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ABSTRACT

Defects Control Charts for High-Quality Processes

Surath Aebtarm

The traditional C-chart by Shewhart has been widely applied for monitoring count data in
industrial and nonindustrial processes. However, using C-chart always experiences an exces-
sive amount of false alarms, since control limits of traditional C-chart are defined by impracti-
cal normal assumption. Specially, when we monitor two or more correlated characteristics of
defects, C-chart becomes unsuitable. Thus, monitoring a process by traditional C-chart leads
to the increase of unnecessary costs of inspection.

There are many works that have attempted to improve C-charts. In this thesis, 11 selected
improved versions of C-chart are presented. The performances of improved C-charts are eval-
uated in term of numerical results to demonstrate the sensitivity of the charts and costs of
inspections.

We also propose an optimal bivariate Poisson field chart to monitor two correlated char-
acteristics of defects. Our chart is based on the optimization of bivariate Poisson confidence
interval and projection of bivariate Poisson data in Poisson field. The detailed description of
our proposed algorithm is presented by numerical data. The experimental results demonstrate
improved performances regarding user-friendly visualization and false alarm rate.

Furthermore, we propose an optimal diagonal inflated bivariate Poisson field chart to mon-
itor two over/under dispersed correlated count data. The detailed description of our chart will
be presented. The expeﬁmental results demonstrate improved performances according to loss

function and false alarm rate compared to other methods.
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Chapter 1

Introduction

Manufacturing of products always deals with the variation in the production. The variations
can be due to common and special causes [26] [48]. When a process contains only common
causes of variation, it is in control. The average level of events, errors, or defects per unit can
be used to calculate the process capability. When a process contains special causes, the process
is out of control.

To deal with process variation, control charts are effective tools that are widely used for
quality inspection. The main purpose of a control chart is continually monitoring a process
by illustrating its behavior [9]. Figure 1.1 shows an example of control chart. Control charts
illustrate data on time series axis which provide the historical characteristics of a process. The
maximum expected variation is shown as the upper and lower control limits. When a sample
is excessive from maximum expected variation, it is indicated as out-of-control which can
be refereed to “assignable cause” [9]. The application of control chart are defining process
capability, benchmarking processes, and evaluating pilot state.

In a process, data can be continuous or discrete. Attribute charts have been widely
used to monitor discrete data. Since attribute data can be gathered from every process or
even transformed from continuous data, attribute control charts are widely used in many fields
to monitor both manufacturing and non-manufacturing processes [62]. For instance, a control
chart of number of defects can be used for manufacturing purposes, and control chart of number
of accidents per week is used in non-manufacturing issue [26]. Although an attribute chart is
not always as effective tool as continuous control charts to find root problems and solutions, it

is an economical tool to collect and analyze the process characteristics before continuous charts
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Figure 1.1: Control Chart.

can be applied [32]. Besides, attribute charts are more practical in some cases. For example,
monitoring number of survived patients per year is more practical than monitoring how long
patient can be survival which usually uses continuous control chart [62].

There are two types of attribute control charts, defective and defects charts. The term
“defective” is referred as the item that has one or more defects. The term “nonconforming”
is also used instead of “defective” [25]. These types of charts are used with fhe number or
proportion of defective units. For instance, P-charts and np-charts are used for evaluating
proportion and number of defectives, respectively, which are produced by a process. Examples
of defective data are number of defective items per proportion, number of rejected invoices per
30 inspections, and number of surgical operations that went smoothly [62]. The term “defect”
in quality field is referred as a single non-conforming quality characteristic of an item. It’s
possible that a nonconforming unit has many non-conformities [58] [66]. C-chart is a defect
control chart that has been widely used in statistical process control (SPC). C-chart is used
to monitor the actual total number of defects per unit. For example, number of defects per
item and number of patients in a hospital per day [32]. Constructing C-chart is inexpensive
since the plotted data are count data which does not require measurement, and can be collected

from daily report in many cases. Furthermore, C-chart is used for plotting numbers of defects.



Thus, it’s simpler to plot C-chart than any other control chart by just plotting raw data without
necessity of transformation [62].

However, there are some points that need to be considered before attribute charts are ap-
plied. Attribute control charts can be biased if an inspector misjudges a product to be a defec-
tive [26]. For measuring small changes of variables, attributes are not as sensitive as continuous
charts to represent the process, since attribute chart plots only in term of acceptable or not, in-
stead of exact value of data. The result of using attribute chart is sometimes out of reality

because in some cases small variation cannot count as a defective in reality [26].

1.1 Background

1.1.1 The Classic Shewhart’s C-chart

The classic C-chart by Shewhart is widely used in SPC when a process provides count data.
Poisson distribution is in general used to model count data and is given as the following [9]:

e Mk
k!

Pz =k)= 1)

where A represents at the same time the mean and the variance and k is the number of

occurrences. The usual approach to obtain control limits of Shewhart’s attribute control chart

is to use plus and minus three standard deviation limits (under the assumption of normal ap-
proximation [9]):

c+3veE )

where € is sample mean. To construct the traditional Shewhart C-chart [9] [26] [32], the

upper control limit (UCL) and the lower control limit (LCL) can be calculated by
UCL =¢+3Ve (3)
LCL=¢—3VE (4)

When LCL is negative in case of low mean of Poisson variable, LCL will be considered

as zero because number of defects cannot be negative [9].

The average number of defects can be calculated by the estimated mean of Poisson

distribution as follows

1 n
/\ZE;I%' (5)
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where n is the total number of variables, and can be derived by maximum likelihood

estimation (M LE) [33}:

n n e— A \ki
L) = ][0 0= m( ) ©
i=1 =1
n n
= —nA+ (Z ki> In(A) - > " In(k;!)
i=1 i=1
Take the derivative of L with respect to A and equate it to zero:
dL(A)—0<=> + Xn:k 1—0 7
EBY = n < U ’ Q)
Solving for A yields the maximum-likelihood estimate of A:

- 1<
AMLE = ~ Zl ki. (8)

1=

For the classic Shewhart’s C-chart, there are two main drawbacks: (1) imprecise control
limits by normal approximation and (2) the mean and variance may be unequal for small sample
size.

Generally, the normal approximation performs poorly due to its rigidity (always sym-
metric). Thus, the normal approximation can not provide the efficient control limits for C-chart
as it was discussed in [58]. Especially, when the mean of Poisson distribution is small, the
shape of count data distribution tails to infinity on one side. Thus, count data should not be
plotted in normal approximation control limits.

The unequal mean and variance for small sample size also cause imprecise control
limits as it was explained in [37] where the author noticed that “ for the small probability such
as Poisson distribution, the sample size needs to be large enough in order to give the good

distribution fit ”. This issue was explained by using divergence coefficient:

[

8

Q= ®

z

where s® and Z are the sample mean and variance, respectively. Q2 is the square of
the “divergence coefficient”. By Poisson definition, mean and variance should be equal. Thus,
divergence coefficient should always be equal to one. However, the divergence coefficient is

not always one if sample size is small. Thus, if sample size is not large enough, divergence



coefficient will not be unity [37], which supports the reason why normal approximation control
limit of C-chart cannot provide high standard of false alarm.

Moreover, mean of Poisson population that is acquired by using M LFE or taking the
average directly from the data is not as precise as the exact mean of Poisson population [33].
Shenton and Bowman pointed out this issue in the case of small sample size (which follows
Poisson distribution) and mentioned that “although M LE is good choice to use as estimator,
it can mislead to the asymptotic variance which occur when the sample sizes are small, and
leads to error of estimation” [33]. As a result, using M LE to approximate the mean of sample
leads to construct imprecise control limits. The constructed chart will not be able to satisfy
three standard deviation confidential interval and also lead to create excessive false alarm, and
then waste, time, and more expensive efforts. Thus, a challenging problem is to improve such

an effective and flexible tool to reach high standard false alarm rate.

1.1.2 Key Parameters of Control Chart’s Performances

Since in many circumstances, C-chart does not perform efficiently, classic C-chart still
leaves the room for improvement. In order to assess the efficiency and performance of a given
control chart, three key parameters which are plotting illustration, loss function, and average
run length will be used.

Although quantitative analysis is the main reliable approach to analyze a statistical al-
gorithm, in practise, the main concerns are not only flexibility and accuracy, but control charts
also need to be handy and visual. Handiness and visualization can not be shown by numerical
results. Thus, the control chart plotting illustration should be considered. The characteristics
of a robust control chart that are mentioned in many research papers are the ability to plot raw
data in the control chart, and plot many different data in the same control chart. Since the main
purpose of control chart is illustration of process behavior, Ryan mentioned that an efficient
control chart needs to be able to show the raw data in order to be able to illustrate if something
goes right or wrong {60]. Moreover, Quesenberry also explained that we need to be able to
plot different data in the same control chart in order to help an inspector to compare two or
more different data at the same time [7]. Thus, selecting the proper control chart depends on
the actual process needs. The actual data would be the main requirement of charts if the charts
are needed to illustrate the real data. In the other hand, a chart that can plot many different

types of data at the same time would be needed to monitor different types of defects. In this



Table 1.1: Nominal value of ARL for each state
In control state | Shift =0.50 | Shift=1c | Shift=1.50 | Shift=20
Both tails 370.40 3342 4.50 1.57 1.07
Each tail 740.80 66.84 9.00 3.14 2.14

research, the data illustration of each tested chart will be presented.

Second, Average Run Length (ARL) is the vital parameter which is used for evaluating
the performance of control charts and making decision to choose sample size and sampling
frequency [9]. In statistical process control, ARL can be explained as the average number of
samples that can be inspected before a point is indicated out of control. In other words, ARL
can be described as how often that alarm will be signaled when a process is out of control.
There are many contradictions among researchers to describe the A RL of the high performance
control chart. Nevertheless, the majority of researchers agree that “The high value of ARL will
be desired when the process is in control but the short value of ARL will be desired when the
mean of the process is shifted or been out of control” [69]. ARL can describe sensitivity of
control charts whenever the mean of the process changed [35]. ARL can be calculated by the
average total number of samples that can be plotted in the chart before the point that is out of

control appeared [9]. For independent variable, ARL is given by:

ARL = - =
p(sample point plots out of control)

(10)

For three standard deviation level, during in-control state, the probability of out of
control points is 0.0027. Thus, since p is the probability of out of control, ARL is equal to
1/p = 370, which means that if the process is in control, an out of control product will appear
in every 370 products. Thus, during the control state, preferable ARL value will be 370.
Since many statisticians always compare the level of ARL to three standard deviation level,
it’s interesting to compare defects chart to three standard level. In [12] the author presented the
run length for three standard deviation Z due to infinite sample size when means of samples
are shifted which can be referenced as ARL of three standard deviation.

Moreover, in some processes, it’s very interesting to consider ARL of lower and higher
control limits separately in order to monitor characteristics of each control limit. Because
Poisson distribution has two tails, the probability of out of control point can be divided by
two [42]. ARL of each tail will be equal to 1/(p/2) = 740.4. In table 1.1, we show ARL

values of each state. The nominal ARL values of both tails and single tail can be shown in



form of variation of state such as in-control state and mean shifted states.

Third, loss function is also a key measure that can be considered in order to monitor the
level of cost that can be gained in the control charts. Loss function illustrates cost, which can
be caused by excessive false alarm [42]. In practice, loss function shows how much a process

creates cost of inspection, and waste. The loss function is defined as [60]:

1 1 + 1 1 )
LTA 0.00135 UTA 0.00135

(11)

Loss. function = (

where LT A = }TR}TL and UTA = ﬁ. A lower limit total area (LT A) is the total
area of out of control of the lower control limit, and an upper limit total area (UT A) is total
area of out of control of the upper control limit. They can be calculated by ARL of lower and
upper control limits. According to the previous equation, LT A and UT A are subtracted by
nominal three standard deviation confidential interval (ARL = 740.7) to calculate how much
the ARL of the control chart gains over three standard deviation level. Thus, an inspector
will be able to locate how much each control limit produces false alarm rate more than three
standard deviation confidence interval. To compare the performances of each approach, it’s
important to calculate the loss function that illustrates the cost that will be created by using

each method. To have an effective control chart, the loss function must be minimized.

1.2 Contributions

The contributions of this thesis are as follows:

< An Empirical Evaluation of Selected Defects charts: We investigate the performances of
11 selected defects charts. To compare the performances of each chart, we tested each
chart and considered some key factors such as low mean responsiveness, loss function,
and mean shifting sensitivity. To simplify the comparison of each control chart perfor-
mances, we categorize all control chart into three groups, transforming data, standardiz-

ing data, and optimizing control limits.

< An Optimal Bivariate Poisson Field Chart for High-quality Manufacturing processes:
We propose an optimal bivariate Poisson field chart to monitor correlated defects. This
chart is improved by optimizing bivariate Poisson confidence interval and illustrate bi-

variate Poisson data in Poisson field. The results show that our control chart provides



excellent rate of false alarms, and enhanced visual-interface of correlated characteristics

on a single chart.

< An Optimal Diagonal Inflated Bivariate Poisson Field Chart: We propose an optimal bi-
variate Poisson field chart to monitor bivariate over/uhder dispersed count data. This
chart is also improved by optimization of confidence interval and illustration of Poisson
field. However, to deal with over/under-dispersion, the diagonal inflated bivariate Pois-
son model is used instead of usual bivariate Poisson model. The proposed chart presents
excellent rate of false alarms, and high sensitivity to handle over/under-dispersed count
data. The various simulated data demonstrate the enhanced performances of our control

chart compared to other previously proposed charts.

1.3 Thesis Overview

The organization of this thesis is as follows:

3 The first Chapter introduced Shewhart C-chart, and reviewed some keys parameters to

assess the performances of control chart.

O In Chapter 2, we present 11 selected improved versions of C-charts. The performances
of improved C-charts are evaluated in term of numerical results to demonstrate the sen-

sitivity of the charts and costs of inspections.

O In Chapter 3, we propose an optimal bivariate Poisson field chart to monitor two corre-
lated defects. The detailed description of our chart will be presented. The comparative
results and case study demonstrate improved performances according to data visualiza-

tion and false alarm rate compared to other methods.

O In Chapter 4, we propose an optimal diagonal inflated bivariate Poisson field chart to
monitor two over/under dispersed correlated count data. The detailed description of our
chart will be presented. The experimental results demonstrate improved performances

according to loss function and false alarm rate compared to other methods.

Q In the Conclusions, we sumimarize our contributions.



Chapter 2

An Empirical Evaluation of Selected

Defects charts

The traditional C-chart by Shewhart has been widely applied for monitoring count data in in-
dustrial and nonindustrial processes. However, using C-chart always experiences an excessive
amount of false alarms, since control limits of traditional C-chart are defined by impractical
normal assumption. Thus, monitoring a process by traditional C-chart leads to increase unnec-
essary costs of inspection. There are many works that have attempted to improve C-charts. In
this chapter, 11 selected improved versions of C-charts are presented. The basic concepts and
detailed description of all charts are discussed. The performances of improved C-charts are
evaluated in term of numerical results to demonstrate the sensitivity of the charts and costs of

inspections.

2.1 Introduction

Many approaches have been proposed to improve attribute control charts. However, it’s
possible to categorize them into three major groups of approaches which are: (1) the trans-
forming data approach, (2) the standardizing data approach, and (3) the optimizing control
limits approach. To introduce all control charts, the theoretical ideas behind each chart and
its construction will be presented. In order to visualize each control chart and investigate its
ability to illustrate data, we will use the dataset in table 2.1 [32]. For some control charts that
can be applied with different sample sizes, the charts will be illustrated by the data in table 2.2

which was used in [8].



Table 2.1: Defects data set

Sample No. Number of Defects (c)
1.00 8.00
2.00 7.00
3.00 6.00
4.00 4.00
5.00 3.00
6.00 9.00
7.00 1.00
8.00 5.00
9.00 0.00
10.00 0.00
11.00 23.00*
12.00 3.00
13.00 15.00*
14.00 8.00
15.00 5.00
16.00 7.00
17.00 3.00
18.00 0.00
19.00 12.00

20.00 3.00

21.00 4.00

22.00 18.00*

23.00 7.00

24.00 4.00

25.00 4.00
"*Denotes sample above upper limit” Total defects =159

Table 2.2: Defect data set for different sample sizes

Sample No. Size of sample | Number of Defects
1.00 4.00 4.00
2.00 4.00 3.00
3.00 4.00 3.00
4.00 4.00 7.00
5.00 4.00 6.00
6.00 4.00 10.00
7.00 4.00 7.00
8.00 4.00 6.00
9.00 4.00 7.00
10.00 4.00 4.00
11.00 4.50 7.00
12.00 4.50 10.00
13.00 4.50 10.00
14.00 4.50 6.00
15.00 4.50 9.00
16.00 4.50 5.00
17.00 4.50 9.00
18.00 4.50 5.00
19.00 4.50 11.00

20.00 4.50 3.00
21.00 5.00 8.00
22.00 5.00 11.00
23.00 5.00 12.00
24.00 5.00 5.00
25.00 5.00 7.00
26.00 5.00 8.00
27.00 5.00 8.00
28.00 5.00 10.00
29.00 5.00 5.00
30.00 5.00 14.00
31.00 5.00 7.00
32.00 5.00 9.00
33.00 5.00 14.00
34.00 5.00 16.00
35.00 5.00 17.00
36.00 5.00 15.00
37.00 5.00 15.00
38.00 5.00 9.00
39.00 5.00 13.00
40.00 5.00 11.00
41.00 4.40 20.00
42.00 4.40 15.00
43.00 4.40 11.00
44.00 4.40 18.00
45.00 4.40 11.00
46.00 440 6.00
47.00 4.40 8.00
48.00 4.40 15.00
49.00 4.40 11.00
50.00 4.40 10.00
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Table 2.3: Summary of data transformation equation
Author Transforming equation
Bartlett [39] [38] y=2yc
Anscombe [15] y=2/c+ g
Freeman and Tukey [36] y=+c+Vc+1

2.1.1 The Transforming Data Approach

The transforming data approach is the first option to improve the performance of attributé
control charts. This approach is based on approximating Poisson distribution by a normal
distribution after transforming count data.

The idea of transforming data approach is related to transform asymmetrical distribution
to almost symmetric one. There are many approaches that statisticians have applied in order to
acquire the perfect normal distribution transformation. Ryan presented three interesting trans-
formations in his book which are Bartlett transformation model, Anscombe’s transformation
model, Freeman and Tukey transformation model, and illustrated the construction of each con-
trol chart [58]. Another transformation approach has been proposed in [63]. In the following,

we discuss in details these approaches.

Bartlett, Anscombe, and Freeman and Tukey Control Charts

Three main data transformation approaches have been proposed by Bartlett [39] [38], Anscombe
[15], and Freeman and Tukey [36], and presented in table 2.3. In this table, c is the number of
defects (original data) and y is the transformed data [58]. By using these three transformations,

control limits are given by the following:

CL=y )]
LCL=35-3 2
UCL=93+3 (3)

where 7 is the mean of transformed data. To illustrate each transforming data control

chart, the data set in table 2.1 is transformed by using the equations in table 2.3. Figures 2.1,

11



2.2, and 2.3 show the resulted control charts using equation 1, 2, and 3 to compute the control

limits.
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Figure 2.1: Bartlett chart
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Figure 2.2: Anscombe chart
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Freeman and Tukey chart
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Figure 2.3: Freeman and Tukey chart

Improved Square Root Transformation Control Chart

Alternative attribute control chart based on improved square root transformation (ISRT)
was proposed in [63]. The authors used square root of data for transforming Poisson distribu-
tion into symmetric distribution. Although their work mainly show the result of transformation
to P-chart [63], they emphasized that is is also applicable to C-chart. They explained that ISRT

chart can be constructed by the following equations:

CL=+¢ C)}
- 3 9.1
LCL=\/E—°2‘—§(—E) &)
- 3 1.1
UCLZ\/E+§—§ 75) (6)

where € is the samples mean. Figure 2.4 shows the actual plotting of ISRT control chart
using the data set in table 2.1.

Despite transforming data approaches can provide good results, they have some weak-
nesses. For example, the transforming data approaches require sophisticated inspectors and

time in order to transform data. Besides, since data that can be plotted in this type of chart
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Figure 2.4: ISRT chart

needs to be transformed, the transformed charts can not illustrate the exact level of defects in a

process.

2.1.2 The Standardizing Data Approach

Similarly to the transforming approaches, the standardizing approach is based on data
transformation. However, in the case of standardizing control chart, after data are transformed,
the data will be plotted in -3 to 3 control limits where they will be monitored in form of
number of standard deviation. Similarly to the transforming data approach, the original data
cannot be plotted on the control chart, and illustrate process characteristics. However, the
main advantages of standardizing chart in term of data illustration is that the different types of
defects can be plotted in the same standardized chart. |

Since the standardized data are plotted in -3 and 3 control limits, the control limits are

defined as the following:

CL=0 (7)

LCL =-3 ®)

14



UCL =3 9

In 1991, Quesenberry presented his Q-chart along with other charts [8]. His work is one
of the first standardizing charts that inspired many other researchers. Q-chart can monitor both
continuous and attribute data with constant or non-constant sample size [7]. Moreover, Q-chart
can be used in the case of both known and unknown parameters such as mean and standard
deviation. In this research, Q-chart and other charts such as standardization C-chart and W

transformation chart which were presented along Quesenberry’s work will be investigated.

The Standardization C-Chart (Defects Z-chart)

The standardization Poisson transformation (Z-chart) transforms random variables by relo-
cating the data, and spreading of the distribution [8]. This method is based on subtracting the

mean of data (¢ X n) and dividing it by its standard deviation:

. c—nc
vnc

Then, the data that are transformed can be plotted in -3 and 3 control limits as usual

(10)

standardized type of control chart, which can show the level of out of mean data in term of

numbers of standard deviation. Figure 2.5 shows ISRT chart using the data in table 2.1.

The Square Root (W) Transformation Chart

The square root transformation chart is a common approach that is applied in count data

monitoring and defined by the following equation [8]:

W =2vc— 2vVné ’ (11)

With this transformation, data can fit in -3 to 3 control limits, and center line is zero. Figure

2.6 shows W transforming chart using the data in table 2.1.

Q-chart for a Poisson Parameter

Q-chart proposed by Quesenberry is a well-known classic standardizing data chart. This
chart is based on approximately normalized control chart [8]. Quesenberry explained that his

chart can monitor the count data even if the mean of data is unknown with variable sample
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Figure 2.6: W-chart
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sizes. For the design of Q-chart for Poisson parameter, one should suppose that y; is the
number of defects on a sampling, and A is the average rate at which defects occur on a standard
size inspection unit. Quesenberry presented Q-chart for Poisson parameter in 2 cases with

known and unknown mean.

e Q-chart for Known )\
For known A, the count data will be transformed in order to fit them into -3
and 3 control limits. The data will be transformed from Poisson distribution to Q
distribution by the Poisson cumulative distribution function and the inverse of the

standard normal distribution function according to these equations:

u; = F(ci;niA) (12)

Qi = @ Hw) (13)

fori=1,2,...

Each data point of the Poisson distribution is transformed by Poisson cumu-
lative distribution function which has mean A. Then, the transformed data from
Poisson cumulative distribution function will be transformed again by the inverse
of the standard normal distribution. After that, Q-distribution will be acquired.

After all transformation steps, the data will be plotted in -3 and 3 control limits
which is similar to any other standardized methods. The known A Q-chart corre-
sponding to the data in table 2.1 is shown in figure 2.7.

e Q-chart for Unknown )\

" Forunknown A, the count data will be transformed by another way. By uniform
minimum variance unbiased (UMVU) estimating distribution function, Lehmann
explained that Binomial distribution function can be used for estimation when
the probability of occurrence is low which can be referred to Poisson distribution
[13]. Thus, in order to transform unknown A Poisson distribution, data will be
transformed by the Binomial cumulative distribution function and the inverse of

the standard normal distribution function as the following:
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Figure 2.7: Estimated known A\ Q-chart

w; = Blcsi ti, ]—’f,—) (14)
Qi =1 (w) (15)

fori=1,2,..

Where n; is size of subgroup of sample, and N; is the total size of sample.
For transforming unknown \ Poisson distribution, the data will be transformed by
binomial cumulative function, then, similarly to known ) case, the data will be
transformed again by inverse of standard normal distribution.

Afier all transformation steps, the data will be plotted in -3 and 3 control limit.
To illustrate unknown A Q-chart, the actual plotting of unknown A Q-chart from
the data in table 2.1 is given in figure 2.8.

The Masking Shifted Effect of Q-chart

Masking of shifts has been presented as a problem in Q-chart [16]. Indeed,
Quesenberry noticed that unknown A Q-chart is not always accurate if the process
mean is shifted at the beginning [7]. This issue was explained in [16] by the
fact that, to approximate mean of population, unknown A Q-chart uses the past

observations to update Q-statistic (pool of collected data). Then, if the mean of
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Figure 2.8: Unknown A Q-chart

population is shifted in early state, the out of control data will be contaminated
which leads to inaccurate Q-chart. An example is shown in figure 2.9. In order to
present the masking shifted effect, the data set in table 2.1 is augmented by 25 out
of control data points which are provided by table 2.4. The plotted data between
1 to 25 are in control state. However, the last 25 data are out of control. In figure
2.9, instead of showing out of control signal after point 25, unknown A .Q-chart
presents that out of control data are gradually rebounded back in control when the
process reaches point 37. Thus, leaking the defects to the process can be caused
by masking shifted effect which creates visibly in-control even out of control data
still persisted [16].

Known A\ Q-chart will be only tested in the case which can be called “Estimated Q-
chart” since the mean is estimated by M LE. However, in the case of unknown X Q-chart, the
masking shifted effect gains the unusual low rate of out-of control signals of the unknown A
Q-chart since the mean shift will rebound back after the points are out-of control. Thus, in this
chapter, the comparison of Q-chart with other C-charts will be performed only in the case of

estimated A Q-chart.
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Figure 2.9: Masking shifted effect of Q-chart

Table 2.4: out of control data set for masking shifted effect

Sample No. Number of Defects (c)
26.00 19.00
27.00 20.00
28.00 21.00
29.00 15.00
30.00 . 21.00
31.00 21.00
32.00 21.00
33.00 19.60
34.00 22.00
35.00 19.00
36.00 21.00
37.00 21.00
38.00 18.00
39.00 21.00
40.00 19.00
41.00 20.00
42.00 21.00
43.00 19.00
44.00 21.00
45.00 22.00
46.00 20.00
47.00 21.00
48.00 19.00
49.00 21.00
50.00 22.00

2.1.3 The Optimizing Control Limits Approach

Mainly, the optimizing control limits approaches try to define the exact control limits in
order to construct the absolute three standard deviation attribute control charts.
With these approaches, the control limits are defined in term of tables or equations
which are convenient to apply in practice. Without transforming data, there is no needs of
high working skills and a lot of time to construct control charts. There are some works which

have been developed by the optimizing control limits approach. For instance, Ryan proposed
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“The optimal control limit C-chart” [60]. This chart is the first approach that was proposed
by optimizing C-chart control limit. Then, followed works such as “Winterbottom’s control
chart” [2] and “the (Almost) Exact Control Limits for a C-chart” [50]. In the following, we

present these charts.

Optimal Control Limit C-chart

The basic concept E)f the optimal control limit C-chart is defining C-chart limits that provide
satisfied rate of out of control signals. The steps to construct this chart are finding the optimal
limits, obtaining table of means and limits, and applying linear regression (See [60] and [42]).
As other optimizing control limit charts, the actual data can be plotted. Thus, an inspector can
easily monitor the process. The actual number of defects will be shown without transformation
to any form. Ryan explained that the ot)timal control limit C-chart can provide the control limits
in both table and equation which are flexible in real manufacturing processes. By following

Ryan’s works, the optimal control limit C-chart can be constructed by the following equations:

CL=c¢ (16)
UCL = 0.6182 + 0.9996¢ + 3.0303+/¢ (17)
LCL = 1.5307 + 1.0212¢ — 3.2197/¢ (18)

where ¢ is the mean of sample. Using data set in table 2.1, the optimal control limits

C-chart is illustrated in figure 2.10.

Winterbottom Control Chart

Winterbottom presented his attribute control chart by using Cornish and Fisher expansions
transformation [2]. He explained that Cornish and Fisher expansions transformation can be
used for defining the control limits of defects chart. Winterbottom’s control chart (Winter

chart) can be constructed as the following:

CL=¢ (19)
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Figure 2.10: The optimal control limit C-chart

LCL=¢-3vc+4/3 (20)

UCL =¢+3vVc+4/3 1)

To illustrate Winterbottom chart, the data in table 2.1 is used (see figure 2.11).
Furthermore, Winterbottom chart is only the optimized control limits chart that can be
used with variable sample sizes. Winterbottom provided the control limits in case of variable

sample sizes by the following:

CL=2¢ 22)
LCL=¢-3¢/n+4/3n (23)
UCL=c+3vc¢/n+4/3n (24)

where 7 is a subgroup sample size, and ¢ is the center line. An example of Winterbottom

chart in the case of different sample sizes using the data in table 2.2 is shown in figure 2.12.
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Figure 2.11: Winterbottom’s C-chart
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Figure 2.12: Winterbottom’s C-chart for vary sample sizes
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The (Almost) Exact Control Limits for a C-chart

In general, to improve attribute control chart, many researches introduce many approaches
for transforming attribute data from Poisson distribution to nearly normal distribution. How-
ever, instead of transforming data, Rudolf proposed his control chart which achieves three
standard deviation limits of defects chart by transforming normal three standard control lim-
its [50].

To optimize control limits, the author presented the basic equation of his control limits

as following [50]:

A ~ 13 .
c [fiy & 26,)2 (25)

Where z is usually equal to 3 (three standard deviation) and ¢ can be upper or lower
control limit. Then, in his separated work [49], he determined the expected mean and standard

deviation on transformation scale as:

1.2

fy =@+ 15)3 (26)
2.1

gy = (3)(€)® 27

Haldane’s work shows that 2/3 power can provide symmetric Poisson transformation
[21]. Moreover, before 2/3 power transformation, Read and Cressie work also suggested that
the constant (1/4) from Anscombe’s Poisson transformation is needed to be added [61]. There-

fore, Rudolf gave the transforming control limits equation given by:

1
7

Wi

Y=(c+ (28)

By substituting estimated mean and variance into the basic form, and then substituting

again into the transforming control limits equation, Rudolf’s control limits are given by:

CL=¢ (29)
LOL = [(e+ 35)f ~3(3)(@41} + (30)
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Figure 2.13: The (Almost) Exact Control Limits for a C-chart

UOL = [+ 35)8 +3(2) @8]} - ] 31

12 4
By equation 29, 30 and 31, the (Almost) Exact Control Limits (ECL) can be constructed.

To illustrate the chart, the data in table 2.1 is plotted and shown in figure 2.13.

2.2 Experimental Results: Comparison of the Different Defects

Charts Performances

2.2.1 Objectives and Methodology

The main objectives of this section are:

e To compare control charts by categories, and find the best chart in each class.
¢ To find the lowest mean that the lower control limit of each chart can provide.
o To find the control chart that provides the lowest loss due to in-control state.
o To find the control chart that provides the highest sensitivity due to mean shifting.
The data sets used to test the different control charts were generated by Poisson random

number generation using MATLAB 7 build in function as follows:

o Each data set contains 100,000 data.
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Table 2.5: List of transforming equation and control limits of defects chart
Transforming Equation CL LCL UCL
Bartlett y = 2 /¢ g 7 — 3 7+3
Anscombe y=2/c+§ g §-3 g+3
Fr &Tukey y=+ et /e+1 g y—3 7+3
ISRT y=+c Ve ve—3 - 3(%) VE+§ - 3()
z z = ﬂ=—:§ 0 3 3
w W = 2./5 — 2VnX 0 -3 3
Q CDF of Poisson and inverse Guassian 0 3 3
C None g ¢ —3Ve &+ 3VE
Ryan&Schwertman None 5 1.5307 + 1.0212¢ — 3.2197v/¢ 0.6182 + 0.9996¢ + 3.0303/¢
Winterbottom None & ¢ —3v/c+4/3 Z+3VE+ 4/3
P4 O | 2 13

ECL None ¢ G+ )3 -32)®8)2 + 5 | e+ 5)% +3(3)98)2 - 2

e 50 data sets were generated by different means from 1 to 50.

e The mean shifts were set to 0.50, 0, 1.50, and 20.

After generating Poisson random numbers, we define LC L and UC'L of each control chart.
In some cases such as transformed control charts and standardized charts, data were trans-
formed before control limits were defined. All formula used for transformation and the com-
putation of control limits are summarized in table 2.5. After transforming or standardizing data
and defining the control limits, the data were plotted and the out of control points were counted
and used for calculating ARL values. Then, all ARL values were recorded and plotted to

compare the performances.

2.2.2 Performances Comparison Based on responsiveness of lower control limit

to low mean samples

Ryan explained that the classic C-chart can not be performed when the mean of defects is
low [58]. Indeed, when a control chart is constructed by low mean samples, the lower control
limit is always negative. Thus, the lower control limit can not be shown in the control chart
since numbers of defects can not be lower than zero. He pointed out that the control chart that
its lower control limit can respond to the lowest mean can be considered as high performing
control chart in term of monitoring the data at the low mean which can be necessary in high
yield process where numbers of defects are very small [58].

Figure 2.14 shows the lowest mean that the lower control limit of each control chart can
use for monitoring a process. In this figure, the lowest peak corresponds to the best chart in
term of detecting a defect in low mean population. From this figure, we can point out noticeable

results:

e Except Z-chart, other charts can perform better than Classic C-chart in this test.
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Figure 2.14: The lowest level of mean that the lower control limit of each control chart can
monitor in the case of out of control signal. The names of each control chart on X-axis, and
the level of mean is shown in the Y-axis.

e The transformation data approach category performed the best in this test. The
charts in this category can be applied even though mean of samples is as low as 3
to 5.

o For standardized charts and optimal control limit charts, W transformation control
chart and (Almost) Exact control limit chart (ECL) are the best in each category,

respectively.

Loss

¢ Barlleti Ans FAT ISRT I W Q ¢ RRSWinterExacl

(a) ®)

Figure 2.15: Loss function of (a) lower control limit and (b) upper control limit of each control
chart due to in-control state. The names of each control chart on X-axis, and the level of loss
gain is shown in the Y-axis. : :
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2.23 Performances Comparison Based on Loss Function

As explained in section 1.1.2, Loss function indicates how much the process signals false
alarm when the process is in control. The preferable control charts will be judged by the
lowest loss creation which can be shown separately into lower and upper control limits. The
Loss function of lower and upper control limits of each control chart are shown in figures
2.15.a and 2.15.b, respectively. The lowest peak corresponds to the best chart in term of loss
gain. Each bar represents the loss gain of each chart. The top of each bar is not flat since
each bar is contained with loss gaining of each mean samples from 1 to 50. The chart that has
logarithmic-like top shows the changed level of loss gain due to the mean changes from 1 to
50. There are some noticeable points which can be pointed out according to lower control limit

performance:

e The result of lower control limit shows that the optimized control limit category
performs the best among other classes. The optimal control limit C-chart has the
best performance since the loss function is laid on the bottom of the graph. The
other two optimized control limit charts which are the Winterbottom’s chart and
the ECL chart also gain low loss.

¢ Transformed data category has the second performance which shows slightly higher
loss function than the optimized control limit category, except ISRT chart that cre-
ates very high cost function.

e For the standardized control charts, W transformation can perform at low loss
function, and Q-chart can perform low loss only in case of high mean of samples.

e In term of improvement compared to classic C-chart, there are only ISRT and
Z-charts that provide unsatisfied resuit.

There are also some interesting points that can be mentioned according to upper control

limit performances:

o The optimizing control limit category performed the best according to this test.
The result of upper control limit shows that the optimal control limit can perform
excellently among defects charts. In this category, Winterbottom’s chart also gains
the low loss function due to upper control limit except in the case of low mean
(slightly high loss function), and ECL chart draws slightly higher loss than the

two other charts.
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Figure 2.16: ARL;, of each control control chart in different states (a) no shifting (b) 0.50 (c)
o (d) 1.50 (e) 20

e For groups of transformed control charts and standardized control charts, ISRT
chart and Q-chart can perform at the low wastes as closed as the level of optimizing
control limit category does.

e Bartlett, Anscombe, Freeman and Tukey, and W transformation charts créate even

higher cost than classic C-chart.
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Figure 2.17: ARLy of each control control chart in different states (a) no shifting (b) 0.50 (¢)
o (d) 1.50 (e) 20

2.2.4 Performance Comparisons Based on Mean Shifting Sensitivity

In order to define the effective mean shifting detection of each chart, the best performance
chart will be judged by ARL interpretation (see section 1.1.2). The preferable level of ARL
during in control state should be high and close to in control nominal ARL level (see table
1.1). For the preferable level of ARL during the out-of-control state, ARL level should be as
low as the out-of-control ARL nominal values. Furthermore, to compare the sensitivity of each
chart, the performance will be evaluated by separated control limits.

In figure 2.16, the graphs show the ARL levels of lower control limit due to shifting
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of o level. Figure 2.16.a shows the ARL level of each chart during the in control state, figure
2.16.b, 2.16.c, 2.16.d, and 2.16.e show the ARL levels during means of samples shifting by

0.50, o, 1.50, and 20, respectively. From figure 2.16, we can point out noticeable remarks:

e All ARL levels of the different charts from in-control state to out-of-control state
show significant changes.

e The optimizing control limit category has the highest mean shifting sensitivity
compared to the other categories. The optimal control limit C-chart and Winter-
bottom’s chart have the best performance.

e There are three charts (Bartlett, Anscombe, Freeman and Tukey charts) in trans-
forming data category, and ECL chart have the second high performance due to
mean shifting sensitivity.

e For the last group which is standardizing data approach, Q-chart has the highest
mean shifting sensitivity and show improved performance compared to the classic
C-chart.

e Z-chart and ISRT chart have almost the same result as classic C-chart, and W

transformed chart performs less efficient than the classic C-chart.

In figure 2.17, the graphs shows the ARL levels of upper control limit due to shifting
of o level. Figure 2.17.a shows the ARL level of each chart during the in control state. Figures
2.17.b,2.17.¢c,2.17.d, and 2.17.e show the ARL levels during mean of simple shifting by 0.5¢,

o, 1.50, and 20. From figure 2.17, we can point out the following remarks:

e All ARL levels of upper control limit of the different charts from in-control state
to out of control state show significant changes.

e The optimizing control limit category has the best performance. The optimal con-
trol limit C-chart and Winterbottom’s chart have the highest mean shifting sensi-
tivity.

e The second high sensitivity is given by ISRT chart, Q-chart, and ECL chart. ISRT
chart and Q-chart have the best sensitivity in their own category. 7

e For other charts from the transforming data category, the results show an accept-
able level compared to the Classic C-chart.

e Z-chart and W transformed chart poorly perform due to mean shifting toward up-

per control limit.
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At this point, we have tested all charts according to different considerations. To illustrate
the performances of all charts, table 2.6 shows a summary of the different defect control charts

performances and give the strong and weak aspects of each chart.

Table 2.6: Full comparison of all defects charts

Vary sample size Plotted data Min A** LCL Loss gain UCL Loss gain X Shifting Sensitivity

A=1t025 A =261050 A=1t025 A =26to0 50 LCL UCL

Bartlett No Transformed 3 Medium Low Medium Medium High Low

Anscombe No Transformed 5 Low Very low* Very high Medium High Low

Ft No Transformed 3* Medium Low Medium Medium High Low
ISRT No Transformed 5 High High Low Very low* Medium Very high
Z-chart No Standardized 10 Very high Very high Medium Low Medium Very Low

W chart No Standardized 3+ Medium Low Very high Medium Very Low Medium

Q-chart Yes* Standardized 7 High Medium Low Low Low High
C-chart No Original 9 Very high Very high Medium Low Mediumn Very Low
Optimal No Original 6 Very low* Very low* Low Very low* Very high* Very high*
Winter Yes* Original 7 High Low Low Very low* Very high* Very high*

ECL No Original 4 Medium Low Low Low High High

*Preferred chart. ** Minimal A that LCL can respond to out-of-control point. Low value are
preferred.

2.3 Conclusion

In this chapter, we compared 11 defects charts that have been proposed for statistical process
control. The results shows that optimizing control limits approach is the best approach to
acquire a defects chart. By this approach, there is no requirement of transforming or standard-
izing data, therefore, plotted data still maintain their original meaning in control chart. From
experimental results, optimal C-chart shows outstanding results. By lowest loss gain and high-
est mean shifting sensitivity, we concluded that this chart is the best defects chart to replace

traditional C-chart in attribute monitoring.
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Chapter 3

An Optimal Bivariate Poisson Field

Chart

Shewhart C-Chart is a widely accepted control chart for monitoring number of defects per unit.
However, in high-quality process, where normal assumption is impractical, and characteristics
are correlated, C-chart becomes unsuitable. In this chapter, we propose an optimal bivariate
Poisson field chart to monitor two correlated characteristics of count data for both industrial and
non-industrial purposes. This chart is based on optimization of bivariate Poisson confidence
interval and illustration of bivariate Poisson data in Poisson field. The detailed description of
our proposed algorithm is presented by numerical data. The comparative results present 3-
dimensional visualization and improved false alarm rate of our proposed algorithm compared
to existing approaches. The performances of our proposed algorithm is presented by both
real case study and simulation. The experimental results demonstrate improved performances

regarding visualization and false alarm rate.

3.1 Introduction

To deal with number of defects, C-chart is the most widely used tool in statistical process
control. There are many works that have improved C-chart [58] [60] [42] [8] [50] [2] [63].
However, when numbers of defects are very low such as in high quality processes, traditional
C-chart become unsuitable tool. Instead of focusing on numbers of defects or fraction of
nonconforming items, counting humbers of conforming items between the occurrences of non-

conforming items is introduced, and refereed to “interevent counts”. In [59], Goh introduced
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CCC-chart which can be used for monitoring interevent counts, by pointing out the effect of
low fraction of nonconforming (i.e where small probability of nonconforming occurred). In-
deed, in this case, normal approximation becomes out of reality. By using actual numerical
examples, Xie and Goh presented application of CCC-chart, and suggested some methods for
decision making in high yield processes [41] [40]. In [56], numbers of interevent counts are
transformed by simple power transformation from exponential distribution to Weibull distri-
bution. Then, normal approximation is applied to construct control limits. In [4], authors
applied generalized Poisson distribution to model over-dispersed data, and suggested the use
of CCC-chart for high quality process monitoring. Furthermore, in [17] [4], authors agreed that
hypothesis test or histogram should be conducted in initial state of constructing the charts for
high yield process. However, although monitoring interevent counts is preferable, to observe
various types of defects simultaneously, multiple C-charts and CCC-charts are needed.
Monitoring two or more types of correlated characteristics in high quality process still
leave room for improvement. Lowery and Montgomery pointed out that multivariate control
charts perform better to signal out of control alarms than univariate charts, since correlation
between variables is taken into account [5]. They also suggested that univariate charts are
only suitable for diagnosing process behavior. In [53}], the authors pointed out four conditions
that every control chart needs to satisfy: “Is the process in-control?”, “Is out-of control state
pointed out?”,“Is relationship between two or more variables taken into account?”, and “what
is the problem that out-of-control signal actually tells?”. According to [53], there are many al-
ternative charts which are based on improving x2 and T2 charts for continuous data. However,
for discrete variables, few multivariate attribute charts such as {20], [24], [30], and [67] have
been proposed. In [20], Patel presented his multivariate control chart for both binomial and
Poisson data. For multiple defects, he presented multivariate Hotelling-like chart where time
dependency between variables is considered. However, this chart is not practical to apply in
nearly zero defect processes, since it considers normal assumption, and requires complicated
steps to construct the chart [57] [22]. In [67], to deal with multi-attribute variables, improved
Mnp-chart is presented by considering correlation between characteristics [67]. Not only this
chart shows improved results compared with univariate p-chart, but it is also simple. More-
over, Joel have shown another enhanced Mnp-chart for multiple independent discrete variables

by proposing simple designing of optimal Mnp-chart [24]. Nonetheless, both Mnp-charts are
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not practical for high quality processes, since these chart are constructed under normal as-
sumption. Skinner et al. have suggested to use generalized linear model (GLM) to construct
attribute control chart for multiple counts where input and output variables are measurable. By
observing the residuals, Generalized linear model-based control charts are more effective to
monitor multi-count data than C-chart. Furthermore, the results show effective performance in
the case of overdispersion. However, inputs and outputs are not measurable in every process.
Besides, GLM based charts require multiple charts to observe multivariate variables. In [57],
the authors suggested two transformations for multivariate Poisson distribution. For the first
transformation, they applied bisection method to find the proper power of the root transfor-
mation of each attribute characteristics. The second transformation is Normal distribution To
Anything (NORTA) inverse transformation method. After acquiring almost zero skew distribu-
tion from both transformations, x? control chart is applied. According to this paper, NORTA
inverse transformation method shows robust performance when dealing with correlated mul-
tivariate Poisson data. Moreover, it needs less complex steps than other charts. In [22], the
authors presented the use of multivariate Poisson sum probability density function to define
the control limits of multivariate Poisson sum chart (MPSUM chart). By their chart, moni-
toring multiple attribute characteristics can be done in single chart. However, in high quality
processes, numbers of defects are very low, and correlation between pairwises of two charac-
teristics is crucial in some processes. According to our knowledge, there are no works that
have provided a chart which robustly monitors correlated characteristics. Moreover, none of
the charts is mainly concerned with the illustration of how pairwises of characteristic spread
which can reflect process behavior.

In this chapter, we propose an optimal bivariate Poisson field chart for monitoring two
correlated characteristics of defects. The basic concept is defining the optimal limit of bivariate
Poisson distribution and illustrating data in Poisson field. This chart provides satisfactory rate
of false alarms, and illustrate original values of two attribute characteristics and changes of
correlation between them.

In Section 3.2, the basic concept of bivariate Poisson distribution is briefly discussed. In
Section 3.3, the basic principals of an optimal bivariate Poisson field chart are introduced. Fi-
nally, real case study and simulations are presented to illustrate the effectiveness of our control

chart in Section 3.4, and this chapter is concluded in Section 3.5.
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3.2 Bivariate Poisson distribution and its estimation

Bivariate Poisson distribution (BP) is often used for modelling pairwises of correlated count
data. Bivariate Poisson distribution was firstly introduced by Campbell [27]. Let random
variables X7, Xo, X3 are unobserved variables which follow independent Poisson distribution
with parameters A1, A2, A3. Then, X = X; + Xz and Y = X3 + X3 are observed pair-
wises which follow jointly a bivariate Poisson distribution BP(A1, A2, A3) with joint probabil-

ity function [44] [54] [43]:

z yy min{z.y) _
Pep(X =z,Y = y|A1, Az, A3) = e—(z\1+>\2+z\3)_>ll_’§2 Z (::) (y) A A3 ¥ @

1) ;
aly! & i) A
fori =1,2,...
where
1 1 &
x=ﬁ§jlxi and y=;§;yi )
1= 1=

Where n is total number of samples. The marginal distribution of X and Y with mean

A1 + Az and A2 + A3 are also following recurrence relations [44]:

zP(z,y) = Pz - 1,y) + 3P(z — 1,y — 1)) 3)

yP(z,y) = MP(z,y — 1) + \sP(z — 1,y — 1) “)

For maximum likelihood estimation, if equation 1 is differentiated with respect to parameters

A1, A2, and A3, from recurrence relation in 3 and 4, the differential-different equations are

given by [44]:
OP(z,y) _ o 4 oy
B vk P(z—1,y) — P(z,y) )
OP(z,y) N
oy, ~L@y-1)-Ply) ©)
aPa(;;y) =P(z,y) - P(z - 1,y) - P(z,y - 1) + Pz - L,y ~ 1) ()
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Using the above and the recurrence relations, Holgate also showed that [44]:
1 0P 1 0P 1 0P
2 Bon =2 Pox =2 Pan " ®)

Which can be written as:

T A3 =
N —)\—IR —-1=0 {9)
¥y A3 5
L 2R —-1=
" )\2R 0 (10)
z ¥ A3 | A3, 5 _
/\1+/\2 (1+)\1+/\2)R 1=0 an
Where
Ly T d ¥ 1 En: (12)
rT=- i ana Y= — Yi
"= nia
and
S Pz, — 1y, —1,
R=— 13
=al T Paw) =
Therefore,
ZT=M+2A3 and F=A+A3 (14)
and
R=1 . (15)

Since parameters X = (A1, A2, A3) of bivariate Poisson distribution in equation 14 are shown
in decomposed form, the method to estimate these three parameters have received attentions

[44] [54] [43] [34] [28]. Correlation between z and y can be calculated by [54] [43]:

A3
poy = (16)
YV R0+ )
Correlation (p) of bivariate Poisson has value between 0 and 1 [54]. When p is zero,

Az become zero and bivariate Poisson distribution can be referred to double Poisson distri-
bution [54] [10]. Furthermore, from the mean decomposition in equation 14, the covariance
variance matrix of bivariate Poisson distribution provides only non-negative A3 [54]. Thus, this
distribution permits only non-negative correlation. For this issue, [45] pointed out that there

are few cases of bivariate Poisson distribution that can provide the negative correlation.
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3.3 Proposed Method

An optimal bivariate Poisson field chart is based on the probabilistic optimization of Bivariate
Poisson confidence interval and projection of bivariate Poisson histogram or Poisson field.
Suppose two correlated characteristics of defects are pairwises of (z,y) with parameters X=
(A1,A2,A3). First, X is estimated from complete samples (z;,v;),t = 1,2,3,...,n, and the
expected type I error rate (o) is specified.

Second, instead of presenting number of frequencies of bivariate Poisson pairwise as in
bivariate field, our poisson field presents probability of each pairwise. By equation 1 and
estimated parameters ( X), probabilities of all pairwises (ppp(r, s|X)) are calculated from pair

(0, 0) until all numbers on row and column are equal to zeros as shown in table 3.1.

Table 3.1: Probabilistic Poisson field

y
0 1 2 3 -+ Smax
0 |poo por pPo2 Po3s - - - 0
1 | pwo pu P12 P13 0
2 | po pa P2 P23 0
X 3 |p3g P31 P32 P33 0
0
0
0
Tmaz | 0 0 0 0 0 0 O 0
Where poo, P10, P01, P11s - - -y Prmazsmas ar€ probabilities of each pairwise on probabilistic

Poisson field, and 7,4, and s,,,, are numbers of row and column where all probabilities are
equal to zero.

The optimization of control limits is a widely used approach to acquire a robust control
chart. According to optimal C-chart by Ryan [60] [42], the optimal limits can be defined by
closeness of alpha rate to nominal value (a = 0.0027 or ARLy = aio = th = 370). To
obtain expected alpha rate, Ryan shifts lower control limit from zero and upper control limit
from mean until having the expected rate of a.

In the third step, to minimize confidence area, we shift the control limit of our chart from

min(pys) to maz(prs). Since total probability in Poisson field is equal to 1, and in order
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to optimize our chart control limit, let min(poo, P10, P01 -+ Pjmackmaz) = 0- Then, the total

probability of Poisson field is calculated by:

Tmax Smaz

ARLW =1-> > pr (17)

r=0 s=0
To acquire the optimal Poisson field, the pairwises that have the lowest probability in Pois-

son probabilistic field are removed until total probability in Poisson field is satisfied:

ARLyota1 > ARLy (18)

Where ARLy is the expected average run length or nominal average run length (ARLy =
aio). After the total probability in Poisson field is satisfied given condition in equation 10, the

optimal Bivariate Poisson control limit can be obtained.

3.4 Example and Numerical Results

The purpose of this section is to present the effectiveness of our chart based on actual count data
with known assignable causes, and compare performances of our chart to previously proposed
charts such as NORTA chart and MPSUM chart by testing each chart with simulated datasets.

In [57], NORTA chart is based on transformation of multi-attribute data into almost sym-
metric distributions. By this approach, every discrete random vector will be transformed by
Q-transformation from Poisson distribution to Q-distribution. Let x;; is numbers of defects per
unit for 7 = 1,2,3,...,nand j = 1,2,3,...,p. Where n is number of total samples and p
is numbers of characteristics. For Q-transformation, initially, u;; = F (;vm, ;) is the Poisson
cumulative distribution function (F'(.)) for transforming Poisson variable to percentile. Then,
Qij = ®7(uj;) for transforming percentile to Q-statistic variable. Then, 7% control chart will
be applied to transformed vectors (following normal distribution) in order to plot them in the

chart. Let Q; = (Q:a, Qi2, . . ., Qij) be the transformed vector. T2-statistics can be calculated

by:

=(@Q-Q)T5 Q- Q) (19)
Where S is an estimated population covariance matrix, which is constant in the process.

The lower control limit of T control chart is always zero and the upper control limit of this

chart can be calculated by Chi-square distribution with p degrees of freedom.
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In [22], Chiu and Kuo presented their chart which is based on the exact distribution of sum
of multivariate Poisson variables. By Hermit distribution which was presented as the special
case of Poisson “doublet” variables in [6], the exact distribution of sum of Bivariate Poisson

variables (SUMMTP) is:

d/2

N d-2i( . \i
Psysmrp(d|X) = e=M1Hatis) 3 (A1 +22)%7*(X3)
i=0

(d— 20)1(3)!

(20)

Where d; = z; + y;. By giving oy and mean parameters ), the upper control limit is
déﬁned by P(d > UCL|X) < ag and the lower limit by P(d < LCL)|X) < ag. Then,
the control limits of their control chart can be defined by probabilistic approach to acquire the
optimal limit of the exact distribution of sum of multivariate Poisson distribution. By this chart,

multiple-type of count data can be monitored in single chart.

3.4.1 Example

Consider the situation where counting numbers of people flow in and out of the building are
monitored in order to predict an event such as a conference in the building. These data which
are called “Callt2” data were collected over 15 weeks for every half hour from the main door of
the Callt2 building at University of California (UCI) [1]. The dataset contains 10080 samples
(5040 samples for each in and outflow) from 07/24/05 to 11/05/05, and schedule of events (See
table 3.2). '

Table 3.2: The schedule of events in Calit2 building from 07/24/05 to 11/05/05.

Dates of events (Month/Day/Year) | Starting time (Hour:Minute) | Finishing time (Hour:Minute)
7/26/2005 11:00 14:00
7129/2005 8:00 11:00
8/2/2005 15:30 16:30
8/42005 16:30 17:30
8/5/2005 8:00 11:00
8/9/2005 11:00 14:00
8/9/2005 8:00 16:00
8/10/2005 8:00 16:00
8/12/2005 8:00 11:00
8/16/2005 11:00 14:00
8/18/2005 8:00 17:00
8/18/2005 18:00 20:30
8/19/2005 8:00 i1:00
8/23/2005 11:00 14:00
08/26/05 08:00 11:00
08/30/05 16:00 18:00
09/01/05 14:00 16:30
09/15/05 08:30 10:00
09/21/05 09:00 14:00
09/22/05 14:00 14:30
10/03/05 15:30 17:060
10/04/05 12:00 15:00
10/07/05 09:00 10:30
10/10/05 16:30 19:00
10/14/05 09:00 10:30
10/19/05 22:00 23:30
10/21/05 09:00 10:30
10/23/05 21:00 22:30
10/24/05 08:00 12:00
10/24/05 16:00 21:00
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In this example, to construct our control chart for detecting events, bivariate Poisson Pa-
rameters were estimated from the data containing only non-event periods. Let (z, y) represent
pairwises of in flow and out flow of people, respectively. By maximum likelihood estimation,
X= (1.56,1.76,2.03). Then, defining probability of each pairwise by using equation 1 provides
Poisson field in table 3.3.

Table 3.3: p(z, y|1.56, 1.76, 2.03)in Poisson Field
y

Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0] 0.0047 0.0084 0.0074 0.0043 0.0019 0.0007 0.0002 0 0 0 ] 0 0 0
1100074 0.0227 00284 0.0217 00117 0.0049 0.0017 0.0005 0.0001 0 0 0 0 0
2100058 0.0252 00452 0.0458 0.0311 0.0157 0.0063 0.0021 0.0006 0.0001 0 0 0 0
3% 0003 0017 00405 0.0544 0.0472 0.0293 0.0139 0.0053 0.0017 0.0005 0.0001 0 0o o0
4100012 00081 00244 0.0418 0.046 0.0354 0.0203 00091 00034 000i 0.0003 0.0001 0 0

x 5100004 0.003 00109 00229 0.0313 0.0297 0.0207 00111 0.0048 0.0017 0.0005 0.0001 S0 0
6100001 0.0009 00039 0.0096 00159 0.0183 0.0154 0.0099 0.005 0.0021 00007 0.0002 0.0001 O

7 0 00002 00011 00033 00063 0.0087 0.0088 0.0067 0.004 00019 0.0008 0.0003 00001 O

8 0 0 00003 0.0009 00021 0.0033 0.0039 0.0035 00025 0.0014 0.0006 00002 0.0001 0

9 0 0 0006t 0.0002 0.0006 0.001 0.00i4 0.0015 0.0012 0.0008 0.0004 0.0002 0.0001 0

10 0 0 0 0 00001 0.0003 0.0004 0.0005 0.0005 00004 0.0002 0.0001 0 0

11 0 0 0 0 0 0.0001 0.0001 0.0002 0.0002 0.000f 0.0001 0.0001 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

To optimize control area, the low probabilities in the field are removed until total sum of
probabilities in Poisson field provides the expected average run length (ARLg). This optimal

control area is presented in table 3.4.

Table 3.4: The optimal area for Callt2 data

y

Number 0 1 2 3 4 5 6 7 8 9 10 11 12 13
000047 0.0084 0.0074 0.0043 0.0019 0.0007 0.0002 0 0 0 0 0 0 o0
1]0.0074 0.0227 0.0284 00217 00117 0.0049 0.0017 0.0005 0 0 0 0 0 o0

2 {00058 0.0252 0.0452 00458 00311 0.0157 0.0063 0.0021 0.0006 0 0 0 0 o0

3] 0003 0017 0.0405 0.0544 00472 00293 00139 0.0053 0.0017 0.0005 0 0 0 0
4100012 00081 00244 00418 0.046 0.0354 0.0203 00091 0.0034 0001 0.0003 0 0 0

x 5100004 0.003 0.0109 00229 00313 00297 00207 0.0111 0.0048 0.0017 0.0005 0 0 o0
6 0 0.0009 0.003% 0.009 00159 00183 0.0154 0.0099 0005 0.0021 0.0007 00002 0 0

7 0 0.0002 00011 0.0033 00063 00087 0.0088 0.0067 0.604 0.0019 0.0008 00003 0 O

8 0 0 0.0003 00009 00021 0.0033 0.0039 00035 0.0025 0.0014 00006 00002 0 O

9 0 0 0 00002 00006 0001 00014 00015 0.0012 0.0008 0.0004 00002 0 O

10 0 0 0 0 0 0.0003 00004 0.0005 0.0005 0.0004 0.0002 0 0 o0

1 0 0 ¢ 0 0 0 0 0 0.0002 0 0 0 0 O

12 0 0 0 0 0 0 0 0 [ 0 0 0.0 0

To compare our optimal bivariate Poisson field chart with previously proposed charts such
as NORTA chart and MPSUM chart, AR L of each chart needs to be equalized. In this exper-
iment, AR Lq for all control charts were equally set to 370 (Nominal value). The accuracy of
detecting out of control signal can be measured by ability to detect unusual high numbers of
people due to an event. Furthermore, since information about dates of events are given, there
are two types of error that can be determined. Type I error (o) when a control chart indicates
out of control but there is no event at the time, and Type II error (3) when a control chart
indicates in-control but there are some events at the time.

We can see from figures 3.1 to 3.21 that all charts show high number of type I error, since

41



~
S

Optimaj Bivariate Poisson Field Chart

60,
50,
= |
40,
gy
T30
3
20
-3
38 V-
10 .
[
A
a0
20
o )
2) 24 25 26 27 228 29 30 31 1 2 3 4 5 6 1 8
Juy August

7

-3
T

S of by nd o S (Pocgto)
-3 ]
T

B

Figure 3.3: NORTA chart from samples in 2005 July 23 to August 7
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Figure 3.11: MPSUM chart from samples in 2005 September 7 to 21
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Figure 3.13: An Optimal Bivariate Poisson field chart from samples in 2005 September 22 to
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Figure 3.21: NORTA chart from samples in 2005 October 22 to November 5
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Table 3.5: Simulation Cases

Case Means | Cormrelation A1 Az A3
A Equal 08 04 1.5
B | Equal 0.5 4 4
c| Equal 091 4 )
D | Unequat 08 01 02 15
E | Unequal 0.5 1 2 4
F | Unequal 091 1 2 40

number of people can be high on the days before events.

Figures 3.1,3.4,3.7, 3.10, 3.13, 3.16, and 3.19 clearly show that our proposed control chart
can efficiently indicate every unusual high number of in and out flow people due to periods of
events.

Figure 3.2, 3.5, 3.8, 3.11, 3.14, 3.17, and 3.20 show that MPSUM chart can also detect
events during considered time. However, NORTA chart in figures 3.3, 3.9, and 3.21 shows
undetected events on date 8/2/2005, 9/1/2005, and 10/23/2005 (Type Il error).

3.4.2 ARL performance

The performance of our proposed control chart is compared to other previously proposed charts
by using different simulated datasets. The steps to generate bivariate Poisson random numbers
are [68]:
e Generate 2-dimensional normal vector (z1, €2) with zero mean and unit variance,
and desired correlation (p).

o For each vector, calculate the normal cumulative distribution function (CDF).

2, = ‘I’(.’ILL) (21)

e For each vector (z;, z2), calculate the Poisson inverse cumulative distribution

function with desired .

~

b = F~ (255 M) (22)

Where vectors (b;, by) are bivariate Poisson data with desired rates of means (5\1 =M\ +
A3, Ao =+ A3). To present our control chart in various scenarios, the details of the experi-

ment can be summarized as following:

¢ Datasets are generated by means in table 3.5.

o The expected ARL (ARLg) was set to 370.
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e The mean shift was set to 0.50, o, 1.50, 20, 2.50, and 30.

In this experiment, we tested each control chart by 10,000 pairs of simulated data generated
according to parameters in table 3.5. To measure the sensitivity of each chart, we tested each
in two cases which are shifting means of single and all variables. The results of single counts
shifts are given in tables 3.6, 3.7, and 3.8, and the results of all counts shifts are in table 3.9,
3.10, and 3.11.
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Table 3.6: ARL levels of NORTA chart for different single mean shifts

Levels of shifting (o)
Case 0 0.5 1 1.5 2 2.5 3
A | 10000 | 33.3333 | 16.1031 | 9.9305 | 6.8074 5176 | 4.1911
B | 10000 | 80.6452 | 47.3934 | 27.248 | 20.6612 | 14.3885 | 10.8814
C | 10000 | 16.3132 | 5.4945 | 2.9257 | 2.0202 1.5969 1.345
D [ 10000 [ 9.2593 | 5.6085 | 3.8745 3127 | 2.6267 2.291
E | 10000 | 14.6413 9.5057 | 6.8074 5.4201 4415 3.8314
F | 10000 3076 | 1.8464 | 1.4514 1.2367 | 1.1442 1.0903

Table 3.7: ARL levels of MPSUM chart for different single mean shifts

Levels of shifting (o)
Case 0 0.5 1 1.5 2.5 3
A | 1428571 | 357.1429 | 208.3333 156.25 | 114.9425 92.5926 | 81.3008
B | 384.6154 | 135.1351 | 1204819 | 79.3651 | 67.5676 | 46.5116 | 38.7597
C | 103.0928 | 534759 | 458716 | 32.7869 | 27.5482 21.978 | 20.7469
D | 1428571 | 666.6667 | 322.5806 | 147.0588 | 120.4819 | 101.0101 80
E | 526.3158 | 526.3158 | 303.0303 200 | 119.0476 | 94.3396 | 81.3008
F 100 70.922 55.2486 39.8406 31.1526 25.641 | 24.4499

Table 3.8: ARL levels of the optimal Poisson field chart for different single mean shifts

Levels of shifting (o)

Case 0 0.5 1 1.5 2 2.5 3

A | 303.0303 34,965 | 16.0256 | 10.1937 7.0423 5.4377 | 44111

B 400 | 63.6943 | 36.1011 | 204499 | 15.5039 | 11.1235 | 8.7951

C | 454.5455 15.748 5.5586 29197 2.0292 1.5926 | 1.3503

D | 434.7826 9.0416 5.5066 3.8212 3.0845 2.5974 | 2.2696

E 400 | 16.6945 | 10.3627 7.5586 5.8445 4.7059 | 4.0371

F 3125 3.2927 1.9275 1.4863 1.2579 11574 | 1.0983

Table 3.9: ARL levels of NORTA chart for different both means shifts

Levels of shifting (o)

Case 0 05 1 15 2 75 3

A | 10000 55.5556 | 29.0698 | 19.1571 14.43 | 11.4679 9.1827

B[ 10000 | 80.6452 | 46.5116 | 25.7069 | 18.9036 | 13.9276 | 10.1523

C | 10000 | 114.9425 | 61.7284 | 34.7222 | 24.1546 | 17.5747 14.245

D | 10000 | 153846 | 11.3636 | 8.9526 | 74129 | 6.4433 | 5.6338

E [ 10000 | 21.0084 | 158479 | 12.1803 | 9.8232 | 8.1633 | 7.0472

F | 10000 11.274 9.5602 7.7821 6.7797 5.9809 5.3476

Table 3.10: A

RL levels of MPSUM chart for different both means shifts

Levels of shifting (o)
Case 0 0.5 1 1.5 2 2.5 3
A [ 1428.571 | 103.0928 | 50.7614 | 31.1526 | 22.2717 | 17.1233 | 13.1062
B | 384.6154 54.0541 | 28.3286 | 17.5439 | 12.5313 9.1659 6.9686
C | 103.0928 25.7069 | 15.2439 10 7.1736 5.717 4.7237
D | 1428.571 { 142.8571 | 66.6667 | 35.2113 | 24.0385 18.797 | 14.4509
E | 5263158 125 | 59.8802 | 33.7838 | 22.2717 | 15.1286 | 12.1951
F 100 31.25 18.018 11.274 8.0451 6.4392 5.3505

Table 3.11: ARL levels of the optimal Poisson field chart for different both means shifts

Levels of shifting (o)
Case 0 0.5 1 1.5 2 2.5 3
A | 303.0303 | 47.3934 | 253807 [ 17.452 | 12.9366 | 104712 | 8.4034
B 400 | 52.0833 [ 31.8471 | 17.6678 | 13.459 | 10.2041 7.758
C | 454.5455 | 88.4956 | 48.5437 | 28.8184 | 19.4175 | 14.7929 | 11.7647
D | 434.7826 | 13.0039 | 9.2421 72046 | 60753 | 52219 ] 4.7059
E 400 | 17.762 | 13.369 | 10.2459 | 82102 | 6.8166 | 59524
F 3125 ] 103306 | 8.6505 | 7.0077 | 6.1652 { 54496 | 49116
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Similarly to bivariate Poisson control charts, the results in table 3.6, 3.7, 3.8, 3.9, 3.10,
and 3.11 also show outstanding performances of our optimal bivariate Poisson field chart in
different mean samples and mean shifts. In case of in-control state, the proposed algorithm
outperforms other charts since ARL levels in different mean samples are close to ARLy.
NORTA chart shows high rate of ARL than ARLg that may lead to type II error. Besides,
MPSUM chart provides shortage false alarms for monitoring low mean samples, and excessive
false alarms for high mean samples. Only, medium mean samples can provide ARL level close
to ARLg. The results of detecting mean shifts also show that optimal bivariate Poisson field
chart is more sensitive than the other control charts since ARL levels of our chart effectively

respond to mean shifts by decreasing ARL level to low values.

3.5 Conclusion

In this chapter, we have proposed an optimal bivariate Poisson field chart for monitoring two
correlated characteristics of defects simultaneously. The basic concept is defining the optimal
limits of bivariate Poisson distribution and illustrating Poisson pairwises in Poisson field. By
using practical example, our optimal bivariate Poisson field chart shows robustness of detecting
any assignable cause in the process. Furthermore, by testing our chart using different generated
datasets, we show clearly the improved performances of the proposed algorithm compared to

others.
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Chapter 4

An Optimal Diagonal Inflated

Bivariate Poisson Field Chart

In this chapter, we present an optimal diagonal inflated bivariate Poisson field chart to over/under
dispersed data. This chart is based on our optimal bivariate Poisson field chart which is based
to two steps: optimization of confidence interval and illustration of Poisson field. However,
to deal with over/under-dispersion, the diagonal inflated bivariate Poisson model is used in-
stead of usual bivariate Poisson model. The proposed chart presents excellent rate of false
alarms, and high sensitivity to handle over/under-dispersed count data. The various simulated
data demonstrate the enhanced performances of our control chart compared to other previously

proposed charts.

4.1 Introduction

In this chapter, we present our optimal bivariate Poisson field chart with diagonal inflated model
to monitor two over/under-dispersed count data. To deal with this type of data, the diagonal
inflated bivariate Poisson model is used.

A common problem when modelling two count data by using bivariate Poisson distribution
is that variation of count data are sometimes higher than expectation. Mean and variance are
not always equal and estimation of bivariate Poisson parameters is not always precise [31].
Thus, it is vital to consider the problem of over/under-dispersion of bivariate Poisson data

when a control chart is designed.
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To deal with over-dispersed count data, [18] [51] [3] proposed the use of generalized lin-
ear model (GLM). This model shows flexibility to model over/under-dispersed count data.
In [30] [31], deviance residual chart is proposed to observe count data. This chart is based
on monitoring residuals from GLM. By numerical results, this chart shows effectiveness for
monitoring over/under-dispersed count data. However, this chart presents process monitoring
in form of residuals plot. Thus, meaningful values of raw data may be distorted by monitoring
residuals.

In [10], authors presented estimation of bivariate Poisson and diagonal inflated bivariate
Poisson regression models. By using an expectation-Maximization (EM) algorithm, parame-
ters of both models can be estimated. In case of diagonal inflated bivariate Poisson model, the
authors proposed a general model based on a mixture of three independent Poison distributions
and additional distribution for diagonal data. Based on extension of the simple zero-inflated
model [23] for only an excessive variables of pair (0, 0), the jointly distribution of diagonal

inflated bivariate Poisson distribution is given by [10]:

(1 — p)Pep(z,y|N), T#Y

(1 - p)Psp(z,y|X) + pPp(z]6), T=y

Pipp(X =2,Y =y) =
and

COVigp(X = z,Y =y) = (1 — p){ A3 + (A1 + A3) (A2 + A3)} + pEp(X?) (2

= (1=p)* (M1 +As) (A2 + Xa) 3)

— (1 =ppEp(X)(A1 + X2 +2X5) - P*{Ep(X)*}  (4)

Where Pgp(z,y|X) is bivariate Poisson probability density function, and Pp(z|6) is the
probability function of diagonal distribution with parameter 8, and p is inflation proportion.
Ep(X) is expected value of diagonal distribution. Diagonal distribution can be presented
by Poisson, discrete or geometric distribution. Diagonal distribution is inflated, when p is

relatively high. There are two properties of this diagonal inflated bivariate Poisson model.

First, the marginal distribution of a diagonal inflated model for X is given by [10]:

Prpp(X = z) = (1 — p)Po(z| M1 + A2) + pPp(z(F) (%)
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Where Py(x|A1 + A2) is Poisson probability function with mean (A; + Ag). It is clearly
shown that this marginal is two mixture distributions which are univariate Poison and geometric

distribution. Therefore, mean and variance of this marginal distribution are given by [10]:
E(X) =(1-p)(A1+ A3) + pEp(X) (6)

and

VAR(X) = (1-p){(M1+A3)°+ (M +23) }+pEp(X?) —{(1-p)(\1+A3)+Ep(X)}? (7)

The marginal distribution of diagonal inflated model is not individual Poisson distribution.
Thus, the distribution can be over or under dispersed depending on distribution D(z, ), and
p. Furthermore, in case of usual bivariate Poisson, when A3 = 0, all pairs of bivariate poisson
count become independent. Nonetheless, when A3 of diagonal inflated bivariate Poisson model
is zero, all pairs are still dependent by diagonal inflated distribution D(z, 0). Let A3 = 0, the

covariance of diagonal inflated bivariate Poisson with A3 = 0 is given by:

COVipp(X,Y) = p(1 —p)\ide +pEp(X?) — p(1 — p) Ep(X)(A1 +X2) — p*Ep(X)* (8)

This equation also shows that covariance between X and Y can be negativenby distribution
D(z,8), and p. By using this model, Karlis and Ntzoufras provided many detailed numerical
simulations and case studies to illustrate effectiveness of fitting over and under dispersed count
data with this model [10].

In this chapter, we propose an optimal diagonal inflated bivariate Poisson field chart for
over/under-dispersed count data. The basic concept is based on optimization of confidence
interval of diagonal bivariate Poisson model, and illustration of Poisson field. The various sim-
ulated datasets present the robustness of monitoring over/under-dispersed data by our control
chart.

The rest of the chapter is organized as follows. In Section 4.2, the basic principals of an
optimal diagonal inflated bivariate Poisson field chart are introduced. Finally, simulations are
presented to illustrate the effectiveness of our control chart in Section 4.3, and this chapter is

concluded in Section 4.4.
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4.2 Proposed Method

Similarly to our previously proposed chart, the optimal diagonal inflated bivariate Poisson field
chart is based on the probabilistic optimization and projection of bivariate Poisson histogram
or Poisson field. However, this chart uses diagonal inflated Poisson distribution dealing with
two correlated over/under-dispersed count data. Suppose two over/under-dispersed correlated
characteristics of defects are pairwises of (x, y) with parameters = (A1,A2,A3), and unknown
distribution on diagonal samples (Pp(z = y, 8)). First, X is estimated from complete samples
(s, 9:),t = 1,2,3,...,n, and the expected type I error rate (ap) is specified. Moreover, Un-
known parameters (6 and p) of additional distribution on diagonal samples are also estimated.
Second, by equation 1 and estimated parameters ( ), probabilities of all pairwises (prBp(r, slx, 0,p))
are calculated from pair (0, 0) until all numbers on row and column are equal to zeros as shown

in table 4.1.

Table 4.1: Probabilistic Poisson field

y
0 1 2 3 - - Snag
0 |poo Pox Po2 Po3 - - - O
1 |pwo pu P12 P13 0
2 |po pa P2 P 0
X 3 |pso P31 P32 P33 0
0
0
0
Tmaz | 0O 0 0 0 0 0 O 0
Where pog, P10, PO1s P11, - - - » Prmassmas aT€ probabilities of each pairwise on probabilistic

Poisson field, and .4, and s;,4 are numbers of the row and the column where all probabilities
are equal to zero.
In the third step, similarly to the case of bivariate Poisson distirubtion (see section 3.2), we
shift the control limit of our chart from min(p,s) to maz(prs). Since total probability in Pois-
son field is equal to 1, and in order to optimize our chart control limit, let min{pgo, P10, Po1, --- Dimas kmas) =

0. Then, the total probability of Poisson field is calculated by:
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Tmaz Smazx

1
ARLtotal =1- Z Z Drs (9)

r=0 s=0
To acquire the optimal diagonal inflated bivariate Poisson field, the pairwises that have the

lowest probability in Poisson probabilistic field are removed until total probability in Poisson

field is satisfied:

ARLtotal 2 ARLO (10)

Where ARLy is the expected average run length or nominal average run length (ARLy =
alo). After the total probability in Poisson field is satisfied given condition in equation 10, the

optimal diagonal inflated Bivariate Poisson control limit can be obtained.

4.3 Experimental Results

In this section, simulations to compare performances of our proposed chart and others are
conducted. In this experiment, we tested each control chart by 10,000 pairs of simulated data
generated according to parameters in table 4.2. To measure the sensitivity of each chart, we
shifted mean parameters (X, 0) by o, 20, and 3¢. The results are given in tables 4.3, 4.4, and
4.5.

These tables show outstanding performances of the optimal diagonal inflated bivariate Pois-
son field chart in different mean samples and mean shifts. For in-control state, the proposed
algorithm outperforms other charts since ARL levels in different mean samples are close to
ARLg. NORTA chart shows high rate of ARL than ARL that relates to type II error. MP-
SUM chart provides higher ARL in case of low mean and ARL shortage in case of medium
to high mean. In figure 4.1, it is clear that our proposed chart gained the lowest loss function
since the levels of loss function are drawn in the bottom of the graph.

In case of detecting mean shifts, the optimal diagonal inflated bivariate Poisson field chart
is more sensitive than the other control charts since ARL levels of our chart effectively respond

to mean shifts by decreasing ARL level to low values.
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Table 4.2: Simulation cases

Case | A1,A2 | As p 0
A 0.4 15025115
B 0.4 1.5 05 1.5
C 04 15107515
D 4 4 0.25 5
E 4 4 0.5 5
F 4 4 0.75 5 -
G 4 40 [ 025 ] 50
H 4 40 0.5 50
I 4 40 | 0.75 1 50
Table 4.3: ARL Levels of NORTA chart for different mean shifts
Diagonal Shifts A1 and Ao Shifts Az Shifts All Shifts
Case | No Shift o 20 30 o 20 3o o 20 3o o 20 3o
A 10000 | 196.07 | 68.02 | 24.15 | 33.67 | 1383 | 83 | 5747 | 13.94 | 535 | 1522 | 387 | 1.98
B 10000 72.46 2994 | 11.32 11.8 10.1 6.85 47.84 15.89 | 7.27 1297 | 43 24
C 10000 | 31.05 | 1531 | 683 | 45 | 966 | 7.81 | 2724 | 16.15 | 1024 | 1098 | 5.62 | 3.44
D 10000 | 243.90 | 185.18 | 80.64 | 4587 | 17.33 | 7.17 | 111.11 | 30.76 | 9.57 | 22.83 | 3.96 | 1.78
E 10000 | 8547 | 63.69 | 2645 | 3194 | 1385 | 697 | 625 | 25.18 | 9.78 | 1886 | 4.6 | 2.35
F 10000 33 2531 | 1063 | 18.18 | 11.82 | 7.56 | 27.24 | 17.15 | 10.53 | 13.83 | 5.78 | 3.43
G 10000 424 8.6 4132 | 6944 | 33.22 20 136.98 | 26.04 | 6.77 3.87 | 4.01 | 2,51
H 10000 | 5434 | 1748 | 542 | 3984 | 2227 | 17.54 | 142.85 | 505 | 15.82 | 34.96 | 7.55 | 2.55
I 10000 | 3246 | 12.61 | 444 | 2283 | 16.75 | 1432 | 4651 | 32.25 | 21.64 | 23.09 | 8.3 | 3.06
Table 4.4: ARL Levels of MPSUM chart for different mean shifts
Diagonal Shifts A1 and A2 Shifts Az Shifts All Shifts
Case | No Shift o 20 30 o 20 30 o 20 3o o 20 3o
A 588.23 | 153.84 | 36.63 | 1545 | 200 813 | 3067 | 50 | 11.12 | 454 | 20.74 | 421 | 1.98
B 476.19 99 1845 | 747 | 10526 | 6097 | 2638 | 41.15 | 11.18 | 539 | 18.34 | 427 | 2.14
C 55555 | 50.5 | 1231 5 125 | 11235 | 60.6 | 8547 | 21.36 | 1082 | 245 | 5.77 | 2.93
D 7633 | 21739 | 99 | 2747 | 37.73 | 11.75 | 4.74 | 31.74 | 968 | 424 | 11.96 | 2.53 | 1.45
E 1282 | 111.11 | 289 | 93 | 2873 | 9.77 43 | 2444 | 827 | 423 | 924 | 272 | 1.76
F 83.33 45.24 12.51 | 4.41 2949 11.96 6.53 259 1137 | 6.77 11.06 | 3.65 | 223
G 5433 389 | 448 | 9.74 | 56.17 | 45.66 | 29.94 | 23.69 | 632 | 2.6 33 | 1.99 | 147
H 4329 | 1053 | 407 | 247 | 6329 | 59.17 | 42.01 | 4291 | 1253 | 467 | 9.56 | 2.56 | 133
I 4504 | 11.13 | 3.53 | 1.87 | 75.75 | 81.96 | 73.52 | 72.99 | 26.17 | 10.83 | 11.64 | 2.95 | 145

Table 4.5: ARL Levels of the optimal diagonal inflated bivariate Poisson chart for different

1

mean shifts
Diagonal Shifts A1 and A2Shifts Az Shifts All Shifts
Case | No Shift o 20 30 o 20 3o o 20 30 o 20 30
A 263.15 | 17241 | 6993 | 24.09 | 3846 | 13.64 | 7.73 39.06 1193 { 504 | 12.78 | 3.463 | 1.87
B 250 175.43 | 3745 | 12.37 27.9 16.83 | 9.25 54.34 1605 | 728 | 16.18 | 453 | 243
C 21739 | 11235 | 24.27 | 8.23 16.58 23.2 | 15.17 70.92 21.73 | 11.52 | 21.55 6.6 37
D 400 263.15 | 204.08 | 61.34 | 48.54 13.6 5.52 81.3 16.83 | 6.09 | 15.62 3 1.58
E 400 29411 | 92.59 | 215 68.02 17 6.84 78.12 1926 | 7.66 | 19.92 | 4.05 | 2.15
F 285.71 188.67 | 71.94 | 14.81 60.6 | 2227 | 9.56 88.49 26.04 | 12.16 | 25.51 | 6.28 | 3.46
G 434.78 4.26 8.68 | 4444 | 103.09 | 4545 | 22.02 71.94 1246 | 4.31 3.67 3.04 | 197
H 400 3125 48.07 | 10.03 | 1282 | 43.85 | 26.04 86.95 1494 [ 558 | 31.84 | 549 | 226
I 400 200 39.06 8.1 128.2 | 63.69 | 34.36 | 86.2069 | 19.8 9.09 | 41.66 | 8.31 32
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Figure 4.1: Loss function of each charts

4.4 Conclusion

In this chapter, we propose a new optimal diagonal inflated bivariate chart. The basic concept
of this chart is based on optimization of diagonal inflated bivariate Poisson confidence interval,
and projection of data in Poisson field. The numerical results show good performance. Clearly,

our optimal diagonal inflated bivariate chart outperforms other perviously proposed charts.
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Chapter 5

Conclusions

This thesis has presented several defect charts to monitor both univariate and bivariate discrete
data. In addition, we also proposed a new bivariate defects chart. For univariate case, we
compared 11 defect charts that have been proposed for statistical process control. To compare
the performances of each chart, we tested each chart and considered some key factors such as
low mean responsiveness, loss function, and mean shifting sensitivity. Moreover, to simplify
the comparison of control chart performances, we categorized all control charts into three
groups, transforming data, standardizing data, and optimizing control limits.

Transforming data approach shows effective performance to construct defect charts for
very low mean samples. Lower control limit of charts by Poisson transformation of Bartlett,
Anscomebe, and Freeman and Tukey are shown to be precise for indicating out-of-control
signal at low mean samples. Thus, this approach is suitable to indicate process improvement.
However, this approach is ineffective for signaling out-control alarm since upper controt limit
of transformed charts always draws high loss function. Furthermore, after transforming data,
transformed chart can not provide original value of each data point.

Standardizing data approach is more practical than transforming data approach. Although
the charts in this group are not effective to deal with small mean samples, they provide mean-
ingful illustration in -3 and 3 control limits. Especially, Q-chart has the advantage of illustrat-
ing different types of defects simultaneously within single chart, and also provides improved
results compared to classic C-chart.

Optimizing control limits approach is the best approach to acquire a defect chart. By this

approach, there is no requirement of transforming or standardizing data, therefore, plotted data
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Chapter 5. Conclusions

still maintain their original meaning in control chart. From experimental results, Optimal C-
chart shows outstanding results. By lowest loss gain and highest mean shifting sensitivity,
we concluded that this chart is the best defect chart to replace traditional C-chart in attribute
monitoring. However, we do not claim that optimal C-chart is the only defect chart that should
be applied in defect monitoring. In practice, selection of charts also depends on suitability of
a particular process. Factors such as samples size, mean, UCL, LCL, undetected defect cost,
and inspection cost may also influence defect chart selection.

We have also proposed an optimal bivariate defects chart for two correlated characteristics.
The basic concept is defining the optimal limit of bivariate Poisson distribution and illustrating
data in Poisson field. The proposed control chart shows excellent performances in both prac-
tical dataset and various simulations. Our experimental results show improved rate of average
run length and robust detection of means shifts compared with other charts. The proposed chart
is an effectively applicable chart, especially, in high quality processes.

Furthermore, as a major issue of bivariate Poisson count data is over-dispersion of count
variables, designing a defects chart for observing over/under-dispersed Poisson samples be-
comes vital. We have also extended our optimal bivariate Poisson field chart into an optimal
diagonal inflated bivariate Poisson field chart to deal with this issue. The core idea is based
on both confidence interval optimization and Poisson field projection. Besides, the diagonal
inflated bivariate Poisson model is used for overcoming over/under-dispersion of data. By
various simulations, our diagonal inflated bivariate Poisson field chart still outperforms other
existed charts in terms of loss function and mean shifting sensitivity.

Future work can be devoted to propose new multivariate defects charts. Multivariate Pois-
son model is the model that can be used when the monitoring of many characteristics is nec-
essary [43]. The advantage of using multivariate Poisson model is that correlation between
variables are taken into account. Moreover, there is no need of transformation which allows us
to keep meaningful information. Furthermore, bivariate and multivariate Poisson generalized
models are flexible to handle over-dispersed Poisson variable. As shown in [30] and [31], mon-
itoring the deviance residuals from generalized linear model can outperform C-chart. Thus,
monitoring the deviance residual from bivariate generalized Poisson distribution [14] can be

interesting investigation.
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