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ABSTRACT 

Defects Control Charts for High-Quality Processes 

Surath Aebtarm 

The traditional C-chart by Shewhart has been widely applied for monitoring count data in 

industrial and nonindustrial processes. However, using C-chart always experiences an exces­

sive amount of false alarms, since control limits of traditional C-chart are defined by impracti­

cal normal assumption. Specially, when we monitor two or more correlated characteristics of 

defects, C-chart becomes unsuitable. Thus, monitoring a process by traditional C-chart leads 

to the increase of unnecessary costs of inspection. 

There are many works that have attempted to improve C-charts. In this thesis, 11 selected 

improved versions of C-chart are presented. The performances of improved C-charts are eval­

uated in term of numerical results to demonstrate the sensitivity of the charts and costs of 

inspections. 

We also propose an optimal bivariate Poisson field chart to monitor two correlated char­

acteristics of defects. Our chart is based on the optimization of bivariate Poisson confidence 

interval and projection of bivariate Poisson data in Poisson field. The detailed description of 

our proposed algorithm is presented by numerical data. The experimental results demonstrate 

improved performances regarding user-friendly visualization and false alarm rate. 

Furthermore, we propose an optimal diagonal inflated bivariate Poisson field chart to mon­

itor two over/under dispersed correlated count data. The detailed description of our chart will 

be presented. The experimental results demonstrate improved performances according to loss 

function and false alarm rate compared to other methods. 
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Chapter 1 

Introduction 

Manufacturing of products always deals with the variation in the production. The variations 

can be due to common and special causes [26] [48]. When a process contains only common 

causes of variation, it is in control. The average level of events, errors, or defects per unit can 

be used to calculate the process capability. When a process contains special causes, the process 

is out of control. 

To deal with process variation, control charts are effective tools that are widely used for 

quality inspection. The main purpose of a control chart is continually monitoring a process 

by illustrating its behavior [9]. Figure 1.1 shows an example of control chart. Control charts 

illustrate data on time series axis which provide the historical characteristics of a process. The 

maximum expected variation is shown as the upper and lower control limits. When a sample 

is excessive from maximum expected variation, it is indicated as out-of-control which can 

be refereed to "assignable cause" [9]. The application of control chart are denning process 

capability, benchmarking processes, and evaluating pilot state. 

In a process, data can be continuous or discrete. Attribute charts have been widely 

used to monitor discrete data. Since attribute data can be gathered from every process or 

even transformed from continuous data, attribute control charts are widely used in many fields 

to monitor both manufacturing and non-manufacturing processes [62]. For instance, a control 

chart of number of defects can be used for manufacturing purposes, and control chart of number 

of accidents per week is used in non-manufacturing issue [26]. Although an attribute chart is 

not always as effective tool as continuous control charts to find root problems and solutions, it 

is an economical tool to collect and analyze the process characteristics before continuous charts 
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Chapter 1. Introduction 

XBAR control chart 

20 25 30 35 

Figure 1.1: Control Chart. 

can be applied [32]. Besides, attribute charts are more practical in some cases. For example, 

monitoring number of survived patients per year is more practical than monitoring how long 

patient can be survival which usually uses continuous control chart [62]. 

There are two types of attribute control charts, defective and defects charts. The term 

"defective" is referred as the item that has one or more defects. The term "nonconforming" 

is also used instead of "defective" [25]. These types of charts are used with the number or 

proportion of defective units. For instance, P-charts and np-charts are used for evaluating 

proportion and number of defectives, respectively, which are produced by a process. Examples 

of defective data are number of defective items per proportion, number of rejected invoices per 

30 inspections, and number of surgical operations that went smoothly [62]. The term "defect" 

in quality field is referred as a single non-conforming quality characteristic of an item. It's 

possible that a nonconforming unit has many non-conformities [58] [66]. C-chart is a defect 

control chart that has been widely used in statistical process control (SPC). C-chart is used 

to monitor the actual total number of defects per unit. For example, number of defects per 

item and number of patients in a hospital per day [32]. Constructing C-chart is inexpensive 

since the plotted data are count data which does not require measurement, and can be collected 

from daily report in many cases. Furthermore, C-chart is used for plotting numbers of defects. 

2 



Thus, it's simpler to plot C-chart than any other control chart by just plotting raw data without 

necessity of transformation [62]. 

However, there are some points that need to be considered before attribute charts are ap­

plied. Attribute control charts can be biased if an inspector misjudges a product to be a defec­

tive [26]. For measuring small changes of variables, attributes are not as sensitive as continuous 

charts to represent the process, since attribute chart plots only in term of acceptable or not, in­

stead of exact value of data. The result of using attribute chart is sometimes out of reality 

because in some cases small variation cannot count as a defective in reality [26]. 

1.1 Background 

1.1.1 The Classic Shewhart's C-chart 

The classic C-chart by Shewhart is widely used in SPC when a process provides count data. 

Poisson distribution is in general used to model count data and is given as the following [9]: 

p~x\k 

p{x = k)^^r (1) 

where A represents at the same time the mean and the variance and k is the number of 

occurrences. The usual approach to obtain control limits of Shewhart's attribute control chart 

is to use plus and minus three standard deviation limits (under the assumption of normal ap­

proximation [9]): 

c ± 3 \ / g (2) 

where c is sample mean. To construct the traditional Shewhart C-chart [9] [26] [32], the 

upper control limit (UCL) and the lower control limit (LCL) can be calculated by 

C/CL = c + 3v^ (3) 

LCL = c - 3v^ (4) 

When LCL is negative in case of low mean of Poisson variable, LCL will be considered 

as zero because number of defects cannot be negative [9]. 

The average number of defects can be calculated by the estimated mean of Poisson 

distribution as follows 

A = ± £ > . (5) 
n • i 



where n is the total number of variables, and can be derived by maximum likelihood 

estimation (MLE) [33]: 

L(A) = l n n / ( * * | A ) = f > ( ^ - ) (6) 

( n \ n 

t=l / i= l 

Take the derivative of L with respect to A and equate it to zero: 

- jL L ( A ) = 0 <=» - n + P [ > U = 0 (7) 

Solving for A yields the maximum-likelihood estimate of A: 
1 n 

AMLE = - Y ^ ^ - (8) 

For the classic Shewhart's C-chart, there are two main drawbacks: (1) imprecise control 

limits by normal approximation and (2) the mean and variance may be unequal for small sample 

size. 

Generally, the normal approximation performs poorly due to its rigidity (always sym­

metric). Thus, the normal approximation can not provide the efficient control limits for C-chart 

as it was discussed in [58]. Especially, when the mean of Poisson distribution is small, the 

shape of count data distribution tails to infinity on one side. Thus, count data should not be 

plotted in normal approximation control limits. 

The unequal mean and variance for small sample size also cause imprecise control 

limits as it was explained in [37] where the author noticed that "for the small probability such 

as Poisson distribution, the sample size needs to be large enough in order to give the good 

distribution fit ". This issue was explained by using divergence coefficient: 

Q2=i (9) 
x 

where s2 and x are the sample mean and variance, respectively. Q2 is the square of 

the "divergence coefficient". By Poisson definition, mean and variance should be equal. Thus, 

divergence coefficient should always be equal to one. However, the divergence coefficient is 

not always one if sample size is small. Thus, if sample size is not large enough, divergence 
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coefficient will not be unity [37], which supports the reason why normal approximation control 

limit of C-chart cannot provide high standard of false alarm. 

Moreover, mean of Poisson population that is acquired by using MLE or taking the 

average directly from the data is not as precise as the exact mean of Poisson population [33]. 

Shenton and Bowman pointed out this issue in the case of small sample size (which follows 

Poisson distribution) and mentioned that "although MLE is good choice to use as estimator, 

it can mislead to the asymptotic variance which occur when the sample sizes are small, and 

leads to error of estimation " [33]. As a result, using MLE to approximate the mean of sample 

leads to construct imprecise control limits. The constructed chart will not be able to satisfy 

three standard deviation confidential interval and also lead to create excessive false alarm, and 

then waste, time, and more expensive efforts. Thus, a challenging problem is to improve such 

an effective and flexible tool to reach high standard false alarm rate. 

1.1.2 Key Parameters of Control Chart's Performances 

Since in many circumstances, C-chart does not perform efficiently, classic C-chart still 

leaves the room for improvement. In order to assess the efficiency and performance of a given 

control chart, three key parameters which are plotting illustration, loss function, and average 

run length will be used. 

Although quantitative analysis is the main reliable approach to analyze a statistical al­

gorithm, in practise, the main concerns are not only flexibility and accuracy, but control charts 

also need to be handy and visual. Handiness and visualization can not be shown by numerical 

results. Thus, the control chart plotting illustration should be considered. The characteristics 

of a robust control chart that are mentioned in many research papers are the ability to plot raw 

data in the control chart, and plot many different data in the same control chart. Since the main 

purpose of control chart is illustration of process behavior, Ryan mentioned that an efficient 

control chart needs to be able to show the raw data in order to be able to illustrate if something 

goes right or wrong [60]. Moreover, Quesenberry also explained that we need to be able to 

plot different data in the same control chart in order to help an inspector to compare two or 

more different data at the same time [7]. Thus, selecting the proper control chart depends on 

the actual process needs. The actual data would be the main requirement of charts if the charts 

are needed to illustrate the real data. In the other hand, a chart that can plot many different 

types of data at the same time would be needed to monitor different types of defects. In this 
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Table 1.1: Nominal value of ARL for each state 

Both tails 
Each tail 

In control state 
370.40 
740.80 

Shift = 0.5cr 
33.42 
66.84 

Shift = 1<T 
4.50 
9.00 

Shift = 1.5a 
1.57 
3.14 

Shift = la 
1.07 
2.14 

research, the data illustration of each tested chart will be presented. 

Second, Average Run Length (ARL) is the vital parameter which is used for evaluating 

the performance of control charts and making decision to choose sample size and sampling 

frequency [9]. In statistical process control, ARL can be explained as the average number of 

samples that can be inspected before a point is indicated out of control. In other words, ARL 

can be described as how often that alarm will be signaled when a process is out of control. 

There are many contradictions among researchers to describe the ARL of the high performance 

control chart. Nevertheless, the majority of researchers agree that "The high value of ARL will 

be desired when the process is in control but the short value of ARL will be desired when the 

mean of the process is shifted or been out of control" [69]. ARL can describe sensitivity of 

control charts whenever the mean of the process changed [35]. ARL can be calculated by the 

average total number of samples that can be plotted in the chart before the point that is out of 

control appeared [9]. For independent variable, ARL is given by: 

^(sample point plots out of control) 

For three standard deviation level, during in-control state, the probability of out of 

control points is 0.0027. Thus, since p is the probability of out of control, ARL is equal to 

1/p — 370, which means that if the process is in control, an out of control product will appear 

in every 370 products. Thus, during the control state, preferable ARL value will be 370. 

Since many statisticians always compare the level of ARL to three standard deviation level, 

it's interesting to compare defects chart to three standard level. In [ 12] the author presented the 

run length for three standard deviation x due to infinite sample size when means of samples 

are shifted which can be referenced as ARL of three standard deviation. 

Moreover, in some processes, it's very interesting to consider ARL of lower and higher 

control limits separately in order to monitor characteristics of each control limit. Because 

Poisson distribution has two tails, the probability of out of control point can be divided by 

two [42]. ARL of each tail will be equal to l/(p/2) = 740.4. In table 1.1, we show ARL 

values of each state. The nominal ARL values of both tails and single tail can be shown in 
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form of variation of state such as in-control state and mean shifted states. 

Third, loss function is also a key measure that can be considered in order to monitor the 

level of cost that can be gained in the control charts. Loss function illustrates cost, which can 

be caused by excessive false alarm [42]. In practice, loss function shows how much a process 

creates cost of inspection, and waste. The loss function is denned as [60]: 

Loss.function = ( ^ - ^ ± ^ + ^ - ^ ± ^ ) (11) 

where LTA = A£L and UTA — A^L . A lower limit total area (LTA) is the total 

area of out of control of the lower control limit, and an upper limit total area (UTA) is total 

area of out of control of the upper control limit. They can be calculated by ARL of lower and 

upper control limits. According to the previous equation, LTA and UTA are subtracted by 

nominal three standard deviation confidential interval (ARL = 740.7) to calculate how much 

the ARL of the control chart gains over three standard deviation level. Thus, an inspector 

will be able to locate how much each control limit produces false alarm rate more than three 

standard deviation confidence interval. To compare the performances of each approach, it's 

important to calculate the loss function that illustrates the cost that will be created by using 

each method. To have an effective control chart, the loss function must be minimized. 

1.2 Contributions 

The contributions of this thesis are as follows: 

•*" An Empirical Evaluation of Selected Defects charts: We investigate the performances of 

11 selected defects charts. To compare the performances of each chart, we tested each 

chart and considered some key factors such as low mean responsiveness, loss function, 

and mean shifting sensitivity. To simplify the comparison of each control chart perfor­

mances, we categorize all control chart into three groups, transforming data, standardiz­

ing data, and optimizing control limits. 

car An Optimal Bivariate Poisson Field Chart for High-quality Manufacturing processes: 

We propose an optimal bivariate Poisson field chart to monitor correlated defects. This 

chart is improved by optimizing bivariate Poisson confidence interval and illustrate bi­

variate Poisson data in Poisson field. The results show that our control chart provides 
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excellent rate of false alarms, and enhanced visual-interface of correlated characteristics 

on a single chart. 

<&• An Optimal Diagonal Inflated Bivariate Poisson Field Chart: We propose an optimal bi-

variate Poisson field chart to monitor bivariate over/under dispersed count data. This 

chart is also improved by optimization of confidence interval and illustration of Poisson 

field. However, to deal with over/under-dispersion, the diagonal inflated bivariate Pois­

son model is used instead of usual bivariate Poisson model. The proposed chart presents 

excellent rate of false alarms, and high sensitivity to handle over/under-dispersed count 

data. The various simulated data demonstrate the enhanced performances of our control 

chart compared to other previously proposed charts. 

1.3 Thesis Overview 

The organization of this thesis is as follows: 

Q The first Chapter introduced Shewhart C-chart, and reviewed some keys parameters to 

assess the performances of control chart. 

Q In Chapter 2, we present 11 selected improved versions of C-charts. The performances 

of improved C-charts are evaluated in term of numerical results to demonstrate the sen­

sitivity of the charts and costs of inspections. 

• In Chapter 3, we propose an optimal bivariate Poisson field chart to monitor two corre­

lated defects. The detailed description of our chart will be presented. The comparative 

results and case study demonstrate improved performances according to data visualiza­

tion and false alarm rate compared to other methods. 

• In Chapter 4, we propose an optimal diagonal inflated bivariate Poisson field chart to 

monitor two over/under dispersed correlated count data. The detailed description of our 

chart will be presented. The experimental results demonstrate improved performances 

according to loss function and false alarm rate compared to other methods. 

• In the Conclusions, we summarize our contributions. 
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Chapter 2 

An Empirical Evaluation of Selected 

Defects charts 

The traditional C-chart by Shewhart has been widely applied for monitoring count data in in­

dustrial and nonindustrial processes. However, using C-chart always experiences an excessive 

amount of false alarms, since control limits of traditional C-chart are denned by impractical 

normal assumption. Thus, monitoring a process by traditional C-chart leads to increase unnec­

essary costs of inspection. There are many works that have attempted to improve C-charts. In 

this chapter, 11 selected improved versions of C-charts are presented. The basic concepts and 

detailed description of all charts are discussed. The performances of improved C-charts are 

evaluated in term of numerical results to demonstrate the sensitivity of the charts and costs of 

inspections. 

2.1 Introduction 

Many approaches have been proposed to improve attribute control charts. However, it's 

possible to categorize them into three major groups of approaches which are: (1) the trans­

forming data approach, (2) the standardizing data approach, and (3) the optimizing control 

limits approach. To introduce all control charts, the theoretical ideas behind each chart and 

its construction will be presented. In order to visualize each control chart and investigate its 

ability to illustrate data, we will use the dataset in table 2.1 [32]. For some control charts that 

can be applied with different sample sizes, the charts will be illustrated by the data in table 2.2 

which was used in [8]. 
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Table 2.1: Defects data set 
Sample No. 

1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 
11.00 
12.00 
13.00 
14.00 
15.00 
16.00 
17.00 
18.00 
19.00 
20.00 
21.00 
22.00 
23.00 
24.00 
25.00 

"'Denotes sample above upper limit" 

Number of Defects (c) 
8.00 
7.00 
6.00 
4.00 
3.00 
9.00 
1.00 
5.00 
0.00 
0.00 

23.00* 
3.00 

15.00* 
8.00 
5.00 
7.00 
3.00 
0.00 
12.00 
3.00 
4.00 

18.00* 
7.00 
4.00 
4.00 

Total defects =159 

Table 2.2: Defect data set for different sample sizes 
Sample No. 

1.00 
2.00 
3.00 
4.00 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 
11.00 
12.00 
13.00 
14.00 
15.00 
16.00 
17.00 
18.00 
19.00 
20.00 
21.00 
22.00 
23.00 
24.00 
25.00 
26.00 
27.00 
28.00 
29.00 
30.00 
31.00 
32.00 
33.00 
34.00 
35.00 
36.00 
37.00 
38.00 
39.00 
40.00 
41.00 
42.00 
43.00 
44.00 
45.00 
46.00 
47.00 
48.00 
49.00 
50.00 

Size of sample 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.00 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
4.50 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
5.00 
4.40 
4.40 
4.40 
4.40 
4.40 
4.40 
4.40 
4.40 
4.40 
4.40 

Number of Defects 
4.00 
3.00 
3.00 
7.00 
6.00 
10.00 
7.00 
6.00 
7.00 
4.00 
7.00 
10.00 
10.00 
6.00 
9.00 
5.00 
9.00 
5.00 
11.00 
3.00 
8.00 
11.00 
12.00 
5.00 
7.00 
8.00 
8.00 
10.00 
5.00 
14.00 
7.00 
9.00 
14.00 
16.00 
17.00 
15.00 
15.00 
9.00 
13.00 
11.00 
20.00 
15.00 
11.00 
18.00 
11.00 
6.00 
8.00 
15.00 
11.00 
10.00 
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Table 2.3: Summary of data transformation equation 
Author 

Bartlett [39] [38] 

Anscombe [15] 

Freeman and Tukey [36] 

Transforming equation 

y = Vc + %/c + 1 

2.1.1 The Transforming Data Approach 

The transforming data approach is the first option to improve the performance of attribute" 

control charts. This approach is based on approximating Poisson distribution by a normal 

distribution after transforming count data. 

The idea of transforming data approach is related to transform asymmetrical distribution 

to almost symmetric one. There are many approaches that statisticians have applied in order to 

acquire the perfect normal distribution transformation. Ryan presented three interesting trans­

formations in his book which are Bartlett transformation model, Anscombe's transformation 

model, Freeman and Tukey transformation model, and illustrated the construction of each con­

trol chart [58]. Another transformation approach has been proposed in [63]. In the following, 

we discuss in details these approaches. 

Bartlett, Anscombe, and Freeman and Tukey Control Charts 

Three main data transformation approaches have been proposed by Bartlett [39] [38], Anscombe 

[15], and Freeman and Tukey [36], and presented in table 2.3. In this table, c is the number of 

defects (original data) and y is the transformed data [58]. By using these three transformations, 

control limits are given by the following: 

CL = y (1) 

LCL = y - 3 (2) 

UCL = y + 3 (3) 

where y is the mean of transformed data. To illustrate each transforming data control 

chart, the data set in table 2.1 is transformed by using the equations in table 2.3. Figures 2.1, 
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2.2, and 2.3 show the resulted control charts using equation 1, 2, and 3 to compute the control 

limits. 

Bartletl chart 

10 15 
Samples 

Figure 2.1: Bartlett chart 

Anscombe chart 
10 

ro -7 

h= 5 

+ 11 

4-n 

+ 22 

A 

l\ 11\ 
10 • 1-18 , 

i V, 

10 15 
Samples 

20 25 

Figure 2.2: Anscombe chart 
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Freeman and Tukey chart 

10 15 
Samples 

Figure 2.3: Freeman and Tukey chart 

Improved Square Root Transformation Control Chart 

Alternative attribute control chart based on improved square root transformation (ISRT) 

was proposed in [63]. The authors used square root of data for transforming Poisson distribu­

tion into symmetric distribution. Although their work mainly show the result of transformation 

to P-chart [63], they emphasized that is is also applicable to C-chart. They explained that ISRT 

chart can be constructed by the following equations: 

CL = Vd (4) 

LCL = ̂ -hl^ (5) 

UCL = S*+l-±{±) (6) 

where c is the samples mean. Figure 2.4 shows the actual plotting of ISRT control chart 

using the data set in table 2.1. 

Despite transforming data approaches can provide good results, they have some weak­

nesses. For example, the transforming data approaches require sophisticated inspectors and 

time in order to transform data. Besides, since data that can be plotted in this type of chart 
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Figure 2.4: ISRT chart 

needs to be transformed, the transformed charts can not illustrate the exact level of defects in a 

process. 

2.1.2 The Standardizing Data Approach 

Similarly to the transforming approaches, the standardizing approach is based on data 

transformation. However, in the case of standardizing control chart, after data are transformed, 

the data will be plotted in -3 to 3 control limits where they will be monitored in form of 

number of standard deviation. Similarly to the transforming data approach, the original data 

cannot be plotted on the control chart, and illustrate process characteristics. However, the 

main advantages of standardizing chart in term of data illustration is that the different types of 

defects can be plotted in the same standardized chart. 

Since the standardized data are plotted in -3 and 3 control limits, the control limits are 

defined as the following: 

CL = 0 (7) 

LCL = - 3 (8) 
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UCL = 3 (9) 

In 1991, Quesenberry presented his Q-chart along with other charts [8]. His work is one 

of the first standardizing charts that inspired many other researchers. Q-chart can monitor both 

continuous and attribute data with constant or non-constant sample size [7]. Moreover, Q-chart 

can be used in the case of both known and unknown parameters such as mean and standard 

deviation. In this research, Q-chart and other charts such as standardization C-chart and W 

transformation chart which were presented along Quesenberry's work will be investigated. 

The Standardization C-Chart (Defects Z-chart) 

The standardization Poisson transformation (Z-chart) transforms random variables by relo­

cating the data, and spreading of the distribution [8]. This method is based on subtracting the 

mean of data (c x n) and dividing it by its standard deviation: 

\>nc 

Then, the data that are transformed can be plotted in -3 and 3 control limits as usual 

standardized type of control chart, which can show the level of out of mean data in term of 

numbers of standard deviation. Figure 2.5 shows ISRT chart using the data in table 2.1. 

The Square Root (W) Transformation Chart 

The square root transformation chart is a common approach that is applied in count data 

monitoring and defined by the following equation [8]: 

W = 2y/c-2Vn5 (11) 

With this transformation, data can fit in -3 to 3 control limits, and center line is zero. Figure 

2.6 shows W transforming chart using the data in table 2.1. 

Q-chart for a Poisson Parameter 

Q-chart proposed by Quesenberry is a well-known classic standardizing data chart. This 

chart is based on approximately normalized control chart [8]. Quesenberry explained that his 

chart can monitor the count data even if the mean of data is unknown with variable sample 
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Z chart 
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Figure 2.5: Z-chart 

W chart 
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Figure 2.6: W-chart 
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sizes. For the design of Q-chart for Poisson parameter, one should suppose that yi is the 

number of defects on a sampling, and A is the average rate at which defects occur on a standard 

size inspection unit. Quesenberry presented Q-chart for Poisson parameter in 2 cases with 

known and unknown mean. 

• Q-chart for Known A 

For known A, the count data will be transformed in order to fit them into -3 

and 3 control limits. The data will be transformed from Poisson distribution to Q 

distribution by the Poisson cumulative distribution function and the inverse of the 

standard normal distribution function according to these equations: 

u* = .F(CJ; BjA) (12) 

Qi = $-l(Ui) (13) 

fori = 1,2,... 

Each data point of the Poisson distribution is transformed by Poisson cumu­

lative distribution function which has mean A. Then, the transformed data from 

Poisson cumulative distribution function will be transformed again by the inverse 

of the standard normal distribution. After that, Q-distribution will be acquired. 

After all transformation steps, the data will be plotted in -3 and 3 control limits 

which is similar to any other standardized methods. The known A Q-chart corre­

sponding to the data in table 2.1 is shown in figure 2.7. 

• Q-chart for Unknown A 

For unknown A, the count data will be transformed by another way. By uniform 

minimum variance unbiased (UMVU) estimating distribution function, Lehmann 

explained that Binomial distribution function can be used for estimation when 

the probability of occurrence is low which can be referred to Poisson distribution 

[13]. Thus, in order to transform unknown A Poisson distribution, data will be 

transformed by the Binomial cumulative distribution function and the inverse of 

the standard normal distribution function as the following: 
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Estimated Lambda Q-chart 

10 15 
Samples 

Figure 2.7: Estimated known A Q-chart 

Ui = B(ci;U,-j2r) (14) 

Q{ = Q-'im) (15) 

fori= 1,2,.. 

Where nj is size of subgroup of sample, and N{ is the total size of sample. 

For transforming unknown A Poisson distribution, the data will be transformed by 

binomial cumulative function, then, similarly to known A case, the data will be 

transformed again by inverse of standard normal distribution. 

After all transformation steps, the data will be plotted in -3 and 3 control limit. 

To illustrate unknown A Q-chart, the actual plotting of unknown A Q-chart from 

the data in table 2.1 is given in figure 2.8. 

The Masking Shifted Effect of Q-chart 

Masking of shifts has been presented as a problem in Q-chart [16]. Indeed, 

Quesenberry noticed that unknown A Q-chart is not always accurate if the process 

mean is shifted at the beginning [7]. This issue was explained in [16] by the 

fact that, to approximate mean of population, unknown A Q-chart uses the past 

observations to update Q-statistic (pool of collected data). Then, if the mean of 
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Figure 2.8: Unknown A Q-chart 

population is shifted in early state, the out of control data will be contaminated 

which leads to inaccurate Q-chart. An example is shown in figure 2.9. In order to 

present the masking shifted effect, the data set in table 2.1 is augmented by 25 out 

of control data points which are provided by table 2.4. The plotted data between 

1 to 25 are in control state. However, the last 25 data are out of control. In figure 

2.9, instead of showing out of control signal after point 25, unknown A Q-chart 

presents that out of control data are gradually rebounded back in control when the 

process reaches point 37. Thus, leaking the defects to the process can be caused 

by masking shifted effect which creates visibly in-control even out of control data 

still persisted [16]. 

Known A Q-chart will be only tested in the case which can be called "Estimated Q-

chart" since the mean is estimated by MLE. However, in the case of unknown A Q-chart, the 

masking shifted effect gains the unusual low rate of out-of control signals of the unknown A 

Q-chart since the mean shift will rebound back after the points are out-of control. Thus, in this 

chapter, the comparison of Q-chart with other C-charts will be performed only in the case of 

estimated A Q-chart. 
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Unknown Lambda Q-chart 

Figure 2.9: Masking shifted effect of Q-chart 

Table 2.4: out of control data set for masking shifted effect 
Sample No. 

26.00 
27.00 
28.00 
29.00 
30.00 
31.00 
32.00 
33.00 
34.00 
35.00 
36.00 
37.00 
38.00 
39.00 
40.00 
41.00 
42.00 
43.00 
44.00 
45.00 
46.00 
47.00 
48.00 
49.00 
50.00 

Number of Defects (c) 
19.00 
20.00 
21.00 
19.00 
21.00 
21.00 
21.00 
19.00 
22.00 
19.00 
21.00 
21.00 
18.00 
21.00 
19.00 
20.00 
21.00 
19.00 
21.00 
22.00 
20.00 
21.00 
19.00 
21.00 
22.00 

2.1.3 The Optimizing Control Limits Approach 

Mainly, the optimizing control limits approaches try to define the exact control limits in 

order to construct the absolute three standard deviation attribute control charts. 

With these approaches, the control limits are defined in term of tables or equations 

which are convenient to apply in practice. Without transforming data, there is no needs of 

high working skills and a lot of time to construct control charts. There are some works which 

have been developed by the optimizing control limits approach. For instance, Ryan proposed 
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"The optimal control limit C-chart" [60]. This chart is the first approach that was proposed 

by optimizing C-chart control limit. Then, followed works such as "Winterbottom's control 

chart" [2] and "the (Almost) Exact Control Limits for a C-chart" [50]. In the following, we 

present these charts. 

Optimal Control Limit C-chart 

The basic concept of the optimal control limit C-chart is defining C-chart limits that provide 

satisfied rate of out of control signals. The steps to construct this chart are finding the optimal 

limits, obtaining table of means and limits, and applying linear regression (See [60] and [42]). 

As other optimizing control limit charts, the actual data can be plotted. Thus, an inspector can 

easily monitor the process. The actual number of defects will be shown without transformation 

to any form. Ryan explained that the optimal control limit C-chart can provide the control limits 

in both table and equation which are flexible in real manufacturing processes. By following 

Ryan's works, the optimal control limit C-chart can be constructed by the following equations: 

CL = c (16) 

UCL = 0.6182 + 0.9996c + 3.0303^5 (17) 

LCL = 1.5307 + 1.0212c - 3.2197Vd (18) 

where c is the mean of sample. Using data set in table 2.1, the optimal control limits 

C-chart is illustrated in figure 2.10. 

Winterbottom Control Chart 

Winterbottom presented his attribute control chart by using Cornish and Fisher expansions 

transformation [2]. He explained that Cornish and Fisher expansions transformation can be 

used for defining the control limits of defects chart. Winterbottom's control chart (Winter 

chart) can be constructed as the following: 

CL = c (19) 
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The optimal control limit C-chart 
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Figure 2.10: The optimal control limit C-chart 

LCL = c - 3 \ / a + 4/3 (20) 

f/CL = c + 3Vc + 4/3 (21) 

To illustrate Winterbottom chart, the data in table 2.1 is used (see figure 2.11). 

Furthermore, Winterbottom chart is only the optimized control limits chart that can be 

used with variable sample sizes. Winterbottom provided the control limits in case of variable 

sample sizes by the following: 

CL = B (22) 

LCL = c - 3>/c/n + 4/3n (23) 

UCL = c + Zsjzfn + 4/3n (24) 

where n is a subgroup sample size, and c is the center line. An example of Winterbottom 

chart in the case of different sample sizes using the data in table 2.2 is shown in figure 2.12. 
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Winterbottom chart 
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Figure 2.11: Winterbottom's C-chart 

Winterbottom chart ^/ary sample size) 

Figure 2.12: Winterbottom's C-chart for vary sample sizes 
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The (Almost) Exact Control Limits for a C-chart 

In general, to improve attribute control chart, many researches introduce many approaches 

for transforming attribute data from Poisson distribution to nearly normal distribution. How­

ever, instead of transforming data, Rudolf proposed his control chart which achieves three 

standard deviation limits of defects chart by transforming normal three standard control lim­

its [50]. 

To optimize control limits, the author presented the basic equation of his control limits 

as following [50]: 

c~{iiy±zay}* (25) 

Where z is usually equal to 3 (three standard deviation) and c can be upper or lower 

control limit. Then, in his separated work [49], he determined the expected mean and standard 

deviation on transformation scale as: 

^ - ( a + 1 2 ) f ( 2 6 ) 

*y ^ (|)(c)« (27) 

Haldane's work shows that 2/3 power can provide symmetric Poisson transformation 

[21]. Moreover, before 2/3 power transformation, Read and Cressie work also suggested that 

the constant (1/4) from Anscombe's Poisson transformation is needed to be added [61]. There­

fore, Rudolf gave the transforming control limits equation given by: 

Y = {c+-A)2* (28) 

By substituting estimated mean and variance into the basic form, and then substituting 

again into the transforming control limits equation, Rudolfs control limits are given by: 

CL = c (29) 

LCL = [(e+ ^ ) § - 3(|)(g)*]l + \ (30) 
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(Almost) exact control limits C-chart 

10 15 
Samples 

Figure 2.13: The (Almost) Exact Control Limits for a C-chart 

tfCL = [(c+-L)§+3(!)(<0*]i-? (31) 

By equation 29,30 and 31, the (Almost) Exact Control Limits (ECL) can be constructed. 

To illustrate the chart, the data in table 2.1 is plotted and shown in figure 2.13. 

2.2 Experimental Results: Comparison of the Different Defects 

Charts Performances 

2.2.1 Objectives and Methodology 

The main objectives of this section are: 

• To compare control charts by categories, and find the best chart in each class. 

• To find the lowest mean that the lower control limit of each chart can provide. 

• To find the control chart that provides the lowest loss due to in-control state. 

• To find the control chart that provides the highest sensitivity due to mean shifting. 

The data sets used to test the different control charts were generated by Poisson random 

number generation using MATLAB 7 build in function as follows: 

• Each data set contains 100,000 data. 
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Tab 
Bartlett 

Anscombe 

Freeman&lukey 
ISRT 

Z 

W 

Q 
C 
Ryan&Schwertman 
Winterbottom 

ECL 

e 2.5: List of transforming equation and control limits of defects chart 
IVansfonning Equation 

9 = 2 , / c 

V = 2^c+% 

y = y/c + Vc + 1 
y = v/E 

* = JtSr 
W = 2Jy - 2VnX 

CDF of Poisson and inverse Guassian 
None 
None 
None 

None 

CL 
S 

S 

y *l 

0 

0 
0 
c 
c 
c 

c 

LCL 
S - 3 

S - 3 

S - 3 

v*-*-K;fe> 
-3 

-3 
-3 

e - 3\/e 
1.5307 + 1.0212c - 3.2197v/5 

c - 3v/g + 4/3 

K«+TV)^ - 3 ( | ) ( C ) M + i 

UCL 
S + 3 

S + 3 

S + 3 

^ + 5 - 5 ( ^ S ) 
3 

3 
3 

C + 3-/6 
0.6182 + 0.9996c + 3.0303 \/e 

c + 3v/« + 4/3 

[ ( 2 + T V ) ^ + 3 ( | ) ( C ) B ] 5 - 1 

• 50 data sets were generated by different means from 1 to 50. 

• The mean shifts were set to 0.5cr, a, 1.5a, and 2a. 

After generating Poisson random numbers, we define LCL and UCL of each control chart. 

In some cases such as transformed control charts and standardized charts, data were trans­

formed before control limits were defined. All formula used for transformation and the com­

putation of control limits are summarized in table 2.5. After transforming or standardizing data 

and defining the control limits, the data were plotted and the out of control points were counted 

and used for calculating ARL values. Then, all ARL values were recorded and plotted to 

compare the performances. 

2.2.2 Performances Comparison Based on responsiveness of lower control limit 

to low mean samples 

Ryan explained that the classic C-chart can not be performed when the mean of defects is 

low [58]. Indeed, when a control chart is constructed by low mean samples, the lower control 

limit is always negative. Thus, the lower control limit can not be shown in the control chart 

since numbers of defects can not be lower than zero. He pointed out that the control chart that 

its lower control limit can respond to the lowest mean can be considered as high performing 

control chart in term of monitoring the data at the low mean which can be necessary in high 

yield process where numbers of defects are very small [58]. 

Figure 2.14 shows the lowest mean that the lower control limit of each control chart can 

use for monitoring a process. In this figure, the lowest peak corresponds to the best chart in 

term of detecting a defect in low mean population. From this figure, we can point out noticeable 

results: 

• Except Z-cbart, other charts can perform better than Classic C-chart in this test. 
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Ryan Ans F&T ISRT Z W 0 C R&S Winter Enact 

Figure 2.14: The lowest level of mean that the lower control limit of each control chart can 
monitor in the case of out of control signal. The names of each control chart on X-axis, and 
the level of mean is shown in the Y-axis. 

• The transformation data approach category performed the best in this test. The 

charts in this category can be applied even though mean of samples is as low as 3 

to 5. 

• For standardized charts and optimal control limit charts, W transformation control 

chart and (Almost) Exact control limit chart (ECL) are the best in each category, 

respectively. 

1 

BartletlArts F&T ISRT Z W 0 C R&S WinteiExad BartlettAns F&T ISRT Z W Q C R&S WirrtorExact 

(a) (b) 

Figure 2.15: Loss function of (a) lower control limit and (b) upper control limit of each control 
chart due to in-control state. The names of each control chart on X-axis, and the level of loss 
gain is shown in the Y-axis. 
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2.2.3 Performances Comparison Based on Loss Function 

As explained in section 1.1.2, Loss function indicates how much the process signals false 

alarm when the process is in control. The preferable control charts will be judged by the 

lowest loss creation which can be shown separately into lower and upper control limits. The 

Loss function of lower and upper control limits of each control chart are shown in figures 

2.15.a and 2.15.b, respectively. The lowest peak corresponds to the best chart in term of loss 

gain. Each bar represents the loss gain of each chart. The top of each bar is not flat since 

each bar is contained with loss gaining of each mean samples from 1 to 50. The chart that has 

logarithmic-like top shows the changed level of loss gain due to the mean changes from 1 to 

50. There are some noticeable points which can be pointed out according to lower control limit 

performance: 

• The result of lower control limit shows that the optimized control limit category 

performs the best among other classes. The optimal control limit C-chart has the 

best performance since the loss function is laid on the bottom of the graph. The 

other two optimized control limit charts which are the Winterbottom's chart and 

the ECL chart also gain low loss. 

• Transformed data category has the second performance which shows slightly higher 

loss function than the optimized control limit category, except ISRT chart that cre­

ates very high cost function. 

• For the standardized control charts, W transformation can perform at low loss 

function, and Q-chart can perform low loss only in case of high mean of samples. 

• In term of improvement compared to classic C-chart, there are only ISRT and 

Z-charts that provide unsatisfied result. 

There are also some interesting points that can be mentioned according to upper control 

limit performances: 

• The optimizing control limit category performed the best according to this test. 

The result of upper control limit shows that the optimal control limit can perform 

excellently among defects charts. In this category, Winterbottom's chart also gains 

the low loss function due to upper control limit except in the case of low mean 

(slightly high loss function), and ECL chart draws slightly higher loss than the 

two other charts. 
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Figure 2.16: ARLL of each control control chart in different states (a) no shifting (b) 0.5a (c) 
a (d) 1.5a (e) 2a 

• For groups of transformed control charts and standardized control charts, ISRT 

chart and Q-chart can perform at the low wastes as closed as the level of optimizing 

control limit category does. 

• Bartlett, Anscombe, Freeman and Tukey, and W transformation charts create even 

higher cost than classic C-chart. 
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Figure 2.17: ARLu of each control control chart in different states (a) no shifting (b) 0.5a (C) 
a (d) 1.5a (e) 2a 

2.2.4 Performance Comparisons Based on Mean Shifting Sensitivity 

In order to define the effective mean shifting detection of each chart, the best performance 

chart will be judged by ARL interpretation (see section 1.1.2). The preferable level of ARL 

during in control state should be high and close to in control nominal ARL level (see table 

1.1). For the preferable level of ARL during the out-of-control state, ARL level should be as 

low as the out-of-control ARL nominal values. Furthermore, to compare the sensitivity of each 

chart, the performance will be evaluated by separated control limits. 

In figure 2.16, the graphs show the ARL levels of lower control limit due to shifting 
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of a level. Figure 2.16.a shows the ARL level of each chart during the in control state, figure 

2.16.b, 2.16.C, 2.16.d, and 2.16.e show the ARL levels during means of samples shifting by 

0.5a, a, 1.5a, and 2a, respectively. From figure 2.16, we can point out noticeable remarks: 

• All ARL levels of the different charts from in-control state to out-of-control state 

show significant changes. 

• The optimizing control limit category has the highest mean shifting sensitivity 

compared to the other categories. The optimal control limit C-chart and Winter-

bottom's chart have the best performance. 

• There are three charts (Bartlett, Anscombe, Freeman and Tukey charts) in trans­

forming data category, and ECL chart have the second high performance due to 

mean shifting sensitivity. 

• For the last group which is standardizing data approach, Q-chart has the highest 

mean shifting sensitivity and show improved performance compared to the classic 

C-chart. 

• Z-chart and ISRT chart have almost the same result as classic C-chart, and W 

transformed chart performs less efficient than the classic C-chart. 

In figure 2.17, the graphs shows the ARL levels of upper control limit due to shifting 

of a level. Figure 2.17.a shows the ARL level of each chart during the in control state. Figures 

2.17.b, 2.17.C, 2.17.d, and 2.17.e show the ARL levels during mean of simple shifting by 0.5a, 

a, 1.5a, and 2a. From figure 2.17, we can point out the following remarks: 

• All ARL levels of upper control limit of the different charts from in-control state 

to out of control state show significant changes. 

• The optimizing control limit category has the best performance. The optimal con­

trol limit C-chart and Winterbottom's chart have the highest mean shifting sensi­

tivity. 

• The second high sensitivity is given by ISRT chart, Q-chart, and ECL chart. ISRT 

chart and Q-chart have the best sensitivity in their own category. 

• For other charts from the transforming data category, the results show an accept­

able level compared to the Classic C-chart. 

• Z-chart and W transformed chart poorly perform due to mean shifting toward up­

per control limit. 
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At this point, we have tested all charts according to different considerations. To illustrate 

the performances of all charts, table 2.6 shows a summary of the different defect control charts 

performances and give the strong and weak aspects of each chart. 

Table 2.6: Full comparison of all defects charts 

Bartlett 
Anscombe 

Ft 
ISRT 

Z-chart 
W chart 
Q-chart 
C-chart 
Optimal 
Winter 
ECL 

Vary sample size 

No 
No 
No 
No 
No 
No 

Yes* 
No 
No 

Yes* 
No 

Plotted data 

Transformed 
Transformed 
Transformed 
Transformed 
Standardized 
Standardized 
Standardized 

Original 
Original 
Original 
Original 

MinA** 

3 
5 

3* 
5 
10 
3* 
7 
9 
6 
7 
4 

LCL Loss gain 
A = 1 to 25 

Medium 
Low 

Medium 
High 

Very high 
Medium 

High 
Very high 
Very low* 

High 
Medium 

A = 26 to 50 
Low 

Very low* 
Low 
High 

Very high 
Low 

Medium 
Very high 
Very low* 

Low 
Low 

UCL Loss gain 
A = 1 to 25 

Medium 
Very high 
Medium 

Low 
Medium 

Very high 
Low 

Medium 
Low 
Low 
Low 

A = 26 to 50 
Medium 
Medium 
Medium 

Very low* 
Low 

Medium 
Low 
Low 

Very low* 
Very low* 

Low 

A Shifting Sensitivity 
LCL 
High 
High 
High 

Medium 
Medium 

Very Low 
Low 

Medium 
Very high* 
Very high* 

High 

UCL 
Low 
Low 
Low 

Very high 
Very Low 
Medium 

High 
Very Low 
Very high* 
Very high* 

High 

* Preferred chart. ** Minimal A that LCL can respond to out-of-control point. Low value are 
preferred. 

2.3 Conclusion 

In this chapter, we compared 11 defects charts that have been proposed for statistical process 

control. The results shows that optimizing control limits approach is the best approach to 

acquire a defects chart. By this approach, there is no requirement of transforming or standard­

izing data, therefore, plotted data still maintain their original meaning in control chart. From 

experimental results, optimal C-chart shows outstanding results. By lowest loss gain and high­

est mean shifting sensitivity, we concluded that this chart is the best defects chart to replace 

traditional C-chart in attribute monitoring. 
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Chapter 3 

An Optimal Bivariate Poisson Field 

Chart 

Shewhart C-Chart is a widely accepted control chart for monitoring number of defects per unit. 

However, in high-quality process, where normal assumption is impractical, and characteristics 

are correlated, C-chart becomes unsuitable. In this chapter, we propose an optimal bivariate 

Poisson field chart to monitor two correlated characteristics of count data for both industrial and 

non-industrial purposes. This chart is based on optimization of bivariate Poisson confidence 

interval and illustration of bivariate Poisson data in Poisson field. The detailed description of 

our proposed algorithm is presented by numerical data. The comparative results present 3-

dimensional visualization and improved false alarm rate of our proposed algorithm compared 

to existing approaches. The performances of our proposed algorithm is presented by both 

real case study and simulation. The experimental results demonstrate improved performances 

regarding visualization and false alarm rate. 

3.1 Introduction 

To deal with number of defects, C-chart is the most widely used tool in statistical process 

control. There are many works that have improved C-chart [58] [60] [42] [8] [50] [2] [63]. 

However, when numbers of defects are very low such as in high quality processes, traditional 

C-chart become unsuitable tool. Instead of focusing on numbers of defects or fraction of 

nonconforming items, counting numbers of conforming items between the occurrences of non­

conforming items is introduced, and refereed to "interevent counts". In [59], Goh introduced 
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CCC-chart which can be used for monitoring interevent counts, by pointing out the effect of 

low fraction of nonconforming (i.e where small probability of nonconforming occurred). In­

deed, in this case, normal approximation becomes out of reality. By using actual numerical 

examples, Xie and Goh presented application of CCC-chart, and suggested some methods for 

decision making in high yield processes [41] [40]. In [56], numbers of interevent counts are 

transformed by simple power transformation from exponential distribution to Weibull distri­

bution. Then, normal approximation is applied to construct control limits. In [4], authors 

applied generalized Poisson distribution to model over-dispersed data, and suggested the use 

of CCC-chart for high quality process monitoring. Furthermore, in [17] [4], authors agreed that 

hypothesis test or histogram should be conducted in initial state of constructing the charts for 

high yield process. However, although monitoring interevent counts is preferable, to observe 

various types of defects simultaneously, multiple C-charts and CCC-charts are needed. 

Monitoring two or more types of correlated characteristics in high quality process still 

leave room for improvement. Lowery and Montgomery pointed out that multivariate control 

charts perform better to signal out of control alarms than univariate charts, since correlation 

between variables is taken into account [5]. They also suggested that univariate charts are 

only suitable for diagnosing process behavior. In [53], the authors pointed out four conditions 

that every control chart needs to satisfy: "Is the process in-control?", "Is out-of control state 

pointed out?","Is relationship between two or more variables taken into account?", and "what 

is the problem that out-of-control signal actually tells?". According to [53], there are many al­

ternative charts which are based on improving x2 and T2 charts for continuous data. However, 

for discrete variables, few multivariate attribute charts such as [20], [24], [30], and [67] have 

been proposed. In [20], Patel presented his multivariate control chart for both binomial and 

Poisson data. For multiple defects, he presented multivariate Hotelling-like chart where time 

dependency between variables is considered. However, this chart is not practical to apply in 

nearly zero defect processes, since it considers normal assumption, and requires complicated 

steps to construct the chart [57] [22]. In [67], to deal with multi-attribute variables, improved 

Mnp-chart is presented by considering correlation between characteristics [67]. Not only this 

chart shows improved results compared with univariate p-chart, but it is also simple. More­

over, Joel have shown another enhanced Mnp-chart for multiple independent discrete variables 

by proposing simple designing of optimal Mnp-chart [24]. Nonetheless, both Mnp-charts are 
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not practical for high quality processes, since these chart are constructed under normal as­

sumption. Skinner et al. have suggested to use generalized linear model (GLM) to construct 

attribute control chart for multiple counts where input and output variables are measurable. By 

observing the residuals, Generalized linear model-based control charts are more effective to 

monitor multi-count data than C-chart. Furthermore, the results show effective performance in 

the case of overdispersion. However, inputs and outputs are not measurable in every process. 

Besides, GLM based charts require multiple charts to observe multivariate variables. In [57], 

the authors suggested two transformations for multivariate Poisson distribution. For the first 

transformation, they applied bisection method to find the proper power of the root transfor­

mation of each attribute characteristics. The second transformation is Normal distribution To 

Anything (NORTA) inverse transformation method. After acquiring almost zero skew distribu­

tion from both transformations, x2 control chart is applied. According to this paper, NORTA 

inverse transformation method shows robust performance when dealing with correlated mul­

tivariate Poisson data. Moreover, it needs less complex steps than other charts. In [22], the 

authors presented the use of multivariate Poisson sum probability density function to define 

the control limits of multivariate Poisson sum chart (MPSUM chart). By their chart, moni­

toring multiple attribute characteristics can be done in single chart. However, in high quality 

processes, numbers of defects are very low, and correlation between pairwises of two charac­

teristics is crucial in some processes. According to our knowledge, there are no works that 

have provided a chart which robustly monitors correlated characteristics. Moreover, none of 

the charts is mainly concerned with the illustration of how pairwises of characteristic spread 

which can reflect process behavior. 

In this chapter, we propose an optimal bivariate Poisson field chart for monitoring two 

correlated characteristics of defects. The basic concept is defining the optimal limit of bivariate 

Poisson distribution and illustrating data in Poisson field. This chart provides satisfactory rate 

of false alarms, and illustrate original values of two attribute characteristics and changes of 

correlation between them. 

In Section 3.2, the basic concept of bivariate Poisson distribution is briefly discussed. In 

Section 3.3, the basic principals of an optimal bivariate Poisson field chart are introduced. Fi­

nally, real case study and simulations are presented to illustrate the effectiveness of our control 

chart in Section 3.4, and this chapter is concluded in Section 3.5. 
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3.2 Bivariate Poisson distribution and its estimation 

Bivariate Poisson distribution (BP) is often used for modelling pairwises of correlated count 

data. Bivariate Poisson distribution was firstly introduced by Campbell [27]. Let random 

variables X\, X2, X3 are unobserved variables which follow independent Poisson distribution 

with parameters Ai,A2,A3. Then, X = X\ + X3 and Y = X<i + X3 are observed pair-

wises which follow jointly a bivariate Eoisson distribution BP(Xi, A2, A3) with joint probabil­

ity function [44] [54] [43]: 

\ z \y min(x>y) / \ / \ \ 

i=0 

fori = 1,2,... 

where 

1 n 1 n 

x=-'S~]xi and y = - V " yt (2) 
i=\ i=\ 

Where n is total number of samples. The marginal distribution of X and Y with mean 

Ai + A3 and A2 + A3 are also following recurrence relations [44]: 

xP(x, y) - AiP(a; - 1, y) + X3P(x - 1, y - 1)) (3) 

yP(x, y) = A2P(x, y - 1) + A3F(x - 1, y - 1) (4) 

For maximum likelihood estimation, if equation 1 is differentiated with respect to parameters 

Ai, A2, and A3, from recurrence relation in 3 and 4, the differential-different equations are 

given by [44]: 

^ ^ l = P(X-l,y)-P(X,y) (5) 

dP(x,y) 

dM 
= P(x,y-l)-P(x,y) (6) 

dP(x,y) 
= P(x,y) - P(x - l,y) - P(x,y- 1) + P(x - l,y - 1) (7) 

dX3 
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Using the above and the recurrence relations, Holgate also showed that [44]: 

PdAi ~ ^P~~d\2~ ^ Pd\3 

Which can be written as: 

x A3 

Where 

and 

Therefore, 

. R-1 = 0 (9) 

^ - - ^ # - 1 = 0 (10) 
A2 A2 

f + f-(1 + r + r^-1 = 0 <n> 
Ai A2 Ai A2 

1 n 1 n 

x — - y~] Xi and y = -"S^m (12) 
i = l i = l 

JS = I^f^ij«zl) (13) 

x — Ai + A3 and y — A2 + A3 (14) 

and 

fl=l (15) 

Since parameters A = (Ai, A2, A3) of bivariate Poisson distribution in equation 14 are shown 

in decomposed form, the method to estimate these three parameters have received attentions 

[44] [54] [43] [34] [28]. Correlation between x and y can be calculated by [54] [43]: 

PXV = x/(A1 + A3)(A2+=A37 ° 6 ) 

Correlation (/?) of bivariate Poisson has value between 0 and 1 [54]. When p is zero, 

A3 become zero and bivariate Poisson distribution can be referred to double Poisson distri­

bution [54] [10]. Furthermore, from the mean decomposition in equation 14, the covariance 

variance matrix of bivariate Poisson distribution provides only non-negative A3 [54]. Thus, this 

distribution permits only non-negative correlation. For this issue, [45] pointed out that there 

are few cases of bivariate Poisson distribution that can provide the negative correlation. 
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3.3 Proposed Method 

An optimal bivariate Poisson field chart is based on the probabilistic optimization of Bivariate 

Poisson confidence interval and projection of bivariate Poisson histogram or Poisson field. 

Suppose two correlated characteristics of defects are pairwises of (x, y) with parameters A = 

(Ai,A2,A3). First, A is estimated from complete samples (xi, yi),i = 1,2,3, . . . , n, and the 

expected type I error rate (c*o) is specified. 

Second, instead of presenting number of frequencies of bivariate Poisson pairwise as in 

bivariate field, our poisson field presents probability of each pairwise. By equation 1 and 

estimated parameters ( A), probabilities of all pairwises (pBp(f, s|A)) are calculated from pair 

(0,0) until all numbers on row and column are equal to zeros as shown in table 3.1. 

Table 3.1: Probabilistic Poisson field 

0 
1 
2 

x 3 
• 

• 

Tmax 

0 

Poo 
PlO 

P20 

P30 
" 

• 

0 

1 
Poi 
Pn 
P21 

P31 
• 

• 

0 

2 
P02 

P12 

P22 

P32 
• 

• 

0 

y 
3 

P03 

P13 

P23 

P33 
* 

• 

Smax 

0 
0 
0 
0 
0 
0 
0 

0 0 0 0 0 

Where poo,Pio,Poi,Pu, • • • )Prmaxsmai are probabilities of each pairwise on probabilistic 

Poisson field, and rmax and smax are numbers of row and column where all probabilities are 

equal to zero. 

The optimization of control limits is a widely used approach to acquire a robust control 

chart. According to optimal C-chart by Ryan [60] [42], the optimal limits can be defined by 

closeness of alpha rate to nominal value (a = 0.0027 or ARLQ = •£- = QQ027 = 370). To 

obtain expected alpha rate, Ryan shifts lower control limit from zero and upper control limit 

from mean until having the expected rate of a. 

In the third step, to minimize confidence area, we shift the control limit of our chart from 

min(prs) to max(prs). Since total probability in Poisson field is equal to 1, and in order 
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to optimize our chart control limit, let min^oOiPicPoi, •••>PjmaifcmaJ — °- Then, the total 

probability of Poisson field is calculated by: 

1 fmax Smax 

loiai r = 0 s _ 0 

To acquire the optimal Poisson field, the pairwises that have the lowest probability in Pois­

son probabilistic field are removed until total probability in Poisson field is satisfied: 

ARLtotal > ARL0 (18) 

Where ARLQ is the expected average run length or nominal average run length (ARLo = 

•£-). After the total probability in Poisson field is satisfied given condition in equation 10, the 

optimal Bivariate Poisson control limit can be obtained. 

3.4 Example and Numerical Results 

The purpose of this section is to present the effectiveness of our chart based on actual count data 

with known assignable causes, and compare performances of our chart to previously proposed 

charts such as NORTA chart and MPSUM chart by testing each chart with simulated datasets. 

In [57], NORTA chart is based on transformation of multi-attribute data into almost sym­

metric distributions. By this approach, every discrete random vector will be transformed by 

Q-transformation from Poisson distribution to Q-distribution. Let Xij is numbers of defects per 

unit for i = 1 ,2,3, . . . , n and j = 1,2,3,. . . ,p. Where n is number of total samples and p 

is numbers of characteristics. For Q-transformation, initially, «y = F(xij; Xj) is the Poisson 

cumulative distribution function (F(.)) for transforming Poisson variable to percentile. Then, 

Qij = ^~1(mj) for transforming percentile to Q-statistic variable. Then, T2 control chart will 

be applied to transformed vectors (following normal distribution) in order to plot them in the 

chart. Let Qi — (Qn,Qi2, • ••, Qij) be the transformed vector. T2-statistics can be calculated 

by: 

T? = (Qi-Q)TS-l(Qi-Q) (19) 

Where S is an estimated population covariance matrix, which is constant in the process. 

The lower control limit of T2 control chart is always zero and the upper control limit of this 

chart can be calculated by Chi-square distribution with p degrees of freedom. 
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In [22], Chiu and Kuo presented their chart which is based on the exact distribution of sum 

of multivariate Poisson variables. By Hermit distribution which was presented as the special 

case of Poisson "doublet" variables in [6], the exact distribution of sum of Bivariate Poisson 

variables (SUMMTP) is: 

d/2 

PsuMMTp(d\X) — e 
i=0 

fi _ „-(A1+A2+A3) V - ( A l + A 2 ) " - 2 W 
(d-2i)\(i)\ 

(20) 

Where d{ = Xi + y{. By giving a>o and mean parameters A, the upper control limit is 

defined by P{d > UCL\\) < a0 and the lower limit by P(d < LCL)\X) < a0. Then, 

the control limits of their control chart can be defined by probabilistic approach to acquire the 

optimal limit of the exact distribution of sum of multivariate Poisson distribution. By this chart, 

multiple-type of count data can be monitored in single chart. 

3.4.1 Example 

Consider the situation where counting numbers of people flow in and out of the building are 

monitored in order to predict an event such as a conference in the building. These data which 

are called "Callt2" data were collected over 15 weeks for every half hour from the main door of 

the Callt2 building at University of California (UCI) [1]. The dataset contains 10080 samples 

(5040 samples for each in and outflow) from 07/24/05 to 11/05/05, and schedule of events (See 

table 3.2). 

Table 3.2: The schedule of events in Calit2 building from 07/24/05 to 11/05/05. 
Dates of events (Month/Day/Year) 

7/2672005 
7/29/2005 
8/2/2005 
8/4/2005 
8/5/2005 
8/9/2005 
8/9/2005 
8/10/2005 
8/12/2005 
8/1672005 
8/18/2005 
8/18/2005 
8/19/2005 
8/23/2005 
08/26/05 
08/30/05 
09/01/05 
09/15/05 
09/21/05 
09/22/05 
10/03/05 
10/04/05 
10/07/05 
10/10/05 
10/14/05 
10/19/05 
10/21/05 
10/23/05 
10/24/05 
10/24/05 

Starting time (HounMinute) 
11:00 
8:00 
15:30 
16:30 
8:00 
11:00 
8:00 
8:00 
8:00 
11:00 
8:00 
18:00 
8:00 
11:00 
08:00 
16:00 
14:00 
08:30 
09:00 
14:00 
15:30 
12:00 
09:00 
16:30 
09:00 
22:00 
09:00 
21:00 
08:00 
16:00 

Finishing time (HounMmute) 
14:00 
11:00 
16:30 
17:30 
11:00 
14:00 
16:00 
16:00 
11:00 
14:00 
17:00 
20:30 
11:00 
14:00 
11:00 
18:00 
16:30 
10:00 
14:00 
14:30 
17:00 
15:00 
10:30 
19:00 
10:30 
23:30 
10:30 
22:30 
12:00 
21.-00 

40 



In this example, to construct our control chart for detecting events, bivariate Poisson Pa­

rameters were estimated from the data containing only non-event periods. Let (x, y) represent 

pairwises of in flow and out flow of people, respectively. By maximum likelihood estimation, 

A = (1.56,1.76,2.03). Then, defining probability of each pairwise by using equation 1 provides 

Poisson field in table 3.3. 

Number 
0 
1 
2 
3 
4 

x 5 
6 
7 
8 
9 

10 
11 
12 

0 
0.0047 
0.0074 
0.0058 

0.003 
0.0012 
0.0004 
0.0001 

0 
0 
0 
0 
0 
0 

Table 3.3 

i 
0.0084 
0.0227 
0.0252 
0.017 

0.0081 
0.003 

0.0009 
0.0002 

0 
0 
0 
0 
0 

2 
0.0074 
0.0284 
0.0452 
0.0405 
0.0244 
0.0109 
0.0039 
0.0011 
0.0003 
0.0001 

0 
0 
0 

:p(x 

3 
0.0043 
0.0217 
0.0458 
0.0544 
0.0418 
0.0229 
0.0096 
0.0033 
0.00O9 
0.0002 

0 
0 
0 

,y|1.56,1.76,2 

4 
0.0019 
0.0117 
0.0311 
0.0472 
0.046 

0.0313 
0.0159 
0.0063 
0.0021 
0.0006 
0.0001 

0 
0 

5 
0.0007 
0.0049 
0.0157 
0.0293 
0.0354 
0.0297 
0.0183 
0.0087 
0.0033 
0.001 

0.0003 
0.0001 

0 

6 
0.0002 
0.0017 
0.0063 
0.0139 
0.0203 
0.0207 
0.0154 
0.0088 
0.0039 
0.0014 
0.0004 
0.0001 

0 

.03)in Poisson Field 
y 
7 
0 

0.0O05 
0.0021 
0.0053 
0.0091 
0.0111 
0.0099 
0.0067 
0.0035 
0.0015 
0.0005 
0.0002 

0 

8 
0 

0.0001 
0.0006 
0.0017 
0.0034 
0.0048 
0.005 
0.004 

0.0025 
0.0012 
0.0005 
0.0002 

0 

9 
0 
0 

0.0001 
0.0005 
0.001 

0.0017 
0.0021 
0.0019 
0.0014 
0.0008 
0.0004 
0.0001 

0 

10 
0 
0 
0 

0.0001 
0.0003 
0.0005 
0.0007 
0.0008 
0.0006 
0.0004 
0.0002 
0.0001 

0 

11 
0 
0 
0 
0 

0.0001 
0.0001 
0.0002 
0.0003 
0.0002 
0.0002 
0.0001 
0.0001 

0 

12 
0 
0 
0 
0 
0 
0 

0.0001 
0.0001 
0.0001 
0.0001 

0 
0 
0 

13 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

To optimize control area, the low probabilities in the field are removed until total sum of 

probabilities in Poisson field provides the expected average run length (ARLo). This optimal 

control area is presented in table 3.4. 

Number 
0 
1 
2 
3 
4 

x 5 
6 
7 
8 
9 

10 
11 
12 

0 
0.0047 
0.0074 
0.0058 

0.003 
0.0012 
0.0004 

0 
0 
0 
0 
0 
0 
0 

Table 3.4: The optimal 

i 
0.0084 
0.0227 
0.0252 
0.017 

0.0081 
0.003 

0.0009 
0.0002 

0 
0 
0 
0 
0 

2 
0.0074 
0.0284 
0.0452 
0.0405 
0.0244 
0.0109 
0.0039 
0.0011 
0.0003 

0 
0 
0 
0 

3 
0.0043 
0.0217 
0.0458 
0.0544 
0.0418 
0.0229 
0.0096 
0.0033 
0.0009 
0.0002 

0 
0 
0 

4 
0.0019 
0.0117 
0.0311 
0.0472 
0.046 

0.0313 
0.0159 
0.0063 
0.0021 
0.0006 

0 
0 
0 

5 
0.0007 
0.0049 
0.0157 
0.0293 
0.0354 
0.0297 
0.0183 
0.0087 
0.0033 

0.001 
0.0003 

0 
0 

area 

6 
0.0002 
0.0017 
0.0063 
0.0139 
0.0203 
0.0207 
0.0154 
0.0088 
0.0039 
0.0014 
0.0004 

0 
0 

for Callt2 data 
y 
7 
0 

0.0005 
0.0021 
0.0053 
0.0091 
0.0111 
0.0099 
0.0067 
0.0035 
0.0015 
0.0005 

0 
0 

8 
0 
0 

0.0006 
0.0017 
0.0034 
0.0048 

0.005 
0.004 

0.0025 
0.0012 
0.0005 
0.0002 

0 

9 
0 
0 
0 

0.0005 
0.001 

0.0017 
0.0021 
0.0019 
0.0014 
0.0008 
0.0004 

0 
0 

10 
0 
0 
0 
0 

0.0003 
0.0005 
0.0007 
0.0008 
0.0006 
0.0004 
0.0002 

0 
0 

11 
0 
0 
0 
0 
0 
0 

0.0002 
0.0003 
0.0002 
0.0002 

0 
0 
0 

12 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

13 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

To compare our optimal bivariate Poisson field chart with previously proposed charts such 

as NORTA chart and MPSUM chart, ARLo of each chart needs to be equalized. In this exper­

iment, ARLo f° r all control charts were equally set to 370 (Nominal value). The accuracy of 

detecting out of control signal can be measured by ability to detect unusual high numbers of 

people due to an event. Furthermore, since information about dates of events are given, there 

are two types of error that can be determined. Type I error (a) when a control chart indicates 

out of control but there is no event at the time, and Type II error (J3) when a control chart 

indicates in-control but there are some events at the time. 

We can see from figures 3.1 to 3.21 that all charts show high number of type I error, since 

41 



70, 

SO, 

50, 

| 40, 

« 

Optimal Btvariate Poisson Field Chart 

SHjlo -«7i - a S ™ 0 

^®27 JHB. A 

»-\E 
j iaas KtSSB 

.TCP1 

•«o«B! .•* 1 a 

.) 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 

July August 

Figure 3.1: An Optimal Bivariate Poisson field chart from samples in 2005 July 23 to August 
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Figure 3.2: MPSUM chart from samples in 2005 July 23 to August 7 
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Figure 3.3: NORTA chart from samples in 2005 July 23 to August 7 
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Figure 3.4: An Optimal Bivariate Poisson field chart from samples in 2005 August 8 to 22 
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Figure 3.5: MPSUM chart from samples in 2005 August 8 to 22 
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Figure 3.6: NORTA chart from samples in 2005 August 8 to 22 
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Figure 3.7: An Optimal Bivariate Poisson field chart from samples in 2005 August 23 to 
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Figure 3.8: MPSUM chart from samples in 2005 August 23 to September 6 
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Figure 3.9: NORTA chart from samples in 2005 August 23 to September 6 
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Figure 3.10: An Optimal Bivariate Poisson field chart from samples in 2005 September 7 to 
21 

Figure 3.11: MPSUM chart from samples in 2005 September 7 to 21 
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Figure 3.12: NORTA chart from samples in 2005 September 7 to 21 
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Figure 3.13: An Optimal Bivariate Poisson field chart from samples in 2005 September 22 to 
October 6 

Figure 3.14: MPSUM chart from samples in 2005 September 22 to October 6 
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Figure 3.15: NORTA chart from samples in 2005 September 22 to October 6 
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Figure 3.16: An Optimal Bivariate Poisson field chart from samples in 2005 October 7 to 21 
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Figure 3.17: MPSUM chart from samples in 2005 October 7 to 21 
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Figure 3.18: NORTA chart from samples in 2005 October 7 to 21 
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Optimal Bivariate Pdsson ReU Chart 

Figure 3.19: An Optimal Bivariate Poisson field chart from samples in 2005 October 22 to 
November 5 

Figure 3.20: MPSUM chart from samples in 2005 October 22 to November 5 
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Figure 3.21: NORTA chart from samples in 2005 October 22 to November 5 
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Table 3.5: 
Case 

A 
B 
C 
D 
E 
F 

Means 
Equal 
Equal 
Equal 

Unequal 
Unequal 
Unequal 

Simulation Cases 
Correlation Ai A2 A3 

0.8 0.4 1.5 
0.5 4 4 

0.91 4 40 
0.8 0.1 0.2 1.5 
0.5 1 2 4 

0.91 1 2 40 

number of people can be high on the days before events. 

Figures 3.1,3.4,3.7, 3.10,3.13,3.16, and 3.19 clearly show that our proposed control chart 

can efficiently indicate every unusual high number of in and out flow people due to periods of 

events. 

Figure 3.2, 3.5, 3.8, 3.11, 3.14, 3.17, and 3.20 show that MPSUM chart can also detect 

events during considered time. However, NORTA chart in figures 3.3, 3.9, and 3.21 shows 

undetected events on date 8/2/2005, 9/1/2005, and 10/23/2005 (Type II error). 

3.4.2 ARL performance 

The performance of our proposed control chart is compared to other previously proposed charts 

by using different simulated datasets. The steps to generate bivariate Poisson random numbers 

are [68]: 

• Generate 2-dimensional normal vector (xi, £2) with zero mean and unit variance, 

and desired correlation (p). 

• For each vector, calculate the normal cumulative distribution function (CDF). 

Zi = $ ( X j ) (21) 

For each vector (zi,Z2), calculate the Poisson inverse cumulative distribution 

function with desired A. 

bi = F-1(zi;Xi) (22) 

Where vectors (61,62) are bivariate Poisson data with desired rates of means (Ai = Ai + 

A3, A2 = A2 + A3). To present our control chart in various scenarios, the details of the experi­

ment can be summarized as following: 

• Datasets are generated by means in table 3.5. 

• The expected ARL (ARLQ) was set to 370. 
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• The mean shift was set to 0.5a, a, 1.5a, 2a, 2.5a, and 3a. 

In this experiment, we tested each control chart by 10,000 pairs of simulated data generated 

according to parameters in table 3.5. To measure the sensitivity of each chart, we tested each 

in two cases which are shifting means of single and all variables. The results of single counts 

shifts are given in tables 3.6, 3.7, and 3.8, and the results of all counts shifts are in table 3.9, 

3.10, and 3.11. 
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Table 3.6: ARL levels of NORTA chart for different single mean shifts 

Case 
A 
B 
C 
D 
E 
F 

Levels of shifting (a) 
0 

10000 
10000 
10000 
10000 
10000 
10000 

0.5 
33.3333 
80.6452 
16.3132 
9.2593 

14.6413 
3.076 

1 
16.1031 
47.3934 

5.4945 
5.6085 
9.5057 
1.8464 

1.5 
9.9305 
27.248 
2.9257 
3.8745 
6.8074 
1.4514 

2 
6.8074 

20.6612 
2.0202 
3.127 

5.4201 
1.2367 

2.5 
5.176 

14.3885 
1.5969 
2.6267 

4.415 
1.1442 

3 
4.1911 

10.8814 
1.345 
2.291 

3.8314 
1.0903 

Table 3.7: ARL levels of MPSUM chart for different single mean shifts 

Case 
1428.571 

1428.571 
526.3158 

357.1429 
135.1351 

666.6667 

70.922 

Levels of shifting (a) 

208.3333 
120.4819 
45.8716 

322.5806 
303.0303 
55.2486 

1.5 
156.25 

32.7869 
147.0588 

67.5676 

120.4819 

31.1526 

92.5926 
46.5116 
21.978 

101.0101 
94.3396 
25.641 

81.3008 

20.7469 

81.3008 

Table 3.8: ARL levels of the optimal Poisson field chart for different single mean shifts 

Case 
A 
B 

c 
D 
E 
F 

Levels of shifting (<r) 
0 

303.0303 
400 

454.5455 
434.7826 

400 
312.5 

0.5 
34.965 

63.6943 
15.748 
9.0416 

16.6945 
3.2927 

1 
16.0256 
36.1011 
5.5586 
5.5066 

10.3627 
1.9275 

1.5 
10.1937 
20.4499 
2.9197 
3.8212 
7.5586 
1.4863 

2 
7.0423 

15.5039 
2.0292 
3.0845 
5.8445 
1.2579 

2.5 
5.4377 

11.1235 
1.5926 
2.5974 
4.7059 
1.1574 

3 
4.4111 
8.7951 
1.3503 
2.2696 
4.0371 
1.0983 

Table 3 .9: A 
Case 

A 
B 
C 
D 
E 
F 

RL levels of IS fORTA chart for diffe rent both mear 
Levels of shifting (<r) 

0 
10000 
10000 
10000 
10000 
10000 
10000 

0.5 
55.5556 
80.6452 

114.9425 
15.3846 
21.0084 

11.274 

I 
29.0698 
46.5116 
61.7284 
11.3636 
15.8479 
9.5602 

1.5 
19.1571 
25.7069 
34.7222 

8.9526 
12.1803 
7.7821 

2 
14.43 

18.9036 
24.1546 
7.4129 
9.8232 
6.7797 

2.5 
11.4679 
13.9276 
17.5747 
6.4433 
8.1633 
5.9809 

3 
9.1827 

10.1523 
14.245 
5.6338 
7.0472 
5.3476 

Table 3. 10: ARL levc 
Case 

A 
B 
C 
D 
E 
F 

:1s of M PSUM chart 1 or diff< :rent both me* 
Levels of shifting (&) 

0 
1428.571 
384.6154 
103.0928 
1428.571 
526.3158 

100 

0.5 
103.0928 
54.0541 
25.7069 

142.8571 
125 

31.25 

i 
50.7614 
28.3286 
15.2439 
66.6667 
59.8802 

18.018 

1.5 
31.1526 
17.5439 

10 
35.2113 
33.7838 

11.274 

2 
22.2717 
12.5313 
7.1736 

24.0385 
22.2717 
8.0451 

2.5 
17.1233 
9.1659 

5.777 
18.797 

15.1286 
6.4392 

3 
13.1062 
6.9686 
4.7237 

14.4509 
12.1951 
5.3505 

Table 3.11: ARL levels of the optimal Poisson field chart for different both means shifts 

Case 
A 
B 

c 
D 
E 
F 

Levels of shifting (a) 
0 

303.0303 
400 

454.5455 
434.7826 

400 
312.5 

0.5 
47.3934 
52.0833 
88.4956 
13.0039 
17.762 

10.3306 

1 
25.3807 
31.8471 
48.5437 

9.2421 
13.369 
8.6505 

1.5 
17.452 

17.6678 
28.8184 

7.2046 
10.2459 
7.0077 

2 
12.9366 
13.459 

19.4175 
6.0753 
8.2102 
6.1652 

2.5 
10.4712 
10.2041 
14.7929 
5.2219 
6.8166 
5.4496 

3 
8.4034 
7.758 

11.7647 
4.7059 
5.9524 
4.9116 
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Similarly to bivariate Poisson control charts, the results in table 3.6, 3.7, 3.8, 3.9, 3.10, 

and 3.11 also show outstanding performances of our optimal bivariate Poisson field chart in 

different mean samples and mean shifts. In case of in-control state, the proposed algorithm 

outperforms other charts since ARL levels in different mean samples are close to ARLQ. 

NORTA chart shows high rate of ARL than ARLQ that may lead to type II error. Besides, 

MPSUM chart provides shortage false alarms for monitoring low mean samples, and excessive 

false alarms for high mean samples. Only, medium mean samples can provide ARL level close 

to ARLQ. The results of detecting mean shifts also show that optimal bivariate Poisson field 

chart is more sensitive than the other control charts since ARL levels of our chart effectively 

respond to mean shifts by decreasing ARL level to low values. 

3.5 Conclusion 

In this chapter, we have proposed an optimal bivariate Poisson field chart for monitoring two 

correlated characteristics of defects simultaneously. The basic concept is defining the optimal 

limits of bivariate Poisson distribution and illustrating Poisson pairwises in Poisson field. By 

using practical example, our optimal bivariate Poisson field chart shows robustness of detecting 

any assignable cause in the process. Furthermore, by testing our chart using different generated 

datasets, we show clearly the improved performances of the proposed algorithm compared to 

others. 
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Chapter 4 

An Optimal Diagonal Inflated 

Bivariate Poisson Field Chart 

In this chapter, we present an optimal diagonal inflated bivariate Poisson field chart to over/under 

dispersed data. This chart is based on our optimal bivariate Poisson field chart which is based 

to two steps: optimization of confidence interval and illustration of Poisson field. However, 

to deal with over/under-dispersion, the diagonal inflated bivariate Poisson model is used in­

stead of usual bivariate Poisson model. The proposed chart presents excellent rate of false 

alarms, and high sensitivity to handle over/under-dispersed count data. The various simulated 

data demonstrate the enhanced performances of our control chart compared to other previously 

proposed charts. 

4.1 Introduction 

In this chapter, we present our optimal bivariate Poisson field chart with diagonal inflated model 

to monitor two over/under-dispersed count data. To deal with this type of data, the diagonal 

inflated bivariate Poisson model is used. 

A common problem when modelling two count data by using bivariate Poisson distribution 

is that variation of count data are sometimes higher than expectation. Mean and variance are 

not always equal and estimation of bivariate Poisson parameters is not always precise [31]. 

Thus, it is vital to consider the problem of over/under-dispersion of bivariate Poisson data 

when a control chart is designed. 
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To deal with over-dispersed count data, [18] [51] [3] proposed the use of generalized lin­

ear model (GLM). This model shows flexibility to model over/under-dispersed count data. 

In [30] [31], deviance residual chart is proposed to observe count data. This chart is based 

on monitoring residuals from GLM. By numerical results, this chart shows effectiveness for 

monitoring over/under-dispersed count data. However, this chart presents process monitoring 

in form of residuals plot. Thus, meaningful values of raw data may be distorted by monitoring 

residuals. 

In [10], authors presented estimation of bivariate Poisson and diagonal inflated bivariate 

Poisson regression models. By using an expectation-Maximization (EM) algorithm, parame­

ters of both models can be estimated. In case of diagonal inflated bivariate Poisson model, the 

authors proposed a general model based on a mixture of three independent Poison distributions 

and additional distribution for diagonal data. Based on extension of the simple zero-inflated 

model [23] for only an excessive variables of pair (0,0), the jointly distribution of diagonal 

inflated bivariate Poisson distribution is given by [10]: 

p)PBp(x,y\X), x^y 

p)PBp(x,y\X) + pPD(x\9), x = y 

(1) 

COVIBp(X = x,Y = y) = (l- p){A3 + (\i + A3)(A2 + A3)} +PED(X2) (2) 

- ( l - p ) 2 ( A 1 + A3)(A2 + A3) (3) 

- (1 - p)pED(X)(Xl + A2 + 2A3) - p2{ED(X)2} (4) 

Where PBp(x,y\X) is bivariate Poisson probability density function, and PD(X\6) is the 

probability function of diagonal distribution with parameter 0, and p is inflation proportion. 

EE,(X) is expected value of diagonal distribution. Diagonal distribution can be presented 

by Poisson, discrete or geometric distribution. Diagonal distribution is inflated, when p is 

relatively high. There are two properties of this diagonal inflated bivariate Poisson model. 

First, the marginal distribution of a diagonal inflated model for X is given by [10]: 

PIBP(X = x) = {1-P)P0(X\\I+\2)+PPD(X\9) (5) 
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Where Po(x|Ai + A2) is Poisson probability function with mean (Ai + A2). It is clearly 

shown that this marginal is two mixture distributions which are univariate Poison and geometric 

distribution. Therefore, mean and variance of this marginal distribution are given by [10]: 

E(X) = (1 -p) (Ai + A3) +PED(X) (6) 

and 

VAR{X) = ( 1 - P ) { ( A I + A 3 ) 2 + ( A 1 + A 3 ) } + P ^ D ( X 2 ) - { ( 1 - P ) ( A I + A 3 ) + £ D ( X ) } 2 (7) 

The marginal distribution of diagonal inflated model is not individual Poisson distribution. 

Thus, the distribution can be over or under dispersed depending on distribution D(x, 6), and 

p. Furthermore, in case of usual bivariate Poisson, when A3 = 0, all pairs of bivariate poisson 

count become independent. Nonetheless, when A3 of diagonal inflated bivariate Poisson model 

is zero, all pairs are still dependent by diagonal inflated distribution D(x,6). Let A3 — 0, the 

covariance of diagonal inflated bivariate Poisson with A3 = 0 is given by: 

COVIBP(X,Y) = p(l-p)\1\2+pED(X2)-p(l-p)ED(X)(\1+\2)-p
2ED(X)2 (8) 

This equation also shows that covariance between X and Y can be negative by distribution 

D(x, 6), and p. By using this model, Karlis and Ntzoufras provided many detailed numerical 

simulations and case studies to illustrate effectiveness of fitting over and under dispersed count 

data with this model [10]. 

In this chapter, we propose an optimal diagonal inflated bivariate Poisson field chart for 

over/under-dispersed count data. The basic concept is based on optimization of confidence 

interval of diagonal bivariate Poisson model, and illustration of Poisson field. The various sim­

ulated datasets present the robustness of monitoring over/under-dispersed data by our control 

chart. 

The rest of the chapter is organized as follows. In Section 4.2, the basic principals of an 

optimal diagonal inflated bivariate Poisson field chart are introduced. Finally, simulations are 

presented to illustrate the effectiveness of our control chart in Section 4.3, and this chapter is 

concluded in Section 4.4. 
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4.2 Proposed Method 

Similarly to our previously proposed chart, the optimal diagonal inflated bivariate Poisson field 

chart is based on the probabilistic optimization and projection of bivariate Poisson histogram 

or Poisson field. However, this chart uses diagonal inflated Poisson distribution dealing with 

two correlated over/under-dispersed count data. Suppose two over/under-dispersed correlated 
—* 

characteristics of defects are pairwises of (x, y) with parameters A = (Ai,A2,A3), and unknown 

distribution on diagonal samples (PD(X = y, &))• First, A is estimated from complete samples 

(xi,yi),i = 1,2,3, . . . , n, and the expected type I error rate («o) is specified. Moreover, Un­

known parameters (6 and p) of additional distribution on diagonal samples are also estimated. 

Second, by equation 1 and estimated parameters ( A), probabilities of all pairwises (piBp(r, s\\, 0, p)) 

are calculated from pair (0,0) until all numbers on row and column are equal to zeros as shown 

in table 4.1. 

Table 4.1: Probabilistic Poisson field 

0 
1 
2 

x 3 
• 

• 

• 

Tmax 

0 
Poo 
PlO 

P20 

P30 
• 

• 

• 

0 

1 

Poi 
Pn 
P21 

P31 
' 

• 

• 

0 

2 
P02 

P12 

P22 

P32 
• 

• 

• 

0 

y 
3 

P03 

P13 

P23 

P33 
• 

• 

• 

Smax 

0 
0 
0 
0 
0 
0 
0 

0 0 0 0 0 

Where poo,pw,poi,pn, • • • ,Prmaxsmax ^ probabilities of each pairwise on probabilistic 

Poisson field, and rmax and smax are numbers of the row and the column where all probabilities 

are equal to zero. 

In the third step, similarly to the case of bivariate Poisson distirubtion (see section 3.2), we 

shift the control limit of our chart from min(prs) to max{prs). Since total probability in Pois­

son field is equal to 1, and in order to optimize our chart control limit, letmin(poO)Pio,Poi, • —>Pjmaxkmax) = 

0. Then, the total probability of Poisson field is calculated by: 
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1 Tmax Smax 

To acquire the optimal diagonal inflated bivariate Poisson field, the pairwises that have the 

lowest probability in Poisson probabilistic field are removed until total probability in Poisson 

field is satisfied: 

ARLtotal > ARL0 (10) 

Where ARLQ is the expected average run length or nominal average run length (ARLQ — 

•£-). After the total probability in Poisson field is satisfied given condition in equation 10, the 

optimal diagonal inflated Bivariate Poisson control limit can be obtained. 

4.3 Experimental Results 

In this section, simulations to compare performances of our proposed chart and others are 

conducted. In this experiment, we tested each control chart by 10,000 pairs of simulated data 

generated according to parameters in table 4.2. To measure the sensitivity of each chart, we 

shifted mean parameters (A, 6) by o, 2a, and 3<r. The results are given in tables 4.3, 4.4, and 

4.5. 

These tables show outstanding performances of the optimal diagonal inflated bivariate Pois­

son field chart in different mean samples and mean shifts. For in-control state, the proposed 

algorithm outperforms other charts since ARL levels in different mean samples are close to 

ARLQ. NORTA chart shows high rate of ARL than ARLQ that relates to type II error. MP-

SUM chart provides higher ARL in case of low mean and ARL shortage in case of medium 

to high mean. In figure 4.1, it is clear that our proposed chart gained the lowest loss function 

since the levels of loss function are drawn in the bottom of the graph. 

In case of detecting mean shifts, the optimal diagonal inflated bivariate Poisson field chart 

is more sensitive than the other control charts since ARL levels of our chart effectively respond 

to mean shifts by decreasing ARL level to low values. 
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Table 4.2: Simulation cases 
Case 

A 
B 
C 
D 
E 
F 
G 
H 
I 

Ai,A2 

0.4 
0.4 
0.4 
4 
4 
4 
4 
4 
4 

A3 

1.5 
1.5 
1.5 
4 
4 
4 

40 
40 
40 

P 
0.25 
0.5 

0.75 
0.25 
0.5 

0.75 
0.25 
0.5 

0.75 

e 
1.5 
1.5 
1.5 
5 
5 
5 
50 
50 
50 

Table 4.3: ARL Levels of NORTA chart for different mean shifts 

Case 
A 
B 
C 
D 
E 
F 
G 
H 
I 

No Shift 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 
10000 

Diagonal Shifts 
a 

196.07 
72.46 
31.05 
243.90 
85.47 

33 
4.24 
54.34 
32.46 

2a 
68.02 _, 
29.94 
15.31 
185.18 
63.69 
25.31 

8.6 
17.48 
12.61 

3<T 

24.15 
11.32 
6.83 
80.64 
26.45 
10.63 
41.32 
5.42 
4.44 

Ai and A2 Shifts 
a 

33.67 
11.8 
4.5 

45.87 
31.94 
18.18 
69.44 
39.84 
22.83 

2cr 
13.83 
10.1 
9.66 
17.33 
13.85 
11.82 
33.22 
22.22 
16.75 

3(7 

8.3 
6.85 
7.81 
7.17 
6.97 
7.56 
20 

17.54 
14.32 

A3 Shifts 
a 

S1A1 
47.84 
27.24 
111.11 
62.5 

27.24 
136.98 
142.85 
46.51 

2(7 

13.94 
15.89 
16.15 
30.76 
25.18 
17.15 
26.04 
50.5 

32.25 

3<T 

5.35 
7.27 
10.24 
9.57 
9.78 
10.53 
6.77 
15.82 
21.64 

All Shifts 
(7 

15.22 
12.97 
10.98 
22.83 
18.86 
13.83 
3.87 
34.96 
23.09 

2(7 
3.87 
4.3 
5.62 
3.96 
4.6 
5.78 
4.01 
7.55 
8.3 

3CT 

1.98 
2.4 

3.44 
1.78 
2.35 
3.43 
2.51 
2.55 
3.06 

Table 4.4: ARL Levels of MPSUM chart for different mean shifts 

Case 
A 
B 
C 
D 
E 
F 
G 
H 
I 

No Shift 
588.23 
476.19 
555.55 
76.33 
128.2 
83.33 
54.34 
43.29 
45.04 

Diagonal Shifts 
a 

153.84 
99 

50.5 
217.39 
111.11 
45.24 
3.89 
10.53 
11.13 

2o-
36.63 
18.45 
12.31 

99 
28.9 
12.51 
4.48 
4.07 
3.53 

3(7 

15.45 
7.47 

5 
27.47 
9.3 

4.41 
9.74 
2.47 
1.87 

Ai and A2Shifts 
a 

200 
105.26 

125 
37.73 
28.73 
29.49 
56.17 
63.29 
75.75 

2(7 

81.3 
60.97 
112.35 
11.75 
9.77 
11.96 
45.66 
59.17 
81.96 

3(7 

30.67 
26.38 
60.6 
4.74 
4.3 
6.53 

29.94 
42.01 
73.52 

A3 Shifts 
(7 

50 
41.15 
85.47 
31.74 
24.44 
25.9 

23.69 
42.91 
72.99 

2a 
11.12 
11.18 
21.36 
9.68 
8.27 
11.37 
6.32 
12.53 
26.17 

3(7 

4.54 
5.39 
10.82 
4.24 
4.23 
6.77 
2.6 

4.67 
10.83 

All Shifts 
(7 

20.74 
18.34 
24.5 
11.96 
9.24 
11.06 
3.3 

9.56 
11.64 

2(7 

4.21 
4.27 
5.77 
2.53 
2.72 
3.65 
1.99 
2.56 
2.95 

3(7 

1.98 
2.14 
2.93 
1.45 
1.76 
2.23 
1.47 
1.33 
1.45 

Table 4.5: ARL Levels of the optimal diagonal inflated bivariate Poisson chart for different 
mean shifts 

Case 
A 
B 
C 
D 
E 
F 
G 
H 
I 

No Shift 
263.15 

250 
217.39 

400 
400 

285.71 
434.78 

400 
400 

Diagonal Shifts 
a 

172.41 
175.43 
112.35 
263.15 
294.11 
188.67 
4.26 
312.5 
200 

2(7 

69.93 
37.45 
24.27 
204.08 
92.59 
71.94 
8.68 

48.07 
39.06 

3(7 

24.09 
12.37 
8.23 
61.34 
21.5 
14.81 
44.44 
10.03 
8.1 

Ai and A2Shifts 
a 

38.46 
27.7 
16.58 
48.54 
68.02 
60.6 

103.09 
128.2 
128.2 

2(7 

13.64 
16.83 
23.2 
13.6 
17 

22.27 
45.45 
43.85 
63.69 

3(7 

7.73 
9.25 
15.17 
5.52 
6.84 
9.56 
22.02 
26.04 
34.36 

A3 Shifts 
(7 

39.06 
54.34 
70.92 
81.3 
78.12 
88.49 
71.94 
86.95 

86.2069 

2(7 n 

11.93 
16.05 
21.73 
16.83 
19.26 
26.04 
12.46 
14.94 
19.8 

3(7 

5.04 
7.28 
11.52 
6.09 
7.66 
12.16 
4.31 
5.58 
9.09 

All Shifts 
(7 

12.78 
16.18 
21.55 
15.62 
19.92 
25.51 
3.67 
31.84 
41.66 

2(7 

3.463 
4.53 
6.6 
3 

4.05 
6.28 
3.04 
5.49 
8.31 

3(7 

1.87 
2.43 
3.71 
1.58 
2.15 
3.46 
1.97 
2.26 
3.2 
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Figure 4.1: Loss function of each charts 

4.4 Conclusion 

In this chapter, we propose a new optimal diagonal inflated bivariate chart. The basic concept 

of this chart is based on optimization of diagonal inflated bivariate Poisson confidence interval, 

and projection of data in Poisson field. The numerical results show good performance. Clearly, 

our optimal diagonal inflated bivariate chart outperforms other perviously proposed charts. 
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Chapter 5 

Conclusions 

This thesis has presented several defect charts to monitor both univariate and bivariate discrete 

data. In addition, we also proposed a new bivariate defects chart. For univariate case, we 

compared 11 defect charts that have been proposed for statistical process control. To compare 

the performances of each chart, we tested each chart and considered some key factors such as 

low mean responsiveness, loss function, and mean shifting sensitivity. Moreover, to simplify 

the comparison of control chart performances, we categorized all control charts into three 

groups, transforming data, standardizing data, and optimizing control limits. 

Transforming data approach shows effective performance to construct defect charts for 

very low mean samples. Lower control limit of charts by Poisson transformation of Bartlett, 

Anscomebe, and Freeman and Tukey are shown to be precise for indicating out-of-control 

signal at low mean samples. Thus, this approach is suitable to indicate process improvement. 

However, this approach is ineffective for signaling out-control alarm since upper control limit 

of transformed charts always draws high loss function. Furthermore, after transforming data, 

transformed chart can not provide original value of each data point. 

Standardizing data approach is more practical than transforming data approach. Although 

the charts in this group are not effective to deal with small mean samples, they provide mean­

ingful illustration in -3 and 3 control limits. Especially, Q-chart has the advantage of illustrat­

ing different types of defects simultaneously within single chart, and also provides improved 

results compared to classic C-chart. 

Optimizing control limits approach is the best approach to acquire a defect chart. By this 

approach, there is no requirement of transforming or standardizing data, therefore, plotted data 
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Chapter 5. Conclusions 

still maintain their original meaning in control chart. From experimental results, Optimal C-

chart shows outstanding results. By lowest loss gain and highest mean shifting sensitivity, 

we concluded that this chart is the best defect chart to replace traditional C-chart in attribute 

monitoring. However, we do not claim that optimal C-chart is the only defect chart that should 

be applied in defect monitoring. In practice, selection of charts also depends on suitability of 

a particular process. Factors such as samples size, mean, UCL, LCL, undetected defect cost, 

and inspection cost may also influence defect chart selection. 

We have also proposed an optimal bivariate defects chart for two correlated characteristics. 

The basic concept is defining the optimal limit of bivariate Poisson distribution and illustrating 

data in Poisson field. The proposed control chart shows excellent performances in both prac­

tical dataset and various simulations. Our experimental results show improved rate of average 

run length and robust detection of means shifts compared with other charts. The proposed chart 

is an effectively applicable chart, especially, in high quality processes. 

Furthermore, as a major issue of bivariate Poisson count data is over-dispersion of count 

variables, designing a defects chart for observing over/under-dispersed Poisson samples be­

comes vital. We have also extended our optimal bivariate Poisson field chart into an optimal 

diagonal inflated bivariate Poisson field chart to deal with this issue. The core idea is based 

on both confidence interval optimization and Poisson field projection. Besides, the diagonal 

inflated bivariate Poisson model is used for overcoming over/under-dispersion of data. By 

various simulations, our diagonal inflated bivariate Poisson field chart still outperforms other 

existed charts in terms of loss function and mean shifting sensitivity. 

Future work can be devoted to propose new multivariate defects charts. Multivariate Pois­

son model is the model that can be used when the monitoring of many characteristics is nec­

essary [43]. The advantage of using multivariate Poisson model is that correlation between 

variables are taken into account. Moreover, there is no need of transformation which allows us 

to keep meaningful information. Furthermore, bivariate and multivariate Poisson generalized 

models are flexible to handle over-dispersed Poisson variable. As shown in [30] and [31], mon­

itoring the deviance residuals from generalized linear model can outperform C-chart. Thus, 

monitoring the deviance residual from bivariate generalized Poisson distribution [14] can be 

interesting investigation. 
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