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A B S T R A C T 

On the moments of central values of modular L-functions 

Benjamin Justus. Ph.D. 
Concordia University, 2008 

The thesis studies the integer-power moments of the central values of families 

of modular //-functions. The two families under consideration in the thesis are 

those quadratic twists of a L-function associated with a cusp form and L-functions 

of a Hecke-basis of the space of cusp forms. Appropriate moment estimates are 

derived for each family. Applications of the derived estimates are given. 
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NOTATIONS 

We follow the standard practices in analytic number theory. When it is writ­

ten / <C g, it means that there exists a positive constant C such that | / | < C\g\. 

The notation / <Ca g means that there exists a constant C which depends only 

on a and | / | < C\g\. 
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Chapter 1 

Introduction 

The thesis studies the integer-power moments of the central values of families of 

modular //-functions. The two families under consideration in the thesis are the 

quadratic twists of an //-function associated with a cusp form and /--functions of 

a Hecke-basis of the space of cusp forms. 

The plan of the thesis is the following: chapter one gives a historic survey on 

the subject. In chapter two. we review background material that is needed for 

the chapters that are to follow. The task of estimating the first moment for the 

quadratic family is carried out in chapter four. Here an asymptotic estimate is 

derived. The task of estimating the second and higher moments for the quadratic 

family is carried out in chapter three. Here sieve techniques are the guiding prin­

ciples in deriving any reasonably good upper bound estimates. Chapter five gives 

applications which makes use of the moment results developed in the previous 

chapters. They include a non-vanishing result (section 5.1) and a zero density-

estimate (section 5.2). In Chapter six. we consider a different family, namely 

//-functions associated with a Hecke-basis of cusp forms. In such an instance, 

we provide asymptotic estimates on the first and second moment. For higher 
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moments, only upper bounds are given. 

1.1 Analytic Results 

The moment-type results are intimately connected with the study of non-vanishing 

of .L-functions at the critical point. Analytic results were first proved by K. Murty 

and R. Murty [16], and Iwaniec [6]. Earlier on, Kolyvagin [14] proved a result 

which states that the group of rational points on an elliptic curve E is finite if 

L(l, E) ^ 0 and the //-function L(s, E, Xd) twisted by a suitable quadratic char­

acter has a simple zero at s — 1. The latter condition was subsequently proved 

to hold true for infinitely many discriminants d by D. Bump, S. Friedberg and 

J. Hoffstein [3], and K. Murty. R.Murty [16] independently. The method used 

in [16] is classical. They established in their paper a mean-values estimate on 

the derivative of //-series attached to the elliptic curve. Precisely, let L(s7 E) be 

the /--function associated with an elliptic curve E and L(s, E, Xd) the quadratic 

twists of L(s.E) by Xd- Suppose L(\.E) ^ 0. Then over a suitable family of 

quadratic twists in the range of [0, Y], they established 

^L'(l,E,Xd) = CYlogY + o(Y\ogY), 
d 

where C is non-zero and depends only on E. This theorem clearly implies the 

existence of infinite many discriminants such that L(s, E, Xd) has a simple zero 

at s — 1. Iwaniec [6] subsequently gave a precise estimate on the number of 

non-vanishing of L'(1,E, Xd)- He showed 
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^L'{i,E,Xd) = a y ] o g y + pY + o(y 1 3 / ! 4 + c x 
d 

J2W(hE:Xd)\
4«Y2+<. 

d 

where a ^ O and (3 only depends on E. Using these estimates and Cauchy's 

inequality, he then shows using the above estimates L'{\. E, \d) ^ 0 for at least 

y2/3-f r e a] pn m i t i v e quadratic characters. This result was later improved to Y1~( 

by Perelli and Pomykala [19]. 

Here the philosophy is clear: one has non-vanishing results if one is able to 

give good moment estimates on the specific family at hand. This idea has inspired 

the subsequent coming of many other papers [17, 19, 11]. 

In this thesis, we use this framework to study the non-vanishing of modular 

/^functions at the critical point (instead of the derivative of Z-functions) by 

giving the appropriate moment estimates. The family consists of the quadratic 

twists of a given //-function, L(s,f ® Xd)- And we study not only L-functions 

associated with elliptic curves, but for any cusp newform of arbitary level and 

arbitary weight with nebentypus (i.e. / £ Sk{T0 (N) ,x) )• 

1.2 Interpolation Formula 

It is a remarkable fact that the central critical values of modular L-functions are 

related to the Fourier Coefficients of half-integral weight cusp forms. Here one 

should mention the theorems of Waldspurger [22] and Kohnen [13]. 

To state Waldspurger's result, for every fundamental discriminant D define 

D0 by 
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\D\. if D is odd. 
D0=< 

I \D\/4, if D is even. 

Theorem 1.1. If f(z) = Yln>i o,(n)e(nz) £ S^Fo^-AO) is an even weight new-

form (see section 2.1 for definition) and 5 6 {±1} is the sign of the functional 

equation L(s.f). then there exists a positive integer M with M\N. a Dirichlet 

character x rnodulo AM, a nonzero complex number Qj. and a nonzero half-

integral weight Hecke eigenform 

oo 

9f(z) = X > ( " ) e M € Sk+l(r0(4M),X) 
n = l 

with the property that there are arithmetic progressions of fundamental discrimi­

nants D coprime to AN for which 8D > 0 and 

where er> is algebraic and depends only on D. For all other D with 5D > 0; we 

have bj(D0) — 0. Moreover, there is a fixed number field K finite degree over Q 

such that the coefficients a(n). bj{n) and the values of x are in ®K: the ring of 

integers of K. In addition, ifp\AN is prime, then 

MP) = X(p)a{p), 

where X(p) is the eigenvalue of g/(z) for the half-integral weight Hecke operator 

Tp2. 

In Waldspurger's theorem, the constant in (1.1) is not explicit. Kohnen's 

theorem [13] is more precise in the sense that the constant in his formula is 

explicit. 
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Theorem 1.2. Let N be odd and square-free and suppose further 

g(z) = Y,b{n)e(nz) E S;+ , (r0(4JV),x) 
n>l 

is a Kohnen newform (see [12]). Let f(z) = J2n>ia(n)e(nz) ^ S^i^ot^N)) 

be the unique even weight newform under Shimura's correspondence. If l\N is 

prime, then let X; € {±1} be the eigenvalue of the Atkin-Lehner involution 

f\W{Q{)(z) = \J{z). 

If (—l)kD > 0 and D had the property ( j ) = A; for each prime l\N, then 

L{k. f®Xd) = < / ; / > /T \b(\D\)\2. 
Ad! 2-W(ifc-l)! |P|*-i <g,g> 

For all other fundamental discriminants D with (—l)kD > 0 we have b(\D\) = 0. 

1.3 Random Matrix Theory 

Modeling families of L-functions by using the choices of random matrix ensembles 

suggested by Katz and Sarnak [18], Keating and Snaith and other people gave 

very precise conjectures on the moments of central values of L-functions (see [9. 

10]). 

For example, the family of Dirichlet L-functions L(s. x) as x varies over prim­

itive characters modulo q is a unitary family, and it is conjectured that as q —> oo 

J2* \L(l/2,x)\2k~Ckq(\ogqf 
X mod q 

for positive integer k and Ck is a specified constant. Here the summation is over 

all primitive characters modulo q. 

The family of quadratic Dirichlet L-functions L(s,Xd), where d is a funda­

mental discriminant and x<i is the associated quadratic character, is a symplectic 



family and it is conjectured that as X —> oo 

J2 L(l/2:Xd)
k~AkX(]ogX)k^2 

\d\<X 

for positive integer k and Ak is a specified constant. 

The family of quadratic twists of a given newform / . L(s, f <g> \d) is an or­

thogonal family and it is conjectured that as X —> oo 

] T L(1/2J ®Xd)
k ~ BkX(logX)k^2 

\d\<x 

for positive integer k and Bk is a specified constant. 

The two families we study in the thesis differ from the three families presented 

above. There are no currently known moment-type conjectures regarding the two 

families in the thesis. 
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Chapter 2 

Modular forms and L-functions 

We briefly review some basic properties of classical modular forms. The reader 

can consult standard texts such as [7] for more details. 

2.1 Classical Modular forms 

In this thesis, we are dealing with modular forms of integer weights over a con­

gruence subgroup. By saying / is a modular form of weight k € Z, level TV and 

nebentypus \- it IS understood that / satisfies the following conditions: 

1. / is an analytic function defined on the upper half plane H; 

/ 

2. f(-yz) = {cz + d)kx{d)f(z) for all 7 = 

3. / is holomorphic at all cusps of To(N). 

Furthermore, we say / is a cusp form if it vanishes at the cusps of To (N). 

If / is a modular form, it then has a Fourier series expansion at each cusp. 

Especially important is the Fourier expansion of / at the cusp 00 
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f{z) = Y,a{n)e(nz), e(z) = e 2 ^ . 

When / is a cusp form, then in the above expansion o,(0) = 0. 

Modular forms of level TV. weight A" and nebentypus \ form a vector space 

which is denoted by Mk(Fo (TV) ,x), and the cusp forms a subspace denoted by 

Sk{r0 (TV) :x)- The vector space Mk(r0 (TV) ,x) is finite dimensional. Moreover. 

Ski^o {N) -. X) is a finite dimensional Hilbert space with the Petersson inner prod­

uct 

<f-,9>= f{z)lKz)yk~2dxdy-

Jv0{N)\n 

Indispensable from the theory of modular forms is the concept of Hecke op­

erators. Fix positive integers k, TV. For each n > 1 the operator Tn (called nth 

Hecke operator) acts on the space Mk(r0 (TV) ,x)- It is defined by the formula: 

/KW = 1 £* (« )« '£ / (^ ) . 
ad=n 0<b«i ^ ' 

The Hecke operators are linear, and they are multiplicative in the sense that 

for any n,m > 1 

TnTm= J2 x(d)dk-lT™. (2.1) 
d\(n.m) 

Suppose (n, TV) = 1. Then the operator Tn is normal on the Hilbert space 

Sk(F0 (TV) ,x) with respect to the Petersson inner product. More precisely for 

f,g € Sk(r0 (TV), x) we have 

<f\Tn,g>=x(n)<f,g\Tn>. 
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Thus, by standard linear algebra, one is able to find an orthonormal basis 

of the space 5A(FO (-/V). _\) which consists of eigenfunctions for all the Hecke 

operators T„ with (n.N) — 1. If one wishes to remove the last condition (n. N) = 

1. the theory of newforms initiated by Atkin and Lehner [1] intervenes. In this 

theory, one can decompose the space of cusp forms into 

Sk(r0(N),X) = &(N,x)<BS*(N,x). 

S7(N, x) is called the space of oldforms and its orthogonal complement S* (N, x) 

in Sk(To (N), x) is the subspace of newforms. The space of oldforms and the space 

of newforms are stable under the Hecke operators Tn with (n.N) = 1. Therefore, 

each of them has an orthonormal basis consisting of eigenfunctions of the Hecke 

operators Tn with [n.N) = 1. The Hecke eigenforms of S*(N,x) are called new-

forms. One of the main result here is that: a newform is an eigenfunction for 

all the Hecke operators. A newform is usually normalized so that all its Fourier 

coefficients coincide with the eigenvalues of the Hecke operator Tn. Besides the 

Hecke operators Tn. a newform is also an eigenfunction for another important 

operator, namely the Fricke involution W. which is defined by 

W = WoK 

where 

f\W(z) = N~k>*z-kf (^j , (2.2) 

f\K(z) = Jptj. (2.3) 

Let / be a newform and 7/ its eigenvalue under the action of W. The eigenvalue 

n is an important invariant in what follows in the thesis. It is complex with 
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absolute value 1. And only in special cases, one can compute it explicitly. 

Proposition 2.1. Let \ be a primitive character of conductor N. Let f be a 

newform in S^To (TV) ,x)and 77 its eigenvalue by the Fricke involution. Then 

rj = T{x)\NN~k/2. 

Here A^ is the TVth Fourier coefficient of / and T(X) denotes the usual Gauss 

sum associated with the character x-

Proposition 2.2. Let N be squarefree, and x trivial. Then n is given by 

n = ^{N)XNNl~k'2. 

Given a modular form, one may produce new modular forms by means of 

twisting. More precisely 

Proposition 2.3. Let f € Mk(Fo(N) ,x) be a modular form with Fourier coef­

ficients an. Let N* be the conductor of the Dirichlet character x and let ip be a 

primitive Dirichlet character modulo r. Let f ®ijj be the function on H given by 

the Fourier expansion 

{f®i')(z) = ^2i'(n)ane(nz). 
n>0 

Then f <8> tp is also a modular form, more precisely f ®ip £ Mk{T0 (q), x^2), 

where q is the least common multiple of N, N*r and r2. If f is a cusp form, then 

so is f (S) tp. 

2.2 Hecke L-functions 

Consider / € Mk{To (TV), x)-. so f has the Fourier expansion at 00 
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f{z) = ^ane{nz). 
»<>0 

One defines its Hecke L-function to be the Diriehlet series 

and the completed L-function 

Msj)= h^fj r(s)L(sj). 
Bounding an trivially (see section 2.4), L(s.f) is absolutely convergent for 

Re(s) > | . Regarding the analyticity of L(s.f), Hecke proved 

Theorem 2.1 (Hecke). With notations above. L(s,f) has a meromorphic con­

tinuation to the whole complex plane and the completed L- function satisfies the 

functional equation 

A(s,f) = ikA(k-s,f\W). 

Moreover. L(s, f) is entire if f is a cusp form, and otherwise it has only a simple 

pole at s = k. 

Recall W is the operator defined earlier (2.2). The proof is very much like 

Riemann's proof of the functional equation of C(s)-

Proof. By the definition of the gamma function we have for n > 1, 

V 2TT y J0 y • 

so in the region of absolute convergence we have the representation 

11 



<>=f 
Jo 

A,.,/)-, l / l ^ ) - « » ) 4 
Here we split the integral into the part from 1 to oo and the part from 0 to 1 

and we transform the latter as follows 

jf('U)-)^-f('U)-)' 

Adding both parts we obtain the integral representation 

dy 

yVN/ J ' y 

y ' 

^-n'^H^'jo "> "> « o V ' ^ . 
'NJ J y 

Since / — a.Q decays exponentially at infinity, the meromorphic continuation fol­

lows, and the functional equation is then clear. • 

Corollary 2.1. Let f be a normalized newform in Sk(To(N)1x) with Fourier 

expansion 

f{z) = ^2,Ke{nz). 
n > ] 

Then the Heche L-function of f has an Euler product expansion 

p 

and has analytic continuation to an entire function. The completed L-function 

A ( S ; / ) = ( ^ r ) r<s)L<5"f) 
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satisfies the functional equation 

A(sJ) = tkrjA(k-sJ) 

Proof. The functional equation is a direct consequence of Theorem 2.1 and the 

fact / is an eigenfunction of W with eigenvalue n. Using (2.1). we may write 

E^no-^-'**^1-*)-1-
The Euler product of L(s, f) now follows by the above expansion and together 

with the fact f\Tn = Xnf, n > 1. D 

Proposition 2.3 tells us how to get new modular forms by twisting the old one 

with characters. The following proposition tells us when one may get newforms 

by twisting. 

Proposition 2.4. Let f be newform in Sk(T0 (TV). x) and ip a primitive Dirichlet 

character modulo r with (r. N) = 1 Then f®ijj is a newform of level Nr2 and the 

Hecke L-function of f <g> tp is entire and polynomially bounded in vertical strips. 

Moreover, the completed L-function satisfies the functional equation 

A(s, f<S>i') = ikwrfjA(k - s, / ® V>) 

where r)f is the eigenvalue of f for the operator W, and the root number w depends 

only on x cmd ift. namely 

T(IL>)2 
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2.3 Approximate Functional Equation 

The approximate functional equation gives an analytic expression for L(s, f) 

inside the critical strip 0 < Re(s) < k. 

Theorem 2.2. Let f — ^ane(nz) be a newform in Sfc(r0 {N) ,x)- Let G{u) be 

any function which is holomorphic and bounded in the strip —2k<Reu< 2k. 

even, and normalized by G(0) = 1. Let X > 0. Then for any s = a + it in the 

strip 0 < a < k we have 

v N \ v-^ 5^ , , [2imX\ . A. 

TTJ g ^ - b r ) (24> 

where Vs(y) is a smooth function defined by 

V"W = T~i I » - ^ . ) ? i (2-5) 
2™ J(a)

 r(s) u 

with a fixed a satisfying 1 + k/2 < a < 2k. 

Proof. Consider the integral 

I(X,s,f) = ± I X"A(s + u,f)G(u) — 2m J(a) u 
du 

X"A{s + u,f)U(u] 
'(a) 

The integral exists because A(a + it.f) decays exponentially at infinity for 

fixed a. By the same reason, one can move the line of integration to Re(u) = —a. 

Thus 

A(s, / ) = I(X, s, / ) - - L / X*A(s + «, f)G(u)-
2m J{_o) u 

where A(s. / ) comes from the residue of the simple pole of G(u)/u at u = 0. We 

now perform a change of variable in the above integral and invoke the functional 

equation for / . this yields 
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A(s. / ) = 1(X, s. f) + ikJjI(X-\k - s. / ) . (2.6) 

Since a is chosen so that the Dirichlet series defining L(s.f) is absolutely 

convergent in such a region, we have 

2im \ " , . „ , . du 

VNXJ U 

k—s 

/ ( X _ 1 . * r - s . / ) = —— > -r 2 -^— / (—7=- r ( f e - s + u)C?(u) —. 

Put them back in (2.6) and divide both sides by (->/N/2n)sr(s), the theorem is 

proved. • 

For a suitable test function G(u), both sums in (2.4) are effectively limited to 

the terms with n <C \s\. We shall see this with a particular choice of G(u) 

—— 1 with A > 2k. 
4kA J 

Proposition 2.5. With notations above. The derivatives ofVs(y) satisfies 

« " « ^ - + 0 ( R T T ) " 

yy.'(y)«{^ jif-Y' 

where So = 1. 5a = 0, if a > 0. The implied constant depends only on a and A. 

Proof. We have the formula 
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If a = 0 this becomes 

2™ J (a) r ( S ) u 

Since A is chosen so that G(u) is holomorphic with -A < Rev < A. we may 

move the line of integration to (—A), thus 

vs{y) = 1 + 7T-. \ y TV ^ G " ) — • 
2TH y(__4) T(s) u 

where the main term 1 comes from the residue of the simple pole of G(u)/u at 

u — 0. Using the bounds 

G(u) «: e~nM 

r ( s + u ) « ( i S i + i r « e x P & i 
r(s)

 Vl ' ' ^ 2 ' 

we conclude 

VM-1 + 0{wri 
If a > 0, one sees this by using the same contour. 

The proof for the second assertion is similar, one shifts the contour to the line 

(A) in this case. D 

Using the same ideas as used in the proof of Theorem 2.2. one may derive 

an approximate functional equation for the mth power of L(s, / ) where m is any-

positive integer. Such a result is needed later. 
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Theorem 2.3. With the notations above, for any given positive integer m. 

n > ] v 7 \ / n > ] 

?n(fc-2s) 
'(2n)mnX 

k-s ' jym/2 

(2.7) 

where 

bn= ^2 akiak2 • • • akm (2.8) 

wzi/j a /tzed a satisfying 1 + A;/2 < a < 2k. 

2.4 Bounds for Fourier Coefficients 

Let / — ]Pane(nz) be a cusp form in Sk(r0 (N) ,x)- We are interested in esti­

mating the size of an. We begin by stating a criterion for the cusp form. See 

chapter five of [7]. 

Lemma 2.1. Suppose f is a modular form for the group T. Then f is a cusp 

form if and only if (lmz)k^2\f(z)\ is bounded in the upper-half plane. 

By the Parseval identity and the lemma above 

£|an|V
4™* = f\f(z)\2dx^y-K 

„ Jo 

whence 

J2 Kl2« y^e*"* 
n<N 

for any y > 0. Choosing y = TV"1, we obtain 
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Theorem 2.4. 

]Tkl2«A'*. 

Remark 2.1. The upper bound above is the best possible, for one can prove 

using the Rankin-Selberg method that 

n<N 

where c is a positive constant depending on / . The theorem also shows that for 

any individual coefficient it yields 

an « : nk/2. 

In fact, we have the bounds(originally known as the Ramanujan-Petersson con­

jecture) 

a„ « : T{n)n^ (2.10) 

by the work of Deligne [4]. Here T(TI) is the number of divisors of n. 

Using Cauchy's inequality, we deduce the following estimate from Theorem 2.4 

Corollary 2.2. For any N > 1 we have 

n<N 

The bound can be improved if we drop the absolute value to allow cancellation 

between the terms. 
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Theorem 2.5. For any real a and N > 1 we have 

] T a n e ( a n ) < Nk'2\og2N 

where the implied constant depends only on f (not on a). 

We also need the following result in chapter three, the proof of which can be 

found in [6] (Lemma 1). 

Proposition 2.6. Let a be real and ip be a periodic function of period r. We 

then have 

J~] anip(n)e(an) <C ^NlogN, 
n<N 

where 

* 
r £—* 

a (mod r) b (mod r) 

Moreover, if \ip\ < 1 and s is a positive integer then we have 

^ anip(n)e(an) <§: r(s)r1/2N log N 

and 

] T ' antp{n)e{an) « : r(s)r1/2yV(log JV)7 

n<N 
(nj ) = l 

where the last summation is over squarefree positive integers. 
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Chapter 3 

Bounding the Second and Higher 

moments 

We prove upper bounds for the power moments of the family L(s, f <g> Xd)- In 

Section 3.1, the concept of the large sieve is introduced. Using such techniques, 

we then give upper bounds for all the even moments of the family L(s. f <8> Xd)-

This is achieved in Section 3.2. In Section 3.3, a refined estimate for the second 

moment is derived. 

3.1 Large Sieve inequalities 

Large sieve inequalities are inequalities of the type 

xex 
2_] anx(n) 
n<N 

2 

<C(X,N)\\a\\2 

for any complex numbers an, where ||a|| = Yl \an\2-

Let X consist of all primitive Dirichlet characters of modulus q < Q, our first 

example of large sieve type of inequalities is the following theorem of Bombieri 
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and Davenport [2] 

Theorem 3.1. For any complex numbers an with M < n < M + N. we have 

1<Q V 'x (mod?) 

Yl anX{n] < ( Q 2 + 7 V - 1 ) H 
\M<n<M+N 

where inner sum is over all primitive characters (mod q). 

There are remarkable consequences of this theorem. 

If we restrict £ to primitive quadratic characters with conductors at most Q. 

here is a powerful result of Heath-Brown [5]. 

Theorem 3.2. For any complex numbers an. 

E 
|d|<<? 

J2 anXd{n) 
n<N 

« Q e i V H < ( Q + N) max \an 
n<N 

The implied constant depends only on e. 

As an application, we shall in Section 3.3 use Heath-Brown's inequality to 

prove an upper bound of correct order of magnitude for the second moment. 

The Fourier coefficients of cusp forms, or better the eigenvalues of Hecke 

operators in the space of cusp forms, are analogues of Dirichlet characters. Let 

T be an orthonormal basis of Sk(r0 (q) ,x). Let f(z) — ^a / (n )e (nz ) be the 

Fourier expansion of / at oo. The following large sieve inequality [21] is used in 

Chapter Five. 

Theorem 3.3. Let k > 2. Then for any complex numbers an we have 

r ( * - i ) 
(47T | f c - l E y anaf(n)n 

l-k 
2 

n<N 

« 1 + 0 
NlogN 

qk w 
The implied constant is absolute. 
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3.2 A crude estimate 

Let. / be a newform in Sk(N,x)- As mentioned in the introduction, the family 

of /.-functions of interest consists of quadratic twists of / . More precisely, let 

d be a fundamental discriminant such that (d.N) — 1. We denote by x<i the 

quadratic character of conductor \d\. In view of Proposition 2.4. the twisted 

/ ® Xd is a newform in Sk(Vo (Nd2), x) and L(s. f ® x<i) is entire. The critical 

strip of L(s, f <8> Xd) is centered at Res = k/2. Summing over all such d, we are 

interested in estimating 

^* |L(* /2 ; /<g ) X d ) | 2 " \ (3.1) 
|d|<Q 

where m is any positive integer. 

Before stating our result, a few remarks on the expected magnitude of (3.1) 

are appropriate. If one assumes the Lindelof hypothesis, which says 

L(k/2,f®Xd) <&<<?, (3.2) 

one then gets 

YJ\L{k/2,f®Xd)\2m^Q1+e. (3.3) 
\d\<Q 

Of course, the Lindelof hypothesis for modular L-functions is currently not 

known to be true. Instead if we use the Ramanujan-Petersson bound (2.10) for 

the Fourier coefficients of / and the approximate functional equation, a simple 

computation shows 
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Summing over d. 

L(k/2J®Xj)«f,di 

X>(*/2 : /®xd) |2 m«: / ! ( Qm+1+f. 
\d\<Q 

We prove in this section the following 

T h e o r e m 3.4. For any t € K. 

^ J ] * |L(*/2 + it, f 0^)\2m « (Q2 + Qm(\t\ + k + l)m)(Q(|*| + k + l))c. 
9<<? v(g) 

Tfte implied constant depends on e and f. The inner sum is over all primitive 

characters tp with conductor q < Q and (q, TV) = 1. 

An immediate corollary of the theorem above is 

Corollary 3 .1 . 

^ * „ I Q2+t. m= 1; 
J2 \L(k/2J®Xd)\

2m«{ 
\d\<Q I Qm+e, m > 2. 

The strategy for the proof of the Theorem is to write Lm(k/2+it,f<S>x) m two 

finite sums using an approximate functional equation. The large sieve inequality 

is then used to bound the square of such sums. 

Proof. Let 

f(z) = Yla^nz) 
n>l 

be the Fourier expansion of / at oo. By Theorem 2.3. we may write 
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Lm{k/2 + itJ®4>) (3.4) 

(3.5) 

where 

fci—fcm=n 

V.(y) = —( y-u(T{i^U)TG(u)d^. 2mJ(Q)
y V F(5) ; ' u 

We now make the choice for G(u) 

<*" = [»(£) 
and deduce as in Proposition 2.5 

1 —4km A 

. with A>2k 

vM«(1 + Mhr)A- <3-6) 

Now let 

5 = Q c( | t | + fc + l ) D with D =
2 + 2 r n ^ 

2 , 4 - e ' 

In view of the approximate functional equation (3.4) and Cauchy's inequality 
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<?<<? V--(g) 

(2jr)T"n 
J\jm/2qm 

» v y ^ / (27r)"'n \ 
+ Z ^ Z ^ Z ^ nk/2-it Vk/2~it I Nm/2Qm I 

q<Q Ma) n>l \ V / 

(first term) 

(second term) 

9 < Q V>(<?) 

For the first term, truncate the sum up to B and use the large sieve inequality 

(Theorem 3.1) 

2 

EE 
9<Q i-'(q) 

v - M A ( n ) f (27r)mrz \ 
Z_y nk/2+it Vk/2+it I Nrn/2am I 
n<B X V y 

« ( g 2 + s)Be 

= (Q2 + ^(1*1 + fe + i)D)(Q(\t\ + k +1))*. 

In bounding the above coefficients bni we resorted to the Ramanujan-Petersson 

bound (2.10) and the elementary fact Tk(n) <C ne. In the remaining range n > B, 

we rely on (3.6) to get 

25 



EE' 
q<Q w{q) 

«EE' 

«EE' 
1<Q ip{q) 

«EE" 
q<Q iP(g) 

7 I > S 

Z ^ „*/2 I ^ 
n > B 

(2ir)mn 

nk/2 y Nm'2qm{\k/2 + i<| + l ) m 

E 
nfc/2 Vg r"( |^ l -i- Ar + 1 ) 

qmA(\t\ + k+l)mAJ2n~y2~A+( 

2+2mA+D-2DA+2De n.\ , . . i \ 2m.4+ .D-2LM + 2i?e 

« Q D + Z * ( | i | + fc+l)i7+Z\ 

Choose >1 = 2/e, so D = m + 0(e). This finishes the proof. D 

3.3 The Second Moment 

From Corollary 3.1. we know 

J2*\L(k/2,f®Xd)\
2<z:Q2+e-

\d\<Q 

The expected value for the second moment(in fact for any moment) is Q1+c if 

one is willing to assume the Lindelof hypothesis. That being said, we shall prove 

in this section the following 

Theorem 3.5. Let k > 2 and a be fixed in [k/2, k — 1/2], the estimate 

£ * \L(a + it,f® Xd)\
2 « (Q + (Q(\t\ + l))k+1~2°) (Q(\t\ + 1))( 

\d\<Q 

holds. The implied constant depends only on e. 
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The crux of the proof is Heath-Brown's large sieve inequality(Theorem 3.2). 

We mention also that such an inequality is applied in other contexts [19. 5]. 

We introduce notations before the proof. Let 

S(Q,f,s)= jy \L(sJ®Xd)\
2-

Q<\d\<2Q 

In what follows we study the sum S(Q.f.s). It is straightforward to check 

that the theorem follows if we can prove the same bound for S(Q.f,s). Let 

v(a, / ) be the inf of the u € IK for which 

S(Q, f, s) « (Q + (Q(\t\ + l))k+1-2°)(Q(\t\ + I))"- (3-7) 

We begin with a lemma. 

Lemma 3.1. The formula 

L(s, f®Xd) = J2 anXd{n)n-se-n'x - - L / L(w, f <g> Xd)T(w - s)Xw-sdw 

is valid for 1/2 < a < a = Re s 

Proof. Consider the integral 

/ L(w,f<8>Xd)T'(w-s)Xv'-'dw, l/2<a<a 
JM 2™ j ( o ) 

which is well-defined in view of the bound 

r (x + iy) «CX eH y | 

Moving the line of integration to (k/2). We have a simple pole at w = s with 

the residue L(s, f <g> Xd) and 
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- ^ / L(w, f ® xn)r(w - s)Xu'-sdw = L(s, f ® X'rf) e x p ( - n M ) 
2™ Jlk/2) '(fc/2) 

by the Mellin inversion formula. • 

Proof of the Main Theorem. In view of the lemma above, we have by Cauchy's 

inequality 

| £ ( s , / ® X d ) | 2 « . ^anXd(n)n-se-n/x 

i>i 

1/ — OO 

Summing over d, 

Q<\d\<2Q 

Y,anXd(n)n-se-n/x 

n>l 

/

oo 

S{QJ,a + iu)e-lu'tldu. 
• O O 

(3.8) 

From the functional equation (Proposition 2.4) for Z.(w. / <g> Xd)-, we have the 

bound 

\L(a + iuJ®Xd)\^(Q(M + l))k-2a\L(k-a-iu,f®Xd)\-

Thus running over d and using (3.7) 

S(QJ,a + iu) 

«(<?(M + l)f(k-2a)S{Q., J.k-a-iu) 

« f ,«(Q(M + l))^k~2a){Q + (Q(\u\ + l))-k+1+2a)(Q(\u\ + i))"(*-a,7)+<. 

This leads to a bound for the second term of (3.8) 
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/

DC 

5 ( Q ) / ! a + m)e- |"-"du (3.9) 
OC 

«(Q(|*| + l))2( fe-2a)(Q+ (Q(|*| + l))" fc+1+2a)(Q(|i| + i))"(*-«-7>+<. 

To bound the first term of (3.8), one resorts to Theorem 3.2. In view of 

Heath-Brown's theorem and bounds for the Fourier coefficients (2.10). one has 

E 
Q<\d\<2Q 

J^ anXd{n)n-se~n/x 

N<n<2N 

« e Q((Q + N)N k-2a+c (3.10) 

Now for large 7V0(> X \ogQ for instance) 

E 
Q<\d\<2Q 

= E 
Q<|rf|<2Q 

^ a n ^ r f ( n ) n - s e - " / x 

n > l 

XI anXd{n)n se n /x 
n<N0 

n<N0 

+ E 
Q<|d|<2Q 

+ 0(Q). 

] T anXd(n)^ se-" / x 

n>W0 

- E 
Q<|d|<2Q 

We break the interval [1,N0] into O(log7V0) subintervals of the type N <n< 

2N. Set N0 = X log2 Q(\t\ + 1). Apply (3.10) to each N < n < 2N 

E 
Q<\d\<2Q 

J2 anXd(n)n-se~n/x 

n<N0 

^QeNk~2a+((Q+ N0) log N0 

^e(Q + Xk+1-2°)(Q(\t\ + l)Xy 

Put the above estimate and (3.9) in (3.8) to get 

S(Q, f,a + it) « f .Q (Q 4- Xk+1~2°)(Q(\t\ + 1)A-) (3.11) 

+ (Q(\t\ + l))2{k-2a)(Q + (0(1*1 + l))-k+1+2o)(C?(|t| + l))"(*-°>7)+«. 
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]f k/2 + 5 < a < k - 1/2. Let a = k - a, so 1/2 < o < a. Set X = 

(Q(\t\ + l))^6. 

S(Q, f, s) ««„ (Q + (Q(|*| + l))k+1~2n(Q(\t\ + 1)Y2+6^6 

+ (0(|*| + l))"(".7)-2*(2*-*)+<(Q + (Q ( | / ( + l)f+^°) 

«e .a (Q + «?CI*I + i))k+1-2a)((Q(\t\ + i)) ( 2 + 6 ) ( + 6 

whence 

i/{a,f)<max(A,t/{a,J) + B), A = (2 + S)e + S, B = e - 25(2<j - k). 

(3.12) 

One also has by running through the same argument 

v(<r,7)<max(A,v((T,f) + B), A = (2 + S)e + 5, B = e - 28{2u - k). 

(3.13) 

If v{<7, f) > v{o. / ) ; choose <5 = y/e, (3.13) gives 

v(o, f) < u{o, J)<A-^0. 

If i/(<7,7) < v(o-. f), with 5 = y/e, (3.12) gives 

i / ( a r / ) < y l - » 0 . 

This finishes the case k/2 + S < a < k — 1/2. 

The second case being k/2 < a < k/2 + 6. In this case, let a = k/2 — <5, 

X = (QTty
+s. So 1/2 <a<a, 
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S(Q. f.s) «£,CT (Q + (Q(\t\ + \))k^-2°)(Q(\t\ + l)f+s^s 

+ (Q(\t\ + i)f^^-/^-j)+^^^y^-")(Q + (Q(\t\ +1))' 

<(Q + (Q(\t\ + V)k+l-2a) 

• ((Q(|*| + l))<2+*>+* + (Q(|/ | + 1))M+.(*/2+*.7)+^ 

Whence 

^ f a / ) < max((2 + 5)e + <5. 26 + v{k/2 + 6j) + e)-+ 0. 

The theorem follows. 
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Chapter 4 

The Asymptotic of the First 

Moment 

We prove an asymptotic formula for the first moment of the family L(s, f ® x<i)-

The techniques used in the proof are those of Iwaniec [6]. In his paper. Iwaniec 

did calculation for the derivative of L-series attached to an elliptic curve. In our 

case, we do calculation on .L-series associated with newforms in Sk(F0 (N) ,x)-

Our argument more or less follows Iwaniec's original argument except our family 

of quadratic twists differs from his. 

4.1 B ackgr ound 

Let / be a newform in Sk{Fo (N) ,x), where x is a primitive Dirichlet character 

mod N. Let r = ord(x) if the order of x is even and r — 2ord(^) if the order of 

X is odd. Denote 
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D : {0 < d ~ mr (mod 4/V) : for some m prime to 47V 

and vp(d) — 1 orr + 1, VJD|C?}; 

D* : {d £ D : d rth powerfree}. 

It is clear d € -D* =>• d is a fundamental discriminant. Let Xd De the quadratic 

with conductor d. 

Let 

f(z) = Yjann{k-i),2e{nz) 

be the Fourier expansion of / at the cusp oo and define the corresponding L-

function as 

n>l 

Remark 4.1 . We have normalized the Fourier coefficients of / in such a way 

that it has the effect of putting the critical line of the L-function at Res = 1/2. 

The twisted L series 

admits an analytic continuation to the entire complex plane with the functional 

equation given by 

K, r x / A / M A * (s + {k-l)/2\ „ fs + (k + l)/2\ r / , 
A(s,/®Xd)=l-^J r^ ^ 2 ) r [ 2 U f o / ® X r f ) 

= wA(l-s,7<8>x<i). 

33 



A simple computation shows that 

uj = ik-rjf. 

where rjj is the eigenvalue of Atkin-Lehner involution (see section 2.2). L(s. f®Xd) 

has an Euler product expansion 

i(.,/»»)=n('-^)",('-^)"'. 
and it satisfies the Ramanujan-Petersson conjecture (i.e. |apj = \pp\ = 1 for 

all p\ N and \ap\, \/3p\ < 1 otherwise). 

The symmetric square of / is defined as 

It is known that L(s, sym2f) is entire and does not vanish on the line Re s = 1. 

The main theorem of this chapter is 

Theorem 4.1. Suppose 

L(l,sym2f)\2 .k_( L(2,X
2)^2 

}L{l.,sym?f)\) ' ,J\\L{2lX
2)\ 

Then it is true 

X ; L ( 1 / 2 , / ® X „ ) = C Q + O(Q), 
deD' 
d<Q 

where C — Cf is a constant depending only on f. 

The strategy of the proof of the theorem is first to use the approximate func­

tional equation (Theorem 2.2) to show 

L{l/2,f®Xd) = A{dSN,Xd) + ojA(djN,Xd): (4.1 
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where 

Here V is as defined in (Theorem 2.2). The plan is then to bound A(dV~N:.Xd)-

Due to exponential decay of the smooth function V, the estimate A(X,Xd) ^ 

X1!2 is true. Whence 

1,(1/2, / <8> *„) = -4(X, Xd) + 0(dX-1 /2) , (4.2) 

for any X > 0. 

4.2 Proof of the Asymptotic Formula 

In view of 4.1. 

J ] i(l/2, / <g> *,) = X! AdVN, Xd) + "J2 AdVN, Xd). (4.3) 
d€D* deD' deD' 
d<Q d<Q d<Q 

We first analyze the sum YLd^idyfN,Xd)- The treatment of the second sum 

is identical. As was done in Iwaniec's paper [6], we relax the condition that d is 

rth powerfree by introducing the factor ^2aT>dfJ-(a), then split the sum according 

to whether a < A or a > A and in the latter case we return to rth powerfree 

numbers by extracting rth power divisors of ard. Thus 

J2AdVN,Xd) = S + R 
deD' 
d<Q 

where 
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S= E ^ E Aardy/N,Xa*d), 
a<A d£D 

(o .4 /V) = I ard<Q 

R= E E^a) E -^(^^x^)-
(6,4N)=1 a >- 4 <*€£>*, 

n|l> b r r f<Q 

4.2.1 Treating R term 

We treat R first. Using Iwaniec's identity (Page 370, [6]) 

A(X,Xbrd) = F(b)A(^vXd), 

with 

F M - E ^ / W W ) ^ . 
lib 

We deduce using (4.2) and the fact F(b) <C r(6)2 

6 r d < Q 

£ t»M f-
<*€£>*. 
brd<Q 

\ kl 
dVN 

:Xd 

= Y, F(b){L(l/2,f®Xd) + 0(dV2b-r<2kW)) 
deD*, 
brd<Q 

= J2 F(b)L(l/2j®Xd) + 0(b-2r+(QV2) 
brd<Q 

1/4 / x 3/4 

«[ x; 1̂ (1/2, / ® rf1 E IF(6)I4/3 + o(r2r+^3/2). 
<ieD*. / \ <f£D*. / 

^brd<Q / \i>r<*<e? y 

We have applied Holder's inequality the last line. Resorting to Corollary 3.1 gives 

the bound 

«(Q5/4&-5r/4 + Q 3 /V 2 r )Q £ . 

36 



Thus 

R « Y, E 1 {Qhl4b-br,i+QV2b-2T)Qc < (<?5/4/i-5r/4+1+g3/M-2r+])g£ 

4.2.2 Treating 5 te rm 

Recall 

S = J2 ^a) E Mardy/N,Xard) 
a<A d£D 

(a,4JV)=l ard<Q 

izi tt £r ™1/2 U W N / a</l d£D n>l 
(a,1N) = l ard<Q (n,o) = l 

Now write n = hl2m such that h\4N°°, (AN.lm) — 1 and m is squarefree. For 

n written this way and d G D we have Xd(^) = X<*(m) subject to (d. 1) = 1. The 

last condition is detected by the usual Mobius inversion giving 

*= I *) E ^E* E faw(^). 
<a,4N) = l („,n)=l argd<Q 

Next by means of Gauss sums we write for squarefree m, 

Xd(m) = e^m~1/2 ^ XNr(m)e ( J , 
2\r\<m ^ ' 

where em = 1 if m = 1 mod 4, em = i ii m = —1 mod 4 and 4N4N — 1 

mod m. This gives 

5= E ^a) E ^hE^) E w™)E> 
»<•* n = ft/2TO ol / 2|r|<m d 

(o,4.V)=I („.o) = l 
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where 

E v-^ , / 2iTn \ {4Nrd 
= J2 v< ^ ' e 

nrqd<Q 

Next put A = min(l/2.arg<5~1+f) and split the sum S — So + Si + S2; 

according to the conditions r — 0,0 < \r\ < Am. Am < r < m/2 respectively. 

For 52. we change variable so 

2im ^ o (4Nry^ 

y=0 (mod a 9) 
E = E y e 

v/.rED,s<l3 

yy/N/ \arqm) 

We now break the sum up over congruences classes modulo 4Narq. The 

number of such classes we denote by 7 (47V) which is bounded by 47V. Thus 

£= E E vfi^W^V 
^ z - ' , Z ^ \V\/NJ \arqm) 

j / . i - e D . y J O 

To estimate the inner sum, we invoke Lemma two in Iwaniec's paper [6] which 

states that if g(x) satisfies g^\t) -C (\t\ + X)~j for all j > 1 and a real, then 

£ 9(y)e(ay) « y ( ^ p j , ) 
1/=./ (mod K) X " M / 

for all j > 2 provided ttV is not an integer. Here ||x|| denotes the distance between 

x and its nearest integer. To prove the lemma, we use Poisson's summation to 

get 

E 9(y)e(ay) = -p £ e ( y ) # ( Q ' ~ y ) 
y=v (mod Y) «=-oo 

where <?(y) denotes the Fourier transform of g{x). We have <?(?/) <C X{Xy)~* by 

the partial integration j times, whence the lemma follows by trivial summation 

over u. In our case, g(y) = V (-^7= j and a = -^r~: also we may take X — Q + n. 

Hence 
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y«,(4N)^(4Nar* Y 
^ ^ lK UNa'q \(Q + n)Aj 

By choosing large j . it is clear now S2 ^ 1-

To estimate Si, we sum first over m to get 

*= £ Ma) £ afcA-"2r'5>(9) £ £ £ (4.4) 
a<-4 h.l q\l dq(£D r > l 771 

l « . 4 N ) = l ( h ; 2 . „ ) = i *' d ' ' r f ,<Q 

where 

> = > a,2mm XNqr(m)€mV ^ e . 

•m s q u a r e f e e 

Now write e ( ^ ) = e(^)e(=^i) and let 

ip(m) = e^XNrq{m)e{ ^ ) 

o(r) = r 1 ^ — 1 e ). 

Then 

£ = £ ai2mrp(m)g(m). 
m m > ^ , ( m . 4 i V o ) 3 l 

m s q u a r e f e e 

Now ijj(m) has absolute value 1 and period ANrq, so using Proposition 2.6, 

one gets the estimate 

£ apm1>(m) « T{l)T{ANa){qr)l'2xA/2+c. 
m<x ,{m.Ma) — \ 

m s q u a r e f e e 

Partial summation now gives 

£ « T{l)T(ANa)q"2 fr1 /2 |9(r /A)|(r /A)1 /2 + f + r1'2 f°° \g'{t)\tll2+(dt] . 
\ Jr/A J 

It is easy to see now inside (4.4) 
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5 3 «ft-1/-2aT/2^Q ] /2+(. 

and so 

5 1 « y l r / 2 + 1 Q 1 / 2 + f . 

Now we compute the main term SQ. When r = 0. only the term with m — 1 

contributes to the sum. and 

s0= ]T M(O) J3 ^ Z ^ ) E 
(<i.4JV) = l ( n . o ) = l 

where 
2im 

I > £ " b 
a r ( f q < Q 

The sum over d, as with 52, breaks into classes mod 4NaTq. Each class 

contributes 

Q ' V f - ^ W o f u + Sr2 Q_ f1 

JaTQ Jo 4NarqJ0 \tQy/N J \ Q 
There are total *y(4N) such classes. Thus 

(u,4/V() = l 

Now writing 

^ ar C(r) - 1 1 v p w v 

° < ^ " ' p\4Nl 

in So gives 

S0 = CQ [ B{tQy/N)dt + O ((.4Q1/2 + ^1 _ rQ)Q c) (4.5) 
Jo 
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with 

7(47V) 
° 4N((r) 11 (1 pr^ * 

^K ' p\4N y 

n=M2 

&„ = anJI( l - - ) ( l -T) 
J. J. rj r>r P P 

Returning to the definition of V{x) as an inverse Mellin transform, we get 

where 

T t \ _ ST^ ^" _ V^ afl V^ '̂2 

n=hl2 h\4N°" (l,4N)=l 

Now L(s) differs from L(2s, sym2f)/L(As. \2) by a product of Euler factors 

which converges absolutely for Res > 1/4. It follows that L{s) is analytic in this 

range and has polynomial growth in Im(s). Moving the line of integration to 

Re(s) = —1/4, we get 

B(x) = L(l/2) + 0(x~i/4). 

Substituting this in (4.5) 

So = CL(l/2)Q + 0 {{AQ1!2 + Al~rQ + Q3/4)QC). 

Putting all the estimates together gives 

Y, A(dVN,Xd) = S0 + S1 + S2 + R 
d€D* 
d<Q 

=CL(1/2)Q + O {{ATf2+1Q1'2 + Q3/4 + A''rQ + A'~br/4Q5/4 + Ay-2rQ3/2)Q<). 
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If we let A = Ql/ir.. a simple computation shows 

^T A(dVN:Xd) = CL(l/2)Q + 0 ( g ^ + c ) . 

d<Q 

Thus the theorem is proved in view of equation (4.3) and we have 

] T L(l/2, f®Xd) = CQ (L(l/2) + wL(l/2)) + 0 ( Q ^ + f ) . 
de£>* 
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Chapter 5 

Applications 

5.1 Non-vanishing Results 

One may the apply the moment theorems proved heretofore to get non-vanishing 

results. Recall that / is a newform in Sk{To {N) ,x), where x ls a primitive 

Dirichlet character modulo N. Let r = ord(x) if the order of x is e v e n a n d 

r = 2ord(x) if the order of x is odd. Define 

D : { 0 < d = vr (mod 4N) : for some v prime to 4N 

and up{d) = l . r + 1, Vp|d} 

D* :{d 6 D : d rth powerfree} 

N(Q): Hd<Q:d£D*,L(k/2J®Xd)^0}. 

So N(Q) counts the number of quadratic twists L(s, f <g) Xd) which does not 

vanish at k/2. By the Cauchy-Schwarz inequality 

N(Q)> 
£ , < Q L{k/2J®Xd)\ 

£ , < Q \L(k/2.J®Xd) 
d(ED* 
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Thus in view of Theorem 3.5 and Theorem 4.1. we have 

N(Q) » f , / Q w -

Remark 5.1. It is believed (unproved) that there is positive proportion of non-

vanishing (i.e. N(Q) ;» Q) in such a family. 

5.2 Zero Density Estimate 

Let / be a newform in Sk(r0 (N) ,x), k > 2. Let Xd be the quadratic character 

of conductor \d\, (d,N) = 1. Writing 

N(a, T, d) = #{p = P + h • L(p, f <8> Xd) = 0,0 > a, | 7 | < T} 

It is well known in the literature that ([8], section 5.3) 

T Nd2T2 

N(k/2, T,d) = - log -J—? + O (log Nd2(\T\ + k)). 

Extending this result, we prove in this section 

Theorem 5.1. Let e > 0. Then 

E * . „ 2fc42-4<r 2fc+3-4<7 

N(a, d, T) <C Q-M^T^+tt {QT)e. 
\d\<Q 

uniformly for | < a < ^-. And the constant only depends on e 

The proof is to follow the outline given in Montgomery's book [15] in which 

he derived various zero density estimates for the Dirichlet //-functions. 

For a > ^ i i . L(s. f <g> Xd) has an Euler product of degree two satisfying the 

Ramanujan conjecture. Let 
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L(s, f ® Xd) = JZ a„Xd{n)n s, ——7——r = ^ bnxd(n)n 

A/X(s, Xd) = X ! fo"Xd(")»~s^ ^(Si / ® Xd)A/x(s; Xd) = ^ cnXd(«)"~ 
n > l 

Lemma 5.1. Let s = a + it. y > 0. For | < a < ^ 2 -• 

exp(-l /y) + ^T cnXd{n)n s exp(-n/y) 

- L(5 ; /<8»Xd)Mx(5 ;Xd) 

+ TT" / i(fc/2 + «* + iu, f ® Xd)Mx{k/2 + it + iu, Xd)yk/2'a+iuT{k/2 -a + iu)dv 

Proof. It is not hard to see 

C\ — 1, cn = 0. 2 < n < x. 

By the Mellin inversion formula, one has 

exp(- l /y) + YZcnXd{n)n~sexp(-n/y) 
n>x 

= Yl cnXd{n)n~s exp(-n/y) 
n>l 

= — / I ( s + u' !/®Xd)Mx(s + ^!Xd)yttT(u;)dw;. 
<*?" J(2k) 

If I < a < ^ i i . shifting the contour to the line (k/2 — a), we pick the residue 

L{s,f®Xd)Mx(s.,Xd)atw = 0- • 

Let /? = R{Q,T,x.y) be the number of discriminants d <Q, (d.N) = 1. for 

which L($,f® Xd) has a zero in the square 

o-<Re(s) <cr + l/ logQT, * < Im(s) < f + 1/logQT, (5.1) 
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with - -\ — < a < — \t\ < T 

Remark 5.2. The plan for the proof of Theorem 5.1 is to bound each R{Q,T,x. y) 

and sum over all such squares. Also, notice the assumption a > | + |o
 l

QT is valid, 

since otherwise the theorem is trivial. 

There are essentially two things to consider in the analysis for R(Q,T,x,y). 

Lemma 5.2. With notations above. 

1. There are R\ 3> R/\ogy values of d as above, with corresponding zeros 

p = (3 + i") in the square (5.1) for which 

^2 cnXd{n)n pexp(-n/y) » l / l o g y 
\U<n<2U 

2. There are. R2 3> R values of d as above, with corresponding zeros p = (3 + i~f 

in the square such that 

I 
AloziQT) 

L(k/2 + n +iu,f® Xd)Mx(k/2 + i 7 + iu, Xd)yk/2'0+iu 

A\og(QT) 

• T{k/2 -0 + iu)du » 1 . 

Proof. Let p = (3 + ry be a zero of L(s, f <g> Xd) in the square (5.1). In view of 

Lemma 5.1, by choosing large A and y, two things can happen 

1. 

Y^ cnXd{n)n pexp{-n/y) 
x<n<y2 

> L 

L(k/2 + t 7 + iu. f ® Xd)Mx{k/2 + 17 + iu, Xd)y' 
A log(QT) 

T{k/2 -0 + iu)du 

,k/2-P+iu 

> 1 -
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Now if we divide the interval [x. y2} into dyadic subintervals. the first condition 

is equivalent to 1': There exists aL 'G [*:y
2] such that 

^2 CnXd(n)n pexp(-n/y) » l / l o g y . 
\U<n<2U 

Recall R = R(Q.T.x.y) is the number of discriminants d < Q, {d,N) — 1, 

for which L(s, f ® Xd) has a zero in the square 

a < Re(s) < a + 1/ log QT; t < Im(s) < t + 1/ log QT. 

Let R1.R2 represent the number of discriminants for which the conditions 

1' and 2 are true. Clearly R < R^ + R2. From this inequality. Lemma 5.2 is 

clear. • 

We are now ready to prove the main theorem 

Proof. First consider the second case in Lemma 5.2. We have 

•A]og(QT) 

/

.*log[(Jl) 

\L(k/2 + h + iu, f <8> Xd)Mx{k/2 + ij + iu, Xd)\ du 
A log(QT) 

rt+\+A\oz(QT) 

< / \L(k/2 + iu. f <S> Xd)Mx(k/2 + iu..Xd)\du. 
Jt-A log(OT) 

Summing the inequality over R2 discriminants and applying Cauchy-Schwarz 

inequality we get 
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Ry°-k'2/\ogqr 
rt+\+A\og(QT) 

« / ] T \L{k/2 + iu,f®Xd)\\MAl<:/2 + iu,xj)\<lu 

Jt-A\og(QT) | r f | < Q 

/-«+l+.41og(QT) / 

< / E |L(A;/2 + 2«,/(8)xd)|
2 

1/2 

/•t + l+>41og(<?T) 

/ V |Z,(fc/2 + i u , / ® x d ) | 2 d u 

(I 
\d\<Q 

\ 1/2 

^ |Mx(A;/2 + m,Xd)| du\ . (5.2) 
»»<*(W |d|<<? / 

Recall in Section 3.3. it is proved that 

£ * \L{k/2 + in., f ® *d)|2 « e (Q(M + l))1+£. 
\d\<Q 

Thus 

rt+l+vlIog(OT) 

/ T \L(k/2 + iuJ®Xd)\2du^{QT)^. (5.3) 
Jt-A\oK<QT) ,.^n lt-Alog(QT) W£Q 

The second term in (5.2) can be dealt with by means of Heath-Brown's large 

sieve inequality, as presented in Theorem 3.2. We split the interval [1.x] into 

ranges of the form V < n < 2V. Thus 
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Jt-A 

l+l + A]og{QT) 

log(QX) 
Y^\M*{kn + iu,Xd)\2du 

\d\<Q 

rt+l + A]og(QT) 

<c r 
-Hog(QT) m Q 

<g {log x) log QT 

^(QTx)({Q + x) 

^2 b„Xd(n)n' k/2—iu 

V<n<2V 

du 

max } 
t-A\ogQT<u<t+l+A\ogQT ^—' 

|d|<<2 

X ] bnXd{n)n k/2-iv 

V<n<2V 

Putting (5.3) and (5.4) in (5.2) gives 

R « (QTx)c{QTY'2{Q + x W 2 - " . 

(5.4) 

(5.5) 

Consider now the first case in Lemma 5.2. Assume y < (QT)C for some 

constant c. By partial summation and Cauchy-Schwarz 

IS~P 

(logQT) 2 < ^ CnXd{n)n-pexp(-n/y) 
U<n<2U 

Yl CnXd{n)rTs exp(-n/y)n 
U<n<2U 

(2Uy-p J2 cnXd(n)n-sexv(-n/y) 
U<n<2U 

r2U 
/ Yl cnXd(n)n~s exp(-n/y)dV 

Ju ,,TZ-„ 
rs—p 

U<n<V 

< Y2 cnXd{n)n sexp(-n/y) 
U<n<2U 

r2U 

+ Y\ \cnXd{n)n-s exp(-n/y) |2 dV/V, 
U<n<V 

for Ri discriminants. Summing over d, one gets by applying Heath-Brown's large 

sieve inequality 
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/?/(logQT)3« Y,' 
\d\<Q 

r2U 

Y c„Xd{n)n sexp{-n/y) 
U<n<2U 

+ / E E \cnXd(n)n-seM-n/y)\2dV/V: 

' W\<Q U<n<V 

« (QTUY(Q + f/)t/2(/r/2-a) e x p ( _ f / / y ) . 

Since x < U < y2, one gets the estimate 

R < (gry)f(gx2(fc/2-o) + y
k+1-2a). (5 

In view of (5.5) and (5.6) 

R « (QTyY {{QTy/\Q + x ^ y ' 2 - " + Qx2^2~^ + yfc+1-2") 

Setting 

2 1 
X=Q, y = ( 2H2-2«J 'H2-2 , 

gives 

_ 2fc+2-4c7 k+l -2<7 , „ 

Summing over squares as defined by (5.1), the theorem is proved. 
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Chapter 6 

Other Moment Results 

Instead of averaging over a family of quadratic characters, we average in this 

chapter over a different family, namely a Hecke basis of the space of cusp forms. 

More precisely, let Tik(p) be the set of an orthonormal basis of cusp forms of 

weight k for the congruence subgroup To (p) with p prime. Let ip be a primitive 

character with conductor r prime to p. While dealing with forms in Hk(p), it 

is often convenient to introduce harmonic weights that arise from the Petersson 

norm of / . So for what follows, we adopt the notation 

fenk f€Hk
 ] 

where 

The main results of the chapters are 

Theorem 6.1. Let Tik{p) be the set of an orthonormal basis of cusp forms of 
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weight k with k = 0 (mod 4). Set 

D{m)= Y^ L(k/2,f®x/>)af(m). 
f€Hk(p) 

If p\ m. we have the asymptotic formula as k —> oo 

D(m) = m^2"3 U(m) - w ^ — ^ p m ) + u ; ^ ^ J + O f m ^ f c V * ) 

and if p | m. then 

D(m) = mk'2-1 (rP(m) - w ^ ^ Z i ) ^ ^ ) + w ^ 
\ y p + 1 v ' ' p+\ 

•12 
Here u — ip{p)^^- . 

Theorem 6.2. With the same assumptions above and in addition if the character 

tp be quadratic, then 

£* nk,2, / * «- > d„g km (l±l±fl) + on). 
fenk(P) r \ P / 

Theorem 6.3. With the same assumptions as in Theorem 6.1. we have for any 

positive integer m. 

Y? L(fc/2,/®V)2m«(]og/c)2m, 
/6Wfc(p) 

where the implied constant is absolute. 

We begin by stating necessary lemmas. The proof of the above theorems 

follow in the ensuing sections. 
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Proposition 6.1 (Peterssorrs Formula). Let N > 1. k > 2. Let Hk(N) be any 

Heche basis ofSk{Fo(N)) 

/ \ i ^ V^'' , \ , \ r/ \ n —k V^ S(m.n;c) /4ny/mn\ 
(nm) * 2^ o..f{n)aj{m) = 8{m.n)+2in J ^ — — Jfc-i ( — ] 

fenk(N) o o V / 
J V ' c = 0 (mod JV) 

//ere S{m,n:c) is the Kloosterman sum. 

^ * fmd + nd\ 
b(m. n; c) = > e I I 

d (mod c) ^ ' 

and Jh-i is the Bessel function of order k — 1. 

The proof is standard (see [8] Chapter 14 for instance). 

Bounding the Bessel function and Kloosterman sum trivially, one obtains 

Lemma 6.1. If k is large, and mn <C k2 then 

*h 
(nm) 2 ^ af(n)a,f(m) = S(m, n) + 0(e k). 

fenk(N) 

Furthermore, ifp is prime and if we restrict to newforms of level p. then we have 

( 

{nm)~T~ y . af(n)af(m) — < 
feS'(P) 

-^6(m,n) + 0(e k) p\norp\rn 

^~5{m.n) + 0(e~k) p\n and p\m 

Proof. The first assertion follows by bounding the Bessel functions and the Kloost­

erman sum trivially. One may see [20] for a proof. For the second assertion, one 

has the Hecke-algebra decomposition 

s*(r0(p)) = Sj;(ro(p))e2Sfc(r0(i)). 

More precisely, one can find a basis of 5^(r0 (p)) consisting of newforms of level 

p and forms f(pz) and f(z) where f(z) is a newform of level 1. Thus 

^2 af(n)af{m) 

fesk(P) 

= T2 af(n)af{m) + —— V af{n)af(m) + —— Y ] af{n/p)af(m/p). 
f€S;(p) y / 6 S t ( l ) y f€Sk(l) 
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where the coefficients ~ come from the Petersson norm change from the group 

T0 (p) to T0 (1) (i.e. < f.f >p— (p+ 1) < / ; / >]). Applying Petersson's formula 

and the first part of the lemma, the second assertion follows. • 

Lemma 6.2. With f € T~tk{p): k = 0 (mod 4) and m a positive integer 

L(k/2, f ® xP)m = J^ af(n)tin)n-k'2Vk,m ( ( ~ ) n\ 

+u;mr1}
nY^af(n)^n^2Vk!m [ i ^ A 

where u>m = (il'(p)I^p-)m and the weights 14,m satisfy 

(6.1) 

vk,n(y) = { 

l + 0(e-*) y^v&a; 

0(1) 5 ^ 7 < y < 2m+2km; 

O(^) n > 2m+2krn. 

Proof. The approximate functional equation (6.1) is a direct consequence of The­

orem 2.2 where the weight is defined by 

Vk k.m (» ) = SS1» ("TW5T 
We have 

^ m ( 2 / ) | - ^ y ( a )
y ( r(fc/2) 

/r(fc/2 + q + l ) 
- y V r(fc/2) 

|du| 

(u + k/2)mu\ 

In the case n > 2m+2km. choose a = k. So 

n2k)my krn f{2k)m\k^ kn 

\vk,n{y)\ < I — ^ - I « — i 
V y ) y \ y 

<c 
yeK 
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In the case y < 2J[Z-n: o n e moves the line of integration to —k/2 + 1. Picking 

the residue 1 at u — 0 and the remaining term is bounded by ^(y2\n, "C e~k'. In 

the last case 2 m^+ 4 < y < 2"'+2k'". one simply set a = 1. • 

6.1 The First Moment 

We first consider the case p\m. Recall 

D{m)= Y^ Hk/2,f®ip)af(m). 
fenk(P) 

In view of (6.1) 

D{m) = J2" Y.af(m)af(nMn)n-k'2Vktl (^ 

+u-' E " E nfaj(m)af(n)W)n-kl*VkA ( ^ - ) (6.2) 
fenk(P)n>i \^WJ 

For the first sum in (6.2). we first truncate the sum to the range -C A:. 

lHk{p)n>l \VPr/ 

Y n-k'2i<(n)VkJ^ Y," af(m)af(n) + 0(m^k2e-k) 
4./Uric >. / frlJ f~\ 

Now applying Petersson's formula to get 

J2 n-l'Hin)Vk., ( ~ ) m^ (5(m,n) + 0(e~k)) + 0 ( m ^ £ 2
e - f c ) 

, 4 , /pr t \VPr/ 

= mk'2-Him)Vk., ( ^ ) + 0 ( m ^ V f e ) 

= m*/2~V'(m) + 0{m^k2e-k). 
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For the second sum in (6.2), we first truncate the sum over n to <C k then 

separate the forms according to / is a newform of level p or of the form f(dz). 

d = 1. p where f(z) comes from level 1. ]n each case, by Proposition 2.2. rjj is 

given by 

VI 
1 / G 5,(1). 

Thus 

UJ Y^ Y2vfaf(m)af(n)i<(n)n k/2VkA ( - p M 

fenk(P) 

= W E " E m(™MnWn)n-k<2VkJ^)+0(m^k?e-k) 
/€Wt(p)„<iv?r* WW J 

=UJ{A + B + C) + 0{m—k2
e-

k) 

Where A, B, C denotes respectively the sum over forms of level p. 1 and shifts 

on forms of level 1. 

A = E " E r,faf(m)af(n)W)n-k/2Vk!i ( ^ ) 

— ft 

= V " f e / 2 E « - * / 2 ^ ) ^ . 1 (*£) J^ af(P)af(m)af(n) 
.i^fprk W P r / / 6 S . ( p ) 

Since p is the level, we have af(m)aj(p) = af(pm). And applying Lemma 6.1 

— _ T l 1 - f c / 2 

~P 

= -m f c / 2 

P - 1 
p+ 1 

^ n fc/V(™)t4,i ( -^— I {pmn)^6{n.pm) + 0{mS^kl,2e~k) 

P + l 

2 - l P - l 

0(pm)Vfcil ( ?!L^N) +0(m^A-1/Vfc) 

- m V 2 - l ^ _ ± ^ , ( p m - ) + 0 ( m ^ i A „ l / 2 e - f c ) 

56 



p + 1 
1 

m* /2-V(rn) + O l m ' r J t ' V 1 ) . 
p + 1 

The contribution from C is zero because p \ m. Putting things together, we 

have 

Dm = mkl2-1 (ip{m) - u-—-Upm) + w—"—^-(m) ) + CKm^JfcV*). 

with w = HP)T-^. 

For the case p|m, the calculation is similar. Using the approximate functional 

equation and truncating the sum to <C A", one is left with 

D(m) = mk/2-l4>{m) + u>(A + B + C) + 0{m^1k2e-k) 

Where A.B.C denote respectively contributions from sums of the forms of 

level p. 1 and shifts on forms of level 1. They can be computed using Lemma 6.1. 

We have 
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., k/2-Mp-1)—,—rr ,4 = -mKI* i iim/p) 

1 B = mk/2-1 Urn) 

C = mk,2-i-l L — ^ ( m ) . 

Remark 6.1. One may carry out the same analysis for the case Wfc(l)(Hecke 

basis of level one). And because every / e Hfc(l) is also a newform, we have 

aj(l) = 1, V/. So computing D(l) we get a true asymptotic formula for the first 

moment. One gets 

D{\) = Y? L(k/2, / ® tfO = 1 + T-^- + 0{k2e~k) 
fenk 

6.2 The Second Moment 

The approximate function equation for L(k/2,f <g> ip)2 with tp quadratic and is 

L(k/2, f ® if,)2 = E M " * ' 2 ^ " ) ^ ( ( ^ ) n 

2 

+ tf£M-fc^(n)Vw((-^) " 

where 

6„ = E af(l)af(m). 
lm—n 

Thus 
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J2" L(k/2J®if 
/£Wfc(p) 

= E " E°H0«/M(M"fc/V(/m)14.2(f^-) *m) 
/eW,(P)',rn>l V V ^ r y / 

/etUfe \\VprJ J 

= J2 (lmrk/2iilm)VkJ(-^r) lm) ^ «/(0«/(m) 

im<2-^± \\\/PrJ Jfenk(P) 

=1 + 11 + 0{k3e~k). 

For the first sum we apply Lemma 6.1 to get 

/ = V (lm)-l^(lm)Vksl I (-^-) lm)(6(m,n) + 0(e-k)) 

-„£ r W , , 4*((^)2)+ 0 ( t e"' ) 
— 7T 

(J,r) = l 

=fW + 0(l). 

For the second sum, as before we separate the sum according to whether / is 

a newform of level p.t a form of level 1 or a shift of a form of level one. Thus 

II = A + B + C. 
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A = Y, ^)~k/Hilm)Vk.2t(-^-) Im) Y!' Vjaf(l)af(m) 

= p2~k £ (lm)-k/Hilm)Vk.2((~)\rn) yhaf(pl)af(prn) 

lm^p \^rJ ilk™ 
= ^ f r E N"1/^NVuff^)2;m)i(u) + o(ne-

p
 / m < v ^ \\VPrJ J Im< 

PJP- 1) 
P + 

1 

p ( p - l)<f>{r) 
p+1 2r 

e~k) 

log k + 0(1). 

* = ^ T E W - f c / V ( / m ) l 4 , 2 ( ( ^ - ) 2 / m ) ^ a / ( / ) a / ( m ) 

= ^TT E (l™)-1/21>(lm)Vk,2 ((^-) lm)s(l,m) + 0(ke-k) 

<J,r)=l 

p + 1 2r 

e~k) 

log*+ 0(1). 
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af(l/p)af{m/p) ^1 E «m)-'"*(M^((^) ,<m)E' 

-^—P1-" T {lm)-yHilrn)Vka((^r-\ lm) &{l,m) + 0{k 

pl'-pl™ 

Pl',(',r) = l 

1 0(r) 
log*;+ 0(1). 

(p+l )p* 2r 

Collecting results; we have 

^ L(k/2J®i;)2 = (\ogk)-4>{r) (p2 + 2 + jtr 

fe-Hk(p) 
2r V P + l 

+ 0(1). 

6.3 The Higher Moments 

The large sieve inequality (Theorem 3.3) for the cusp forms comes in handy when 

dealing with the upper bound for the higher even moments. In our setting, the 

inequality becomes 

/€W*-(p) 
X! a"°/( 

1 - f c 

n)n 2 

n<7V 

« 1 + 0 
TV log TV 

(*) 

where an is any sequence of complex numbers. 

The mth power of the L-function can be written using the approximate func­

tional equation 
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n>l \WPr/ 

+u;f Y bnW)n-k/2Vkim ( L?jL\ n 

where 

bn= Y a/(/i)a/(/2)---a/(/m). 
hh—lm=n 

Thus bv Cauchv-Schwarz. we have 

Y L(k/2,f®r(,) 2m 

«E b„4'(n)n-^2Vkj 
2?r 

y/pr. E h 

/6H* 

bn^(n)n-k/2Vkt, 
2n 

y/pr n 

We first treat the first sum. The analysis for the second sum is identical. 

Yh W'(n)n-fc/Xm ( ( 
fenk 

-r 
feHk 

2TT 

l < i < m 

] T M M • • • «/(U(*l • • • Imf'Hih •••lm) 

' * ' " — 7T 

v * . < ' ^ 
V ^ 

' l ' " " *TI + 0(fc2m+1e-2fc) 

fenk 

E" 

£ a^XM^V'tM 
« i < 

2 " / 2 r f r 
E" E af(l2)(l2)-

k^(l2) 
* 7t( J 

Y a}{im){im)-k'^{im)vkm((^\ h---im\ 

*m2z zm i 

+ 0(ifc2m+1e-2fc). 
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Using (*) to bound each term in the product gives 

Y," W/2, f ® tP)2m « (log k)2m. 
fenk 
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