
Modeling of Radio Access Application Protocols
for Mobile Network Traffic Generation

Suliman Kahled Albasheir

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Electrical &; Computer Engineering)

at

Concordia University

Montreal, Quebec, Canada

December 2008

© Suliman Kahled Albasheir, 2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Voire reference
ISBN: 978-0-494-63199-7
Our file Notre reference
ISBN: 978-0-494-63199-7

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ABSTRACT

Modeling of Radio Access Application Protocols for Mobile Network Traffic

Generation

Suliman Kahled Albasheir

Telecommunication applications have become some of the most important as­

pects of our daily life, especially with the Internet-based applications that are avail­

able even on cell phones. One of the challenges faced by telecom companies is to

provide robust and powerful servers that are capable to handle the great increase of

the number of subscribers and to accomplish the heavy Internet-based applications

that generate a tremendous traffic load. Telecom companies evaluate their prod­

ucts' performance before releasing them to the market by applying a large amount

of generated traffic to the telecom servers in order to measure their capability under

traffic load. To do this, powerful solutions are needed, which generate traffic by

modeling different telecom protocols. In this thesis, we propose a new technique of

modeling a traffic generator solution to load the Mobile Switching Center (MSC) for

the Universal Mobile Telecommunications System (UMTS). This traffic generator

is modeled to load the MSC through various mobile call scenarios such as location

update, mobile call originating, mobile call terminating, and call clearing. Based

on that, we model the Radio Access Network Application Part protocol' procedures

to generate the radio access messages that carry and handle the mobile messages.

These mobile messages will be represented through the Mobility Management and

the Call Control protocols' models. To achieve the above goals, we utilize the UML

Use Case Model to describe the functional behaviors of the traffic generator, also we

present the UML Analysis Model that provides the logical implementation of the

functional behaviors of the proposed traffic generator.

m

ACKNOWLEDGEMENTS

First and foremost, I would like to express my great thanks to the Almighty

God, Who gave me the strength and patience to complete this work.

I would like to extend my sincerest gratitude for my supervisor Dr. Sofiene

Tahar, who has been a constant source of thoughtful guidance in pursuing this work.

Because of his input, advice, and challenge, I have matured as a researcher and as

a graduate student. I am very thankful for several people at Ericsson Montreal

Canada, Samir Douik and Teresa Marchut-Wierzbica for giving me an opportunity

to do my Master's project at Ericsson, Claude Gauthier, Jean Roussel Personna,

Martin Kirouac, and America Arredondo Garza for their guidance, mentoring, and

encouragement during my project. Also, many thanks to Marin Pin, Gennady

Bayder, and Martin Robinson for their technical support. I would also like to

acknowledge my thesis committee: Dr. Abdelwahab Hamou-Lhadj and Dr. Chadi

Assi for their valuable feedback on the thesis.

I would also like to take this opportunity to express my sincere thanks to my

colleagues in the Hardware Verification Group (HVG) of Concordia University for

their motivation, constructive suggestions, and helpful comments. In particular, I

would like to thank Naeern Abbasi for his time and valuable help during my thesis

writing. Special thanks go also to Dr. Ali Shatnawi, from Jordan University of

Science and Technology, for introducing me to the ECE Department at Concordia

University and to Dr. Sofiene Tahar.

I would like to thank all my friends and relatives in Montreal, Jordan, and

everywhere. Also, I am very grateful for my sisters, brothers, aunt, and grandparents

for the support and happiness they always provide me with. Finally, my sincere

thanks and deepest appreciation go out to my parents, Fatima and Khaled for their

affection, love, support, encouragement, and prayers to success in my missions.

iv

This thesis is dedicated to

My Mother Fatima Itwaiq

and

My Father Khaled Albasheir

v

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xii

LIST OF ACRONYMS xiii

1 Introduction 1

1.1 Motivation 1

1.2 Traffic Generation Design 4

1.3 Methodology 7

1.4 Related Work 10

1.5 Thesis Contribution 17

1.6 Thesis Outline 17

2 Proposed Architecture 19

2.1 RanapSim Components Description 19

2.1.1 Traffic Handler 19

2.1.2 RANAP Controller 25

2.1.3 SCCP Interface Controller 26

2.2 RanapSim Use-Case Model 27

2.2.1 Actors 28

2.2.2 Use Cases 30

2.3 UML Analysis Model Preliminaries 34

2.4 Summary 37

3 Traffic Handler 38

3.1 UML Analysis Classes 38

3.1.1 Messaging Proxies Classes 39

3.1.2 Traffic Handler Control Classes 44

VI

3.2 UML Use-Case Realization 49

3.2.1 Location Update Realization 49

3.2.2 Mobile Originating Call Realization 52

3.2.3 Mobile Terminating Call Realization 56

3.2.4 Traffic Handling Realization 60

3.3 UML Class Diagram 62

3.3.1 Location Update Class Diagram 63

3.3.2 Mobile Originating Call Class Diagram 65

3.3.3 Mobile Terminating Call Class Diagram 67

3.3.4 Traffic Handling Class Diagram 69

3.3.5 Traffic Messaging Class Diagrams 70

3.4 Summary 74

4 R A N A P and SCCP Controllers 75

4.1 RANAP Controller 75

4.1.1 UML Analysis Classes 76

4.1.2 UML Use-case Realization 77

4.1.3 UML Class Diagram 80

4.2 SCCP Interface Controller 82

4.2.1 UML Analysis Classes 83

4.2.2 UML Use-Case Realization 85

4.2.3 UML Class Diagram 90

4.3 Summary 91

5 Conclusion and Future Work 92

5.1 Conclusion , 92

5.2 Future Work 94

vn

A 96

A.l UML Analysis Classes 96

A.1.1 Messaging Proxies Classes 96

A.1.2 Traffic Handler Control Classes 120

A.1.3 RANAP and SCCP Controllers Classes 135

A.2 UML Use-Case Realization 147

A.3 UML Interfaces 156

A.4 CPP Platform Classes . 159

Bibliography 161

via

LIST OF FIGURES

1.1 Worldwide Mobile Subscription Growth [21] 2

1.2 Traffic Generation Environment for the Mobile Switching Center . . . 3

1.3 Traffic Generator Architecture 6

1.4 The UMTS Network Architecture 8

1.5 Protocol Stack 9

2.1 RanapSim Main Components 20

2.2 Traffic Handler Entities 21

2.3 RanapSim Use Case Diagram 29

2.4 UML Analysis Model 35

3.1 RANAP Message Proxy Class 40

3.2 Mobility Management Message Proxy Class 41

3.3 Call Control Message Proxy Class 43

3.4 Traffic Handling Controller Class 45

3.5 Location Update Controller Class 46

3.6 Call Originating Controller Class 47

3.7 Call Terminating Controller Class 47

3.8 Initial UE Message Controller Class 48

3.9 Location Update Sequence Diagram 51

3.10 Mobile Originating Call Sequence Diagram (parti) 53

3.11 Mobile Originating Call Sequence Diagram (part2) 55

3.12 Mobile Terminating Call Sequence Diagram (parti) 57

3.13 Mobile Terminating Call Sequence Diagram (part2) 59

3.14 Distinguish Call Scenarios Sequence Diagram 61

3.15 Location Update Class Diagram 64

IX

3.16 Mobile Originating Call Class Diagram 66

3.17 Mobile Terminating Call Class Diagram 68

3.18 Traffic Handling Class Diagram 69

3.19 RANAP Message Class Diagram 71

3.20 Mobility Management Message Class Diagram 72

3.21 Call Control Message Class Diagram 73

4.1 RANAP Interface Controller Class 76

4.2 RANAP Interface Form Class 77

4.3 Forward Call Scenario Messages Sequence Diagram 78

4.4 Forward CPP Response Messages Sequence Diagram 79

4.5 Control RANAP Class Diagram 81

4.6 SCCP Interface Controller Class 83

4.7 CPPSystem Class 84

4.8 Setup SCCPApfi Service Sequence Diagram 86

4.9 Interfacing for SCCP Sequence Diagram (parti) 87

4.10 Interfacing for SCCP Sequence Diagram (part2) 89

4.11 Interfacing for SCCP Class Diagram 90

A.l RANAP Message Proxy Class 96

A.2 Ranap Message Proxy's Entity Classes 102

A.3 Mobility Management Message Proxy Class 103

A.4 Mobility Managment Message Proxy's Entity Classes 110

A.5 Call Control Message Proxy Class I l l

A.6 Call Control Message Proxy's Entity Classes 119

A.7 Traffic Handling Controller Class 120

A.8 Location Update Controller Class 123

A.9 Call Originating Controller Class 124

A. 10 Call Terminating Controller Class 126

x

A. 11 Initial UE Message Controller Class 128

A. 12 Direct Transfer Controller Class 129

A.13 Security Mode Controller Class 131

A.14 Common Id Controller Class 132

A. 15 RAB Assignment Controller Class 132

A.16 Paging Controller Class 133

A.17 Iu Release Controller Class 134

A.18RANAP Interface Controller Class 135

A.19 RANAP Interface Form Class 137

A.20 SCCP Interface Controller Class 139

A.21 CPPSystem Class 143

A.22 Transfer To RANAP Controller Sequence Diagram 147

A.23 Transfer To Handler Sequence Diagram 148

A.24 Disconnect Command to the Mobile Originating Sequence Diagram . 149

A.25 Disconnect Message from the MSC to the Mobile Originating Se­

quence Diagram 150

A.26 Disconnect Command to the Mobile Terminating Sequence Diagram .151

A.27 Disconnect Message from the MSC to the Mobile Terminating Se­

quence Diagram 152

A.28 Disconnect SCCP Connection Sequence Diagram 153

A.29 Detach SCCPApfi Service Sequence Diagram 154

A.30 Attach SCCP Sequence Diagram 154

A.31 Call Scenario Commands Sequence Diagram . 155

A.32 Detach SCCP Sequence Diagram 156

A.33 UML Interface set 1 157

A.34 UML Interface set 2 158

A.35 CpxScciApfiProxy::CpxSccpApfiAttachP Class 159

A.36 CpxScciProxy::CpxScciP Class .160

xi

LIST OF TABLES

X l l

LIST OF ACRONYMS

AAL5 ATM Adaptation Layer Type 5

AP Access Point

API Application Programming Interface

ATM Asynchronous Transfer Mode

BHCA Busy Hour Call Attempts

CC Call Control

CM Connection Management

CN Core Network

CPP Ericsson Connectivity Packet Platform

CS Circuit Switch

EBSDL Entity Behavioral Specification and Description Lan­

guage

GPRS General Packet Radio Service

GSM Global System for Mobile communications

HLR Home Location Register

ID Identifier

IE Information Element

IMSI International Mobile Subscriber Identity

IP Internet Protocol

Iu Interface links the RNC to either a MSC or a SGSN

IuCS Circuit Switched Interface links the RNC to a MSC

LAI Location Area Identifier

LAN Local Area Network

MGw Media Gateway

MGwSim Media Gateway Simulator

MM Mobility Management

xin

MOC

MS

MSC

MTC

NAS

NNI

PDU

QoS

RAB

RANAP

RNC

RRC

RSD

SAI

SCCI

SCCP

SccpApfi

SDL

SGSN

SNMP

SSCF

SSCOP

TMSI

UE

UMTS

UTRAN

WCDMA

Mobile Originating Call

Mobile Station

Mobile Switching Center

Mobile Terminating Call

Non Access Stratum

Network Node Interface

Protocol data unit

Quality of Service

Radio Access Bearer

Radio Access Network Application Part

Radio Network Controller

Radio Resource Control

Rational Systems Developer

Service Area Identifier

SCCP Interface

Signalling Connection Control Part

SCCP Access Point Facade Interface

Specification and Description Language

Service GPRS Support Node

Simple Network Management Protocol

Service Specific Coordination Function

Service Specific Connection Oriented Protocol

Temporary Mobile Subscriber Identity

User Equipment

Universal Mobile Telecommunications System

UMTS Terrestrial Radio Access Network

Wideband CDMA Code Division Multiple Access

Chapter 1

Introduction

1.1 Motivation

The Telecommunication industry has been growing tremendously during the last

decades. The International Telecommunication Union (ITU) reported that world­

wide mobile cellular subscribers are likely to reach the 4 billion mark before the

end of this year with an estimated mobile penetration rate reaches 61% as shown

in Figure 1.1 [21]. Also, it is reported in [22] that the global Telecommunication

revenue will reach $2.0 trillion USD by the end of 2008, an increase of 7.6% over

revenues in 2007.

Based on the 61% estimated mobile penetration rate, this means there is a

possibility to have more and more subscribers into the telecom networks. On the

other hand, with the new next generation networking technology, more and more

internet-protocol-based applications are introduced or planed to be implemented in

the future.

Consequently, all these parameters require powerful telecom servers that are

capable to handle the tremendous increase of the subscribers' number and to carry

out the heavy next generation applications that generate huge traffic loads. It is

extremely important for the telecom companies to have powerful servers that capable

1

Figure 1.1: Worldwide Mobile Subscription Growth [21]

to carry out the huge telecom traffic loads, to achieve that, testing engineers in

telecom companies apply huge amount of simulated traffic to their telecom devices

to measure their capability and behavior under the pressure; this kind of test is

called Load Testing. Based on the load testing measurements, design engineers can

modify the design of the system to have more robust systems under the traffic load.

To do load testing, it is very important to have a powerful solution that simu­

lates telecom protocols, initiates call scenarios, interacts with the telecom network,

as well as generates traffic messages towards the corresponding device under test;

we call this operation Traffic Generation.

The traffic generation can be achieved through several techniques such as;

software solution, hardware solution, or hybrid solution. The software solution is

very slow and the generated traffic is neither accurate nor realistic, also using a

software solution is not easy to interface with the real system. By using a hardware

solution to generate traffic with real components, we obtain a very fast, realistic,

2

robust, but costly solution. Using a hybrid solution that contains hardware and

software together, we may obtain a trade-off between speed, realistic traffic, robust

system, and cost.

In this thesis, we introduce a technique of modeling a traffic generator to do

load testing for the Mobile Switching Center that measures the capability and per­

formance of the Mobile Switching Center under traffic pressure and does not actually

verify or check the design of this Center. The proposed traffic generator provides

models for the Radio Access Network Application Part, the Mobility Management,

and the Call Control protocols for the Circuit Switched network.

Apply huge amount of traffic to the telecom devices to measure their capability

under traffic pressure.

luCS
MSC

(Device Under Test)

: Control Plane (signaling)

: User Plane (speech)

Figure 1.2: Traffic Generation Environment for the Mobile Switching Center

Figure 1.2 shows the traffic generation environment for loading the Mobile

Switching Center (MSC). Typically, to generate traffic in order to load the MSC,

many solutions model the whole Universal Mobile Telecommunications System Ter­

restrial Radio Access Network (UTRAN) components' protocols, these components

are; the User Equipment (UE), radio base transceiver station (Node-B), and Radio

3

Network Controller (RNC). Obviously, it is not cost effective to simulate all these

components and their protocols in order to load the MSC server.

Our proposed modeling technique simulates only the messages on the interface

between the Radio Network Controller (RNC) and the MSC server; these messages

are the Radio Access Network Application Part (RANAP) message, the Mobility

Management message, and the Call Control message portions. The interface between

the RNC and the MSC called IuCS, this interface is used for circuit switched data

transfer.

Furthermore, our proposed design for traffic generation is modeled based on

an Ericsson proprietary platform called CPP [5]. The Ericsson Connectivity Packet

Platform (CPP) is a very powerful node used for emulation and protocol transporta­

tion in many applications within Ericsson globally, it provides a high rate of calls

generation (1000 calls/sec). It is expected that our proposed design economizes in

using real telecom equipments; since our design provides models for the radio access

network messages, so it does not require real component such as the Radio Network

Controller to generate the traffic.

1.2 Traffic Generat ion Design

One of the components of the Ericsson's WCDMA/GSM Core Network is the MSC

Server, which is an entity that controls the setup and the release of the communica­

tion connections in the network. The actual connections are handled by the Media

Gateway (MGw), which are driven by the MSC server using the Gateway Control

Protocol (GCP) protocol.

To simulate an environment around the MSC for load testing first, we have

to simulate the Media Gateway (MGw) that handles the GCP protocol. The MGw

Simulation (MGwSim) is a tool developed by Ericsson, it interacts with the MSC

and generates GCP protocol traffic, this tool is used for the MSC load testing [16].

4

Second, we have to generate the messaging traffic which simulates the RNC and

other components of the UTRAN (Node-B and UE). To generate this traffic, testing

engineers at Ericsson use either MGTS [27] or 3GSim [30] traffic generation tools

along with the MGwSim to generate messaging traffic that properly load the MSC

server.

In this thesis, we propose to model all messages between the MSC and RNC on

the IuCS interface; this means no models will be provided to simulate the messages

between the Node-B and the UE. All components in the proposed Traffic Generator

will be modeled based on the CPP platform. Since the MGwSim is built on the CPP

platform, this gives a capability to co-locate the MGwSim and our traffic generator

on one CPP node to apply traffic load towards the MSC. The CPP platform version

that is used for the current design is CPP 7.0 [5].

In real application, many call scenarios load the MSC server such as; mobile

location update, mobile call originating, mobile call terminating, call waiting and

forwarding, roaming call scenario, and others; but the mobile originating, mobile

terminating, and location update call scenario can be responsible for most of the

messages that load the MSC. Based on this, we consider those three call scenarios

to generate the load traffic. In addition, most of the testing activities done by the

industry for the MSC load actually concentrate on those three call scenarios.

In the traffic generator design, we concentrate on the modeling of the control

plane messaging (signaling); no models will be provided for the user plane messaging

(speech). An external tool for user plane traffic generation will be used to provide

the speech load. In this thesis, we propose a model for the RANAP Simulator Traffic

Generator, hereafter referred to as the RanapSim.

Figure 1.3 shows the proposed traffic generator architecture where it illustrates

the main components, the CPP platform with its provided protocols, as well as the

MSC server which is the device under test. In this figure, there are two different

colors for the architecture components that can be explained as follow;

5

Solaris/Linux/
Windows/ node

RanapSim
CU

RanapSim
GUI

RanapSim Server Node

RanapSim
Server

TrafficHandler

RanapSim
Manager

RanapController

SCCP
Interface

Controller

Simulator
Platform;

(CPP)

SCCP/ MTP-3b
SSCF-NNIi AAL5

SSCOP-' ATM
L1

j B : To be modefcd csmpsnems

gjfCPPpniSocolsist*

p^Oey&s under JesiiVSC)

MSC Server luCS
Interface

Figure 1.3: Traffic Generator Architecture

The white color indicates that these components will be modeled in this thesis

and they represent the core of our proposed traffic generator. These components

are:

• Traffic Handler: The traffic handler is the main component for generating the

mobile call scenarios' traffic by modeling all required protocols.

• RANAP Controller: This component controls and handles all interactions

between the RanapSim components.

• SCCP Interface Controller: This component provides a connectivity function­

ality between the RanapSim traffic generator and the CPP platform in order

to communicate with the MSC server.

These components will be explained in details in Chapters 2, 3, and 4.

6

The black color indicates that these components are assumed to be modeled

later on. These components are:

• RanapSim Manager: The Manager is the central entity that controls the traffic

generator simulation. Since this component is not modeled, we deal with it as

an external system with clear specifications.

• RanapSim Server: The Server is responsible for forwarding the requests to the

Manager, and transmitting the results back to the user.

• RanapSim GUI: The Graphical User Interface (GUI) provides a graphical in­

terface to the simulator node for the user.

• RanapSim CLI: The Command Line Interface (CLI) provides a text-based

interface to the simulator node for the user.

1.3 Methodology

In the following, we describe the proposed methodology that we adopted to model

the traffic generator for the MSC load testing in the UMTS network. Figure 1.4

shows the UMTS network architecture and highlights the IuCS Interface that con­

nects the RNC and the MSC, the transferred message over this interface contains

many protocols' headers which are; the MM, CC, RANAP, SCCP, MTP-3b, SSCF-

NNI, AAL5, SSCOP, and ATM [12].

Our methodology is to model only the Mobility Management (MM) and the

Call Control (CC) protocols (generated by the UE) and model the RANAP protocol

(generated by the RNC). The other protocols -that we have specified in the IuCS- are

not needed to be modeled, by taking advantage of using the CPP platform. CPP is

the Ericsson Connectivity Packet Platform, which is used for execution and transport

purposes; the execution part provides a support for software application execution,

7

: Control Plane (signaling)

; User Plane (speech) f

Figure 1.4: The UMTS Network Architecture

and the transport part provides connectivity functionality for several communication

protocols [5], where it provides a connectivity function for the physical layer protocol,

ATM protocol, up to the SCCP protocol.

Figure 1.5 shows the protocol stack provided by the CPP, the modeled pro­

tocols for the RanapSim, and the MSC protocol stack. This figure illustrates that

RanapSim provides models for Mobility Management, and Call Control protocols

which are responsible for representing the UE signalling messaging, these protocols

should communicate with their corresponding protocols at the MSC server.

The RANAP protocol in the RanapSim represents the RNC signalling mes­

sages where the UE messages portions are carried as well. From Figure 1.5, it is

obvious that RanapSim communicates with the CPP platform through the SCCP

protocol that controls the signalling connections, where CPP platform provides an

Application Programming Interface (API) based on the Unified Modeling Language

(UML) to facilitate the communication with it [5]. By modeling an interface through

the SCCP protocol, our model is able to communicate with and route messages to

8

| RanapSim |

.» « • : Physical Connection

: Virtual Connection

CPP Platform

J?ii!^£.!I!?.?§?JE5..._

'"'••:S^Of*v..;

• mP-0 -]?"<

SScNW - :

AAL5- ''•

:§scpp •;,,•;.

: '•:AtM:-:- '•.

• • . • . • i ^ | - : ' : ' ' . . " • ; . .

SCCP
messages

MSC |

MM/CM/CC

RANAP

SCCP
:. WTP>'3b''.

• ; SSOS-NNi

' ' AALS' ;

SSCOP

' " " • / 'ATM '?' :•.

L1- • . •,

Figure 1.5: Protocol Stack

the CPP platform.

By handling the RANAP, MM, and CC messages to the CPP platform through

the SCCP interface, the CPP is responsible for building the rest of the message by

providing the headers of the SCCP, MTP-3b, SSCF-NNI, AAL5, SSCOP,ATM,

and the physical layer protocols; the whole message will be forwarded by the CPP

through the physical connection to the MSC server. Once the MSC receives the mes­

sage from the CPP, it will decode and process the whole message contents including

the generated RanapSim message portion. So, by utilizing the CPP transport func­

tionality, we are exempted to model the rest of the protocol stack and this makes

our model more efficient. Using this technique, we are able to communicate and

load the MSC by the RANAP, the MM, and the CC messages without modeling

the whole UTRAN. From what we have explained, our model should provide three

main functionalities which are:

Generate signalling traffic (RANAP, MM, and CC modeling).

9

• Interact and interface with the CPP platform (SCCP interfacing).

• Control the interacting components.

Several Modeling languages can be used to model the RanapSim Traffic Gen­

erator such as; the Unified Modeling Language (UML) [4] and the Specification

Description Language (SDL) [41]; since our model is needed to be implemented as a

tool using programming languages, so we consider the UML for modeling the traffic

generator. Furthermore, we use the Rational Systems Developer (RSD) from IBM

[3] to build the UML Use-Case Model and the UML Analysis Model which visually

show the functional specifications, describe the structure of the system, and explain

the interfacing between the system and its surroundings. The RSD tool is chosen

because it is one of the most popular tools for designing UML models that is used

in industry including Ericsson.

1.4 Related Work

In this section we present the related work in the area of protocol modeling and traffic

generation for telecommunication networks using various techniques and methodolo­

gies. We will focus on traffic generation to load different telecommunication servers

and components such as the MSC server. Also, we will show the work for telecom­

munication protocols modeling using different languages and techniques for various

telecommunication standards; such as Universal Mobile Telecommunications System

(UMTS) and Global System for Mobile communications (GSM). Furthermore, we

will show the importance of the traffic generation for protocol performance testing

and servers load testing in the telecommunication systems.

Since telecommunication networks and applications became more and more

complex, there is a need for an efficient design for traffic generation that supports

10

performance evaluation and load testing. For instance, the work in [32] proposes

a model for a traffic generation tool; this generator has been used to evaluate the

performance of some applications between GPRS and WLAN networks. This work

generates traffic by having traffic profiles produced by user-level software modules;

these traffic profiles may contain parametric traffic description such as; time dis­

tributions and packet size information. The traffic will be generated by the traffic

engine by recognizing the parameterized information of the traffic profiles. This

work is an extension of a previous work described in [33] that presents an archi­

tecture for a traffic generator capable of generating Asynchronous Transfer Mode

(ATM) traffic according to stochastic models. Although this model generates ATM

traffic, the main elements of the model can be used for generating traffic for other

networking technologies. In the work presented in this thesis, we propose a design for

traffic generator by modeling the RANAP, Mobility Management, and Call Control

protocols without using traffic profiles information.

In [36], the author provides an overview of computer-based simulation for

communications networks modeling, as well as some important related modeling

issues. Also, the work presents a traffic modeling for the ATM networks to test

multimedia and video services in the telecommunication networks. The Monte Carlo

computer simulation has been used for characterizing network resources needed for

traffic generation. The design we propose is not pure simulation since it is built

based on a hardware platform.

Another work has been presented in [37] for traffic generation modeling for

ad-hoc communication networks testing. It provides a Mobility Data Generator

that generates packets of mobile transceivers that usually communicate via radio

transmission. Along the same line of thought, the behavior of mobile transceivers

has been modeled in [42] to test and evaluate Mobile Ad-hoc Networks. In contrast,

the work in this thesis models the behavior of the mobiles call scenarios to generate

the required traffic to load the MSC server.

11

The work in [35] presents a multi- application traffic generator that can be used

to generate packets over a Local Area Network (LAN). The generator is capable to

test other types of communication systems; this can be done by changing the main

controller of the generator. In [38], the authors describe a software that simulates

mobile call scenarios such as mobile originated call and mobile terminated call for

the UMTS telecommunications system [40]. The provided simulator is capable to

generate RANAP messages on the interface between the MSC and the RNC. Using

the OMNeT++ simulator [39], some of the UMTS components have been simulated;

such as mobile equipment, Node B, RNC, Media Gateway, MSC Server, and others.

The generated messages by this work are extracted from some trace files and are

restructured to form new messages, but still these messages not really generated as

are those coming out from real network components. Also, this work describes the

functionality of the simulated communication system using SDL (Specification and

Description Language) [41]. The mobile originated call and the mobile terminated

call scenarios in the UMTS system have been described and modeled using a sort

of sequence diagrams that show all required RANAP, Mobility Management, and

Call Control messages to simulate the mobile call scenarios. However, this soft­

ware still cannot be used for testing real equipment, but in order to utilize it for

real network load testing, it requires having connectivity functionalities to the real

UMTS communication servers, for instance the MSC server. In this thesis, we pro­

vide models for the RANAP, Mobility Management, and Call Control protocols to

emulate mobile originating call, mobile terminating call, and location update mobile

call scenarios for the UMTS system in order to load the MSC server. Our model is

capable to interact with the MSC server, since it is built based on the CPP platform

which provides a connectivity functionality with the MSC.

In [43] [44], the authors propose a modeling technique for location operations

in a UMTS Network. These operations belong to both core network and access net­

work under the Mobility Management protocol. For location operations modeling.

12

the work of [45] [46] provides functional blocks that represent various components

in the UMTS, such as UE, Node B, RNC, MSC, and others to simulate the location

operations. SDL [41] and MSC (Message Sequence Charts) [47] have been used for

modeling in this work. The provided model still can be improved by implementing

the designed test outputs in the presence of physical implementations of network el­

ements. In contrast, our models are capable to communicate with the MSC through

the CPP platform.

The work in [19], presents a simulation model for the UTRAN, the simulated

model has been used to check the UTRAN Quality of Service (QoS) requirements

of the ATM links that connect the Node-B and the RNC. Along the same line

of thought, the simulation has been used in [17] [18] to model and simulate the

UTRAN, which contains UE, Node-B, RNC, and the interfaces between them. An

analytical approach has been used to characterize the traffic and to evaluate the

UTRAN performance. In our work, we do not simulate the UTRAN to test its

performance, we model some of the UTRAN protocol generate real traffic on the

IuCS interface.

In [20], the author concentrates on modeling the Mobility Management traffic

load and illustrates the impact of this traffic load on the MSC server. The author

describes preliminary information of the Mobility Management protocol parameters

that has an impact of load the MSC. This load represents a signaling traffic related

to the services provided by Mobility Management protocol, such as location update,

paging procedure, authentication, and ciphering process. Our work models the

Mobility Management protocol procedures and also models the Call Control protocol

procedures that build the mobile call scenarios.

In [23], the work provides a design for a protocol controller to handle the

communication functions at the Data Link layer between the MSC and the Base

Station Controller (BSC) in the GSM mobile networks. The Message Transfer Part

(MTP) protocol is responsible for these communication functions at the Data Link

13

layer. Our work concentrates on the protocol modeling between the RNC and the

MSC for the UMTS networks.

The work in [48] indicates that the location update mobiles' calls can be re­

sponsible of about 80% of the random accesses to the radio channel in the GSM

networks. This fact indicates the significant impact of the traffic load on the MSC

due to the Mobility Management signaling messages. The work in [34] proposes

new techniques of test generation for communication standards, it indicates that

communication software requires a lot from load testing to get reliable systems.

Telecommunication companies are spending a lot of money for testing activity (up

to 50% of overall development costs). This indicates the necessity of providing and

modeling traffic generators for various communication standards to support systems

testing.

Several languages and techniques have been used to model the telecommuni­

cation standards protocols. As we have mentioned before, the work in [38] [45] [46]

[49] have used SDL [41] and MSCs [47] in modeling. The modeling part in [24]

uses Entity Behavioral Specification and Description Language (EBSDL) to model

the SCCP protocol. The Simple Network Management Protocol (SNMP) has been

modeled in [25] using the Unified Modeling Language (UML). The Use-Case Model

and the Analysis Model have been described for the SNMP protocol modeling. An­

other work using UML in [26] provides an approach for network traffic modeling,

which can be used in load testing to discover the faults of a system under test,

Sequence Diagrams and Class Diagrams have been modeled to describe the logical

implementation of the functional requirements. In this thesis, we make use of UML

to model the traffic generator protocols and call scenarios where we build the Use

Case Model, define the analysis classes, illustrate the sequence diagrams, and build

the class diagrams.

Commercial Tools

Many companies have been working on designing and developing tools for

14

traffic generation, which can be used for telecommunication systems load testing and

performance evaluation. Those tools provide various solutions for traffic modeling

of most of the telecommunication systems protocols using different methodologies

and techniques.

The Message Generator Traffic Simulator (MGTS) testing tool [27] is a solution

provided by CATAPULT Communications. Another solution is developed by the

same company, which is the Digital Communications Test System (DCT2000) [28].

These tools provide a variety of models for protocol simulation and traffic generation.

MGTS and DCT2000 provide a simulation for all nodes and their interfaces protocols

in the UTRAN (UE, Node-B, and RNC). The simulated UTRAN is used to generate

traffic towards the MSC in order to do the load testing. The RANAP, the Mobility

Management, and the Call Control protocols have been modeled in the simulated

UTRAN. MGTS and DCT2000 require lots of scripting efforts from the end-users

to implement the test scenarios scripts which will represent the call scenarios for

the mobile communications. Those solutions are designed to run on a proprietary

platforms provided by Catapult.

The Polystar company developed the SOLVER System [29], which is a load

test tool for various telecommunication networks. It provides the ability to simulate

the UTRAN for GSM/GPRS and UMTS with a number of connected mobile stations

providing load to the MSC and other devices in the Core Network. SOLVER does

not require lots of scripting efforts to implement the test call scenarios but it is not

flexible to have customized test scenarios, also it supports a limited number of call

scenarios. A proprietary platform from Polystar is used to run SOLVER to execute

the required call scenarios.

Ericsson has developed a Third Generation Simulator (3Gsim) solution [30],

as a load generator for traffic simulation in the UMTS networks. 3Gsim is used

for the RNC load testing. 3Gsim can simulate some nodes in the UMTS network:

the UE, the Node-B, the MSC, the SGSN, as well as the interfaces between them.

15

By simulating these UMTS nodes, 3Gsim is capable of generating traffic to load

the RNC. In order to be able to load the MSC it should use real RNC's to gen­

erate traffic towards the MSC server, but this is a costly strategy since it requires

real components to generate traffic. 3Gsim provides command-based functionality

to create traffic scenarios and to control the simulation. 3Gsim is built on CPP

(Ericsson Connectivity Packet Platform) [5].

The UMTS Traffic Model Simulator (UTMS) [31], is another solution devel­

oped by Ericsson; it is used to generate traffic for the Media Gateway (MGw) load

testing in the UMTS and GSM networks. UTMS simulates the signaling part of the

radio access in the RNC and the BSC to load the MGw. UTMS is not designed to

load the MSC, but it is possible to do that by using real MGw to simulate complete

environment for the MSC. This makes the using of UTMS to load the MSC costly

since it uses real component. UTMS is built on CPP (Ericsson Connectivity Packet

Platform) [5].

In this thesis, we present a technique to model a traffic generator to load the

MSC server in the UMTS networks. In this work, we use UML to model the RANAP,

the Mobility Management, and the Call Control protocols on the IuCS Interface.

Our technique does not require models for the UE, the Node-B, or the RNC; this

makes our approach cost effective and more efficient than other techniques and mod­

els that we have highlighted earlier in this section. To load the MSC, those modeled

protocols (RANAP, MM, and CC) provide mobile call scenarios; such as location

update, mobile call originating, mobile call terminating, and call clearing scenarios.

We build our models based on the Ericsson Connectivity Packet Platform (CPP)

where the interfacing with this platform will be through the Signalling Connection

Control Part (SCCP) protocol.

16

1.5 Thesis Contribution

The contribution of this thesis is as follows:

• We have provided an efficient technique to generate signaling messages towards

the MSC server in order to do the load testing.

• We have modeled the Radio Access Network Application Part (RANAP) pro­

tocol's procedures in order to generate the radio access network messages in

the IuCS Interface.

• We have modeled the mobile radio interface protocols in the UMTS network;

one of these protocols are the Mobility Management, which has been utilized

to model the mobile location update call scenario. In addition, the Call Con­

trol protocol has been modeled to generate signalling messages of the mobile

originating call, the mobile terminating call, and the call disconnect scenarios.

All of these call scenarios are required to simulate the mobile stations of the

network.

• We have built the UML Use Case Model and the Analysis Model for the

RanapSim traffic generator design, where we have described the logical imple­

mentation of the functional requirements for the proposed design.

• Through the UML models, we have modeled connectivity functionality for the

traffic generator design to communicate with the Ericsson Connectivity Packet

Platform (CPP) through the SCCP protocol.

1.6 Thesis Outline

This thesis is made up of six chapters. In Chapter 2, we provide a brief overview for

the traffic generator architecture, where we introduce the main components of the

architecture and we describe the most important functionalities for each component.

17

In addition, we present the Use Case Model to realize the functional behavior of the

proposed architecture; also we define and explain the model's Actors and the Use

Cases. In Chapter 3, we provide detailed explanation for the Traffic Handler compo­

nent and describe deeply the modeling for the RANAP, the mobility management,

and the call control protocols. Also, we provide the UML Analysis Model for this

component, where we define the analysis classes, build the Use Case realization, and

illustrate the class diagrams.

In Chapter 4, we describe the RANAP Controller component which is the main

controller for the whole traffic generator design; we realize the main functionalities

for this component through describing the analysis classes, the Use Case realization,

and the class diagrams. Also, we present the SCCP Interfacing Controller compo­

nent, where we explain the interfacing functionality with the CPP platform through

illustrating the analysis classes, the Use Case realization, and the class diagrams. In

Chapter 5, we summarize and conclude the achieved work, and we present some fu­

ture work hints. Finally, Appendix A contains some UML analysis classes, sequence

diagrams, and interfaces which are implemented for the Analysis Model.

18

Chapter 2

Proposed Architecture

This chapter gives a brief overview of the detailed architecture of the RANAP sim­

ulator traffic generator, also it provides the main functional description and respon­

sibilities for all the RanapSim components. In addition, this Chapter interprets

the RanapSim functional behavior into UML Use Case Model. Figure 2.1 shows the

RanapSim main components which are the Traffic Handler, RANAP Controller, and

SCCP Interface Controller, also it illustrates how these component are connected to

the MSC server through the CPP platform; the RanapSim Manager is connected to

the RANAP Controller component to manage all components' operations.

2.1 RanapSim Components Description

This section explains briefly the functional description of the RanapSim traffic gen­

erator that we are going to model, also it highlights the main components' function­

alities of the RanapSim.

2.1.1 Traffic Handler

The Traffic Handler performs all traffic generation requests which come from the

Manager through the RANAP Controller, these requests show all call scenarios

19

that are supported by this model. This component is responsible for responding to

any signaling messages received from the MSC through the RANAP Controller and

sending the response back. Figure 2.2 shows the Traffic Handler's entities which

represent the main functionalities provided by this Traffic Handler; those entities

are the Main Traffic Handler, Location Update Entity, Call Originating Entity, and

Call Terminating Entity. These entities are explained briefly as follows:

RanapSim
Manager

TrafficHandler

1
RanapController

|
SCCP

Interface
Controller

1

Simulator
Platform
(CPP1

MSC Server luCS
interface

QiCPPplaifoTO

f ~ j . Dewce under test (MSC*

Figure 2.1: RanapSim Main Components

Main Traffic Handler

The Main Traffic Handler is the central entity that controls all signaling messages

that are received from the RANAP Controller or from the call scenarios entities.

This entity is responsible for forwarding messages to the corresponding call scenario

entity. The Main Traffic Handler responsibilities are:

Handle the Manager call scenario requests which are summarized as follows:

20

Location Update
Entity

, Main Traffic
Handler

Call Originating
Entity

Call T*rinifiatteB
•' Entity .;;

Figure 2.2: Traffic Handler Entities

— Handle the location update call scenario request, generate suggested con­

nection identifier and connection state, and forward the call request to

the Location Update entity. The generated connection ID along with

connection state will be stored at the traffic handler and forwarded with

all messages related to the generated call scenario. This ID will become

the SCCP connection ID -at the CPP platform- which helps to distin­

guish between different messages that belong to different calls. More

explanations will be given in Chapters 3 and 4.

— Handle the mobile call originating call scenario request, generate sug­

gested connection ID, and forward the call request to the Mobile Origi­

nating entity. There is no call scenario request for the mobile terminating

scenario, because it is triggered at some point in the mobile originating

scenario.

— Handle the call disconnect requests and forward them to either the Mobile

Originating entity or the Mobile Terminating entity, to force any of them

to disconnect and clear the call.

21

• Identify the received messages from the MSC by using the SCCP connection

ID which corresponds to a specific call scenario. After identifying the message,

the RANAP portion will be extracted from the messages and forwarded to the

right destination entity.

If the SCCP connection ID is unknown or not attached in the message, the

Handler will look deeper into the message contents to understand the message

type. So, if the hexadecimal value of the message type equal to "0014", this

means that the message is a PAGING Request which should be forwarded to

the Mobile Terminating entity to start the terminating side of the call.

• Receive signaling messages from the call scenario entities which will be for­

warded to the RANAP Controller. If the handler receives a message from the

Mobile Terminating entity without having a connection ID, this means that

the received message is the response for the PAGING Request message. So, a

new connection ID and state will be created for the call scenario.

Location Update Entity

The location update procedure is used to update the registration of the actual

location area of a mobile station in the network [7], the Location Update entity

handles the traffic generation of the location update call scenarios for any request

received from the Manager. This entity should model the RANAP and the mobility

management (MM) protocols' messages; which is normally carried by the IuCS

interface between the RNC and the MSC.

The Location Update entity is responsible for initiating the Location Update

call scenario by sending the request message to the MSC; which will emulate the

mobile request for location update. In addition, this entity authenticates the con­

nection with the MSC and performs other security procedures to secure and cipher

22

the connection with the MSC, all these procedures are usually done by the mo­

bile station which updates its location. After that, the MSC sends a message that

contains the International Mobile Subscriber Identity (IMSI), this message will be

received by the entity to attach it to the emulated mobile station for identification

purposes.

Call Originating Entity

The call originating entity is responsible for establishing the mobile originating call,

which triggers the call terminating procedure to establish the mobile terminating

call in order to simulate the circuit-switched call between two mobile stations. The

Call Originating Entity handles the traffic generation of the originating call scenario

by modeling the RANAP, the MM, and the CC protocols' messages [9].

The Call Originating Entity is responsible for the following messages and op­

erations:

• Communicate with the MSC to establish the MM connection through per­

forming the Connection Management (CM) service procedure, authenticating

the connection with the MSC, and performing other security procedures to

secure and cipher the connection with the MSC.

• Initiate the call setup procedure. Upon establishing the MM connection and

receiving the IMSI, this entity shall send a SETUP message to the MSC.

• Receive a CALL PROCEEDING message from the MSC to indicate that the

call is being processed, and handle the RAB ASSIGNMENT procedure which

is normally initiated by the MSC to assign radio channel for specific mobile

station [6].

• Once the Radio Access Bearer (RAB) ASSIGNMENT procedure is completed,

the MSC will initiate a PAGING Request message to be sent to the Mobile

23

Terminating Entity -which is another entity from the Traffic Handler-. This

message enables the MSC to request the RNC to contact the terminating

mobile station. At this point, the call originating entity will wait for the MSC

to establish the call with the call terminating entity.

• Receive ALERTING message from the MSC, this indicates that the call termi­

nating entity has setup the call with the MSC and initiated the ALERTING

message. After that, the call originating entity receives a CALL CONNECT

message from the MSC, and sends back a CONNECT ACKNOWLEDGMENT

message to the MSC.

Call Terminating Entity

The call terminating entity is responsible for responding to the originating call and

to simulate the mobile terminating call, which will be triggered by the PAGING

Request message.

The Call Originating entity is responsible for the following messages and op­

erations:

• Communicate with the MSC to perform the PAGING procedure, where the call

terminating entity receives the PAGING Request message (RANAP Message)

- this message is used to find and contact the simulated terminating mobile

in the call terminating entity- and then responds by sending the PAGING

Response message (Mobility Management Message) [9].

• Authenticate the connection with the MSC server and perform the Security

Mode procedure.

• Receive the Common ID message which contains the International Mobile

Subscriber Identity (IMSI), interact with the MSC to complete the setup pro­

cedure for the incoming call, and then send the CALL CONFIRMED message

to confirm the readiness to receive the call from the call originating entity.

24

• Complete the RAB ASSIGNMENT procedure with the MSC. The MSC initi­

ates this procedure to assign radio channel for the call terminating entity.

• Send an ALERTING message to the MSC. Upon receiving this message, the

MSC sends a corresponding ALERTING message to the call originating entity.

• Send a CALL CONNECT message to the MSC which indicates that the call

terminating entity accepts the call. Upon receiving this message, the MSC

will send a CALL CONNECT message to the call originating entity.

Upon the CONNECT ACKNOWLEDGMENT message is received from the

MSC, the call will be started and the speech will be going on between the call

originating and the call terminating entities until a call clearing procedure is initiated

by the MSC or by any of the calling parties. The speech load is not provided by

this system; still we need a tool to provide the data plane (speech).

2.1.2 RANAP Controller

The RANAP Controller represents the main controller of the system, since it controls

all interactions between the traffic generator components and other external com­

ponents. Also, it represents the connecting point between the RanapSim Manager,

the Traffic Handler, and the SCCP interface Controller. The RANAP Controller's

responsibilities are:

• Handle the SCCP Attach and the SCCP Detach requests. These requests

are initiated by the Manger to attach/detach the SCCP Access Point Facade

Interface (SCCPApfi), this interface handles the SCCP protocol's control plane

(signalling) in the CPP platform.

• Handle the Manager call scenarios requests for the call scenarios by forwarding

them to the Traffic Handler component in order to generate calls.

25

• Receive call scenario messages from the Traffic Handler and forward them to

the Manager (for tracing and following up purposes). Also, RANAP Controller

forwards these messages to the CPP platform which is connected to the MSC.

• Receive the MSC messages (responses/requests) which are sent through the

CPP platform, forward them to the Manager (for tracing and following up

purposes), as well as forward these messages to the Traffic Handler to complete

the call scenarios.

More details about this component are given in Chapter 4.

2.1.3 SCCP Interface Controller

The SCCP Interface Controller is a component that deals with the CPP platform

to control the SCCP connections, exchange messages, and interact with the CPP

interfaces which are based on the SCCP protocol. This controller is responsible for

handling all messages from/to the CPP, and the CPP itself will take the respon­

sibility to interact with the MSC to accomplish our target of applying load to the

MSC.

The CPP platform provides various protocols that we can interact with, and

for each protocol there are many interfaces to deal with. In our case, we are dealing

with the SCCP protocol. The CPP platform provides two interfaces for the SCCP;

these interfaces are the control plane interface (SCCPApfi) and the user plane inter­

face (SCCI). The SCCP Interface Controller's responsibilities can be summarized as

follows:

• Attach the SCCPApfi interface in order to use the SCCP service. This attach

request will be initiated by the Manager.

• Handle the SCCP connections for several call scenarios.

• Transfer data to the CPP platform in order to communicate with the MSC.

26

• Detach the SCCPApfi interface. No more SCCP services will be provided after

detaching this interface.

More details about this component are given in Chapter 4.

2.2 RanapSim Use-Case Model

The UML Use-Case Model describes a system's functional requirements in terms of

Use Cases. It consists of all Actors of the system and various Use Cases by which

the Actor interacts with the system, thereby describing the total functional behavior

of the system. Each Use Case describes the functionality to be built in the proposed

system, which can include another Use Case's functionality or extend another Use

Case with its own behavior [4].

The UML Use Case can be denned as a sequence of actions that a system

performs to achieve a specific functionality [4]. System's Use Case can be identified

by investigating the functions that the user wants from the system, communication

information between Actors about changes or events that the system must know

about, and information that must be modified or created.

The UML Actor can be defined as anyone or anything that interacts with the

system (the application), also it represents human, machine, or another system. Sys­

tem's Actors can be identified by exploring anything uses or maintains the system,

the system's external resources, and other systems that interact with our system.

The interactions between the system's Use Cases and Actors can be realized

by UML Relationships. A UML relationship is a model element that defines the

structure and behavior between other model elements. Some of these relationships

are Association, Include, and extend relationships [1].

In this section, we make use of the Use-Case Model to interpret the functional

description of the RanapSim Traffic Generator into UML modeling elements. The

Use-Case Model considers the RanapSim system as a black box; this means that

27

the building blocks within the RanapSim should not be mentioned in the Use-Case

Model.

Figure 2.3 shows the Use Case diagram for the RanapSim Traffic Generator

Use Case Model. It shows that the Traffic Handler functionalities are interpreted into

seven Use Cases which are; the Update Location, Originate MS Call, Terminate MS

Call, Disconnect Originating Call, Disconnect Terminating Call, Distinguish Call

Scenarios, and Handle Traffic Use Cases. Also, The Use Case diagram illustrates

the RANAP Controller functionalities which are interpreted into the Attach SCCP,

Detach SCCP, Check SCCP Service, Forward Call Scenario Messages, and Forward

CPP Response Messages Use Cases.

Furthermore, the Use Case diagram explains all Use Cases that provide the

SCCP Interface Controller functionalities, these Use Cases are; the Control CPP In­

terfacing, Disconnect SCCP Connection, Setup SCCPApfi Service, and Release SC-

CPApfi Service Use Cases. On the other hand, the CPP platform and the RanapSim

Manager component are represented as UML Actors in the Use Case diagram.

In next section, we describe in details the Use Case Model that reflects the

functional behavior of the RanapSim.

2.2.1 Actors

An Actor expresses the role of a user (human or external system) interacting with

the system. An Actor is not part of the system [1].

C P P

The CPP is an existing platform used for execution and transport with speci­

fied interfaces for application design. The execution part consists of support for the

design of application hardware and software. The transport part, which can be seen

as an internal application on the execution platform, consists of several protocols for

communication and signaling. This traffic generator model shall be built based on

28

Disconnect Originatfrig Call
« extendi

Disconnect Terminating Call

RanapSuii Manager

iriginate MS Call

erminate MS Cal

Update Location

j-« Include??

<< include^

«<irtdude>»

«incbdsi»> ""-•

"includes

''Z^-:~^'^---..:,.., >.;••• : ; '

Distinguish CaD Scenarios

'jS'" " '.-,

Handle Traffic

Attach SCCP
«includes

«<include*
Check SCCP Service

Detach SCCP
Forward CaD Scenario Messages

Forward CPP Response Messages

« extends

Control CPP; Interfacing

.-extend., extend..

Disconnect SCCP Connection setup SCCPApfl Service Release SCCPApfi Service

Figure 2.3: RanapSim Use Case Diagram

29

the CPP platform specifications. Also, the CPP platform provides several protocols

and connectivity capabilities from the ATM protocol up to the SCCP protocol.

RanapSim Manager

The RanapSim Manager is an external system that manages the RanapSim

resources; also it controls the simulation through command bases. To facilitate the

dealing with this component, we assume that the RanapSim Manager is an external

system interacting with our main components and it is responsible for initiating the

call scenarios requests.

This Actor will be implemented to initiate the following call scenarios requests:

- SCCP Attach (CPP)

- SCCP Detach (CPP)

- Location Update

- Mobile Call Originating

- Originating Call Disconnect

- Terminating Call Disconnect

The Mobile Terminating call scenario will be initiated consequently by initi­

ating the MS Call Originating request.

2.2.2 Use Cases

A Use Case should be used to express user-initiated functionality. All functionalities

should be expressed as Use Cases. The Include and the Extend relationships can

be used between Use Cases to express communications, options and possibilities

of reuse. These kinds of relations between Use Cases should be visualized in the

Use-Case Diagram [1].

30

Update Location

This Use Case describes how the Location Update call scenario can be gener­

ated. The modeled Location Update is specified for the IMSI Attach purpose. Also,

this Use Case models all messages which normally go from the RNC to the MSC to

emulate the Location Update call scenario. This Use Case interacts with the MSC

to complete the Location Update call scenario.

Originate MS Call

This Use Case is started by the RanapSim Manager actor, it describes how the

mobile originating call can be generated. It models all messages which normally go

from the RNC to the MSC to emulate the originating call scenario. This Use Case

responds to the received messages from the MSC, some of the response messages

initiate the terminating call scenario at the terminating side to emulate a complete

call between the originating and the terminating sides.

Terminate MS Call

This Use Case is started by the RanapSim Manager actor. It describes how

a sequence of messages can be generated for establishing a call with the originat­

ing side through the MSC server. It describes how the mobile station receives a

PAGING request from the MSC and how it responds to it. In addition, this Use

Case properly responds to all messages received from the MSC to complete the ter­

minating call scenario, these responses are forwarded to the MSC to connect the

originating side to the terminating side of the call.

Disconnect Originating Call

This Use Case is started when the RanapSim Manager actor decides to discon­

nect and clear the call from the originating side; this Use Case releases all occupied

resources for a call between the originating and terminating sides. This Use Case is

31

connected to the Originate MS Call Use Case through the extend relationship.

Disconnect Terminating Call

This Use Case is started when the RanapSim Manager actor wants to discon­

nect and clear the call from the terminating side; this Use Case releases all occupied

resources for a call between the originating and terminating sides. This Use Case

is connected to the Terminate MS Call Use Case through the extend relationship [4].

Handle Traffic

This Use Case handles and controls the traffic issues of all the call scenarios, it

describes a sequence of messages for distinguishing between the various CPP plat­

form response messages in order to route them to the proper call scenario based on

the SCCP connection identifier. This Use Case is connected to the Update Location,

Originate MS Call, Terminate MS Call, and Forward CPP Response Messages Use

Cases through the include relationships.

Distinguish Call Scenarios

This Use Case is responsible for generating an SCCP connection identifier for

a corresponding call scenario, and initiating a call scenario traffic generation which

can be identified based on the generated SCCP connection. This Use Case is con­

nected to the Update Location, Originate MS Call, and Terminate MS Call Use

Cases through the include relationships.

Forward Call Scenario Messages

This Use Case describes how the generated call scenario messages are trans­

ferred to the RanapSim Manager actor and the CPP platform actor. This Use Case

is connected to the Handle Traffic Use Case through the include relationship.

32

Forward C P P Response Messages

This Use Case illustrates how the response messages received from the CPP

platform actor can be forwarded to various call scenarios and to the RanapSim Man­

ager actor. This Use Case is connected to the Handle Traffic Use Case through the

include relationship [4].

Attach SCCP

This Use Case is started by the RanapSim Manager to initiates the SCCP

service attachment operation; without attaching the service, call scenarios are not

allowed to communicate with the CPP platform.

Detach SCCP

This Use Case is started by the RanapSim Manager to initiate the SCCP

service detachment operation; call scenarios will not have any access to the CPP

platform after detaching this service.

Check SCCP Service

This Use Case makes sure that the SCCP service is attached before any call

scenario starts generating messages. This Use Case is included by the Attach SCCP

and Detach SCCP Use Cases through the include relationships.

Control C P P Interfacing

This Use Case allows the traffic generator to exchange messages with the CPP

platform through the SCCP protocol, it describes how to interact with the CPP

platform through the SCCP interface. Furthermore, this Use Case explains how to

establish an SCCP connection through the CPP platform for a specific call scenario,

and how to forward/receive messages to/from the CPP platform.

33

Disconnect C P P Connection

This Use Case describes how to disconnect the SCCP connection for a specific

call scenario at the CPP platform. This Use Case is connected to the Control CPP

Interfacing Use Case through the extend relationship [4].

Setup SCCPApfi Service

This Use Case describes how the SCCPApfi interface can be setup and at­

tached at the CPP platform actor to utilize the provided service. This Use Case is

connected to the Control CPP Interfacing Use Case through the extend relationship.

Release SCCPApfi Service

This Use Case describes how the SCCPApfi interface can be released and de­

tached at the CPP platform actor; no services will be provided after releasing this

interface. This Use Case is connected to the Control CPP Interfacing Use Case

through the extend relationship.

2.3 UML Analysis Model Preliminaries

This section describes the modeling elements of the UML Analysis Model, and it

introduces the techniques that will be followed in Chapter 3 and 4 to build the

Analysis Model for the RanapSim Traffic Generator's main components.

The Analysis Model describes the structure of the system or application that

we are modeling. It describes the logical implementation of the functional require­

ments that we identified in the Use Case Model. The main purposes of the Analysis

Model are to: (1) identify the classes which perform a Use Case's flow of events, (2)

distribute the Use Case behavior to those classes through Use Case realizations, (3)

identify the responsibilities, attributes and associations of the classes, and (4) build

34

the Class Diagrams of the system. The Analysis Model consists of three phases,

which are Analysis Classes, Use Case realization, and Class Diagrams, Figure 2.4

shows the three phases that we follow to accomplish the Analysis Model [4].

The Analysis Classes represent an early conceptual model of the system which

contains many classes. The class is a description of a set of objects that share the

same attributes, operations, relationships, and semantics, any instance from a class

can be called object, and the object is an entity with a well-defined boundary and

identity that encapsulates state and behavior.

UMI An.ilv.sis Modi-]

Analyst-. • ;

Classes i "
•
1 J

<T
l i s t C.1M-

Realization ; ,

o
i lassDiagr.n:is

"IBmUH'T

'

Figure 2.4: UML Analysis Model

The Analysis Classes is the first phase of the Analysis Model, it can be identi­

fied based on three perspectives, which are; (1) a class is used to model interaction

between the system and its environment; this class represents a Boundary Class. The

boundary class can be a user-interface class, a device-interface class, or a system-

interface class. (2) A class is used to model the control behavior of one or more Use

35

http://An.ilv.sis

Cases; this class represents a Control Class. (3) A class is used to model information

that must be stored; this class represents an Entity Class [2].

The second phase of the Analysis Model which is the UML Use Case Real­

ization, this phase can be used to describe the behavior of the Use Case and to

identify the responsibilities, attributes and associations of the classes. The class

responsibilities can be characterized as the actions that the object can perform, or

the knowledge that the object maintains and provides to other objects [1].

To illustrate the Use Case realization, we use Sequence Diagram which is a

UML diagram that illustrates sequence of messages between objects in an interac­

tion. It consists of a group of objects that are represented by lifelines and messages

that objects exchange within the interaction.

In most cases, we use sequence diagrams to illustrate use-case realizations

to show how objects interact to perform the behavior of a Use Case. One or more

sequence diagrams may illustrate the object interactions which represent a Use Case.

A typical organization is to have one sequence diagram for the main flow of events

and one Sequence Diagram for each independent sub-flow of the Use Case.

The UML Class Diagrams is the third phase of the Analysis Model which

shows a collection of declarative model elements, such as classes, interfaces, and

relationships. It is possible to use Class Diagrams to model the objects that make

up the system, to display the relationships between the objects, and to describe

what services provided by those objects [4].

Class Diagrams can be used to visualize, specify, and document structural

features in our models. In addition, class diagrams help to show the class roles and

responsibilities that define the behavior of the system, and it illustrates the structure

of a model by using attributes, operations, signals, and relationships.

During the Analysis Model, we can create class diagrams to capture and define

the structure of classes and to define relationships between classes. UML Relation­

ships provide different types of connectivity between modeling elements, such as

36

Dependency, Association, Aggregation, Composition, Generalization, and Interface

realization relationships [4].

2.4 Summary

In this chapter, we have provided the functional description of the RanapSim Traffic

Generator architecture. We have described the main components of the proposed

traffic generator namely; the Traffic Handler, the RANAP Controller, and the SCCP

Interface Controller, where we have illustrated the main functionalities for each

component. The denned functional description of the RanapSim' components have

been interpreted into UML Use-Case Model, this model highlights the functional

behavior of the RanapSim components in terms of UML Use Cases and Actors.

The RanapSim's Use Case Model will be used by the Analysis Model to describe

the logical implementation of the system. The UML Analysis Model preliminaries

have been presented in this chapter; these preliminaries will be followed in Chapter

3 where we are going to introduce the detailed modeling of the Traffic Handler

component.

37

Chapter 3

Traffic Handler

In this chapter, we present a detailed model for the Traffic Handler component

which is one of the main components in the traffic generator design. The Traffic

Handler is responsible for generating the signaling messages for some call scenarios,

such as location update, mobile originating call, and mobile terminating call. To

generate these signaling messages, Traffic Handler provides models for the RANAP,

the Mobility Management (MM), and the Call Control (CC) protocols, these models

build the contents of each message for the call scenarios. In this chapter, we present

the UML Analysis Model phases for the Traffic Handler component.

3.1 U M L Analysis Classes

In this section, we are going to introduce the analysis classes for Traffic Handler

component. In UML, a class represents an object or a set of objects that share a

common structure and behavior, the instantiated objects of these classes are used

to build the interaction diagrams [4].

38

3.1.1 Messaging Proxies Classes

Traffic Handler component has three messaging proxies that are responsible for han­

dling all operations related to the protocols' messages, these messages are; RANAP

message [6], Mobility Management message, and Call Control message [7]. Each

one of the messages has one control class that works as a proxy and many entity

classes that represent the message data elements. In this section, we give detailed

description about these messaging proxies' classes and their operations and data

elements.

R A N A P Message Proxy

The RANAP Message Proxy is represented by the control class which is shown

below, this proxy is responsible for receiving, preparing, forwarding, decoding, and

sending RANAP messages as well as performing a RANAP procedure that is re­

quested by the incoming message. Several RANAP messages are represented in this

model as UML Entity classes and controlled by this proxy class; these messages

belong to different RANAP procedures that are required to build the signaling traf­

fic for the modeled calls scenarios. These RANAP messages are; Direct Transfer,

Initial UE, Common ID, Security Mode Command, Security Mode Complete, RAB

Assignment, Paging Request, as well as Iu Release messages [8]. These messages

represent the RANAP portion of the generated traffic to load the MSC.

Figure 3.1 shows the UML representation for the RANAP Message Proxy class,

it illustrates the operations that are provided by the class. Generally, this class's

responsibilities are to: (1) receive and prepare request/response RANAP messages,

(2) communicate with the Mobility Management Message Proxy to get the MM

message part, (3) communicate with the Call Control Message Proxy to get the CC

message part, and (4) co-work with other control classes to perform the RANAP

procedures; for example get Direct Transfer Response.

39

#> RanapMessageProxy

r^getUaStessa^Riri^Pa'tT) "}
! fj,getDif«;tTfanteRssp©ris« () I
: ^getSecurityMcxleComplet« { } I
; ^parformCoiwnonlOwTRanap () I

! $getDrectTraisfeffteQuest {) j
i ^recefveRABA^grreaTWiequest (} |
| ĵ getRABAssignmentRespense•(J j
| ^psrform&cNQdeOoswnad () j
i jgperformluRGleaseGQnimand () I
! ftpe!fbrm!u8^eas»C«jMete (5 I
j IgjperfDrmPashgRecfue'St {) I

Figure 3.1: RANAP Message Proxy Class

The get Direct Transfer Response operation is invoked usually to perform Di­

rect Transfer procedure and get the response message for it; the purpose of the

Direct Transfer procedure is to carry UE - MSC signaling messages over the IuCS

Interface. The UE - MSC signaling messages are not interpreted by the RNC, also

the UE - MSC signaling messages are transported as a parameter in the Direct

Transfer messages [6]. The UE side is represented by the MM message proxy or the

CC message proxy classes. More details about this class and RANAP data classes

can be found in Appendix A. 1.1.

Mobility Management Message Proxy

Mobility Management is one of the main functions of the GSM or UMTS

system that allows UEs to communicate with the core network especially the MSC.

The main responsibilities of the mobility management are to locate and track where

the UEs are, so that any mobile phone services signaling messages can be delivered

to them [9].

The Mobility Management Message Proxy is represented by the UML con­

trol class which is shown in figure 3.2, this proxy gets requests from the RANAP

Message Proxy to prepare, send, decode Mobility Management messages, as well

40

.; «C6ntrd» •'
#Mobil ityManagmentMessageProxy

^"getLSOpdteqMmPi t (}
^getMmResportse {)
^authenticationReaction ()
jf^focationUpdateAccept ()
f^tecationUpdataComplete ()
^getCmServiceReqMmPai't ()
UlreceiveMmPart ()
ft startTlmer {)
^stopTimer ()
iJgetPagingRespQnseMmPart I)
^releaseMMconnection!)
lltocatlonLfcidateRej ()
|j|,locatioriUpdatefailure ()
^performCmServiceAccepted (5
^performCmServiceRejected (}
^ceceiveAuthenticationRequest {)

Figure 3.2: Mobility Management Message Proxy Class

as perform a Mobility Management procedure that is requested by the RANAP

Message Proxy. In this model, the MM message proxy represents the UE mobil­

ity portion, so it models and replaces the mobility portions of the UE. Various

Mobility Management messages are represented as UML Entity classes, each one

of these classes represent a specific type of mobility management actual message

that is related to one of the MM functionalities. In this model, the MM message

proxy class represents and models the mobility management portion of the real

UE. The MM messages that are provided by this model are; Location Update Re­

quest/Accept/Reject, Authentication Request/Response/Reject, Connection Man­

agement Service Request/Accept/Reject, as well as Paging Response messages [7].

These messages represent the UE mobility management portion message of the gen­

erated signaling traffic to load the MSC. These messages' classes can be controlled

and accessed by the MM message proxy class to perform and complete the MM

requested services.

Figure 3.2 illustrates the operations and a data member that are provided by

the class. In general, this class's responsibilities are to: (1) receive and prepare

41

request/response MM messages, (2) provide mobility management messages to the

RANAP Message Proxy class to generate the UE message portion, (3) perform the

connection management services which is responsible for generating a MM connec­

tion, (4) perform the authentication procedure at the UE side, and (5) perform the

location update procedure.

The location update procedure is handled by this class through some opera­

tions. Normally, the location updating procedure is used to update the registration

of the actual location area of a UE in the network [9], the receive Location Update

Accept operation indicates that the UE's IMSI (International Mobile Subscriber

Identity) is recognized and activated by the MSC. Also, receive Location Update

Reject operation indicates that the UE's IMSI is not activated by the MSC. More

details about this class and MM data classes can be found in Appendix A. 1.1.

Call Control Message Proxy

Call Control is one of the GSM or UMTS system which use the mobility

management connection to allow UEs to establish and clear calls with the core

network especially MSC. The main responsibilities of call control are to allow the

UE to originate mobile call, terminate mobile call, and clear mobile call [9].

The Call Control Message Proxy is represented by the control class which is

shown in Figure 3.3, this proxy gets requests from the RANAP Message Proxy to

prepare, send, decode Call Control messages, as well as perform the call establish­

ment or clearing procedures that are requested by the RANAP Message Proxy.

Different Call Control messages are represented as UML Entity classes in this

model, each one of these classes represents a specific type of call control actual

message that is related to one of the CC functionalities. In this model, the CC

message proxy class represents and models the call control portion of the real UE, so

it replaces the call control portions of the UE. The CC messages that are provided by

this model; Alerting, Setup, Call Proceeding, Call Confirm, Call Connect, Connect

Acknowledgment, Disconnect, Release, as well as Release Complete messages [7].

42

' "Control"
• & CallControfMessaqeProxy
_ _ _
SjjT313
'^sixtnrmj)
l^getCcPat ()

%stopT»ner ()
^sencteaSConimed ()
$$endCaKomect (}
^sendAtet&itftfassage ()

$recedreCaKonnect (}
{̂ sendConnectAdsMessagB {)
f̂ recefceSetupMsssage (}
||recef»eConnectftdM8«age {)
f^serK&scomectMessage ()
fllrecefoeRetease ()
(giSendReteaseCQmptete {)
r̂ecefeeDBCoresectMessage t)

Figure 3.3: Call Control Message Proxy Class

These messages represent the UE call control portion message of the generated

signaling traffic to load the MSC. These messages' classes can be controlled and

accessed by the CC message proxy class to perform and complete the CC requested

functions.

The UML representation of the CC Message Proxy class is shown in Figure 3.3;

it demonstrates the operations and data members that are provided by the class.

In this model, the CC message proxy class's responsibilities are: (1) receive and

prepare request/response call control messages, (2) provide the call establishment

and call clearing messages to the RANAP Message Proxy class to generate the UE

message portion, (3) prepare and send the Setup message to MSC to initiate a mobile

call originating establishment, (4) perform both call proceeding and call confirming

requests that come from the MSC side, (5) perform the alerting, call connect, and

connect acknowledgment procedures at both terminating and originating call sides,

and (6) perform the call clearing procedure from for a specific CC entity which

43

represent the call control portion of a UE [10].

In this UML model, we provide the call connect and connect acknowledgment

through some operations that are provided by the CC proxy class. The CC proxy

class -at the mobile terminating side- indicates the MSC that the call has been

accepted at the called entity by invoking the send Call Connect operation. The CC

proxy class - at the mobile originating side- receives the call connect message from

the MSC by invoking the receive Call Connect operation, the received message by

this operation indicates that the call connection has been established by the MSC

[7]. More details about this class and CC data classes can be found in Appendix

A.1.1.

3.1.2 Traffic Handler Control Classes

In this section, we give details about the UML control classes for the Traffic Handler

component. These control classes are designed to handle and control all signaling

messages that are received from the RANAP Controller classes or from the Messag­

ing proxies' classes. These classes contain the call scenarios classes and the RANAP

procedures classes. The following are the Traffic Handler's analysis classes with their

operations and data elements.

Traffic Handling Controller Class

The Traffic Handling Controller class is the main control class for the Traffic

Handler Component.

The Traffic Handling Controller class controls all interactions between the

Traffic Handler component and the RANAP Controller component, where this class

handles all signaling messages between the main call scenarios' control classes and

the RANAP Controller classes. Figure 3.4 shows the UML representation for this

class, it illustrates the operations and data members that are provided by the class.

44

^Control*
& TrafficHandJingControlter

^ User Data
« i sccpCoimectionldStataPtr
i l f sccpConnecttonldPtr
fgcaSScenarioReq {)
^gsnerateSuggestedComectiortd (5
^.trasferMassagetoHandter (}
g|i>ctentifyMess3geTyiK {)
fimessagelsUrtTiown (}
||transferToHarKllaWithNloCorinectioriW (3

Figure 3.4: Traffic Handling Controller Class

As data members, this class provides the User Data that implies the RANAP mes­

sage frame, the SCCP Connection ID that identifies the SCCP connection for each

call scenario, and the SCCP Connection ID State, which is an enumeration data

element, this data member is transferred between various components along with

the SCCP Connection ID. The SCCP Connection ID State holds values from 1 to

4, we summaries these values implications for the corresponding SCCP connection

as follows:

1: "connected": the SCCP connection is connected.

2: "disconnected": the SCCP connection is disconnected.

3: "generated": the SCCP connection is only generated.

4: " to be disconnected" the SCCP connection is intended to be disconnected.

Generally, the Traffic Handling Controller class is responsible for (1) control­

ling the behavior of the call scenarios classes, (2) communicating with the RANAP

Controller classes to receive and forward the RANAP protocol message portion (User

Data), (3) identifying the received message -through the SCCP connection ID- and

forward it to the proper class object. More details about these class's operations

and data elements can be found in Appendix A.1.2.

45

Location Update Controller Class

The Location Update Controller class controls the location update call scenario

functionality in the Traffic Handler component.

LocationUpdateController
[^NSsraT"" :
j igUserData
j ^kkatfonlUJpdReq'()
j f | trasferMessa^TctocatiorTUpdSm {) \

Figure 3.5: Location Update Controller Class

Figure 3.5 shows the UML representation for the location update controller

class, this class communicates with the Traffic Handling Controller class to get the

relevant messages for a specific UE to accomplish the location update call scenario.

Also, it interacts with the RANAP proxy, mobility management proxy, and other

control classes to generate the sequence of signaling messages that provides the

location update traffic in order to load the MSC. More information about these

class responsibilities can be found in Section 3.2.1; and more details about the

class's operations and data member can be found in Appendix A.1.2.

Call Originating Controller Class

The Call Originating Controller class controls the mobile originating call sce­

nario functionality in the Traffic Handler component.

The UML representation for the call originating class is shown in Figure 3.6,

the data elements and operations in this class contribute to model the mobile origi­

nating call scenario. This class interacts with the Traffic Handling Controller class

to send and receive the mobile originating call messages, also it cooperates with

the RANAP, mobility management, and call control proxies classes to generate the

data messages. These messages are used by the Call Originating Controller class

as requests and responses to originate a call from UE and to interact with MSC to

46

«J CdllOriginatingController
' ipAS^PDO" """"" "•"" "" ' '••"" j
6|UserData 1
^tSbir¥cttransfef&Rxtesportt« () ' !
^mohllsOrigReq () j
<§^ transfei MessageToMobOrigSlm E 3 i
^.transferDisconnectCommandToMobOrigSim {) I-
^setSccpConnectionidStateToBeDisconnected () ;

Figure 3.6: Call Originating Controller Class

establish the call with the terminating mobile side. More information about the mo­

bile originating call scenario can be found in Section 3.2.2. Also, this class provides

a capability to disconnect the call by releasing all related connections. More details

about the class's operations and data member can be found in Appendix A. 1.2.

Call Terminating Controller Class

The mobile terminating call scenario is controlled by the Call Terminating

Controller class.

CailTerminatingController
K | N A S - T O U " " i

K| UserData
<jj§, thnsifa'MessaoeToMobiteTwmSiT) () i
j^tiansferrasconnectCommandToMobTeimSim () :
| | | setSccpConnectionldStateToBeDlscorinected () :

Figure 3.7: Call Terminating Controller Class

As we mentioned before that the call originating controller class initiates the

call by interacting with the MSC, the MSC interacts with the Call Terminating

Controller Class to establish a call between originating and terminating mobiles.

The Call Terminating Controller class is provided by this model to represent the

mobile terminating side; this class interacts with the Call Originating Controller

class through the MSC server to generate all signalling messages for mobile calls.

47

By modeling originating and terminating calls, we will be able to load the MSC with

the generated messages [9].

Figure 3.7 shows the UML representation for the call terminating controller

class. It cooperates with the RANAP proxy, mobility management proxy, and call

control proxy classes to generate the required sequence of messages to simulate

the terminating mobile side. More information about the mobile terminating call

scenario can be found in Section 3.2.3. Also, this class is able to disconnect the call

through clearing all connections and releasing all occupied resources. More details

about the class's operations and data member can be found in Appendix A. 1.2.

R A N A P Procedures Control Classes

In this model, we provide control classes for various RANAP elementary pro­

cedures that are required to represent the RANAP protocol for the supported call

scenarios that we provide by this model. Each one of these classes is responsible for

providing RANAP procedure functionality and interacting with the RANAP mes­

sage proxy to generate the needed message. One of these classes is the Initial UE

Message Controller class; this class interacts with the call scenario control classes

and the RANAP message proxy to initiate the initial UE message procedure and

generate the first RANAP message for the corresponding call scenario.

; <*ConW» '
i © Initia!UEMess«geContr©Her j

! jjIstartLocatMjpdate \)
\ $ | startCaBOrigsnaftrg ()
! fi| startCafFeiminatB-tg (}

Figure 3.8: Initial UE Message Controller Class

Figure 3.8 shows the UML representation for the Initial UE Message Controller

class. Other RANAP procedures control classes are; Direct Tranfer Controller,

Security Mode Controller, Common ID Controller, RAB Assignment Controller,

Paging Controller, and Iu Release Controller class [8], more details about these

48

classes' operations and data members can be found in Appendix A. 1.2.

3.2 U M L Use-Case Realization

We illustrate the Use Cases' realizations of the Traffic Handler components through

classes/objects interactions. Traffic Handler functionalities are realized into seven

Use Cases in the Use Case Model, these Use Case are; the Update Location, Originate

MS Call, Terminate MS Call, Disconnect Originating Call Disconnect Terminating

Call, Distinguish Call Scenarios and Handle Traffic Use Cases. The sequence dia­

grams describe the logical implementation of the functional specifications that we

identified in the Use Case Model. Also, sequence diagrams realize the Use Cases by

describing the flow of events in the Use Cases when they are executed. In this sec­

tion, we describe the sequence diagrams for some of the Traffic Handler Use Cases.

More information about other sequence diagrams can be found in Appendix A.2.

3.2.1 Location Update Realization

We present the Update Location Use Case realization by illustrating sequence of

messages between interacting objects to provide a location update call scenario

for a UE. This sequence of messages is demonstrated through the UML sequence

diagram.

Figure 3.9 shows the main flow of the location update sequence diagram, it

contains the main objects that are instantiated form their classes, and it also shows

a sequence of messages or events with numbers on it. The sequence is started by

the location update controller object (event 1) which asks the Initial UE Messages

controller object to prepare the location update initial message by contacting the

RANAP message proxy and the MM message proxy, this happens through the get

Location Update Request MM Part operation. The generated data message will be

returned back to the location update controller object (event 2), this object sends

49

the message to other control classes to handle it to the MSC (this will be explained

in other sequence diagrams).

In events 3 and 4, a direct transfer RANAP message will be received and

forwarded to the direct transfer message controller object to check the requested

operation to perform and to send it to the RANAP message proxy then the MM

message proxy to perform the operation. The MM message proxy realizes that it is

an authentication request message, so it invokes the authentication Reaction oper­

ation to authenticate the MSC and calculate ciphering keys [7]. An authentication

message response will return back to indicate the acceptance or rejection.

In events 5 and 6, the security mode command message will be received and

sent to the security mode controller object (RANAP procedure). After decoding the

message, this object cooperates with RANAP message proxy object to perform the

security mode complete operation by extracting the encryption information and the

integrity protection information, then choosing appropriate ciphering and integrity

algorithms [6]. A message will be sent to the MSC to confirm these configurations.

In event 7, the common ID message will be received by the location update

controller object and sent to the common ID controller object; this message contains

the (IMSI) which is sent by the MSC to identify and locate the UE (in this case the

UE is represented by the MM message proxy). After identifying the message, the

common ID controller object invokes the perform Common ID on Ranap operation

to forward the message to the RANAP message proxy and store the IMSI and attach

it for a specific UE; this operation is called Location Update - IMSI Attach [7] [9].

In real application, the RNC creates a reference between the IMSI of the UE and

the RRC connection of the same UE to be used in RNC paging procedure [13].

In event 8, the location update controller object receives a direct transfer

message that should be forwarded to the MM message proxy. As we explain in

the diagram, the MM message proxy uses alternative combined fragments (switch

condition provided by UML 2.0) to identify the received message type [4]. By

50

2s staflLocatlonUpdate

: 1.1.1: getLocUpdle<*>M>art

'•• 1.1.2: geILocUpcRe4>«nPBri.

1.2: getUeMessagenanapPart;

3: RxDlrectTr(«isfer4Txfiesponse

3 .1 : getOtrectTranferflespmse

3.1.1: getf*i*esponse

J i l . i . l : authentlcalkxifieact><in
3.1.2: getMrfiesponse ;

3.2: getDtrectTranferResponse

A: RxDIrectTransferATxResponse

5: IbtSeajrityConnmSridATKRespanse

5.1: pertormSecModeCoownad

5.1.1:getSeajrltyModeConplete ;

5i2: performSetModeCotnmad

& R><SectrltyCanntBnd&T»dtesponse

7: CommOfilDoflMS!

7.1: pa1 (onnCormtionlDonRanap

8: RxDlrectTransfo-

8.1: recetveRanapPert

.1.1: recelveMnPart

[messageTYbe = KXOD 0010} \

1 : ricelveLocalloriUpdateAccept

[message type = xxOO 0100} j

;1'rebel veL oca! lonUprfeteReJ

Figure 3.9: Location Update Sequence Diagram

51

evaluating the condition, the MM message proxy will be indicated that whether the

UE location is updated on the MSC side [7]. If this is the case, the receive Location

Update Accept operation will be invoked, if the location update is rejected by the

MSC, then the receive Location Update Reject operation will be invoked. More

detailed information about these events' operations can be found in Appendix A.l.

3.2.2 Mobile Originating Call Realization

The proposed model generates messages for the mobile originating call scenario; this

functionality is represented by the Originate MS Call Use Case.

Figure 3.10 shows the basic flow of the Mobile Call Originating sequence dia­

gram, it shows also the participating objects and the sequence of messages or events

with numbers on them. The sequence starts by the call originating controller ob­

ject (event 1) which asks the Initial UE Messages controller object to originate the

call and contact the RANAP messages proxy to generate the Initial UE message

for this scenario [6], the RANAP message proxy -through get CM Service Req Part

operation- asks the MM message proxy to generate the CM service request message,

this message is required to establish MM connection in the MSC side, and it will be

carried by the Initial UE message to be sent to the MSC (event2).

In event 3, the MM message proxy receives the CM service response message

that is forwarded by the direct transfer object and the RANAP message proxy. As

it is explained in the figure, the MM message proxy checks the received message

type to know whether the MM connection is established or not. In events 4 and 5,

the sequence of messages represents the authentication operation that is required

by the MM message proxy to authenticate the MSC and calculate ciphering key,

also events 6 and 7 illustrate the security mode command operation to extract

the encryption information and the integrity protection information and to choose

appropriate ciphering and integrity algorithms [9]. Through event 8, the call scenario

receives the IMSI for the corresponding MM message proxy.

52

i i Inter actfcni

:«Ctt^./i ' ® fAAsdniima-

. l . l : ^tueMeetageHanapParl^ } r

I: stsrtCaBDrigEnating

1.1.1.1.1: stfrtTbnerSXl j :

.1.1.1.1.1.1: startTkner

3,1: reeetvE«anapPwt

[menage type = xxlO 0001]

1: fbDlrecUr-mttEr&Tidtesfnnse

l . i a . l ; autherrtfcattooReacttoo

4 J : getDfrecHra

9.1-1: getCCPart

9J: getCfrcctli

Figure 3.10: Mobile Originating Call Sequence Diagram (parti)

53

In event 9, the direct transfer controller object will be ordered by the call

originating controller object to prepare a SETUP message, this message shall be

generated through invoking the prepare Setup Message operation at the call control

message proxy. The SETUP message contains the calling and the called party

addresses information, also this message will be sent back to the direct transfer

controller class. In event 10, the SETUP message will be sent through the direct

transfer message to initiate a mobile originating call establishment at the MSC side

[7]. In this context, the call control message proxy represents and models the UE's

call control portion.

Figure 3.11 shows the completion of the mobile call originating sequence dia­

gram. In events 11 and 12, the call control message proxy receives a CALL PRO­

CEEDING message and invokes the receive Call Proceeding operation. This message

indicates that the requested call is being processed at the MSC side [7]. In events 13

and 14, the RAB assignment controller object receives a RAB assignment request

message which contains the radio access carrier information; the RAB assignment

controller object cooperates with the RANAP message proxy to confirm the RAB

request that comes from the MSC and send the established/modified RAB ID to the

MSC as a RAB assignment response message; the operation get RAB Assignment

Response will be invoked to perform that [6] [8].

Once the MSC receives the RAB assignment response message, the call control

entity of the MSC will send a PAGING request message to page and locate the

mobile terminating side; this message will trigger and start the mobile terminating

call scenario, the sequence diagram for this call scenario will be explained in Section

3.2.3. At this point the mobile originating call sequence diagram waits until the

MSC receives an ALERTING message from the mobile terminating call sequence

diagram. Once the MSC receives an ALERTING message, the call control entity of

the MSC will send a corresponding ALERTING message to the mobile originating

call and the receive Alerting Message will be invoked.

54

O interact ion!

r ^ ' e e < C r f a W W " q : « C « H - . ' ' '4» uet»fa|CjJMtBt8aqe:... ^ ^ 5 ; ; ; ' i : ' & mmPrray:•Ooiitrel"Mo... ' ^ccPrmvinCiao.. . ; ^ dfrftrtTjiiieContro™'. : !' & SBd'*Mfcii«Cii«t»,~ " i ' ' <&•$* " ' S f i j f f s i f a w f f l f r . :

10: txDtreetTtansfer&NxKespar

: 13: rBcetv&taniQPart

12 ,1 : getCcPart

13 .1 : recEiveHAHAxsiTn

13.2: receJweRABAsskpmentftequest

I S .] : rfteetveRan^fiPart

15.1.1: a i tCtPar t

15.1.1.1: retehieAlerthgWcsMgB

16: RitDfrnctlranster&TiolespMBe ;

1 6 J : getDfrcctTi

15.1.1: t w t C t f J t

16.12: getCcPart

17: RiOSrert Transferal (Response

" ' I S . 1 .13 : itopTkner

Figure 3.11: Mobile Originating Call Sequence Diagram (part2)

55

After sending the ALERTING message to the mobile originating side, the MSC

receives a CONNECT message from the mobile terminating side. Once the MSC

receives that, it will send a corresponding CONNECT message to the CC message

proxy object, so the receive Call Connect operation will be invoked to indicate call

acceptance by the terminating side. Also, the CC message proxy object invokes

the send Connect Acknowledgment Message operation that sends the CONNECT

ACKNOWLEDGMENT message to the MSC to acknowledge the offered connection

[7], this sequence can be seen in events 16 and 17. More detailed information about

these events' operations and other sequence diagrams can be found in Appendices

A.l and A.2, respectively.

3.2.3 Mobile Terminating Call Realization

In this section, we present the mobile terminating call scenario realization that is

represented by the Terminate MS Call Use Case in the Use Case Model.

In Figures 3.12 and 3.13, we illustrate the basic flow sequence diagram of the

Terminate MS Call Use Case; it shows the participating objects and the sequence of

messages or events with numbers on them. This sequence diagram interacts with the

mobile originating call sequence diagram through the MSC to provide a complete

scenario of UE - UE call and to load the MSC consequently.

This sequence diagram is triggered and started by receiving PAGING request

message (RANAP message) from the MSC. In event 1 and 2, the call terminat­

ing controller object forwards that PAGING request to the paging controller ob­

ject which communicate with the RANAP message proxy through perform Paging

Request operation to understand the message elements. In event 3, once the call

terminating controller is indicated that PAGING request message has been received,

it will ask the Initial UE message controller object and the RANAP message proxy

to initiate the first message to be sent to the MSC, then the RANAP message proxy

invokes get Paging Response MM Part operation to ask the MM message to create

56

: » ic i lT i« i i fc taM r - &' paqlriqEBntrefe ... 8>ueTera*vt feCal . . . : I ^ranapProgys ^ctfrony:"C,„ 6 A M K I I ; " . -

1: perlormPagkigRequesf

3: paghtp tequeatRe iW

i: I M D M N V I I M ^ ^ v a ^ ^ m m * * * * *

3.1.2: getUeMassageflan^iParth

4 : fedXrettTransfer&toResponse

4 ,] : gatDrectTranferRespanse.

1.1-1; gstranHesponse

4.1.2: getMiftesponse

4 J : getDfcrxlTranferResfxxKe

J.l.l: getSeoritYModeCoinpletE

S: RxSeturityConimand&lxlt«f>onsB

9: RxOrect Transfer ftlirftexponse

ecetvcSetupMesgage

"3J: gctO*sc(tranlETflespanse

Figure 3.12: Mobile Terminating Call Sequence Diagram (parti)

57

the PAGING response message (MM message). This message will be sent to the

MSC to indicate that the required UE is located, the paging procedure is completed,

and the MSC can start contacting that UE [6] [7]. As we mentioned before, this

model provides the MM and CC message proxies to represent the UE or the mobile

station.

In events 4 and 5, the sequence of messages represents the authentication

operation that is required by the MM message proxy to authenticate the MSC and

calculate ciphering key; through event 8, the call scenario receives the IMSI for

the corresponding MM message proxy. Also events 7 and 8 illustrate the security

mode command operation to extract the encryption information and the integrity

protection information and to choose appropriate ciphering and integrity algorithms

[6].

In events 9 and 10, the mobile terminating controller forwards a direct transfer

message to the direct transfer controller which sends it to the RANAP message

proxy, this message will be forwarded to the CC message proxy. The receive Setup

Message operation will be invoked at the CC message proxy to indicate that it is a

SETUP message; this message is sent by the MSC to initiate a mobile terminated

call establishment. In this sequence, once the CC message proxy object receives the

SETUP message, it will invoke the send Call Confirmed operation to prepare the

CALL CONFIRM message; this message will be sent back to the MSC to indicate

that the SETUP message has been received properly and the incoming call request

has been confirmed [7].

In events 11 and 12, the RAB assignment controller object receives a RAB

assignment request message which contains the radio access carrier information;

a RAB assignment response message will be sent to MSC to confirm the radio

configuration. In events 13 and 14, the mobile terminating controller object asks

the RANAP and CC messaging proxies to generate an ALERTING message to

be sent to the MSC; this message indicates that the alerting procedure has been

58

11: rabAsstgnrnenmucedure

11.1:

12: rabAsstgmnentProcedun

13.12: gBt&Part

laa-. geoNr«cU>

15.1: getDfretlTransferRevut

15 i J : gutCePart
• , 15-1.1.2: etartTinier

152 getUrectIransterRe<|uest

17: toatrecnransfer

Figure 3.13: Mobile Terminating Call Sequence Diagram (part2)

initiated at the terminating side. Based on that, the MSC sends an ALERTING

message to CC message proxy object in the call originating sequence diagram as it

is explained in Section 3.2.2.

In events 15 and 16, the CC message proxy object invokes the send Call Con­

nect operation to prepare a CONNECT message and send it to the MSC; this

message indicates that the call has been accepted at the called entity. Once the

MSC receives this message, it will send a corresponding CONNECT message to

CC message proxy object in the originating side which responds by sending back

the CONNECT ACKNOWLEDGMENT. In event 17, the CC message proxy object

59

receives the CONNECT ACKNOWLEDGMENT message by invoking the receive

Connect Acknowledgment Message which indicates that the CC message proxy has

been awarded the call [7]. More detailed information about these events' operations

and other sequence diagrams are given in Appendices A.l and A.2, respectively.

3.2.4 Traffic Handling Realization

The Handle Traffic and Distinguish Call Scenarios Use Cases plays an important

role to handle the traffic in the Traffic Handler component.

The Distinguish Call Scenarios Use Case is realized through the the Distin­

guish Call Scenarios sequence diagram, this sequence is responsible for receiving the

call scenario requests -that are forwarded by the RANAP Controller component- to

deliver each of them to the right call scenario controller object to initiate the re­

quired call scenario or sequence, also for each new call scenario request, a connection

ID will be generated to keep track of the call scenario messages. These call requests

are originally initiated by the RanapSim Manager Actor.

The Handle Traffic Use Case is realized by two sequence diagrams one of them

is the Transfer to Handler sequence diagram, this sequence is functioning to receive

the signaling messages from the RANAP Controller component and forward them to

the running call scenarios that are interacting with the MSC through the RANAP

Controller component. These messages will be forwarded to the right destination

based on the connection ID for each call scenario. The other sequence diagram

which realizes the Handle Traffic Use Case is the Transfer to RANAP Controller

sequence diagram, this sequence explain how the generated messages from the call

scenarios can be forwarded to the RANAP Controller component through the traffic

handler controller object.

In this section, we present the Distinguish Call Scenarios sequence diagram

which is shown in Figure 3.14. In event 1, this sequence starts when the traffic

handler controller object receives a call scenario request through the Call Scenario

60

^ trafficHandllnqConiroller,., 6 locatlonUpdateContr..

. 1 : callScenarioReq

" ^ ^ i f # tg i ^h j k ^» B 1 P"" ̂ ^aiJTCThVfe^^cM^Htf!^

[callScenario - - LocationUpdale]

1: generateSuggestedConnectlonld

2: locatlonUpdReq

I [cal (Scenario == MsCel (Originating]

.; 1: generateSuggestedCormectionld

2: mobflebrtgReq

[callScenario == OrigCal (Disconnect]

1: transferDisconnectCommartdTcMobOrigSini

2: transferDisconnectCoiranandToMobOrigSim

[callScenario ==; TermCallDisconnect]
1: transferDisconnectCommandToMobtermSIrn

2: IransferOisconnectCornmandToMobTermSIm

[else]
1: scenartoIsNotSupported

Figure 3.14: Distinguish Call Scenarios Sequence Diagram

61

parameter, as explained in the diagram, the traffic handler controller object uses

alternative combined fragments (switch condition provided by UML 2.0) to iden­

tify the received call scenario request [4], this switch condition provides blocks for

different cases.

In the first block of the switch condition, the call Scenario will be checked

whether the request is location update, if this the case, the location Update Request

operation will be invoked to initiate the call and the generate Suggested Connection

ID operation will be invoked to generate a new connection ID and connection ID

state to be attached with all messages that are related to the initiated call scenario.

The new connection ID is indicated by the SCCP Connection ID data element, and

the new connection ID state is indicated by the SCCP Connection Id state data

element which holds the "generated" state, more details will be given in Chapter 4.

The second block does the same for the mobile call originating, so if the request

is to originate a call, the mobile originating call scenario will be triggered. In the

third and forth blocks, we explain if the call scenario request is to disconnect the

call on the mobile originating side or disconnect the call on the terminating side,

consequently, a corresponding sequence diagram will be initiated to disconnect the

call. Since the mobile terminating call is initiated by PAGING request message from

the MSC, so there is no call scenario request indicates a block for the terminating

call scenario. More detailed information about these events' operations and other

sequence diagrams for the Traffic Handler component can be found Appendices A.l

and A.2, respectively.

3.3 UML Class Diagram

This section describes the static structure of the Traffic Handler component by

illustrating the class diagrams. In this context, a class diagram helps to understand

the requirements of the Traffic Handler and to describe exactly how this component

62

works. Furthermore, a class diagram defines the relationships between classes and

illustrates the structure of the model by using attributes, operations, signals, and

interfaces. Also, it shows an inheritance hierarchy among classes [1].

In class diagrams, we use interfaces to facilitate the job and give more details

about the classes relationships. Interfaces are model elements that define sets of op­

erations that other classes must implement. We can use interfaces in class diagrams

to specify a contract between the interface and the class that realizes the interface.

Each interface specifies a well-defined set of operations that have public visibil­

ity. Those operations will be provided to another class through a dependency/use

relationship [4]. In UML, we call this relationship between the interface and its

implementing class interface realization relationship. In next sections we provide

the class diagrams for the Traffic Handler component.

3.3.1 Location Update Class Diagram

We describe the class diagram for the location update call scenario that is provided

by the Traffic Handler component, Figure 3.5 shows the UML representation for this

class diagram.

The location update class diagram contains all classes that participate to gen­

erate the signaling messages for the location update call scenario, also it consists of

some interfaces to handle and explain the relationships between the classes.

From the class diagram shown in Figure 3.5, the Location Update Controller

class uses the IRanapProcedures_LocUpd Interface through a dependency/use re­

lationship [4]. This interface is implemented through an interface realization re­

lationship by the Direct Transfer Controller, Security Mode Controller, Common

ID Controller, and Initial UE Message Controller classes. Those classes use the

IRanapMessage_LocUpd Interface which is realized or implemented by the RANAP

message proxy class, through this interface, the RANAP message proxy class is able

to specify the required operations to provide them to other classes.

63

«Contrcto.
4$ LocationUptlateCDnlraMef

; r^UserData j
: '"^to<att)riUix«eq()
i l&traSferttesageToLreationUpdSim () ;

«yse»

^'interfaces ' ;

r ^ r t S o ^ a t o n U p d a t e ()"
j ̂ .CoommlDoflMSI ()
: ^RxCfesctTrarsferSTiResponse ()
; ^FtaSecuttyCommand&TxResponsB () ;

• «Gonbcrf», • • '
<& MrmTrariftrControHer

'{jj| Ribir'ectf ransfer&txResparise (").
^statCaBCorinacrPracedre ()
^sUrtAtertuProcedure ()
^startCaflOeaiingProceduet)
gj^RsDirectTransfei ()

«Ccntrobl
^ SecurltyModeConlroRer

1 ^RxSecwtyCcmmandSiTxRespbnse () i ' "i^CcBwnahlDofiMsj' ('")'

iaContiote
; $ InitialUBIessageCantroller

:'^siartLbtatio«*tJdatV'r)
: ^startcalcwglrating ()
• gg, slarKaTTenTM-iatriQ ()

«mterface» ' .

r^'(»'tUeMessao*arapPar't''(')'
\ §^ gelDiettTranferResporee ()
I ^getSeojityModeConfilete (.)
\ ^.pertcrmCommonlDQnfianap ()

-^Controls
^ MobtBtvMarwgmeTrtMessaQBPioxy

"MTW^Z '""~"Z
: ^getLocUpcRei3*iP*t ()
; ^getWrfiesptinsB ()
j ^euthentcatiorfiBactJWi ()
: ^gBtOnServteRetJflmPart ()
; g^recelvBWnPart ()
j ^ s t a t T m e r O
= ^s topTrnet ()
j ^getPagingRespanseWnPart'f.)
j ^ reteassMMcomactjon ()
j ^PBrfarmCmSeiviceActepted (J

^ pBrforrriCmSeimceRejected ()
• ^receivBAuthenticalianReguest ()

g j , receivetocatJonOpdateAaiept ()
: ^recavetacatkxHAjdatefte) (}

%JMobManagment„ioct>pd

• ^Qei iKiJpiateci*nPart"()
HgetWnResponse ()

. ^lotatiDnUpdataAccept ()

mobltYrnanagmentmessaospioxy - ranapmessageorcKy

aConlrot"
& RanapMessageProxy *

; ^ ^ t U ^ t e s s a g e R a r a p ^ t l ' ') '•
G& getDeecITfanferResponse ()

. ^getSecurttyModeCoFT(fete () ••
; $& perfornCommonlDonRanap () :
i %rrceiveP.anaoPart i >
; <f{j, get Dree tTrarsferRequest ()
\ <[^receiveRABAsswT19nWequest ():
^getRABAssignmentReqxnse (>

i ^,pertoimSecW3tJeCdrfmad ()
%perforrfiluReIeaseCQnimarKt () '

.^perfarmluReleaseGxnplete ()
g§,performPagngReqii8st {)

Figure 3.15: Location Update Class Diagram

The RANAP message proxy class uses some operations from the Mobility Man­

agement message proxy class which provides these operations through the IMob-

ManagmenLLocUpd Interface. The RANAP message proxy class has an associa­

tion/aggregation relationship [4] with the MM message proxy class with (1 - 0..1)

multiplicity. In this context, this notation means that one object of the RANAP

message proxy may have zero or one object of the MM message proxy. Based on the

used RANAP procedure, some of the RANAP messages may have a MM message

inside. More information about the Interfaces in this class diagram can be found in

Appendix A.3.

64

3.3.2 Mobile Originating Call Class Diagram

The mobile originating call scenario is provided by the Traffic Handler component,

and we have presented the classes and the Use Case realization of modeling this

scenario. In this section, we present the class diagram for the mobile originating call

scenario; Figure 3.16 shows the UML representation for the mobile originating call

class diagram.

This class diagram consists of all classes that participate to originate a call

and consequently generate a signaling traffic for this call scenario, also several UML

interfaces and relationships have been used to show more details about the classes'

communications. From what is shown in the class diagram; the main class for this

scenario is the Call Originating Controller class which has a dependency/use rela­

tionship with the IRanapProcedures-MobOrig Interface to use the interface provided

services. This interface is implemented through an interface realization relationship

by the Direct Transfer Controller, Security Mode Controller, Common ID Controller,

Initial UE Message Controller, RAB Assignment Controller, Iu Release Controller

classes. Those classes are having some messaging data services through using the

IRanapMessage Interface which is realized or implemented by the RANAP message

proxy class, so the RANAP message proxy class specifies -using this interface- the

required operations to provide.

The RANAP message proxy class interacts with the Mobility Management

message proxy to use some operations that are provided by the MM message proxy

class.

The IMobManagmenLMobOrig Interface is implemented by the MM message

proxy class through the interface realization relationship and used by the RANAP

message proxy class through the dependency/use relationship. The same thing will

be applied for services that are provided by the call control message proxy class

to the RANAP message proxy class, the ICallControLMobOrig Interface will be

implemented by the CC message proxy class, and used by the RANAP message proxy

65

. «e«nbd» "/"".
& CallOriginatingtontroIef

H^NAS-POU ~ - • ' -

^T)<C»ectTr^feMj*espdnse' '()

SgtiansferMessageTGMabOrigSrn ()
^trar^castBnrKCtCorTrwTdToMntCri^lm {)
^setStcpConnectiortidStoeToBeDtoomected () :

§IRampProcedurBt__f*tobQrig \

Implements

Implements

^.StfftCdOriQnatho <)
{^FUpjectTransfer&TxResponse () ;
^RKSeaJityCorrmand&TxRespo...
g^CommonlDoflMSI ()
^rabAsstenrnentProcsdiie ()
^,FUI»ectTfaTsfe»()
^startCaKearlngPfocedure ()
^iuftetaasePracediie ()

8j^ waonafcc tmservieeResMreeO
fy*a&vti> startSstLpftocectureO

^ SetuttyMoileCantroBa'

' ^"RiSBairitvCwnTar^txte'.. '!

<& DlrectTranferCoritroler

\ ^ReiDtectTrarefeiSTxRespO...
i ^ startCdCorrractFracedure.,.
\ ^startAlertingftocedure ()
\ %starttaKleartrigftocedure ()
!^Rxt»ectTrSnsfei ()

«Cbr«fd»
A RABAS5lffw>ent

I ^st»tLocatoiUpdate ()
l i f . * *??8™^!*? . - : -J ! ^startCalOriginaang ()

I ^statGaffTeimruting ()

' ffCcntrot*
^ iuReleaseControfcf

^;lLSeteai€Procedure.()

.; --Witerfaee* "
*5 IRanapMesMge

n
i ^receftfefianapPart ()
\ gjjgetDirectTrsnferResponse t)
\ g|p9iftB7nCamnwTiIDanRanap ()
i ^BStffceetTtansferFequest ()
I ^ receweRABAssigrinientRequest ()
i ^ j perframlufteleaseCainnvgnd ()
I ^perfbrmSecModeCommad ()

•':-. ' 'fy&reji&ii '••'•'
AMobatyManapnentMessage I
* * Proxy

%T^30 ih
^getLocUp*aqMmPart ()
g^getMmRespanse ()
{^authenticattonReacticn (>
g^getCmSeiviceReqOTnPat ()
g&recelveP+nPart ()
(jj£startTim8t ()
g^stopTlmef ()

{^Q8tPa$"iQRssoonseMmPaU ()
g^ieteaseMMccirtnecticn ()
gijperfamCmSerwiteAccepted ()
{J|J.psrfamCnS3vtceftejectBd ()
^lecEreAuthentKationRequesi () ;
^recefcetocaJtanUpdateAccept () .
j^iecettetoQticnUpdjteRej ()

«3 JWtoAMflfi^ewierjt.;.
i : :a MottOrig

^getemSerwceRetfi...
^recewedtnPart ()

" mob&tyrnana^TOntmessagepro>iy
- ranapmessageoroxy

«eoritfoto
% RanapMessageProxy

$|,getUeMessageaanaoPart ()
^gBtOrettTrarrfBrResponse ()
^getSecurityModeComptete ()
^perfomiComrnorilDonRariap ()
^FeteiveftanapPart ()
(•^getCfeettTransteRGquest ()
{ji^receiveRABAsjJgnrnentReQuest [) j
^getRABAsagnmentBespo^se ()
^pafonnSecModeCommad ()
g^peffDTTTiIuReteaieCommand ()
^pefformluReteaseComptetet)
^petfbrmPagsTgRequest ()

oliterface*
MistartTimer

-•'[jg , nsiyiafco stiatTmn»3036

,..,«Ht er'faCe»

\ ' ^ reteaseKwiibnnet.'"'."":

• Implements

: «ihterfape» • ' " «Cohtrdfe> ;
•^ICaKdrrtraLMob \ : & CaUControWessageProxy i
':..... °^ ^ T 3 0 3 '

: ^ • ~ t fT310
^ST313
$% start Timer (1
^get tcPar t ()
i^prepareSetupMessage ()
S^Jiec€weCa*Jiixeedng ()
^.stopTimer ()
^wndCalConfrmed [j
^ sendCaKonnect ()
g ^ serdAfertmgMassage<)
^recelveAtertlf^Messags (')
^reteiveCaKonnect {)
&# sendCcmectAd<Me5S3ge ()
$& receiveSetupMessaoe t)

i rarwpmessaBepriBy - cafconaolrnessaoeproxV^recavaConnectAckMessage () j
'^sendDlsconnectMsssage'f)

O
^sencReleaseComctete {)

Figure 3.16: Mobile Originating Call Class Diagram

66

class. The RANAP message proxy class has an association/aggregation relationship

[4] with the MM message proxy classes with (1 - 0..1) multiplicity, the RANAP

message proxy class also has the same relationship with CC message proxy class.

The association/aggregation relationship for the RANAP message proxy class has

been explained in the previous section. On the other hand, the CC and the MM

messaging proxies' classes interacts with each other directly through the IStartTimer

and the IReleaseMM Interfaces. More information about the Interfaces in this class

diagram can be found in Appendix A. 3.

3.3.3 Mobile Terminating Call Class Diagram

This section illustrates the class diagram for the mobile terminating call scenario;

the class diagram for this call scenario is represented in Figure 3.17.

As described in the figure, the main controller class for this scenario is the Call

Terminating Controller class that uses the IRanapProcedures.MobTerm Interface to

interact with the Direct Transfer Controller, Security Mode Controller, Common

ID Controller, Initial UE Message Controller, RAB Assignment Controller, Iu Re­

lease Controller, and Paging Controller classes; those classes also interact with the

RANAP message proxy class through the IRanapMessage Interface, this interface

provides all operations required by these RANAP procedures' classes.

In this class diagram, we illustrate that the RANAP message proxy class uses

some operation that are provided by the MM message proxy class through the IMob-

Managment_MobTerm Interface, also the RANAP message proxy class interacts with

the CC message proxy class through the ICallControLMobTerm Interface. These

two interfaces show exactly what the RANAP message proxy class needs from the

MM and CC messaging proxies, in addition the RANAP message proxy class has

two association/aggregation relationships with the MM and CC messaging proxies;

these relationships are similar to the relationships that are explained in the Mobile

Originating Call Class Diagram Section. More details about these interfaces can be

67

!• ^CaStem#tatingContrDiler
i l $ 'NSs«> i i
; £§,UserDatai
r^'tian^^i^liMMefariSm(^
; ^transfat!6qOTi«tCormien[^oMc6Te»man (•)

tsetSctpCprriectonldStatefcBeOstannecterf f)

M Etmas>PTacexfures_MobT&m

i {^startCalTenrtnaaTg ()
; J^RxDiractTrarBtei&f)iREgjareB £)
: ^CcmmorUDoffiei {)

i g^rabAsstgnmentProcediie () .
: ^startAtertingPtoced^e ()

•}. % StaftCalCoiTnectPrEJceciJe ()
\ ^RxDtectTfansfet (')',
.: gjiStartCaHdearngPtocedue ()
" - - ' - • - • B ()

kSedir i tyHbde
9 .Cohtrplter % CommorilDCtvitroSer

' ^Cnrnmonn^ 'MSn") " ' '

% DijertTrarfWControter

' g|R »DiecttiafisJHat xRespa.""
^ startCalCDmec tftacedue...
^startAtertngProCBdirt.{)
g&startCalCleart-flProcedLre () .
Ij^RsDrect Transfer ()

& RABAssignment
» ControBer

£ raMi'dgnmentPra'.'.'
; ^rtartCaflOrigriatih...
! {j^startCaffTermfriatU

I ^ bRefeat t
^Con t roDw

r^IUREteaseRr",.;''

«Contocfe>
^ PagingControSer

^ iftanapMessage

'•' :.«Contrate' 1
i ^ MtibtftyttanagmentMessageProxy5 \

/getLocuiwSleqri^art I j
g^gBtMTflesponse{)
^authentjcatjorfteactlcri ()
g|oetOnSefvfceft«*»nPart ()
^teceiveWnPat ()
^startTimei ()

' ^s topTlnsr ()
g~getPagintflespanseWTtPart ()

= ^reteaseMMcoreiectKjn ()
; ^perfoimCmServiceAccepted [)
,' S^performCmSefWKeR ejected ()
: ^receweAuthenticationftequest ()
^recefvelocatlonUodateAecept ()
^rereivelocatimUpciatGftej ()

*' MobTerm

. . r n
^recetveRanapPart ()
^getDtectTianferttepcree ()
^perfonTitQmmonlDoriRanapQ
% getDirectTransfetRequest.()
^leceiveRAeKssignmentflequest () .'
^perfoftriltReJeaseCofiTnand ()
{^performSecModeCommad ()

Implements

& RanapMessagePmxy

^getUeMsssageftartapPart t)
^getQrectTranferRespanse ()
^getSecurityModeCOmptete^)
^perfDrrnCoamcnlDonRanao ()
%rece*vefianapPart ()
{g^getDrectTransfeiRecBJest ()

^getRflBAssignmeritRespcnse ()
^performSecModeConwnad ()
^petformluReteaseCoiTHTiancI (}
%performlufteleaseCofnptete (>
^performPagngttequest ()

• moMtynwwgnrantmessageprCHy - ranapmessageprtiSy ••

gUeieaseMMccnnectiort ()

OTiterfacBSf'..
mJCaSControt
5 3 _MobTatm

IgettcPart 'O"
% rec9V6Co£Con.

Implements

• ranapmessageproxy

& CafflT-nrrtroMessagePTOxy ;
i ^T303 |
EST310
&&T313
§& start Timer () >
0jigetCcPart-() >
SJ^prepareSatupMeKage ()
<^recehraCa!Proceedfrig ()
$1. StOpTBTEt '{).
^sendCaKonfrmedO
^sendCalConhect (=)
igjserxlAtertingMassage ()
^rBcetvaAtertb-igMBssage ()
g^recerfeCailCQnnect ()

cafcontrokTiessaoeprDXY ^sendCorriectAckMessage () .
(& receiveSstupMessaga (}

0..1 ^leceweCcrmEctAckMsssage () :
^sendDfccorrrectP'tessage O
SgjieceiveRetease ()
^ sendReteaseComptete ()
^leceireOscorinectMessage (> :

Figure 3.17: Mobile Terminating Call Class Diagram

68

found in Appendix A.3.

3.3.4 Traffic Handling Class Diagram

We describe the class diagram for the control functionality of the Traffic Handler

component; Figure 3.18 shows the UML representation for this class diagram.

«Cbrrtrc4»
6 TraffitHandfingControDer

it^UserData
&^ sccpGomectonldStatePtr
!%sccpGorrieatjonldPtr
%caBScenaritfteq.O
{§£ Qena-ateSuggestedConnffitiaild i).
%ttasfWMessaoetoHancBer ()
f^ tdenefyMess^STyps ()
jg|messa^IsUnknown (>:

^ ' tofcnOtxSieq' i)
: ^b-aisferMessagBTtlocationLtodSlm'()
gjJ,mobfeOrigReqi)

: ^ , transfBrMBSsagsToMobOrigSBTi ()

gl.tffflTsferMessagsToMotrfeTa'man ()
: ^ti3nsfErDiscorffiatCCTnmardTt*^TermaTi ()

«tbritro!»-
^ LocattonUpdateControfler

: L^UserOata

^tatationUpdReq ()
^trasferl^ssageTctocafiortJpdSim ()

CaBOtfginattncpbtrtroner

SgUserData.

^Ti^^fraf^fer&RxRKpcrce"(J [
HmobileOriaReqC) I
$& trarsferMessageToMobOrigStm () {
|§. trareferKsconnectCciTimsTdToMobCSIgSm () <
^setSccpCttmectcmlctStateToBeDiscomectKl () I

«Cbrttro&
& CafTermtoathgControfler

£^NAS-PDU~~ " "
^UsetOata
^transferMessageTc^tatSeTamSfrn.()
^bansferDreorv^tCdmman^ ()
^setScxpCor8Tectbrdi£tateTo6^>sa3rract8d ()

i;j nrarisferloHandfer

; ̂ fransferTtessa^TcWareCer (J" j'

Figure 3.18: Traffic Handling Class Diagram

The class diagram shows the Traffic Handling Controller class uses services that

are provided by the controllers' classes of the call scenarios through the ICallScenario

Interface; the Traffic Handling Controller class has a dependency/use relationship

with this Interface as illustrated in this Figure. The ICallScenario Interface is

69

realized by the Location Update Controller, Call Originating Controller, and Call

Terminating Controller classes. On the other hand, the Traffic Handler Controller

class implements the ITransferToHandler Interface that is used by call scenarios

controller classes.

3.3.5 Traffic Messaging Class Diagrams

The Traffic Handler component provides models for call scenarios to generate signal­

ing traffic, the control classes for each call scenario model should interact with the

messaging proxies' classes to handle the request and create the required message.

Those messaging proxies are; the RANAP message proxy, the Mobility Management

proxy, and the Call Control proxy classes. Next, we are going to present the class

diagrams for those messages.

R A N A P Message

The RANAP Message class diagram shows the several types of RANAP messages

where each one is used for specific service; Figure 3.19 shows the UML representation

for the RANAP message class diagram.

This class diagram shows different types of RANAP messages classes as En­

tity classes, these classes are; Direct Transfer, Initial UE, Common ID, Security

Mode Command, Security Mode Complete, RAB Assignment, Paging Request, as

well as Iu Release messages' classes [6]. Each one of these classes has an associa­

tion/composition relationship with the RANAP message proxy class with (1 - 0..1)

multiplicity [4]. This relationship indicates that those messages classes always be­

long to the RANAP message proxy class. The multiplicity (1 - 0..1) means that one

object of the RANAP message proxy may own zero or one object of each type of the

RANAP messages' objects. Through this relationship, the RANAP message proxy

class is able to access the messages' classes through its operation. More information

about these classes can be found in Appendix A. 1.1.

70

m InftfcdUeMessage
g^NASTOU 1
^CNDomaMfMJtatof '
^ L W {
Q S A I
^luSgnatogCornectJonicteritifer;

££.<SRANCIassmark ., o. , j
•-gmessageType

& Di re t tT fanteMBMa^ j 0 ,4

:- cftetttranfereortferit

e£rtt«Y» ' • ' • ' .
S luReteaseCompteteMBSsage

; ^RABldOKABsReieasedltemiEs
• £j|messageType

'} fciefeaseccmptete

0,-1 -

- uete'asefcomroand

«ContrcJ»
& RanapMCssageProxy

u ^ r ^ g e t i J f e * ^ a ^ f i a h a p P a r t (")
"""! ^ getDtectTranferResponse {)

; ^getSecuityHodeComotele ()
| ^ performCommmlDonRaTap ()

. ^ ^recaveRanapPart ()
" ! g£ QetttectTraraferRequest (]

:• ^ , receiveRASftssiyimantReaijeit {)
, .#1 (& getRABAssignmaitRasponse ()

j ^perfcrmSecModeCornmad ()
! f ^ perfamluReteaseCttmiand ()

ffi 6§, pertomliiteleaseCamptete ()
]ft§ perfbrmPagfrigRequest ()

- pagjpgreouestrnessage

«&ttity» ' • ' • " >
§ ! SecurityModeCommandMessage !

\ ^emypUonltifbrmatlcri
: s^keyStatus
; &g,niessageType

• seailtymodeccxTmandmessage

-a£ntity»
fat SetinttyModeCompteteMessage

;& chosenlrrtegrityFiotectbn Algorithm
- secuitymodKompieterTiessagB | ^trw9B*nayp1ionAlgOTlthm

t£ntity».
@ paglngRequestMessage

- ^ cnDomaiilndcator
- a petmanentNAS-LC-IdenM y
^ temper aryUEldentity
».MpagaTgAreaiD
-sPagingCause
^.gbbaCN-lD

,fcmessageType

c ofr¥nprt*nessagec ontent

«EhtIty»
@ ComnionlDMesaage

^permanerW-NAS-ce-Identrty i
g message Type

^KOrttaltyaaonostlcs
^messageType

- rabasSgnmentreqmessage

«Ertttj»'.,

i£fj userPlanelnfbnTBUDn
-£g rateTceeSetifjOrMoctfted
»'& tabToBeReteased
ikgmessageType.

- rabasSgnmehtrespmessage

«% rabsSetLpOrModffed
S '̂rabsReteased
^ 4 rateFatedToSetuDCrModflec)

Figure 3.19: RANAP Message Class Diagram

Mobility Management Message

In this section, we illustrate the Mobility Management Message class diagram that

shows different types of the Mobility Management messages, each one of these mes­

sages is utilized for a specific mobility service.

The Mobility Management Message class diagram is shown in Figure 3.20.

In this class diagram, several Entity classes have been shown to represent several

types of the Mobility Management messages, these classes are; Location Update Re­

quest/Accept/Reject, Authentication Request/Response/Reject, Connection Man­

agement Service Request/Accept/Reject, as well as Paging Response messages'

classes [7]. The Mobility Management message proxy class is shown as a central

control class which is able to control and handle all mobility management requests

through having access to all these messages' classes; this access is achieved through

71

j @ AuthenticationRK^tessage :

! ^ajthe^aticryiequestMessage.'..
\ s:gc()heifrigKeySeqLienceNLm±ier
| £&spaeHatfOttet
j sgautrenteatioriParaTieterfiAND
; ii^protocoOstrimriatpr

- authentfcattonfeqmetsage

@' ALrthentteatiorRejMessage '•
^authOTtfcatoiRe^tMrasagef... j
i^Df0tocaDscrin*v3lc» \ -

} authenticatlcreejmessage

M. AuttrentfcationfiBsrtessage
^authenOcatlonRespqnseParame...

, 3^aulhentcattor*esp»isBMess3g...
- authentfcatonrssmessage

.:- toe alwTUDdateaccephnBswgB

<§ LotatlonUpdateAtceptMessage I'

' 's^ ' tacat i^ '^dehPftatton" :
^localciriUpdafngAcceptMess.jgeTvpe I
SjjjDfOtocDlDtsafrntTator
g&skfclndfcata

«£ntitY*>
@ CmServireAcceptMessage

^ari tovtef l iceptMessaoetype I
£& protocoOsolmnatot
£& skplndcator

- cmsaviceaccepi itmessape

CGntK»
^MobBtyMww^rtentMessageProxy ;

^ 'ge tLbdJp*e i *S f *a r t (")
^OBtMrrfiesponseO.
g|authen«ataiReactiori (}
{f^getfrnSeMceRecHmPart ()

^startTtner () :
%StOpTfTW <)
^9etPa£frT#esporeeMrr*>a't ()
f^rebaseMMccrine<tion{}
§^ perlbimCmServlceAccQpted ()
^peiformQriServfceRejectett ()
^ t receiveAuthenttatiDnRequest ()
fi| receMocattonupdateAccept ()
- • ' • - - - • - » <)

«£ntityi>
@ CmServtteReJMessage

* 'ijsj cmSefYiceRejKtMessa^type
- cmservicerejmessage : ^ r e J e i : t cause

% pratocotHscrlrrii-tator
0 , 1 ^ . ^ n * * ™

«erttltyj*
@ Cm5ervkeRe<*>tessage

CTgcmServiceType
,. ^ prDtocoOscrtnlnataf
igsJtpIncfcatcf
- gCpherngKeySeGuerrceNurrbsr
.- ̂ moMeStaOGnOassmark
iSmobieIdenmy

- Iocationupd3tereqme$$4ge

- (ocdtbrufjdaterejrressage

«&rtftv» '<
@ LotatlonUpdateRelMessage

: K^to«OortJpdatrt^ejectMBsageType

: SgprotocdDiscTimhator
: ^askplntfcatcw

- pagingresponsemsssagecontent

• «Entfty»

! •
: £§ pagfrxf esoonseMessageType I
;£gspareHatfOctet
• < ^ protocoDiscnnrriator

Sg mobteStdtinCbssms k
ji^mobBteldantity

ig , bcarrmUpdatingRequeiiWessageType ;

. .^JocattrWcdateiaType
Z§ beat ioiAiealdRrilifc ation
^-^ mofaleStatlonClassmartrFaUMTS
i & protocoEtealrTtfiator
.j^ddplndcatu
iigttJheraT^CeySequsncefcfumber
£§ moWeStattonaasunark
^mcfoteldentity

Figure 3.20: Mobility Management Message Class Diagram

the association/composition relationship with (1 - 0..1) multiplicity [4].

This relationship indicates that the Mobility Management message proxy class

always contains the mobility management messages classes, and the (1 - 0..1) mul­

tiplicity indicates that one object of the Mobility Management message proxy may

own zero or one object of each type of the MM messages' objects. More information

about these classes can be found in Appendix A. 1.1.

Call Control Message

The Call Control Message class diagram shows all control and entity classes that co­

operate to build the call control message; Figure 3.21 shows the UML representation

for the Call Control message class diagram.

72

<^nffl¥»
fi> SetupMessage

L^setupMBssageType
£§catedPartyBCONLffrb« :

£^caBngParty5ii>address:
K^cafedPartyStb-address j
i£gcaBng?artyBCIMurt)er •
(wyProtoceffSsCTirSetor [
L^transacticnldentifiBr \
L^stfeamldent)fl» P " - , ? " x

{BfibevacapaMhr- , . ^ tupme^ags
' c^sipDortedCodecs

'«Btfity»' '
#MerbngMessage

^atertfngMessageType 0 *
.^facffly i
S&user-user j , ajstjngmessage
* & progtesslndtator
-g protocolDtsoimnator-
s§ transactionldentifier

0 . . 1 , . - - ' '

- . . . 1

^
1

'"*®i

1 . , ^ '

«&rtfty> . „_
t C a H P r o c e e d i n ^ t e s s ^ ^iproceedingmessagG

i ^ cafrVoeeedfric^teSsagBType
^teararCapabffity

^prDgressIntfcator
3^j protomDreoiTTinatoi

s trahsac'ttonidentffier
— i

o£otitjo$
^ CaflContToWessageProxy

SJfcTSM

^start faf ier ()
^getCcPart {)
g j , preparasetifiMessage {')
|^receiveCaS\oceedng ()
^ s t o p T n e r O
^sencJCaTConfirmed i)
(ij^sendCaKonnect ()
^sendAJertlngMassage (.)
g&rec©iv8Aiertingwiessage ()
g^recerneCaflCcnnect (.)
^sendConrteclACkMessage ()
g^reeeiveSetutftessage ()
g^recelveCcnnectAckMessacje ()
{^sendDBcarcnectMewagB ()
{^recetvsRetease ()
^sendReteaseCamptete ()
^feceiveCMconnectMessage <)
i .4-

/ *
- cafcahfrmBdmsssagB

/ 0,4

&Entfty»
: H CaBCDnflrmedMessaoe :

:

Eg caXc^ftnrieciMessagVf ype 1
: Egrspaatlncfoator

;ts&cause
: ft^ccCapabitles
• 0^ ffotocoDiscrtninator
' liStransacttonldEntifler
; ^stieamlctentlfier
't^teareiCapabaty
', ^suoDOftedCodecs

y:"~ •'"''•'''*€$&»•• '• •'•• i

• # ReteaseCcmpteteMessagB ;

1 d^f^as^crnpteteMessageType ;
; £^i3rotocoIDiscrimlnatc«
i g§ transaettortdsntifler

- reteasecomptatemessage '••- •• ---

• ' 0

1

.1
«&itfty*

i # ReteaseMessag© '••
E^reieaseMessaoeType :

- reteasemGSsage,., e^protocotDBcrimratcf j
. .,.- • £& Harsactlorildertttfter i

- dBcortneetmessage: _: <*ntity» : ;
S3 DisconnectMessage :

0 - 1
 : Kg rilseonnectMessageType •

S^ protocCDficriminatci
EiJ transacferldentifier

• connect ackmessage

m^ctmessage
.1 '

' " ' " " ' *& t i t y»
© CalConnectMessage

S^comectMessageType
^ fac f t ty

'£% piogiesslndc ator
^connectedNuriber
i ^ comectedSubaddress
£& pf otocoDisoMretoi
Jjj| trareactimldentifia

«£nHty».
0 to rmect AdkMessage

.-^ccfractAckrowfedgeMessageType;

t-gjPfotocolDScrtnnator
i s transactionldentifier

Figure 3.21: Call Control Message Class Diagram

This class diagram shows several types of the call control messages classes

which are modeled as Entity classes, these classes are; Alerting, Setup, Call Proceed­

ing, Call Confirm, Call Connect, Connect Acknowledgment, Disconnect, Release, as

well as Release Complete messages' classes [7].

Each one of these classes has an association/composition relationship with

the proxy class of the call control message with (1 - 0..1) multiplicity [4]. This

relationship indicates that those messages classes always belong to the Call Control

message proxy class and the (1 - 0..1) multiplicity means that one object of the call

control message proxy may own zero or one object of each type of the call control

messages' objects. More information about these classes can be found in Appendix

A.l.l .

By modeling the MM and the CC messaging in the Traffic Handler compo­

nents, our models are able to provide the functional behavior of the UE device which

73

is necessary to generate the traffic to load the MSC.

3.4 Summary

In this chapter, we provided the UML Analysis Model for the Traffic Handler compo­

nent. This model provides the logical implementation of the functional description

for the Traffic Handler's Use Cases which are; Update Location, Originate MS Call,

Terminate MS Call, Disconnect Originating Call Disconnect Terminating Call, Dis­

tinguish Call Scenarios and Handle Traffic Use Cases.

To achieve that, we introduced the UML analysis classes for the messaging

proxies and the call scenarios. Also, we described the Use Cases' realizations which

are provided by the Traffic Handler component; the realization introduced all possi­

ble interactions and sequence flows that reflect the functional behavior of each Use

Case. Furthermore, we also introduced all class diagrams that illustrate the struc­

ture of the Traffic Handler component by showing the component's classes, their

attributes, and UML relationships between the classes.

Through the Analysis Model, the Radio Access Network Application Part

(RANAP) protocol's procedures have been modeled, those procedures generate the

radio access network messages in the IuCS Interface. Also, the mobile radio interface

protocols in the UMTS network have been modeled, these protocols are the Mobility

Management and the Call Control protocols which are responsible for representing

the UE calls' scenarios. For the Traffic Handler component, all UML diagrams and

other modeling details have been checked by a committee of senior software engi­

neers at Ericsson Research Canada through an internal formal check process [50],

where they evaluate the correctness of technical contents of the design based on

the standard specification. In next chapter, we are going to introduce the detailed

modeling of the RANAP and SCCP Controllers.

74

Chapter 4

RANAP and SCCP Controllers

In this chapter, we introduce detailed modeling for the RANAP Controller compo­

nent, this component controls and handles all interactions between the RanapSim

components. We also present the modeling of the SCCP Interface Controller com­

ponent which provides a connectivity functionality between the RanapSim traffic

generator and the CPP platform.

4.1 RANAP Controller

This section presents a detailed model for the RANAP Controller component which

is the main controller in the traffic generator design. The RANAP Controller is re­

sponsible for controlling all interactions between the Traffic Handler and the SCCP

Interface Controller components. The RANAP Controller handle all requests from

the RanapSim Manager which is represented as an Actor in this model; this com­

ponent is realized in the Use Case Model through the Attach SCCP, Detach SCCP,

Check SCCP Service, Forward Call Scenario Messages and Forward CPP Response

Messages Use Cases. In this section, we present the UML Analysis Model for the

RANAP Controller component.

75

4.1.1 UML Analysis Classes

In this section, we are going to introduce the analysis classes for RANAP Controller

component that cooperate to achieve the main objectives of this component. In

UML, the instantiated objects of these classes are used to build the interaction

diagrams [4].

R A N A P Interface Control ler Class

The Ranap Interface Controller Class is the main control class of the RANAP

Controller component.

'•Cofltrd» 1
<J) RaiiapInterfateController

«q| KtpServiceliAttached
tJcaHScenato

^setCaascens&ToTfteManagaComfnand () !
$ta^dftttach9C<7SenA»Comrnand()

| %messageforwarci ()
I ||,fawwdbetadTSCCPS«*eCemmand ()

Figure 4.1: RANAP Interface Controller Class

Figure 4.1 shows the UML representation for the Ranap Interface Controller

class, this class interacts with the Traffic Handling Controller class and the SCCP

Interface Controller class to distribute messages between them and route the re­

ceived message to the right destination. Also, this class is responsible for handling

requests from the Ranap Interface Form class. The class's responsibilities are pro­

vided by its operations, one of these operations is the message Forward operation;

this operation is used by the Traffic Handling Controller and the SCCP Interface

Controller classes to transfer the RANAP message to the Ranap Interface Controller

class. This class also provides the seep Service Is Attached and the call Scenario

data members which are used by some operations for the interaction diagrams. More

details about these class's operations and data elements can be found in Appendix

A.1.3.

76

R A N A P Interface Form Class

The Remap Interface Form Class is a boundary class that is used to model

interaction between the RanapSim Manager Actor and the RANAP Interface Con­

troller class. This Actor can only communicate with the Ranap Interface Form

class, the class UML representation is shown in Figure 4.2.

v8ounday»
KSRanapIrrterfaceform

JSSSSH^^*?," "."" TIT
Q attadhSCO>SMA*GwmMnd <)

fcifetachscCPSerAeCammand (.)

Figure 4.2: RANAP Interface Form Class

This class is responsible for handling all communications with the RanaSim

Manager, so it cooperates with Ranap Interface Controller class to forward the

Manager's commands to the proper destination. On the other hand, this class

forwards all generated traffic messages to the RanapSim Manager for following up

purposes. More details about these class's operations and data elements can be

found in Appendix A. 1.3.

4.1.2 UML Use-case Realization

In this model, we provide five sequence diagrams that realize the functional behavior

for the Use Cases that represent the RANAP Controller in the Use Case Model.

These sequence diagrams explain the main interactions for this component

to achieve its responsibilities, some of these sequence diagrams are; Attach SCCP

and Detach SCCP sequence diagrams, these sequences work to handle the manager

commands to attach or detach the SCCP Interface connection on the CPP platform

which is represented as an Actor in the model, more information about these tasks

will be explained in sequence diagrams in Section 4.1.2. The Call Scenario Com­

mands is another sequence diagram that is provided by this model, this sequence is

77

responsible for handling the call scenario commands that are issued by the Manager

by forwarding them to Traffic Handler Controller class in order to initiate the cor­

responding call scenario for each command. More information about those sequence

diagrams is given in Appendix A.2.

Next, we are going to present the sequence diagrams for the Forward Call

Scenario Messages and the Forward CPP Response Messages Use Cases.

Forward Call Scenario Messages

Figure 4.3 shows the Forward Call Scenario Messages sequence diagram.

[K'.lInteraclion3

j & traffld-tandllnqContr... : ^ ranaplnterface€o?itroH... \ @ sccplnterfaceControll. KSraftaplnterfaceFor... , 3 9 ranapSlmManaqert.,,

1: trasferMessageToHandler

2: messegef orward

1: IransferMessageToSccp

• 2 i l ; translerMessaoeToMenager

Figure 4.3: Forward Call Scenario Messages Sequence Diagram

The main objective of this sequence is to forward and transfer the generated

call scenarios' messages from traffic handler controller object to other classes. The

sequence is initiated in event 1 when the traffic handler controller object receives

a generated message from a call scenario through the transfer Message To Handler

78

operation, this message is a RANAP message that may contain a MM or CC mes­

sage inside. In event 2, the message will be forwarded to the RANAP Interface

Controller object which forwards the message in parallel to the SCCP Interface

Controller object -using transfer Message To Seep operation- and to the RANAP

Interface Form object in order to forward it to the RanapSim Manager. Further­

more, the RANAP Interface Controller object uses the parallel combined fragments

technique from UML 2.0 to indicate the parallel forwarding messages [4]. More

detailed information about these events' operations can be found Appendix A.l.

Forward C P P Response Messages

^ Interact ion4

& sccpInterfaceControlierlwCon... I \ 4> ranapInterfaeeCoritroH... I | 6> trafflcHahdiin^onfr..; : I Jf^rariapimerfaceFor.... I ^£rariapSJrift1&..

1: transferCPPMessage

2: messageForward

: I t trasferMessageToHaridler

2: messatjeForwarrf
2J, I : transferMessageToManager

Figure 4.4: Forward CPP Response Messages Sequence Diagram

Figure 4.4 shows the Forward CPP Response Messages sequence diagram. This

sequence is initiated in event 1 when the SCCP Interface Controller object receives a

message from the CPP platform through the transfer CPP Message operation, this

message is a RANAP message (it may contains MM or CC message) that comes

79

from the MSC server through the CPP platform. In event 2, the received message

will be delivered to the Ranap Interface Controller object which uses the parallel

combined fragment technique to forward the message to other objects. This message

will be forwarded to the traffic handler controller object in order to transfer it to the

corresponding call scenario control class, in parallel with this, the message will be

forwarded to the Ranap Interface Form object in order to be sent to the RanapSim

Manager. More detailed information about these events' operations can be found in

Appendix A.l.

4.1.3 UML Class Diagram

In this section, we illustrate the class diagram for the RANAP Controller compo­

nent's functionality; Figure 4.5 shows the UML representation for this class diagram.

The class diagram shows the main control classes in the RanapSim Model, it

illustrates that the RANAP Interface Controller class has many relationships with

other several classes in the model.

The Ranap Interface Controller class uses the IRanapForm Interface that al­

lows it to interact with the Ranap Interface Form class; this interface is implemented

by the Ranap Interface Form class through the interface realization relationship and

used through the dependency/use relationship [4]. On the other hand, the Ranap

Interface Form class is able to access some operations through the I Ranap Controller

Interface which is implemented by the Ranap Interface Controller class.

Furthermore, the Ranap Interface Controller class uses the ISCCP Interface;

this interface provides a set of operations that are implemented by the SCCP In­

terface Controller class, also this class is uses the ITransferMessage Interface which

is implemented by the Ranap Interface Controller class. Those interfaces allow the

Ranap Interface Controller class to cooperate with the SCCP Interface Controller

class in order to interact with the CPP platform and consequently to interact with

80

'"_' «BbuTdary»;
HIS RanaplnterfateForm

iL^managaCommaiid f
; j^sendMahage^OTiimarid () I
^attadiSCCPServiceCommand () r

; J^messageFbrward () f
| <^ctetachSCCP5ervjceCommand () f

Implements

H JRanapControBer \

' ^fbhvafdMana^rConimand () f
; ^forwardAttachSCCPService... ?
- ^fbrwardDetachSCCPService... 1

''«&iterfacea.;
H SRmapForm

{^messageForward ()

{§, «sigha!»: servfcs&AttachedO
^«39Ta!» servtelsNotAttacNdO

«friterface» -
^irrafncHandfer

^caJScenarbReq ()
\ transferMessageToHa..,

Implements

«Contrqb*:
^ RanapInterfaceControfler

i ^ sccpSefviceisAttached
•^catecenarid
^fawa>dManaqerc6mmand ()
^retCaSScenartoToTheManagerCommand ()
^IbrwardAttachSCCPSa^teCommaral ()
^messagefbrward ()
^forwardDetadTSCCPServteCcmmand ()

'«iriterface»-
H ITransf&Message

^messageForward ()

«Cqritrol» •
#» TrafficHandiingControHer

I^Userbata ~:

S'g sccpConnectionldStatePtr
j£gj sccpConnectiorildPtr
^caKcenarioReq () ?
^ generateSuggestedCormectiGnld {) ' .
^trasferMessageToHandter () ;
i^identifyMessageType ()
i§i,messageIsUnknown (}

'«frtferface»
WiJSCO*

\ f^attachSccpSeryice ()
I ^tr.ansferMessageToSccp () ;
i ^detachSccpSenrice ()

'_.' -«£cntrol».
J SCCPtnterfateController

^Ce&^'d^Calfedj^reK'
grg CeBoScd_Ca15ngAddres's
ie^ CefloScd_CaHedAddressLength
i£"s CeBoScd_CaI&ngAddressLength
£!^ CefloScd^Comectlonld
Sg CeBoScdJJserDataLength
^ CeBoScdJJserData
g. | CeDoScd_ApSetverId
^attaBiSccpServfce ()
S^setSccpSerivelsattadTedToTrue ()
g^setSccpSenyelsattadnedToFaise <)
^setSccpCcinrectionldStateTciCcinnected ()
^transferMessageToScqs ()
^ setScqaConnectionldStateTotSsEonnected () ;
^startScqDCSsccBTnectbnProcedLffe ()
HJI detachSccpService ()
^ ttansferCPPMessage ()

Figure 4.5: Control RANAP Class Diagram

the MSC server. On the other hand, the Traffic Handling Controller class imple­

ments the ITrafficHandler Interface which provides a set of operations that can be

used by the Ranap Interface Controller class. More information about the Interfaces

can be found in Appendix A.3.

81

4.2 SCCP Interface Controller

This section provides a detailed explanation for the SCCP Interface Controller com­

ponent modeling. The SCCP Interface Controller interacts with the CPP platform

through the SCCP protocol to control the call scenarios connections, also this con­

troller exchanges messages with the CPP platform through SCCP interfaces, these

messages will be routed by the CPP to the MSC server.

Several protocols provided by CPP platform to interact with, and for each

protocol there are many interfaces to communicate with. As we have explained in

the methodology section, we deal with the CPP platform through through the SCCP

protocol using two interfaces [5], these interface are:

• The Control plane interface, also called the SCCP Access Point Facade Inter­

face (SCCPApfi). This interface should be attached before using its service

through calling a C function that goes to the CPP. CPP platform provides the

CpxSccpApAttachP class to facilitate the communication with this interface.

• The user plane interface, also called the SCCP Interface (SCCI). This interface

requires establishing a connection with the SCCP Access Point in the CPP,

this connection can be called SCCP connection and each call scenario should

have an established SCCP connection to start transferring data using this

interface. This interface provides a connection-oriented data transfer. CPP

platform provides the CpxScciP class to facilitate the communication with this

interface.

This component is realized by the Use Case Model through the Control CPP

Interfacing, Disconnect SCCP Connection, Setup SCCPApfi Service, and Release

SCCPApfi Service Use Cases. In this section, we present the UML Analysis Model

for the SCCP Interface Controller component.

82

4.2.1 UML Analysis Classes

In this section, we are going to introduce the analysis classes for the SCCP In­

terface Controller component that cooperate with other classes in the components'

interactions to provide the CPP interfacing functionality.

SCCP Interface Controller Class

The SCCP Interface Controller Class is the main control class of the SCCP

Interface Controller component.

•'•-" ••• ': ;«Contt t l fe "'"''.'

SCCPinterfacecontroier
irJtolKHJMi&ddress * " '"""
^CeHoScd_C*^4d4ess
S| CeioScgjCafedAdcteBUngth
isj CeloScdjCalhijAdefressLength
i J CelloSccijComettionKi
g | CefoS«i_U»ertMMUtigth

I g§CeloStojJ*Serveld
I ^attaSsccpSetvice ()

| ^s«tSccpS»i»eIsattachedToFalse ()
^setSccpConfsecfiosiSdStateToComectea ()
fttransfe*fess3geTo5cep ()
^sstSctpCcnnectMdStateToDtstorinected ()
fj^startSccpOiscGmectto!Procedjfe()
^detachSccpSeivice (}
jgitrareferCPPMessage { J

Figure 4.6: SCCP Interface Controller Class

Figure 4.6 shows the UML representation for this class, it illustrates all oper­

ation and data members that are provided by the class, these data members have

corresponding and similar data members in the CpxScciP library that is provided

by the CPP platform [5].

In this class, we have the CelloSccLCalledAddress and CelloSccLCallingAddress

data members that imply the destination or originating SCCP node, also the Cel­

loSccLConnectionld data member identifies the SCCP connections for several call

scenarios. This class provides the CelloSccL UserData data member that implies the

data to be transferred over the SCCP connection (which is the RANAP message in

our case). The SCCP Interface Controller class is responsible for (1) handling all

83

interactions with the CPP platform, (2) providing data transfer functionalities, and

(3) controlling the SCCP interfaces. More details about these class's operations and

data elements can be found in Appendix A.1.3.

C P P System

The CPP System is a boundary class that handles and facilitates the com­

munication with the CPP platform. The SCCP Interface Controller class can only

communicate with the CPP System class in order to interact with the CPP platform.

KaJCPPSystem '

I r jttentiD j
[fjsignaSD j
fftsUrttttildWeq {)]
; ijatfadiToSewfceOm () j
; ^starteppCoftnectReei () j
[afcecmecWiajO j
\ $conr»ctCftn i) |
$§,3t3rtCpp0atafteq () j

j&data!nd() j
; %staitCppDisconnectReq () j
; ^disclnd {5 j
. j&statDetacttsq () s
; jgdstacNFtomSeniceCftn t) j

Figure 4.7: CPPSystem Class

Figure 4.7 shows the UML representation for the CPP System class, also it

shows the class data members' attachRef, clientID, and signallD, all these data

members have similar and corresponding in the CpxScciApfiProxy library that is

provided by the CPP platform [5], these data members are used to attach and detach

the SCCPApfi interface. This class cooperates with other classes to perform the

attachment and detachment operations with the CPP, forward the SCCP messages'

frames from/to the CPP, and handle the SCCP connections. More details about

these class's operations and data elements can be found in Appendix A. 1.3.

84

4.2.2 UML Use-Case Realization

In this model, we provide four sequence diagrams that realize the functional behav­

ior for the Use Cases that represent the SCCP Interface Controller in the Use Case

Model. Next, we are going to describe the sequence diagrams for the Control CPP

Interfacing, Setup SCCPApfi Service Use Cases.

Setup SCCPApfi Service

In this sequence, we illustrate the interaction messages with the CPP platform

to attach the SccpApfi Interface which is a prerequisite to communicate with the

CPP platform. The CpxScciApfiAttachP object will be included to participate with

the interacting objects.

Figure 4.8 shows the Setup SCCPApfi Service sequence diagram. This se­

quence starts in event 1 when the SCCP Interface Controller object receives a

request to attach the SccpApfi interface, this request is received through the attach

Seep Service operation which is initiated originally by the RanapSim Manager. Af­

terward, the request will be forwarded to the CPP System object which invokes the

attach To Service Req operation from the CpxSccpApfiAttachP.

Upon receiving this request, the CpxScciApfiAttachP object asks the CPP

platform to attach the SccpApfi through the CelloSccpApfi. attchToServiceReq op­

eration [5]. Once the interface is attached properly, the CpxScciApfiAttachP object

receives an attachment confirmation message from the CPP platform, this message

allows the CPP System and the SCCP Interface Controller objects to start com­

munication with the CPP. More detailed information about these events' operations

can be found in Appendices A.l and A.4.

Control CPP Interfacing

This sequence illustrates the basic flow that realizes the interfacing function­

ality with the CPP platform's interfaces. The CPP platform presents the SCCP

85

:!;Interaction2

i a : > : ^ep^scw^

1: attachSccpSenrice j

1.1: slartAttachReq
l.l.ltattachToServiceReq

1 . 1 1 1 : CelloSccpApflJVttachToServlceReq

l.l.l.l.lialtachToSerutccCfm

1.1.1.31 attachToServiceCfm

1.2:startAttachReq

; 1.3: setSccpSerivelsattaciiedToTrue

Figure 4.8: Setup SCCPApfi Service Sequence Diagram

Interface (SCCI) which provides the Connection-Oriented data transfer service that

is given by SCCP protocol procedures [14]. The Connection-Oriented data transfer

procedure divided into phases which are; the connection establishment phase, the

data transfer phase, and the connection release phase, these phases will be followed

to exchange data with the CPP platform.

In this sequence, we are making use of the SCCP Interface (SCCI) through

including the CpxScciP library. In addition, the CpxScciP library participates to

facilitate interactions with the CPP.

Figure 4.9 and 4.10 present the basic flow for communicating with the CPP

platform to establish an SCCP connection and transfer data to/from the CPP. The

sequence starts when the SCCP Interface Controller is triggered by the transfer

Message To SCCP operation, this operation transfers the User Data element that

86

i Blhteracttonl

& sccplhterfaceCohtrolter,.,

1: transferMessageToSccp

f^cPPSyslien^VBoLBrtdar... l g | ^ ^ W™%tiiffiffl

[sccpConnecttaiildState -— 2]

1: startCppCormectReq
l . l i comec tReq

1.1.1: CelloSccl_connettReiue

[CetloScci_ResuItl=Cel1oScciOK]

1: cormectRej

2.1:comectCfm

3: startCppConnectReq

4; ^tSccpConnectionldStateToCcnnected

5: transf erMessageToSctp :

[sccpConnecttonldState = = 0]

1: socpConnectionlsDisconnected

Figure 4.9: Interfacing for SCCP Sequence Diagram (parti)

implies the RANAP message, the SCCP Connection ID that identifies the call sce­

nario, and the SCCP Connection ID State that indicates the state of the connection.

As explained in the diagram, the SCCP Interface Controller object uses alternative

combined fragments (provided by UML 2.0) to identify which block to execute for

the received message [4]. This conditional fragment divides the sequence diagram

into conditional blocks, each block's condition is evaluated based on the value of

the SCCP Connection ID State data member which has been explained in details

in Section 3.1.2.

The first block evaluates if the SCCP Connection ID State is generated, this

87

state indicates that the received message is the first message for a corresponding

call scenario and the SCCP connection is not establish yet with the CPP. So, the

SCCP Interface Controller object asks the CPP System to establish a connection

through the start CPP Connect Req operation, by receiving this request; the CPP

System invokes the connect Request operation from the CpxScciP object. By invok­

ing the CelloSccLconnectReq.e, the CpxScciP object requests the CPP to establish

a connection through the SCCI interface for the corresponding call scenario [5]. If

the SCCP connection is established, the confirmation message will be received to

indicate a successful case. Once the SCCP connection is established, the SCCP

Interface Controller object changes the SCCP Connection ID State to " connected"

and invokes the transfer Message To SCCP operation. The second block checks

whether the SCCP Connection ID State is " disconnected", if this is the case, the

SCCP Connection Is Disconnected operation will be invoked to indicate the situa­

tion.

The third block will be taken whether the SCCP connection is established and

the SCCP Connection ID State is " connected". If this is the case, then the received

message will be transferred through the start CPP data Request operation to the

CPP System. Once the CPP System receives this message, it asks the CpxScciP

object to transfer the data to the CPP platform through the CelloSccLdataReq-e

operation. The transferred data is the SCCP message that contains the RANAP

message portion and most likely the mobility management or the call control message

portion [15]. Once the CPP receives the message, it forwards it to the MSC where

the processing of the message and the message response will be performed. Once

the MSC process the message, it transfers its response message to the CPP platform

which forwards the message to the CPP System through the CpxScciP object. By

having this sequence, we achieve the connectivity functionality to the CPP and

consequently to the MSC server.

88

i ^ I n t e r a c t i o n !

' "l> sccpinterfaceCOfttroDerv.. ; H& cFPSysteni;*tBotJndar,, •. '- - gaScciP;Ctjx :.. ^ % C f f i f f i ?

[sccpConnectlonldSlate'== 1]

1: startCppDataReq

l . l :datoReq

1.1.1: CelloSccl_dataReq_e

2:dalalnd

2.1:datalnd

j j 2 .1 .1: transferCPPMessage

; [sccpConnectlonidState = = 3]

1; startSccpOisconnectionProcedure

Figure 4.10: Interfacing for SCCP Sequence Diagram (part2)

The forth block checks whether the SCCP connection state is " to be discon­

nected" , if this is the case, the SCCP connection disconnection sequence diagram

shall be started for the corresponding call scenario. The " to be disconnected" state

is originally set by the call disconnection sequence diagrams in the Traffic Handler

component.

The Detach SCCPApfi Service is another sequence diagram provided by the

Detach SCCPApfi Service Use Case, it illustrates a sequence of messages to detach

the SccpApfi interface. No more SCCP services will be provided after detaching this

interface. The Disconnect SCCP connection is another sequence diagram that works

to disconnect the SCCP connection for a corresponding call scenario at the SCCI

interface. No more SCCP services will be provided for that call scenario after that.

More detailed information about these events' operations and sequence diagrams

can be found in Appendices A.l, A.2, and A.4.

89

4.2.3 UML Class Diagram

This section describes the class diagram for the interfacing functionality with the

CPP platform through the SCCP protocol. Figure 4.11 shows the UML representa­

tion for this class diagram.

«Controf».
S SCCPintfirfaceContrafcr

t^Cel^BjCdiiedflddWss j
g^CeSoSca.CalnoAddress f
&§CetoSca_.C3fedAddresslength *
££Celc6cQj:ainQAdctres5Length \
£§CeloSco_Conne(iionld >
iiig CeloScaJJserDataLEnath
SgCdbScdJJserData
|::^CetoScd_ApSecvBrtd >
j^attathSccpService () \
^setSccoSeWtsattachedToTrue () ;
^setscqjSwweisattathedToFdse () . I
^setScqaComecflonldStateToCormected () ;
^transferMessaQeToSccp (•> s
^setSccpCOTnecttonkStateToOsccmected () i
^startSccpDiscannBctiorProcedur© [) t
^detachSccpServtce () :
C^tjansferCPPMessage () >
^Adgr^.sccpCoiviecttoraEDfeconnectedC)

Requires opera tions

' «*rterface»
W\lCPPSystem

{&; start* ttathReq [)
^startCppConnettReq ()
(g,startCp[dsconiie£tR9q ()
fi^staFtDetachfteq ()
63>startCppOataReo ()

i (& transferMessaoeToScep ()

*Boundaiv
l#CPPSystem

i-£3ttachRef
CgtBentlD

^star tAt tadTReqO'
1 \ -^attachToServiceCfTT! ()

•^startCppCnmectRea ()
c p p i ^ c o n n e c t C f m ()

: %startCppDalaReq ()
! ^ d a t a l n d C)
= ^statCrafisconrectReq ()

l ^ d b c i h d O -
: ^StartDetachReq ()
I ^detachFuxnSerwceCfm ()

^ <dnterfacs» ..
M= ICfixSapAph

^attachtoServiireReq't") \
^detachFrornServtceReq () \

1 j CpxStcpApflAttathP "••

Eatt3thRef •
. jdsnt lD \

^attachTOServte'eRsei'O' "
^attachToServfceCfm ()
^.detachfromServtceReq () :

. ^detacWromSeiviceCtrn () ;

«Jr>taface»
T-tCPPwahQac

^cormectRej ("J
^cormectChn [)
^ d a t a l n d . O
^attactiToSaviceCfm ()
^d te t lnd ()
j^detachFtGmSetviceCftn ()

«riterfaee»
'$i JCpxSai

g^eormectReq ()
£*,dataReq()
g&dscRgq ()

Irrcternents

i J S e » • •

^comec tReq (') i
$jj, connect Cfm () 1
G§,datafieq (>

= l&d*tamd ()
^d j scReoO
^.c fec lndO

Figure 4.11: Interfacing for SCCP Class Diagram

The class diagram shows all classes that participate to communicate and in­

teract with the CPP platform. It shows the SCCP Interface Controller, the CPP

System, and the CPP library classes and how they cooperate through UML rela­

tionships. The SCCP Interface Controller class is associated with the CPP System

class through the ICPPSystem interface, where the SCCP Interface Controller has

an association relationship with (1 - 0..*) multiplicity [4]. This notation means that

one object of the CPP System is associated with one or many objects of the SCCP

90

Interface Controller.

The SCCP Interface Controller class uses services from the ICPPSystem in­

terface which is implemented by the CPP System class. In the same way, the CPP

System uses the ISCCPwithCPP interface which is implemented by the SCCP Inter­

face Controller. Furthermore, the CPP System class implements the ICPPwithCpx

interface to provide services for the CPP library classes which are the CpxSccpAp-

fiAttachP and the CpxScciP classes, in the same way, these classes implement the

ICpxSccpApfi and ICpxScci interfaces respectively to be used by CPP System class

in order to communicate with the CPP platform. More information about Interfaces

and classes can be found in Appendices A.l, A.3, and A.4.

4.3 Summary

In this chapter, we modeled the functional behavior of the RANAP Controller and

the SCCP Interface Controller components through the UML Analysis Model. We

provided the UML logical implementation for the RANAP Controller component

which behaves as the main coordinator for all interactions that occur in the Ranap-

Sim system. On the other hand, we modeled the SCCP Interface Controller com­

ponent that handles the CPP platform interfacing through the SCCP protocol, as

a consequence of this, the RanapSim components will be able to communicate with

the MSC server.

In the UML Analysis Model for those two components, we identified the analy­

sis classes and built the Use Cases' realizations that illustrate all possible interactions

that reflect the functional behavior of each Use Case. In addition, we presented all

class diagrams that show the structure of the provided model. The correctness of

the RANAP Controller and the SCCP Interface Controller components' models has

been checked through the formal check process at Ericsson [50].

91

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we presented a model for a Traffic Generator to load the Mobile

Switching Center (MSC) by generating the control plane traffic (signalling) on the

Universal Mobile Telecommunications System (UMTS), the traffic generator model

can be used for the MSC load testing applications. We proposed high level analysis

and design for the Radio Access Network Application Part (RANAP), the Mobility

Management, the Call Control protocols for the Circuit-Switched network.

We have modeled the RanapSim Traffic Generator that provides the functional

behavior of the RANAP, the MM, and the CC protocols to generate traffic on the

IuCS interface between the RNC and the MSC. Most of the traffic generator models

-that are used for the same purpose- provide a solution by modeling the whole

UTRAN components' protocols to generate traffic towards the MSC. Based on this

fact and based on our technique of modeling, we can say that the RanapSim model

is an efficient solution to generate traffic towards the MSC server.

We provided a UML Use Case Model which describes the RanapSim functional

requirements in terms of Use Cases; the Use Case Model illustrates the main specifi­

cations and the functional behavior of the proposed traffic generator. Furthermore,

92

we provided a UML Analysis Model which describes the structure of the RanapSim

system, in this model, we identified the analysis classes, illustrated the sequence

diagrams, and built the class diagrams that provide the RanapSim's logical imple­

mentation of the functional requirements that we identified in the Use Case Model.

The RanapSim traffic generator models have been checked through a process called

formal check, this process is used to evaluate the correctness for technical contents

for any design at Ericsson.

In terms of functionalities, the RanapSim provides models for many call sce­

narios that represents the mobile station. These call scenarios are; Location Update,

Mobile Originating Call, Mobile Terminating Call, and Call Disconnect. Through

these call scenarios, the signaling traffic can be generated to load the MSC in order

to measure the performance of the MSC; this traffic generator is not intended for

verifying the actual MSC design functionality.

Furthermore, we modeled the RANAP protocol's procedures that have been

used to handle the call scenarios messages and to generate the RANAP messages.

Also, those procedures' models have been used to represent the radio access network

signalling part of the RNC server. The RANAP procedures that have been modeled

are; Paging functionality, Radio Access Bearer (RAB) Management, UE-CN direct

transfer, Security Mode Control, Initial UE Message, Iu Release, as well as Common

ID.

Finally, the RanapSim Traffic Generator has been modeled based on the CPP

platform specification through the SCCP protocol. This platform provides two func­

tionalities; the protocol transport functionality which has been utilized in this model

to communicate with the MSC, and the execution functionality which can be utilized

to execute the real implementation of this model.

93

5.2 Future Work

As a future work, the real implementation for the RanapSim Traffic generator mod­

els can be done by making use of the UML Use Case and Analysis Models that have

been provided in this thesis. The models implementation shall present the Ranap­

Sim Tool that can be used for the MSC load testing. In the real implementation,

traffic consists of many test cases that can be generated out of location update,

mobile originating, or mobile terminating call scenarios models; by generating test

cases, we can make sure that the MSC will be properly loaded. Besides, the Ranap­

Sim Tool should have the RanapSim Manager, Server, GUI, and CLI components

implemented.

Furthermore, this traffic generator can be modeled using the executable UML,

the resulting model using this language is composed by a set of modeling elements

which are; domain chart, class diagram, action language, and statechart diagram [4].

In addition, as a future work, more mobile call scenarios can be modeled using

the call control and the mobility management protocols' models; the Call Forwarding

and Call Waiting are examples of other mobile call scenarios that can be modeled

and integrated easily within the RanapSim system.

The traffic generation models that are proposed in this thesis handle the traffic

of a Radio Network Controller (RNC) that is communicating with one MSC server.

As a future work, the traffic distribution in a multi-processor application can be

modeled to generate traffic similar to multiple RNCs traffic to have extremely high

traffic load generation.

Finally, as a future work, it is possible to reuse some of the modeled compo­

nents to model a traffic generator to load the Service GPRS Support Node (SGSN).

Generating SGSN call scenarios will require models for the GPRS Mobility Man­

agement protocol and the GPRS Session Management protocol; these protocols will

be carried through the RANAP protocol and the call connections can be handled

through the SCCP protocols. Based on that, many components from the RanapSim

94

model can be reused for this purpose such as; the SCCP Interface Controller and

the RANAP Controller.

Appendix A

A . l UML Analysis Classes

The UML Analysis Classes for the RanapSim Model are illustrated in this section,

the following are the analysis classes with their operations and data elements for the

messaging proxies' classes:

A. 1.1 Messaging Proxies Classes

RanapMessageProxy

Figure A.l shows the UML representation for this class.

RanapMessageProxy

|5§,getDitectTianfefRespome <)

i | psffcrmCofrroonlDanRanap C S
SfJreostveRarBpPart ()
^getDirectTiarefe<ftequ«t C)

J^getRABAsSgrinwmgspcree ()
gJ,psffe»mSecf4«teConiniad4)

%peformluR«feasi»Camptete {)
S | pafermPagri0<eqLiest C)

Figure A.l: RANAP Message Proxy Class

96

operations for RanapMessageProxy:

RanapMessageProxy::getUeMessageRanapPart

Operation Parameters: requestType; specifies which call scenario is required.

The requestType could be location update request, CM service request, or paging

response.

Possible return messages: InitialUeMessage

The purpose of the Initial UE Message procedure is to establish an Iu sig­

naling connection between the MSC domain and the RNC -for specific UE- and to

transfer the initial NAS-PDU message to the MSC. The InitialUEMessageController

object will call this operation to get an Initial UE message for certain call scenario

specified in the requestType. Based on the requestType, this operation will invoke

an appropriate operation in the MM proxy to get the proper NAS-PDU message.

Upon receiving the NAS-PDU message (MM), this operation will initiate the Ini­

tialUeMessage (RANAP) by adding other data fields such as; LAI, SAI, and Iu

signaling connection Identifier.

RanapMessageProxy: :getDirectTranfer Response

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: DirectTranferMessage

The DirectTransferController object will call this operation to get the response of

the direct transfer request which will usually carry the NAS-PDU message (e.g.,

CC or MM). The purpose of the Direct Transfer procedure is to carry UE-MSC

signalling messages over the Iu Interface. The UE-MSC signalling messages are not

interpreted by the RNC. The UE-MSC signalling messages are transported as a pa­

rameter in the Direct Transfer messages. The UE side is represented by the MM

97

message proxy or the CC message proxy.

RanapMessageProxy::getDirectTransferRequest

Operation Parameters: None

Possible return messages: DirectTransferMessage

The DirectTransferController object will call this operation to create direct trans­

fer message request that will carry a CC message to start a call control procedure

such as; call setup, call connect, or call alerting. typeOfCcService parameter will be

passed -through this operation- to the getCcPart operation.

RanapMessageProxy::performSecModeCommad

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: SecurityModeCompleteMessage

The SecurityMode Controller object will call this operation. This operation

carries the Security Mode Command to the RANAP Message Proxy to decode the

message and generate the appropriate response. For more information, see the get-

Security Mode Complete operation described next.

RanapMessageProxy::getSecurityModeComplete

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: SecurityModeCompleteMessage

This operation will be called by the class's object itself to perform the security mode

complete procedure which is a RANAP procedure. This operation responds to the

SecurityModeCommandMessage by extracting the Encryption Information IE and

the Integrity Protection Information IE, then choosing appropriate ciphering and

98

integrity alternative algorithms. When the integrity and the ciphering configuration

are successfully chosen for the radio interface procedure, the object of this class shall

return a SECURITY MODE COMPLETE message to the caller in order to send it

to the MSC.

RanapMessageProxy::performCommonIDonRanap

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: None

The CommonID Controller object will call this operation to forward the Com­

mon ID message to the RANAP Proxy object, and to perform the Common ID

procedure there. In real life, the purpose of the Common ID procedure is to inform

the RNC about the permanent NAS UE Identity (i.e., IMSI) of a user. This is used

by the RNC to create a reference between the permanent NAS UE identity of the

user and the RRC connection of that user for RNC paging procedure. This opera­

tion will save the received "IMSI" in the CommonlDMessage object, in order to use

it for other operations for that UE or user. We call this operation of attaching the

"IMSI" to the UE, Location Update - IMSI attach.

RanapMessageProxy::receiveRanapPart

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: None

The DirectTransferController object will call this operation to forward the received

RANAP message to the RANAP proxy only, without expecting any return message.

RanapMessageProxy::receiveRABAssignmentRequest

99

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: RABAssignmentRespMessage

The RABAssignmentController object will call this operation to handle this request.

This operation will check the messageType to recognize the message. Based on the

message type it call an appropriate operation to perform the RAB Assignment pro­

cedure and generate the response. Also, this request contains the list of RABs to

be established or modified. In this case the getRABAssignmentResponse operation

will be called.

RanapMessageProxy::getRABAssignmentResponse

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: RABAssignmentRespMessage

The receiveRABAssignmentRequest operation will call this operation, which will

forward the RAB list to be established or modified. This operation will generate

the RABAssignmentRespMessage -which will confirm the RAB request that comes

from the MSC- and send the established/modified RAB ID to the MSC. This oper­

ation will simulate that the RABs are established by the RNC for a given UE; this

operation will be understood by the MSC.

RanapMessageProxy::performPagingRequest

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: TRUE when the paging request received successfully,

or FALSE if not.

The purpose of the Paging procedure is to enable the MSC to request the RNC to

contact that UE. Normally, the MSC will initiate the procedure by sending pag-

ingRequestMessage. The paging message shall contain various IEs such as; IMSI,

100

TMSI, paging area, and others. Based on the message received, the RNC will send

broadcast or uni-cast message to find the needed UE. This operation will receive

the paging request, save some of the IEs that could be needed in the paging re­

sponse message, and return "True" to the operation initiator to initiate the Paging

response message. In this case, the initiator will be the CallTerminatingController

object. The Paging request is a RANAP message, but the Paging response is an

MM message.

RanapMessageProxy::performIuReleaseCommand

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: IuReleaseCompleteMessage

For more details, see next operation.

RanapMessageProxy::performIuReleaseComplete

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: IuReleaseCompleteMessage

The purpose of the Iu Release procedure is to enable the MSC to release an Iu con­

nection and all RNC resources related only to that Iu connection. The Iu Release

procedure will be initiated when the transaction between the UE and the MSC get

completed. Also, the Iu Release procedure is initiated for other reasons, not impor­

tant for our system. The luRelease Controller object will invoke the performluRe-

leaseCommand operation. This operation will carry the IuReleaseCommandMessage

to the RANAP Message Proxy to release the Iu signaling connection for the corre­

sponding UE. While invoking this operation, the performluReleaseComplete will be

invoked to perform the release and generate an appropriate response to send back to

101

the initiator. The performluReleaseCommand will get the IuReleaseCompleteMes-

sage and send it to its initiator in order to send that to the MSC.

ft pagingRequestMessage
i j messagifype
i j cnDomaWodscator
g | permar»«t»NAS-W£-fctentity
S|j tempotarvUEWenWy'
E||p3glngAreaE>
Ej|pagingeatBe

^ E n t i t y
A InitiatUeMessage

; SJNAWOU I
• B'| CrMDemairftidfeatef j
: S i LAI !
KlSAI !
g^It^gnain^OT»»ctkrtdentJS«r j
B|gtobaIRNC-!D I
Ej|GER»fClas$m»rt; _ j

••/ ."*eytnr»: •';
RABAss'gnmentftespMessage

is^m^agetype
BijiabsSetupOtModifted
iSyAsRsleased
BQ, rabtfatedToSeti^Ot Modified

' " ' • • ' " ' • . " ' « & « & » " • " • : " ' • ' • ' - • ' • •

& Se<iirityModeCommamWc553ge
^messagafype

eg erwryptteUnfoinattw
£si«t'6yStatus

\ ft SeairityMmieCompieteMessage

i'q|rn<Xagefvp« "'
I s^chosenlnte^ityfto&sctwi Algorithm
; Kf,cho«»nBKKpttanAlgsithm
i s^aittcattvDiagriosUcs

' ft SecurityModeCompleteMessage
-• BSjirressageType

KgChisserilnteorit'sPiotectton algorithm
iif| chosengrra ypttanAlgorrthm
££ a iticalityDiagnostKs

v" - «EnHty» !
ft CcHRHtoniOMessaoe

fr|msssig«fyp<f " ']
islc«rrTwant-H*S-U6-Identitv j

* & * » » ' : ; • ' • • ' • ' • • ' " " • '

: # DirectTranfefMesssge

'. |:|mes3gefvpe
' sgNAS-PDU
iiSSAPl

ft IUReleaseComroarKMe«age

: ggeauw

•fEmity**:'
fi RABAsstgnmentReqMessage

^message type
&% userPtenelnformatten
B | rabsTee»»SetupQiM<sdifed
B» labToBeReteased

r •'•'"-:: : *Bitity;»
ft IuRcIeascComuIeteMessage

: SJ mSssagefypa
! KJRAKdOfRABsDataVdimwSepwtUst :
| K&RABIdOfRABsRefeasedltTOlEs

Figure A.2: Ranap Message Proxy's Entity Classes

Figure A.2 shows the Entity classes located in the RanapMessageProxy class.

102

MobilityManagmentMessageProxy

This class works as an agent or proxy for receiving, decoding, preparing, and for­

warding various Mobility Management (MM) messages. Figure A.3 shows the UML

representation for this class.

Class Data Members: T3230; this is a timer which is started by the Mobility Man­

agement Message Proxy when the CmServiceReqMessage is sent, and stopped when

the CmServiceAcceptMessage or the CmServiceRejMessage is received.

i i ^ MobilityManagmentMessageProxy

i£g'T3230
f^geSocMpdKeqMmPart (j
^gstMmResponse {)
%authenticationReaction (}
|j,locattonUpdateAccept!)
fttocatiom*dateComptete ()
(^getQnServiceReqMmPart ()
j|reeetveMmPaft ()

H $ t a r t T l m e r {)
^stopTimer ()
S|getPagingResponseMmPa't ()
^rete«s«MMconnsction ()
^taeatfonUpdateRej ()
^tocattonUpdateFaiure ()
lllpeifoimCmSerwceAccepted (5
^perforniCrnServiceRejected {)
U&receiyeAuthenticationRequest ()

Figure A.3: Mobility Management Message Proxy Class

operations:

MobilityManagmentMessageProxy-getLocUpdReqMmPart

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

103

Possible return messages: LocationUpdateReqMessage

The RanapMessageProxy object will call this operation. The normal location up­

dating procedure is used to update the registration of the actual Location Area of

a mobile station in the network. The location updating type information element

in the LocationUpdateReqMessage shall indicate the IMSI attach. This operation

will be responsible for assigning values to the IEs in the LocationUpdateReqMes­

sage such as; the locationUpdatingRequestMessageType, LAI, protocolDiscrimina-

tor, and others. The return message from this operation will be sent through the

Initial UE Message to the MSC to start the location update procedure.

Mobility ManagmentMessageProxy::getMmResponse

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: Mobility Management message response

The RanapMessageProxy object will call this operation. This operation will carry

the MM message (request), invoke an appropriate operation to get response, and

return the response back to the initiator. In this case, the getMmResponse will

carry the authenticationReqMessage -coming from the MSC- and will return back

either the authenticationResMessage or the authenticationRejMessage.

MobilityManagmentMessageProxy::authenticationReaction

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: authenticationResMessage or authenticationRej Mes­

sage.

The MM message proxy object will recognize the authenticationReqMessage by

104

checking the messageType, after that it will invoke the authenticationReaction to

accept or reject the authentication procedure. The purpose of the authenticationRe­

action operation is to permit the network to check whether the identity provided by

the mobile station is acceptable or not. Also, this will allow the network to provide

parameters enabling the mobile station to calculate a new UMTS ciphering and in­

tegrity keys. Furthermore, this operation permits the mobile station to authenticate

the network.

After calculating the ciphering integrity keys properly, the authenticationReaction

will return back the authenticationResMessage to indicate the acceptance or the

authenticationRejMessage to indicate the rejection. Since we are concentrating on

traffic generation, we will indicate acceptance all the time unless the case requires

rejection.

MobilityManagmentMessageProxy::receiveLocationUpdateAccept

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

For more details, see next operation.

Mobility ManagmentMessageProxy::receiveLocationUpdateRej

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

The RanapMessageProxy will forward the MM message to the MobilityManag-

mentMessageProxy object. This object will check the value of the messageType

as follows:

105

If the messageType = "xxOO OOIO"

This means that the MM message is LocationUpdateAcceptMessage. So, the re-

ceiveLocationUpdateAccept operation will be invoked to indicate that the IMSI is

activated in the network and to store the received location area identification (LAI).

If the messageType = "xxOO 0100"

This means that the MM message is LocationUpdateRejMessage. So, the receiveLo-

cationUpdateRej operation will be invoked to indicate that the IMSI is not activated

in the network and to store the received rejectCause.

Mobility ManagmentMessageProxy::getCmServiceReqMmPart

Operation Parameters: None

Possible return messages: CmServiceReqMessage

The RanapMessageProxy object will call this operation. This operation will gener­

ate the CmServiceReqMessage and return it back to the initiator. This message will

be carried by the Initial UE Message (RANAP Message) in order to establish MM

connection in the MSC side. The CmServiceReqMessage is the first message in the

call originating scenario. While the execution of this operation, the timers T3230

(MM timer) and T303 (CC timer) shall be started.

MobilityManagmentMessageProxy::performCmServiceAccepted

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

For more details, see next operation.

Mobility ManagmentMessageProxy::performCmServiceRejected

106

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

The RanapMessageProxy will forward the MM message to the MobilityManag-

mentMessageProxy object. This object will check the value of the messageType

as follows:

If the messageType = "xxlO 0001"

This means that the MM message is CmServiceAcceptMessage. So, the performCm-

ServiceAccepted operation will be invoked to indicate that the CM service request

is accepted and the MM connection has been established. Timer T3230 shall be

stopped.

If the messageType = "xxlO 0010"

This means that the MM message is CmServiceRejMessage. So, the performCmSer-

viceRejected operation will be invoked to indicate that the CM service request can

not be accepted. Timer T3230 shall be stopped.

Mobility ManagmentMessageProxy::receiveMmPart

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

The RanapMessageProxy object will call this operation. This operation will carry

the MM message, and invoke an appropriate operation to receive the MM message

without returning any response back to the initiator. The receiveMmPart will carry

various messages such as; CmServiceAcceptMessage, CmServiceRejMessage, Loca-

tionUpdateAcceptMessage, or LocationUpdateRejMessage.

107

Mobility ManagmentMessageProxy::getPagingResponseMmPart

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: PagingResponseMessage

At reception of a pagingRequestMessage (RANAP message) from the MSC, the

RanapMessageProxy will invoke this operation from the MM message proxy. The

getPagingResponseMmPart will create a PagingResponseMessage (MM message) as

a response to the paging request message. The PagingResponseMessage shall be

sent to the MSC to indicate that the required UE is located, the paging procedure

is completed, and the MSC can start contact that UE. In our model, this UE rep­

resent the MS call terminating entity. The PagingResponseMessage will be the first

message sent from the MS call terminating entity.

Mobility ManagmentMessageProxy::releaseMMconnection

Operation Parameters: None

Possible return messages: None

When the CC proxy receives a ReleaseMessage, it will also ask the MM proxy

-through releaseMMconnection operation- to release the Mobility management re­

sources to complete the release procedure at the UE side.

Mobility ManagmentMessageProxy::startTimer

Operation Parameters: timerld; indicates the timer identity

Possible return messages: Boolean

This operation shall be invoked when the MM message proxy requires to start a

timer which belongs to the Mobility Management procedures.

108

Mobility ManagmentMessageProxy::stopTimer

Operation Parameters: timerld; indicates the timer identity

Possible return messages: Boolean

This operation shall be invoked when the MM message proxy requires to stop a

timer which belongs to the Mobility Management procedures.

109

S pagingRequestMessage
s ; |mes is^ ty (»
Kg cnOomaWhd&cator
m petmmaWNAS-liE-Jdaitity
BH tamper avieidsntit^
ggpngingArealD
egpagingCause
B|giot«KN-lD

«<Enttty»
ft InitiaWeMessage

i ejmesssgaTvpe
; i |NAS4'0U

: g § U l

gj|iuSignalngeerm«ttaidd^tjftef
: E|gtob<StrC-lD
; BSjGERANCtassmarl:

<€Mlty*
@ RABAssignmentRespMessage

I KjmessagsType
I Ka'dssSetupOiModited
! 8Jr«ibsReteaswS
I g^rabsFatedToSetupOtModifted
: gĵ rabsFaJedToReleased

' "«6 l»ty .
@ SecurityModeConimandMessage

sj|)ntegritvRotectioriInfo!iTOtt3r>
S J enct ypticrtlrtfotmata)
tl.teystat.us

;'•'! :?: «Enttty»
: S SKurityModeCompieteMessage
' t § messagstype
j e^crK»enIntesrtU-Piot<Ktm Algwlthm
i i'^chosenBxiwtiOTAlasithm
i OiCTittcalttyD&grtosaes

: «6n»V»
! ft SecurityModeCompleteMessage
'. Bjmessagetvps
• KjCrx>«nIr>tegtitV'PiotettK>ri Algorithm

1 ^ chosenEna "/ptionAlgorithm
BjjciiticattyDiagnostics

«B)Bty»
ft CommonlDHessage

I simessagefyp*
; ejpe(rrBriei'it-NAS4je-IdenW;^ ,

• oEnttt?»
' # Direct TranfetMessage
: ig^messageT^pe
; igNAS-POU
SSAPI

I " «Enttty»
ft luReteaseComnMndMessage

, B|,rnsssaaeT>pe
K|C3U59

I 8 RABAssjgnmentReqMessage

EjlmBssagefype
I | i userPbnelnfotroaBon
1 | rabsToBsSetupQiMccSrfed
i t i , rabToBetteleased

ft iuReiea$eCor»pi«teMe»age
S|me»agetype
&§RABIdCKRJ>BsOaUVcium*«portU« i
SRABIdOfRABsRetessedRemlB

Figure A.4: Mobility Managment Message Proxy's Entity Classes

Figure A.4 shows the Entity classes located in the MobilityManagmentMessageProxy

class.

110

http://tl.teystat.us

Cal I ControlMess ageProxy

This class works as an agent or proxy for receiving, decoding, preparing, and forward­

ing various Call Control (CC) messages. Figure A.5 shows the UML representation

for this class.

I # CallControlMessageProxy
ri |T303
ISj|"f310
! §|T313 ___
: ^s tar t i f iW (}
j ftgetCcPat {5
; ® pr*par*SetMpMes$age (}
; i|receke€38Pr<xe«fr>g {)
; ^stopTkmr (')
; ^sendCalCcrtimed ()
: ^sendCaKorsnect { j

• ^s«ncfCormectittl*le$«ge {)
: fj^recefveSefupMesas* {)
i ^receweComectAdMesMge {)
i fjflsandDisconnectMessage {)
: H|r«:eiveRete5e {)
SgjsendReteasetompfete ()

\ fereceiveDtscomecWessage {)

Figure A.5: Call Control Message Proxy Class

Class Data Members

T303: this is a timer which is started by the Call Control Message Proxy (origi­

nating side) when the CmServiceReqMessage is sent to establish a mobile originating

MM connection, and stopped when the CallProceedingMessage is received.

T310: this is a timer which is started by the Call Control Message Proxy (orig­

inating side) when the CallProceedingMessage is received at the MS call originating

entity, and stopped after the MS call originating entity receives a CallConnectMes-

sage and send ConnectAckMessage.

I l l

T313: this is a timer which is started by the Call Control Message Proxy (ter­

minating side) when the CallConnectMessage is sent from the MS call terminating

entity, and stopped after the MS call terminating entity receives a ConnectAckMes-

sage.

operations for CallControlMessageProxy:

CallControlMessageProxy::getCcPart

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message. typeOfCcService; indicates type of service that the

CC proxy should provide.

Possible return messages: Call Control message response

The RanapMessageProxy object will call this operation. This operation carries -as

a parameter- the CC message or/and typeOfCcService, to indicate the CC proxy

which operation need to be performed, and return the response back to the initiator

-if applicable-. Based on the parameters of this operation (CC message and type­

OfCcService), and based on which entity this operation shall be performed (originat­

ing or terminating entity), the CC message proxy will perform the proper operation.

CallControlMessageProxy::prepareSetupMessage

Operation Parameters: None

Possible return messages: SetupMessage

The CallControlMessageProxy object (at the MS call originating entity) will call

this operation. This operation will prepare the SetupMessage which shall contain

all the information required by the MSC to process the call. In particular, the

SetupMessage shall contain the calling and the called party addresses information.

112

Also, the SetupMessage initiates a mobile originating call establishment.

CallControlMessageProxy::receiveSetupMessage

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

Upon completion of the MM connection (for the terminating side), the call control

entity of the MSC shall send a SetupMessage to its peer entity (CC) at the MS call

terminating entity. The CallControlMessageProxy object (at the MS call terminat­

ing entity) calls this operation. This operation will receive the SetupMessage and

will indicate the successful compatibility checking. This message is sent by the MSC

to the MS call terminating entity to initiate a mobile terminated call establishment.

CallControlMessageProxy: :sendCallConfirmed

Operation Parameters: None

Possible return messages: CallConfirmedMessage

As an acknowledgment of successfully receiving the SetupMessage, the CallCon­

trolMessageProxy (at the MS call terminating entity) prepares and sends the Call­

ConfirmedMessage by invoking this operation. All this happens to indicate that the

incoming call request for the MSC has been confirmed.

CallControlMessageProxy: :receiveCallProceeding

Operation Parameters: NAS-PDU: points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

113

Once the MSC receives a CallConfirmedMessage from the MS terminating entity,

the call control entity of the MSC will send a CallProceedingMessage to the MS

originating entity. The CallControlMessageProxy object (at the MS call originat­

ing entity) calls this operation. Through this operation, the CallProceedingMessage

shall be received to indicate that the requested call establishment information has

been received at the terminating side.

CallControlMessageProxy: :send AlertingMassage

Operation Parameters: None

Possible return messages: AlertingMessage

Upon completion of the RAB Assignment Procedure at the MS terminating entity,

the CallControlMessageProxy object -in this entity- will prepare and send the Alert­

ingMessage by invoking this operation. This message will be sent to the call control

entity at the MSC to indicate that the alerting procedure has been initiated at the

MS terminating entity.

CallControlMessageProxy::receiveAlertingMessage

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

Once the MSC receives an AlertingMessage from the MS terminating entity, the

call control entity of the MSC will send a corresponding AlertingMessage to the MS

originating entity. The CallControlMessageProxy object (at the MS call originating

entity) invokes this operation. Through this operation, the AlertingMessage shall

be received to indicate that the alerting procedure has been initiated at the MS call

terminating entity.

114

CallControlMessageProxy::sendCallConnect

Operation Parameters: None

Possible return messages: CallConnectMessage

The CallControlMessageProxy object -at the MS call terminating entity- prepares

and sends the CallConnectMessage by invoking this operation. This message will be

sent to the call control entity at the MSC to indicate that the call has been accepted

at the called entity.

CallControlMessageProxy::receiveCallConnect

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

Once the MSC receives a CallConnectMessage from the MS terminating entity, the

call control entity of the MSC will send a corresponding CallConnectMessage to

the MS originating entity. The CallControlMessageProxy object (at the MS call

originating entity) invokes this operation. This operation receives the CallCon­

nectMessage which indicates.

CallControlMessageProxy::sendConnectAckMessage

Operation Parameters: None

Possible return messages: ConnectAckMessage

The CallControlMessageProxy object -at the MS call originating entity- shall, upon

receiving a CallConnectMessage, attach the user connection. Also it will prepare

and send the ConnectAckMessage by invoking this operation. This message shall

115

be sent to the call control entity at the MSC to acknowledge the offered connection.

CallControlMessageProxy::receiveConnectAckMessage

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

Once the MSC receives a ConnectAckMessage from the MS originating entity, the

call control entity of the MSC will send a corresponding ConnectAckMessage to

the MS terminating entity. The CallControlMessageProxy object (at the MS call

terminating entity) invokes this operation. This operation receives the Connec­

tAckMessage which indicates that the MS terminating entity has been awarded the

call.

CallControlMessageProxy::sendDisconnectMessage

Operation Parameters: None

Possible return messages: DisconnectMessage

Upon receiving a Call Disconnect command from the system Manager, the CallCon­

trolMessageProxy object -at the originating or terminating entity- shall stop all the

running timers in the corresponding entity and send DisconnectMessage to request

the MSC to clear an end-to-end call connection by invoking this operation. The

DisconnectMessage contains a "cause" information element (IE) which indicates the

disconnection cause at the MSC side.

CallControlMessageProxy::receiveDisconnectMessage

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

116

Management actual message.

Possible return messages: None

Upon the MSC receive a DisconnectMessage from any entity in the end-to-end con­

nection, it will send a corresponding DisconnectMessage to the other connected

entity. The CallControlMessageProxy object (at this connected entity) will call this

operation to receive the DisconnectMessage; this message indicates that the end-to-

end connection has been cleared. The cause of the disconnection can be found in

the "cause" IE.

CallControlMessageProxy ::receiveRelease

Operation Parameters: NAS-PDU; points to the Call Control or the Mobility

Management actual message.

Possible return messages: None

Once the MSC receives a DisconnectMessage from any entity in the end-to-end

connection, it will send a ReleaseMessage to the connected entities. The CallCon­

trolMessageProxy object (at the originating and terminating entity) will call this

operation to receive the ReleaseMessage which indicates that the MSC intends to

release the transaction identifier and that the receiving entities shall release the

transaction identifier, and stop all running timers. The transaction identifier is used

for protocol error handling (see reference [4]).

CallControlMessageProxy ::sendReleaseComplete

Operation Parameters: None

Possible return messages: ReleaseCompleteMessage

Upon a receipt of a DisconnectMessage from the MSC, the CallControlMessage­

Proxy object -at the originating or terminating entity- shall stop all running timers

117

-which corresponds to a specific call- and send a ReleaseCompleteMessage to indi­

cate that the originating or terminating entity has released the transaction identifier

and that the MSC shall release the transaction identifier.

CallControlMessageProxy-startTimer

Operation Parameters: timerld; indicates the timer identity

Possible return messages: Boolean

This operation shall be invoked when the CC message proxy requires to start a timer

which belongs to the Call Control procedures.

CallControlMessageProxy::stopTimer

Operation Parameters: timerld; indicates the timer identity. If the operation

parameter is not provided, the operation will stop all running timers for the corre­

sponding entity.

Possible return messages: Boolean

This operation shall be invoked when the CC message proxy requires stopping a

timer belongs to the Call Control procedures.

118

«Entitv» '""•
ft CallConnectMessageContent j

Kg ptotocofDisoMrwtof
i Qtransactionlctentiftef
: IfJcomectMessaaeType
i Eg tetty
•; sjuset-usa
i ^Uprogresslndotcs
: isgcomettetWtmtses
1 Ejconneeted&iwttess

'••' >6nHtv»" ' ; v : w ; " - :

S CallConfirmwWessagcContcnt

u piotixsBciitniriator
a transactioriiderrtifter
D catConftme^HessageType

t a ispsatln*c4tat
i ab«aierCap*$ty
lQeause

sccCapabittes
^streanUdgntifief

~ ̂ suppot tedCodecs

; "BStty»
® SetupMessageContent

> mprotocoBfso*Hh*or
j entfamacttonldeittSsr
i ei^tupMsssageTyp*
i iifstreamldenfite
j B|beae»Cap*iiit»
I e^cafedPartyBCONumbe
' KjsjpportedOxJecs
! B | c * a P a t y & * - a * * e i 5
| gqjeafedPaitySub-address

i ® DfecorBrectMesMgeConlent
: k'4pr<kc£oDt5airaiatbf
i £j|transae tionldeotifiej'
I Because

"£otrtr»
& AlertingMessageContent

it g protocolDSctHrBtor
is s tiareactionMentiftef
&a alertingMessagtsType
ikigfecttv
ii,Buser-u5ef
e.sprogigsslnckator

• «£ntity»
® CanProcMdJngMessageContent

8%pfotocSascfin*ator
^ tr ansactimldentifef
E | caBWoeeedfrigMessageType
K|bearereapabi8tY
sig progtesslncteata'

ft ReteaseCompteteMessaaeContent
>,g,PfOtoeoO«rimir»tOS " "" "
si ̂ tiaraacttenlifcntfe
1 ^ releaseCcftipteteMessagsType

' S ReteaseMessageContenl
iS| ptotocoKscirtratffl'
sg, trarKasrttonldentta

^ ConnectAckMessageContent
Eg protoiaOscflminator
E|} ti ansactionldentifier
^ connectAd jiowledgeMessageType

Figure A.6: Call Control Message Proxy's Entity Classes

ure A.6 shows the Entity classes located in the CallControlMessageProxy class.

119

A.1.2 Traffic Handler Control Classes

The following classes illustrate the control Analysis classes for the Traffic Handler

Component:

TrafficHandling Controller

Figure A.7 shows the UML representation for this class.

'v ' •• ' ••: ;; « c o n t r o l » •
it* TrafficHandlingController

'i jUserData
i g | scepCorwsetionlclStatePtr

\ l|sccpConnectionIdPti
i ^caJ&eharioReq ()
I g^generateSuggestedConnectionld ()
: j j ^ trasferMessageToHandter {)
\ ^ictentlfyMessageType ()
': ffo messagelsUrtaown ()
I ^tiansferToHandleiWithNoConnectionld (}

Figure A.7: Traffic Handling Controller Class

Class Data Members: UserData; points to the RANAP actual message. sccpCon-

nectionldPtr; points to the CelloScci_ConnectionId data member in the SCCPIn-

terfaceController class. sccpConnectionldStatePtr; points to the sccpConnectionld-

State enumeration data type in the SCCPInterfaceController class.

operations:

TrafRcHandlingController::callScenarioReq

Operation Parameters: callScenario; indicates the required call scenario to be

performed.

Possible return value: Boolean

120

This operation shall be invoked by the RanapIntController to forward the call sce­

nario command requested by the manager to the Traffic Handler. Upon a receipt

of this callScenario, the trafficHandlerController object shall go through the switch

condition to forward the call scenario request to the proper call scenario entity.

TrafticHandlingController::generateSuggestedConnectionId

Operation Parameters: None

Possible return values: ConnectionldPtr, sccpConnectionldStatePtr

Once the switch condition evaluated by the trafficHandlerController object, it shall

invoke this operation to generate suggested Connection ID to be used for the SCCP

connection. Also, this operation saves the generated connection ID at the traf­

ficHandlerController for a corresponding call scenario. For the corresponding saved

Connection ID, a value of '2' will be assigned to the enumeration data type (sccp-

ConnectionldState); this value indicates that the Connection ID state is only "gen­

erated" . This operation will be invoked when a location update, MS call originating,

or MS call terminating scenario is recognized by the TrafficHandlerController.

TrafficHandlingController::trasferMessageToHandler

Operation Parameters: CelloSccLCormectionld; holds the SCCP connection ID.

CelloSccLUserData; holds the RANAP actual message. sccpConnectionldState;

holds the SCCP connection ID state.

Possible return values: None

This operation shall be invoked by the RanapIntController to forward the RANAP

message, the SCCP connection ID, and the SCCP connection ID state to the Traffic

Handler. All of these data elements will be carried by the Operation Parameters.

121

TrafRcHandlingController:: identify MessageType

Operation Parameters: CelloSccLUserData; holds the RANAP actual message.

Possible return values: messageType

In the "Transfer to Handler" sequence diagram, the RANAP message will be re­

ceived at the trafficHandlerController through the trasferMessageToHandler opera­

tion. Based on the connection ID, the switch condition will be evaluated to recognize

the destination to forward the message. In this switch condition, if the message is

received with undefined Connection ID, then there will be a high probability for this

message to be a " Paging request" asking for the MS terminating entity. To perform

that, this operation identifies the messageType data member of the message.

If the messageType = "0014", this means a Paging request. In this case, the gener-

ateSuggestedConnectionld operation will be invoked to generate a new connection

ID to be attached with the message which will be forwarded to the MS terminating

entity.

If not and the message is unknown, the messagelsUnknown operation will be invoked

to indicate that.

TrafRcHandlingController:: messagelsUnknown

Operation Parameters: None

Possible return values: None

See the identifyMessageType operation for explanations.

Location Update Controller

Figure A.8 shows the UML representation for this class.

Class Data Members: UserData; points to the RANAP actual message. NAS-PDU;

122

"CeritrpSw]::''Y':.~"'":'''i
t ^ LocationUpdateController

g|~NAS-PDU i
s%UsefD3ta

% locattonMpdPeq"O"' " ~ !
||gtrasfeiMessageTcA«:aticrt.)pdSm () <

Figure A.8: Location Update Controller Class

points to the Call Control or the Mobility Management actual message,

operations:

LocationUpdateController::locationUpdReq

Operation Parameters: None

Possible return values: None

This operation shall be invoked by the trafficHandlerController to ask the Lo-

cationUpdateController to start the Location Update call scenario.

LocationUpdateController::trasferMessageToLocationUpdSim

Operation Parameters: CelloScci_ConnectionId; holds the SCCP connection ID.

CelloSccLUserData; holds the RANAP actual message.

Possible return values: None

This operation shall be invoked by the trafficHandlerController to forward the

RANAP message (CelloSccLUserData) along with the SCCP connection ID (Cel-

loSccLConnectionld) to the LocationUpdateController class. The RANAP message

originally comes from the MSC through the CPP platform.

123

CallOriginating Controller

Figure A.9 shows the UML representation for this class.

«Control»
CanoriginatingController

t̂ NAS-PDU
[g§UsgrData j
f ̂ 1 f iSli ictTransf&8iRxR^6^(7 '"""' i
[f|mobfeOt1gReq () ;
I % transferMessageToMobOrtgSIm <) I
! t̂ransfeiQscorriertCommandToMobOrigSIm (3
j ̂ setSccpConnectlonldStateToBeOisconnected () !

Figure A.9: Call Originating Controller Class

Class Data Members: UserData; points to the RANAP actual message. NAS-PDU;

points to the Call Control or the Mobility Management actual message.

operations:

Cal lOriginat ingControl ler : :TxDirectTransfer&RxResponse

Opera t ion Pa rame te r s : UserData; points to the RANAP actual message.

Possible return messages: DirectTransferMessage

This operation will be invoked to transfer the RANAP message as a DirectTrans­

ferMessage. This operation will wait until it gets a response to return it back to the

initiator as a DirectTransferMessage.

CallOriginat ingControl ler : :mobileOrigReq

Opera t ion Pa ramete r s : None

Possible return values: None

124

This operation shall be invoked by the trafficHandlerController to ask the CallOrig-

inatingController to start the MS call originating call scenario.

CallOriginatingController::transferMessageToMobOrigSim

Operation Parameters: CelloSccLConnectionld; holds the SCCP connection ID.

CelloSccLUserData; holds the RANAP actual message.

Possible return values: None

This operation shall be invoked by the trafficHandlerController to forward the

RANAP message (CelloSccLUserData) along with the SCCP connection ID (Cel­

loSccLConnectionld) to the CallOriginatingController class. The RANAP message

originally comes from the MSC through the CPP platform.

CallOriginatingController: :transferDisconnectCommandToMobOrigSim

Operation Parameters: None

Possible return value: None

This operation shall be invoked by the trafficHandlerController to forward the " Orig­

inating Call Disconnect" command to the CallOriginatingController class in order

to initiate a call disconnect procedure by sending DisconnectMessage from the MS

originating entity side to the MSC.

CallOriginatingController::setSccpConnectionIdStateToBeDisconnected

Operation Parameters: sccpConnectionldState; holds the SCCP connection ID

state. Possible return value: sccpConnectionldState

This operation shall be invoked by the CallOriginatingController to change the state

of the enumeration data type (sccpConnectionldState) to " toBeDisconnected". This

125

means the value '3 ' will be assigned to the sccpConnectionldState. This operation

does not disconnect the SCCP connection; it just indicates the SCCP Interface

Controller to disconnect the corresponding SCCP connection.

CallTerminatingController

Figure A. 10 shows the UML representation for this class.

«Contrd>»
(& CaUTenttinatingController

lissjNAS-PDU
! S|Usert3ata_ __ [
r f e t r a n S S t f c s s i g i t ^ 1
i ^trarsteOBCorviectCommandToMobTernrSim () |
I ^setSccpConnertlonlcKtateToBeCSiscomected () i

Figure A. 10: Call Terminating Controller Class

Class Data Members:

NAS-PDU; points to the Call Control or the Mobility Management actual message.

UserData; points to the RANAP actual message.

operations:

Cal lTerminat ingControl ler : : t ransferMessageToMobTermSim

Opera t ion Pa rame te r s : CelloSccLConnectionld; holds the SCCP connection ID.

CelloSccLUserData; holds the RANAP actual message.

Possible return values: None

This operation shall be invoked by the trafficHandlerController to forward the

RANAP message (CelloSccLUserData) along with SCCP connection ID (CelloSccLConnectionld)

to the CallTerminatingController class. The RANAP message originally comes from

126

the MSC through the CPP platform.

CallTerminatingController::transferDisconnectCommandToMobTermSim

Operation Parameters: None

Possible return value: None

This operation shall be invoked by the trafficHandlerController to forward the "Ter­

minating Call Disconnect" command to the CallTerminatingController class in order

to initiate a call disconnect procedure by sending a DisconnectMessage from the MS

terminating entity side to the MSC.

CallTerminatingController::setSccpConnectionIdStateToBeDisconnected

Operation Parameters: sccpConnectionldState; holds the SCCP connection ID

state. Possible return value: sccpConnectionldState

This operation shall be invoked by the CallTerminatingController to change

the state of the enumeration data type (sccpConnectionldState) to "toBeDiscon-

nected". This means the value '3 ' will be assigned to the sccpConnectionldState.

This operation does not disconnect the SCCP connection, it just indicates the SCCP

Interface Controller to disconnect the corresponding SCCP connection.

Initial UEMessage Controller

Figure A. 11 shows the UML representation for this class,

operations:

InitialUEMessageController::startLocationUpdate

127

& InitialUEMessageController

i j | sbrtuxattenujxiate ()
li|starteaISQrigrat&>g ()
^startCalTeriiretrKi.f)

Figure A. 11: Initial UE Message Controller Class

Opera t ion Pa rame te r s : None Possible r e tu rn messages: InitialUEMessage

This operation will be invoked by the LocationUpdateController to start the loca­

tion update call scenario by asking the InitialUEMessageController class to prepare

the first message of this procedure. This message shall contain the LocationUp-

dateReqMessage carried as NAS-PDU by the InitialUEMessage.

Ini t ia lUEMessageControl ler : :s tar tCal lOriginat ing

Opera t ion Pa rame te r s : None Possible r e t u r n messages: InitialUEMessage

This operation will be invoked by the CallOriginatingController to start the MS call

originating scenario by asking the InitialUEMessageController class to prepare the

first message of this procedure. This message shall contain the CmServiceReqMes-

sage carried as NAS-PDU by the InitialUEMessage.

In i t ia lUEMessageControl ler : : s tar tCal lTerminat ing

Opera t ion Pa rame te r s : None Possible r e tu rn messages: InitialUEMessage

After receiving a Paging request from the MSC, this operation will be invoked by

the CallTerminatingController to start the MS call terminating scenario by asking

the InitialUEMessageController class to prepare the PagingResponseMessage. This

message shall be carried as NAS-PDU by the InitialUEMessage.

128

Direct TranferController

Figure A.12 shows the UML representation for this class.

r : ... *€orrtrc>i»>: . '.•""•'
9 DlrectTraifetControlier

i ^RxOirectfransfe&TxResponse () "
: | |$tattCalC©fr^ {procedure ()

\ IgstaftCalCteaw^Geeciure (}
j %RxDJrectTw»sfer {)

Figure A. 12: Direct Transfer Controller Class

operations:

DirectTranferController::RxDirectTransfer&TxResponse

Operation Parameters: UserData; points to the RANAP actual message.

Possible return messages: DirectTransferMessage

This operation will be invoked to receive the RANAP message as a DirectTrans­

ferMessage. The DirectTranferController forwards the received message to the

RanapMessageProxy and waits until it gets the response. The response message

(DirectTransferMessage) will be returned back to this operation initiator.

DirectTranferController::RxDirectTransfer

Operation Parameters: UserData; points to the DirectTransferMessage.

Possible return messages: None

129

This operation will be invoked to receive the RANAP message as a DirectTrans-

ferMessage. The DirectTranferController forwards the received message to the

RanapMessageProxy. No response message is expected from this operation.

DirectTranferController::startCallConnectProcedure

Operation Parameters: None Possible return messages: DirectTransferMes-

sage

This operation will be invoked by the CallTerminatingController to start the call

connect procedure in the MS call terminating scenario, which means to prepare the

CallConnectMessage and send it to the MSC. This message shall contain the Call-

ConnectMessage carried as NAS-PDU by the Direct Transfer Message.

DirectTranferController::startAlertingProcedure

Operation Parameters: None Possible return messages: DirectTransferMes-

sage

This operation will be invoked by the CallTerminatingController to start the call

alerting procedure in the MS call terminating scenario, which means to prepare the

AlertingMessage and send it to the MSC. This message shall contain the Alert-

ingMessage carried as NAS-PDU by the DirectTransferMessage.

DirectTranferController::startCallClearingProcedure

Operation Parameters: None Possible return messages: DirectTransferMes­

sage

This operation will be invoked by the CallOriginatingController to start the call

130

setup procedure in the MS call originating scenario, which means to prepare the Se-

tupMessage and send it to the MSC. This message shall contain the SetupMessage

carried as NAS-PDU by the DirectTransferMessage.

Security Mode Controller

Figure A. 13 shows the UML representation for this class.

«Ccn*ral»
«| SmirityModeControiter

{^RxSecurrtyCommanclStTrResporise ()

Figure A. 13: Security Mode Controller Class

operations:

SecurityModeController:: RxSecurity Command&TxResponse

Operation Parameters: UserData; points to the SecurityModeCommandMes-

sage.

Possible return messages: SecurityModeCompleteMessage

This operation will be invoked to receive the RANAP message as a SecurityMode-

CommandMessage. The SecurityModeController will forward the received message

to the RanapMessageProxy and waits until it gets the response. The response

message (SecurityModeCompleteMessage) will be returned back to this operation

initiator to indicate the completion of the security mode procedure.

CommonID Controller

Figure A. 14 shows the UML representation for this class.

131

«Ccrrtrd»
& Conw«onIOCorrtfot(er ,

^CommcsnlDoflMSI ()

Figure A. 14: Common Id Controller Class

operations:

CommonIDController::CommonIDofIMSI

Operation Parameters: UserData; points to the CommonlDMessage.

Possible return messages: None

This operation will be invoked to receive the RANAP message (CommonlDMessage)

which contains the permanent-NAS-UE-Identity or the International Mobile Sub­

scriber Identity (IMSI). The CommonlDController will forward the received message

to the RanapMessageProxy.

RABAssignmentController

Figure A. 15 shows the UML representation for this class.

RABAssignmentController ;

• {^rabAssignmentProcedurs (} :

Figure A. 15: RAB Assignment Controller Class

operations:

132

RABAssignmentController::rabAssignmentProcedure

Operation Parameters: UserData; points to the RABAssignmentReqMessage.

Possible return messages: RABAssignmentRespMessage

This operation will be invoked to receive the RANAP message as a RABAssign­

mentReqMessage. The RABAssignmentController forwards the received message to

the RanapMessageProxy and waits until it gets the response. The response message

(RABAssignmentRespMessage) will be returned back to the operation initiator to

complete the RAB Assignment procedure, which is initiated by the MSC.

Paging Controller

Figure A. 16 shows the UML representation for this class.

'. «Ccrttrd» ;'. '•"
d PagingControHer

Figure A. 16: Paging Controller Class

operations:

PagingController::receivePagingRequest

Operation Parameters: UserData; points to the pagingRequestMessage. Possi­

ble return values: Boolean

This operation will be invoked to receive the RANAP message (pagingRequestMes­

sage). The return value indicates the CallTerminatingController (the initiator) that

the paging request was received properly or not. If the paging request was received,

133

the CallTerminatingController will initiate an operation to respond by paging a re­

sponse message.

IuRelease Controller

Figure A. 17 shows the UML representation for this class.

*Controi»
$ luRekaseController

l^hjReteaseftocedute ()

Figure A. 17: Iu Release Controller Class

operations:

IuReleaseController::IuR.eleaseProcedure

Operation Parameters: UserData; points to the IuReleaseCommandMessage.

Possible return messages: IuReleaseCompleteMessage

This operation will be invoked to receive the RANAP message as an IuReleaseC­

ommandMessage. The IuReleaseController forwards the received message to the

RanapMessageProxy and waits until it gets the response. The response message

(IuReleaseCompleteMessage) will be returned back to the operation initiator to

complete the Iu Release procedure, which is initiated by the MSC.

134

A. 1.3 RANAP and SCCP Controllers Classes

The following classes illustrate the Analysis classes for the RANAP Controller Com­

ponent:

Ranaplnterface Controller

Figure A. 18 shows the UML representation for this class.

S§> RanapInterfaceController
I fljsapSerwce&Attachsd
! e|caBcen*io
["(Si ̂ vw^s faga twwn imj ()
! ^setCrflScenaitoTaTheMana^tCommartd ()
j ̂ forwardAttadiSCCPSwviceCoiwtwxf ()
I jJ'nfessageFowad (}
I î forwardbelachSCtPServiceConnand (•)

Figure A. 18: RANAP Interface Controller Class

Class Data Members: sccpServicelsAttached; a flag indicates if the SCCP service is

attached or not. callScenario; indicates the call scenario required by the Manager

command.

Class operations:

RanapInterfaceController:: forwardManagerCommand

Operation Parameters: manager Command; holds the Manager command.

Possible return messages: None

This operation will be invoked by the RanapInterfaceForm to forward the Manager

command to the RanapInterfaceController.

RanapInter faceControl ler : : se tCal lScenar ioToTheManagerCommand

135

Operation Parameters: manager Command; holds the Manager command.

Possible return messages: callScenario

This operation interprets the managerCommand into a callScenario.

RanapInterfaceController::forwardAttachSCCPServiceCommand

Operation Parameters: managerCommand; holds the Manager command.

Possible return messages: None

This operation will be invoked by the RanapInterfaceForm to forward the SCCP

Attach command to the RanapInterfaceController.

RanapInterfaceController::messageForward

Operation Parameters: CelloSccLConnectionld; holds the SCCP connection ID.

CelloSccLUserData; holds the RANAP actual message. sccpConnectionldState;

holds the SCCP connection ID state.

Possible return messages: None

This operation will be invoked by the trafficHandlerController and the SCCPIn-

terfaceController to transfer the RANAP message to the RanapInterfaceController.

Along with the message, this operation transfers the CelloSccLConnectionld and

the sccpConnectionldState.

RanapInterfaceController::forwardDetachSCCPServiceCommand

Operation Parameters: managerCommand; holds the Manager command.

Possible return messages: None

This operation will be invoked by the RanapInterfaceForm to forward the SCCP

Detach command to the RanapInterfaceController.

136

RanapInterfaceForm

Figure A. 19 shows the UML representation for this class.

<-Bourxfery»
t@ RanapInterfaceForm

fijj nraagefCommarc!

^3tt^iSCCt>S«iivk:eCorr»nirKi (} ;
$|rrfc?ssagsFofw«<! ()
^detachSCCPSaviceConOTsarid () ;

Figure A. 19: RANAP Interface Form Class

Class Data Members: manager Command; Implies the Manager command

Class operations:

RanapInterfaceForm::sendManagerCommand

Operation Parameters: manager Command; holds the Manager command.

Possible return messages: None

This operation will initiate the Manager command towards the RanapInterfaceForm

class.

RanapInterfaceForm::attachSCCPServiceCommand

Operation Parameters: clientID, attachRef; they are configuration parameters

used to identify the attached service by the SccpApfi Interface.

Possible return messages: clientID, attachRef

This operation is the SccpApfi Interface attachment command, which is initiated by

the Manager.

RanapInterfaceForm: :messageForward

137

Operation Parameters: CelloSccLConnectionld; holds the SCCP connection ID.

CelloSccLUserData; holds the RANAP actual message. sccpConnectionldState;

holds the SCCP connection ID state.

Possible return messages: None

This operation will be invoked by the RanapInterfaceController to transfer the

RANAP message to the RanapInterfaceForm in order to forward it to the man­

ager. Along with the message, this operation transfers the CelloSccLConnectionld

and the sccpConnectionldState.

RanapInterfaceForm:: det achS C CP ServiceCommand

Operation Parameters: clientID, attachRef; they are configuration parameters

used to identify the attached service by the SccpApfi Interface.

Possible return messages: clientID, attachRef

This operation is the SccpApfi Interface detachment command initiated by the Man­

ager.

138

The following classes illustrate the Analysis classes for the SCCP Interface Con­

troller Component:

SCCPInterface Controller

Figure A.20 shows the UML representation for this class.

«Cor*ol»
& SCCPIntw faceControSer

.• g CeloScti_CiSedAddiess
Kg CetoScci_CailhgAdciress

r | C^toScd_C*9Ad*eSSL«n9tjl
S | CeStoSccLCowectionfd
S i CeloSca_User©3t<ier»0th
EJ Cefofe<3_Us«0at«i

^setSctpSalvelsatlaichedToTrue {)
^setSccpS«ive!satt3chedToF*e (3
^setScq30»m««or)lcBtateToCo!W8cte^ ()
gltrarofeittesageToSccp ()
i!,setSccpComectwl!fitateToDistcnriected I)

^detachScqpSwwce (}
f§| teansferCPPMesssge t)

Figure A.20: SCCP Interface Controller Class

Class Data Members:

CelloSccLCalledAddress; implies the address of destination SCCP node.

CelloSccLCallingAddress; implies the address of originating SCCP node.

CelloSccLCalledAddressLength; implies the length in octets of address of destination

SCCP node.

CelloSccLCalling AddressLength; implies the length in octets of address of originating

SCCP node.

CelloSccLConnectionld; Identifies the SCCP connection between Data Transfer Ap­

plications.

CelloSccLUserDataLength; implies the length in bytes of the user data.

CelloSccLUserData; implies the data to be transferred to a remote SCCP user.

(RANAP Message)

139

CelloSccLApServerld; implies a SCCP AP server identity (configuration informa­

tion).

sccpConnectionldState;

The sccpConnectionldState is an enumeration data element declared in this class.

This enumeration is transferred between various components along with the Cel-

loSccLConnectionld. The following are the sccpConnectionldState possible values

and their implications about the corresponding SCCP connection:

1 " connected": the SCCP connection is connected.

2 "disconnected": the SCCP connection is disconnected.

3 "generated": the SCCP connection is only generated.

4 " toBeDisconnected": the SCCP connection is intended to be disconnected.

Class operations:

SCCPInterfaceController::transferCPPMessage

Operation Parameters: CelloSccLConnectioId, CelloSccLUserData, and sccp­

ConnectionldState.

Possible return messages:

This operation forwards the CPP message -sent through the CPPSystem boundary

class- to the SCCPInterfaceController class. This message contains all the parame­

ters stated above.

SCCPInterfaceController::transferMessageToSccp

Operation Parameters: CelloScci_ConnectioId, CelloSccLUserData, and sccp­

ConnectionldState

140

Possible return messages:

This operation forwards the CelloSccLConnectioId, CelloSccLUserData, and the sc-

cpConnectionldState to the CPPSystem boundary class in order to forward it to

the CPP platform.

SCCPInterfaceController::attachSccpService

Operation Parameters: clientID and attachRef; they are configuration parame­

ters used to identify the attached service by the SccpApfi Interface.

Possible return messages: clientID and attachRef

This operation is invoked by the RanapInterfaceController to forward the SCCP

service attachment request.

SCCPInterfaceController::detachSccpService

Operation Parameters: clientID and attachRef; they are configuration parame­

ters used to identify the attached service by the SccpApfi Interface.

Possible return messages: clientID and attachRef

This operation is invoked by the RanapInterfaceController to forward the SCCP

service detachment request.

SCCPInterfaceController::setSccpSeriveIsattachedToTrue

Operation Parameters: None

Possible return messages: None

This operation sets the sccpServicelsAttached flag to True; this indicates that the

SCCP service is attached.

141

SCCPInterfaceController::setSccpSeriveIsattachedToFalse

Operation Parameters: None

Possible return messages: None

This operation sets the sccpServicelsAttached flag to False; this indicates that the

SCCP service is detached.

SCCPInterfaceController::setSccpConnectionIdStateToConnected

Operation Parameters: None

Possible return messages: None

This operation changes the sccpConnectionldState to " connected" state. This means

that the value ' 1 ' will be assigned to the sccpConnectionldState.

SCCPInterfaceController::setSccpConnectionIdStateToDisconnected

Operation Parameters: None

Possible return messages: None

This operation changes the sccpConnectionldState to "disconnected" state. This

means that the value '2' will be assigned to the sccpConnectionldState.

SCCPInterfaceController::startSccpDisconnectionProcedure

Operation Parameters: clientID and attachRef; they are configuration parame­

ters used to identify the attached service by the SccpApfi Interface.

Possible return messages:

This operation initiates the SCCP disconnection procedure. This operation will be

invoked if the sccpConnectionldState is " toBeDisconnected" only.

142

CPPSystem

Figure A.21 shows the UML representation for this class.

| I|"attact«ef
efttenUD

; iga^«fflD
'"%««rtAtticih«iq''n
; <^3ttachToS«vs:eCfm ()
• Jf|statCppCcm«:tR«i {)

• flstartCppDaUReq ()
j^dataindC)
^starttppOteonnectReq ()

: {ji|.5ta tDetachReq ()
' % detachFcomSaweCfm {.)

Figure A.21: CPPSystem Class

Class Data Members: clientID, attachRef, and signallD; they are configuration pa­

rameters used by SccpApfi Interface to identify the attached service.

Class operations:

CPPSystem::startAttachReq

Operation Parameters: clientID and attachRef; they are configuration parame­

ters used to identify the attached service by the SccpApfi Interface.

Possible return messages: clientID and attachRef (confirmation message).

This operation is performed on the CPPSystem to invoke an appropriate operation

from the CpxScciApfiProxy::CpxSccpApfiAttachP library (CPP platform library)

to attach the SCCP service from the SccpApfi interface.

CPPSystem: :attachToServiceCfm

Operation Parameters: clientID, attachRef, and SignallD; they are configuration

143

parameters used to identify the attached service by the SccpApfi Interface.

Possible return messages: clientID, attachRef, SignallD (confirmation message).

This operation is performed to forward the SCCP service attach confirmation to the

CPPSystem.

CPPSystem::startDetachReq

Operation Parameters: clientID and attachRef; they are configuration parame­

ters used to identify the attached service by the SccpApfi Interface.

Possible return messages: clientID, attachRef (confirmation message).

This operation is performed on the CPPSystem to invoke an appropriate operation

from the CpxScciApfiProxy::CpxSccpApfiAttachP library (CPP platform library)

to detach the SCCP service from the SccpApfi interface.

CPPSystem: :detachFromServiceCfm

Operation Parameters: clientID and attachRef; they are configuration parame­

ters used to identify the attached service by the SccpApfi Interface.

Possible return messages: clientID, attachRef, and SignallD (confirmation mes­

sage).

This operation is performed to forward the SCCP service detach confirmation to

the CPPSystem.

CPPSystem: :startCppConnectReq

Operation Parameters: CalledAddress, CalledAddressLength, CallingAddress,

CallingAddressLength, Connectionld, UserData, and UserDataLength.

Possible return messages:

144

This operation will be invoked by the SCCPInterfaceController to ask the boundary

class (CPPSystem) to initiate the SCCP connect procedure with the MSC through

the CPP platform for a corresponding call scenario. This call scenario is identified

by the CalledAddress and the CallingAddress.

The CPPSystem will initiate the connect procedure by invoking a connectReq oper­

ation -in the CpxScciProxy library-. Upon invoking this operation, the CPPSystem

will attach the generated Connectionld. After the SCCP signaling connection is

established, the confirmation message shall contain the Connectionld that was gen­

erated before. The CPPSystem identifies messages for corresponding call scenario

using the Connectionld. After the connection establishment is confirmed, the sccp-

ConnectionldState becomes "generated".

CPPSystem::connectCfm

Operation Parameters: Connectionld, ClientID, SignallD, UserData, UserDataL-

ength, and ApServerld.

This operation informs the CPPSystem that the SCCP connection is established

successfully with the MSC.

CPPSystem::startCppDataReq

Operation Parameters: ApServerld, Connectionld, UserData, and UserDataL-

ength

Possible return messages: None

This operation is performed on the CPPSystem to initiate a transfer data to the

MSC through the SCCI interface in the CPP platform.

CPPSystem::dataInd

145

Operation Parameters: Connectionld, UserData, UserDataLength, ClientID,

and SignallD

Possible return messages: None

This operation forwards the MSC data to the CPPSystem. This data is transferred

through the SCCI interface to the CPP platform.

CPPSystem::startCppDisconnectReq

Operation Parameters: Connectionld, UserData, UserDataLength, and ApServerld

Possible return messages: None

This operation will be invoked by the SCCPInterfaceController to ask the bound­

ary class (CPPSystem) to initiate the SCCP disconnect procedure with the MSC

through the CPP platform for a corresponding Connectionld.

CPPSystem::discInd

Operation Parameters: Connectionld, ClientID, SignallD, UserData, and User­

DataLength.

This operation informs the CPPSystem that the SCCP disconnection request has

been approved.

146

A.2 U M L Use-Case Realization

The UML Use-case Realization for the RanapSim model are illustrated in this sec­

tion. Some of the figures have been intentionally omitted from this section because

they are already part of the main text of this thesis in Chapters 3, 4, and 5. The

sequence diagrams that will be presented for each use case in the model as follows:

Handle Traffic Use-Case

Figure A.22 shows the Transfer To RANAP Controller Sequence Diagram.

: £3 Interactions

& trafftcHandlinq... ^JocatfonUpdal... ' S e^lOrfginaiing... I ' ^caHTertnlrtatlittiC,..

1: trasferMeesageToHandler

: "messageForward j
2: trasferMessageToHandler

: tnessageForwar̂ d

3: trasferMessageToHandler

% i
: (rtessageForwara

Figure A.22: Transfer To RANAP Controller Sequence Diagram

147

Figure A.23 shows the Transfer To Handler Sequence Diagram.

s EHnterac t lo r t2

i 6 t raf f icHar id l IhqCon... [j 4> tocattonUpdateCo... :
 : & cWJOHqirei lnpCon.., ; j & cai iTermtf iaHriqCoht„.

1 : t rasferMessageToHandler

P ••-:

[Connect ion ld = locat lortUpdConnect ionld]

1 : trasferMessageToLocaUonUpdSin

[Connect fon ld = Mobl leOr lgConnecUanld]

1 : t rans ferMessageToMobOrig

[Connect ion ld = Mobi leTcrmConnect lon ld]

1; i ransferMessageToMobi leTermSlm

[Conrtect lonldlsUhdef ined J

i 1: Identi fyMessageType

[messageType = " 0 0 1 4 "]

-, 1: genera teSuggestedConnect ionld

2 : transferMessageToMabileTermSlm

. [else]

': 1: messagelsUnknown

Figure A.23: Transfer To Handler Sequence Diagram

148

Disconnect Originating Call Use-Case

Figure A.24 shows the Disconnect Command to the Mobile Originating Sequence

Diagram.

I : (7-aisl»OliiCOi»KCtCoiiinHiKJToMt*OrlBSiin

1.1-IrgetDlretllrBslerttetMS* i

l.l.l.liOetCcPart

1-1.1.1.1: stopThner

1.1.1.2: getOPort 1.1.1.1.2: scndDfcmncctMcBSuji:

' 1.1.2: getOlrectTransferflfKfjesa ^

1.3: startCallClearlngProcecluFe

2i tr'iuderDlECGnneclCanmsKrToMobOrlgSbii

?E V J r s f p r f ^ s i a t o e I c M * 6 r t (P t m
2 . I iRaDtrecl Iranafer a J i f t e ^ i c i s e

. 2 . 1 . 1 : getDirertlranferRespeinse

?. 1.1.1: getCcPflrt

2 ,1>] .1 .1 : recetveHelease

; 2.J.1.1.4:sen<*lete'H9£Cofft>l?te

2 .1 .1 .2: getCcfart

2.1.2: g r t D i r e c t l r s r f a f t e s p a s e

7 J : R*Ol r« . t ! r f l rKfer fc l i i f l (- *x iM

3 . 1 . 1 : pfirfnrmtiflolrawCcromffld

4 : performlLAeleaGeComplete

3 . 1 3 : performlitteleaceCOTniand

•1: I r a i f e rM& sas^TcH a idler

Figure A.24: Disconnect Command to the Mobile Originating Sequence Diagram

149

Figure A.25 shows the Disconnect Message from the MSC to the Mobile Originating

Sequence Diagram.

i "ilnlFracttafd

i 6LallOrlginMinqCaflrolteTi-C...' ; $ranJpMeS&aoePriwvi«.!'. ; t &riwMQsa(jtFr<W*'Opti»rol... ' ' 6t<MessaqePr<Btyi-Oa„. "j • AdlrtslTrawdirtSwia^lfcr:*,.. : ^lufietea^-Caitrol'IJ*,,,,

transfeiMesMoeT oMcbOri^lm
^ 1. It R>£»recf Transfer J

: tran^erMessagelcMobUrioSlin
V ' 2. I i Ridrecl Transfer ATxftesnnrKe

2.1.1: getOJrectTranferilefpGnse

2.1.2: gdOJritUran/erRctqxmw

2,2i RxDIreclTransfcrSJiAesponse

trarpferMessageToMobarlgSliT)
~ 3.1: IiAekiBuPruceifcft:

3.1.1: p«fDmiIiR«lef»eCamiaiit

3.1.1.1: perfarmIi«eleasrCaivlele

3.1.2; ptrfcrmlJleleaseCJmmand

3.2: bAeteaseProcecire

J: wtScipCmiwrlianldS>sI?TciS«OlK«in?Flj«l

Figure A.25: Disconnect Message from the MSC to the Mobile Originating Sequence
Diagram

150

Disconnect Terminating Call Use-Case

Figure A.26 shows the Disconnect Command to the Mobile Terminating Sequence

Diagram.

transferOlseQrneclConBiandTaMobTemStm

1.1: startCaltClearfn^racedu-e

l.l.l:getDlrectTrartsferRespiest

1.1.1.1: gfetCcPart

1.1.1.1.1: stopTinier

1.1.1.2: BcndDlsctraectMcssoge

2: traisferOtscomectConmandTDMofclermSim

I 2J trarBfotfesBegeToMoblleT&inStm

l . M ^ g e t C t P a t

1.12-. gHDfrecITransferRet^est

1.2; started lCleain0>rocechre

2 .1 ; R*D!rect Transfer4T»Response

2.1.1: getDlrectTranferResponsei

2.1.1. l:getCtPfrt [

3i't:l.l.l:receiveAelease

2.1.1.1.3: releaseMUconnectlon 2.1.1.1.2: etcplins

2.1.1-2tgetC<Pa-t

2.1.2: geiDtrectTraiferResponse

2.2 J JbdJlrcetTronsftx &T>rflespense

2.1,1,1.4: sencffteleaseCamplete

3: trahsferMessogeToHancfler

3: trmsferMesEageldHoblleTennSlm

l i trarisferMessagel

3.1-1.1: perfomfliftefeaseCpnplete

5etSccpCnm£fl lonlilSlateT oBeDiscamert ert

3.1: ItAeleaseProceifcre

3.1.1: performliileteaseConvnand

3.1.2 performliAeleaseComjnand

3.2: ItfteteaseProcedure

5; irSoIeiMessaaeToHaridlcr

Figure A.26: Disconnect Command to the Mobile Terminating Sequence Diagram

151

Figure A.27 shows the Disconnect Message from the MSC to the Mobile Terminating

Sequence Diagram.

E Interactions

^iflrartTransftyOootroiter... ' & Iiftetease: a Gohn-tjwi;,.

MsRxDlrettlrensfer

1 J , 1 : recetveRan^jPart

l . l . l . l - .ge i t tPar t

l . J . l . l . l t r e t e iveDlscanec (Message

I aitrflnsforMessegeToMobllcTermSim

2.1 : RxDtrecl Traisf a-AT»B espouse

2.1.1: getOJrcclTranferftes&onse .

2.1.1.1: gelCtPart

2 . 1 . M i l : receiveRelease

2.1.1.1.2:releas^Mcumectton !.

•• 2.1.1.1.3: stopTimer

;,2.i.l.l.4:6endRele3seCwnp!ete
2.1.1.2:getC£Par1

3:tran9ferMe5saoeToHendler

3 ; transferMessaBeloMabllelenrtHm

2.1.2: getDirerlTranferflecponse

2.2: R*DlrectTf au f Q-aTxflesponse

3,1: Ii*ele±»rf>rocedLFe

3.1.1: performluReleBseConwnand

3.1,1.1: performlJleleaecComplete 3.1.2:performtAeleaBeaiii . i»id

3.2: lufteleasfProcedre

4: setSccpGamectlonldStateTaeeDtecoiviected

5; trans JerMessageToHandler

Figure A.27: Disconnect Message from the MSC to the Mobile Terminating Sequence
Diagram

152

Disconnect SCCP Connection Use-Case

Figure A.28 shows the Disconnect SCCP Connection Sequence Diagram.

ZJ Interactions

& sccpInleffaceControlterw... &cPPSvstero:«Bomdar..

L It starlSccpDisconnectiortProcedure

J c S s c e l P i C i a S c ^ W"": ifio^Tcpp""

2i startCppDIsconnectfleq
2.1:dlscReq

2.1;1: CelloSccl_dlsc«mectR«L-e

4t startCppDiscormectReq

^.BetScxpConnectionldSIBIeToDiscpnnectetl

Figure A.28: Disconnect SCCP Connection Sequence Diagram

Detach SCCPApfi Service Use-Case

Figure A.29 shows the Detach SCCPApfi Service Sequence Diagram.

Attach SCCP Use-Case

Figure A.30 shows the Attach SCCP Sequence Diagram.

Figure A.31 shows the Call Scenario Commands Sequence Diagram.

153

Irrteractlavt

3 sctplnler faceControlle. i^cfT^v8t«TO*8oiiida^i'T1 \-Qtt^SotofvIOMdP-.... "' * • " '% CPPXPp.

1; detachSccpServlce

1.1: startDetatfAeq

1; 1.1: detachFromServiceReq

1.1.1.1s CctloScclApfLcletachFromServlceHeq

1.2: startDetadfteq

1.1.1.1.1: detadiFromServiceCfm \

1-1,1.3! detachFrornServfceCfm J

1.3; setSccpSer IvelsattachedToFalse

fdetachSccpService

Figure A.29: Detach SCCPApfi Service Sequence Diagram

3% ranapStmMa»qer:Rgiap.,. • : ^ fahaplnt^at^ar i t t i^ f io i jwlar^ 1 j ^ran^ItrterfaceCMitroller;«Oont.,. \ \ & scQlnterfaceCtintr^iler;«Co,..

l;atladTSCCPServiceCtMi»nand

1.1: forwardAttachSCCPServlceCdmmand

[sccpServtcelsAttabhed)

: [t lsej

1; servioelsAttached

3: servfcelsAttached

1: attachSccpServlce

2: attachSCO»ServlceCommand

Figure A.30: Attach SCCP Sequence Diagram

154

•Jimeraciioii2:

%.ijL?^j^mMan^i^i^'.7'1 r^ra^t f i^ facef^T^^vn. T^'iS'l^^J^^S^SSib^T'7) VWS^f^&^icgibh...'

1: sendManagerCommand

i : 1.1: forwardMaiiagerConnmand

: [sccpServlcelsAttached]

I : servicelsNotAttadied

lisetCallSoenarfoToTheManagdrCofraTiand

2: callScenarloReq fc =

3: caltScenartoReq

Figure A.31: Call Scenario Commands Sequence Diagram

Detach SCCP Use-Case

Figure A.32 shows the Detach SCCP Sequence Diagram.

155

I Interactions

®% ranapSimManage. •. I | ># ranaplnterfaceFonh:...)'' & rartaplnterfaceCOntro) let*i • # s c c p ! h t ^ a c ^ b r i t r o l t e . .

1: detachSCCPServiceCommand

l.l:forwardDetachSCCPSertficeConimand

[sccpServicelsAttached]

[else]

1 : detachSccpService

2: detachSccpService

1 : servlcelsNotAttached

2 : detacnSCCPServiceCommantf I

Figure A.32: Detach SCCP Sequence Diagram

A.3 UML Interfaces

UML Interfaces are model elements that define sets of operations that other classes

must implement. It is possible to use the interfaces in class diagrams to specify

a contract between the interface and the class that realizes the interface. Each

interface specifies a well-defined set of operations that have public visibility. Those

operations will be provided to another class through a " use" relationship.

In UML, we call the relationship between the interface and its implementing

class " interface realization" relationship.

This section shows the UML representation for all interfaces that have been

used to build the class diagram for the RanapSim Model, these interfaces are shown

156

1 mmjpProceikires_l*lobOrig

$Jst*tC*3rigjnatiig ()
ftfUOmXtTrarKferSsTitBespams ()
ft&xS«urityCoHimarid8iT*ftespo...
ftCornmonlDofiMSl ()
fttabAsstgnmentProc*?dure ()
ft,R»C*«tTr»«fet C S
ftstatCalCteaiv^nxedu:* (}

%«signah cmSer'&eRespenseO
^."'SgnahstatSetiEPjotedueO

__: . ' oiriteriace*1-
B lRjnapProtedures^Moblerm

r̂eci9veP3gsngRequest {)
JstartCalTefmsrBting ()
JRxDieetTtswfa&TxResponse ()
jCommoniDoWBi ()
^RxSscuftyCommand&T .̂esporKe {)

^startcaKMiTKctftiKeifciie I)
JRxDtectTransfer (!
^st«CaKfeaiin#1iKecK«e ()

*Mafaoi»'

R g e t t o c M p * * * W a t ()
^ getMrrtiespanse ()
^ locationUpdateAccept {)

"hl«face»
t i ICaBContmi^Moblerm

^getCcPat (')
UKeiveOsconnettMessage ()

: •fit&Stfx&'r
<M IRjruipMf!.SSiigt!_LocVpd

o
$|getDirectTranfe!lte5pon$e ()
^getSecuityMcKteComplete ()

: <||p f̂osmCornman!DQnRariap {)

H IMabMJtnagmeat_MobTerm

; ^getMmResporse C} i ^RjDrectTt«isfeiStT!iR«s»rse ()
; ^RscSecurityCommand&TsResponse {)

• «ihtetfke>>
SB icoamtrolj*lob
•* Orig

:'fe'fl»tCiiP*t() HgetMmRsspome ()
ftgstCmSwiiceReqM-.-

: ftieceiveMmPart ()

Figure A.33: UML Interface set 1

in Figure A.33 and A.34 as follows:

157

§ ICaMScenarios

gfocationUpdReq {)

a mabfeartgReq ()
gtraisfeMfessageToMd^SijgSfrt i)

IjtraosferMiessageToMeMeTetmSim ()

\-_;*Werte»-' "
i l iRanapHessage

^recetveRanapPart (}
3||getDirectTtanfe^espQnse(}
^perfcrn<DnfnronIDar*anap(}
^gett&ettTtarsfefRequest {}

^perfotmluReteaseCornmsxl ()
^perfonnSecMcdeCoimiad {)

if/OSPSystem

p'tartAita£hR*q"£)
g,staitCppConr«KtR&q (}

|5tartDetacN?*?<3 ()
IstartCppDataRegi)

«fnCerfete**-''
UilICPPwiihQioc

l^connectRejO
^comectCfm {)
^data lnd{)
% attachToSeJVKeCfm {)
^& cfcclrtd ^ >
H, detachFrcmSe?viteCfm ()

"',..„. ^interface*' \
§ manapControSer

^ ^wardManagaConimand {)
5 to waf<UttathSCCfSeniceCommand {)
^ forwatcDetachSCCPSefvJceCoTimand ()

"**ifit9rf̂ Ke»•
I I IRanapFonn

^messageRaward C}

H TfraflkHmdfer

: ^<aftScerot9R«q't)
: %trarwfeMe$s^ToHsoc8er {5

*friifc@rfaee» '
HXSCCP

^attacftSetpSenfce | \
^ tf ansfert̂ fessageToScep () i
&detachSccp5«j<rs»fce { js

:.V--'-*<int#face»"
HI TfransferMessage

{ĵ messaejeForwaid ()

;*lnterte>*
Wl iCpx&xpApfi

g. a^tacfttcSej-wc^eq {)
|,det3chFromSeivtoeReq |)

»in£erface>>
IBlStATtTulM

. * interface*

'^tifansfaMessagetdSccp ()

I J ICpxScd "Hiterrace»
UlRefeaseMM

. ^reieaseMMcoiinec..

••'ftterfacfe*'"

; tf^nam^tessaoefoHanefts i)

Figure A.34: UML Interface set 2

158

A.4 CPP Platform Classes

This section illustrates two main classes that are provided by the CPP to commu­

nicate with the SCCI and SccpApfi Interfaces, these classes illustrated as follows:

CpxScciApfiProxy:: CpxSccpApfiA ttachP

Figure A.35 shows the UML representation for this class.

BcpxSctpApfiAUachP ;
'. CjjattachRef
: KictentID

'''^'ktehfoSeiviceReq ()""' ';
i i&ittaehTo&rviceOm ()
gldetachfaomS^veceReq ()

Figure A.35: CpxScciApfiProxy::CpxSccpApfiAttachP Class

Class Data Members: attachRef, clientID, and signalld.

Class operations:

CpxScciApfiProxy: :CpxSccpApfiAttachP::attachToServiceReq

CpxScciApfiProxy ::CpxSccpApfiAttachP::attachToServiceCfm

CpxScciApfiProxy ::CpxSccpApfiAttachP::detachFromServiceReq

CpxScciApfiProxy:: CpxSccpApfiAttachP: :detachFromServiceCfm

CpxScciProxy:: CpxScciP

Figure A.36 shows the UML representation for this class.

Class operations:

CpxScciProxy:: CpxScciP: :connectReq

CpxScciProxy:: CpxScciP r.connectCfm

CxScciProxy:: CpxScciP:: dataReq

CpxScciProxy:: CpxScciP r.datalnd

159

\ %comecH:fra ()

I ijdatalnd (;
i&dsd teq<)
; ftttectnd ()

Figure A.36: CpxScciProxy::CpxScciP Class

CpxScciProxy:: CpxScciP: :discReq

160

Bibliography

[1] R. Miles and K. Hamilton. Learning UML 2.0. O'Reilly, 2006.

[2] J. Schmuller. Sams Teach Yourself UML in 24 Hours. Sams Publishing, 2004.

[3] IBM Corporation. Rational Systems Developer Tool, http://www.ibm.com,

2007.

[4] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language

Reference Manual. Addison-Wesley, 2005.

[5] Ericsson Inc. CPP Platform Specification, SCCP Signaling Service Using

UML, Ericsson confidentainal information, 2007.

[6] 3GPP TS 25.413: Universal Mobile Telecommunications System (UMTS);

UTRAN Iu Interface Radio Access Network Application Part (RANAP) Sig­

naling, version 5.12.0 Release 5, 2005.

[7] 3GPP TS 24.008: Digital cellular telecommunications system; Universal Mo­

bile Telecommunications System (UMTS); Mobile radio interface Layer 3 spec­

ification; Core network protocols; Stage 3, version 5.16.0 Release 5, 2006.

[8] H. Holma and A. Toskala. WCDMA for UMTS: Radio Access for Third Gen­

eration Mobile Communications. John Wiley &, Sons, 2004.

161

http://www.ibm.com

[9] R. Kreher and T. Ruedebusch. UMTS Signaling: UMTS Interfaces, Protocols,

Message Flows and Procedures Analyzed and Explained. John Wiley & Sons,

2005.

[10] 3GPP TS 24.007: Digital cellular telecommunications system; Universal Mo­

bile Telecommunications System (UMTS); Mobile radio interface signaling

layer 3; General Aspects; version 5.4.0 Release 5, 2005.

[11] 3GPP TS 25.410: Universal Mobile Telecommunications System (UMTS);

UTRAN Iu Interface: General Aspects and Principles; version 5.4.0 Release

5, 2004.

[12] 3GPP TS 25.412: Universal Mobile Telecommunications System (UMTS);

UTRAN Iu Interface signaling transport; version 5.2.0 Release 5, 2004.

[13] 3GPP TS 44.018: Digital cellular telecommunications system; Mobile radio in­

terface layer 3 specification; Radio Resource Control (RRC) Protocol; version

5.22.0 Release 5, 2006.

[14] ITU-T Recommendation Q.711: Specifications of Signaling System No. 7 -

Signaling connection control part, functional description of the Signaling Con­

nection Control Part, 1996.

[15] ITU-T Recommendation Q.714: Specifications of Signaling System No. 7 - Sig­

naling connection control part, Signaling connection control part procedures,

1996.

[16] Ericsson Inc. MGwSim Simulator Architecture, Ericsson confidentainal infor­

mation, 2005.

[17] X. Li, S. Li, C. Gorg, and A. Timm-Giel. Traffic Modeling and Characteriza­

tion for UTRAN. In Wired/Wireless Internet Communications, LNCS 3970,

pp. 190-201, Springer-Verlag, 2006.

162

[18] D. Staehle, K. Leibnitz, and P. Tran-Gia. Source Traffic Modeling of Wireless

Applications. International Journal of Electronics and Communications, 55

(1): 27-36, 2001.

[19] A. Garcia, E. Garcia, M. Alvarez-Campana, J. Berrocal and E. Vazquez. A

Simulation Tool for Dimensioning and Performance Evaluation of the UMTS

Terrestrial Radio Access Network. In Interactive Distributed Multimedia Sys­

tems and Protocols for Multimedia Systems: Protocols and Systems for Inter­

active Distributed Multimedia, LNCS 2515, pp. 49-60, Springer-Verlag, 2002.

[20] S. Tabbane. Modelling the MSC/VLR processing load due to mobility man­

agement. In Proceedings International Conference of Universal Personal Com­

munications, volume 1, pp. 741-744, Florence, Italy, 1998.

[21] ITU-T Union. Worldwide mobile cellular subscribers to reach 4 billion mark

late 2008. http://www.itu.int/newsroom/press_releases/2008/29.html.

[22] B. Reed. Global telecom revenue to hit $2 trillion in '08, Network World,

http://www.networkworld.com/news/2008/091708-global-telecom.html.

[23] K. Prasad and K. Poon. Design of a protocol controller for wireless information

networks. In Proceedings Local Computer Networks, pp. 519-524, Minneapolis,

Minnesota, USA, 1992.

[24] T. Suzuki, S. Shatz, and T. Murata. A Protocol Modeling and Verification Ap­

proach Based on a Specification Language and Petri Nets. IEEE Transactions

on Software Engineering, 16 (5): 523-536, 1990.

[25] J. Lee and P. Hsu. Design and Implementation of the SNMP Agents for Re­

mote Monitoring and Control via UML and Petri Nets. IEEE Transactions

On Control Systems Technology. 12 (2): 293-302, 2004.

163

http://www.itu.int/newsroom/press_releases/2008/29.html
http://www.networkworld.com/news/2008/091708-global-telecom.html

[26] V. Garousi, L. Briand, and Y. Labiche. Traffic-aware Stress Testing of Dis­

tributed Systems Based on UML Models. In Proceedings International Con­

ference on Software Engineering, pp. 391-400, Shanghai, China, 2006.

[27] Catapult Communications. MGTS System Reference Manual.

http://www.catapult.com/products/mgts.htm, 2007.

[28] Catapult Communications. DCT2000 System Reference Manual.

http://www.catapult.com/products/dct2000.htm, 2007.

[29] Polystar Inc. SOLVER System Information.

http://www.polystar.com/SOLVER system/Downloads/Post.aspx, 2007.

[30] Ericsson Inc. 3Gsim Solution, Confidential Information.

[31] Ericsson Inc. UTMS Solution, Confidential Information.

[32] D. Loukatos, L. Sarakis,K. Kontovasilis, C. Skianis, and G. Kormentzas. Tools

and Practices for Measurement-based Network Performance Evaluation. In

Proceedings Personal, Indoor and Mobile Radio Communications, pp. 1-5,

Athens, Greece, 2007.

[33] D. Loukatos, L. Sarakis, K. Kontovasilis, and N. Mitrou. An Efficient ATM

Traffic Generator for the Real-Time Production of a Large Class of Complex

Traffic Profiles. Journal of Communication and Networks. 7 (1): 54-64, 2005.

[34] O. Kone and R. Castanet. Test generation for interworking systems. Computer

Communications, 23 (7): 642-652, 2000.

[35] N. Celandroni, E. Ferro, and F. Potorti. A Traffic Generator for Testing Com­

munication Systems: Presentation, Implementation and Performance. Real-

Time Systems, 13 (1): 5-24, 1997.

164

http://www.catapult.com/products/mgts.htm
http://www.catapult.com/products/dct2000.htm
http://www.polystar.com/SOLVER

[36] V. Frost, B. Melamed. Traffic modeling for telecommunications networks.

IEEE Communications Magazine, 32 (3): 70-81, 1994.

[37] C. Barrett, M. Drozda, M. Marathe, S. Ravi, and J. Smit. A Mobility and

Traffic Generation Framework for Modeling and Simulating Ad hoc Commu­

nication Networks. Scientific Programming, 12 (1): 1-23, 2004.

[38] F. Sandu, S. Cserey, I. Szekely, D. Robu, and T. Balan. Simulation of an ad­

vanced mobile communication network. In Proceedings Optimization of Elec­

trical and Electronic Equipment, pp. 223-230, Brasov, Romania, 2008.

[39] A. Varga. OMNeT++ Discrete Event Simulation System Version 3.2 User

Manual, www.omnetpp.org, 2005.

[40] 3GPP TS 23.205: Universal Mobile Telecommunications System (UMTS);

Bearer-independent circuit-switched core network; Stage 2, version 5.16.0 Re­

lease 5, 2008.

[41] ITU-T Recommendation Q.711: Language and General Doftware Aspects for

Telecommunication Systems, Specification and Description Language (SDL),

1992.

[42] K. Konishi, K. Maeda, K. Sato, A. Yamasaki, H. Yamaguchi, T. Higashino,

and K. Yasumoto. MobiREAL Simulator - Evaluating MANET Applications

in Real Environments. In Proceedings Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, pp. 499-502, Washington, DC,

USA, 2005.

[43] M. Mackaya, O. Kone, and R. Castanet, Modeling Location Operations in

UMTS Networks. In Proceedings Modeling Analysis and Simulation of Wire­

less and Mobile Systems, pp. 69-73, Atlanta, Georgia, USA, 2002.

165

http://www.omnetpp.org

[44] M. Mackaya and R. Castanet. Modeling and testing location based application

in UMTS networks. In Proceedings International Conference on Telecommu­

nications, volume 1, pp. 189-195, Zagreb, Croatia, 2003.

[45] S. Rios. Location Based Services: Interfacing to a mobile Positioning Center.

www.wirelessdevnet.com/channels/lbs.

[46] 3GPP TS 23.171: Universal Mobile Telecommunications System (UMTS);

Functional description of location services; Stage 2, version 3.11.0, 2004.

[47] ITU-T Recommendation Z.120: Language and General Software Aspects for

Telecommunication Systems, Message Sequence Charts (MSC), 1993.

[48] R. Thomas, H. Gilbert, and G. Mazziotto. Influence of the Moving of the

Mobile Stations on the Performance of a Radio Mobile Cellular Network. In

Proceedings Digital Land Mobile Radio Communications, Copenhagen, Den­

mark, 1988.

[49] T. Kim, Q. Yang, S. Park, and Y. Shin. SDL Design and Performance Evalu­

ation of a Mobility Management Technique for 3GPP LTE Systems. In SDL

2007: Design for Dependable Systems, LNCS 4745, pp. 272-288, Springer,

2007.

[50] Ericsson Inc. Formal Check Process, Ericsson confidentainal information, 2005.

166

http://www.wirelessdevnet.com/channels/lbs

