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ABSTRACT 

Dynamic Scheduling of Multiple Coupled Receding Horizon Controllers 

Ali Azimi 

This thesis develops a new algorithm for the dynamic scheduling of multiple receding 

horizon control (RHC) systems running on a single processor. The subsystems are 

coupled and the formulation is adapted for decentralized RHC. The proposed 

formulation accounts for bounded model uncertainty, sensor noise, and computational 

delay. A cost function appropriate for control of multiple vehicle systems is proposed 

and an upper bound on the cost as a function of the execution horizon is developed. The 

upper bound is optimized to obtain an optimal schedule subject to the computational 

constraints, which is adapted from Rate Monotonic Scheduling. To consider the 

computation delay effect, a retarded actuation method based on prediction of the state 

variables at the next sampling time is employed. The presented scheduling approach first 

developed for uncoupled systems and extended to the coupled systems, later. Its 

application is illustrated through control of a three radio controlled hovercraft system and 

formation control of a four radio controlled hovercraft system. 
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Nomenclature 

t \* optimal quantity 

( \ quantity related to the ith subsystem 

A; the neighbouring set of subsystem i 

b/,,i the upper bound on the norm of h( (x(. (t)j - h(. (x(. (f)) 

CLF control Lyapunov function 

c. execution time of the / task 

ch, and ch 2 coefficients of viscous friction in the XB and YB directions, respectively 

c,, coefficient of viscous friction in rotational direction 

A,3 

DRHC decentralized receding horizon control 

d. deadline of the i task 
dt . the sampling period of subsystem i 

EDF earliest deadline first scheduling algorithm 

Fr and F, forces produced by the propellers of the hovercraft 

f vector of governing differential equations of the system 

Gij weighting matrix 

g. vector indicating the uncertainties and unmodeled dynamics of the z'th 

subsystem 

g.. a scalar function defining the interaction between two subsystems based 

on their state variables x, and x, 

IX 



H scalar Hamiltonian function 

h a vector function representing the coupling in the dynamic equation of 

the z'th subsystem 

IC initial condition 

J cost index 

Jh moment of inertia 

/ actual overall cost of the system appropriate for scheduling 
sc 

j estimated overall cost of the system appropriate for scheduling 

LL least laxity scheduling algorithm 

LQR linear quadratic regulator 

Lx,. Lipschitz constant of f, with respect to the nominal state vector x. of the 

i subsystem 

I}.. Lipschitz constant of gtj 

I distance between two propellers of hovercraft 

/. laxity or slack time of the z'th task 

MPC model predictive control 

mh mass of the hovercraft 

Ni the number of neighbours of subsystem i 

P. Lipschitz constant of the cost index of the /th subsystem with respect to 

its state variables 

Pi period of the ith task 

Q weighting matrix 

X 



<1 nonlinear scalar function representing the cost index 

q . part of the RHC cost index of the ith subsystem consisting solely the state 

variables 

qu part of the RHC cost index of the ith subsystem consisting solely the 

inputs 

R weighting matrix 

RHC receding horizon control 

RMS rate monotonic scheduling algorithm 

r the yaw rate of the hovercraft 

SQP sequential quadratic programming 

TPBVP two point boundary value problem 

T prediction horizon 

Tsc dynamic scheduler period 

t0 initial time 

tSii sampling time of the /th subsystem 

t0,i optimization start time of the z'th subsystem 

U set of admissible input 

u input vector 

u*T(r,t) the predicted optimal input of the system at time r defined by the RHC 

controller, based on the sampled data at time t, and the prediction horizon 

T 

u component of the velocity vector in the XB direction 

ur and u, control inputs of the hovercraft 
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V{.,.) scalar representing the terminal cost of the optimal control problem 

Vh velocity vector of the hovercraft 

v component of the velocity vector in the YB direction 

x state vector 

x (r; t) the predicted state of the system at time r by the RHC controller, based 

on the sampled data at time t, and the prediction horizon T 

x
r. desired state of the z'th subsystem with respect to its neighbour j in the 

formation example 

x. actual state vector of the ith subsystem 

x the actual states of the neighbours of the /' subsystem 

x. the most available predicted states of all neighbours of z'th subsystem 

x , y position of the hovercraft in its global coordinate frame 

(X B, YB) body attached coordinate system 

(XG , YG) global coordinate system 

z flat output vector 

ai the weighting parameter for the ith subsystem 

ar and al constants relating the control inputs to the forces produced by the 

hovercraft propellers 

A . the upper bound for computation time of the i subsystem 

A,. c„ the upper bound on the computation time of the proposed scheduling 

optimization problem 

CSC 



5. execution horizon of the im subsystem 

Sp previous execution horizon of the z'th subsystem 

S b. the upper bound for the execution horizon of the /* subsystem 

M CPU utilization factor 

X, Lagrange multipliers vector 

W the yaw angle of the hovercraft 

X l l l 



1. Introduction 

Receding horizon control (RHC) is a repeated online solution of a finite horizon open-

loop optimal control problem. In this scheme, which is also known as Model Predictive 

Control (MPC), the currently available state variables are used as initial conditions to 

solve an optimal control problem. The resulting open-loop control trajectory is applied 

for a fraction of the horizon length, called the execution horizon. Since this procedure is 

done repeatedly, the implementation of RHC is computationally expensive. This scheme 

has been of interest due to its ability to handle constraints and control saturations. 

The application of RHC was historically restricted to relatively slow dynamic systems 

such as process control problems. However, availability of faster computers, as well as 

more efficient numerical algorithms for solving optimization problems, enables RHC 

scheme to be applicable in systems with faster dynamics, such as aerospace systems and 

many other areas, while RHC presented significant improvement compared to the 

conventional control methods. 

Application of RHC to control problems with multiple subsystems is considered in 

this thesis which is addressed by applying RHC to the individual subsystems. The 

subsystems studied in this thesis are coupled in their dynamic equations and in their cost 

functions. This approach, results in multiple RHC processes that must be scheduled in an 

appropriate manner to achieve optimal performance in the presence of computing 

resource limitations. In real-time implementation of control applications, usually, each 

control task is considered as a periodic function [3]. Therefore, when RHC is used as the 
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control scheme, this period should be equal to the execution horizon. In other way, 

closed-loop implementation of a single RHC system can be regarded as a periodic 

function with the period equal to the execution horizon of the system. Since, an 

optimization problem should be calculated in every time span equal to the execution 

horizon, smaller execution horizon requires higher computational capacity; however, it 

improves the performance of the system by providing a faster feedback. Therefore, 

execution horizon should be selected carefully to obtain a suitable trade-off between 

computational expense and controller performance. 

In real-time implementation of a single RHC system, the execution horizon, which is 

equal to the sampling period, is selected based on the worst-case execution (computation) 

time. However, the computation time is highly varying [5], so considering worst-case 

computation time, leads to a conservative design, which requires high computational 

capacity. In addition, when multiple RHC subsystems are processed on the limited and 

shared computational resources (i.e., a single processor or a cluster of finite number of 

processors), distributing the computational resources between them, which is referred to 

as scheduling in this thesis, is not a trivial task and needs careful considerations. In this 

approach, a dynamic scheduling procedure is developed which dynamically allocates the 

computational resources to different subsystems in such a way that the subsystems with 

more computational need, receive more computational resources. To do that, the 

nonlinear control theory is employed. 
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In recent years, some attempts have been performed to use control theories in 

scheduling of computational systems [17]. However, systematic methods for scheduling 

multiple RHC systems are rarely discussed in the literature. A dynamic scheduling 

approach for multiple discrete-time decoupled linear RHC systems has been previously 

developed [5]. This method assigns the priorities to different subsystems based on the 

value of a computational delay dependent cost index. Premature termination of the 

optimization process is employed in that approach. However, in [5], uncertainties in the 

subsystems are not explicitly accounted for. The authors in [6] considered the problem of 

optimal on-line assignment of sampling periods for a set of linear-quadratic (LQ) 

controllers. They used feedback from the plant states to distribute the computing 

resources optimally among the tasks. 

In this thesis, the problem of controlling multiple uncertain nonlinear subsystems by 

means of concurrent RHC schemes on a single processor is considered. A new 

scheduling approach is proposed by combining the results from continuous time 

nonlinear systems theory and the concept of Rate Monotonic Scheduling (RMS) [3]. A 

dynamic scheduling approach is presented which is applicable to subsystems with 

coupling. Moreover, a cost index is developed based on the direct estimation of the 

overall system performance. The computation delay is also considered in this thesis by 

using the retarded actuation method with prediction [10]. Assuming the prediction 

horizon is a known constant and using a single computing resource, the new technique 

determines the execution horizons of all RHC systems. The execution horizon 

determination of each subsystem while optimizing the performance is cast into a 
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constrained optimization problem. The robust performance is formulated in the objective 

function and the schedulability condition is guaranteed using a constraint. Online 

solution of the foresaid optimization problem, using the updated optimization parameters, 

results in dynamic determination of the execution horizons. 

As stated earlier, the subsystems studied in this thesis are coupled in their dynamic 

equations and in their cost functions. However, in order to make the thesis clear and 

legible, the proposed dynamic scheduling method is first explained to subsystems with no 

coupling. The approach is further extended to subsystems with coupling in their cost 

functions and dynamic equations. 

The scope of this thesis is limited to scheduling of RHC control problems using a 

single processor. However, the RHC formulation used in this approach covers a wide 

range of dynamically coupled subsystems with coupled cost function. In practice, there 

are many significant applications for this class of problems. This includes decentralized 

control problems with applications to process control [31], multi-vehicle systems [14], 

and different actuators in mechatronic systems. In this formulation, instead of using an 

enormous centralized system, a decentralized model is considered that has computational 

advantages over centralized approach. A single processor is assumed in this work to 

solve the multiple RHC problems. 

In practice, this architecture has a number of advantages over a distributed computing 

approach in some applications. This includes less complex hardware and software 

implementation without the need for fault tolerant network communication. Furthermore, 



processors continue to become faster with increasing capability to compute multiple RHC 

problems without the need for distributed computation. It should be noted, however, that 

there are also many significant RHC applications with distributed computing, in which 

each RHC system is operated on a single computer and the computers are connected in a 

network. The key point is that if the computers have enough computational capacity to 

handle multiple RHC subsystems on each of them, the presented approach can be used 

rather than the distributed approach. In addition, there are many other RHC applications 

with parallel computing that will be addressed in future work. This thesis can be 

regarded as the first systematic approach for dynamic scheduling and execution horizon 

selection of multiple RHC subsystems subject to computing resource limitations and 

model uncertainties. 

1.1. Literature Review 

Since the introduction of MPC or RHC in the process control, in the early eighties 

[49], [50], and [51], it has attracted attention of many researchers, due to its ability on 

constraint handling for both inputs and states, and has been successfully applied to 

industrial processes (see [52] and [53] for example). However, its drastic online 

computation expense prevented it, at beginning, to be applied on systems with fast 

dynamical behaviour. 

The RHC scheme has been used in different areas. For example in [33], nonlinear 

MPC technique is used to control a variable configuration CO2 removal system. In [34], 

the current distribution in a hybrid fuel cell power system is managed using linear MPC 
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approach. It is done by formulating the distribution of current demand between the fuel 

cell and the bank of ultra-capacitors in an MPC framework. MPC approach is used in 

[35] to control the front steering system of an autonomous vehicle. Both linear and 

nonlinear MPC methods were implemented while the first method was applied based on 

the successive online linearization of the vehicle model. A nonlinear RHC scheme is 

used in [36] to control a nonholonomic wheeled mobile robot on a specified trajectory. 

In [36] they developed a terminal-state region and its corresponding local controller to 

guarantee the stability of the controlled system. Recently, in [40] the concept of RHC is 

used to conduct real-time planning for airport capacity management. They used RHC to 

provide a generic and flexible framework to develop real-time allocation algorithms for 

airport capacity in a dynamic and uncertain environment. 

The first MPC scheme was derived from the optimal control theory in which the cost 

function optimization for generating the control inputs is performed over an infinite 

horizon. By using the infinite optimization horizon, the stability is guaranteed easily; 

however, there is no analytical solution for most of cases except for the Linear-quadratic 

regulator (LQR), and usually it leads to solving two point boundary value problems 

(TPBVP). On the other hand, solving an optimization problem over an infinite time is 

computationally impossible and a reduced horizon scheme is developed instead. 

However, this reduced form of optimal control does not guarantee closed-loop stability 

readily, and several attempts have been performed to guarantee it. It is shown in [47] that 

by imposing the strong condition of final equality constraint, the stability of a class of 

nonlinear systems can be achieved. However, it required high computational cost. That 
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condition was relaxed for example in [2] and thereby reduced the computational cost. 

The stability was also guaranteed in [9] by using Control Lyapunov Function (CLF). In 

addition, the robustness of RHC-based closed loop systems was addressed in [48], where 

a dual-mode RHC is considered. The reader is also referred to [1] as an extensive survey 

on RHC. 

As the result of the attempts for reducing the online computation time and the new 

advances in the computational capacities, the RHC scheme have been applied to systems 

with fast dynamics. By using the properties of flat outputs in [21], a direct method was 

proposed for solving optimal control problems. If the states and control inputs can be 

calculated by using a set of system outputs and/or derivative of the outputs, then the 

system can be called a flat system, and the set of outputs as flat outputs [22]. In the rest 

of the thesis, the flat output method is used to solve the receding horizon control 

problems. This method was further employed in [10] and [11], and illustrated successful 

application of RHC on a vector thrust flight experimental setup, which is an example of 

fast dynamical systems. Later on, this method was applied in simulation to the fast and 

nonlinear dynamics of vortex-coupled delta wing aircraft in [54], where simulation 

studies presented a reasonable online computation time that allows employing the RHC 

method to that fast dynamical system. 

Although the RHC scheme has advantages due to its ability to handle constraints for 

both linear and nonlinear systems, its computational cost prevents its direct application to 

large scale systems. An alternative solution for such systems is Decentralized Receding 
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Horizon Control (DRHC) (see [14] and [15] for example). Multiple vehicles in formation 

[38], and [39], controlling a network of cameras [55], production units in a power plant 

[30], distributed paper machine control [56] and [57], and application of multiple 

mechanical actuators for deforming surfaces are just a few examples of decentralized or 

distributed applications. 

In most of the DRHC studies for multi-vehicle systems, dynamically decoupled 

subsystems are assumed with coupled cost functions and constraints (see [14], [16], and 

[25] for example). However, there are also some studies by assuming dynamically 

coupled subsystems for the multi-vehicle case [29]. Further, in the process control 

literature, both dynamically coupled and decoupled subsystems are studied. For example 

in [27] and [31], dynamically coupled subsystems are assumed while in [58], the 

subsystems are assumed to be decoupled. In this thesis, the dynamic scheduling is 

developed for decoupled subsystems at beginning. Later on, the approach is extended to 

subsystem with coupling in their both cost functions and dynamic equations. 

In DRHC, the states (and inputs) of each subsystem should be communicated with the 

other subsystems that have coupled objectives. In [14], a DRHC scheme is proposed to 

control a large scale multi-vehicle system, assuming that the vehicle dynamics are 

decoupled. This study, which is done in discrete-time framework, is performed by 

decomposing a centralized RHC architecture into some RHC subsystems with smaller 

size, such that the dynamic relations of each subsystem is independent from the others. 

In this approach, all of the subsystems are assumed to have similar sampling intervals and 

8 



can communicate at the beginning of each sample with a negligible delay. Furthermore, 

each subsystem calculates the inputs associated with not only itself, but also its 

neighbours. It is shown in [14] that if the mismatch between the predicted and actual 

trajectories of all neighbours is less that a certain value, then the stability of the 

decentralized system can be guaranteed. 

In addition, while some studies assumed that each subsystem should calculate the 

neighbours' trajectories as well as its own (i.e. [14] and [25]), some other researchers 

have proposed communication of trajectories between neighbours [37]. In this method, 

each subsystem uses the most recent trajectories sent by its neighbours and calculates 

only its trajectory, thus requires less computation. Therefore, this method is used in this 

thesis. 

Another issue in single and distributed RHC systems is the delay. In real-time 

implementation of an RHC system with fast dynamics, the computation delay caused 

from optimization, should be accounted for. The authors in [19] and [20] have proposed 

some schemes to guarantee stability of the closed-loop system by compensation of the 

delays. Furthermore, the application of RHC to Caltech Ducted Fan experimental setup 

was studied in [11] and [10]. They used retarded actuation method, with two approaches; 

namely with state prediction, and without state prediction. Their experimental study 

presented the effectiveness of the method with both approaches. The retarded actuation 

method is used in this thesis to overcome the computational delay. 
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In addition to the computation delays for a single RHC, the structure of the distributed 

RHC system adds more delays to the problem, since these systems require time to solve 

the optimization problems and to exchange information from one computing node to 

another. In [59] and [60], the effect of communication between subsystems and the 

performance of the controller is discussed. In those recent studies, the communication 

bandwidth is allocated for different subsystems in order to reduce the mismatch between 

the estimated and the actual trajectory of the subsystems. 

1.2. Thesis Objectives and Contributions 

In this thesis, a new dynamic scheduling algorithm is developed for multiple RHC 

subsystems running on a single processor. The subsystems are supposed to be coupled in 

their dynamic equations and their cost index and the formulation is adapted for 

decentralized RHC. The proposed formulation accounts for bounded model uncertainty, 

sensor noise, and computational delay. A cost function appropriate for control of 

multiple vehicle systems is proposed and an upper bound on the cost as a function of the 

execution horizon is developed. The upper bound is optimized to obtain an optimal set of 

execution horizons subject to the computational constraints, considering that the 

execution horizon is equal to the period of the real-time task assigns to that subsystem. It 

is noteworthy that the presented algorithm is the first systematic approach in dynamic 

scheduling of multiple RHC systems using limited computational resources, which is a 

single processor here. Based on the presented thesis, two papers have published in the 

American Control Conference, [32] and [44], and another paper is presented in the 
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Conference on Decision and Control [43]. Further, a journal paper is prepared and 

submitted to IEEE Transactions on Control Systems Technology [45]. 

The remaining parts of this thesis are organized as follows. Chapter 2 reviews some 

background materials regarding the optimal control, the receding horizon control, and 

scheduling and resource allocation. In chapter 3 the real-time scheduling of multiple 

decoupled RHC systems is presented. The approach is further extended to subsystems 

with coupling in chapter 4. The application to multiple radio controlled hovercrafts is 

presented in chapter 5. Conclusions and future work are discussed in chapter 6. 
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2. Background Material 

The basic theoretical background required to understand the proposed dynamic 

scheduling approach is presented in this chapter. Firstly, the concept of optimal control is 

presents briefly, followed by explanation of receding horizon control. Finally, some 

necessary information regarding the scheduling and resource allocation is explained. 

2.1. Optimal Control 

A brief review of classical optimal control is presented in the following. This review 

is for continuous time systems, with no terminal constraints and with a fixed terminal 

time, as presented in detail in [61]. 

Assume a dynamical system presented by the following nonlinear differential 

equation: 

x(t) = f(x(t),u(t),t) (1) 

where x(/) e 9T is the state variable vector of the system and u(?) e 9T is the vector of 

input variables for \/t>t0, and f :9T x9?5 x9? —»9T with the given initial condition 

x(?0). An optimal control problem is to find a control input u* (?), so that minimizes the 

following scalar cost function of the system 

J= ^g(x(T),u{T),r)dT + v(x(tf),tf) (2) 

where q is the cost index of the system that needs to be minimized and the performance 

of the system is related to it. It should be mentioned that usually q is selected as a 
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quadratic function. In addition, V(.,.) is called terminal cost, and is added to insure the 

stability of the system [42]. Several researchers have proposed upper bounds on the 

truncated cost, the integral of the cost from tf to infinity, as the terminal cost. The reader 

in referred to [1] for a survey on this matter. 

A standard method to solve this optimization problem is to use calculus of variations, 

which is discussed in [61]. The results are presented here and details are omitted for the 

reader's convenience. 

In order to solve this problem, (2) can be combined with (1) by using multiplier vector 

l(t)eW: 

J = ['(q(x(T),u(T),T) + lT (T)(f{x(r)Mt),T)-x(T)))dT + v(x(tf),tf) (3) 

The scalar Hamiltonian is defined as follows: 

H(x(t),u(t),l(t),t) = q(x(t),u(t),t) + XTf(x(t),u(t),t) (4) 

The following differential equations should be solved in order to find the optimal input 

vector: 

1 = 

x = f(x,u,;) 

dx. 
X-

ydxj 

(5) 

where the input vector is determined by: 

du vdxy 

T 'dq^T 

1 + 
Vdxy 

= 0 (6) 
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The boundary conditions for (5) are split and some are given for t = tQ and some for 

t = tf: 

x(f0) = x0 

Therefore, a two-point boundary-value problem (TPBVP) should be solved. There 

have been many articles about solving this kind of problems and the interested readers are 

referred to [61] and [62] for detailed information. 

2.2. Receding Horizon Control 

Receding horizon control or model predictive control is a repeated online solution of a 

finite horizon open-loop optimal control problem [1]. In this scheme, the currently 

available state variables, which are measured at time t as presented in Fig. 1, are used as 

initial conditions to solve an optimal control problem over the period t to t+T, in which T 

is called the prediction horizon. The resulting open-loop control trajectory is applied for 

a fraction of the horizon length, called the execution horizon (S). Then this procedure is 

repeated by measuring new states at t + 8. 

Consider the system described by the equation presented in (1). The input vector 

u(0 e5R' satisfies the constraints u ( 0 e U (\/t>t0), where U is the allowable set of 

inputs. The finite horizon cost is defined as follows [7], [42]: 

J(x(0,u(.),r)= J"'q(x(r,t),u(r)) dr + V(x(t + T;t)) (8) 
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where x(r,t) indicates the state vector of the system at time r based on the sampled data 

at time t. The optimal cost is given by solving the following optimization problem: 

Problem 1: 

Find 

J*(x(0,r) = miny(x(0,u(.),r) (9) 

v u(.) ' 

Subject to: 

x(r) = f (r,x(r),u(r)) 
v >, (10) 

u(r)e£/ , V r e [ ^ + r ] 

where /(.,.,.) is defined in (8). The optimized trajectory resulting from (9) is defined as 

y\T(T;t),uT(r,t)), re[t,t+T]. In the closed loop RHC, the calculated input u*T(r;t) is 

applied to the actual system, while re[t,t+8i] and 8 <T. 

According to the presented explanations about the RHC scheme, its application can be 

explained in the following algorithm when no delay is assumed in sampling and 

calculations: 

Algorithm 1: 

Step 0- Set k = 0 

Step 1- At time t = t0+kS, sampling of the state variables is done 

Step 2- Based on the sampled states, the controller solves the open-loop optimal 

control problem and finds the optimal input vector from t to t + T 

Step 3- The calculated input vector is applied to the system from t to t + 8 

Step 4- Increment k by one and go to Step 1. 

15 



The application of RHC was historically restricted to relatively slow dynamic systems 

such as process control problems. However, availability of faster computers as well as 

more efficient numerical algorithms for solving optimization problems enables RHC 

scheme to be applicable in systems with faster dynamics, such as aerospace systems as 

well as many other areas, while RHC presented significant improvement compared to the 

conventional control methods, in terms of dealing with constraints on both states and 

inputs. However, for such systems the assumption of having no delay in computation 

cannot be applied. In this thesis, the computation delay is considered and explained in 

section 3.1. 

J2 

> 

2 
v5 

Actual state 

Computed state 

t0+d t0+25 t0+3d 

Fig. 1. Schematic illustration of RHC scheme 

Time 

The optimization problem described above can be solved numerically online using a 

number of techniques [21]. In the following, the method used in this thesis is explained 

briefly. 
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2.2.1. Implementation of RHC on a digital computer 

A traditional approach for solving the optimization problem presented in (9) and (10), 

is to parameterize the inputs and use those parameters as the optimization variables. 

However, to calculate the cost index, the state variables have to be recovered from the 

inputs and initial conditions. This should be done by simulating the system based on its 

dynamic equation (1). In other words, in every cost index calculation, the system should 

be simulated, which causes a high computational cost. However, an alternative approach 

can be considered by utilizing the flat outputs as presented in [21], and briefly explained 

later in this subsection. 

The flat output property is employed in this thesis to solve the RHC problem. This is 

used to decrease the order of the optimization problem, and thus speed up the 

computation by selecting the flat outputs as optimization variables. Therefore, the first 

step is to check the system for flatness and select the flat outputs. However, if the system 

is not flat, the traditional method can be employed by using the inputs instead, which 

results in more computational time for solving the problem. 

After selecting the variables based on the aforementioned concept, which means 

choosing flat outputs or the inputs in the traditional way, they need to be parameterized 

such that they are completely defined by those parameters. For example, polynomials 

can be used to parameterize the variables over time, and the optimization parameters 

would be polynomial coefficients in this case. However, cubic splines [63] are employed 

here since they have better performance than polynomials. In addition, cubic splines are 

17 



preferred over B-splines in this thesis, due to their simplicity. Each spline curve is 

parameterized using its control points for the time span T, which is the prediction horizon 

as mentioned earlier. As explained in detail in [63], the control points are placed with 

equal distances in the time axis while their values can change and form the optimization 

variables. In addition, the first and second derivatives of the splines at their boundaries 

form additional optimization variables, if they are not defined by their boundary 

conditions. Afterwards, the resulted optimization problem should be solved by the 

numerical optimization solvers. In this thesis the SNOPT optimization package [46], 

which is a sequential quadratic programming (SQP) method, is used. It should be 

mentioned that, an object oriented library is developed in C++ for the implementation of 

RHC and is explained in [13]. 

Flat outputs 

The flat outputs are used to speed up the optimization problem by reducing its 

dimension. A system is differentially flat if a flat output vector exists such that the state 

and inputs can be recovered from it and/or its derivatives. In other words, it is desirable 

to find a vector z = z,,...,z of the following form 

z(t) = A(x(t),u(t)) (11) 

where x e 9T is the state vector, u e 5RJ is the input vector, such that 

( x ( 0 , u ( 0 ) = 5(Z,z (1),z«,...,zW) (12) 

and z^ denotes the rth time derivative of z. Then, the dynamic system is called a 

differentially flat, or simply flat, system and z is called the flat output. Therefore, in a flat 
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system, the states and inputs of the system can be recovered by finite number of flat 

outputs and their derivatives [21]. 

2.3. Real-time Scheduling of Multiple Periodic Tasks 

The purpose of scheduling a set of tasks in a system with limited amount of resources 

is to make sure that the tasks meet their deadline; and it is studied in the computer 

literature as a resource allocation problem. Some basic terms are presented at first in the 

following based on [3], [64], and [65]. Using those terms, some important and 

fundamental algorithms in scheduling of multiple tasks are explained, later. 

Periodic task: Consider a task i that should be executed every/?, seconds. This task is 

defined as a periodic task with a period of p, (see Fig. 2). It is noteworthy that using 

periodic tasks is a common approach in real-time application of control systems. 

Execution time (c,.): It is the time that computation of a task takes (see Fig. 2). It 

should be mentioned that the execution time is different from the execution horizon. As 

stated earlier, execution horizon is defined for an RHC system and can be considered as 

the period of task in our application. Execution time, also referred to as computation 

time, is denoted by c, in this thesis. 

Deadline (d.): The execution of task / should be finished before a certain pre

determined time. This pre-determined time is called the deadline of task i (see Fig. 2). 



period (p.) 

Time 
deadline (dt) 

Fig. 2. Schematic diagram for a periodic task 

Preemptive scheduling: In preemptive scheduling, the currently executing task may be 

preempted, i.e., interrupted, if a more urgent task, i.e., a task with higher priority, needs 

to be executed. 

CPU utilization factor (/u): For a set of m tasks, it is defined as: 

^ ci 

UP, 
(13) 

Schedulable tasks: A set of tasks are called schedulable under a certain scheduling 

policy, if every task finishes its execution before its deadline, and no deadline is missed. 

Laxity or slack time (/,.): It is the amount of time left after a task if the task was started 

now. In other words, it is the time that a task has before it must be executed or it will 

miss its deadline. The laxity can be presented as follows: 

/ ,=4-c, (14) 

20 



Different scheduling algorithms have been proposed in the literature [65]. Among 

them three fundamental approaches for periodic tasks will be discussed in the following. 

Assume a system with a set of m tasks, with the following five restrictions, which are 

common assumptions for a real-time system, needs to be scheduled using any of the 

foresaid scheduling algorithms [3]: 

1. The requests for all tasks for which hard deadline exists, are periodic 

2. Tasks are independent, in the sense that, there exists no precedence constraints 

or mutual exclusion constraints between any pair of tasks 

3. The deadline of every task is coincident to the next release time of it 

4. The required maximum computation time of each task is known and is 

constant 

5. The time required for context switching can be ignored 

In the following, these standard scheduling algorithms are explained. 

Earliest Deadline First (EDF) Algorithm 

Assume a preemptive system with dynamic priorities and the aforementioned same 

five restrictions. The scheduling policy is to execute the task with the nearest deadline. 

This method is optimal for uniprocessor systems; in sense that if the system is not 

schedulable using this method, it can not be schedulable using any other method. 

Further, the processor utilization can reach up to 100 percent. However, when the system 

is overloaded, the set of processes that will miss deadlines is largely unpredictable. This 
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is a considerable disadvantage to a real time systems designer. The algorithm is also 

difficult to implement in hardware and there is a tricky issue of representing deadlines in 

different ranges. Therefore EDF is not commonly found in industrial real-time computer 

systems. 

Least-Laxity (LL) Algorithm 

In single processor systems, the least laxity algorithm is another optimal algorithm 

with the same assumptions as of EDF. Scheduling policy is to execute the task with the 

shortest laxity. Like EDF this algorithm can be used for processor utilization up to 100 

percent; however, similar problems explained for EDF exist for this algorithm in 

implementation. 

Rate Monotonic Scheduling Algorithm 

Assume a preemptive system with static priorities and the same 5 restrictions. The 

scheduling policy is to assign the highest priority to the task with smaller period and the 

lowest priority to the task with biggest period. Using the foresaid policy, the set of m 

tasks are schedulable if the following inequality is valid [18]: 

m c — 
// = y - ^ < m ( 2 m - l ) (15) 

M Pi 

Since the CPU utilization factor is less than one, the processor is not fully utilized if 

this method is used. However, since the priorities are fixed, the facilities and hardware 

required to apply this method is simpler compared to the dynamic priority methods, and 

is mainly used in the industrial systems. The RMS is optimal meaning that if any static 



priority scheduling algorithm can meet all the deadlines, then the RMS algorithm can too 

[18], [3]. 

The rate monotonic method will be employed in this thesis for static priority 

assignment in scheduling a set of tasks. This approach is selected, among numerous 

other methods, due to its optimality compare to other static priority scheduling methods. 

It is also preferred over dynamic priority scheduling algorithms, because it needs simpler 

facilities to be applied in real-time. 
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3. Dynamic Scheduling of Multiple Uncoupled RHC Systems 

Assume the problem of controlling n uncertain nonlinear systems using the RHC 

scheme on a single processor, as presented schematically in Fig. 3. The subsystems 

studied in this thesis are considered to be coupled. They have a coupled cost function 

and a coupled dynamic. However, as stated in the Introduction section, first the 

subsystems with no coupling are studied and in this chapter. The approach is further 

extended to the coupled subsystems in chapter 4. The term uncoupled RHC systems 

refers to multiple subsystems controlled by RHC method while there is no coupling 

among them and they are controlled independently from each other. 

Single processor computer 

RHC1 RHC 2 ... RHC« 

i 5, S2 <5„ i 
i __ 

Defined by dynamic scheduler 

Fig. 3. Schematic illustration of the dynamic scheduling problem 

In the following, real-time implementation of RHC systems with uncertainty is 

discussed, followed by the explanation of the dynamic scheduling approach developed in 

this thesis. It is worthwhile to mention that the foresaid discussion on the real-time 

implementation of RHC is important since it provides necessary tools for expressing the 

real-time dynamic scheduling approach. 
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3.1. Real-Time Implementation of RHC Systems with Uncertainty 

Consider the following nominal equations: 

x,(0 = f ,(M,(0,u,(0), i= l , . . . ,* (16) 

which serve as the models for the actual systems described by: 

i . (0 = f,(i,x,.(0,u,(0) + g,(/,x.(0,u,.(0), i = \,...,n (17) 

where xj(t)e3\r and x , (0 e 9T are the nominal and actual states of the ix system, 

respectively. The term g, (.,.,.), added in (17), accounts for uncertainty and unmodeled 

dynamics. The input vector u(.(0e5T satisfies the constraints uj(t)eUl (Vr>0) , 

where Ui is the allowable set of inputs. The finite horizon cost (from initial state \t{t) 

sampled at time t) is defined as follows [7], [42]: 

J,(X,.(O,u,.(.),7;)=J( '
+%,.(x,.(r;0,u /(r))rfr + ^.(x /(? + 7;;0) (18) 

where T, is the optimization horizon of the RHC controller. Similar to what presented in 

section 2.2 and Problem 1, the optimal cost is given by solving the following 

optimization problem: 

Problem 2. 

Find 

j ; (x,(0,7;) = minJ,.(x,.(0,u,.(.),7;) 

Subject to: 

*,0-) = f,(r,x,.(r),u,.(z-)) 

u,(z-)6t/„ Vte[t,t + T,] 

(19) 

(20) 
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where J,{.,.,.) is defined in (18). The optimized trajectory resulting from (19) is defined 

as (x*Tj(T)t),u*Tj(T',t)), re[t,t+Tj]. In the closed loop RHC, the calculated input uri(r,t) 

is applied to the actual system (17), and re[t,t+Si\, while 5t is called the execution 

horizon of the ith subsystem (Si <Ti). 

The optimization problem described above can be solved numerically online using a 

number of techniques [21]. Details of the solution procedure for this thesis are described 

in section 2.2.1 and section 5. Numerous methods have been suggested to guarantee the 

stability of the closed-loop system by requiring a terminal constraint or a special way to 

select the terminal cost. The reader is referred to [1] and [42] as two interesting survey 

papers. It should be noted that, no particular assumptions are made to guarantee the 

stability of the closed-loop system in this thesis; however, any nonlinear RHC or MPC 

scheme that results in the closed-loop stable system (for instance [2] and [8]) can be used 

with the proposed dynamic scheduling approach. Furthermore, the choice of terminal 

penalty term does not have any effect on the scheduling approach. 

Note that the RHC method can be formulated in discrete time or continuous time as is 

the case for this thesis. The continuous method can be readily implemented in discrete 

time for digital computer implementations by sampling the continuous time RHC inputs 

at an appropriate frequency. 

In the case of real-time implementation of RHC, an optimization problem must be 

solved online. The time required to solve this optimization problem, needs to be 
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considered in the problems with fast dynamics. In [10], the RHC approach was 

implemented on an experimental setup with fast dynamics. Retarded actuation was 

considered which applies the inputs one sample time after their calculation. They applied 

retarded actuation in two ways and both ways presented satisfactory results, considering 

the fact that the execution time (computation time) must be smaller than the execution 

horizon. In both methods, the calculation is done one execution horizon prior to the 

implementation. In the first approach, the optimal inputs are calculated based on the 

sampled data at time t, i.e. x(t), then they are applied in the interval [t+$,t+2St). In the 

second approach, based on the sampled data at t, the states at t+Si are predicted first and 

used in optimization as initial conditions. Further, to predict the states at M-<5j, the 

nominal model of system is used. Here, the retarded actuation approach with prediction 

is used since it has superior performance to the case without prediction (first case). 

In this section, the performance of RHC in the presence of system uncertainty is 

investigated. Furthermore, the result of this analysis is used in dynamic scheduling 

analysis, which brought out an applicable real-time dynamic scheduling method. The 

case of retarded actuation with prediction is discussed by finding upper bound on the 

state estimation error. Afterwards, this upper bound is used in proposing the dynamic 

scheduling cost index. 

Remark 1. Consider Fig. (4-a) which is a typical case in the application of an RHC 

system. This means that the data are sampled at tsj, and the RHC optimization is started 

at t0j. It is assumed that the execution horizon is St. In addition, assume that at time 
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tE:(t0j,t0ii+Si], the new execution horizon for system i becomes available. Therefore, in 

the application, the current St can be changed to the newly calculated value as the first 

approach. As an alternative approach, the new execution horizon can be applied in the 

next optimization time, which results in no change in the current execution horizon. In 

this thesis, the second method is used for the scheduler (Fig. 4-b), since it can be more 

readily implemented in a real-time operating system and it does not result in any 

significant loss of performance. Note that the Sf in Fig. (4-b) is equal to St in Fig. (4-a), 

t0,i is start time of RHC optimization, and /, is the time that the calculated inputs based on 

the sampled data at tsj are applied to the system. It should be noted that since this is a 

repeating procedure, U is equal to t0>i of the next step. 

5, Sf 

h,i *o,i 
time 

k,i *o,i 

(a) 

8, 

time 

(b) 

Fig. 4. Schematic diagram for RHC timing of subsystem i with dynamic scheduling; tsj represents the last 
sampled data before time t0ii. (a) is the system before the updated execution horizon becomes available and 

(b) is presenting the system after updating the execution horizon. 

Lemma 1: 

Consider the following assumptions hold true for the RHC system presented in the 

beginning of this section: 
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A.l. Retarded actuation method with prediction is implemented as explained in 

Remark 1, in the case of varying execution horizons (Fig. 4-b) and the nominal 

and actual equations as presented in (16) and (17). 

A.2. f, presented in (16) is piecewise continuous in t and Lipschitz in x, with Lipschitz 

constant LxJ. 

A.3. g, presented in (17) is bounded, i.e. Ilg,. (*,£,. (0,u,.(0) ^ bt 

A.4. Bounded error exists in the initial conditions, i.e. x ,^ , , ) -* ,^ , , ) ^ bsi 

The state estimation error can be bounded as follows: 

x,.(r)-X;,(r;U|| < bs/>^ + A_(eM".,) _,) (21) 
X,l 

where r e [tj,ti +J,] and ti is illustrated in Fig. (4-b). 

Proof: 

The two steps done in retarded actuation method with prediction can be stated as 

follows: 

Stepl: From tsi to toi + S[' (Fig. 4-b), the prediction of states is done based on the 

input, uf (.), known from previous optimization: 

x,.(r) = f,.(r,x,.(r),<(r)) 

x /(r) = f,.(r,x,.(r),uf(r)) + g,.(r,x,(r),uf(r)) 

Step2: The new input, resulting from the current optimization, is applied to the system 

from *,,,+*,'to ^ + 3 ' + $ : 
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x,.(r) = f, (r,x*Tj(T;tSJ),uTJ(T;tsjj) 

x, (r) = f,- ( r, X,. (r), ur,/ (^ ',.i•)) + 8, (T>x; («"). u*r./ fo ',.,)) 
, re [*„,,+*,',*„,,+*,'+*,) (23) 

Application of Theorem 2.5 of [4], which is an extension of Bellman-Gronwall 

Lemma (Lemma 2.1 of [4]), to (22) leads to: 

(24) 

In addition, using (23) and Theorem 2.5 of [4] results in: 

\\%(T)-Xr.,(T>tsj) 

< | | x , . ( ? o , + ^ ) - x , ( / 0 , + ^ ) e v ' - 1 
(25) 

where r e [tt,ti +St), considering t{ - toi + 8? as illustrated in Fig. (4-b). Combination of 

(24) and (25) results in (21), which completes the proof. D 

In the following section, one of the main contributions of this thesis is presented, in 

which by using the aforementioned method in dealing with computation delay, the 

dynamic scheduling of multiple RHC systems is discussed while the subsystems are 

assumed to be uncoupled. 

3.2. Real-Time Scheduling of Multiple RHC Systems 

Consider the problem of controlling n uncertain nonlinear systems using the RHC 

scheme on a single processor as presented schematically in Fig. 3 with the equations 

presented in (16) and (17). 
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From a computer control point of view, each control system can be handled as a 

periodic task in the real-time programming. For example, assume that three subsystems 

are needed to be controlled using a single processor with the RHC approach. With this 

dynamic scheduling approach a controller for each subsystem is defined, and each of 

these control systems is considered as a periodic task in real-time implementation. In 

order to do the scheduling, the period and the priority of each periodic task need to be 

determined. For an RHC system, this period is equal to the execution horizon; therefore, 

the period of each periodic task is equal to the execution horizon of its related subsystem. 

The purpose of the developed scheduling algorithm in this thesis is to define the 

execution horizon of all subsystems controlled on a single processor, such that the 

performance of the overall system is maximized and a performance index is proposed 

later in this section. In addition, Rate Monotonic Scheduling [3] is used in this thesis to 

guarantee the schedulability of the system. A brief explanation of RMS was presented in 

section 2.3. 

As explained earlier in section 2.3, the RMS is employed for priority assignment in 

scheduling a set of tasks. This approach is selected, among numerous other methods, due 

to the fact that RMS is an optimal policy. The task set is not schedulable using any static 

priority assignment method if it is not schedulable using the RMS [3]. Furthermore, the 

RMS approach is well supported by most real-time operating systems for efficient 

implementation. The RMS approach and relation (15) is applies to static priority 
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assignment of tasks with fixed periods. However, in practice it can be applied repeatedly 

as periods are changed online, provided they are not updated too frequently. 

For the proposed approach, the execution horizons of all subsystems should be defined 

such that the overall performance of the system is maximized. In order to evaluate the 

performance of the system, the following cost function is proposed as the cost of the 

closed loop system from time t to t+Tsc, where Tsc is the scheduler period which is the 

period that calculated execution horizons would be applied to. 

where t'k=t + (k-\)5i and u*Ti(T;t'k) is the optimal input applied to subsystem i. 

Therefore, Jsc is the actual cost of the system from t to t+Tsc. The idea is to find the 

execution horizon of each subsystem, Sh which minimizes Jsc. However, (26) needs the 

future states of the actual subsystems and the future optimized inputs (from time t to 

t+Tsc) for calculating Jsc which are not available at current time (0- Therefore, instead of 

calculating Jsc, the following cost is proposed which is an estimation of the cost in (26): 

'•=i V °t ' J 

where t < tj and t>tsj. tt represents the time that new inputs are applied to subsystem / 

based on the sampled data at ts, and t indicates the start time of scheduler. Minimizing 

(27) subject to the scheduling constraints, results in finding optimal values of scheduling 

parameters. This approximation will be most accurate when Tsc is relatively small, so 
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that the average rate that the cost function increases over Tsc is similar to the average rate 

of increase over <$. This will occur when the uncertainty bound does not change 

significantly over Tsc. 

Remark 2. In order to show the validity of the proposed estimation, the overall 

closed-loop cost (Jsc) presented in (26) is compared with its estimation, Jsc, in the 

example section. 

In the following Theorem, an optimization problem is developed, based on the results 

of Lemma 1, which leads to the optimal selection of execution horizons of different 

subsystems. 

Theorem 1: 

Suppose the following assumptions hold true in addition to the assumptions of Lemma 1: 

1. qi (x(, u,) can be presented in the form of q{ (x,,u,.) = qxj (x,) + qui (u,) 

2. qxi (x,.) is Lipschitz continuous with constant />. 

Furthermore, consider n uncoupled subsystems with equations presented in (16) and 

(17), controlled by RHC method on a single processor. Since uncertainties in the 

subsystems are different and the measurements are performed with bounded sensor noise, 

the following optimization problem can be used to optimally determine the execution 

horizons of all subsystems and minimize an upper bound on the scheduling cost (27): 



( fti+S: 

a,. 
mm pi? 

1=1 5S 

[,+ >,(4, ,( r;^, ,)>
ur, ,(^^,)) <fr 

f f LXJ(si+S,"+dtSJ) LXJ{5P+dtsj] 

+ • 

*,.. 

+b; 

v4,, 
- £ 

(28) 

Subject to: 

C 2 : A C , < J , . < ^ , 

<(n + l)(2"+1-l) 
(29) 

where (5^ . and Ac. represent the upper bound for the execution horizon and the upper 

bound for the computation time for subsystem i, respectively. Acsc is the upper bound on 

the computation time of the proposed optimization problem. Sf is the execution horizon 

of subsystem / before being updated and at represents the weighting parameter for 

subsystem i. bsj is the bound on measurement errors caused by sensor noise for 

subsystem i, and dtsl is the sampling period of subsystem /. In addition, RMS is 

considered as the basic scheduler. Note that SubJ is less than or equal to the prediction 

horizon of subsystem i and in the proposed optimization problem in (28) and (29), the 

optimization parameters are the execution horizons for each subsystem, 8i, i = \, 2,...,n. 

Remark 3. Note that Theorem 1 does not provide any stability guarantee. The stability 

properties for each system is dependent on the RHC scheme used to control that system. 
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Remark 4. The first inequality constraint in (28) guarantees the tasks are schedulable, 

while the first part of the second constraint forces the execution horizon to be larger than 

the upper bound of the computation time. This gives the computational resource enough 

time to complete the optimization before implementing the control signal at the next 

sampling time. 

Remark 5. In some cases, it might be required to have Subi small enough to ensure 

stability or satisfactory performance of the closed loop RHC system. These criteria can 

in practice be determined from simulations and experiments. 

Proof: 

From assumption 1: 

r'4i(ii{T)>uTj(T>tsJ))dT=$*'qx.i(*'(T))dT+r'*».'K.'(r;''.')yT (3o ) 

From Lipschitz continuity of qxi{-) '• 

A = f [qXJ ( i , (r)) -*,,, (x*r, (r;*,,,)))dx < $* Pt | i , (r) -x*r, (r;tMj )|rfr (31) 

where A is an auxiliary parameter. Using Lemma 1, combination of (21) and (31) results 

in the following: 

A< 
rti+6: f , \ 

bSJ
e +——\eA '-\\ dr 

v "J ) 

(32) 

Integration of the right hand side of the inequality (32), results in 

AZ-5- K (eL'A"+Sl"'j) -eL^-'^ ) + h, f _L(e^M-O _ /,<(',-'„) j _Sj 

V 4 , 
(33) 
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Hence, from (30), (31), and (33): 

+ • 
p, 

KI e ^,,(',+^-',,,) „^,/(',-',,,) 
- e + b, 

1 ( L.A.+S.-t.j) L 

v4,,-
— e 

(',-',,))_, 
(34) 

By assuming dtsj as the sampling period of subsystem i, knowing that ti is the 

optimization start time and ts i is the last sampled data before t{ - 8f, we have: 

t, - tsi < dtsi + 5?. Therefore, 

In addition: 

f+ '^,(x*7-,,(r;^,,))^+ J,+ ' ^ , ( u ^ ( r ; ^ ) y r 

= j , ' ' + < y ' 1i (x*r,/ (*"J *,j ) > < / ( r> ',.,• ) ) ^ 

Combination of (35) and (36) results in the following inequality: 

(36) 

+-4,, 

\'h '9i(x,(«•).</fcO) ^r^ jj '9,(4,, (^^./)»»r./(r;^,))dT 

1 f £t/(<5•+Sf +dl,,) Lt.lsf+dt,,} 

1 e v " ' - e 'v "' £ 
(37) 

As stated in (27), JJC is the estimation of the overall performance index of the system. 

Further, combination of (27) and (37) results in the following inequality: 
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( r',+<?, 

n rp 

i'+ ' ^li(XTj(T^sj)^Tj(T^sj)) dT 

'M ) 

1 ( L^+Sf+dt,;) L^Sr+dt^ 
-s, 

J 

(38) 

Therefore optimization of (38) will minimize the upper bound of the performance 

index. Furthermore, as explained earlier, (15) must hold to guarantee schedulability of 

the system using RMS method. By assuming the existence of Ac,, the foresaid 

schedulability condition is presented as constraint CI in the optimization problem of (28). 

Further, the time needed to solve the scheduler problem should be accounted for, in that 

constraint. To do so, the constraint CI of (28) should include the term for Acsc, where 

Acsc is the upper bound on the computation time of the scheduling optimization problem. 

In addition, the upper bound on the desired execution horizon for each subsystem, 

constitutes the second constraint of the optimization problem (C2), knowing that the 

execution horizon must be bigger or equal to the computation time Ac.. D 

Remark 6. It is assumed that the upper bound of Jsc presented in (38) is not too 

conservative in the sense that its shape represents the behaviour of Jsc and its sensitivity 

to the execution horizons of the subsystems. Therefore, the bound itself could be 

conservative, but it could still provide scheduling that is close to optimal. However, as 

discussed in [32], for some highly nonlinear systems, this bound needs to be replaced by 

other less conservative bounds that can be achieved from offline simulation studies of the 

system. 
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Remark 7. If the sampling is done at the beginning of optimization, i.e., ts, = t0,. then in 

Theorem 1, dtsi is equal to zero. The example of this condition is simulation studies or 

the assumption of having negligible measurement delay in the experimental studies. 

Remark 8. Note that the optimization problem given by (28) and (29) is non-convex due 

to the first inequality constraint. Furthermore, the feasible region defined by the two 

constraints is compact and the cost function is continuous. Therefore, a minimum for the 

optimization problem exists. However, the problem could have more than one local 

minima. Thus the results of the numerical optimization procedure used to solve it and the 

effect of initial parameter selection should be carefully evaluated. For a small number of 

parameters, however, an exhaustive grid search algorithm can be used to find the global 

minimum. The number of parameters can also be reduced by forcing systems with 

similar computational times and uncertainty to have the same execution horizon. It 

should be noted that this problem is solved in the example section (section 5) using the 

SNOPT optimization package [46]. 

Remark 9. In order to solve this optimization problem effectively and avoiding 

unnecessary computation, the cost index calculation of this problem is divided into two 

parts as follows: 

Costsc = Cost\c + Cost2
sc (39) 

where 
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Cost = £§"( f ' <7, (4,, (r,x, (tSJ)),uTJ (*•>*! (',,•))) d* (40) 

Owr A a, P. 
i t s, LXJ +h 

K v 
Lxl\Sl+ej' +dlsl) Lx ASf+dls 

(41) 

y; 

The first part, Cost]c, consists of the part of the optimal open-loop cost associated to 

each subsystem and is available from the last RHC optimization of each subsystem. The 

second part, Cost]c, which resulted from state estimation error bound, is a simple positive 

scalar and strictly increasing with Sj. It should be noted that in evaluating the cost index, 

evaluation of the first part may take significant amount of time if it is calculated directly. 

To avoid this problem, the open-loop cost is stored for different values of execution 

horizons, after finishing the calculation of optimal cost for each subsystem. This value, 

y'*(.), is retrieved further in solving the scheduling problem. In other way: 

^(0=f+r^(4,(^x,.(^)),u;,(^x,.(^,))) dt (42) 

where r e [0,7^]. Therefore, 

a, 
,=1 O, 

(43) 

Using this approach, the computation time required to solve the scheduling 

optimization problems, presented in the application section (section 5), was less than 4 

ms. However, the direct calculation of open-loop cost, resulted in a computation time of 

up to 130 ms in the second example (section 5.3). It should be noted that the 

computation time of the associated RHC problem in that example, was less than 160 ms. 
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It illustrates the significant effect of storing open-loop cost and using it in scheduling 

optimization. Using this approach in optimization, it was found that the optimization 

time for solving (28) and (29) is significantly smaller than the optimization process for 

the individual RHC problems. 

3.3. Dynamic Scheduling Algorithm 

In the previous section, an optimization problem was presented in (28) and (29) which 

can predict the execution horizons of all subsystems, based on the limited available 

computational resources. In this section, an algorithm is presented to update the 

scheduling variables based on the scheduling optimization problem. 

Consider Fig. 5 that illustrates the method for two subsystems. Let us consider time t 

as the time that the scheduler starts. As shown in this figure, tol is the time that first 

subsystem started its last computation. Consequently, to2 is the similar time for 

subsystem 2. The computation of scheduler starts right after completing computation of 

both subsystems. Therefore, the scheduler can be considered as a periodic function with 

a fixed period Tsc and the lowest priority comparing to the periodic functions of all 

subsystems. 

Remark 10. The scheduler period is selected in this thesis such that it is equal to the 

maximum value of 5ub,., i.e., Tsc = max ldub, | / = 1,...,n\. 
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Fig. 5. Schematic diagram illustrating the dynamic scheduling procedure 

The algorithm for dynamic scheduling can be expressed as follows: 

Algorithm 2: 

Given: Tsc, Acj, SubJ, fc,,,, and dts. 

Step 1: Calculate the scheduling parameters Pt, ty and Lxj (see Remark 11) 

,th 
Step 2: Let 8f be equal to the current execution horizon of i subsystem. Further 

x r / ( r ' ^ . / ) a nd u r / ( r ' ^ / ) a r e t n e m o s t recently calculated trajectories and 

associated inputs of ith subsystem, where ti < r < t.t + Ti 

Step 3: Solve (28) and (29), and calculate 8, for all subsystems. 

Step 4: Update the upcoming execution horizons by the calculated 8i from Step 3. 
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Step 5: Repeat the procedure from Step 1, when the scheduler restarts. 

Remark 11. The presented scheduling algorithm must be repeated every Tsc; therefore, 

the scheduling parameters Pt, Lxj, and bi should be calculated properly. Since Pi and 

Lx (. are Lipschitz constants, they are dependent on the state variables and therefore, to the 

region of operation, in general case. In this thesis, a region for state vector x;. is specified 

by |x(. - x J < R , . , where xcl. defines the center and R, is a vector that presents the 

dimensions of that region. For a given R(., different Pf and Lx (. values are calculated 

based on different xc , . These values can be computed offline and stored in a lookup 

table. This method is used in section 5 to calculate Pt and Lx •, while bi is given. In 

addition, for the experimental cases, b; can be defined using some identification 

algorithms. 

Remark 12. In performing Step 4 of the algorithm, some periods (execution horizons) 

should be increased and some of them should be decreased, while the rest remain 

unchanged. Furthermore, their priorities have to be changed to what was defined by the 

RMS for the new set of periods. In order to guarantee that no overload condition may 

happen during this transient period, any necessary increment in the periods should be 

done at first. After that, the required reduction in the periods can be performed. Using 

this rule of thumb, many simulations were performed when the tasks had similar 

execution times, and no overload condition was seen. It is noteworthy that similar 

execution time assumption was used, since it is the case for the application section of this 
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thesis. Moreover, no such pattern was obtained in the simulation studies for the general 

case of different execution times, and it should be investigated in future, if the application 

involves different execution times for different subsystems. 
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4. Dynamic Scheduling of Coupled RHC Systems 

In this chapter, the extension of the proposed dynamic scheduling approach is 

presented. Multiple subsystems are considered on a single processor, which are both 

coupled in their dynamic equations and cost functions. A decentralized formulation is 

presented and subsystems are communicating their state variables to each others. The 

following form of coupled cost functions and coupled dynamics are considered in this 

thesis for this study: 

j,.(x,.(0,x,.(0,u,(.),7;) 

V ' JeA* J 

subject to the nominal and actual dynamics: 

x,.(0 = f,.(?,x,.(0,u,.(0) + h,.(x,.(r)), i = \,...,n (45) 

x,.(0 = f,(^x,.(0,u ;(0) + h.(x,.(/)) + g,.(?,x,.(0,x,(?),u,(0), i = \,...,n (46) 

where gy is a scalar function which defines the interaction between two subsystems 

based on their state variables x( and x • . The set Af is called the neighbouring set of 

subsystem i, and consists of any subsystem that sends its information to subsystem /. 

Moreover, TV, is the number of neighbours of subsystem i. It is worthwhile to mention 

that j is a neighbour of i if sends its information to /. In addition, the coupled term is 

divided by N, to form a normalized cost value that is not dependent on the number of 

neighbours. The variables x. it) and x(. (t) are the actual states of/"1 subsystem and its 

neighbours at time t, respectively. It should be noted that x(.(.) does not include the state 

of the Ith subsystem. Similar to (17), g, represents the bounded uncertainty acting on the 
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/th subsystem. The term x(. (t) is the most available predicted states of all neighbours of 

/th subsystem at time t. For simplicity of the proof, it is assumed that the interaction 

function gtj is between two subsystems only, i.e. gtj = gtJ (x, ,x7). 

The form of coupled cost functions and dynamics considered in this thesis encompass 

a significant range of applications for multiple RHC problems. For coupled cost 

functions this includes decentralized RHC and MPC based cooperative vehicle control 

problems such as [14], [15], [16], [25], [26], [37], and [41]. However, the dynamic 

coupling is modeled in different ways. In some cases (i.e. [27] and [28]), the input 

coupling is assumed for distributed control with application to the process industries. 

Distributed RHC for nonlinear systems with general form of dynamic coupling with state 

and input coupling was presented in [29]. 

In some other applications, the coupling effect is considered only in the form of state 

dependencies, which is the presented form in this thesis. In [30], a set of multiple 

interconnected dynamically coupled subsystems is considered in which the dynamic 

coupling effect is modeled by adding a state dependent nonlinear bounded function. 

They presented the application of their approach to power system control. Furthermore, a 

similar dynamic equation and coupling to [30] is assumed, in [31] and applied on a utility 

boiler problem. In addition, a stabilizing decentralized RHC scheme for discrete-time 

systems, with an input-to-state stability approach by treating the interconnection term as a 

perturbation term, is established in [24]. 
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Following the formulation in (26), the cost index, presented below, is proposed as the 

overall closed loop cost of the system over the scheduler period: 

^=Z|r'f*(t'W-^M))+i7Z*,(*.W.*JW) 
;=1 I I •<*/ j^A, 

dz (47) 

where urj (r,t'kJ is the most recently calculated optimal input of ith subsystem and t'k is 

the time at which the sampling was made. Using an analogous approach in estimation of 

(26) by (27), the following cost is proposed as an estimation of (47), in the existence of 

coupling in the cost index among subsystems: 

(48) 

J J 

In this section, a similar approach as presented in the previous section is used; 

however, the details are different. Based on that approach, we need to find an upper 

bound on Jsc presented in (48) such that minimization of that upper bound, leads us to the 

suboptimal solution of Jsc in (47). The Jsc presented in (48), can be divided in two parts 

j]c and j]c associated with q. and gtJ, respectively as in the following: 

sc ' 

'=1 \°iJ*i ' \jeA, 

dr 
) J 

(49) 

(50) 
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To find their upper bounds, the following lemma is presented as the extension of 

Theorem 2.5 of [4]. This is done by assuming a bounded error between h, (x(. (t)) and 

h,. (x,. (t)), presented in (46) and (45), respectively. 

Lemma 2: 

Consider the nominal (45) and actual solutions (46) for the coupled dynamics 

problem. Given assumptions A.2 and A.4 and the following additional assumptions: 

A.5. The difference between h, (x. (?)) and h ;(x ;(r)) expressed in (45) and (46), 

respectively, is bounded by bhj, i.e. h(. (x; (t))-hi (x(. (t))l < bhi 

A.6. g, presented in (46) is bounded, i.e. g, u,x,(0,x(. (f),u,(m <6, 

Then the following inequality is valid: 

j i s tft[Vq' (x'rj (!";,«)'u" (r;,«))dT+p'B' 

B>=Z 
+ (*/+*«) 

K V 

eLXJ(^r+dlsJ) _eLXJ{sr+dlsj) 

V~* 

(51) 

(52) 

Proof: 

From the assumptions we have the following relations considering to as the initial 

time: 
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x,.(0 = x,.(70)+ ff,.(r,x,.(r),u,.(r))Jr + f h,.(x,.(r))</r 

x,.(0 = x,.(?0)+J[ |f,.(r,x,.(r),u,.(r))Jr+|ih,.(x,.(r))c/r (53) 

+ J[g;(r,x,(r),x,(r),u,(r))c/r 

Subtracting the two equations and taking norms yield: 

| i , (O-x,(0 |s | i l ( f 0 ) -x , ( r 0 ) |+j[ | f l ( r ,x< ( r ) ,u / ( r ) ) - f ( ( r , i / ( r ) ,u l ( r ) ) | r f r 

+ j[| |g,.(r,x,.(r),x,.(^^ (54) 

<^,+fcI.(?-r0) + feA^r-r0)+j'J|f/(r,x/(T),u,(z-))-f/(r,x/(r),u/(r))|</r 

The assumption of Lipschitz continuity of f, then leads to 

\\xi(t)-xi(t)\\<bsi+(bi+bhi)(t-t0)+ [ Ljx^-x^dr (55) 

Using Gronwall-Bellman inequality [4, Lemma 2.1] results in: 

Integration of (56) yields 

^ ( O - x ^ O l ^ . / ^ ' - ' ^ ^ f ^ ^ ' - l ) (57) 

Using this result, Lemma 1 can be updated by using bi + bh. instead of bt. Therefore, for 

the retarded actuation method with coupled dynamic as presented in (45) and (46), state 

estimation error can be bounded as: 

| |x , . ( r ) -x ; , ( r ;U | * ^ / ' " H J
 + ^ ( e ^ > - l ) (58) 

where re\ti,tj+8j^. Consequently, the upper bound on J]c can be obtained by 

changing bi to bt +bhi in (38), which leads to (51). D 
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The following lemma can be developed to find a bound for the cost function coupling 

terms that is closely related to J2
SC. 

Lemma 3: 

Consider the following assumptions, hold true: 

1- If x,. and \j are two rx l column vectors, x.. is a 2rxl column vector such that 

2- Let ylxy^gyix^Xj) be Lipschitz continuous with constant Z|., and jv(x,y] be 

a. positive scalar function. 

3- Retarded actuation method is used with prediction as explained in the section 3.1 

Then the following inequality is valid: 

# *' {NIJeAl 

dx 
J 

dr + — V 4 
V K* 8n 

(59) 

where x J . J r ; ^ ) is the optimal trajectory of subsystem / resulted from optimization 

index presented in (44) and the sampled data at time tsj. Similarly, x*T j (r;f •) is for 

subsystem,/. In addition, Bi is presented in (52) and Bj follows by changing index / toy' 

in it. 

Proof: 
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From the fact that y(.) is a positive scalar function and from Lipschitz continuity of 

y(.) it follows that 

y ii(Tf>:Lrj(r>ts.j)T ^y 4,* (*•;',.,)'>4,,(^,,)r 
^ 7 - ^ 

+ 4 ( | x / ( r ) - x ; , ( r ; ^ ) | + | x y ( r ) -x ; j ( r ; ^ . ) | ) 

(60) 

Using assumption 2 and taking integration yield: 

+ { ' + 5 ' ^ ( | x , ( r ) - x ; , ( r ; ^ J | + | x / r ) - x ; j ( r ; ^ . ) | ) c / r 
(61) 

Multiplying Z| to both sides of (58) and taking integration from ti to ?,• +<5), results in 

the following: 

| ' + ' L f | x , . ( r ) -x ; , ( r ; ^ , ) | dr<L\B\ (62) 

where 

s;=l 
r 

(63) 

Similarly, for subsystem./: 

f^frW-^K,) dr<I^B) (64) 

where B'j can be obtained from (63) by changing the index / toy. In addition, based on 

the hypothesis used in estimation of Jsc (47) by Jsc (48), the following estimation is also 

valid: 

j p | | x . (r)-x*r,. (r;tSJ)\dr = -+ j p | | x , ( r ) - x*r,. (v;tSJ) dx (65) 

Combination of (61), (62), (64), and (65) results in the following: 
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| ' + 'Stj (x, ( r ) ,x . (r))dx < | ' + ' g.. (4 , . (r;tsi), xTJ (r,tSJ))dT + Ll 

From (66) we have: 

^£(f'g„(*,W,x;W)^) 

B' + ^B' (66) 

B' + ^-B' 
J J J 

4 
(67) 

By exchanging the integral and summation operators for the first term and simplifying 

the second term, and assuming dts (. as the sampling period of subsystem i (following the 

assumption of Theorem 1), it results in (59). D 

Theorem 2: 

Consider n subsystems with equations presented in (45) and (46), controlled by RHC 

method on a single computer. In addition, the subsystems may be coupled due to state 

information exchanging that was presented in (44). Furthermore, the assumptions of 

Lemma 2 and Lemma 3 are valid. Since uncertainties in the subsystems are different and 

the measurements are performed with bounded sensor noise, then the following constraint 

optimization problem can be used to determine the execution horizons of all subsystems, 

optimally: 

dr 

mm 
5, 

ft 

5>, 
;=i 

1 rt+4 - f 8, *, + 7 7 E [Sij (xr,/ (r;t,j), 4 . , ( r,tsj))) 
V Nue4 

B B^ 

S. 5 , 

(68) 

Subject to: 
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" A . A -L 
C\: Y - ^ + -^- < (n +1)(2"+1 -1) 

Vf S, Tsc (69) 

C2: Ac, < S, < Sub. 

where Bj is a function of Si and is defined in (52), aj is the weighting parameter, and 

Ac sc in the constraints is the computation time required to solve the presented scheduler 

optimization problem. It should be noted that the optimization parameters are the 

execution horizons of each subsystem, 5n i-\,2,...,n. 

Proof: 

As stated in (48), Jsc is the estimation of the overall performance index of the system, 

Jsc, which is presented in (47). Therefore, minimization of Jsc should result in 

minimization of Jsc. Since, Jsc = J\c + J]c, application of the bounds from Lemma 2 

(51) and Lemma 3 (59) (after multiplication by Tsc and summation over the subsystems) 

results in an upper bound on Jsc, which is the proposed cost function (68), except that Tsc 

is replaced by (%. It is assumed that the upper bound of Jsc is not too conservative and 

represents the behaviour of Jsc, which is discussed in [32]. Under this assumption, the 

upper bound of Jsc justifies the chosen form of the objective function in (68) considering 

a, as the weighting parameters applied for each subsystem. It should be noted that since 

Tsc is a constant and has no effect in the optimization, it is not considered in (68). 

Furthermore, as explained earlier in the proof of Theorem 1, constraints CI and C2 must 

hold to guarantee schedulability of the system using RMS method. D 

52 



5. Application to Multiple Hovercraft Systems 

In this section, the proposed scheduling algorithms are applied to the concurrent 

control of multiple unmanned radio controlled (RC) hovercrafts on a single computer. 

The parameter values for the hovercraft model were identified experimentally using a 

vision based feedback control setup as explained in [13]. The scheduling approach is 

implemented on a real-time operating system (Ardence RTX) together with a real-time 

simulation of the hovercraft models. This allows a significantly more realistic 

investigation of the real-time application of the proposed method than normal simulations 

allow, including a real implementation of the preemptive scheduling process and the 

RHC control algorithms. Therefore, the timing data and scheduler performance is 

significantly more realistic than results obtained from a standard simulation package. 

In order to study the proposed methods for decoupled and coupled systems, two case 

studies are presented in this section with multiple hovercraft simulations. In the first 

case, three decoupled hovercrafts are scheduled on a single processor using the dynamic 

scheduling approach presented in (28) and (29), and the results are compared to the static 

scheduling case. Furthermore, in the second case, a formation of four hovercrafts is 

considered on a single processor and scheduled using the dynamic coupled scheduler 

presented in (68) and (69), while the results are compared to both static scheduling and 

decoupled dynamic scheduling cases. 

Before explaining the foresaid examples, the RC hovercraft model is presented. This 

model is used in the simulation studies. 
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5.1. Hovercraft System Dynamics 

The hovercraft configuration is illustrated in Fig. 6(a). The 3 degree of freedom 

(DOF) motion of each hovercraft is controlled using two DC motor propeller actuators 

that are computer controlled through wireless radio communication links. The position 

of the circular color targets are measured using a 4 camera overhead vision system with 

the sampling rate of 26 Hz. The velocity and acceleration are estimated from the position 

values. 

(a) 

Fig. 6. (a) RC hovercraft and (b) the schematic model with produced thrusts by propellers and local (body) 
and global coordinate systems 

The hovercraft's body attached frame is represented by (XB, YB) and the inertial frame 

by (XG, YG) (see Fig. 6(b)). The nominal system for each hovercraft expressed in the 

body attached frame is given by the following equations [12] 
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u= — (Fr+F,-ch,u) + vr 
m,, v ' 

v- ch2v-ur (70) 
mh ' 

Z j h J h 

where u and v represent the components of the inertial velocity Vh in the XB and YB 

directions, respectively and r represents the yaw rate. The mass is represented by mh, 

and the moment of inertia by Jh. The parameters ch, and ch 2 represent the coefficients 

of viscous friction in the XB and YB directions, respectively. The rotational coefficient of 

viscous friction is represented by chi. 

The relationship between the forces produced by the hovercraft propellers and the 

control inputs ur and ul are given by the following equations 

Fr = aur r r r (71) 
F, = alul 

where ar and a, are experimentally determined proportionality constants. In order to 

minimize the number of parameters to be identified in the model given by (70) and (71), 

the equations are rearranged as follows 

u = vr + axur + a2ul - c[u 

v = ur- c'2v (72) 

r = -alur
 Jra6ui -c\r 
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where c, > ^ 2 ' 1 

m, wt J, 
, i * , a, = —- , a2 = — - , a, = —J—, and aA - ——. In 

m. m. 2J„ 2J,, 

addition, the following equation gives the relationship between (u, v, r) and the 

coordinates in the inertial reference frame (XG, YG). 

xc = cos(y/)u - sin(^)v 

yc - sin(^)u + cos(^)v 

\j/ -r 

(73) 

where xc and yc represent the global coordinates for the center of mass, and y/ 

represents the yaw angle of the hovercraft. The parameters of equation (72) were 

identified by performing a least squares curve fit to experimental data as described in [13] 

and presented in Table 1. 

Table 1. Parameter values for the nominal model of the RC hovercrafts 

Model parameter 
a\ 
a2 

«3 

«4 

c\ 

c\ 

C'i 

Parameter value 
0.3 

0.3 

2.6 

2.6 

0.2 

0.3 

8.0 

5.2. Application to Decoupled Systems 

In this example, three decoupled hovercrafts are controlled by RHC method and track 

similar paths of connected line segments. The hovercrafts have different uncertainties in 

their model and the uncertainty upper bound (b in assumption A.3 of Theorem 1), is 

changing versus time as presented in Fig. 7-9. Two cases are considered: static 

scheduling in which the execution horizons of two systems do not change during the 
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process, and dynamic scheduling using the proposed method in (28) and (29), suitable for 

the scheduling of decoupled systems. 

The hovercraft model (72) and (73) with the parameters presented in Table (1), is 

considered as the nominal model of all systems. To add uncertainty to the systems, the 

following equations along with (73) is considered as the actual model of each subsystem 

i: 

u, = v,r, + aturJ + a2u,j - c[u, + guj 

Vi=uiri-
c2v,+gvj ( 7 4 ) 

ri=-aluri+aAuli-c'iri+gri 

where gu,., gvj, and grj are random variables added to the equations in order to simulate 

the effect of uncertainty, which in this case they can be called disturbances. By 

comparing (73) and (74) to (17), the disturbance g, can be represented as the following 

vector: 

&=[>„, grJ SrJ 0 0 0 ] r (75) 

where ||g,| < b: and b{ is the uncertainty upper bound of subsystem i (see assumption A.3 

of Lemma 1). 

In this example, the uncertainty upper bound, b., is changing with time as presented in 

Fig. 7-9 and the random variables guj, gvj, and gri are selected such that IgJ^fe, at 

any time of simulation. To do that, the following procedure is done: 

1- Selecting a random value between 1.0 and -1.0 for each of guj, gvi, 
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2- Scaling the selected values by r-^r, and using them as the uncertainties for 

Ik II 
simulation of the actual subsystem i. 

An RHC trajectory controller for each hovercraft was designed using the following 

cost function 

y, = jp l^M)-*Mi+h^-»Mi)d* (76) 

where \ri(t) and uri(t) are the desired trajectory and inputs, respectively, and ||x||e 

th 
denotes the quadratic function x Qx; T:. is the prediction horizon of / subsystem and 

was 4 seconds. Furthermore, the initial conditions were chosen to be: 

x,(0) = [0m/s Om/s Orad/s 1.57rad 0m Om] 

x2(0) = [0m/s Om/s Orad/s 1.57rad -2m -2m] 

x3(0) = [0m/s Om/s Orad/s 1.57rad -4m -4m] 

(77) 
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Fig. 7. Changing in the uncertainty upper bound of subsystem 1 
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Fig. 9. Changing in the uncertainty upper bound of subsystem 3 

where the state is defined as x = [u v r y/ xc yc] and the units are presented in 

SI system. The diagonal cost function weighting matrices for each system were selected 

as 0=diag([O 0 0 0 1 1]) and /*=diag([0.045 0.045]). In addition, the reference 

trajectories of all subsystems are similar except for the initial position of the subsystems. 

They are selected such that the subsystems should start from rest and increase their speed 

with a constant acceleration for the first 15 seconds, and maintain a constant speed in the 

rest of their motion. Having a constant speed, they should follow a circular path 

estimated by connected line segments. 
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In order to perform the dynamic scheduling, the scheduling parameters (P{, Lxj, and 

bj), are calculated as explained in Remark 11 and R, was selected as R,=[0.5m/s 0.5m/s 

0.5rad/s 0 0 0], i=\, 2, 3, based on some simulations. The parameters Lxj and P; were 

calculated from the definition of the Lipschitz constant. Furthermore, simulations 

indicated that the upper bound for the computation time of the RHC optimization is given 

by Ac . = 0.20, i=\, 2, 3. The weighting parameters «/, a?, and aj are selected as 1.0 to 

indicate the performance of each hovercraft is equally important. Further, numerical 

simulations indicate that for all subsystems any execution horizon beyond 1.2 seconds, 

will give an unacceptable tracking error. This gives the following parameters 5ubi = 1.2 

0=1, 2, 3) for the upper bound on the execution horizons. Since the maximum execution 

horizon is 1.2 seconds, the scheduler period is 1.2 seconds, Tsc =1.2, based on Remark 

10. In addition, ty is given in this example as presented in Fig. 7-9 and the 2-norm is 

used to calculate any norm used in this section. 

To solve the RHC problem an adaptation of the flat output method described in [21] 

was used with 3rd order cubic splines, as explained in section 2.2.1. In order to solve the 

resulting optimization problem, SNOPT optimization package was used on a 3.4 GHz 

Pentium 4 computer. The Ardence RTX real-time operating system (version 6.01) was 

used for implementation of real-time simulation of the hovercrafts combined with the 

RHC controllers and the scheduler. The implementation was carried out using the C 

programming language. In order to simulate the real-time RHC of the three hovercraft 
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systems and the dynamic scheduler, four periodic tasks are defined in Ardence RTX. 

One of the periodic tasks corresponds to the dynamic scheduler with the highest priority 

and the rest correspond to the three hovercrafts, while their priorities are changing due to 

the change in their periods, which the highest priority is assigned to the subsystem with 

smaller period. The operating system starts running the periodic tasks with a period 

defined by the program. The scheduler starts calculating the execution horizons of 

different subsystems after an initialization time set equal to its period in this example. In 

addition, each periodic task, corresponding to each subsystem, consists of i) solving the 

optimization problem associated with the RHC for the corresponding system, and ii) 

simulation of the corresponding system for the time interval [U, tj+Si], /=1, 2, 3. The 

simulation is essentially solving an initial value problem for a time interval of 5t, i=\, 2, 

3. It was found that the CPU time corresponding to part ii) of the periodic task is 

negligible compared to i). Therefore, the CPU time schedule accurately reflects the 

actual timing for each periodic task including the optimization time associated with the 

RHC problems. 

Remark 13. According to the base scheduler used in this thesis, RMS, the priority of the 

scheduler must be assigned based on its period. However, since the computation time of 

the scheduler is negligible compared to the RHC computation time, its priority can be 

assigned as the highest priority without causing the system to be unschedulable. Note 

that since the period of the scheduler is assigned to be bigger than the period of 

subsystems, as stated in Remark 10, in the case of having significant computation time 

for the scheduler, its priority should be the lowest priority as imposed by RMS algorithm. 
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A dynamic scheduling algorithm, as presented in equations (28) and (29), and section 

3.3, is used in this example and the simulation results are presented in the following. 

Furthermore, to compare the proposed dynamic scheduling approach to static scheduling, 

the similar system is scheduled using the static scheduling approach presented in [23] and 

[13]. Since the models are similar and the uncertainty bound of the whole process is 

equal for all subsystems, the execution horizon of all subsystems, in the static scheduling 

case, are equal, considering the fact that the worst case computation time is similar for all 

subsystems. Therefore, the optimal execution horizons were found to be 8t = 0.8 (z'=l, 2, 

3). Thereby, the priority of each subsystem can be selected arbitrarily, and the highest 

priority is assigned to subsystem 1 while the lowest priority is assigned to subsystem 3. 

The simulation results of the closed-loop RHC systems for both cases are presented in the 

following figures (Fig. 10-16). 
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Fig. 10. Trajectory resulted from using static scheduling theory 
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Fig. 11. Trajectory resulted from using dynamic scheduling theory 

A rough comparison of figures 10 and 11, gives the reader a feeling of how dynamic 

scheduler improved the performance of the system. A better comparison is made in the 

following figures by plotting the tracking error of each subsystem in both scheduling 

cases. 

Fig. 12. Comparing tracking error of dynamic and static scheduling theories for subsystem 1 
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Fig. 13. Comparing tracking error of dynamic and static scheduling theories for subsystem 2 

Fig. 14. Comparing tracking error of dynamic and static scheduling theories for subsystem 3 

As it can be seen from Fig. 12, the performance of the first subsystem was improved 

significantly by using the dynamic scheduling approach rather than static scheduling. In 

addition, from Fig. 13, the performance of the second subsystem is also improved. 

However, from Fig. 14, the performance of the third subsystem was improved but not as 
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much as other subsystems. This is expectable and can be explained referring to Fig. 7-9. 

When the uncertainty of first subsystem is high, the other subsystems have almost no 

uncertainty. Further, the trajectory of all subsystems are similar; therefore, the dominant 

factor in the dynamic scheduling optimization problem, presented in (28) and (29), is the 

uncertainty. As mentioned earlier, when subsystem 1 has high uncertainty, the others 

have almost no uncertainty, thereby the computational capacity is mainly considered for 

subsystem 1 by assigning small execution horizon to it. However, when the third 

subsystem has a high uncertainty, other subsystems have also high uncertainties. 

Furthermore, subsystem 2 has higher uncertainty. Therefore, the computational capacity 

is distributed between the subsystems. It can be seen more clearly by looking at Fig. 15. 

From time 10 to 15 seconds, all subsystems have almost similar execution horizons and 

from time 15 to 25, subsystem 2 has the lowest execution horizon and subsystem 3 has a 

slightly smaller execution horizon than the static scheduling case. 
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Fig. 15. Changing in the execution horizon of all subsystems in dynamic scheduling case (the execution 
horizon was 0.8 s for all subsystems in the static scheduling case) 
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To verify the estimation of Jsc in (26) by Jsc in (27), the values of Jsc which is the 

actual cost of the system is compared by Jsc which is the estimated cost, and presented in 

Fig. 16. As it can be seen from this figure, the estimation of Jsc by Jsc was a valid 

estimation for this example. 
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Fig. 16. Comparing the overall closed-loop cost (equation (26)) with the estimated cost (equation (27)) in 
the dynamic scheduling case 

5.3. Application to Coupled Subsystems 

In this example, four hovercrafts in the formation are being controlled by 

decentralized RHC method. The hovercrafts model and simulation parameters are similar 

to the first example in section 5.2 unless otherwise indicated. The subsystems in this 

example have uncertainty upper bounds illustrated in Fig. 17. Subsystem 1 is the leader 

and the others are followers in the formation. The leader has similar reference trajectory 
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as of subsystem 1 in the first example in section 5.2, while the followers make a fixed 

formation illustrated in Fig. 18. 

An RHC trajectory controller was designed for subsystem 1 using the cost function 

(76) used in the first example with similar parameters, except the prediction horizon that 

was 8 seconds (7] = 8). In addition, the followers have the following cost index: 

J> = n [ IM r C +IMr)£ +TFZHT)-XAT)-41 r ' / = 2 ' 3 ' 4 (78) 

V ' ' ' JeAi J 

where A2={l], 4 = { l } , and ^ 4={2,3}; therefore, 7V2=JV3=1 and 7V4=2. 

Furthermore, the prediction horizons of different subsystems are T2 = T3 = 6 and 74 - 4 

seconds, and the initial conditions were chosen to be: 

X! (0) = [0m/s Om/s Orad/s 1.57rad 0m Om] 

x,(0) = [0m/s Om/s Orad/s 1.57rad 5m -5ml 
\ (79) 

x3(0) = [0m/s Om/s Orad/s 1.57rad -5m -5 m] 
x4(0) = [0m/s Om/s Orad/s 1.57rad 0 -10m] 

where the state is defined as x = [u v r y/ xc yc] and the units are presented in SI 

system, similar to the first example. The diagonal cost function weighting matrices for 

each system were selected as £,=diag([0.03 0.03 0.03 0 0 0]), Rt =diag([0.045 0.045]), 

and G,y=diag([0 0 0 0 1 1]). Further, xjj. is selected as the following for all neighbours: 

Xj, = [Om/s Om/s Orad/s Orad 5m -5m] 

x .̂ - [Om/s Om/s Orad/s Orad -5m -5m] 
31 L J (80) 

x42 = [Om/s Om/s Orad/s Orad -5m -5m] 
x43 = [Om/s Om/s Orad/s Orad 5m -5m] 
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The other different parameters from the first example are: AC(. =0.25, <5ubj=2.0, 

z'=l,...,4. In addition, similar to the previous example, the results are compared to the 

static scheduling case, while execution horizons were found to be 1.1 seconds for all 

subsystems in the static scheduling case. The results are presented in Fig. 19-25. 
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Fig. 18. Schematic diagram for the fixed formation used in the application of the approach to coupled 
subsystems 

The system is scheduled dynamically using the scheduling theory presented in (68) 

and (69). In this formulation, the coupled parts of the scheduling cost function, have 

significant effect on the results, due to the coupled behaviour of the system. To illustrate 

their effect, the same system with exactly similar condition is scheduled using the similar 

scheduler, except that the coupled parts of the dynamic scheduler are removed from the 

scheduler cost function (68). More specifically, this means that the term gy(.,.) was 

removed from the scheduler cost and consequently, LtJ was set to zero in (68). 

As it can be seen from Fig. 19-21, the system has better performance in the case that 

the coupled dynamic scheduling theory is used. However, the improvement in the 

performance is more apparent by the comparison made in the Fig. 22 and Fig. 23. It is 

obvious from these figures that the coupled dynamic scheduling theory has significantly 

better performance than other cases. It is worthwhile to mention that the formation error 

presented in those figures is calculated from the following formula: 



Formation error = £ Z V{xa ~ xcj ~ 4 f + (^,, ~ ycj ~ Vij f (81) 
i=l jeA, 

,th where xc,. and yc. represent the position of i subsystem and x- and yr~ indicate the 

desired relative position of subsystem i with respect toy. 

Furthermore, the change in the execution horizons of all subsystems is presented in 

Fig. 24. However, it is shown in a shorter period than the whole period of simulation, for 

clarity of the graph. Similar to the first example, to verify the estimation of Jsc in (47) 

by Jsc in (48), the values of Jsc which is the actual cost of the system is compared by 

Jsc and presented in Fig. 25. As it can be seen from this figure, the estimation of Jsc by 

J was a valid estimation for this example, as well. 
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Fig. 19. Trajectory resulted from application of aforementioned static scheduling theory 
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Fig. 20. Trajectory resulted from application of uncoupled dynamic scheduling theory 
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Fig. 21. Trajectory resulted from employing coupled dynamic scheduling theory 
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Fig. 22. Comparing formation error of coupled dynamic and static scheduling theories 
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Fig. 23. Comparing formation error of coupled and uncoupled dynamic scheduling theories 
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6. Conclusion and Future Works 

In this thesis, a new method was developed for dynamic scheduling of multiple RHC 

systems. The problems studied in this thesis, have nonlinear dynamics subject to 

uncertainties in the model and sensor noise. In addition, the time delay appeared in real

time implementation of RHC systems with fast dynamics, were considered by using the 

retarded actuation method with prediction of state variables. The dynamic scheduling 

formulation is first developed for the decoupled RHC systems and further extended to the 

multiple RHC systems with coupling in their cost function and dynamic models. 

The proposed algorithms for coupled and uncoupled systems were applied to multiple 

radio controlled hovercrafts simulations to illustrate the new approach. In these 

examples, an experimentally validated RC hovercraft model was used in the simulations. 

An example of three independent RC hovercrafts is considered for the uncoupled case, 

while for the coupled case, a formation of four hovercrafts was presented. In both 

examples, the subsystems are simulated under given maximum disturbances. 

In the first example, the result of the proposed dynamic scheduling approach is 

compared with the static scheduling approach using RMS and presented better 

performance in terms of less error in the trajectory following. In addition, in the second 

example the application of coupled scheduling approach is compared with both 

uncoupled and static scheduling approaches. In this case, employing the coupled 

dynamic scheduling approach resulted in a significant reduction in the formation error. 

For future work, the scheduling method will be applied to an experimental apparatus 

for multiple RC hovercrafts with an overhead vision system for feedback. Furthermore, 
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the new approach can be extended for resource allocation of multiple processing systems, 

which includes both computer clusters and computers with multiple processor 

architecture. It is noteworthy that a preliminary extension of the approach has been 

applied to a computer with two quad-core processors in the CIS Lab1 and the results are 

submitted recently to the American Control Conference [66]. 

' Control and Information Systems Laboratory, Concordia University, Montreal, Canada. 
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