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ABSTRACT 

A Hybrid Packet Loss Recovery Technique in Wireless Ad Hoc Networks 

Hui Yang 

TCP utilization in wireless networks poses certain problems due to its inability 

to distinguish packet losses caused by congestion from those caused by frequent 

wireless errors, leading to degraded network performance. To avoid these 

problems and to minimize the effect of intensive channel contention in wireless 

networks, this work presents a new Hybrid ARQ technique for reliable and 

efficient packets transfer in static wireless ad hoc network. It is a combination of 

recent FEC based Raptor coding technique with ARQ based selective 

retransmission method, which outperforms purely ARQ based method. In contrast 

to most Hybrid ARQ techniques, which usually employ a byte level FEC, we 

mostly use packet level FEC in our simulations for the data transfer, on top of less 

frequent ARQ to recover the residual errors. Existing packet level FEC methods 

are mostly based on simple parity check codes or Reed Solomon codes with 

erasure decoding; in this work we use the recent raptor codes. We also introduce 

the notion of adaptive redundancy which helps to achieve better average network 

performance and to further improve the redundancy efficiency. 
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Chapter 1 

Introduction 

There are generally two major types of wireless networks, i.e., the infrastructure networks 

and the ad hoc networks which will be discussed in the next section. Infrastructured 

network is predesigned, and has permanent network device deployments. It can be 

implemented with a fixed or dynamic topology. In the case of fixed topology, a wireless 

host can be connected via a fixed point, known as an access point (AP) or a base station 

(BS). An AP is usually connected to the backbone network via a wired link. Cellular 

networks and most of the wireless LANs work as the static infrastructured networks. 

Wireless Local Area Networks (LANs) have been used almost everywhere today, the 

field of wireless LAN is increasing rapidly as a result of an extensive availability of 

wireless devices and services, and developments in semiconductor and digital 

communication technology. In this chapter, a general introduction of wireless LANs and 

wireless ad hoc networks is presented, and we also talk about some developing 

techniques at the end. The first section reviews wireless LANs and wireless ad hoc 

networking is discussed in the second section. 

1.1 Overview of Wireless Local Area Networks 

Wireless LANs use spread-spectrum or OFDM (Orthogonal Frequency Division 
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Multiplexing) modulation technology based on radio waves to enable communication 

between devices in a limited area, also known as the Basic Service Set (BSS). This gives 

users the mobility to move around within a broad coverage area and still be connected to 

the network. The popularity of wireless LANs in fact came together with the increase of 

residential high-speed broadband Internet access. It was and remains the simplest way to 

share a broadband link between several computers spread over a residence. In addition, 

the expansion of hotspots and public access points has drastically raised its popularity. 

IEEE 802.11, also more popularly known as 'Wi-Fi' (Wireless Fidelity) [1], solves 

security, mobility, reliability, and the dynamic feature of wireless LANs while keeping 

compatibility with 802 legacy networks. IEEE 802.11 is the de facto standard in wireless 

LAN technologies, although there is another wireless LAN standard HiperLAN (High 

Performance Radio LAN), which is an IEEE 802.11 alternative developed in Europe. The 

first version of HiperLAN called HiperLAN/1, was originated by the European 

Telecommunications Standards Institute (ETSI) in 1991, aiming to achieve a data rate 

higher than 802.11. However, the latest HiperLAN/2 is not doing well in the market, 

especially since the faster 54 Mbps 802.1 la (5 GHz) and 802.1 lg (2.4 GHz) came out [2]. 

In this section, we will mostly discuss the IEEE 802.11 based wireless LANs. 

In wireless networks, signals transmissions are broadcast and may interfere with each 

other. A collision will be sensed and transmissions may fail when there are concurrent 

transmissions within the signal coverage of communicating parties. Consequently, a 

medium access protocol is necessary to organize the transmission accesses of the wireless 
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channel so as to achieve a reasonably high throughput and channel utilization. Unlike 

wired networks, signals transmitted over wireless media may be weakened or twisted 

because they are propagated over an open and varying medium with irregular boundary. 

In addition, the same signal may disperse and travel on different paths due to reflection, 

diffraction, and scattering caused by obstructions before it gets to the destination. The 

dispersed signals on different paths may take different long times to reach the destination. 

Therefore, the total signal after summing up all dispersed signals may have been 

considerably deformed and attenuated compared to the source signal. The receiver may 

not identify the signal and thus the transmitted data cannot be received. This 

unpredictable characteristic of wireless medium causes large numbers of packet losses. 

1.1.1 Evolution 

The first generation of wireless data modems was developed in the early 1980's, some 

amateur radio enthusiasts added a voice band data communication modem, with data 

rates below 9600 bps, to an existing short distance radio system, normally in the two 

meter amateur band. 

Later in 1985, the Federal Communications Commission (FCC) released several bands 

of the wireless spectrum for non-military usage, before that these so-called "garbage 

bands" were already used in equipments such as microwave ovens that use radio waves to 

heat food. Right after the announcement of FCC, wireless modems offering data rate on 
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the order of hundreds of Kbps was developed, and the second generation of wireless 

modems was conceived. 

The third generation products were then produced with data rates higher than 1 Mbps, 

focusing on the compatibility with the existing LANs with data rates of several Mbps. 

During the same period, the IEEE 802.11 committee was launched in 1990 to create a 

standard for wireless LANs. Before the foundation of IEEE 802.11 committee, there were 

already some early wireless LAN products in the market. Gradually, the technology 

became more developed and was better applied in various applications. Meanwhile, the 

Integrated Circuit (IC) technology related to wireless LAN applications and 

implementations, a main driving technology of fast developing market, was springing up 

in the market. 

Finally, the Institute of Electrical and Electronics Engineers (IEEE) published IEEE 

Standard 802.11 in 1997, the first wireless LAN standard. This standard, developed by 

the IEEE LAN/MAN Standards Committee (IEEE 802) in the 5 GHz and 2.4 GHz public 

spectrum bands, defines the Media Access Control (MAC) and physical (PHY) layers for 

a LAN with wireless connectivity. It aims at local area networking where the connected 

devices communicate with other neighbor devices with radio waves. The standard is 

similar in most aspects to the IEEE 802.3 Ethernet standard. Nevertheless, in particular, 

the 802.11 standard addresses: 

• Data security and user privacy 

• Some physical layer signaling techniques and interfaces 
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• Data delivery services to upper layers and MAC 

• Functions to either run in ad hoc mode or integrate with existing wired LANs 

• Mobility management between wireless LANs and operation within overlapping 

wireless LANs 

Typical Max Indoor Outdoor 
802.1 lx Release Frcqu. Thru. Thru. Modulation Range Range 

-

a 

b 

& 

n 

1997 

1999 

1999 

2003 

2009(exp.] 

(GHz) 

2.4 

5 

2.4 

2.4 

1 2.4,5 

(Mbps) 

0.9 

23 

4.3 

19 

74 

(Mbps) 

2 

54 

11 

54/ 

600 

IR/FH/DSSS 

OFDM 

DSSS 

OFDM 

OFDM 

(m) 

-20 

-35 

-38 

-38 

-50 

(m) 

-100 

-120 

-140 

-140 

-5000 

Table 1.1: Summary of major IEEE 802.11 standards [3] 

Over the next two years, two 802.11 variants were approved, they are 802.11 b which 

operates in the Industry, Medical and Scientific (ISM) bands of 2.4 GHz and 802.11a 

which operates in the Unlicensed National Information Infrastructure (U-NII) bands of 

5.3 GHz and 5.8 GHz. It is common today in a coffee house or shopping mall, you can 

take advantage of wireless access while you are enjoying your coffee or having a rest; 

more and more home users will choose wireless due to the simplicity of installation and 

mobility when using a laptop. Large wireless network projects are under construction in 

many big cities, planning to cover the whole city area with wireless access. 

The most recent variant was 802. llg, similar to 802.11a, uses a more advanced type 

of modulation OFDM, but it is used in the 2.4 GHz band. 802.llg can also achieve 



speeds of up to 54 Mbps. The IEEE 802.11 standard and its variants and alternatives, 

such as the wireless LAN interoperability forum, and the European HiperLAN 

specification had made considerable impact and capacity improvement. The Unlicensed 

Personal Communications Services (UPCS) and the proposed U-NII bands brought in 

new chances as well. 

1.1.2 Architectures and techniques 

Wireless LANs are generally employed as the final link between the wired network and 

the wireless users in business, giving these users wireless access to the complete services 

and resources of the corporate network across a building or campus setting. The 

pervasive acceptance of wireless LANs depends on industry standardization to ensure 

product reliability and compatibility among a variety of producers. 

Network protocols . 
(TCP/IP, otc.) "S 

IEEE 8Q2.I la , b, g -

Session 

Transport 

Network 

Data Link 
layer 

Physical 

OSI 
network model 

602.2 Logical Link Control (LLC) 

802.11 MAC header (a, b, g Identical) 

602.11 PLCP header (a, b, g distinct) 
physical medium specs (RF, DSSS, etc.) 

Figure 1.1: IEEE 802.11 standards mapped to OSI reference model 

As all IEEE 802 standards, the 802.11 standards concentrate on the bottom two layers 

of the ISO model, see Figure 1.1, the physical layer and link layer. Any LAN application, 
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such as protocols including TCP/IP, network operating system like Novell NetWare, can 

run on a wireless LAN compliant with IEEE 802.11 standard, exactly the same as they 

are running over Ethernet. 

In the architecture of wireless LAN, a service set is a logical grouping of devices. 

Wireless LANs provide wireless network access by broadcasting signal over wireless 

Radio Frequency (RF) carrier to all the users within coverage. The receiver can be within 

range of several transmitters. The transmitter initiates its transmissions with a Service Set 

Identifier (SSID). The receiver uses the SSID to sort out through the received signals and 

find the one it wants to listen to. 

Wireless LAN Station 

The station is the most essential element of a wireless network. A station is also called a 

node; it has the functionality of the 802.11 protocol, and a component that can connect to 

a wireless medium. In general 802.11 functions are implemented in hardware and 

software of wireless Network Interface Card (NIC). A station could be an AP, a client. 

APs are BS for wireless network. They transmit and receive radio signals for wireless 

clients to communicate with. Wireless clients can be portable devices such as laptops, 

Personal Digital Assistants (PDA), or fixed devices such as desktops with a wireless 

network interface card. Stations may be either still or mobile, and all stations support the 

802.11 standard functions, including services of data delivery, privacy, authentication and 

de-authentication. 
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Basic Service Set 

The basic building block of the wireless LAN network in 802.11 is BSS. The BSS 

consists of a group of stations, it defines a coverage area where all stations within the 

BSS maintain completely connected. Each BSS has a SSID which is a 32-byte maximum 

character string. For instance, "linksys" is the default SSID of Linksys wireless routers. 

Station Station 

Figure 1.2: Infrastructure Basic Service Set 

BSS has a dedicated station known as an AP. The AP is the heart of communications 

for all stations in the BSS. Every BSS has an identification (ID) called the BSSID, which 

is the MAC address of the AP servicing this BSS. The client stations do not communicate 

directly with other client stations, they communicate with the AP, and then the AP 

forwards the frames to the destination stations. The AP might be installed with an uplink 

port that connects the BSS to a wired network, e.g., an Ethernet. As a result, BSS can also 

be referred to as an infrastructure BSS. An infrastructure BSS can communicate with 



other stations not in the same BSS by communicating through access points. Figure 1.2 

demonstrates a classic infrastructure BSS. 

Independent Basic Service Set 

An Independent Basic Service Set (IBSS) contains no access points, and they can not 

connect to any other BSS. In this topology, all stations within the BSS directly 

communicate with each other via the wireless media in a peer-to-peer fashion. In that 

case, one station initiates the BSS network and other stations connect to it, every station 

If 
Station 

Station 

Station s t a - t j o n 

Figure 1.3: Independent Basic Service Set (IBSS) 

may not be able to communicate with every other station due to the signal coverage limits. 

Also known as ad hoc networks, IBSS networks provide limited support for 802.11 

privacy and authentication services for BSS network. IBSS network is characteristically 

limited both temporally and spatially. Figure 1.3 illustrates how the stations equipped 

with wireless NIC can structure an IBSS and communicate directly with each another. 



Distribution System 

The Distribution System (DS) is used by AP to communicate with another AP to 

exchange frames for stations in their own BSSes, forward frames to track mobile stations 

as they move from one BSS to another, or exchange frames with a wired network. A DS 

connects APs in an Extended Service Set (ESS), so as to increase network coverage by 

roaming between BSSes. As IEEE 802.11 describes, the DS is not necessarily a network, 

the standard sets no constraints on how DS is constructed, only on the services it must 

provide. Therefore a DS may be a wired network like 803.2 or any equipment that 

interconnects the APs and provides necessary distribution services. 

Extended Service Set 

[. . . DistnbtiPon S/s«fl7Bgy 

Station 

&bm 

Access Point 

Station Station 
Station 

Figure 1.4: Extended Service Set (ESS) 

An Extended Service Set (ESS) is a group of infrastructure BSSes interconnected via DS, 

where the APs communicate with each other to forward frames between BSSes, 

smoothing the progress of stations' movement across the BSSes. 802.11 uses ESS to 
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extend the range of BSS. Several infrastructure BSSes can be connected through their 

uplink interfaces. In 802.11, the uplink interface connects the BSS to the DS. The DS is 

the backbone of wireless LAN and the uplink to DS is not necessarily wired link, 802.11 

specification provides the potential for this link to be wireless. Nonetheless, for now the 

DS uplinks are typically wired Ethernet. 

The DS decides if a frame should be passed back to a destination in the same BSS, 

forwarded along the DS to another AP, or sent into the wired network to a destination not 

in this ESS. Network equipment outside of the ESS regards the whole ESS as a single 

MAC layer network where all stations are physically stationary. As a consequence, the 

ESS hides the mobility of the stations from the world outside of the ESS. This allows 

existing network protocols without conception of mobility to run properly with a wireless 

LAN where there is mobility. Figure 1.4 shows a typical topology of an ESS. 

802.11 Physical Layer 

The 802.11 PHY has two essential sublayers: Physical Layer Convergence Procedure 

(PLCP) and Physical Medium Dependant (PMD). The PLCP is actually an 

interconnecting layer that allows MAC Protocol Data Units (PDUs) to be transferred 

between MAC stations over the PMD, which is the way of transmitting and receiving 

data through the wireless medium. To some point, you can think of the PMD as a 

wireless transmission service function that is interfaced via the PLCP. The PLCP and 

PMD sublayers vary based on 802.11 types [4]. 

11 



The IEEE 802.11 standard supports several wireless LAN technologies in the 

unlicensed bands of 2.4 GHz, and shares the same MAC over two PHY layer 

specifications: Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread 

Spectrum (FHSS) technologies. Infrared (IR) technology is also supported, yet it has not 

been applied by many manufacturers. FHSS and DSSS are essentially different signaling 

mechanisms and will not interoperate with each other. 

In the DSSS technique, the 2.4 GHz band is split into 14 channels of 22 MHz each. 

DSSS spreads a signal on a bigger frequency band by multiplexing it with a signature or 

code to reduce localized interference and background noise. To spread the signal, each bit 

is modulated by a code. In the receiver, the original signal is recovered by receiving the 

entire spread channel and demodulating with the same code used by the transmitter; 

while in the FHSS technique, the 2.4 GHz band is split into plentiful of channels. FHSS 

uses a group of narrow channels and "hops" through all of them in a predestined sequence, 

e.g., the 2.4 GHz frequency band is split into 70 channels of 1 MHz each. Every 20 to 

400 ms the system "hops" to a new channel following a predetermined cyclic pattern. 

802.11 Data Link Layer 

The data link layer in 802.11 consists of two sublayers: Logical Link Control (LLC) and 

Media Access Control (MAC). 802.11 uses the same 802.2 LLC and 48-bit addressing as 

other 802 LANs, allowing for really basic bridging from wireless to IEEE wired networks, 

but the MAC is exclusive to wireless LANs. The 802.11 MAC is really similar to 802.3 

in that it is proposed to support multiple users on a common medium by forcing the 
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sender to sense the medium before accessing it, that is to say it is a Listen Before Talk 

(LBT) mechanism. 

The 802.11 MAC provides functionality to offer reliable data delivery for the upper 

layers over the wireless channel. The data delivery itself is based on the connectionless, 

best-effort, asynchronous delivery of MAC layer data, so there is no guarantee that the 

frames will be delivered successfully. The 802.11 MAC provides a managed access 

method to the shared wireless media called Carrier Sense Multiple Access with Collision 

Avoidance (CSMA/CA). CSMA/CA is similar to the collision detection access method 

employed by 802.3 Ethernet LANs. Another function of the 802.11 MAC is to protect the 

data being delivered by offering security and privacy services. Security is offered by the 

authentication services and Wireless Equivalent Privacy (WEP), an encryption service for 

data delivered on wireless LANs. 

RTS/CTS 

Basically, 802.11 only uses physical carrier sensing to solve signal interference problem 

in wireless LANs. However, physical carrier sensing is known to suffer from the hidden 

node problem. RTS/CTS (Request to Send/Clear to Send), also known as a virtual carrier 

sensing, is an additional MAC technique used by 802.11 to reduce frame collisions due to 

the hidden node problem. 

RTS/CTS works as follows: At first, the node willing to send data initiates the 

process by broadcasting a RTS message; once received the RTS message, the destination 

node replies with a CTS message. Any other node received a RTS or CTS message will 
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restrain from sending data for a certain period, this solves hidden node problem. The 

waiting time is included in both RTS and CTS message. If the sender does not received 

CTS message within a certain period, it retransmits RTS message according to a back-off 

algorithm. After a successful exchange of RTS and CTS message, data can then be sent 

by the sender after waiting for a Short Interframe Space (SIFS). This protocol assumes 

that all nodes have the same signal coverage. Figure 1.5 illustrates the RTC/CTS 

Four-Way Handshake. 

R T S / C T S F o u r - W a y H a n d s h a k e 

Wireless User 5 
Access Point 

i m e T i m e 

Figure 1.5: RTC/CTS Four-Way Handshake 

However, RTS/CTS increases the protocol overhead which may be important for 

small packets, thus the efficiency of RTS/CTS depends on packet size. Therefore, 

RTS/CTS is generally used for large packets, where retransmissions are costly from 

bandwidth standpoint. 
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Advantages 

• Mobility: Released from traditional network connections, network users can move 

about almost without constraint and connect to LANs from almost everyplace. 

Wireless LANs free users from dependence on wired access to the network backbone, 

providing them network access anytime, anywhere. 

• Cost effective: Network setup for places hard to wire, such as old buildings and 

solid-wall structures and cut the cost of owner, especially in dynamic locations 

requiring frequent alterations, achieve minimal wiring and installation costs. 

• Ease of installation: Initial configuration of an infrastructure wireless LAN needs 

nothing but a single AP. However, for a wired network, there are added costs and 

complexity of actual cables to be arranged in various places. Furthermore, it can even 

more difficult for locations that are not easy to get. 

• Expandability: Wireless LANs can accommodate extra wireless clients on the fly, 

without changing the current topology and affecting existing users. On the other hand, 

it would require additional wiring and may affect other users in a wired network. 

Disadvantages 

• Security: 802.11-based wireless LANs use RF as the carrier signal for data, the 

data is broadcast from the sender supposing that the receiver is in the coverage of RF, 

yet any other station within range of the RF can also receive the data. Hence the 

users generally make use of various encryption technologies such as Wi-Fi Protected 

Access (WPA). Some older encryption methods are known to have weaknesses, such 
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as WEP, which has been widely criticized and considered unsuitable for secure 

networks. There are numerous security risks relating to the current wireless protocols 

and encryption methods. Cracking has become much simpler and handier with 

convenient Windows-based and Linux-based free software appearing on the web. 

Security is being studied in the IEEE by Task Group I, it is anticipated that a more 

secure solution will be standardized in the near future. The Advanced Encryption 

Standard (AES) is expected to be standardized for securing the air interface. The 

research on security is being done in Task Group I of the IEEE 802.11 experts. 

• Stability: RF signals are subject to a broad diversity of interference and compound 

propagation effects, e.g. multipath, especially in case of Rician fading. Modulation 

techniques, such as Quadrature Amplitude Modulation (QAM) and various sorts of 

Phase Shift Keying (PSK) further amplify the propagation effects and interference, 

thus wireless access is hardly ever used in many vital systems like database servers. 

Even microwave oven has an effect on the reliability of wireless LANs. 

• Coverage: The typical range of a regular 802.1 lg network is on the order of tens of 

meters, not as much as necessary in a spacious configuration. For larger coverage, 

there has to be extra cost to add more APs or repeaters. 

• Speed: Wireless devices are almost always slower than the same network using a 

wired configuration. Relatively speaking, most wireless networks (typically 1-108 

Mbps) is quite slow compared to the slowest ordinary wired networks (100 Mbps up 

to several Gbps). TCP and its integrated congestion avoidance mechanism could also 
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reduce the performance of wireless LANs. In some particular circumstances, wireless 

throughput could be insufficient. 

1.1.3 Future development 

Wireless LANs has a promising future with 802.11 leading the way as the standard. We 

can anticipate that the availability of 802.11 related products will increase dramatically in 

the near future as businesses realize the increased productivity provided by wireless 

networks. 

Wireless LAN technology has experienced astonishing developments in rate, range, 

and spectral efficiency, which was originally limited by regulatory policy related to the 

use of unlicensed spectrum. With the fast deployments of 802.11 based wireless LANs 

around the world, standards organizations are moving towards more advanced versions 

for the wireless LAN application. The development of the Wireless LAN as an essential 

element of the future worldwide seamless wireless service is not restricted to the air 

interface. The evolution crosses the architecture and seamless integration of wired lines 

and wireless services; particularly with the introduction of real-time services such as 

Voice over wireless LAN (VoWLAN) and Video over wireless LAN and the seamless 

integration of wired lines and wireless services. 

IEEE 802.1 In 

The latest version of IEEE 802.1 In draft 4.0 was approved in May 2008 and it is 

expected to be finalized at the end of 2009. The industry is working aggressively to try to 
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make sure that existing 802.1 In draft products will be able to be software upgraded to the 

final 802.1 In standard. However, there is no guarantee that this will be the case. 802.1 In 

requires entirely new hardware on APs and clients. In some case, the high throughput of 

802.1 In presents a considerable scalability challenge for products that offer encryption 

and decryption on the wireless switch, requiring big upgrades. Current 802.1 lg and 

802.11b work in the 2.4 GHz band, and 802.11a works in the 5 GHz band. The 802.1 In 

standard will work in the 2.4 GHz, the 5 GHz radio band, or both bands, providing 

backward compatibility with existing 802.1 la/b/g networks. Most Wi-Fi products and 

APs hitting the market are dual-band, working in both the 2.4 GHz and 5 GHz 

frequencies. The final result for business will be a change to greater utilization of the 5 

GHz band with 802.1 In given the greater available capacity and cleaner frequency. 

There are three important features included in the current 802.1 In draft are Multiple 

Input Multiple Output (MIMO), channel bonding and frame aggregation. 
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Figure 1.6: The MIMO technology [5] 
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MIMO is the technique to concurrently transmit multiple radio streams, delivering two or 

more times the data rate per channel. MIMO improves spectral efficiency by using the 

same amount of bandwidth to get much higher throughputs. Other than spectral 

efficiency, MIMO alleviates multipath effects, an extensive source of interference. Figure 

1.6 shows a simple sketch for the MIMO technology. 

Channel bonding 

Channel bonding is a contentious feature in the current 802.1 In draft. Conventional 

802.11 technologies use a 20MHz-wide channel to transmit and receive. However, 

802.1 In adopts a technique called channel bonding to merge two neighboring 20 MHz 

channels into a single 40 MHz channel. Channel bonding is most efficient in the 5 GHz 

frequency given the much more available channels, while the 2.4 GHz frequency has 

only 3 non-overlapping 20 MHz channels. For that reason, only two thirds of the total 

frequency capacity is utilized. 

Frame aggregation 

802.11 has big inefficiencies in channel acquisition and back-off delays. It is normal that 

more than half of the time is wasted on the back-offs prior to transmission. 802.1 In 

technologies improve efficiency by aggregating multiple packets of application data into 

a single transmission frame, so 802.1 In networks can send multiple packets with fixed 

overhead cost of a single frame. Frame aggregation is more helpful for certain 

applications such as file transfers thanks to the ability to aggregate packet content. 
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Wireless LAN versus wired LAN 

Only a few years ago this was not an issue, there was no doubt that people with regular 

mind would exchange a dedicated 100 Mbps or even Gigabit wired Ethernet connection 

for a shared 54Mbps wireless one. However, today with the emergence of 802.1 In 

technique, most students with wireless LAN access use it as their most convenient way to 

connect to the Internet, labs, campus database system, and libraries. More and more, it is 

also happening in business world, wireless clients expect to interconnect from 

everywhere. 

More and more people are using wireless networks instead of wired networks, 

basically there are two reasons: first, with the fast developing software and hardware 

techniques, manufactories can now integrate wireless LAN functions directly into 

Ethernet switches. The infrastructure will deal with both wired and wireless access with 

integrated management and security; second, and more significantly, many famous 

manufactories such as Cisco are now releasing next generation Wi-Fi gear based on the 

draft 802.1 In standard. People can imagine shared throughput of 150M to 200Mbps to 

start and over 300Mbps in some high-demand equipments soon. Many experts declare 

that this wireless technology has a potential data rate of 248 Mbps, which may finally 

allow consumers to move beyond traditional wired Ethernet LANs. As more companies 

choose to use new or upgraded corporate wireless LANs, it is being wildly accepted that 

802.1 In, the next generation high-throughput Wi-Fi, will soon end the era of Ethernet. 
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A key point in the development of wireless LAN is to provide Voice over wireless 

LANs as well as other real time services over a real packet switched air interface, so the 

finalization of 802.1 le is an important progress. The 802.1 le enables the introduction of 

real time services into wireless LANs and the 802.1 In introduces speeds higher than 100 

Mbps, customers can expect a QoS comparable to that of a wired link with the 

combination of centralized topology and dense deployment. 

Another noteworthy development in wireless LAN technology is the emergence of 

wireless mesh networks. Mesh networks have the potential to dramatically increase the 

area served by a wireless network. Mesh networks even have the potential, with 

sufficiently intelligent routing algorithms, to improve overall spectral efficiencies 

attained by selecting multiple hops over high capacity links rather than single hops over 

low capacity links. 

1.2 Wireless ad hoc network 

An ad hoc network is a network where all the nodes communicate in peer-to-peer mode. 

There are no APs and no one gives approval to communicate. It can also be called 

infrastructureless network or IBSS, Figure 1.3. Generally these networks are spontaneous 

and can be quickly set up. It is ad hoc for the reason that each node is prepared to forward 

packets for other nodes, so compared to a wired network in which the router carries out 

the task of routing, in an ad hoc network it is the node itself that dynamically makes 

routing decision according to the network connectivity. An important characteristic of ad 
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hoc networks is that the network connectivity and link quality may vary fast due to node 

mobility and power control scheme. Ad hoc networks can be constructed through any 

wireless technology, including RF and IR [6]. 

The decentralized nature of wireless ad hoc networks makes them appropriate for 

conditions where infrastructure is either not available or not unstable, so ad hoc networks 

are not dependable in the case of emergency. It may improve the scalability compared to 

infrastructure wireless networks. Some examples include an infrastructureless network of 

laptops in a conference or campus, temporary offices, and soldiers in the military field. 

1.2.1 History 

The first generation of ad hoc networks can be traced back to 1972, when they were 

called Packet Radio Networks (PRNET), sponsored by the Department of Defense (DoD) 

of United States. Together with ALOHA, CSMA and a sort of Distance Vector (DV) 

routing technique, PRNET were used in experiment to provide different networking 

capabilities in military environment. 

The second generation of ad-hoc networks emerged in 1980s, the ad hoc network 

systems were further developed and put into practice in the Survivable Adaptive Radio 

Networks (SURAN) program by the Defense Advanced Research Projects Agency 

(DARPA). It provided a packet-switched network to the battlefield in an environment of 

no infrastructure. Later in 1990s, the idea of commercial ad hoc networks emerged with 

laptops and other portable devices became popular. In the meantime, the thought of a 
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collection of mobile nodes was brought up at quite a few research conferences. The IEEE 

802.11 committee adopted the term 'ad hoc network' and experts started to study the 

possibility of applying ad hoc networks into other fields. The ad hoc network technology 

continued to develop in the interim. Some of the outcomes included the Global Mobile 

Information Systems (GloMo) and the Near Term Digital Radio (NTDR). The GloMo 

offered an office environment with Ethernet-type multimedia connectivity anywhere, 

anytime for handheld devices. 

Ad Hoc Networks and the Internet 

The spreading out of the Internet in early 1990's, in conjoint with lower priced wireless 

products such as 802.11 wireless LANs and Bluetooth devices, led to a rising focus on ad 

hoc networks. In 1997, the Internet Engineering Task Force (IETF) launched the Mobile 

Ad Hoc Networks (MANET) Working Group to study new routing protocols that deal 

with the multi-hop paths and dynamics of ad hoc networks, more than 70 protocols has 

been proposed for various circumstances. With the development of various routing 

protocols and new laptops and handheld devices being preinstalled with wireless 

component, businesses are starting to recognize the potential of commercial ad hoc 

network applications. 

1.2.2 Classification 

Wireless ad hoc networks can be further classified by their application into three 

categories: mobile ad hoc networks (MANETs), wireless mesh networks (WMN) and 
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wireless sensor networks (WSN). 

Mobile ad hoc network 

A mobile ad hoc network (MANET) [7] is a self-configuring wireless network with a 

random topology, consisting of mobile wireless stations with routing function. The 

stations are free to move at random and organize themselves randomly; therefore the 

topology of MANET may change quickly and unpredictably. The design of routing 

protocols is a difficult issue. In spite of the application, MANET requires effectual 

distributed algorithms to decide network organization, routing, and link scheduling. 

Nevertheless, it is still a complicated problem today for us to determine practical routing 

paths and transport packets in a decentralized environment where network topology 

varies frequently. 

The set of applications for MANETs is diverse, ranging from small, static networks 

that are restricted by power sources, to large, dynamic networks. MANET can work in a 

stand-alone mode, or can connect to the Internet backbone. It became a popular topic for 

study as laptops and 802.11 based wireless LANs became prevalent in late 1990s. 

Wireless Mesh Network 

Wireless Mesh Networks (WMNs) [8] consist of mesh routers and mesh clients, where 

mesh routers have minimal mobility and form the backbone of WMNs. WMNs provide 

network access for both mesh and conventional clients, can be implemented in full mesh 

topology or partial mesh topology. In full mesh topology, each station is connected 

directly to every other station; while in partial mesh topology, stations are connected to 
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only some, of the other stations, not all of them. Mesh clients can be either stationary or 

mobile, and can form a client mesh network among themselves and with mesh routers. 

A WMN is self-organizing and does not require manual configuration. It is also 

self-healing because it is unnecessary to manually reroute the packets. It is reliable and 

offers redundancy, the degree of redundancy is basically a function of node density. 

Therefore, if one node fails, all the rest can still communicate with each other, directly or 

through one or more intermediate nodes. WMNs work well when the nodes are located at 

scattered points that do not lie close to the same line. 

Station Station 

Figure 1.7: Wireless Mesh Network 

WMNs are a promising technology for next generation wireless networking 

technology. A lot of applications are stimulating its fast growth. The integration of 

WMNs with other networks such as cellular, 802.11, 802.15 and 802.16, can be achieved 

through the gateway and bridging functions in the mesh routers. Figure 1.7 shows a 

simple topology of a WMN. 
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Wireless Sensor Network 

A Wireless Sensor Network (WSN) [9] is a set of nodes organized into a cooperative 

network. It generally consists of a data acquisition network and a data distribution 

network, monitored and managed by a management center. Each node has certain 

processing capability, may have a RF transceiver, typically with a single omnidirectional 

antenna, several kinds of memory, a power source, and contain a range of sensors and 

actuators. The nodes usually self-organize once being deployed in ad hoc mode. 

O Sensor Node 

•
Gateway 
Sensor Node 

Figure 1.8: Wireless Sensor Network [10] 

Unlike conventional wireless networks, WSN is usually characterized by denser node 

deployment, asymmetric data transmission, higher unpredictability of sensor nodes, and 

strict power, computation and memory limitations. These distinctive characteristics and 

restrictions lead to loads of new challenges for the development and final realization of 

WSNs. The development of WSN was initially motivated by military applications, but 

WSNs are currently used in many civilian application areas, such as home automation, 

environment monitoring and traffic control. Figure 1.8 shows a simple illustration of it. 
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1.2.3 Challenges 

Ad hoc networking faces all kinds of challenges from many layers. The PHY layer have 

to adapt to rapid channel variations; the MAC layer should minimize collisions, maintain 

fair media access, and transfer data over the shared wireless media in the presence of fast 

changing situations and hidden or exposed nodes; the network layer needs to perform the 

routing and maintains efficiency while channel varies frequently. It also needs to 

incorporate efficiently with conventional networks and carry out duties such as 

self-configuration in the varying situation; the transport layer has to do the statistics of 

packet loss and delay, which is quite different than wired networks. Finally, applications 

need to be designed to deal with frequent disconnection and reconnection with peer 

applications. 

In most wireless ad hoc networks the nodes compete to access the shared wireless 

medium, leading to lots of collisions, so wireless ad hoc networks are intrinsically limited. 

A main task in ad hoc network is to increase the efficiency of data transfer in severe 

circumstances such as power limited and very dynamic topology. Moreover, routing and 

transport protocols (e.g. TCP/IP) must be modified so as to improve the efficiency. 

Another challenge is increasing the practicability to support commercial applications. 

Security is possibly the most difficult problem. Real time voice and video streaming 

applications will only be practicable if QoS is well developed. Finally, it is important to 

develop middleware services that hide the complexities from high layer applications. 
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Chapter 2 

TCP in wireless environments 

TCP is the de facto standard transport layer protocol used in most applications. It was 

originally designed for wired networks, where random Bit Error Rate (BER) is negligible 

and congestion is the major source of packet loss. The popularity of various wireless 

network applications especially wireless Internet and high speed multimedia services, 

demand appropriate modifications of TCP to improve the network performance. TCP 

assumes that all of the packet losses are indications of network congestion, then the 

additive increase multiplicative decrease standard TCP congestion control gradually gets 

to the steady state, which represents the protocol's efficiency in terms of throughput and 

bandwidth utilization. 

However, wireless networks suffer from high BER and user mobility. Mobile 

equipments experience unpredictable and momentary disruption of network connectivity 

when they move around. The mobility causes unstable, higher end to end delays and 

packet losses while the network learns how to deliver packets to the node's new location. 

Unfortunately, TCP mistakenly believes these delay variation and packets losses are 

signals of network congestion, and then suppresses its transmission rate, leading to 

degraded network performance. Therefore, that assumption is not suitable for situations 

when the end to end path contains wireless links, since many factors such as high BER, 

user mobility and varying channel quality may all contribute to packet losses. Numerous 
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researches show that the standard TCP works badly in wireless environment because it 

cannot differentiate the reason of packet losses. 

In this chapter, section one provides a little overview of TCP fundamentals, section 

two roughly talks about some basic problems when TCP is used in wireless environments, 

and some proposed improvements focusing on the above problems are discussed in that 

last section. 

2.1 TCP fundamentals 

The Transmission Control Protocol (TCP) [11], specified in RFC 793, is one of the core 

protocols of the Internet protocol suite. The Internet protocol suite TCP/IP gets its name 

since TCP is so important that most applications and protocols are based on it, which is in 

turn based on Internet Protocol (IP). It compensates for IP's weakness by providing 

reliable, connection oriented connections that hide most limitations of IP. 

2.1.1 TCP introduction 

Sources of Packet Loss 

In a data network, generally packet loss may happen for two reasons: first, packets 

discarding in physical channel; second, data corruption, in the case that any bit level error 

correction code used by physical or link layer cannot recover the whole packet, and it is 

discarded by receiver, so it is effectively lost. Data corruption can cause a packet to be 

discarded at the destination. Different channel access and data distribution technologies 

are subject to different kinds of corruptions: 
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• Various cable connections can be influenced by low quality wiring and connectors, 

crosstalk or electro-magnetic interference. 

• Wireless networks such as wireless LANs, cellular networks, and satellite networks 

can be disrupted by radio frequency interference, signal attenuation due to line of 

sight obstacles, poor weather conditions, multipath fading, antenna pointing, 

polarization, or alignment errors. 

• Optical fibers are vulnerable to physical vibration like temperature variation, or low 

quality splices and temporary connectors. 

Packets might also be discarded by intermediate routers on purpose due to the 

congestion control algorithms employed by protocols such as TCP. In addition, Buffer 

overflows caused by unexpected heavy network traffic load can force the intermediate 

routers to discard packets. 
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Figure 2.1: TCP preview [12] 

TCP is a connection oriented transport protocol that sends data as a stream of bytes. 

Every TCP packet is assigned a sequence number, and will be acknowledged by the 

receiver only if it is received successfully and in order, if so, the receiver will send a 
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corresponding Acknowledgment (ACK) with sequence numbers of the next expected 

packet. Otherwise, there will be failures. By using sequence numbers and ACKs, TCP 

make it possible for the sender to know the delivery information. In case of packet loss in 

channel, TCP can retransmit the packet until either the packet is successfully delivered or 

until a timeout is reached. With sequence number, TCP can also identify duplicate 

packets and throw them away. Figure 2.1 shows a simple preview of TCP. 

A few key features that set TCP apart from UDP include: flow control, congestion 

control, retransmission, ordered data transfer - the destination rearranges data according 

to sequence number, error free and discarding duplicate packets. TCP perfectly 

supplements the underlying IP service with such functionality as: 

• Flow control. TCP controls the traffic speed so the buffers will never overflow. Fast 

users will lower their transmission rate to keep up with others. 

• Reliability. TCP adopts sequence numbers to manage the data that has been 

transmitted and received, and make sure the data is properly delivered by 

retransmission in case of a transmission failure. 

• Self-adjustability. TCP can dynamically learn the congestion level of the network 

and adapt its operation to maximize the throughput, thus avoiding either 

underutilization or overload of the network. 

• Streaming. TCP data is organized as a stream of bytes, much like a file. The detailed 

technique behind the network is hidden from end users. 
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Round Trip Time Estimation 

When a sender transmits a packet, it waits a period of time for an ACK. If it does not 

receive the ACK within an expected period, the packet is assumed to be lost and is then 

retransmitted. The problem is how long we should wait, well it depends. For Ethernet, 

only a few microseconds are enough; if it is wide area Internet, a few seconds might be 

reasonable during peak hours; in satellite networks, it may take minutes. All the modern 

implementations of TCP try to solve this problem by observing the regular end to end 

transmissions and developing a proper estimation of regular round trip duration. This 

process is called Round Trip Time (RTT) estimation, one of the most important 

parameters in a TCP exchange. If it is too low, packets are retransmitted unnecessarily; if 

it is too high, the channel stays idle while the user waits timeout. Both cases are a waste 

of network resources. 

TCP Processes 

TCP offers connection-oriented service over packet switched networks, which means that 

there is a virtual connection between source and destination. In contrast to its traditional 

counterpart User Datagram Protocol (UDP), where users directly begin to send packets 

whenever they want, TCP offers connections that have to be pre-established. There are 

three phases in any virtual connection: connection establishment, data transfer and 

connection termination, which are explained as follows. 

Connection Establishment 

Before a user tries to connect with another user, the receiver must first pick a port and 

make it available for connections, known as a passive open. Once the passive open is set 
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up, the sender can then create an active open. In order for two users to communicate 

using TCP they must first establish a connection by exchanging messages in a serial of 

processes known as the three-way handshake. Figure 2.2 above illustrates the processes 

of the three-way handshake. In Figure 2.2, it can be seen that there are three TCP 
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Figure 2.2: TCP Connection establishment 

segments exchanged between two users, user A and user B. From top to bottom, the 

figure shows the events in time sequences. 

1. To start, user A initiates the connection by sending a TCP segment with the SYN 

control bit set and an Initial Sequence Number (ISN) represented as the variable x in 

the sequence number field. 

2. A moment later, user B receives this SYN segment, processes it and replies with a 

TCP segment of its own. The reply from user B includes the SYN control bit set and 

its own ISN represented as variable y. User B also sets the ACK control bit to 
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indicate the next expected byte from user A should have data starting with sequence 

number x+1. 

3. Once user A receives user B's ISN and ACK, it completes the connection 

establishment phase by sending a final ACK segment to user B. In that case, user A 

sets the ACK control bit and indicates the next expected byte from user B by placing 

ACK number y+1 in the ACK field, and also it sends its own data with the sequence 

number x+1. At this time, both users have received an ACK of the connection and 

consequently have finished the connection establishment. 

In addition to the information shown in the Figure 2.2 above, an exchange of source 

and destination ports used for this connection are also included in both users' segments. 

Data Transfer 

Having finished the connection establishment and exchanged the ISNs, users at both ends 

can exchange data. Without touching much technical details, we only roughly describe a 

few key ideas here. In a simple TCP implementation, a sender keeps sending data to the 

receiver given that there is data to send and that the sender does not exceed the 

transmission window advertised by the receiver. After the receiver accepts and processes 

TCP segments, it sends back positive ACKs, indicating the location of next data in the 

byte stream. These ACKs also include the window which shows how many bytes the 

receiver is presently willing to accept. If some data is lost or duplicated, a gap may be 

present in the stream, in which case all or part of the packets in the window will be 

retransmitted, depending on the different sliding window schemes used. Sliding window 

schemes will be presented in next 'Flow Control' subsection. A receiver will continue to 
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acknowledge the latest reception in the byte stream. If there is no data to send, TCP will 

just stay idly by waiting for the application to put data into the byte stream or to receive 

data from the other end of the connection. If the data queued by the sender exceeds the 

receiver's advertised window size, the sender must stop transmission and wait for further 

ACKs before continuing on the transmission. 

Connection Termination 

Generally, to release a connection, a four-way handshake process is needed to totally shut 

down a connection. Four steps are required because TCP is a full duplex protocol, which 

means both ends must shut down independently. The connection termination phase is 

shown in Figure 2.3 below. Note that instead of SYN control bit fields, the connection 

termination phase uses the FIN control bit fields to indicate the closing of a connection. 

To terminate the connection in our example: 
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Figure 2.3: TCP Connection Termination 
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1. User A tells TCP to close the connection. So it sends the first FIN segment and its 

sequence number x to user B. 

2. When user B receives the initial FIN, it immediately acknowledges the segment and 

reminds user A the next segment should be x+1. Meanwhile it warns its application 

of the termination request. 

3. If the application on user B agrees to shut down the connection, it then sends its own 

FIN segment, sequence number y, together with the same ACK. 

4. Finally, user A will finish the termination and respond with an ACK. 

It is also possible to terminate the connection by a 3-way handshake, when user A 

sends a FIN and user B replies with a FIN & ACK, it is like combining step 2 and 3 

together. And then user A replies with an ACK. 

2.1.2 TCP Flow Control 

TCP realizes flow control through a sliding window protocol. In each TCP packet, the 

receiver indicates the space it can provide to buffer the data in the receive window field 

of TCP header. The sender can only send at most that amount of data before it has to wait 

for an ACK and window update from receiver. If the sender transmits too fast for the 

receiver, TCP starts flow control to slow down the transfer speed. TCP also reports 

delivery information to high layer protocols and applications it supports. All these 

features make TCP a reliable end-to-end transport protocol. Figure 2.4 below is a typical 

illustration of TCP sliding window mechanism, in which w is the advertised window size 

indicated by the receiver at the beginning. Suppose the source knows that, based on 
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ACKs received, Byte x is the last data byte received by destination. The source can send 

data of size up to Byte x + w. 

Data Stream Available space 

Sent & Acknowledged Sent but not acknowledged yet Not sent yet 

Advertised Window 

-Sequence Number-

X + W 

Figure 2.4: Sliding window 

Go Back N 

Go Back N (GBN) is an example of sliding window protocol where the receive window 

size is one. In a GBN protocol, the sender is allowed to transmit multiple packets without 

waiting for an ACK, but there is a limit that the number of unacknowledged packets must 

be within a certain range. An ACK for a packet is considered to be a cumulative 

acknowledgement, which means that all packets with a sequence number up to and 

including this one have been correctly received at receiver. The receiver only accepts in 

order packet, so if an error occurs when receiving a packet, the receiver will simply 

discards all the following packets and then the sender will have to retransmit all the 

following packets in its window, which decreases the performance. 

There is a timer for the oldest packet that has already been transmitted but not yet 

acknowledged. Whenever there is such an unacknowledged packet, the timer is restarted; 

if there are no outstanding unacknowledged packets, the timer is reset. If a timeout occurs, 
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the sender retransmits all packets that have been previously sent but have not yet been 

acknowledged, which also decreases the performance. 

Selective Repeat 

To avoid unnecessary retransmissions in GBN, in Selective Repeat (SR) scheme, the 

receiver has a larger window size, so it can store out-of-order but error-free packets. 

Therefore, it acknowledges any correctly received packet whether or not it is in order. 

Out-of-order packets are stored until all the lost packets are received, and then the 

packets can be delivered to higher layer in order. On the other hand, the sender only 

retransmits the packets that have not been acknowledged. If there is an error, it simply 

sends a Negative Acknowledgement (NACK) to ask for a retransmission. In particularly, 

in case of packet loss, the receiver records the sequence number of the earliest lost packet, 

continues to accept the subsequent packets and replies each with an ACK piggybacking 

the sequence number of the earliest lost packet. The sender continues to send subsequent 

packets until it reaches its limit of send window. Once the sender has sent all the packets 

in its window, it retransmits the packet whose sequence number is given by the ACKs, 

and then continues from the place it left off. 

SR scheme is mainly based on a method called Selective Acknowledgment (SACK), 

a modification to TCP proposed in RFC 2108, it is an option that allows the receiver to 

acknowledge discontinuous packets that were received correctly. The use of SACK is 

optional and it needs support from both ends to work properly, which is negotiated in the 

Connection Establishment phase. SACK is usually indicated in the optional field of TCP 

header. TCP employs a form of SR scheme to provide reliable end-to-end data transfer 
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over communication networks, and the SACK is widely supported in all popular TCP 

stacks. 

2.1.3 TCP congestion control 

TCP congestion control [RFC 2581] and Internet traffic management related subject 

matters generally have been active areas of study and experiment. Current standard TCP 

implementations usually contain four intertwined algorithms: slow start, congestion 

avoidance, fast retransmit and fast recovery. 

Slow Start 

In TCP congestion control, Slow Start (SS) (Figure 2.6) is a scheme used by the source 

end to control the transmission rate. This is achieved by the return rate of ACKs from the 

receiver. To be exact, the rate of ACKs returned by the receiver decides the rate at which 

the sender can transmit data. 

At the beginning of a TCP connection, the slow start algorithm initializes a 

congestion window to one segment, which is the Maximum Segment Size (MSS) set by 

the receiver during the connection establishment phase. Every time an ACK is received 

by the sender, the congestion window is then increased by one segment. In fact, as long 

as the network condition is good, slow start is not very slow because the windows size 

would increase exponentially in such case. Suppose the first transmission succeeds, it 

increases the window to two segments; after successful transmission of these two 

segments, the window size goes to four segments; then eight segments, then sixteen 
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segments and so forth until it reaches the maximum window size advertised by the 

receiver or until congestion happens. Figure 2.5 shows the TCP timing during Slow Start. 

. first window 
* = S/R 

Figure 2.5: TCP timing during Slow Start [13] 

However, sometime network quality may vary or the congestion window may be too 

large for the network such that packets may be dropped. Packet loss will cause timeout at 

the sender, in which case the sender will enter congestion avoidance process as follows. 

Congestion Avoidance 

Congestion avoidance (CA) (Figure 2.6) is used to slow the transmission rate when a 

packet loss happens. Congestion avoidance and slow start are independent algorithms 

with different objectives. But in practice they are usually used together to better control 

the data transfer so it does not stay slow. 
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Basically, congestion avoidance is also thought to be an Additive Increase 

Multiplicative Decrease (AIMD) algorithm [RFC 2001] because it employs a method of 

linear growth of the congestion window, combined with an exponential reduction when 

congestion takes place. In congestion avoidance, network congestion could be indicated 

by either a timeout or the reception of three duplicate ACKs. If it is caused by three 

duplicate ACKs, fast recovery algorithm will be activated, where the sender immediately 

halves its current transmission window, which is so called 'multiplicative decrease'; If 

congestion was caused by a timeout, the congestion window is reset to one MSS, which 

means the sender directly goes back to the slow start phase. 

Nonetheless, slow start only runs until the halfway to where congestion last took 

place. After this halfway point, the TCP enters congestion avoidance phase, where the 

congestion window is increased by one segment every RTT, no matter how many ACKs 

were received in that RTT, until a packet loss happens. A typical way to do that is for the 

TCP sender to increase its congestion window by {MSSICongWiri)*MSS bytes for every 

new ACK, where Cong Win denotes the current congestion window size. That is so called 

'additive increase', a linear growth of congestion window, compared to slow start's 

exponential growth. This method makes the sender more carefully increase its 

transmission rate as it comes close to the place where the congestion happened last time. 

Fast Retransmit 

Fast retransmit is an improvement to TCP which saves the time a sender waits before 

retransmitting a lost segment. When a duplicate ACK for the same packet is received, 

TCP does not know whether it is caused by a segment loss or simply that a segment was 
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delayed and received out of order at the receiver. It is assumed by a TCP sender that, if 

more than two duplicate ACKs are received by the sender, it is a strong sign that at least 

one segment has been lost. Because the TCP sender assumes that, enough time has 

elapsed for the receiver to properly reorder all the segments and send a new ACK, by the 

fact that the receiver had already sent three duplicate ACKs. Therefore, if a TCP sender 

receives three duplicate ACKs with the same acknowledge number, that is a total of four 

ACKs with the same ACK number, the sender can then confidently assume that the 

segment with the next higher sequence number was lost and will not arrive out of order. 

The sender will then retransmit the packet that was believed to be lost without waiting for 

the retransmission timeout to expire. The fast retransmit algorithm first appeared in the 

4.3BSD Tahoe release, and it was followed by slow start [RFC 2001]. 

Fast Recovery 

Fast Recovery (Figure 2.6) is an algorithm employed by TCP Reno to improve the 

performance of TCP Tahoe, especially for large windows, that allows high throughput 

under moderate congestion. Because duplicate ACKs can only be generated when a 

segment is received, this is a strong signal that there may not be severe network 

congestion since at least there is still data flowing through, so TCP does not have to 

reduce the flow rapidly by resetting the congestion window to 1 MSS. Therefore, after 

the fast retransmit of the lost segment, the sender resumes its transmission with a larger 

window, compared to that in slow start it is only one MSS, the sender then enters 

congestion avoidance phase and linearly increases its window. The fast recovery 

algorithm appeared in the 4.3BSD Reno release [RFC 2001]. 
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Finally, Figure 2.6 illustrates an outline of two typical TCP congestion control 

algorithms: TCP Tahoe and TCP Reno, with the periods of exponential increase, additive 

increase and multiplicative decrease. Each scenario shows a reaction of sender to 
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Figure 2.6: TCP congestion control in Tahoe and Reno 

different network conditions. From Figure 2.6 one can clearly understand the difference 

between the two TCP versions: Tahoe unconditionally resets congestion window to the 

initial value of 1 MSS when a loss event occurs, no matter it is caused by a Timeout or 

three Duplicate ACKs; while Reno does that only if it is a Timeout, and for the case of 

Duplicate ACKs, it uses the Fast Recovery algorithm to maintain high speed. 

TCP is a complicated protocol that deals with all kinds of mechanisms for data 

communication in a packet switched network such as the Internet. With the increasing 

development of Internet, our dependence on TCP keeps increasing. Supporting the 

reliable delivery of data on a packet switched network is not an easy job. Even after so 

many years of standardization, the researches have never been stopped, it is still an area 

of great activity and there remain many problems to be solved. For example, fairness is 
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now a topic of great concern. Its objective is to realize 'fair play' for all network users, 

and to limit the greedy TCP senders so as to make room for users with a low bandwidth 

connection. Current congestion control techniques have been working wonderfully so far, 

it only remains to be seen how far they can carry on the Internet in various transmission 

circumstances such as in wireless environment. TCP in wireless will be the main subject 

of next section. 

2.2 Problems and enhancements in wireless 

Since TCP has been primarily designed and developed for wired networks, any packet 

loss is considered to be caused by congestion and then leads to huge precautionary 

decrease of the congestion window size. Nevertheless, as we know wireless channels 

experience random packet losses caused by various effects such as multipath fading, hand 

off, shadowing and other radio effects that should not be considered congestion. In case 

of packets loss due to wireless channel quality, the congestion window size will be reset, 

and then there will be a congestion avoidance phase, leading to considerable 

underutilization of channel resources. 

A lot of studies show that the standard TCP performs inefficiently in a wireless 

environment due to its inability to distinguish packet losses caused by congestion from 

those caused by errors. Unfortunately, today most wireless data applications such as 

World Wide Web (WWW), File Transfer Protocol (FTP), multicasting and Telnet, use 

TCP as the standard transport layer protocol since they need reliable data delivery. Lots 

of research has been done to conquer this problem and to improve the network 

performance over TCP based wireless networks. 
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2.2.1 TCP problems in wireless 

High Bit Error Rate 

The conventional congestion control methods for TCP have been generally designed for 

wired networks, where packet loss caused by bit corruption and link errors is almost 

negligible, in other words, almost all packet losses are caused by congestion. However, 

the BER in wireless networks is much higher than that in traditional wired networks, 

comparing the BER of wired networks on the order of 10~9 to 10"6 to that of wireless 

networks on the order of 10"4 to 10" . For example, it is common to have a BER of 2% or 

so for Code Division Multiple Access (CDMA) based wireless networks. Therefore, in 

wireless network, packet loss does not necessarily mean congestion because it may be 

lost due to interference, signal fading and so on. But TCP incorrectly considers it as 

congestion loss and launches congestion control process, where it keeps the sending rate 

relatively low, leading to a degraded performance. 

Burst loss 

A burst loss may be caused by signal fading. Channel interferences can lead to correlated 

packet losses, usually a burst loss of many consecutive packets within a very short 

duration. In wireless networks, since the connection is unreliable, wireless users usually 

suffers from unpredictable disconnection when they move about or when there is a power 

failure. Transmission in this period experiences huge packet losses, causing unnecessary 

suppression on transmission rate by TCP and then degraded performance. Burst loss can 

cause several consecutive timer expirations and retransmissions of the same packet 

within a short period. The value of retransmission timer is doubled every time a failure 
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occurs until it reaches some threshold. Hence, several consecutive retransmission failures 

can lead to very long idleness of the connection even though the network condition 

resumes immediately. 

In infrastructured networks, all traffic is routed via access point (AP) or base station 

(BS). Such as in cellular systems, when wireless users move out from the coverage area 

of the current BS, they have to register at another BS which they are moving into. As a 

result, a handoff takes place and all the following traffic is then routed via the new BS. 

Even though it usually takes only a few seconds, many packets being transmitted may be 

lost because they are transferred to the old BS when a handoff is going on; a wireless user 

may also lose the connection to BS, and any data transmitted to or from it will be lost, 

both leading to a burst loss. The handoff frequency depends on the mobility of some 

particular users and the coverage area of BS. 

In ad hoc networks, where users move from one place to another, the network 

connectivity varies, so the network topology may change frequently. Therefore, the 

original routing may not work anymore, and it takes time to recalculate a new routing 

plan. As a result, some packets using the original routing may be lost during this process, 

so a burst loss takes place. The cause of a burst loss in ad hoc networks is affected by the 

coverage area and mobility of every user in the network, compared to infrastructured 

networks where it is only some particular users and the coverage area of BS that matter. 

Unpredictable delay 

A highly variable RTT may also cause high RTO (Retransmission Time Out), which is 

based on both estimates and variance of RTT. Since wireless user move around randomly, 
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their distances from a BS change all the time, causing temporally varying delay. This 

unpredictable delay is not easy for TCP to adjust to. TCP reacts slowly to data loss when 

RTO is high. Variations in the RTT may be caused by link layer retransmissions of 

wireless channel. If the link layer frames that contain a TCP packet must be retransmitted 

due to bad channel quality, the packet is delayed. RTT variations can also be caused by 

channel access method, handover and queuing in routers, BSs and other intermediate 

nodes. A long RTT causes low network efficiency and underutilization, as it takes several 

RTTs for TCP to gradually achieve the network capacity. 

Packet disorder 

Packet disorder means the case that some packets are received out of order. This is found 

out to be not unusual so that most fast retransmissions in fact are unnecessary, leading to 

significant performance degradation. In infrastructured networks, handoff may cause 

disordered packets. During handoff, packets travel through different paths may take 

different time to get to the destination. For an ad hoc network, there is no fixed 

infrastructure and every user can act as a router. Therefore, dynamic routing causes 

packets of the same source-destination to be forwarded through different paths and then 

to be received out of order. Besides, in some proposed link layer error correction 

techniques, retransmission is performed regardless of the semantics of the underlying 

transport protocol, which can also lead to disordered packets. 

As a result, TCP is not suitable for many applications. Since the application will be 

stuck after a lost packet until the retransmission is successfully finished. This is a 

problem for real time applications such as streaming multimedia, multiplayer on-line 
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games and Voice over IP (VoIP) where it is usually more helpful to get most of the data 

in time than to get all of the data in order. 

Limited power 

Wireless equipments usually use battery as power source, so unlike electrically powered 

equipments, they cannot afford too many retransmissions. In other words, TCP is not 

designed as an energy-efficient protocol. 

Small bandwidth 

Compare to wired networks, wireless networks have a much smaller bandwidth. For 

example, the Ethernet can now achieve a bandwidth of up to 1 Gbps, while the current 

IEEE 802.1 lg has a bandwidth of only 54 Mbps. Therefore, it is a major problem for 

TCP to efficiently utilize the wireless bandwidth in some cases such as real time 

applications. 

TCP packets may be lost due to unreliable link layer protocol. After trying 

retransmission for a few times, link layer protocol gives up and leaves further 

responsibility of error recovery to higher layer. TCP may also mistake a sudden increase 

of RTT, which is common in wireless networks, as a data loss. If the delay is long enough 

for retransmission timer to expire before an ACK is received, TCP will mistake the delay 

as a signal of data loss due to congestion. Therefore TCP will unnecessarily retransmit 

the data that it thinks to be lost and then goes to slow start. 
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2.2.2 TCP enhancements in wireless 

The promising wireless applications, especially high speed multimedia services and the 

emergence of wireless IP communications running over the Internet, demand effective 

enhancements or modifications of TCP for better performance. The standard Reno [RFC 

2581] halves the window size when experiencing a packet loss whatever the reason was. 

If it is due to network congestion, this improves network congestion. On the other hand, it 

would degrade the performance for random loss. The features of wireless networks vary 

with access technologies, so a universal solution for all kinds of wireless networks is 

unpractical. Each wireless TCP solution tries to take care of some specific problems. 

TCP has been continually evolving ever since its first specification RFC 675 in 1974. 

Even though many developments have been made over the years, the primary foundation 

behind TCP remains almost the same. TCP congestion control, specified in RFC 2581, is 

one of the most important TCP improvements in last decade; it introduces efficient 

algorithms to avoid unnecessary congestion. After that, a signaling scheme called 

Explicit Congestion Notification (ECN) was proposed for congestion avoidance. There 

are lots of implementations of TCP, some of which are thought to be standard TCP 

implementations. The original TCP congestion avoidance algorithm was known as TCP 

Tahoe, including the very basic congestion control scheme, namely the slow start and 

congestion avoidance algorithms described before. However a lot of other algorithms 

have been proposed since then, such as Reno, New Reno, Veno, Westwood, BIC and so 

on. TCP Reno adds the fast retransmit and fast recovery algorithms to TCP Tahoe. 

Furthermore, TCP New Reno improves upon TCP Reno by changing some thresholds in 

fast recovery algorithm and avoiding the occurrence of multiple retransmissions after 
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timeout [RFC 2582]. TCP New Reno is for now the most widely used TCP congestion 

control scheme in practice, while most others competing proposals still need further 

investigation. 

TCP New Reno 

TCP New Reno [RFC3782] is a small modification over TCP Reno. It can discover 

multiple packet losses, so it is much more efficient than Reno in case of multiple packet 

losses. Like Reno, New Reno also performs fast retransmit when it receives multiple 

duplicate packets, yet it differs from Reno in that it does not quit fast recovery until all 

the unacknowledged packets at the time it started fast recovery are successfully received. 

Therefore it avoids reducing the congestion window many times as in Reno. However, 

New Reno suffers from the fact that it takes one RTT to identify each packet loss. Only 

when the ACK for the first retransmitted packet is received, can it realize which other 

packet was lost. Even though, New Reno works much better than Reno at high BER. 

ATCP 

In ad hoc networks, it is usual to have a high BER and the route changes a lot so network 

topology changes, leading to more packet loss in addition to network congestion. ATCP 

[14] is a cross layer method proposed to provide end-to-end solution to improve TCP 

throughput for mobile ad hoc networks. It works between the standard TCP and IP layers, 

and it is based on ECN message to detect network congestion and distinguish congestion 

loss from error loss, and uses the ICMP 'Destination Unreachable' message to detect the 

routing and topology status of the network. According to the feedback messages, ATCP 

sets TCP sender to an appropriate state: persist, retransmit or congestion control. ATCP 
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also reorders the packets so that TCP would not generate duplicate ACKs. ATCP deals 

with high BER, route failure, network congestion, and packet reorder, which makes it 

more suitable for TCP in mobile ad hoc networks. In addition, ATCP does not generate 

or regenerate ACK packets nor modify the TCP, so it maintains the standard end-to-end 

TCP semantic. However, it is not always possible to have a stable node to provide 

feedback messages in ad hoc networks, so sometime ATCP might be unreliable. 

Link Layer proposals 

This approach tries to hide wireless packet losses from higher layers by using link layer 

level retransmissions instead of end-to-end retransmissions, so the packet loss is localized 

and the probability of packet loss due to wireless channel is decreased. These proposals 

employ intermediate routers to store all unacknowledged packets and retransmit them 

whenever a packet loss is detected. As the propagation delay of radio signal is much 

smaller than end-to-end delay, so this approach knows immediately about the packet loss 

and can then react faster than higher layers. All the proposals maintain the end-to-end 

TCP semantics. 

However, TCP has its own end-to-end retransmission mechanisms, and it has been 

shown that independent retransmission protocols can decrease the performance, 

especially under high BER. In addition, with the network security being more important, 

encryption is broadly adopted, therefore if the data is encrypted, this approach may not 

work. This kind of proposals includes Snoop [15], SNACK-New Snoop (SNACK-NS) 

[16], Delayed Duplicate Acknowledgments (DDA) [17] and so on. 
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TCP Vegas 

TCP Vegas [18] detects congestion based on the increasing RTT values of the packets in 

the connection, in contrast to other versions of TCP, which do so only after the 

congestion has actually happened. In TCP Vegas, timeouts were set and round-trip delays 

were measured for every packet in the transmit buffer. The RTT of the connection and 

the window size are used to compute the number of packets in the network buffers. Vegas 

takes delay as a signal of congestion and then reduces its throughput, and uses additive 

increases and additive decreases in the congestion window. Vegas decreases the window 

size when it exceeds some threshold and increases it when it is below certain threshold. It 

tries to stabilize the network congestion state around the optimal point by proactively 

adjusting the congestion window without significant change in the congestion window. 

However, Vegas detects congestion based on RTT measurements, which may 

inaccurately reflect congestion level on forward path. 

TCP Veno 

TCP Veno [19], as its name says, is a combination of Vegas and Reno. It uses the same 

method as Vegas to estimate the accumulated packets in the network, but it proposes an 

approach to distinguish the causes of packet loss by a threshold. If the number of 

accumulated packets is less than the threshold, the packet loss is random, where Veno 

increases the congestion window in a conservative way, that is to send only one packet 

for every other ACK received; otherwise the loss is caused by congestion, where it 

performs the standard TCP Reno. However, Veno works poorly under high BER, and it 

does not deal with disconnection. Figure 2.7 shows a result from [19]. 
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Figure 2.7: Throughput versus packet loss rate for Reno and Veno [19] 

TCP Westwood & Westwood+ 

TCP Westwood [20], which can be considered as an extension of TCP Reno, is a sender-

side only modification of the TCP congestion window algorithm. It adjusts the size of the 

congestion window based on the rate of the ACKs. Westwood sets up a mechanism to 

measure bandwidth at the sender side, based on the interval of returning ACKs. It 

evaluates available bandwidth to control the sending rate. When it receives three 

duplicate ACKs, it sets the slow start threshold to reflect its estimated bandwidth-delay 

product. This method preserves the end-to-end TCP semantics, and needs slight 

modification at end users and in some case the routers. 

Westwood+ is a development of Westwood, whose bandwidth estimation algorithm 

was soon discovered worked badly with reverse traffic due to ACK compression. 

Westwood+ improves the accuracy of the estimation of the available bandwidth and it is 

implemented in the kernel of Linux. Figure 2.8 shows a result from [20]. 
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Figure 2.8: Throughput vs. error rate of the wireless link [20] 

However, large packet loss does not necessarily mean network congestion, which is 

especially true for wireless networks since wireless links are known to have high error 

rate. This scheme will have poor performance when the sender mistakenly estimates the 

bandwidth due to the random delay in wireless network, or the random packet loss rate 

suddenly increases. In addition, it still needs to modify the standard TCP at the sender 

side. 

Numerous methods have been proposed to improve TCP performance over wireless 

networks, the proposals presented above are just a small part of them. However, due to 

the basic instinct of TCP protocol, there are always some limitations for these methods. 

Each of them only deals with one or a few problems that TCP experiences in wireless 

environment, there is no almighty method for now. Performance improvements are 

always important, but in many cases with the cost of violating the end-to-end semantics 

of TCP is not always comfortable. 
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In general, UDP is used as an alternative where TCP does not work well. It offers the 

application multiplexing and checksums like TCP, but does not deal with building 

streams or retransmission, making it possible for the application developer to program it 

in a way more suitable for a certain situation or to substitute them with other methods like 

Forward Error Correction (FEC), which will be discussed specifically in the next chapter. 
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Chapter 3 

A new hybrid ARQ technique 

In data communication networks, data could be corrupted and data packets could be lost 

in the process of transmission. There are two fundamental error correction techniques 

treating this problem: Forward Error Correction (FEC) and Backward Error Correction 

(BEC). Although, in some point, BEC is efficient and easy, but it needs feed-back 

channels and it is inappropriate for situations in which many clients have to wait for a 

retransmission, such as wireless network. 

Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ) have been the 

two basic loss recovery techniques generally used for data transfer in communication 

networks. Both FEC and ARQ use Error Detection (ED) techniques such as Cyclic 

Redundancy Check (CRC) to detect errors and erasures, but FEC adds more redundant 

data to the source information to enable correction. According to coding theory, an error 

is defined as a corrupted symbol in an unknown position, while an erasure is a corrupted 

symbol in a known position. In case an error or erasure is detected, FEC may be able to 

correct it, while ARQ just simply asks for a retransmission. The advantage of FEC is that 

no retransmission is needed, so feed-back channels are not necessary. FEC is therefore 

applied in situations where retransmissions are comparatively impractical or costly. 

Generally, in data communication networks, ARQ schemes are preferred over FEC for 

error control, when there is a high-quality channel, such as wired networks. However, 
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FEC is better when feed-back channels are not available or retransmission is not suitable 

for some situations like there is a long Round Trip Time (RRT) or a very competitive 

multiple media access environment, such as wireless networks. 

A hybrid ARQ (HARQ) scheme combines the advantages of FEC and ARQ, and 

offers much better throughput performance and reliability, especially for wireless 

networks. There are mainly two kinds of HARQ approaches so far, namely type I and 

type II. Basically, for type I HARQ, it acts like standard FEC unless the channel quality 

is poor, and not all transmission errors can be corrected, the receiver will detect this 

situation using the ED code, then it discards the received coded data and a retransmission 

will be requested, similar to ARQ; while type II HARQ is more dynamic and complicated, 

it transmits redundant data only if there is a transmission failure, in which case the sender 

launches FEC process, redundancy is transmitted instead of repeating the same packet 

and the previously received packet will also be used to improve the decoding capability 

[21]-[24]. HARQ technology has also been considered in the link layer function of IEEE 

802.16 (WiMax) [25] and the third generation of mobile networks (3G). 

In this chapter, we introduce a new HARQ technique for reliable and efficient packets 

transfer in wireless environment. In contrast to most HARQ techniques proposed so far, 

which usually employ a byte level FEC combined with ARQ, in our system, we mostly 

use packet level FEC for the data transfer, in conjunction with ARQ to compensate for 

the little inefficiency. It is similar to type I HARQ, except the FEC is applied in higher 

layer, the application layer. The first section provides some reviews of FEC; the second 

section gives a brief description of digital fountain and raptor codes, state-of-the-art 

57 



concepts and the most advanced FEC techniques; detailed system implementation and 

simulation results are presented in the last section. 

3.1 Forward Error Correction 

Forward Error Correction (FEC), also known as Error Correction Code (ECC), is a 

technique generally used to deal with errors and erasures in real time communication 

networks. FEC techniques allow a receiver to correct errors or erasures without further 

communication with the sender. The error correction is "forward" in the sense that no 

feedback from the receiver or further transmission by the sender is required. FEC is 

Figure 3.1: Forward Error Correction 

realized by attaching redundancy to the transmitted source information using a 

predesigned algorithm such as Raptor or Reed Solomon, to realize the errors and correct 

them. Every redundant bit is often a complex function of lots of source information bits. 

The source information may or may not be included in the encoded codes, so FEC codes 

can be divided into two subcategories: Codes that contain the source data after encoding 

are called systematic codes, and those that do not are nonsystematic codes [26]. 
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3.1.1 FEC principles and applications 

In a communication system that employs FEC, the sender sends the source data to the 

encoder. The encoder adds redundant bits to source data to get a longer sequence of 

encoded data, called a codeword. Then the codeword can be transmitted to the receiver, 

which uses a corresponding decoder to obtain the source data. Codewords with a large 

number of redundant bits reduce the information carried by each individual code bit, 

which is helpful because it reduces the probability that all of the source information will 

be lost in a single transmission. However, more redundant bits may require more 

transmission bandwidth and cause packets delivery delay. 

FEC can be classified as error detection codes, error correction codes, and erasure 

correction codes: 

• Error Detection (ED) codes only check whether or not the received data is correct, 

but do not give the methods to locate and correct the errors. It is very important to 

maintain data integrity across lossy channels and undependable storage media, so 

it is widely implemented in all kinds of ARQ schemes to perform Error Detection 

function. Some popular ED codes are: parity check, checksum and CRC. For 

instance, a l 's complement checksum ED code is used in IP data packets to help 

receiver check the integrity of IP header, and in TCP and UDP data packets to 

check the integrity of header and payload data. 

• Error Correction codes not only detect an error but also correct it. For instance, 

block codes or convolutional codes are widely used in various kinds of data 

storage systems and the physical layers of IEEE 802.1 la/b/g wireless LANs. 
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• Erasure Correction codes can correct a certain amount of lost data where the 

positions of the lost data are already known. For instance, raptor codes can 

recover lost packets because they were not received, or errors were detected and 

the packets were discarded. 

Bit Error and Packet Loss 

In digital communication networks, transmitted data may be distorted by the noisy 

channel. At the receiver, each bit is compared with a threshold. If the instantaneous 

amplitude of the noise is high enough at the sampling instant, the bit may be mistakenly 

received, causing a bit error. Bit Error Rate (BER) is the ratio of the number of bit errors 

to the total number of bits sent in a particular time. 

In some unreliable networks, such as IP based networks, there is no guarantee that 

transmitted data will get to the destination. Real time data like encoded video has to be 

decoded and provided to users at a constant speed. If a packet is delayed too long, it is 

considered as a packet loss. The ratio of the number of packet loss to the total number of 

transmitted packets is called Packet Loss Rate (PLR). 

The ratio n/k is usually referred to as the stretch factor of an erasure code. The stretch 

factor represents the proportion of redundancy, where k is the number of only source bits 

and n is the number of total bits per packet, including redundant bits. The extra 

redundancy added by FEC means that more than just the original data is transmitted, 

calling for either a longer transmission time, if the data rate remains the same, or a faster 

data rate thus higher bandwidth, if the transmission time remains the same. However, 

what is interesting is, the extra redundancy can at last save transmission time and 
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bandwidth when compared to the retransmissions that would be required if there is no 

FEC. The primary trade-offs in FEC are the degree of error protection provided by a 

specific algorithm, including the level of latency, encoding and decoding processing, and 

bandwidth extension or extra overhead required to improve resistance to error or loss. 

Because of the complexity of FEC codes, when designing a reliable communication 

systems using FEC, we must pay attention to the processing capability of both of the 

source and destination end. 

FEC applications 

FEC is the crucial element in an incredible range of applications. For example, latency-

sensitive applications like video conferences and applications where the transmitter 

forgets the data right after it is sent, such as most television cameras, as in case of an 

error, the source data is no longer accessible, so FEC is used in data storage systems like 

RAID (Redundant Array of Inexpensive Disks) and distributed data store. 

In conventional packet switching computer networks where full duplex 

communication is available, error correction is performed by using an ARQ protocol such 

as TCP. TCP makes sure that any data which does not get to the final destination is 

retransmitted right away. For real time applications like video, the encoder needs to 

process data stream, so a steady end-to-end delay is required to keep this continuous 

stream of data. In networks with a high bandwidth-delay product, retransmissions of 

packets cause big variation in end-to-end delay, this requires a large buffer at the receiver 

to compensate for the delay effect jitter. However, large buffers not only are pricey but 

also introduce extra delay, which may be a problem for sensitive real time 
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communication like video conferencing. In satellite communication, retransmission is 

also inappropriate since there is little capacity of feed back channel or no feed back 

channel at all. So retransmission mechanism adopted by ARQ has drawbacks such as 

high cost and high delay. In contrast to TCP, UDP adds no loss recovery, reliability and 

flow control features to the lower IP layer. Thanks to its simplicity, UDP headers are 

shorter and use less network resources. UDP is more practical in conditions where the 

reliability is unnecessary, or error and flow control can be further supplemented by a 

higher layer protocol. 

FEC also plays an important role in cellular networks. The 3G cellular network is 

gradually dominating personal communication today. Different cellular networks have 

different channel capability, RRT, frequency allocation and transport protocol 

configuration. Cellular networks are much more affected by data corruption owing to 

various environmental conditions such as the whether conditions and the interference. 3G 

cellular networks provide multiple services and support real-time multimedia services. 

The environments and diversity of wireless situations may significantly have an effect on 

end user performance, so most cellular networks employ FEC techniques in their physical 

layers and there are increasing applications in higher layer as well. 

FEC stands for the most efficient and economical way of improving the reliability of 

data transmission or storage. As bandwidth efficiency and spectrum management are 

drawing increasing attentions, it is getting even more significant to get the most out of 

channel capacity without giving up transmission reliability. 
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3.1.2 The two fundamental FEC codes 

There are basically two fundamental FEC coding techniques: block coding and 

convolutional coding. We briefly review them as follows, without great technical details. 

Block coding 

Block coding used to be the first type of channel coding used in earlier mobile 

communication systems, in which the encoder spreads parity bits into the source data 

sequence with a specific algebraic algorithm, so it can also be called algebraic code. On 

the other end, the decoder uses an inverse of the algebraic algorithm to recognize and 

correct any errors or erasures caused by the poor link quality. In contrast to source coding 

methods like Huffman coding, and channel coding techniques such as convolutional 

encoding, the key feature of block code is that it is a fixed length channel code [27]-[32]. 

k source symbols n encoded symbols 

Any k of the n symbols 
[ -: zzN FEC Decoder 

k source symbols 

Figure 3.2: FEC Block Coding 

As shown on the above figure 3.2, an (n, k) block erasure code converts k source 

symbols into a set of n coded symbols, such that any k of the n encoded symbols can be 

used to reconstruct the source symbols. Generally, the first k symbols in each set are the 

same to the original k source symbols; the remaining n-k symbols are the parity. Usually, 

FEC codes are able to correct both errors and erasures in a block of n symbols. For the 
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transmission of streamed multimedia packets, loss detection is carried out based on the 

sequence numbers in Real time Transport Protocol (RTP) packets, in such case it is 

known as erasure codes. 

Convolutional coding 

Convolutional coding, first introduced in 1955, operates the input bits in streams rather 

than in blocks. Its most important characteristic is that the encoding of any bit is seriously 

affected by the bits that have preceded it, that is to say, the memory of previous bits. The 

decoder takes into consideration the memory when attempting to guess the most likely 

sequence of data that generated the received sequence of code bits. The first type of 

ml mO m-1 

/ T \ (0,1,D 

rr\ (1,0,1) 

m^ 0) 

->• n1 

- • n2 

-*• n3 

Figure 3.3: A rate 1/3 non-recursive, non-systematic convolutional encoder with 

constraint length 3. 

convolutional decoding in history was sequential decoding, which used a systematic 

process to look for a nice estimation of the source data sequence; but such processes 

require a lot of memory, and usually lead to buffer overflow [33]-[37]. 

The above figure 3.3 shows a rate 1/3 (m/n) convolutional encoder with constraint 

length (k) of 3. Generator polynomials are Gl = (0, 1, 1), G2 = (1, 0, 1), and G3 = (1, 1, 
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0). Therefore, output bits are calculated (modulo 2) as follows: nl = mO + m-1, n2 = ml 

+ m-l,n3 =ml + m0. 

Today with the tremendous development of FEC technique, LDPC and Reed 

Solomon codes are the most popular FEC codes proposed in the literature and are often 

recommended in Internet Engineering Task Force (IETF) RTP profiles. The following is 

a very simple review of the two most widely used erasure codes. 

Low Density Parity Check Codes 

Low Density Parity Check (LDPC) codes, invented in the early 60's and had been 

forgotten for about 30 years, was the first code achieving a data transmission rates close 

to the theoretical limit, i.e. the Shannon Limit. Many recent research works have 

considered adopting LDPC code. LDPC codes are defined by a sparse parity check 

matrix. The sparse matrix is usually randomly generated, subject to the sparsity 

constraints. These codes have two major benefits: first, the simplicity of XOR operations 

makes high speed encoding and decoding possible, which is perfect for handheld devices; 

second, LDPC handles very large source blocks. LDPC codes are thought to become a 

standard in the developing market for highly efficient data transmission systems, such as 

cellular networks and interplanetary communication [38]. 

Reed Solomon Codes 

Reed Solomon (RS) codes are a special class of linear non-binary block codes with the 

ability to correct both errors and erasures, and they have been used for almost half a 

century. An RS code provides perfect error protection against packet loss given that it is a 

Maximum Distance Separable (MDS) code, that is to say, no other coding scheme can 
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recover the lost source symbols with fewer received code symbols. According to a 

comparison carried out by the IETF, RS codes are more suitable for small block size and 

real time streams, while LDPC codes work better for large blocks over unidirectional 

channels. In addition to block size constraint, RS codes also suffer from computational 

complexity [39]. 

Even though with the incredible development in recent years, some FEC codes are 

more than ever approaching the Shannon Limit, RS codes are still playing a very 

important rule now, especially for high rate systems with relatively small data packets. 

RS codes have outstanding burst correction capability, so they are broadly used in various 

commercial applications, the ability to correct both random and burst errors is ideal for 

applications such as magnetic tape and disk storage like CDs, DVDs and Blu-ray Discs, 

where the defects in storage media sometimes may cause burst errors. RS codes are also 

deployed in data transmission technologies like DSL and WiMAX, and broadcast 

systems like Digital Video Broadcasting (DVB), so RS codes are perhaps the most 

widely used code. 

3.1.3 Packet level FEC 

Erasure channel 

In an erasure channel, a packet is either lost in the channel, or is perfectly transmitted 

without any corruption. The receiver either gets a packet error free, or loses it in total. 

The Internet is a typical example of erasure channel, where files are transmitted in 

packets, each of which is either lost or perfectly received. 
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Figure 3.4: Erasure channel 

Packet level FEC is a packet loss recovery technique that can recover a certain 

amount of packets after erasure channel. Therefore, no further retransmission is needed in 

systems equipped with packet level FEC, which makes it useful in networks running real 

time applications like video and audio streaming. Packet level FEC techniques are 

generally based on the use of error detection and erasure correction codes, which can 

detect and recover both erasures and bit level errors [40]. 

Existing packet level FEC methods are mostly based on simple parity check codes or 

Reed Solomon codes with erasure decoding, but in this paper we will use the most 

advanced FEC codes called raptor codes. In the standard packet level FEC, k information 

packets are grouped into a block and then attached with r parity packets to create a coded 

block with k + r packets. The parity packets are constructed in a similar way as the parity 

bits in the linear block codes except that bits in the encoding process are from different 

packets. If a packet is lost during transmission, the receiver knows the position of the lost 

packet according to the packet sequence numbers. Even though most wireless networks 

use integrated physical layer adaptive coding and modulation schemes, packet level FEC 

protocols are usually necessary at application level. Wireless communication suffers from 

both short term fast fading and white Gaussian noise, which is solved by the integrated 

67 



physical layer coding; long term slow fading when entering a tunnel, which is solved by 

packet level FEC coding. 

Packet level versus byte level 

FEC can be implemented at many levels from byte level up to packet level. In byte level 

FEC, a symbol is a byte; while in packet level FEC, a symbol is a packet. Byte level FEC 

is implemented at the physical layer of almost all wireless networks. Packet level FEC is 

generally based on erasure coding, it has the advantages such as: byte level FEC is unable 

to recover an entirely lost or delayed packet; a single parity packet can be used to correct 

different single packet losses in a group of packets; in byte level FEC, a corrupted packet 

is already detected and discarded at the link layer by CRC, or at the transport layer by 

checksum, and in IP based network, the network layer will detect corrupted packets due 

to erroneous bits and then discard them, so they will not be available at application level. 

3.2 Digital Fountain and Raptor codes 

Fountain codes, first introduced by Michael Luby [41], are sparse-graph codes for erasure 

channels such as the Internet. Standard file transfer protocols simply divide a file into 

some packets, and then repetitively transmit each packet until it is successfully received. 

There has to be a feed-back channel for the transmitter to know which packets need 

retransmission. In contrast, fountain codes generate potentially limitless packets based on 

some random functions of the entire file, and the transmitter keeps sending packets to the 

receiver without any acknowledgement. Fountain codes are known to have efficient 

encoding and decoding algorithms thanks to the small computational costs, and are able 

to recover the original k source packets from any k' of the encoding packets with high 
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probability, regardless of the order, where k' is just slightly greater than k. A fountain 

code can be considered as an optimal code if the original k source packets can be 

recovered from any k encoded packets. 

Fountain codes were firstly designed for erasure channels, but their performance on 

other channels such as noisy channels and fading channels has since been studied and 

proved to be excellent [42]-[44]. They have also been proved in broadcast and multicast 

in wireless networks [45] and wired local Ethernet networks. 

3.2.1 The Fountain concept and its applications 

The Digital Fountain 

A digital fountain is an abstraction of erasure coding for network communication. 

Imagine you are in front of a water fountain spouting an unlimited stream of water drops, 

any of which can be used to fill your glass, you do not care which drops of water fall in 

as long as you get enough water. Similarly, in communication networks with a digital 

fountain, a user receives encoded packets from one or more servers, once enough 

encoded packets are received, the receiver can rebuild the source data, and which packets 

are used does not matter. 

Digital fountains in effect change the traditional model of communication, where a 

user receives an ordered sequence of packets to get the original data. Without that 

restriction, digital fountains truly improve the efficiency and simplify the data delivery, 

especially when the data is large or is to be sent to many users, making them suitable to 

more kinds of networks than early techniques. Fountain codes can also be called rateless 

codes in the sense that the number of encoded packets that can be generated from the 
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source is potentially infinite. Regardless of the channel quality, we can send as many 

encoded packets as needed in order for the decoder to recover the source data, there is no 

fixed code rate. 

Developments of the Digital Fountain 

As we know in RS codes [39], a data of k symbols can be recovered with any k received 

encoding symbols, so theoretically RS codes can be used to build a practical 

materialization of a digital fountain. Nonetheless, there are quite a few difficulties in 

practice. As an alternative, many implementations of digital fountains are derived from 

variations of LDPC codes [38]. For example, Tornado codes, a type of LDPC codes 

designed for erasure channels [46], was a big step forward towards the development of 

fountain codes. The problem is that the number of encoded packets that will be generated 

must be decided in advance, since the encoding is based on the graph that corresponds to 

the Tornado code. 

LT codes 

LT (Luby Transform) codes [47], near optimal erasure codes invented by Michael Luby, 

are the first full realization and practical implementation of the 'digital fountain' concept. 

LT codes distinctively adopt a simple algorithm based on exclusive-or operations for 

encoding and decoding. Similar to some other fountain codes, LT codes depend on sparse 

bigraphs to achieve high performance in the cost of a little redundancy overhead. 

LT encoding 

Suppose the file to be transferred consists of k packets, the LT encoding process for a 

source file is simply as follows: 

1. Randomly choose the degree d of the packet from a degree distribution, which is the 
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key of LT coding and is carefully designed according to the source file size k. 

2. Choose uniformly at random d distinct input packets, and set the encoding packet to 

be the bitwise exclusive-or of those Vpackets. 

3. Repeat the above two steps until desired number of encoded packets have been 

generated. 

Random d packets 

Figure 3.5: LT encoding 

The above figure 3.5 roughly shows the process. The encoding process describes a 

graph connecting the encoded packets to source packets. If the average degree of this 

degree distribution is much smaller than the file size k, then the graph is sparse. Each 

encoded packet is independently and randomly generated as the exclusive-or of a 

particular subset of the source packets and is transmitted together with the information 

specifying the selected degree and source packets. By this information, the decoder 

knows which specific d source packets were used to generate each encoded packet, 

though the values of the source packets remain unknown until decoding is finished. 

LT decoding 

At the receiver, when using the received encoded packets to recover the packets of the 
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source data, the decoder has to know the degree d and the combination of source packets 

for every encoded packet. There are various methods to pass this information to decoder, 

depending on the applications. For example, it can be passed to receiver straightforwardly, 

or there can be an agreement in advance, where a key is assigned to each encoded packet. 

Source packets 

Encoded packets 

Figure 3.6: The degree distribution of encoded packets 

A key could be the seed of a pseudorandom generator, in that case, the key is randomly 

chosen by the encoder to generate the degree d and the list of source packets used to 

generate the encoded packet, and then the key could be transmitted along with the 

encoded packets. At the receiver, the decoder applies the same key to obtain the degree 

and the list. 

Here we assume that the decoder in some way knows the necessary information to 

complete decoding process, e.g. see figure 3.6. LT decoding can be effectively 

accomplished by so called 'Belief Propagation' (BP) method. A simple description of the 

LT decoding process is shown as follows: 

1. Find an encoded packet t that is connected to only one source packet, say s, i.e., an 

encoded packet with degree one. In case that there is no such packet t, this decoding 

fails. 
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2. Set s=t. Since 5 is the only source that produces t, so t is sure that s has the same 

value. This 'belief starts to propagate. 

3. Add the value of s to all the encoded packets that are connected to s, so as to restore 

their previous values. So s continues to propagate the 'belief to other packets. 

4. Remove all the connections connected to s. 

5. Go back to step 1 until all the source packets are determined. 

Source packets Source packets Source packets 

1 0 

Encoded packets 
(D 

Source packets 

Encoded packets 
(2) 

Source packets 

Encoded packets 
(3) 

Source packets 

H H H 

Encoded packets 
(4) 

Encoded packets 
(5) (6) 

Figure 3.7: An example of LT decoding process 

Here we give a very simple example of the LT decoding process, given that a packet 

contains only one bit. Suppose we received 4 packets, each has the value 1, 1, 0, 0 

respectively, and there are 3 source packets. The decoding process is illustrated in figure 

3.7 as above. 

Through the algorithm described above, we know the basic idea of LT encoding and 

decoding process. Each encoded packet is generated randomly and independently using 

the same degree distribution, thus all received encoded packets are equally important in 
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decoding process. Also because encoded packets can be generated as many as necessary 

simply by repeating the encoding algorithm, LT codes are really fountain codes. The 

complexity of LT codes is directly related to the degree distribution. The smaller the 

average degree is, the less number of exclusive-or operations are performed in each 

encoding and decoding process, and obviously the simpler it becomes. Meanwhile, the 

degree distribution should let the decoder completely recover the whole source block 

with just a little bit more received encoded packets than the total number of source 

packets. 

LT codes design 

The design of the degree distribution is the most crucial part of LT code design. On one 

hand, some packets should have low degree so as to make the decoding process begin and 

to keep it running, and to minimize the computing cost of encoding and decoding 

processes. On the other hand, some rare encoded packet should have high degree, which 

means its degree is close to the total number of packets to make certain that there are no 

source packets that are not connected to any encoded packets. In an LT code, to decode 

successfully, every source packet must be connected to at least one encode packet. At 

each iteration, to be more efficient, generally we would hope that there is only one 

encoded packet that has a single connection with source packet. Also, we would hope that 

the end of each iteration would lead to the come-out of another new packet with single 

connection. This objective is perfectly achieved by Michael Luby with a carefully 

designed degree distribution called robust soliton distribution. The details of this 

distribution design is beyond the scope of this thesis, for more details please refer to [47]. 



3.2.2 Raptor codes 

Raptor code [48] is an excellent development of LT codes. Raptor is a fountain code, so 

there is no limit to the number of encoded packets that can be generated from a given 

source block. As long as sufficient encoded packets are successfully received, no matter 

which specific encoded packets are received or in what order they are received, they can 

be used to recover the source data. Raptor codes are also universal in the sense that they 

operate close to capacity for any erasure channel with erasure probability less than one. 

Rateless erasure code 

Conventional FEC codes generate a fixed number of repair symbols. For example, an 

(220, 190) RS code has a code rate of 190/220 and can generates 220-190=30 repair or 

parity symbols from k=190 source symbols. Comparatively, Fountain codes can generate 

unlimited number of repair symbols without repetition, so generally no fixed code rate is 

applied. Raptor codes are almost an ideal erasure code because they can recover the 

source block from any set of A; received symbols. 

Raptor can be employed at transport layer or higher to provide packet level loss 

protection for communications networks. It is a packet level erasure code that has been 

designed and optimized for effective packet loss recovery, full flexibility and low 

complexity. Raptor provides full flexibility in the sense that, on one hand, Raptor can 

generate as many encoded packets from a source block as required to completely 

eliminate the effects of packet loss; on the other hand, Raptor can generate as few 

encoded packets as desired to control the latency or bandwidth occupation but still 

provide a desired level of packet loss protection, it is up to the requirements of the 
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particular application, namely Raptor codes are able to provide any level of protection 

against any level of packet loss. 

Raptor encoding and decoding 

The core component of Raptor is an LT code, which has relatively good performance but 

the complexity is not linear. Raptor codes use an LT code with average degree about 3. It 

is such a low average degree that some part of the source packets will be unassociated 

and will not be recovered. Therefore in order to get linear complexity, Raptor codes add a 

pre-coding stage prior to LT encoding to produce a little redundancy. A fixed length 

systematic code is used in the pre-coding stage to improve code performance with a little 

Source packets 

Pre-coded packets 

Raptor encoded packets 

Figure 3.8: Raptor coding 

bit extra redundancy. In particular, a low complexity pre-coding algorithm is applied to 

the source packets to create a pre-coded block, and then an LT code is applied on the pre-

coded block to generate unlimited encoded packets. At the receiver, the decoder simply 

applies the inverse procedures: decodes the received encoded packets in the same way as 

LT code, and then uses the recovered pre-coded packets to get the source block. 
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The performance of Raptor has been optimized by careful design of the pre-coding 

algorithm and of the degree distribution used in the LT code, so its complexity increases 

linearly with the source block size and it can completely recover the source block with 

the reception of encoded packets a bit more than the source block size. Raptor is usually 

implemented as software running on a general purpose processor without the need for 

special hardware. Raptor code can achieve very high encoding and decoding speeds on a 

variety of platforms with relatively low processing powers, making it practical for 

various applications and services. Especially, Raptor code is ideal for consumer 

electronics such as cellular phones and PDAs, and no additional supporting hardware is 

needed. 

Raptor versus Reed Solomon 

When used as packet level FEC codes, RS codes become more inefficient and restrictive, 

its quadratic running times are too large for many applications. The major difference 

between Raptor and RS codes is that Raptor codes do not have restraints on source block 

size. Unlike RS codes, the packet size of Raptor codes can be less than or equal to the 

source packet size, it can be as small as necessary. The processing requirement of the 

Raptor code increases linearly according to the source block size, while it increases 

quadratically in RS code. RS codes require to be implemented in hardware at decoder due 

to the relatively high processing requirements. So Raptor code has much faster 

processing speed and needs much less processing requirement than RS code, offers more 

efficient packet loss protection than RS codes. 



Raptor Codes provide full flexibility, offering the option to balance between the 

degree of packet loss protection, processing speed and bandwidth occupation; while RS 

codes suffer from restrictions that decrease their performance and limit their effectiveness, 

optimization in one dimension causes poor trade-offs in other dimensions. 

Raptor and Reed Solomon codes in mobile standards 

Application layer FEC uses FEC codes to protect against IP packet loss, it is a kind of 

erasure code not error correcting code. When used in application layer FEC, an FEC code 

must be strongly specified according to the specific application. So application layer FEC 

often shows pros and cons of different FEC coding technologies. 

Raptor and RS codes are both widely accepted as application layer FEC by various 

mobile standards. In 3GPP MBMS (Multimedia Broadcast Multicast Service), they both 

have been evaluated extensively for both file delivery and streaming, Raptor has been 

selected for both streaming and file delivery; in DVB-H (Digital Video Broadcasting -

Handheld) IP datacast, RS are already used at link layer, Raptor has been evaluated 

extensively and selected for file delivery; in 3GPP2 BCMCS (Broadcast and Multicast 

Service), Raptor will be proposed for both streaming and file delivery. 

3.2.3 Systematic Raptor codes 

Systematic codes are better for some applications. As in real time applications like 

streaming video, when the receiver cannot recover the whole source block because no 

enough encoded packets have been received, but could still show part of the information 

if the code is systematic. First, in order for Raptor coding to be systematic, it needs to be 
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sure that the encoding process is invertible. Raptor codes can then be made systematic by 

first multiplying the input source data with the inverse of the first k columns of the 

generator matrix, which is like the inverse of the encoding process, then applying the 

normal encoding process to the resulting packets, which lets the original source packets 

to be regenerated as the first k output packets of the code. Systematic Raptor code has 

been standardized as the application layer FEC code for the 3 GPP MBMS. 
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Figure 3.9: Systematic Raptor encoding 

3.3 System level simulations for various networks 

According to Michael Luby [49], generally, there is a simple way to estimate the 

performance of raptor codes, that is, if a block consists of more than 200 packets, the 

little inefficiency of the raptor code can be well modeled by the equation: 

Pf(m,k) = 
1 if m < k, 

0.85x0.567m~* if m>k. 
Equation 3.1 
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whereby P/m, k) represents the failure probability of the code with k source packets if m 

packets have been received. Although this equation is quite simple, however, it is the 

foundation of simulation of raptor code, which is an important component of the whole 

simulation system. In [49], some research had been done to prove the accuracy of the 

above equation. Figure 3.10 shows the simulation results from [49] for some selected 

cases and also a graph of the formula. In the figure, the strait line represents the formula; 

it can be shown that for different k, the equation almost perfectly emulates the raptor code 

performance. 

Figure 3.10: Raptor block loss rate for different received overhead m-k, different block 

size k, and channel packet loss rate of 40%. [49] 

Figure 3.11 shows how the probability of successfully decoding a block is affected by 

the number of redundant packets received by the receiver after the erasure channel. It can 

be seen that the success probability increases exponentially with the increasing number of 

received packets. Figure 3.11 shows that for m=k, with no extra redundant packets 

received, it still has a chance of 15% to completely recover the source block; with the 
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number of received redundant packets increasing to 8, that is, for m-k-8, it has a success 

probability of 98.4%; when received 16 redundant packets, that probability goes to 

99.98%, very close to 100%. In the last case, suppose we have a source block size of 

1024 packets, to get a Block Loss Rate (BLR) of 10"3, the received overhead needs to be 

16/(1024+16), which is only about 1.56%. 

Effects of redundancy in raptor code 

4 6 8 10 12 14 

Received redundant packets per block 

Figure 3.11: Effect of received redundancy (m-k) of raptor coding 

3.3.1 Simulation set-up 

The simulation system (Fig. 3.12) is constructed and coded in Matlab. It simulates a 

virtual wireless ad hoc network with static routing scheme. The network is created by 

generating a certain number of random node locations in a limited area, then applying a 

shortest path algorithm to the nodes to get a specific routing scheme. The file to be 

transferred is first split into one or more blocks with the same size, and block is the basic 

processing unit of the error recovery system. The channel access method then simulates a 
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virtual wireless channel access mechanism as if there is an effective Media Access 

Control (MAC) technique like IEEE 802.11 RTS/CTS. Then according to the systematic 

raptor coding procedures described above, the sender encodes the entire source block to 

be 
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Figure 3.12: General flowchart of the simulation system. Note some flowcharts are 

presented in order to show a general structure of the simulation program, so they may not 

be necessarily organized in natural time sequence. 

transferred, generating another set of source block plus a certain amount of redundant 

packets. The number of redundant packets generated to achieve the best performance 

depends on various conditions, such as the Packet Loss Rate (PLR) of the physical 

82 



channel, the desired degree of loss protection, number of intermediate hops all the way to 

destination and the level of Quality of Service (QoS). 

In this simulation, the default mode of packet transfer is application layer FEC based 

on UDP, there is no need of acknowledgements (ACKs), and the sender just keeps 

sending packets whenever it is sure that the channel is free. This saves a great deal of 

media resources, which is extremely important for improving the efficiency of network, 

especially for wireless network with a very limited channel resource shared by many 

wireless users. The sender counts the number of packets it transmits, and stops 

transmitting when a predetermined number of packets for the block have been transmitted. 

However, these packets are probably not all delivered, as some of them might be lost due 

to the lossy channels. Suppose that each packet is error detected, for example, by CRC, 

whose tiny probability of malfunction is ignored. After all of these packets either go 

through the entire path and get to the destination or get lost en route, in a few cases, no 

data packet is lost, so the program will skip over the decoding process and continue on 

next block; however, in most of the cases, some data packets will be lost. Therefore, the 

receiver initiates the Raptor decoding process. If m < k, decoding will fail; otherwise it 

succeeds with a certain probability, depending on the value of m - k. In case of decoding 

failure, we are able to get only a part of the data packets, the program will check the 

sequence gap between the original data packets, record them, and transmit only the lost 

data packets with ARQ. 

For the sake of simulation simplicity and to avoid extensive encoding and decoding 

costs for every end user, our system level simulator employs this equation-based (Eq. 3.1) 

model for Raptor code as an alternative, which significantly accelerates the simulations 
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and saves a lot of simulation time and resources, without losing generality or accuracy of 

simulation. More particularly, to find out that if the raptor decoder would decode a given 

amount m of received packets, a uniformly distributed random variable is sampled and 

compared with Pf in Eq. 3.1. If it is less than Pf, then raptor decoding fails, otherwise it 

succeeds. Detailed description of encoding and decoding processes of raptor codes has 

been presented in previous sections. 

Each packet has a sequence number, the receiver records the sequence numbers of all 

packets that have been lost or received in error. If the block decoding succeeds, the 

process continues working on the next block; in case of failure, the system switches to 

ARQ transfer mode, in which case, only the lost source packets will be delivered by ARQ, 

so together with the already received packets, the receiver will have all the source packets 

in this block at the end, no further decoding is needed. Figure 3.12 shows a general 

system flowchart of the whole idea described above. Detailed description of simulation 

system implementation will be presented in next section. 

To be more efficient, some concerns are ignored in this simulation. For ARQ, we 

ignore the little transmission time and tiny failure probability of ACKs as a convention; 

for Raptor codes, we ignore the processing time of encoding and decoding. As a 

convention, we also ignore the signal propagation delay in all cases. In addition, queuing 

delay is ignored, i.e. the nodes have infinite cache to store packets. However, we instead 

focus on the most important problem in static wireless ad hoc networks - channel 

contention, so we simulate the channel access control with respect of both hidden node 

problem and exposed node problem; also we employ the shortest path algorithm and 

implement routing scheme for the network. 
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3.3.2 Detailed system implementations 

Network Initializations 

Network topology with coverage of 40 meters 
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Figure 3.13: An example, a network of 20 nodes with a node coverage of 40 meters. The 

stars denote the source nodes, with the intermediate stops in the bracket, and the dots 

denote the destination nodes. A line between two nodes means that they are in the 

coverage of each other. The same to all of the following figures. 

As in figure 3.13, to create a network at the beginning, first a certain number of nodes is 

chosen, let us say, 2*U, so there are U source-and-destination pairs. Suppose these nodes 

are located in a certain range of area, say a 100*100 m2 area, and each has a certain 

coverage radius (the value may vary from 30 to 70 meters), generate a random position 

for all of these 2 *U nodes within this area, record the exact locations for each user. Then 
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randomly match them up to U pairs of source-and-destination nodes. According to the 

predetermined radius, connect all the nodes in its coverage for each user, record these 

relations, and make sure every source-to-destination path is connected by either single 

hop or multiple hops. In case that the path cannot be realized, the simulation program will 

modify the network topology. By using the location and connection records, the program 

calculates the shortest path for every pair of source-to-destination nodes according to the 

Dijkstra's algorithm, which is usually the basis of Link State (LS) routing protocols, with 

Open Shortest Path first (OSPF) and Intermediate System to Intermediate System (IS-IS) 

being the most basic ones. A basic principle of Dijkstra's algorithm is given in the 

appendix. 

Channel access method 

This subsystem builds a virtual scheme to simulate Request to send / Clear to send 

mechanism (IEEE 802.11 RTS/CTS), which is used by the 802.11 wireless networking 

protocols to reduce frame collisions introduced by the hidden terminal problem. Both 

hidden terminal problem and exposed terminal problem are taken into account in this 

virtual scheme. Furthermore, the fairness of channel access among wireless users is also 

considered and well implemented. 

In wireless networks, the hidden node problem, see figure 3.14, arises when a node A 

is not in the signal coverage of node B, yet it is in the coverage of the third node C which 

is communicating with the B. This leads to difficulties in media access control. To 

conquer this trouble, handshaking is implemented in conjunction with the Carrier sense 

86 



multiple access with collision avoidance scheme (CSMA/CA). The same trouble exists in 

a Mobile Ad-hoc Network (MANET). 

Hidden Node Problem 
Range of transmission/reception 
of node A 

Rr ** 
: , / » _ttransmiasion / . 

\ -^^F *$s^r *^p? 1 
Node A / « N NodeC / 

' * s ""* -* ̂  — •** 
• Node A is not aware that node B is currently busy 

receiving from node C, and therefore may start its 
own transmission, causing a collision 

Medium Aoa*n In W L A N I 

Figure 3.14: Hidden node problem 

Nevertheless, the exposed node problem, see figure 3.15, occurs when a node is 

prevented from sending packets to other nodes due to an adjacent transmitter. Both of 

these two situations may cause problems, the first one could result in conflicts and the 

latter can lead to an inefficient utilization of wireless channel. 

Exposed Node Problem 
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Node C 

Node B wants to transmit to node C but mistakenly 
thinks that this will interfere with A's transmission to 
D, so B refrains from transmitting (loss in efficiency) 

Medium Acctn In •A-LANi 

Figure 3.15: Exposed node problem 
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During the simulation, the duration of each system iteration is one packet 

transmission time, which can be obtained by dividing packet size with channel capacity. 

The counter of iteration is updated at the beginning of every system iteration, and then 

followed by the reset of node status indicators. There are three node status indicators in 

the simulation system, they are transfer, receive and listen, respectively. A true value of 

transfer means this node is transmitting packets to another node; receive indicates this 

node is receiving packets from another node; listen means that in the range of this node, 

there is another node in the status of 'transfer'. It should be noticed that, a node in the 

status of 'listen' is not necessarily 'receive'; however, if a node is 'receive', it must be 

'listen' as well. 

Iteration update; Status reset; 
Generate random access order 

Buffer checking unit 
Fig.3.17 

Mark itself 'transferring' ; mark all users in 
coverage 'listening' ; mark next hop 'receiving' 

-ARQ- -Raptor-

ARQ transmission 
Fig.3.18 

Raptor transmission 
Fig.3.19 

Block processing unit 
Fig.3.20 

Figure 3.16: Channel access method 

To realize channel access control, in this channel access method, we create a virtual 

mechanism as an effective RTS/CTS scheme. To achieve the fairness of channel access, 
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at the beginning of each system iteration, a uniformly distributed random access order of 

these nodes is generated, and according to this order, all the nodes will have a chance to 

access the channel and will be asked if they have the intention to transfer data and then 

provide related information. If this user is in the process of receiving packets from 

another user, i.e. the value of 'receive* is true, then it will not sense the channel and 

certainly will not compete for channel access. Otherwise, it competes for a chance to use 

the channel to transmit packets. Figure 3.16 is a rough demonstration of channel access 

processes. 

Buffer checking unit 

Before we continue on the channel access process, let us take a moment to understand the 

buffer checking unit, figure 3.17 roughly shows the buffer checking process. The major 

task of this unit is to get a list (let us call it 'checking list') of available data stored in the 

buffer of the node. To achieve that, it checks the data buffers from every source and 

makes sure the following: 

1. This path must have data to transfer, i.e. its buffer is not empty. In particular, the 

corresponding counter is not zero. 

2. The next hop of the data of this path must not be listening to any other node, so there 

would be no conflicts. In particular, the 'listen' of next hop is zero. This overcomes 

the hidden node problem in an effective way, although does not actually deal with it. 

3. Of course, the next hop must not be transferring data. In particular, the 'transfer' of 

next hop is zero. 
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4. Any node in this node's coverage is not receiving from any other nodes. In particular, 

the 'receive' of any node in this node's coverage is zero. This overcomes the exposed 

node problem in an effective way, because this node does not care if its neighbouring 

nodes are 'transfer', but only cares if they are 'receive', as long as they are not 

'receive', there would be no interference. 

Add all paths that need 
to send ACK to the list 

Prepare to transmit: Mark 
itself 'transferring' 

(ToFig.3.16) 

Figure 3.17: Buffer checking unit 

After checking the above conditions, in Raptor mode, the information will be directly 

added to the 'checking list'; while in ARQ mode, it will be added only if this path does 

not need to send or wait an ACK, otherwise the information will be disregarded. After 

checking data buffer from all sources, the program then checks all the sources if they 

need to send an ACK, records this information and adds it to the checking list. The 
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format of the entry is basically like [Source-Destination ID, Next hop ID]. In case that the 

check list is empty, then the system directly goes to the next node in the above mentioned 

random order. Other than that, the real transmit procedure will start. First, randomly 

choose one entry from the checking list and get the Path ID (Source-Destination ID) and 

the next hop ID. Then followed by a serial of status updates: marking itself 'transfer'; 

marking all the neighbouring nodes 'listen'; marking next hop 'receive'. Then by 

checking the value of ARQ indicator 'arq\ goes to 'ARQ transmission'' or 'Raptor 

transmission', which are explained as follows. 

ARQ transmission 

Figure 3.18 shows the rough procedures of ARQ transmission, the fundamental 

mechanism behind is based on the traditional Stop-and-Wait scheme. When it comes to 

ACK succeeds; 
Sender: send_ack=0; 
Receiver: wait ack=0 

Block processing unit 
Fig. 3.20 

Sender: buffer - - 1 ; 
Receiver: buffer ++1 

Sender: send_ack=1; 
Receiver: wait ack=1 

No 

Figure 3.18: ARQ transmission 

ARQ transmission, it first needs to know if it needs to acknowledge the last transmission 

by checking a variable send_ack indicating the status of ACK. If it needs to ACK, we 

assume the failure probability of all ACK transmissions are zero all the time, so the ACK 
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always succeeds. Then it turns off the ACK status indicator of both sender end and 

receiver end, and goes to the block processing unit. If it does not need to ACK, it directly 

transmits the packet, if success, it updates the buffers of both sender and receiver. To 

determine if a transmission succeeds or not, a uniform random variable is sampled and 

compared with the PLR, if it is greater than PLR, then the transmission succeeds, 

otherwise it fails. No matter whether transmission succeeds or fails at the end, the ACK 

status indicator of both sender and receiver will always be set to 'on' to remind the 

receiver that it has to ACK or NAK first, and the sender needs to wait for the results. 

Then it goes to the block processing unit in the following. 

Raptor transmission 

Block processing unit 
Fig.3.20 

Figure 3.19: Raptor transmission 

Raptor transmission is quite simple; figure 3.19 shows its rough procedures. If the 

transmission succeeds, it simply updates the receiver's buffer. Because it is Raptor 

transmission, there is no retransmission, if you fail to transmit a packet, you lose it, so it 
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then updates the sender's buffer no matter it is a fail or success. After that, it goes to the 

block processing unit in the following. 

Block processing unit 

Figure 3.20: Block processing unit 

This unit is mainly for virtual carrier sensing, which is divided into two parts, 

respectively concerning ARQ and Raptor coding. For the ARQ part, if the receiver has 

got all the lost original data packets, this block is finished; it then updates the block 

counter and turns off the ARQ indicator to go back to default Raptor transmission mode. 

It also resets the buffers of both source and destination end, so as to get ready for the next 

block transmission. 
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The Raptor part is more complicated. Given that all the predetermined amount of 

packets has already been transmitted, the system applies the equation-based model (Eq. 

3.1) to get a failure probability for the decoding. If, fortunately, there is no original data 

packets loss, then the program will skip over the decoding process, and the block directly 

succeeds, no need to decode. That is efficient and advisable since decoding might end up 

with a failure. However, generally there are some source packet losses, so here comes the 

decoding. This is rather simple, the program just calls a uniform random number and 

compares it with the probability for this decoding to decide whether it succeeds or fails. 

When Raptor decoding succeeds, it updates the block counter and clears the buffer; when 

Raptor decoding fails, it triggers the ARQ transmission mode, records all the lost data 

packets. After the above processes, if all the file blocks have been processed for the 

subject source-to-destination path, then the system records the total file transmission time 

on this source-to-destination path. Figure 3.20 shows the rough processes of the block 

processing unit. 

3.3.3 Results and contributions 

This section shows a summary of the major contributions and simulation results for 

various sizes of networks. 

The parameters and statistics 

The file size typical value is 512 Kbytes, which is 512*1024*8 bits. Packet size is 512 

bytes, so there are 1024 packets in total. If we consider the whole file as a source block, 

the block size is then 1024 packets. 

94 



Input 

Input parameters include the size of the network, Packet Loss Rate (PLR) and 

redundancy R. The sizes of networks we simulate are 4, 8 and 12nodes. The PLR we used 

in the simulation has the typical values of 10"4, 10"3, 10"2and 10"1. 

The design of the redundancy is a tricky problem because the required redundancy 

crucially depends on the number of hops throughout the source-to-destination path. 

Suppose the block size is B, the minimum required redundancy ratio is Rm, and the packet 

loss rate is P. It is obvious that the expected number of packets received at the destination 

should at least equal to source block size B to make the Raptor decoding work. The 

expected number of packets received by the destination node is Bx(\ + Rm)x(l-P)n, 

where n is the number of intermediate hops. In order to make the raptor code works, the 

minimum redundancy required is when the equation Bx(\ +Rm)x(l-P)n =B holds, 

which gives us: 

R = 1 Equation 3.2 
m Q_py 

Corresponding to this equation, table 3.1 gives the approximate values of the minimum 

required redundancy for different combinations of PLR and number of hops. 

Now, let us investigate a little bit about the actual redundancy R, for a certain path 

with its corresponding Rm, if R < Rm, Raptor code will have no contribution to the 

performance at all, in fact, it even degrades the performance because of useless 

redundancy; on the other hand, if R > Rm, then Raptor code starts working, but when it is 

too high, it becomes meaningless because it has been already enough to make sure the 
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decoding will succeed. From the beginning of this section, according to Eq. 3.1, we can 

get that when Raptor decoder receives 16 extra packets on top of the already existing 

minimum required redundancy, the decoding will succeed with a very high probability of 

Rm&R Ihop 2 hops 3 hops 4 hops R (For all) It (For all) R (For all) 

/V,=15% Pc,-I5% /V,=I5% /V,=15% ^ 9 1 . 2 1 % />c,=99.09% /\-j=99.99% 

/>=io~4 ~ 0 ~ 0 ~ 0 ~ 0 ^i.4-0.39% tf,„+0.78% 7?,,,+1.56% 

p=id3 0.1% 0.2% 0.3% 0.4% tfm+0.39% Rm+0.78% Rm+l.56% 

p=io2 1.0% 2.0% 3.1% 4.1% £.+0.39% Rm+0JS% Rm+l.56% 

p=iol 11.1% 23.5% 37.2% 52.4% tfm+0.39% Rm+0J8% Rm+\.56% 

Table 3.1: The minimum required redundancy Rm and actual redundancy R for different 

situations. Pc\s the success probability of Raptor decoding, and the column of actual 

redundancy R is for all lengths of paths, it is the corresponding Rm plus a certain value. 

Pc= 99.99%. So we have BxR-BxRm=l6, giving us R = Rm + —, for B = 1024, 
B 

R&Rm +1.56%, one can see the difference is very tiny related to the value of Rm 

especially when PLR is high, as in the Table 3.1 above. 

Output 

The efficiency of the 2th source-to-destination path can be derived from this equation: 

r]t = —, where T denotes the total transmission time (in packet transfer time unit) used to 

successfully deliver all the packets in the block, which includes all kinds of factors such 

as channel access, packet loss, redundancy, decoding failure, retransmission and waiting 

for ACK. Thus, the average network efficiency can be calculated as the sum of all the 

single source-to-destination path efficiencies divided by the total number of paths, which 
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V 

_ 2>, 

yields us rj - ——, where £/denotes the total number of source-destination paths in this 

network. 

Contribution 1: The recent FEC-based Raptor coding technique combined with 

ARQ-based selective retransmission method constructs a new hybrid ARQ method, 

which outperforms purely ARQ-based method. 

With the employment of the recent FEC technique, i.e. Raptor code, it is possible to offer 

potentially unlimited redundancy, that is, it can offer any desired amount of redundant 

packets. Without having to acknowledge for every transmission, hybrid ARQ can avoid 

the extremely strong channel contention among wireless users, so it brings great 

improvement. In addition, with the selective retransmission, the sender only needs to 

retransmit some of the lost packets, the lost data packets, without wasting time on the lost 

repair packets. This effect becomes more noticeable in larger networks, because the 

channel contention becomes even stronger and the advantage of no need to acknowledge 

is greater, see Figure 3.22 - 3.25, 3.27 - 3.30 and 3.32 - 3.35. 

Here are some selected results from lots of simulations to show the effects mentioned 

above. Figure 3.21 shows the network topology of a small 4-user network, with the node 

coverage radius of 50 meters. It has two source-to-destination paths: 2 - 4 and 3 - 4 - 1 . 

Figure 3.22 - 3.25 show the performance comparisons between this hybrid ARQ and 

pure ARQ under different channel conditions, it can be seen that the improvement is huge, 

almost twice as the pure ARQ. 
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Network topology with coverage of 50 meters 
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Figure 3.21: A small 4-user network 

It should be noted that for the Raptor coding system used in hybrid ARQ, the 

redundancy has to reach a certain minimum required redundancy value Rm as listed in 

Table 3.1, so as to make the decoding work. Before reaching this value, the redundancy 

does not make any contributions to the performance. On the contrary, it actually 

decreases the performance because of the extra transmissions and waiting for channel 

access. This can be shown in many figures like Figure 3.22 - 3.25, 3.27 - 3.30 and 3.32 -

3.35. It is more obvious when PLR is high, such as in Figure 3.25, 3.30 and 3.35, one can 

see that all the curves go down at first, start to go up at a certain point and then reach a 

maximum at some point. 
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Figure 3.22: Efficiency comparison between hybrid ARQ and pure ARQ 
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Figure 3.23: Efficiency comparison between hybrid ARQ and pure ARQ 
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In the hybrid ARQ, when the redundancy becomes very high, the success probability 

of Raptor decoding reaches a very high value which is very close to 100%, and keeps 

approaching it unlimitedly. At certain point, it will be high enough that the extra 

redundancy becomes useless, so the performance will gradually decrease. This can be 

shown in many figures like Figure 3.22 - 3.25, 3.27 - 3.30 and 3.32 - 3.35. 
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Figure 3.24: Efficiency comparison between hybrid ARQ and pure ARQ 
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Figure 3.25: Efficiency comparison between hybrid ARQ and pure ARQ 
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Figure 3.21 shows the network topology of an 8-user network, with the same node 

coverage radius of 50 meters. It has four source-to-destination paths: 8 - 1 - 2 , 1 - 5 - 7 , 

6 - 2 - 3 and 4 - 5 . Figure 3.27 - 3.30 show the performance comparisons between this 

hybrid ARQ and pure ARQ under different channel conditions, it can be seen that the 

improvement is still very big, although not as huge as the 4-user network. Also, it should 

be noticed that the performance decreases significantly compared with 4-user network, 

this makes sense because in larger network, the channel contention is stronger, so it 

means fewer chances of channel access and thus more waiting time. 
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Figure 3.27: Efficiency comparison between hybrid ARQ and pure ARQ 
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Figure 3.29: Efficiency comparison between hybrid ARQ and pure ARQ 
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Another key point the figures are showing is that, the minimum redundancy required 

for Raptor decoding to work varies significantly from path to path, that is, it greatly 

depends on the length of paths (number of hops throughout the path), and the difference 

can be considerably huge, as in Table 3.1. In order to show this difference, in many 

figures, not only the average network performance is plotted, but also the average of each 

length of paths. This can be explicitly shown in figures with high PLR, such as Figure 

3.25, 3.30 and 3.35. 
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Figure 3.30: Efficiency comparison between hybrid ARQ and pure ARQ 

Let us take 3.30 as an example, in Figure 3.30, the curve with square notation on the 

top represents the average over all single paths. First, at 6% redundancy, it goes down, 

because it has not reached its minimum required redundancy Rm, which should be around 

11.1% according to Table 3.1. Then at 13% redundancy, it goes up, gets to the maximum 
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and gradually goes down afterwards. The performance of paths with 2 hops is represented 

by the curve with circle notation on the bottom. Similarly, it first goes down and keeps 

going down until it reaches its Rm, which again according to Table 3.1 is about 23.5%. It 

experiences a great raise at the point 25% and gets to a maximum at 26% redundancy and 

gradually goes down afterwards. The dashed curve with star notation in the middle is the 

average over all paths, so it reflects the effect of combination: it first goes down, and goes 

up a little bit after 13% redundancy, that makes sense because all the paths with single 

hop start to benefit from Raptor decoding; then there is a big raise after 25% redundancy 

and a maximum at 26%, then gradually goes down afterwards. 

Network topology with coverage of 40 meters 
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Figure 3.31: A 12-user network 

Figure 3.31 shows the network topology of a 12-user network, with the node 

coverage radius of 40 meters. It has six source-to-destination paths: 6 - 7 - 1 1 - 2 , 7 - 1 1 
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- 12, 4 - 5 - 12 - 10, 3 - 4 - 9 - 11, 5 - 9 - 1 and 8 - 9. Figure 3.32 - 3.35 show the 

performance comparisons between this hybrid ARQ and pure ARQ under different 

channel conditions, still, that the improvement is great. It can be noticed that the 

performance continues to decreases further compared with 8-user network, caused by the 

same reason explained before. 
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Figure 3.32: Efficiency comparison between hybrid ARQ and pure ARQ 
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Efficiency @ 12 users Network & PLR=1E-3 
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Figure 3.33: Efficiency comparison between hybrid ARQ and pure ARQ 
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Figure 3.34: Efficiency comparison between hybrid ARQ and pure ARQ 
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Efficiency @ 12 users Network & PLR=1E-1 
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Figure 3.35: Efficiency comparison between hybrid ARQ and pure ARQ 

Figure 3.36 - 3.38 are plotted in order to show the comparison from another angle. It 

can be shown that the performance goes down when the PLR becomes high, which 

makes sense, as the channel quality is getting worse. It should be noted that, for the 

curves of hybrid ARQ, each value represents the maximum value of a certain case and 

the dashed curve with star notation is not the average of the other two curves, it is the 

maximum of average over all paths. Simply speaking, it is the maximum of averages, not 

the average of maximums. 
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Efficiency comparison @ 4-user Network 
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Figure 3.36: Maximum efficiency comparison under different PLRs 
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Figure 3.37: Maximum efficiency comparison under different PLRs 
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Figure 3.38: Maximum efficiency comparison under different PLRs 

Contribution 2: Adaptive redundancy design helps to achieve the best average 

network performance and to improve the redundancy efficiency. 

The adaptive redundancy allows us to dynamically assign each path a certain amount of 

redundancy that is best suited for this path. As shown in the above Table 3.1, the 

redundancy required to achieve the best performance varies significantly with the length 

of the path, i.e. the number of hops throughout the source-to-destination path. 

Consequently, a uniform redundancy is not suitable for all paths. Especially in the case of 

high PLR, when it is good for one path, it then either dose not reach the minimum 

required redundancy for other paths, or it is too high for other paths, becoming useless 

extra redundancy, which also degrades the performance. With adaptive redundancy, it 

would be possible for every path to reach its own maximum performance, because every 
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one of them is using the best suited redundancy. Therefore, it provides the best average 

network performance. This effect is more noticeable in high PLR, and fades away when 

PLR becomes low, see Figure 3.42. 
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Figure 3.39: Efficiency comparison between adaptive and uniform redundancy 

Figure 3.39-3.42 show the performance comparisons between adaptive and uniform 

redundancy, one can see noticeable improvements in these figures. For example, in 

Figure 3.40, the dotted curve with diamond notation is the performance with adaptive 

redundancy design; it is obvious that all the sampled points from this curve are above the 

dashed curve with star notation, representing the average performance with uniform 

redundancy, namely they have better performance. In addition, the performance with 

adaptive redundancy not only has a higher maximum, but also reaches its maximum with 

less average redundancy. 
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Efficiency @ 8 users Network & PLR=1 E-1 

13 14 16 18 

Redundancy(%) 

Figure 3.40: Efficiency comparison between adaptive and uniform redundancy 
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Figure 3.41: Efficiency comparison between adaptive and uniform redundancy 
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Efficiency @ 4 users Network & PLR=1E-2 
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Figure 3.42: Efficiency comparison between adaptive and uniform redundancy 

Figure 3.42 shows the comparison at a lower PLR, as mentioned above, the effect of 

improvement decreases. It can be seen that only a few points are above the average 

performance without adaptive redundancy. The reason is that at low PLR, the difference 

among the values of minimum required redundancy for different lengths of path is not big 

enough. In other words, the gaps are small so that there is no much waste of redundancy. 

Finally, a little trick is that the selective decoding at low redundancy and low packet 

loss rate saves Raptor decoding time and improves the efficiency. Thanks to systematic 

Raptor coding technique, it is possible to receive original source packets as output of 

encoder. Hence, in the case of low PLR, for a certain block size, it is very likely to 

successfully receive all the original source packets in a block, while still losing some 

repair packets. In this case, if we still perform the regular decoding process, then there 
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would be a certain failure probability, so this technique skips over the decoding process 

and continue on the next block, without regard to other repair packets. This effect can 

only be found obvious in low redundancy and low PLR environment, and it fades away 

with the redundancy and PLR increases. In particular, to make sure all the original 

packets will succeed, a simple sense is that as long as BxP <l, namely, P is less than—, 

B 

this technique will make a little improvement on performance, otherwise it makes no 

difference. Therefore, in our case, for 5=1024 and P=10"4, we have S x ? « 0 , l < l , so 

the technique is suitable for this case. It should be found effective in practice, in terms of 

saving the decoding time, which is not considered in this simulation, so it is not proved in 

this thesis. 
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Chapter 4 

Comparison and Conclusion 

4.1 Comparison 

It is difficult to directly compare our results with others, because many factors are 

considered in our simulation. There are mainly three reasons for this: 

First, research from most papers does not include the impact of channel contention, 

which makes a strong impact on the performance. Since in a wireless network, wireless 

users transmit data in a manner of broadcast due to the nature of radio signal, so they 

share a common media resource, and there is also channel interference. As a result, they 

cannot access the channel whenever they want; instead they have to access the channel 

according to a certain channel access control scheme. Therefore channel contention 

significantly degrades the performance of all the users, and becomes even worse when 

the number of wireless users increases in the network. 

Second, research results from most papers usually only study the performance of 

single hop. In our simulation, we study the end-to-end performance in a network, that is 

to say, there are many paths with multiple hops. This simply increases the total time 

needed to deliver a certain amount of data, thus decreases the performance of an 

end-to-end path. Additionally, as explained before, every node within the same path also 
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suffers from the channel contention. This further degrades the performance of each path. 

Third, most of previous research generally evaluates network performance in terms of 

throughput, which is usually defined as the gross bit rate transferred physically, that 

means every physically successfully delivered bit is taken into account, including 

protocol overhead, retransmitted data packets etc. Throughput is typically measured at a 

reference point below the network layer and above the physical layer. However, in our 

case, performance is measured in terms of goodput, which is application layer level 

throughput, i.e. from end-user's point of view, the number of useful bits per unit of time 

forwarded by the network from a source to a destination. In other words, goodput is the 

net achieved average bit rate delivered to application layer, excluding all lower protocols 

overheads, data retransmissions. Therefore, goodput is usually lower than throughput. 

TCP goodput vs. wiratoss link error rate 
on a 2 Mb/s vrirctess Hnk 
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Figure 4.1: Performance of a typical proactive scheme (TCP-Jersey) and a typical 

reactive scheme (TCP-Reno) in the wireless environment [50] 

However, it is still worth to compare our simulation results with others' in a certain 

way. Although it is hard to find a result based on the exact same situation as ours, we can 

still find some results with similar conditions to compare with and see the improvement 
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in a certain way. The efficiency rj in our results is like the normalized goodput, so 

multiply it with a certain channel capacity would give us a certain goodput which we can 

compare with others, below are a few examples. 

Figure 4.1 is a result from [50], it shows the TCP goodput under different channel 

qualities on a 2Mbps wireless channel. In Figure 4.1, for PLR=1E-1, a typical proactive 

scheme TCP - Jersey gets a goodput about 500 Kbps, and a typical reactive scheme TCP 

- Reno gets a goodput less than 100 Kbps. In our case, from Figure 3.25 we can see that 

under the same channel quality (PLR=1E-1), we can achieve a goodput more than 

2000*30% = 600 Kbps with single hop, and a goodput more than 2000*28% = 560 Kbps 

with two hops. Both paths achieve a better performance than either of the two TCP 

enhancements, even with the channel contention and multi-hop effects taken into account. 
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Figure 4.2: Throughput vs. error rate of the wireless link [20] 

Another example is in Figure 4.2 from [20], it is under a wireless channel of 2 Mbps, 
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and it is measured in terms of throughput. In Figure 4.2, for PLR=lE-2, TCP Reno and 

TCP SACK have the similar throughput about 0.25 Mbps, and TCP Westwood has a 

throughput of 0.7 Mbps. In our case, from Figure 3.24 we can see that under the same 

channel quality (PLR=lE-2), we can achieve a goodput at least 2*35.5% = 0.71 Mbps 

with single hop, and a goodput about 2*33% = 0.66 Mbps with two hops. Both paths 

achieve a better performance than all of the TCP enhancements except the two-hop 

performance is slightly lower than TCP Westwood, even with the channel contention and 

multi-hop effects taken into account, and ignoring the difference between goodput and 

throughput. 

4.2 Conclusion 

This thesis first presented a general introduction of wireless LANs and wireless ad hoc 

networks, and discussed some developing wireless LAN techniques. We discussed TCP 

fundamentals and some basic problems when TCP is used in wireless environments, and 

then some proposed improvements focusing on these problems were suggested. We 

included a review of FEC, followed by a brief description of digital fountain and raptor 

codes, state-of-the-art concepts and the most advanced FEC techniques. Then we 

introduce a new HARQ technique for reliable and efficient packets transfer in wireless 

environment. In contrast to most HARQ techniques proposed so far, which usually 

employ a byte level FEC combined with ARQ, in our system, we mostly use packet level 

FEC for the data transfer, in conjunction with ARQ to compensate for the little 
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inefficiency. It is similar to type IIHARQ, except the FEC is applied in a higher layer, i.e. 

the application layer. We also introduce the notion of adaptive redundancy networks 

which helps to achieve better average network performance and to further improve the 

redundancy efficiency. We also use selective decoding at low packet loss rate improves 

efficiency, which is useful in practice. Finally, although it is hard to find a result based on 

the exact same situation as ours, we still find some results with similar conditions to 

compare with and see the improvement in a certain way. 

4.3 Future works 

In the near future, a more complicated simulation system is expected so that we can 

simulate all kinds of conditions more accurately, so more concerns should be taken care 

of. In particular, for example, instead of using a simple equation based model, we can 

develop a more complex way to better simulate the efficiency of Raptor coding, including 

the effects of encoding and decoding processing times. In addition, we may look forward 

to develop a better way to balance the trade-off between FEC and ARQ techniques, so 

that we can make the most use of both and achieve better performance. 
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Appendix 

A.l A basic description of Dijkstra's algorithm 

1. Create a distance list, a previous vertex list, a visited list, and a current vertex. 

2. All the values in the distance list are set to infinity except the starting vertex which is 

set to zero. 

3. All values in visited list are set to false. 

4. All values in the previous list are set to a special value signifying that they are 

undefined, such as null. 

5. Current vertex is set as the starting vertex. 

6. Mark the current vertex as visited. 

7. Update distance and previous lists based on those vertices which can be immediately 

reached from the current vertex. 

8. Update the current vertex to the unvisited vertex that can be reached by the shortest 

path from the starting vertex. 

9. Repeat (from step 6) until all nodes are visited. 

A.2 Source code selections 

A.2.1 Network Initialization and Routing 

%% All kinds of parameter set-up. 
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U=8; % Number of source-to-destination pairs < « U=[2 4 6 8 10] 

nNodes=2*U; % Number of nodes 

area=100; % The area 

radius=40; % Coverage radius of a node[10-100] 

node.cover=zeros(nNodes,nNodes); % Nodes in coverage 

% node.v=rand(nNodes,l)*nNodes; % User speed ranges from 0 to 20 m/s(72 km/h) 

% node.theta=rand(nNodes,l)*pi*2; % random movement directions 

%% Initial environmental setups. 

newplot 

hold on 

grid on 

xlabel('X (meters)Vfontsize', 14) 

ylabel('Y (meters)Vfontsize', 14) 

title('\bf {Network topology with coverage of 40 meters}','fontsize', 14) 

% Generate users randomly distributed in a area* area square 

% Randomly match nNodes users up into pairs 

node.pos=rand(nNodes,2)*area; 

aNode=l :nNodes; 

x=nNodes; 

tx=zeros(l,U); 
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rx=zeros(l,U); 

fori=l:U 

n=ceil(rand*x); 

tx(i)=aNode(n); 

aNode(n)=[]; 

x=x-l; 

n=ceil(rand*x); 

rx(i)=aNode(n); 

aNode(n)=[]; 

x=x-l; 

end 

pairs=[tx;rx]; 

%% A check-up, and connect the network. 

% Check the network connectivity. 

iso_counter=zeros(nNodes, 1); 

DD=zeros(nNodes,nNodes); 

fori=l:nNodes 

for j=l:nNodes 

ifi—3 

DD(i j)=nDist(node.pos(i, 1 ),node.pos(i,2),... 

node.pos(j,l),node.pos(j,2)); 
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if DD(iJ) < radius 

iso_counter(i)=iso_counter(i)+1; 

m=[node.pos(i,:);node.pos(j,:)]; 

plot(m(:,l),m(:,2),'g','linewidth',l) 

node.cover(i,j)=j; 

node.cover(j,i)=i; 

end 

end 

end 

if ~iso_counter(i) 

disp(sprintf('Node %d is isolated',i)) 

disp(node.pos(i,:)) 

end 

end 

if any(iso_counter==0) 

disp(sprintf('Number of isolated nodes is %d', sum(iso_counter==0))) 

else 

dispCNo isolated nodes, A_A') 

end 

%% Transform the parameters to the inputs of function so as to make it work 

nodes=[(l :nNodes)' node.pos]; 
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routes=[]; 

fori=l:nNodes-l 

forj=i+l:nNodes 

if node.cover(ij) 

routes=[routes;[i j]]; 

end 

end 

end 

Q=size(routes); 

nSeg=Q(l); %Number of undirectional segments 

% Another way to get nSeg: 

%nSeg=(sum(sum(node.cover~=zeros(nNodes,nNodes)))-nNodes)/2; 

segments=[(l :nSeg)' routes]; 

%% Apply dijkstra to get the shortest paths 

distances=[pairs;zeros(l ,U)]'; 

paths={[]}; 

fori=l:U 

[d,p]=dijkstra(nodes,segments,pairs(l,i),pairs(2,i)); 

distances(i,3)=d; 

paths {i,l}=p; 

disp(['Path ' num2str(i)': ' num2str(paths{i})]) 

129 



end 

for i=l:nNodes 

if any(i==tx) 

y=fmd(i=:=tx); 

text(node.pos(i,l),node.pos(i,2),[' ' num2str(i)'('... 

num2str(paths{y}(2:end)),)'],'color,;r,
v.. 

'fontsize', 12,'fontweight',V) 

plot(node.pos(i,l),node.pos(i,2),'p',... 

'markersize', 12,'markerfacecolor','r','markeredgecolorVr') 

else 

text(node.pos(i,l), node.pos(i,2), [' ' num2str(i)],... 

'colo^V/fontsiz^U/fontweightVb") 

plot(node.pos(i, 1 ),node.pos(i,2),'o',... 

'markersize',8,'markerfacecolor','bVrnarkeredgecolor','b') 

end 

end 

hold off 

A.2.2 The Hybrid ARQ System 

%% All kinds of parameters set-up. 

tic 
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file=.5*8*2A20; % File size is 512 Kbytes 

nBits=512*8; % 512 bytes per Packet 

nPackets=ceil(file/nBits); % Number of packets 

blk_size=1024; % Number of packets per blocks 

PLR=.0001; % The Packet Loss Rate 

% PLR=logspace(-4,-l,4); 

lplr=length(PLR); 

% rp=0:.002:.018; % For le-4 

rp=0:.001:.009;% For le-4 

% rp=[0 .004 .008 .012 .014 .016 .018 .02 .022 .024]; % For le-4 

% rp=[0 .004 .008 .012 .016 .02 .024 .028 .032 .036]; % For le-3 

% rp=[0 .01 .015 .02 .025 .03 .035 .04 .045 .05]; % For le-2 

% rp=[0 .1 .15 .2 .25 .3 .4 .42 .44 .46]; % For le-1 

%rp=[0 .06 .13 .14 .16 .18 .25 .26 .28 .3]; % For le-1 

REDUN=ceil(blk_size*rp); % Adjust Redundancy!!! < « — 

lrd=length(REDUN); 

nBlocks=nPackets/blk_size; 

bITER_PATH=zeros(lplr,U,lrd); 

bBLK_FAIL=zeros(lplr,U,lrd); 

bAPD=zeros(lplr,U,lrd); 

bVAPD=zeros(lplr,U,lrd); 
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bEFF=zeros(lplr,U,lrd); 

%% Main3... 

forl=l:lrd 

redun=REDUN(l); 

nCoding=ones(l,U)*(blk_size+redun); 

ITER_PATH=zeros(lplr,U); 

BLK_FAIL=zeros(lplr,U); 

APD=zeros(lplr,U); 

VAPD=zeros(lplr,U); 

EFF=zeros(lplr,U); 

fork=l:lplr 

plr=PLR(k); % Packet Loss Rate [le-3 to .3] « < - - -

%% Main 

iter=0; 

iter_path=zeros(l,U); % Counter of each path 

b_counter=zeros(l,U); % Block counter 

node.buffer=zeros(nNodes,U); 

pdec=zeros(U,nBlocks); % Probability of decodings 

pkt_delay={}; 

pkt_start={}; % For packet delay record 

pkt_start2=:{}; % For ARQ packet start time 
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nh=zeros(l,U); % Number of hops on the path 

fori=l:U 

node.buffer(tx(i),i)=nCoding(i); % Fountain code source 

pkt_delay{i}=[]; % For packet delay record 

pkt_start{i}=[]; 

nh(i)=length(paths {i})-l; 

end 

pkt_fail=zeros(l,U); % Packet fail counter 

blk_fail=zeros(l,U); % Block fail counter 

rs=blk_size*ones(l,U); % Remaining Source packets 

lsi=ones(l,U); % Last source packets indicator 

fff=ones(l,U); % Point to delay 

sss=ones(l,U); % To point the next gone packet in ARQ 

gone=ones(l,U); % Gone indicateor 

arq=zeros(l,U); % ARQ indicator 

send_ack=zeros(nNodes,U); 

wait_ack=zeros(nNodes,U); 

while any(b_counter < nBlocks) % Received all the blocks? 

iter=iter+l; % Iteration counter 

% disp([' ********* j | - e r > num2str(iter)' *********']) 

transfer=zeros(l,nNodes); % Free all nodes to transfer 
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listen=zeros(l,nNodes); % Free all nodes to listen 

receive=zeros(l,nNodes); % Free all nodes to receive 

rand_order=get_order(nNodes); % Get random order 

% disp(['Random Oder:' num2str(rand_order)]) 

for i=l :nNodes % Virtual RTS/CTS begin... 

x=rand_order(i); % The node number to be polled 

z=[]; % To store node number which has data 

if receive(x) % Make sure it's not receiving 

% disp(['Node ' num2str(x)' is receiving data, cannot transfer']) 

else % Not receiving... 

for j=l :U % Check out buffers to get 'z' 

if node.buffer(xj) && rx(j)~=x % Having data 

nxt_hop=paths{j}(find(x==paths{j})+l); % Next hop 

if ~listen(nxt_hop) && ~transfer(nxt_hop) && ... 

~any(receive&node.cover(x,:)) 

% Next hop available & no interf. 

if ~arq(j) % FEC? 

z=[z;[j,nxt_hop]]; % All possible senders 

elseif ~wait_ack(x,j) && ~send_ack(x,j) 

% Not waiting for ACK and no need to ACK 

z-[z;[j,nxt_hop]]; % All the possible senders 
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else 

% disp(['Buffer of path ' num2str(j)' on node '... 

% num2str(x)' is waiting for ACK']) 

end 

end 

end 

end 

y=size(z); 

forj=l:U 

if send_ack(x,j) 

nxt_hop=paths{j}(fmd(x==paths{j})-l); % Next hop 

if ~listen(nxt_hop) && -transfer(nxthop) && ... 

~any(receive&node. cover(x,:)) 

z=[z;[j,nxt_hop]]; 

end 

end 

end 

if isempty(z) % No data? 

% disp([' Node ' num2str(x) ' has no packets or may cause interf.']) 

else % Having data and finally can transmit @@@ 

transfer(x)=l; % Make itself'transfer' 
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listen=listen+node.cover(x,:); 

% Make all nodes in coverage 'listen' 

q=ceil(rand*length(z(:, 1))); 

% Randomly choose one buffer !!! 

receive(z(q,2))=l; % Make the next hop in receive status 

pid=z(q,l); % Get the Path ID 

if arq(pid) % ARQ mode 

i fq>y( l )%ACKTx 

send_ack(x,pid)=0; % ACK finished 

lst_hop=paths {pid} (fmd(x===paths {pid})-1); 

% Last hop 

wait_ack(lst_hop,pid)=0; % ACK finished 

% disp(' ACKed') 

else % Normal Tx 

if x = tx(pid) && gone(pid) 

% A source and first time 

pkt_start2 {pid} (sss(pid))=iter-1; 

% Get the start time 

gone(pid)=0; 

% disp(['The ' num2str(sss(pid)) 'st packet sssss @ 

% num2str(iter-1)' @ path ' num2str(pid)]) 
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end 

if rand > plr % Transmit success! 

node.buffer(x,pid)=node.buffer(x,pid)-1; 

node.buffer(z(q,2),pid)=node.buffer(z(q,2),pid)+l; 

if x = tx(pid) % A source 

gone(pid)=l; % Indicate that it's gone 

sss(pid)=sss(pid)+l; 

end 

if z(q,2) == rx(pid) % The last hop! 

pkt_delay{pid}=[pkt_delay{pid} iter-pkt_start2{pid}(fff(pid))]; 

fff(pid)=fff(pid)+l; 

% disp([The' num2str(fff(pid)) 'st packet fffff @ 

% num2str(iter) ' @ path' num2str(pid)]) 

end 

% disp(['ARQ: Packet success from ' num2str(x) 'to '... 

% num2str(z(q,2))' on the' num2str(pid) 'th path @@@@@']) 

else % Transmit fail! 

% disp(['ARQ: Packet fail from ' num2str(x) ' to ' ... 

% num2str(z(q,2))' on the ' num2str(pid) 'th path ###']) 

end 

send_ack(z(q,2),pid)=l; % Have to ACK! 
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wait_ack(x,pid)=l; % Have to wait! 

% dispC ACKing') 

end 

else % Raptor mode 

xsn=find(x==paths {pid}); 

% X's sequence number in this path 

if x = tx(pid) % This node is a source 

pkt_start {pid}=[pkt_start {pid} iter-1 ]; 

% Get the start time 

end 

node.buffer(x,pid)=node.buffer(x,pid)-1; 

if rand > plr % Transmit success! 

node.buffer(z(q,2),pid)=node.buffer(z(q,2),pid)+1; 

ifz(q,2)==rx(pid) 

% Next hop is a destination node 

pkt_delay{pid}=[pkt_delay{pid} iter-pkt_start{pid} (1)]; 

pkt_start{pid}(l)=[]; 

end 

% disp(['Raptor: Packet success from ' num2str(x) 'to '... 

% num2str(z(q,2)) ' on the ' num2str(pid) 'th path @@@']) 

else % Transmit fail! 
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% disp(['Raptor: Packet fail from ' num2str(x) 'to '... 

% num2str(z(q,2))' on the ' num2str(pid) 'th path ###']) 

pkt_fail(pid)=pkt_fail(pid)+l; 

pkt_start{pid}(l)=[]; 

end 

if xsn == lsi(pid) % Last source? 

rs(pid)=rs(pid)-l; 

while -rs(pid) && lsi(pid)<length(paths{pid}) 

nxt_hop=paths{pid}(lsi(pid)+l); % Next hop 

rs(pid)=node.buffer(nxt_hop,pid); 

lsi(pid)=lsi(pid)+l; % Next 

end 

end 

end 

end 

end 

end % Virtual RTS/CTS finished! 

for i=l :U % Check if ready for ARQ or Raptor decoding 

if b_counter(i) < nBlocks % Not finished yet? 

ifarq(i)% ARQ part!!!!! 

if node.buffer(rx(i),i) == blk_size-rs(i) && ... 
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~sum(wait_ack(: ,i)) 

arq(i)=0; 

b_counter(i)=b_counter(i)+l; 

node.buffer(rx(i),i)=0; 

node.buffer(tx(i),i)=nCoding(i); 

pkt_fail(i)=0; 

beep; % Alert! 

rs(i)=blk_size; % Remaining Source packets 

lsi(i)=l; % Last source packets indicator 

fff(i)=l;% Point to delay 

sss(i)=l; 

gone(i)=l; 

disp(['ARQ: The' num2str(b_counter(i)) ... 

'th block succeeded @ Rx ' num2str(rx(i))]) 

disp(['*** iter' num2str(iter)' @ PLR ' ... 

num2str(PLR(k))' & REDUN ' num2str(REDUN(l))' ** 

end 

elseif sum(node.buffer(: ,i))==node.buffer(rx(i),i) 

% Raptor decoding 

disp(['Raptor: Got' num2str(node.buffer(rx(i),i))... 

' packets, decoding @ Rx ' num2str(rx(i))'...']) 
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Pd=.85*.567A(node.buffer(rx(i),i)-blk_size); 

% Failure probability 

pdec(i,b_counter(i)+1 )=( 1 -Pd)* 100; 

if rs(i) == blksize % No original packets lost 

%if0 

b_counter(i)=b_counter(i)+l; 

node.buffer(tx(i),i)=nCoding(i); 

beep % Alert! 

rs(i)=blk_size; % Remaining Source packets 

lsi(i)=l; % Last source packets indicator 

fff(i)=l;% Point to delay 

sss(i)=l; 

gone(i)=l; 

disp(['Directly: The ' num2str(b_counter(i))... 

'th block succeeded @ Rx ' num2str(rx(i))]) 

elseif rand > Pd % Decoding success 

b_counter(i)=b_counter(i)+l; 

node.buffer(tx(i),i)=nCoding(i); 

beep % Alert! 

rs(i)=blk_size; % Remaining Source packets 

lsi(i)=l; % Last source packets indicator 
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fff(i)=l;% Point to delay 

sss(i)=l; 

gone(i)=l; 

disp(['Raptor: The' num2str(b_counter(i))... 

'th block succeeded @ Rx ' num2str(rx(i))]) 

else % Decoding fail 

arq(i)=l; % Trigger ARQ for this path 

lpkt=blk_size-rs(i); % Number of lost original packets 

node.buffer(tx(i),i)=lpkt; 

pkt_start2 {i}=zeros(l ,lpkt); 

blk_fail(i)=blk_fail(i)+l; 

disp(['Raptor: The ' num2str(b_counter(i)+l)... 

'th block decoding failed @ Rx ' num2str(rx(i))]) 

disp('$$$$$ ARQ triggered $$$$$') 

disp(['$$$ ' num2str(lpkt)' lost original packets will be ARQed']) 

end 

node.buffer(rx(i),i)=0; % This block finished 

disp(['*** iter ' num2str(iter) ' @ PLR '... 

num2str(PLR(k))' & REDUN ' num2str(REDUN(l))' ***']) 

pkt_fail(i)=0; 

end 
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if b_counter(i) — nBlocks % All done on this path 

iter_path(i)=iter; 

node.buffer(tx(i),i)=0; % All Done! Stop the Tx 

end 

% disp([num2str(b_counter(i))' blocks completed @ Rx '... 

% num2str(rx(i))' on the ' num2str(i) 'th path' ]) 

end 

end 

pause(.Ol) 

end 

disp([' AAAAAAARound 'num2str(k)' OutcomesAAAAAAAA']) 

beep;pause(.3);beep;pause(.3);beep 

disp(['Iters:' num2str(iter_path)]) 

ITER_PATH(k,:)=iter_path; 

disp(['ARQed Blocks:' num2str(blk_fail)]) 

BLK_FAIL(k,:)=blk_fail; 

eff=nPackets./iter_path; % Network Efficiency 

EFF(k,:)=eff; 

disp(['Path Efficiency:' num2str(eff)]) 

apd=zeros(l,U); % Average path packets delay 

fori=l:U 

143 



apd(i)=sum(pkt_delay{i})/nPackets; 

end 

APD(k,:)=apd; 

disp(['Path Packet Delay:' num2str(apd)]) 

vapd=zeros(l,U); 

fori=l:U 

x=0; 

y=length(pkt_delay {i}); 

forj=l:y 

x=x+(pkt_delay{i}(j)-apd(i))A2; 

end 

vapd(i)=x/(y*(apd(i))A2); 

end 

VAPD(k,:)=vapd; 

disp(['Packet Dealy Variance:' num2str(vapd)]) 

disp([' AAAAAAARound ' num2str(k)' FinishAAAAAAAA']) 

end 

%% The End... 

H l * l t l f ' :je sjs s[e s|e s|e J|e ije s|s T n £ * M T l f l l s ^ ^ ^ * ^ ^ ^ ^ ^ ^ ' ^ 

bITER_PATH(:,:,l)=ITER_PATH; 

bBLK_FAIL(:,:,l)=BLK_FAIL; 
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bEFF(:,:,l)=EFF; 

bAPD(:,:,l)=APD; 

bVAPD(:,:,l)=VAPD; 

end 

%% The End... 

disp([The elapsed time is ' num2str(toc/60)' minutes.']) 

rrp=rp*100; 

drweff=zeros(U,lrd); 

fori=l:U 

forj=l:lrd 

drweff(i,j)=l 00*bEFF(l ,i,j); 

end 

end 

a=zeros(3,U); 

drweff2=[]; 

fori=l:3 

a(i,:)=nh==i; 

c=sum(a(i,:)); 

ifc 

b=zeros(U,lrd); 

forj=l:U 
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if a(ij) 

bG,:)=a(i,j)*drweff(j,:); 

end 

end 

drweff2=[drweff2;sum(b)/sum(a(i,:))]; 

end 

end 

146 


