
An Integrated KD-Tree Cutter Size Determination Method for 3-Axis Finish

Machining of Sculptured Surface Parts

Hai Qing Liang

A Thesis

in

the Department

of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Mechanical Engineering) at

Concordia University

Montreal, Quebec, Canada

October, 2008

© Hai Qing Liang, 2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre r6f6rence
ISBN: 978-0-494-63227-7
Our file Notre reference
ISBN: 978-0-494-63227-7

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

ABSTRACT

An Integrated KD-Tree Cutter Size Determination Method for 3-Axis Finish Machining

of Sculptured Surface Parts

Hai Qing Liang

In this research, an integrated KD-Tree cutter size search model is proposed to

quickly determine the largest cutters and their accessible surface regions for 3-axis finish

machining, without gouging and interference. By using these cutters, the highest material

removal rate can be achieved, while maintaining the quality of the machined part. To

overcome the problems of existing methods, such as long computational time and low

accuracy, this model integrates the vertex KD-tree method with local gouging detection

method. In this work, an imaginary cutter model is used to define a cutter, given a cutter

contact point (CC point) and a testing point. All the testing points needed are derived

from the part STL model. A simple and efficient algorithm is suggested to get rid of the

redundant vertices in the STL file of the part. The local gouging detection method

identifies the maximum local gouging-free cutter for a CC point as the initial cutter, and

this cutter is used to determine the area of the cutter shadow. The cutter shadow is used to

define a search range of the testing points to avoid any unnecessary search. Then the

vertices covered by the shadow are quickly located by the KD-Tree algorithm from all

the vertices, and used as test points to determine the final gouging and interference-free

cutter size. The proposed model is tested with a hairdryer mould example. The results

show that the model is not only computationally efficient, but also highly accurate. In

iii

addition, the model is suitable for any types of milling cutters, and ready to implement in

the CAD/CAM software.

Keywords: STL File, CATIA, Cutter Size Selection, KD-Tree search, Boundary,

Gouging, Interference, Accuracy, and Computational Time.

ACKNOWLEDGMENTS

I would like to thank all of those who have given supports on the journey of my thesis

research. Many professors, friends, and family members have assisted with techniques,

ideas, and monetary resources to help me complete this research. While there were many

people whose efforts bring this to fruition, a few people deserve special recognition. First

I would like to thank my supervisor Dr. Chevy Chen for his guidance, patience and

insight. Second, I would like to thank Qiang Fu for his programming supports and

valuable ideas. Third, I would also like to thank Gang Liu, Maqsood Khan, Shuangxi

Xie and Hong Zhen, whose encouragement, insights and comments have been the one of

important driving factors for the advancement of this work.

Special thanks must go to my wife, Yu Hong Luan. She has provided support on every

step of the way, emotionally, spiritually and even financially. Her support and

encouragement have enabled me concentrate on my thesis program. I would like to thank

my mother and my son for their understanding since I should have spent more time with

them.

v

TABLE OF CONTENTS

LIST OF FIGURES X

LIST OF TABLES XII

CHAPTER 1. INTRODUCTION 1

1.1 Background 1

1.1.1 Sculptured surface machining 1

1.1.2 Gouging and interference 2

1.2 Problem Statement 3

1.3 Literature Review 4

1.4 Research Objectives and General Approach 6

1.5 Structure of the Thesis 8

CHAPTER 2. IMAGINARY CUTTER SIZE MODEL AND REFINEMENT 10

2.1 Introduction of Liu's Imaginary Cutter Size Model 10

2.1.1 Compound surface 10

2.1.2 Representation of APT cutter geometry 11

2.1.3 Theorem for allowable cutter size 14

2.1.4 Imaginary cutter size model for the APT cutter 16

2.2 Refinement of Liu's Model 26

2.2.1 Limitation of Liu's model 26

2.2.2 Upgrading of Liu's model for the special case 27

CHAPTER 3. STL FORMAT AND DATA PROCESSING 34

3.1 Introduction to the STL Format 34

3.1.1 Basics of the STL format 34

vi

3.1.2 Advantages of STL file 37

3.1.3 STL model accuracy control 38

3.2 STL Data Processing 39

CHAPTER 4. INITIAL CUTTER SIZE DETERMINATION 42

4.1 Overview of Khan's Model 42

4.2 Principal Curvatures for the NURBS Surfaces 43

4.2.1 NURBS surface equation 43

4.2.2 The first and second derivatives of base function 44

4.2.3 The first and second derivatives of NURBS surfaces 45

4.2.4 Equations of principal curvatures 47

4.3 Principal Curvatures and Directions of the Cutting Surface 49

4.3.1 Tool coordinate system 49

4.3.2 Principal curvatures and directions of the cutting surface 50

4.4 Gouging Check in All Tangent Directions 51

4.4.1 Gouging check between the part surface and bull-nose end mill 51

4.4.2 Gouging check between the part surface and flat end mill 54

4.4.3 Gouging check between the part surface and ball end mill 55

4.5 Algorithm for Quick Initial Tool Size Determination 55

CHAPTER 5. VERTEX KD-TREE SEARCH 57

5.1 Introduction of KD-Tree 57

5.2 KD-Tree Data Structure 58

5.2.1 Components of KD-tree 58

5.2.2 Construction procedure 59

vii

5.2.3 Main properties of KD-tree 60

5.3 Types of KD-Tree 61

5.4 KD-Tree Algorithm 64

5.5 Determination of the Cutter Size 67

CHAPTER 6. INTEGRATED KD-TREE CUTTER SIZE SEARCH MODEL 70

6.1 Structure of the Integrated Model 70

6.1.1 Data preparation module 71

6.1.2 Cutter search engine module 72

6.1.3 Data postproccessing module 74

6.2 Implementation of Integrated Model 76

CHAPTER 7. APPLICATION AND COMPARISON 78

7.1 Introduction 78

7.2 Application of a Hairdryer Mould 79

7.2.1 Part CATIA design 79

7.2.2 Surface patch parameters and cutter data 80

7.3 Color Cutter Map of Hairdryer 80

7.4 Comparison between PSO Method and iKD-Tree Method 82

7.4.1 Computational time 82

7.4.2 Cutter size accuracy 83

7.5 Comparison between iKD-Tree Method and CATIA Rework Function 85

7.5.1 Efficiency of cutter size selection 85

7.5.2 Boundary accuracy 86

7.6 Machining Time Comparison 90

viii

CHAPTER 8. CONTRIBUTIONS AND FUTURE RESEARCH 91

8.1 Contributions 91

8.2 Future Research 93

LIST OF REFERENCES 94

IX

LIST OF FIGURES

Figure 1.1 An illustration of gouging 2

Figure 1.2 An illustration of interference 3

Figure 1.3 Cutter shadow on the surface 7

Figure 2.1 An illustration of APT cutter 12

Figure 2.2 (a) a bull-nose end-mill, (b) a flat end-mill, and (c) a ball end-mill 12

Figure 2.3 Illustration of the model of allowable cutter 14

Figure 2.4 Example of imaginary cutter and its two extreme case: R=0 or R=<x> 17

Figure 2.5 Some geometry features used in imaginary cutter model 18

Figure 2.6 Determination of the cutter center O by the normal of CC Point 26

Figure 2.7 Center trajectory of the cutter 27

Figure 3.1 Example of a facet and its normal 35

Figure 3.2 Structure of a STL file 36

Figure 3.3 Example of a complex shaped part: a) CAD model, b) STL model 37

Figure 3.4 Curve chordal deviation 38

Figure 3.5 The effect of sag values 39

Figure 3.6 Algorithm of filtering the STL redundant vertices 41

Figure 4.1 Cutting action of bull-nose end-mill in the NURBS surface 50

Figure 4.2 Cutting surface of the bull-nose end-mill in the tool coordinate system 50

Figure 4.3 Principal directions of the toroidal cutting surface and the part surface 53

Figure 4.4 Curvature analysis using a flat end-mill 54

Figure 5.1 2D tree in box form (boxes represent range of sub-tree) 62

Figure 5.2 Planar graph representation of the same 2-D tree 63

x

Figure 5.3 Second version of KD-Tree 63

Figure 5.4 The search range determination 68

Figure 6.1 Flowchart of the integrated model 71

Figure 6.2 Flowchart of local gouging detection subroutine 73

Figure 6.3 Flowchart of vertex KD-Tree search subroutine 74

Figure 6.4 The interface of the system 77

Figure 7.1 (a) CATIA design of the hair dryer mould and (b) Its 24 surface patches 79

Figure 7.2 Standard cutter radii map for flat end-mills 81

Figure 7.3 Standard cutter radii map for ball end-mills 81

Figure 7.4 Boundaries generated by iKD-Tree method 87

Figure 7.5 Comparison of boundary type 1 88

Figure 7.6 Comparison of boundary type 2 89

Figure 7.7 Comparison of boundary type 3 89

XI

LIST OF TABLES

Table 7.1 Computational time comparisons 83

Table 7.2 Different cutter sizes between PSO method and iKD-Tree method 84

Table 7.3 Machining time and total time comparison 90

xn

CHAPTER 1. INTRODUCTION

1.1 Background

1.1.1 Sculptured surface machining

Today, there is a great demand for parts with complex geometric shapes due to the two

main reasons. First, high aerodynamics, thermodynamics, or other performance requires a

special shape design. Second, consumers are always in favour of products with better

aesthetic appearance. These complex parts are characterized by their sculptured surfaces,

which are challenging in design and manufacturing. A typical application of sculptured

surface is the design of moulds and dies, as their geometries often include complex

curved surfaces. Mathematically, sculptured surfaces can be expressed by non-periodic

uniform rational B-Spline (NURBS) surface equations. Usually, many surface patches are

required to form a part shape. The smoothness between patches is often defined as:

• Positional continuity (C°): the end positions of two curves or surfaces are

coincident.

• Tangential continuity (C1): the end vectors of two curves or surfaces are in the

same line.

• Curvature continuity (C2): the curvatures of the two surface patches are equal.

To ensure aerodynamic requirements, it is very common that a sculptured part has to be

designed by using NURBS patches with at least C2 continuity. The typical examples

include turbine blades, car bodies and boat hulls.

1

1.1.2 Gouging and interference

Gouging and interference are two main problems in sculptured surface machining as they

could damage the workpiece and the machine tool. Gouging occurs on a part surface

when the cutting tool overcuts the design surface near a cutter contact point or CC point

(see Figure 1.1). In 3-axis machining, this is because the size of the selected cutter is not

appropriate. In order to avoid gouging, the curvature of the selected cutter surface should

not be smaller than that of the part surface. Interference happens when tool shank collides

with the part surface during the machining (see Figure 1.2). This is usually because of the

narrow open space of the part. The solution is to select a smaller cutter size. Frequently

gouging is referred as local gouging as it happens in the vicinity of the CC point, while

interference is referred as global gouging because it occurs away from the CC point.

Figure 1.1 An illustration of gouging

2

Interference
Area

Ball End-Mill

Sculptured
Surface

CC Point

Figure 1.2 An illustration of interference

1.2 Problem Statement

In 3-axis sculptured surface machining, to meet the surface quality requirements, the part

should not be gouged and interfered. This necessitates an appropriate cutter size for a

given surface area. For a part with complex shapes, different surface areas may have

different curvatures and open spaces for the cutter to access. Usually, to maximize the

material removal rate, it is preferred to select the cutter as large as possible for each area.

As a result, a high machining efficiency requires the use of multiple cutters with

appropriate sizes. However, how to determine a group of optimal cutter sizes has been a

challenge for a long time, and no mature solution has been found.

There is a commonly used method for this issue, which can be summarized as the

following steps:

3

1) The cutter size is determined to avoid the local gouging through the curvature

comparison or the distance calculation between the cutting surface and the

designed surface at a CC point.

2) The interference is checked based on the obtained no-gouging cutter size. If the

interference occurs, the cutter size is adjusted accordingly.

3) The check and the orientation adjustment may repeat several times until a

satisfactory cutter size is chosen.

However, this method is time-consuming and the determined cutter size usually is not

optimal. Besides, the machine efficiency is very low as only one small cutter is used.

Consequently, a long lead time is required for the parts that have complex surfaces and

requires a tight tolerance. For example, the average lead time for an American mould and

die manufacturer is 20-30 weeks [1]. In our day, shortening the time to market is crucial

for a business to succeed. As 10-15% of reduction in machining time would result in one

week shorter in the lead time, it is important to seek solutions to this problem.

1.3 Literature Review

The main work of cutter size determination actually is gouging and interference

detection. In surface machining, gouging and interference hinder the surface quality and

production efficiency. To overcome these problems, many researches have been

conducted in this topic. However, there is no effective solution to them so far. Generally,

4

two types of methods are comonly used to tackle this problems. One is curvature-related,

while another one is non-curvature-related.

First, among the curvature-related methods, Glaeser et al. [2] and Pottmann et al. [3]

introduced some concepts regarding exhaustive curvature comparison and discussed the

local and global conditions for 3-axis collision-free milling of sculptured surfaces. But no

feasible method was described for the implementation of these concepts and conditions in

their work. Yoon et al.[4] proposed a local condition for 5-axis collision-free milling,

using Taylor's quadratic approximation to represent the tool an part surfaces in the

vicinity of a cutter contact point. They assumed that the approximation was accurate in a

large area. As this assumption does not always hold, their work is unfeasible. Rao and

Sarma [5] applied the curvature comparison method to detect local gouging for 5-axis

machining using flat end-mill. However, no work has been done for bull-nose end-mill.

Khan [6] proposed an improved approach to comprehensive curvature analysis for the

engaged regions on both cutting surface and part surface in 3-axis finish machining. This

method can be applied to flat, ball and bull-nose end-mills to determine the locally

gouging-free cutter size. Unfortunately, his method is not able to solve the interference or

global gouging problem, which plays the same important role as local gouging detection

in cutter size determination.

Many non-curvature-related approaches also have been proposed for gouging detection

and cutter size selection. Oliver et al. [7] located the regions with high curvatures in the

first step, and then mainly performed the gouging and interference detection on these

regions for 3-axis machining. Yang and Han [8] employed iso-phote curves on the

5

sculptured surfaces to determine the patches accessible in 3-axis machining, and

optimized the cutting tool selection to minimize the cutting time. . Lee and Chang [9]

used the maximum effective cutting radius to determine cutter sizes for 5-axis surface

machining. George and Babu [10] applied the optimization techniques to determine the

self-intersection curves of the cutter location surface, and then eliminated the locations

causing local gouging. In order to get rid of the zones with potential interference, Hatna

and Grieve [11] processed the surface first, and then generated interference-free tool

paths in a simple sweeping process of the surface parametric space. The above methods

have the inherent problems: low accuracy in gouging detection and /or tedious

computation. Liu [12] proposed a close-form mathematical model (imaginary cutter size

model) to determine the imaginary cutter size or the largest allowable cutter size, given a

cutter contact point and any test point on a sculptured surface, and applied the particle

swarm optimization (PSO) method to determine a group of gouging and interference-free

cutter sizes, leading to the highest machining efficiency. The main problem of this

method is its very large computational time required as any point on any surface of the

part could be used to test the validity of the cutter size. Besides, his model is valid only

for the surface whose normal at any CC point does not coincide with the machine tool

axis, which is not true.

1.4 Research Objectives and General Approach

The objectives of this work are two folds. The first objective is to improve Liu's model

so that it can apply to any surface conditions. To do that, a refined imaginary cutter size

model will be derived to accommodate the special surface condition. The second

6

objective, as the ultimate goal, is to propose an integrated KD-Tree cutter size search

method (iKD-Tree method), which can achieve the same result of Liu's method, but

requires much less computational time for 3-axis finish machining of sculptured surface

parts.

In the iKD-Tree method, the improved imaginary cutter model is adopted to determine a

cutter size at a CC point and a test point. However, instead of random points identified by

the PSO method in Liu's work, the vertices obtained from the part STL file are used as

the test points. As we can imagine, the cutter can only be in contact with the surface area

covered by the shadow of the maximum possible cutter or the projection of the maximum

cutter area on the horizontal plane, assuming we look downward from the top of the

cutter (see Figure 1.3). As a result, only the vertices within the shadow will be selected as

test points.

Y'

O(Z)

• X '

Note: The cutter tip coincides with the origin of the coordinate
system, and cutter axis is perpendicular to the X'O'Y'plane

Figure 1.3 Cutter shadow on the surface

7

Theoretically, the maximum cutter could be the largest size available. However, the

bigger size you choose, the higher computational time is needed. Thus Khan's

comprehensive curvature analysis model will be adapted to determine a maximum local

gouging-free cutter size as the initial input. This not only guarantees the cutter selected

locally gouging-free, but also results in a great computational overhead saving.

After that, the KD-tree search, the most efficient region query method, is used to locate

all the vertices falling within the shadow. At a CC point, a group of imaginary cutters can

be obtained by using these vertices (testing points). The allowable cutter size for this CC

point is simply the minimum cutter in the group.

1.5 Structure of the Thesis

This thesis contains eight chapters. In Chapter 1, some basic concepts concerning the

surface machining are provided, followed by the problem statement, the literature review,

research objectives and general approach. Chapter 2 introduces the imaginary cutter size

model and its refinement. Chapter 3 presents the fundamental knowledge about the STL

file and the method used to eliminate the vertex redundancy. Chapter 4 describes the

approach to detecting the local gouging through comprehensive curvature analysis and

the algorithm used to search the initial cutter size at a CC point. Chapter 5 explains the

KD-tree search method and the procedures to determine the final cutter size at a cutting

location. Chapter 6 deals with the structure and implementation of the integrated KD-tree

model. In Chapter 7, the new model is applied to the hairdryer mould, and the results are

compared with which from Liu's method and which from the CATIA rework function to

8

examine the efficiency and accuracy of the new model. Chapter 8 highlights the

significance of this work and the future work directions.

CHAPTER 2. IMAGINARY CUTTER SIZE MODEL AND REFINEMENT

As Liu's imaginary cutter size model is a very good tool for defining a cutter size at a

given CC point, it will continually be used to serve for the same purpose in this work.

However, to accommodate all situations, some improvement has to be done on his model.

First, a brief description of Liu's model is provided. Then, the refinement of Liu's model

is proposed to overcome the limitation of his model.

2.1 Introduction of Liu's Imaginary Cutter Size Model

2.1.1 Compound surface

Due to the fact that the non-uniform rational B-splines (NURBS) surface can represent

almost any smooth and curved surface with high accuracy, it becomes a trend to use the

NURBS to model a complex surface or compound surface. Another advantage of the

NURBS surfaces is that one can build a smooth curving surface or modify a surface to

make it smooth with few control points. The parametric form NURBS surface is

expressed as:

0 y=0
n m

IZ\^a(")'^,((v)
P(u,v) = — '—- , w i t h f ^ _ (2.1)

' / - i*v<f m + I

1=0 y=o

Where, Nj k{u),N'. ,(v) are blending functions; u and v are the surface parameters; ?,_,,

tm+i and JA_, , sn+] are knot values limiting the finite intervals over which the blending

functions have nonzero values; PUj are the x, y, and z coordinates and hi . are the

homogeneous coordinates of the control points.

10

However, generally it is not practical to use only one NURBS equation or surface to

model a complex surface in a part design. Instead, one should use a compound surface, a

collection of NURBS surface patches connected with either position (C°), tangent (C1), or

curvature (C2) continuity between them.

For the purpose of convenience, the following notations are defined:

• S,. (/ = 0, 1, ..., m) : any patch of the compound surface

• P (« , v) e S p (/ = 0, 1, ..., m) : a point on S,.

* 5Rf : = ["/ .mi- > W/,max \ V/,min > V,-,n,in] : t h e domain Of patch S,

• 9?2 = 9?f U 9̂ 2 U ...Mf U ..Ml: the domain of the compound surface

Thus we can denote the compound surface as S := S, U S2 U —Si U ...Sm . In CAD systems,

the data of all the surface patches on a compound surface and the connectivity

information between them are stored. As a result, for a given surface patch, one can use

this information to identify its neighbouring surface patches in determining the maximum

cutter size for CNC machining.

2.1.2 Representation of APT cutter geometry

The most common cutters for milling operations consist of standard flat, ball, and bull-

nose end mills and they are special cases of the generic ISO APT cutter. In milling

operations, the most commonly used cutting tools include standard flat, ball, or bull-nose

end-mills, which are three special cases of the generic ISO APT cutter. Figure 2.1 shows

an APT cutter and its three special cases are shown in Figure 2.2. Usually, the imaginary

envelope formed by the spinning cutting edge of the APT cutter is defined as the cutting

11

surface, which can be further divided into three sub-surfaces: a tapered (A-B), a fillet (B-

C), and a conical (C-O) surface. In practice, the taper angle 9 is between zero to 20

degrees, and the conical angle y/ is small. Parameter r is the radius of the corner, R is

the radial distance between the cutter axis and the center of the corner, and H is the cutter

length.

Conical surface

Figure 2.1 An illustration of APT cutter

Fillet
surface

H

Cylin
sur

R
i

Z

drical
'ace

- < % J
o c
(a 0

A

B
P
X

H

Cylir
sur

R

z

idrical
face

A

0 B X

0 b)

H

r

z

o>__

O

(c)

A

Cylindrical
y surface

f^Spherical
5 surface
X

Figure 2.2 (a) a bull-nose end-mill, (b) a flat end-mill, and (c) a ball end-mill

A tool coordinate system is defined with its origin at the tip of the APT cutter and its Z-

axis in line with the tool axis (refer to Figure 2.1). Using this coordinate system, the

following expressions can be obtained:

• The Coordinates of Key Points

12

o Point C: [xc zc]=[R + r-siny/ (R + r -sin y/) tan y/]

o Point Oi;[x0| z0]J=[i? (R + r-siny/)tany/+ r-cosy/] or

k , zo,J=[^ /?-tan^ + r-sec^]

o Point B:[JCB zB]=[R + r-cos 8 (R + r-siny/)tany/+ r-cosy/-r-sin 8] or

[xB zB] = [R + r • cos 6 R • tan y/ + r • sec y/ - r • sin 6\

o P o i n t A : ^ zA} = [R + r -cos6 + (H-zB)- XanO H], where,

zB =(R + r- sin y/) tan y/ + r • cos y/ - r • sin 9

• The surface equations of three sub-surfaces

cos a

o The conical surface: T(z,cc) =

Xany/
sin a
tany

z

,z € [0 , z j , and a e [0,2;?]

o The fillet surface: T(z, a) =

[R + V r 2 - (z o , - z) 2] c o s a

[R + ^jr2-(z0i-z)2]sma
[a e [0,2;r]

and<

o The tapered surface: T(z,a)

[xB + (z - z B) • tan0\- cosa

[xB + (z-zB)- tan#]-sina , and

[a 6 [0,2;r]

Here, a is the angle measured from X-axis on XOY plane of the tool coordinate system.

13

Obviously, the APT cutter turns to be a bull-nose end-mill if 6 = 0 and y/ = 0, (see Figure

2.2(a)), a flat end-mill if# = Q, y/ = Q and r = 0 (see Figure 2.2(b)), and a ball end-niill

if 0 = 0, y/ = 0 and R = 0 (see Figure 2.2(c)).

For a standard cutter, its taper angle is limited to several degrees with discrete choices

(e.g. 1°, 3°, 5°, 7° and 10°), and it also is common to set the conical angle y/ = 0.

Similarly, for bull-nose end-mills, their comer radius r is often set to be -^ , -^, or { inch

by tool manufacturers. For the simplicity purpose, the cutter size is optimized by varying

only R for the bull-nose or flat end-mills, or only r for the ball end-mills, while fixing

other parameters.

2.1.3 Theorem for allowable cutter size

It is common that a compound surface has complex shape and narrow open spaces. As a

result, gouging and interference often happen during machining. To overcome this

problem, Liu has proposed a theorem by taking both the part surface to be machined: S0,

and its neighbouring surfaces or checking surfaces S(. (z' = 0,l, 2, ..., n) into account.

l - ' . l

4

Sn
n

Figure 2.3 Illustration of the model of allowable cutter

14

As illustrated in Figure 2.3, a point Pec on a bounded surface S0 to be cut is accessible in

a part set-up, and the check surfacesS, (/ = 1, 2, ..., «)are adjacent to this surface. An

unique imaginary APT cutter in variable size R or r (for ball end mill) can be constructed,

subject to the following constraints: (1) the fillet cutting surface of the cutter envelop

n (r) is tangent to surface S0 at point Pec, and (2) this envelop passes through any other

point P (called testing point) on one of these surfaces S,. (*' = 0, 1, 2, ..., n) (S0is also a

check surface). Thus, by changing the position of point P around all the testing surfaces,

infinite imaginary cutters can be obtained. The smallest (called the allowable cutter)

among all imaginary cutters can machine surface S0 at point Pec without gouging and

interference.

Let us denote the imaginary cutter size between S0 and S(. (* = 0, 1, 2, ..., n) as

Rmin (S0, S,.) if it is a flat or bull-nose end mill or rmin (S0, S,.) if it is a ball end mill. The

allowable cutter size can be obtained as:

Allowable =min[RmiAS0>So)> ^min O ^ O ' ^) , - • ^min (S0 > Sn)>] > 0 I "

rallocable = ^ k i n ($ 0 A)» >™n (^ 0 A) . - • '"min (^0» ^) J

Here, n is the total number of surface patches in the compound surface.

15

2.1.4 Imaginary cutter size model for the APT cutter

According to the above theorem, the imaginary cutter model can be developed. In Liu's

research, he has developed two types of imaginary cutter model: the APT cutter model

(for flat-end mill and bull-nose end mill), and the ball-end mill model. Since there is no

need to refine the ball-end mill model in this work and both models share the similar

idea, so only the APT cutter model is introduced here. The interested reader is

encouraged to refer the Liu's work for details. Before the model development, some

assumptions are needed:

• A 3-axis CNC milling machine is used to cut the part

• A CC point Pcc = [xcc ycc zcc] is on the surface S0 to be cut

• The testing point P = [x y z] is either on this surface or its check surfaces

S,.(/ = 0,l,2,...,/i)

• The unit surface normal of Point P n- \nx ny nA can be easily calculated,

and the corner radius r, taper angle ^ and conical angle \f are specified, according

to the industry standard choices

• R is the only parameter has to be determined as the imaginary APT cutter size.

Depending on the size of R, there are three cases for modeling a general APT cutter, as

shown in Figure 2.4.

• When 0 < R < °° ; the cutting envelop of the APT cutter consists of three portions:

a tapered surface (TS), a fillet surface (FS) and a conical surface (CS).

• When R = 0, the three portions of cutting envelop shrinks to TSO, FSO and CSO

16

• When R - °°, the three portions of cutting envelop extends to TSoo, FSoo and CSoo

Figure 2.4 Example of imaginary cutter and its two extreme case: R=0 or R=co

The cutting envelop of any feasible imaginary cutter should be confined in the volume

bounded by TSo, FSo & CSo and TSoo, FSoo and CS^. Specifically, no feasible imaginary

cutter can be found if a testing point P is outside this volume, while there always exists a

feasible cutter if P is inside this volume.

Two planes PLi and PL2 are constructed to determine which portion of the cutting

envelops will be in touch with the testing point P, as shown in Figure 2.5. PLi is the

plane where the intersection circle between TS and FS locates. PL2 is a plane where the

intersection circle between FS and CS locates. Because only R is the variable in this

model, PLi and PL2 will remain unchanged regardless of the size ofR. If P is above PLi,

17

only the tapered surface has chance to touch P. If P is between PLi and PL2, P can only

locate on the fillet surface. If P is below PL2, only the conical surface will pass P. Then,

different formulas can be developed to calculate the imaginary cutter size, depending on

the space location of P relative to two new constructed planes.

Figure 2.5 Some geometry features used in imaginary cutter model

As previously mentioned, given a CC point and a testing point, a unique imaginary APT

cutter can be determined. Since in this model, &, ^ and r of the cutter are specified as

constants, the only variable needs to be determined is R. For the purpose of derivation,

let Ax = x-xcc-r-nx , Ay• = y-ycc-r-ny , Az = z-zcc-r-nz and A = \j'Jn\ + n] .

Different mathematical equations are derived to compute R, based on the relative Z

coordinate of the testing point P.

18

Scenario 1: testing point P is above the plane PLi

Under this circumstance, only the tapered surface TS can touch P and we

have Az > —r • sin 6. Then, three cases need to be further considered based on the location

of the test point.

• Case 1

If P falls into the volume bounded by TSo, gouging will happen at P. As a result, no

feasible cutter size can be found; that is, R = 0 Then, all satisfied testing points can be

expressed as:

Ax2 + Ay2 <[(Az + r sin 6)- tan 0 + r cos 6 J or

Ax 2 +A/ <(Az-tan6> + rsec<9)2 (2.2)

• Case 2

If P locates on or behind the plane TS^, any size of R will not cause gouging. Thus, R

can be set as <x>. Surface normal of TS*, is PXP^ , so P should satisfy the inequality

equation: PXP • />/> < 0

xcc+r-nx-r-A-nx- cos 0

ycc+r-ny-r-A-ny-cos&

z„+r-n-r-sin&

- i \ r • X • nx • cos 6

l-ny-co

r • sin 0

r-X-n •cos 6 <0 (2.3)

Inequality equation (2.3) can be simplified as:

A• n • Ax• cos0 + X• n • Ay• cos6l + Az-sin(9 + r < 0
x y *

(2.4)

19

• Case 3

If P is in the volume bounded by TSo and TSoo, there always exists a feasible imaginary

cutter whose cutting surface tangent to the Pec passing P, the following equation can be

obtained:

[x-(xcc+r-nx+R-A-nx)f+[y-(ycc+r-ny+R-A-ny)]
2

= {/? + /-• cos0 + [z-(zcc + r • nz - r • sin#)]• tanG>\
(2.5)

From equation(2.5), parameter R can be calculated:

1 Ax2+Ay2-(Az-tan(9 + r-sec6>)2

R = (2.6)
2 X-nx -Ax + A-n • Ay+ Az-tan# + r-sec6>

Scenario 2: P is between the planes PLi and PL2

In this scenario, only the fillet surface can touch P and we have -r • sin 9 > Az > -r • cos y/ .

Similarly, three cases needs to be analyzed separately according to the location of the

testing point P.

• Case 1

If P is in the volume bounded by FSo, gouging is unavoidable. This means that R has to

be 0. Mathematically, all points must be satisfied the following condition:

Ax2+Ay2+Az2 <r2 (2.7)

• Case 2

20

If P locates on or behind the surface of FS*,, gouging will never happen. Consequently, R

can be set as oo. The criteria can be derived as follows:

Criterion one: P should be away enough from the axis of the cylinder surface FS<».

In Figure 2.5, ¥SX is a cylinder surface, and let CA to represent its axis. PL3 is a

reference plane passing through CA and perpendicular with the horizontal plane XY. If

there exists a point Pp on the cylinder axis CA and P P is perpendicular with CA. Then,

one condition to ensure gouging free is P P P > r .CA can be written as:

CA =
x„ + n-r-n-t CC X

ycc+ny-r + nx-t where t is a variable (2.8)

Because P„P ± CA , we have

x^+n -r-n„ -t
- i \

CC X

ycc+ny-r + nx-t
zcc+nz-r

nx
0

= 0 (2.9)

From equation(2.9), t can be obtained:

t = •
nxAy - nyAx

2 2 nx+ny
(2.10)

Substituting t into(2.8) gives Pp

21

p =
pp

y*

pp

Xcc+n,-r-
nxnyAy-n2Ax

2 2

nl+n]
nx Ay-nxn Ax

ycc+ny-r + /
n+n. x y

z„„ + n-r cc z

(2.11)

Plugging Pp into P'P>r, we have:

nxn Ay -n Ax
x ~ x c c - n x - r + „2 , 2

« x + n y
+ y-ycc-

ny-r
nx Ay - nxnyAx

2 2

+ [z - z c c - « z - r] 2 >r2

or

nxn Ay + nx Ax

n2
x+n2

y
+

n Ay + nxn Ax

nl+n]
+ Az2>r2 (2.12)

Simplifying the In-eq.(2.12), we get the first criterion:

A2 -^nxnyAy + nx
2Ax) + M.2 \ny

2Ay + nxnyAx\ + Az2>r2 (2.13)

Criterion two: P should be on the side of the plane PL3 where Pi locates.

Since NPL , the surface normal of PL3 is[nx ,n y ,Oj , from PpP • Npl^ < 0 , we have:

22

Xcc+n
X-r-

nxn Ay-n Ax
2 2

nx+n]
nx Ay-nxn Ax

ycc+n
y-

r + 2 — 1

nr+n. x y

Z-„ + « . • / " CC 2

<0 (2.14)

Finally, the second criterion can be obtained by simplifying(2.14):

nx-(Ax-nx
2+nxnyAy) + ny-(Ayny

2+nxnyAx)<0 (2.15)

So, when both inequality equation (2.13)and (2.15) hold, R = <x>.

• Case 3

Otherwise, a feasible imaginary cutter exists, which can be obtained by the following

equation:

[x-(xcc + r-nx+R-A-nx)]
2+[y-(ycc+r-ny+R-A-ny)~\2 =(R + Jr2-Azl]j (2.16)

From(2.16), we have:

R=--
Ax2+Ay2+Az2-r2

2 A-nx-Ax + A-n -Ay + ̂ jr2 -Az2
(2.17)

Scenario 3: P is below the plane PL2

23

In this condition, only conical surface CS can touch P as shown inFigure 2.5, and we

have Az < -r • cos y/. Likewise, three cases need to be handled one by one, based on the

location of the testing point P.

• Case 1

If P is in the volume bounded by CSo, there is no doubt that gouging will happen.

Therefore, R can be set as 0. The testing point P should meet the following inequality

equation:

JAx2 + Ay2 Az + r -cosy
tan^

+ r • sin y/ <0 ,o r

Ax 2 +A/ <
' Az + r-secy

tany/-
, and Az > - r - s e c ^ (2.18)

• Case 2

In Figure 2.4, if P is below CSoo, no gouging will happen. Hence, R can be set as oo. From

Figure 2.5, we know the surface normal of CSa> is P2P0 (P2 corresponds to Point C in

Figure 2.1), and P2P0 =[/l-n^-sin^, A,-ny-siny/, cos^J . So P has to meet the

following inequality equation ifR = <x>:

P2P P2P0<0 (2.19)

Then, by substituting the specific expressions into(2.19), we have:

24

xcc + r • nx - r • X • nx • sin y/

ycc+r-ny-r-X-ny-siny/

z +r-nz-r- cos y/ J L

X • nx • sin y/

X • ny • sin y/

cosy/

<0 (2.20)

Inequality equation (2.20) can be simplified as:

X-nx -Ax-sinyz + X-n • Ay • sinys + Az• cosy/ + r < 0 (2.21)

• Case 3

Otherwise, P should be on the conical surface CS of a feasible imaginary cutter. Then,

we have the following equation:

[x-(xcc+r-nx+R-X-nx)J+[y-(ycc + r-ny+R-X-ny)}

z - (zcc +r-nz-r- cosy/)

tany/
+ r • sin y/ + R

,or

(Ax-R-X-nx) +(Ay-R-X-ny) =
2 I Az + r- cos y/ \ 2

tan^
+ r • sin y/ + R (2.22)

Simplifying (2.22) gives:

Ax2+Ay2 Az r
- + -

/? = - •

2

tan y/ sin y/

X • nx • Ax + X • n • Ay +
Az r

- + -tan y/ sin y/

(2.23)

25

2.2 Refinement of Liu's Model

2.2.1 Limitation of Liu's model

When Liu defined the tool coordinate system in his model, implicitly he assumed that the

X axis of that coordinate system coincides with the projection of the CC point normal

(Ncc) on the XOY plane in the part coordinate system. As illustrated in Figure 2.6,Pcc,

O, and n^ are the projections of CC point, tool center, and Ncc on the XOY plane,

respectively. In addition, ny and ny are the X and Y components of Ncc, in that order.

Thus PccOi and OxO are the projections of corner radius r and radius R on the XOY

plane, correspondingly, and they have to be in line with the direction of n . We can

uniquely define the tool center O if Ncc is not perpendicular to the XOY plane or at least

one of nx and ny is not zero.

i >x

Figure 2.6 Determination of the cutter center O by the normal of CC Point

26

However, when Ncc is parallel to the Z axis, Ncc has neither x component, nor y

component; that is, nx = ny - 0. As a result, the tool center cannot be uniquely defined if

the cutter is a flat end mill or torus mill (APT cuter case in Liu's model). In this case,

Liu's model is no longer valid. Thus, a revised new model is provided to address this

special case.

2.2.2 Upgrading of Liu's model for the special case

To develop the new imaginary cutter size model for the special case where the surface

normal jVccis perpendicular to the XOY plane, we need to examine the trajectory of the

cutter center O. In this case, nx=ny = 0, the trajectory of O is a circle centered at Pcc with

a radius of R' as shown in Figure 2.7. HereR'-r-t + R, where t = Jn] + n2
y (r, and R are

defined in Figure 2.1). For any cutter center location Oj on the circle, an angle #>is

formed by the radius O^ and the horizontal line that passes Pcc.

Cutter
Envelop

r
Cutter Center

Trajectory

Figure 2.7 Center trajectory of the cutter

27

For a given angle ̂ (0 < (j). < 360°), the x and y coordinates of Oj are calculated as:

X0, =Xcc+R'C™<Pi

y0, = >'„+/?'sin ^

As nx = ny = 0 , we have Ax = x - xcc , Ay = y - ycc and Az = z - zcc - r . Since the cutter

center location O. depends on angle cpt, it will become a new variable in the new revised

model. Like Liu's original model, the revision of model also needs to address the same

three scenarios, each of which has three cases. Here only the portions involving

modification are described as the derivations of unchanged cases can be obtained from

the original model. If the angle <pf is given, the new model can be derived as follows.

Scenario 1: testing point P is above the plane PLi

Case 1

(Remains unchanged)

case 2

Here, PXP =

becomes:

X

y
z

xcc — r • cos (pt • cos 0

ycc-r-sinq>i • cos0

zcc+r-r-sin&

and PXPQ =

r • cos <p. • cos 0

r • sin <p. • cos 0

r-s\n6

, so PXP -P,Pa<0

xcc-r-cos<p. • cos0

ycc-r-sin<p. • cos0

z„+r-r-sm.0

r-cos<Pi -cos<9

r • sin (pi • cos 0

r-smO

<0 (2.24)

So, the inequality equation(2.4) is replaced by (2.24) or its simplified form (2.25):

28

cos <Pj-Ax- cos 0 + sin (pi • Ay • cos # + Az-sin# + r < 0 (2.25)

• Case 3

In case 3 of the new model, cos#> and sin#?. are used to determine the center location of

the cutter, which play the same roles as nx and n , respectively. Therefore equation (2.5)

is replaced with the following equation:

[x - (xcc +r-coscpi+R- cos q>.)] + [y- (ycc +r-smcpi+R- sin %)]
2 (2.26)

= [i? + r • cos 6 + [z - (zcc + r • nz - r • sin 0)] • tan 0}

From (2.26) parameter R can be calculated:

^ _ 1 Ax2+A/-(Az-tanfl + r-secfl)2

2 cos (p{ • Ax + sin (p. • Ay + Az • tan 0 + r • sec 0

For flat-end mill, (2.27) can be further simplified as:

R=L A E ' + V - (* • * . < >) ' (2 2 8)

2 Ax • cos <j>.+Ay- sin $ + Az • tan 0

Scenario 2: P is between the planes PLi and PL2

• Case 1

(Remains unchanged)

• Case 2

29

In case 2 of the new model, the equation of CA: CA =

xcc-nx-t

ycc+Ky-t

z„„ +r

(where t is a variable)

is replaced by:

CA =

xcc-sin <f>rt

J'a+cos^.-r (2.29)

Accordingly, P P 1 CA becomes:

VL Z J

x c c-sin$-f

ycc + cos<f>rt

zcc+r

\

J

-sin$
cos fi

0
= 0 (2.30)

From(2.30), we get:

t = cos ft Ay - sin $ Ax (2.31)

Substitute t into(2.29), Pp can be calculated:

P P -

pp

y pP

-zpp.

=

xcc - cos $ sin $ Ay + sin $ Ax

ycc + cos2 ^ Ay - cos $ sin $ Ax

z„„ + n • r
cc z

(2.32)

Substituting Pp into P P > r, we have the following expression:

[x-xcc+cossinAy-sin2$Axl +[>'-}^-cos2$Ay+cossinAxl +[z-zoc-nz-r\ >r2 ,or

30

[cos ftj sin ft Ay + cos2 ftAxl + [cos ftj sin $ Ax + sin2 ftAy\ + Az2 > r2 (2.33)

Simplifying(2.33), we have the new first criterion,

[cos2 fttAx + cos ft sin $ Ay 1 + [sin2 $A.y + cos ft sin $ Ax] + Az2 > r2 (2.34)

Here, the surface normal of PL3 has to be changed into [cos <p, sin (p,6f . Therefore,

PpP-[cos<p,sin<p,0j < 0 is expressed as:

xcc - cos ft sin $Ay + sin $2 Ax

ycc + cos2 $Ay - cos ftj sin $ Ax

z„„ + n • r
cc z

cos$

sin$.

0

<0 (2.35)

Simplifying(2.35), we obtain the new second criterion:

cos ft (cos2 ftAx + cos ft sin ft/Ay) + sin ft (sin2 ^Ay + cos ft sin $Ax) < 0 (2.36)

In this case, when both Eq. (2.18) and Eq. (2.20) hold true, R = co.

Case 3

In this case of the new model, the equation used to define R is modified as:

[x-ix^+r-^+R-cos^)]2 +[y-(ycc+r-ny+R-sm<pi)]
2 =^R + y/r2 -Az2)j (2.37)

From(2.37), we have:

31

R =
Ax2 +Ay2+Az2 -r2

2 cos#? -Ax + sin^. -Ay + yjr2 -Az2
(2.38)

Scenario 3: P is below the plane PL2

Case 1

(Remains unchanged)

Case 2

In case 2, the surface normal of CSc*, isP2P0 = [coscpi -siny/, sin<p. -siny/, cosy]

Recall P2P • P2P0 < 0 if R = 00. Thus we can get the following equation by substituting the

two vectors:

xcc+r-nx-r- cos q>. • sin if/

ycc+r-ny-r- sin % • sin y/

zcc+r-nz-r- cos y/

cos (p. • sin y/

sin ft • sin ^

cos^

<0 (2.39)

The inequality equation (2.39) can be simplified as:

cos (Pj-Ax- sin y/ + sin q)j • Ay • sin y/ + Az • cos y/ + r < 0 (2.40)

• Case 3

In case 3, to determine a feasible imaginary cutter, the equation for determining a feasible

imaginary cutter is altered as:

[x-(xcc+r-nx+R-cos<pi)f+[y-(ycc+r-ny+R-sin(pi)~]

z - (zcc +r-n2-r- cos y/)

tany
• + r • sin y/ + R

or

32

(Ax - R • cos ft) +(Ay-R-sin<pj) =
Az + r • cos y/

tany
+ r • sin ̂ + R (2.41)

Simplifying (2.41) gives:

Ax2+Ay2 Az r
• + -

A

R= —
2

tan ^ sin y/

cos ?̂. • Ax + sin q>t • Ay +
Az r

• + -tan y/ sin y/

(2.42)

Since the angle (f) ranges from 0° to 360°, the cutter radius R for this case is the

maximum of all the radii resulting from all the angles ^'(i=l,2,....n) . Mathematically,

we have:

R = max(R„R2,...,Ri,....,Rn) (i = l,2,....n)

Two ways can be considered to obtain the radius R. one way is that we can use PSO

optimization method to search for the maximum possible cutter radius among all the

possible angles. The second way is that we can discretize the angle domain of 360° into a

series of angles such that the difference between two consecutive angles is constant. For

example, if we set (pt =(l°,20,.../°..,3600), the desired cutter is the maximum cutter

among all the radii calculated from these 360 angles. The first method is more likely

optimal but at the expense of computational time, while the second method may not be

always the best but good enough. Plus, it is simple and fast. In this work, the second

approach is used.

33

CHAPTER 3. STL FORMAT AND DATA PROCESSING

In Liu's work, he has optimized the cutter size search using the PSO method.

Theoretically, the testing point can be taken from any surface and any location of this

surface to ensure the accuracy. However, this good accuracy is at the expense of a huge

computational time. In the STL file, due to the adaptive triangulation mesh, the number

of triangles used to approximate the surface is proportional to the surface curvature. In

fact, this matches our needs, as in the surface area with a high curvature, more testing

points are demanded; while, in the surface area with a small curvature, less testing points

are required. Therefore, high efficiency and reasonable accuracy can be achieved if we

use the vertices of triangles extracted from the STL file as the testing points. Due to the

advantages of STL file, this work uses the discrete vertices extracted from the STL as the

testing points for the cutter size search. In this chapter, a general picture of the STL

format is described. Then the method of filtering the redundant STL vertices is provided.

3.1 Introduction to the STL Format

3.1.1 Basics of the STL format

• Definition of STL file

STL is the abbreviation of stereoligthography. An STL file is a triangular representation

of a 3D surface geometry. In an STL file, the surface is approximated by a series of

oriented triangles (facets). Each facet is defined by a unit outward normal and three

vertices listed in a specified order. The size of the facet is controlled by the surface

34

curvature and the tolerance that controls the surface quality. The STL format must

respect the following rules [13]:

1) In each facet, its normal and each of three vertices are specified by three

coordinates, so a total of 12 numbers is stored for each facet.

2) The vertices are listed in counter-clockwise order, if the viewing direction is

from the outside of the object (using right-hand rule).

3) The normal of a facet must be the same as the facet orientation derived from

its three vertices using the above mentioned right-hand rule.

4) Each triangle must share two vertices with each of its adjacent triangles,

which is known as the vertex-to-vertex rule.

An example of facet is shown in Figure 3.1. In Figure 3.1a), three vertices (1, 2, and 3)

are listed in counter-clockwise order, so the facet orientation obtained by right-hand rule

is pointing up, which is the same as the normal direction. However, in Figure 3.1b), the

three vertices are listed in clockwise order if we view it in the same direction; as a result,

the normal direction of the facet is reversed or pointing down.

Normal
1

a) Normal pointing up b) Normal pointing down

Figure 3.1 Example of a facet and its normal

1

35

• Two data formats

The standard STL data can be categorized into two formats: ASCII and binary. The

ASCII form is more descriptive and easy to read, but takes much more space to store the

same CAD geometry, compared to the binary form. The structures of the two formats

will be explained one by one.

An ASCII file starts with a description line "solid solidname" , where solid_name refers

the name of your design. The last line is the keyword "endsolid". Between the first line

and last line, the facets are listed one by one. Each facet uses a consistent data structure,

including the facet normal (e.g. Nx, Ny and Nz) and coordinates of three vertices (e.g. Xj,

Y], Zi:X2, Y2, 7.2; andXj, Y3, Z3). The structure is illustrated in Figure 3.2 [14].

solid solidname

<facet list>
facet normal Nx Ny Nz
outer loop

vertex XI Yl Zl
vertex X2Y2Z2
vertex X3 Y3 Z3

endloop
endfacet

endsolid

Figure 3.2 Structure of a STL file

A binary STL file also has an 80 byte header line containing the comment of the design.

Then the next four bytes is a long integer, which stores the total number of facets. After

that, all the facet information is listed. The data of each facet consists of a normal and

36

three vertices. Between each facet is a 2 byte spacer. Each facet requires 50 bytes, 12 for

the normal, 36 for the 3 vertices, and 2 for the spacer. Therefore, the binary STL file is

more compact and more efficient for data processing.

3.1.2 Advantages of STL file

STL format has the topologically simple and robust nature. First, it contains only one

type of element, a triangular facet, which makes the geometry description homogenous,

CAD-kernel independent, modeling history independent. In addition, the calculations

involved in the generation and slicing of STL triangular facets are easy, fast, and accurate

enough to satisfy the rapid prototyping industry. Furthermore, it is reasonably suitable to

be the interface between a object model and the layer-by-layer fabrication[15]. As a result,

it is widely used by most commercial CAD and CAM software and rapid prototyping

equipment. Figure 3.3 shows both the CAD model and STL model of a complex part.

(a)

Figure 3.3 Example of a complex shaped part: a) CAD model, b) STL model

However, the STL format does have some disadvantages. First, inconsistency of normal

happens when the facet normal generated by the CAGD system is different from that

derived from the facet vertices, or when the normals of adjacent triangular facets are

inconsistent. Another flaw is that the facet may collapse to be a gap when it is too thin to

37

keep its triangular shape. The third problem is illegal overlap. This happens when a

vertex is located on the edge of another facet or when two adjacent facets are partially

overlapping, which breaks the STL rule that each triangular facet must share two vertices

with each adjacent facet. Finally, the depiction of geometric elements in STL format is

redundant. For example, on average, each vertex of a facet is recorded repeatedly four

times, which takes extra computational time and memory. In this work, the part STL file

used is assumed to be perfect.

3.1.3 STL model accuracy control

In STL format, the model accuracy is determined by the number of the facets used. The

more facets we use, the more accurate the model is. The number of facets is controlled by

the sag values set in the CAD software [16]. The sag value is the chordal deviation for

curves or surfaces. The curve chordal deviation is the maximum distance between a

polyline ("chord") whose end points lie on a curve and a point on this curve, as shown in

Figure 3.4. Similarly, the surface chordal deviation is the maximum distance between the

tessellated triangles and the surface. A low sag value means that a very fine triangular

mesh is used to render surfaces due to the small distance between the geometry and

triangles in tessellation. On the other hand, a high sag value means that a very coarse

mesh is used due to a high deviation between the geometry and the triangles.

Mr Chord

@ % ^Maximum Distance

Figure 3.4 Curve chordal deviation

38

There are two ways to set up the sag values: fixed and proportional to element size. The

fixed sag value does not change with the object size, while the sag value proportional to

element size varies with the size of the object. That is, for the same sag value, the larger

the object, the coarser the tessellation. Figure 3.5 shows the effect of different sag values.

The sag value is fixed at 0.20 in Figure 3.5a), and at 8.5 in Figure 3.5b). It is clear that the

small sag value results in denser triangles in the model. If you save your model with

different sag values, the sizes of the file will not be the same.

a) Model with a fixed sag value of 0.20 b) Model with a fixed sag value of 8.5

Figure 3.5 The effect of sag values

3.2 STL Data Processing

Due to the huge redundancy of data in the STL file, it greatly reduces the computational

efficiency if we use the data without pre-processing it. For example, for a part STL file

with 20,180 facets, it uses 60,540 vertices (each fact has three vertices). In fact, only

10,086 vertices are not repeated, which means that more than 80% of vertices are

redundant. In general, the number of the facets n f and the necessary number of the

vertices nv have this relationship: nf/nv»2 . The number of redundant vertices is

estimated as:

39

n f-3-n / / 2 « 2.5n /

In a real application, it is very important to take out the redundant vertices from the data,

not only because the repeated vertices consumes unnecessary memory and computational

time, but also because they could destroy the topological relation between two adjacent

facets. Many methods can be used to filter the redundant vertices. Fast redundancy search

efficiency can be achieved by sequentially sorting the vertices in all three dimensions and

dividing the sorted points into small groups [17]. The much more efficient search method

is using hashtable data structure [18]. However, both methods involve relatively complex

programming. In this work, a straightforward but efficient method, called Norm method

is proposed. The algorithm of norm method is explained as follows.

First, read all vertices from the STL files. Then, calculate the norm of each vertex and

sort all the vertices based on the values of their norms. The norm of any vertex p (x, y, z)

can be calculated by: Normp = y/x2 +y2 +z2 . The sorted vertices are stored in a

temporary vertex array, called Vtemp . Meanwhile, define a new array Vnew to store the

filtered vertices. Next, put the first record of Vtemp in Vnew and copy it to temporary point

variable Pcurr. After that, check if next record Pnexl of V exists. Add Pnexl to the end of

Vnew and set Pairr = Pnexl , only if Pnexl exists and meets either of the following two

conditions:

• The norm of Pnexl is not equal to that of Pcurr, or

• The norm of Pnexl is equal to that of Pcurr, but their coordinates of two points are

not identical.

40

Otherwise, P is redundant and it will be omitted. Continue the process until reach the

end of V . The algorithm flowchart is shown in Figure 3.6:

Start

STL
File

>

Retrieve Vertices
from the STL

File

Output Vnt

Calculate the
Norms of All

Vertices

Sort Vertices
According to Their
Norms and Store

Them in Vtemp

Copy the first
record Pfirst of

Vtompto V„ow,and
Set Pcurr=Pfirst

Figure 3.6 Algorithm of filtering the STL redundant vertices

CHAPTER 4. INITIAL CUTTER SIZE DETERMINATION

As mentioned earlier, the search will only focus on the area covered by the cutter shadow

or cutter shadow area (refer to Figure 1.3). The question is we do not know the cutter

size in advance as it is the final result we are looking for. One way is that we could use

the maximum standard cutter size available to define the search range. However, the

computational time would be very costly. This is because in most cases we search the

area much bigger than needed, which is a huge waste of time. Fortunately, Khan's

curvature local gouging detection model can be used to determine the initial cutter size at

a CC point[6], which is the maximum cutter size without local gouging. Thus, this initial

cutter can be used to define the cutter shadow area. In this chapter, the Khan's model is

described first. Next, an algorithm for the initial cutter size determination is proposed.

4.1 Overview of Khan's Model

In Khan's model, he used the comprehensive curvature analysis to detect the local

gouging for compound surface patches in 3-axis surface machining. His model provides a

set of close-form equations to calculate the normal curvatures along all directions. At a

CC point, a local gouging free cutter can be ensured by checking if the curvatures of the

cutter are not smaller than that of the surface in any normal direction.

To find the largest allowable cutter size, he tested all standard cutter sizes at hand from

big to small until a gouging free cutter is obtained. For each cutter, he compared the

curvatures of the cutter with which of the part surface at the engaged area along any

tangent directions. If there is no curvature rule violation, this cutter is chosen; otherwise,

42

this cutter is discarded and a smaller cutter is tested again. The process is repeated until a

local gouging-free cutter is found.

In this chapter, the equations related Khan's models are described without detailed

derivation. These equations involve part principal curvatures, cutting surface curvatures

and gouging check at the engaged area.

4.2 Principal Curvatures for the NURBS Surfaces

The maximum and minimum values of the normal curvatures are known as the principal

curvatures at a given point on the surface. The directions in which the curvature takes the

maximum and minimum values are called the principal directions of the normal

curvatures. The related the equations are provided step by step as follows.

4.2.1 NURBS surface equation

First, let us define a NURBS surface in the part coordinate system as:

m n

S(«,v) = -!^r4 {tk_,<u<tn_vtl_,<v<tmJ (4.1)
YT.wu-NiM-Nj,i(y)
i=o y=o

Where, the parameters are defined as:

• P; . are the controls points;

• wj j are their corresponding weights;

43

w,»=

(M-O^.CH) (^ - «) ^ U . , («) . f k > l

is the basis function with an order k;
1 <,<H<f , + 1

0 Otherwise
if k=l

' (v - ^ v) (^ - v) ^ u - , (v)

ty,(v) = V."'y 0+/ 0+i
if/>l

is the basis function with an order /;
1 ' ,*v<f,+ 1

0 Otherwise
if/=l

• w and v are the parameters of the base functions;

f, and /. are the knot values.

4.2.2 The first and second derivatives of base function

The first derivatives of S(w,v) in terms of u and v are denoted as SH(w,v) and Sv(w,v),

respectively. The second derivative in terms of u is denoted as SHK(w,v), of v as Svv(w,v),

and of u and v as SI(V(w,v) . By differentiating the base function with respect to it

parameter (e.g., u), we have the first derivative:

N'„ =(*-!)
N, i,k-\ N, i+l,*-l

V i+t-1 i i+k i+\ J
(4.2)

and the second derivative:

N"uk = (* - !)
f N' N' ^

- 'V+U-l
V h+k-\ h *i+k h+\ J

(4.3)

44

4.2.3 The first and second derivatives of NURBS surfaces

Let us express the NURBS surface as:

S(u,v) =
N(u,v)

D(u,v)
(4.4)

Where,

1=0 7=0

It HI

i=0 j=0

Note, to simplify an expression, occasionally this work uses S, N, and D to represent

S(u, v), N(u, v), and D(u, v), respectively.

Then, the first derivatives of the NURBS surface are obtained as:

f AT i \ \

SH(u,v)= — (N{u,v)/D(u,v)) =
N„(u,vU (N(u,v)-DH(u,v)

D(u,v)j { D2(u,v)
(4.5)

Sv(u,v) = —(N(u,v)/D(u,v)) =
(Nv(u,v)^ (N(u,v)-Dv(u,v)

D(u,v)j [D2{u,v)
(4.6)

Where,

"•<"•*>-£ i£»uWi(»)"y;M
i=0 y=0 1=0 y=0

45

. fl-("•*)=£
i=0 7 = 0 (= 0 7 = 0

Nv{u,v) =
8v

n m

1=0 7=0

n m

i=0 7=0

CV 1=0 7=0
=il^-^w^;./(v)

1=0 7=0

Then, the second derivatives of the NURBS surface are found as:

5 „ v (" ' V) =
du-dv D V ^ 2 j

+ + 2-
N-D¥.Da>

-
I D2)

-
{ D2)

(4.7)

Sm(U,V):
du2

D-N
2^

v & J
+

(N \
uu

V D j
+ 2

v & K D2 j
(4.8)

SJu,v) =
82 (N\ („D-N\ (N\ JN-D-DA (D.-N^

dv2 \Dj
2-*- + D

+ 2
v ^ J & , V D2 j

(4.9)

Where,
it in ft rn

1=0 7=0

« m

i=0 7=0

A„ («, v) = £ £ wu < * (") • NjAv) = I N'u («)Z wu • ^ »
1=0 7=0 i=0 7=0

N» M = E I W/.y • P/.v < * («) • ^7,/(v> = X < * («) Z wu • P u • *y.i<v>
1=0 7=0

n m

i=0 7=0

Duu H = I I ">UNWJAV) = I ^ ' » X W/.A./(V)
/=0 7=0 1=0 7=0

46

n in 11 in

* w («. v) = X £ W'.J • *>J ^ (w) • N'JJ (v) = S *'•* (M) S w/.y • pi.> • Nh (v>
/=0 y=0 /=0 7=0
« m ft m

^ H = I Z " , A * (u) AT, (v) = £ 7Va («) • w„ . £ TV,, (v)
i=0 y=0 i=0 y=0

The first fundamental matrix of this surface G can be defined as:

G = 8n

Six

g\2

Sl2

Su(u,v)T-Su(u,v) SH(u,v)T -Sv(«,v)"

Sv(u,v)T-Su(u,v) Sv(u,v)r-Sv(u,v)
(4.10)

and the second fundamental matrix of this surface D is defined as:

D =
dn

d2]

dn
d22_

n-S„(".v)
n-Suv(w,v)

n-S„v(w,v)

n-Svv(w,v)
(4.11)

, where the unit surface normal n = \nx,ny,nz J =S1((w,v)xSv(w,v)/ygu -g22 -g,2
2

4.2.4 Equations of principal curvatures

Let us denote the maximum and the minimum curvatures of the part surface as ks max

and ks min, respectively. The Gauss curvature K and mean curvature H can be expressed

as:

K = k -k
j,max s, min S\\ ' Sll ~S\2

(4.12)

and

47

W — fir -i-lr \ — g] ! ' U22 I- gn-Cll2+ g22 • fl,,
_ 9 A^.max 'rKs,minJ ~ ~ ~ 2 (4.13)

Then, we have ksmm =H + yjH2-K and ksmin =H-y/H2-K . In addition, the

principal direction of the maximum curvature T̂ max can be calculated by:

T = du -S (u,v) + dv S (u,v)
j,max max i< V > / max A " ' '

(4.14)

Where,

^ " m a x

dv
max _

^f.max ' §2\ ®2\

a , , — Ks m a x • g i 1 _

Similarly, the principal direction of the minimum curvature T min can be determined by:

T,,min = ^Mmin ' S „ ("» V) + ^ m i n - S v (« , v) (4.15)

Where,

dun

dv.
•S2\~d2

"•U *s,min ' S\\

According to Euler's equation, the normal curvature in any tangent direction at an interior

surface point can be expressed as:

W) = <max-cos2/? + ̂ min-sin2/? /?e[0,2,r] (4.16)

, where angle f3 represents this tangent direction in terms of direction T̂ max in counter­

clockwise. At a convex point, all normal curvatures are negative; at a concave point, they

are positive; and at a saddle point, they are either positive or negative.

48

4.3 Principal Curvatures and Directions of the Cutting Surface

If R > r{r * 0), an APT cutter becomes a bull-nose end mill, which is the most complex

and general case, compared to ball end mill and flat end mill. When R = r (R^O)

and r = 0, it represents a ball end mill and flat end mill respectively. Thus, the model for

bull-nose mills is derived first. The models for the other two types of cutters can be easily

obtained thereafter. Here, the part coordinate system (X-Y-Z) is assumed to be the

reference coordinate system, on which any CC point Po on the NURBS surface S(u,v)

lies. Meanwhile, the tool axis is defined as [0, 0, l] in this coordinate system.

4.3.1 Tool coordinate system

In order to find the principal curvatures and principal directions of the cutting surface of

the tool, a tool coordinate system is defined for the bull-nose end mill (see Figure 4.1),

subject to the following constraints: 1) the tool tip (the center of the bottom circle) is set

as the origin of this coordinate system; 2) its z-axis is aligned with the tool axis; 3) its x-

axis is perpendicular to its z-axis and is on the plane formed by this z-axis and the surface

normal n at this CC point; and 4) its y-axis is the cross-product of these z- and x-axes (see

Figure 4.2).

49

Sculptured
surface part

Tool coordinate system: o

Part coordinate system: O

Figure 4.1 Cutting action of bull-nose end-mill in the NURBS surface

Cutting
surface

Bull-nose end-mill

1*
I fto

9 j x . / / ''•'

Po

Tool coordinate system o

Figure 4.2 Cutting surface of the bull-nose end-mill in the tool coordinate system

4.3.2 Principal curvatures and directions of the cutting surface

o Bull-nose end mill

The maximum curvature of this cutting surface at the CC point can be found

as:&/max = l / r , and its direction t, raax is [cos#0 0 sin#0] in the tool coordinate system

(see Figure 4.2). Meanwhile, the minimum curvature is: k, min = sin #0/(R - r + r • sin 0Q),

and its direction t, min is [0 1 0] in the same system.

50

o Ball end mill

For ball-nose end-mills (R = r), the principal curvatures are identical:kmm = kmin = \/R,

and the normal curvatures in all directions are all equal to l/R as well,

o Flat end mill

By inspection, the maximum curvature of the flat end mill cutting surface at the CC point

can be found as k, = \lR, and its direction t, „ is f 0 1 Ol in the tool coordinate
/.max I " /,max ^ J

system (see Figure 4.2). Meanwhile, the minimum curvature is k: mm = 0 , and its

direction t,rain is [0 0 l] in the same system.

4.4 Gouging Check in All Tangent Directions

Only comparing the principal curvatures of the part surface and the cutting surface is not

helpful for local gouging detection due to the fact that their principal directions

frequently do not coincide with each other. To remedy this problem, we have to

transform the principal curvature directions of the cutting surface from the tool

coordinate system to the part coordinate system. Then we can compare the curvatures in

all directions to detect any possible gouging at a CC point.

4.4.1 Gouging check between the part surface and bull-nose end mill

The maximum curvature direction tt max of the cutting surface can be transformed to the

part coordinate system as Tt max, through the following formula Tt max = [/?] • tt max, or

51

\R]~
' L J / •> 2

^K+ny

T =
/.max

(- ^ -cos6 V/^l+K
? c) / » » y

sin#0

-n n 0

—n —n 0

0 0 yln!+n;_

a nd tt,max =

cos#0

0

sin#0

(4.17)

Similarly, the minimum curvature direction ttmin of the cutting surface can be

transformed to the part coordinate system as Ttmin , through the following

formulaT,min =[/?]• t,imin where ilmin = ; that is:

T =
I,mm

nyj^n 2+«l

0

(4.18)

The values of the principal curvatures remain unchanged in the two coordinate systems.

The direction of the maximum curvature of the cutting surface T(max is set as a reference

to determine the tangent directions as shown in Figure 4.3. The tangent direction is

specified by a , which is the angle measured from the direction of the maximum

curvature T, raax. Here, a0 is the angle between the directions of the maximum curvatures

of these two surfaces, and can be calculated as a0 - arccos
f T T ^

s, max <,max

,T I - IT
^ | j,max | | f.max | J

where

52

0 < a0 < n. The angle /? of a tangent direction is measured from the maximum curvature

direction T, mav of the part surface

TL T
t,max

Tangent'

Part
surface

t, mm

'"I ' s,min

I /.max (Reference)

Tangent
direction

Tangent plane

Figure 4.3 Principal directions of the toroidal cutting surface and the part surface

According to Euler's formula, the cutting-surface normal curvature along any tangent

direction can be represented as:

kt {a) = — • cos2 a +
sin#n

R - r + r • sin 0n

in2 a a e [0, 2iz\ •sin (4.19)

Obviously, the relationship between a and /? is p = 2K + a-a0 (0< a < a0)

or [i = a — aQ (a0 <a < 2K) , and the normal curvature of the part surface in any direction

measured from T „„„ can be calculated as:

^(«) = ^,max-COs2(«-«o) + ̂ ,min-Sm2(«-a;o) « G [0= 2^] (4.20)

53

If ks(a) < kt{a) a e [0, 2K\ , then the part surface at the CC point will be gouging free;

otherwise, local gouging will occur.

4.4.2 Gouging check between the part surface and flat end mill

In a flat end mill, the cutting surface becomes a planar cutting circle, so the curvature

analysis is completely different from that of bull-nose end mill. To conduct the curvature

analysis between the cutting circle and the local part surface at the CC point, first,

identify the intersection curve between this circle and the part surface; then, calculate the

curvature of the this curve at the CC point; finally, compare this curvature with that of the

cutting circle, that is, l/R (see Figure 4.4).

Part
surface Mat end

null

Horizontal
plane I' Ti,max

Intersection curve-

Figure 4.4 Curvature analysis using a flat end-mill

The curvature of the intersection curve is not the same as the normal curvature of the part

surface along the tangent direction of this curve. By using Meusnier's theorem, we can

calculate the curvature of the intersection curve as

54

k = —(*, ,™x ^os2 j30+ksMn -sin2 J30) (4.21)
COS77v y

, where angle /?0 is the angle between T̂ max and T, min, and angle 7 is the angle between

the tool axis and the surface normal n (see Figure 4.4).

If this curvature k is not greater thanl/i?, the local surface is free of gouging; otherwise,

it will be gouged.

4.4.3 Gouging check between the part surface and ball end mill

Since the surface curvatures of a ball end mill are the same in all tangent directions, we

only need to consider the maximum principal curvature ks max of the part. If ks max < 1 / R,

no local gouging will happen; otherwise, the part surface will be damaged.

4.5 Algorithm for Quick Initial Tool Size Determination

In Khan's model, one needs to know the cutter size before judging if the curvatures

between part surface and the cutting surface match or not. In order to find the largest safe

cutter, we need to check all the cutter sizes in the standard cutting tool list. However, this

would cost a significant amount of computational time as we need to compare the

curvatures in all the tangent directions for every cutter in the list. To overcome this

problem, an efficient algorithm is proposed to search the maximum possible cutter size at

a given CC point, where only few cutter sizes are tested.

55

In this algorithm, an initial cutter size RQ {most likely non-standard size) is found by

setting k,{a*) = ks(a*) at a specific curvature direction defined by angle a* (e.g.,a* = 0).

Then, find the cutter size Rt* in the tool list, which is the size closest to, but not bigger

than RQ. Next, test if the curvatures of this cutter are not smaller than those of the part in

all the normal tangent direction. If the test is true, this size is gouging free for this CC

point and output this cutter; otherwise, choose the next smaller size in the list, and test it

again. Repeat the process until the cutter is gouging free. The algorithm is shown below:

Step 1. Initialize the available cutting tool list:

{#,,R2,....,tf,.,...Rn], where Rj<Ri+1

Step 2. Check if k,(a = 0)<ks(a = Q). If not, set R=0, and then go to Step 6; else

go to Step 3.

Step 3. Find out the possible cutter size RQ by settingkt(a = 0) = ks(a = 0), and then

find the cutter /?,.,(/* is the cutter index in the list) from the list, which is nearest

to, but not bigger than RQ

Step 4. Test if Rjt satisfies the condition of &, (a) > ks (a), where a e [0, 2n\. If

yes, set /?= Rjt, go to Step 6; else go to Step 5.

Step 5. If/* -1 > 0, set /* = /* -1 and go to Step 4; else, set R=0, and go to Step 6.

Step 6. End the search (Return R to main program).

After the maximum local gouging-free cutter is found, this cutter is used as the initial

cutter to determine the cutter shadow area.

56

CHAPTER 5. VERTEX KD-TREE SEARCH

To identify all the points or the triangle vertices falling within the shadow of the cutter

(see Figure 1.3), an efficient region query method is needed. The query speed is highly

dependent on the efficiency of the data structure. In this work, the KD-tree is chosen as

the data structure to identify the vertices or testing points under the cutter shadow, due to

its super efficiency in region query[19]. The fundamentals of KD-tree are described,

followed by the procedure for final cutter size determination.

5.1 Introduction of KD-Tree

• Advantages of KD tree

Multidimensional binary tree or KD-tree was first coined in 1975 in a theoretical paper

by Bentley [20], where K is the number of the dimensions in the search space and D

refers to dimension. As a special data structure, the KD-tree enables us highly efficiently

retrieve the data with the required conditions using multidimensional search keys.

According to Bentley, a typical insertion and record lookup in a KD-tree with a size of n

records will examine about 1.3861og2n nodes, which is very efficient. The big advantage

of this structure is that a single data structure can be used to perform many types of

queries at a very fast speed, such as nearest point search, region query, fixed-radius near

neighbour search [21, 22]

Among three typical data structures, namely linked list, adaptive quad tree, and KD-tree,

the KD tree offers the best performance in region query, though it requires the largest

memory. On the other hand, the linked list has worst efficiency in region query, yet it

57

uses the smallest memory. The quad tree falls in between the KD-tree and the quad tree

regarding both querying efficiency and memory usage. In our case, the main concern is

the computational time and the memory usage is not a problem.

• Applications of KD-tree

Binary search tree is a special case of KD-tree, where we can only find the items within

certain range in one dimension. However, for items with multiple keys with each key

corresponding to a different dimension, the KD-tree would be an appropriate data

structure to serve this purpose. For example, given a set of points in three spaces (K=3),

one can quickly find all the points whose X, Y, and Z coordinates satisfying the specified

criteria:

X < X < X
min — — max

Y <Y<Y
mm — max

7 < 7 < 7
. ^ m i n - ^ - ^ m a x

The application of KD-tree is not limited to geometric problems. As a typical example,

one may wish to find all employees whose salary is between $12/hour and 18$/hour,

whose family has three to five children, and who have worked more than five years. The

salaries could be viewed as points along the X axis, the number of children as points

along the Y axis, and the years as points along the Z axis.

5.2 KD-Tree Data Structure

5.2.1 Components of KD-tree

According to the Bentley's theory, in a KD-tree, each record of a given file is stored in a

form of a node. Typically, a node includes the following components:

58

• K keys, called Ko (P), Ki (P),..., Kk_i(P), where P is any node. These keys

represent the values of P at different dimensions, e.g. X, Y, and Z coordinates of P

if P is a point in 3-D space.

• Two pointers: LOSON (P) and HISON (P), which are either null or point to

another node in next level in the KD-tree. (Note that each pointer can be

considered as specifying a sub-tree)

• A discriminator DISC (P) (or splitting dimension) associated with each node.

The discriminator is an integer between 0 and k - 1 inclusively

• A splitting value Kj(P) at which the data set is cut into two subsets such that the

points in the LOSON will be not greater than it, and the points in the HISON will

be not less than it against its corresponding dimension (J=DISC(P)).

• A boundary array B, which bounds the node position by certain values. B has 2k

entries: B(0), B(l),...,B(k-l), corresponding the maximum and minimum

boundaries in each dimension.

5.2.2 Construction procedure

To build a KD tree, the common construction procedure involves the below steps:

• First, index all the dimensions by 0, 1, 2...K-1 (e.g. for a 3D tree or K=3, its

dimensions are represented by index 0, 1, and 2, which corresponds to X, Y, and

Z axis, respectively). These indices are called as discriminators.

• Then, select a splitting plane (or line if in 2-D space) perpendicular to

discriminator 0 (e.g. X axis). This plane cuts the entire points into two subsets

59

(called LOSON or HISON), each of which is split into two subsets using a

splitting plane perpendicular to discriminator 1 (e.g. Y axis).

• The cutting action continues until the discriminator reaches K-l(e.g. Z axis) at

which time the discriminator to which the splitting plane will be perpendicular is

reset to 0 (e.g. X axis).

• The process repeats in the same fashion until the size of the point set is small

enough to meet certain criterion.

To guarantee a balanced tree or the optimal search efficiency, at each internal node, the

splitting plane or line has to pass the median value of the points in its corresponding

dimension. Specifically, suppose we have n points that are sorted in a given dimension,

for example, such that Xj < Xj+1 (i = 0, . . . , n - 2) . Letm =integer portion of (n-l)/2.Then

the vertical splitting plane is at X = Xm or (Xm + Xm+i)/2, depending on the type of KD-

tree. To implement this, the points should be stored in K sorted vectors in all the

dimensions (e.g. X, Y, Z...) before the splitting operation proceeds, for example, for a

three dimensional KD-tree, three sorted vectors are needed for points: one ordered by x

coordinates, one ordered by y coordinates, and one ordered by z coordinates.

5.2.3 Main properties of KD-tree

• Discriminators at different levels

At a given level i of the tree, all the nodes use the same discriminator. Generally, to

calculate the discriminator for next level, a function NEXTDISC can be defined as:

NEXTDISC(i)=(i+l) mod k

Also, if the two sons are non-null, we have:

60

NEXTDISC(DISC(P)) = DISC(LOSON(P))= DISC(HISON(P))

• Criteria for searching directions

For any node P, let j be DISC (P).A function SUCCESSOR (P, Q) is defined to tell which

son of P to visit while searching for node Q. This function returns either LOSON or

HISON. As mentioned before, we can easily identify which son to go if Kj(Q) and Kj(P)

are not equal, according to the property of KD-tree. However, if the two keys are the

same, a superkey of P has to be defined as a product of all the keys (Note: the key starts

with by Kj and cyclically concatenates with each other. The superkey of P is expressed

as:

Sj(P) = kJ(P)-kj+](P)...kk_l(P)-k0(P)-...kJ_2(P)-kj_,(P)

By comparing the superkeys, three cases are identified:

• If Sj(Q) < Sj(P), it returns LOSON;

• if Sj(Q) > Sj(P), it returns HISON.

• If Sj(Q) = Sj(P) it indicates that the two nodes are identical.

• Property of boundary box

If Q is a descendant of P, then:

B(2j) < Kj(Q) < 5 (2 /+ 1), where; e [0 ,* - l]

5.3 Types of KD-Tree

There are many variations of KD-trees. However, here only two typical ones will be

presented. In this work, the second type of KD-tree is employed as the data structure.

61

The first version is the earliest one, which was described by Bentley in his KD-tree

theory. In this version, every node of a KD-tree, from the root to the nodes before their

leaves, stores a point. Leaf nodes, called null nodes, store no point. As a result, each

splitting plane or line must go through one of the points in the tree. An example is shown

in Figure 5.1, where the data or records are stored as nodes in 2D space. Figure 5.2 is

planar graph form of the same 2-D tree. Note that LOSONs are represented by the left

branches, HISONs by the right branches, and null sons by boxes.

(0,100) (100,100)

E<40,85>
1

B<10,70>

C<10,60>

(

>

(

D<25,20>

»

1

A(50,50)
>

t F(70,85)

C<80;15)

KO — -

Figure 5.1 2D tree in box form (boxes represent range of sub-tree)

62

Discriminator

Figure 5.2 Planar graph representation of the same 2-D tree

Opposite to the first version, the second type of KD-tree stores the points in its leaf nodes

only [23]. Note that each splitting plane or line may still go through one of the points and

each leaf node stores as least one point. The structure of this type is illustrated in Figure

5.3. The left side of the figure shows the given points(P7, P2, P9) and the subdivision

of the data set with splitting lines(/7, 12, ..., 19), and the right side illustrates the

corresponding KD-tree. Interior nodes are marked by circles, and leaf nodes, which

contain individual points, are marked by squares. Each node contains the information of

its corresponding rectangular region.

15

pom

u
psm

12

pg%

la

pi m

14

pi %

n

• P5

P9 »

13

P6 •
19

P7 •

16

• P8

Pi P2 P7 P6

Figure 5.3 Second version of KD-Tree

63

5.4 KD-Tree Algorithm

The major procedures for KD-tree involve KD-tree creation, and region query. The

corresponding algorithms will be presented in the following sections:

• Creating KD-tree

The following is the algorithm for the KD-tree creation, which is combination of

knowledge from [20, 23]. This work only concerns the points in 3D space, so K=3. The

discriminator values 0, 1, and 2 correspond to X, Y, and Z axis, respectively. Here P and

B represent input data points and boundary array of these points, correspondingly. C is

the maximum size of points contained in a leaf node.

Create KDTree (P, discriminator, B, C)

{

if (the size of P < C), then return a leaf node T storing P and the node rectangle B

else if (discriminator=0)

{

Then divide P into two halves with a plane O passing through the median

X-coordinate of the points in P and perpendicular to X axis.

Let PI be the set of points to the left of O,

and let P2 be the set of points to the right of or on O.

Let B1 be the part of B to the left of O,

and let B2 be the part of B to the right of O.

}

64

else if (discriminatory)

{

Then divide P into two halves with a plane O passing through the median

Y-coordinate of the points in P and perpendicular to Y axis.

Let PI be the set of points below O,

and let P2 be the set of points above or on <t>.

Let Bl be the part of B below O,

and let B2 be the part of B above O.

}

else

{

Then divide P into two halves with a plane O passing through the median

Z-coordinate of the points in P and perpendicular to Z axis.

Let PI be the set of points behind O,

and let P2 be the set of points before or on O.

Let Bl be the part of B behind<J>,

and let B2 be the part of B before O.

}

Tleft= Create KdTree (PI, (discriminator + 1)%K, Bl, C)

Tright = Create KdTree (P2, (discriminator + 1)%K, B2, C)

65

Store pi, Tleft, Tright, and the node array B in a node T

(Tleft is the left child of current nodeT, and Tright is the right child of T.)

return T

}

• Querying the KD-tree

A region query searches the points of a KD-tree within a cubic region R limited by

minimum and maximum values of X, Y, and Z and provides the results to the user. It

identifies all points under the node T falling in region R. The algorithm is shown below:

RegionSearchKdTree (T, R)

{

if (Tis a leaf)

{

then report the points stored at T whose coordinates are contained in R

}

else if (node cubic (Tleft) is fully contained in R)

{

then return the points in Tleft

}

else if (node cubic (Tleft) intersects R)

{

then Region_Search_ KdTree (Tleft, R)

}

if (node rectangle(Tright) is fully contained in R)

66

{

then return the points in (Tright)

}

else if (node rectangle(Tright) intersects R)

{

then Region_Search_KdTree (Tright, R)

}

}

5.5 Determination of the Cutter Size

As previously mentioned, to find all the testing points or vertices by KD-Tree search, we

have to specify the criteria for their X, Y, and Z coordinates in a cubic form:

Xmin <X< Xmm \Xmin andXmax are the lower and upper limits for X

< 7min < Y < Ymm where, < Ymin and Ymax are the lower and upper limits for Y

Zmin < Z < Zmax Zmin and Zmax are the lower and upper limits for Z

However, the shadow of a cutter is a circle (refer to Figure 1.3), so we have to transform

the circle into a rectangle. Figure 5.4 illustrates how to define the search range for X and

Y axis, based on the cutter shadow. Here, the circle centered at O' represents the cutter

shadow with a radius Rs. If we know the X0- and Y0- (the coordinates of O'), the lower

and upper limits for X and Y can be defined as:

{Xmn=X0,-RsandXmax=X0,+Rs

1 Y„iB=Y,-RMandYnmi=Y0.+RM

For a given APT cutter with a radius R, corner radius r, and taper angle 6, the radius Rs

can be calculated by Rs =R + r- cos 6 + H Dtan 0 , where H' is the length of the cutter

67

tapered portion. Since the conical angle usually is very small or zero, we can assume it is

zero. Thereby, H' is determined by H' xH- r{\ - sin 6) (refer to Figure 2.1).

Figure 5.4 The search range determination

Given a CC point and its normal Ncc, X0- and Y0- can be easily obtained by Liu's model

or the refined model for the case where the Ncc only has Z component. Meanwhile, from

all the vertices extracted from the part STL file, we can find the minimum value Zmjn and

the maximum value Zmax of all those vertex points. Therefore, the lower and upper limits

\z . =z
for Z coordinate are expressed as: \ mm mm .

\Z =7'
y max max

Using the above criteria, the KD-Tree search algorithm can quickly identify all the

vertices falling within the cutter shadow area. Then, through the imaginary cutter model,

a group of imaginary cutters can be obtained by using the vertices as testing points. The

68

final cutter size or the maximum allowable cutter size for the given CC point can be

easily found by selecting the minimum cutter from the imaginary cutter group.

69

CHAPTER 6. INTEGRATED KD-TREE CUTTER SIZE SEARCH MODEL

The local gouging detection method is capable of providing an upper bound of the cutter

size for the vertex KD-tree cutter size search and ensuring that any size smaller than this

bound is local gouging-free. The interference or global gouging check, which is not able

to be solved by Khan's gouging detection model, is taken care by the vertex KD-tree

search. Thus, integration of the two methods is an ideal choice. The integrated model is

called iKD-tree model, and its structure and implementation are discussed as follows.

6.1 Structure of the Integrated Model

The integrated model can be organized into three main modules, namely Data Preparation,

Cutter Search Engine, and Data Postprocessing. The flowchart of the model is shown in

Figure 6.1. The details of these three modules are described in the following sections.

70

Start

P

g
1*3 w uw
§^
CM Q

Ok

IGES
&STL
Files ,

M Retrieve Part Design Data

Calculate CC Points &
Their Normals

Filter Redundant Vertices
in STL File

H CC Points
& Normals

Enter Tool Type and Other
Parameters

Load Sorted Cutter List

{R,,R,,.... R,,...R„)

Output Cutter Size
Distribution Map

Compute Boundary Points
between Cutter Groups

Generate Boundaries in
Catia Via CAA

Read CC Point and Its
Normal

Calculate initial Rin

by Local Gouging
Detection Subroutine

Set R=0

DetermineR by
Vertex KD-Tree

Search Subroutine

Store R

No

J

End
Note: Rml„ is the smallest cutter R, in the tool list

Figure 6.1 Flowchart of the integrated model

6.1.1 Data preparation module

In data preparation module, the NURBS surface equations and other parameters are

retrieved from the part IGES file, which will be used to generate CC points, their normals,

and the boundary information between two adjacent surface patches. Meanwhile, the

vertices of triangles are read from the part STL file. Then vertices are filtered to remove

71

all the redundant points, which will be used as the testing points to determine the cutter

size in the vertex KD-tree search.

6.1.2 Cutter search engine module

Cutter search engine module is the core of the integrated model, which performs the

initial cutter search and the final cutter radius determination. In the beginning, the tool

type and other parameters (i.e., corner radius) are prompted to enter the system. Then, the

cutter list of the specified type is loaded into the system. After that, the initial cutter size

Rjn is determined by the local gouging detection subroutine. The flowchart of the local

gouging detection subroutine is shown in Figure 6.2. Using the obtained initial cutter size,

the system performs the vertex KD-tree cutter size search to locate the final largest

possible cutter size R for each CC point. The subroutine flowchart of the vertex KD-tree

search is shown Figure 6.3.

72

:> Entry'.

C a l c u l a t e kimin, kt,msx, ks,n

ks.max, and a0

Search cutter size RS (the size
nearest to but not bigger than
Rn) d* : cutler index in tool list)

Exit

Figure 6.2 Flowchart of local gouging detection subroutine

73

Entry:

Calculate KD-tree Search
Range Using /?,„ as Cutter

Size Upper Limit /?„

I
Identify Test Points (PT) under

Ru Shadow from Filtered
Vertices by KD-tree Search

I
Set/?=RU

Read Test Point from TP

Compute the Cutter Size Rcurr

Using Imaginary Cutter Size
Determination Model

Yes
No

No

Yes
No

Set R= RCI

• w

£ -Yes-

Return R

\

\

Exit

Figure 6.3 Flowchart of vertex KD-Tree search subroutine

6.1.3 Data postproccessing module

The main functions of data postprocessing Module are to present cutter size distribution

in a color map form for a quick visual check, and to generate the cutter size boundaries in

the CAD/CAM software CATIA for the machining process planning. The concepts of

color cutter map and cuter size boundary are described as follows.

74

• Color cutter map

The standard cutter distribution can be effectively represented by a color cutter map. In

the map, the color at a given CC point indicates the largest standard cutter that can be

used at that point. The CC points with the same color forms a region that can be cut by

the same cutter size. The procedure of constructing a cutter map is described as follows:

• Build a standard cutter list according to the all the cutter available

• Assign different colors to different cutter sizes in the list

• Calculate the allowable cutter at each CC point using the integrated model

• Find the closest standard cuter in the list for each allowable cutter, but it should

not be bigger than the allowable cutter.

• Plot the cutter size at each CC point using the corresponding color to obtain the

cutter map.

Using the above method, we can obtain a combination of standard candidate cutters that

can be used to machine the part with the least machining time. Obviously, this standard

cutter group can be used to cut the part without gouging and interference due to the fact

that each of them is not bigger than the corresponding imaginary cutter. From the cutter

map, one can roughly identify the largest possible standard cutter size that can be

employed at each surface region. In some case, when the surface curvature is very large

and the open space at an area is very small, one can clearly see if there is a standard cutter

can access that area using the cutter map. If not, a design change may be required.

• Generating the cutter size boundary in CATIA

As mentioned earlier, in the part surface, each cutter forms a cutter size region at which

the highest cutting efficiency can be achieved by this cutter. Between any two cutter size

75

regions, there exists a boundary. The cutter map is generated by the MATLAB program,

and it is just a rough presentation of the cutter size regions. As a result, there is not

boundary in a cutter map that we can directly use to divide the compound surface into

different regions for the corresponding cutter sizes. Furthermore, even if there is a

boundary in the map, it is usually not cost-effective to plan machining process on the

map. If we can generate these boundaries in the part CATIA design, we could perform

machining process planning in CATIA by assigning the largest standard cutter size for

each region, which is the most efficient way for material removal. Since whenever there

is standard cutter size jump between two CC points, we can always find out the

parametric middle point, whose u and v are the u average and the v average of the two

CC points, respectively. Using the u and v of the parametric middle point, we can obtain

any boundary Curves between any two neighbouring cutter regions in CATIA by the

following steps:

• First calculate all these middle points through their u and v values.

• Then output the points obtained in the first step to CATIA.

• Finally connect those points by B-Spline Curves.

6.2 Implementation of Integrated Model

To transform the model into real applications, the model is implemented in MATLAB

and a snapshot of the user interface is shown in Figure 6.4. The system requires the user

to input the surface patch information and the cutter parameters. In addition, the user has

to load the STL file of the part before computing. If the user wants to generate the cutter

76

size boundary in CATIA, he or she has to make the CATIA Generative Shape Design

Workbench ready before pressing the button.

-A SurfaceRework H P i l
^ B B H B u S U R F A C E REWORK \f1.0mm^mmm^—

Input Control Parameters

Total Patches j 24 1

U Grids | 42 j

V Grids 42 1

Safe Factor (mm) -) .5 j

| Load STL |

Generate B.C.

Input Cutter Parameters

Cutter Type m ^ ^ ^ M ^ \

Taper Angle (deg) . 0 1

Corner Radius (mm) [Q \

Offset (mm) ; 0

Ifem™«

In CATIA j

Note: Make CA TIA ready Before pressing Generate B. C. in CA TIA Botton.

Figure 6.4 The interface of the system

77

CHAPTER 7. APPLICATION AND COMPARISON

7.1 Introduction

Compound surfaces are widely used in the parts with a complex shape, for instance,

dies/moulds. Normally, a compound surface consists of a number of free-form surfaces

connected with C or/and C continuity. When we plan the machining processes, we

always want to use the largest possible, yet gouging-free cutter for at a given surface

region. In other words, the curvature of the cutter should match that of the surface as

much as possible. Thereby, we can maintain the highest material removal rate. To cut a

compound surface on 3-axis CNC machines, using only one cutter to machine all the

surfaces is not efficient. This is not only because the surface curvature changes from CC

point to CC point, but also because the open space for the cutter varies from location to

location. As a result, this would be far away from the rule of curvature match.

Ideally, all imaginary cutters calculated from the model are the perfect candidate sizes to

cut the compound surface. However, most of the imaginary cutters are non-standard and

it would be very costly to make them. As a result, all the imaginary cutters will be

converted into standard cutters as the output in this work. The conversion is simply a

process of finding the available standard cutter size closest to the imaginary cutter.

In this chapter, a specific application of hairdryer is introduced. Then, comparisons

between iKD-Tree method, Liu's PSO cutter search method, and CATIA rework function

78

are made to show the advantages of the proposed model, regarding the computational

time, accuracy, and cutter selection efficiency.

7.2 Application of a Hairdryer Mould

7.2.1 Part CATIA design

Due to its complexity, this work still uses the hairdryer mould as an example, which is

the same part design that Liu used in his PSO cutter size method. This hairdryer mould

consists of 24 surface patches, which are connected with C°, C1 or C2 continuity. The

CATIA design of this part and its 24 patches are shown in Figure 7.1. This hairdryer

surfaces are very complex as it has both concave and convex regions. It is extremely

difficult to determine the combination of cutter sizes to realize the maximum production

efficiency, while ensuring the no gouging and interference happen.

(a) (b)

Figure 7.1 (a) CATIA design of the hair dryer mould and (b) Its 24 surface patches

79

7.2.2 Surface patch parameters and cutter data

In this work, for each surface patch, a mesh of 21x21 iso-parametric CC points is used.

Since there are 24 patches for the whole hairdryer, there are 10584 CC points in total.

Assume the standard cutter sizes available are 25.4 mm (1 inch), 12.7 mm (1/2 inch),

6.35 mm (1/4 inch) and 3.175 mm (1/8 inch) for both flat end-mill and ball end-mill. The

STL file is generated in CATIA by setting the 3D accuracy and 2D accuracy to be .01,

which is the finest setting in this software. Unless mentioned otherwise, these parameter

settings are used throughout this chapter to run the integrate model system. The results

are described in the following sections.

7.3 Color Cutter Map of Hairdryer

As previously mentioned, the results of cutter sizes are represented by the color cutter

maps. By running the system with the above parameter settings, the cutter maps of flat

end-mill and ball end-mill are shown in Figure 7.2 and Figure 7.3, respectively. In the

two cutter maps, different colors signify the different cutter radius regions:

• dark brown: 1 inch

• light brown: V2 inch

• green: % inch

• light blue: y% inch

• dark blue: cutter not available

80

Figure 7.2 Standard cutter radii map for flat end-mills

Figure 7.3 Standard cutter radii map for ball end-mills

The color cutter maps are generated by MATLAB program. By visual inspection, a rough

cutter distribtuion can be obtained. The small dark blue area in Figure 7.2 indicates that

no flat cutter can access that area.Therefore, to cut this area, one option is to use a smaller

81

flat-mill cutter or other type of cutter. Another option is to modify the design of that

region so that the available flat end-mill cutter can access it.

7.4 Comparison between PSO Method and iKD-Tree Method

In order to demonstrate the computational efficiency and cutter size accuracy, this work

uses both the Liu's PSO method and iKD-Tree method to search the cutter size

combination for the hairdryer mould. The results from both methods are compared.

7.4.1 Computational time

As expected, the iKD-Tree cutter search method is much more efficient than the PSO

cutter search method in terms of cutter size search speed. This is not only because the

iKD-Tree method greatly narrows its searching scope to the area covered by the cutter

shadow, but also because the search is on the limited discrete points of that area, while

the PSO method has to continuously search entire compound surfaces. Indeed, the

efficiency of iKD-Tree is proved by the hairdryer mould example.

To demonstrate the computational efficiency, the same settings are employed as

previously mentioned, except the cutter type. This time, only torus end-mill, the most

complex cutter among the three types of APT cutters, is selected, and assume that it has

a corner radius of 1mm and a taper angle of 2°. In the part STL file, there are 21931

vertices. The time required to compute all cutter sizes of all the CC points is 4.2636 hours,

which is only 18% of the time that are required by the PSO method to do the same job.

Please keep in mind that in this work, the program is coded by MATLAB, which is much

82

slower than the other programming languages, e.g. C++. Therefore, this is really a huge

improvement on the search efficiency. The detailed data are shown in Table 7.1.

Table 7.1 Computational time comparisons

Methods

iKD-Tree

PSO

Total CC Points

10,584

10,584

Computational Time(hr)

4.2636

23.4646

7.4.2 Cutter size accuracy

Generally speaking, the PSO cutter search method has a very high accuracy in

determining the cutter size due to its continuous search nature. Therefore, a quick and

simple way to check the accuracy of the proposed method is to compare the cutter sizes

obtained from the iKD-Tree method with which obtained from the PSO method under the

same conditions. From the results, it is found that the cutter sizes computed by both

methods are identical for 99.5% of the CC points. Among the 10,584 CC points, only 50

CC points have slightly cutter size differences between two methods. The deviations are

mostly about 1 mm. Please keep in mind that those values are imaginary cutter sizes. In

reality, we need to convert them into the corresponding standard cutter sizes.

Suppose that the available standard cutter sizes are (1) 3.175, (2)6.35, (3)8.0, (4)10.0,

(5)12.7, (6)14.0, (7)15.0, (8)16.0, (9)20.0, (10)25.4, (11)30.0, (12)32.0, and

(13) 40.0. Those cutter sizes are in mm and listed in the ascending order. After converting

all the cutter sizes into the standard cutter sizes, the CC points that have different cutter

sizes between two methods drop to 10 (see Table 7.2). From Table 7.2, it is seen that the

83

9 CC points have a cutter size index difference of 1, and only one CC point has a cutter

size index difference of 2. That is being said, the difference is insignificant.

Table 7.2 Different cutter sizes between PSO method and iKD-Tree method

No.ofCC
Point
3,582

3,902

4,618
5,259

5,260

5,261

5,262

5,263

5,264

10,107

10,108

10,113

10,115

10,116

10,117

PSOl
Standard size

in mm
3.175

0

3.175
10

12.7

12.7

12.7
14

14

0

0

6.35

10
14

16

VIethod
Index in the

cutter list
(1)
(0)

0)
(4)
(5)
(5)
(5)
(6)
(6)
(0)
(0)
(2)
(4)
(6)
(7)

iKD-Tree Method
Standard size

in mm
6.35

3.175
6.35

12.7
14

16

16

16

20

3.175
3.175

8

12.7

16

20

Index in the
cutter list

(2)

(1)
(2)
(5)

(6)

(V)

(7)

(7)

(8)

0)
0)
(3)
(5)
(7)
(8)

Difference
of Index

2

Note: Index 0 means the cutter size is not available

Further investigation reveals that all the 10 CC points with different cutters between two

methods are from the patch boundaries. The main reason is because the local gouging

detection approach is only valid under the assumption that all the patches are connected

with C continuity. In this hairdryer mould design, not all of the patches are connected

with C continuity. Thus, if a better local gouging detection model that can apply to the

surfaces connected with C1 continuity is provided, we could completely solve the

problem.

84

After converting all the imaginary cutter sizes into standard ones, the result matching

between two methods becomes to 99.9% of CC points. On the other hand, there is no

guarantee that the PSO method will produce 100% of correct results due to its stochastic

nature. Therefore, the accuracy of iKD-Tree method is comparable to that of the PSO

method, and is acceptable.

7.5 Comparison between iKD-Tree Method and CATIA Rework Function

In CATIA V5, there is machining rework function, which can be used to determine the

rework boundaries that cannot be accessed by a given cutting tool. If we know all the

possible candidate cutters that can be used to cut a part, we can also identify the

boundaries between any cutter size regions by using the CATIA rework function. In order

to give the reader a clear picture about the strength of this work and the limitation of the

CATIA rework function, a comparison between them is provided by assuming all the

cutter size are given for CATIA rework.

7.5.1 Efficiency of cutter size selection

In reality, it is almost impossible to guess all the candidate cutter sizes that can be used to

cut a part by experience, especially when the part surface becomes very complex. If you

want to test all the available cutters in the list to obtain the boundaries of different cutter

regions, it would be very time-consuming. Suppose we still use the previously

mentioned cuter list with 13 cutters available. In CATIA rework function, if we set the

tolerance to be 7.874e-006 in, one given cutter size takes the CATIA about 45 minutes to

create the rework boundaries. So a total of 13 cutters would take 9.75 hours to obtain all

85

the boundaries, which is more than twice of the time required by the proposed model.

Remember that tolerance in the proposed model is set to be zero, and CATIA uses

programming language for its system. If this work is implemented by a programming

language, for example, C++, the computational time can be shrunk to half an hour. Thus,

the iKD-Tree method overshadows the CATIA rework function, considering the

efficiency of cutter size selection.

7.5.2 Boundary accuracy

In order to make the comparison simple and easy, it is assumed that the available ball

end-mill sizes for the hairdryer mould are only 1 inch, Vi inch, and % inch in radius.

Thus, the time required for CATIA to generate the rework boundaries for those cutter

sizes will be tolerable. As CATIA is the widely accepted CAD/CAM software, the

rework boundary accuracy is unstable. Here we need to check if the boundaries generated

from iKD-Tree method match the results from the CATIA rework function.

The boundaries of the available cutter sizes obtained from the iKD-Tree method are

shown in Figure 7.4. Here the colors of dashed lines indicate the types of boundary. The

definitions of boundary types are described as follows:

• Type l(red): the boundary between 1 inch cutter region and Vi inch cutter region

• Type 2(green): the boundary between lA inch cutter region and !4 inch cutter

region

• Type 3(yellow): the region of the boundary that no cuter in the list can access

86

Figure 7.4 Boundaries generated by iKD-Tree method

The orange callouts in Figure 7.4 also indicate the largest available cutter sizes (in inch)

that can be used to cut the corresponding regions. The callout with 'N.A.' signifies that

no available cutter can be used to cut the region enclosed by the yellow dashed boundary.

In CATIA rework function, set the tolerance to be 7.874e-006 in and then generate the

same three types of boundaries, using the same three cutters. The results are shown in

Figure 7.5, Figure 7.6, and Figure 7.7. Note that CATIA rework function always uses the

same type of red thin line to represent the boundary, regardless of boundary types. In

Figure 7.5, it is seen that the type 1 boundary obtained from the CATIA rework exactly

coincides with the red dashed line obtained from the iKD-Tree method. Similarly, from

Figure 7.6, one can see that the type 2 boundaries from both CATIA rework function and

the proposed method match quite well. In Figure 7.7, we can see that boundaries of type

87

3 from both methods match also very well, except that the area enclosed by the boundary

from the proposed method is slightly larger than that from the CATIA rework function.

This means the proposed method is somewhat conservative or safer. Therefore, we can

conclude that boundary accuracy from the proposed method is equivalent to that from the

CATIA.

Fngunire 7„§ Comparison of boundary type 1

Fngmir© 7„6 Comparison of boundary type 2

Tvne •>
Bound ir> „ * * ' " . *• "

- p-f -C • r -

Fngwe 7.7 Comparison of boundary type 3

89

7.6 Machining Time Comparison

In order to see the machining efficiency, the previously determined three cutters (1/2

inch, 1 inch, and 2 inch) are used to plan the tool path in their corresponding boundaries

for the hairdryer mould. At the same time, the x/i inch cutter, the smallest cutter among

them, is also used to cut the same part. Their machining times and total times used are

shown in Table 7.3.

Table 7.3 Machining time and total time comparison

Three cutter approach

Individual cutter machining time (min)

2 inch

9.40

1 inch

12.93

/4 inch

2.62

Total
machining
time (min)

24.95

One cutter
approach

Machining time
(min)

Vi inch

54.23

From Table 7.3, it is seen that the total machining time by using three ball end-mills is

less than the half of the machining time by using one ball end-mill. The results are the

same as those from the Liu's work. Indeed, the material removal rate can be significantly

increased through the iKD-Tree model.

90

CHAPTER 8. CONTRIBUTIONS AND FUTURE RESEARCH

8.1 Contributions

In this research, an integrated KD-Tree cutter size search method is proposed to quickly

determine the largest combination of gouging and interference-free cutters and their

corresponding boundary regions, for 3-axis finish machining of sculptured surfaces.

Those cutters can be used to achieve a high material removal rate, while maintaining the

quality of the machined part. The main contributions of this work are summarized as

follows.

First, an improvement has been made in Liu's imaginary cutter model to overcome its

drawback. Since Liu's original model becomes invalid in the case when surface normal

at a CC point is parallel to the tool axis, a new model has been developed for this

particular case. As a result, the improved imaginary cutter size model can be applied to

any surface conditions.

The introduction of the STL discrete point search concept is a methodological

breakthrough of cutter size determination. In this work, the vertices extracted from the

part STL file are employed as the testing points to define the cutter size, which is the

radical way to accelerating the searching speed due to the discrete and finite nature of

those vertices. Furthermore, the search accuracy is guaranteed by the adaptability of the

STL format: the number of the test points is proportional to the curvature of the surface

where those points lie. Additionally, to eliminate the chance of repeated search, an

91

efficient and straightforward algorithm has been developed to filter the large percentage

of redundant vertices in the STL file.

Further, the suggested Vertex KD-Tree search method enables an extremely purposeful

and high-speed search. First, the cutter shadow has been used to define the search area

that the cutter would likely touch. Therefore, the search will be performed only in the

necessary region. Second, adopting the efficient region query algorithm, the KD-tree

search allows us to quickly identify all vertices within area covered by the cutter shadow.

More importantly, an integrated KD-tree model has been established to search the desired

cutter sizes at an acceptable computational time and accuracy. The model incorporates

the vertex KD-Tree method and Khan's local gouging detection method. Based on the

Khan's method, an efficient initial cutter search algorithm has been developed. This

initial cutter size serves as an upper limit of the allowable cutter to determine the radius

of the cutter shadow for the vertex KD-Tree method.

Finally, the integrated model can achieve the comparable accuracy as the Liu's PSO

cutter size method, but only requires 18% of the computational time. Besides, the cutter

size boundaries generated by this model have the same accuracy as that generated by the

CATIA rework function, but requires less than half of the running time needed by the

CATIA to so the same job.

92

8.2 Future Research

For the future research, several directions are suggested:

• Develop the improved local gouging detection model that can be applied to the

n 1 i

surfaces that are connected with any kind of continuity, including C , C , and C ,

so that the accuracy of the local gouging detection becomes more dependable.

• Conduct research on the re-meshing of STL facets to generate testing points other

than the vertices to augment the accuracy of the cutter size search.

• Extend this work to 5-axis surface machining since many complex parts have to

be produced by multiple-axis machining. The typical example is compressor

impeller.

93

LIST OF REFERENCES

[I] P. Fallbohmer, T. Altan, H. K. Tonshoff, and T. Nakagawa, "Survey of die and
moldmanufacturing industry". Journal of Materials Processing Technology,
1996(59), p. 158-168.

[2] G. Glaeser, J. Wallner, and H. Pottmann, "Collision-free 3-axis milling and
selection of cutting tools". Computer-Aided Design, 1999(31), p. 225-232.

[3] H. Pottmann, J. Wallner, G. Glaeser, and B. Ravani, "Geometric criteria for gouge-
free three-axis milling of sculptured surfaces". Transactions of ASME, Journal of
Mechanical Design, 1999(121), p. 241-248.

[4] J. H. Yoon, H. Pottmann, and Y. S. Lee, "Locally optimal cutting positions for 5-
axis sculptured surface machining". Computer-Aided Design, 2003(35).

[5] A. Rao and R. Sarma, "On local gouging in five-axis sculptured surface machining
using flat-end tools". Computer-Aided Design, 2000(32), p. 409-420.

[6] S. H. Khan, Local Gouging Detection and Tool Size Determination for 3-Axis
Finish Machining of Sculptured Surface Parts, in the Department of Mechanical
and Industrial Engineering. 2006, Concordia University.

[7] J. H. Oliver, D. A. Wysocki, and E. D. Goodman, "Gouge detection algorithm for
sculptured surface NC generation". Transactions of ASME, Journal of Engineering
for Industry, 1993(115), p. 139-144.

[8] D. C. H. Yang and Z. Han, "Interference detection and optimal tool selection in 3-
axis NC machining of free-form surfaces". Computer-Aided Design, 1999. 5(31), p.
371-377.

[9] Y. S. Lee and T. C. Chang, "Automatic cutter selection for 5-axis sculptured
surface machining". International Journal of Production Research, 1996. 34, p. 997-
998.

[10] K. K. George and N. R. Babu, "On the effective tool path planning algorithms for
sculptured surface manufacture". Computers and Industrial Engineering, 1995.
28(4), p. 823-838.

[II] A. Hatna and R. J. Grieve, "Pre-processing approach for cutter interference
removal". International Journal of Production Research, 2001. 3(39), p. 435-460.

94

[12] G. Liu, Automated Cutter Size and Orientation Determinations for Multi-Axis
Sculptured Part Milling, in Mechanical & Industrial Engineering 2007, Concordia
University: Montreal, Canada, p. 1-88.

[13] D. Rypl and Z. Bittnar, "Triangulation of 3D Surfaces Described by
Stereolithography Files". (Currently 2008,
http://mech.fsv.cvut.cz/~dr/papers/Lisbon04/node 1O.html).

[14] T. Wu and E. H. M. Cheung, "Enhanced STL". International Journal of Advanced
Manufacturing Technology 2006. 29, p. 1143-1150.

[15] B. Lauwers, P. P. Lefebvre, and K. U. Leuven, Part Analysis Algorithms for
Efficient 5-Axis Milling Strategy Planning of Sculptured Surfaces, Department of
Mechanical Engineering, Division PMA, Celestijnenlaan 300B, B-3001 Leuven,
Belgium.

[16] CATIA Online Help Documentation, CATIA V5 R17, Dassult Systems.

[17] S. Cui, Y. Zhang, S. Liang, and D. Li, "An Algorithm for Fast Filtering
Redundancy Vertices in STL files". Journal of China Mechanical Engineering,
2001(2).

[18] X. Cheng, D. Li, H. Zhou, and S. Cui, "Algorithm for fast filtering redundancy
vertex in STL solid based on Hashtable". Journal of Huazhong University of
Science & Technology (Nature Science Edition), 2004. 32(6).

[19] J. B. Rosenberg, "Geographical data structures compared: a study of data structures
supporting region queries [VLSI CAD]". IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 1985. CAD-4(1), p. 53-67.

[20] J. L. Bentley, "Multidimensional binary search trees used for associative
searching". Communications of the ACM, 1975. 18(9), p. 509-17.

[21] J. L. Bentley, K-d trees for semidynamic point sets. 1990. Berkeley, CA, USA,
Published by ACM, New York, NY, USA.

[22] H. T. Yau, C. M. Chuang, and Y. S. Lee, "Numerical control machining of
triangulated sculptured surfaces in a stereo lithography format with a generalized
cutter". International Journal of Production Research, 2004. 42(13), p. 2573-2598.

[23] S. Akella, "CSCI-2300: Data Structures and Algorithms Project 2 — Kd-Trees".
(Currently 2007, http://www.cs.rpi.edu/~sakella/dsa/projects/project2/project2.pdf).

95

http://mech.fsv.cvut.cz/~dr/papers/Lisbon04/node
http://www.cs.rpi.edu/~sakella/dsa/proj

