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ABSTRACT 

An Integrated KD-Tree Cutter Size Determination Method for 3-Axis Finish Machining 

of Sculptured Surface Parts 

Hai Qing Liang 

In this research, an integrated KD-Tree cutter size search model is proposed to 

quickly determine the largest cutters and their accessible surface regions for 3-axis finish 

machining, without gouging and interference. By using these cutters, the highest material 

removal rate can be achieved, while maintaining the quality of the machined part. To 

overcome the problems of existing methods, such as long computational time and low 

accuracy, this model integrates the vertex KD-tree method with local gouging detection 

method. In this work, an imaginary cutter model is used to define a cutter, given a cutter 

contact point (CC point) and a testing point. All the testing points needed are derived 

from the part STL model. A simple and efficient algorithm is suggested to get rid of the 

redundant vertices in the STL file of the part. The local gouging detection method 

identifies the maximum local gouging-free cutter for a CC point as the initial cutter, and 

this cutter is used to determine the area of the cutter shadow. The cutter shadow is used to 

define a search range of the testing points to avoid any unnecessary search. Then the 

vertices covered by the shadow are quickly located by the KD-Tree algorithm from all 

the vertices, and used as test points to determine the final gouging and interference-free 

cutter size. The proposed model is tested with a hairdryer mould example. The results 

show that the model is not only computationally efficient, but also highly accurate. In 
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addition, the model is suitable for any types of milling cutters, and ready to implement in 

the CAD/CAM software. 

Keywords: STL File, CATIA, Cutter Size Selection, KD-Tree search, Boundary, 

Gouging, Interference, Accuracy, and Computational Time. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

1.1.1 Sculptured surface machining 

Today, there is a great demand for parts with complex geometric shapes due to the two 

main reasons. First, high aerodynamics, thermodynamics, or other performance requires a 

special shape design. Second, consumers are always in favour of products with better 

aesthetic appearance. These complex parts are characterized by their sculptured surfaces, 

which are challenging in design and manufacturing. A typical application of sculptured 

surface is the design of moulds and dies, as their geometries often include complex 

curved surfaces. Mathematically, sculptured surfaces can be expressed by non-periodic 

uniform rational B-Spline (NURBS) surface equations. Usually, many surface patches are 

required to form a part shape. The smoothness between patches is often defined as: 

• Positional continuity (C°): the end positions of two curves or surfaces are 

coincident. 

• Tangential continuity (C1): the end vectors of two curves or surfaces are in the 

same line. 

• Curvature continuity (C2): the curvatures of the two surface patches are equal. 

To ensure aerodynamic requirements, it is very common that a sculptured part has to be 

designed by using NURBS patches with at least C2 continuity. The typical examples 

include turbine blades, car bodies and boat hulls. 
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1.1.2 Gouging and interference 

Gouging and interference are two main problems in sculptured surface machining as they 

could damage the workpiece and the machine tool. Gouging occurs on a part surface 

when the cutting tool overcuts the design surface near a cutter contact point or CC point 

(see Figure 1.1). In 3-axis machining, this is because the size of the selected cutter is not 

appropriate. In order to avoid gouging, the curvature of the selected cutter surface should 

not be smaller than that of the part surface. Interference happens when tool shank collides 

with the part surface during the machining (see Figure 1.2). This is usually because of the 

narrow open space of the part. The solution is to select a smaller cutter size. Frequently 

gouging is referred as local gouging as it happens in the vicinity of the CC point, while 

interference is referred as global gouging because it occurs away from the CC point. 

Figure 1.1 An illustration of gouging 
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Interference 
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Ball End-Mill 

Sculptured 
Surface 

CC Point 

Figure 1.2 An illustration of interference 

1.2 Problem Statement 

In 3-axis sculptured surface machining, to meet the surface quality requirements, the part 

should not be gouged and interfered. This necessitates an appropriate cutter size for a 

given surface area. For a part with complex shapes, different surface areas may have 

different curvatures and open spaces for the cutter to access. Usually, to maximize the 

material removal rate, it is preferred to select the cutter as large as possible for each area. 

As a result, a high machining efficiency requires the use of multiple cutters with 

appropriate sizes. However, how to determine a group of optimal cutter sizes has been a 

challenge for a long time, and no mature solution has been found. 

There is a commonly used method for this issue, which can be summarized as the 

following steps: 
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1) The cutter size is determined to avoid the local gouging through the curvature 

comparison or the distance calculation between the cutting surface and the 

designed surface at a CC point. 

2) The interference is checked based on the obtained no-gouging cutter size. If the 

interference occurs, the cutter size is adjusted accordingly. 

3) The check and the orientation adjustment may repeat several times until a 

satisfactory cutter size is chosen. 

However, this method is time-consuming and the determined cutter size usually is not 

optimal. Besides, the machine efficiency is very low as only one small cutter is used. 

Consequently, a long lead time is required for the parts that have complex surfaces and 

requires a tight tolerance. For example, the average lead time for an American mould and 

die manufacturer is 20-30 weeks [1]. In our day, shortening the time to market is crucial 

for a business to succeed. As 10-15% of reduction in machining time would result in one 

week shorter in the lead time, it is important to seek solutions to this problem. 

1.3 Literature Review 

The main work of cutter size determination actually is gouging and interference 

detection. In surface machining, gouging and interference hinder the surface quality and 

production efficiency. To overcome these problems, many researches have been 

conducted in this topic. However, there is no effective solution to them so far. Generally, 
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two types of methods are comonly used to tackle this problems. One is curvature-related, 

while another one is non-curvature-related. 

First, among the curvature-related methods, Glaeser et al. [2] and Pottmann et al. [3] 

introduced some concepts regarding exhaustive curvature comparison and discussed the 

local and global conditions for 3-axis collision-free milling of sculptured surfaces. But no 

feasible method was described for the implementation of these concepts and conditions in 

their work. Yoon et al.[4] proposed a local condition for 5-axis collision-free milling, 

using Taylor's quadratic approximation to represent the tool an part surfaces in the 

vicinity of a cutter contact point. They assumed that the approximation was accurate in a 

large area. As this assumption does not always hold, their work is unfeasible. Rao and 

Sarma [5] applied the curvature comparison method to detect local gouging for 5-axis 

machining using flat end-mill. However, no work has been done for bull-nose end-mill. 

Khan [6] proposed an improved approach to comprehensive curvature analysis for the 

engaged regions on both cutting surface and part surface in 3-axis finish machining. This 

method can be applied to flat, ball and bull-nose end-mills to determine the locally 

gouging-free cutter size. Unfortunately, his method is not able to solve the interference or 

global gouging problem, which plays the same important role as local gouging detection 

in cutter size determination. 

Many non-curvature-related approaches also have been proposed for gouging detection 

and cutter size selection. Oliver et al. [7] located the regions with high curvatures in the 

first step, and then mainly performed the gouging and interference detection on these 

regions for 3-axis machining. Yang and Han [8] employed iso-phote curves on the 
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sculptured surfaces to determine the patches accessible in 3-axis machining, and 

optimized the cutting tool selection to minimize the cutting time. . Lee and Chang [9] 

used the maximum effective cutting radius to determine cutter sizes for 5-axis surface 

machining. George and Babu [10] applied the optimization techniques to determine the 

self-intersection curves of the cutter location surface, and then eliminated the locations 

causing local gouging. In order to get rid of the zones with potential interference, Hatna 

and Grieve [11] processed the surface first, and then generated interference-free tool 

paths in a simple sweeping process of the surface parametric space. The above methods 

have the inherent problems: low accuracy in gouging detection and /or tedious 

computation. Liu [12] proposed a close-form mathematical model (imaginary cutter size 

model) to determine the imaginary cutter size or the largest allowable cutter size, given a 

cutter contact point and any test point on a sculptured surface, and applied the particle 

swarm optimization (PSO) method to determine a group of gouging and interference-free 

cutter sizes, leading to the highest machining efficiency. The main problem of this 

method is its very large computational time required as any point on any surface of the 

part could be used to test the validity of the cutter size. Besides, his model is valid only 

for the surface whose normal at any CC point does not coincide with the machine tool 

axis, which is not true. 

1.4 Research Objectives and General Approach 

The objectives of this work are two folds. The first objective is to improve Liu's model 

so that it can apply to any surface conditions. To do that, a refined imaginary cutter size 

model will be derived to accommodate the special surface condition. The second 
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objective, as the ultimate goal, is to propose an integrated KD-Tree cutter size search 

method (iKD-Tree method), which can achieve the same result of Liu's method, but 

requires much less computational time for 3-axis finish machining of sculptured surface 

parts. 

In the iKD-Tree method, the improved imaginary cutter model is adopted to determine a 

cutter size at a CC point and a test point. However, instead of random points identified by 

the PSO method in Liu's work, the vertices obtained from the part STL file are used as 

the test points. As we can imagine, the cutter can only be in contact with the surface area 

covered by the shadow of the maximum possible cutter or the projection of the maximum 

cutter area on the horizontal plane, assuming we look downward from the top of the 

cutter (see Figure 1.3). As a result, only the vertices within the shadow will be selected as 

test points. 

Y' 

O(Z) 

• X ' 

Note: The cutter tip coincides with the origin of the coordinate 
system, and cutter axis is perpendicular to the X'O'Y'plane 

Figure 1.3 Cutter shadow on the surface 
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Theoretically, the maximum cutter could be the largest size available. However, the 

bigger size you choose, the higher computational time is needed. Thus Khan's 

comprehensive curvature analysis model will be adapted to determine a maximum local 

gouging-free cutter size as the initial input. This not only guarantees the cutter selected 

locally gouging-free, but also results in a great computational overhead saving. 

After that, the KD-tree search, the most efficient region query method, is used to locate 

all the vertices falling within the shadow. At a CC point, a group of imaginary cutters can 

be obtained by using these vertices (testing points). The allowable cutter size for this CC 

point is simply the minimum cutter in the group. 

1.5 Structure of the Thesis 

This thesis contains eight chapters. In Chapter 1, some basic concepts concerning the 

surface machining are provided, followed by the problem statement, the literature review, 

research objectives and general approach. Chapter 2 introduces the imaginary cutter size 

model and its refinement. Chapter 3 presents the fundamental knowledge about the STL 

file and the method used to eliminate the vertex redundancy. Chapter 4 describes the 

approach to detecting the local gouging through comprehensive curvature analysis and 

the algorithm used to search the initial cutter size at a CC point. Chapter 5 explains the 

KD-tree search method and the procedures to determine the final cutter size at a cutting 

location. Chapter 6 deals with the structure and implementation of the integrated KD-tree 

model. In Chapter 7, the new model is applied to the hairdryer mould, and the results are 

compared with which from Liu's method and which from the CATIA rework function to 
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examine the efficiency and accuracy of the new model. Chapter 8 highlights the 

significance of this work and the future work directions. 



CHAPTER 2. IMAGINARY CUTTER SIZE MODEL AND REFINEMENT 

As Liu's imaginary cutter size model is a very good tool for defining a cutter size at a 

given CC point, it will continually be used to serve for the same purpose in this work. 

However, to accommodate all situations, some improvement has to be done on his model. 

First, a brief description of Liu's model is provided. Then, the refinement of Liu's model 

is proposed to overcome the limitation of his model. 

2.1 Introduction of Liu's Imaginary Cutter Size Model 

2.1.1 Compound surface 

Due to the fact that the non-uniform rational B-splines (NURBS) surface can represent 

almost any smooth and curved surface with high accuracy, it becomes a trend to use the 

NURBS to model a complex surface or compound surface. Another advantage of the 

NURBS surfaces is that one can build a smooth curving surface or modify a surface to 

make it smooth with few control points. The parametric form NURBS surface is 

expressed as: 

0 y=0 
n m 

IZ\^a(")'^,((v) 
P(u,v) = — '—- , w i t h f ^ _ (2.1) 

' / - i*v<f m + I 

1=0 y=o 

Where, Nj k{u),N'. ,(v) are blending functions; u and v are the surface parameters; ?,_,, 

tm+i and JA_, , sn+] are knot values limiting the finite intervals over which the blending 

functions have nonzero values; PUj are the x, y, and z coordinates and hi . are the 

homogeneous coordinates of the control points. 
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However, generally it is not practical to use only one NURBS equation or surface to 

model a complex surface in a part design. Instead, one should use a compound surface, a 

collection of NURBS surface patches connected with either position (C°), tangent (C1), or 

curvature (C2) continuity between them. 

For the purpose of convenience, the following notations are defined: 

• S,. (/ = 0, 1, ..., m) : any patch of the compound surface 

• P ( « , v ) e S p (/ = 0, 1, ..., m) : a point on S,. 

* 5Rf : = ["/ .mi- > W/,max \ V/,min > V,-,n,in ] : t h e domain Of patch S, 

• 9?2 = 9?f U 9̂ 2 U ...Mf U ..Ml: the domain of the compound surface 

Thus we can denote the compound surface as S := S, U S2 U —Si U ...Sm . In CAD systems, 

the data of all the surface patches on a compound surface and the connectivity 

information between them are stored. As a result, for a given surface patch, one can use 

this information to identify its neighbouring surface patches in determining the maximum 

cutter size for CNC machining. 

2.1.2 Representation of APT cutter geometry 

The most common cutters for milling operations consist of standard flat, ball, and bull-

nose end mills and they are special cases of the generic ISO APT cutter. In milling 

operations, the most commonly used cutting tools include standard flat, ball, or bull-nose 

end-mills, which are three special cases of the generic ISO APT cutter. Figure 2.1 shows 

an APT cutter and its three special cases are shown in Figure 2.2. Usually, the imaginary 

envelope formed by the spinning cutting edge of the APT cutter is defined as the cutting 
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surface, which can be further divided into three sub-surfaces: a tapered (A-B), a fillet (B-

C), and a conical (C-O) surface. In practice, the taper angle 9 is between zero to 20 

degrees, and the conical angle y/ is small. Parameter r is the radius of the corner, R is 

the radial distance between the cutter axis and the center of the corner, and H is the cutter 

length. 

Conical surface 

Figure 2.1 An illustration of APT cutter 

Fillet 
surface 

H 

Cylin 
sur 

R 
i 

Z 

drical 
'ace 

- < % J 
o c 
(a 0 

A 

B 
P 
X 

H 

Cylir 
sur 

R 

z 

idrical 
face 

A 

0 B X 

0 b) 

H 

r 

z 

o>__ 

O 

( c) 

A 

Cylindrical 
y surface 

f^Spherical 
5 surface 
X 

Figure 2.2 (a) a bull-nose end-mill, (b) a flat end-mill, and (c) a ball end-mill 

A tool coordinate system is defined with its origin at the tip of the APT cutter and its Z-

axis in line with the tool axis (refer to Figure 2.1). Using this coordinate system, the 

following expressions can be obtained: 

• The Coordinates of Key Points 
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o Point C: [xc zc]=[R + r-siny/ (R + r -sin y/) tan y/] 

o Point Oi;[x0| z0]J=[i? (R + r-siny/)tany/+ r-cosy/] or 

k , zo,J=[^ /?-tan^ + r-sec^] 

o Point B:[JCB zB]=[R + r-cos 8 (R + r-siny/)tany/+ r-cosy/-r-sin 8] or 

[xB zB ] = [R + r • cos 6 R • tan y/ + r • sec y/ - r • sin 6\ 

o P o i n t A : ^ zA} = [R + r -cos6 + (H-zB)- XanO H], where, 

zB =(R + r- sin y/) tan y/ + r • cos y/ - r • sin 9 

• The surface equations of three sub-surfaces 

cos a 

o The conical surface: T(z,cc) = 

Xany/ 
sin a 
tany 

z 

,z € [0 , z j , and a e [0,2;?] 

o The fillet surface: T(z, a) = 

[R + V r 2 - ( z o , - z ) 2 ] c o s a 

[R + ^jr2-(z0i-z)2]sma 
[a e [0,2;r] 

and< 

o The tapered surface: T(z,a) 

[xB + (z - z B) • tan0\- cosa 

[xB + (z-zB)- tan#]-sina , and 

[a 6 [0,2;r] 

Here, a is the angle measured from X-axis on XOY plane of the tool coordinate system. 
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Obviously, the APT cutter turns to be a bull-nose end-mill if 6 = 0 and y/ = 0, (see Figure 

2.2(a)), a flat end-mill if# = Q, y/ = Q and r = 0 (see Figure 2.2(b)), and a ball end-niill 

if 0 = 0, y/ = 0 and R = 0 (see Figure 2.2(c)). 

For a standard cutter, its taper angle is limited to several degrees with discrete choices 

(e.g. 1°, 3°, 5°, 7° and 10°), and it also is common to set the conical angle y/ = 0. 

Similarly, for bull-nose end-mills, their comer radius r is often set to be -^ , -^, or { inch 

by tool manufacturers. For the simplicity purpose, the cutter size is optimized by varying 

only R for the bull-nose or flat end-mills, or only r for the ball end-mills, while fixing 

other parameters. 

2.1.3 Theorem for allowable cutter size 

It is common that a compound surface has complex shape and narrow open spaces. As a 

result, gouging and interference often happen during machining. To overcome this 

problem, Liu has proposed a theorem by taking both the part surface to be machined: S0, 

and its neighbouring surfaces or checking surfaces S(. (z' = 0,l, 2, ..., n) into account. 

l - ' . l 

4 

Sn 
n 

Figure 2.3 Illustration of the model of allowable cutter 
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As illustrated in Figure 2.3, a point Pec on a bounded surface S0 to be cut is accessible in 

a part set-up, and the check surfacesS, (/ = 1, 2, ..., «)are adjacent to this surface. An 

unique imaginary APT cutter in variable size R or r (for ball end mill) can be constructed, 

subject to the following constraints: (1) the fillet cutting surface of the cutter envelop 

n ( r ) is tangent to surface S0 at point Pec, and (2) this envelop passes through any other 

point P (called testing point) on one of these surfaces S,. (*' = 0, 1, 2, ..., n) (S0is also a 

check surface). Thus, by changing the position of point P around all the testing surfaces, 

infinite imaginary cutters can be obtained. The smallest (called the allowable cutter) 

among all imaginary cutters can machine surface S0 at point Pec without gouging and 

interference. 

Let us denote the imaginary cutter size between S0 and S(. (* = 0, 1, 2, ..., n) as 

Rmin (S0, S,.) if it is a flat or bull-nose end mill or rmin (S0, S,.) if it is a ball end mill. The 

allowable cutter size can be obtained as: 

Allowable =min[RmiAS0>So)> ^min O ^ O ' ^ ) , - • ^min (S0 > Sn)>] > 0 I " 

rallocable = ^ k i n ( $ 0 A )» >™n ( ^ 0 A ) . - • '"min (^0» ^ ) J 

Here, n is the total number of surface patches in the compound surface. 
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2.1.4 Imaginary cutter size model for the APT cutter 

According to the above theorem, the imaginary cutter model can be developed. In Liu's 

research, he has developed two types of imaginary cutter model: the APT cutter model 

(for flat-end mill and bull-nose end mill), and the ball-end mill model. Since there is no 

need to refine the ball-end mill model in this work and both models share the similar 

idea, so only the APT cutter model is introduced here. The interested reader is 

encouraged to refer the Liu's work for details. Before the model development, some 

assumptions are needed: 

• A 3-axis CNC milling machine is used to cut the part 

• A CC point Pcc = [xcc ycc zcc] is on the surface S0 to be cut 

• The testing point P = [x y z] is either on this surface or its check surfaces 

S,.(/ = 0,l,2,...,/i) 

• The unit surface normal of Point P n- \nx ny nA can be easily calculated, 

and the corner radius r, taper angle ^ and conical angle \f are specified, according 

to the industry standard choices 

• R is the only parameter has to be determined as the imaginary APT cutter size. 

Depending on the size of R, there are three cases for modeling a general APT cutter, as 

shown in Figure 2.4. 

• When 0 < R < °° ; the cutting envelop of the APT cutter consists of three portions: 

a tapered surface (TS), a fillet surface (FS) and a conical surface (CS). 

• When R = 0, the three portions of cutting envelop shrinks to TSO, FSO and CSO 
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• When R - °°, the three portions of cutting envelop extends to TSoo, FSoo and CSoo 

Figure 2.4 Example of imaginary cutter and its two extreme case: R=0 or R=co 

The cutting envelop of any feasible imaginary cutter should be confined in the volume 

bounded by TSo, FSo & CSo and TSoo, FSoo and CS^. Specifically, no feasible imaginary 

cutter can be found if a testing point P is outside this volume, while there always exists a 

feasible cutter if P is inside this volume. 

Two planes PLi and PL2 are constructed to determine which portion of the cutting 

envelops will be in touch with the testing point P, as shown in Figure 2.5. PLi is the 

plane where the intersection circle between TS and FS locates. PL2 is a plane where the 

intersection circle between FS and CS locates. Because only R is the variable in this 

model, PLi and PL2 will remain unchanged regardless of the size ofR. If P is above PLi, 
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only the tapered surface has chance to touch P. If P is between PLi and PL2, P can only 

locate on the fillet surface. If P is below PL2, only the conical surface will pass P. Then, 

different formulas can be developed to calculate the imaginary cutter size, depending on 

the space location of P relative to two new constructed planes. 

Figure 2.5 Some geometry features used in imaginary cutter model 

As previously mentioned, given a CC point and a testing point, a unique imaginary APT 

cutter can be determined. Since in this model, &, ^ and r of the cutter are specified as 

constants, the only variable needs to be determined is R. For the purpose of derivation, 

let Ax = x-xcc-r-nx , Ay• = y-ycc-r-ny , Az = z-zcc-r-nz and A = \j'Jn\ + n] . 

Different mathematical equations are derived to compute R, based on the relative Z 

coordinate of the testing point P. 
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Scenario 1: testing point P is above the plane PLi 

Under this circumstance, only the tapered surface TS can touch P and we 

have Az > —r • sin 6. Then, three cases need to be further considered based on the location 

of the test point. 

• Case 1 

If P falls into the volume bounded by TSo, gouging will happen at P. As a result, no 

feasible cutter size can be found; that is, R = 0 Then, all satisfied testing points can be 

expressed as: 

Ax2 + Ay2 <[(Az + r sin 6)- tan 0 + r cos 6 J or 

Ax 2 +A/ <(Az-tan6> + rsec<9)2 (2.2) 

• Case 2 

If P locates on or behind the plane TS^, any size of R will not cause gouging. Thus, R 

can be set as <x>. Surface normal of TS*, is PXP^ , so P should satisfy the inequality 

equation: PXP • />/> < 0 

xcc+r-nx-r-A-nx- cos 0 

ycc+r-ny-r-A-ny-cos& 

z„+r-n-r-sin& 

- i \ r • X • nx • cos 6 

l-ny-co 

r • sin 0 

r-X-n •cos 6 <0 (2.3) 

Inequality equation (2.3) can be simplified as: 

A• n • Ax• cos0 + X• n • Ay• cos6l + Az-sin(9 + r < 0 
x y * 

(2.4) 
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• Case 3 

If P is in the volume bounded by TSo and TSoo, there always exists a feasible imaginary 

cutter whose cutting surface tangent to the Pec passing P, the following equation can be 

obtained: 

[x-(xcc+r-nx+R-A-nx)f+[y-(ycc+r-ny+R-A-ny)]
2 

= {/? + /-• cos0 + [z-(zcc + r • nz - r • sin#)]• tanG>\ 
(2.5) 

From equation(2.5), parameter R can be calculated: 

1 Ax2+Ay2-(Az-tan(9 + r-sec6>)2 

R = (2.6) 
2 X-nx -Ax + A-n • Ay+ Az-tan# + r-sec6> 

Scenario 2: P is between the planes PLi and PL2 

In this scenario, only the fillet surface can touch P and we have -r • sin 9 > Az > -r • cos y/ . 

Similarly, three cases needs to be analyzed separately according to the location of the 

testing point P. 

• Case 1 

If P is in the volume bounded by FSo, gouging is unavoidable. This means that R has to 

be 0. Mathematically, all points must be satisfied the following condition: 

Ax2+Ay2+Az2 <r2 (2.7) 

• Case 2 
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If P locates on or behind the surface of FS*,, gouging will never happen. Consequently, R 

can be set as oo. The criteria can be derived as follows: 

Criterion one: P should be away enough from the axis of the cylinder surface FS<». 

In Figure 2.5, ¥SX is a cylinder surface, and let CA to represent its axis. PL3 is a 

reference plane passing through CA and perpendicular with the horizontal plane XY. If 

there exists a point Pp on the cylinder axis CA and P P is perpendicular with CA. Then, 

one condition to ensure gouging free is P P P > r .CA can be written as: 

CA = 
x„ + n-r-n-t CC X 

ycc+ny-r + nx-t where t is a variable (2.8) 

Because P„P ± CA , we have 

x^+n -r-n„ -t 
- i \ 

CC X 

ycc+ny-r + nx-t 
zcc+nz-r 

nx 
0 

= 0 (2.9) 

From equation(2.9), t can be obtained: 

t = • 
nxAy - nyAx 

2 2 nx+ny 
(2.10) 

Substituting t into(2.8) gives Pp 
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p = 
pp 

y* 

pp 

Xcc+n,-r-
nxnyAy-n2Ax 

2 2 

nl+n] 
nx Ay-nxn Ax 

ycc+ny-r + / 
n+n. x y 

z„„ + n-r cc z 

(2.11) 

Plugging Pp into P'P>r, we have: 

nxn Ay -n Ax 
x ~ x c c - n x - r + „2 , 2 

« x + n y 
+ y-ycc-

ny-r 
nx Ay - nxnyAx 

2 2 

+ [ z - z c c - « z - r ] 2 >r2 

or 

nxn Ay + nx Ax 

n2
x+n2

y 
+ 

n Ay + nxn Ax 

nl+n] 
+ Az2>r2 (2.12) 

Simplifying the In-eq.(2.12), we get the first criterion: 

A2 -^nxnyAy + nx
2Ax) + M.2 \ny

2Ay + nxnyAx\ + Az2>r2 (2.13) 

Criterion two: P should be on the side of the plane PL3 where Pi locates. 

Since NPL , the surface normal of PL3 is[nx ,n y ,Oj , from PpP • Npl^ < 0 , we have: 
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Xcc+n
X-r-

nxn Ay-n Ax 
2 2 

nx+n] 
nx Ay-nxn Ax 

ycc+n
y-

r + 2 — 1 

nr+n. x y 

Z-„ + « . • / " CC 2 

<0 (2.14) 

Finally, the second criterion can be obtained by simplifying(2.14): 

nx-(Ax-nx
2+nxnyAy) + ny-(Ayny

2+nxnyAx)<0 (2.15) 

So, when both inequality equation (2.13)and (2.15) hold, R = <x>. 

• Case 3 

Otherwise, a feasible imaginary cutter exists, which can be obtained by the following 

equation: 

[x-(xcc + r-nx+R-A-nx)]
2+[y-(ycc+r-ny+R-A-ny)~\2 =(R + Jr2-Azl]j (2.16) 

From(2.16), we have: 

R=--
Ax2+Ay2+Az2-r2 

2 A-nx-Ax + A-n -Ay + ̂ jr2 -Az2 
(2.17) 

Scenario 3: P is below the plane PL2 
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In this condition, only conical surface CS can touch P as shown inFigure 2.5, and we 

have Az < -r • cos y/. Likewise, three cases need to be handled one by one, based on the 

location of the testing point P. 

• Case 1 

If P is in the volume bounded by CSo, there is no doubt that gouging will happen. 

Therefore, R can be set as 0. The testing point P should meet the following inequality 

equation: 

JAx2 + Ay2 Az + r -cosy 
tan^ 

+ r • sin y/ <0 ,o r 

Ax 2 +A/ < 
' Az + r-secy 

tany/-
, and Az > - r - s e c ^ (2.18) 

• Case 2 

In Figure 2.4, if P is below CSoo, no gouging will happen. Hence, R can be set as oo. From 

Figure 2.5, we know the surface normal of CSa> is P2P0 (P2 corresponds to Point C in 

Figure 2.1), and P2P0 =[/l-n^-sin^, A,-ny-siny/, cos^J . So P has to meet the 

following inequality equation ifR = <x>: 

P2P P2P0<0 (2.19) 

Then, by substituting the specific expressions into(2.19), we have: 
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xcc + r • nx - r • X • nx • sin y/ 

ycc+r-ny-r-X-ny-siny/ 

z +r-nz-r- cos y/ J L 

X • nx • sin y/ 

X • ny • sin y/ 

cosy/ 

<0 (2.20) 

Inequality equation (2.20) can be simplified as: 

X-nx -Ax-sinyz + X-n • Ay • sinys + Az• cosy/ + r < 0 (2.21) 

• Case 3 

Otherwise, P should be on the conical surface CS of a feasible imaginary cutter. Then, 

we have the following equation: 

[x-(xcc+r-nx+R-X-nx)J+[y-(ycc + r-ny+R-X-ny)} 

z - (zcc +r-nz-r- cosy/) 

tany/ 
+ r • sin y/ + R 

,or 

(Ax-R-X-nx) +(Ay-R-X-ny) = 
2 I Az + r- cos y/ \ 2 

tan^ 
+ r • sin y/ + R (2.22) 

Simplifying (2.22) gives: 

Ax2+Ay2 Az r 
- + -

/? = - • 

2 

tan y/ sin y/ 

X • nx • Ax + X • n • Ay + 
Az r 

- + -tan y/ sin y/ 

(2.23) 
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2.2 Refinement of Liu's Model 

2.2.1 Limitation of Liu's model 

When Liu defined the tool coordinate system in his model, implicitly he assumed that the 

X axis of that coordinate system coincides with the projection of the CC point normal 

(Ncc) on the XOY plane in the part coordinate system. As illustrated in Figure 2.6,Pcc, 

O, and n^ are the projections of CC point, tool center, and Ncc on the XOY plane, 

respectively. In addition, ny and ny are the X and Y components of Ncc, in that order. 

Thus PccOi and OxO are the projections of corner radius r and radius R on the XOY 

plane, correspondingly, and they have to be in line with the direction of n . We can 

uniquely define the tool center O if Ncc is not perpendicular to the XOY plane or at least 

one of nx and ny is not zero. 

i >x 

Figure 2.6 Determination of the cutter center O by the normal of CC Point 
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However, when Ncc is parallel to the Z axis, Ncc has neither x component, nor y 

component; that is, nx = ny - 0. As a result, the tool center cannot be uniquely defined if 

the cutter is a flat end mill or torus mill (APT cuter case in Liu's model). In this case, 

Liu's model is no longer valid. Thus, a revised new model is provided to address this 

special case. 

2.2.2 Upgrading of Liu's model for the special case 

To develop the new imaginary cutter size model for the special case where the surface 

normal jVccis perpendicular to the XOY plane, we need to examine the trajectory of the 

cutter center O. In this case, nx=ny = 0, the trajectory of O is a circle centered at Pcc with 

a radius of R' as shown in Figure 2.7. HereR'-r-t + R, where t = Jn] + n2
y (r, and R are 

defined in Figure 2.1). For any cutter center location Oj on the circle, an angle #>is 

formed by the radius O^ and the horizontal line that passes Pcc. 

Cutter 
Envelop 

r 
Cutter Center 

Trajectory 

Figure 2.7 Center trajectory of the cutter 
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For a given angle ̂  (0 < (j). < 360°), the x and y coordinates of Oj are calculated as: 

X0, =Xcc+R'C™<Pi 

y0, = >'„+/?'sin ^ 

As nx = ny = 0 , we have Ax = x - xcc , Ay = y - ycc and Az = z - zcc - r . Since the cutter 

center location O. depends on angle cpt, it will become a new variable in the new revised 

model. Like Liu's original model, the revision of model also needs to address the same 

three scenarios, each of which has three cases. Here only the portions involving 

modification are described as the derivations of unchanged cases can be obtained from 

the original model. If the angle <pf is given, the new model can be derived as follows. 

Scenario 1: testing point P is above the plane PLi 

Case 1 

(Remains unchanged) 

case 2 

Here, PXP = 

becomes: 

X 

y 
z 

xcc — r • cos (pt • cos 0 

ycc-r-sinq>i • cos0 

zcc+r-r-sin& 

and PXPQ = 

r • cos <p. • cos 0 

r • sin <p. • cos 0 

r-s\n6 

, so PXP -P,Pa<0 

xcc-r-cos<p. • cos0 

ycc-r-sin<p. • cos0 

z„+r-r-sm.0 

r-cos<Pi -cos<9 

r • sin (pi • cos 0 

r-smO 

<0 (2.24) 

So, the inequality equation(2.4) is replaced by (2.24) or its simplified form (2.25): 
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cos <Pj-Ax- cos 0 + sin (pi • Ay • cos # + Az-sin# + r < 0 (2.25) 

• Case 3 

In case 3 of the new model, cos#> and sin#?. are used to determine the center location of 

the cutter, which play the same roles as nx and n , respectively. Therefore equation (2.5) 

is replaced with the following equation: 

[x - (xcc +r-coscpi+R- cos q>.)] + [y- (ycc +r-smcpi+R- sin %)] 
2 (2.26) 

= [i? + r • cos 6 + [z - (zcc + r • nz - r • sin 0)] • tan 0} 

From (2.26) parameter R can be calculated: 

^ _ 1 Ax2+A/-(Az-tanfl + r-secfl)2 

2 cos (p{ • Ax + sin (p. • Ay + Az • tan 0 + r • sec 0 

For flat-end mill, (2.27) can be further simplified as: 

R=L A E ' + V - ( * • * . < > ) ' ( 2 2 8 ) 

2 Ax • cos <j>.+Ay- sin $ + Az • tan 0 

Scenario 2: P is between the planes PLi and PL2 

• Case 1 

(Remains unchanged) 

• Case 2 

29 



In case 2 of the new model, the equation of CA: CA = 

xcc-nx-t 

ycc+Ky-t 

z„„ +r 

(where t is a variable) 

is replaced by: 

CA = 

xcc-sin <f>rt 

J'a+cos^.-r (2.29) 

Accordingly, P P 1 CA becomes: 

VL Z J 

x c c-sin$-f 

ycc + cos<f>rt 

zcc+r 

\ 

J 

-sin$ 
cos fi 

0 
= 0 (2.30) 

From(2.30), we get: 

t = cos ft Ay - sin $ Ax (2.31) 

Substitute t into(2.29), Pp can be calculated: 

P P -

pp 

y pP 

-zpp. 

= 

xcc - cos $ sin $ Ay + sin $ Ax 

ycc + cos2 ^ Ay - cos $ sin $ Ax 

z„„ + n • r 
cc z 

(2.32) 

Substituting Pp into P P > r, we have the following expression: 

[x-xcc+cos$sin$Ay-sin2$Axl +[>'-}^-cos2$Ay+cos$sin$Axl +[z-zoc-nz-r\ >r2 ,or 
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[cos ftj sin ft Ay + cos2 ftAxl + [ cos ftj sin $ Ax + sin2 ftAy\ + Az2 > r2 (2.33) 

Simplifying(2.33), we have the new first criterion, 

[cos2 fttAx + cos ft sin $ Ay 1 + [sin2 $A.y + cos ft sin $ Ax] + Az2 > r2 (2.34) 

Here, the surface normal of PL3 has to be changed into [cos <p, sin (p,6f . Therefore, 

PpP-[cos<p,sin<p,0j < 0 is expressed as: 

xcc - cos ft sin $Ay + sin $2 Ax 

ycc + cos2 $Ay - cos ftj sin $ Ax 

z„„ + n • r 
cc z 

cos$ 

sin$. 

0 

<0 (2.35) 

Simplifying(2.35), we obtain the new second criterion: 

cos ft (cos2 ftAx + cos ft sin ft/Ay) + sin ft (sin2 ^Ay + cos ft sin $Ax) < 0 (2.36) 

In this case, when both Eq. (2.18) and Eq. (2.20) hold true, R = co. 

Case 3 

In this case of the new model, the equation used to define R is modified as: 

[x-ix^+r-^+R-cos^)]2 +[y-(ycc+r-ny+R-sm<pi)]
2 =^R + y/r2 -Az2)j (2.37) 

From(2.37), we have: 

31 



R = 
Ax2 +Ay2+Az2 -r2 

2 cos#? -Ax + sin^. -Ay + yjr2 -Az2 
(2.38) 

Scenario 3: P is below the plane PL2 

Case 1 

(Remains unchanged) 

Case 2 

In case 2, the surface normal of CSc*, isP2P0 = [coscpi -siny/, sin<p. -siny/, cosy] 

Recall P2P • P2P0 < 0 if R = 00. Thus we can get the following equation by substituting the 

two vectors: 

xcc+r-nx-r- cos q>. • sin if/ 

ycc+r-ny-r- sin % • sin y/ 

zcc+r-nz-r- cos y/ 

cos (p. • sin y/ 

sin ft • sin ^ 

cos^ 

<0 (2.39) 

The inequality equation (2.39) can be simplified as: 

cos (Pj-Ax- sin y/ + sin q)j • Ay • sin y/ + Az • cos y/ + r < 0 (2.40) 

• Case 3 

In case 3, to determine a feasible imaginary cutter, the equation for determining a feasible 

imaginary cutter is altered as: 

[x-(xcc+r-nx+R-cos<pi)f+[y-(ycc+r-ny+R-sin(pi)~] 

z - (zcc +r-n2-r- cos y/) 

tany 
• + r • sin y/ + R 

or 
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(Ax - R • cos ft) +(Ay-R-sin<pj) = 
Az + r • cos y/ 

tany 
+ r • sin ̂  + R (2.41) 

Simplifying (2.41) gives: 

Ax2+Ay2 Az r 
• + -

A 

R= — 
2 

tan ^ sin y/ 

cos ?̂. • Ax + sin q>t • Ay + 
Az r 

• + -tan y/ sin y/ 

(2.42) 

Since the angle (f) ranges from 0° to 360°, the cutter radius R for this case is the 

maximum of all the radii resulting from all the angles ^'(i=l,2,....n) . Mathematically, 

we have: 

R = max(R„R2,...,Ri,....,Rn) (i = l,2,....n) 

Two ways can be considered to obtain the radius R. one way is that we can use PSO 

optimization method to search for the maximum possible cutter radius among all the 

possible angles. The second way is that we can discretize the angle domain of 360° into a 

series of angles such that the difference between two consecutive angles is constant. For 

example, if we set (pt =(l°,20,.../°..,3600), the desired cutter is the maximum cutter 

among all the radii calculated from these 360 angles. The first method is more likely 

optimal but at the expense of computational time, while the second method may not be 

always the best but good enough. Plus, it is simple and fast. In this work, the second 

approach is used. 
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CHAPTER 3. STL FORMAT AND DATA PROCESSING 

In Liu's work, he has optimized the cutter size search using the PSO method. 

Theoretically, the testing point can be taken from any surface and any location of this 

surface to ensure the accuracy. However, this good accuracy is at the expense of a huge 

computational time. In the STL file, due to the adaptive triangulation mesh, the number 

of triangles used to approximate the surface is proportional to the surface curvature. In 

fact, this matches our needs, as in the surface area with a high curvature, more testing 

points are demanded; while, in the surface area with a small curvature, less testing points 

are required. Therefore, high efficiency and reasonable accuracy can be achieved if we 

use the vertices of triangles extracted from the STL file as the testing points. Due to the 

advantages of STL file, this work uses the discrete vertices extracted from the STL as the 

testing points for the cutter size search. In this chapter, a general picture of the STL 

format is described. Then the method of filtering the redundant STL vertices is provided. 

3.1 Introduction to the STL Format 

3.1.1 Basics of the STL format 

• Definition of STL file 

STL is the abbreviation of stereoligthography. An STL file is a triangular representation 

of a 3D surface geometry. In an STL file, the surface is approximated by a series of 

oriented triangles (facets). Each facet is defined by a unit outward normal and three 

vertices listed in a specified order. The size of the facet is controlled by the surface 
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curvature and the tolerance that controls the surface quality. The STL format must 

respect the following rules [13]: 

1) In each facet, its normal and each of three vertices are specified by three 

coordinates, so a total of 12 numbers is stored for each facet. 

2) The vertices are listed in counter-clockwise order, if the viewing direction is 

from the outside of the object (using right-hand rule). 

3) The normal of a facet must be the same as the facet orientation derived from 

its three vertices using the above mentioned right-hand rule. 

4) Each triangle must share two vertices with each of its adjacent triangles, 

which is known as the vertex-to-vertex rule. 

An example of facet is shown in Figure 3.1. In Figure 3.1a), three vertices (1, 2, and 3) 

are listed in counter-clockwise order, so the facet orientation obtained by right-hand rule 

is pointing up, which is the same as the normal direction. However, in Figure 3.1b), the 

three vertices are listed in clockwise order if we view it in the same direction; as a result, 

the normal direction of the facet is reversed or pointing down. 

Normal 
1 

a) Normal pointing up b) Normal pointing down 

Figure 3.1 Example of a facet and its normal 

1 
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• Two data formats 

The standard STL data can be categorized into two formats: ASCII and binary. The 

ASCII form is more descriptive and easy to read, but takes much more space to store the 

same CAD geometry, compared to the binary form. The structures of the two formats 

will be explained one by one. 

An ASCII file starts with a description line "solid solidname" , where solid_name refers 

the name of your design. The last line is the keyword "endsolid". Between the first line 

and last line, the facets are listed one by one. Each facet uses a consistent data structure, 

including the facet normal (e.g. Nx, Ny and Nz) and coordinates of three vertices (e.g. Xj, 

Y], Zi:X2, Y2, 7.2; andXj, Y3, Z3). The structure is illustrated in Figure 3.2 [14]. 

solid solidname 

<facet list> 
facet normal Nx Ny Nz 
outer loop 

vertex XI Yl Zl 
vertex X2Y2Z2 
vertex X3 Y3 Z3 

endloop 
endfacet 

endsolid 

Figure 3.2 Structure of a STL file 

A binary STL file also has an 80 byte header line containing the comment of the design. 

Then the next four bytes is a long integer, which stores the total number of facets. After 

that, all the facet information is listed. The data of each facet consists of a normal and 
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three vertices. Between each facet is a 2 byte spacer. Each facet requires 50 bytes, 12 for 

the normal, 36 for the 3 vertices, and 2 for the spacer. Therefore, the binary STL file is 

more compact and more efficient for data processing. 

3.1.2 Advantages of STL file 

STL format has the topologically simple and robust nature. First, it contains only one 

type of element, a triangular facet, which makes the geometry description homogenous, 

CAD-kernel independent, modeling history independent. In addition, the calculations 

involved in the generation and slicing of STL triangular facets are easy, fast, and accurate 

enough to satisfy the rapid prototyping industry. Furthermore, it is reasonably suitable to 

be the interface between a object model and the layer-by-layer fabrication[15]. As a result, 

it is widely used by most commercial CAD and CAM software and rapid prototyping 

equipment. Figure 3.3 shows both the CAD model and STL model of a complex part. 

(a) 

Figure 3.3 Example of a complex shaped part: a) CAD model, b) STL model 

However, the STL format does have some disadvantages. First, inconsistency of normal 

happens when the facet normal generated by the CAGD system is different from that 

derived from the facet vertices, or when the normals of adjacent triangular facets are 

inconsistent. Another flaw is that the facet may collapse to be a gap when it is too thin to 
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keep its triangular shape. The third problem is illegal overlap. This happens when a 

vertex is located on the edge of another facet or when two adjacent facets are partially 

overlapping, which breaks the STL rule that each triangular facet must share two vertices 

with each adjacent facet. Finally, the depiction of geometric elements in STL format is 

redundant. For example, on average, each vertex of a facet is recorded repeatedly four 

times, which takes extra computational time and memory. In this work, the part STL file 

used is assumed to be perfect. 

3.1.3 STL model accuracy control 

In STL format, the model accuracy is determined by the number of the facets used. The 

more facets we use, the more accurate the model is. The number of facets is controlled by 

the sag values set in the CAD software [16]. The sag value is the chordal deviation for 

curves or surfaces. The curve chordal deviation is the maximum distance between a 

polyline ("chord") whose end points lie on a curve and a point on this curve, as shown in 

Figure 3.4. Similarly, the surface chordal deviation is the maximum distance between the 

tessellated triangles and the surface. A low sag value means that a very fine triangular 

mesh is used to render surfaces due to the small distance between the geometry and 

triangles in tessellation. On the other hand, a high sag value means that a very coarse 

mesh is used due to a high deviation between the geometry and the triangles. 

Mr Chord 

@ % ^Maximum Distance 

Figure 3.4 Curve chordal deviation 
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There are two ways to set up the sag values: fixed and proportional to element size. The 

fixed sag value does not change with the object size, while the sag value proportional to 

element size varies with the size of the object. That is, for the same sag value, the larger 

the object, the coarser the tessellation. Figure 3.5 shows the effect of different sag values. 

The sag value is fixed at 0.20 in Figure 3.5a), and at 8.5 in Figure 3.5b). It is clear that the 

small sag value results in denser triangles in the model. If you save your model with 

different sag values, the sizes of the file will not be the same. 

a) Model with a fixed sag value of 0.20 b) Model with a fixed sag value of 8.5 

Figure 3.5 The effect of sag values 

3.2 STL Data Processing 

Due to the huge redundancy of data in the STL file, it greatly reduces the computational 

efficiency if we use the data without pre-processing it. For example, for a part STL file 

with 20,180 facets, it uses 60,540 vertices (each fact has three vertices). In fact, only 

10,086 vertices are not repeated, which means that more than 80% of vertices are 

redundant. In general, the number of the facets n f and the necessary number of the 

vertices nv have this relationship: nf/nv»2 . The number of redundant vertices is 

estimated as: 
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n f-3-n / / 2 « 2.5n / 

In a real application, it is very important to take out the redundant vertices from the data, 

not only because the repeated vertices consumes unnecessary memory and computational 

time, but also because they could destroy the topological relation between two adjacent 

facets. Many methods can be used to filter the redundant vertices. Fast redundancy search 

efficiency can be achieved by sequentially sorting the vertices in all three dimensions and 

dividing the sorted points into small groups [17]. The much more efficient search method 

is using hashtable data structure [18]. However, both methods involve relatively complex 

programming. In this work, a straightforward but efficient method, called Norm method 

is proposed. The algorithm of norm method is explained as follows. 

First, read all vertices from the STL files. Then, calculate the norm of each vertex and 

sort all the vertices based on the values of their norms. The norm of any vertex p (x, y, z) 

can be calculated by: Normp = y/x2 +y2 +z2 . The sorted vertices are stored in a 

temporary vertex array, called Vtemp . Meanwhile, define a new array Vnew to store the 

filtered vertices. Next, put the first record of Vtemp in Vnew and copy it to temporary point 

variable Pcurr. After that, check if next record Pnexl of V exists. Add Pnexl to the end of 

Vnew and set Pairr = Pnexl , only if Pnexl exists and meets either of the following two 

conditions: 

• The norm of Pnexl is not equal to that of Pcurr, or 

• The norm of Pnexl is equal to that of Pcurr, but their coordinates of two points are 

not identical. 
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Otherwise, P is redundant and it will be omitted. Continue the process until reach the 

end of V . The algorithm flowchart is shown in Figure 3.6: 

Start 

STL 
File 

> 

Retrieve Vertices 
from the STL 

File 

Output Vnt 

Calculate the 
Norms of All 

Vertices 

Sort Vertices 
According to Their 
Norms and Store 

Them in Vtemp 

Copy the first 
record Pfirst of 

Vtompto V„ow,and 
Set Pcurr=Pfirst 

Figure 3.6 Algorithm of filtering the STL redundant vertices 



CHAPTER 4. INITIAL CUTTER SIZE DETERMINATION 

As mentioned earlier, the search will only focus on the area covered by the cutter shadow 

or cutter shadow area (refer to Figure 1.3). The question is we do not know the cutter 

size in advance as it is the final result we are looking for. One way is that we could use 

the maximum standard cutter size available to define the search range. However, the 

computational time would be very costly. This is because in most cases we search the 

area much bigger than needed, which is a huge waste of time. Fortunately, Khan's 

curvature local gouging detection model can be used to determine the initial cutter size at 

a CC point[6], which is the maximum cutter size without local gouging. Thus, this initial 

cutter can be used to define the cutter shadow area. In this chapter, the Khan's model is 

described first. Next, an algorithm for the initial cutter size determination is proposed. 

4.1 Overview of Khan's Model 

In Khan's model, he used the comprehensive curvature analysis to detect the local 

gouging for compound surface patches in 3-axis surface machining. His model provides a 

set of close-form equations to calculate the normal curvatures along all directions. At a 

CC point, a local gouging free cutter can be ensured by checking if the curvatures of the 

cutter are not smaller than that of the surface in any normal direction. 

To find the largest allowable cutter size, he tested all standard cutter sizes at hand from 

big to small until a gouging free cutter is obtained. For each cutter, he compared the 

curvatures of the cutter with which of the part surface at the engaged area along any 

tangent directions. If there is no curvature rule violation, this cutter is chosen; otherwise, 
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this cutter is discarded and a smaller cutter is tested again. The process is repeated until a 

local gouging-free cutter is found. 

In this chapter, the equations related Khan's models are described without detailed 

derivation. These equations involve part principal curvatures, cutting surface curvatures 

and gouging check at the engaged area. 

4.2 Principal Curvatures for the NURBS Surfaces 

The maximum and minimum values of the normal curvatures are known as the principal 

curvatures at a given point on the surface. The directions in which the curvature takes the 

maximum and minimum values are called the principal directions of the normal 

curvatures. The related the equations are provided step by step as follows. 

4.2.1 NURBS surface equation 

First, let us define a NURBS surface in the part coordinate system as: 

m n 

S(«,v) = -!^r4 {tk_,<u<tn_vtl_,<v<tmJ (4.1) 
YT.wu-NiM-Nj,i(y) 
i=o y=o 

Where, the parameters are defined as: 

• P; . are the controls points; 

• wj j are their corresponding weights; 
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w,»= 

(M-O^.CH) ( ^ - « ) ^ U . , ( « ) . f k > l 

is the basis function with an order k; 
1 <,<H<f , + 1 

0 Otherwise 
if k=l 

' ( v - ^ v ) ( ^ - v ) ^ u - , ( v ) 

ty,(v) = V."'y 0+/ 0+i 
if/>l 

is the basis function with an order /; 
1 ' ,*v<f,+ 1 

0 Otherwise 
if/=l 

• w and v are the parameters of the base functions; 

f, and /. are the knot values. 

4.2.2 The first and second derivatives of base function 

The first derivatives of S(w,v) in terms of u and v are denoted as SH(w,v) and Sv(w,v), 

respectively. The second derivative in terms of u is denoted as SHK(w,v), of v as Svv(w,v), 

and of u and v as SI(V(w,v) . By differentiating the base function with respect to it 

parameter (e.g., u), we have the first derivative: 

N'„ =(*-!) 
N, i,k-\ N, i+l,*-l 

V i+t-1 i i+k i+\ J 
(4.2) 

and the second derivative: 

N"uk = ( * - ! ) 
f N' N' ^ 

- 'V+U-l 
V h+k-\ h *i+k h+\ J 

(4.3) 
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4.2.3 The first and second derivatives of NURBS surfaces 

Let us express the NURBS surface as: 

S(u,v) = 
N(u,v) 

D(u,v) 
(4.4) 

Where, 

1=0 7=0 

It HI 

i=0 j=0 

Note, to simplify an expression, occasionally this work uses S, N, and D to represent 

S(u, v), N(u, v), and D(u, v), respectively. 

Then, the first derivatives of the NURBS surface are obtained as: 

f AT i \ \ 

SH(u,v)= — (N{u,v)/D(u,v)) = 
N„(u,vU (N(u,v)-DH(u,v) 

D(u,v)j { D2(u,v) 
(4.5) 

Sv(u,v) = —(N(u,v)/D(u,v)) = 
( Nv(u,v)^ (N(u,v)-Dv(u,v) 

D(u,v)j [ D2{u,v) 
(4.6) 

Where, 

"•<"•*>-£ i£»uWi(»)"y;M 
i=0 y=0 1=0 y=0 
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. fl-("•*)=£ 
i=0 7 = 0 ( = 0 7 = 0 

Nv{u,v) = 
8v 

n m 

1=0 7=0 

n m 

i=0 7=0 

CV 1=0 7=0 
=il^-^w^;./(v) 

1=0 7=0 

Then, the second derivatives of the NURBS surface are found as: 

5 „ v ( " ' V ) = 
du-dv D V ^ 2 j 

+ + 2-
N-D¥.Da> 

-
I D2 ) 

-
{ D2 ) 

(4.7) 

Sm(U,V): 
du2 

D-N 
2^ 

v & J 
+ 

(N \ 
uu 

V D j 
+ 2 

v & K D2 j 
(4.8) 

SJu,v) = 
82 (N\ („D-N\ (N\ JN-D-DA (D.-N^ 

dv2 \Dj 
2-*- + D 

+ 2 
v ^ J & , V D2 j 

(4.9) 

Where, 
it in ft rn 

1=0 7=0 

« m 

i=0 7=0 

A„ («, v) = £ £ wu < * (") • NjAv) = I N'u («)Z wu • ^ » 
1=0 7=0 i=0 7=0 

N» M = E I W/.y • P/.v < * ( « ) • ^7,/(v> = X < * ( « ) Z wu • P u • *y.i<v> 
1=0 7=0 

n m 

i=0 7=0 

Duu H = I I ">UNWJAV) = I ^ ' » X W/.A./(V) 
/=0 7=0 1=0 7=0 
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n in 11 in 

* w («. v) = X £ W'.J • *>J ^ ( w ) • N'JJ ( v ) = S *'•* ( M ) S w/.y • pi.> • Nh (v> 
/=0 y=0 /=0 7=0 
« m ft m 

^ H = I Z " , A * (u) AT, (v) = £ 7Va («) • w„ . £ TV,, (v) 
i=0 y=0 i=0 y=0 

The first fundamental matrix of this surface G can be defined as: 

G = 8n 

Six 

g\2 

Sl2 

Su(u,v)T-Su(u,v) SH(u,v)T -Sv(«,v)" 

Sv(u,v)T-Su(u,v) Sv(u,v)r-Sv(u,v) 
(4.10) 

and the second fundamental matrix of this surface D is defined as: 

D = 
dn 

d2] 

dn 
d22_ 

n-S„(".v) 
n-Suv(w,v) 

n-S„v(w,v) 

n-Svv(w,v) 
(4.11) 

, where the unit surface normal n = \nx,ny,nz J =S1((w,v)xSv(w,v)/ygu -g22 -g,2
2 

4.2.4 Equations of principal curvatures 

Let us denote the maximum and the minimum curvatures of the part surface as ks max 

and ks min, respectively. The Gauss curvature K and mean curvature H can be expressed 

as: 

K = k -k 
j,max s, min S\\ ' Sll ~S\2 

(4.12) 

and 
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W — fir -i-lr \ — g ] ! ' U22 I- gn-Cll2+ g22 • fl,, 
_ 9 A^.max 'rKs,minJ ~ ~ ~ 2 (4.13) 

Then, we have ksmm =H + yjH2-K and ksmin =H-y/H2-K . In addition, the 

principal direction of the maximum curvature T̂  max can be calculated by: 

T = du -S (u,v) + dv S (u,v) 
j,max max i< V > / max A " ' ' 

(4.14) 

Where, 

^ " m a x 

dv 
max _ 

^f.max ' §2\ ®2\ 

a , , — Ks m a x • g i 1 _ 

Similarly, the principal direction of the minimum curvature T min can be determined by: 

T,,min = ^Mmin ' S „ ("» V ) + ^ m i n - S v ( « , v ) (4.15) 

Where, 

dun 

dv. 
•S2\~d2 

"•U *s,min ' S\\ 

According to Euler's equation, the normal curvature in any tangent direction at an interior 

surface point can be expressed as: 

W ) = <max-cos2/? + ̂ min-sin2/? /?e[0,2,r] (4.16) 

, where angle f3 represents this tangent direction in terms of direction T̂  max in counter­

clockwise. At a convex point, all normal curvatures are negative; at a concave point, they 

are positive; and at a saddle point, they are either positive or negative. 
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4.3 Principal Curvatures and Directions of the Cutting Surface 

If R > r{r * 0), an APT cutter becomes a bull-nose end mill, which is the most complex 

and general case, compared to ball end mill and flat end mill. When R = r (R^O) 

and r = 0, it represents a ball end mill and flat end mill respectively. Thus, the model for 

bull-nose mills is derived first. The models for the other two types of cutters can be easily 

obtained thereafter. Here, the part coordinate system (X-Y-Z) is assumed to be the 

reference coordinate system, on which any CC point Po on the NURBS surface S(u,v) 

lies. Meanwhile, the tool axis is defined as [0, 0, l] in this coordinate system. 

4.3.1 Tool coordinate system 

In order to find the principal curvatures and principal directions of the cutting surface of 

the tool, a tool coordinate system is defined for the bull-nose end mill (see Figure 4.1), 

subject to the following constraints: 1) the tool tip (the center of the bottom circle) is set 

as the origin of this coordinate system; 2) its z-axis is aligned with the tool axis; 3) its x-

axis is perpendicular to its z-axis and is on the plane formed by this z-axis and the surface 

normal n at this CC point; and 4) its y-axis is the cross-product of these z- and x-axes (see 

Figure 4.2). 
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Sculptured 
surface part 

Tool coordinate system: o 

Part coordinate system: O 

Figure 4.1 Cutting action of bull-nose end-mill in the NURBS surface 

Cutting 
surface 

Bull-nose end-mill 

1* 
I fto 

9 j x . / / ''•' 

Po 

Tool coordinate system o 

Figure 4.2 Cutting surface of the bull-nose end-mill in the tool coordinate system 

4.3.2 Principal curvatures and directions of the cutting surface 

o Bull-nose end mill 

The maximum curvature of this cutting surface at the CC point can be found 

as:&/max = l / r , and its direction t, raax is [cos#0 0 sin#0] in the tool coordinate system 

(see Figure 4.2). Meanwhile, the minimum curvature is: k, min = sin #0/(R - r + r • sin 0Q), 

and its direction t, min is [0 1 0] in the same system. 
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o Ball end mill 

For ball-nose end-mills (R = r), the principal curvatures are identical:kmm = kmin = \/R, 

and the normal curvatures in all directions are all equal to l/R as well, 

o Flat end mill 

By inspection, the maximum curvature of the flat end mill cutting surface at the CC point 

can be found as k, = \lR, and its direction t, „ is f 0 1 Ol in the tool coordinate 
/.max I " /,max ^ J 

system (see Figure 4.2). Meanwhile, the minimum curvature is k: mm = 0 , and its 

direction t,rain is [0 0 l] in the same system. 

4.4 Gouging Check in All Tangent Directions 

Only comparing the principal curvatures of the part surface and the cutting surface is not 

helpful for local gouging detection due to the fact that their principal directions 

frequently do not coincide with each other. To remedy this problem, we have to 

transform the principal curvature directions of the cutting surface from the tool 

coordinate system to the part coordinate system. Then we can compare the curvatures in 

all directions to detect any possible gouging at a CC point. 

4.4.1 Gouging check between the part surface and bull-nose end mill 

The maximum curvature direction tt max of the cutting surface can be transformed to the 

part coordinate system as Tt max, through the following formula Tt max = [/?] • tt max, or 
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\R]~ 
' L J / •> 2 

^K+ny 

T = 
/.max 

( - ^ -cos6 V/^l+K 
? c ) / » » y 

sin#0 

-n n 0 

—n —n 0 

0 0 yln!+n;_ 

a nd tt,max = 

cos#0 

0 

sin#0 

(4.17) 

Similarly, the minimum curvature direction ttmin of the cutting surface can be 

transformed to the part coordinate system as Ttmin , through the following 

formulaT,min =[/?]• t,imin where ilmin = ; that is: 

T = 
I,mm 

nyj^n 2+«l 

0 

(4.18) 

The values of the principal curvatures remain unchanged in the two coordinate systems. 

The direction of the maximum curvature of the cutting surface T( max is set as a reference 

to determine the tangent directions as shown in Figure 4.3. The tangent direction is 

specified by a , which is the angle measured from the direction of the maximum 

curvature T, raax. Here, a0 is the angle between the directions of the maximum curvatures 

of these two surfaces, and can be calculated as a0 - arccos 
f T T ^ 

s, max <,max 

,T I - IT 
^ | j,max | | f.max | J 

where 
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0 < a0 < n. The angle /? of a tangent direction is measured from the maximum curvature 

direction T, mav of the part surface 

TL T 
t,max 

Tangent' 

Part 
surface 

t, mm 

'"I ' s,min 

I /.max (Reference) 

Tangent 
direction 

Tangent plane 

Figure 4.3 Principal directions of the toroidal cutting surface and the part surface 

According to Euler's formula, the cutting-surface normal curvature along any tangent 

direction can be represented as: 

kt {a) = — • cos2 a + 
sin#n 

R - r + r • sin 0n 

in2 a a e [0, 2iz\ •sin (4.19) 

Obviously, the relationship between a and /? is p = 2K + a-a0 (0< a < a0) 

or [i = a — aQ (a0 <a < 2K) , and the normal curvature of the part surface in any direction 

measured from T „„„ can be calculated as: 

^(«) = ^,max-COs2(«-«o) + ̂ ,min-Sm2(«-a;o) « G [0= 2^] (4.20) 
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If ks(a) < kt{a) a e [0, 2K\ , then the part surface at the CC point will be gouging free; 

otherwise, local gouging will occur. 

4.4.2 Gouging check between the part surface and flat end mill 

In a flat end mill, the cutting surface becomes a planar cutting circle, so the curvature 

analysis is completely different from that of bull-nose end mill. To conduct the curvature 

analysis between the cutting circle and the local part surface at the CC point, first, 

identify the intersection curve between this circle and the part surface; then, calculate the 

curvature of the this curve at the CC point; finally, compare this curvature with that of the 

cutting circle, that is, l/R (see Figure 4.4). 

Part 
surface Mat end 

null 

Horizontal 
plane I' Ti,max 

Intersection curve-

Figure 4.4 Curvature analysis using a flat end-mill 

The curvature of the intersection curve is not the same as the normal curvature of the part 

surface along the tangent direction of this curve. By using Meusnier's theorem, we can 

calculate the curvature of the intersection curve as 
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k = —(*, ,™x ^os2 j30+ksMn -sin2 J30) (4.21) 
COS77v y 

, where angle /?0 is the angle between T̂  max and T, min, and angle 7 is the angle between 

the tool axis and the surface normal n (see Figure 4.4). 

If this curvature k is not greater thanl/i?, the local surface is free of gouging; otherwise, 

it will be gouged. 

4.4.3 Gouging check between the part surface and ball end mill 

Since the surface curvatures of a ball end mill are the same in all tangent directions, we 

only need to consider the maximum principal curvature ks max of the part. If ks max < 1 / R, 

no local gouging will happen; otherwise, the part surface will be damaged. 

4.5 Algorithm for Quick Initial Tool Size Determination 

In Khan's model, one needs to know the cutter size before judging if the curvatures 

between part surface and the cutting surface match or not. In order to find the largest safe 

cutter, we need to check all the cutter sizes in the standard cutting tool list. However, this 

would cost a significant amount of computational time as we need to compare the 

curvatures in all the tangent directions for every cutter in the list. To overcome this 

problem, an efficient algorithm is proposed to search the maximum possible cutter size at 

a given CC point, where only few cutter sizes are tested. 
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In this algorithm, an initial cutter size RQ {most likely non-standard size) is found by 

setting k,{a*) = ks(a*) at a specific curvature direction defined by angle a* (e.g.,a* = 0). 

Then, find the cutter size Rt* in the tool list, which is the size closest to, but not bigger 

than RQ. Next, test if the curvatures of this cutter are not smaller than those of the part in 

all the normal tangent direction. If the test is true, this size is gouging free for this CC 

point and output this cutter; otherwise, choose the next smaller size in the list, and test it 

again. Repeat the process until the cutter is gouging free. The algorithm is shown below: 

Step 1. Initialize the available cutting tool list: 

{#,,R2,....,tf,.,...Rn], where Rj<Ri+1 

Step 2. Check if k,(a = 0)<ks(a = Q). If not, set R=0, and then go to Step 6; else 

go to Step 3. 

Step 3. Find out the possible cutter size RQ by settingkt(a = 0) = ks(a = 0), and then 

find the cutter /?,.,(/* is the cutter index in the list) from the list, which is nearest 

to, but not bigger than RQ 

Step 4. Test if Rjt satisfies the condition of &, (a) > ks (a), where a e [0, 2n\. If 

yes, set /?= Rjt, go to Step 6; else go to Step 5. 

Step 5. If/* -1 > 0, set /* = /* -1 and go to Step 4; else, set R=0, and go to Step 6. 

Step 6. End the search (Return R to main program). 

After the maximum local gouging-free cutter is found, this cutter is used as the initial 

cutter to determine the cutter shadow area. 
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CHAPTER 5. VERTEX KD-TREE SEARCH 

To identify all the points or the triangle vertices falling within the shadow of the cutter 

(see Figure 1.3 ), an efficient region query method is needed. The query speed is highly 

dependent on the efficiency of the data structure. In this work, the KD-tree is chosen as 

the data structure to identify the vertices or testing points under the cutter shadow, due to 

its super efficiency in region query[19]. The fundamentals of KD-tree are described, 

followed by the procedure for final cutter size determination. 

5.1 Introduction of KD-Tree 

• Advantages of KD tree 

Multidimensional binary tree or KD-tree was first coined in 1975 in a theoretical paper 

by Bentley [20], where K is the number of the dimensions in the search space and D 

refers to dimension. As a special data structure, the KD-tree enables us highly efficiently 

retrieve the data with the required conditions using multidimensional search keys. 

According to Bentley, a typical insertion and record lookup in a KD-tree with a size of n 

records will examine about 1.3861og2n nodes, which is very efficient. The big advantage 

of this structure is that a single data structure can be used to perform many types of 

queries at a very fast speed, such as nearest point search, region query, fixed-radius near 

neighbour search [21, 22] 

Among three typical data structures, namely linked list, adaptive quad tree, and KD-tree, 

the KD tree offers the best performance in region query, though it requires the largest 

memory. On the other hand, the linked list has worst efficiency in region query, yet it 
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uses the smallest memory. The quad tree falls in between the KD-tree and the quad tree 

regarding both querying efficiency and memory usage. In our case, the main concern is 

the computational time and the memory usage is not a problem. 

• Applications of KD-tree 

Binary search tree is a special case of KD-tree, where we can only find the items within 

certain range in one dimension. However, for items with multiple keys with each key 

corresponding to a different dimension, the KD-tree would be an appropriate data 

structure to serve this purpose. For example, given a set of points in three spaces (K=3), 

one can quickly find all the points whose X, Y, and Z coordinates satisfying the specified 

criteria: 

X < X < X 
min — — max 

Y <Y<Y 
mm — max 

7 < 7 < 7 
. ^ m i n - ^ - ^ m a x 

The application of KD-tree is not limited to geometric problems. As a typical example, 

one may wish to find all employees whose salary is between $12/hour and 18$/hour, 

whose family has three to five children, and who have worked more than five years. The 

salaries could be viewed as points along the X axis, the number of children as points 

along the Y axis, and the years as points along the Z axis. 

5.2 KD-Tree Data Structure 

5.2.1 Components of KD-tree 

According to the Bentley's theory, in a KD-tree, each record of a given file is stored in a 

form of a node. Typically, a node includes the following components: 
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• K keys, called Ko (P), Ki (P),..., Kk_i(P), where P is any node. These keys 

represent the values of P at different dimensions, e.g. X, Y, and Z coordinates of P 

if P is a point in 3-D space. 

• Two pointers: LOSON (P) and HISON (P), which are either null or point to 

another node in next level in the KD-tree. (Note that each pointer can be 

considered as specifying a sub-tree) 

• A discriminator DISC (P) (or splitting dimension) associated with each node. 

The discriminator is an integer between 0 and k - 1 inclusively 

• A splitting value Kj(P) at which the data set is cut into two subsets such that the 

points in the LOSON will be not greater than it, and the points in the HISON will 

be not less than it against its corresponding dimension (J=DISC(P)). 

• A boundary array B, which bounds the node position by certain values. B has 2k 

entries: B(0), B(l),...,B(k-l), corresponding the maximum and minimum 

boundaries in each dimension. 

5.2.2 Construction procedure 

To build a KD tree, the common construction procedure involves the below steps: 

• First, index all the dimensions by 0, 1, 2...K-1 (e.g. for a 3D tree or K=3, its 

dimensions are represented by index 0, 1, and 2, which corresponds to X, Y, and 

Z axis, respectively). These indices are called as discriminators. 

• Then, select a splitting plane (or line if in 2-D space) perpendicular to 

discriminator 0 (e.g. X axis). This plane cuts the entire points into two subsets 
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(called LOSON or HISON), each of which is split into two subsets using a 

splitting plane perpendicular to discriminator 1 (e.g. Y axis). 

• The cutting action continues until the discriminator reaches K-l(e.g. Z axis) at 

which time the discriminator to which the splitting plane will be perpendicular is 

reset to 0 (e.g. X axis). 

• The process repeats in the same fashion until the size of the point set is small 

enough to meet certain criterion. 

To guarantee a balanced tree or the optimal search efficiency, at each internal node, the 

splitting plane or line has to pass the median value of the points in its corresponding 

dimension. Specifically, suppose we have n points that are sorted in a given dimension, 

for example, such that Xj < Xj+1 (i = 0, . . . , n - 2 ) . Letm =integer portion of (n-l)/2.Then 

the vertical splitting plane is at X = Xm or (Xm + Xm+i)/2, depending on the type of KD-

tree. To implement this, the points should be stored in K sorted vectors in all the 

dimensions (e.g. X, Y, Z...) before the splitting operation proceeds, for example, for a 

three dimensional KD-tree, three sorted vectors are needed for points: one ordered by x 

coordinates, one ordered by y coordinates, and one ordered by z coordinates. 

5.2.3 Main properties of KD-tree 

• Discriminators at different levels 

At a given level i of the tree, all the nodes use the same discriminator. Generally, to 

calculate the discriminator for next level, a function NEXTDISC can be defined as: 

NEXTDISC(i)=(i+l) mod k 

Also, if the two sons are non-null, we have: 
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NEXTDISC(DISC(P)) = DISC(LOSON(P))= DISC(HISON(P)) 

• Criteria for searching directions 

For any node P, let j be DISC (P).A function SUCCESSOR (P, Q) is defined to tell which 

son of P to visit while searching for node Q. This function returns either LOSON or 

HISON. As mentioned before, we can easily identify which son to go if Kj(Q) and Kj(P) 

are not equal, according to the property of KD-tree. However, if the two keys are the 

same, a superkey of P has to be defined as a product of all the keys (Note: the key starts 

with by Kj and cyclically concatenates with each other. The superkey of P is expressed 

as: 

Sj(P) = kJ(P)-kj+](P)...kk_l(P)-k0(P)-...kJ_2(P)-kj_,(P) 

By comparing the superkeys, three cases are identified: 

• If Sj(Q) < Sj(P), it returns LOSON; 

• if Sj(Q) > Sj(P), it returns HISON. 

• If Sj(Q) = Sj(P) it indicates that the two nodes are identical. 

• Property of boundary box 

If Q is a descendant of P, then: 

B(2j) < Kj(Q) < 5 (2 /+ 1), where; e [0 ,* - l ] 

5.3 Types of KD-Tree 

There are many variations of KD-trees. However, here only two typical ones will be 

presented. In this work, the second type of KD-tree is employed as the data structure. 
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The first version is the earliest one, which was described by Bentley in his KD-tree 

theory. In this version, every node of a KD-tree, from the root to the nodes before their 

leaves, stores a point. Leaf nodes, called null nodes, store no point. As a result, each 

splitting plane or line must go through one of the points in the tree. An example is shown 

in Figure 5.1, where the data or records are stored as nodes in 2D space. Figure 5.2 is 

planar graph form of the same 2-D tree. Note that LOSONs are represented by the left 

branches, HISONs by the right branches, and null sons by boxes. 
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Figure 5.1 2D tree in box form (boxes represent range of sub-tree) 
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Discriminator 

Figure 5.2 Planar graph representation of the same 2-D tree 

Opposite to the first version, the second type of KD-tree stores the points in its leaf nodes 

only [23]. Note that each splitting plane or line may still go through one of the points and 

each leaf node stores as least one point. The structure of this type is illustrated in Figure 

5.3. The left side of the figure shows the given points(P7, P2, .... P9) and the subdivision 

of the data set with splitting lines(/7, 12, ..., 19), and the right side illustrates the 

corresponding KD-tree. Interior nodes are marked by circles, and leaf nodes, which 

contain individual points, are marked by squares. Each node contains the information of 

its corresponding rectangular region. 
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Figure 5.3 Second version of KD-Tree 
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5.4 KD-Tree Algorithm 

The major procedures for KD-tree involve KD-tree creation, and region query. The 

corresponding algorithms will be presented in the following sections: 

• Creating KD-tree 

The following is the algorithm for the KD-tree creation, which is combination of 

knowledge from [20, 23]. This work only concerns the points in 3D space, so K=3. The 

discriminator values 0, 1, and 2 correspond to X, Y, and Z axis, respectively. Here P and 

B represent input data points and boundary array of these points, correspondingly. C is 

the maximum size of points contained in a leaf node. 

Create KDTree (P, discriminator, B, C) 

{ 

if (the size of P < C), then return a leaf node T storing P and the node rectangle B 

else if (discriminator=0) 

{ 

Then divide P into two halves with a plane O passing through the median 

X-coordinate of the points in P and perpendicular to X axis. 

Let PI be the set of points to the left of O, 

and let P2 be the set of points to the right of or on O. 

Let B1 be the part of B to the left of O, 

and let B2 be the part of B to the right of O. 

} 
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else if (discriminatory) 

{ 

Then divide P into two halves with a plane O passing through the median 

Y-coordinate of the points in P and perpendicular to Y axis. 

Let PI be the set of points below O, 

and let P2 be the set of points above or on <t>. 

Let Bl be the part of B below O, 

and let B2 be the part of B above O. 

} 

else 

{ 

Then divide P into two halves with a plane O passing through the median 

Z-coordinate of the points in P and perpendicular to Z axis. 

Let PI be the set of points behind O, 

and let P2 be the set of points before or on O. 

Let Bl be the part of B behind<J>, 

and let B2 be the part of B before O. 

} 

Tleft= Create KdTree (PI, (discriminator + 1)%K, Bl, C) 

Tright = Create KdTree (P2, (discriminator + 1)%K, B2, C) 

65 



Store pi, Tleft, Tright, and the node array B in a node T 

(Tleft is the left child of current nodeT, and Tright is the right child of T.) 

return T 

} 

• Querying the KD-tree 

A region query searches the points of a KD-tree within a cubic region R limited by 

minimum and maximum values of X, Y, and Z and provides the results to the user. It 

identifies all points under the node T falling in region R. The algorithm is shown below: 

RegionSearchKdTree (T, R) 

{ 

if (Tis a leaf) 

{ 

then report the points stored at T whose coordinates are contained in R 

} 

else if (node cubic (Tleft) is fully contained in R) 

{ 

then return the points in Tleft 

} 

else if (node cubic (Tleft) intersects R) 

{ 

then Region_Search_ KdTree (Tleft, R) 

} 

if (node rectangle(Tright) is fully contained in R) 

66 



{ 

then return the points in (Tright) 

} 

else if (node rectangle(Tright) intersects R) 

{ 

then Region_Search_KdTree (Tright, R) 

} 

} 

5.5 Determination of the Cutter Size 

As previously mentioned, to find all the testing points or vertices by KD-Tree search, we 

have to specify the criteria for their X, Y, and Z coordinates in a cubic form: 

Xmin <X< Xmm \Xmin andXmax are the lower and upper limits for X 

< 7min < Y < Ymm where, < Ymin and Ymax are the lower and upper limits for Y 

Zmin < Z < Zmax Zmin and Zmax are the lower and upper limits for Z 

However, the shadow of a cutter is a circle (refer to Figure 1.3), so we have to transform 

the circle into a rectangle. Figure 5.4 illustrates how to define the search range for X and 

Y axis, based on the cutter shadow. Here, the circle centered at O' represents the cutter 

shadow with a radius Rs. If we know the X0- and Y0- (the coordinates of O'), the lower 

and upper limits for X and Y can be defined as: 

{Xmn=X0,-RsandXmax=X0,+Rs 

1 Y„iB=Y,-RMandYnmi=Y0.+RM 

For a given APT cutter with a radius R, corner radius r, and taper angle 6, the radius Rs 

can be calculated by Rs =R + r- cos 6 + H Dtan 0 , where H' is the length of the cutter 
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tapered portion. Since the conical angle usually is very small or zero, we can assume it is 

zero. Thereby, H' is determined by H' xH- r{\ - sin 6) (refer to Figure 2.1). 

Figure 5.4 The search range determination 

Given a CC point and its normal Ncc, X0- and Y0- can be easily obtained by Liu's model 

or the refined model for the case where the Ncc only has Z component. Meanwhile, from 

all the vertices extracted from the part STL file, we can find the minimum value Zmjn and 

the maximum value Zmax of all those vertex points. Therefore, the lower and upper limits 

\z . =z 
for Z coordinate are expressed as: \ mm mm . 

\Z =7' 
y max max 

Using the above criteria, the KD-Tree search algorithm can quickly identify all the 

vertices falling within the cutter shadow area. Then, through the imaginary cutter model, 

a group of imaginary cutters can be obtained by using the vertices as testing points. The 
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final cutter size or the maximum allowable cutter size for the given CC point can be 

easily found by selecting the minimum cutter from the imaginary cutter group. 

69 



CHAPTER 6. INTEGRATED KD-TREE CUTTER SIZE SEARCH MODEL 

The local gouging detection method is capable of providing an upper bound of the cutter 

size for the vertex KD-tree cutter size search and ensuring that any size smaller than this 

bound is local gouging-free. The interference or global gouging check, which is not able 

to be solved by Khan's gouging detection model, is taken care by the vertex KD-tree 

search. Thus, integration of the two methods is an ideal choice. The integrated model is 

called iKD-tree model, and its structure and implementation are discussed as follows. 

6.1 Structure of the Integrated Model 

The integrated model can be organized into three main modules, namely Data Preparation, 

Cutter Search Engine, and Data Postprocessing. The flowchart of the model is shown in 

Figure 6.1. The details of these three modules are described in the following sections. 
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Figure 6.1 Flowchart of the integrated model 

6.1.1 Data preparation module 

In data preparation module, the NURBS surface equations and other parameters are 

retrieved from the part IGES file, which will be used to generate CC points, their normals, 

and the boundary information between two adjacent surface patches. Meanwhile, the 

vertices of triangles are read from the part STL file. Then vertices are filtered to remove 
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all the redundant points, which will be used as the testing points to determine the cutter 

size in the vertex KD-tree search. 

6.1.2 Cutter search engine module 

Cutter search engine module is the core of the integrated model, which performs the 

initial cutter search and the final cutter radius determination. In the beginning, the tool 

type and other parameters (i.e., corner radius) are prompted to enter the system. Then, the 

cutter list of the specified type is loaded into the system. After that, the initial cutter size 

Rjn is determined by the local gouging detection subroutine. The flowchart of the local 

gouging detection subroutine is shown in Figure 6.2. Using the obtained initial cutter size, 

the system performs the vertex KD-tree cutter size search to locate the final largest 

possible cutter size R for each CC point. The subroutine flowchart of the vertex KD-tree 

search is shown Figure 6.3. 
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Figure 6.3 Flowchart of vertex KD-Tree search subroutine 

6.1.3 Data postproccessing module 

The main functions of data postprocessing Module are to present cutter size distribution 

in a color map form for a quick visual check, and to generate the cutter size boundaries in 

the CAD/CAM software CATIA for the machining process planning. The concepts of 

color cutter map and cuter size boundary are described as follows. 
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• Color cutter map 

The standard cutter distribution can be effectively represented by a color cutter map. In 

the map, the color at a given CC point indicates the largest standard cutter that can be 

used at that point. The CC points with the same color forms a region that can be cut by 

the same cutter size. The procedure of constructing a cutter map is described as follows: 

• Build a standard cutter list according to the all the cutter available 

• Assign different colors to different cutter sizes in the list 

• Calculate the allowable cutter at each CC point using the integrated model 

• Find the closest standard cuter in the list for each allowable cutter, but it should 

not be bigger than the allowable cutter. 

• Plot the cutter size at each CC point using the corresponding color to obtain the 

cutter map. 

Using the above method, we can obtain a combination of standard candidate cutters that 

can be used to machine the part with the least machining time. Obviously, this standard 

cutter group can be used to cut the part without gouging and interference due to the fact 

that each of them is not bigger than the corresponding imaginary cutter. From the cutter 

map, one can roughly identify the largest possible standard cutter size that can be 

employed at each surface region. In some case, when the surface curvature is very large 

and the open space at an area is very small, one can clearly see if there is a standard cutter 

can access that area using the cutter map. If not, a design change may be required. 

• Generating the cutter size boundary in CATIA 

As mentioned earlier, in the part surface, each cutter forms a cutter size region at which 

the highest cutting efficiency can be achieved by this cutter. Between any two cutter size 
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regions, there exists a boundary. The cutter map is generated by the MATLAB program, 

and it is just a rough presentation of the cutter size regions. As a result, there is not 

boundary in a cutter map that we can directly use to divide the compound surface into 

different regions for the corresponding cutter sizes. Furthermore, even if there is a 

boundary in the map, it is usually not cost-effective to plan machining process on the 

map. If we can generate these boundaries in the part CATIA design, we could perform 

machining process planning in CATIA by assigning the largest standard cutter size for 

each region, which is the most efficient way for material removal. Since whenever there 

is standard cutter size jump between two CC points, we can always find out the 

parametric middle point, whose u and v are the u average and the v average of the two 

CC points, respectively. Using the u and v of the parametric middle point, we can obtain 

any boundary Curves between any two neighbouring cutter regions in CATIA by the 

following steps: 

• First calculate all these middle points through their u and v values. 

• Then output the points obtained in the first step to CATIA. 

• Finally connect those points by B-Spline Curves. 

6.2 Implementation of Integrated Model 

To transform the model into real applications, the model is implemented in MATLAB 

and a snapshot of the user interface is shown in Figure 6.4. The system requires the user 

to input the surface patch information and the cutter parameters. In addition, the user has 

to load the STL file of the part before computing. If the user wants to generate the cutter 
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size boundary in CATIA, he or she has to make the CATIA Generative Shape Design 

Workbench ready before pressing the button. 

-A SurfaceRework H P i l 
^ B B H B u S U R F A C E REWORK \f1.0mm^mmm^— 

Input Control Parameters 

Total Patches j 24 1 

U Grids | 42 j 

V Grids 42 1 

Safe Factor (mm) -) .5 j 

| Load STL | 

Generate B.C. 

Input Cutter Parameters 

Cutter Type m ^ ^ ^ M ^ \ 

Taper Angle (deg) . 0 1 

Corner Radius (mm) [ Q \ 

Offset (mm) ; 0 

Ifem™« 

In CATIA j 

Note: Make CA TIA ready Before pressing Generate B. C. in CA TIA Botton. 

Figure 6.4 The interface of the system 
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CHAPTER 7. APPLICATION AND COMPARISON 

7.1 Introduction 

Compound surfaces are widely used in the parts with a complex shape, for instance, 

dies/moulds. Normally, a compound surface consists of a number of free-form surfaces 

connected with C or/and C continuity. When we plan the machining processes, we 

always want to use the largest possible, yet gouging-free cutter for at a given surface 

region. In other words, the curvature of the cutter should match that of the surface as 

much as possible. Thereby, we can maintain the highest material removal rate. To cut a 

compound surface on 3-axis CNC machines, using only one cutter to machine all the 

surfaces is not efficient. This is not only because the surface curvature changes from CC 

point to CC point, but also because the open space for the cutter varies from location to 

location. As a result, this would be far away from the rule of curvature match. 

Ideally, all imaginary cutters calculated from the model are the perfect candidate sizes to 

cut the compound surface. However, most of the imaginary cutters are non-standard and 

it would be very costly to make them. As a result, all the imaginary cutters will be 

converted into standard cutters as the output in this work. The conversion is simply a 

process of finding the available standard cutter size closest to the imaginary cutter. 

In this chapter, a specific application of hairdryer is introduced. Then, comparisons 

between iKD-Tree method, Liu's PSO cutter search method, and CATIA rework function 
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are made to show the advantages of the proposed model, regarding the computational 

time, accuracy, and cutter selection efficiency. 

7.2 Application of a Hairdryer Mould 

7.2.1 Part CATIA design 

Due to its complexity, this work still uses the hairdryer mould as an example, which is 

the same part design that Liu used in his PSO cutter size method. This hairdryer mould 

consists of 24 surface patches, which are connected with C°, C1 or C2 continuity. The 

CATIA design of this part and its 24 patches are shown in Figure 7.1. This hairdryer 

surfaces are very complex as it has both concave and convex regions. It is extremely 

difficult to determine the combination of cutter sizes to realize the maximum production 

efficiency, while ensuring the no gouging and interference happen. 

(a) (b) 

Figure 7.1 (a) CATIA design of the hair dryer mould and (b) Its 24 surface patches 
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7.2.2 Surface patch parameters and cutter data 

In this work, for each surface patch, a mesh of 21x21 iso-parametric CC points is used. 

Since there are 24 patches for the whole hairdryer, there are 10584 CC points in total. 

Assume the standard cutter sizes available are 25.4 mm (1 inch), 12.7 mm (1/2 inch), 

6.35 mm (1/4 inch) and 3.175 mm (1/8 inch) for both flat end-mill and ball end-mill. The 

STL file is generated in CATIA by setting the 3D accuracy and 2D accuracy to be .01, 

which is the finest setting in this software. Unless mentioned otherwise, these parameter 

settings are used throughout this chapter to run the integrate model system. The results 

are described in the following sections. 

7.3 Color Cutter Map of Hairdryer 

As previously mentioned, the results of cutter sizes are represented by the color cutter 

maps. By running the system with the above parameter settings, the cutter maps of flat 

end-mill and ball end-mill are shown in Figure 7.2 and Figure 7.3, respectively. In the 

two cutter maps, different colors signify the different cutter radius regions: 

• dark brown: 1 inch 

• light brown: V2 inch 

• green: % inch 

• light blue: y% inch 

• dark blue: cutter not available 
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Figure 7.2 Standard cutter radii map for flat end-mills 

Figure 7.3 Standard cutter radii map for ball end-mills 

The color cutter maps are generated by MATLAB program. By visual inspection, a rough 

cutter distribtuion can be obtained. The small dark blue area in Figure 7.2 indicates that 

no flat cutter can access that area.Therefore, to cut this area, one option is to use a smaller 
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flat-mill cutter or other type of cutter. Another option is to modify the design of that 

region so that the available flat end-mill cutter can access it. 

7.4 Comparison between PSO Method and iKD-Tree Method 

In order to demonstrate the computational efficiency and cutter size accuracy, this work 

uses both the Liu's PSO method and iKD-Tree method to search the cutter size 

combination for the hairdryer mould. The results from both methods are compared. 

7.4.1 Computational time 

As expected, the iKD-Tree cutter search method is much more efficient than the PSO 

cutter search method in terms of cutter size search speed. This is not only because the 

iKD-Tree method greatly narrows its searching scope to the area covered by the cutter 

shadow, but also because the search is on the limited discrete points of that area, while 

the PSO method has to continuously search entire compound surfaces. Indeed, the 

efficiency of iKD-Tree is proved by the hairdryer mould example. 

To demonstrate the computational efficiency, the same settings are employed as 

previously mentioned, except the cutter type. This time, only torus end-mill, the most 

complex cutter among the three types of APT cutters, is selected, and assume that it has 

a corner radius of 1mm and a taper angle of 2°. In the part STL file, there are 21931 

vertices. The time required to compute all cutter sizes of all the CC points is 4.2636 hours, 

which is only 18% of the time that are required by the PSO method to do the same job. 

Please keep in mind that in this work, the program is coded by MATLAB, which is much 
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slower than the other programming languages, e.g. C++. Therefore, this is really a huge 

improvement on the search efficiency. The detailed data are shown in Table 7.1. 

Table 7.1 Computational time comparisons 

Methods 

iKD-Tree 

PSO 

Total CC Points 

10,584 

10,584 

Computational Time(hr) 

4.2636 

23.4646 

7.4.2 Cutter size accuracy 

Generally speaking, the PSO cutter search method has a very high accuracy in 

determining the cutter size due to its continuous search nature. Therefore, a quick and 

simple way to check the accuracy of the proposed method is to compare the cutter sizes 

obtained from the iKD-Tree method with which obtained from the PSO method under the 

same conditions. From the results, it is found that the cutter sizes computed by both 

methods are identical for 99.5% of the CC points. Among the 10,584 CC points, only 50 

CC points have slightly cutter size differences between two methods. The deviations are 

mostly about 1 mm. Please keep in mind that those values are imaginary cutter sizes. In 

reality, we need to convert them into the corresponding standard cutter sizes. 

Suppose that the available standard cutter sizes are (1) 3.175, (2)6.35, (3)8.0, (4)10.0, 

(5)12.7, (6)14.0, (7)15.0, (8)16.0, (9)20.0, (10)25.4, (11)30.0, (12)32.0, and 

(13) 40.0. Those cutter sizes are in mm and listed in the ascending order. After converting 

all the cutter sizes into the standard cutter sizes, the CC points that have different cutter 

sizes between two methods drop to 10 (see Table 7.2). From Table 7.2, it is seen that the 
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9 CC points have a cutter size index difference of 1, and only one CC point has a cutter 

size index difference of 2. That is being said, the difference is insignificant. 

Table 7.2 Different cutter sizes between PSO method and iKD-Tree method 

No.ofCC 
Point 
3,582 

3,902 

4,618 
5,259 

5,260 

5,261 

5,262 

5,263 

5,264 

10,107 

10,108 

10,113 

10,115 

10,116 

10,117 

PSOl 
Standard size 

in mm 
3.175 

0 

3.175 
10 

12.7 

12.7 

12.7 
14 

14 

0 

0 

6.35 

10 
14 

16 

VIethod 
Index in the 

cutter list 
(1) 
(0) 

0) 
(4) 
(5) 
(5) 
(5) 
(6) 
(6) 
(0) 
(0) 
(2) 
(4) 
(6) 
(7) 

iKD-Tree Method 
Standard size 

in mm 
6.35 

3.175 
6.35 

12.7 
14 

16 

16 

16 

20 

3.175 
3.175 

8 

12.7 

16 

20 

Index in the 
cutter list 

(2) 

(1) 
(2) 
(5) 

(6) 

(V) 

(7) 

(7) 

(8) 

0) 
0) 
(3) 
(5) 
(7) 
(8) 

Difference 
of Index 

2 

Note: Index 0 means the cutter size is not available 

Further investigation reveals that all the 10 CC points with different cutters between two 

methods are from the patch boundaries. The main reason is because the local gouging 

detection approach is only valid under the assumption that all the patches are connected 

with C continuity. In this hairdryer mould design, not all of the patches are connected 

with C continuity. Thus, if a better local gouging detection model that can apply to the 

surfaces connected with C1 continuity is provided, we could completely solve the 

problem. 
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After converting all the imaginary cutter sizes into standard ones, the result matching 

between two methods becomes to 99.9% of CC points. On the other hand, there is no 

guarantee that the PSO method will produce 100% of correct results due to its stochastic 

nature. Therefore, the accuracy of iKD-Tree method is comparable to that of the PSO 

method, and is acceptable. 

7.5 Comparison between iKD-Tree Method and CATIA Rework Function 

In CATIA V5, there is machining rework function, which can be used to determine the 

rework boundaries that cannot be accessed by a given cutting tool. If we know all the 

possible candidate cutters that can be used to cut a part, we can also identify the 

boundaries between any cutter size regions by using the CATIA rework function. In order 

to give the reader a clear picture about the strength of this work and the limitation of the 

CATIA rework function, a comparison between them is provided by assuming all the 

cutter size are given for CATIA rework. 

7.5.1 Efficiency of cutter size selection 

In reality, it is almost impossible to guess all the candidate cutter sizes that can be used to 

cut a part by experience, especially when the part surface becomes very complex. If you 

want to test all the available cutters in the list to obtain the boundaries of different cutter 

regions, it would be very time-consuming. Suppose we still use the previously 

mentioned cuter list with 13 cutters available. In CATIA rework function, if we set the 

tolerance to be 7.874e-006 in, one given cutter size takes the CATIA about 45 minutes to 

create the rework boundaries. So a total of 13 cutters would take 9.75 hours to obtain all 
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the boundaries, which is more than twice of the time required by the proposed model. 

Remember that tolerance in the proposed model is set to be zero, and CATIA uses 

programming language for its system. If this work is implemented by a programming 

language, for example, C++, the computational time can be shrunk to half an hour. Thus, 

the iKD-Tree method overshadows the CATIA rework function, considering the 

efficiency of cutter size selection. 

7.5.2 Boundary accuracy 

In order to make the comparison simple and easy, it is assumed that the available ball 

end-mill sizes for the hairdryer mould are only 1 inch, Vi inch, and % inch in radius. 

Thus, the time required for CATIA to generate the rework boundaries for those cutter 

sizes will be tolerable. As CATIA is the widely accepted CAD/CAM software, the 

rework boundary accuracy is unstable. Here we need to check if the boundaries generated 

from iKD-Tree method match the results from the CATIA rework function. 

The boundaries of the available cutter sizes obtained from the iKD-Tree method are 

shown in Figure 7.4. Here the colors of dashed lines indicate the types of boundary. The 

definitions of boundary types are described as follows: 

• Type l(red): the boundary between 1 inch cutter region and Vi inch cutter region 

• Type 2(green): the boundary between lA inch cutter region and !4 inch cutter 

region 

• Type 3(yellow): the region of the boundary that no cuter in the list can access 
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Figure 7.4 Boundaries generated by iKD-Tree method 

The orange callouts in Figure 7.4 also indicate the largest available cutter sizes (in inch) 

that can be used to cut the corresponding regions. The callout with 'N.A.' signifies that 

no available cutter can be used to cut the region enclosed by the yellow dashed boundary. 

In CATIA rework function, set the tolerance to be 7.874e-006 in and then generate the 

same three types of boundaries, using the same three cutters. The results are shown in 

Figure 7.5, Figure 7.6, and Figure 7.7. Note that CATIA rework function always uses the 

same type of red thin line to represent the boundary, regardless of boundary types. In 

Figure 7.5, it is seen that the type 1 boundary obtained from the CATIA rework exactly 

coincides with the red dashed line obtained from the iKD-Tree method. Similarly, from 

Figure 7.6, one can see that the type 2 boundaries from both CATIA rework function and 

the proposed method match quite well. In Figure 7.7, we can see that boundaries of type 
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3 from both methods match also very well, except that the area enclosed by the boundary 

from the proposed method is slightly larger than that from the CATIA rework function. 

This means the proposed method is somewhat conservative or safer. Therefore, we can 

conclude that boundary accuracy from the proposed method is equivalent to that from the 

CATIA. 

Fngunire 7„§ Comparison of boundary type 1 



Fngmir© 7„6 Comparison of boundary type 2 
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7.6 Machining Time Comparison 

In order to see the machining efficiency, the previously determined three cutters (1/2 

inch, 1 inch, and 2 inch) are used to plan the tool path in their corresponding boundaries 

for the hairdryer mould. At the same time, the x/i inch cutter, the smallest cutter among 

them, is also used to cut the same part. Their machining times and total times used are 

shown in Table 7.3. 

Table 7.3 Machining time and total time comparison 

Three cutter approach 

Individual cutter machining time (min) 

2 inch 

9.40 

1 inch 

12.93 

/4 inch 

2.62 

Total 
machining 
time (min) 

24.95 

One cutter 
approach 

Machining time 
(min) 

Vi inch 

54.23 

From Table 7.3, it is seen that the total machining time by using three ball end-mills is 

less than the half of the machining time by using one ball end-mill. The results are the 

same as those from the Liu's work. Indeed, the material removal rate can be significantly 

increased through the iKD-Tree model. 
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CHAPTER 8. CONTRIBUTIONS AND FUTURE RESEARCH 

8.1 Contributions 

In this research, an integrated KD-Tree cutter size search method is proposed to quickly 

determine the largest combination of gouging and interference-free cutters and their 

corresponding boundary regions, for 3-axis finish machining of sculptured surfaces. 

Those cutters can be used to achieve a high material removal rate, while maintaining the 

quality of the machined part. The main contributions of this work are summarized as 

follows. 

First, an improvement has been made in Liu's imaginary cutter model to overcome its 

drawback. Since Liu's original model becomes invalid in the case when surface normal 

at a CC point is parallel to the tool axis, a new model has been developed for this 

particular case. As a result, the improved imaginary cutter size model can be applied to 

any surface conditions. 

The introduction of the STL discrete point search concept is a methodological 

breakthrough of cutter size determination. In this work, the vertices extracted from the 

part STL file are employed as the testing points to define the cutter size, which is the 

radical way to accelerating the searching speed due to the discrete and finite nature of 

those vertices. Furthermore, the search accuracy is guaranteed by the adaptability of the 

STL format: the number of the test points is proportional to the curvature of the surface 

where those points lie. Additionally, to eliminate the chance of repeated search, an 
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efficient and straightforward algorithm has been developed to filter the large percentage 

of redundant vertices in the STL file. 

Further, the suggested Vertex KD-Tree search method enables an extremely purposeful 

and high-speed search. First, the cutter shadow has been used to define the search area 

that the cutter would likely touch. Therefore, the search will be performed only in the 

necessary region. Second, adopting the efficient region query algorithm, the KD-tree 

search allows us to quickly identify all vertices within area covered by the cutter shadow. 

More importantly, an integrated KD-tree model has been established to search the desired 

cutter sizes at an acceptable computational time and accuracy. The model incorporates 

the vertex KD-Tree method and Khan's local gouging detection method. Based on the 

Khan's method, an efficient initial cutter search algorithm has been developed. This 

initial cutter size serves as an upper limit of the allowable cutter to determine the radius 

of the cutter shadow for the vertex KD-Tree method. 

Finally, the integrated model can achieve the comparable accuracy as the Liu's PSO 

cutter size method, but only requires 18% of the computational time. Besides, the cutter 

size boundaries generated by this model have the same accuracy as that generated by the 

CATIA rework function, but requires less than half of the running time needed by the 

CATIA to so the same job. 
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8.2 Future Research 

For the future research, several directions are suggested: 

• Develop the improved local gouging detection model that can be applied to the 

n 1 i 

surfaces that are connected with any kind of continuity, including C , C , and C , 

so that the accuracy of the local gouging detection becomes more dependable. 

• Conduct research on the re-meshing of STL facets to generate testing points other 

than the vertices to augment the accuracy of the cutter size search. 

• Extend this work to 5-axis surface machining since many complex parts have to 

be produced by multiple-axis machining. The typical example is compressor 

impeller. 
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