
AN ASPECT-ORIENTED FRAMEWORK FOR

SYSTEMATIC SECURITY HARDENING OF SOFTWARE

AZZAM MOURAD

A THESIS

IN

THE DEPARTMENT

OF

ELECTRICAL AND COMPUTER ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

DECEMBER 2008

© AZZAM MOURAD, 2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaOIMK1A0N4
Canada

Your file Voire reference
ISBN: 978-0-494-63365-6
Our file Notre reference
ISBN: 978-0-494-63365-6

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

14-1

Canada

ABSTRACT

An Aspect-Oriented Framework for Systematic Security Hardening of

Software

Azzam Mourad, Ph.D.

Concordia University, 2008

In this thesis, we address the problems related to the security hardening of open source

software. Accordingly, we first propose an aspect-oriented and pattern-based approach for

systematic security hardening. It is based on the full separation between the roles and

duties of the security experts and the developers performing the hardening. Such propo­

sition constitutes a bridge that allows the security experts to provide the best solutions to

particular security problems with the details on why, how and where to apply them. More­

over, it allows the developers to use these solutions to harden open source software without

the need to have high security expertise. We realize the proposed approach by elaborat­

ing a programming independent and aspect-oriented based language for security hardening

called SHL, developing its corresponding parser, compiler and facilities and integrating all

of them into a framework for software security hardening. We also illustrate the feasibil­

ity of the elaborated framework by developing several security hardening case studies that

deal with known security requirements and vulnerabilities and applying them on large scale

iii

software. Second, we enrich SHL and the aspect-oriented languages with new pointcut and

primitive constructs (GAFlow, GDFlow, ExportParameter and ImportParameter) that pro­

vide features missing in the current AOP proposals and needed for systematic security

hardening concerns. We also explore the viability of the proposed pointcuts and primitives

by elaborating and implementing their algorithms and presenting the result of explanatory

case studies. Finally, we improve the proposed framework by proposing a new approach

for applying security hardening on the Gimple representation of software and elaborating

formal syntax for SHL and Gimple together with an operational semantics for SHL weav­

ing based on Gimple. We realize our proposition by integrating into the GCC compiler

few features described in the SHL weaving semantics and developing a demonstrative case

study.

IV

Acknowledgments

I would like to express my gratitude to Almighty GOD, the most Beneficent and the most

Merciful, for granting me the ability and opportunity to complete this thesis.

1 would like to thank to my supervisor, Prof. Mourad Debbabi, for his advices, ideas and

effort to ensure a continuous supervision of this thesis. His insights and encouragements

have had a major impact on this work, which would not be possible without his guidance

and support. Working with him was a very valuable experience for me. He deserves all my

acknowledgements.

I would like to thank Prof. Christine Choppy, Joey Paquet, Roch Glitho and Chadi Assi

who honored me by being members of the examiner committee and reviewing this thesis.

Their time and effort are greatly appreciated.

I would like thank my colleagues Hadi Otrok and Syrine Tlili who shared with me

the precious years of my thesis. Also, a very special thank is due to all my TFOSS team

colleagues for all their collaboration in this research. Moreover, further thanks are extended

to all the members of the Computer Security Laboratory.

Finally, I am very grateful to my father, mother, brother, sisters and family members for

their encouragement, love and endless support.

v

Contents

Abstract Hi

List of Figures xi

List of Tables xiii

List of Algorithms xiv

Listings xv

1 Introduction 1

1.1 Motivations and Problem Statement 1

1.2 Objectives 6

1.3 Approach Overview and Contributions 6

1.3.1 Aspect-Oriented and Pattern-Based Approach for Security Hardening 7

1.3.2 New Aspect-Oriented Constructs for SHL Targeting Security Con­

cerns 8

1.3.3 Formal Semantics of SHL Weaving 9

1.4 Thesis Organization . 10

vi

2 Techniques for Securing Software: Background and Scope 13

2.1 Introduction 13

2.2 Computer and Information Security 14

2.3 Software Security Hardening 19

2.4 Security Engineering Using Design Patterns 21

2.4.1 Pattern Concepts 23

2.4.2 Security Patterns 27

2.4.3 Literature Review 28

2.4.4 Evaluation 30

2.5 Secure Programming 30

2.5.1 Security/Safety Vulnerabilities 31

2.5.2 Literature Review 38

2.5.3 Evaluation 39

2.6 Conclusion . 40

3 Towards Security Hardening Via Aspect-Oriented Programming 42

3.1 Introduction 42

3.2 Aspect-Oriented Programming 43

3.2.1 AOP Models 44

3.2.2 AOP Languages 46

3.2.3 AspectC++ Programming 47

3.3 Appropriateness of AOP for Injecting Security Concerns 55

3.3.1 Adding Identification and Authentication Using JAAS 55

vn

3.3.2 Detecting SQL Injection 58

3.3.3 Securing Connection Using GnuTLS/SSL 60

3.3.4 Remedying Buffer Overflow Vulnerabilities 62

3.4 Aspect-Oriented Approaches for Improving Security 66

3.5 Conclusion 69

4 Aspect-Oriented and Pattern-Based Approach for Security Hardening 70

4.1 Introduction 70

4.2 Approach 72

4.3 Security Hardening Plans 75

4.4 Security Hardening Patterns 75

4.5 Security Hardening Language SHL 76

4.5.1 Grammar 77

4.5.2 Informal Semantics 79

4.6 SHL Compiler and Framework Implementation 83

4.7 Case Studies: Plans, Patterns and Aspects for Security Hardening 87

4.7.1 Hardening of Secure Connection Features into APT 87

4.7.2 Hardening of Low-Level Security Vulnerabilities in MySQL 99

4.7.3 Adding Authorization to Applications 104

4.8 Conclusion 108

5 New Aspect-Oriented Constructs for SHL Targeting Security Concerns 109

5.1 Introduction . 109

5.2 Security-Related Pointcuts 112

viii

5.3 Program Representation 114

5.3.1 Control Flow Graphs 114

5.3.2 Call Graphs 116

5.4 Pointcut and Primitive Definitions 117

5.4.1 GAFlow and GDFlow Pointcuts 117

5.4.2 ExportParameter and ImportParameter Primitives 118

5.5 Discussion 118

5.5.1 Usefulness of GAFlow and GDFlow for Security Hardening 119

5.5.2 General Advantages of GAFlow and GDFlow 124

5.5.3 Usefulness of ExportParameter and ImportParameter for Security

Hardening 125

5.6 Methodology, Algorithms and Implementation 129

5.6.1 GAFlow and GDFlow using Dominator and PostDominator131

5.6.2 GAFlow and GDFlow using Labeled Graph 137

5.6.3 Primitives ExportParameter and ImportParameter 142

5.7 Conclusion 145

6 Formal Semantics of SHL Weaving 150

6.1 Introduction . 150

6.2 Formal Semantics 152

6.3 Related Work on AOP Weaving Semantics 154

6.4 Gimple Weaving Approach 156

6.5 Formal Weaving Description 159

ix

6.5.1 SHL and Gimple Syntax 159

6.5.2 Weaving Semantics 165

6.6 Implementation of Gimple Weaving Capabilities into GCC 173

6.7 Case Study: Performing Security Hardening in the Gimple Representation

ofSoftware 174

6.8 Conclusion 177

7 Conclusion 180

Bibliography 189

x

List of Figures

1 AspectC++Weaving 48

2 Aspect Structure / Matching and Weaving 54

3 Separation of Security Concerns 56

4 Framework Architecture 73

5 SHL Grammar 78

6 Screenshotof the Security Hardening System 84

7 Packet Capture of Unencrypted APT Traffic 97

8 Packet Capture of SSL-protected APT Traffic 98

9 Excerpt of Apache Access Log 98

10 Graph Illustrating the GAFlow and GDFIow of N2 and N7 134

11 Sample Labeled Graph 137

12 Excerpt of Labeled Graph Illustrating the GAFlow of N2 and N7 141

13 Excerpt of Labeled Graph Illustrating the GDFIow of N2 and N7 142

14 Parameter Passing in a Call Graph 144

15 Approach Architecture 157

16 SHL Syntax 160

xi

17 Gimple Partial Syntax (Part 1) 162

18 Gimple Partial Syntax (Part 2) 163

19 Capture of Connection 177

20 Capture of Hardened Connection 178

XII

List of Tables

1 Mapping Between Threats and Mitigations (Excerpt from [50]) 18

2 Hardening for Buffer Overflows 33

3 Hardening for Integer Vulnerabilities 35

4 Hardening for Memory Management Vulnerabilities 37

5 Hardening for File Management Vulnerabilities 38

1 Syntax of the Pointcuts and Primitives 117

2 Results of the Execution of Algorithm 2 on the Graph of Figure 10 (a) . . . 135

3 Results of the Execution of Algorithm 2 on the Graph of Figure 10 (b) . . . 135

4 Results of the Execution of Algorithm 3 on the Graph of Figure 10 (a) . . .136

5 Results of the Execution of Algorithm 3 on the Graph of Figure 10 (b) . . . 137

6 Results of the Execution of Algorithm 5 on the Labeled Graph of Figure 11 139

7 Results of the Execution of Reverse Edge Direction and Algorithm 5 on the

Labeled Graph of Figure 11 142

xn i

List of Algorithms

1 Algorithm to Determine the Dominator Set 133

2 Algorithm to determine GAFlow using dominator 135

3 Algorithm to determine GDFlow using post-dominator 136

4 Hierarchical Graph Labeling Algorithm 138

5 Algorithm to determine GAFlow using labeled graph 140

6 Algorithm to Pass the Parameter between two pointcuts . 144

7 Algorithm to Pass a Parameter Between Two Nodes of a Call Graph148

xiv

Listings

3.1 Bank Client 56

3.2 Aspect for Identification and Authentication 57

3.3 Weaved Bank Client 58

3.4 Aspect for Detecting SQL Injection Aspect 59

3.5 Http Client 61

3.6 Excerpt of Aspect for Securing Connections 63

3.7 Weaved Http Client (Part 1) 64

3.8 Weaved Http Client (Part 2) 65

3.9 Aspect for Remedying some Safety Vulnerabilities 66

4.10 SHL Hardening Plans for Securing Connection 89

4.11 SHL Hardening Pattern for Securing Connection (Part 1) 91

4.12 SHL Hardening Pattern for Securing Connection (Part 2) 92

4.13 Functions Used in the Pattern for Secure Connection 93

4.14 Aspect for Adding HTTPS Functionality (Parti) 95

4.15 Aspect for Adding HTTPS Functionality (Part 2) 96

4.16 SHL Hardening Plan for Remedying MySQL Safety Vulnerabilities100

xv

4.17 SHL Hardening Pattern for Remedying MySQL Safety Vulnerabilities . . . 102

4.18 Aspect for Remedying Safety Vulnerabilities 103

4.19 SHL Hardening Plan for Adding Authorization 104

4.20 SHL Hardening Pattern for Adding Authorization 105

4.21 Functions Used in the Pattern for Adding Authorization 106

4.22 Excerpt of an Aspect for Adding Authorization 107

5.23 Excerpt of Hardening Aspect for Securing Connections Using GnuTLS . . 120

5.24 Excerpt of Improved Hardening Aspect for Securing Connections Using

GnuTLS 120

5.25 Hypothetical Aspect Implementing Least Privilege 122

5.26 Improved Aspect Implementing Least Privilege 122

5.27 Aspect Adding Atomicity 123

5.28 Improved Aspect Adding Atomicity 123

5.29 Excerpt of an AspectC++ Aspect Hardening Connections Using GnuTLS . 127

5.30 Hardening of Connections using GnuTLS and Parameter Passing 130

5.31 Excerpt of a Program to be Hardened 146

5.32 Resulting Hardened Program 147

xvi

Chapter 1

Introduction

1.1 Motivations and Problem Statement

The software market has been dominated by Commercial-Off-The-Shelf (COTS) products

during the past two decades. These products offer a myriad of functionalities. However,

their intrinsic limitations such as closed source code, expensive upgrades and lock-in ef­

fect have emerged over time. Moreover, some organizations, notably governments, require

high-level of assurance for the security of systems, a need that simply may not be answered

by some COTS software. The result was the development of a parallel economy based on

Free and Open Source Software (FOSS). A great deal of production systems rely on FOSS

for their operations, where source code is made available for use, modification and mainte­

nance without the expensive fees imposed by COTS software vendors. Some countries are

taking advantage of this openness, as it answers their need for trustworthy and validated

1

software. Currently, a plethora of high-quality FOSS projects, that are implemented in dif­

ferent programming languages, mostly C, C++ and Java, are widely available for use and

modification at no (or small) cost and are carried out via Internet collaboration. Many of

these FOSS products are considered to be as mature as their equivalent COTS. They are

now perceived as viable long-term solution that deserves careful consideration because of

the potential for significant cost savings, improved reliability, and support advantages over

proprietary software.

In parallel, security is taking an increasingly predominant role in today computing

world. The industry is facing challenges in public confidence at the discovery of vul­

nerabilities, and customers are expecting security to be delivered out of the box, even on

programs that have not been designed with security in mind. The challenge is even greater

when such systems must be adapted to networked/web environments, while they are not

originally designed to fit into such high-risk environments. Tools and guidelines for secu­

rity have been available for developers for few years already, but their practical adoption

is limited so far. Nowadays, software developers must face the challenge of improving the

security of programs and are often under-equipped to do so. In some cases, little can be

done to improve the situation, especially for COTS software products that are no longer

supported, or their source code is not available.

However, whenever the source code is present, as it is the case of open-source software,

a wide range of security improvements could be applied once a focus on security is decided.

On the other hand, the secure integration of FOSS in IT infrastructures is very demanding

and requires the adoption of particular methodologies, tools and technical policies in order

2

to reliably compose large software systems. Moreover, many of those open source soft­

ware are designed without security in mind, their security models are not well developed

and/or their code encloses low level security vulnerabilities, from which the need to find

methodologies to improve the security of such software.

As a result, integrating security into open source software becomes a very challeng­

ing and interesting domain of research. In this context, we first define software security

hardening as any process, methodology, product or combination thereof that is used to add

security functionalities and/or remove vulnerabilities or prevent their exploitation in ex­

isting sofhvare. Few concepts and approaches emerged in the literature to help and guide

developers to secure software. We can distinguish from them the hardening methods at

the operating system and network levels, secure programming solutions published in many

books and reviews [15,50], security code injection using aspect-oriented programming

(AOP) [20,31], security design patterns [70], security patches, etc. In the sequel, we sum­

marize and discuss briefly the propositions that can be relevant and noteworthy to build our

framework for systematic security hardening of software.

Security design patterns are proposed as part of the security engineering concept, which

aims at considering security early during the development life cycle of software. They

are considered as a guide to improve and integrate security during the architecture and

design phases. They approach the problem by encapsulating expert knowledge in the form

of well-defined solutions to common security problems. Many security design patterns

are available to help software engineers in designing their security models and securing

their applications [18,22,38,39,56,68,70,90]. Their concept of organizing and providing

the solutions as patterns seems interesting and it can be adapted to be useful for security

3

hardening of existing software.

Secure coding is another useful approach that presents either safe programming tech­

niques, or list of programming errors together with their corresponding solutions [15,16,

50,73,87]. For instance, several publications compiled common errors and vulnerabilities

in code production languages such as C and C++. Their intent is to instruct software de­

velopers to avoid these errors. They may also target the security of existing software by

correcting manually the programming errors causing the vulnerabilities.

More recently, few initiatives have been introduced for code injection, via an aspect-

oriented computational style, into source code for the purpose of improving its security

[20,31,52,74,78]. This approach is based on the idea of separating out the security concerns

from the rest of the application, such that they can be addressed independently and applied

globally. Aspect Oriented Programming [55,79] is a relatively new programming paradigm

that provides a more advanced modularization mechanism on top of the traditional object-

oriented programming (OOP). It is based on the idea that computer systems are better

programmed by separately specifying the various concerns (i.e., separation of concerns),

and then relying on underlying infrastructure called weaver to compose them together. The

techniques in this paradigm were precisely introduced to address the development problems

that are inherent to crosscutting concerns. This paradigm seems to be very promising for

security hardening of code, and hence we can build on top of it to achieve systematic

security hardening of software.

These propositions, together with others that address specific security issues, are likely

to provide solutions to several security problems and requirements, and hence yield valu­

able insights to build up the security hardening solutions. However, they have important

4

shortcomings regarding their methodologies for integrating the security solutions into soft­

ware. Their solutions are applied manually and in an ad-hoc manner and require high secu­

rity expertise, which contradict somehow the purpose of proposing them. None of them of­

fer the developers well-defined methodologies, mechanisms and/or frameworks that assist

and lead them during the application and integration of the security modules into software.

Moreover, most of them (e.g., security design patterns and secure coding) target security

issues during the development of new software, which limit to some extent their usefulness

to secure already developed code.

Besides, security hardening has difficult and critical procedures. If applied manually,

they often require important and significant implementation decisions to be taken by the

developers, which entails high security expertise. They also require lot of time to be tack­

led and may create other vulnerabilities, especially when dealing with large scale software

(e.g., thousands and millions lines of code). Moreover, there is always a difficulty in find­

ing the software engineers and developers who are specialized in both the security solution

domain and the software functionality domain. In fact, this is an open problem raised

by several IT managers (e.g., Bell Security Labs, Ericsson Research Labs). As such, any

proposition for security hardening of open source software should address all the afore­

mentioned problems and take into consideration how to provide the hardening solutions

for security problems, how to avoid the manual application of the hardening solutions and

how to avoid the need to have high security expertise to apply the hardening solutions.

5

1.2 Objectives

The primary intent of this thesis is to create and elaborate into a framework well-defined

and organized methodology, language, mechanisms, compiler and facilities needed to harden

systematically and consistently security models, components and code into open source

software. More specifically, our objectives are:

• Address the problems related to security hardening of open source software and elab­

orate a methodology for performing systematic hardening without the need to have

high security expertise.

• Elaborate a dedicated language to express in a perspicuous and elegant way the se­

curity hardening components.

• Realize the elaborated methodology by designing and implementing its components

and integrating them into the corresponding security hardening framework.

• Ascribe a formal specification of the elaborated security hardening framework.

• Demonstrate the relevance and usefulness of our propositions by developing several

security hardening case studies and applying them on large scale software.

6

1.3 Approach Overview and Contributions

To pursue our objectives and solve the aforementioned related problems, we elaborated

and developed an approach, a language and a framework based on aspect-oriented pro­

gramming for systematic security hardening of software. We also addressed few limita­

tions of AOP for security hardening concerns by elaborating new pointcut and primitive

constructs. Moreover, we enriched our framework by elaborating a new programming lan­

guage independent weaving approach and building a formal specification of weaving based

on the Gimple representation of software. In the sequel, we discuss in details each of the

aforementioned contributions.

1.3.1 Aspect-Oriented and Pattern-Based Approach for Security Hard­

ening

The primary contribution of this work is building the needed approach and facilities that

allow the developers to perform security hardening of software by applying well-defined

solutions and without requiring from the developer to have expertise in the security solution

domain. At the same time, the security hardening is applied in an organized and systematic

way. The related contributions are:

• Proposing a methodology that provides an abstraction over the actions required to

improve the security of a program and adopting AOP to develop and integrate the

solutions. The developers, with no security expertise, will be able to specify the

hardening plans that use and instantiate the security hardening patterns. The secu­

rity hardening patterns are well-defined solutions to well-known security problems,

7

including detailed information on how and where to inject each component of the

solution into an application. The combination of hardening plans and patterns con­

stitutes the concrete security hardening solutions.

• Elaborating a programming independent language for security hardening (SHL) that

allows the developers to describe and specify the hardening plans and patterns needed

to harden systematically security into software. It is a core language built on top of

the current aspect-oriented technologies that are based on advice-poincut model. It

can also be used in conjunction with them.

• Designing and implementing into a framework the parser of SHL, compiler and in­

terface that realize the proposed methodology and allow specifying the plans and

patterns and performing security hardening of software.

• Developing several security hardening case studies and applying them on large scale

software, which demonstrate the usefulness and relevance of the proposed frame­

work.

1.3.2 New Aspect-Oriented Constructs for SHL Targeting Security

Concerns

The main contribution of this work is addressing two limitations of the current AOP tech­

nologies for security hardening concerns and building their corresponding solutions into

SHL. Our experiments explored the usefulness of separating the security concerns from the

other software features, then using AOP for weaving them together. On the other hand, we

have also distinguished, together with other related work in the literature [21,47,54,58,61],

the limitations of the available AOP technologies for few security issues. Indeed, some se­

curity hardening activities could not be applied due to such limitations. Adopting AOP into

the elaborated framework makes dealing with these problems, or at least some of them,

necessary to reach our objectives. The related achievements are:

• Proposing AOP pointcuts {GAFlow and GDFlow) that allow to identify particular

join points in a program control flow graph (CFG), exploring their usefulness and

necessity for security hardening and elaborating their corresponding algorithms.

• Proposing AOP primitives {ExportParameter and ImportParameter) that allow pass­

ing parameters between two pointcuts, exploring their usefulness and necessity for

security hardening and elaborating their corresponding algorithms.

1.3.3 Formal Semantics oiSHL Weaving

The main contribution of this work is twofold. It provides a formal specification and weav­

ing semantics for the elaborated security hardening framework. Simultaneously, it consti­

tutes a novel approach for applying aspect-oriented weaving into the Gimple representation

of software. The related achievements are:

• Elaborating a formal specification of SHL weaving based on the Gimple represen­

tation of software. We built SHL formal syntax and formal semantics for Gimple

weaving. This formal specification constitutes an initial attempt and a guide toward

developing a complete weaver for Gimple. Moreover, it provides a potential model

for verifying formally SHL security hardening solutions.

9

• Augmenting the security hardening framework by proposing a new aspect-oriented

weaving approach for Gimple to be integrated into the GCC compiler. This approach

allows compiling the security hardening pattern and applying the hardening on the

Gimple representation (tree) of software instead of the source code. In other words,

it allows bypassing the refinement of pattern into aspect for some security hardening

solutions, and consequently avoids using the current AOP weavers to harden soft­

ware. This provides more systematization and automation to our original approach.

Moreover, this approach allows exploiting the Gimple intermediate representation to

weave an application written in a specific programming language with code written

in a different one.

• Realizing the proposed approach and semantics by implementing several described

weaving capabilities, integrating them into the GCC compiler, and building a secu­

rity hardening case study to demonstrate the usability and relevance of the proposed

approach and semantics.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

In Chapter 2, we present an overview of the current approaches for securing software.

We first describe the different levels of computer and information security. Then, we pro­

vide a taxonomy for software security hardening. Afterwards, we discuss the security engi­

neering, security patterns and secure programming approaches, and highlight their relevant

points and limitations for software security hardening.

10

In Chapter 3, we explore the relevance of AOP for security hardening. We first describe

the AOP concepts, models and languages. Then, we provide AOP solutions for several

security issues and present a literature review on the approaches related to this area.

In Chapter 4, we present the core approach, components, language, compiler and im­

plementation of the systematic security hardening framework. In this context, we describe

the proposed approach and the main framework components including the security hard­

ening plans, patterns and language. We also present the grammar, structure and informal

semantics of the security hardening language SHL and provide the compilation phases and

the implementation methodology of the proposed framework. Moreover, we explore the

useability and relevance of our propositions by presenting security hardening case stud­

ies for different security issues and problems and illustrating the experimental results of

applying them on large scale software.

In Chapter 5, we address few limitations of the current AOP technologies and propose

new pointcuts and primitives needed for security hardening concerns. In this context, we

explore the limitations of the current AOP technologies for security and present the litera­

ture review related to this domain. We also describe the proposed pointcuts and primitives

and illustrate into examples their necessity and usefulness for security hardening concerns.

Moreover, we provide the methodology and algorithms for implementing our proposals and

discuss their viability and correctness in case studies.

In Chapter 6, we provide a formal specification and semantics for the elaborated se­

curity hardening framework and propose a novel approach for applying aspect-oriented

weaving into the Gimple representation of software. In this context, we describe the Gim­

ple approach for systematic security hardening, the syntax of SHL and Gimple and the

11

operational semantics for Gimple weaving. We also provide the methodology and results

of implementing several Gimple weaving capabilities into the GCC compiler together with

a security hardening case study demonstrating their usability and correctness.

In Chapter 7, we summarize briefly the achievements and contributions of this thesis,

provide concluding remarks, state the plans for future work, and present the list of publica­

tions derived from this thesis.

12

Chapter 2

Techniques for Securing Software:

Background and Scope

2.1 Introduction

The primary objective of this thesis is to elaborate and develop the methodology and mech­

anisms needed to improve and add security at the software level. As such, we first identify

the scope of software security with respect to the other fields of IT security. Then, we

present an overview and assessment of the current literature on the approaches that may be

useful for securing software, and thus guide us in developing our security hardening frame­

work. Accordingly, we highlight in this chapter the relevance and limitations of secure

programming and security engineering using design pattern propositions. We leave the dis­

cussion about how aspect-oriented programming can be used for security code injection till

the next chapter.

The rest of the chapter is organized as follows. In Section 2.2, we provide a global

13

introduction on information and computer security. In Section 2.3, we introduce our main

approach by providing a definition and a taxonomy for software security hardening. In Sec­

tion 2.4, we discuss the security engineering and security patterns approaches. Similarly,

we offer in Section 2.5 a discussion about the secure programming techniques. Finally, in

Section 2.6, we provide concluding remarks about what is covered in this chapter.

2.2 Computer and Information Security

Information security can be defined as follows: "security regards the protection of valuable

information against different kinds of threats, such as disclosure, unauthorized access and

use, modification, destruction and so forth" [31]. The aforementioned valuable information

can be local data, data transmitted over the networks, data related to the core functionality

of the software/application, etc. Information security is mainly concerned with the confi­

dentiality, integrity and availability of data.

Computer security is a category of information security applied to computers. The aim

of computer security is to prevent attackers from achieving their objectives through unau­

thorized access or unauthorized use of computers, networks and/or valuable assets [50,70].

This can be achieved by taking measures and precautions against theft, espionage and/or

sabotage [31]. In this context, computer security imposes requirements in the form of -

constraints on what computers are not supposed to do. However, information security,

computer security and information assurance are interrelated and frequently used inter­

changeably. They share the common objectives of protecting the confidentiality, integrity

and availability of information. Their main differences lie in the methodologies used and

14

the area of concentration.

Before explaining the approaches, layers and requirements of computer security, we

provide in the sequel definitions for some security concepts and explore the relations be­

tween them. This is required as many different definitions are used in the security literature,

so a clarification of the relations between these concepts help to get a better understanding

of the overall computer security field.

• Asset: An asset is an information or a resource that has value to an organization or

person. Applications, systems and networks are counted as assets. The weak assets

are those that have vulnerabilities.

• Security Flaw. A security flaw is a defect that poses a potential security risk. A soft­

ware defect is the result of encoding of human error(s) into the software, including

omissions.

• Vulnerability: A vulnerability is a set of conditions that allows an attacker to violate

an explicit or implicit security policy. Attackers exploit vulnerabilities to break the

security of an asset. Not all the security flaws lead to vulnerabilities, however, a

security flaw can cause a program to be vulnerable to attacks when executed in risky

environment and conditions. In other words, a vulnerability is an exploitable flaw.

• Risk: A risk is the probability that an attack to an asset succeeds. Vulnerabilities

increase the risk of security breaches, while countermeasures reduce it.

• Exploit: An exploit is a piece of software or technique that takes advantage of a

security vulnerability to violate an explicit or implicit security policy. There are

15

different forms of exploits including worms, viruses, trojans, etc.

• Security Objective: A security objective is a statement of intent to counter and ad­

dress threats and satisfy the identified security needs. The state of security is achieved

when the protection against threats is guaranteed.

• Security Requirement: A security requirement is a necessity for protecting an asset

against exploitation and attacks.

• Security Policy: A Security policy is a set of rules that specifies or regulates how a

system or an organization provides security services to protect sensitive and critical

resources.

• Countermeasure or Mitigation: A countermeasure or mitigation is action(s) taken in

order to protect an asset against exploits and attacks. In other words, they are meth­

ods, techniques, mechanisms, processes, tools, or runtime libraries that can prevent

or limit exploits against vulnerabilities. Countermeasures reduce the risk of security

breaches.

There exist many and various security requirements for information and computer secu­

rity described in many documents, standards and books [50,70]. There is no consensus on

a standard list of requirements, which are chosen according to the application domain and

the desired security level. In the sequel, we briefly overview the most important high-level

security requirements and we focus on the list provided by the ISO standard 7498-2 in the

context of distributed systems [8,31]:

• Authentication: Corroborating of the identity of an entity or source of information.

16

• Access Control: Restricting access to resources to privileged entities.

• Data Confidentiality: Keeping information secret from all but those who are autho­

rized to see it.

• Data Integrity: Ensuring that information has not been altered by unauthorized or

unknown means.

• Non-Repudiation: Preventing the denial of previous commitments or actions.

Other requirements may exist in the security literature such as availability, anonymity,

auditing, certification, privacy, revocation, freshness, etc.

The enforcement of security requirements to protect valuable assets can be achieved

at different levels and in different forms. In this context, many security mechanisms and

countermeasures exist in the literature. We distinguish from them the encryption for confi­

dentiality, hash functions for integrity, message authentication code and digital signatures

for authentication and so forth [50,70]. However, these security mechanisms may not al­

ways be sufficient to ensure the above requirements. For instance, some low level security

problems such as buffer overflows are not covered by this list. The following sections

discuss such problems in detail.

Once the threats and/or the security requirements are well identified and categorized,

it is possible to determine the appropriate technique(s) to mitigate and/or enforce them.

The literature often portrays threats and vulnerabilities accompanied with a mapping to

known counter-measures addressing them. Please refer to Table 1 for an instance of such a

mapping.

17

Threat Type
Spoofing Identity
Tampering with Data

Repudiation
Information Disclosure
Denial of Service

Elevation of Privilege

Mitigation Techniques
Appropriate Authentication, Protect Secret Data
Appropriate Authorization, Hashes, Message Au­
thentication Codes, Digital Signatures
Digital Signatures, Timestamps, Audit Trails
Authorization, Encryption, Protect Secrets
Appropriate Authentication and Authorization,
Filtering, Throttling, Quality of Service
Run with Least Privilege

Table 1: Mapping Between Threats and Mitigations (Excerpt from [50])

Apart from the physical protection of assets, typical approaches of improving computer

security can be applied to different components of computer systems i.e., communica­

tion/network, hardware and software. In the following, we explain briefly each one of

them:

• Communication/Network level security consists of securing the network infrastruc­

ture, shared resources (e.g. printers, network-attached storage, etc.), and access to

individual computers.

• Hardware level security consists of imposing restrictions and rules on computer op­

erating system and software.

• Software level security consists of improving the security of the software itself and

the operating system through remedying existing vulnerabilities and/or adding secu­

rity features such as access control, authentication, encryption, etc.

In this thesis, we are only concerned with software security and the problems and solu­

tions related to it. In this context, we provide in the following sections the methodologies

and requirements addressing this field.

18

2.3 Software Security Hardening

The security hardening term at the software/application level is relatively unknown in the

current literature. As such, we define software security hardening as any process, method­

ology, product or combination thereof that is used to add security functionalities and/or

remove vulnerabilities or prevent their exploitation in existing software.

We also propose a taxonomy of security hardening methods that refer to area to which

the solution is applied. We established our taxonomy by studying the solutions of software

security problems in the literature. We also investigated the security engineering of appli­

cations at different levels, including specification and design issues [15,18,50]. From this

information, our practical experiments, and some hardening advice existing in the litera­

ture, we were able to draw out the following classification of methodologies for software

security hardening:

Code-Level Hardening

Code-Level hardening constitutes changes in the source code in a way that prevents vulner­

abilities without altering the software structure. During software creation, vulnerabilities

are created and are a direct result of the programming phase of the project. Code level

hardening constitutes of removing these vulnerabilities by implementing the proper coding

standards that were not enforced originally.

19

Software Process Hardening

Software Process hardening is the addition of security features in the software build process

without changes in the original source code. Software process hardening considers choos­

ing appropriate platforms, library implementations, compilers, aspects, etc. that result in

increased security. It is also possible to use compilers and aspects that add some protec­

tions in the object code, which were not specified in the source code, and that prevent or

complicates the exploitation of vulnerabilities existing in the program. To a certain extent,

it externalizes the security concerns from the program, but has the disadvantages of being

harder to audit and may lack portability.

Design-Level Hardening

Design-Level hardening is the re-engineering of the application in order to integrate secu­

rity features that were absent or insufficient. It refers to changes in the application design.

Some security vulnerabilities cannot be resolved by a simple change in the code or by a

better environment, but are due to a fundamentally flawed design. Changes in the design

are thus necessary to solve the vulnerability or to ensure that a given security policy is

enforceable. Moreover, some security features need to be added for new versions of exist­

ing products. This category of hardening practices target more high-level security such as

access control, authentication and secure communication. In this context, best practices,

known as security design patterns [18], can be used to guide the redesign effort. Although

such patterns are targeting the security engineering of new systems, such approach can also

be redirected to cover deploying security into existing software.

20

Operating Environment Hardening

Operating Environment hardening consists of improvements to the security of the execu­

tion context (network, operating systems, libraries, utilities, etc.) that is relied upon by the

software. It impacts the security of the software in a way that is unrelated to the program

itself. This addresses the operating system (typically via configuration), the protection of

the network layer, the configuration of the middleware, the use of security-related operat­

ing system extensions, the normal system patching, etc. [6,87]. Many security appliances

can be deployed and integrated into the operating environment in a way that provides some

high-level security services. These hardening practices fall within the scope of proper

management of an IT department and, as much as they can prevent exploitation of vulner­

abilities, they do not remedy them.

2.4 Security Engineering Using Design Patterns

Computer security professionals have been promoting, for many years, tools and best prac­

tices guidelines to be used by the software development industry [14,18,50,71]. Devel­

opers, often pressed by a dominating time-to-market priority, must deal with a large set

of technical and non-technical issues, in which case security concerns are not thoroughly

addressed. As such, the concept of security engineering has been proposed to explore the

importance of addressing security issues early during software development and provide

guidance.

The initial proposals in this domain have been suggested and known as secure software

design advices or tips. In this context, Bishop, in a set of instructional slides [14], offers

21

advice on dividing software in processes that have exactly the right level of privilege to

perform their task. In [15], the reader will also learn secure software design from design

principles and case studies. Howard and LeBlanc [50] suggest to use threat modeling as

a tool for correctly choosing the right security mechanisms and their proper deployment

into systems. They show how secure software should not be structured in an arbitrary

manner, but that design decisions should be directly correlated with the requirements and

policies. In [51], Howard and Lipner describe the process used by Microsoft to create

secure software, named the Security Development Lifecycle (SDL). They insists on the

need to create defense in depth, since code-based vulnerabilities are not fully avoidable in

practice. As such, they show a methodology used within the SDL for design named attack

surface reduction. Attack surface reduction is a strategy that dictates the reduction of entry

points, privileges and amount of executing code. One particular concern that it deals with

is the presence of anonymous paths that are of a higher risk. Graff and Wyk [42] have also

written on the principles and practices behind the construction of secure software. Their

book covers all the steps of the software development process, and includes a coverage of

security architecture and design.

All these books are useful, but often lack direct advice on how to well design applica­

tions while taking security into consideration. For a decade now, security design patterns

have emerged in order to answer this need. Security design patterns have been proposed

recently as a guide for the improvement of software security during the design phase. Since

the appearance of this research topic in 1997, several pattern catalogs have emerged, and

the security design pattern community has produced many contributions [18,38,71]. In the

sequel, we present an overview of the pattern concepts and particularly security patterns.

22

2.4.1 Pattern Concepts

Patterns are structured documentations that capture well-defined solutions to recurring

problems. The basic idea is to write down best practices and lessons learned from a given

problem domain in an organized way [70,71]. Christopher Alexander et al. [11] provided

the first definition of a pattern and its structure in the field of building architecture, which

was later reused in the object-oriented world:

"Each pattern describes a problem, which occurs over and over again in our environment,

and then describes the core of the solution to that problem...".

"Each pattern is a three-part rule, which expresses a relation between a certain context, a

problem, and a solution".

The main concepts of the pattern idea are explored in the aforementioned definitions.

According to Alexander [11], each pattern should have the same structure and template in

order to achieve better comprehension, comparison, and usage of the patterns. The core

elements of such template are the name, context, problem, trade-offs, and solution. Other

elements could be added to give more detail and explanation on the pattern if needed. The

following is a brief description of these elements:

• Name: The name of the pattern is the common-usage short expression that encap­

sulates the pattern meaning. The name is determined and assigned according to the

community to which the pattern belongs. It should be expressive, reflect clearly the

content of the pattern, and easy to refer to.

23

• Context: The context describes the environment where the pattern could be applied.

In other words, it explores when and where the pattern will work and the precondi­

tions under which the problem and its solution appear.

• Problem: The problem is a short description of the problem that this pattern aims at

solving. It describes the goals and objectives a pattern needs to achieve.

• Trade-Offs: The trade-offs section aims at explaining in more details the nature of

advantages and disadvantages of this pattern over quality attributes.

• Solution: The solution is a textual description of the pattern that solves the prob­

lem. It is presented as a proven solution of the problem proposed by domain experts.

Proven solution means that this solution worked at least once in a well defined envi­

ronment. The level of abstraction of the solution is directly related to the type of the

problem. For instance, we can find some patterns that provide design level solutions,

while others provides code level solutions. Typically, a problem can have more than

one solution, and the best one is only determined by the context where the problem

occurs.

• Related Patterns: Patterns related to this pattern, or patterns that inspired this pattern,

are listed in this section. Patterns do not exist in isolation, and the presentation of

this relationship provides linkage to subsequent patterns of pattern collection.

Pattern Organization

Patterns do not exit in isolation, as such, there are different concepts for collecting and

organizing them depending on the relationships among them. Pattern catalogs, pattern

24

systems, and pattern languages are the main approaches [24,70] that are adopted for pattern

organization. The following is a brief description of these approaches:

• Pattern Catalogs: A catalog of patterns consists of patterns belonging to the same

community (e.g., security), without the necessity to have relationships among them.

It is the result of merging several individual patterns into a bigger collection. A

pattern catalog is more a loosely coupled set of patterns [70]. However, typically

and not mandatory, the same template and structure is used for all the patterns of the

catalog.

• Pattern Systems: A pattern system for software architecture, as defined in [70], is

a collection of patterns for software architecture, together with guidelines for their

implementation, combination, and practical use in software development. It is a

more tightly coupled set of patterns than a pattern catalog and it precisely describes

and explores the relationships and interactions between individual patterns. These

patterns work together to solve a more complex problem in a particular domain.

• Pattern Languages: A pattern language consists of patterns that have a common pre­

defined goal and each one of them contributes to provide the solution to one overall

problem. These patterns are composed together to form a big pattern that provides

the solution for the problem. Each pattern, by itself, is not considered as a solution

for a particular problem. We can notice that the meaning of a language in the domain

of patterns is different than its conventional one.

25

Pattern Categories

In [24], Buschman et al. divided the patterns into the following three categories:

• Architectural Patterns: Architectural patterns address the problems faced during the

architecture level of the software development process. They provide solutions about

the structural organization of software systems and the relationships among their

components.

• Design Patterns: Design patterns address the problems faced during the design of

software systems. Most of the patterns available in the literature belong to this cate­

gory. This type of patterns are still independent of the implementation.

• Idioms or Implementation Patterns: Implementation patterns address the problems

faced during the implementation of the software systems. They are mostly program­

ming language dependent. Very few implementation patterns exist in the literature.

Pattern Mining and Quality Assurance

The major claim of patterns is that they are proven solutions for recurring problems. How­

ever, this is difficult to be true and guaranteed, particulary because there is no well-defined

procedure for assessment. The only way that is currently used is to publish the patterns

and review them by a community of experts. On the other hand, there are several basic ap­

proaches for pattern mining, which may also be used to prove the validation of the proposed

solutions. The following are the aforementioned approaches presented in [53]:

26

• Introspective: In this approach, the developers build their own systems, analyze them

and identify the solutions that work well. Then, these solutions are written and pre­

sented as patterns. These patterns are limited to individual experience, as such, the

authors need to make sure that the other experts agree on these solutions.

• Art if actual: In this approach, the authors of the patterns are not among the people

who design and develop the systems. In this case, the authors investigate the solu­

tions and write the corresponding patterns. There is a possibility that the authors

are not experts in the pattern domain, and as such, the patterns may need additional

refinements.

• Sociological: In this approach, the resulted patterns are the most solid and guar­

anteed. Several experts contribute to building the patterns by developing several

systems that solve a particular problem, discussing the proposed solutions and then

determining the best one. The chosen solution will constitute the pattern.

2.4.2 Security Patterns

Security patterns are patterns that belong to the security community. They approach the

problem from the same perspective, by encapsulating expert knowledge in the form of

proven/well-defined solutions to common security problems. These patterns will fit at dif­

ferent levels of abstraction and areas of concerns. Schumacher provided in [70,71] the

following definition for security patterns:

"A security pattern describes a particular recurring security problem that arises in a spe­

cific context and presents a well-proven generic scheme for a security solution".

27

Security patterns have a structure similar to the one of design patterns, i.e., they have

an expressive name, context, problem, solution, and their relation to other patterns. These

components form together the template for security patterns. Like other patterns, there are

also some optional elements, which can be used to improve the comprehension of a security

pattern. The aim of the template elements is to explain the use of a pattern. For instance,

if a developer wants to use a pattern, he first checks the context and problem, then, if they

fit with his problem and context, he applied the provided solution. Moreover, all the issues

of pattern organization, pattern categories and pattern mining and validation are applied to

security patterns, with the only difference that they are applied to the IT security domain

and community.

2.4.3 Literature Review

The current research in the domain of security patterns is characterized by various pub­

lications. However, the field is lacking a core reference similar to the "Gang of Four"

patterns [40] in typical software design and has no established criteria for evaluation. This

situation makes the security design patterns hard to use for software designers and main-

tainers alike, which limits their adoption in the industry, and thus lowers their positive

impact on software security.

In [90], Yoder and Barcalow introduced a 7-pattern catalog. In fact, their proposed

patterns were not meant to be a comprehensive set of security patterns, rather just a starting

point towards a collection of patterns that can help developers to address security issues

when developing new applications.

28

Kienzle et al. [56] have created a 29-pattern repository, which categorized security pat­

terns as either structural or procedural patterns. Structural patterns are implementable pat­

terns in an application whereas procedural patterns are patterns that were aimed to improve

the development process of security-critical software. The presented patterns were derived

from the implementation of specific web application security policies.

Romanosky [68] introduced another set of design patterns. The discussion however has

focused on architectural and procedural guidelines more than security patterns.

Brown and Fernandez [38] introduced a single security pattern, the authenticator, which

described a general mechanism for providing identification and authentication to a server

from a client. Although authentication is a very important feature of secure systems, the

pattern, as was described, was limited to distributed object systems. Fernandez and Warrier

extended this pattern recently in [39].

Braga et al. [22] also investigated security-related patterns specialized for cryptographic

operations. They showed how cryptographic transformation over messages could be struc­

tured as a composition of instances of the cryptographic meta-pattern.

The Open Group [18] has introduced an important list of security design patterns. Their

catalog proposes 13 patterns, and is based on architectural framework standards such as the

ISO/IEC 10181 [7].

The most recent work in this domain is from Schumacher et al. [71]. They offered into

a book a list of forty-six patterns applied to different fields of IT security, however most of

them are rewriting of previously proposed patterns.

29

2.4.4 Evaluation

The design principles and patterns for secure systems development are quite sound but are

not meant to deal with already developed software, although they could be useful guides

for a system redesign. However, the basic principle of the pattern is promising and should

be leveraged in order to clearly specify how security hardening is to be done.

Security patterns are currently written in a way that requires manual adaptation and

makes their usefulness limited. This seems more like a limitation of the expression format,

and not of the concept itself. This conclusion brought us to adopt the idea of patterns as a

way to specify the security hardening solutions, while also considering a new and extended

form of pattern expression that we describe in Chapter 4.

2.5 Secure Programming

The field of secure programming is focused on avoiding common programming mistakes

that result in security vulnerabilities. As such, this field is highly tied to the technology

used, typically being the programming language and the operating system.

A lot of research has been published in the field of secure programming for C and

C++ programs, since a large amount of production-level software has been written in those

languages [17,50,73,87]. The design of those languages also allows the existence of

many types of security vulnerabilities that are not possible in modern languages. They

require manual memory management and offer low type safety, both being sources of many

programming errors. Furthermore, since these languages are capable of interacting with

the operating system directly, they are able to use system resources in a manner that is not

30

always safe. It is thus very important to understand the security implications of improper

C and C++ programming and learn good practices to avoid them.

We will now proceed to a non-exhaustive survey of existing vulnerabilities and their

corresponding available solutions. After that, we will examine the current contributions in

the field.

2.5.1 Security/Safety Vulnerabilities

Regarding low level security, deploying security at that level is mainly categorized as Code-

Level and Software Process hardening. As such, this type of hardening will be extremely

dependent on the programming language and the platform. In this context, the C and C+ +

programming languages have a bad reputation in the security world because they were

designed for maximal performance, at the expense of some safety-enhancing techniques.

The C and C++ memory management left to the programmer discretion and the lack of type

safety are the major causes of security flaws. Such flaws do not exist in the Java programs

because the compiler takes care of most of the issues that cause these security problems

and handles all the memory management operations. In the sequel, we list th~e major safety

vulnerabilities that are introduced in the source code during the implementation and we

discuss their impacts on software security. Moreover, we provide a brief description of the

mitigation techniques used to remedy them.

Buffer Overflow

Buffer overflow exploit common programming errors that arise mostly from weak or non­

existent bounds checking of input being stored in memory buffers. Attacks that exploit

31

these vulnerabilities are considered as one of the most dangerous security threats since it

can compromise the integrity, confidentiality, and availability of the target system. Buffers

on both the stack and the heap can be corrupted [50,91]. The following are the common

causes of buffer overflow: Boundary condition errors, input validation errors, assumption

of null-termination, and improper format string.

Many APIs and tools have been deployed to solve the problem of buffer overflow or

to make its exploitation harder [13, 50, 60, 91]. In this context, the following are some

design and programming tips and assumptions that can help to solve the buffer overflow

problem [17]:

• Always assume that input may overflow a buffer and design the program in a way

that provide proper input validation conditions.

• Use functions that respect buffer bounds such as fgets, strncpy, and strncat.

• Ensure NULL-termination of strings, even if using those functions.

• Invalidate stack execution, since stack-based buffer overflow are the easiest to ex­

ploit.

• Check the number of arguments of printing functions to make sure that the format

string argument is explicitly specified.

Table 2 summarizes the hardening solutions for the buffer overflow security problems

with respect to the aforementioned security hardening classification.

32

Hardening Level
Code

Software Process

Design
Operating Environment

Product/Method
Bound-checking, memory manipulation functions
with length parameter, null-termination, ensuring
proper loop bounds
Compile with canary words, inject bound-
checking aspects
Input validation, input sanitization
Disable stack execution, use libsafe, enable stack
randomization

Table 2: Hardening for Buffer Overflows

Integer Operations

Integer security issues arise either on the conversion (either implicit or explicit) of inte­

gers from one type to another, or because of their inherently limited range [73]. C and

C++ compilers distinguish between signed and unsigned integer types and silently perform

operations such as implicit casting, integer promotion, integer truncation, overflows and

underflows. Such silent operations are typically overlooked, which can cause various secu­

rity vulnerabilities. Integer vulnerabilities may be used to write to an unauthorized area of

memory. A first instance, is the allocation of less memory than thought, allowing to write

to unwanted parts of the heap. Another instance is to access invalid memory areas with a

negative index or memory copying operation. In some cases, if the access is to an invalid

page, the result will be a denial of service via an application crash. They can also cause

other security problems by bypassing preconditions and expected protocol values that are

specific to the program being exploited. The following are the common causes of these

vulnerabilities:

33

• Integer Sign Conversion: Sign conversion errors occurs because the C and C++ lan­

guages conserve the bit pattern when converting between signed and unsigned inte­

gers of the same size, so we can find negative or unexpectedly large values when not

expected. This is due to the fact that most processors store signed integers with the

first bit as the sign bit, whereas the same bit is used by unsigned integers in the same

way as other bits.

• Integer Signedness Errors: Signedness errors occur when the program expects an

unsigned value, but instead finds a signed one. Because of the inappropriate assump­

tion, the program does not validate if the value is positive, potentially resulting in a

security vulnerability. These errors typically happen in conjunction with conversion

errors.

• Integer Truncation Errors: A truncation error occurs when an integer is converted to

one of a smaller type. The bit pattern of a subset of the original integer is preserved

as is. If the smaller type is signed, this may result in a negative value.

• Overflow and Underflow: Integer overflow and underflow happen when adding or

multiplying beyond the integer maximum value or dividing by -1 (overflow) or sub­

tracting below its minimal value (underflow). This will result in errors similar to

integer "conversion. It is also noteworthy to remember that unsigned integers obey

modular arithmetic rules in case of overflow, resulting in smaller values than ex­

pected, but that are still positive.

Those vulnerabilities can be solved using sound coding practices. The generalized

use of unsigned integers can simplify things for the programmer, and the addition of range

34

checking before sensitive operations can avoid unexpected results. Some compilers provide

built-in supports for the detection of integer issues, and it is possible to replace integer

operations with safer calls [73]. Table 3 summarizes the hardening solutions for the integer

security problems with respect to the aforementioned security hardening classification.

Hardening Level
Code

Software Process

Design
Operating Environment

Product/Method
Use of functions detecting integer overflow/un­
derflow, migration to unsigned integers, ensuring
integer data size in assignments/casts
Compiler option to convert arithmetic operation
to error condition-detecting functions
-
-

Table 3: Hardening for Integer Vulnerabilities

Memory Management

The C and C++ programming languages allow programmers to dynamically allocate mem­

ory for objects during program execution. C and C++ memory management is an enormous

source of safety and security problems. The programmer is in charge of pointer manage­

ment, buffer dimensions, allocation and deallocation of dynamic memory space. Thus,

memory management functions must be used with precaution in order to prevent memory

corruption, unauthorized access to memory space, buffer overflow, etc. The following are

the major errors caused by improper memory management in C and C++

• Using Uninitialized Memory: In C and C++ programming, the memory space pointed

to by newly declared pointer is not initialized, and it typically points to a random

location. The consequence of de-referencing these pointers include denial of service,

information disclosure, and memory corruption.

35

• Accessing Freed Memory: A pointer on which the f r e e function was called can still

be accessed. It is however possible that the memory range was allocated for another

use, and that this access will result of reading invalid data or corrupting data used by

another part of the process.

• Freeing Unallocated Memoiy: The f r e e function must be called on a memory lo­

cation previously allocated using the a l l o c family of functions. Otherwise, freeing

an unallocated memory location can cause memory corruption and denial of service.

This problem arises because the free call is performed with the uninitialized pointer,

either through programming error or a failed memory allocation.

• Memory Leaks: The dynamically allocated memory must be freed after usage and

before the pointer to its location goes out of scope. Failure to do so results in a

memory leak. Memory leaks degrade performance and can cause a program to run

out of memory and crash.

There are no known API or library solutions solving such problems as a whole. How­

ever, hardened memory managers can prevent multiple freeing vulnerabilities. Other than

that, only improvements in programming practices can be useful in hardening against such

problems. The following are some hints and best practices: Initialize each declared pointer

and make it point to a valid memory location, do not allow a process to de-reference or

operate on a freed pointer, and apply error checking on memory allocation calls. Table 4

summarizes the hardening solutions for the memory management security problems with

respect to the aforementioned security hardening classification.

36

Hardening Level
Code

Software Process

Design
Operating Environment

Product/Method
NULL assignment on freeing and initialization,
error handling on allocation
Using aspects to inject error handling and as­
signments, compiler option to force detection of
multiple-free errors
-
Use a hardened memory manager (e.g.
d m a l l o c , p h k m a l l o c)

Table 4: Hardening for Memory Management Vulnerabilities

File Management

The C and C++ programming language provides functions for creation, deletion and ma­

nipulation of files and directories. File management problems occur when an access to

or a modification of a restricted file happens. Some problems are closely related to race

conditions. File management errors can lead to many security vulnerabilities such as data

disclosure, data corruption, code injection and denial of service. The following are two

major sources of vulnerabilities in file management:

• Unsafe Temporary File: Many programs use temporary files, with default access

restrictions. If the access permissions are incorrectly set, it is possible for the tempo­

rary file to be used as an attack vector for the application or another system file [87].

Another contributing factor to this problem is the fact that the name of the temporary

file could be predictable.

• Improper File Creation Access Control Flags: A file is typically opened using the

process default file creation bit mask. This mask is typically inherited from the

launching process. An attacker could alter this mask to make the information ac­

cessible, whereas it should be protected.

37

Vulnerabilities related to unsafe temporary file creation can be minimized by using

secure library calls [87]. In some cases, we can redesign the application to use inter­

process communication instead of temporary files. File creation mask vulnerabilities, in

UNIX-like systems, can be resolved using proper file creation-related system calls and

specifying appropriate access rights. Table 5 summarizes the hardening solutions for the

file management security problems with respect to the aforementioned security hardening

classification.

Hardening Level
Code

Software Process
Design
Operating Environment

Product/Method
Use proper temporary file functions, default use
of restrictive file permissions, setting a restrictive
file creation mask
Set a wrapper changing file creation mask
Refactor to avoid temporary files
Restricting access rights to relevant directories

Table 5: Hardening for File Management Vulnerabilities

2.5.2 Literature Review

Currently, security solutions can be found in secure coding books [15,50], in program­

mer/reviewer checklists, and in the mind of many experts. The focus of this help is to allow

the creation of new programs that are designed, implemented and maintained for security,

but does not offer practical support on how to deal with legacy code and how to harden

security systematically into existing software. On the topic of secure programming of C

and C++ programs, developers are offered a good selection of useful and highly relevant

books and other materials.

One of the newest and most useful additions is from [73], which offers in-depth expla­

nations on the nature of all known low-level security vulnerabilities in C and C++ . Their

38

treatment of integer overflows is the best we found in the literature.

Another common reference is from Microsoft [50], and includes all the basic security

problems and solutions, as well as code fragments of functions allowing to safely imple­

ment certain operations (e.g., safe memory wiping). The authors also describe high-level

security issues, threat modeling, access control, etc.

Slides from Bishop, in addition to his landmark book [15,16], provide a comprehensive

view on information assurance, as well as security vulnerabilities in C notably on the topic

of environmental issues. In addition, he provides some hints and practices to solve some

existing security issues.

Wheeler [87] offers the widest-reaching book on system security available online. It

covers operating system security, safe temporary files, cryptography, multiple operating

platforms, spam, etc. We consider his solutions as the most relevant to the problem of

insecure temporary files.

The Secure Programming Cookbook for C and C++ [83] is a hands-on solution for

programmers looking for direct solutions to typically-encountered security problems. The

authors mention recipes for safe initialization, access control, input validation, cryptogra­

phy, networking, etc.

2.5.3 Evaluation

The field of secure programming offers many highly relevant, although sometimes repet­

itive, contributions that can drastically help programmers to write secure code. They are

also of help for developers who need to improve manually the security of existing systems.

39

As such, the secure programming references could be used as a primary resource for the

construction of security hardening solutions dealing with related low-level security issues.

On the other hand, this approach aims at educating programmers about the causes of

vulnerabilities in order to help remedying them. Its limitation is that the hardening solu­

tions are applied manually by developers and depends considerably on human decisions.

This means that the developers responsible for performing the hardening should have high

security expertise. Beside, due to the manual application of hardening, such approach can­

not prevent human errors and cannot be applied on large scale software (e.g., thousands or

even million(s) lines of code).

2.6 Conclusion

We presented in this chapter the major approaches in the literature that are relevant some­

how for integrating security into software, and hence constitute together a guide to build

on top of them and elaborate the intended systematic security hardening framework. First,

we went trough the security engineering using design patterns approach, explained its con­

cepts and components and explored that the principle of pattern is promising and should be

leveraged in order to clearly specify how security hardening is to be done. However, we

concluded that this approach misses the methodologies required for applying the security

solutions, which limits their usefulness by non experts in security. Beside, it addresses se­

curity during the design of new software. Second, we discussed the secure programming

techniques and provided an overview of the security vulnerabilities that they deal with.

This field offers many highly relevant contributions that can drastically help programmers

40

writing secure code. As such, the secure programming references should be used as a

primary resource for the construction of security hardening solutions dealing with related

lower-level security issues. However, we found also that secure programming practices

are applied manually by programmers and are too reliant on their sagacity and decisions,

which enquires high security expertise and limits their useability for systematic security

improvements. Regarding the use of AOP for integrating security into software, this ap­

proach offers strong potential for systematic security code injection, and hence it will be

discussed rigourously in the next chapter

41

Chapter 3

Towards Security Hardening Via

Aspect-Oriented Programming

3.1 Introduction

Software security hardening requires radical transformation of the original source code

such as changing what is available, augmenting it, and/or even removing it. In this context,

few initiatives have been introduced recently for code injection, via an aspect-oriented

computational style, into source code for the purpose of improving a security requirement

or remedying a vulnerability [20,31,52,74,78]. These approaches are based on the idea of

separating out the security concerns from the rest of the application, such that they can be

addressed independently and applied globally. However, the current corpus of research in

AOP-based security is still recent and falls short of a well-defined and organized systematic

solution usable for applying security hardening by developers non-expert in security. A

developer still needs to build the security solution and specify it into aspect(s).

42

On the other hand, AOP offers the facilities that allow to select and match some join

points in the code (e.g., function call, function declaration, class declaration, etc.), insert

code before and/or after the matched join points and replace the matched join points with

new code. This process of code matching and injection is called weaving. In this context,

AOP seems to be very a promising paradigm that provides features required to elaborate

our methodology, and hence we can build on top of it to achieve our intended framework

for systematic security hardening of software. A detailed discussion about AOP and its

usability and applicability for security hardening is provided in the this chapter.

The rest of the chapter is organized as follows. We first present in Section 3.2 the

existing AOP models, components, and languages. Then, we explore through practical

examples in Section 3.3 its relevance for software security hardening. Afterwards, we

provide in Section 3.4 the literature review related to this research domain. Finally, in

Section 3.5, we provide concluding remarks about what is covered in this chapter.

3.2 Aspect-Oriented Programming

AOP is a relatively new programming paradigm that provides a more advanced modular­

ization mechanism generally on top of the traditional object-oriented programming. It is

based on the idea that computer systems are better programmed by separately specifying

the various concerns, and then relying on underlying infrastructure to compose them to­

gether into a big program. The techniques in this paradigm were precisely introduced to

address the development problems that are inherent to crosscutting concerns. The foun­

dation of AOP is the principle of "Separation of Concerns", where issues that affect and

43

crosscut the application are addressed separately and encapsulated within aspects. Then,

these aspects are composed and merged with the core functionality modules into one single

application. This process of merging and composition is called weaving, and the tools that

perform such process are called weavers.

3.2.1 AOP Models

There are many AOP models, the most important ones are the following: Pointcut-Advice,

Multi-Dimensional Separation of Concerns and Adaptive Programming. Just to note that

some references consider only the Pointcut-Advice model as AOP, while the other two are

concepts similar to AOP [75].

Pointcut-Advice Model

The approach adopted by most of the AOP languages is called the Pointcut-Advice model.

The join points, pointcuts and advices constitute its main elements. To develop under this

paradigm, one must first determine what code needs to be injected into the application.

This code describes the behavior of the issues that affect and crosscut the application. Each

atomic unit of code to be injected is called an advice. Then, it is necessary to formulate

where to inject the advice into the program. This is done by the use of a pointcut expression,

whose matching criteria restricts the set of a program join points for which the advice will

be injected. A join point is an identifiable execution point in the application code and the

pointcut constitutes the constructor that designates a set of join points. The pointcut expres­

sions typically allow to match on function calls and executions, on the control flow ulterior

to a given join point, on the membership in a class, etc. At the heart of this model, is the

44

concept of an aspect, which embodies all these elements. Finally, the aspect is composed

and merged with the core functionality modules into one single program. This process of

merging and composition is called weaving, and the tools that perform such process are

called weavers. AspectJ [55] and AspectC++ [79] are instances of the languages that are

based on the pointcut-advice model.

Multi-Dimensional Separation of Concerns

The Multi-Dimensional Separation of Concerns (MDSOC) [64] approach provides devel­

opers with simultaneous separation of concerns in software according to multiple and ar­

bitrary dimensions of composition and decomposition. It treats all the concerns equally,

and this includes the program components and aspects. On the other hand, most AOP ap­

proaches do not support composition between program components or between aspects and

they only enable the aspects to be composed with components. In other words, the MDSOC

is a symmetric approach, as opposite to the pointcut-advice one where aspects are woven

in the original application. Hyper/J [80] is an instance of the languages that are based

on Hyperspaces, which is a particular approach of MDSOC. In Hyperspaces, the software

is modeled as a set of hyperslices, where each hyperslice is a set modules representing a

single concern.

Adaptive Programming

The idea of AOP has been used several years ago before the proposition of AOP with this

exact nomination. They have been proposed by Demeter group [43] in the Adaptive Pro­

gramming approach. The programming style rule for loose coupling between the structure

45

and behavior concerns is part of the demeter law. Following this rule in software devel­

opment results in a large number of small methods scattered throughout the program. To

avoid such problem, adaptive programming with traversal strategies has been proposed to

better support the loose coupling of concerns. The demeter methodology is defined in

three steps [63]: Derive a class graph that captures the structure of the application, derive

traversal methods by finding a traversal path for each program operation and derive visitor

methods by attaching specific behavior to certain classes that are visited.

3.2.2 AOP Languages

There are many AOP languages that have been proposed. These languages are used for

code implementation and are programming language dependent. We distinguish from them

AspectJ [55] built on top of the Java programming language, AspectC [27] built on top

of the C programming language, AspectC++ [79] built on top of the C++ programming

language, AspectC# [57] built on top of the C# programming language, and an AOP version

for Smalltalk [19]. AspectJ and AspectC++ are dominant propositions in the field of AOP.

Other related and special purpose languages have been also proposed. Tribe [26] offers

an approach based on virtual class families. The AWED language [62] was developed

for distributed applications and it also supports sequences. TOSCANA [37] is a toolkit

for kernel-level AOP programming. It allows to modify the memory kernel to perform

autonomic (i.e., self-managing) computing. Their language is quite simple, but is restricted

to C . The Arachne system [35], part of the OBASCO project is providing an interesting

aspect-oriented language for which the sequence of events is encoded in the aspect. Their

46

approach is C-centric and works on the in-memory binary process. Since AspectJ and

AspectC++ are quite similar, both are based on the pointcut-advice model and most of our

experiment aspects are coded in AspectC++ language, we will discuss only AspectC++.

The reader can also refer to [55] if needed to understand the examples implemented in

AspectJ.

3.2.3 AspectC++ Programming

AspectC++ defines an aspect-oriented extension to the C++ programming language based

on the pointcut-advice model. It also provides tool support for the modularization of cross-

cutting concerns. AspectC++ is similar to AspectJ, but, due to the natures of C++ and Java,

in some regards it is fundamentally different. For instance, the weaving in AspectC++ is

performed at the source code level, while in AspectJ it is applied at the bytecode level. In

the sequel, we only explain the concepts and elements of the AspectC++ language that are

important and needed for this thesis work. Detailed information on AspectC++ is available

in [3,79].

AspectC++ supports the separate programming of crosscutting concerns. One can de­

fine additional behavior to be integrated and woven into the code of the original application

using a special purpose tool, the AspectC++ weaver. The weaver must be provided with

all the relevant application and aspect files. The result of the weaving process is a new set

of source code files describing the weaved application. Figure 1 illustrates first the com­

pilation process alone, then the compilation and weaving processes together. Crosscutting

behaviors in AspectC++ are specified using aspects, which enclose all the other elements

47

Source Code

Compiler

Executable

Compilation

Source Code

Weaver

i i

; Aspect \

Compiler

Executable
New Source Code

Weaving + Compilation

Figure 1: AspectC++ Weaving

of the AspectC++ language. Aspects consist of advices that describe the behavior and

pointcuts that specify the join points in the application code where this behavior must be

weaved.

Join Point and Pointcut

As aforementioned in the pointcut-advice model, a join point is a location in the source

code of the application where the code of the additional behavior should be inserted. This

location could be static (e.g., function call) as well as dynamic (e.g., execution flows). In

other words, a join point is the selected place for the composition of different concerns.

Each join point can either refer to a function, an attribute, a type, a variable, or a point

from which a join point is accessed, so that this condition can be for instance the event of

reaching a designated code position. Matching a join point is mainly based on properties

such as function name, object type, etc.

48

A pointcut constitutes the constructor that designates a set of join points to determine on

which condition the aspect shall take effect. Depending on the kind of pointcuts, they are

evaluated at compile time or at runtime. AspectC++ provides a set of predefined pointcut

designators and functions that allows specifying the joint points to be matched in the code.

They can have arguments to select particular join points out of the set of all available join

points. Furthermore, pointcuts can be combined using logical operators. In the sequel, we

present the most important pointcut designators and their corresponding functionalities as

specified and presented in the AspectC++ language documentations [3]:

• call(pointcut): Returns all the join points where the entity (i.e., class or function)

specified in the pointcut is called. If the pointcut refers to a class, then all the calls to

its methods will be provided by the designator.

• execution(pointcut): Returns all the join points that refer to the implementation of

the entity (i.e., class or function) specified in the pointcut. If the pointcut refers to a

class, then all the implementation of its methods will be provided by the designator.

• base(pointcut): Returns all the base classes of the ones specified in the pointcut.

• derived(pointcut): Returns all the classes specified in the pointcut and all the ones

derived from them.

• cflow(pointcut): Returns all the join points that take place in the dynamic execution

context of the entity (i.e., class or function) specified in the pointcut. The current

AspectC++ language still has some restrictions with respect to the features that are

used in the argument of the cflow pointcut. The cflow designator does not support an

49

argument list containing context variable bindings or other pointcut designator that

needs to be evaluated at runtime like cflow itself.

• within(pointcut): Returns all the join points that are within the entity (i.e., class or

function) specified in the pointcut.

• construction(pointcut): Returns all the join points where an instance of the class

specified in the pointcut is constructed. This designator works even if there is no

constructor defined explicitly.

• destruction(pointcut): Returns all the join points where an instance of the class spec­

ified in the pointcut is destructed. This designator works although a destructor does

not need to be defined explicitly.

• thatftype pattern): Returns all the join points where the current this pointer refers to

an instance of a type matching the one described in the pattern.

• target(type pattern): Returns all the join points where the target object of a call is an

instance of a type matching the one described in the pattern.

• result (type pattern): Returns all the join points where the result object of a call/exe­

cution is an instance of a type matching the one described in the pattern.

• argsftype pattern,...): Returns all the join points where their argument type(s) is(are)

matching the one(s) described in the pattern(s).

• pointcut && pointcut: Returns all the join points resulting from the intersection of

the join points matched in both pointcuts.

50

• pointcut 11 pointcut: Returns all the join points resulting from the union of the join

points matched in both pointcuts.

• / pointcut: Returns all the join points resulting from exclusion of the join points

matched in the pointcut.

Advice and Join Point APIs

In AspectC++, an advice is used to describe the behavior that needs to be merged at the

matched join points specified in the pointcut. An advice is somehow similar to a function of

a class that contains the code statements describing a behavior. However, it also specifies

how these statements must be woven with respect to the join point (e.g., before the join

point). Advices are divided into two categories: advices for the join points matched in the

dynamic control flow of the running program (e.g., function call or execution), and advice

for static join points (e.g., introductions into classes). If the aspect has header files included,

in this case their code containing the advice definition is compiled prior to the affected join

point location in both advice categories. There are three advice constructs depending on

the place where the code needs to be added with respect to the matched join points:

• before(...): Integrates the advice code before the matched join points specified in the

pointcut.

• after(...): Integrates the advice code after the matched join points specified in the

pointcut.

• around(...)\ Integrates the advice code in place of the matched join points specified

in the pointcut.

51

Around advice can be considered as the combination of a before and an after advice,

with the option to not invoke the original behavior. In order for the weaver to know where

the behavior must be woven, an advice must always be accompanied by a pointcut. A point-

cut in this context might be a reference to a stand-alone pointcut, or it could be a nameless

pointcut, which only contains a pointcut body. Within the boundaries of an around advice,

AspectC++ provides a functionality (i.e., t j p - > p r o c e e d ()) that is used to invoke the

original behavior.

AspectC++ provides also the JointPoint API to be used within the advice code body.

The functions of this API are called through the built-in object tjp of the class JoinPoint.

The JoinPoint API functions allow to manipulate the information related to the matched

join points inside the code. For instance, the user can call a function that gets the pointer

to the memory position holding the first argument in order to use it in the code of the

advice body. In the sequel, we present the JoinPoint API functions and their corresponding

functionalities as specified and presented in the AspectC++ language documentations [3]:

• static AC: .Type type(): Returns the encoded C++ type of a matched join point.

• static int args(): Returns the number of arguments of a function join point matched

by a call or execution designator.

• static AC .Type argtypeftnt number): Returns the encoded C++ type of the argument

of a function join point matched by a call or execution pointcut designator.

• static const char *signature(): Returns the textual description of a matched join point

(e.g., function name, class name).

52

• static unsigned int id(): Returns the numeric identifier of a matched join point.

• static ACr.Type resulttype(): Returns the encoded C++ type of the result of a function

join point matched by the call or execution pointcut designator.

• static AC::JPTypejptypeQ: Returns a unique identifier describing the type of the join

point matched by the call or execution pointcut designator.

• void *arg(int number): Returns a pointer to the memory position holding the ar­

gument value with index number of a function join point matched by the call or

execution pointcut designator.

• Result *result(): Returns a pointer to the memory location designated for the result

value of a function join point matched by the call or execution pointcut designator or

returns 0 if the function has no result value.

• That *that(): Returns a pointer to the object initiating a function call or returns 0 if

the called function is static or global.

• Target *target(): Returns a pointer to the object that is the target of a function call or

returns 0 if the called function is static or global.

• voidproceedQ: Integrates the original code of a matched join point code and is only

used in an around advice.

• ACr.Action &action(): Returns the runtime action object that encloses the execution

environment to execute the original code encapsulated by an around advice.

53

i advice P : before () {
[codel;
[code2;
;}•

[advice P: after () {
i code3;
] code4;

!>

Aspect

|f0;

codel;
code2;
f();
code3;
code4;

Original Code

Weaved Code

Figure 2: Aspect Structure / Matching and Weaving

Aspect

An aspect in AspectC++ is composed of zero, one, or more pointcuts and advices. In ad­

dition to this, we can use within an aspect, more specifically within the advice body, all

the types and functionalities provided by the C and C++ libraries by including the required

header files as in a standard C and C++ program. We can also add our own libraries by

implementing them inside the aspect or including them as header files. Figure 2 describes

the structure of an aspect and illustrates the matching and weaving mechanisms. The pre­

sented example shows a pointcut P matching the calls to a function f () and two advices

to insert code before and after P respectively.

54

3.3 Appropriateness of AOP for Injecting Security Con­

cerns

Adding security functionalities and remedying vulnerabilities into software requires a tech­

nology that enables selecting particular point(s) into a program, matching them into the

original source code and allowing radical transformation over classes, functions, variables,

statements, etc. Few contributions explored that AOP provides such kind of features and

allows integrating security concerns into software [20,31,52,74,88]. They showed how

AOP can be used to specify separately several security functionalities and then weave them

with the needed components of the original programs (as illustrated in Figure 3). In the

sequel, we explore through examples the appropriateness and applicability of AOP for se­

curity hardening by presenting and describing Aspect! and AspectC++ solutions for few

security and safety issues.

3.3.1 Adding Identification and Authentication Using JAAS

We present in the following an example for adding identification and authentication to a

bank client application. This solution has been presented in detail in [78] and its referenced

citing. The corresponding bank client application is presented in Listing 3.1.

The JAAS library [5] is used for authentication. The security manager should be ini­

tialized in order to authenticate the client application before its creation (i.e., configure a

login module, create an instance of L o g i n C o n t e x t and l o g i n) . Listing 3.2 illustrates

55

Source Code Security Solutions

•77 Developer "77 Security Expert

AOP

Secure Source Code

Figure 3: Separation of Security Concerns

class BankClient {

public static void main(String[] args) {
// ...
BankHome homeBank = (BankHome) ctx.lookup("ejb/Bank");
Bank bank = homeBank. create () ,-

System.out.println(bank.getAccountlnfo("bill"));
// ...

}

}

Listing 3.1: Bank Client

56

an Aspect! solutions describing these steps. The pointcut p o i n t c u t m a i n E x e c u -

t i o n () : e x e c u t i o n (p u b l i c s t a t i c v o i d main (. .)) ; matches

inside the function main. The first b e f o r e advice adds the code needed to authenticate

the client of bank component at the beginning of ma in (i.e., before creating the applica­

tion), while the second a f t e r advice add the code needed to log out at the end of m a i n

(i.e., after executing the application).

aspect BankAspect {

LoginContext lc = null;

pointcut mainExecution() : execution (public static void main(..)) ;

// Login before execution of main()
before(): mainExecution() {
AppCallbackHandler handler = new AppCallbackHandler("scott", "echoman

") ;
try {
lc = new LoginContext("Bank", handler);
lc. login();

} catch(LoginException e) {
// ...

}
}

// Logout after execution of main()
after() returning: mainExecution() {
try {
lc.logout();
} catch(LoginException e) {
// ...
}

}

J
Listing 3.2: Aspect for Identification and Authentication

Weaving the application in Listing 3.1 with the aspect in Listing 3.2 using Aspect!

compiler produces a class file with same functionalities as the application presented in

Listing 3.3. The code of authentication and identification mechanisms has been added

57

before and after the creation and execution of the bank application.

class BankClient {

LoginContext lc = null;
public static void main(String[]

{
// Callback to get username and

args)

password. Required by
AppCallbackHandler handler = new AppCallbackHandler(

1 i

try {
lc = new LoginContext("Bank"
lc.login ();

} catch(LoginException e) {
// ...

}

// ...
//Start Original Code
BankHome homeBank = (BankHome)
Bank bank = homeBank.create();

, handler)

ctx.lookup

System.out.println(bank.getAccountInfo('
//End Original Code
// ...

try {
lc.logout();

} catch(LoginException e) {
// ...

}
}

}

i

"ejb/Bank"

bill"));

LoginContext
'scott",

);

"echoman

Listing 3.3: Weaved Bank Client

3.3.2 Detecting SQL Injection

SQL injection attack consists of embedding malicious SQL commands into the parameters

of a query sent by a web application to a database [48]. This malicious query results

in an attack that can corrupt, destroy and/or disclose the database contents. The most

popular techniques used for SQL injection are tautology, union, additional declaration and

comments. In the following, we present an Aspect! solution for detecting SQL injection.

58

This solution has been described in detail in [48] and used with the Tomcat application

server and the MySQL database manager. The corresponding aspect, which needs to be

weaved with the server application (i.e., Tomcat), is illustrated in Listing 3.4.

aspect SQLInject ionAspect {

pointcut d b W r i t e (S t r i n g q u e r y) :
(c a l l (* j a v a . s q l . S t a t e m e n t . a d d B a t c h (S t r i n g))
| | cal l (* j a v a . s q l . S t a t e m e n t . e x e c u t e (S t r i n g))
| | c a l l (* j a v a . s q l . S t a t e m e n t . e x e c u t e Q u e r y (S t r i n g))
| | c a l l (* j a v a . s q l . S t a t e m e n t . e x e c u t e U p d a t e (S t r i n g)))
&& a r g s (q u e r y) ;

pointcut getParameter():
call(String javax.servlet.http.HttpServletRequest.getParameter(String)

);

Object around(String query): dbWrite(query){
Object ret = validator.Validator().validateQuery(proceed());
return ret;

}

String around (): getParameter(){

return new validator.Validator().validate(proceed());

}

J
Listing 3.4: Aspect for Detecting SQL Injection Aspect

The pointcut p o i n t c u t g e t P a r a m e t e r () allows intercepting all the calls to the

HTTP requests parameters. These requests are preceded by a validation described in the

advice corresponding to this pointcut. Another validation is also applied on the database

queries. The pointcut p o i n t c u t dbWrite (S t r i n g query) allows, intercepting the

data base queries that have a query as parameter. The validation mechanism is described

in the advice corresponding to this pointcut. The validation consists of verifying that the

parameter or query is not malicious. More detail information and scenarios about SQL

injection and detection can be found in [48].

59

http://http.HttpServletRequest.getParameter(String

3.3.3 Securing Connection Using GnuTLS/SSL

Securing channels between two communicating parties constitutes an approach to avoid

eavesdropping, tampering with the transmission, or session hijacking. In the following,

we present a solution that we have elaborated as part of a case study for securing the

connection of client applications using GnuTLS/SSL library [4]. More detailed information

about the complete solutions can be found in Chapter 4. The client application, which is

presented in Listing 3.5, is implemented in C and C++ and allows to connect and exchange

HTTP request and data with a web server. To ensure the flexibility and correctness of our

hardening solution and cover as much as possible the implementation scenarios used in

the current client applications, we implemented this program multiple times, with different

internal structures.

Listing 3.6 illustrates excerpt of an aspect developed using AspectC++ to secure the

connections and data transmission for the client application presented in Listing 3.5, For

detailed information, a complete aspect for securing the connections of client applications

using GNUTLS/SSL, but with different target functions, is presented in Listings 4.14 and

4.15 of Chapter 4. The first advice-pointcut matches the call to the content of the function

main to initialize the GnuTLS API at the beginning and de-initialize it at the end. The

second advice-pointcut intercepts all the calls to the function c o n n e c t , initializes the TLS

session before and adds the TLS handshake after. The third advice-pointcut intercepts all

the calls to the function s e n d and replaces each one by the function from TLS g n u t l s _ -

r e c o r d _ s e n d . Similarly, the fourth advice-pointcut intercepts all the call to the function

r e c v and replaces each one by the function from TLS g n u t l s _ r e c o r d _ r e c v . The

60

#define MAX_MSG 100
const char * HTTPreguest = "GET / HTTP/1.l\nHost:

n\n" ;

int dosend(int sd){
int re;
re = send(sd, HTTPrequest, strlen(HTTPrequest)
return re;

}

int doreceive(int sd, char * buffer, unsigned int
int re;
re = recv(sd, buffer, bufSize, 0);
return re;

}

int main (int argc, char *argv[]) {
int sd, rc;
int server port = 443;
struct sockaddr in localAddr, servAddr;
struct hostent *h;
const char * server = "www.encs.concordia.ca";
char buf[MAX_MSG];

/*get host via DNS*/

/•create socket data structure*/

/* create socket */

/* connect to server */
re = connect(sd, (struct sockaddr *) kservAddr,

/* Sending*/
re = dosend(sd);

/* Receiving
re = doreceive(sd, buf, MAX MSG);

/* Shutdown */
close(sd);

return 0;

}

www.encs.concordia

+ 1, 0) ;

bufSize){

sizeof (servAddr)) ,-

ca\

Listing 3.5: Http Client

61

http://www.encs.concordia.ca
http://www.encs.concordia

reader will notice also the appearance of h a r d e n i n g _ s o c k i n f o_ t These are

the data structure and functions that we developed to distinguish between secure and non

secure channels and export parameters between the application components at runtime.

Weaving the application in Listing 3.5 with the aspect in Listing 3.6 using AspectC++

compiler produces the application presented in Listings 3.7 and 3.8. The resulting applica­

tion supports https requests and data transmission through secure channels.

3.3.4 Remedying Buffer Overflow Vulnerabilities

Buffer overflow attacks exploit flaws that arise mostly from weak or non-existent bounds

checking of input being stored in memory buffers. Attacks that exploit these vulnerabilities

are considered as one of the most dangerous security threats since it can compromise the

integrity, confidentiality and availability of the target system. We present in Listing 3.9 an

aspect developed using AspectC++ as part of a complete case study applied on several soft­

ware and presented in Chapter 4. This solution addresses and remedies three vulnerabilities

exploited by buffer overflow. The three advices-pointcuts illustrated in Listing 3.9 match

respectively all the calls to the functions s p r i n t f , g e t s , and s t r c a t and replace

them by their corresponding secure ones s n p r i n t f , f g e t s , and s t r n c a t . Many

safety vulnerabilities can be remedied in similar ways.

62

a s p e c t S e c u r e C o n n e c t i o n {
a d v i c e e x e c u t i o n ("% m a i n (. . .) ") : around () {

/ • I n i t i a l i z a t i o n of t h e API*/

tjp - > p r o c e e d () ;
/ * D e - i n i t i a l i z a t i o n of t h e API*/

* t j p - > r e s u l t () = 0 ;

}

advice call("% connect (...)") : around () {
//variables declared
hardening_sockinfo_t socketlnfo;
const int cert_type_priority[3] = { GNUTLS_CRT_X5 09,

GNUTLS_CRT_OPENPGP, 0} ;

//initialize TLS session info
gnutls_init (ksocketlnfo.session, GNUTLS_CLIENT);

/ /Connec t
tjp - > p r o c e e d () ;
i f (* t j p - > r e s u l t () < 0) { r e t u r n ; }

//Save the needed parameters and the information that distinguishes
between secure and non-secure channels

socketlnfo.isSecure = true;
socketlnfo.socketDescriptor = *(int*)tjp->arg (0);
hardening_storeSocketInfo (* (int *) tjp - >arg (0) , socketlnfo) ,-

//TLS handshake
gnutls_transport_set_ptr (socketlnfo.session, (gnutls_transport_ptr)

(* (int*) tjp->arg(0))) ;
*tjp ->result() = gnutls_handshake (socketlnfo.session);

}

//replacing send() by gnutls_record_send() on a secured socket
advice call("% send(...)") : around () {
//Retrieve the needed parameters and the information that

distinguishes between secure and non-secure channels
hardening_sockinfo_t socketlnfo;
socketlnfo = hardening_getSocketInfo(* (int *)tjp->arg (0)) ;

//Check if the channel, on which the send function operates, is
secured or not

if (socketlnfo.isSecure)
*(tjp->result()) = gnutls_record_send(socketlnfo.session, *(char**)

tjp->arg(l) , *(int *) tjp->arg (2)) ;
else

tjp ->proceed () ,-

}
//Same as the last advice for replacing recv() by gnutls_record_recv()

h
Listing 3.6: Excerpt of Aspect for Securing Connections

63

#define MAX_MSG 100
const char * HTTPreque.st = "GET / HTTP/1.1 \nHost: www.encs.concordia.ca

\n\n";

int dosend(int sd){
int re;

hardening_sockinfo_t socketlnfo;
socketlnfo = hardening_getSocketInf o (sd) ,-
if (socketlnfo.isSecure)
re = gnutls_record_send(socketlnfo.session, HTTPrequest, strlen(

HTTPreguest) + 1);
else
re = send(sd, HTTPreguest, strlen(HTTPrequest) + 1, 0);

return re;

}

int doreceive(int sd, char * buffer, unsigned int. bufSize){
int re ,-

hardening_sockinfo_t socketlnfo;
socketlnfo = hardening_getSocketInfo (sd) ,-
if (socketlnfo.isSecure)
re = gnutls_record_recv(socketlnfo.session, buffer, bufSize);

else
re = recv(sd, buffer, bufSize, 0) ;

return re;

}

int main (int argc, char *argv[]) {
int sd, re;
int server_port•= 443;
struct sockaddr_in localAddr, servAddr;
struct hostent *h;
const char * server = "www.encs.concordia.ca";
char buf[MAX_MSG];

/•Initialization of the API*/

Listing 3.7: Weaved Http Client (Part 1)

64

file:///nHost
http://www.encs.concordia.ca
http://www.encs.concordia.ca

/*get host via DNS*/

/•create socket data structure*/

/* create socket */

hardening_sockinfo_t socketInfo;
const int cert_type_priority[3] = { GNUTLS_CRT_X509,

GNUTLS_CRT_OPENPGP, 0};
gnutls_init (ksocketlnfo.session, GNUTLS_CLIENT);

/* connect to server */
re = connect(sd, (struct sockaddr *) kservAddr, sizeof(servAddr));

socketlnfo.isSecure = true;
socketlnfo.socketDescriptor = sd; // socket is a variable matched by

sd
hardening_storeSocketInf o (sd, socketlnfo) ,-
gnutls_transport_set_ptr (socketlnfo.session, (gnutls_transport_ptr)

sd); // socket is a variable matched by sd
re = gnutls_handshake (socketlnfo.session);

/* Sending*/
re = dosend(sd);

/* Receiving
re = doreceive (sd, buf, MAX_MSG) ,-

/* Shutdown */
close(sd);

/*De-initialization of the API*/

r e t u r n 0;
}

Listing 3.8: Weaved Http Client (Part 2)

65

aspect SafetyVul {

advice call("% sprintf(..
snprintf((*(char **)tjp

(*(char **)tjp->arg

}

advice call("% gets(...)'
if (fgets (((char *)tjp-

) == NULL) {

.)") : around () {
->arg(0)), strlen((
(1)), (*(char **)tjp

) around () {

k (cha
->arg

>arg(0)), strlen(((char

printf("diagnosed undefined behavior.\n"

}

advice call("% strcat(.. .
strncat ((* (char **)tjp-

)") : around () {

;

>arg(0)), (*(char **) tjp
char **) tjp->arg(0)))-strlen((*(char **

}

};

)*JP-

r * +)tjp ->arg(0)))+1,
(2)));

*)tjp ->arg(0)))-3,stdin

->arg(l))
>arg(l)))

strlen((*(

-1);

Listing 3.9: Aspect for Remedying some Safety Vulnerabilities

3.4 Aspect-Oriented Approaches for Improving Security

The research contributions in this domain are proposed as languages targeting security

and/or case studies that explore the usefulness of AOP for developing and injecting secu­

rity concerns into code. These propositions are useful initiatives towards separating the

security code from the rest of the application code and systemizing their merging process.

However, they target particular security vulnerabilities or requirements and show their cor­

responding AOP solutions (mostly in AspectJ). Besides, none of them proposed a global

methodology for performing security hardening systematically by developers non-experts

in the security solution applied. A developer still needs to build the security solution and

specify it into aspect(s). The later statement remains true for all the current approaches,

which we overview in the following.

Cigital labs proposed an AOP language called CSAW [74-76, 82], which is a small

66

superset of C programming language. Their work is mostly dedicated to improve the se­

curity of C programs. They presented typical aspects that defend against specific types of

attacks and address local problems such as buffer overflow and data logging. These as­

pects were divided in the low-level and high-level categories. The low-level aspects target

the problems of exploiting the environmental variables such as attacks against s e t u i d

programs, the problems of format strings and variable verification that cause the buffer

overflow attacks. Their high level aspects address the problems of event ordering, signal

race condition, and type safety. This language is limited to C programming language and

addresses priory defined set of related security vulnerabilities.

De Win et al. discussed two aspect oriented approaches and explored their use in in­

tegrating security aspects within applications [31-33,81]. In their first approach, the in­

terception, they explored the need to secure all the interactions with the applications that

cannot be trusted and they provided additional security measures for sensitive interactions.

They used a coarse-grained alternative mechanism for interception that consists of putting

an interceptor at the border of the application, where interactions are checked and approved.

Their proposition is achieved by changing the software that is responsible for the external

communication of the applications. Their second approach, the weaving-based Aspect-

Oriented Software Development (AOSD), is based on a weaving process that takes two or

more separate views of an application and merge them together into a single artifact as if

they are developed together. They used in this approach the advice and join points con­

cepts to specify the behavior code to be merged in the application and the location where

this code should be injected. To validate their approach, they developed some aspects using

Aspect! to enforce access control and modularize the audit and access control features of

67

an FTP server. This proposition is limited on exploring the usability of using AspectJ to

implement access control concerns and integrate them into Java applications.

In [20], Ron Bodkin surveyed the security requirements for enterprize applications and

described examples of security crosscutting concerns. His main focus was on authentica­

tion and authorization. He discussed use cases and scenarios for these two security issues

and he explored how their security rules could be implemented using AspectJ. He also

outlined several of the problems and opportunities in applying aspects to secure web ap­

plications that are written in Java. This proposition is limited on exploring the usability of

using AspectJ to implement authentication and authorization concerns and integrate them

into Java applications.

Another contribution in AOP security is the Java Security Aspect Library (JSAL), in

which Huang et al. [52] introduced and implemented, in AspectJ, a reusable and generic

aspect library that provides security functions. It is based on the Java Security packages

JCE and JAAS. To make their aspects reusable, they left to the programmer the responsi­

bility to specify and implement the pointcuts. This approach is a useful first step, however

it still requires the developer to be a security expert who knows exactly where each piece

of code should be injected. Moreover, its claimed goal is to prove the feasibility of reusing

and integrating pre-built aspects.

Shlowikowski and Ziekinski discussed in [78] some security solutions based on J2EE

and JBoss application server, Java Authentication and Authorization service API (JAAS)

and Resource Access Decision Facility (RAD). These solutions are implemented in As­

pect!. They explored in their paper how the code of the aforementioned security technolo­

gies could be injected and weaved in the original application. This proposition is limited on

68

exploring the usability of using AspectJ to implement some security concerns and integrate

them into Java applications.

In [48], Hermosillo et al. proposed a security aspect called AProSec for detecting

SQL injection and Cross Scripting Site (XSS). AProSec has been developed with AspectJ

and JBoss to be weaved with web server applications. This aspect allows to intercept on

the server side the HTTP requests parameters and the data base queries and pass them to a

validation process depending on the options that the administrator selects in a configuration

file. This proposition is limited on exploring the usability of using AspectJ to detect SQL

injection into Java applications.

3.5 Conclusion

This chapter constitutes an introduction to our main approach for systematic security hard­

ening. We described AOP in detail and explored through practical examples its usability for

injecting security concerns into software. We have concluded that AOP is a very promising

paradigm that provides the required features and offers strong potential for systematically

injecting security code into software. However, the current corpus of research in AOP-

based security is still recent and falls short of a well-defined and organized solution usable

for applying security hardening systematically by non-experts. A developer needs to build

the security solution and specify it into aspect(s), which still requires high security exper­

tise. Hence, adopting the AOP concept and benefiting from the advantages of the other

approaches presented in Chapter 2 constitute a base to build on top of it and elaborate the

intended framework for the systematic security hardening of software.

69

Chapter 4

Aspect-Oriented and Pattern-Based

Approach for Security Hardening

4.1 Introduction

Software security hardening is becoming a very challenging and interesting domain of

research. Very few concepts and approaches emerged in the literature to help and guide

developers to integrate security into software (e.g., security patterns, secure coding, etc.).

However, security hardening is a difficult and critical procedure. Applying it manually

requires high security expertise and lot of time to be tackled. Other vulnerabilities may

also be created. Moreover, there is a problem resulting from the difficulty in finding the

software engineers and developers who are specialized in both the security solution domain

and the software functionality domain. In fact, this is an open problem raised by several

IT managers (e.g., Bell Security Labs, Ericsson Research Labs). As such, any attempt to

address security concerns must take into consideration the aforementioned problems. In

70

this context, the main intent of this research is to create methods and solutions to integrate

systematically and consistently security models and components into software.

One way of achieving these objectives is by separating out the security concerns from

the rest of the application, such that they can be addressed independently and applied

globally. More recently, several proposals have been advanced for code injection, via an

aspect-oriented computational style, into source code for the purpose of improving its secu­

rity [20,31,52,74]. AOP is an appealing approach that allows the separation of crosscutting

concerns. This paradigm seems to be very promising to integrate security into software.

Our approach is based on AOP and inspired by the relevant methods and methodolo­

gies available in the literature, in addition to elaborating valuable techniques that permit

us to provide a framework for systematic security hardening. The main components of

our approach are the security hardening plans and patterns that provide an abstraction over

the actions required to improve the security of a program. They should be specified and

developed using an abstract, programming language independent and aspect-oriented (AO)

based language. The current AO languages, however, lack many features needed for sys­

tematic security hardening. They are programming language dependent and could not be

used to write and specify such high level plans and patterns, from which the need to elab­

orate a language built on top of them to provide the missing features. In this context, we

propose a language called SHL (Security Hardening Language) for security hardening plans

and patterns specification. It allows the developer to specify high level security hardening

plans that leverage priori defined security hardening patterns. These patterns, which are

also developed using SHL, describe the steps and actions required for hardening, including

detailed information on how and where to inject the security code.

71

This chapter provides the core approach, components, language, compiler and imple­

mentation of the elaborated framework for the systematic security hardening of software.

It also presents the case studies and experimental results that explore the usability and rele­

vance of the proposed approach and framework. The remainder of this chapter is organized

as follows. In Section 4.2, we provide an overview of the approach for systematic security

hardening. Afterwards, we describe the framework components, i.e., the security harden­

ing plans, patterns and language {SHL), in Sections 4.3, 4.4 and 4.5 respectively. We also

present in Section 4.5 the grammar, structure and informal semantics of SHL. Then, we

provide the SHL compilation phases and the framework implementation methodology in

Section 4.6. After that, in Section 4.7, we illustrate the usability of the security hardening

framework into case studies for different security issues and problems. Finally, we offer

concluding remarks in Section 4.8.

4.2 Approach

This section illustrates a summary of our whole approach for systematic security hardening

and also explores the need and usefulness of SHL to achieve our objectives. We elaborated

an approach based on aspect orientation to perform security hardening in a systematic way.

The approach architecture is illustrated in Figure 4.

Each component participates by playing a role and/or providing functionalities in order

to have a complete security hardening process. The developer is the person responsible of

writing plans by deriving them from the security requirements. These plans contains the

abstract actions required for security hardening and uses the security hardening patterns that

72

Figure 4: Framework Architecture

are developed by security experts and provided in a catalog. The security APIs constitute

the building blocks used by the patterns to achieve the desired solutions. The SHL language

is used to define and specify the security hardening plans and patterns.

The primary objective of this approach is to allow the developers to perform security

hardening of open source software by applying well-defined solutions and without the need

to have expertise in the security solution domain. At the same time, the security hardening

is applied in an organized and systematic way. This is done by providing an abstraction

over the actions required to improve the security of the program and adopting AOP to build

and develop the solutions. The developers are able to specify the hardening plans that

use and instantiate the security hardening patterns using the proposed language SHL. The

combination of hardening plans and patterns constitutes the concrete security hardening

73

solutions.

The abstraction of the hardening plans is bridged by concrete steps defined in the hard­

ening patterns using also SHL. This dedicated language, together with a well-defined tem­

plate that instantiates the patterns with the plan given parameters, allow to specify the pre­

cise steps to be performed for security hardening, taking into consideration technological

issues such as platforms, libraries and languages. We built SHL on top of the current AOP

languages.

Once the security hardening solutions are built, the refinement of the solutions into as­

pects or low level code can be performed using a tool or by programmers that do not need

to have security expertise. Afterwards, the framework compiler can be used to build and

run the corresponding hardening plan and pattern and execute the appropriate AOP weaver

(e.g., AspectJ, AspectC++) to harden the aspects into the original source code. As a result,

the approach constitutes a bridge that allows the security experts to provide the best solu­

tions to particular security problems with all the details on how and where to apply them,

and allows the software engineers to use these solutions to harden open source software by

specifying and developing high level security hardening plans. We illustrated the feasibility

of the whole approach by elaborating several security hardening solutions that are dealing

with security requirements such as securing connections, adding authorization, encrypting

some information in the memory and remedying low level security vulnerabilities.

74

4.3 Security Hardening Plans

A security assessment brings any decision-maker to perform a risk analysis, which will

finally determine the security requirements. A given set of security requirements may be

implemented through different combinations of mechanisms and software improvements.

As such, a software developer must select the combination of solutions deemed optimal

for specific program to harden. This decision is written in a security hardening plan, ef­

fectively translating such requirements into a specification of software modifications. The

plans are written as a list of parameterized patterns with a Where clause, which indicates

where in the software the pattern is to be applied. Each pattern is responsible to document

the parameters it requires and supports. The developer is able to write the different hard­

ening plans that are required for each part of the software. Example of a hardening plan is

presented in Listing 4.10.

4.4 Security Hardening Patterns

We define security hardening patterns as well-defined solutions to known security prob­

lems, together with detailed information on how and where to inject each component of

the solution into the application. Security hardening patterns specify the steps and actions

needed to harden systematically security into the code. A security hardening pattern may

also contain additional information illustrated into a template similar to the one used for

security design patterns (Please see Chapter 2 for more information). This additional infor­

mation allows the user to understand the solution provided by the pattern, its applicability,

75

advantages, limitations, etc. Example of a hardening pattern is presented in Listings 4.11

and 4.12.

4.5 Security Hardening Language SHL

The elaborated language, SHL, allows the description and specification of security harden­

ing patterns and plans that are used to systematically harden the security of code. It is a

minimalist language built on top of the current AOP technologies that are based on advice-

pointcut model. It can also be used in conjunction with them since the solutions elaborated

in SHL can be refined into a selected AOP language (e.g., AspectC++) as illustrated in Sec­

tion 4.7. We developed part of SHL with notations and expressions close to those of the

current AOP languages, but with all the abstraction needed to specify the security hardening

plans and patterns. These notations and expressions are programming language indepen­

dent and without referring to low-level implementation details. The following are the main

features provided by SHL:

• Automatic code manipulation such as code addition, substitution, deletion, etc.

• Specification of particular code join points where security code would be injected.

• Modification of the code after the development life cycle since we are dealing with

already existing open source software.

• Modification of the code in an organized and systematic way.

• Description and specification of security hardening.

76

• Description and specification of reusable security hardening patterns and plans.

• Instantiation of the security hardening patterns through the security hardening plans.

• Independency of programming language.

• High expressiveness and facility to use by non-security experts.

• Intermediary abstractness between English and programming languages.

• Ease translation to available AOP languages (e.g. Aspect! and AspectC++).

4.5.1 Grammar

In this section, we present the syntactic constructs of SHL and their informal semantics.

Figure 5 illustrates the BNF grammar of SHL. The language that we arrived at can be used

for both plans and patterns specification, with a specific template structure for each of them.

Examples of using SHL for specifying security hardening plans and patterns are presented

in Section 4.7.

Hardening Plan Structure A hardening plan always starts with the keyword P l a n , fol­

lowed by the plan name and then the plan code that starts and ends respectively by the

keywords B e g i n P l a n and EndPlan . Regarding the plan code, it consists of one or

many pattern instantiations that allow to specify the name of the pattern and its parameters,

in addition to the location where it should be applied. Each pattern instantiation starts with

77

Start :

SHPlan

PlanName :
SHPlanCode :

Pattern Instantiation :

PatternName :
Pattern Parameter :
Parameter_Name :
Parameter Value :
Collection :
Module identification :

SHPattern :

MatchingCriteria :
SH Pattern Body :

Location Behavior

Behavior Insertion Point :

1
1

Location :
Location Identifier :

1
1
1
1
1
1

Boolean Location :

1
1

Signature :
Primitive :

1
Arguments :
BehaviorCode :

:= SHPlan
SHPattern

:= P l a n PlanName
SHPlanCode

:= Identifier
:= B e g i n P l a n

Pattern Instantiation *
E n d P l a n

:= P a t t e r n N a m e PatternName
(P a r a m e t e r s Pattern Parameter*)!
Where Module Identification^

:= Identifier
:= Parameter Name = Parameter Value
:= Identifier
:= Identifier | Integer \ Collection
:= { (Identifier \ Integer) (, Identifier \ Integer) *}
:= Identifier

:= Pa 1 1 e r n PatternName
Matching Criteria?
SH Pattern Body

:= P a r a m e t e r s Pattern Parameter+
:= B e g i n P a t t e r n

Location Behavior *
E n d P a t t e r n

:= Behavior Insertion_Point Location
Primitive*?
Behavior Code

:= B e f o r e
A f t e r
R e p l a c e

:= Location Identifier \ Boolean Location
:= F u n c t i o n C a l l <Signature> {Arguments) ?

F u n c t i o n E x e c u t i o n <Signature> (Arguments) ?
W i t h i n F u n c t i o n <Signature> (Arguments) ?
CFlow < L o c a t i o n I d e n t i f i e r >
GAFlow < L o c a t i o n I d e n t i f i e r >
GDFlow < L o c a t i o n I d e n t i f i e r >

:= Location and Location
Location o r Location
n o t Location

:= Identifier
:= E x p o r t P a r a m e t e r < I d e n t i f i e r >

I m p o r t P a r a m e t e r < I d e n t i f i e r >

= (Star_OrJdentifier(, StarOrldentifier)*)
= B e g i n B e h a v i o r

Code Statement
E n d B e h a v i o r

Figure 5: SHL Grammar

78

the keyword P a t t e r n N a m e followed by a name, then the keyword P a r a m e t e r s fol­

lowed by a list of parameters and finally by the keyword Where followed by the module

name where the pattern should be applied (e.g., file name).

Hardening Pattern Structure A hardening pattern starts with the keyword P a t t e r n ,

followed by the pattern name, then the keyword P a r a m e t e r s followed by the matching

criteria and finally the pattern code that starts and ends respectively by the keywords Be -

g i n P a t t e r n and E n d P a t t e r n . The matching criteria are composed of one or many

parameters that could help in distinguishing the patterns with similar name and allow the

pattern instantiation. The pattern code is based on AOP and consists of one or many Lo -

c a t i o n _ B e h a v i o r constructs. Each one of them constitutes the location and the inser­

tion point where the behavior code should be injected, the optional primitives that may be

needed in applying the solution and the behavior code itself. A detailed explanation of the

components of the pattern code will be illustrated in Section 4.5.2.

4.5.2 Informal Semantics

In this Section, we present the informal semantics of the important syntactic constructs in

SHL language.

Patternlnstantiation Specifies the name of the pattern that should be used in the plan

and all the parameters needed for the pattern. The name and parameters are used as match­

ing criteria to identify the selected pattern. The module where the pattern should be applied

79

is also specified in the P a t t e r n _ I n s t a n t i a t i o n . This module can be the whole ap­

plication, file name, function name, etc.

MatchingCriteria Is a list of parameters added to the name of the pattern in order to

identify the pattern. These parameters may also be needed for the solutions specified into

the pattern.

LocationBehavior Is based on the advice-pointcut model of AOP. It is the abstract rep­

resentation of an advice-pointcut combination in an aspect. A pattern may include one or

many L o c a t i o n _ B e h a v i o r . Each L o c a t i o n _ B e h a v i o r is composed of the Be-

h a v i o r _ I n s e r t i o n _ P o i n t , L o c a t i o n , one or many P r i m i t i v e and B e h a v -

i o r _ C o d e .

BehaviorlnsertionPoint Specifies the point of code insertion after identifying the lo­

cation. The B e h a v i o r _ I n s e r t i o n _ P o i n t can have the following three values: Be­

f o r e , A f t e r or R e p l a c e . The R e p l a c e means remove the code at the identified

location and replace it with the new code, while the B e f o r e or A f t e r means keep the

old code at the identified location and insert the new code before or after it respectively.

Locationldentifier Identifies the joint point or series of joint points in the program

where the changes specified in the B e h a v i o r _ C o d e should be applied. The list of con­

structs used in the L o c a t i o n _ I d e n t i f i e r is left opened for any needed extension.

Depending on the need of the security hardening solutions, a developer can define his own

80

constructs. However, these constructs should have their equivalent in the current AOP tech­

nologies or should be implemented into the weaver used. In the sequel, we illustrate the

semantics of some important constructs used for identifying locations:

• F u n c t i o n C a l l < S i g n a t u r e > : Provides all the join points where a function

matching the specified signature is called.

• F u n c t i o n E x e c u t i o n < S i g n a t u r e > : Provides all the join points referring to

the implementation of a function matching the specified signature.

• W i t h i n F u n c t i o n < S i g n a t u r e > : Filters all the join points that are within the

functions matching the specified signature.

• CFlow < L o c a t i o n > : Captures the join points occurring in the dynamic execution

context of the join points specified in the input L o c a t i o n _ I d e n t i f i e r (s) .

• GAf low < L o c a t i o n > : Operates on the control flow graph (CFG) of a program.

Its input is a set of join points defined as a L o c a t i o n and its output is a single join

point. It returns the closest ancestor join point to the join points of interest that is on

all their runtime paths. In other words, if we are considering the CFG notations, the

input is a set of nodes and the output is one node. This output is the closest common

ancestor that constitutes (1) the closet common parent node of all the nodes specified

in the input set (2) and through which passes all the possible paths that reach them.

• GDFlow < L o c a t i o n > : Operates on the CFG of a program. Its input is a set of

join points defined as a L o c a t i o n and its output is a single join point. It returns the

closest child join point that can be reached by all paths starting from the join points

81

of interest. In other words, if we are considering the CFG notations, the input is a set

of nodes and the output is one node. This output (1) is a common descendant of the

selected nodes and (2) constitutes the first common node reached by all the possible

paths emanating from the selected nodes.

The L o c a t i o n constructs can be composed with algebraic operators to build up the

B o o l e a n _ L o c a t i o n as follows:

• L o c a t i o n && L o c a t i o n : Returns the intersection of the join points specified

in the two L o c a t i o n _ I d e n t i f i e r constructs.

• L o c a t i o n | | L o c a t i o n : Returns the union of the join points specified in the

two L o c a t i o n _ I d e n t i f i e r constructs.

• ! L o c a t i o n : Excludes the join points specified in the L o c a t i o n _ I d e n t i -

f i e r construct.

Primitive Is an optional functionality that allows to specify the variables that should be

passed between two L o c a t i o n constructs. The following are the constructs responsible

of passing the parameters:

• E x p o r t P a r a m e t e r < I d e n t i f i e r > : Defined at the origin L o c a t i o n . It al­

lows to specify a set of variables and make them available to be exported.

• I m p o r t p a r a m e t e r < I d e n t i f i e r > : Defined at the destination L o c a t i o n .

It allows to specify a set of variables and import them from the origin L o c a t i o n

where the E x p o r t P a r a m e t e r has been defined.

82

Behavior_Code May contain code written in any language, programming language, or

even informal e.g., English instructions to follow, depending on the abstraction level of the

pattern. The choice of the language and syntax is left to the security hardening pattern de­

veloper. However, the code provided should be abstract and at the same time clear enough

to allow a developer to refine it into low level code without the need to security expertise.

Example of such code behavior is presented in Listings 4.11 and 4.12 in Section 4.7.

4.6 SHL Compiler and Framework Implementation

We implemented the BNF specification of SHL using ANTLR V3 Beta 6 and its associated

ANTLRWorks development environment [66]. The generated Java code allows to parse

hardening plans and patterns and verify the correctness of their syntax. We built on top of

it a compiler that uses the information provided by the parser to build first its data struc­

ture, then reacts upon the provided values in order to run the hardening plan and compile

and run the specified pattern and its corresponding aspect. Moreover, we integrated this

compiler into a development graphical user interface for security hardening. The resulting

system provides the user with graphical facilities to develop, compile, debug and run secu­

rity hardening plans and patterns. It allows also to visualize the software to be hardened

and all the compilation and integration activities performed during the hardening. Figure 6

shows a screenshot of this system where we can see a plan running and a pattern compiling,

together with the software to be hardened. The compilation process is divided into many

phases that are performed consequently and automatically. The success of one phase leads

to execute the next one. In the sequel, we present and explain these phases.

83

Security Evaluation aid Hardening Sifsiem jDjxJ

File Tools Analyze Project Haitaiins Help Project HMJirtnjj Help

J ' .-J NewPatteiJiiPtoi

r^szsi OpenPatleinWai s
Vtilrah

* D S»P ̂ 0 ; | Project Overview
o- C3 c ip ! .24 rtel |" — — = = ^ = ™ = = ™

<•-Q p p 4.2.P ! | l | nan addaccesscimtwl
«-C3gap124ne;:|; i j BeginHan

? [3 HaderangN .'£ 3;

? • Soured 1 4 |

FSM:
; Syntax Chech

Rim Plan
BMSpec Source Code

plan.

f CjCIDi-

PattenWaw Add_Access,
Parameters

Language = Java
iJhere TestClass.iava

iEniiPlan

Dtpi
D i l i

01
Di:
D1:

.'|io
%

i

• i

> •

%

Weave
BeijiitfaUerS

Vulnerabilities r Console

Before \,
GBFlossIuiictionCall <send> II FuBctiojiCall <recv>|| Fuf-
BeginBekavior •

p i t i s_globa l jn i t () ; i
EnflBeJasior i

Before j
FujictionCall <conneet> (socket,*,') i
ExportParameter <xcred> i
Ejf ortParameter <session> U

' J^.f tRWsKiwe-iacj lssKlt i i r fJ »i5e\ -. _,_ ,„~, ..„._ •. „.:--
u i • !•;

iii'U.
t3Bugs
9-QBuel

DN2

p y Ihtsed Hardening plan: addaecesst- p~f^~~~ff~^~,-~^-
U T ! - k t t e m instance: AM Access Cow \ VlllnefaMflies | C«Mb
D1}! " '

Pars&ewu language
p. f::=Java
U ' j j l K i e :
Q T;:: Test-Class, .lava
p,J:-"- Coupling the plan

[j"P: : Searching tat the sepecified pafcfjxport parameter: session
p,j ; jJBefOM adViCS

, d J : CeapiJing the pattern Jignntls_bye{ses3ion,iatlTlS_SHUT_RDBR)^iuU3_deinit(session)|
•--Ji-J |:tesKsses\add_acce»sjoa«el_laii(:'pxpott~pai;aBete{: xcred

- i . l Verifying if the pattern natse arjixport parameters session
! -'̂ Executing: C:\aspectjl.S\bin\a5c. I'iftet advice:

sport- parameter: session
{Export parameter: $ocket£lags

spiace advice:
:gmitls_record_Serid(session,aata,dataiengUiJ
ixporr, paisieten session

Sepl&ce advice:
;ghutl3 record recw(session,data,dataiength!

I Rwmins the plan
|:grjutls^_globaI_deimti)
tconpiUtion SuccesM

;<)

Figure 6: Screenshot of the Security Hardening System

84

file://C:/aspectjl.S/bin/a5c

Plan Compilation

This phase consists of parsing the plan, verifying its syntax correctness and building the

data structure required for the other compilation phases. Any error during the execution of

this phase stops the whole compilation process and provide the developer with information

to correct the bug. This statement also applies on all the other phases.

Pattern Compilation and Matching

A search engine has been developed to find the pattern that matches the pattern instan­

tiations requested in the hardening plan (i.e., pattern name and parameters). A naming

convention composed of the pattern name and parameters has been adopted to differenti­

ate between the patterns with same name but different parameters. For instance, a pattern

for the authentication of Java will be named AuthenticationJava.SHL, while another one

of C++ will be named AuthenticationCPP.SHL. Once the pattern matching the criteria is

found, another check on the name and parameters specified inside the pattern is applied in

order to ensure that the matching is correct and there is no error in the naming procedure.

This includes automatically parsing and compiling the pattern contents to check the cor­

rectness of its syntax, verify the matching result and build the data structure required for

the running process.

Aspect Matching

Once the pattern is compiled successfully, a search engine similar to the aforementioned

one is used to find the aspect corresponding to the matched pattern. However, the additional

verification performed in pattern matching is not required here because the aspect will have

85

exactly the same name of the pattern but with different extension depending on the selected

weaver.

Plan Running and Weaving

Plan running is the last phase of the compilation process. Once the corresponding aspect

is matched, the execution command is constructed based on the information provided in

the data structure, which is built during the previous compilation phases. Afterwards, the

aspect is weaved with the specified application or module and the resulted hardened soft­

ware is produced. If the security hardening is applied on one or more modules of a bigger

software, this module should be re-integrated in the original software that requires to be

re-built for the hardening to take place.

Aspect Generation

Aspect generation is an additional feature launched separately to assist the developer during

the refinement of a pattern by generating automatically part of the corresponding aspect.

The same aforementioned compilation and matching mechanisms are used to compile the

pattern specified in the plan. Then, each L o c a t i o n _ B e h a v i o r in the pattern is refined

into a combination of pointcut declarations and an advice that contains the same body as

the one of the B e h a v i o r _ C o d e . The generated poincuts and advices are enclosed into

an aspect that has the same name as the pattern concatenated to its parameters and saved in

a file with extension (.ah) for AspectC++ or (.aj) for AspectJ. The developer will have to

refine the advice bodies into programming language code (i.e, C++ or Java) and then run

the plan to apply the weaving.

86

4.7 Case Studies: Plans, Patterns and Aspects for Security

Hardening

We demonstrated the feasibility of our approach and framework for systematic security

hardening by developing case studies that deal with security requirements such as secur­

ing connections, adding authorization, encrypting some information in the memory and

remedying low level security vulnerabilities and applying them to developed and selected

applications. During the course of our study, we developed plans, patterns, aspects in

AspectC++ and AspectJ, utility functions in C, C++ and Java and example code that imple­

ment the security hardening of the aforementioned requirements and vulnerabilities. We

will show some of our findings here.

4.7.1 Hardening of Secure Connection Features into APT

In this section, we illustrate our elaborated solutions for securing the connections of client

applications by following our methodology and using the proposed SHL language and its

corresponding framework. Securing channels between two communicating parties allows

to avoid eavesdropping, tampering with the transmission, and session hijacking. In this

context, we selected an open source software called APT to add HTTPS support and secure

its connections using GnuTLS/SSL library [4]. We also applied similar experiments on

client applications that we developed.

APT is an automated package downloader and manager for the Debian Linux distribu­

tion [1]. It is written in C++ and is composed of more than 23 000 source lines of code

87

(based on version 0.5.28, generated using David A. Wheeler's 'SLOCCount'). It obtains

packages via local file storage, FTP, HTTP, etc. APT is organized in few components that

allow extensibility. All package acquisition methods are separated from the package man­

agement logic and are grouped individually as programs. The library (1 i b a p t) creates the

process of the method and communicates with it using the standard input and output of the

created process. The library sends acquisition requests to the method, which will parse and

process it. The acquisition method is responsible of writing the downloaded files to disk.

The functions of the library can be used by different software packages, but the source code

includes many command-line tools. In our case, we used the a p t - g e t command-line tool

and we created an HTTPS method based on the existing HTTP method. In the sequel,

we are going to present the hardening plans, pattern and aspect elaborated to secure the

connections of APT.

SHL Hardening Plan

In Listing 4.10, we include an example of effective security hardening plan specified in

SHL for securing the connection of APT. It contains the name of the pattern to select

(S e c u r e _ C o n n e c t i o n _ P a t t e r n) , parameters (Language , API, etc.) and com­

ponents/files where to apply the pattern (h t t p . cc and c o n n e c t . cc) .

88

PI
Be

En

an APT_
ginPIan

PatternN
Paramet

Where
dPIan

S e c u r e C o n n e c t i o n P l a n

ame
ers

S e c u r e C o n n e c t i o n _

L a n g u a g e = C/C++
API
P e e r

= GNUTLS
= C l i e n t

P r o t o c o l = SSL
h t t p c c c o n n e c t . e e

P a t t e r n

Listing 4.10: SHL Hardening Plans for Securing Connection

SHL Hardening Pattern

Listing 4.11 and Listing 4.12 present the pattern elaborated in SHL for securing the connec­

tion of client applications using GnuTLS/SSL. It contains the pattern name (S e c u r e _ -

C o n n e c t i o n _ P a t t e r n) , the parameters (Language , API, etc.) and a list of L o c a -

t i o n _ B e h a v i o r s . Each L o c a t i o n _ B e h a v i o r starts with a B e h a v i o r _ I n s e r -

t i o n _ P o i n t , followed by a L o c a t i o n , a P r i m i t i v e and a B e h a v i o r _ C o d e . The

first L o c a t i o n _ B e h a v i o r matches the beginning of the function H t t p M e t h o d : : Loop

to initialize the library, the second L o c a t i o n _ B e h a v i o r matches before the calls to the

functions c o n n e c t to initialize the session, the third L o c a t i o n _ B e h a v i o r matches

after the calls to the functions c o n n e c t to perform the handshake, the fourth L o c a -

t i o n _ B e h a v i o r matches the calls to the functions w r i t e to replace them by the secure

ones, the fifth L o c a t i o n _ B e h a v i o r matches the calls to the functions r e a d to replace

them by the secure ones, the sixth L o c a t i o n _ B e h a v i o r matches before the calls to

the functions c l o s e to close the session and finally the seventh L o c a t i o n _ B e h a v i o r

matches the end of the function H t t p M e t h o d : : Loop to de-initialize the library.

89

http://connect.ee

The code of the functions used in the B e h a v i o r _ C o d e parts of the pattern is illus­

trated in Listing 4.13. It is expressed in C++ because our applications are implemented

in this programming language. However, other syntax and programming languages can

also be used depending on the abstraction required and the implementation language of the

application to harden. To generalize our solution and make it applicable on wider range

of applications, we assume that not all the connections are secured, since many programs

have different local interprocess communications via sockets. In this case, all the func­

tions responsible of sending and receiving data on the secure channels are replaced by the

ones providing TLS. On the other hand, the other functions that operate on the non-secure

channels are kept untouched. Moreover, we suppose that the connection processes and

the functions that send and receive data are implemented in different components. This

required additional effort to develop additional components that distinguish between the

functions that operate on secure and non secure channels and export parameters between

different places in the applications.

Hardening Aspect

We refined and implemented (using AspectC++) in Listing 4.14 and Listing 4.15 the cor­

responding aspect of the pattern presented in Listing 4.11 and Listing 4.12. The first

advice-pointcut matches the content of the function Ht t p M e t h o d : : Loop to initialize the

GnuTLS API at the beginning and de-initialize it at the end. The second advice-pointcut in­

tercepts all the calls to the function c o n n e c t , initializes the TLS session before and adds

the TLS handshake after. The third advice-pointcut intercepts all the calls to the function

w r i t e and replaces each one by the TLS function g n u t l s _ r e c o r d _ s e n d . Similarly,

90

Pattern Secure Connection Pattern
Parameters

Language = C/C++
API = GNUTLS
Peer = Client
Protocol = SSL

BeginPattern

Before
FunctionExecution <HttpMethod::Loop> //Starting
BeginBehavior

// Initialize the TLS library
InitializeTLSLibrary;

EndBehavior

Before
FunctionCall <connect> //TCP Connection
ExportParameter <xcred>
ExportParameter <session>
BeginBehavior

// Initialize the TLS session resources
InitializeTLSSession;

EndBehavior

After
FunctionCall <connect>
ImportParameter <session>
BeginBehavior

// Add the TLS handshake
AddTLSHandshake;

EndBehavior

Replace
FunctionCall <write>
ImportParameter <session>

Point

Listing 4.11: SHL Hardening Pattern for Securing Connection (Part 1)

91

BeginBehavior
// Change the send functions using that
// socket by the TLS send functions of the -
// used API when using a secured socket
SSLSend;

EndBehavior

Replace
FunctionCall <read>
ImportParameter <session>
BeginBehavior

// Change the receive functions using that
// socket by the TLS receive functions of
// the used API when using a secured socket
SSLReceive;

EndBehavior

Before
FunctionCall <close> //Socket
ImportParameter <xcred>
ImportParameter <session>
BeginBehavior

// Cut the TLS connection

close

CloseAndDealocateTLSSession;
EndBehavior

After
Function Execution <HttpMethod:
BeginBehavior

// Deinitialize the TLS In
DeinitializeTLSLibrary;

EndBehavior

EndPattern

:Loop>

brary

Listing 4.12: SHL Hardening Pattern for Securing Connection (Part 2)

92

InitializeTLSLibrary
gnutls_global_init(),-

InitializeTLSSession
gnutls_init (session, GNUTLS_CLIENT);
gnutls_set_default_priority (session),-
gnutls_certificate_type_set_priority (session, cert_type_priority);
gnutls_certificate_allocate_credentials(xcred);
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

AddTLSHandshake
gnutls_transport_set_ptr(session, socket);
gnutls_handshake (session) ,-

SSLSend
g n u t l s _ r e c o r d _ s e n d (s e s s i o n , d a t a , d a t a l e n g t h) ;

SSLReceive
g n u t l s _ r e c o r d _ r e c v (s e s s i o n , d a t a , d a t a l e n g t h) ;

CloseAndDealocateTLSSession
g n u t l s _ b y e (s e s s i o n , GNUTLS_SHUT_RDWR);
g n u t l s _ d e i n i t (s e s s i o n) ;
g n u t l s _ c e r t i f i c a t e _ f r e e _ c r e d e n t i a l s (x c r e d) ;

D e i n i t i a l i z e T L S L i b r a r y
g n u t l s _ g l o b a l _ d e i n i t () ;

Listing 4.13: Functions Used in the Pattern for Secure Connection

93

the fourth advice-pointcut intercepts all the calls to the function r e a d and replaces each

one by the TLS function g n u t l s _ r e c o r d _ r e c v . Finally, the fifth advice intercepts all

the calls to the function c l o s e , terminates the TLS session before and de-initializes the

created data structure after performing the call.

The reader will notice the appearance of h a r d e n i n g _ s o c k i n f o_ t . These are the

data structures and functions that we developed to distinguish between secure and non

secure channels and export the parameter between the application components at runtime

(since the primitives I m p o r t P a r a m t e r and E x p o r t P a r a m e t e r are not yet deployed

into the weavers). We found that one major problem was the passing of parameters between

functions that initialize the connection and those that use it for sending and receiving data.

In order to avoid using shared memory directly, we opted for a hash table that uses the

socket number as a key to store and retrieve all the needed information (in our own defined

data structure). One additional information that we store is whether the socket is secured or

not. In this manner, all calls to a s e n d () and r e c v () are modified for a runtime check

that uses the proper sending/receiving functions.

Experimental Results

In order to validate the hardened APT software, we used the Debian apache-ssl package

[2], an HTTP server that accepts only SSL-enabled connections. We populated the server

with a software repository compliant with APT requirements, so that APT can connect

automatically to the server and download the needed metadata in the repository. Then,

we weaved (using AspectC++ weaver) the elaborated aspect with the different variants of

APT. The resulting hardened software was capable of performing both HTTP and HTTPS

94

aspect https{

advice execution("% HttpMethod::Loop()") : around () {
//init gnutls lib
hardening_initGnuTLSSubsystem(NONE); hardeninq_socketInfoStoragelnit(]
tjp ->proceed () ;
//deinit libs
hardening_socketInfoStoraqeDeinit () ,- hardeninq_deinitGnuTLSSubsystem () ;

}

advice call("% connect(...)") : around () {
//variables declared
hardeninq_sockinfo_t socketInfo;
const int cert_type_priority[3] = { GNUTLS_CRT_X509,

GNUTLS_CRT_OPENPGP, 0};
//initialize TLS session info
gnutls_init (ksocketlnfo.session, GNUTLS_CLIENT);

gnutls_set_default_priority (socketInfo.session);
gnutls_certificate_type_set_priority (socketlnfo.session,

cert_type_priority); gnutls_certificate_allocate_credentials (&
socketlnf o .xcred) ,-

gnutls_credentials_set (socketlnfo.session, GNUTLS_CRD_CERTIFICATE,
socketlnfo.xcred);

//check if non-blocking. If so, make blocking until we are done with
the handshake

int socketflags = fcntl(*(int *)tjp->arg(0),F_GETFL) ;
if ((socketflags & 0_NONBLOCK) != 0) fcntl(*(int *)tjp->arg (0),

F_SETFL, socketflags * 0_NONBLOCK);
//Connect + Handshake
tjp ->proceed () ;
if (*tjp ->result () < 0) {

if ((socketflags & 0_NONBLOCK) != 0) fcntl(*(int *)tjp ->arg (0) ,
F_SETFL, socketflags);

return;

}
g n u t l s _ t r a n s p o r t _ s e t _ p t r (s o c k e t l n f o . s e s s i o n , (g n u t l s _ t r a n s p o r t _ p t r)

(* (i n t *) t j p - > a r g (0))) ;
i n t r e s u l t = gnu t l s_handshake (s o c k e t l n f o . s e s s i o n) ;
i f ((s o c k e t f l a g s & 0_NONBLOCK) != 0){

f c n t l (* (i n t *) t jp ->arg(0) ,F_SETFL, s o c k e t f l a g s) ; / / r e s t o r e non-
b l o c k i n g s t a t e i f i t was l i k e t h a t

g n u t l s _ t r a n s p o r t _ s e t _ l o w a t (s o c k e t l n f o . s e s s i o n , 0) ; / /now make
g n u t l s aware t h a t we a r e d e a l i n g wi th non -b lock ing s o c k e t s

}

Listing 4.14: Aspect for Adding HTTPS Functionality (Part 1)

95

//Save Information in hash table
socketlnfo.isSecure = true; socketlnfo.socketDescriptor = *(int *)

tjp ->arg(0) ;
hardeninq_storeSocketInfo(*(int *)tjp ->arg(0), socketlnfo) ;
*tjp->result() = result;

}

//replacing write() by gnutls_record_send() on a secured socket
advice call("% write(...)") : around () {
hardening_sockinfo_t socketlnfo = hardeninq_qetSocketInfo(*(int *)tjp

->arg(0));
if (socketlnfo.isSecure)

*(tjp->result()) = qnutls_record_send(socketlnfo.session, *(char
**) tjp->arg(l), *(int *) tjp->arg (2)) ;

else
tjp ->proceed () ;

}

//replacing read() by gnutls_record_recv() on a secured socket
advice call("% read(...)") : around () {
hardening_sockinfo_t socketlnfo = hardeninq_qetSocketInfo(*(int *)tjp

->arg(0));
if (socketlnfo.isSecure)

*(tjp->result()) = qnutls_record_recv(socketlnfo.session, *(char
**) tjp->arg(l), *(int *) tjp->arg (2)) ;

else
tjp ->proceed () ;

}

advice call("% close(...)") : around () {
hardeninq_sockinfo_t socketlnfo = hardeninq_qetSocketInfo(*(int *)tjp

->arg(0)); /* socket matched by sd*/
if(socketlnfo.isSecure){

qnutls_bye(socketlnfo.session, GNUTLS_SHUT_RDWR);

}
tjp ->proceed () ;
if(socketlnfo.isSecure){

qnutls_deinit(socketlnfo.session);
gnutls_certificate_free_credentials(socketlnfo.xcred);

hardening_removeSocketInfo(*(int *)tjp->arg(0)) ;
socketlnfo.isSecure = false; socketlnfo.socketDescriptor = 0;

}
}

h _ _
Listing 4.15: Aspect for Adding HTTPS Functionality (Part 2)

96

Time Soiree Destination Protocol JifL
25 O.OS7553 1 9 2 . 1 6 8 . 1 3 : 8 2 . 2 1 1 . 8 1 . TCP 3803 > h t t p tSYN] Seq-0 Len-0 H5S»14eO '
27 0 .063259 1 9 2 . 1 6 8 . 1 3 : 2 1 6 . 1 2 0 . 2 5 TCP 2501 > h t t p [SYN] 5eq=0 Len=0 M55=146G "
38 0.146S26 216 .120 ,25 1 9 2 . 1 6 8 . 1 s TCP h t t p > 2501 [SYN, ACK] Seq»0 Ack*l Win-
39 0.14S4S7 1 9 2 . 1 6 8 . 1 3 ; 216 .120 .25 TCP 2501 > h t t p {ACKJ Seq~l Ack^l Win=5840 I

41 0.17X068 216 .120 ,25 1 9 2 . 1 6 8 , 1 3 TCP h t t p > 2501 J>0<3 Seq» l A<*»397 Win=»3?0>
42 0.178142 8 2 . 2 1 1 . 8 1 . : 1 9 2 . 1 6 8 . 1 3 TCP h t t p > 3803 [SYN, ACK] Seq=0 Atk=l Win-
43 0.178324 192 .168 .13 : 8 2 . 2 1 1 . 8 1 . TCP 3803 > h t t p t*CK3 Seq-1 Aek-1 Wln»S840 I
44 0 . 1 8 3 0 9 1 1 9 2 . 1 6 8 . 1 3 : 8 2 , 2 1 1 . 8 1 . HTTP GET h t t p : / / a r c h 1 v e . c a n o n 1 c a 1 . c o m / u b u n t u ,
45 0 .183659 8 2 . 2 1 1 . 8 1 . : 1 9 2 . 1 6 8 . 1 3 TCP h t t p > 3803 [ACK] Seq« l ACk»483 Wio»361.
47 0.195954 1 9 2 . 1 6 8 . 1 3 : 9 1 . 1 8 9 . 8 8 . TCP 3809 > h t t p [SYN] Seq«0 ten=0 MSS»1460 "

Figure 7: Packet Capture of Unencrypted APT Traffic

package acquisition, based on the parameters in the configuration file. After building and

deploying the modified APT package, we tested successfully its functionality by refreshing

APT package database, which forced the software to connect to both our local web server

(Apache-ssl) using HTTPS and remote servers using HTTP to update its list of packages.

The experimental results in Figures 7, 8, and 9 show that the new secure APT software is

able to connect using both HTTP and HTTPS connections, exploring the correctness of the

security hardening process.

In the sequel, we provide brief explanations of our results. Figure 7 shows the packet

capture, obtained using WireShark software, of the unencrypted HTTP traffic between our

version of APT and its remote package repositories. The highlighted line shows an HTTP

connection to the w w w . g e t a u t o m a t i x . c o m APT package repository. On the other

hand, Figure 8 shows the connections between our version of APT and the remote package

repositories on the local web server. The highlighted lines show TLSvl application data

exchanged in encrypted form through HTTPS connections, exploring the correctness of

the security hardening process. Moreover, Figure 9 shows an extract of Apache access log,

edited here for conciseness, where the package metadata was successfully obtained from

our local server by the hardened software.

97

http://arch1ve.canon1ca1.com/ubuntu
http://www.getautomatix.com

Time Source Destination I Protocol Info

1 0 . 0 0 0 0 0 0
i 2 0 . 0 0 0 3 0 6

3 0.000490

5 0.020212

7 0.022877

9 0.066300

11 0.072780

L3 0.102275

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP
1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP
1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP

1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP

1878 > h t t p s [SYkQ seq=0 Leri=i
h t t p s > 1878 [SYN, ACK] seq=0
1878 > ht tps [ACK] seq=l Ack=:

h t tps > 1878 [ACK] 5eq=l Ack=:

1878 > ht tps [ACK] Seq=76 Ack =

h t tps > 1878 [ACK] seq=829 Act

h t tps > 1878 [ACK] Seq=829 Ac!

h t tps > 1878 [ACK] Seq=829 Ac!

16 0.150342 1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP ht tps > 1878 [ACK] Seq=888 Ac!

18 0.406324 1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP
19 7.607625 1 2 7 . 0 . 0 . 1 1 2 7 , 0 . 0 . 1 TCP
20 7 .649340: ^ 2 7 ; 0 . 0 . 1 X2WQ:0,1: TCP-'
21 7.649554 1 2 7 . 0 . 0 . 1 1 2 7 . 0 . 0 . 1 TCP

1878 > h t tps [ACK] seq=807 Acl
1 8 7 8 > Fvttps IPlH, ACkl seq=8i
Mtps; yWf&'itiii, =;AckJ Seq=£
1878 > ht tps [ACK] Seq=808 Aci

ame 17 (412 bytes on w i r e , 412 bytes captured)
nernet I I , S rc : 0 0 : 0 0 : 0 0 _ 0 0 : 0 0 : 0 0 (0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0) , Ds t : 00 :00 :00_00
ternet Protocol, src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)

cure socket Layer
TLSvl Record Layer: Application Data Protocol: http
TLSVI Record Layer: Application Data Protocol: http
content Type: Application Data (23)
version: TLS 1.0 (0x0301)
Length: 304
Encrypted Application Data: 5B6300A4 5C27165BF3440D3A8A900014CE5534B55:

7n.P

Figure 8: Packet Capture of SSL-protected APT Traffic

File Edit view Search Jools Documents Help

New Open Save Print.. Undo

[J full_access.log £» j_j log_extract.txt O !

1 T O T S ? ! ""-""-" "[04/Apr/20G7 • l " l T 5 2 : 0 2 "'mBQ]'"''''
/'GET h t t p s 2 : / / l o c a l h o s t : 4 4 3 / a p t / d i s t s / d a p p e r /
main/b inary- i386/Re" lease HTTP/1.1" 3Q4 - " - "
"Debian APT-HTTP/1.3" " - "

127 .0 .0 .1 - - [04/Apr /26O7:13:53:17 -G400]
"GET h t t p s 2 : / A o c a l h o s t : 4 4 3 / a p t / d i s t s / d a p p e r /
main/b inary- i386/Pack.aaes.a2 HTTP/1.1" 304 -
" - " "Debian APT -HTTP/1.3" " - "

127 .0 .0 .1 - - [04/Apr /2G07:13:53:17 -0400]
"GET h t t p s 2 : / / l o c a l h o s t : 4 4 3 / a p t / d i s t s / d a p p e r /
ma in /b ina ry - i386 /Re lease HTTP/1.1" 304 - " - "
"Debian APT-HTTP/1.3" " - " |

Ln 5. Col 158

Figure 9: Excerpt of Apache Access Log

98

4.7.2 Hardening of Low-Level Security Vulnerabilities in MySQL

The C and C++ programming languages have been designed for maximal performance,

at the expense of some safety-enhancing techniques. Keeping memory management left

to the programmer discretion and the lack of type safety are the major causes of security

vulnerabilities in C and C++ . Related security vulnerabilities and their causes have been

published in books, papers and reviews. Detailed discussion about this issue has been pro­

vided in Chapter 2. In this section, we illustrate our elaborated solutions by adding several

low-level security vulnerabilities into MySQL software and then remedying them through

following the proposed methodology and using the SHL language and its corresponding

framework. MySQL is a relational database management system that runs as a server pro­

viding multi-user access to a number of databases. It is written in C++ and is composed

of more than 250 000 source lines of code. We added vulnerable pieces of code in diverse

components that have direct impact on the execution of the software. This caused stack and

memory crash and MySQL failed to continue its execution.

SHL Hardening Plan

In Listing 4.16, we include an example of effective security hardening plan specified in

SHL for remedying low-level security vulnerabilities present in MySQL software. It con­

tains the name of the pattern to select (Saf e ty_Vul_MySQL_Pa t t e rn) , the parameter

(Language) and all the components/files of the application where to apply the pattern

(* .cc) .

99

PI
Be

En

an Sa
ginPlan

fety_Vul_MySQL_

PatternName Saf
Parameters

Where
dPlan

L a n g u a g e
* . c c

e ty_

P l a n

Vul_

= C/C++

MySQL P a t t e r n

Listing 4.16: SHL Hardening Plan for Remedying MySQL Safety Vulnerabilities

SHL Hardening Pattern

Listing 4.17 describes the hardening pattern elaborated in SHL for remedying several low-

level security vulnerabilities present in MySQL software. It contains the pattern name

(Saf e ty_Vul_MySQL_Pa t t e rn) , the parameter (Language) and a list of L o c a -

t i o n _ B e h a v i o r s . Each L o c a t i o n _ B e h a v i o r starts with a B e h a v i o r _ I n s e r -

t i o n _ P o i n t , followed by a L o c a t i o n , a P r i m i t i v e and a B e h a v i o r _ C o d e . The

first four L o c a t i o n _ B e h a v i o r s match the calls to the functions s p r i n t f , g e t s ,

s t r c p y and s t r c a t and replace them by their secure ones. These functions do not

apply bound checking and verification on the string parameters and arguments. These

missing features constitute major vulnerabilities exploited by the buffer overflow attacks.

Replacing these functions by secure ones, which are also provided by newer versions of the

C and C++ libraries, is one solution to address such flaws. Another error related to memory

management is double freeing the same pointer, causing memory corruption. The solution

provided for such vulnerability consists of setting the pointer to NULL after freeing it, so

in this case freeing it another time won't corrupt useable memory data. The fifth L o c a -

t i o n _ B e h a v i o r matches after the calls to the functions f r e e to set their arguments

to NULL. The last addressed problems are related to renaming and accessing files. Set­

ting privileges and adding access restrictions are know solutions for such problems. The

100

last two L o c a t i o n _ B e h a v i o r s match before the calls to the functions r ename and

f o p e n to address the aforementioned problems.

Hardening Aspect

We refined and implemented (using AspectC++) in Listing 4.18 the corresponding aspect of

the pattern presented in Listing 4.17. The first four advices-pointcuts match respectively all

the calls to the functions s p r i n t f , g e t s , s t r c p y a n d s t r c a t and replace them

by their corresponding secure ones s n p r i n t f , f g e t s , s t r n c p y and s t r n c a t .

The fifth adviee-pointcut matches before all the calls to the f r e e and sets its argument

(pointer) to NULL. The sixth adviee-pointcut matches before all the calls to the function

rename and add user and group privilege. The last adviee-pointcut matches before all the

calls to the function f open and add access restrictions.

Experimental Results

In order to verify the provided hardening solutions, we ran first the vulnerable MySQL

software and applied the attacks corresponding to the injected vulnerabilities. The software

crashes and stop its execution. Then, we weaved our solutions into MySQL and ran again

the same attacks. None of them succeeds and the hardened software continues its regular

execution, exploring the absence of vulnerabilities, and hence the success of the security

hardening process.

101

Pattern Safety_Vul_MySQL_Pattern
Parameters

Language = C/C++

BeginPattern

Replace
FunctionCall < s p r i n t f >
BeginBehavior

s n p r i n t f ;
EndBehavior

Replace
FunctionCall <gets>
BeginBehavior

f g e t s ;
EndBehavior

Replace
FunctionCall <s t rcpy>
BeginBehavior

s t r n c p y ;
EndBehavior

Replace
FunctionCall < s t r c a t >
BeginBehavior

s t r n c a t ;
EndBehavior

After
FunctionCall <free>
BeginBehavior

SetArgumentPointer toNul l , -
EndBehavior

Before
FunctionCall <rename>
BeginBehavior

ge tUse r lD ;
Se tUser lD;
getGroupID;
SetGroupID;

EndBehavior

Before
FunctionCall <fopen>
BeginBehavior

SetUserMask;
EndBehavior

Listing 4.17: SHL Hardening Pattern for Remedying MySQL Safety Vulnerabilities

102

aspect SafetyVul {

advice call("% sprintf (...)") : around () {

snprintf((*(char **)tjp->arg (0)) , strlen((*(char **) tjp - >arg (0)))+1,
(*(char **)tjp->arg(1)), (*(char **)tjp->arg (2)));

}

advice call("% gets(...)") : around () {
if (fgets(((char *)tjp->arg(0)), strlen(((char *)tjp->arg(0)))-3,stdin

) == NULL) {
printf("diagnosed undefined behavior.\n");

}

advice call("% strcpy(...)") : around () {
strncpy((*(char **)tjp->arg(0)), (*(char **)tjp->arg(1)), strlen((*(

char **) tjp->arg (0)))) ,-
}

advice call("% strcat(...)") : around () {
strncat((*(char **)tjp->arg(0)), (*(char **)tjp->arg(1)) , strlen ((*(

char **)tjp->arg(0)))-strlen((*(char **)tjp ->arg(1)))-1);
}

advice call("% free(...)") : after () {
*(char **) (tjp->arg(0))=NULL;

}

advice call("% rename (...)") : before () {
//Get the effective user of the running process.
//This will be the program's user or group owner if setuid or setgid

is used.
uid_t init_uid = geteuidO;
gid_t init_gid = getegidt);
//Drop to the privileges of the user who is runnig the process,
seteuid(getuid());
setegid(getgid());

}

advice call("% fopen(...)") : before () {
//Set the umask such that any files created won't allow the group or

the world to read, write, or execute.
umask(S_IRWXG | S_IRWXO);

}

h
Listing 4.18: Aspect for Remedying Safety Vulnerabilities

103

4.7.3 Adding Authorization to Applications

Adding authorization is a problem of authorizing or denying access to a resource or op­

eration (i.e., Access control). It requires to know which principal is interacting with the

application, and what are its associated rights. In this section, we illustrate our elaborated

solutions for adding authorization to applications by following our methodology and using

the SHL language and its corresponding framework. In this context, we developed our own

Java application, in which we decided to add authorization check on some of its methods.

We implemented this program multiple times, with different internal structure, in order to

ensure the flexibility of our hardening solution. We deal with one of them in this case study.

SHL Hardening Plan

In Listing 4.19, we include an example of effective security hardening plan specified in

SHL for adding authorization into the aforementioned application. It contains the name of

the pattern to select (A d d _ A u t h o r i z a t i o n _ P a t t e r n) , the parameters (Language ,

API a n d Type) and the component/file of the application where to apply the pattern

(t e s t . j a v a) .

PI
Be

En

an Own
ginPlan
PatternN
Paramet

Where
dPlan

Add Authorization

ame Add Authorizat
ers
Language =
API
Type
test.java

Java
JAAS
ACL

Plan

ion Patt ern

Listing 4.19: SHL Hardening Plan for Adding Authorization

104

SHL Hardening Pattern

Listing 4.20 describes the hardening pattern elaborated in SHL for adding authorization to

the aforementioned application. It contains the pattern name (A d d _ A u t h o r i z a t i o n _ -

P a t t e r n) , the parameters (Language , API a n d T y p e) a n d a L o c a t i o n _ B e h a v -

i o r . The L o c a t i o n _ B e h a v i o r starts with a B e h a v i o r _ I n s e r t i o n _ P o i n t , fol­

lowed by a L o c a t i o n , a P r i m i t i v e and a B e h a v i o r _ C o d e . It matches the begin­

ning of the method do some t h i n g to get the user name, get the method permission and

check for authorization. The Java code of the functions used in the B e h a v i o r _ C o d e

parts of the pattern is illustrated in Listing 4.21. Its usage scenario assumes that interface

changes are undesirable and that a policy is specified and loaded separately from what pro­

grammers can directly specify (which is the case for technologies like Java). It requires

some forms of authentication in order to have the working user credentials that are used in

the access control decisions.

Pattern Add_Autho r i za t i on_Pa t t e rn
Parameters

Language = Java
API = JAAS
Typte = ACL

BeginPattern

Before
FunctionExecution <dosomething>
BeginBehavior

/ / G e t t he u s e r name of
GetUserName;
/ / G e t t he p e r m i s s i o n name of t he matched methods
GetMethodPermissionName ,-
/ /Check t h i s username has p e r m i s s i o n t o a c c e s s t h e method
CheckPermi s s i o n ;

EndBehavior

EndPattern

Listing 4.20: SHL Hardening Pattern for Adding Authorization

105

GetUserName
Subjec t s u b j e c t = (Subjec t) s u b j e c t s . g e t (S y s t e m . g e t P r o p e r t y (" u s e r ,

name ")) ;

GetMethodPermissionName
S t r i n g permissionName = (t h i s J o i n P o i n t . g e t S i g n a t u r e ()) .

getDeclaringTypeName() . c o n c a t (" . " . c o n c a t ((t h i s J o i n P o i n t .
g e t S i g n a t u r e ()) . g e t N a m e ())) ;

CheckPermsion
AuthPermiss ion perm = new AuthPermiss ion (permissionName) ;
perm.checkGuard (n u l l) ;

Listing 4.21: Functions Used in the Pattern for Adding Authorization

Hardening Aspect

We refined and implemented (using AspectJ) in Listing 4.22 the corresponding aspect of

the pattern presented in Listing 4.20. The advice-pointcut match all the calls to the method

d o s o m e t h i n g and replace them by new ones that check for authorization before pro­

viding the same functionalities. The resulting access control aspect uses Java Authen­

tication and Authorization service API (JAAS) for authorization. The rights are speci­

fied in a separate policy file. We assume a local login, in this case, and we obtain the

user name from the virtual machine. The permissions are specified in the format p a c k ­

age . c l a s s . f u n c t i o n .

Experimental Results

We applied verification on the functional and security correctness of the hardened applica­

tion. This task has been performed by either adding or removing the access right to execute

the target method in the policy file. The practical impact of removing the right and then

executing the method threw an access right violation exception by the Java virtual machine,

which illustrates the correctness of the authorization deployed.

106

public aspect AddAccessControl {

protected static Hashtable subjects = new Hashtable () ,-
abstract class Action implements PrivilegedExceptionAction{};

pointcut test(): call(void doSomething());

String getPermissionName(Signature sig){

return sig.getDeclaringTypeName().concat(".".concat(sig.getName()));

}

void around(): test(){
try{

//get the Subject instance based on the current user name
Subject subject = (Subject) subjects.get(System.getProperty("

user.name"));

//anonymous inner class for the privileged action
//however, we should have them static to avoid unnecessary

overhead
PrivilegedExceptionAction action = new Action()

{
public Object run() throws Exception

{
String permissionName = getPermissionName(thisJoinPoint.

getSignature0) ;
AuthPermission perm = new AuthPermission(permissionName);
perm.checkGuard(null); //throws exception if not having

permission
proceed();//execute the original code that way
return null;

}

};

// Enforce Access Controls
Subject.doAs(subject, action);

}
catch (Exception e) {e .printStackTrace () ,-}

}

)

Listing 4.22: Excerpt of an Aspect for Adding Authorization

107

4.8 Conclusion

We addressed in this chapter the problems related to the current methodologies for perform­

ing software security hardening. In this context, we proposed an AOP and pattern-based

approach for systematic security hardening. Our proposition allows the developers to per­

form the security hardening of software in a systematic way and without the need to have

expertise in the security solution domain. At the same time, it allows the security experts

to provide the best solutions to particular security problems with all the details on how and

where to apply them. Moreover, we realized the proposed approach by elaborating the SHL

language needed to describe the security hardening plans and patterns and developing its

corresponding parser, compiler and facilities. The resulting framework allows to develop

the components of a security hardening solution and perform all its required procedures.

Beside, we explored the feasibility of the proposed approach by elaborating several case

studies of security hardening and applying them on large scale software.

108

Chapter 5

New Aspect-Oriented Constructs for

SHL Targeting Security Concerns

5.1 Introduction

Our approach for systematic security hardening and the experiments presented in Chapter 4,

together with other related proposals for security code injection via AOP [20,31,52,74,78],

explored that AOP constitutes a promising paradigm for the systematic security hardening

of software. However, AOP was not initially designed to address security issues, which

resulted in some limitations in the current technologies [21,47,54,58,61]. Indeed, we were

not able to apply some security hardening activities due to missing features. For instance,

while implementing an AOP-based solution for securing the connections of client applica­

tions, we opted to intialize/de-initialize and build/de-build the data structures and objects

needed for GNU/TLS security library in the main function (please see Listing 5.29 in Sec­

tion 5.5.3 for more detail). Although this solution works for small size applications with

109

single features, it is not applicable and relevant for large scale applications with multiple

functionalities. Many APIs initialization and unneeded operations may be performed, even

if their corresponding features (i.e., the features using them) are not called during an execu­

tion context of a program. Such solution could also be ruinable for embedded applications,

where the energy and memory resources are limited.

Moreover, during our security hardening experiments, we faced the problem of passing

needed variables and parameters related to GNU/TLS library (e.g., TLS Session) between

the application components. Such limitations forced us, when applying security hardening

practices, to perform programming gymnastics (when possible), resulting in integrating

additional modules and changing several functions in the application to pass the needed

variables (please see Listing 5.29 in Section 5.5.3 for more detail). Such solution is not

realistic in the case of large scale applications with multiple features, where there are com­

plex dependencies and relations between their components. Any changes in one component

lead to apply several modifications in all its dependent ones, which requires many complex

re-engineering actions to be performed.

In this chapter, we present new pointcuts and primitives to SHL and AOP languages

that are needed for systematic hardening of security concerns. The two proposed pointcuts

allow the identification of particular join points in a program control flow graph (CFG).

The first one is the GAFlow, Closest Guaranteed Ancestor, which returns the closest an­

cestor join point to the pointcuts of interest that is on all their runtime paths. The second

one is the GDFlow, Closest Guaranteed Descendant, which returns the closest child join

point that can be reached by all paths starting from the pointcut of interest. The two pro­

posed primitives are called ExportParameter and ImportParameter and are used to pass

110

parameters between two pointcuts. They allow to analyze a program call graph in order to

determine how to change function signatures for passing the parameters associated with a

given security hardening task.

We find these pointcuts and primitives to be necessary because they are needed to per­

form many security hardening practices and, to the best of our knowledge, none of the

existing AOP pointcuts and primitives and their combinations can provide their function­

alities. Although, the interest of the proposed pointcuts and primitives may cover other

domains, we restrict ourselves to security and discuss only the utilities related to software

security hardening. Moreover, we show the viability of the proposed pointcuts and primi­

tives by elaborating and implementing their methodologies and algorithms and presenting

the result of explanatory case studies.

This chapter provides the new contributions toward developing our AOP-based frame­

work for systematic security hardening framework. Adopting AOP in our approach makes

enriching the AOP technology and SHL with new poincuts and primitives for security hard­

ening concerns an essential task to reach our objectives. The remainder of this chapter is

organized as follows. Section 5.2 explores the limitations associated with the current AOP

technologies for security as well as the related security pointcuts proposed for these con­

cerns. Then, a brief background on the program representation is presented in Section 5.3

and the proposed pointcuts and primitives are defined and specified in Section 5.4. After­

wards, the usefulness of our propositions and their advantages are discussed in Section 5.5.

In Section 5.6, the algorithms necessary for implementing the proposed pointcuts and prim­

itives are presented. This section also shows the implementation results via case studies.

We move on to the conclusion in Section 6.8.

I l l

5.2 Security-Related Pointcuts

Our experiments explored the usefulness of AOP in reaching the objective of having sys­

tematic security hardening. On the other hand, we have also distinguished, together with

other documented related work [21,47,54,58,61], the limitations of the available AOP

technologies and languages for some security issues. Addressing such limitations can be

achieved by elaborating pointcuts and primitives that improve the conditions on which we

can inject appropriately the security code. Many authors have made contributions in this

field, which we will list now.

A dataflow pointcut that is used to identify join points based on the origin of values is

defined and formulated in [58] for security purposes. The authors expressed the usefulness

of their pointcut by presenting an example on sanitizing web-applications. For instance,

such a pointcut can detect if the data sent over the network depends on information read

from a confidential file. This poincut is not fully implemented yet.

In [47], Harbulot and Gurd proposed a model of a loop pointcut that explores the need

for a loop join point that predicts infinite loops, which are used by attackers to perform

denial of service attacks. Their approach for recognizing loops is based on a control-

flow analysis at the bytecode level in order to avoid ambiguities due to alternative forms

of source-code that would produce identical loops. This model contains also a context

exposure mechanism for writing pointcuts that select only specific loops.

In [21], Boner discussed a poincut that is needed to detect the beginning of a syn­

chronized block and add some security code that limits the CPU usage or the number of

executed instructions. The author also explores the usefulness of capturing synchronized

112

blocks in calculating the time acquired by a lock and thread management. This result can

also be applied in the security context and can help in preventing many denial of service

attacks.

A predicted control flow (pcf low) pointcut was introduced by Kiczales in a keynote

address [54] without a precise definition. Such pointcut may allow to select points within

the control flow of a join point starting from the root of the execution to the parameter join

point. In the same presentation, an operator is introduced in order to obtain the minimum

of two pc f low pointcuts, but it is never clearly defined what this minimum can be or how

can it be obtained. These proposals could be used for software security, in the enforcement

of policies that prohibit the execution of a given function in the context of the execution of

another one.

Local variables set and get poincuts were introduced in [46] for increasing the efficiency

of AOP for security concerns. They allow to track the values of local variables inside a

method. It seems that these poincuts can be used to protect the privacy and integrity of

sensitive data. Their idea is based on the approach presented in [61], which describe an

extension of Java called JFlow. This language allows to statically checks information flow

annotations within programs and provides several new features such as decentralized label

model, label polymorphism, run-time label checking and automatic label inference. It also

supports objects, sub-classing, dynamic type tests, access control, and exceptions.

Aberg et al. presented in [9] an aspect system that addresses the crosscutting of event

notifications scattered over kernel code to support Bossa, an event-based framework for

process-scheduler development. This aspect system uses temporal logic to precisely de­

scribe code insertion points and sequences of instructions that require events to be inserted.

113

In each case, the choice of event depends on properties of one or a sequence of instructions.

They propose to guide the event insertion by using a set of rules, amounting to an aspect,

that describes the control flow contexts in which each event should be generated.

In a position paper [29], Cottenier et al. argued that Aspect-Oriented Modeling (AOM)

technologies have the potential to simplify the deployment and the ability to reason about

a category of crosscutting concerns that have been categorized in the literature as stateful

aspects. Stateful aspects trigger on a sequence of join points instead of a single join point.

They identified three properties of AOM languages that enable them to provide more nat­

ural solutions to the stateful aspect problem. They also presented a JAsCo aspect example

that captures a sequence of events(e.g., methodA - methodB - methodC) and at­

taches an advice to the last event (i.e., methodC).

5.3 Program Representation

Our propositions, together with their corresponding algorithms, are based and operate on

the control flow and call graphs representation of software. In this context, we present in

the following a brief background and some references to familiarize the reader with these

concepts.

5.3.1 Control Flow Graphs

A control flow graph (CFG) is a representation, using graph notation, of all possible flow

of execution that might be traversed through a program. A CFG is a cyclic directed graph

that supports loops. Each node in the graph represents a basic block, which is composed of

114

one or more code statements without branching. Most CFG representations have the entry

block, through which control enters in the flow graph, and the exit block, through which all

control flows leave. The directed edges of the graph are possible transitions from one basic

block to another in the control flow, typically due to a conditional branching (e.g. i f) or a

function call. It is not possible to determine which path will be executed without the use of

other techniques (e.g., data flow analysis). Control flow graphs can be used in optimizing

compilers [10] as well as for certain static analysis methods [72].

Here are some references related to algorithms that operate on CFG and that can be

useful for the elaborated algorithms of the pointcuts proposed in this chapter. In [28], the

authors proposed a simple and fast algorithm to calculate the dominance information (e.g.

dominator set) of CFG nodes. A dominator set of a node n (i.e., Dom(n)) contains the

nodes that lie on every path from the entry node of the CFG to n. They also surveyed

most of the related algorithms and approaches and compared them to their proposition.

An implementation of one of these algorithm (Class Dominacelnfo) has been provided

in [49] as part of the Machine-SUIF control flow analysis (CFA) library. It is built on

top of the control flow graph (CFG) [49] library and provides dominance analysis and

natural-loop analysis. Other approaches that use lattice theory allow to efficiently compute

a Lower Upper Bound (LUB) ancestor and Greater Lower Bound (GLB) descendant over

lattices [12]. However, their results do not guarantee that all paths will be traversed by

the results of LUB and GLB, which is a central requirement for our related propositions.

Moreover, the lattices do not support the full range of expression provided by the CFG, as

the latter can be a directed cyclic graph.

115

5.3.2 Call Graphs

A call graph is a potentially cyclic directed graph that is used to represent the calling struc­

ture between a program routines. Each node in a call graph represents a routine (procedure)

and each edge (a,b) indicates that routine "a" calls routine "b". A cycle in the graph indi­

cates recursive procedure calls. Call graphs can be dynamic or static. A dynamic call graph

only describes one run of the program. A static call graph is a call graph intended to rep­

resent every possible run of the program, which means every call relationship that occur

is represented in the graph. Call graphs can also be either context sensitive or context-

insensitive. In a context-sensitive graph, for each procedure, the graph contains a separate

node for each call stack this procedure can be activated with. In a context-insensitive, there

is only one node for each procedure and all the calls targeting this procedure are related

to this node. Context-insensitive call graph construction algorithms, such as the ones pro­

posed by Ryder [69], do not take into consideration the value of the variables used to call

the functions. The elaborated algorithms of the primitives proposed in this chapter operate

on context-insensitive call graphs.

We provide here some references for algorithms that operate on call graphs. Ryder

[69] provided one of the earliest contributions for efficient context-insensitive call graph

construction in procedural languages, and this contribution was quickly followed by the

notion of context sensitivity by Callahan et al. [25]. The construction of call graphs has

been documented by Grove et al. [45] in the case of object-oriented languages, and an

elaborated study of different algorithms was provided by Grove and Chambers in [44].

116

5.4 Pointcut and Primitive Definitions

In this section, we define the syntax and definitions of the proposed pointcuts and primi­

tives. Table 1 illustrates the syntax that defines a pointcut p and an advice declaration after

adding GAFlow, GDFlow, ExportParameter and Importparameter.

p ::= call(s) | execution(s) | GAFlow(p) |

p&Scp

advice <p> -. (before | after | around) [: e

{<advice-body>}

e ::= ExportParameter (<paran?List>)
i::= ImportParameter(<paramList>)

paramList ::= parameter [,paramhist]
parameter -.-.= <type> <identifier>

GDFlow(p)

I i | e,i]

1 P \ \ P I

Table 1: Syntax of the Pointcuts and Primitives

A function signature is denoted by s. The GAFlow and the GDFlow are the new control

flow based pointcuts. Their parameters are also pointcuts. The new primitives ExportPa­

rameter and Importparameter are e and / respectively. The arguments of ExportParameter

are the parameters to pass, while the arguments of ImportParameter are the parameters to

receive. In the following, we present the definition of each pointcut and primitive.

5.4.1 GAFlow and GDFlow Pointcuts

The GAFlow pointcut operates on the CFG of a program. Its input is a set of join points

defined as a pointcut and its output is a single join point. In other words, if we are consid­

ering the CFG notations, the input is a set of nodes and the output is one node. This output

is the closest common ancestor that is (1) the closest common parent node of all the nodes

117

specified in the input set and (2) through which all the possible paths that reach them pass.

In the worst case, the closest common ancestor will be the starting point in a program.

The GDFlow pointcut operates on the CFG of a program. Its input is a set of join

points defined as a pointcut and its output is a single join point. In other words, if we

are considering the CFG notations, the input is a set of nodes and the output is one node.

This output (1) is the common descendant of the selected nodes and (2) constitutes the first

common node reached by all the possible paths emanating from the selected nodes. In the

worst case, the first common descendant will be the end point in a program.

5.4.2 ExportParameter and ImportParameter Primitives

The ExportParameter and ImportParameter primitives operate on the call graph of a pro­

gram to pass parameters between two pointcuts. They should always be combined and

used together in order to provide the information needed for parameter passing from one

join point to another. The origin node is the join point where ExportParameter is called,

while the destination node is the join point where ImportParameter is called.

5.5 Discussion

This section discusses the usefulness, advantages and limitations of the proposed pointcuts

and primitives.

118

5.5.1 Usefulness of GAFlow and GDFlow for Security Hardening

Many security hardening practices require the injection of code around a set of join points

or possible execution paths [16,50,73,87]. Examples of such cases would be the injection

of security library initialization/deinitialization and data structure construction, privilege

level changes, atomicity guarantee, logging, etc. The current AOP models allow us only to

identify a set of join points in the program, and therefore inject code before, after and/or

around each one of them. However, to the best of our knowledge, none of the current

pointcuts enables the identification of a join point, common to a set of other join points

and satisfying the criteria of GAFlow et GDFlow, where we can inject the code when it

is needed and once for all of them. In the sequel, we present briefly the necessity and

usefulness of our proposed pointcuts for some security hardening activities.

Security Library Initialization/Deinitialization and Data Structure Construction

During the development of an AOP-based solution for securing the connections of client

applications, we intialiazed/de-initialized and built/de-built the data structures and objects

needed for GNU/TLS security library in the main function. Such solution works for small

size applications with single features. However, it is not relevant for large scale applica­

tions with multiple functionalities. Many APIs initialization and unneeded operations may

be performed, even if their corresponding features are not called during an execution con­

text of a program. In the case of embedded applications where the energy and memory

resources are limited, such solution could be ruinable. The proposed pointcuts allow to

solve this problem by executing these operations for the branches of code where they are

119

needed by identifying their GAFlow and/or GDFlow. Having both pointcuts would also

avoid the need to keep global state variables about the current state of library initialization.

We use as an example a part of an aspect that we elaborated for securing the connections of

a client application. With the current AOP pointcuts, the aspect targets the main function as

the location for the TLS library initialization, deinitialization and data structure construc­

tion, as depicted in Listing 5.23. In listing 5,24, we see an improved aspect targeting the

pointcuts GAFlow and GDFlow to perform these operations and offering more efficient and

wider applicable results.

advice execution ("% main (...) '
hardening
hardening

socketInfoStoragelnit
) : around

0 ;
initGnuTLSSubsystem(NONE);

*JP _ > proceed () ;
hardening
hardening

deinitGnuTLSSubsystem
socketInfoStorageDeina

*tjp -> result () = 0;

}

0;
t() ;

o {

Listing 5.23: Excerpt of Hardening Aspect for Securing Connections Using GnuTLS

a d v i c e G A F l o w t c a l l (" % c o n n e c t ! . . .) ") | | ca l l ("% s e n d (. . .) ") | | ca l l ("%
r e c v (. . .) ")) : before() {

h a r d e n i n g _ s o c k e t I n f o S t o r a g e l n i t 0 ;
hardening_initGnuTLSSubsystem(NONE);

}

a d v i c e G D F l o w (c a l l ("% c o n n e c t (. . .) ") | | ca l l ("% s e n d) . . .) ") | | ca l l ("%
r e c v (. . .) ") | | c a l l (" % c l o s e (. . .) ")) : a f t e r () {

hardening_deini tGnuTLSSubsystem () ,-
h a r d e n i n g _ s o c k e t I n f o S t o r a g e D e i n i t 0 ;

}

Listing 5.24: Excerpt of Improved Hardening Aspect for Securing Connections Using
GnuTLS

120

Principle of Least Privilege

For processes implementing the principle of least privilege, it is necessary to increase the

active rights before the execution of a sensitive operation, and to relinquish such rights

directly after its completion. Our pointcuts can be used to deal with a group of operations

requiring the same privilege by injecting the privilege adjustment code at the GAFlow and

GDFlow join points. This is applicable only in the case where no unprivileged operations

are in the execution path between the initialization and the deinitialization points. The

example in Listing 5.25 (made using combined code examples from [50]) shows an aspect

implementing a lowering of privilege around certain operations. It uses restrict tokens

and the SAFER API available in Windows XP. This solution injects code before and after

each of the corresponding operations, incurring overhead, particularly in the case where

the operations a, b and c would be executed consecutively. This could be avoided by using

GAFlow and GDFlow, as we show in Listing 5.26.

Atomicity

In the case where a critical section may span across multiple program elements (such as

function calls), there is a need to enforce mutual exclusion using tools such as semaphores

around the critical section. The beginning and end of the critical section can be targeted

using the GAFlow and GDFlow join points.

Listing 5.27, although correct-looking, can create unwanted side effects if two calls

(say, a and b) were intended to be part of the same critical section (i.e., in the same exe­

cution path), as the lock would be released after a, and acquired again before b, allowing

121

pointcut abc: call("% a(...)") || call("% b(...)") || call("% c(...)") ;

advice abc: around (){
SAFER_LEVEL_HANDLE hAuthzLevel;
// Create a normal user level.
if(SaferCreateLevel(SAFER_SCOPEID_USER, SAFER_LEVELID_CONSTRAINED, 0,

&hAuthzLevel, NULL)){
// Generate the restricted token that we will use.
HANDLE hToken = NULL;
if(SaferComputeTokenFromLevel(hAuthzLevel, NULL, khToken,0,NULL)){

//sets the restrict token for the current thread
HANDLE hThread = GetCurrentThread();
if (SetThreadToken(&hThread,hToken)){

tjp ->proceed () ;
SetThreadToken (&hThread, NULL) ,- //removes restrict token

}
else{//error handling}

}
SaferCloseLevel(hAuthzLevel);

}

J
Listing 5.25: Hypothetical Aspect Implementing Least Privilege

pointcut abc: call("% a(...)") || call("% b(...)") || call("% c(...)");

advice GAFlow(abc): before(){
SAFER_LEVEL_HANDLE hAuthzLevel;
// Create a normal user level.
if(SaferCreateLevel(SAFER_SCOPEID_USER, SAFER_LEVELID_CONSTRAINED, 0,

khAuthzLevel, NULL)){
// Generate the restricted token that we will use.
HANDLE hToken = NULL;
if(SaferComputeTokenFromLevel(hAuthzLevel, NULL, SchToken,0,NULL)){

//sets the restrict token for the current thread
HANDLE hThread = GetCurrentThread();
SetThreadToken(khThread,NULL);

• }

SaferCloseLevel(hAuthzLevel);

}
}

advice GDFlow(abc): after(){
HANDLE hThread = GetCurrentThread();
SetThreadToken(khThread,NULL); //removes restrict token

}
Listing 5.26: Improved Aspect Implementing Least Privilege

122

static Semaphore sem = new Sema p h o r e d) ;

pointcut abc: call("% a(...)") || call("% b (. . .) "

advice abc: before (){
try{

sem.acquire();
} catch(InterruptedException e) {//...}

}

advice abc: after (){
sem. release () ,-

}

) || c a 11 (" % c (. . .) ") ;

Listing 5.27: Aspect Adding Atomicity

the execution of another unwanted critical section, possibly damaging b internal state. Im­

proving this aspect in order to handle this case requires foreknowledge of the program event

flow, contradicting the core principle of separation of concerns and thus complicating fur­

ther maintenance activities and preventing aspect reuse. In contrast, by using our proposal,

the lock is acquired and released independently of the individual join points while guaran­

teeing that they will be, altogether, considered as one critical section. Listing 5.28 shows

this improvement.

pointcut abc: call("% a(...)") || call("% b(.

advice GAFlow(abc): before(){
static Semaphore sem = new Semaphore(1);
try{

sem.acquire();
} catch(InterruptedException e) {//...}

}

advice GDFlow(abc) : after (){
sem.release();

}

.)") | | call ("% c(. . .) ") ;

Listing 5.28: Improved Aspect Adding Atomicity

123

Logging

It is possible that a set of operations are of interest for logging purposes, but adding indi­

vidual log entry for each one of them would be redundant or of little use. This is why it

is desirable to use GAFlow and/or GDFlow in order to insert log statements before and/or

after a set of interesting transactions.

5.5.2 General Advantages of GAFlow and GDFlow

It is clear that the proposed pointcuts support the principle of separation of concerns by

allowing to implement program modification on a set of join points based on a specific

concern. We now present some general advantages of the proposed pointcuts:

• Ease of use: Programmers can target places in the application control flow graph

where to inject code before or after a set of join points without needing to manually

determine the precise point where to do so.

• Ease of Maintenance: Programmers can change the program structure without need­

ing to rewrite the associated aspects that were relying on explicit knowledge of the

structure in order to pinpoint where the advice code would be injected. For example,

if we need to change the execution path to a particular function (e.g., when perform­

ing refactoring), we also need to find manually the new common ancestor and/or

descendant, whereas this would be done automatically using the proposed pointcuts.

• Execution Time and Memory Consumption: Programmers can inject certain pre-

operations and post-operations where needed in the program, without having to resort

124

to injection in the catch-all main. This can improve the apparent responsiveness of

the application since certain lengthy operations (such as library initialization) can be

avoided if the branches of code requiring them are not executed, thus saving CPU

cycles and memory usage. Also, this avoids the execution of the pre-operations and

post-operations needed around each targeted join point, which is the default solution

using the actual AOP techniques. This is replaced by executing them only once

around the GAFlow and GDFlow.

• Raising the Abstraction Level: Programmers can develop more abstract and reusable

aspect libraries.

5.5.3 Usefulness of ExportParameter and ImportParameter for Secu­

rity Hardening

This section illustrates the necessity and usefulness of ExportParameter and ImportParam­

eter for some security hardening activities. This is done by (1) presenting an example

that secures a connection using the current AOP technologies, (2) exploring the need for

parameter passing and (3) presenting the solution of this example using our proposition.

Securing Connection using the Current AOP Technologies

Securing channels between two communicating parties is the main security solution ap­

plied to avoid eavesdropping, tampering with the transmission and/or session hijacking.

The Transport Layer Security (TLS) protocol is widely used for this task. We thus present

in this section a part of a case study, in which we implemented an AspectC++ aspect that

125

secures a connection using TLS and weaved it with client applications to secure their con­

nections. To generalize our solution and make it applicable on wide range of applications,

we assume that not all the connections are secured, since many programs have different

local interprocess communications via sockets. In this case, all the functions responsible

of sending and receiving data on the secure channels are replaced by the ones provided by

TLS. On the other hand, the other functions that operate on the non-secure channels are

kept untouched. Moreover, we addressed also the cases where the connection processes

and the functions that send and receive the data are implemented in different components

(i.e different classes, functions, etc.). In Listing 5.29, we see an excerpt of AspectC++ code

allowing to harden a connection.

In Listing 5.29, the reader will notice the appearance of h a r d e n i n g _ s o c k i n f o _ t

as well as some other related functions, which are underlined for the sake of convenience.

These are the data structure and functions that we developed to distinguish between se­

cure and insecure channels and export the parameter between the application components

at runtime. We found that one major problem was the passing of parameters between func­

tions that initialize the connection and those that use it for sending and receiving data. In

order to avoid sharing memory directly, we opted for a hash table that uses the Berkeley

socket number as a key to store and retrieve all the needed information (in our own defined

data structure). One additional information that we store is whether the socket is secured

or not. In this manner, all calls to a s e n d () are replaced at runtime by the secure sending

functions if the the socket is protected. This effort of sharing the parameter has both devel­

opment and runtime overhead that could be avoided by the use of a primitive automating

126

aspect SecureConnection {
advice execution ("% main (. . .) ") : around () {
hardening_socketInfoStoragelnit();
hardening_initGnuTLSSubsvstem(NONE);
tjp ->proceed () ;
hardeninq_deinitGnuTLSSubsystem();
hardening_socketInfoStorageDeinit();

}

advice call("% connect(...)") : around () {
//variables declared
hardeninq_sockinfo_t socketlnfo;
const int cert_type_priority[3] = { GNUTLS_CRT_X509,

GNUTLS_CRT_OPENPGP, 0};
//initialize TLS session info
gnutls_init (&socketlnfo.session, GNUTLS_CLIENT);
gnutls_set_default_priority (socketlnfo.session);
gnutls_certificate_type_set_jpriority (socketlnfo.session,

cert_type_priority);
gnutls_certificate_allocate_credentials (ksocketInfo.xcred);
gnutls_credentials_set (socketlnfo.session, GNUTLS_CRD_CERTIFICATE,

socketlnfo.xcred);
//Connect
tjp ->proceed () ,-
if(*tjp->result()<0) {perror("cannot connect ") ;

exit(l);}
//Save the needed parameters and the information that distinguishes

between secure and non-secure channels
socketlnfo.isSecure = true;
socketlnfo.socketDescriptor=*(int *)tjp->arg (0) ;
hardeninq_storeSocketInfo(*(int *)tjp->arg(0), socketlnfo);
//TLS handshake
gnutls_transport_set_ptr(socketlnfo.session, (gnutls_transport_ptr)
(*(int *)tjp->arg (0)));

*tjp->result () = gnutls_handshake (socketlnf o . session) ,-

}

//replacing sendO by gnutls_record_send() on a secured socket
advice call("% send(...)") : around () {

//Retrieve the needed parameters and the information that
distinguishes between secure and non-secure channels

hardening_sockinfo_t socketlnfo;
socketlnfo = hardening getSocketlnfo (* (int *) tjp ->arg (0)) ,-
//Check if the channel, on which the send function operates, is *

secured or not
if (socketlnfo.isSecure)

//if the channel is secured, replace the send by gnutls_send
*(tjp->result()) = gnutls_record_send(socketlnfo.session, *(char**)

tjp->arg (1) , *(int *) tjp->arg (2)) ;
else

tjp ->proceed () ,•

}
h
Listing 5.29: Excerpt of an AspectC++ Aspect Hardening Connections Using GnuTLS

127

the transfer of concern-specific data within advices without increasing software complex­

ity. Furthermore, other experiments with another security feature (encrypting sensitive

memory) showed that the use of hash table could not be generalized.

Need to Features for Passing Parameters

Our study of the literature and our previous experiments presented in Chapter 4 showed

that it is often necessary to pass state information from one part to another of the program

in order to perform security hardening. For instance, in the example provided in Listing

5.29, we need to pass the g n u t l s _ s e s s i o n _ t data structure from the advice around

c o n n e c t to the advice around s e n d in order to properly harden the connection. The

current AOP models do not allow to perform such operations. To address this limitation,

we integrated additional modules and data structures and changed some functions within

the application in order to pass the parameters. In the case of large scale applications with

multiple features and complex dependencies and relations between their components, such

solution is not realistic. It requires many complex re-engineering actions to be performed

since any changes in one component lead to apply several modifications in all its dependent

ones.

Securing Connection using ExportParameter and ImportParameter

We modified the example of Listing 5.29 by using the proposed approach for parameter

passing. Listing 5.30 presents excerpt of the new code. All the data structure and algorithms

(underlined in Listing 5.29) are removed. An ExportParameter for the parameters session

and xcred is added on the declaration of the advice of the pointcut that identifies the function

128

connect. On the other side, an ImportParameter for the parameter session is added on the

declaration of the advice of the pointcut that identifies the function send.

5.6 Methodology, Algorithms and Implementation

This section presents the elaborated methodologies and algorithms for dominator set, graph

labeling, GAFlow, GDFlow, ExportParameter and ImportParameter. Algorithms that op­

erate on CFG have been developed for decades now, and many graph operations are consid­

ered to be common knowledge in computer science. Despite this theoretical richness, we

are not aware of existing methods allowing to determine the GAFlow or GDFlow node for a

particular set of nodes (i.e., join points) in a CFG by considering all the possible paths. On

the other hand, the algorithms used to calculate the Dominator and Post-Dominator sets of

a CFG node can be extended to consider such criteria and build the algorithms of GAFlow

and GDFlow.

In this context, we propose two different sets of algorithms for GAFlow and GDFlow.

The first set is based on the Dominator and Post-Dominator algorithms of classical CFG,

while the second one operates on labeled graph (i.e., a label is associated to each node).

Choosing between these algorithms is considered only during the implementation phase

and left for the developers. We assume that the CFG is shaped in the traditional form, with

a single start node and a single end node. In the case of program with multiple starting

points, we consider each starting point as a different program in our analysis. Most of these

assumptions have been used so far [41]. With these statements in place, we ensure that our

algorithms will return a result (in the worst case, the start node or the end node) and that

129

aspect SecureConnection {

advice execution ("% main(...)") : around () {
gnutls_global_init () ;
tjp ->proceed () ;

gnutls_global_deinit();

}

advice call("% connect(...)") : around () : ExportParameter(
gnutls_session session, gnutls_certificate_credentials xcred){

//variables declared
static const int cert_type_priority[3] = { GNUTLS_CRT_X50 9,

GNUTLS_CRT_OPENPGP, 0 } ;
//initialize TLS session info
gnutls_init (ksession, GNUTLS_CLIENT);
gnutls_set_default_priority (session);
gnutls_certificate_type_set_jpriority (session, cert_type_priority),-
gnutls_certificate_allocate_credentials (&xcred);
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);
//Connect
t jp - > p r o c e e d () ;
i f (* t jp-> result () <0) { p e r r o r ("cannot connect "),- e x i t (l) ; }
//TLS handshake
g n u t l s _ t r a n s p o r t _ s e t _ p t r (s e s s i o n , (g n u t l s _ t r a n s p o r t _ p t r) (* (i n t *)tjp

- > a r g (0))) ;
* t j p - > r e s u l t () = gnu t l s_handshake (s e s s i o n) ;

}

/ / r e p l a c i n g send() by g n u t l s _ r e c o r d _ s e n d () . on a secured socke t
advice call("% send (. . .) ") : around () : Impor tParameter (gnut ls__session

s e s s i o n) {
/ /Check i f t h e channe l , on which t h e send f u n c t i o n o p e r a t e s , i s

s ecured o r not
i f (s e s s i o n != NULL)

/ / i f t h e channel i s s ecu red , r e p l a c e t h e send by g n u t l s _ s e n d
* (t jp -> result ()) = g n u t l s _ r e c o r d _ s e n d (* se s s ion , * (char**) t jp->arg

(1) , * (i n t *) t j p - > a r g (2)) ;
e l s e

tjp ->proceed () ;
}
h

Listing 5.30: Hardening of Connections using GnuTLS and Parameter Passing

130

this result will be a single and unique node for all the inputs.

5.6.1 GAFlow and GDFlow using Dominator and PostDominator

The problem of finding the dominators in a control-flow graph has a long history in the

literature and many algorithms have been proposed, improved and implemented [28,49].

To compute dominance information, as presented in [28], the compiler can annotate each

node in the CFG with a DOM and PDOM sets.

DOM(b) A node n in the CFG dorninates b if n lies on every path from the entry node

of the CFG to b. The set DOM(b) contains every node n that dominates b, including b.

The dominators of a node n are given by the maximal solution to the following data-flow

equations:

Dom(entry) = {entry} (1)

Dom(n) = I p | Dom(p) J \J{n} (2)
\p£preds(n) I

Where entry is the start node and preds(n) is the set of all the predecessors of n. The

dominator of the start node is the start node itself. The set of dominators for any other node

n is the intersection of the set of dominators for all predecessors p of n. The node n is also

in the set of dominators for n. To solve these equations, the iterative algorithm presented

in [28] can be used.

131

We elaborated and implemented Algorithm 1 to calculate the Dominator set. It is based

on the mechanisms identifying the possible paths reaching one destination from one source

node [34]. However, any other available algorithm that gives the same result can be useful.

This choice is completely left for the developer who is expert in such domain.

The proposed algorithm for finding the non-trivial dominator nodes of a node n, starting

from an entry point node is based on finding all the connecting (execution) paths between

node n and the entry Point node and then keeping only the common nodes of these paths.

The algorithm used for finding the connecting paths is using a marking map overlay that is

created recursively on the graph nodes starting from node n and finishing at the entry Point

node or the root node. More precisely, at each marked node we have a map containing

key and value pairs, with the keys corresponding to the previously connecting nodes and

increasing marking values (except for node n which has a mark entry with itself as key and

0 as the initial marking value) with respect to the corresponding connecting nodes.

Once the marking is completed, we can trace the paths by exploring the markings in

a recursive procedure that is tracking (adding the current node in the list upon entry and

popping it before exiting) with each recursion the explored nodes in a list of ascendants

constituting the currently explored path. The latter is added to the list of paths whenever

the currently explored node is in fact the target (entryPoint) node. In essence, at every

explored node, the markings of the parent node are iterated and compared against the mark­

ings of the current node in order to find an adjacent sequence of increasing values denoting

an unvisited branch. Whenever one is found, the corresponding marking is removed from

the marking map of the current node and the path tracing function is called recursively for

the parent node. Upon return, the removed marking is restored in order to allow for the

132

Algorithm 1 Algorithm to Determine the Dominator Set

1: Set DOM(Node entry Point N ode, Node n)
2: mark(entryPointNode, n);
3: Stack pathList = new Stack();
4: XracePath(entryPointNode, n, new Stack(), pathList);
5: SetmeetSet = {};
6: if IpathList.isEmptyQ then
7: meef5et.addAH(pai/iZ/ist.pop());
8: for each path pth in pathList do
9: meetSet = meetSet p | (Set)p£/i

10: end for
11: end if
12: return meetSet;
13:
14: markNode(Node targetNode, Node currentNode, Node branching Node, int

marWncfer)
if /3 currentN ode.pathM arkingM ap.g&HbranchingN ode) then

currentNode.pathMarkingA4ap.put(branchingNode, marklndex);
if currentNode != targetNode then

marklndex = marklndex + 1;
for each parent p in currentNode.parentList do

markNode(£ar(7e£./VoGfe, p, currentNode, marklndex);
end for

end if
end if
t r a c e P a t h (N o d e targetNode, Node currentNode, Stack ascendList, Stack pathList)
ascendList.push(currentNode);
if currentNode == targetNode then

List pai/i = new List();
pa£/i.addAll(ascen<£Lis£);
pa£/i.List.add(pa£/i);

else
for each parent p in currentN ode.parentList do

if 3 p.pathMarkingMap.get(currentNode) then
pathMarkValue=p.pathMarkingMap.get(currentNode);
for each markingKey in currentNode.pathMaringMap.keySetQ do

int markingValue = currentNode. pathMarkingMap.get(markingKey);
if markingValue + 1 = = pathMarkValue then

currentN'ode.pathMarkingMap.remove(markingKey);
tracePath(targetNode, p, ascendList, pathList);
currentNode.pathMarkingMap.put(mar king Key, markingValue);
break;

end if
end for

end if
end for

end if
ascendList.popQ;

133

discovery of other paths passing through the same node.

PDOM(b) A node n in the CFG post-dominates b if n lies on every path from b to the exit

node of the CFG. The set PDOM(b) contains every node n that post-dominates b, including

b.

A simple method to calculate the post-dominator sets is to reverse the edge direction

of the CFG, start from the exit node and apply the dominator algorithm [49]. The post-

dominator of the exit node is the exit node itself. In the case of multiple end points, we

consider each ending point as different program in our analysis (in fact, each ending point

will be a starting point after applying the CFG reverse edge direction mechanism).

/
N5

V. t&-
/ \

/ \ \
N6

*

entry

1 '
N1

1 '
N3

5 * *

N8

1 '
:y'-N9fik;

i
N10

i '
exit

\ /
N?

N4

Figure 10: Graph Illustrating the GAFlow and GDFlow of N2 and N7

134

Selected Nodes
N2,N7
N5,N6
N4,N6,N10
N8,N9

Common Dominator Set
entry, N1
entry, N1,N2
entry, Nl
entry, N1

GAFlow
Nl
N2
Nl
Nl

Table 2: Results of the Execution of Algorithm 2 on the Graph of Figure 10 (a)

Selected Nodes
DOM(N4)
DOM(N6)
DOM(IO)
CommonDominatorSet (N4, N6, N10)
GAFLow

N4, N6, N10
entry, Nl
entry, N1,N2
entry, N1,N9
entry, Nl
Nl

Table 3: Results of the Execution of Algorithm 2 on the Graph of Figure 10 (b)

Pointcut GAFLow

In order to compute the GAFlow, we developed a mechanism built on top of the dominator

algorithm. First, we calculate the common dominator set of all the selected nodes specified

in the parameter of GAFlow. Then we remove the selected nodes from the calculated set.

The last node in this set will be returned by Algorithm 2 as the closest guaranteed ancestor.

Algorithm 2 Algorithm to determine GAFlow using dominator

Require: SelectedNodes is initialized with the contents of the pointcut match
1: GAFlow(NodeSet SelectedNodes):
2: CommonDomSet <— 0
3: for all node € SelectedNodes do
4: CommonDomSet <— CommonDomSet U (DOM(node) — node)
5: end for
6: return GetLastNode{CommonDomSet)

We implemented Algorithm 1 to calculate the dominator set of a particular node. Then,

we implemented on top of it Algorithm 2 and applied this implementation into several case

studies, one of them is illustrated in Figure 10. The result and steps of calculating the

GAFlow of some selected nodes is illustrated in Tables 2 and 3.

135

Selected Nodes
N2, N7
N4, N5, N6
N6,N7
N8,N9

Common Post-Dominator Set
N9,N10,exit
N9,N10, exit
N8,N9,N10, exit
N10, exit

GDFlow
N9
N9
N8
N10

Table 4: Results of the Execution of Algorithm 3 on the Graph of Figure 10 (a)

Pointcut GDFLow

The closest guaranteed descendant is determined by elaborating a mechanism built on top

of the post-dominator algorithms. First, we calculate the common post-dominator set of

all the selected nodes specified in the parameter of GDFlow. Then we remove the selected

nodes from the calculated set. The first node in this set will be returned by the Algorithm 3

as the closest guaranteed descendant.

Algorithm 3 Algorithm to determine GDFlow using post-dominator

Require: SelectedNodes is initialized with the contents of the pointcut match
1: GDFlow(NodeSet SelectedNodes):
2: CommonPostDomSet <— 0
3: for all node G SelectedNodes do
4: CommonPostDomSet <— CommonPostDomSet U (PDOM {node) — node)
5: end for
6: return GetFirstNode{CommonPostDomSet)

Similarly to Algorithm 2, we implemented Algorithm 3 by reversing the edge direction

of the CFG, starting from the exit node and applying Algorithm 1 to calculate the post-

dominator set of a particular node [49]. Then, we applied this implementation on several

case studies, one of them illustrated in Figure 10. The result and steps of calculating the

GDFlow of some selected nodes is illustrated in Tables 4 and 5.

136

SelectedNodes
PDOM(N4)
PDOM(N5)
PDOM(N6)
CommonPostDominatorSet (N4, N5, N6)
GDFLow

N4, N5, N6
N7,N8,N9,N10, exit
N9,N10,exit
N8,N9,N10, exit
N9.N10, exit
N9

Table 5: Results of the Execution of Algorithm 3 on the Graph of Figure 10 (b)

5.6.2 GAFlow and GDFlow using Labeled Graph

As an alternate solution to determine the GAFlow and GDFlow, we also chose to use a

graph labeling algorithm developed by our colleagues that we slightly modified in order to

meet our requirements. This algorithm allows to associate a label to each node of a graph

as depicted in Figure 11. Algorithm 4 describes the graph labeling method.

entry[0]

N1[0.0.]

N2[0.0.0.] z\ N3[0.0.1.]

N5[0.0.0.0.] N6[0.0.0.1.] N7[0.0.1.0., 0.0.2.0.]

N9[0.0.0.0.0., 0.0.0.1.0.0., 0.0.1.0.0.0., 0.0.2.0.0.0.]

N10[0.0.0.0.0.1., 0.0.0.1.0.0.1., 0.0.1.0.0.0.1., 0.0.2.0.0.0.1.]

exit[0.0.0.0.0.1.0., 0.0.0.1.0.0.1.0., 0.0.1.0.0.0.1.0., 0.0.2.0.0.0.1.0.]

Figure 11: Sample Labeled Graph

Each node down the hierarchy is labeled in the same manner as the table of contents

137

Algorithm 4 Hierarchical Graph Labeling Algorithm

1: l abe lNode (Nodes , LabeH):
2: s.labels <— s.labels U {1}
3: Node Sequence children = s.childrenQ
4: for k = 0 to {children] — 1 do
5: C/M/CZ <— c/i«Zdren[/c]

6: if ihasProperPre fix(child, s.labels) then
7: labelNode(child,l+ck+c"");
8: end if
9: end for

10:
11: h a s P r o p e r P r e fix(Node s, LabelSet parent Labels):
12: if s.label — e then
13: return false
14: end if
15: if 3s G Prefixes(s.label) : s € parentLabels then
16: return true
17: else
18: return false
19: end if
20:
21: P r e f ixe s (Labe l /) :
22: LabelSet labels <— 0
23: Label current <—""
24: for i <— 0 to l.lengthQ do
25: current.append(l.char At(i))
26: ifZafce/l.c/iar^tO') = '.' then
27: labels.add(current.cloneQ)
28: end if
29: end for

138

Selected Nodes
N2,N7
N5,N6
N4,N6,N10
N8,N9

G'A Flow
Nl
N2
Nl
Nl

Table 6: Results of the Execution of Algorithm 5 on the Labeled Graph of Figure 11

of a book (e.g., 1., 1.1., 1.2., 1.2.1., ...), as depicted by Algorithm 4, where the operator

+ c denotes string concatenation (with implicit operand type conversion). To that effect,

the labeling is done by executing Algorithm 4 on the start node with label "0.", thus

recursively labeling all nodes.

We implemented Algorithm 4 and tested it on a hypothetical CFG. The result is dis­

played in Figure 11. This example will be used throughout the rest of this chapter.

Pointcut GAFlow

In order to compute the GAFlow, we developed a mechanism that operates on the labeled

graph. We compare all the hierarchical labels of the selected nodes in the input set and find

the largest common prefix they share. The node labeled with this largest common prefix is

the closest guaranteed ancestor. We insure that the GAFlow result is a node through which

all the paths that reach the selected nodes pass by considering all the labels of each node.

This is elaborated in Algorithm 5. Please note that the FindCommonPref i x function

was specified recursively for the sake of simplicity and understanding.

We implemented Algorithm 5 and we applied it on the labeled graph of Figure 11, We

selected, as case study, some nodes in the graph with various combinations. Few results

are summarized in Table 6 and Figure 12.

139

Algorithm 5 Algorithm to determine GAFlow using labeled graph

Require: SelectedNodes is initialized with the contents of the pointcut match
Require: Graph has all its nodes labeled

GAFlow(NodeSet SelectedNodes):
LabelSequence Labels <— 0
for all node £ SelectedNodes do

Labels <— Labels U node.labelsQ
end for
return GetNodeByLabel(FindCommonPrefix(Labels))

FindCommonPref i x (LabelSequence Labels):
if \Labels\ = 0 then

return error
else if \Labels\ = 1 then

return Labels.removeHeadQ
else

Label Labell <— Labels.removeHeadQ
Label Labell <— Labels.removeHead()
if \Labels\ = 2 then

for i <— 0 to min(Label.lengthQ, Label2.length() do
if Labell.charAt(i) ^ Labell.char At(i) then

return Labell.substring(0,i - 1)
end if

end for
return Labell.substring(0,min(Label.length(), Label2.lengthQ)

else
Label Partial Solution <— FindCommonPref ix(Labell,Label2)
Label s.append(Partial Solution)
return FindCommonPrefix(Labels)

end if
end if

140

entry[0.]

N1[0.0]

N5[0.0.0.0.] N6[0.0.0.1.] N7[0 010 0 0 2 0]

N8[0.0.0.1.0., 0.0.1.0.0., 0.0.2.0.0.]

Figure 12: Excerpt of Labeled Graph Illustrating the GAFIow of N2 and N7

Pointcut GDFlow

The same mechanism for reversing the edge direction of the CFG [49], that calculates the

post-dominator set by using the dominator algorithm, can also be applied to determine the

closest guaranteed descendant on a labeled graph (see Section 5.6.1 for more detail). Once

the edge directions are reversed, labeling the CFG can be performed and then the same

algorithm used for calculating the GAFLow (Algorithm 5) can be applied to determine the

GDFLow.

We used the same implementation of Algorithm 4 and case study illustrated in Figure

11. Then, we applied the aforementioned mechanism and implemented Algorithm 5 to

calculate the GDFlow for the selected nodes. Table 7 contains few results along with

Figure 13.

141

Selected Nodes
N2,N7
N4, N5, N6
N6,N7
N8,N9

GDFlow
N9
N9
N8
N10

Table 7: Results of the Execution of Reverse Edge Direction and Algorithm 5 on the La­
beled Graph of Figure 11

entry[0.]

N1[0.0.]

N5[0.0.0.0] N6[0.0.0.1.] N'[0 0 1 0 0 0 2 0]

N9[0.0.0.0.0., 0.0.0.1.0.0., 0.0.1.0.0.0., 0.0.2.0.0.0.}

Figure 13: Excerpt of Labeled Graph Illustrating the GDFlow of N2 and N7

5.6.3 Primitives ExportParameter and ImportParameter

This section presents the implementation methodology and algorithms of the proposed

primitives responsible of passing parameters, together with the experimental results. These

primitives are the ExportParameter and ImportParameter. The ExportParameter is used in

the advice of the origin pointcut to make the parameters available, while the ImportParam­

eter is used in the advice of the destination pointcut to import the needed parameters.

Algorithm 7 allows parameter passing between two nodes of the context-insensitive

142

call graph of a program [44], with each node representing a function and each arrow rep­

resenting a call site. To ensure the declaration and initialization of the passed parameter

all the time, whatever the selected execution path, we elaborated on top of this algorithm a

mechanism based on the GAFlow. This mechanism exports the parameter from the origin

to the destination nodes.

This is achieved by performing the following steps: (1) Calculating, using the CFG, the

closest guaranteed ancestor {GAFlow) of the origin (ExportParameter) and destination join

points (ImportParameter), (2) localizing the three nodes representing the origin, destination

and GAFlow in the call graph, (3) declaring and initializing the parameter in the node

representing the GAFlow in the call graph, (4) executing Algorithm 7 to pass the parameter

from the origin node to the GAFlow node, and (5) executing again the same algorithm

to pass the parameter from the GAFlow node to the destination node. This procedure is

described in Algorithm 6 and operates on one parameter at a time.

The GAFlow of a set of points is always called before the points themselves {GAFlow

criteria). By passing the parameter from the origin to GAFlow and then to the destination,

we ensure that the parameter will be definitely declared and initialized, even if the destina­

tion is called before the origin. Otherwise, the parameter could be communicated without

initialization, which would create software errors and affect the correctness of the solution.

However, in all the security hardening cases we have treated, the origin is always called

before the destination. For instance, in the case study of securing the connection of appli­

cations, the functions responsible for establishing the connections are always called before

the functions responsible for exchanging data, otherwise there will be an execution error.

This also apply on all the cases where a sequence of operations should be executed in order

143

(3) (2 ;

gaflow

^ 1

destination

010

origin

1: Identify GAFlow 2: Origin —> GAFlow 3: GAFlow —> destination

Figure 14: Parameter Passing in a Call Graph

to provide a particular functionality (indeed, this is the only cases where we need to pass

parameters between two points in a program).

Figure 14 shows an illustration of Algorithm 6 on a call graph example. To pass the

parameter from h to g, their GAFlow, which is b in this case, is first identified. Afterwards,

the parameter is passed over all the call sites (paths) from h to b, then from b to g again

over all the call sites.

Algorithm 6 Algorithm to Pass the Parameter between two pointcuts
1: function p a s s P a r a m e t e r (N o d e origin, Node end, Parameter param):
2: if origin = destination then
3: return success
4: end if

5: start <— GuaranteedAncestor(origin, end)
6: passParamOnBranch(start, origin,param)
7: node.add,LocalVariable{param)
8: passParamOnBranch(start, end,param)

The proposed methodology presented in Algorithm 7 allows to modify the function

signatures and calls in a way that would preserve the program syntactical correctness and

144

intent (i.e., would still compile and behave the same). It finds all the call sites (paths) be­

tween the origin node and the destination node in the call graph. For each one, it propagates

the parameter from the called function to the caller, starting from the end of the path. In

other words, the signatures of all the functions involved in the call graph between the ex­

porting and importing join points are augmented by a parameter i n o u t . All calls to these

functions are modified to pass the parameter as is, in the case of the functions involved in

this transmission path (e.g., nodes b, c,d,e and / of Figure 14). In order to be optimal in the

presence of loops, it modifies all the callers only one time and keeps track of the modified

nodes.

We implemented a program similar to the scenario of the call graph illustrated in Figure

14. This program, which is presented in Listing 5.31, is essentially a client application that

establishes a connection, sends a request and receives a response from the server. Then,

we simulated the execution of the proposed primitive algorithms and applied manually the

aspects presented in Listings 5.30 on this application in order to secure its communication

channels, producing the programme in Listing 5.32. We successfully tested the correctness

of the hardened applications with SSL enabled web server by capturing the exchange of

data packets, demonstrating that the communication was effectively encrypted.

5.7 Conclusion

AOP is a very promising paradigm for software security hardening. However, this tech­

nology was not initially designed to address security issues and many research initiatives

145

const char * HTTPreguest = "GET / HTTP/1.1 \nHost: localhost\n\n";

int. dosend(int sd, char * buffer, unsigned int bufSize){

return send(sd, buffer, bufSize, 0);

}

int doreceive(int sd, char * buffer, unsigned int bufSize){

return recv(sd, buffer, bufSize, 0);

}

int doConnect(int sd, struct sockaddr_in servAddr){

return connect(sd, (struct sockaddr *) kservAddr, sizeof(servAddr));

} .

int main (int argc, char *argv[]) {
/* ... */
/* create socket */

sd = socket(AF_INET, SOCK_STREAM, 0);

/* connect to server */
rc= doConnect(sd, servAddr);

/*send/receive*/
re = dosend(sd);
fprintf (stderr, "Sent %u characters : \n%s\n" , re, HTTPrequest) ,-
memset((void *)buf, 0, MAX_MSG);
rc=doreceive(sd, buf, MAX_MSG) ,-
fprintf(stderr,"Received %u characters:\n%s", re, buf);

/* Shutdown */
close(sd);

• / * . . . * /

}

Listing 5.31: Excerpt of a Program to be Hardened

146

file:///nHost

const char * HTTPrequest = "GET / HTTP/1.1 \nHost: localhost\n\n";
int dosendfint sd, char * buffer, unsigned int bufSize, gnutls_session_t

* session){
if(session != NULL) return gnutls_record_send(*session, buffer,

bufSize);
else return send(sd, buffer, bufSize, 0);

}
int doreceive(int sd, char * buffer, unsigned int bufSize,

gnutls_session_t * session){
if(session != NULL) return gnutls_record_recv(tsession, buffer,

bufSize),-
else return recv(sd, buffer, bufSize, 0);

}
int doConnect(int sd, struct sockaddr_in servAddr, gnutls_session_t *

session, gnutls_certificate_credentials_t * xcred){
static const int cert_type_priority[3] = { GNUTLS_CRT_X509,

GNUTLS_CRT_OPENPGP, 0};
int re;
gnutls_init (session, GNUTLS_CLIENT);
gnutls_set_default_priority (*session);
gnutls_certificate_type_set_priority (*session, cert_type_priority),-
gnutls_certif icate_allocate_credentials (xcred) ,-
gnutls_credentials_set (*session, GNUTLS_CRD_CERTIFICATE, *xcred);
re = connect(sd, (struct sockaddr *) kservAddr, sizeof(servAddr));
if(re >= 0){
gnutls_transport_set_ptr (tsession, (gnutls_transport_ptr) sd) ,-
re = gnutls_handshake (*session);

}
return re;

}
int main (int argc, char *argv[]) {

gnutls_global_init ();

/* create socket */
sd = socket (AF_INET, SOCK_STREAM, 0) ,-
if(sd<0) {
perror("cannot open socket");
exit(l); }

doConnect (sd, servAddr, ksession, &xcred) ,-
dosend (sd, HTTPrequest, strlen (HTTPrequest) + 1, &session) ,-
memset((void *)buf, 0, MAX_MSG);
doreceive(sd, buf, MAX_MSG,&session);
/* Shutdown */
close (sd) ,-
gnutls_bye(session, GNUTLS_SHUT_RDWR);
gnutls_deinit(session);
gnutls_certificate_free_credentials(xcred);
gnutls_global_deinit();
return 0;

]
Listing 5.32: Resulting Hardened Program

147

file:///nHost

Algorithm 7 Algorithm to Pass a Parameter Between Two Nodes of a Call Graph

function passParamOnBranch(Node origin, Node destination, Parameter param):
if origin = destination then

return success
end if
paths <— findPathsBetween(origin, destination)
for all path G paths do

path. remove(ori gin)
while -^path.isEmptyQ do

currnode <— path.tailQ
path.remove(currnode)
if -mode.signature.isModifiedQ A
^parameter 6 currnode.signature() : parameter = param then

node.signature.addParameter(param)
node.signature.markModified()
modi f yFunctionsC all sTo
(currNode, param)

end if
end while

end for
return success

function m o d i f y F u n c t i o n s C a l l s T o (N o d e currnode, Parameter param):
for all caller G currnode.getCallersQ do

for all call G caller. getC'all sTo(node) : ->call. modified do
call.parameters.add(param)
call.modified = true

end for
end for

showed its limitations in such domain. Similarly, we explored in this chapter the limita­

tions of AOP in applying some security hardening practices. Consequently, this imposes

restrictions to the proposed security hardening framework, from which the need to ex­

tend this technology with new pointcuts and primitives. In this context, we elaborated the

following AOP pointcuts and primitives that enrich our proposed framework and AOP lan­

guages and provide features needed for systematic security hardening concerns: GAFlow,

148

GDFIow, ExportParameter and ImportParameter. The GAFlow returns the closest ances­

tor join point to the pointcuts of interest that is on all their runtime paths. The GDFIow

returns the closest child join point that can be reached by all paths starting from the point-

cuts of interest. The two primitives pass parameters from one advice to the other through

the program call graph. We explored the viability of the proposed pointcuts and primitives

by (1) exploring their advantages for security hardening, (2) developing their corresponding

algorithms and (3) presenting the results of explanatory case studies.

149

Chapter 6

Formal Semantics of SHL Weaving

6.1 Introduction

The main intent of this chapter is to ascribe a formal semantics of the SHL language, and

hence for the whole security hardening solutions performed by the proposed framework.

The work performed to reach this objective results in two main contributions:

• Elaborating a novel approach for applying aspect-oriented weaving on the Gimple

representation of software.

• Elaborating a formal semantics of SHL weaving based on the Gimple representation

of software.

The initial security hardening approach discussed in Chapter 4 is based on the follow­

ing components: Security Hardening Language (SHL), plans, patterns and their equivalent

aspects. The combination of these components allows the developers to perform systematic

security hardening of software by applying well-defined solutions and without the need to

150

have security expertise. In this approach, the security hardening solutions need to be re­

fined manually into the current AOP languages (e.g., AspectC++, AspectJ) before weaving

the security components into the code.

In this chapter, we extend our proposition by elaborating a new approach that allows

to apply the hardening on the Gimple representation (tree) of software and avoid in some

cases the refinement of pattern to the current AOP technologies. Gimple is an intermedi­

ate representation of a program. It is language-independent and tree-based representation

generated by GNU Compiler Collection {GCC) during the compilation. We propose in

this chapter novel weaving capabilities for Gimple to be integrated into the GCC compiler.

These features allow to compile the security hardening patterns and inject them into the

Gimple tree of a program during the GCC compilation. Beside, exploiting Gimple inter­

mediate representation enables to advise an application written in a specific language with

code written in a different one.

Regarding the formal specification of SHL, we present in this chapter a core syntax for

Gimple, a core syntax for SHL syntax, and formal semantics for Gimple weaving. This for­

mal specification constitutes an initial attempt and a guide toward developing a complete

weaver for Gimple. It also constitutes a base for applying formal verification on the per­

formed security hardening solutions. We demonstrate the feasibility of our propositions by

providing the methodology and results of implementing into GCC some weaving features

illustrated in the proposed semantics. This is followed by a case study for securing the con­

nections of client applications, where the hardening is applied on the Gimple representation

and compiled using our extended GCC.

151

The remainder of this chapter is organized as follows. We provide in Section 6.2 a

brief background on formal description and semantics and summarize in Section 6.3 the

related work on AOP weaving semantics. Afterwards, in Section 6.4, we illustrate the new

proposition for systematic security hardening where weaving is performed on the Gimple

representation of a software by adopting an aspect-oriented style. Then, in Section 6.5, we

present the syntax of SHL and Gimple and provide the operational semantics for Gimple

weaving. After that, we explain briefly in Section 6.6 the methodology and results of imple­

menting several Gimple weaving capabilities into the GCC compiler. Finally, we illustrate

in Section 6.7 a security hardening case study and offer in Section 6.8 some concluding

remarks.

6.2 Formal Semantics

Formal semantics constitutes of rigorous mathematical study of the meaning of languages

and models of computation [65,77]. It allows to prove the properties of a program. The

formal semantics of a language is specified by a mathematical model that illustrates the

possible computations described by the language. There are many approaches to formal

semantics that belong to three major classes: Operational semantics, denotational seman­

tics and axiomatic semantics. These three classes are presented in the increasing order of

abstraction with respect to the concepts of meaning underlying them. The following is a

brief description for each one of them:

• Operational semantics describes the execution of the language directly rather than

by translation. It somehow corresponds to interpretation, where the implementation

152

language of the interpreter is a mathematical formalism. The operational semantics

may define an abstract machine and give meaning to the transitions between its states.

It may also be defined via syntactic transformations on phrases of the language itself.

• Denotational semantics translates each phrase in the language to another phrase in

another language. It somehow corresponds to compilation, where the target language

is a mathematical formalism.

• Axiomatic semantics gives meaning to phrases by expressing the logical axioms that

apply to them. Axiomatic semantics does not distinguish between a phrase meaning

and the logical formulas describing it. A phrase means exactly what can be proven

about it in some logic.

Since this chapter presents an operational semantics for SHL weaving, in the sequel we

elaborate more about this approach and introduce the used structural operational seman­

tics. Operational semantics is considered as a method to give meaning to programs in a

mathematically rigorous way. It describes how a valid program is interpreted as sequences

of computational steps, which then constitute the meaning of the whole program. The final

step in the terminating sequence returns the value of the program in the case of a functional

program. A program could be also nondeterministic, in this context there may be many

computation sequences and many return values.

Structural operational semantics is an approach proposed to give logical means in defin­

ing operational semantics [67]. It consists of defining the behavior of a program in terms of

the behavior of its parts. Hence, it provides a structural, a syntax oriented and an inductive

view on operational semantics. Computation is represented by means of deductive systems

153

that turn the abstract machine into a system of logical inferences. This allows to apply

formal analysis on the behavior of programs. The proofs of program properties are derived

directly from the definitions of the language constructs because the semantics descriptions

are based on deductive logic.

With structural operational semantics, the behavior of a program is defined in terms

of a set of transition relations. Such specifications take the form of inference rules. The

valid transitions of a composite piece of syntax is defined into these rules in terms of the

transitions of its components. Definitions are given by inference rules, which consist of a

conclusion that follows from a set of premises, possibly under control of some conditions.

An inference rule has a general form consisting of the premises listed above a horizontal

line, the conclusion below, and the condition, if present, to the right, as follows [77]:

premise i premise2 ... premisen

conclusion

If n=0, i.e., the number of premises is zero, then the line containing the premises is

omitted, and we refer to the rule as an axiom.

6.3 Related Work on AOP Weaving Semantics

The related work that addresses AOP weaving semantics is presented in this subsection.

None of them has defined a semantics that demonstrates how to weave in Gimple trees.

The most prominent research proposals in this area are the contribution of Walker

et al. [84] where the authors have defined the semantics of the aspect-oriented language

MinAML, and the contribution of Dantas et. al. [30] where the authors have defined

154

PolyAML, a typed functional and aspect-oriented language. They have used labels to mark

points where advices are going to be injected. Advices are applied to the arguments or to

the result of a function.

Tatsuzawa et al. [59] have implemented an aspect-oriented version of core O'Caml

called Aspectual Caml. Aspectual Caml carries out type inference on advices without

consulting the types of the functions designated by the pointcuts. In addition, there are no

formal definitions for Aspectual Caml.

Wand et al. [85] have presented a denotational semantics for pointcuts and advices

of an AOP language defined in the Aspect Sand Box (ASB) project [36]. The language is

untyped. The language of the pointcuts includes designators for procedure calls and control

flows, but not for variable access or update.

Wang et.al. [86] have provided seamless integration of AOP paradigm and strongly-

typed functional language paradigm through a static weaving process, which deals with

around advices and type-scoped pointcuts in the presence of higher-order functions. How­

ever, their advice is scoped such that it is not possible to install advice that will affect

already defined functions.

It is noticeable that all the previous contributions target AOP with functional program­

ming. As a new idea, a name-based calculus fiABC [23] has been introduced in which

aspects are the primitive computational entities. The authors have demonstrated its ex­

pressiveness by presenting encodings of various other languages into /xABC. In //ABC,

computational events are messages sent from a source to a target.

155

6.4 Gimple Weaving Approach

This section summarizes the approach for systematic security hardening and presents an

extension to it based on Gimple weaving and needed to achieve our objectives. The whole

approach architecture is illustrated in Fig. 15.

In the original approach presented in Chapter 4, once the security hardening solutions

are built, the refinement of the solutions into aspects or low level code can be performed

by programmers who do not need to have any security expertise. Afterwards, an AOP

weaver (e.g., AspectJ, AspectC++) can be executed to harden the aspects into the original

source code. This task still requires human interaction to refine the patterns into aspects by

providing some parameters needed for the implementation.

We first provide in this chapter an extension to this approach, which allows bypass­

ing the refinement step from pattern into aspect, and consequently not using the current

AOP weavers to harden the software. The hardening tasks specified into the patterns are

abstract and programming language-independent, which makes the Gimple representation

(i.e., Gimple Tree) of software a relevant target to apply the security hardening.

In this approach, the SHL patterns and the original software are passed to an extended

version of the GCC compiler, which generates the executable of the trusted software. An

additional pass has been added to GCC in order to interrupt the compilation once the Gim­

ple representation of the code is completed. In parallel, the hardening pattern is compiled

and a Gimple tree is built for each Behavior (Please see SHL syntax in Fig. 16) using

the routines of GCC provided for this purpose. Afterwards, the generated security trees

will be integrated in the tree of the original code with respect to the location(s) location

156

/ Security
^ Hardening Plan

Interrupt GCC

Compile Pattern

Software
Gimple Tree

Security
Gimple Trees

Gimple Weaving
GCC

Compilation

Figure 15: Approach Architecture

157

specified into each Location_Behavior of the pattern. Finally, the resulting GimpJe tree is

passed again to GCC in order to continue the regular compilation process and produce the

executable of the secure software. The added features was originally implemented by our

colleagues [89] in order to insert code for monitoring. We have modified it in order to inject

the security functionalities specified in the hardening pattern.

Moreover, we have elaborated the formal specification of weaving an SHL pattern into

the Gimple representation of a software. In this context, we provide in this chapter the

syntax of SHL and Gimple, together with a formal operational semantics of the weaving

capabilities. Providing such semantics allows to understand the inner working of Gimple

procedures, and hence leads to complete implementation of the weaving capabilities for

Gimple. Moreover, it may allow to formally verify the effect of applying the security

hardening patterns and solutions into applications.

Beside the fact that the contributions presented in this chapter improve the approach for

systematic security hardening, it also constitutes by itself the first attempt towards adopting

aspect-oriented programming on Gimple, exploring it into a formal operational semantics

and exploiting Gimple intermediate representation to weave an application written in a

specific programming language with code written in a different one.

We have illustrated the feasibility of our propositions by developing several Gimple

weaving features into GCC and elaborating a case study showing first the use of AOP (As-

pectC++) to secure the connections of an application implemented in C++ , then exploring

the Gimple weaving of the extended GCC to integrate the same security code in the Gimple

tree. The experimental results explore the relevance of applying both methods to harden

security.

158

6.5 Formal Weaving Description

In this section, we present part of the syntax of SHL and Gimple that serves our goals.

Beside, the weaving semantics is provided. This semantics describes how to inject security-

related code at specific locations in the Gimple representation of programs. We first define

the notations that are used along this section.

Notations

• Given a record space D = (/j : Dy, /2 : D2, • • ., /„ : Dn) and an element e of type

D, the access to the field ft of an element e is written as e./j.

• Given a type r , we write r- s e t to denote the type of sets having elements of type

T.

• Given a type T, we write r - l i s t to denote the type of lists having elements of type

r .

• The type Identifier classifies identifiers.

6.5.1 SHL and Gimple Syntax

In this subsection, we present only the parts of the syntax of SHL and Gimple necessary to

ascribe the proposed weaving semantics. An environment is built from a Gimple program

{Program) and a pattern (SHPattern). The SHL syntax describing a security hardening

pattern is presented in Figure 16. We added labels to the syntax in order to use them in

the semantics rules. A hardening pattern is based on the pointcut-advice model of AOP.

159

Environment

SHPattern

SH Pattern Body

Location Behavior

Location

Location Identifier

Boolean Location

BehaviorCode

Fname

Vname

'.'.—

::=

::=

1

' 1
1

1

::=
::=

(program'. Program,

pattern'. SH pattern

P a t t e r n PatlernName

Matching_Criteria?

SH Pat tern Body

Location Behavior - l i s t

{insertionPoint'. b e f o r e | a f t e r | r e p l a c e ,

location'. Location,

primitive'. Primitive - s e t .

code'. Behavior Code)

Location Identifier j Boolean_Location

(kind'. F u n c t i o n C a l l |

F u n c t i o n E x e c u t i o n | W i t h i n F u n c t i o n ,

signature'. Fname)

(kind'. s e t | g e t ,

signature! Vname)

Location a n d Location

Location o r Location

n o t Location

(iRetType'. i n t e g e r _ t y p e | r e a l _ t y p e

b o o l e a n t y p e | v o i d t y p e ,

iName'. Fname)

Identifier

Identifier

(Environment)

(Pattern)

(Behavior)

(location)

(Code)

Figure 16: SHL Syntax

A SH Pattern includes a list of behaviors {Location Behavior). Each Location Behavior

specifies where (insertionPoint) and what (code) to insert at specific location location. The

behavior insertionPoint specifies the point of code insertion after identifying the location.

The behavior insertionPoint can have the following three values: B e f o r e , A f t e r or

R e p l a c e . The insertion point R e p l a c e means remove the code at the identified loca­

tion and replace it with the new code, while the B e f o r e or A f t e r means keep the old

code at the identified location and insert the new code before or after it respectively. Lo­

cation is composed of one or more Locationldentifier that identify the joint points in the

160

program where the BehaviorCode should be integrated. The list of constructs used in Lo­

cation Identifier is left open for future extensions. Depending on the need of the security

hardening solutions, a developer can define his own constructs. We consider the following

base locations:

• F u n c t i o n C a l l : picks out the join points where we call a specific function.

• F u n c t i o n E x e c u t i o n : picks out the join points referring to the implementation

of a specific function.

• W i t h i n F u n c t i o n : picks out the join points within a specific function.

• s e t : picks out the join points where we set a method local variable.

• g e t : picks out the join points where we get a method local variable.

The locations Location can be combined using logical operators to produce more complex

ones. The code Behavior Code that is going to be weaved is specified by its name and its

return type. Actually this code could be provided as an interface or a library, or left to be

implemented by the user.

Since Gimple contains a lot of constructs, only the ones needed to express the weaving

semantics are chosen and presented in Figures 17 and 18. A Gimple program Program con­

sists of the following main parts: a set of function declarations fans, a set of types rypes,

and a set of constants const. A function declaration specifies the function name fname, the

function type ftype, the argument declarations args, the result declaration result, and the

function block block. The function block Block represented by b i n d _ e x p r contains the

161

Program '.

FunDecl '.

Block I

Stmt

ModifySlmt '.

CallSlmt :

IJStmt I

Lhs :

Rhs :

UnStmt '.

BinSlmt '.

AddrExpr '.

'.— {funs',

types',

const'. l
l
l
l
l
l

I = (ekind'.

decl'.

body'.

I = Modify Stmt

'.— {kind:

ihs:

rhs'.

:= {kind:

addrExpr'.

arglist'.

1= {kind:

condition'.

opi'.

op2~-

I— ParmDecl \

'.= Const | Lhs

:= {op:

:= (op i :

0P2'-

:= {kind:

type'.

op:

FunDecl - s e t ,

Type - s e t ,

Const - s e t)

f u n c t i o n _ d e c l ,

Fname,

FunType,

ParmDecl - s e t ,

ResDecl,

Block)

b i n d _ e x p r ,

VLDecl - s e t ,

S w w - l i s t)

| CallStmt | Block

m o d i f y _ e x p r ,

Lhs,

Rhs)

c a l l _ e x p r ,

AddrExpr,

VPDecl - s e t)

c o n d _ e x p r , (i f)

Condition,

Stmt-list,

Stmt-list)

VarDecl | IndirectRef

CallStmt | UnStmt | BinSlmt

Const \ParmDecl \ VarDecl

Const \ParmDecl \ VarDecl

Const \ParmDecl \ VarDecl

a d d r _ e x p r ,

PointerType,

VarDecl \ FunDecl)

AddrStmt

AddrStmt)

| AddrStmt,

AddrStmt)

(Program)

(Function)

(Block)

(statement)

(Assignment)

(Function Call)

Figure 17: Gimple Partial Syntax (Part 1)

162

file:///ParmDecl
file:///ParmDecl
file:///ParmDecl

Indirect Ref '.

Condition '.

RelStmt '.

Type '.

In tType '.

RealType '.

Boo/Type '.

VoidType I

PointerType '.

FuncType I

VLDecl :

VPDecl I

ParmDecl '.

ResDecl '.

VarDecl I

La be I Dec! '.

Const '.

Pname '.

Vname '.

.__

:=
\

i
:=
:=
:=
; =

; =
:=

;=
:=
:=

(kind:

o P :

i n d i r e c t _ r e f ,

VarDecl)

Const | ParmDecl \ VarDecl | RelStmt

("Pi -

OP2-

Const | ParmDecl \ VarDecl \ AddrStmt,

Const | ParmDecl | VarDecl | AddrStmt)

IntType | RealType \ Boo/Type

VoidType | PointerType | FimType

(kindl

(kind:

(kind:

(kind:

(kind:

type:

(kind:

type'.

LabelDecl

ParmDecl

(kind:

name',

type'.

(kind:

name',

type'.

(kind:

name',

type'.

(kind:

name',

type'.

Nat

ldenlifer

Identifer

i n t e g e r t y p e)

r e a l _ t y p e)

b o o l e a n t y p e)

v o i d _ t y p e)

p o i n t e r _ t y p e ,

FunType \ IntType j RealType)

f u n c t i o n t y p e ,

IntType | RealType \ BoolType \ VoidType)

VarDecl

VarDecl

p a r m _ d e c l ,

Pname,

IntType \ RealType \ BoolType | VoidType)

r e s u l t _ d e c l ,

Rname,

IntType \ RealType | BoolType | VoidType)

v a r _ d e c l ,

Vname,

IntType | RealType | BoolType \ VoidType)

l a b e l _ d e c l ,

Lname,

VoidType)

_
Rname'.'.= ldenlifer

Lname::— Identifer

(Type)

(Declaration)

(Constant)

Figure 18: Gimple Partial Syntax (Part 2)

163

declaration of the function variables and the function labels. In addition, multiple state­

ments at the same nesting level are collected into a list of statements as the body body of a

block.

There are several varieties of complex statements in Gimple. We consider statements

that are shared between well-known programming languages such as assignment state­

ment ModijyStmt represented by modi f y _ e x p r , call statement CallStmt represented by

c a l l _ e x p r , and conditional statements IfStmt represented by c o n d e x p r . The modify

statement has two parts: the left-hand side statement Lhs and the right-hand side statement

Rhs. The left-hand side can be a variable declaration VarDecl, a parameter declaration Par-

mDecl, or an indirect reference IndirectRef, whereas the right-hand side can be one of the

kinds of the left-hand side statements, a constant Const, a call statement CallStmt, a unary

statement UnStmt, a binary statement BinStmt, or an address expression AddrExpr. Unary

statements represent unary operations that have one operand. Binary statements represent

binary operations that have two operands. An indirect reference represents a pointer vari­

able defined using the indirect operator (*) in the C programming language and specified

by i n d i r e c t r e f and a variable declaration in Gimple. The address expression repre­

sents the operator (&) in C programming language and specified by a d d r _ e x p r , a pointer

type, and a variable declaration or a function declaration in Gimple. The call statement has

two parts: the address expression AddrStmt and the function arguments VPDecl - s e t .

The conditional statement has tree parts: the condition Condition and two statement lists

S / w J - l i s t . The condition can be either a constant Const, a variable declaration VarDecl,

a parameter declaration ParmDecl, or a relational statement RelStmt. Relational statements

represent relational operations that have two operands.

164

The considered base types are integer type represented by i n t e g e r _ t y p e , real type

represented by r e a l _ t y p e , boolean type represented by b o o l e a n t y p e , and void

type represented by v o i d _ t y p e . Beside, there are two complex types: function type

FuncType represented by f u n c t i o n _ t y p e and pointer type PoniterType represented by

p o i n t e r t y p e . A pointer type can specify an integer type, a real type, or a function

type, which in its turn specifies the function return type.

Any declaration is specified by a kind, a name, and a type. The following declarations

are considered: parameter declaration ParmDecl represented by p a r m d e c l , variable

declaration VarDecl represented by v a r _ d e c l , result declaration ResDecl represented by

r e s u l t _ d e c l , and label declaration LabelDecl represented by l a b e l _ d e c l . Finally

constants Const are represented by natural numbers.

6.5.2 Weaving Semantics

In this subsection, we provide the rules that describe the weaving semantics. First, we

begin with the matching and then we continue with the weaving. Notice that cs G CallStmt,

loc G Location, fd G FunDecl, bfd G FunDecl, m,s G ModifyStmt, s G Stmt, t G Type,

ft G FuncType, pt G PointerType, ae G AddrExpr, beh G Location Behavior, and £ G

Environment.

Matching Rules

Rule 1 describes the case where the current statement in a function body is a call statement,

the current location {Location Identifier) in a pattern is a function call location (Func-

tionCall), and the location signature is equal to the called function specified in the call

165

statement. In such a case, the call statement matches the function call location.

cs.kind = c a l l _ e x p r

loc. kind = Func t i onCa l l cs.addrExpr.op.fname — loc. signature (1)

fd, CS)rmatch loc

Rule 2 describes the case where the current statement in a function body is a call state­

ment, the current location {Location Identifier) in a pattern is a WithinFunction location,

and the location signature is equal to the name of the function where the call statement

exists. In such a case, the call statement matches the WithinFunction location.

cs.kind = c a l l _ e x p r

loc.kind = Wi th inFunc t ion f d.fname = loc. signature (2)

fd, CS hmatch IOC

Rule 3 describes the case where the current statement in a function body is an assign­

ment statement, the current location (Location Identifier) in a pattern is a set location, and

the location signature is equal to the name of the variable being set. In such a case, the

assignment statement matches the set location.

ms.kind= modi fy_expr loc.kind = s e t

ms.lhs.kind — var_decl ms.lhs.name = loc.signature (3)

fd, ms \~ match loc

Rule 4 describes the case where the current statement in a function body is an assign­

ment statement, the current location (Location Identifier) in a pattern is a get location, and

166

the location signature is equal to the name of the variable being get by a unary operation.

In such a case, the assignment statement matches the get location.

ms.kind — modify_expr loc.kind = g e t

ms.rhs.kind — var_decl ms.rhs.name = loc. signature (4)

fd, ms
'match ^OC

Rule 5 describes the case where the current statement in a function body is an assign­

ment statement, the current location (Locationidentifier) in a pattern is a get location, and

the location signature is equal to the name of the variable being get. In such a case, the

assignment statement matches the get location.

ms.kind — modi fy_expr loc.kind = g e t

ms.rhs.op.kind = v a r d e c l ms.rhs.op.name — loc. signature (5)

fd, ms hmatch loc

Rule 6 describes the case where the current statement in a function body is an assign­

ment statement, the current location (Location Identifier) in a pattern is a get location,

and the location signature is equal to the name of the first variable being get by a binary

operation. In such a case, the assignment statement matches the get location.

s.kind = modify_expr loc.kind — g e t

ms.rhs.op^ .kind — var_decl ms.rhs.opj .name = loc.signature (6)

fd, ms I-match IOC

Rule 7 describes the case where the current statement in a function body is an assign­

ment statement, the current location (Location Identifier) in a pattern is a get location, and

167

the location signature is equal to the name of the second variable being get by a binary

operation. In such a case, the assignment statement matches the get location.

ms.kind = modify_expr loc.kind — g e t

ms.rhs.opz-kind — var_decl ms.rhs.op2.name = loc.signature (')

fd, ms hmatch loc

Rule 8 describes the case where the current statement in a function body is an assign­

ment statement, the current location {Location Identifier) in a pattern is a WithinFunction

location, and the location signature is equal to the name of the function where the assign­

ment statement exists. In such a case, the assignment statement matches the WithinFunction

location.

ms.kind — modif y_expr

loc.kind — Wi th inFunc t ion fd.fname = loc. signature (8)

fd, ms \-match loc

Rule 9 describes the case where the locations in a pattern are combined using the a n d

logical operators. In such a case, the current statement in a function body should match

both locations in order to match their and combination.

fd, S y-match loCi fd, S \~match loCl

(9)
fd, s hmatch loc\ and I0C2

Rule 10 describes the case where the locations in a pattern are combined using the o r

logical operators. In such a case, the current statement in a function body should match

only one of the locations (e.g., the first location) in order to match their o r combination.

168

fd, S "rmatch loci

(10)
fd, S \~match l0Ci OX loC2

Rule 11 describes the case where the locations in a pattern are combined using the

o r logical operators. In such a case, the current statement in a function body should match

only one of the locations (e.g., the second location) in order to match their o r combination.

fd, S \~ match loC2

(11)
fd, S \-match l0Cl O r loC2

Rule 12 describes the case where the current statement in a function body does not

match the current location (Location Jdentifier) in a pattern. This can be expressed using

the unary operator n o t .

fd, S V-match IOC
(12)

fd, S hmatch n o t loC

Statement Creation Rule

Rule 13 describes how to create a call statement from a given behavior. The environment

is changed as a result of such a creation.

169

t = buildRetType(6e/i.code) ft — buildFunType(i)

bfd = buildFunDecl(6e/i.code, ft) pt = buildFunPtr(/<)

ae = buildAddrExpr(pi,p/d) cs = buildCallStmt(ae)

(13)

£'.program.types = £.program.types U t U ft Upt

£' .program.funs — £.program, funs U bfd

£, beh\-bund £',cs

In the sequel, we describe the utility functions used in Rule (13) and required for the

statement creation:

• The function buildRetType builds a result type for the weaved function and adds it to

the defined types in the program. It takes a behavior code and returns a type.

buildRetType : Code -^Type

buildRetType(c)=i where

t.kind= integer_type if c.iJ?e(7ype=integer_type;

t.kind= r e a l t y p e if c./7?etType=real_type;

<

t.kind = booleantype if c.j'Ret7ype=boolean_type;

t.kind — void_type if c.ii?efType=void_type.

• The function buildFunType builds a function type for the weaved function and adds

it to the defined types in the program. It takes a type and returns a function type.

170

buildFunType : Type —> FuncType

buildFunType(f)=/t where (ft.kind = funct ion type) A (ft.type = t)

• The function buildFunDecl builds a function declaration for the weaved function and

adds it to the declared functions in the program. It takes a behavior code and a

function type. It returns a function declaration.

buildFunDecl: Code x FuncType —> FuncDecl

buildFunDecl(c, ft)=fd

where (fd.kind = function_decl) A (fd.fhame = c.iName) A (fd.ftype = ft)

• The function buildFunPtr builds a pointer type for the weaved function and add it to

the defined types in the program. It takes a function type and returns a pointer type.

buildFunPtr : FuncType —> PointerType

buildFunPtr(/i)=pf where (pt.kind = po in te r j type) A (pt.type — ft)

• The function buildAddrExpr builds an address expression for the weaved function. It

takes a pointer type and a function declaration. It returns an address expression.

buildAddrExpr: PointerType x FunDecl —»AddrExpr

buildAddrExpr(pi, /d)=ae

where (ae.kind = addr_expr) A (ae.type = pt) A (ae.op = fd)

• The function buildCallStmt builds a call statement to the weaved function based on

the address expression. It takes an address expression and returns a call statement.

buildCallStmt: AddrExpr - • CallStmt

buildCallStmt(ae)=cs where (cs.kind = c a l l e x p r) A (cs.addrExpr = ae)

171

Weaving Rules

A function body is composed of a list of statements /, followed by the current statement

s, which is followed by another list of statements /'. Rule 14 describes the case where

the current statement in a function body matches the current location in a pattern and the

insertion point corresponding to the current location is Before. In such a case, the call

statement cs corresponding to the location behavior is built and inserted before the matched

statement in the function body.

fd.block.body — l@(s :: /') fd, s V-match beh.loc

£, beh \~buiid £'• cs beh.insertionPoint — Before (14)

(£, fd.block.body) -> (£',l@(cs :: s :: /'))

A function body is composed of a list of statements /, followed by the current statement

s, which is followed by another list of statements /'. Rule 14 describes the case where the

current statement in a function body matches the current location in a pattern and the inser­

tion point corresponding to the current location is After. In such a case, the call statement

cs corresponding to the location behavior is built and inserted after the matched statement

in the function body.

fd.block.body — l@(s :: /') fd, s \-match beh.loc

£, beh \~buUd £'ics beh.insertionPoint — Af te r
(15)

(£, fd.block.body) - • {£', l@(s :: cs :: /'))

A function body is composed of a list of statements /, followed by the current statement

5, which is followed by another list of statements /'. Rule 14 describes the case where

172

file:///~buiid
file:///~buUd

the current statement in a function body matches the current location in a pattern and the

insertion point corresponding to the current location is Replace. In such a case, the call

statement cs corresponding to the location behavior is built and supersedes the matched

statement in the function body.

fd.block.body = l@(s :: /') fd, s \-match beh.loc

£. beh \-buna £', cs beh.insertionPoint = Replace
(16)

(SJd.block.body) -* (£',l@(cs :: I'))

Rule 17 propagates the weaving changes applied to a specific function to higher levels,

i.e., program and environment where the corresponding function exists.

fd! = fd {£, fd.block.body) —> {£',1) fun = £'.program.funs fd' 6 fun

£'.program.fbns = (fun - fd') U fd (17)

(£) - (£')

6.6 Implementation of Gimple Weaving Capabilities into

GCC

Few weaving capabilities of the proposed semantics for Gimple weaving have been imple­

mented into the GCC compiler. As a result, we are able now to apply several hardening

practices on the Gimple representation (tree) of a program before generating the corre­

sponding executable. Here is the implementation methodology.

173

First, the extended GCC is interrupted once the Gimple tree of the compiled program is

built. This is done by adding a new pass to GCC that can be called by selecting an option

when performing the compilation (e.g., g c c -Weav ing S e c u r e C o n n e c t i o n P a t -

t e r n . s h l - c C o n n e c t i o n , c . . .) . Then, the selected hardening pattern is com­

piled and a Gimple tree is built for the Code of each one of its Behavior{s) (Please see

Section 6.5.1 for more details on SHL syntax). The needed information of the pattern

Behavior(s) (e.g., function name, return type, etc.) is gathered from the SHL parser and

passed as parameters to specific functions provided by GCC and responsible of building

and modifying the Gimple trees (e.g., b u i l d F u n c t i o n D e c l a r a t i o n T r e e (. . .)) .

Afterwards, each link to a generated tree is injected in the original program tree with re­

spect to the insertionPoint and location specified in each Location_Behavior. Once this

weaving procedure is done, GCC takes over and continues the classical compilation of the

modified Gimple tree to generate the executable of the hardened program.

6.7 Case Study: Performing Security Hardening in the

Gimple Representation of Software

In this section, we present a case study for securing the connections of client applications.

Securing channels between two communicating parties allow to avoid eavesdropping, tam­

pering with the transmission, or session hijacking. In this context, we have selected a client

application implemented in C++ which allows to connect and exchange data with a server

174

through HTTP requests. To demonstrate the feasibility of our proposition, we have elabo­

rated first, using SHL, the security hardening pattern needed to secure the connections of a

selected client application. Listings 4.11 and 4.12 in Chapter 4 presents the pattern elab­

orated in SHL for securing the connection of similar application using GnuTLS/SSL. The

code of the functions used in the Code of the pattern Behavior(s) is illustrated in Listing

4.13. Then, we have applied our initial methodology for hardening, where we refined the

pattern into AspectC++ aspect and weaved it into the selected application. Afterwards, we

have repeated the hardening using our new proposition, where we have compiled directly

the same application and the hardening pattern using the extended GCC and applied the

weaving on the Gimple representation of the application. Indeed, this case study explores

also the relevance of elaborating the operational semantics for Gimple weaving, as initial

attempt toward full implementation of a Gimple weaver.

Applying the hardening on the Gimple representation of code does not require anymore

refining the hardening pattern into aspect. Compiling the selected client application, by

using our extended GCC, specifying the weaving option and selecting the hardening pat­

tern for securing connection to be weaved into the application, is enough to perform the

hardening and generate the executable of the hardened application. In the sequel, we pro­

vide the compilation steps. GCC compiles first the client application and is interrupted

once the Gimple tree is generated. Then, the developed weaving capabilities take over and

the needed information of the hardening pattern for securing connection are gathered. The

pattern is treated Location Behavior by Location Behavior, where a Gimple tree is built

for the Code of each one of them and weaved into the application Gimple tree at the place

specified in the insertionPoint and location of the Location Behavior. Afterwards, GCC

175

continues its classical compilation of the modified tree and generates finally the executable

of the hardened client application. The resulted application is able now to connect securely

through HTTPS.

Experimental Results

In order to verify the hardening correctness, we have set first in the original application the

server port number to 443, which means the client and the server can only communicate

through HTTPS (ssl-mode). Any communication through HTTP won't be understood and

will fail. Then, we have compiled and run the client application and made it connect to

the server (www.encs.concordia.ca) to retrieve information. The experimental results in

Figure 19 show that the application failed to retrieve successfully the information. The

server replies with a bad request because it is not able to understand the message content

(Please see the run in the terminal of Figure 19). The highlighted lines in the Wireshark

capture of the traffic show that the communication fails and stops after exchanging few

undetermined messages.

Afterwards, we have applied our both approaches to harden this client application. First,

we have weaved and compiled (using AspectC++ weaver and g++) the elaborated aspect

(Listing 5.29 in Chapter 5 shows an excerpt of this aspect) with the different components of

the application. Then, we have compiled the same original application using the extended

GCC and enabling the Gimple weaving option. Running the two generated executables

gives exactly the same results on the terminal and in the Wireshark packet captures. Due

to this and to avoid duplication, we present in Figure 20 only the run of the application

176

http://www.encs.concordia.ca

•dit WeB So capture Analyze Statistics Help

MM P a i S u ;:,

Destination

•4-Expression.,., '^ffear. <̂ Apply

Protocol tnfo

\ED

I ^ K s E S T i
2S.«e6265 192.188,245,2

;3&.£»943 lS2.l68.245.ia

5 £.648718 192.168.245.128

7 6,641762 132.235,96.12

;«e:«*as? 132.2s5.9s, i f
9 S.M2S02 192.168.245.128
1185.886774 192.168.245,1

192,168.245.128
132.365.96,12
W2.1J58.J45.U8
132.2S5.96.12

192.168.245.128

132.265.96.12

192.168.245.255

Standard query response CNAW: cataasrai
33B1 > tittps JSVJiJ Seq«S *i«=S8# len<
https > 33731 {SYS, * « 1 SttpS Acj(=l *
33731 > Imps [ACKJ Seq'l Ack=l Bin=58'

https > 33731 [ACK] Seq=l Ack=47 Win*
ContMBatiori tiata 7 5 ~ ~. ..'•
33731 > https |ACK)*Seq=47Ack=664 Kill'

BROWSER weal Master Aimeunceisent 6UY0EN, work:

OSS
TCP
TCP

TCP

TCP

"SSL '
TCP

a*{ , ^^M^s^&^&^MS^^^&s^^8^.S:. "'r~~:i^WW^
ime Be £dit View Terminal Tabs Help
• ™ (rootiSlocalhost -}ts cd Desktop/
f *9 jrootglocalhost Desktop)* cd CSecureConnection/
aio i root^localhost CSecureConnection]* ,/berkeley many functions

Sent 46 characters;
se 5
88 4
f5 £
66 £
63 f
61

OET / HTTP/1.1
Host: www.encs.concordia.ca

Received 188 characters:
<!DOCTYPE HTML PUBLIC --//IETF//OTD HTML 2.fi//EN">
<htel><head>
<title»469 Bad Request</Utle>
</hea-*efore socket closed
Closed socket
(rootglocalhost CSecureConnection!* I

Figure 19: Capture of Connection

hardened by the Gimple weaving capabilities. The experimental results (Please see the run

in the terminal and the highlighted lines in the Wireshark capture of Figure 20) explore that

the new secure application is able to connect through HTTPS connections. It is also able to

exchange successfully the data from the server in ssl-mode and encrypted form, exploring

the feasibility and correctness of the security hardening process.

6.8 Conclusion

We presented in this chapter our accomplishment towards ascribing the formal specification

of the proposed framework for systematic security hardening. In this context, we enriched

177

http://lS2.l68.245.ia
http://132.2s5.9s
http://www.encs.concordia.ca

L_ •3$j?J z\^p'Ms)£j%-

M ^tvi go Capture Analyze Statistics Hel

'4 M G 53 « m .+ : $> ¥ fi ;&C . Q

2 6.881579
'3 1.544965
. i ' C » » 9 «
5 6,256935

7 6.327220
8 8.351346
5 6,351547
6 6,352223
.1 6.352633
2 6.352236
3 6,352288

5 6,414449
fcMittHtl
.7 6,414762

3 6.418535
•8 6.444347
16.444331

'3 6.446147
'A. &J*BSim. .

192.1*3.245.2
\SH'M&.V&.X»
U2.atS.9S. 12"
192,168.245.128

EHBEEBE
132.265.96.12
132.265.96.12
192.16B.245.126
132.265.96.12
132.265.96.12
192.168.245.128
192,168.245.128

132.265.96.12

132,265.96.12

132.265.96.12
Vmaare_46:ad:4e
Vn«re~ f6 :05 :77

132.265,96.12

Destination

'l92,«8ll24S.12*ff
132:255.96. U

' 192. iw. lks.-U* '
U2.2C-5.9t5.l2

192.168.245.128
192.168.245.128
132.2«5.96.12
192.168.245.128
192.168.245.128
132,265.96.12
132.265.96.12

192.168.245.128

192.168.245.128

192.168.245.128
Broadcast
Vnware_46:ad:4e

192.168.245.128
3CF> lS». . .^4e 1 5 9 .

: Q Expression-.. %.£fear: <̂ Apply;

Protocol info

«S Standard gperf response OWfS cataRafan
' W•". 3373^VMJ5S"!S«lj &q=C-M8»5S#ii«»<i

TOf> _. https > 33732 ISW, MK)' jape ActSCwi
TCP 33732 > hups JACK) Seq*l Ack=l Hin»584

TCP t l t t ps » 33732 [ACKj 5eq«l Ack=4« Hin*54
T t S v l Server He l l o ,
TCP 33732 > h t t p s 1ACK] Seq=94 Ack=l461 Bin
TLSvl Certificate
TiSvl Server Key Exchange
TCP 33732 » h t t p s ! * «) Seq=S4 Ack=292l Bin
TCP 33732 > h t t p s |ACKj Seq»94 Ack»2988 Din

TCP h t t p s > 33732 [ACKj Seq-2988 Acfc-233 Hi

TCP h t t p s =• 33732 [ACKj Seq=2988 Ack=239 Wl

TCP h t t p s > 33732 lACXj 5eq=298S Ack=324 W
ARP Wio has 192.168.245.254? T e l l 192.168.
ARP 192.168.245.254 i s a t SB:58:56; f6:d5:77

TLSvl Change Cipher Spec, Encrypted Handshake
. W O SHTO.-Ar*' ^ . T r s w » * ; s , - H * » * f t . fcVHaj»»f l !

jrnet
:met

im dm mmmmm-

rin h

File £dit ^iew letmirial Tabs yelp
froct?localhost CSecureConnecTion]# ./hard berkley
hardening the f i r s t i n i t i a l i z a t i o n before connect for the morsent
hardening var iable declaration before connect
hardening i n t i a l i za t i o r . code before connect
hardening connect succeed
hardening gnutls handshake af ter connect
hardening gnutls before send
data to be sent: 6ET / HTTP/1.1
Host: Wriw.encs.concordia.ca

3E 5!
36 4;
fs e:
36 Gi
53 61
31

OOM
===== hardening gnutls after send
I ™ S e n t 46 characters:

GET / HTTP/1.1
Host: www.encs.concordia.ca

hardening gnutls before receive
hardening gnutls after receive
Received 16G characters:
HTTP/1.1 2B9 OK
Date: Thu. 13 Mar 2068 21:38:47 GMT
Server: Apache/2.8,47 (Unix) sod ssl/2.6.47
Closed socket

-..before socket closed

Figure 20: Capture of Hardened Connection

our proposition presented in Chapter 4 by elaborating a new approach for applying secu­

rity hardening on the Gimple representation of software. This approach allows to avoid in

some cases the manual refinement of the security hardening solution into the current AOP

languages, and hence weave the security concerns during the compilation into the Gim­

ple tree instead of the code. It also enables to weave an application written in a specific

178

http://U2.atS.9S
http://iw.lks.-U*
http://U2.2C-5.9t5.l2
http://www.encs.concordia.ca

language with code written in a different one by exploiting the Gimple intermediate rep­

resentation. Then, we provided a formal specification of the security hardening solutions

developed by the proposed framework. This has been done through the elaboration of the

formal syntax of SHL and Gimple and the operational semantics of SHL weaving based on

the Gimple depiction of software. This formal specification constitutes an initial attempt

and a guide toward developing a complete weaver for Gimple. It also provides support

for the whole framework to eventually apply formal verification on the security hardening

solutions. We realized and demonstrate the feasibility of our propositions by: (1) Imple­

menting into GCC several Gimple weaving features described in the formal semantics and

(2) developing a case study where the hardening is applied on the Gimple representation of

the application and compiled using the extended GCC.

179

Chapter 7

Conclusion

Security is taking an increasingly predominant role in today computing world. On the

other hand, plethora of high quality open source software have been designed and imple­

mented without having security in mind. Such software are currently used into high-risk

network/web environments. This leads to the discovery of several flaws and vulnerabilities

that have been eventually exploited by different attacks. It also required security mech­

anisms to be added and integrated into the software for protection. In this context, the

security hardening of open source software, which is addressed thoroughly in this thesis,

becomes a very challenging and interesting problem.

In the sequel, we summarize briefly the main thesis contributions:

• Aspect-Oriented and pattern-based approach for systematic security hardening of

software without the need to high security expertise.

• Programming language independent and aspect-oriented language for security hard­

ening called SHL.

180

• New Aspect-Oriented pointcut and primitive constructs for security hardening con­

cerns.

• Approach for weaving the security hardening concerns on the Gimple representation

of software.

• Formal operational semantics of SHL weaving.

Technical Summary

Although the current approaches for software security hardening target security during the

development of new software, as is the case of security design patterns and secure program­

ming techniques, they may still be relevant and give resolutions for several security prob­

lems and requirements. However, they have major shortcomings regarding their method­

ologies for applying the security solutions into software. They are all based on performing

security hardening in ad-hoc and manual manners and require high security expertise. On

the other hand, the procedures of security hardening are difficult and critical. If they are

applied manually, they need lot of time to be tackled and may create other vulnerabilities,

especially when dealing with large scale software (e.g., thousands, millions lines of code).

They also require the developers to take important and significant decisions that entail high

expertise in both the security and the software functionality domains. This causes another

problem consisting in the difficulty of finding the developers specialized in the both afore­

mentioned domains.

These issues have been addressed in the proposed AOP and pattern-based approach for

systematic security hardening. Adopting AOP allows performing the security hardening

181

procedures in a systematic way and avoiding the manual integration of security components

and code into software. However, using only AOP for security hardening still requires

high expertise in both the security solutions applied and the software functionality domain.

The developers still need to specify into the aspects all the steps needed to implement the

security solutions and the target where to apply them. To solve this problem, we opted in

the proposed approach to increase the abstraction of the security hardening solution and

separate totaly the roles and duties of the security experts from the ones of the developers.

The security experts are able to provide into hardening patterns well-defined solutions to

particular security problems with all the details on why, how and where to apply them.

On the other side, the developers are able to use these solutions to harden open source

software by refining the hardening patterns into AOP aspects and specifying high-level

security hardening plans. The developers do not need to have expertise in the applied

security solutions.

The realization of the proposed approach has been achieved by elaborating a program­

ming independent and aspect-oriented based language for security hardening called SHL,

developing its corresponding parser, compiler and facilities and integrating all of them

into a framework for software security hardening. The resulting framework allows the de­

scription of security hardening plans and patterns using SHL and the execution of all the

required steps for systematic security hardening of software. We illustrated the feasibility

of the elaborated framework by developing several security hardening solutions that are

dealing with security requirements and vulnerabilities (e.g., securing connections, adding

authorization, encrypting some information in the memory, and remedying low level secu­

rity vulnerabilities) and applying them on large scale software (e.g., APT and MySQL).

182

The proposed approach requires to refine the SHL security hardening solution into an

AOP aspect (e.g., in AspectC++, in AspectJ) before applying and weaving it into the soft­

ware. On the other hand, the current AOP technologies were not initially designed to target

security, and hence they have some related limitations. Consequently some security hard­

ening activities requires manual intervention and addition of components and code, which

may affect the systematic target of the proposed approach. For instance, in our experiment

for securing the connections of client applications, we faced the problem of passing needed

parameters related to the security library between the application components. Since the

current AOP languages miss such feature, we opted to integrate additional modules and

changing some internal functions to do so. However, such solution may not work with

other software that have complex dependencies and relations between its components.

These issues have been addressed by elaborating new pointcut and primitive constructs

to SHL and AOP languages that provide features needed for systematic security harden­

ing concerns. The two proposed pointcuts, GAFlow and GDFlow, return particular join

points in a program CFG where security features common between a set of join points can

be added. The GAFlow and GDFlow allow to analyze the CFG execution paths to iden­

tify respectively the closest guaranteed ancestor and closest guaranteed descendant join

points according to the pointcuts of interest. The two proposed primitives, ExportParame-

ter and ImportParameter, are used to pass parameters between two pointcuts. They allow

to analyze a program call graph in order to determine how to change function signatures

for passing the parameters associated with a given security hardening functionality. We

explored the viability of the proposed pointcuts and primitives by elaborating and imple­

menting their methodologies and algorithms and presenting the result of explanatory case

183

studies.

In the original proposed approach for security hardening, the refinement of the patterns

into AOP aspects or low level code does not require security expertise. However, this

task still requires human interactions to perform the refinement and provide the parameters

needed for the concrete implementation. Another concern consists in the need to ascribe

a formal description of the SHL language, and hence for the whole security hardening

solutions performed by the proposed framework.

These issues have been addressed first by enriching the proposed framework with a

new approach for applying security hardening on the Gimple representation of software.

This approach allows the weaving of security concerns into the Gimple tree of the software

during the GCC compilation. Accordingly, it provides more systematization to the initial

proposition by bypassing in some cases the manual refinement of the security hardening

solution into AOP aspects. Then, the formal specification of the security hardening solu­

tion has been provided through the elaboration of formal syntax for SHL and Gimple and an

operational semantics of SHL weaving based on the Gimple depiction of software. Target­

ing Gimple for such formal description is relevant because SHL and the hardening solution

described using SHL are abstract and programming language independent. The elaborated

operational semantics allow to understand the inner working of Gimple procedures and

constitutes a guide for developing a complete aspect-oriented weaver for Gimple. Eventu­

ally, it may also allow to perform formal verification on the framework security hardening

solutions.

The realization of these propositions has been achieved by implementing into GCC few

features described in the SHL weaving semantics and developing a case study, in which

184

the security hardening concerns are applied and weaved using the extended GCC into the

Gimple representation of an application. These contributions improve significantly the

approach for systematic security hardening. Besides, they also constitutes by themselves

the first attempts towards adopting aspect-oriented programming on Gimple, exploring it

into a formal operational semantics and exploiting Gimple intermediate representation to

advise an application written in a specific programming language with code written in a

different one.

Future Work

Currently, we are working on adapting our approach for the systematic security hardening

of software at the design level. This direction will allow us to reuse the advanced literature

in the domain of security engineering (i.e., security design patterns), and consequently

provide a methodology for applying them while designing software. We will also benefit

from the achievements and experiments of our framework for security hardening of code,

build on top of it and/or reuse some of its components to reach our goal.

As future directions, we are planning to

• Address the problems related to security engineering and security design patterns.

• Provide methodologies for applying security patterns during the different life cycle

of software development.

• Adapt and apply our approach on more specific security domain and provide AOP

solutions for more security issues.

185

• Deploy the proposed pointcut and primitive constructs into the current AOP tech­

nologies (i.e., AspectC++ and AspectJ).

• Address other limitations of the AOP technologies for security hardening concerns

through elaborating new pointcut and primitive constructs.

• Build more Gimple weaving capabilities towards developing a complete weaver for

Gimple.

• Apply formal verification on the SHL security hardening solutions using the proposed

weaving semantics.

List of Publications

The following is the list of publications derived from the thesis work:

Book Chapters

1. A Security Hardening Language Based On Aspect-Orientation. To appear in E-

Business and Telecommunication Networks Book, 2009, Springer.

2. Middleware Security in Wireless Applications. In the Encyclopedia of Wireless and

Mobile Communications Book, CRC Press, 2008, Taylor & Francis Group.

Journal Papers

1. An Aspect Oriented Approach for the Systematic Security Hardening of Code. In

the Journal of Computers and Security, Volume 27, Issues 3-4, Pages 101-114, May-

June 2008, Elsevier.

186

2. A High-Level Aspect-oriented Based Framework for Software Security Hardening.

In the Information Security Journal: A Global Perspective, Volume 17, Issue 2, Pages

56 - 74, May 2008, Taylor & Francis Group.

3. Nouveaux Points de coupure et Primitives pour les preoccupations de renforcement

de securite. To appear in the Technique et Science Informatiques (TSI) Journal, 2009,

Hermes/Lavoisier.

4. Security Hardening of Open Source Software. In the Open Source Business Resource

Journal, June 2008, Open Journal Systems.

Conference Papers

1. Cross-Language Weaving Approach Targeting Software Security Hardening. In Pro­

ceedings of the Sixth Annual Conference on Privacy, Security and Trust (PST 2008),

October 1-3, 2008, Fredericton, New Brunswick, Canada, IEEE.

2. Towards Language-Independent Approach for Security Concerns Weaving. In Pro­

ceedings of the International Conference on Security and Cryptography (ICETE-

Secrypt 2008), July 26-29, 2008, Porto, Portugal.

3. Control Flow Based Pointcuts for Security Hardening Concerns. In Proceedings of

the Joint iTrust and PST Conferences on Privacy, Trust Management and Security

(IFIPTM 2007), July 30 - August 2, 2007, Moncton, New Brunswick, Canada, IFIP

- Springer.

187

4. A High-Level Aspect-Oriented Based Language for Software Security Hardening. In

Proceedings of the International Conference on Security and Cryptography (ICETE-

Secrypt 2007), July 28-31, Barcelona, Spain (Winner of the Best Student Paper

Award).

5. New Primitives to AOP Weaving Capabilities for Security Hardening Concerns. In

Proceedings of the 9th International Conference on Enterprise Information Systems,

Security in Information Systems Symposium (ICEIS-WOSIS 2007), June 12-13,

2007, Funchal, Madeira, Portugal.

6. Towards an Aspect Oriented Approach for the Security Hardening of Code. In Pro­

ceedings of the IEEE 21st International Conference on Advanced Information Net­

working and Applications, Security in Networks and Distributed Systems Sympo­

sium (AINA-SSNDS), May 21-23, 2007, Niagara Falls, Canada, IEEE.

7. Points de coupure pour les preoccupations de renforcement de securite utilisant le flot

de controle. In Proceedings of the 3eme Journee Francophone sur le Developpement

de Logiciels Par Aspects (JFDLPA 2007, AOSD), March 26,2007, Toulouse, France.

8. Security Hardening for Open Source Software. In Proceeding of the ACM Confer­

ence on the Privacy, Security, Trust 2006, PST 2006, Oct 30 - Nov 1,2006, Markham,

Ontario, Canada, ACM/McGraw-Hill.

9. Security Design Patterns: Survey and Evaluation. In Proceeding of the IEEE Cana­

dian Conference on Electrical and Computer Engineering, CCECE 2006, May 7-10,

2006, Ottawa, Ontario, Canada, IEEE.

188

Bibliography

[1] Advanced packaging tool. Available at h t t p : / / w w w . d e b i a n . o r g / d o c /

manuals / a p t -howto / (accessed on 2008/11/11).

[2] Debian apache-ssl package. Available at h t t p : / / p a c k a g e s . d e b i a n . o r g /

e t c h / a p a c h e - s s l (accessed on 2008/11/11).

[3] Documentation: Aspectc++ language reference. Availabe at h t tp : / /www.

a s p e c t c . o r g / f i l e a d m i n / d o c u m e n t a t i o n / a c - l a n g u a g e r e f . p d f

(accessed on 2008/11/11).

[4] Gnu transport layer security library. Available at h t t p : / / w w w . g n u . o r g /

sof t w a r e / g n u t l s / (accessed on 2008/11/11).

[5] Java authentication and authorization service. Available at h t t p : / / j a v a .

s u n . c o m / j a v a s e / 6 / d o c s / t e c h n o t e s / g u i d e s / s e c u r i t y / j a a s /

JAASRef Guide . html (accessed on 2008/11/11).

[6] Bastille linux, 2006. Available at h t t p : / / w w w . b a s t i l l e - l i n u x . o r g /

(accessed on 2008 /11 /11) .

[7] ISO/IEC 10181-1:1996. Security frameworks for open systems: Overview, 1996.

189

http://www.debian.org/doc/
http://packages.debian.org/
http://www
http://www.gnu.org/
http://java
http://www.bastille-linux.org/

[8] ISO/IEC 7498-2:1989. Information processing systems - open systems interconnec­

tion - basic reference model - part 2: Security architecture, 1989.

[9] Rickard A. Aberg, Julia L. Lawall, Mario Sudholt, Gilles Muller, and Anne-

Francoise Le Meury. On the automatic evolution of an OS kernel using temporal

logic and AOP. In Proceedings of the 18th IEEE International Conference on Auto­

mated Software Engineering (ASE03). IEEE, 2003.

[10] Alfred V. Aho and Jeffrey D. Ullman. Principles of Compiler Design. Addison-

Wesley, Reading, Mass., 1977.

[11] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language.

Oxford University, 1977.

[12] Hassan Ai't-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient imple­

mentation of lattice operations. ACM Transactions on Programming Languages and

Systems, 11(1): 115-146, 1989.

[13] S Bhatkar, DC DuVarne, and R Sekar. Address obfuscation: an efficient approach to

combat a broad range of memory error exploits. In Proceedings of the 12th USENIX

Security Symposium, 2003.

[14] Matt Bishop. Writing safe secure programs, 1997. Available at h t t p : / / n o b . c s .

u c d a v i s . e d u / b i s h o p / s e c p r o g / n s l 9 9 7 .pd f (accessed on 2008/11/11).

[15] Matt Bishop. Computer Security: Art and Science. Addison-Wesley Professional,

2002.

190

[16] Matt Bishop. How attackers break programs, and how to write more secure programs,

2005. Available at h t t p : / / n o b . c s . u c d a v i s . e d u / ~ b i s h o p / s e c p r o g /

s a n s 2 002 / i n d e x . h t m l (accessed on 2008/11/11).

[17] Matt Bishop and Dave Bailey. A critical analysis of vulnerability taxonomies. Tech­

nical Report CSE-96-11, Department of Computer Science, University of California

at Davis, 1996.

[18] Bob Blakley, Craig Heath, and members of The Open Group Security Forum. Security

design patterns. Technical Report G031, Open Group, 2004.

[19] Kai Bollert. On weaving aspects. In Proceeding of the International Workshop on

Aspect-Oriented Programming at ECOOP99, 1999.

[20] Ron Bodkin. Enterprise security aspects. In Proceedings of the Workshop on AOSD

Technology for Application-level Security (AOSD04.AOSDSEC), 2004.

[21] Jonas Boner. Semantics for a synchronized block join point, 2005. Available

at h t t p : / / w w w . j o n a s b o n e r . c o m / 2 0 0 5 / 0 7 / 1 8 / s e m a n t i c s - f o r - a -

s y n c h r o n i z e d - b l o c k - j o i n - p o i n t / (accessed on 2008/11/11).

[22] Alexandre M. Braga, Cecilia M. F. Rubira, and Ricardo Dahab. Tropyc: A pattern

language for cryprographic software. Technical Report IC-99-03, Institute of Com­

puting, UNICAMP, January 1999.

191

http://nob.cs.ucdavis.edu/~bishop/secprog/
http://www.jonasboner.com/2005/07/18/semantics-for-a-

[23] Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely. muABC: A minimal

aspect calculus. In Proceedings of the Fifteenth International Conference on Concur­

rency Theory (CONCUR 2004), volume 3170 of Lecture Notes in Computer Science.

Springer-Verlag, 2004.

[24] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal. Pattern-Oriented Software Architecture: A System of Patterns. John Wiley and

Sons, 1996.

[25] David Callahan, Alan Carle, Mary Wolcott Hall, and Ken Kennedy. Constructing the

procedure call multigraph. IEEE Transactions on Software Engineering, 16(4):483-

487, 1990.

[26] Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias Wrigstad. Tribe: a sim­

ple virtual class calculus. In AOSD07 .Proceedings of the 6th international conference

on Aspect-oriented software development. ACM, 2007.

[27] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using AspectC to

improve the modularity of path-specific customization in operating system code. In

Proceedings of Foundations of Software Engineering. ACM, 2001.

[28] Keith Cooper, Timothy Harvey, and Ken Kennedy. A simple, fast dominance algo­

rithm. Software Practice and Experience, 4(1-10), 2001.

[29] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Stateful aspects: The case

for aspect-oriented modeling. In Proceedings of the 10th international workshop on

Aspect-oriented modeling. ACM, 2007.

192

[30] Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie Weirich.

PolyAML: A polymorphic aspect-oriented functional programming language. In Pro­

ceedings of the Tenth ACM SIGPLAN International Conference on Functional Pro­

gramming. ACM SIGPLAN, 2005.

[31] Bart DeWin. Engineering Application Level Security through Aspect Oriented Soft­

ware Development. PhD thesis, Katholieke Universiteit Leuven, 2004.

[32] Bart DeWin, Bart Vanhaute, and Bart De Decker. Security through aspect-oriented

programming. In Proceedings of the 1F1P TCI 1 WG11.4 First Annual Working Con­

ference on Network Security: Advances in Network and Distributed Systems Security,

2001.

[33] Bart DeWin, Bart Vanhaute, and Bart De Decker. How aspect-oriented programming

can help to build secure software. Informatica (Slovenia), 26(2), 2002.

[34] Edsger Dijkstra. Dijkstra's algorithm. Available at h t t p : / / e n . w i k i p e d i a .

o r g / w i k i / D i j k s t r a _ a l g o r i t h m (accessed on 2008/11/11).

[35] Remi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud, Marc Segura-

Devillechaise, and Mario Siidholt. An expressive aspect language for system applica­

tions with Arachne. In AOSD05: Proceedings of the 4th international conference on

Aspect-oriented software development. ACM, 2005.

[36] Christopher Dutchyn, Gregor Kiczales, and Hidehiko Masuhara. Aspect Sand

Box Project, 2002. Available at h t t p : / / w w w . c s . u b c . c a / l a b s / s p l /

p r o j e c t s / a s b . h t m l (accessed on 2008/11/11).

193

http://www.cs.ubc.ca/labs/spl/

[37] Michael Engel and Bernd Freisleben. Supporting autonomic computing functionality

via dynamic operating system kernel aspects. In AOSD05: Proceedings of the 4th

international conference on Aspect-oriented software development. ACM, 2005.

[38] F. Lee Brown Jr., James DiVietri, Graziella Diaz de Villegas, and Eduardo B. Fernan­

dez. The authenticator pattern. In Proceedings of the 6th Annual Conference on the

Pattern Languages of Programs (PLoP99), 1999.

[39] Eduardo B. Fernandez and Reghu Warrier. Remote authenticator/authorizer. In Pro­

ceedings of the 10th Conference on Pattern Languages of Programs (PLoP 2003),

2003.

[40] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[41] Ernesto Gomez. Cs624- notes on control flow graph, 2003. Available at h t t p : / /

www. c s c i . c s u s b . e d u / e g o m e z / c s 6 2 4 / c f g . p d f (accessed on2008/11/11).

[42] Mark G. Graff and Ken v. Wyk. Secure Coding: Principles and Practices. O'Reilly

& Associates, 2003.

[43] Demeter Group. Available at h t t p : / / w w w . c c s . n e u . e d u / r e s e a r c h /

d e m e t e r / (accessed on 2008/11/11).

[44] David Grove and Craig Chambers. A framework for call graph construction algo­

rithms. ACM Transactions on Programming Languages and Systems, 23(6):685-746,

2001.

194

http://csusb.edu/egomez/cs624/cfg.pdf
http://www.ccs.neu.edu/research/

[45] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph construc­

tion in object-oriented languages. SJGPLANNot., 32(10): 108-124, 1997.

[46] Dima Hadidi, Nadia Belblidia, and Mourad Debbabi. Security crosscutting concerns

and AspectJ. In Proceedings of the 2006 International Conference on Privacy, Secu­

rity and Trust (PST2006). McGraw-Hill/ACM, 2006.

[47] Bruno Harbulot and John R. Gurd. A join point for loops in AspectJ. In Proceedings

of the 4th workshop on Foundations of Aspect-Oriented Languages (FOAL 2005),

March, 2005.

[48] Gabriel Hermosillo, Roberto Gomez, Lionel Seinturier, and Laurence Duchien.

Aprosec: an aspect for programming secure web applications. In Proceedings of the

Second International Conference on Availability, Reliability and Security (ARES07).

IEEE, 2007.

[49] Glenn Holloway and Michael D. Smith. The machine-suif control flow analysis li­

brary. Harvard University, 1998. Available at h t t p : / /www. e e c s . h a r v a r d ,

e d u / m a c h s u i f / s o f t w a r e / n c i / c f a . h t m l (accessed on 2008/11/11).

[50] Michael Howard and David E. LeBlanc. Writing Secure Code. Microsoft, Redmond,

WA, USA, 2002.

[51] Michael Howard and Steve Lipner. The Security Development Lifecycle. Microsoft,

Redmond, WA, USA, 2006.

195

[52] Minhuan Huang, Chunlei Wang, and Lufeng Zhang. Toward a reusable and generic

security aspect library. In Proceedings of the Workshop on AOSD Technology for

Application-level Security (AOSD04.AOSDSEC), 2004.

[53] Norman L. Kerth and Ward Cunningham. Using patterns to improve our architectural

vision. IEEE Software, 14(l):53-59, 1997.

[54] Gregor Kiczales. The fun has just begun, keynote talk at AOSD 2003,

2003. Available at h t t p : / / w w w . c s . u b c . c a / ~ g r e g o r / p a p e r s /

k i c z a l e s - a o s d - 2 0 0 3 . p p t (accessed on 2008/11/11).

[55] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William

Griswold. Overview of Aspect!. In Proceedings of the 15th European Conference

ECOOP 2001. Springer Verlag, 2001.

[56] Darrell M. Kienzle, Matthew C. Elder, David Tyree, and James Edwards-Hewitt.

Security patterns repository, 2002. Available at h t t p : / / w w w . m o d s e c u r i t y .

o r g / a r c h i v e / s e c u r i t y p a t t e r n s / d m d j _ r e p o s i t o r y . p d f (accessed

on 2008/11/11).

[57] Howard Kim. An AOSD implementation for C#. Technical Report TCD-CS2002-55,

Department of Computer Science, Trinity College, Dublin, 2002.

[58] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow pointcut in aspect-oriented

programming. In Proceedings of The First Asian Symposium on Programming Lan­

guages and Systems (APLAS03), 2003.

196

http://www.cs.ubc.ca/~gregor/papers/
http://www.modsecurity

[59] Hidehiko Masuhara, Hideaki Tatsuzawa, and Akinori Yonezawa. Aspectual Caml:

an aspect-oriented functional language. In 1CFP05: Proceedings of the tenth ACM

SIGPLAN international conference on Functional programming. ACM, 2005.

[60] John McCormick. OpenBSD declares war on buffer overruns. TechRepub-

lic, 2003. Available at h t t p : / / t e c h r e p u b l i c . c o m . c o m / 5 1 0 0 - 1 0 3 5 _

l l - 5 034 8 3 1 . h t m l (accessed on 2008/11/11).

[61] Andrew Myers. Jflow: Practical mostly-static information flow control. In Proceed­

ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL99). ACM, 1999.

[62] Luis Daniel Benavides Navarro, Mario Stidholt, Wim Vanderperren, Bruno De Fraine,

and Davy Suvee. Explicitly distributed AOP using AWED. In AOSD06: Proceedings

of the 5th International Conference on Aspect-Oriented Software Development. ACM,

2006.

[63] Doug Orleans. Adaptive programming with traversals and visitors. Avail­

able at h t t p : / / w w w . c c s . n e u . e d u / r e s e a r c h / d e m e t e r / p o s t e r s /

i n t r o D e m e t e r - J a v a / p o s t e r . h t m l (accessed on 2008/11/11).

[64] Harold Ossher and Peri Tarn Multi-dimensional separation of concerns and the hy-

perspace approach. In Proceedings of the Symposium on Software Architectures and

Component Technology: The State of the Art in Software Development, Kluwer, 2000.

[65] Frank G. Pagan. Formal Specification of Programming Languages. Prentice-Hall,

Inc., 1981.

197

http://techrepublic.com.com/5100-1035_
http://www.ccs.neu.edu/research/demeter/posters/

[66] Terence Parr. Antlr. Available at h t t p : / / w w w . a n t l r . o r g (accessed on

2007/11/11).

[67] G.D. Plotkin. A structural approach to operational semantics. Logic and Algebraic

Programming, 60-61:17-139, 2004.

[68] Sasha Romanosky. Security design patterns part 1, 2001. Available at h t t p : / /

www. r o m a n o s k y . n e t / (accessed on 2008/11/11).

[69] Barbara G. Ryder. Constructing the call graph of a program. IEEE Transactions on

Software Engineering, 5(3):216-226, 1979.

[70] Markus Schumacher. Security Engineering with Patterns. Springer, 2003.

[71] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank

Buschmann, and Peter Sommerlad. Security Patterns: Integrating Security and Sys­

tems Engineering. Wiley, 2006.

[72] Benjamin Schwarz, Hao Chen, David Wagner, Geoff Morrison, Jacob West, Jeremy

Lin, and Wei Tu. Model checking an entire Linux distribution for security violations.

In Proceedings of the 21st Annual Computer Security Applications Conference. IEEE,

2005.

[73] Robert C. Seacord. Secure Coding in C and C++. SEI Series. Addison-Wesley, 2005.

[74] Viren Shah. An aspect-oriented security assurance solution. Technical Report AFRL-

IF-RS-TR-2003-254, Cigital Labs, 2003.

198

http://www.antlr.org

[75] Viren Shah and Frank Hill. Using aspect-oriented programming for addressing secu­

rity concerns. In Procceedings of the Thirteenth International Symposium on Software

Reliability Engineering (ISSRE), 2002.

[76] Viren Shah and Frank Hill. Aspect-oriented programming security framework. In

Proceedings of the DARPA Information Survivability Conference and Exposition

(DISCEX03). IEEE, 2003.

[77] Kenneth Slonneger and Barry L. Kurtz. Formal Syntax and Semantics of Program­

ming Language: A Laboratory Based Approach. Addison-Wesley Publishing Com­

pany, Inc., 1995.

[78] Pawel Slowikowski and Krzysztof Zielinski. Comparison study of aspect-oriented and

container managed security. In Proceedings of the ECCOP Workshop on Analysis of

Aspect-Oriented Software, 2003.

[79] Olaf Spinczyk, Andreas Gal, and Wolfgang Schroder-Preikschat. Aspectc++: An

aspect-oriented extension to C++. In Proceedings of the 40th International Confer­

ence on Technology of Object-Oriented Languages and Systems, 2002.

[80] Peri Tarr and Harold Ossher. HyperJ user and installation manual, 2000. IBM T.

J.Watson Research Center, Yorktown Heights, NY, USA.

[81] Bart Vanhaute and Bart DeWin. Security and genericity. In Proceedings of the 1st

Belgian AOSD Workshop, 2001.

[82] John Viega, J.T. Bloch, and Pravir Chandra. Applying aspect-oriented programming

to security. Cutter IT Journal, 14(2):31-39, 2001.

199

[83] John Viega and Matt Messier. Secure Programming Cookbook For C and C++.

O'Reilly Media, Inc., 2003.

[84] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects. In Proceedings

of the ACMSIGPLANInternational Conference on Functional Programming. ACM,

2003.

[85] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for advice

and dynamic join points in aspect-oriented programming. ACM Transactions on Pro­

gramming Languages and Systems, 26(5): 890-910, 2004.

[86] Meng Wang, Kung Chen, and Siau-Cheng Khoo. Type-directed weaving of aspects

for higher-order functional languages. In PEPM06: Proceedings of the 2006 ACM

SIGPLAN symposium on Partial evaluation and semantics-based program manipula­

tion. ACM, 2006.

[87] David A. Wheeler. Secure Programming for Linux and Unix HOWTO - Creating

Secure Software v3.010. 2003. Available at h t t p : / / w w w . d w h e e l e r . c o m /

s e c u r e - p r o g r a m s / (accessed on 2008/11/11).

[88] Dianxiang Xu, Vivek Goel, and Kendall Nygard. An aspect-oriented approach to

security requirements analysis. In 30th Annual International Computer Software and

Applications Conference (COMPSAC '06). IEEE, 2006.

[89] Zhenrong Yang. On building a dynamic vulnerability detection system. Master's

thesis, Concordia University, 2007.

200

http://www.dwheeler.com/

[90] Joseph Yoder and Jeffrey Barcalow. Architectural patterns for enabling application

security. In Proceedings of the 4th Annual Conference on the Pattern Languages of

Programs (PLoP97), 1997.

[91] Yves Younan, Wouter Joosen, and Frank Piessens. Code injection in C and C++: A

survey of vulnerabilities and countermeasures. Technical Report CW386, Department

of Computer Science, Katholieke Universiteit Leuven, July 2004.

201

