
A Hybrid Packet Loss Recovery Technique in

Wireless Ad Hoc Networks

Hui Yang

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Electrical and Computer Engineering) at

Concordia University
Montreal, Quebec, Canada

October 2008

©HuiYang, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45509-8
Our file Notre reference
ISBN: 978-0-494-45509-8

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

A Hybrid Packet Loss Recovery Technique in Wireless Ad Hoc Networks

Hui Yang

TCP utilization in wireless networks poses certain problems due to its inability

to distinguish packet losses caused by congestion from those caused by frequent

wireless errors, leading to degraded network performance. To avoid these

problems and to minimize the effect of intensive channel contention in wireless

networks, this work presents a new Hybrid ARQ technique for reliable and

efficient packets transfer in static wireless ad hoc network. It is a combination of

recent FEC based Raptor coding technique with ARQ based selective

retransmission method, which outperforms purely ARQ based method. In contrast

to most Hybrid ARQ techniques, which usually employ a byte level FEC, we

mostly use packet level FEC in our simulations for the data transfer, on top of less

frequent ARQ to recover the residual errors. Existing packet level FEC methods

are mostly based on simple parity check codes or Reed Solomon codes with

erasure decoding; in this work we use the recent raptor codes. We also introduce

the notion of adaptive redundancy which helps to achieve better average network

performance and to further improve the redundancy efficiency.

iii

ACKNOWLEDGEMENTS

I would like to take this chance to thank my wife Qi Sun, for the love and for

her always being supportive.

I would really like to thank my supervisor Dr. Ahmed K. Elhakeem for giving

the directions, the great ideas and the patience. With his care through the whole

process, I can finally finish this thesis.

IV

Table of Contents

List of Figures vii

List of Tables x

List of Abbreviations xi

Chapter 1 Introduction 1

1.1 Overview of Wireless Local Area Network 1

1.1.1 Evolution 3

1.1.2 Architectures and techniques 6

1.1.3 Future development 17

1.2 Wireless ad hoc network 21

1.2.1 History 22

1.2.2 Classification 23

1.2.3 Challenges 26

Chapter 2 TCP in wireless environments 28

2.1 TCP fundamentals 29

2.1.1 TCP introduction 29

2.1.2 TCP Flow Control 36

2.1.3 TCP congestion control 39

2.2 Problems and enhancements in wireless 44

2.2.1 TCP problems in wireless 45

2.2.2 TCP enhancements in wireless 49

Chapter 3 A new hybrid ARQ technique 56

3.1 Forward Error Correction 58

3.1.1 FEC principles and applications 59

V

3.1.2 The two fundamental FEC codes 63

3.1.3 Packet level FEC 66

3.2 Digital Fountain and Raptor codes 68

3.2.1 The Fountain concept and its applications 69

3.2.2 Raptor codes 75

3.2.3 Systematic Raptor codes 78

3.3 System level simulations for various networks 79

3.3.1 Simulation set-up 81

3.3.2 Detailed system implementations 85

3.3.3 Results and contributions 94

Chapter 4 Comparison and Conclusion 115

4.1 Comparison 115

4.2 Conclusion 118

4.3 Future works 119

References 120

Appendix 125

A.l Abasic description of Dijkstra's algorithm 125

A.2 Source code selections 125

A.2.1 Network Initialization and Routing 125

A.2.2 The Hybrid ARQ System 130

vi

List of Figures

Figure 1.1: IEEE 802.11 standards mapped to OSI reference model 6

Figure 1.2: Infrastructure Basic Service Set 8

Figure 1.3: Independent Basic Service Set (IBSS) 9

Figure 1.4: Extended Service Set (ESS) 10

Figure 1.5: RTC/CTS Four-Way Handshake 14

Figure 1.6: The MIMO technology [5] 18

Figure 1.7: Wireless Mesh Network 25

Figure 1.8: Wireless Sensor Network [10] 26

Figure 2.1: TCP preview [12] 30

Figure 2.2: TCP Connection establishment 33

Figure 2.3: TCP Connection Termination 35

Figure 2.4: Sliding window 37

Figure 2.5: TCP timing during Slow Start [13] 40

Figure 2.6: TCP congestion control inTahoe and Reno 43

Figure 2.7: Throughput versus packet loss rate for Reno and Veno [19] 53

Figure 2.8: Throughput vs. error rate of the wireless link [20] 54

Figure 3.1: Forward Error Correction 58

Figure 3.2: FEC Block Coding 63

Figure 3.3: A rate 1/3 non-recursive, non-systematic convolutional encoder with

constraint length 3 64

vii

Figure 3.4: Erasure channel 67

Figure 3.5: LT encoding 71

Figure 3.6: The degree distribution of encoded packets 72

Figure 3.7: An example of LT decoding process 73

Figure 3.8: Raptor coding 76

Figure 3.9: Systematic Raptor encoding 79

Figure 3.10: Raptor block loss rate for different received overhead m-k, different block

size k, and channel packet loss rate of 40%. [49] 80

Figure 3.11: Effect of received redundancy {m-k) of raptor coding 81

Figure 3.12: General flowchart of the simulation system 82

Figure 3.13: An example, a network of 20 nodes with a node coverage of 40 meters 85

Figure 3.14: Hidden node problem 87

Figure 3.15: Exposed node problem 87

Figure 3.16: Channel access method 88

Figure 3.17: Buffer checking unit 90

Figure 3.18: ARQ transmission 91

Figure 3.19: Raptor transmission 92

Figure 3.20: Block processing unit 93

Figure 3.21: A small 4-user network 98

Figure 3.22: Efficiency comparison between hybrid ARQ and pure ARQ 99

Figure 3.23: Efficiency comparison between hybrid ARQ and pure ARQ 99

Figure 3.24: Efficiency comparison between hybrid ARQ and pure ARQ 100

viii

Figure 3.25: Efficiency comparison between hybrid ARQ and pure ARQ 101

Figure 3.26: An 8-user network 101

Figure 3.27: Efficiency comparison between hybrid ARQ and pure ARQ 102

Figure 3.28: Efficiency comparison between hybrid ARQ and pure ARQ 103

Figure 3.29: Efficiency comparison between hybrid ARQ and pure ARQ 103

Figure 3.30: Efficiency comparison between hybrid ARQ and pure ARQ 104

Figure 3.31: A 12-user network 105

Figure 3.32: Efficiency comparison between hybrid ARQ and pure ARQ 106

Figure 3.33: Efficiency comparison between hybrid ARQ and pure ARQ 107

Figure 3.34: Efficiency comparison between hybrid ARQ and pure ARQ 107

Figure 3.35: Efficiency comparison between hybrid ARQ and pure ARQ 108

Figure 3.36: Maximum efficiency comparison under different PLRs 109

Figure 3.37: Maximum efficiency comparison under different PLRs 109

Figure 3.38: Maximum efficiency comparison under different PLRs 110

Figure 3.39: Efficiency comparison between adaptive and uniform redundancy Ill

Figure 3.40: Efficiency comparison between adaptive and uniform redundancy 112

Figure 3.41: Efficiency comparison between adaptive and uniform redundancy 112

Figure 3.42: Efficiency comparison between adaptive and uniform redundancy 113

Figure 4.1: Performance of a typical proactive scheme (TCP-Jersey) and a typical

reactive scheme (TCP-Reno) in the wireless environment [50] 116

Figure 4.2: Throughput vs. error rate of the wireless link [20] 117

ix

List of Tables

Table 1.1: Summary of major IEEE 802.11 standards [2] 5

Table 3.1: The minimum required redundancy Rm and actual redundancy R for different

situations 96

X

List of Abbreviations

ACK

AES

AIMD

AP

ARQ

BCMCS

BEC

BER

BLR

BP

BS

BSS

CDMA

CRC

CSMA/CA

DARPA

DoD

DS

DSSS

DV

DVB

DVB-H

ECC

ECN

ED

Acknowledgment

Advanced Encryption Standard

Additive Increase Multiplicative Decrease

Access Point

Automatic Repeat reQuest

Broadcast and Multicast Service

Backward Error Correction

Bit Error Rate

Block Loss Rate

Belief Propagation

Base Station

Basic Service Set

Code Division Multiple Access

Cyclic Redundancy Check

Carrier Sense Multiple Access with Collision Avoidance

Defense Advanced Research Projects Agency

Department of Defense

Distribution System

Direct Sequence Spread Spectrum

Distance Vector

Digital Video Broadcasting

Digital Video Broadcasting - Handheld

Error Correction Code

Explicit Congestion Notification

Error Detection

ESS

ETSI

FCC

FEC

FHSS

FTP

GBN

GloMo

HARQ

HiperLAN

IBSS

IC

ID

IEEE

IETF

IP

IR

ISIS

ISM

ISN

LAN

LBT

LDPC

LLC

LS

LT

MAC

Extended Service Set

European Telecommunications Standards Institute

Federal Communications Commission

Forward Error Correction

Frequency Hopping Spread Spectrum

File Transfer Protocol

Go Back N

Global Mobile Information Systems

Hybrid ARQ

High Performance Radio LAN

Independent Basic Service Set

Integrated Circuit

Identification

Institute of Electrical and Electronics Engineers

Internet Engineering Task Force

Internet Protocol

Infrared

Intermediate System to Intermediate System

Industry, Medical and Scientific

Initial Sequence Number

Local Area Network

Listen Before Talk

Low Density Parity Check

Logical Link Control

Link State

Luby Transform

Media Access Control

MANET

MBMS

MDS

MIMO

MSS

NACK

NIC

NTDR

OFDM

OSPF

PDA

PDU

PHY

PLCP

PLR

PMD

PRNET

PSK

QAM

QoS

RAID

RF

RS

RTO

RTP

RTS/CTS

RTT

Mobile Ad Hoc Networks

Multimedia Broadcast Multicast Service

Maximum Distance Separable

Multiple Input Multiple Output

Maximum Segment Size

Negative Acknowledgement

Network Interface Card

Near Term Digital Radio

Orthogonal Frequency Division Multiplexing

Open Shortest Path First

Personal Digital Assistants

Protocol Data Unit

Physical

Physical Layer Convergence Procedure

Packet Loss Rate

Physical Medium Dependant

Packet Radio Networks

Phase Shift Keying

Quadrature Amplitude Modulation

Quality of Service

Redundant Array of Inexpensive Disks

Radio Frequency

Reed Solomon

Retransmission Time Out

Real time Transport Protocol

Request to Send / Clear to Send

Round Trip Time

SACK

SIFS

SR

SSID

SURAN

TCP

UDP

U-NII

UPCS

VoIP

VoWLAN

WEP

Wi-Fi

WMN

WPA

WSN

WWW

Selective Acknowledgment

Short Interframe Space

Selective Repeat

Service Set Identifier

Survivable Adaptive Radio Networks

Transmission Control Protocol

User Datagram Protocol

Unlicensed National Information Infrastructure

Unlicensed Personal Communications Services

Voice over IP

Voice over wireless LAN

Wireless Equivalent Privacy

Wireless Fidelity

Wireless Mesh Networks

Wi-Fi Protected Access

Wireless Sensor Networks

World Wide Web

XIV

Chapter 1

Introduction

There are generally two major types of wireless networks, i.e., the infrastructure networks

and the ad hoc networks which will be discussed in the next section. Infrastructured

network is predesigned, and has permanent network device deployments. It can be

implemented with a fixed or dynamic topology. In the case of fixed topology, a wireless

host can be connected via a fixed point, known as an access point (AP) or a base station

(BS). An AP is usually connected to the backbone network via a wired link. Cellular

networks and most of the wireless LANs work as the static infrastructured networks.

Wireless Local Area Networks (LANs) have been used almost everywhere today, the

field of wireless LAN is increasing rapidly as a result of an extensive availability of

wireless devices and services, and developments in semiconductor and digital

communication technology. In this chapter, a general introduction of wireless LANs and

wireless ad hoc networks is presented, and we also talk about some developing

techniques at the end. The first section reviews wireless LANs and wireless ad hoc

networking is discussed in the second section.

1.1 Overview of Wireless Local Area Networks

Wireless LANs use spread-spectrum or OFDM (Orthogonal Frequency Division

1

Multiplexing) modulation technology based on radio waves to enable communication

between devices in a limited area, also known as the Basic Service Set (BSS). This gives

users the mobility to move around within a broad coverage area and still be connected to

the network. The popularity of wireless LANs in fact came together with the increase of

residential high-speed broadband Internet access. It was and remains the simplest way to

share a broadband link between several computers spread over a residence. In addition,

the expansion of hotspots and public access points has drastically raised its popularity.

IEEE 802.11, also more popularly known as 'Wi-Fi' (Wireless Fidelity) [1], solves

security, mobility, reliability, and the dynamic feature of wireless LANs while keeping

compatibility with 802 legacy networks. IEEE 802.11 is the de facto standard in wireless

LAN technologies, although there is another wireless LAN standard HiperLAN (High

Performance Radio LAN), which is an IEEE 802.11 alternative developed in Europe. The

first version of HiperLAN called HiperLAN/1, was originated by the European

Telecommunications Standards Institute (ETSI) in 1991, aiming to achieve a data rate

higher than 802.11. However, the latest HiperLAN/2 is not doing well in the market,

especially since the faster 54 Mbps 802.1 la (5 GHz) and 802.1 lg (2.4 GHz) came out [2].

In this section, we will mostly discuss the IEEE 802.11 based wireless LANs.

In wireless networks, signals transmissions are broadcast and may interfere with each

other. A collision will be sensed and transmissions may fail when there are concurrent

transmissions within the signal coverage of communicating parties. Consequently, a

medium access protocol is necessary to organize the transmission accesses of the wireless

2

channel so as to achieve a reasonably high throughput and channel utilization. Unlike

wired networks, signals transmitted over wireless media may be weakened or twisted

because they are propagated over an open and varying medium with irregular boundary.

In addition, the same signal may disperse and travel on different paths due to reflection,

diffraction, and scattering caused by obstructions before it gets to the destination. The

dispersed signals on different paths may take different long times to reach the destination.

Therefore, the total signal after summing up all dispersed signals may have been

considerably deformed and attenuated compared to the source signal. The receiver may

not identify the signal and thus the transmitted data cannot be received. This

unpredictable characteristic of wireless medium causes large numbers of packet losses.

1.1.1 Evolution

The first generation of wireless data modems was developed in the early 1980's, some

amateur radio enthusiasts added a voice band data communication modem, with data

rates below 9600 bps, to an existing short distance radio system, normally in the two

meter amateur band.

Later in 1985, the Federal Communications Commission (FCC) released several bands

of the wireless spectrum for non-military usage, before that these so-called "garbage

bands" were already used in equipments such as microwave ovens that use radio waves to

heat food. Right after the announcement of FCC, wireless modems offering data rate on

3

the order of hundreds of Kbps was developed, and the second generation of wireless

modems was conceived.

The third generation products were then produced with data rates higher than 1 Mbps,

focusing on the compatibility with the existing LANs with data rates of several Mbps.

During the same period, the IEEE 802.11 committee was launched in 1990 to create a

standard for wireless LANs. Before the foundation of IEEE 802.11 committee, there were

already some early wireless LAN products in the market. Gradually, the technology

became more developed and was better applied in various applications. Meanwhile, the

Integrated Circuit (IC) technology related to wireless LAN applications and

implementations, a main driving technology of fast developing market, was springing up

in the market.

Finally, the Institute of Electrical and Electronics Engineers (IEEE) published IEEE

Standard 802.11 in 1997, the first wireless LAN standard. This standard, developed by

the IEEE LAN/MAN Standards Committee (IEEE 802) in the 5 GHz and 2.4 GHz public

spectrum bands, defines the Media Access Control (MAC) and physical (PHY) layers for

a LAN with wireless connectivity. It aims at local area networking where the connected

devices communicate with other neighbor devices with radio waves. The standard is

similar in most aspects to the IEEE 802.3 Ethernet standard. Nevertheless, in particular,

the 802.11 standard addresses:

• Data security and user privacy

• Some physical layer signaling techniques and interfaces

4

• Data delivery services to upper layers and MAC

• Functions to either run in ad hoc mode or integrate with existing wired LANs

• Mobility management between wireless LANs and operation within overlapping

wireless LANs

Typical Max Indoor Outdoor
802.1 lx Release Frcqu. Thru. Thru. Modulation Range Range

-

a

b

&

n

1997

1999

1999

2003

2009(exp.]

(GHz)

2.4

5

2.4

2.4

1 2.4,5

(Mbps)

0.9

23

4.3

19

74

(Mbps)

2

54

11

54/

600

IR/FH/DSSS

OFDM

DSSS

OFDM

OFDM

(m)

-20

-35

-38

-38

-50

(m)

-100

-120

-140

-140

-5000

Table 1.1: Summary of major IEEE 802.11 standards [3]

Over the next two years, two 802.11 variants were approved, they are 802.11 b which

operates in the Industry, Medical and Scientific (ISM) bands of 2.4 GHz and 802.11a

which operates in the Unlicensed National Information Infrastructure (U-NII) bands of

5.3 GHz and 5.8 GHz. It is common today in a coffee house or shopping mall, you can

take advantage of wireless access while you are enjoying your coffee or having a rest;

more and more home users will choose wireless due to the simplicity of installation and

mobility when using a laptop. Large wireless network projects are under construction in

many big cities, planning to cover the whole city area with wireless access.

The most recent variant was 802. llg, similar to 802.11a, uses a more advanced type

of modulation OFDM, but it is used in the 2.4 GHz band. 802.llg can also achieve

speeds of up to 54 Mbps. The IEEE 802.11 standard and its variants and alternatives,

such as the wireless LAN interoperability forum, and the European HiperLAN

specification had made considerable impact and capacity improvement. The Unlicensed

Personal Communications Services (UPCS) and the proposed U-NII bands brought in

new chances as well.

1.1.2 Architectures and techniques

Wireless LANs are generally employed as the final link between the wired network and

the wireless users in business, giving these users wireless access to the complete services

and resources of the corporate network across a building or campus setting. The

pervasive acceptance of wireless LANs depends on industry standardization to ensure

product reliability and compatibility among a variety of producers.

Network protocols .
(TCP/IP, otc.) "S

IEEE 8Q2.I la , b, g -

Session

Transport

Network

Data Link
layer

Physical

OSI
network model

602.2 Logical Link Control (LLC)

802.11 MAC header (a, b, g Identical)

602.11 PLCP header (a, b, g distinct)
physical medium specs (RF, DSSS, etc.)

Figure 1.1: IEEE 802.11 standards mapped to OSI reference model

As all IEEE 802 standards, the 802.11 standards concentrate on the bottom two layers

of the ISO model, see Figure 1.1, the physical layer and link layer. Any LAN application,

6

such as protocols including TCP/IP, network operating system like Novell NetWare, can

run on a wireless LAN compliant with IEEE 802.11 standard, exactly the same as they

are running over Ethernet.

In the architecture of wireless LAN, a service set is a logical grouping of devices.

Wireless LANs provide wireless network access by broadcasting signal over wireless

Radio Frequency (RF) carrier to all the users within coverage. The receiver can be within

range of several transmitters. The transmitter initiates its transmissions with a Service Set

Identifier (SSID). The receiver uses the SSID to sort out through the received signals and

find the one it wants to listen to.

Wireless LAN Station

The station is the most essential element of a wireless network. A station is also called a

node; it has the functionality of the 802.11 protocol, and a component that can connect to

a wireless medium. In general 802.11 functions are implemented in hardware and

software of wireless Network Interface Card (NIC). A station could be an AP, a client.

APs are BS for wireless network. They transmit and receive radio signals for wireless

clients to communicate with. Wireless clients can be portable devices such as laptops,

Personal Digital Assistants (PDA), or fixed devices such as desktops with a wireless

network interface card. Stations may be either still or mobile, and all stations support the

802.11 standard functions, including services of data delivery, privacy, authentication and

de-authentication.

7

Basic Service Set

The basic building block of the wireless LAN network in 802.11 is BSS. The BSS

consists of a group of stations, it defines a coverage area where all stations within the

BSS maintain completely connected. Each BSS has a SSID which is a 32-byte maximum

character string. For instance, "linksys" is the default SSID of Linksys wireless routers.

Station Station

Figure 1.2: Infrastructure Basic Service Set

BSS has a dedicated station known as an AP. The AP is the heart of communications

for all stations in the BSS. Every BSS has an identification (ID) called the BSSID, which

is the MAC address of the AP servicing this BSS. The client stations do not communicate

directly with other client stations, they communicate with the AP, and then the AP

forwards the frames to the destination stations. The AP might be installed with an uplink

port that connects the BSS to a wired network, e.g., an Ethernet. As a result, BSS can also

be referred to as an infrastructure BSS. An infrastructure BSS can communicate with

other stations not in the same BSS by communicating through access points. Figure 1.2

demonstrates a classic infrastructure BSS.

Independent Basic Service Set

An Independent Basic Service Set (IBSS) contains no access points, and they can not

connect to any other BSS. In this topology, all stations within the BSS directly

communicate with each other via the wireless media in a peer-to-peer fashion. In that

case, one station initiates the BSS network and other stations connect to it, every station

If
Station

Station

Station s t a - t j o n

Figure 1.3: Independent Basic Service Set (IBSS)

may not be able to communicate with every other station due to the signal coverage limits.

Also known as ad hoc networks, IBSS networks provide limited support for 802.11

privacy and authentication services for BSS network. IBSS network is characteristically

limited both temporally and spatially. Figure 1.3 illustrates how the stations equipped

with wireless NIC can structure an IBSS and communicate directly with each another.

Distribution System

The Distribution System (DS) is used by AP to communicate with another AP to

exchange frames for stations in their own BSSes, forward frames to track mobile stations

as they move from one BSS to another, or exchange frames with a wired network. A DS

connects APs in an Extended Service Set (ESS), so as to increase network coverage by

roaming between BSSes. As IEEE 802.11 describes, the DS is not necessarily a network,

the standard sets no constraints on how DS is constructed, only on the services it must

provide. Therefore a DS may be a wired network like 803.2 or any equipment that

interconnects the APs and provides necessary distribution services.

Extended Service Set

[. . . DistnbtiPon S/s«fl7Bgy

Station

&bm

Access Point

Station Station
Station

Figure 1.4: Extended Service Set (ESS)

An Extended Service Set (ESS) is a group of infrastructure BSSes interconnected via DS,

where the APs communicate with each other to forward frames between BSSes,

smoothing the progress of stations' movement across the BSSes. 802.11 uses ESS to

10

extend the range of BSS. Several infrastructure BSSes can be connected through their

uplink interfaces. In 802.11, the uplink interface connects the BSS to the DS. The DS is

the backbone of wireless LAN and the uplink to DS is not necessarily wired link, 802.11

specification provides the potential for this link to be wireless. Nonetheless, for now the

DS uplinks are typically wired Ethernet.

The DS decides if a frame should be passed back to a destination in the same BSS,

forwarded along the DS to another AP, or sent into the wired network to a destination not

in this ESS. Network equipment outside of the ESS regards the whole ESS as a single

MAC layer network where all stations are physically stationary. As a consequence, the

ESS hides the mobility of the stations from the world outside of the ESS. This allows

existing network protocols without conception of mobility to run properly with a wireless

LAN where there is mobility. Figure 1.4 shows a typical topology of an ESS.

802.11 Physical Layer

The 802.11 PHY has two essential sublayers: Physical Layer Convergence Procedure

(PLCP) and Physical Medium Dependant (PMD). The PLCP is actually an

interconnecting layer that allows MAC Protocol Data Units (PDUs) to be transferred

between MAC stations over the PMD, which is the way of transmitting and receiving

data through the wireless medium. To some point, you can think of the PMD as a

wireless transmission service function that is interfaced via the PLCP. The PLCP and

PMD sublayers vary based on 802.11 types [4].

11

The IEEE 802.11 standard supports several wireless LAN technologies in the

unlicensed bands of 2.4 GHz, and shares the same MAC over two PHY layer

specifications: Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread

Spectrum (FHSS) technologies. Infrared (IR) technology is also supported, yet it has not

been applied by many manufacturers. FHSS and DSSS are essentially different signaling

mechanisms and will not interoperate with each other.

In the DSSS technique, the 2.4 GHz band is split into 14 channels of 22 MHz each.

DSSS spreads a signal on a bigger frequency band by multiplexing it with a signature or

code to reduce localized interference and background noise. To spread the signal, each bit

is modulated by a code. In the receiver, the original signal is recovered by receiving the

entire spread channel and demodulating with the same code used by the transmitter;

while in the FHSS technique, the 2.4 GHz band is split into plentiful of channels. FHSS

uses a group of narrow channels and "hops" through all of them in a predestined sequence,

e.g., the 2.4 GHz frequency band is split into 70 channels of 1 MHz each. Every 20 to

400 ms the system "hops" to a new channel following a predetermined cyclic pattern.

802.11 Data Link Layer

The data link layer in 802.11 consists of two sublayers: Logical Link Control (LLC) and

Media Access Control (MAC). 802.11 uses the same 802.2 LLC and 48-bit addressing as

other 802 LANs, allowing for really basic bridging from wireless to IEEE wired networks,

but the MAC is exclusive to wireless LANs. The 802.11 MAC is really similar to 802.3

in that it is proposed to support multiple users on a common medium by forcing the

12

sender to sense the medium before accessing it, that is to say it is a Listen Before Talk

(LBT) mechanism.

The 802.11 MAC provides functionality to offer reliable data delivery for the upper

layers over the wireless channel. The data delivery itself is based on the connectionless,

best-effort, asynchronous delivery of MAC layer data, so there is no guarantee that the

frames will be delivered successfully. The 802.11 MAC provides a managed access

method to the shared wireless media called Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA). CSMA/CA is similar to the collision detection access method

employed by 802.3 Ethernet LANs. Another function of the 802.11 MAC is to protect the

data being delivered by offering security and privacy services. Security is offered by the

authentication services and Wireless Equivalent Privacy (WEP), an encryption service for

data delivered on wireless LANs.

RTS/CTS

Basically, 802.11 only uses physical carrier sensing to solve signal interference problem

in wireless LANs. However, physical carrier sensing is known to suffer from the hidden

node problem. RTS/CTS (Request to Send/Clear to Send), also known as a virtual carrier

sensing, is an additional MAC technique used by 802.11 to reduce frame collisions due to

the hidden node problem.

RTS/CTS works as follows: At first, the node willing to send data initiates the

process by broadcasting a RTS message; once received the RTS message, the destination

node replies with a CTS message. Any other node received a RTS or CTS message will

13

restrain from sending data for a certain period, this solves hidden node problem. The

waiting time is included in both RTS and CTS message. If the sender does not received

CTS message within a certain period, it retransmits RTS message according to a back-off

algorithm. After a successful exchange of RTS and CTS message, data can then be sent

by the sender after waiting for a Short Interframe Space (SIFS). This protocol assumes

that all nodes have the same signal coverage. Figure 1.5 illustrates the RTC/CTS

Four-Way Handshake.

R T S / C T S F o u r - W a y H a n d s h a k e

Wireless User 5
Access Point

i m e T i m e

Figure 1.5: RTC/CTS Four-Way Handshake

However, RTS/CTS increases the protocol overhead which may be important for

small packets, thus the efficiency of RTS/CTS depends on packet size. Therefore,

RTS/CTS is generally used for large packets, where retransmissions are costly from

bandwidth standpoint.

14

Advantages

• Mobility: Released from traditional network connections, network users can move

about almost without constraint and connect to LANs from almost everyplace.

Wireless LANs free users from dependence on wired access to the network backbone,

providing them network access anytime, anywhere.

• Cost effective: Network setup for places hard to wire, such as old buildings and

solid-wall structures and cut the cost of owner, especially in dynamic locations

requiring frequent alterations, achieve minimal wiring and installation costs.

• Ease of installation: Initial configuration of an infrastructure wireless LAN needs

nothing but a single AP. However, for a wired network, there are added costs and

complexity of actual cables to be arranged in various places. Furthermore, it can even

more difficult for locations that are not easy to get.

• Expandability: Wireless LANs can accommodate extra wireless clients on the fly,

without changing the current topology and affecting existing users. On the other hand,

it would require additional wiring and may affect other users in a wired network.

Disadvantages

• Security: 802.11-based wireless LANs use RF as the carrier signal for data, the

data is broadcast from the sender supposing that the receiver is in the coverage of RF,

yet any other station within range of the RF can also receive the data. Hence the

users generally make use of various encryption technologies such as Wi-Fi Protected

Access (WPA). Some older encryption methods are known to have weaknesses, such

15

as WEP, which has been widely criticized and considered unsuitable for secure

networks. There are numerous security risks relating to the current wireless protocols

and encryption methods. Cracking has become much simpler and handier with

convenient Windows-based and Linux-based free software appearing on the web.

Security is being studied in the IEEE by Task Group I, it is anticipated that a more

secure solution will be standardized in the near future. The Advanced Encryption

Standard (AES) is expected to be standardized for securing the air interface. The

research on security is being done in Task Group I of the IEEE 802.11 experts.

• Stability: RF signals are subject to a broad diversity of interference and compound

propagation effects, e.g. multipath, especially in case of Rician fading. Modulation

techniques, such as Quadrature Amplitude Modulation (QAM) and various sorts of

Phase Shift Keying (PSK) further amplify the propagation effects and interference,

thus wireless access is hardly ever used in many vital systems like database servers.

Even microwave oven has an effect on the reliability of wireless LANs.

• Coverage: The typical range of a regular 802.1 lg network is on the order of tens of

meters, not as much as necessary in a spacious configuration. For larger coverage,

there has to be extra cost to add more APs or repeaters.

• Speed: Wireless devices are almost always slower than the same network using a

wired configuration. Relatively speaking, most wireless networks (typically 1-108

Mbps) is quite slow compared to the slowest ordinary wired networks (100 Mbps up

to several Gbps). TCP and its integrated congestion avoidance mechanism could also

16

reduce the performance of wireless LANs. In some particular circumstances, wireless

throughput could be insufficient.

1.1.3 Future development

Wireless LANs has a promising future with 802.11 leading the way as the standard. We

can anticipate that the availability of 802.11 related products will increase dramatically in

the near future as businesses realize the increased productivity provided by wireless

networks.

Wireless LAN technology has experienced astonishing developments in rate, range,

and spectral efficiency, which was originally limited by regulatory policy related to the

use of unlicensed spectrum. With the fast deployments of 802.11 based wireless LANs

around the world, standards organizations are moving towards more advanced versions

for the wireless LAN application. The development of the Wireless LAN as an essential

element of the future worldwide seamless wireless service is not restricted to the air

interface. The evolution crosses the architecture and seamless integration of wired lines

and wireless services; particularly with the introduction of real-time services such as

Voice over wireless LAN (VoWLAN) and Video over wireless LAN and the seamless

integration of wired lines and wireless services.

IEEE 802.1 In

The latest version of IEEE 802.1 In draft 4.0 was approved in May 2008 and it is

expected to be finalized at the end of 2009. The industry is working aggressively to try to

17

make sure that existing 802.1 In draft products will be able to be software upgraded to the

final 802.1 In standard. However, there is no guarantee that this will be the case. 802.1 In

requires entirely new hardware on APs and clients. In some case, the high throughput of

802.1 In presents a considerable scalability challenge for products that offer encryption

and decryption on the wireless switch, requiring big upgrades. Current 802.1 lg and

802.11b work in the 2.4 GHz band, and 802.11a works in the 5 GHz band. The 802.1 In

standard will work in the 2.4 GHz, the 5 GHz radio band, or both bands, providing

backward compatibility with existing 802.1 la/b/g networks. Most Wi-Fi products and

APs hitting the market are dual-band, working in both the 2.4 GHz and 5 GHz

frequencies. The final result for business will be a change to greater utilization of the 5

GHz band with 802.1 In given the greater available capacity and cleaner frequency.

There are three important features included in the current 802.1 In draft are Multiple

Input Multiple Output (MIMO), channel bonding and frame aggregation.

Multiple Input Multiple Output

Multi-olemfuit
Transmitter

Mufti-element
Receiver

N W ...,,,;

W::::::

i--h;-.r.ooi Matrix, H

»n . * -

-#. W M
MIMO CluiniMil i- • * *

..:::::£ w

N Tx and M Rx
- flnuittpto p-arjiil**! rftiinwslis

Figure 1.6: The MIMO technology [5]

18

MIMO is the technique to concurrently transmit multiple radio streams, delivering two or

more times the data rate per channel. MIMO improves spectral efficiency by using the

same amount of bandwidth to get much higher throughputs. Other than spectral

efficiency, MIMO alleviates multipath effects, an extensive source of interference. Figure

1.6 shows a simple sketch for the MIMO technology.

Channel bonding

Channel bonding is a contentious feature in the current 802.1 In draft. Conventional

802.11 technologies use a 20MHz-wide channel to transmit and receive. However,

802.1 In adopts a technique called channel bonding to merge two neighboring 20 MHz

channels into a single 40 MHz channel. Channel bonding is most efficient in the 5 GHz

frequency given the much more available channels, while the 2.4 GHz frequency has

only 3 non-overlapping 20 MHz channels. For that reason, only two thirds of the total

frequency capacity is utilized.

Frame aggregation

802.11 has big inefficiencies in channel acquisition and back-off delays. It is normal that

more than half of the time is wasted on the back-offs prior to transmission. 802.1 In

technologies improve efficiency by aggregating multiple packets of application data into

a single transmission frame, so 802.1 In networks can send multiple packets with fixed

overhead cost of a single frame. Frame aggregation is more helpful for certain

applications such as file transfers thanks to the ability to aggregate packet content.

19

Wireless LAN versus wired LAN

Only a few years ago this was not an issue, there was no doubt that people with regular

mind would exchange a dedicated 100 Mbps or even Gigabit wired Ethernet connection

for a shared 54Mbps wireless one. However, today with the emergence of 802.1 In

technique, most students with wireless LAN access use it as their most convenient way to

connect to the Internet, labs, campus database system, and libraries. More and more, it is

also happening in business world, wireless clients expect to interconnect from

everywhere.

More and more people are using wireless networks instead of wired networks,

basically there are two reasons: first, with the fast developing software and hardware

techniques, manufactories can now integrate wireless LAN functions directly into

Ethernet switches. The infrastructure will deal with both wired and wireless access with

integrated management and security; second, and more significantly, many famous

manufactories such as Cisco are now releasing next generation Wi-Fi gear based on the

draft 802.1 In standard. People can imagine shared throughput of 150M to 200Mbps to

start and over 300Mbps in some high-demand equipments soon. Many experts declare

that this wireless technology has a potential data rate of 248 Mbps, which may finally

allow consumers to move beyond traditional wired Ethernet LANs. As more companies

choose to use new or upgraded corporate wireless LANs, it is being wildly accepted that

802.1 In, the next generation high-throughput Wi-Fi, will soon end the era of Ethernet.

20

A key point in the development of wireless LAN is to provide Voice over wireless

LANs as well as other real time services over a real packet switched air interface, so the

finalization of 802.1 le is an important progress. The 802.1 le enables the introduction of

real time services into wireless LANs and the 802.1 In introduces speeds higher than 100

Mbps, customers can expect a QoS comparable to that of a wired link with the

combination of centralized topology and dense deployment.

Another noteworthy development in wireless LAN technology is the emergence of

wireless mesh networks. Mesh networks have the potential to dramatically increase the

area served by a wireless network. Mesh networks even have the potential, with

sufficiently intelligent routing algorithms, to improve overall spectral efficiencies

attained by selecting multiple hops over high capacity links rather than single hops over

low capacity links.

1.2 Wireless ad hoc network

An ad hoc network is a network where all the nodes communicate in peer-to-peer mode.

There are no APs and no one gives approval to communicate. It can also be called

infrastructureless network or IBSS, Figure 1.3. Generally these networks are spontaneous

and can be quickly set up. It is ad hoc for the reason that each node is prepared to forward

packets for other nodes, so compared to a wired network in which the router carries out

the task of routing, in an ad hoc network it is the node itself that dynamically makes

routing decision according to the network connectivity. An important characteristic of ad

21

hoc networks is that the network connectivity and link quality may vary fast due to node

mobility and power control scheme. Ad hoc networks can be constructed through any

wireless technology, including RF and IR [6].

The decentralized nature of wireless ad hoc networks makes them appropriate for

conditions where infrastructure is either not available or not unstable, so ad hoc networks

are not dependable in the case of emergency. It may improve the scalability compared to

infrastructure wireless networks. Some examples include an infrastructureless network of

laptops in a conference or campus, temporary offices, and soldiers in the military field.

1.2.1 History

The first generation of ad hoc networks can be traced back to 1972, when they were

called Packet Radio Networks (PRNET), sponsored by the Department of Defense (DoD)

of United States. Together with ALOHA, CSMA and a sort of Distance Vector (DV)

routing technique, PRNET were used in experiment to provide different networking

capabilities in military environment.

The second generation of ad-hoc networks emerged in 1980s, the ad hoc network

systems were further developed and put into practice in the Survivable Adaptive Radio

Networks (SURAN) program by the Defense Advanced Research Projects Agency

(DARPA). It provided a packet-switched network to the battlefield in an environment of

no infrastructure. Later in 1990s, the idea of commercial ad hoc networks emerged with

laptops and other portable devices became popular. In the meantime, the thought of a

22

collection of mobile nodes was brought up at quite a few research conferences. The IEEE

802.11 committee adopted the term 'ad hoc network' and experts started to study the

possibility of applying ad hoc networks into other fields. The ad hoc network technology

continued to develop in the interim. Some of the outcomes included the Global Mobile

Information Systems (GloMo) and the Near Term Digital Radio (NTDR). The GloMo

offered an office environment with Ethernet-type multimedia connectivity anywhere,

anytime for handheld devices.

Ad Hoc Networks and the Internet

The spreading out of the Internet in early 1990's, in conjoint with lower priced wireless

products such as 802.11 wireless LANs and Bluetooth devices, led to a rising focus on ad

hoc networks. In 1997, the Internet Engineering Task Force (IETF) launched the Mobile

Ad Hoc Networks (MANET) Working Group to study new routing protocols that deal

with the multi-hop paths and dynamics of ad hoc networks, more than 70 protocols has

been proposed for various circumstances. With the development of various routing

protocols and new laptops and handheld devices being preinstalled with wireless

component, businesses are starting to recognize the potential of commercial ad hoc

network applications.

1.2.2 Classification

Wireless ad hoc networks can be further classified by their application into three

categories: mobile ad hoc networks (MANETs), wireless mesh networks (WMN) and

23

wireless sensor networks (WSN).

Mobile ad hoc network

A mobile ad hoc network (MANET) [7] is a self-configuring wireless network with a

random topology, consisting of mobile wireless stations with routing function. The

stations are free to move at random and organize themselves randomly; therefore the

topology of MANET may change quickly and unpredictably. The design of routing

protocols is a difficult issue. In spite of the application, MANET requires effectual

distributed algorithms to decide network organization, routing, and link scheduling.

Nevertheless, it is still a complicated problem today for us to determine practical routing

paths and transport packets in a decentralized environment where network topology

varies frequently.

The set of applications for MANETs is diverse, ranging from small, static networks

that are restricted by power sources, to large, dynamic networks. MANET can work in a

stand-alone mode, or can connect to the Internet backbone. It became a popular topic for

study as laptops and 802.11 based wireless LANs became prevalent in late 1990s.

Wireless Mesh Network

Wireless Mesh Networks (WMNs) [8] consist of mesh routers and mesh clients, where

mesh routers have minimal mobility and form the backbone of WMNs. WMNs provide

network access for both mesh and conventional clients, can be implemented in full mesh

topology or partial mesh topology. In full mesh topology, each station is connected

directly to every other station; while in partial mesh topology, stations are connected to

24

only some, of the other stations, not all of them. Mesh clients can be either stationary or

mobile, and can form a client mesh network among themselves and with mesh routers.

A WMN is self-organizing and does not require manual configuration. It is also

self-healing because it is unnecessary to manually reroute the packets. It is reliable and

offers redundancy, the degree of redundancy is basically a function of node density.

Therefore, if one node fails, all the rest can still communicate with each other, directly or

through one or more intermediate nodes. WMNs work well when the nodes are located at

scattered points that do not lie close to the same line.

Station Station

Figure 1.7: Wireless Mesh Network

WMNs are a promising technology for next generation wireless networking

technology. A lot of applications are stimulating its fast growth. The integration of

WMNs with other networks such as cellular, 802.11, 802.15 and 802.16, can be achieved

through the gateway and bridging functions in the mesh routers. Figure 1.7 shows a

simple topology of a WMN.

25

Wireless Sensor Network

A Wireless Sensor Network (WSN) [9] is a set of nodes organized into a cooperative

network. It generally consists of a data acquisition network and a data distribution

network, monitored and managed by a management center. Each node has certain

processing capability, may have a RF transceiver, typically with a single omnidirectional

antenna, several kinds of memory, a power source, and contain a range of sensors and

actuators. The nodes usually self-organize once being deployed in ad hoc mode.

O Sensor Node

•
Gateway
Sensor Node

Figure 1.8: Wireless Sensor Network [10]

Unlike conventional wireless networks, WSN is usually characterized by denser node

deployment, asymmetric data transmission, higher unpredictability of sensor nodes, and

strict power, computation and memory limitations. These distinctive characteristics and

restrictions lead to loads of new challenges for the development and final realization of

WSNs. The development of WSN was initially motivated by military applications, but

WSNs are currently used in many civilian application areas, such as home automation,

environment monitoring and traffic control. Figure 1.8 shows a simple illustration of it.

26

1.2.3 Challenges

Ad hoc networking faces all kinds of challenges from many layers. The PHY layer have

to adapt to rapid channel variations; the MAC layer should minimize collisions, maintain

fair media access, and transfer data over the shared wireless media in the presence of fast

changing situations and hidden or exposed nodes; the network layer needs to perform the

routing and maintains efficiency while channel varies frequently. It also needs to

incorporate efficiently with conventional networks and carry out duties such as

self-configuration in the varying situation; the transport layer has to do the statistics of

packet loss and delay, which is quite different than wired networks. Finally, applications

need to be designed to deal with frequent disconnection and reconnection with peer

applications.

In most wireless ad hoc networks the nodes compete to access the shared wireless

medium, leading to lots of collisions, so wireless ad hoc networks are intrinsically limited.

A main task in ad hoc network is to increase the efficiency of data transfer in severe

circumstances such as power limited and very dynamic topology. Moreover, routing and

transport protocols (e.g. TCP/IP) must be modified so as to improve the efficiency.

Another challenge is increasing the practicability to support commercial applications.

Security is possibly the most difficult problem. Real time voice and video streaming

applications will only be practicable if QoS is well developed. Finally, it is important to

develop middleware services that hide the complexities from high layer applications.

27

Chapter 2

TCP in wireless environments

TCP is the de facto standard transport layer protocol used in most applications. It was

originally designed for wired networks, where random Bit Error Rate (BER) is negligible

and congestion is the major source of packet loss. The popularity of various wireless

network applications especially wireless Internet and high speed multimedia services,

demand appropriate modifications of TCP to improve the network performance. TCP

assumes that all of the packet losses are indications of network congestion, then the

additive increase multiplicative decrease standard TCP congestion control gradually gets

to the steady state, which represents the protocol's efficiency in terms of throughput and

bandwidth utilization.

However, wireless networks suffer from high BER and user mobility. Mobile

equipments experience unpredictable and momentary disruption of network connectivity

when they move around. The mobility causes unstable, higher end to end delays and

packet losses while the network learns how to deliver packets to the node's new location.

Unfortunately, TCP mistakenly believes these delay variation and packets losses are

signals of network congestion, and then suppresses its transmission rate, leading to

degraded network performance. Therefore, that assumption is not suitable for situations

when the end to end path contains wireless links, since many factors such as high BER,

user mobility and varying channel quality may all contribute to packet losses. Numerous

28

researches show that the standard TCP works badly in wireless environment because it

cannot differentiate the reason of packet losses.

In this chapter, section one provides a little overview of TCP fundamentals, section

two roughly talks about some basic problems when TCP is used in wireless environments,

and some proposed improvements focusing on the above problems are discussed in that

last section.

2.1 TCP fundamentals

The Transmission Control Protocol (TCP) [11], specified in RFC 793, is one of the core

protocols of the Internet protocol suite. The Internet protocol suite TCP/IP gets its name

since TCP is so important that most applications and protocols are based on it, which is in

turn based on Internet Protocol (IP). It compensates for IP's weakness by providing

reliable, connection oriented connections that hide most limitations of IP.

2.1.1 TCP introduction

Sources of Packet Loss

In a data network, generally packet loss may happen for two reasons: first, packets

discarding in physical channel; second, data corruption, in the case that any bit level error

correction code used by physical or link layer cannot recover the whole packet, and it is

discarded by receiver, so it is effectively lost. Data corruption can cause a packet to be

discarded at the destination. Different channel access and data distribution technologies

are subject to different kinds of corruptions:

29

• Various cable connections can be influenced by low quality wiring and connectors,

crosstalk or electro-magnetic interference.

• Wireless networks such as wireless LANs, cellular networks, and satellite networks

can be disrupted by radio frequency interference, signal attenuation due to line of

sight obstacles, poor weather conditions, multipath fading, antenna pointing,

polarization, or alignment errors.

• Optical fibers are vulnerable to physical vibration like temperature variation, or low

quality splices and temporary connectors.

Packets might also be discarded by intermediate routers on purpose due to the

congestion control algorithms employed by protocols such as TCP. In addition, Buffer

overflows caused by unexpected heavy network traffic load can force the intermediate

routers to discard packets.

Application

bvte stream

: _ . \

\
Transmitter

Send buffer

Segments
Q 9 B B Q

I ir~l
ACKs

A

Re

pplication

bvte stream

. . . „ . : /

/
Receiver

ceive buffer

Figure 2.1: TCP preview [12]

TCP is a connection oriented transport protocol that sends data as a stream of bytes.

Every TCP packet is assigned a sequence number, and will be acknowledged by the

receiver only if it is received successfully and in order, if so, the receiver will send a

30

corresponding Acknowledgment (ACK) with sequence numbers of the next expected

packet. Otherwise, there will be failures. By using sequence numbers and ACKs, TCP

make it possible for the sender to know the delivery information. In case of packet loss in

channel, TCP can retransmit the packet until either the packet is successfully delivered or

until a timeout is reached. With sequence number, TCP can also identify duplicate

packets and throw them away. Figure 2.1 shows a simple preview of TCP.

A few key features that set TCP apart from UDP include: flow control, congestion

control, retransmission, ordered data transfer - the destination rearranges data according

to sequence number, error free and discarding duplicate packets. TCP perfectly

supplements the underlying IP service with such functionality as:

• Flow control. TCP controls the traffic speed so the buffers will never overflow. Fast

users will lower their transmission rate to keep up with others.

• Reliability. TCP adopts sequence numbers to manage the data that has been

transmitted and received, and make sure the data is properly delivered by

retransmission in case of a transmission failure.

• Self-adjustability. TCP can dynamically learn the congestion level of the network

and adapt its operation to maximize the throughput, thus avoiding either

underutilization or overload of the network.

• Streaming. TCP data is organized as a stream of bytes, much like a file. The detailed

technique behind the network is hidden from end users.

31

Round Trip Time Estimation

When a sender transmits a packet, it waits a period of time for an ACK. If it does not

receive the ACK within an expected period, the packet is assumed to be lost and is then

retransmitted. The problem is how long we should wait, well it depends. For Ethernet,

only a few microseconds are enough; if it is wide area Internet, a few seconds might be

reasonable during peak hours; in satellite networks, it may take minutes. All the modern

implementations of TCP try to solve this problem by observing the regular end to end

transmissions and developing a proper estimation of regular round trip duration. This

process is called Round Trip Time (RTT) estimation, one of the most important

parameters in a TCP exchange. If it is too low, packets are retransmitted unnecessarily; if

it is too high, the channel stays idle while the user waits timeout. Both cases are a waste

of network resources.

TCP Processes

TCP offers connection-oriented service over packet switched networks, which means that

there is a virtual connection between source and destination. In contrast to its traditional

counterpart User Datagram Protocol (UDP), where users directly begin to send packets

whenever they want, TCP offers connections that have to be pre-established. There are

three phases in any virtual connection: connection establishment, data transfer and

connection termination, which are explained as follows.

Connection Establishment

Before a user tries to connect with another user, the receiver must first pick a port and

make it available for connections, known as a passive open. Once the passive open is set

32

up, the sender can then create an active open. In order for two users to communicate

using TCP they must first establish a connection by exchanging messages in a serial of

processes known as the three-way handshake. Figure 2.2 above illustrates the processes

of the three-way handshake. In Figure 2.2, it can be seen that there are three TCP

<JiD gt£^) ^ D
User A "~"'" User B

Time Time

Figure 2.2: TCP Connection establishment

segments exchanged between two users, user A and user B. From top to bottom, the

figure shows the events in time sequences.

1. To start, user A initiates the connection by sending a TCP segment with the SYN

control bit set and an Initial Sequence Number (ISN) represented as the variable x in

the sequence number field.

2. A moment later, user B receives this SYN segment, processes it and replies with a

TCP segment of its own. The reply from user B includes the SYN control bit set and

its own ISN represented as variable y. User B also sets the ACK control bit to

33

indicate the next expected byte from user A should have data starting with sequence

number x+1.

3. Once user A receives user B's ISN and ACK, it completes the connection

establishment phase by sending a final ACK segment to user B. In that case, user A

sets the ACK control bit and indicates the next expected byte from user B by placing

ACK number y+1 in the ACK field, and also it sends its own data with the sequence

number x+1. At this time, both users have received an ACK of the connection and

consequently have finished the connection establishment.

In addition to the information shown in the Figure 2.2 above, an exchange of source

and destination ports used for this connection are also included in both users' segments.

Data Transfer

Having finished the connection establishment and exchanged the ISNs, users at both ends

can exchange data. Without touching much technical details, we only roughly describe a

few key ideas here. In a simple TCP implementation, a sender keeps sending data to the

receiver given that there is data to send and that the sender does not exceed the

transmission window advertised by the receiver. After the receiver accepts and processes

TCP segments, it sends back positive ACKs, indicating the location of next data in the

byte stream. These ACKs also include the window which shows how many bytes the

receiver is presently willing to accept. If some data is lost or duplicated, a gap may be

present in the stream, in which case all or part of the packets in the window will be

retransmitted, depending on the different sliding window schemes used. Sliding window

schemes will be presented in next 'Flow Control' subsection. A receiver will continue to

34

acknowledge the latest reception in the byte stream. If there is no data to send, TCP will

just stay idly by waiting for the application to put data into the byte stream or to receive

data from the other end of the connection. If the data queued by the sender exceeds the

receiver's advertised window size, the sender must stop transmission and wait for further

ACKs before continuing on the transmission.

Connection Termination

Generally, to release a connection, a four-way handshake process is needed to totally shut

down a connection. Four steps are required because TCP is a full duplex protocol, which

means both ends must shut down independently. The connection termination phase is

shown in Figure 2.3 below. Note that instead of SYN control bit fields, the connection

termination phase uses the FIN control bit fields to indicate the closing of a connection.

To terminate the connection in our example:

^|iD (j£££) < jp
User A ~w"~ User B

T T

Time Time

Figure 2.3: TCP Connection Termination

35

1. User A tells TCP to close the connection. So it sends the first FIN segment and its

sequence number x to user B.

2. When user B receives the initial FIN, it immediately acknowledges the segment and

reminds user A the next segment should be x+1. Meanwhile it warns its application

of the termination request.

3. If the application on user B agrees to shut down the connection, it then sends its own

FIN segment, sequence number y, together with the same ACK.

4. Finally, user A will finish the termination and respond with an ACK.

It is also possible to terminate the connection by a 3-way handshake, when user A

sends a FIN and user B replies with a FIN & ACK, it is like combining step 2 and 3

together. And then user A replies with an ACK.

2.1.2 TCP Flow Control

TCP realizes flow control through a sliding window protocol. In each TCP packet, the

receiver indicates the space it can provide to buffer the data in the receive window field

of TCP header. The sender can only send at most that amount of data before it has to wait

for an ACK and window update from receiver. If the sender transmits too fast for the

receiver, TCP starts flow control to slow down the transfer speed. TCP also reports

delivery information to high layer protocols and applications it supports. All these

features make TCP a reliable end-to-end transport protocol. Figure 2.4 below is a typical

illustration of TCP sliding window mechanism, in which w is the advertised window size

indicated by the receiver at the beginning. Suppose the source knows that, based on

36

ACKs received, Byte x is the last data byte received by destination. The source can send

data of size up to Byte x + w.

Data Stream Available space

Sent & Acknowledged Sent but not acknowledged yet Not sent yet

Advertised Window

-Sequence Number-

X + W

Figure 2.4: Sliding window

Go Back N

Go Back N (GBN) is an example of sliding window protocol where the receive window

size is one. In a GBN protocol, the sender is allowed to transmit multiple packets without

waiting for an ACK, but there is a limit that the number of unacknowledged packets must

be within a certain range. An ACK for a packet is considered to be a cumulative

acknowledgement, which means that all packets with a sequence number up to and

including this one have been correctly received at receiver. The receiver only accepts in

order packet, so if an error occurs when receiving a packet, the receiver will simply

discards all the following packets and then the sender will have to retransmit all the

following packets in its window, which decreases the performance.

There is a timer for the oldest packet that has already been transmitted but not yet

acknowledged. Whenever there is such an unacknowledged packet, the timer is restarted;

if there are no outstanding unacknowledged packets, the timer is reset. If a timeout occurs,

37

the sender retransmits all packets that have been previously sent but have not yet been

acknowledged, which also decreases the performance.

Selective Repeat

To avoid unnecessary retransmissions in GBN, in Selective Repeat (SR) scheme, the

receiver has a larger window size, so it can store out-of-order but error-free packets.

Therefore, it acknowledges any correctly received packet whether or not it is in order.

Out-of-order packets are stored until all the lost packets are received, and then the

packets can be delivered to higher layer in order. On the other hand, the sender only

retransmits the packets that have not been acknowledged. If there is an error, it simply

sends a Negative Acknowledgement (NACK) to ask for a retransmission. In particularly,

in case of packet loss, the receiver records the sequence number of the earliest lost packet,

continues to accept the subsequent packets and replies each with an ACK piggybacking

the sequence number of the earliest lost packet. The sender continues to send subsequent

packets until it reaches its limit of send window. Once the sender has sent all the packets

in its window, it retransmits the packet whose sequence number is given by the ACKs,

and then continues from the place it left off.

SR scheme is mainly based on a method called Selective Acknowledgment (SACK),

a modification to TCP proposed in RFC 2108, it is an option that allows the receiver to

acknowledge discontinuous packets that were received correctly. The use of SACK is

optional and it needs support from both ends to work properly, which is negotiated in the

Connection Establishment phase. SACK is usually indicated in the optional field of TCP

header. TCP employs a form of SR scheme to provide reliable end-to-end data transfer

38

over communication networks, and the SACK is widely supported in all popular TCP

stacks.

2.1.3 TCP congestion control

TCP congestion control [RFC 2581] and Internet traffic management related subject

matters generally have been active areas of study and experiment. Current standard TCP

implementations usually contain four intertwined algorithms: slow start, congestion

avoidance, fast retransmit and fast recovery.

Slow Start

In TCP congestion control, Slow Start (SS) (Figure 2.6) is a scheme used by the source

end to control the transmission rate. This is achieved by the return rate of ACKs from the

receiver. To be exact, the rate of ACKs returned by the receiver decides the rate at which

the sender can transmit data.

At the beginning of a TCP connection, the slow start algorithm initializes a

congestion window to one segment, which is the Maximum Segment Size (MSS) set by

the receiver during the connection establishment phase. Every time an ACK is received

by the sender, the congestion window is then increased by one segment. In fact, as long

as the network condition is good, slow start is not very slow because the windows size

would increase exponentially in such case. Suppose the first transmission succeeds, it

increases the window to two segments; after successful transmission of these two

segments, the window size goes to four segments; then eight segments, then sixteen

39

segments and so forth until it reaches the maximum window size advertised by the

receiver or until congestion happens. Figure 2.5 shows the TCP timing during Slow Start.

. first window
* = S/R

Figure 2.5: TCP timing during Slow Start [13]

However, sometime network quality may vary or the congestion window may be too

large for the network such that packets may be dropped. Packet loss will cause timeout at

the sender, in which case the sender will enter congestion avoidance process as follows.

Congestion Avoidance

Congestion avoidance (CA) (Figure 2.6) is used to slow the transmission rate when a

packet loss happens. Congestion avoidance and slow start are independent algorithms

with different objectives. But in practice they are usually used together to better control

the data transfer so it does not stay slow.

40

Basically, congestion avoidance is also thought to be an Additive Increase

Multiplicative Decrease (AIMD) algorithm [RFC 2001] because it employs a method of

linear growth of the congestion window, combined with an exponential reduction when

congestion takes place. In congestion avoidance, network congestion could be indicated

by either a timeout or the reception of three duplicate ACKs. If it is caused by three

duplicate ACKs, fast recovery algorithm will be activated, where the sender immediately

halves its current transmission window, which is so called 'multiplicative decrease'; If

congestion was caused by a timeout, the congestion window is reset to one MSS, which

means the sender directly goes back to the slow start phase.

Nonetheless, slow start only runs until the halfway to where congestion last took

place. After this halfway point, the TCP enters congestion avoidance phase, where the

congestion window is increased by one segment every RTT, no matter how many ACKs

were received in that RTT, until a packet loss happens. A typical way to do that is for the

TCP sender to increase its congestion window by {MSSICongWiri)*MSS bytes for every

new ACK, where Cong Win denotes the current congestion window size. That is so called

'additive increase', a linear growth of congestion window, compared to slow start's

exponential growth. This method makes the sender more carefully increase its

transmission rate as it comes close to the place where the congestion happened last time.

Fast Retransmit

Fast retransmit is an improvement to TCP which saves the time a sender waits before

retransmitting a lost segment. When a duplicate ACK for the same packet is received,

TCP does not know whether it is caused by a segment loss or simply that a segment was

41

delayed and received out of order at the receiver. It is assumed by a TCP sender that, if

more than two duplicate ACKs are received by the sender, it is a strong sign that at least

one segment has been lost. Because the TCP sender assumes that, enough time has

elapsed for the receiver to properly reorder all the segments and send a new ACK, by the

fact that the receiver had already sent three duplicate ACKs. Therefore, if a TCP sender

receives three duplicate ACKs with the same acknowledge number, that is a total of four

ACKs with the same ACK number, the sender can then confidently assume that the

segment with the next higher sequence number was lost and will not arrive out of order.

The sender will then retransmit the packet that was believed to be lost without waiting for

the retransmission timeout to expire. The fast retransmit algorithm first appeared in the

4.3BSD Tahoe release, and it was followed by slow start [RFC 2001].

Fast Recovery

Fast Recovery (Figure 2.6) is an algorithm employed by TCP Reno to improve the

performance of TCP Tahoe, especially for large windows, that allows high throughput

under moderate congestion. Because duplicate ACKs can only be generated when a

segment is received, this is a strong signal that there may not be severe network

congestion since at least there is still data flowing through, so TCP does not have to

reduce the flow rapidly by resetting the congestion window to 1 MSS. Therefore, after

the fast retransmit of the lost segment, the sender resumes its transmission with a larger

window, compared to that in slow start it is only one MSS, the sender then enters

congestion avoidance phase and linearly increases its window. The fast recovery

algorithm appeared in the 4.3BSD Reno release [RFC 2001].

42

Finally, Figure 2.6 illustrates an outline of two typical TCP congestion control

algorithms: TCP Tahoe and TCP Reno, with the periods of exponential increase, additive

increase and multiplicative decrease. Each scenario shows a reaction of sender to

I
C
o

c
o
O

50

40

Tahoe: Timeout or Duplicate ACKs;
Reno: Only Timeout Reno: Duplicate ACKs

-Initial threshold— r»

J/

-Initial window size-

.G0 ' ,<#
J&

&
&*> S?

a*
Fast Recovery f^' (* ̂

*S

-New threshold-
S3* * * fP

No Slow Start

Round Trip Time

Figure 2.6: TCP congestion control in Tahoe and Reno

different network conditions. From Figure 2.6 one can clearly understand the difference

between the two TCP versions: Tahoe unconditionally resets congestion window to the

initial value of 1 MSS when a loss event occurs, no matter it is caused by a Timeout or

three Duplicate ACKs; while Reno does that only if it is a Timeout, and for the case of

Duplicate ACKs, it uses the Fast Recovery algorithm to maintain high speed.

TCP is a complicated protocol that deals with all kinds of mechanisms for data

communication in a packet switched network such as the Internet. With the increasing

development of Internet, our dependence on TCP keeps increasing. Supporting the

reliable delivery of data on a packet switched network is not an easy job. Even after so

many years of standardization, the researches have never been stopped, it is still an area

of great activity and there remain many problems to be solved. For example, fairness is

43

now a topic of great concern. Its objective is to realize 'fair play' for all network users,

and to limit the greedy TCP senders so as to make room for users with a low bandwidth

connection. Current congestion control techniques have been working wonderfully so far,

it only remains to be seen how far they can carry on the Internet in various transmission

circumstances such as in wireless environment. TCP in wireless will be the main subject

of next section.

2.2 Problems and enhancements in wireless

Since TCP has been primarily designed and developed for wired networks, any packet

loss is considered to be caused by congestion and then leads to huge precautionary

decrease of the congestion window size. Nevertheless, as we know wireless channels

experience random packet losses caused by various effects such as multipath fading, hand

off, shadowing and other radio effects that should not be considered congestion. In case

of packets loss due to wireless channel quality, the congestion window size will be reset,

and then there will be a congestion avoidance phase, leading to considerable

underutilization of channel resources.

A lot of studies show that the standard TCP performs inefficiently in a wireless

environment due to its inability to distinguish packet losses caused by congestion from

those caused by errors. Unfortunately, today most wireless data applications such as

World Wide Web (WWW), File Transfer Protocol (FTP), multicasting and Telnet, use

TCP as the standard transport layer protocol since they need reliable data delivery. Lots

of research has been done to conquer this problem and to improve the network

performance over TCP based wireless networks.

44

2.2.1 TCP problems in wireless

High Bit Error Rate

The conventional congestion control methods for TCP have been generally designed for

wired networks, where packet loss caused by bit corruption and link errors is almost

negligible, in other words, almost all packet losses are caused by congestion. However,

the BER in wireless networks is much higher than that in traditional wired networks,

comparing the BER of wired networks on the order of 10~9 to 10"6 to that of wireless

networks on the order of 10"4 to 10" . For example, it is common to have a BER of 2% or

so for Code Division Multiple Access (CDMA) based wireless networks. Therefore, in

wireless network, packet loss does not necessarily mean congestion because it may be

lost due to interference, signal fading and so on. But TCP incorrectly considers it as

congestion loss and launches congestion control process, where it keeps the sending rate

relatively low, leading to a degraded performance.

Burst loss

A burst loss may be caused by signal fading. Channel interferences can lead to correlated

packet losses, usually a burst loss of many consecutive packets within a very short

duration. In wireless networks, since the connection is unreliable, wireless users usually

suffers from unpredictable disconnection when they move about or when there is a power

failure. Transmission in this period experiences huge packet losses, causing unnecessary

suppression on transmission rate by TCP and then degraded performance. Burst loss can

cause several consecutive timer expirations and retransmissions of the same packet

within a short period. The value of retransmission timer is doubled every time a failure

45

occurs until it reaches some threshold. Hence, several consecutive retransmission failures

can lead to very long idleness of the connection even though the network condition

resumes immediately.

In infrastructured networks, all traffic is routed via access point (AP) or base station

(BS). Such as in cellular systems, when wireless users move out from the coverage area

of the current BS, they have to register at another BS which they are moving into. As a

result, a handoff takes place and all the following traffic is then routed via the new BS.

Even though it usually takes only a few seconds, many packets being transmitted may be

lost because they are transferred to the old BS when a handoff is going on; a wireless user

may also lose the connection to BS, and any data transmitted to or from it will be lost,

both leading to a burst loss. The handoff frequency depends on the mobility of some

particular users and the coverage area of BS.

In ad hoc networks, where users move from one place to another, the network

connectivity varies, so the network topology may change frequently. Therefore, the

original routing may not work anymore, and it takes time to recalculate a new routing

plan. As a result, some packets using the original routing may be lost during this process,

so a burst loss takes place. The cause of a burst loss in ad hoc networks is affected by the

coverage area and mobility of every user in the network, compared to infrastructured

networks where it is only some particular users and the coverage area of BS that matter.

Unpredictable delay

A highly variable RTT may also cause high RTO (Retransmission Time Out), which is

based on both estimates and variance of RTT. Since wireless user move around randomly,

46

their distances from a BS change all the time, causing temporally varying delay. This

unpredictable delay is not easy for TCP to adjust to. TCP reacts slowly to data loss when

RTO is high. Variations in the RTT may be caused by link layer retransmissions of

wireless channel. If the link layer frames that contain a TCP packet must be retransmitted

due to bad channel quality, the packet is delayed. RTT variations can also be caused by

channel access method, handover and queuing in routers, BSs and other intermediate

nodes. A long RTT causes low network efficiency and underutilization, as it takes several

RTTs for TCP to gradually achieve the network capacity.

Packet disorder

Packet disorder means the case that some packets are received out of order. This is found

out to be not unusual so that most fast retransmissions in fact are unnecessary, leading to

significant performance degradation. In infrastructured networks, handoff may cause

disordered packets. During handoff, packets travel through different paths may take

different time to get to the destination. For an ad hoc network, there is no fixed

infrastructure and every user can act as a router. Therefore, dynamic routing causes

packets of the same source-destination to be forwarded through different paths and then

to be received out of order. Besides, in some proposed link layer error correction

techniques, retransmission is performed regardless of the semantics of the underlying

transport protocol, which can also lead to disordered packets.

As a result, TCP is not suitable for many applications. Since the application will be

stuck after a lost packet until the retransmission is successfully finished. This is a

problem for real time applications such as streaming multimedia, multiplayer on-line

47

games and Voice over IP (VoIP) where it is usually more helpful to get most of the data

in time than to get all of the data in order.

Limited power

Wireless equipments usually use battery as power source, so unlike electrically powered

equipments, they cannot afford too many retransmissions. In other words, TCP is not

designed as an energy-efficient protocol.

Small bandwidth

Compare to wired networks, wireless networks have a much smaller bandwidth. For

example, the Ethernet can now achieve a bandwidth of up to 1 Gbps, while the current

IEEE 802.1 lg has a bandwidth of only 54 Mbps. Therefore, it is a major problem for

TCP to efficiently utilize the wireless bandwidth in some cases such as real time

applications.

TCP packets may be lost due to unreliable link layer protocol. After trying

retransmission for a few times, link layer protocol gives up and leaves further

responsibility of error recovery to higher layer. TCP may also mistake a sudden increase

of RTT, which is common in wireless networks, as a data loss. If the delay is long enough

for retransmission timer to expire before an ACK is received, TCP will mistake the delay

as a signal of data loss due to congestion. Therefore TCP will unnecessarily retransmit

the data that it thinks to be lost and then goes to slow start.

48

2.2.2 TCP enhancements in wireless

The promising wireless applications, especially high speed multimedia services and the

emergence of wireless IP communications running over the Internet, demand effective

enhancements or modifications of TCP for better performance. The standard Reno [RFC

2581] halves the window size when experiencing a packet loss whatever the reason was.

If it is due to network congestion, this improves network congestion. On the other hand, it

would degrade the performance for random loss. The features of wireless networks vary

with access technologies, so a universal solution for all kinds of wireless networks is

unpractical. Each wireless TCP solution tries to take care of some specific problems.

TCP has been continually evolving ever since its first specification RFC 675 in 1974.

Even though many developments have been made over the years, the primary foundation

behind TCP remains almost the same. TCP congestion control, specified in RFC 2581, is

one of the most important TCP improvements in last decade; it introduces efficient

algorithms to avoid unnecessary congestion. After that, a signaling scheme called

Explicit Congestion Notification (ECN) was proposed for congestion avoidance. There

are lots of implementations of TCP, some of which are thought to be standard TCP

implementations. The original TCP congestion avoidance algorithm was known as TCP

Tahoe, including the very basic congestion control scheme, namely the slow start and

congestion avoidance algorithms described before. However a lot of other algorithms

have been proposed since then, such as Reno, New Reno, Veno, Westwood, BIC and so

on. TCP Reno adds the fast retransmit and fast recovery algorithms to TCP Tahoe.

Furthermore, TCP New Reno improves upon TCP Reno by changing some thresholds in

fast recovery algorithm and avoiding the occurrence of multiple retransmissions after

49

timeout [RFC 2582]. TCP New Reno is for now the most widely used TCP congestion

control scheme in practice, while most others competing proposals still need further

investigation.

TCP New Reno

TCP New Reno [RFC3782] is a small modification over TCP Reno. It can discover

multiple packet losses, so it is much more efficient than Reno in case of multiple packet

losses. Like Reno, New Reno also performs fast retransmit when it receives multiple

duplicate packets, yet it differs from Reno in that it does not quit fast recovery until all

the unacknowledged packets at the time it started fast recovery are successfully received.

Therefore it avoids reducing the congestion window many times as in Reno. However,

New Reno suffers from the fact that it takes one RTT to identify each packet loss. Only

when the ACK for the first retransmitted packet is received, can it realize which other

packet was lost. Even though, New Reno works much better than Reno at high BER.

ATCP

In ad hoc networks, it is usual to have a high BER and the route changes a lot so network

topology changes, leading to more packet loss in addition to network congestion. ATCP

[14] is a cross layer method proposed to provide end-to-end solution to improve TCP

throughput for mobile ad hoc networks. It works between the standard TCP and IP layers,

and it is based on ECN message to detect network congestion and distinguish congestion

loss from error loss, and uses the ICMP 'Destination Unreachable' message to detect the

routing and topology status of the network. According to the feedback messages, ATCP

sets TCP sender to an appropriate state: persist, retransmit or congestion control. ATCP

50

also reorders the packets so that TCP would not generate duplicate ACKs. ATCP deals

with high BER, route failure, network congestion, and packet reorder, which makes it

more suitable for TCP in mobile ad hoc networks. In addition, ATCP does not generate

or regenerate ACK packets nor modify the TCP, so it maintains the standard end-to-end

TCP semantic. However, it is not always possible to have a stable node to provide

feedback messages in ad hoc networks, so sometime ATCP might be unreliable.

Link Layer proposals

This approach tries to hide wireless packet losses from higher layers by using link layer

level retransmissions instead of end-to-end retransmissions, so the packet loss is localized

and the probability of packet loss due to wireless channel is decreased. These proposals

employ intermediate routers to store all unacknowledged packets and retransmit them

whenever a packet loss is detected. As the propagation delay of radio signal is much

smaller than end-to-end delay, so this approach knows immediately about the packet loss

and can then react faster than higher layers. All the proposals maintain the end-to-end

TCP semantics.

However, TCP has its own end-to-end retransmission mechanisms, and it has been

shown that independent retransmission protocols can decrease the performance,

especially under high BER. In addition, with the network security being more important,

encryption is broadly adopted, therefore if the data is encrypted, this approach may not

work. This kind of proposals includes Snoop [15], SNACK-New Snoop (SNACK-NS)

[16], Delayed Duplicate Acknowledgments (DDA) [17] and so on.

51

TCP Vegas

TCP Vegas [18] detects congestion based on the increasing RTT values of the packets in

the connection, in contrast to other versions of TCP, which do so only after the

congestion has actually happened. In TCP Vegas, timeouts were set and round-trip delays

were measured for every packet in the transmit buffer. The RTT of the connection and

the window size are used to compute the number of packets in the network buffers. Vegas

takes delay as a signal of congestion and then reduces its throughput, and uses additive

increases and additive decreases in the congestion window. Vegas decreases the window

size when it exceeds some threshold and increases it when it is below certain threshold. It

tries to stabilize the network congestion state around the optimal point by proactively

adjusting the congestion window without significant change in the congestion window.

However, Vegas detects congestion based on RTT measurements, which may

inaccurately reflect congestion level on forward path.

TCP Veno

TCP Veno [19], as its name says, is a combination of Vegas and Reno. It uses the same

method as Vegas to estimate the accumulated packets in the network, but it proposes an

approach to distinguish the causes of packet loss by a threshold. If the number of

accumulated packets is less than the threshold, the packet loss is random, where Veno

increases the congestion window in a conservative way, that is to send only one packet

for every other ACK received; otherwise the loss is caused by congestion, where it

performs the standard TCP Reno. However, Veno works poorly under high BER, and it

does not deal with disconnection. Figure 2.7 shows a result from [19].

52

BW=1.6Mbps, RTF=!20tns, buffer size* 12

-•— Reno
-4B— Vcno

.(mm
Packet loss rate

Figure 2.7: Throughput versus packet loss rate for Reno and Veno [19]

TCP Westwood & Westwood+

TCP Westwood [20], which can be considered as an extension of TCP Reno, is a sender-

side only modification of the TCP congestion window algorithm. It adjusts the size of the

congestion window based on the rate of the ACKs. Westwood sets up a mechanism to

measure bandwidth at the sender side, based on the interval of returning ACKs. It

evaluates available bandwidth to control the sending rate. When it receives three

duplicate ACKs, it sets the slow start threshold to reflect its estimated bandwidth-delay

product. This method preserves the end-to-end TCP semantics, and needs slight

modification at end users and in some case the routers.

Westwood+ is a development of Westwood, whose bandwidth estimation algorithm

was soon discovered worked badly with reverse traffic due to ACK compression.

Westwood+ improves the accuracy of the estimation of the available bandwidth and it is

implemented in the kernel of Linux. Figure 2.8 shows a result from [20].

53

SP^*—-*-_

Q.

o

1.57

0.5

8. 01

^ V .

Westwood ~&-
Renp -x~
Sack -^

0.1 1
Loss rate {% packets)

Figure 2.8: Throughput vs. error rate of the wireless link [20]

However, large packet loss does not necessarily mean network congestion, which is

especially true for wireless networks since wireless links are known to have high error

rate. This scheme will have poor performance when the sender mistakenly estimates the

bandwidth due to the random delay in wireless network, or the random packet loss rate

suddenly increases. In addition, it still needs to modify the standard TCP at the sender

side.

Numerous methods have been proposed to improve TCP performance over wireless

networks, the proposals presented above are just a small part of them. However, due to

the basic instinct of TCP protocol, there are always some limitations for these methods.

Each of them only deals with one or a few problems that TCP experiences in wireless

environment, there is no almighty method for now. Performance improvements are

always important, but in many cases with the cost of violating the end-to-end semantics

of TCP is not always comfortable.

54

In general, UDP is used as an alternative where TCP does not work well. It offers the

application multiplexing and checksums like TCP, but does not deal with building

streams or retransmission, making it possible for the application developer to program it

in a way more suitable for a certain situation or to substitute them with other methods like

Forward Error Correction (FEC), which will be discussed specifically in the next chapter.

55

Chapter 3

A new hybrid ARQ technique

In data communication networks, data could be corrupted and data packets could be lost

in the process of transmission. There are two fundamental error correction techniques

treating this problem: Forward Error Correction (FEC) and Backward Error Correction

(BEC). Although, in some point, BEC is efficient and easy, but it needs feed-back

channels and it is inappropriate for situations in which many clients have to wait for a

retransmission, such as wireless network.

Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ) have been the

two basic loss recovery techniques generally used for data transfer in communication

networks. Both FEC and ARQ use Error Detection (ED) techniques such as Cyclic

Redundancy Check (CRC) to detect errors and erasures, but FEC adds more redundant

data to the source information to enable correction. According to coding theory, an error

is defined as a corrupted symbol in an unknown position, while an erasure is a corrupted

symbol in a known position. In case an error or erasure is detected, FEC may be able to

correct it, while ARQ just simply asks for a retransmission. The advantage of FEC is that

no retransmission is needed, so feed-back channels are not necessary. FEC is therefore

applied in situations where retransmissions are comparatively impractical or costly.

Generally, in data communication networks, ARQ schemes are preferred over FEC for

error control, when there is a high-quality channel, such as wired networks. However,

56

FEC is better when feed-back channels are not available or retransmission is not suitable

for some situations like there is a long Round Trip Time (RRT) or a very competitive

multiple media access environment, such as wireless networks.

A hybrid ARQ (HARQ) scheme combines the advantages of FEC and ARQ, and

offers much better throughput performance and reliability, especially for wireless

networks. There are mainly two kinds of HARQ approaches so far, namely type I and

type II. Basically, for type I HARQ, it acts like standard FEC unless the channel quality

is poor, and not all transmission errors can be corrected, the receiver will detect this

situation using the ED code, then it discards the received coded data and a retransmission

will be requested, similar to ARQ; while type II HARQ is more dynamic and complicated,

it transmits redundant data only if there is a transmission failure, in which case the sender

launches FEC process, redundancy is transmitted instead of repeating the same packet

and the previously received packet will also be used to improve the decoding capability

[21]-[24]. HARQ technology has also been considered in the link layer function of IEEE

802.16 (WiMax) [25] and the third generation of mobile networks (3G).

In this chapter, we introduce a new HARQ technique for reliable and efficient packets

transfer in wireless environment. In contrast to most HARQ techniques proposed so far,

which usually employ a byte level FEC combined with ARQ, in our system, we mostly

use packet level FEC for the data transfer, in conjunction with ARQ to compensate for

the little inefficiency. It is similar to type I HARQ, except the FEC is applied in higher

layer, the application layer. The first section provides some reviews of FEC; the second

section gives a brief description of digital fountain and raptor codes, state-of-the-art

57

concepts and the most advanced FEC techniques; detailed system implementation and

simulation results are presented in the last section.

3.1 Forward Error Correction

Forward Error Correction (FEC), also known as Error Correction Code (ECC), is a

technique generally used to deal with errors and erasures in real time communication

networks. FEC techniques allow a receiver to correct errors or erasures without further

communication with the sender. The error correction is "forward" in the sense that no

feedback from the receiver or further transmission by the sender is required. FEC is

Figure 3.1: Forward Error Correction

realized by attaching redundancy to the transmitted source information using a

predesigned algorithm such as Raptor or Reed Solomon, to realize the errors and correct

them. Every redundant bit is often a complex function of lots of source information bits.

The source information may or may not be included in the encoded codes, so FEC codes

can be divided into two subcategories: Codes that contain the source data after encoding

are called systematic codes, and those that do not are nonsystematic codes [26].

58

3.1.1 FEC principles and applications

In a communication system that employs FEC, the sender sends the source data to the

encoder. The encoder adds redundant bits to source data to get a longer sequence of

encoded data, called a codeword. Then the codeword can be transmitted to the receiver,

which uses a corresponding decoder to obtain the source data. Codewords with a large

number of redundant bits reduce the information carried by each individual code bit,

which is helpful because it reduces the probability that all of the source information will

be lost in a single transmission. However, more redundant bits may require more

transmission bandwidth and cause packets delivery delay.

FEC can be classified as error detection codes, error correction codes, and erasure

correction codes:

• Error Detection (ED) codes only check whether or not the received data is correct,

but do not give the methods to locate and correct the errors. It is very important to

maintain data integrity across lossy channels and undependable storage media, so

it is widely implemented in all kinds of ARQ schemes to perform Error Detection

function. Some popular ED codes are: parity check, checksum and CRC. For

instance, a l 's complement checksum ED code is used in IP data packets to help

receiver check the integrity of IP header, and in TCP and UDP data packets to

check the integrity of header and payload data.

• Error Correction codes not only detect an error but also correct it. For instance,

block codes or convolutional codes are widely used in various kinds of data

storage systems and the physical layers of IEEE 802.1 la/b/g wireless LANs.

59

• Erasure Correction codes can correct a certain amount of lost data where the

positions of the lost data are already known. For instance, raptor codes can

recover lost packets because they were not received, or errors were detected and

the packets were discarded.

Bit Error and Packet Loss

In digital communication networks, transmitted data may be distorted by the noisy

channel. At the receiver, each bit is compared with a threshold. If the instantaneous

amplitude of the noise is high enough at the sampling instant, the bit may be mistakenly

received, causing a bit error. Bit Error Rate (BER) is the ratio of the number of bit errors

to the total number of bits sent in a particular time.

In some unreliable networks, such as IP based networks, there is no guarantee that

transmitted data will get to the destination. Real time data like encoded video has to be

decoded and provided to users at a constant speed. If a packet is delayed too long, it is

considered as a packet loss. The ratio of the number of packet loss to the total number of

transmitted packets is called Packet Loss Rate (PLR).

The ratio n/k is usually referred to as the stretch factor of an erasure code. The stretch

factor represents the proportion of redundancy, where k is the number of only source bits

and n is the number of total bits per packet, including redundant bits. The extra

redundancy added by FEC means that more than just the original data is transmitted,

calling for either a longer transmission time, if the data rate remains the same, or a faster

data rate thus higher bandwidth, if the transmission time remains the same. However,

what is interesting is, the extra redundancy can at last save transmission time and

60

bandwidth when compared to the retransmissions that would be required if there is no

FEC. The primary trade-offs in FEC are the degree of error protection provided by a

specific algorithm, including the level of latency, encoding and decoding processing, and

bandwidth extension or extra overhead required to improve resistance to error or loss.

Because of the complexity of FEC codes, when designing a reliable communication

systems using FEC, we must pay attention to the processing capability of both of the

source and destination end.

FEC applications

FEC is the crucial element in an incredible range of applications. For example, latency-

sensitive applications like video conferences and applications where the transmitter

forgets the data right after it is sent, such as most television cameras, as in case of an

error, the source data is no longer accessible, so FEC is used in data storage systems like

RAID (Redundant Array of Inexpensive Disks) and distributed data store.

In conventional packet switching computer networks where full duplex

communication is available, error correction is performed by using an ARQ protocol such

as TCP. TCP makes sure that any data which does not get to the final destination is

retransmitted right away. For real time applications like video, the encoder needs to

process data stream, so a steady end-to-end delay is required to keep this continuous

stream of data. In networks with a high bandwidth-delay product, retransmissions of

packets cause big variation in end-to-end delay, this requires a large buffer at the receiver

to compensate for the delay effect jitter. However, large buffers not only are pricey but

also introduce extra delay, which may be a problem for sensitive real time

61

communication like video conferencing. In satellite communication, retransmission is

also inappropriate since there is little capacity of feed back channel or no feed back

channel at all. So retransmission mechanism adopted by ARQ has drawbacks such as

high cost and high delay. In contrast to TCP, UDP adds no loss recovery, reliability and

flow control features to the lower IP layer. Thanks to its simplicity, UDP headers are

shorter and use less network resources. UDP is more practical in conditions where the

reliability is unnecessary, or error and flow control can be further supplemented by a

higher layer protocol.

FEC also plays an important role in cellular networks. The 3G cellular network is

gradually dominating personal communication today. Different cellular networks have

different channel capability, RRT, frequency allocation and transport protocol

configuration. Cellular networks are much more affected by data corruption owing to

various environmental conditions such as the whether conditions and the interference. 3G

cellular networks provide multiple services and support real-time multimedia services.

The environments and diversity of wireless situations may significantly have an effect on

end user performance, so most cellular networks employ FEC techniques in their physical

layers and there are increasing applications in higher layer as well.

FEC stands for the most efficient and economical way of improving the reliability of

data transmission or storage. As bandwidth efficiency and spectrum management are

drawing increasing attentions, it is getting even more significant to get the most out of

channel capacity without giving up transmission reliability.

62

3.1.2 The two fundamental FEC codes

There are basically two fundamental FEC coding techniques: block coding and

convolutional coding. We briefly review them as follows, without great technical details.

Block coding

Block coding used to be the first type of channel coding used in earlier mobile

communication systems, in which the encoder spreads parity bits into the source data

sequence with a specific algebraic algorithm, so it can also be called algebraic code. On

the other end, the decoder uses an inverse of the algebraic algorithm to recognize and

correct any errors or erasures caused by the poor link quality. In contrast to source coding

methods like Huffman coding, and channel coding techniques such as convolutional

encoding, the key feature of block code is that it is a fixed length channel code [27]-[32].

k source symbols n encoded symbols

Any k of the n symbols
[-: zzN FEC Decoder

k source symbols

Figure 3.2: FEC Block Coding

As shown on the above figure 3.2, an (n, k) block erasure code converts k source

symbols into a set of n coded symbols, such that any k of the n encoded symbols can be

used to reconstruct the source symbols. Generally, the first k symbols in each set are the

same to the original k source symbols; the remaining n-k symbols are the parity. Usually,

FEC codes are able to correct both errors and erasures in a block of n symbols. For the

63

transmission of streamed multimedia packets, loss detection is carried out based on the

sequence numbers in Real time Transport Protocol (RTP) packets, in such case it is

known as erasure codes.

Convolutional coding

Convolutional coding, first introduced in 1955, operates the input bits in streams rather

than in blocks. Its most important characteristic is that the encoding of any bit is seriously

affected by the bits that have preceded it, that is to say, the memory of previous bits. The

decoder takes into consideration the memory when attempting to guess the most likely

sequence of data that generated the received sequence of code bits. The first type of

ml mO m-1

/ T \ (0,1,D

rr\ (1,0,1)

m^ 0)

->• n1

- • n2

-*• n3

Figure 3.3: A rate 1/3 non-recursive, non-systematic convolutional encoder with

constraint length 3.

convolutional decoding in history was sequential decoding, which used a systematic

process to look for a nice estimation of the source data sequence; but such processes

require a lot of memory, and usually lead to buffer overflow [33]-[37].

The above figure 3.3 shows a rate 1/3 (m/n) convolutional encoder with constraint

length (k) of 3. Generator polynomials are Gl = (0, 1, 1), G2 = (1, 0, 1), and G3 = (1, 1,

64

0). Therefore, output bits are calculated (modulo 2) as follows: nl = mO + m-1, n2 = ml

+ m-l,n3 =ml + m0.

Today with the tremendous development of FEC technique, LDPC and Reed

Solomon codes are the most popular FEC codes proposed in the literature and are often

recommended in Internet Engineering Task Force (IETF) RTP profiles. The following is

a very simple review of the two most widely used erasure codes.

Low Density Parity Check Codes

Low Density Parity Check (LDPC) codes, invented in the early 60's and had been

forgotten for about 30 years, was the first code achieving a data transmission rates close

to the theoretical limit, i.e. the Shannon Limit. Many recent research works have

considered adopting LDPC code. LDPC codes are defined by a sparse parity check

matrix. The sparse matrix is usually randomly generated, subject to the sparsity

constraints. These codes have two major benefits: first, the simplicity of XOR operations

makes high speed encoding and decoding possible, which is perfect for handheld devices;

second, LDPC handles very large source blocks. LDPC codes are thought to become a

standard in the developing market for highly efficient data transmission systems, such as

cellular networks and interplanetary communication [38].

Reed Solomon Codes

Reed Solomon (RS) codes are a special class of linear non-binary block codes with the

ability to correct both errors and erasures, and they have been used for almost half a

century. An RS code provides perfect error protection against packet loss given that it is a

Maximum Distance Separable (MDS) code, that is to say, no other coding scheme can

65

recover the lost source symbols with fewer received code symbols. According to a

comparison carried out by the IETF, RS codes are more suitable for small block size and

real time streams, while LDPC codes work better for large blocks over unidirectional

channels. In addition to block size constraint, RS codes also suffer from computational

complexity [39].

Even though with the incredible development in recent years, some FEC codes are

more than ever approaching the Shannon Limit, RS codes are still playing a very

important rule now, especially for high rate systems with relatively small data packets.

RS codes have outstanding burst correction capability, so they are broadly used in various

commercial applications, the ability to correct both random and burst errors is ideal for

applications such as magnetic tape and disk storage like CDs, DVDs and Blu-ray Discs,

where the defects in storage media sometimes may cause burst errors. RS codes are also

deployed in data transmission technologies like DSL and WiMAX, and broadcast

systems like Digital Video Broadcasting (DVB), so RS codes are perhaps the most

widely used code.

3.1.3 Packet level FEC

Erasure channel

In an erasure channel, a packet is either lost in the channel, or is perfectly transmitted

without any corruption. The receiver either gets a packet error free, or loses it in total.

The Internet is a typical example of erasure channel, where files are transmitted in

packets, each of which is either lost or perfectly received.

66

Packet

\ /
/ N

Packet

V

Packet

Packet

v
Packet

Source data

| Packet Packet |

* >T
Erasure channel

Received data

Packet I Pad Packet Packet I Packet

Packet

X

J

.... • . _ .
Packet

Figure 3.4: Erasure channel

Packet level FEC is a packet loss recovery technique that can recover a certain

amount of packets after erasure channel. Therefore, no further retransmission is needed in

systems equipped with packet level FEC, which makes it useful in networks running real

time applications like video and audio streaming. Packet level FEC techniques are

generally based on the use of error detection and erasure correction codes, which can

detect and recover both erasures and bit level errors [40].

Existing packet level FEC methods are mostly based on simple parity check codes or

Reed Solomon codes with erasure decoding, but in this paper we will use the most

advanced FEC codes called raptor codes. In the standard packet level FEC, k information

packets are grouped into a block and then attached with r parity packets to create a coded

block with k + r packets. The parity packets are constructed in a similar way as the parity

bits in the linear block codes except that bits in the encoding process are from different

packets. If a packet is lost during transmission, the receiver knows the position of the lost

packet according to the packet sequence numbers. Even though most wireless networks

use integrated physical layer adaptive coding and modulation schemes, packet level FEC

protocols are usually necessary at application level. Wireless communication suffers from

both short term fast fading and white Gaussian noise, which is solved by the integrated

67

physical layer coding; long term slow fading when entering a tunnel, which is solved by

packet level FEC coding.

Packet level versus byte level

FEC can be implemented at many levels from byte level up to packet level. In byte level

FEC, a symbol is a byte; while in packet level FEC, a symbol is a packet. Byte level FEC

is implemented at the physical layer of almost all wireless networks. Packet level FEC is

generally based on erasure coding, it has the advantages such as: byte level FEC is unable

to recover an entirely lost or delayed packet; a single parity packet can be used to correct

different single packet losses in a group of packets; in byte level FEC, a corrupted packet

is already detected and discarded at the link layer by CRC, or at the transport layer by

checksum, and in IP based network, the network layer will detect corrupted packets due

to erroneous bits and then discard them, so they will not be available at application level.

3.2 Digital Fountain and Raptor codes

Fountain codes, first introduced by Michael Luby [41], are sparse-graph codes for erasure

channels such as the Internet. Standard file transfer protocols simply divide a file into

some packets, and then repetitively transmit each packet until it is successfully received.

There has to be a feed-back channel for the transmitter to know which packets need

retransmission. In contrast, fountain codes generate potentially limitless packets based on

some random functions of the entire file, and the transmitter keeps sending packets to the

receiver without any acknowledgement. Fountain codes are known to have efficient

encoding and decoding algorithms thanks to the small computational costs, and are able

to recover the original k source packets from any k' of the encoding packets with high

68

probability, regardless of the order, where k' is just slightly greater than k. A fountain

code can be considered as an optimal code if the original k source packets can be

recovered from any k encoded packets.

Fountain codes were firstly designed for erasure channels, but their performance on

other channels such as noisy channels and fading channels has since been studied and

proved to be excellent [42]-[44]. They have also been proved in broadcast and multicast

in wireless networks [45] and wired local Ethernet networks.

3.2.1 The Fountain concept and its applications

The Digital Fountain

A digital fountain is an abstraction of erasure coding for network communication.

Imagine you are in front of a water fountain spouting an unlimited stream of water drops,

any of which can be used to fill your glass, you do not care which drops of water fall in

as long as you get enough water. Similarly, in communication networks with a digital

fountain, a user receives encoded packets from one or more servers, once enough

encoded packets are received, the receiver can rebuild the source data, and which packets

are used does not matter.

Digital fountains in effect change the traditional model of communication, where a

user receives an ordered sequence of packets to get the original data. Without that

restriction, digital fountains truly improve the efficiency and simplify the data delivery,

especially when the data is large or is to be sent to many users, making them suitable to

more kinds of networks than early techniques. Fountain codes can also be called rateless

codes in the sense that the number of encoded packets that can be generated from the

69

source is potentially infinite. Regardless of the channel quality, we can send as many

encoded packets as needed in order for the decoder to recover the source data, there is no

fixed code rate.

Developments of the Digital Fountain

As we know in RS codes [39], a data of k symbols can be recovered with any k received

encoding symbols, so theoretically RS codes can be used to build a practical

materialization of a digital fountain. Nonetheless, there are quite a few difficulties in

practice. As an alternative, many implementations of digital fountains are derived from

variations of LDPC codes [38]. For example, Tornado codes, a type of LDPC codes

designed for erasure channels [46], was a big step forward towards the development of

fountain codes. The problem is that the number of encoded packets that will be generated

must be decided in advance, since the encoding is based on the graph that corresponds to

the Tornado code.

LT codes

LT (Luby Transform) codes [47], near optimal erasure codes invented by Michael Luby,

are the first full realization and practical implementation of the 'digital fountain' concept.

LT codes distinctively adopt a simple algorithm based on exclusive-or operations for

encoding and decoding. Similar to some other fountain codes, LT codes depend on sparse

bigraphs to achieve high performance in the cost of a little redundancy overhead.

LT encoding

Suppose the file to be transferred consists of k packets, the LT encoding process for a

source file is simply as follows:

1. Randomly choose the degree d of the packet from a degree distribution, which is the

70

key of LT coding and is carefully designed according to the source file size k.

2. Choose uniformly at random d distinct input packets, and set the encoding packet to

be the bitwise exclusive-or of those Vpackets.

3. Repeat the above two steps until desired number of encoded packets have been

generated.

Random d packets

Figure 3.5: LT encoding

The above figure 3.5 roughly shows the process. The encoding process describes a

graph connecting the encoded packets to source packets. If the average degree of this

degree distribution is much smaller than the file size k, then the graph is sparse. Each

encoded packet is independently and randomly generated as the exclusive-or of a

particular subset of the source packets and is transmitted together with the information

specifying the selected degree and source packets. By this information, the decoder

knows which specific d source packets were used to generate each encoded packet,

though the values of the source packets remain unknown until decoding is finished.

LT decoding

At the receiver, when using the received encoded packets to recover the packets of the

71

source data, the decoder has to know the degree d and the combination of source packets

for every encoded packet. There are various methods to pass this information to decoder,

depending on the applications. For example, it can be passed to receiver straightforwardly,

or there can be an agreement in advance, where a key is assigned to each encoded packet.

Source packets

Encoded packets

Figure 3.6: The degree distribution of encoded packets

A key could be the seed of a pseudorandom generator, in that case, the key is randomly

chosen by the encoder to generate the degree d and the list of source packets used to

generate the encoded packet, and then the key could be transmitted along with the

encoded packets. At the receiver, the decoder applies the same key to obtain the degree

and the list.

Here we assume that the decoder in some way knows the necessary information to

complete decoding process, e.g. see figure 3.6. LT decoding can be effectively

accomplished by so called 'Belief Propagation' (BP) method. A simple description of the

LT decoding process is shown as follows:

1. Find an encoded packet t that is connected to only one source packet, say s, i.e., an

encoded packet with degree one. In case that there is no such packet t, this decoding

fails.

72

2. Set s=t. Since 5 is the only source that produces t, so t is sure that s has the same

value. This 'belief starts to propagate.

3. Add the value of s to all the encoded packets that are connected to s, so as to restore

their previous values. So s continues to propagate the 'belief to other packets.

4. Remove all the connections connected to s.

5. Go back to step 1 until all the source packets are determined.

Source packets Source packets Source packets

1 0

Encoded packets
(D

Source packets

Encoded packets
(2)

Source packets

Encoded packets
(3)

Source packets

H H H

Encoded packets
(4)

Encoded packets
(5) (6)

Figure 3.7: An example of LT decoding process

Here we give a very simple example of the LT decoding process, given that a packet

contains only one bit. Suppose we received 4 packets, each has the value 1, 1, 0, 0

respectively, and there are 3 source packets. The decoding process is illustrated in figure

3.7 as above.

Through the algorithm described above, we know the basic idea of LT encoding and

decoding process. Each encoded packet is generated randomly and independently using

the same degree distribution, thus all received encoded packets are equally important in

73

decoding process. Also because encoded packets can be generated as many as necessary

simply by repeating the encoding algorithm, LT codes are really fountain codes. The

complexity of LT codes is directly related to the degree distribution. The smaller the

average degree is, the less number of exclusive-or operations are performed in each

encoding and decoding process, and obviously the simpler it becomes. Meanwhile, the

degree distribution should let the decoder completely recover the whole source block

with just a little bit more received encoded packets than the total number of source

packets.

LT codes design

The design of the degree distribution is the most crucial part of LT code design. On one

hand, some packets should have low degree so as to make the decoding process begin and

to keep it running, and to minimize the computing cost of encoding and decoding

processes. On the other hand, some rare encoded packet should have high degree, which

means its degree is close to the total number of packets to make certain that there are no

source packets that are not connected to any encoded packets. In an LT code, to decode

successfully, every source packet must be connected to at least one encode packet. At

each iteration, to be more efficient, generally we would hope that there is only one

encoded packet that has a single connection with source packet. Also, we would hope that

the end of each iteration would lead to the come-out of another new packet with single

connection. This objective is perfectly achieved by Michael Luby with a carefully

designed degree distribution called robust soliton distribution. The details of this

distribution design is beyond the scope of this thesis, for more details please refer to [47].

3.2.2 Raptor codes

Raptor code [48] is an excellent development of LT codes. Raptor is a fountain code, so

there is no limit to the number of encoded packets that can be generated from a given

source block. As long as sufficient encoded packets are successfully received, no matter

which specific encoded packets are received or in what order they are received, they can

be used to recover the source data. Raptor codes are also universal in the sense that they

operate close to capacity for any erasure channel with erasure probability less than one.

Rateless erasure code

Conventional FEC codes generate a fixed number of repair symbols. For example, an

(220, 190) RS code has a code rate of 190/220 and can generates 220-190=30 repair or

parity symbols from k=190 source symbols. Comparatively, Fountain codes can generate

unlimited number of repair symbols without repetition, so generally no fixed code rate is

applied. Raptor codes are almost an ideal erasure code because they can recover the

source block from any set of A; received symbols.

Raptor can be employed at transport layer or higher to provide packet level loss

protection for communications networks. It is a packet level erasure code that has been

designed and optimized for effective packet loss recovery, full flexibility and low

complexity. Raptor provides full flexibility in the sense that, on one hand, Raptor can

generate as many encoded packets from a source block as required to completely

eliminate the effects of packet loss; on the other hand, Raptor can generate as few

encoded packets as desired to control the latency or bandwidth occupation but still

provide a desired level of packet loss protection, it is up to the requirements of the

75

particular application, namely Raptor codes are able to provide any level of protection

against any level of packet loss.

Raptor encoding and decoding

The core component of Raptor is an LT code, which has relatively good performance but

the complexity is not linear. Raptor codes use an LT code with average degree about 3. It

is such a low average degree that some part of the source packets will be unassociated

and will not be recovered. Therefore in order to get linear complexity, Raptor codes add a

pre-coding stage prior to LT encoding to produce a little redundancy. A fixed length

systematic code is used in the pre-coding stage to improve code performance with a little

Source packets

Pre-coded packets

Raptor encoded packets

Figure 3.8: Raptor coding

bit extra redundancy. In particular, a low complexity pre-coding algorithm is applied to

the source packets to create a pre-coded block, and then an LT code is applied on the pre-

coded block to generate unlimited encoded packets. At the receiver, the decoder simply

applies the inverse procedures: decodes the received encoded packets in the same way as

LT code, and then uses the recovered pre-coded packets to get the source block.

76

The performance of Raptor has been optimized by careful design of the pre-coding

algorithm and of the degree distribution used in the LT code, so its complexity increases

linearly with the source block size and it can completely recover the source block with

the reception of encoded packets a bit more than the source block size. Raptor is usually

implemented as software running on a general purpose processor without the need for

special hardware. Raptor code can achieve very high encoding and decoding speeds on a

variety of platforms with relatively low processing powers, making it practical for

various applications and services. Especially, Raptor code is ideal for consumer

electronics such as cellular phones and PDAs, and no additional supporting hardware is

needed.

Raptor versus Reed Solomon

When used as packet level FEC codes, RS codes become more inefficient and restrictive,

its quadratic running times are too large for many applications. The major difference

between Raptor and RS codes is that Raptor codes do not have restraints on source block

size. Unlike RS codes, the packet size of Raptor codes can be less than or equal to the

source packet size, it can be as small as necessary. The processing requirement of the

Raptor code increases linearly according to the source block size, while it increases

quadratically in RS code. RS codes require to be implemented in hardware at decoder due

to the relatively high processing requirements. So Raptor code has much faster

processing speed and needs much less processing requirement than RS code, offers more

efficient packet loss protection than RS codes.

Raptor Codes provide full flexibility, offering the option to balance between the

degree of packet loss protection, processing speed and bandwidth occupation; while RS

codes suffer from restrictions that decrease their performance and limit their effectiveness,

optimization in one dimension causes poor trade-offs in other dimensions.

Raptor and Reed Solomon codes in mobile standards

Application layer FEC uses FEC codes to protect against IP packet loss, it is a kind of

erasure code not error correcting code. When used in application layer FEC, an FEC code

must be strongly specified according to the specific application. So application layer FEC

often shows pros and cons of different FEC coding technologies.

Raptor and RS codes are both widely accepted as application layer FEC by various

mobile standards. In 3GPP MBMS (Multimedia Broadcast Multicast Service), they both

have been evaluated extensively for both file delivery and streaming, Raptor has been

selected for both streaming and file delivery; in DVB-H (Digital Video Broadcasting -

Handheld) IP datacast, RS are already used at link layer, Raptor has been evaluated

extensively and selected for file delivery; in 3GPP2 BCMCS (Broadcast and Multicast

Service), Raptor will be proposed for both streaming and file delivery.

3.2.3 Systematic Raptor codes

Systematic codes are better for some applications. As in real time applications like

streaming video, when the receiver cannot recover the whole source block because no

enough encoded packets have been received, but could still show part of the information

if the code is systematic. First, in order for Raptor coding to be systematic, it needs to be

78

sure that the encoding process is invertible. Raptor codes can then be made systematic by

first multiplying the input source data with the inverse of the first k columns of the

generator matrix, which is like the inverse of the encoding process, then applying the

normal encoding process to the resulting packets, which lets the original source packets

to be regenerated as the first k output packets of the code. Systematic Raptor code has

been standardized as the application layer FEC code for the 3 GPP MBMS.

Source packets

Intermediate packets

Raptor encoded packets

1

Inverse
^•^encoding

Normal
\encoding

(5 $ 5 Q 5 £ J ? 5 e > Q 5 3 5

Same as source packets

€ 3 ? 5 i 3

Figure 3.9: Systematic Raptor encoding

3.3 System level simulations for various networks

According to Michael Luby [49], generally, there is a simple way to estimate the

performance of raptor codes, that is, if a block consists of more than 200 packets, the

little inefficiency of the raptor code can be well modeled by the equation:

Pf(m,k) =
1 if m < k,

0.85x0.567m~* if m>k.
Equation 3.1

79

file:///encoding

whereby P/m, k) represents the failure probability of the code with k source packets if m

packets have been received. Although this equation is quite simple, however, it is the

foundation of simulation of raptor code, which is an important component of the whole

simulation system. In [49], some research had been done to prove the accuracy of the

above equation. Figure 3.10 shows the simulation results from [49] for some selected

cases and also a graph of the formula. In the figure, the strait line represents the formula;

it can be shown that for different k, the equation almost perfectly emulates the raptor code

performance.

Figure 3.10: Raptor block loss rate for different received overhead m-k, different block

size k, and channel packet loss rate of 40%. [49]

Figure 3.11 shows how the probability of successfully decoding a block is affected by

the number of redundant packets received by the receiver after the erasure channel. It can

be seen that the success probability increases exponentially with the increasing number of

received packets. Figure 3.11 shows that for m=k, with no extra redundant packets

received, it still has a chance of 15% to completely recover the source block; with the

80

number of received redundant packets increasing to 8, that is, for m-k-8, it has a success

probability of 98.4%; when received 16 redundant packets, that probability goes to

99.98%, very close to 100%. In the last case, suppose we have a source block size of

1024 packets, to get a Block Loss Rate (BLR) of 10"3, the received overhead needs to be

16/(1024+16), which is only about 1.56%.

Effects of redundancy in raptor code

4 6 8 10 12 14

Received redundant packets per block

Figure 3.11: Effect of received redundancy (m-k) of raptor coding

3.3.1 Simulation set-up

The simulation system (Fig. 3.12) is constructed and coded in Matlab. It simulates a

virtual wireless ad hoc network with static routing scheme. The network is created by

generating a certain number of random node locations in a limited area, then applying a

shortest path algorithm to the nodes to get a specific routing scheme. The file to be

transferred is first split into one or more blocks with the same size, and block is the basic

processing unit of the error recovery system. The channel access method then simulates a

81

virtual wireless channel access mechanism as if there is an effective Media Access

Control (MAC) technique like IEEE 802.11 RTS/CTS. Then according to the systematic

raptor coding procedures described above, the sender encodes the entire source block to

be

N e t w o r k initializations

G e n e r a t e r a n d o m
posit ions a n d m a t c h e s

Apply Dijkstra a lgor i thm a n d
get the shortest paths

C h a n n e l a c c e s s s i m u l a t i o n
(R T S / C T S) Fig.3.16

T r a n s m i s s i o n : A R Q
F i g . 3 . 1 8

T r a n s m i s s i o n : F E C
Fig. 3 . 1 9

B l o c k p r o c e s s i n g u n i t
F i g . 3 . 2 0

Finish

Figure 3.12: General flowchart of the simulation system. Note some flowcharts are

presented in order to show a general structure of the simulation program, so they may not

be necessarily organized in natural time sequence.

transferred, generating another set of source block plus a certain amount of redundant

packets. The number of redundant packets generated to achieve the best performance

depends on various conditions, such as the Packet Loss Rate (PLR) of the physical

82

channel, the desired degree of loss protection, number of intermediate hops all the way to

destination and the level of Quality of Service (QoS).

In this simulation, the default mode of packet transfer is application layer FEC based

on UDP, there is no need of acknowledgements (ACKs), and the sender just keeps

sending packets whenever it is sure that the channel is free. This saves a great deal of

media resources, which is extremely important for improving the efficiency of network,

especially for wireless network with a very limited channel resource shared by many

wireless users. The sender counts the number of packets it transmits, and stops

transmitting when a predetermined number of packets for the block have been transmitted.

However, these packets are probably not all delivered, as some of them might be lost due

to the lossy channels. Suppose that each packet is error detected, for example, by CRC,

whose tiny probability of malfunction is ignored. After all of these packets either go

through the entire path and get to the destination or get lost en route, in a few cases, no

data packet is lost, so the program will skip over the decoding process and continue on

next block; however, in most of the cases, some data packets will be lost. Therefore, the

receiver initiates the Raptor decoding process. If m < k, decoding will fail; otherwise it

succeeds with a certain probability, depending on the value of m - k. In case of decoding

failure, we are able to get only a part of the data packets, the program will check the

sequence gap between the original data packets, record them, and transmit only the lost

data packets with ARQ.

For the sake of simulation simplicity and to avoid extensive encoding and decoding

costs for every end user, our system level simulator employs this equation-based (Eq. 3.1)

model for Raptor code as an alternative, which significantly accelerates the simulations

83

and saves a lot of simulation time and resources, without losing generality or accuracy of

simulation. More particularly, to find out that if the raptor decoder would decode a given

amount m of received packets, a uniformly distributed random variable is sampled and

compared with Pf in Eq. 3.1. If it is less than Pf, then raptor decoding fails, otherwise it

succeeds. Detailed description of encoding and decoding processes of raptor codes has

been presented in previous sections.

Each packet has a sequence number, the receiver records the sequence numbers of all

packets that have been lost or received in error. If the block decoding succeeds, the

process continues working on the next block; in case of failure, the system switches to

ARQ transfer mode, in which case, only the lost source packets will be delivered by ARQ,

so together with the already received packets, the receiver will have all the source packets

in this block at the end, no further decoding is needed. Figure 3.12 shows a general

system flowchart of the whole idea described above. Detailed description of simulation

system implementation will be presented in next section.

To be more efficient, some concerns are ignored in this simulation. For ARQ, we

ignore the little transmission time and tiny failure probability of ACKs as a convention;

for Raptor codes, we ignore the processing time of encoding and decoding. As a

convention, we also ignore the signal propagation delay in all cases. In addition, queuing

delay is ignored, i.e. the nodes have infinite cache to store packets. However, we instead

focus on the most important problem in static wireless ad hoc networks - channel

contention, so we simulate the channel access control with respect of both hidden node

problem and exposed node problem; also we employ the shortest path algorithm and

implement routing scheme for the network.

84

3.3.2 Detailed system implementations

Network Initializations

Network topology with coverage of 40 meters

60

I .

**<

-

**tf{14 11 4 } - -
•19 1 '"

*20<3 5)

i i

• 13

12 19)

. ^ 1 6)

• - • 6
- • 3 > ; • "

I
1

" i f

•8(14 13)

i i

•4111)

,

-<W.

,,

', ••$(18-6)

' -

410
•16 (10)

i I I

• 4

• 6

•-:

•18

*17 (18)

• 15

i i i

40 50 B0

X (meters)
90

Figure 3.13: An example, a network of 20 nodes with a node coverage of 40 meters. The

stars denote the source nodes, with the intermediate stops in the bracket, and the dots

denote the destination nodes. A line between two nodes means that they are in the

coverage of each other. The same to all of the following figures.

As in figure 3.13, to create a network at the beginning, first a certain number of nodes is

chosen, let us say, 2*U, so there are U source-and-destination pairs. Suppose these nodes

are located in a certain range of area, say a 100*100 m2 area, and each has a certain

coverage radius (the value may vary from 30 to 70 meters), generate a random position

for all of these 2 *U nodes within this area, record the exact locations for each user. Then

85

randomly match them up to U pairs of source-and-destination nodes. According to the

predetermined radius, connect all the nodes in its coverage for each user, record these

relations, and make sure every source-to-destination path is connected by either single

hop or multiple hops. In case that the path cannot be realized, the simulation program will

modify the network topology. By using the location and connection records, the program

calculates the shortest path for every pair of source-to-destination nodes according to the

Dijkstra's algorithm, which is usually the basis of Link State (LS) routing protocols, with

Open Shortest Path first (OSPF) and Intermediate System to Intermediate System (IS-IS)

being the most basic ones. A basic principle of Dijkstra's algorithm is given in the

appendix.

Channel access method

This subsystem builds a virtual scheme to simulate Request to send / Clear to send

mechanism (IEEE 802.11 RTS/CTS), which is used by the 802.11 wireless networking

protocols to reduce frame collisions introduced by the hidden terminal problem. Both

hidden terminal problem and exposed terminal problem are taken into account in this

virtual scheme. Furthermore, the fairness of channel access among wireless users is also

considered and well implemented.

In wireless networks, the hidden node problem, see figure 3.14, arises when a node A

is not in the signal coverage of node B, yet it is in the coverage of the third node C which

is communicating with the B. This leads to difficulties in media access control. To

conquer this trouble, handshaking is implemented in conjunction with the Carrier sense

86

multiple access with collision avoidance scheme (CSMA/CA). The same trouble exists in

a Mobile Ad-hoc Network (MANET).

Hidden Node Problem
Range of transmission/reception
of node A

Rr **
: , / » _ttransmiasion / .

\ -^^F *$s^r *^p? 1
Node A / « N NodeC /

' * s ""* -* ̂ — •**
• Node A is not aware that node B is currently busy

receiving from node C, and therefore may start its
own transmission, causing a collision

Medium Aoa*n In W L A N I

Figure 3.14: Hidden node problem

Nevertheless, the exposed node problem, see figure 3.15, occurs when a node is

prevented from sending packets to other nodes due to an adjacent transmitter. Both of

these two situations may cause problems, the first one could result in conflicts and the

latter can lead to an inefficient utilization of wireless channel.

Exposed Node Problem

/ \ ^ . Sransmissio\ ^ ^ ^ \ •

\ Node D \ f «° ' ' e^ /Node B

V ^ ***-. '

Node C

Node B wants to transmit to node C but mistakenly
thinks that this will interfere with A's transmission to
D, so B refrains from transmitting (loss in efficiency)

Medium Acctn In •A-LANi

Figure 3.15: Exposed node problem

87

During the simulation, the duration of each system iteration is one packet

transmission time, which can be obtained by dividing packet size with channel capacity.

The counter of iteration is updated at the beginning of every system iteration, and then

followed by the reset of node status indicators. There are three node status indicators in

the simulation system, they are transfer, receive and listen, respectively. A true value of

transfer means this node is transmitting packets to another node; receive indicates this

node is receiving packets from another node; listen means that in the range of this node,

there is another node in the status of 'transfer'. It should be noticed that, a node in the

status of 'listen' is not necessarily 'receive'; however, if a node is 'receive', it must be

'listen' as well.

Iteration update; Status reset;
Generate random access order

Buffer checking unit
Fig.3.17

Mark itself 'transferring' ; mark all users in
coverage 'listening' ; mark next hop 'receiving'

-ARQ- -Raptor-

ARQ transmission
Fig.3.18

Raptor transmission
Fig.3.19

Block processing unit
Fig.3.20

Figure 3.16: Channel access method

To realize channel access control, in this channel access method, we create a virtual

mechanism as an effective RTS/CTS scheme. To achieve the fairness of channel access,

88

at the beginning of each system iteration, a uniformly distributed random access order of

these nodes is generated, and according to this order, all the nodes will have a chance to

access the channel and will be asked if they have the intention to transfer data and then

provide related information. If this user is in the process of receiving packets from

another user, i.e. the value of 'receive* is true, then it will not sense the channel and

certainly will not compete for channel access. Otherwise, it competes for a chance to use

the channel to transmit packets. Figure 3.16 is a rough demonstration of channel access

processes.

Buffer checking unit

Before we continue on the channel access process, let us take a moment to understand the

buffer checking unit, figure 3.17 roughly shows the buffer checking process. The major

task of this unit is to get a list (let us call it 'checking list') of available data stored in the

buffer of the node. To achieve that, it checks the data buffers from every source and

makes sure the following:

1. This path must have data to transfer, i.e. its buffer is not empty. In particular, the

corresponding counter is not zero.

2. The next hop of the data of this path must not be listening to any other node, so there

would be no conflicts. In particular, the 'listen' of next hop is zero. This overcomes

the hidden node problem in an effective way, although does not actually deal with it.

3. Of course, the next hop must not be transferring data. In particular, the 'transfer' of

next hop is zero.

89

4. Any node in this node's coverage is not receiving from any other nodes. In particular,

the 'receive' of any node in this node's coverage is zero. This overcomes the exposed

node problem in an effective way, because this node does not care if its neighbouring

nodes are 'transfer', but only cares if they are 'receive', as long as they are not

'receive', there would be no interference.

Add all paths that need
to send ACK to the list

Prepare to transmit: Mark
itself 'transferring'

(ToFig.3.16)

Figure 3.17: Buffer checking unit

After checking the above conditions, in Raptor mode, the information will be directly

added to the 'checking list'; while in ARQ mode, it will be added only if this path does

not need to send or wait an ACK, otherwise the information will be disregarded. After

checking data buffer from all sources, the program then checks all the sources if they

need to send an ACK, records this information and adds it to the checking list. The

90

format of the entry is basically like [Source-Destination ID, Next hop ID]. In case that the

check list is empty, then the system directly goes to the next node in the above mentioned

random order. Other than that, the real transmit procedure will start. First, randomly

choose one entry from the checking list and get the Path ID (Source-Destination ID) and

the next hop ID. Then followed by a serial of status updates: marking itself 'transfer';

marking all the neighbouring nodes 'listen'; marking next hop 'receive'. Then by

checking the value of ARQ indicator 'arq\ goes to 'ARQ transmission'' or 'Raptor

transmission', which are explained as follows.

ARQ transmission

Figure 3.18 shows the rough procedures of ARQ transmission, the fundamental

mechanism behind is based on the traditional Stop-and-Wait scheme. When it comes to

ACK succeeds;
Sender: send_ack=0;
Receiver: wait ack=0

Block processing unit
Fig. 3.20

Sender: buffer - - 1 ;
Receiver: buffer ++1

Sender: send_ack=1;
Receiver: wait ack=1

No

Figure 3.18: ARQ transmission

ARQ transmission, it first needs to know if it needs to acknowledge the last transmission

by checking a variable send_ack indicating the status of ACK. If it needs to ACK, we

assume the failure probability of all ACK transmissions are zero all the time, so the ACK

91

always succeeds. Then it turns off the ACK status indicator of both sender end and

receiver end, and goes to the block processing unit. If it does not need to ACK, it directly

transmits the packet, if success, it updates the buffers of both sender and receiver. To

determine if a transmission succeeds or not, a uniform random variable is sampled and

compared with the PLR, if it is greater than PLR, then the transmission succeeds,

otherwise it fails. No matter whether transmission succeeds or fails at the end, the ACK

status indicator of both sender and receiver will always be set to 'on' to remind the

receiver that it has to ACK or NAK first, and the sender needs to wait for the results.

Then it goes to the block processing unit in the following.

Raptor transmission

Block processing unit
Fig.3.20

Figure 3.19: Raptor transmission

Raptor transmission is quite simple; figure 3.19 shows its rough procedures. If the

transmission succeeds, it simply updates the receiver's buffer. Because it is Raptor

transmission, there is no retransmission, if you fail to transmit a packet, you lose it, so it

92

then updates the sender's buffer no matter it is a fail or success. After that, it goes to the

block processing unit in the following.

Block processing unit

Figure 3.20: Block processing unit

This unit is mainly for virtual carrier sensing, which is divided into two parts,

respectively concerning ARQ and Raptor coding. For the ARQ part, if the receiver has

got all the lost original data packets, this block is finished; it then updates the block

counter and turns off the ARQ indicator to go back to default Raptor transmission mode.

It also resets the buffers of both source and destination end, so as to get ready for the next

block transmission.

93

The Raptor part is more complicated. Given that all the predetermined amount of

packets has already been transmitted, the system applies the equation-based model (Eq.

3.1) to get a failure probability for the decoding. If, fortunately, there is no original data

packets loss, then the program will skip over the decoding process, and the block directly

succeeds, no need to decode. That is efficient and advisable since decoding might end up

with a failure. However, generally there are some source packet losses, so here comes the

decoding. This is rather simple, the program just calls a uniform random number and

compares it with the probability for this decoding to decide whether it succeeds or fails.

When Raptor decoding succeeds, it updates the block counter and clears the buffer; when

Raptor decoding fails, it triggers the ARQ transmission mode, records all the lost data

packets. After the above processes, if all the file blocks have been processed for the

subject source-to-destination path, then the system records the total file transmission time

on this source-to-destination path. Figure 3.20 shows the rough processes of the block

processing unit.

3.3.3 Results and contributions

This section shows a summary of the major contributions and simulation results for

various sizes of networks.

The parameters and statistics

The file size typical value is 512 Kbytes, which is 512*1024*8 bits. Packet size is 512

bytes, so there are 1024 packets in total. If we consider the whole file as a source block,

the block size is then 1024 packets.

94

Input

Input parameters include the size of the network, Packet Loss Rate (PLR) and

redundancy R. The sizes of networks we simulate are 4, 8 and 12nodes. The PLR we used

in the simulation has the typical values of 10"4, 10"3, 10"2and 10"1.

The design of the redundancy is a tricky problem because the required redundancy

crucially depends on the number of hops throughout the source-to-destination path.

Suppose the block size is B, the minimum required redundancy ratio is Rm, and the packet

loss rate is P. It is obvious that the expected number of packets received at the destination

should at least equal to source block size B to make the Raptor decoding work. The

expected number of packets received by the destination node is Bx(\ + Rm)x(l-P)n,

where n is the number of intermediate hops. In order to make the raptor code works, the

minimum redundancy required is when the equation Bx(\ +Rm)x(l-P)n =B holds,

which gives us:

R = 1 Equation 3.2
m Q_py

Corresponding to this equation, table 3.1 gives the approximate values of the minimum

required redundancy for different combinations of PLR and number of hops.

Now, let us investigate a little bit about the actual redundancy R, for a certain path

with its corresponding Rm, if R < Rm, Raptor code will have no contribution to the

performance at all, in fact, it even degrades the performance because of useless

redundancy; on the other hand, if R > Rm, then Raptor code starts working, but when it is

too high, it becomes meaningless because it has been already enough to make sure the

95

decoding will succeed. From the beginning of this section, according to Eq. 3.1, we can

get that when Raptor decoder receives 16 extra packets on top of the already existing

minimum required redundancy, the decoding will succeed with a very high probability of

Rm&R Ihop 2 hops 3 hops 4 hops R (For all) It (For all) R (For all)

/V,=15% Pc,-I5% /V,=I5% /V,=15% ^ 9 1 . 2 1 % />c,=99.09% /\-j=99.99%

/>=io~4 ~ 0 ~ 0 ~ 0 ~ 0 ^i.4-0.39% tf,„+0.78% 7?,,,+1.56%

p=id3 0.1% 0.2% 0.3% 0.4% tfm+0.39% Rm+0.78% Rm+l.56%

p=io2 1.0% 2.0% 3.1% 4.1% £.+0.39% Rm+0JS% Rm+l.56%

p=iol 11.1% 23.5% 37.2% 52.4% tfm+0.39% Rm+0J8% Rm+\.56%

Table 3.1: The minimum required redundancy Rm and actual redundancy R for different

situations. Pc\s the success probability of Raptor decoding, and the column of actual

redundancy R is for all lengths of paths, it is the corresponding Rm plus a certain value.

Pc= 99.99%. So we have BxR-BxRm=l6, giving us R = Rm + —, for B = 1024,
B

R&Rm +1.56%, one can see the difference is very tiny related to the value of Rm

especially when PLR is high, as in the Table 3.1 above.

Output

The efficiency of the 2th source-to-destination path can be derived from this equation:

r]t = —, where T denotes the total transmission time (in packet transfer time unit) used to

successfully deliver all the packets in the block, which includes all kinds of factors such

as channel access, packet loss, redundancy, decoding failure, retransmission and waiting

for ACK. Thus, the average network efficiency can be calculated as the sum of all the

single source-to-destination path efficiencies divided by the total number of paths, which

96

V

_ 2>,

yields us rj - ——, where £/denotes the total number of source-destination paths in this

network.

Contribution 1: The recent FEC-based Raptor coding technique combined with

ARQ-based selective retransmission method constructs a new hybrid ARQ method,

which outperforms purely ARQ-based method.

With the employment of the recent FEC technique, i.e. Raptor code, it is possible to offer

potentially unlimited redundancy, that is, it can offer any desired amount of redundant

packets. Without having to acknowledge for every transmission, hybrid ARQ can avoid

the extremely strong channel contention among wireless users, so it brings great

improvement. In addition, with the selective retransmission, the sender only needs to

retransmit some of the lost packets, the lost data packets, without wasting time on the lost

repair packets. This effect becomes more noticeable in larger networks, because the

channel contention becomes even stronger and the advantage of no need to acknowledge

is greater, see Figure 3.22 - 3.25, 3.27 - 3.30 and 3.32 - 3.35.

Here are some selected results from lots of simulations to show the effects mentioned

above. Figure 3.21 shows the network topology of a small 4-user network, with the node

coverage radius of 50 meters. It has two source-to-destination paths: 2 - 4 and 3 - 4 - 1 .

Figure 3.22 - 3.25 show the performance comparisons between this hybrid ARQ and

pure ARQ under different channel conditions, it can be seen that the improvement is huge,

almost twice as the pure ARQ.

97

Network topology with coverage of 50 meters

• 1

C"::::::-'-#4

: : ; /

! /
; : : / •'

i i i i

;«w

, • - - ' •

: y \ ;

y-- \ i

i !
; :

| : i
: i :
; ; :

: |

: :

i

i i

1"'

20 30 to
X (meters)

so

Figure 3.21: A small 4-user network

It should be noted that for the Raptor coding system used in hybrid ARQ, the

redundancy has to reach a certain minimum required redundancy value Rm as listed in

Table 3.1, so as to make the decoding work. Before reaching this value, the redundancy

does not make any contributions to the performance. On the contrary, it actually

decreases the performance because of the extra transmissions and waiting for channel

access. This can be shown in many figures like Figure 3.22 - 3.25, 3.27 - 3.30 and 3.32 -

3.35. It is more obvious when PLR is high, such as in Figure 3.25, 3.30 and 3.35, one can

see that all the curves go down at first, start to go up at a certain point and then reach a

maximum at some point.

98

36 r

m
CD 26

T3
C
<D
6 24

T3
C

Efficiency comparison @ 4 users Network & PLR=1E-4

-Average over 1-hop paths(Pure)

•Average over2-hop paths(Pure)

-Average over all paths(Pure)

-Average over 1-hop paths(Hybrid)

-Average over2-hop pa1hs(Hybrid)

Average over all paths(Hybrid)

0.8 1

Redundancy(%)

Figure 3.22: Efficiency comparison between hybrid ARQ and pure ARQ

K

1 26
T3
C
0)
6 24
-6
c

UJ

Efficiency comparison @ 4 users Network & PLR=1E-3

Average over 1-hop paths(Pure)

Average over2-hop paths(Pure)

Average over all paths(Pure)

H i—Average over 1-hop paths(Hytrrid)

~*—Average over 2-hop pathsfHybrid)

- » • -Average over all paths(Hybrid)

22 K

0.6 0.8 1

Redundancy(%)
1.2 1.4

Figure 3.23: Efficiency comparison between hybrid ARQ and pure ARQ

99

In the hybrid ARQ, when the redundancy becomes very high, the success probability

of Raptor decoding reaches a very high value which is very close to 100%, and keeps

approaching it unlimitedly. At certain point, it will be high enough that the extra

redundancy becomes useless, so the performance will gradually decrease. This can be

shown in many figures like Figure 3.22 - 3.25, 3.27 - 3.30 and 3.32 - 3.35.

s?

IE
© 26

T3
c
<D
6 24
•6
c w _

20

Efficiency comparison @ 4 users Network & PLR=1E-2

Average over 1-hop paths(Pure)

Average over 2-hop paths(Pure)

Average over all paths(Pure)

—M—Average over 1-hop paths(Hybrrd)

—*~~-Average over2-hop paths(Hybrid)

*• Average over all paths(Hybrid)

0.5 2 2.5

Redundancy(%)
3.5

Figure 3.24: Efficiency comparison between hybrid ARQ and pure ARQ

100

Efficiency comparison @ 4 users Network & PLR=1E-1

Average over 1-hop paths(Pura)

- • • Average over 2-hop paths[Pure)

Average over all paths(Pure)

—»—Average over 1-hop paths(Hybrid)

— * ~ ~ Average over 2-hop paths(Hybrid)

* • Average over all paths(Hybrid)

13 14 16 16

Redundancy(%)
25 26 26 30

Figure 3.25: Efficiency comparison between hybrid ARQ and pure ARQ

Network topology with coverage of 50 meters

9 0 - • •

% 50 •

• (• 1 2) L ,

_ j j ~~'-

' ^W-tS'TJ';:.'"

*6(2 3)
i

\ ' | ;«?

•5

\

•2

i i i

• 3

•4(5)

X (meters)

Figure 3.26: An 8-user network

101

Figure 3.21 shows the network topology of an 8-user network, with the same node

coverage radius of 50 meters. It has four source-to-destination paths: 8 - 1 - 2 , 1 - 5 - 7 ,

6 - 2 - 3 and 4 - 5 . Figure 3.27 - 3.30 show the performance comparisons between this

hybrid ARQ and pure ARQ under different channel conditions, it can be seen that the

improvement is still very big, although not as huge as the 4-user network. Also, it should

be noticed that the performance decreases significantly compared with 4-user network,

this makes sense because in larger network, the channel contention is stronger, so it

means fewer chances of channel access and thus more waiting time.

IE
0)

• o
<= 16 0)

6
4 - .

•6
C 14

LU

Efficiency comparison @ 8 users Network & PLR=1E-4

•Average over 1-hop paths£Pure)

• Average over 2-hop paths(Pure)

-Average over all palhs(Pure)

-Average over 1-hop paths(Hybrid)

"Average over 2-hop paths(Hybrid)

- Average over all paths(Hybrid)

0.2 0.4 .0.8 1

Redundancy(%)
1.2 1.6

Figure 3.27: Efficiency comparison between hybrid ARQ and pure ARQ

102

26 r

Efficiency comparison @ 8 users Network & PLR=1 E-3

£ JO*::

o
<= *
• 8 «
o>
-o
£ 16

•D
C 14

LU

* -Average over 1-hop paths(Pure)

Average over 2-hop paths£Pure)

Average over all paths(Pwe)

— • — A v e r a g e over 1-hop paths(Hybrid)

" ' * Average over 2-hop paths(Hybrid)

» Average over all paths(Hybrid)

0.4 0.8 1

Redundancy(%)
1.4

Figure 3.28: Efficiency comparison between hybrid ARQ and pure ARQ

I
I

18*=

Efficiency comparison @ 8 users Network & PLR=1 E-2

Average over 1-hop paths(Pure)

Average over 2-hop paths(Pure)

Average over all paths(Pure)

- • — A v e r a g e over 1-hop paths(Hybrid)

" • — A v e r a g e over 2-hop paths(Hybrid)

-fe- -Average over all paths(Hybrid)

0.5 1.5 2 2.6

Redundancy (%)
3.5 4.5

Figure 3.29: Efficiency comparison between hybrid ARQ and pure ARQ

103

Another key point the figures are showing is that, the minimum redundancy required

for Raptor decoding to work varies significantly from path to path, that is, it greatly

depends on the length of paths (number of hops throughout the path), and the difference

can be considerably huge, as in Table 3.1. In order to show this difference, in many

figures, not only the average network performance is plotted, but also the average of each

length of paths. This can be explicitly shown in figures with high PLR, such as Figure

3.25, 3.30 and 3.35.

Efficiency comparison @ 8 users Network & PLR=1E-1

Average over 1-riop paths(Pure)

Average over 2-hop paths(Pure)

Average over all paths(Pure)

Average over 1-hop paths(Hybrid)

Average over 2-hop paths(Hybrid)

Average over all palhs(Hybrid)

13 14 16 18

Redundancy(%)
26 26 28 30

Figure 3.30: Efficiency comparison between hybrid ARQ and pure ARQ

Let us take 3.30 as an example, in Figure 3.30, the curve with square notation on the

top represents the average over all single paths. First, at 6% redundancy, it goes down,

because it has not reached its minimum required redundancy Rm, which should be around

11.1% according to Table 3.1. Then at 13% redundancy, it goes up, gets to the maximum

104

and gradually goes down afterwards. The performance of paths with 2 hops is represented

by the curve with circle notation on the bottom. Similarly, it first goes down and keeps

going down until it reaches its Rm, which again according to Table 3.1 is about 23.5%. It

experiences a great raise at the point 25% and gets to a maximum at 26% redundancy and

gradually goes down afterwards. The dashed curve with star notation in the middle is the

average over all paths, so it reflects the effect of combination: it first goes down, and goes

up a little bit after 13% redundancy, that makes sense because all the paths with single

hop start to benefit from Raptor decoding; then there is a big raise after 25% redundancy

and a maximum at 26%, then gradually goes down afterwards.

Network topology with coverage of 40 meters

i2 50

•ft

, . •2

*K'(7 iil 2)

l-'WS'b!!)

•'•&"

;*6C9 1)

S 0 W

#12

#4(5 12 10)

* 3 { 4 8j 11}

•10

20 30 60 90 100

X (meters)

Figure 3.31: A 12-user network

Figure 3.31 shows the network topology of a 12-user network, with the node

coverage radius of 40 meters. It has six source-to-destination paths: 6 - 7 - 1 1 - 2 , 7 - 1 1

105

- 12, 4 - 5 - 12 - 10, 3 - 4 - 9 - 11, 5 - 9 - 1 and 8 - 9. Figure 3.32 - 3.35 show the

performance comparisons between this hybrid ARQ and pure ARQ under different

channel conditions, still, that the improvement is great. It can be noticed that the

performance continues to decreases further compared with 8-user network, caused by the

same reason explained before.

Efficiency @ 12 users Network & PLR-1E-4

1 4 - . .

© 12 •
o
Q)

TJ
C
<a
6
•6
c

LU

Average over 1-hop paths(Pure)

Average over 2-hop paths(Pure)
Average over 3-hop paths(Pure)

Average over all paths(Pure)

— • — A v e r a g e over 1-hop paths(Hybrid)

"•—•Average over 2-hop paths(Hybrid)

—#—Average over 3-hop paths(Hybrid)

•-'5* Average overall paths (Hybrid)

" - T " * -f- " — y ~ *~ __^ y—zi=4

• ^ " ' " * ~ » ~ ~ , , . ^ . „ , ^ ^ _ ^ ^ __ ^

1|:

f ! 1 I ! 1 1 [

0.4 1.2 1.4

Redundancy(%)
2.2 2.4

Figure 3.32: Efficiency comparison between hybrid ARQ and pure ARQ

106

Efficiency @ 12 users Network & PLR=1E-3

T3
c
0)
O
i

T3
C

LU

10k

— -Average over 1-hop paths(Pure)

Average over 2 hop paths(Pure)

Average over 3-hop paths(Pure)

Average over all paths(Pure)

- *—Average over 1-hop paths(Hybnd)

- * - Average over 2-hop paths(Hybrid)

- • • --Average over 3-hop paths(Hybnd)

* Average over all paths(Hybrtd)

._J_ -*-•

0.8 1.2 1.B 2

Redundancy(%)
2.4

Figure 3.33: Efficiency comparison between hybrid ARQ and pure ARQ

Efficiency @ 12 users Network & PLR=1 E-2

2 2.5 3

Redundancy(%)

Figure 3.34: Efficiency comparison between hybrid ARQ and pure ARQ

107

Efficiency @ 12 users Network & PLR=1E-1

20 25

Redundancy(%)
40 42 44 48

Figure 3.35: Efficiency comparison between hybrid ARQ and pure ARQ

Figure 3.36 - 3.38 are plotted in order to show the comparison from another angle. It

can be shown that the performance goes down when the PLR becomes high, which

makes sense, as the channel quality is getting worse. It should be noted that, for the

curves of hybrid ARQ, each value represents the maximum value of a certain case and

the dashed curve with star notation is not the average of the other two curves, it is the

maximum of average over all paths. Simply speaking, it is the maximum of averages, not

the average of maximums.

108

Efficiency comparison @ 4-user Network

Average over 1-hop paths(Pure)

Average over 2-hop paths(Pure)

Average over all paths(Pure)

Max of average over 1-hop paths(Hybrid)

Max of average over 2-hop paths(Hybrid)

* ~ Max of average over all paths(Hybrid)

-+--_

Packet Loss Rate

Figure 3.36: Maximum efficiency comparison under different PLRs

Efficiency comparison @ 8-user Network
! ! . ' ! . ! ! ! ! ! " ! ! ! ! I

*

IE

1

-Average over 1-hop paths(Pure)

• Average over 2-hop palhs(Pure)

Average over all paths(Pure)

- Max of average over 1-hop paths(Hybrid)

"Max of average over 2-hop pathsfJHybrid)

•~ Max of average over all paths(Hybrid)

Packet Loss Rate

Figure 3.37: Maximum efficiency comparison under different PLRs

109

18

16

14 g
>•
c .„ a> 12
o

E
a>

• o

0) 10

o
1

c
UJ

8

6

4
1C

_::..

_- — = = = = = =

•4

Efficiency comparison @ 12-

; i-iit
: : : • :
i : i : !
\ ! ; i ;-

: : : :
_

— ss

1

. j \ . . .

, - • • • ; • • • • ; • , • • ! • • ' • • . • # • . • , • •

user Network
| i I ! ! . i I |

— w- — Average over 1 -hop p«trw(Pure)
" • • — Average over 2-hop p*a(Pure)
---*- - Average over 3-hop p*Bis(Pure)
-"'••*•' - Average over all paths(Pure)
— • — Max of average over 1-hop paths(Hybrid)
-~Hfr~- Max of average over 2-hop paths(Hybrid)

•— Max o(average over 3-hop paths(Hybrid)
* Max of average over tM prths(Hybrid)

i
f

i
10'5

— _ ,

—

: ; ' : : : : '

'• i : : : i :

.. I , ;. ; :....;...;... :.7^7a

1- - . - - , _ !"-<-; 5?
" ;™ ~ ~ ~i — -1'

1(•! 10

Packet Loss Rate

Figure 3.38: Maximum efficiency comparison under different PLRs

Contribution 2: Adaptive redundancy design helps to achieve the best average

network performance and to improve the redundancy efficiency.

The adaptive redundancy allows us to dynamically assign each path a certain amount of

redundancy that is best suited for this path. As shown in the above Table 3.1, the

redundancy required to achieve the best performance varies significantly with the length

of the path, i.e. the number of hops throughout the source-to-destination path.

Consequently, a uniform redundancy is not suitable for all paths. Especially in the case of

high PLR, when it is good for one path, it then either dose not reach the minimum

required redundancy for other paths, or it is too high for other paths, becoming useless

extra redundancy, which also degrades the performance. With adaptive redundancy, it

would be possible for every path to reach its own maximum performance, because every

no

one of them is using the best suited redundancy. Therefore, it provides the best average

network performance. This effect is more noticeable in high PLR, and fades away when

PLR becomes low, see Figure 3.42.

Efficiency @ 4 users Network & PLR=1E-1

11 I l i I , T , I i l I
0 6 13 14 16 18 25 26 28 30

Redundancy(%)

Figure 3.39: Efficiency comparison between adaptive and uniform redundancy

Figure 3.39-3.42 show the performance comparisons between adaptive and uniform

redundancy, one can see noticeable improvements in these figures. For example, in

Figure 3.40, the dotted curve with diamond notation is the performance with adaptive

redundancy design; it is obvious that all the sampled points from this curve are above the

dashed curve with star notation, representing the average performance with uniform

redundancy, namely they have better performance. In addition, the performance with

adaptive redundancy not only has a higher maximum, but also reaches its maximum with

less average redundancy.

i n

Efficiency @ 8 users Network & PLR=1 E-1

13 14 16 18

Redundancy(%)

Figure 3.40: Efficiency comparison between adaptive and uniform redundancy

Efficiency @ 12 users Network & PLR=1 E-1

20 25
Redundancy (%)

40 42 44 46

Figure 3.41: Efficiency comparison between adaptive and uniform redundancy

112

Efficiency @ 4 users Network & PLR=1E-2

36

35.5

35

S^.34 5

o

I 34-
IE
<v
§33 .5

O
T>
C 33

LU

32.5'

32

31.5 -—

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Redundancy(%)

Figure 3.42: Efficiency comparison between adaptive and uniform redundancy

Figure 3.42 shows the comparison at a lower PLR, as mentioned above, the effect of

improvement decreases. It can be seen that only a few points are above the average

performance without adaptive redundancy. The reason is that at low PLR, the difference

among the values of minimum required redundancy for different lengths of path is not big

enough. In other words, the gaps are small so that there is no much waste of redundancy.

Finally, a little trick is that the selective decoding at low redundancy and low packet

loss rate saves Raptor decoding time and improves the efficiency. Thanks to systematic

Raptor coding technique, it is possible to receive original source packets as output of

encoder. Hence, in the case of low PLR, for a certain block size, it is very likely to

successfully receive all the original source packets in a block, while still losing some

repair packets. In this case, if we still perform the regular decoding process, then there

113

Average over 1-hop paths
Average over 2-hop paths
Average over all paths
Average over all paths(Adaptive)

would be a certain failure probability, so this technique skips over the decoding process

and continue on the next block, without regard to other repair packets. This effect can

only be found obvious in low redundancy and low PLR environment, and it fades away

with the redundancy and PLR increases. In particular, to make sure all the original

packets will succeed, a simple sense is that as long as BxP <l, namely, P is less than—,

B

this technique will make a little improvement on performance, otherwise it makes no

difference. Therefore, in our case, for 5=1024 and P=10"4, we have S x ? « 0 , l < l , so

the technique is suitable for this case. It should be found effective in practice, in terms of

saving the decoding time, which is not considered in this simulation, so it is not proved in

this thesis.

114

Chapter 4

Comparison and Conclusion

4.1 Comparison

It is difficult to directly compare our results with others, because many factors are

considered in our simulation. There are mainly three reasons for this:

First, research from most papers does not include the impact of channel contention,

which makes a strong impact on the performance. Since in a wireless network, wireless

users transmit data in a manner of broadcast due to the nature of radio signal, so they

share a common media resource, and there is also channel interference. As a result, they

cannot access the channel whenever they want; instead they have to access the channel

according to a certain channel access control scheme. Therefore channel contention

significantly degrades the performance of all the users, and becomes even worse when

the number of wireless users increases in the network.

Second, research results from most papers usually only study the performance of

single hop. In our simulation, we study the end-to-end performance in a network, that is

to say, there are many paths with multiple hops. This simply increases the total time

needed to deliver a certain amount of data, thus decreases the performance of an

end-to-end path. Additionally, as explained before, every node within the same path also

115

suffers from the channel contention. This further degrades the performance of each path.

Third, most of previous research generally evaluates network performance in terms of

throughput, which is usually defined as the gross bit rate transferred physically, that

means every physically successfully delivered bit is taken into account, including

protocol overhead, retransmitted data packets etc. Throughput is typically measured at a

reference point below the network layer and above the physical layer. However, in our

case, performance is measured in terms of goodput, which is application layer level

throughput, i.e. from end-user's point of view, the number of useful bits per unit of time

forwarded by the network from a source to a destination. In other words, goodput is the

net achieved average bit rate delivered to application layer, excluding all lower protocols

overheads, data retransmissions. Therefore, goodput is usually lower than throughput.

TCP goodput vs. wiratoss link error rate
on a 2 Mb/s vrirctess Hnk

1600*

Jr 1200

3 800

a
o 400
O

- e - Proactive
-B-Reactive

0.001 0,01 0.1 1
Wireless link error rate (% packet loss)

Figure 4.1: Performance of a typical proactive scheme (TCP-Jersey) and a typical

reactive scheme (TCP-Reno) in the wireless environment [50]

However, it is still worth to compare our simulation results with others' in a certain

way. Although it is hard to find a result based on the exact same situation as ours, we can

still find some results with similar conditions to compare with and see the improvement

116

in a certain way. The efficiency rj in our results is like the normalized goodput, so

multiply it with a certain channel capacity would give us a certain goodput which we can

compare with others, below are a few examples.

Figure 4.1 is a result from [50], it shows the TCP goodput under different channel

qualities on a 2Mbps wireless channel. In Figure 4.1, for PLR=1E-1, a typical proactive

scheme TCP - Jersey gets a goodput about 500 Kbps, and a typical reactive scheme TCP

- Reno gets a goodput less than 100 Kbps. In our case, from Figure 3.25 we can see that

under the same channel quality (PLR=1E-1), we can achieve a goodput more than

2000*30% = 600 Kbps with single hop, and a goodput more than 2000*28% = 560 Kbps

with two hops. Both paths achieve a better performance than either of the two TCP

enhancements, even with the channel contention and multi-hop effects taken into account.

2

w l.o

Q. 1
0)
Z3

o
r**' U.D

0.01 0.1 1 _

Loss rate (% packets)

Figure 4.2: Throughput vs. error rate of the wireless link [20]

Another example is in Figure 4.2 from [20], it is under a wireless channel of 2 Mbps,
117

s*-. Westwood o
Hlenp -x -
' -~R -1-

~-*-S*»—_

and it is measured in terms of throughput. In Figure 4.2, for PLR=lE-2, TCP Reno and

TCP SACK have the similar throughput about 0.25 Mbps, and TCP Westwood has a

throughput of 0.7 Mbps. In our case, from Figure 3.24 we can see that under the same

channel quality (PLR=lE-2), we can achieve a goodput at least 2*35.5% = 0.71 Mbps

with single hop, and a goodput about 2*33% = 0.66 Mbps with two hops. Both paths

achieve a better performance than all of the TCP enhancements except the two-hop

performance is slightly lower than TCP Westwood, even with the channel contention and

multi-hop effects taken into account, and ignoring the difference between goodput and

throughput.

4.2 Conclusion

This thesis first presented a general introduction of wireless LANs and wireless ad hoc

networks, and discussed some developing wireless LAN techniques. We discussed TCP

fundamentals and some basic problems when TCP is used in wireless environments, and

then some proposed improvements focusing on these problems were suggested. We

included a review of FEC, followed by a brief description of digital fountain and raptor

codes, state-of-the-art concepts and the most advanced FEC techniques. Then we

introduce a new HARQ technique for reliable and efficient packets transfer in wireless

environment. In contrast to most HARQ techniques proposed so far, which usually

employ a byte level FEC combined with ARQ, in our system, we mostly use packet level

FEC for the data transfer, in conjunction with ARQ to compensate for the little

118

inefficiency. It is similar to type IIHARQ, except the FEC is applied in a higher layer, i.e.

the application layer. We also introduce the notion of adaptive redundancy networks

which helps to achieve better average network performance and to further improve the

redundancy efficiency. We also use selective decoding at low packet loss rate improves

efficiency, which is useful in practice. Finally, although it is hard to find a result based on

the exact same situation as ours, we still find some results with similar conditions to

compare with and see the improvement in a certain way.

4.3 Future works

In the near future, a more complicated simulation system is expected so that we can

simulate all kinds of conditions more accurately, so more concerns should be taken care

of. In particular, for example, instead of using a simple equation based model, we can

develop a more complex way to better simulate the efficiency of Raptor coding, including

the effects of encoding and decoding processing times. In addition, we may look forward

to develop a better way to balance the trade-off between FEC and ARQ techniques, so

that we can make the most use of both and achieve better performance.

119

References

[I] Http://en.wikipedia.org/wiki/Wi-Fi

[2] ETSI Normalization Committee, BRAN, "HIPERLAN Type 2; Physical (PHY)

Layer," doc. RTS0023003-R2, Feb. 2001.

[3] Http://en.wikipedia.org/wiki/802.11

[4] P. Roshan and J. Leary, "802.11 Wireless LAN Fundamentals" Cisco Press, Dec. 23,

2003,1-58705-077-3

[5] Http://www.dailywireless.org/2007/05/16/new-logo-for-8021 In/

[6] R. Ramanathan and J. Redi, "A brief overview of ad hoc networks: challenges and

direction" IEEE Communications Magazine, 50th Anniversary Commemorative

Issue/May 2002.

[7] K. Weniger and M. Zitterbart, "Mobile ad hoc networks - current approaches and

future directions" IEEE Network, Volume 18, Issue 4, July-Aug. 2004 Page(s):6-ll

[8] I. F. Akyildiz and X. Wang, "A Survey on Wireless Mesh Networks," IEEE Commun.

Mag., vol. 43, no. 9, Sept. 2005, pp. S23-S30.

[9] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless Sensor

Networks: A Survey," Comp. Networks, 2002.

[10] Http://en.wikipedia.org/wiki/Image:WSN.svg

[II] J. Postel. RFC 793: Transmission control protocol, Sept. 1981.

[12] A. L. Garcia and I. Widjaja, 'Communication Networks: Fundamental Concepts and

120

Http://en.wikipedia.org/wiki/Wi-Fi
Http://en.wikipedia.org/wiki/802.11
Http://www.dailywireless.org/2007/05/16/new-logo-for-8021
Http://en.wikipedia.org/wiki/Image:WSN.svg

Key Architectures', 2004, pp. 571.

[13] James F. Kurose and Keith W. Ross, 'Computer Networking: A Top-down Approach

Featuring the Internet', 2nd Edition, 2000, Fig. 3.7-7.

[14] J. Liu and S. Singh, "ATCP: TCP for Mobile Ad Hoc Networks," IEEE JSAC, vol.

19, no. 7, pp. 1300-1315,2001.

[15] H. Balakrishnan, S. Seshan, and R. H. Katz, "Improving Reliable Transport and

Handoff Performance in Cellular Wireless Networks," ACM Wireless Networks, vol.

1, no. 4, Nov. 1995, pp. 469-481.

[16] F. Sun and V. L. Soung C. Liew, "Design of SNACK Mechanism for Wireless TCP

with New Snoop," IEEE WCNC, vol. 5, no. 1, Mar. 2004 pp. 1046-51.

[17] N. Vaidya and M. Mehta, "Delayed Duplicate Acknowledgments: A TCP-Unaware

Approach to Improve Performance of TCP over Wireless," Texas A&M University,

Tech. Report 99 - 003, Feb. 1999.

[18] L. Brakmo and L. Peterson, "TCP Vegas: End to End Congestion Avoidance on a

Global Internet," IEEE JSAC, vol. 13, no. 8, Oct. 1995, pp. 1465-80.

[19] C. P. Fu and S. C. Liew, "TCP Veno: TCP Enhancement for Transmission over

Wireless Access Networks," IEEE JSAC, vol. 21, no. 2, Feb. 2003, pp. 216-28.

[20] C. Casetti et al., "TCP Westwood: Bandwidth Estimation for Enhanced Transport

over Wireless Links," ACM Mobicom, July 2001, pp. 287-97.

[21] METZNER, J. J., and CHANG, D.: 'Efficient selective repeat ARQ strategies for

very noisy and fluctuating channels', IEEE Trans., 1985, COM-33. pp. 409 - 415

121

[22] A. Chockalingam, M. Zorzi and V. Tralli, "Wireless TCP performance with link layer

FEC/ARQ," in Proc. IEEE ICC'99, Vancouver, BC, June 1999, pp. 1212-1216.

[23] C. F. Chiasserini and M. Meo, "A reconfigurable protocol setting to improve TCP

over wireless" IEEE Trans. Veh. Technol., vol. 51, no. 6, pp. 1608-1620, Nov. 2002.

[24] R. G. Mukhtar, S. Hanly, M. Zukerman, and F. Cameron, "A model for the

performance evaluation of packet transmissions using Type-II hybrid ARQ over a

correlated error channel," Wireless Networks, vol. 10, no. 1, pp. 7-16, Jan. 2004.

[25] A. Ghosh et al.,"Broadband wireless access with WiMax/802.16: current

performance benchmarks and future potential," IEEE Commun. Mag., vol. 43, no.

2, pp. 129-136, Feb. 2005.

[26] Forney, G.D. and Costello, D.J., "Channel Coding: The Road to Channel Capacity"

Proceedings of the IEEE Volume 95, Issue 6, June 2007 Page(s):1150 - 1177

[27] W. W. Peterson, Error-Correcting Codes. Cambridge, MA: MIT Press, 1961.

[28] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill, 1968.

[29] S. Lin, An Introduction to Error-Correcting Codes. Englewood Cliffs, NJ:

Prentice-Hall, 1970.

[30] W W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. Cambridge, MA: MIT

Press, 1972.

[31] F. J. Mac Williams and N. J. A. Sloane, The Theory of Error-Correcting Codes. New

York: Elsevier, 1977.

[32] R. E. Blahut, Theory and Practice of Error Correcting Codes. Reading, MA:

122

Addison-Wesley, 1983.

[33] P. Elias, "Coding for noisy channels", IRE Conv. Rec, pt. 4, pp. 37-46, Mar. 1955.

[34] J. M. Wozencraft and B. Reiffen, Sequential Decoding. Cambridge, MA: MIT Press,

1961.

[35] R. M. Fano, "A heuristic discussion of probabilistic decoding", IEEE Trans. Inform.

Theory, vol. IT-9, pp. 64-74, Jan. 1963.

[36] J. A. Heller and I. M. Jacobs, "Viterbi decoding for satellite and space

communication", IEEE Trans. Commun. Tech., vol. COM-19, pp. 835-848, Oct.

1971.

[37] Revival of sequential decoding workshop, Munich Univ. of Technology, J.

Hagenauer, D. Costello, general chairs, Munich, Germany, Jun. 2006.

[38] R. G. Gallager. Low-density parity check codes. PhD thesis, MIT, 1963. Manuscript

published by MIT Press.

[39] I. S. Reed and G. Solomon, "Polynomial codes over certain finite fields", J. SIAM,

vol. 8, pp. 300-304, Jun. 1960.

[40] M. Watson, "Application Layer Forward Error Correction, Summary of Simulation

Results" DVB TM-CBMS1397, August 2005.

[41] J. W. Byers, M. Luby, and W. Mitzenmacher, "A digital fountain approach to

asynchronous reliable multicast," IEEE J. Select. Areas Commun., vol. 20, pp.

1528-1540,2002.

[42] R. Palanki and J. Yedidia, "Rateless codes on noisy channels," in Proc. Int. Symp.

123

Inform. Theory, 2004, p. 37.

[43] J. Castura and Y. Mao, "Rateless coding over fading channels," IEEE Commun. Lett.,

vol. 10, pp. 46-48,2006.

[44] O. Etasami, M. Molkaraie, and A. Shokrollahi, "Raptor codes on symmetric

channels," in Proc. Int. Symp. Inform. Theory, 2004, p. 38.

[45] H. Jenkac and T. Stockhammer, "Asynchronous media streaming over wireless

broadcast channels," in Proc. IEEE Int. Conf. Multimedia Expo., 2005, pp.

1318-1321.

[46] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Efficient erasure

correcting codes. IEEE Transactions on Information Theory, 47(2): 5 69-5 84,

February 2001.

[47] M. Luby. "LT codes" In Proc. of the 43rd Annual IEEE Symposium on Foundations

of Computer Science (FOCS), pp. 271-282, 2002.

[48] A. Shokrollahi. "Raptor codes" IEEE TRANSACTIONS ON INFORMATION

THEORY, VOL. 52, NO. 6, JUNE 2006 2551

[49] M. Luby, T. Gasiba, T. Stockhammer and M. Watson 'Reliable Multimedia

Download Delivery in Cellular Broadcast Networks' IEEE TRANSACTIONS ON

BROADCASTING, VOL. 53, NO. 1, MARCH 2007

[50] Y. Tian, K. Xu and N. Ansari, 'TCP in wireless environments: problems and

solutions', Communications Magazine, IEEE Volume 43, Issue 3, March 2005.

124

Appendix

A.l A basic description of Dijkstra's algorithm

1. Create a distance list, a previous vertex list, a visited list, and a current vertex.

2. All the values in the distance list are set to infinity except the starting vertex which is

set to zero.

3. All values in visited list are set to false.

4. All values in the previous list are set to a special value signifying that they are

undefined, such as null.

5. Current vertex is set as the starting vertex.

6. Mark the current vertex as visited.

7. Update distance and previous lists based on those vertices which can be immediately

reached from the current vertex.

8. Update the current vertex to the unvisited vertex that can be reached by the shortest

path from the starting vertex.

9. Repeat (from step 6) until all nodes are visited.

A.2 Source code selections

A.2.1 Network Initialization and Routing

%% All kinds of parameter set-up.

125

U=8; % Number of source-to-destination pairs < « U=[2 4 6 8 10]

nNodes=2*U; % Number of nodes

area=100; % The area

radius=40; % Coverage radius of a node[10-100]

node.cover=zeros(nNodes,nNodes); % Nodes in coverage

% node.v=rand(nNodes,l)*nNodes; % User speed ranges from 0 to 20 m/s(72 km/h)

% node.theta=rand(nNodes,l)*pi*2; % random movement directions

%% Initial environmental setups.

newplot

hold on

grid on

xlabel('X (meters)Vfontsize', 14)

ylabel('Y (meters)Vfontsize', 14)

title('\bf {Network topology with coverage of 40 meters}','fontsize', 14)

% Generate users randomly distributed in a area* area square

% Randomly match nNodes users up into pairs

node.pos=rand(nNodes,2)*area;

aNode=l :nNodes;

x=nNodes;

tx=zeros(l,U);

126

rx=zeros(l,U);

fori=l:U

n=ceil(rand*x);

tx(i)=aNode(n);

aNode(n)=[];

x=x-l;

n=ceil(rand*x);

rx(i)=aNode(n);

aNode(n)=[];

x=x-l;

end

pairs=[tx;rx];

%% A check-up, and connect the network.

% Check the network connectivity.

iso_counter=zeros(nNodes, 1);

DD=zeros(nNodes,nNodes);

fori=l:nNodes

for j=l:nNodes

ifi—3

DD(i j)=nDist(node.pos(i, 1),node.pos(i,2),...

node.pos(j,l),node.pos(j,2));

127

if DD(iJ) < radius

iso_counter(i)=iso_counter(i)+1;

m=[node.pos(i,:);node.pos(j,:)];

plot(m(:,l),m(:,2),'g','linewidth',l)

node.cover(i,j)=j;

node.cover(j,i)=i;

end

end

end

if ~iso_counter(i)

disp(sprintf('Node %d is isolated',i))

disp(node.pos(i,:))

end

end

if any(iso_counter==0)

disp(sprintf('Number of isolated nodes is %d', sum(iso_counter==0)))

else

dispCNo isolated nodes, A_A')

end

%% Transform the parameters to the inputs of function so as to make it work

nodes=[(l :nNodes)' node.pos];

128

routes=[];

fori=l:nNodes-l

forj=i+l:nNodes

if node.cover(ij)

routes=[routes;[i j]];

end

end

end

Q=size(routes);

nSeg=Q(l); %Number of undirectional segments

% Another way to get nSeg:

%nSeg=(sum(sum(node.cover~=zeros(nNodes,nNodes)))-nNodes)/2;

segments=[(l :nSeg)' routes];

%% Apply dijkstra to get the shortest paths

distances=[pairs;zeros(l ,U)]';

paths={[]};

fori=l:U

[d,p]=dijkstra(nodes,segments,pairs(l,i),pairs(2,i));

distances(i,3)=d;

paths {i,l}=p;

disp(['Path ' num2str(i)': ' num2str(paths{i})])

129

end

for i=l:nNodes

if any(i==tx)

y=fmd(i=:=tx);

text(node.pos(i,l),node.pos(i,2),[' ' num2str(i)'('...

num2str(paths{y}(2:end)),)'],'color,;r,
v..

'fontsize', 12,'fontweight',V)

plot(node.pos(i,l),node.pos(i,2),'p',...

'markersize', 12,'markerfacecolor','r','markeredgecolorVr')

else

text(node.pos(i,l), node.pos(i,2), [' ' num2str(i)],...

'colo^V/fontsiz^U/fontweightVb")

plot(node.pos(i, 1),node.pos(i,2),'o',...

'markersize',8,'markerfacecolor','bVrnarkeredgecolor','b')

end

end

hold off

A.2.2 The Hybrid ARQ System

%% All kinds of parameters set-up.

tic

130

file=.5*8*2A20; % File size is 512 Kbytes

nBits=512*8; % 512 bytes per Packet

nPackets=ceil(file/nBits); % Number of packets

blk_size=1024; % Number of packets per blocks

PLR=.0001; % The Packet Loss Rate

% PLR=logspace(-4,-l,4);

lplr=length(PLR);

% rp=0:.002:.018; % For le-4

rp=0:.001:.009;% For le-4

% rp=[0 .004 .008 .012 .014 .016 .018 .02 .022 .024]; % For le-4

% rp=[0 .004 .008 .012 .016 .02 .024 .028 .032 .036]; % For le-3

% rp=[0 .01 .015 .02 .025 .03 .035 .04 .045 .05]; % For le-2

% rp=[0 .1 .15 .2 .25 .3 .4 .42 .44 .46]; % For le-1

%rp=[0 .06 .13 .14 .16 .18 .25 .26 .28 .3]; % For le-1

REDUN=ceil(blk_size*rp); % Adjust Redundancy!!! < « —

lrd=length(REDUN);

nBlocks=nPackets/blk_size;

bITER_PATH=zeros(lplr,U,lrd);

bBLK_FAIL=zeros(lplr,U,lrd);

bAPD=zeros(lplr,U,lrd);

bVAPD=zeros(lplr,U,lrd);

131

bEFF=zeros(lplr,U,lrd);

%% Main3...

forl=l:lrd

redun=REDUN(l);

nCoding=ones(l,U)*(blk_size+redun);

ITER_PATH=zeros(lplr,U);

BLK_FAIL=zeros(lplr,U);

APD=zeros(lplr,U);

VAPD=zeros(lplr,U);

EFF=zeros(lplr,U);

fork=l:lplr

plr=PLR(k); % Packet Loss Rate [le-3 to .3] « < - - -

%% Main

iter=0;

iter_path=zeros(l,U); % Counter of each path

b_counter=zeros(l,U); % Block counter

node.buffer=zeros(nNodes,U);

pdec=zeros(U,nBlocks); % Probability of decodings

pkt_delay={};

pkt_start={}; % For packet delay record

pkt_start2=:{}; % For ARQ packet start time

132

nh=zeros(l,U); % Number of hops on the path

fori=l:U

node.buffer(tx(i),i)=nCoding(i); % Fountain code source

pkt_delay{i}=[]; % For packet delay record

pkt_start{i}=[];

nh(i)=length(paths {i})-l;

end

pkt_fail=zeros(l,U); % Packet fail counter

blk_fail=zeros(l,U); % Block fail counter

rs=blk_size*ones(l,U); % Remaining Source packets

lsi=ones(l,U); % Last source packets indicator

fff=ones(l,U); % Point to delay

sss=ones(l,U); % To point the next gone packet in ARQ

gone=ones(l,U); % Gone indicateor

arq=zeros(l,U); % ARQ indicator

send_ack=zeros(nNodes,U);

wait_ack=zeros(nNodes,U);

while any(b_counter < nBlocks) % Received all the blocks?

iter=iter+l; % Iteration counter

% disp([' ********* j | - e r > num2str(iter)' *********'])

transfer=zeros(l,nNodes); % Free all nodes to transfer

133

listen=zeros(l,nNodes); % Free all nodes to listen

receive=zeros(l,nNodes); % Free all nodes to receive

rand_order=get_order(nNodes); % Get random order

% disp(['Random Oder:' num2str(rand_order)])

for i=l :nNodes % Virtual RTS/CTS begin...

x=rand_order(i); % The node number to be polled

z=[]; % To store node number which has data

if receive(x) % Make sure it's not receiving

% disp(['Node ' num2str(x)' is receiving data, cannot transfer'])

else % Not receiving...

for j=l :U % Check out buffers to get 'z'

if node.buffer(xj) && rx(j)~=x % Having data

nxt_hop=paths{j}(find(x==paths{j})+l); % Next hop

if ~listen(nxt_hop) && ~transfer(nxt_hop) && ...

~any(receive&node.cover(x,:))

% Next hop available & no interf.

if ~arq(j) % FEC?

z=[z;[j,nxt_hop]]; % All possible senders

elseif ~wait_ack(x,j) && ~send_ack(x,j)

% Not waiting for ACK and no need to ACK

z-[z;[j,nxt_hop]]; % All the possible senders

134

else

% disp(['Buffer of path ' num2str(j)' on node '...

% num2str(x)' is waiting for ACK'])

end

end

end

end

y=size(z);

forj=l:U

if send_ack(x,j)

nxt_hop=paths{j}(fmd(x==paths{j})-l); % Next hop

if ~listen(nxt_hop) && -transfer(nxthop) && ...

~any(receive&node. cover(x,:))

z=[z;[j,nxt_hop]];

end

end

end

if isempty(z) % No data?

% disp([' Node ' num2str(x) ' has no packets or may cause interf.'])

else % Having data and finally can transmit @@@

transfer(x)=l; % Make itself'transfer'

135

listen=listen+node.cover(x,:);

% Make all nodes in coverage 'listen'

q=ceil(rand*length(z(:, 1)));

% Randomly choose one buffer !!!

receive(z(q,2))=l; % Make the next hop in receive status

pid=z(q,l); % Get the Path ID

if arq(pid) % ARQ mode

i fq>y(l)%ACKTx

send_ack(x,pid)=0; % ACK finished

lst_hop=paths {pid} (fmd(x===paths {pid})-1);

% Last hop

wait_ack(lst_hop,pid)=0; % ACK finished

% disp(' ACKed')

else % Normal Tx

if x = tx(pid) && gone(pid)

% A source and first time

pkt_start2 {pid} (sss(pid))=iter-1;

% Get the start time

gone(pid)=0;

% disp(['The ' num2str(sss(pid)) 'st packet sssss @

% num2str(iter-1)' @ path ' num2str(pid)])

136

end

if rand > plr % Transmit success!

node.buffer(x,pid)=node.buffer(x,pid)-1;

node.buffer(z(q,2),pid)=node.buffer(z(q,2),pid)+l;

if x = tx(pid) % A source

gone(pid)=l; % Indicate that it's gone

sss(pid)=sss(pid)+l;

end

if z(q,2) == rx(pid) % The last hop!

pkt_delay{pid}=[pkt_delay{pid} iter-pkt_start2{pid}(fff(pid))];

fff(pid)=fff(pid)+l;

% disp([The' num2str(fff(pid)) 'st packet fffff @

% num2str(iter) ' @ path' num2str(pid)])

end

% disp(['ARQ: Packet success from ' num2str(x) 'to '...

% num2str(z(q,2))' on the' num2str(pid) 'th path @@@@@'])

else % Transmit fail!

% disp(['ARQ: Packet fail from ' num2str(x) ' to ' ...

% num2str(z(q,2))' on the ' num2str(pid) 'th path ###'])

end

send_ack(z(q,2),pid)=l; % Have to ACK!

137

wait_ack(x,pid)=l; % Have to wait!

% dispC ACKing')

end

else % Raptor mode

xsn=find(x==paths {pid});

% X's sequence number in this path

if x = tx(pid) % This node is a source

pkt_start {pid}=[pkt_start {pid} iter-1];

% Get the start time

end

node.buffer(x,pid)=node.buffer(x,pid)-1;

if rand > plr % Transmit success!

node.buffer(z(q,2),pid)=node.buffer(z(q,2),pid)+1;

ifz(q,2)==rx(pid)

% Next hop is a destination node

pkt_delay{pid}=[pkt_delay{pid} iter-pkt_start{pid} (1)];

pkt_start{pid}(l)=[];

end

% disp(['Raptor: Packet success from ' num2str(x) 'to '...

% num2str(z(q,2)) ' on the ' num2str(pid) 'th path @@@'])

else % Transmit fail!

138

% disp(['Raptor: Packet fail from ' num2str(x) 'to '...

% num2str(z(q,2))' on the ' num2str(pid) 'th path ###'])

pkt_fail(pid)=pkt_fail(pid)+l;

pkt_start{pid}(l)=[];

end

if xsn == lsi(pid) % Last source?

rs(pid)=rs(pid)-l;

while -rs(pid) && lsi(pid)<length(paths{pid})

nxt_hop=paths{pid}(lsi(pid)+l); % Next hop

rs(pid)=node.buffer(nxt_hop,pid);

lsi(pid)=lsi(pid)+l; % Next

end

end

end

end

end

end % Virtual RTS/CTS finished!

for i=l :U % Check if ready for ARQ or Raptor decoding

if b_counter(i) < nBlocks % Not finished yet?

ifarq(i)% ARQ part!!!!!

if node.buffer(rx(i),i) == blk_size-rs(i) && ...

139

~sum(wait_ack(: ,i))

arq(i)=0;

b_counter(i)=b_counter(i)+l;

node.buffer(rx(i),i)=0;

node.buffer(tx(i),i)=nCoding(i);

pkt_fail(i)=0;

beep; % Alert!

rs(i)=blk_size; % Remaining Source packets

lsi(i)=l; % Last source packets indicator

fff(i)=l;% Point to delay

sss(i)=l;

gone(i)=l;

disp(['ARQ: The' num2str(b_counter(i)) ...

'th block succeeded @ Rx ' num2str(rx(i))])

disp(['*** iter' num2str(iter)' @ PLR ' ...

num2str(PLR(k))' & REDUN ' num2str(REDUN(l))' **

end

elseif sum(node.buffer(: ,i))==node.buffer(rx(i),i)

% Raptor decoding

disp(['Raptor: Got' num2str(node.buffer(rx(i),i))...

' packets, decoding @ Rx ' num2str(rx(i))'...'])

140

Pd=.85*.567A(node.buffer(rx(i),i)-blk_size);

% Failure probability

pdec(i,b_counter(i)+1)=(1 -Pd)* 100;

if rs(i) == blksize % No original packets lost

%if0

b_counter(i)=b_counter(i)+l;

node.buffer(tx(i),i)=nCoding(i);

beep % Alert!

rs(i)=blk_size; % Remaining Source packets

lsi(i)=l; % Last source packets indicator

fff(i)=l;% Point to delay

sss(i)=l;

gone(i)=l;

disp(['Directly: The ' num2str(b_counter(i))...

'th block succeeded @ Rx ' num2str(rx(i))])

elseif rand > Pd % Decoding success

b_counter(i)=b_counter(i)+l;

node.buffer(tx(i),i)=nCoding(i);

beep % Alert!

rs(i)=blk_size; % Remaining Source packets

lsi(i)=l; % Last source packets indicator

141

fff(i)=l;% Point to delay

sss(i)=l;

gone(i)=l;

disp(['Raptor: The' num2str(b_counter(i))...

'th block succeeded @ Rx ' num2str(rx(i))])

else % Decoding fail

arq(i)=l; % Trigger ARQ for this path

lpkt=blk_size-rs(i); % Number of lost original packets

node.buffer(tx(i),i)=lpkt;

pkt_start2 {i}=zeros(l ,lpkt);

blk_fail(i)=blk_fail(i)+l;

disp(['Raptor: The ' num2str(b_counter(i)+l)...

'th block decoding failed @ Rx ' num2str(rx(i))])

disp('$$$$$ ARQ triggered $$$$$')

disp(['$$$ ' num2str(lpkt)' lost original packets will be ARQed'])

end

node.buffer(rx(i),i)=0; % This block finished

disp(['*** iter ' num2str(iter) ' @ PLR '...

num2str(PLR(k))' & REDUN ' num2str(REDUN(l))' ***'])

pkt_fail(i)=0;

end

142

if b_counter(i) — nBlocks % All done on this path

iter_path(i)=iter;

node.buffer(tx(i),i)=0; % All Done! Stop the Tx

end

% disp([num2str(b_counter(i))' blocks completed @ Rx '...

% num2str(rx(i))' on the ' num2str(i) 'th path'])

end

end

pause(.Ol)

end

disp([' AAAAAAARound 'num2str(k)' OutcomesAAAAAAAA'])

beep;pause(.3);beep;pause(.3);beep

disp(['Iters:' num2str(iter_path)])

ITER_PATH(k,:)=iter_path;

disp(['ARQed Blocks:' num2str(blk_fail)])

BLK_FAIL(k,:)=blk_fail;

eff=nPackets./iter_path; % Network Efficiency

EFF(k,:)=eff;

disp(['Path Efficiency:' num2str(eff)])

apd=zeros(l,U); % Average path packets delay

fori=l:U

143

apd(i)=sum(pkt_delay{i})/nPackets;

end

APD(k,:)=apd;

disp(['Path Packet Delay:' num2str(apd)])

vapd=zeros(l,U);

fori=l:U

x=0;

y=length(pkt_delay {i});

forj=l:y

x=x+(pkt_delay{i}(j)-apd(i))A2;

end

vapd(i)=x/(y*(apd(i))A2);

end

VAPD(k,:)=vapd;

disp(['Packet Dealy Variance:' num2str(vapd)])

disp([' AAAAAAARound ' num2str(k)' FinishAAAAAAAA'])

end

%% The End...

H l * l t l f ' :je sjs s[e s|e s|e J|e ije s|s T n £ * M T l f l l s ^ ^ ^ * ^ ^ ^ ^ ^ ^ ' ^

bITER_PATH(:,:,l)=ITER_PATH;

bBLK_FAIL(:,:,l)=BLK_FAIL;

144

bEFF(:,:,l)=EFF;

bAPD(:,:,l)=APD;

bVAPD(:,:,l)=VAPD;

end

%% The End...

disp([The elapsed time is ' num2str(toc/60)' minutes.'])

rrp=rp*100;

drweff=zeros(U,lrd);

fori=l:U

forj=l:lrd

drweff(i,j)=l 00*bEFF(l ,i,j);

end

end

a=zeros(3,U);

drweff2=[];

fori=l:3

a(i,:)=nh==i;

c=sum(a(i,:));

ifc

b=zeros(U,lrd);

forj=l:U

145

if a(ij)

bG,:)=a(i,j)*drweff(j,:);

end

end

drweff2=[drweff2;sum(b)/sum(a(i,:))];

end

end

146

