locations in a pattern are combined using the o r 

logical operators. In such a case, the current statement in a function body should match 

only one of the locations (e.g., the first location) in order to match their o r combination. 
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fd, S "rmatch loci 

(10) 
fd, S \~match l0Ci OX loC2 

Rule 11 describes the case where the locations in a pattern are combined using the 

o r logical operators. In such a case, the current statement in a function body should match 

only one of the locations (e.g., the second location) in order to match their o r combination. 

fd, S \~ match loC2 

(11) 
fd, S \-match l0Cl O r loC2 

Rule 12 describes the case where the current statement in a function body does not 

match the current location (Location Jdentifier) in a pattern. This can be expressed using 

the unary operator n o t . 

fd, S V-match IOC 
(12) 

fd, S hmatch n o t loC 

Statement Creation Rule 

Rule 13 describes how to create a call statement from a given behavior. The environment 

is changed as a result of such a creation. 
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t = buildRetType(6e/i.code) ft — buildFunType(i) 

bfd = buildFunDecl(6e/i.code, ft) pt = buildFunPtr(/<) 

ae = buildAddrExpr(pi,p/d) cs = buildCallStmt(ae) 

(13) 

£'.program.types = £.program.types U t U ft Upt 

£' .program.funs — £.program, funs U bfd 

£, beh\-bund £',cs 

In the sequel, we describe the utility functions used in Rule (13) and required for the 

statement creation: 

• The function buildRetType builds a result type for the weaved function and adds it to 

the defined types in the program. It takes a behavior code and returns a type. 

buildRetType : Code -^Type 

buildRetType(c)=i where 

t.kind= integer_type if c.iJ?e(7ype=integer_type; 

t.kind= r e a l t y p e if c./7?etType=real_type; 

< 

t.kind = booleantype if c.j'Ret7ype=boolean_type; 

t.kind — void_type if c.ii?efType=void_type. 

• The function buildFunType builds a function type for the weaved function and adds 

it to the defined types in the program. It takes a type and returns a function type. 
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buildFunType : Type —> FuncType 

buildFunType(f)=/t where (ft.kind = funct ion type) A (ft.type = t) 

• The function buildFunDecl builds a function declaration for the weaved function and 

adds it to the declared functions in the program. It takes a behavior code and a 

function type. It returns a function declaration. 

buildFunDecl: Code x FuncType —> FuncDecl 

buildFunDecl(c, ft)=fd 

where (fd.kind = function_decl) A (fd.fhame = c.iName) A (fd.ftype = ft) 

• The function buildFunPtr builds a pointer type for the weaved function and add it to 

the defined types in the program. It takes a function type and returns a pointer type. 

buildFunPtr : FuncType —> PointerType 

buildFunPtr(/i)=pf where (pt.kind = po in te r j type) A (pt.type — ft) 

• The function buildAddrExpr builds an address expression for the weaved function. It 

takes a pointer type and a function declaration. It returns an address expression. 

buildAddrExpr: PointerType x FunDecl —»AddrExpr 

buildAddrExpr(pi, /d)=ae 

where (ae.kind = addr_expr) A (ae.type = pt) A (ae.op = fd) 

• The function buildCallStmt builds a call statement to the weaved function based on 

the address expression. It takes an address expression and returns a call statement. 

buildCallStmt: AddrExpr - • CallStmt 

buildCallStmt(ae)=cs where (cs.kind = c a l l e x p r ) A (cs.addrExpr = ae) 
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Weaving Rules 

A function body is composed of a list of statements /, followed by the current statement 

s, which is followed by another list of statements /'. Rule 14 describes the case where 

the current statement in a function body matches the current location in a pattern and the 

insertion point corresponding to the current location is Before. In such a case, the call 

statement cs corresponding to the location behavior is built and inserted before the matched 

statement in the function body. 

fd.block.body — l@(s :: /') fd, s V-match beh.loc 

£, beh \~buiid £'• cs beh.insertionPoint — Before (14) 

(£, fd.block.body) -> (£',l@(cs :: s :: /')) 

A function body is composed of a list of statements /, followed by the current statement 

s, which is followed by another list of statements /'. Rule 14 describes the case where the 

current statement in a function body matches the current location in a pattern and the inser­

tion point corresponding to the current location is After. In such a case, the call statement 

cs corresponding to the location behavior is built and inserted after the matched statement 

in the function body. 

fd.block.body — l@(s :: /') fd, s \-match beh.loc 

£, beh \~buUd £'ics beh.insertionPoint — Af te r 
(15) 

(£, fd.block.body) - • {£', l@(s :: cs :: /')) 

A function body is composed of a list of statements /, followed by the current statement 

5, which is followed by another list of statements /'. Rule 14 describes the case where 
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the current statement in a function body matches the current location in a pattern and the 

insertion point corresponding to the current location is Replace. In such a case, the call 

statement cs corresponding to the location behavior is built and supersedes the matched 

statement in the function body. 

fd.block.body = l@(s :: /') fd, s \-match beh.loc 

£. beh \-buna £', cs beh.insertionPoint = Replace 
(16) 

(SJd.block.body) -* (£',l@(cs :: I')) 

Rule 17 propagates the weaving changes applied to a specific function to higher levels, 

i.e., program and environment where the corresponding function exists. 

fd! = fd {£, fd.block.body) —> {£',1) fun = £'.program.funs fd' 6 fun 

£'.program.fbns = (fun - fd') U fd (17) 

(£) - (£') 

6.6 Implementation of Gimple Weaving Capabilities into 

GCC 

Few weaving capabilities of the proposed semantics for Gimple weaving have been imple­

mented into the GCC compiler. As a result, we are able now to apply several hardening 

practices on the Gimple representation (tree) of a program before generating the corre­

sponding executable. Here is the implementation methodology. 

173 



First, the extended GCC is interrupted once the Gimple tree of the compiled program is 

built. This is done by adding a new pass to GCC that can be called by selecting an option 

when performing the compilation (e.g., g c c -Weav ing S e c u r e C o n n e c t i o n P a t -

t e r n . s h l - c C o n n e c t i o n , c . . . ) . Then, the selected hardening pattern is com­

piled and a Gimple tree is built for the Code of each one of its Behavior{s) (Please see 

Section 6.5.1 for more details on SHL syntax). The needed information of the pattern 

Behavior(s) (e.g., function name, return type, etc.) is gathered from the SHL parser and 

passed as parameters to specific functions provided by GCC and responsible of building 

and modifying the Gimple trees (e.g., b u i l d F u n c t i o n D e c l a r a t i o n T r e e ( . . . ) ) . 

Afterwards, each link to a generated tree is injected in the original program tree with re­

spect to the insertionPoint and location specified in each Location_Behavior. Once this 

weaving procedure is done, GCC takes over and continues the classical compilation of the 

modified Gimple tree to generate the executable of the hardened program. 

6.7 Case Study: Performing Security Hardening in the 

Gimple Representation of Software 

In this section, we present a case study for securing the connections of client applications. 

Securing channels between two communicating parties allow to avoid eavesdropping, tam­

pering with the transmission, or session hijacking. In this context, we have selected a client 

application implemented in C++ which allows to connect and exchange data with a server 
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through HTTP requests. To demonstrate the feasibility of our proposition, we have elabo­

rated first, using SHL, the security hardening pattern needed to secure the connections of a 

selected client application. Listings 4.11 and 4.12 in Chapter 4 presents the pattern elab­

orated in SHL for securing the connection of similar application using GnuTLS/SSL. The 

code of the functions used in the Code of the pattern Behavior(s) is illustrated in Listing 

4.13. Then, we have applied our initial methodology for hardening, where we refined the 

pattern into AspectC++ aspect and weaved it into the selected application. Afterwards, we 

have repeated the hardening using our new proposition, where we have compiled directly 

the same application and the hardening pattern using the extended GCC and applied the 

weaving on the Gimple representation of the application. Indeed, this case study explores 

also the relevance of elaborating the operational semantics for Gimple weaving, as initial 

attempt toward full implementation of a Gimple weaver. 

Applying the hardening on the Gimple representation of code does not require anymore 

refining the hardening pattern into aspect. Compiling the selected client application, by 

using our extended GCC, specifying the weaving option and selecting the hardening pat­

tern for securing connection to be weaved into the application, is enough to perform the 

hardening and generate the executable of the hardened application. In the sequel, we pro­

vide the compilation steps. GCC compiles first the client application and is interrupted 

once the Gimple tree is generated. Then, the developed weaving capabilities take over and 

the needed information of the hardening pattern for securing connection are gathered. The 

pattern is treated Location Behavior by Location Behavior, where a Gimple tree is built 

for the Code of each one of them and weaved into the application Gimple tree at the place 

specified in the insertionPoint and location of the Location Behavior. Afterwards, GCC 
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continues its classical compilation of the modified tree and generates finally the executable 

of the hardened client application. The resulted application is able now to connect securely 

through HTTPS. 

Experimental Results 

In order to verify the hardening correctness, we have set first in the original application the 

server port number to 443, which means the client and the server can only communicate 

through HTTPS (ssl-mode). Any communication through HTTP won't be understood and 

will fail. Then, we have compiled and run the client application and made it connect to 

the server (www.encs.concordia.ca) to retrieve information. The experimental results in 

Figure 19 show that the application failed to retrieve successfully the information. The 

server replies with a bad request because it is not able to understand the message content 

(Please see the run in the terminal of Figure 19). The highlighted lines in the Wireshark 

capture of the traffic show that the communication fails and stops after exchanging few 

undetermined messages. 

Afterwards, we have applied our both approaches to harden this client application. First, 

we have weaved and compiled (using AspectC++ weaver and g++) the elaborated aspect 

(Listing 5.29 in Chapter 5 shows an excerpt of this aspect) with the different components of 

the application. Then, we have compiled the same original application using the extended 

GCC and enabling the Gimple weaving option. Running the two generated executables 

gives exactly the same results on the terminal and in the Wireshark packet captures. Due 

to this and to avoid duplication, we present in Figure 20 only the run of the application 
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Figure 19: Capture of Connection 

hardened by the Gimple weaving capabilities. The experimental results (Please see the run 

in the terminal and the highlighted lines in the Wireshark capture of Figure 20) explore that 

the new secure application is able to connect through HTTPS connections. It is also able to 

exchange successfully the data from the server in ssl-mode and encrypted form, exploring 

the feasibility and correctness of the security hardening process. 

6.8 Conclusion 

We presented in this chapter our accomplishment towards ascribing the formal specification 

of the proposed framework for systematic security hardening. In this context, we enriched 
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Figure 20: Capture of Hardened Connection 

our proposition presented in Chapter 4 by elaborating a new approach for applying secu­

rity hardening on the Gimple representation of software. This approach allows to avoid in 

some cases the manual refinement of the security hardening solution into the current AOP 

languages, and hence weave the security concerns during the compilation into the Gim­

ple tree instead of the code. It also enables to weave an application written in a specific 
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language with code written in a different one by exploiting the Gimple intermediate rep­

resentation. Then, we provided a formal specification of the security hardening solutions 

developed by the proposed framework. This has been done through the elaboration of the 

formal syntax of SHL and Gimple and the operational semantics of SHL weaving based on 

the Gimple depiction of software. This formal specification constitutes an initial attempt 

and a guide toward developing a complete weaver for Gimple. It also provides support 

for the whole framework to eventually apply formal verification on the security hardening 

solutions. We realized and demonstrate the feasibility of our propositions by: (1) Imple­

menting into GCC several Gimple weaving features described in the formal semantics and 

(2) developing a case study where the hardening is applied on the Gimple representation of 

the application and compiled using the extended GCC. 
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Chapter 7 

Conclusion 

Security is taking an increasingly predominant role in today computing world. On the 

other hand, plethora of high quality open source software have been designed and imple­

mented without having security in mind. Such software are currently used into high-risk 

network/web environments. This leads to the discovery of several flaws and vulnerabilities 

that have been eventually exploited by different attacks. It also required security mech­

anisms to be added and integrated into the software for protection. In this context, the 

security hardening of open source software, which is addressed thoroughly in this thesis, 

becomes a very challenging and interesting problem. 

In the sequel, we summarize briefly the main thesis contributions: 

• Aspect-Oriented and pattern-based approach for systematic security hardening of 

software without the need to high security expertise. 

• Programming language independent and aspect-oriented language for security hard­

ening called SHL. 

180 



• New Aspect-Oriented pointcut and primitive constructs for security hardening con­

cerns. 

• Approach for weaving the security hardening concerns on the Gimple representation 

of software. 

• Formal operational semantics of SHL weaving. 

Technical Summary 

Although the current approaches for software security hardening target security during the 

development of new software, as is the case of security design patterns and secure program­

ming techniques, they may still be relevant and give resolutions for several security prob­

lems and requirements. However, they have major shortcomings regarding their method­

ologies for applying the security solutions into software. They are all based on performing 

security hardening in ad-hoc and manual manners and require high security expertise. On 

the other hand, the procedures of security hardening are difficult and critical. If they are 

applied manually, they need lot of time to be tackled and may create other vulnerabilities, 

especially when dealing with large scale software (e.g., thousands, millions lines of code). 

They also require the developers to take important and significant decisions that entail high 

expertise in both the security and the software functionality domains. This causes another 

problem consisting in the difficulty of finding the developers specialized in the both afore­

mentioned domains. 

These issues have been addressed in the proposed AOP and pattern-based approach for 

systematic security hardening. Adopting AOP allows performing the security hardening 
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procedures in a systematic way and avoiding the manual integration of security components 

and code into software. However, using only AOP for security hardening still requires 

high expertise in both the security solutions applied and the software functionality domain. 

The developers still need to specify into the aspects all the steps needed to implement the 

security solutions and the target where to apply them. To solve this problem, we opted in 

the proposed approach to increase the abstraction of the security hardening solution and 

separate totaly the roles and duties of the security experts from the ones of the developers. 

The security experts are able to provide into hardening patterns well-defined solutions to 

particular security problems with all the details on why, how and where to apply them. 

On the other side, the developers are able to use these solutions to harden open source 

software by refining the hardening patterns into AOP aspects and specifying high-level 

security hardening plans. The developers do not need to have expertise in the applied 

security solutions. 

The realization of the proposed approach has been achieved by elaborating a program­

ming independent and aspect-oriented based language for security hardening called SHL, 

developing its corresponding parser, compiler and facilities and integrating all of them 

into a framework for software security hardening. The resulting framework allows the de­

scription of security hardening plans and patterns using SHL and the execution of all the 

required steps for systematic security hardening of software. We illustrated the feasibility 

of the elaborated framework by developing several security hardening solutions that are 

dealing with security requirements and vulnerabilities (e.g., securing connections, adding 

authorization, encrypting some information in the memory, and remedying low level secu­

rity vulnerabilities) and applying them on large scale software (e.g., APT and MySQL). 
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The proposed approach requires to refine the SHL security hardening solution into an 

AOP aspect (e.g., in AspectC++, in AspectJ) before applying and weaving it into the soft­

ware. On the other hand, the current AOP technologies were not initially designed to target 

security, and hence they have some related limitations. Consequently some security hard­

ening activities requires manual intervention and addition of components and code, which 

may affect the systematic target of the proposed approach. For instance, in our experiment 

for securing the connections of client applications, we faced the problem of passing needed 

parameters related to the security library between the application components. Since the 

current AOP languages miss such feature, we opted to integrate additional modules and 

changing some internal functions to do so. However, such solution may not work with 

other software that have complex dependencies and relations between its components. 

These issues have been addressed by elaborating new pointcut and primitive constructs 

to SHL and AOP languages that provide features needed for systematic security harden­

ing concerns. The two proposed pointcuts, GAFlow and GDFlow, return particular join 

points in a program CFG where security features common between a set of join points can 

be added. The GAFlow and GDFlow allow to analyze the CFG execution paths to iden­

tify respectively the closest guaranteed ancestor and closest guaranteed descendant join 

points according to the pointcuts of interest. The two proposed primitives, ExportParame-

ter and ImportParameter, are used to pass parameters between two pointcuts. They allow 

to analyze a program call graph in order to determine how to change function signatures 

for passing the parameters associated with a given security hardening functionality. We 

explored the viability of the proposed pointcuts and primitives by elaborating and imple­

menting their methodologies and algorithms and presenting the result of explanatory case 
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studies. 

In the original proposed approach for security hardening, the refinement of the patterns 

into AOP aspects or low level code does not require security expertise. However, this 

task still requires human interactions to perform the refinement and provide the parameters 

needed for the concrete implementation. Another concern consists in the need to ascribe 

a formal description of the SHL language, and hence for the whole security hardening 

solutions performed by the proposed framework. 

These issues have been addressed first by enriching the proposed framework with a 

new approach for applying security hardening on the Gimple representation of software. 

This approach allows the weaving of security concerns into the Gimple tree of the software 

during the GCC compilation. Accordingly, it provides more systematization to the initial 

proposition by bypassing in some cases the manual refinement of the security hardening 

solution into AOP aspects. Then, the formal specification of the security hardening solu­

tion has been provided through the elaboration of formal syntax for SHL and Gimple and an 

operational semantics of SHL weaving based on the Gimple depiction of software. Target­

ing Gimple for such formal description is relevant because SHL and the hardening solution 

described using SHL are abstract and programming language independent. The elaborated 

operational semantics allow to understand the inner working of Gimple procedures and 

constitutes a guide for developing a complete aspect-oriented weaver for Gimple. Eventu­

ally, it may also allow to perform formal verification on the framework security hardening 

solutions. 

The realization of these propositions has been achieved by implementing into GCC few 

features described in the SHL weaving semantics and developing a case study, in which 
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the security hardening concerns are applied and weaved using the extended GCC into the 

Gimple representation of an application. These contributions improve significantly the 

approach for systematic security hardening. Besides, they also constitutes by themselves 

the first attempts towards adopting aspect-oriented programming on Gimple, exploring it 

into a formal operational semantics and exploiting Gimple intermediate representation to 

advise an application written in a specific programming language with code written in a 

different one. 

Future Work 

Currently, we are working on adapting our approach for the systematic security hardening 

of software at the design level. This direction will allow us to reuse the advanced literature 

in the domain of security engineering (i.e., security design patterns), and consequently 

provide a methodology for applying them while designing software. We will also benefit 

from the achievements and experiments of our framework for security hardening of code, 

build on top of it and/or reuse some of its components to reach our goal. 

As future directions, we are planning to 

• Address the problems related to security engineering and security design patterns. 

• Provide methodologies for applying security patterns during the different life cycle 

of software development. 

• Adapt and apply our approach on more specific security domain and provide AOP 

solutions for more security issues. 
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• Deploy the proposed pointcut and primitive constructs into the current AOP tech­

nologies (i.e., AspectC++ and AspectJ). 

• Address other limitations of the AOP technologies for security hardening concerns 

through elaborating new pointcut and primitive constructs. 

• Build more Gimple weaving capabilities towards developing a complete weaver for 

Gimple. 

• Apply formal verification on the SHL security hardening solutions using the proposed 

weaving semantics. 
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