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ABSTRACT 

Seismic Performance Evaluation of Reinforced Concrete Shear Wall Seismic Force 

Resisting Systems 

Shahaboddin Mousavi Azad Kasmaei 

Building codes in various jurisdictions including Canada are moving towards 

performance-based design approaches where a structure is designed not only to have 

adequate strength, but also for the required performance attributes, such as, adequate 

deformability. From that point of view, performance assessment of structures in the 

design phase plays an important role in the implementation of the above concept. The 

focus of this article is to study the seismic performance and torsional sensitivity of 

reinforced concrete shear wall buildings designed using the seismic provisions of the 

National Building Code of Canada (NBCC 2005) and the Canadian standard on 

reinforced concrete buildings (CSA-A23.3-04). The buildings considered here are of 

regular plan and the height is limited to what is permitted for the use of the Equivalent 

Static Load (ESL) method of the building code. A set of three reinforced concrete 

buildings of four, eight and sixteen storey heights are designed here. The buildings are 

assumed to be located in Vancouver and various levels of accidental mass eccentricity up 

to 10% as permitted in the ESL method, are considered. After the preliminary design of 

the buildings using the ESL method, dynamic elastic Response Spectrum Analysis 

"RSA" has been performed to compare the base shear and make appropriate refinement 

in the design as suggested in NBCC. The buildings are then analyzed using inelastic 

dynamic analysis with fifteen recorded accelerograms of past earthquakes. The 
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earthquake records are selected such that the peak velocity to acceleration ratio of each 

record is compatible to the seismicity of Vancouver. The ground motion records are 

scaled to fit the design spectrum using two different methods. The performance 

parameters such as the demand to capacity ratios for storey drift, plastic rotation, and 

storey shear are extracted from the results of the inelastic dynamic analysis. The 

statistical quantities such as mean, standard deviation and the maximum values of the 

demand to capacity ratios are found to be well below the acceptable limits, while the 

storey shear, exceed the limit in all cases. It also is observed that none of the buildings 

are torsionally sensitive within the code specified range of eccentricity for which ESL 

method is applicable. The changes in the dynamic response due to the change in 

eccentricity are almost proportional within the range of eccentricity considered here. 

Another point to note here is that while results for the four and eight storey buildings are 

not very sensitive to the method of scaling of the ground motion records, for the sixteen 

storey building, it is not so. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Motivation 

Earthquake engineering has come a long way since its confinement during 1960 and 

May 1963, when it started as a little unit in the Division of Planning (History of 

Earthquake Engineering 2008), and is growing in fast pace as we gain more experience 

over time. Each time an earthquake takes place, we find out something new and 

earthquake engineering develops from new learning. The aftermath of the 1989 Loma 

Prieta and 1994 Northridge earthquakes are such examples from which we learnt that 

sometimes an only life-safe building is not sufficient (PREPARE FOR 

EARTHQUAKES, 2008). 

One of the fundamental goals of the building design regulatory agencies is 

prevention, or mitigation, of losses from hazards including earthquake. To accomplish 

such objective, the level of performance expected from buildings, during and after an 

earthquake, should be known. Current building code-specified procedures have been 

provided to maintain life safety in the largest earthquakes and decrease property damage 

and loss in the moderate ones; however, there have been dramatic financial losses due to 

seismic activities and the fire following them, for instance, the amount of America's 

financial losses in the 1990s' is estimated twenty times bigger than that of three earlier 

decades all together (FEMA 349, 2000). 
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Building owners, insurers, lending institutions and government agencies have had a 

fundamental misperception about the expected performance of a building that satisfies 

code requirements in the sense that these buildings would be earthquake proof; this is one 

of the reasons that has led to unexpected, even ruining, financial losses which contributes 

to other causes like denser population, aging buildings, incompatibility of buildings with 

the new improved code and standards, increasing cost of down time, or business 

interruption, damages to building non-structural components and its contents. 

Traditionally, life safety and property loss prevention have been achieved via 

indirect ways by which designer has never actually had an assessment of the performance 

level of a building; such design may or may not satisfy the level of damage and loss 

protection perceived by the owner. To rectify this insufficiency, many agencies have 

been working toward development of better criteria. The result was formation of 

Performance-Based Earthquake Engineering (PBEE), a rather new but fast growing 

thought that is present in many recently published guidelines like Structural Engineers 

Association of California (SEAOC) Vision 2000 (1995), and FEMA 356 (2000). 

PBSD permits engineers to design buildings with more foreseeable and particular 

reliable levels of performance in the event of an earthquake of a given magnitude. It also 

allows the owners, financially or else, to quantify the anticipated risk to their buildings; 

this would also allow them to choose a level of performance that fits into their needs in 

addition to the basic safety level. 

Therefore, a building with 50 years' lifetime may be needed to undergo no damages 

under an occasional event, 50% in 50 years. Although suffering some damages in rare 
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case of 10% in 50 years event, it should however be able to remain repairable, and stays 

stable and life-safe for 2% in 50 year extremely rare events, although, it may finally have 

to be torn down. 

PBSD is the basis on which, in PBEE, methods can be established to quantify 

structural damage (beams, columns, foundations, etc.) and non-structural damage 

(partitions, glass panels and so on), means to approximate the number of casualties, the 

building contents' loss, the building downtime, the expense of rehabilitation, also price 

inflation assessment after a major earthquake. So, we need powerful and simplified 

analysis methods that will accurately analyze building structures and estimate the 

(distribution of) Engineering Demand Parameters (EDP) at any possible level of 

vibration, and in particular, the level of shaking that will make a structure to exceed a 

defined limit-state, therefore failing a specified performance objective. 

Several methodologies have been proposed to fulfill this role, such as push over 

analysis, modal pushover analysis, dynamic time history analysis, and Incremental 

Dynamic Analysis (IDA), where general procedures in PBSD can be organized as: 

1) modeling a building's design; 2) Simulate the performance of the design for various 

severities of earthquake records; 3) Assessing the level of damage, if any, nurtured by the 

structure by using the outputs from each simulation; 4) Evaluating the possible financial 

losses by using information obtained in stage three; 5) Adjusting design of the building 

and revising steps 1 through 5 until the desired magnitude of property and financial loss 

is projected. 
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Structural members are to be designed to satisfy the requirements of serviceability 

and safety limit states for various environmental conditions. Fire following an earthquake 

also represents one of the most severe undesired conditions that in first place depend on 

the level of performance of the building under the earthquake; when other measures for 

containing the fire fail, structural integrity is the last line of defence. In pursuing the 

above mentioned steps, adequate attention must also be given to the Post Earthquake Fire 

(PEF) scenarios (Mousavi et.al., 2008). 

The general steps discussed earlier can be even more simplified, say for a particular 

group of buildings, for instance those that fit into Equivalent Static Load (ESL) method 

requirements. Such simplification can provide a more precise estimate of these 

buildings' performance level for particular groups of earthquakes that can then be further 

developed for wider intensity spectrum seismicity. This is the goal in this research. 

1.2 National Building Code of Canada NBCC; Past and Present 

Building codes, including National Building Code of Canada (NBCC) traditionally 

have included: 

1) Specifications on components, 

2) Allowable installation methodologies," 

3) Minimum and maximum room and exit sizes and location, 

4) Qualification of individuals or corporations doing the work, 
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Despite the fact that, historically, the building codes change to ensure that the 

problem never happens again when a problem occurs, the above requirements have been 

usually a combination of prescriptive requirements that spell out exactly how something 

is to be done, and poorly defined performance requirements (e.g. live safe) which just 

outline what the required level of performance is and leave it up to the designer how this 

is achieved. 

As mentioned earlier, in recent years there has been a worldwide move among the 

building code authorities toward performance requirements. In Canada, in the early 

1990's, the Canadian Commission on Building and Fire Codes (CCBFC), too, was faced 

with similar dilemma. That problem was a reflection of concerns addressed by three 

separate groups of Canada's code using community. 

The first group - primarily stakeholders, designers, and product manufacturers- were 

requesting for performance-based codes, perceived to be more open to innovation. 

The second group — primarily house builders — was content with the Codes' 

prescriptive content and worried the loss of this "formula -based approach" if 

performance-based codes were to be used. 

The third group- primarily enforcement officials - had heard fearful reports about 

the outcomes of the adoption of performance-based codes in other countries and worried 

that the introduction of performance-based codes would cause an arbitrary atmosphere in 

which they would have no ground for turning down ill-considered designs and products 

(Bergeron et. al., 2004). 
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To comprehensively solve the dilemma, The CCBFG and the staff of the Canadian 

Codes Centre at the National Research Council of Canada looked for an answer that 

would satisfy the objectives and avoid the fear of all parties. Considering all the above 

mentioned issues, NBCC 2005 is presented in the objective-based format; where, the 

objectives express the aim that codes intend to achieve. Seismic performance of buildings 

using the draft version of NBCC 2005 (NRC, 2005), was first studied by Bagchi (Bagchi, 

2001), parts of which was updated in Humar and Bagchi (2004). 

A series of publications related to the development of the NBCC explaining the 

seismic provisions are published in a special issue of the Canadian journal of Civil 

Engineering (CJCE, 2003) 

The objectives define the codes and give the reasoning behind the acceptable 

solutions. Using the bottom-up analysis of the codes and the taking advantage of the 

feedbacks received in the consultation on objective-based codes (OBC), the CCBFC 

found out the objectives of the codes as represented bellow: 

• Safety 

• Health 

• Accessibility (NBC) 

• Fire and Structural Protection of Buildings (NBC) 

• Protection of Buildings and Facilities from Water and Sewage Damage (NPC) 

• Fire Protection of Buildings and Facilities (NFC) 

The objectives are discussed in Division A of the OBC. Sub-objectives (second-

level and third-level objectives) that provide more in depth information about what the 
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codes are intended to achieve. The NBCC "Safety" objective has 5 second-level: "Fire 

Safety, Structural Safety, Safety in Use, Resistance to Unwanted Entry and Safety at 

Construction and Demolition Sites." 

Although they have many characteristics in common, OBC and performance-based 

codes have certain key differences. Two public consultations have showed that these 

differences have certainly addressed the concerns of code users and that the concept is 

largely backed up by all three groups of the code users 

The primary idea behind the 2005 OBC in Canada is the realization that the 

acceptable solutions present an implicit expression of the levels of building performance 

that are satisfactory to those involved. "Acceptable solutions" are provisions that could be 

either prescriptive or performance-based that can also be seen as a point of reference 

against which other ways of complying with the codes' objectives and performance 

expectations will be evaluated or compared. In an OBC, every acceptable solution is 

related to at least one of the objectives and functional statements in the code. 

1.3 Earthquake in Canada 

1.3.1 Elements causing earthquake in Canada 

The coastal region in western Canada forms part of the circum-Pacific earthquake 

belt also kNown as "ring of fire" that is an area of frequent earthquakes and it is in a 

horseshoe shape. Almost continuous series of tectonic plate movements are taking place 

in these regions; and about 90% of the world's earthquakes, 80% of which are the world's 

largest earthquakes, occur along this region. It, in addition to coastal region in western 
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Canada, includes seismically active regions like Alaska, California, Mexico, Nicaragua, 

Chile, New Zealand and Japan. 

Seismic activities along the West Coast of Canada are originated by the slow 

movement of a string of main tectonic plates 

Two of the largest existing tectonic plates, the North American Plate and the Pacific 

Plate in the Queen Charlotte Islands region, are sliding against each other at nearly 6 

millimetres per year. The Juan de Fuca Plate, Farther in south, is forcing under the 

continent at about 40 millimetres per year (Earthquakes Canada, 2008). 

But, eastern part of Canada rests totally within the North American Plate and is far 

away from the active boundaries of this plate in the mid-Atlantic in the east, and just off 

British Columbia in the west. The forces causing earthquakes in east part of Canada are 

of a diverse nature. It seems that the slow movement of the North American Plate away 

from the Mid-Atlantic Ridge may activate old sectors of weakNess and faults such as the 

St. Lawrence Valley, which would cause them to readjust and have room for the ongoing 

strain. 

1.3.2 Earthquake's Impacts in Canada 

Several big earthquakes have taken place in the short history of Canada; the first 

documented of which can be found in Jacques Cartier's journal, where it talks about 

occurrence of an important earthquake. It probably took place about 1534 near La 

Malbaie, about 100 kilometres downstream of the Quebec city. Also, aboriginal legends 
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in West coast allude to earthquakes verifying that earthquakes regularly take place in 

some parts of Canada (Earthquakes Canada, 2008). 

The magnitude of these old earthquakes has been estimated based on the description of 

damages and ground vibration recorded in historical documents. Two of the most 

significant Canadian earthquakes that happened before existence of any measuring 

device, would probably have had a magnitude of 7.0 to 7.5 on the Richter scale. One of 

these two earthquakes happened in near the mouth of the Saguenay River in 1663; the 

other was in 1872, east of Vancouver. 

In Canada, the 20th century largest earthquake (magnitude 8.1) happened in 1949 in 

the lightly populated Queen Charlotte Islands. In 1929, a tsunami formed by an offshore 

earthquake of magnitude 7.2 south of Newfoundland drowned 28 people. Also the largest 

earthquake in eastern North America since 1935 took place in November 1988 when an 

earthquake of magnitude 6 in the Saguenay region of Quebec caused tens of millions of 

dollars in damage. Fig. 1-1 shows the most significant earthquakes of the 20th Century. 
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Fig. 1 -1 : Significant Earthquakes of the 20th Century (Earthquakes Canada, 2008) 

Fig. 1-2 and Table 1-1 show the date, magnitude and location of the ten biggest 

earthquakes ever to be found in Canada or its territorial waters. Note that several big 

earthquakes taking place in neighbouring Alaska or Washington State have also had an 

effect on people living in western Canada. Earthquakes Magnitudes before the 20th 

century are less precise since they have been approximated from non-instrumental data. 
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Table 1-1: Top 10 earthquakes in Canada (Earthquakes Canada, 2008) 

Date 

1700 

1949 

1970 

1933 

1946 

1929 

1929 

1663 

1985 

1918 

Magnitude 

9.0 

8.1 

7.4 

7.3 

7.3 

7.2 

7.0 

7.0 

6.9 

6.9 

Location 

Cascadia subduction zone. British Columbia. 

Offshore Queen Charlotte Islands, British Columbia. 

South of Queen Charlotte Islands, British Columbia. 

Baffin Bay, Northwest Territories. 

Vancouver Island, British Columbia. 

Grand Banks south of Newfoundland. 

South of Queen Charlotte Islands, British Columbia. 

Charlevoix, Quebec. 

Nahanni region. Northwest Territories. 

Vancouver Island, British Columbia. 

Magnitude 
© 5.0 -5.9 ©6.0-6 .9 0 7 . 0 - 7 . 9 r")>8.0 1660-2004 

Fig. 1-2: Top 10 earthquakes in Canada (Earthquakes Canada, 2008) 
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1.4 Problem Statement 

ESL method provides a simplified way for analyzing buildings that satisfy certain 

requirements set forward by the code, which would provide the information required for 

design of the buildings. However, similar to other common methods of practice such as 

linear response spectrum method, it does not offer a well defined level of performance. 

On the other hand, methods that currently can be used in PBSD are still either much 

more complicated, like inelastic dynamic analysis, or their results are not very much 

close to that of the most accurate one, like pushover analysis method. So, developing 

ESL method and making its results comparable with at least methods like pushover 

analysis would be an appealing improvement. 

1.5 Objectives 

The objectives of this research is to study the ESL method seismic design provided in 

the current edition of NBCC in order to 

• determine buildings level of performance and distribution and dispersion 

of EDP that ESL method of design yields for case of shear wall seismic 

force resisting systems "SFRS", 

• study buildings torsional behaviour and sensitivity; 

• Find possible pattern/s in the buildings' performance and develop a likely 

method and/or expression/s to modify and/or eliminate the possible 

unwanted level of behaviour that would provide more realistic, precise and 

consistent estimate of EDP in a simplified manner. 
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CHAPTER 2 

2. LITRUTURE REVIEW 

2.1 Performance Based Seismic Design (PBSD) 

The origin of the development of "Tentative Provisions for the Development of 

Seismic Regulations for Buildings" goes back to the occurrence of San Fernando 

earthquake at U.S.A. in 1971. It was published by Applied Technology Council (ATC) of 

U.S. and referred to as ATC 3-06 (1978) document. 

Building Seismic Safety Council (BSSC) studied and adapted systematically this 

document and then published it as NEHRP's first recommended provisions for the 

development of seismic regulations for new buildings (NEHRP, 1985), which constituted 

the basis of PBSD and later editions (Ghosh, 2004). 

Performance-based design was created in the U.S. as main approach to resolve seismic 

design problem in the 1990's; in particular, code-based strength and ductility 

requirements related to he design of new building could not be virtually or consistently 

applied to the assessment and improvement of existing building ((FEMA 445,2006). 

To erect an economical building which is safe in predictable conditions, the selection 

of structural, nonstructural, and geotechnical systems and their materials and 

configuration, constitutes the structural design in most of the current codes. 

Structural engineers applied traditionally allowable-stress design (ASD) and load-and-

resistance-factor design (LRFD) based on individual structural elements and connections 
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to guarantee that none of them will support loads or undergo deformation beyond their 

resistance. 

Consequently, the performance capability of some of the buildings designed to these 

prescriptive criteria could be better than the minimum standards anticipated by the code, 

while the performance of others could be worse (PEER, 2008). 

Performance Based Design looks for assuring that a designed building as a whole and 

in terms of safety and serviceability will behave in some expected manners. The First 

generation of PBSD procedures initiated the performance concept as discrete 

performance levels defined with names that meant to imply the anticipated level of 

damage. Such levels of damage have been classified as Collapse, Collapse Prevention, 

Life Safety, Immediate Occupancy, and Operational Performance. They, in addition, 

brought in the concept of performance linked to damage of both structural and non

structural components. Performance Objectives were worked out by relating one of these 

levels performances to a particular level of earthquake hazard. In brief, the first-

generation of PBEE approach presume that if for instance, a particular level of ductility 

demand, is reached, then the designer can be reasonably ensured of an affiliated 

performance level. 

Founded on all other earlier efforts, PEER presented and changed the assumption of 

earlier generations (in that if for instance, a particular level of ductility demand, is 

reached, then the designer can be reasonably ensured of an affiliated performance level) 

with more clear, probabilistic explanations of physical damage and the system's level of 

performance. By employing such methodology, the engineer will be able to tell a 
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building owner that, for example: "The probability in which your building will be 

operational after an earthquake of such intensity is this much; and here is the probability 

that costs of repair will not go beyond e.g. US$ 500,000 dollars during the next 50 years. 

2.2. Methods of Analysis 

Advancement of the computer technology gave an opportunity for expanding the 

structural analysis from static to dynamic, and from linear to non-linear permitting for 

more realistic foreseeing on the status of structures subjected to, particularly the lateral 

forces. Such development in combination with experimental results, and what we have 

learned from real events comprising earthquakes, have driven structural analysis into a 

formal PBSD phase, giving a more vibrant image of the post earthquake status of 

buildings. 

For instance, many inelastic static analyses methods, except methods implemented in 

Federal Emergency Management Agency (FEMA) documents, have been established and 

expressed in form of Acceleration-Displacement (A-D) an illustration of which is shown 

in Fig. 2-1. In such arrangement, the capacity of a structure is directly evaluated with the 

demands resulting from seismic ground motion on the structure. The graphical illustration 

of the concept makes it possible to have a visual interpretation of the process and also of 

the relations between the basic parameters affecting the seismic response. In this process 

the structure's capacity, which is symbolized by a force-displacement curve, is calculated 

from a non-linear static pushover analysis. Then the base shear forces and roof 

displacements are then respectively transformed into the spectral accelerations (A) and 

spectral displacements (D) of an equivalent single-degree-of-freedom system. These 
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spectral values outline the capacity diagram in (A-D) format. Then the capacity curve and 

the demand curves are drawn together in one diagram. It is the definition of earthquake 

demand spectrum that signifies the primary difference between different methods. In all 

methods, the crossing point of the capacity curve and the demand spectrum gives an 

approximation of the displacement demand and inelastic acceleration (strength). 

5% damped 
Demand 
Diaaram 

Demand Point 

Demand Diagram 

Capacity Diagram 
(0 

_© 
Q> 
O 
O 
CO 

D (displacement) 

Fig. 2-1 : Capacity Spectrum Method (Chopra and Goel, 1999) 

Methods developed to make PBSD happen also include modal pushover analysis, 

Incremental Dynamic Method (IDM), N2 method, Incremental N2 method (IN2), 

Displacement-Based Design Method (DBM), Yield point spectra, Direct Inelastic 

Earthquake Design Using Secont Stiffness. 

For instance, Chopra and Goel (2001) demonstrated that pushover analysis of a one-

story system gives a well prediction of utmost earthquake demands, and developed a 

modal pushover analysis (MPA) method for linearly elastic buildings and showed that it 
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is equivalent to RSA method. The MPA technique was then developed into inelastic 

buildings. 

Bagchi (2004) presented a simplified technique for seismic performance assessment of 

a MDOF by converting it to a SDOF system. In this technique the ultimate response of 

SDOF system is achieved by dynamic or response spectral analysis and a relation 

between the maximum story drift and the roof displacement of MDOF system is 

developed from the pushover analysis; this derived relation will then be utilized to 

interpret the response of SDOF obtained from dynamic analysis. 

Incremental Dynamic Analysis or Dynamic Pushover is another method that involves 

a series of scaled accelerogram nonlinear dynamic analyses, where the record's intensity 

measures (IMs) are, preferably, selected to address the whole range from elastic to 

inelastic and at last to collapse of the structure. The intention is to trace Damage 

Measures (DMs) of the structural model at each IM level of the scaled accelerogram, the 

consequential response values oftentimes is plotted against the intensity level as 

continuous curves (Vamvatsikos and Cornell, 2002). 

Direct displacement-based design technique involves a simplified procedure to 

approximate the deformation of an inelastic SDF system due to earthquake, correspond to 

the structure first (elastic) mode of vibration. This step is usually achieved by analysis of 

an equivalent linear system utilizing elastic design spectrums. Goel and Chopra (2001) 

also derived a method that is based on the concepts of inelastic design spectra (Goel, and 

Chopra, 2001). 
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Many agencies took advantage of the past researchers work on the methods of 

analyses for PBSD, such as earlier mentioned techniques, and then developed guidelines 

and pre-standards forming the First-generation of PBSD procedures. Such procedures 

resulted in an important enhancement over building code procedures practiced at that 

time in that they offered a systematic way of designing building through which a desired 

level of performance can be reached. 

In conventional practice, seismic design has specifically been performed for just a 

single design event level, at which a level of performance commonly phrased "life safety" 

has been aimed. Such life safety performance level has been described just qualitatively 

and in terms of considerations that are inadequately expressed, like limiting damage to 

structural elements, avoiding major falling hazards, and maintaining egress for occupants, 

ongoing efforts at performance-based engineering are looking for reliable methods of 

meeting multiple performance targets through clear design procedures. In this regard, 

SEAOC's Vision 2000 (SEAOC, 1995) and the NEHRP Guidelines (ATC, 1996) are 

similarly developed systems of designating building performance that somewhat utilise 

different terminology, and are of the major works in providing more quantitative 

definitions of building performance levels. Table 2-1 summarizes the performance levels 

defined by these projects. 
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Table 2-1: Definitions of Structural performance (Hamburger, 1997) 

Performance Level 

NEHRP Guidelines 

Operational 

Immediate occupancy 

Life Safety 

Collapse prevention 

Vision 2000 

Fully Functional 

Operational 

Life Safe 

Near Collapse 

Description 

No significant damage has occurred to structural and 
non-structural components. Building is suitable for 
normal intended occupancy and use. 

No Significant damage has occurred to structure, 
which retains nearly all of its pre-earthquake strength 
and stiffness. Non-structural components are secure 
a most would function, if utilities available. Building 
may be used for intended purpose, albeit in an 
impaired mode. 

Significant damage to structural elements, with 
substantial reduction in Stiffness, however, margin 
remains against collapse. Non-Structural elements 
are secured but may not function. Occupancy may be 
prevented until repairs can be instituted 

Substantial structural and non-structural damage. 
Structural strength and stiffness substantially 
damaged. Little margin against collapse. Some 
falling debris hazards may have occurred . 

Vision 2000 (1995) emphasises on defining what represents a frequent, rare or very 

rare earthquake (Table 2-2), and focuses on detailed descriptions in what the performance 

conditions are that one wants for different types of events and structures. The Vision 

2000 (1995) document suggests that buildings to be constructed based on their intended 

occupancies and usage to meet the performance objectives shown in Fig.2-2. In this 

figure a relationship is developed between the performance target, type of facility, and 

probability of earthquake occurrence, which is then linked to response parameters related 

to each performance objective. These parameters are identified and some initial estimates 

are quantified. 
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Table 2-2: Earthquake Classification (SEAOC Vision 2000,1995, Bagchi, 2001) 

Earthquake Classification 
Frequent 

Occasional 
Rare 

Very Rare 
Extremely Rare 

Recurrence Interval 
43 years 
72 years 

475 years 
970 years 

2500 years 

Probability of Occurrence 
50% in 30 years 
50% in 50 years 
10% in 50 years 
10% in 100 years 
2% in 50 years 

In addition, Vision 2000 (1995) acceptance measures include engineering response 

parameters (e.g. drift, stress, plastic hinge rotation angle, acceleration, etc.) to be 

considered which are adequate for a particular performance objective such as drift limits, 

Table 2-3. 

Table 2-3 : Vision 2000 Drift limits (PEER, 2008) 

Limit State 

Fully operational 

Operational 

Life Safe 

Near Collapse 

Permissible Maximum 
Drift (%) 

0.2 

0.5 

1.5 

2.5 

Permissible Permanent 
Drift (%) 

negligible 

negligible 

0.5 

2.5 

FEMA which is one of organizations working in the establishment of PBSD 

guidelines, published FEMA 273 (1997) providing a displacement based design 

approach. This document was followed by FEMA 356 (2000) giving an enhancement to 

the first-generation procedures of FEMA 273 and brought FEMA 273/274 (1997) to the 

pre-standard level (FEMA 445, 2006). 
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Furthermore, FEMA developed "ATC-55" project as guidelines for a better 

application of FEMA 356 (2000) and ATC-40, coefficient method and capacity-spectrum 

method respectively that usually provide different assessment for displacement demand 

for the same building. These guidelines represented FEMA 440 (2005). 

PEER too brought forward its own second-generation of PBEE approach. Founded on 

FEMA and the ASCE pioneering methodologies, FEMA/ASCE 356 (2000) pre-standard, 

PEER essentially added two new features to PBEE: (1) Damage analysis. This is the 

clear probabilistic calculation of physical damage, for instance which bars have buckled, 

or which beams have spalling and so on; and (2) Loss analysis. This is the unambiguous, 

probabilistic calculation in order to assess the performance of the building in terms that 

are important for owners and stakeholders, terms such as economic loss, life loss, and 

loss of use on the other word in terms of dollars, deaths, and downtime. 

2.5. TORSION 

In the elastic range of responses, torsional motion results when a structural system's 

centres of rigidity do not coincide with its centres of mass. Structures with non-coincident 

centres of mass and rigidity are termed as asymmetric or torsionally unbalanced 

structures, and the torsional motion induced by symmetry or unbalance is commonly 

termed as natural torsion. Asymmetry may exist even in a nominally symmetric structure 

because of uncertainty in the evaluation of the centres of mass and stiffness, inaccuracy 

in the measurement of the dimensions of structural elements, or lack of precise data for 

material properties such as modulus of elasticity. Torsional vibrations may also be due to 

a ground rotational motion about vertical axis. 
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Torsional motion provoked by the earthquake has been reported as one of the main 

causes of damage in building structures, particularly in the recent earthquake events such 

as 1985 Mexico earthquake, the 1989 Loma Prieta earthquake, the 1994 Northridge 

earthquake, and the 1995 Kobe earthquake. This contributed to the development of the 

study of torsional response of buildings. 

Elastic and inelastic torsional response of building models were widely studied in the 

past. Nevertheless, the results of these studies have not always been reliable; possibly due 

to the complexity of torsional behaviour. This resulted to extensively differing torsional 

provisions in different building codes (Humar and Kumar, 2004). 

The effect of torsional ground motions during earthquake on buildings was first 

pointed out by Newmark (1969). He brought up that it must be torsion effects on 

buildings beyond those due to the absence of coincidence between the centers of stiffness 

and mass (Nathan, 1975) . 

It was Newmark ( 1969) who demonstrated that torsional ground motions must happen 

during an earthquake, thus there must be torsional effects on buildings aside from those 

due to lack of coincidence between the centers of resistance and of mass. Then, he 

suggested a proposed spectrum for other displacements of a building caused by torsional 

input. 

Newmark arrived at a proposed spectrum for the additional displacements of a 

building that would arise from torsional input. 
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He described some conclusions concerning the 'design eccentricity' which should be 

used to represent these effects in an otherwise symmetric building. This question has 

some applied importance. In this regards, Hart et al. (1975) investigated the register of 

the 1971 San Fernando earthquake; they concluded that torsional building response is 

mainly due to the torsional (or twisting) component of the ground motion. 

As a result, a suitable 'design eccentricity' in codes of practice must be allowed. 

Mentioning the 5% of the maximum building dimension required by the Uniform 

Building Code (International Conference of Building Officials, 1967) and the 

recommendations of the Structural Engineers Association of California (1968), Newmark 

evaluates his finding in comparison with this recommendation. 

Nevertheless, the commentary section of the latter document (p. 58) mentioned that 

"this is 'accidental' torsion". Similarly, the National Building Code of Canada has an 

analogous remark again evoking torsion arising from calculated and accidental lack of 

symmetry, without referring to torsional ground motion. Accordingly, it is questionable if 

any allowance has been intentionally made for this phenomenon in any of these codes. 

Humar and Kumar (1998) have reported insufficient consideration for some of the 

parameters controlling the torsional response, particularly the torsional stiffness defined 

by the ratio of uncoupled torsional frequency to the uncoupled lateral frequency. Thus a 

clear provision in the building codes does not exist concerning the torsional stiffness or 

the frequency ratio. These authors suggest new torsion design provisions leading to some 

progress. The proposed provisions are easy to use and are not very different from the 
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usual provisions of some of the standard codes. These proposals form the basis for the 

provisions in NBCC 2005. 

In conclusion, it can be seen that a great deal of efforts has been put into establishing 

new, simplified, accurate and reliable methods in achieving PBSD concept. However, 

there is a lack of effort in bringing the existing simplified Equivalent Static load (ESL) 

method to the PBSD level. So that, the performance level of a building which is designed 

using ESL method of analysis, can be fairly narrowed down; and that level of 

performance can then be scaled up or down by establishing similar approaches, as an 

effort in filling such gap. 
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CHAPTER 3 

3. METHODOLOGY 

3.1 Introduction 

In pursuing the objectives set for this research 3 sets of Reinforced Concrete (RC) 

buildings with shear wall SFRS are analyzed, designed and assessed. Heights of the 

buildings vary from low rise to high rise with a maximum value of 59.6 m that is within 

the limit of 60 m as specified in NBCC 2005 where ESL method can be used. Also, all 

other requirements for a building to be considered a regular building as defined in NBCC 

2005 are satisfied. The buildings are then designed using the provisions of CSA-A23.3-

04 Standard for reinforced concrete buildings. For evaluation of the seismic performance, 

the buildings are analyzed using dynamic time history and Response Spectrum Analysis 

(RSA) methods (using both Design spectrum and actual types of the spectrum). 

3.2 NBCC 2005 and CSA-A23.3-04 implementation 

NBCC acceptable solution requires all buildings to be designed for earthquake load 

(E) based on results from dynamic analysis; however, it allows the use of ESL method for 

regular buildings as defined in the code. The NBCC 2005 utilizes site-specific uniform 

hazard spectrum (UHS) corresponding to two percent probability of exceedance in fifty 

years, in other word a twenty five hundred years return periods (Humar and Mahgoub, 

2003). The code defines the base shear as follows with the minimum and maximum 

boundaries outlined in Equation 3-1: 
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In the above expression. V stands for base shear, S(Ta) is the design spectral response 

acceleration in "g", Ta represents the fundamental period of vibration in terms of seconds, 

Mv factor reflects the higher modes effect, / stands for the importance factor of the 

building, R0 and Rd are over-strength and ductility factors respectively, and W is equal to 

the dead load (D) of the structure plus twenty five percent of the snow load (S). 

To estimate structure's fundamental period of vibration Ta , the code offers an empirical 

formula for RC shear wall SFRS as: 

ra=0.05(/7„)3/4 (3-2) 

where h„ stands for buildings height above the base; however, it allows use of larger 

values stated as other means of calculation, but limits it to twice the empirical value. 

The code defines the design spectral response acceleration values S(T) as a function of 

Sa(T) which is the 5% damped spectral response acceleration in "g", acceleration based 

site coefficient Fa, and velocity based site coefficient Fv, as follow. 

S(T) = FaSa(0.2) for T<0.2 s 

= FvSa(0.5) or FaSa(0.2) the smallest of the two values for T = 0.5 

= FySo(1.0) for T = 1.0 s 

= FrSa(2.0) for T = 2.0s 

= FrSa(2.0)/2 for T> 4.0s (3-3) 
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The base shear distribution over the height of the building is the same as in the previous 

code and is defined as: 

W h 
F,=<y-F,)^*- (3-4) 

/=/ 

where Fx stands for the lateral force applied at level x, n reflects the total number of 

storeys, hx and ht are the heights above the base to levels x and / respectively, W is the 

storey weight. F, is considered to be reflecting the higher modes effect and is exerted at 

the building's roof level and is defined as: 

F, = 0 for Ta < 0.7 s 

F,=Q.01TaV<0.25V for 7/a >0.7 s (3-5) 

Humar et al. (2003) concluded in their work, that buildings torsional sensitivity is a 

function of rotational to translational frequency ratio, and following that established a 

simplified method in determining such sensitivity. Based on their work, NBCC 2005 

requires the building to be also examined for its torsional sensitivity where the ESL 

method is used. 

The Code considers a building, with floors deemed as rigid diaphragms, to be 

torsionally sensitive if a ratio symbolized by B exceeds 1.7. Where, B is the maximum of 

all values of Bx in both orthogonal directions. Bx for each level x, and for each 

orthogonal independent direction would be calculated as Bx = 8 max / 8 ave. In this 

formula 8max stands for the maximum storey displacement at the extreme points of the 
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structure at level x in the direction of the seismic load induced by the equivalent static 

forces and exerted at a distance equal to ±0.1 Dnx from the Center of Mass (CM) at each 

floor, and Save is the average of the displacements of the extreme points of the structure 

at level x generated by the above forces, where Dnx is the floors' dimension 

perpendicular to the direction of earthquake load at level x. If torsionally sensitive, then 

the code requires a dynamic analysis to be conducted. 

On the design part, CSA-A23.3-04 (2004) requires maintaining ductility of shear walls 

in which the following restrictions should be satisfied; where the demand rotation should 

be smaller than or equal to that of capacity (Fig. 3-1). 

0ld=¥(RdRo-rwy(hw-iJ2)> 0.004 

eic = (ejw Me- 0-002) < 0.025 

Ad=AfRdR0 

\r„ 

0.5h 

(3-6) 

(3-7) 

Fig. 3-1 : Inelastic rotation demand of shear walls 
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In addition, the Code requires the shear wall to resist the shear that corresponds to the 

development of plastic hinge at their base in which the design shear and shear resistance 

are calculated as follow 

V=MJMfxVf (3-8) 

Vr = <t>cPjf\ bwdv + <f>sAvfydvCot{e)ls (3-9) 

3.3 Choice of computer programs used 

Among the commonly used computer programs for structural analysis and design, 

including STAAD Pro (REI, 2008; later merged in Bentley corporation), SAP2000 (CSI, 

2008), ETABS (CSI, 2008) and SAFE (CSI, 2008), the last two mentioned programs are 

used here and for their reliability and flexibility, their results are randomly checked 

against manual calculations. However, because of their incapability in nonlinear analysis 

of RC shear walls, they could not be used for evaluation of the designed buildings. 

There are many programs that may provide inelastic structural analysis option, yet, 

they may vary in features like 2D or 3D analysis capability, and computer time 

consumptions. To evaluate buildings performance as realistic and time wise efficient as 

possible, different softwares were explored and PERFORM 3D (CSI COMPUTERS & 

STRUCTURES, INC.) is found to be the best and foremost match among a series of 

programs for pursuing the objectives of this research. There are programs like ANSYS 

that are general purpose nonlinear programs; however, they may not be practical in 

featuring building's structural elements, particularly in a large scale; there also are 
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programs like ID ARC 2D that just provide two dimensional analysis that will not fit into 

the objectives of this work. Also, there could be other programs like CANNY 2004 

developed by Kangning Li; its trial version was tried but did not prove reasonable results. 

In order to validate the results of PERFORM 3D and ETABS, at first, a 2D 12 storey 

shear wall sample adopted from Humar and Bagchi (2004) is employed. The plan view 

and elevation are shown in Fig.3-2, and the ETABS and PERFORM 3D geometrical 

models are shown in Fig. 3-3. The shear walls are modeled in both Programs and the 

results extracted from the dynamic analyses and pushover analyses are compared with 

those given in Humar and Bagchi (2004) that are modeled and analyzed using DRAIN 

program. The comparative results produced in the Fig. 3-4 and Fig. 3-5 are based on the 

nonlinear dynamic time history analysis, except for ETABS which has only linear 

dynamic analyses capability for shear walls. 
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Fig. 3-2: Layout of the building with shear wall (a) plan, and (b) elevation 
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Fig. 3-4 proves that PERFORM 3D pushover analysis results in similar out come as 

that in Humar and Bagchi (2004). It also can be seen in Fig. 3-5 that the inter-storey 

drifts are in a good agreement with the results presented in Humar and Bagchi (2004). 

Fig 3-5 shows that the displacements resulting from all programs, both linear and 

nonlinear analyses, are in good agreement with each other. These results are also in a 

good agreement with the Equal Displacement Rule established by Velesos and Newmark 

(1960); this rule states that "displacement of a structure due to a given ground motion is 

basically the same for both elastic and inelastic structural behavior". Also, NBCC is 

using the same rule in its provisions. 
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It should also be noted that for designing slab, CSA-A23.3-04 (2004) considers three 

types of RC strips; design strip, column strip and a strip with a width equal to that of the 

column plus 1.5 times the thickness of the slab on each side of the column; here 

thereafter, we call it Core Strip. 

Although, PERFORM-3D is capable of carrying nonlinear dynamic analysis in 

general, such analysis does not include the flooring system. Therefore, in order to 

simulate the possible nonlinear behavior for slabs, the slab has been replaced by 

equivalent strips as discussed and represented as beams in Perform 3D models. The 

detail of Core Strips are presented in Fig.4-12 to Fig.4-14 series. 
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The four, eight and sixteen story building models constructed in ETABS and 

PERFORM 3D are shown in Fig.3-6 to Fig.3-7. As shown in these figures, ETABS 

models incorporate the wall, flat slab and column components, while the PERFORM 3D 

models includes columns, walls and equivalent beams/strips. 

In a computer program, linear analysis is typically done through specifying the 

properties of an element by assigning a cross section and an elastic material to the 

element. Generally, the element properties are then completely defined. However, it is 

more complex for nonlinear analysis, because more properties are required. Linear 

analysis requires just stiffness properties, while nonlinear analysis needs both stiffness 

and strength properties. 

Walls in ETABS are modeled using shell element, and in PERFORM 3D they are 

modeled using fiber elements. 

In ETABS, the Shell element is a three/ four node formulation that combines 

membrane and plate- bending behaviour; in this work the four joint homogenous shell 

formulations is used for modeling of the wall. 

The membrane behaviour uses an isoperimetric formulation that includes translational 

in plane stiffness components and a rotational stiffness component in the direction normal 

to the plane of the element, where in-plane displacements are quadratic. 

The homogenous plate-bending behaviour includes two-way, out-of-plane, plate 

rotational stiffness components and a translational stiffness component in the direction 

normal to the plane of the element. 
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A thick-plate formulation which includes the effects of transverse shearing 

deformation is used in the modeling, where out-of-plane displacements are cubic. 

In PERFORM 3D, The important forces in a shear wall are considered as shear force 

and axial-bending action along the vertical direction of the wall. The transverse direction 

is assumed to be a secondary direction. For the primary axial-bending behaviour a fiber 

wall cross section must be defined. For shear the user must specify a shear material and 

also an effective wall thickness. A shear wall element can also bend out of plane. 

PERFORM 3D assumes that out-of-plane bending to be elastic and a secondary mode of 

behaviour. For transverse behavior, PERFORM 3D requires an effective thickness and an 

elastic modulus to be specified. Also for out-of-plane bending an effective plate bending 

thickness and a modulus must be specified. 

The back bone relationship used for reinforcement is a bilinear relationship, and a trainer 

relationship with strength loss is used for the concrete. 
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Fig. 3-6: Buildings' geometric modeling in ETABS (a) 4 Storey (b) 8 Storey (c) 16 Storey 
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Fig. 3-7: Buildings' geometric modeling in PERFORM 3D (a) 4 Storey (b) 8 Storey (c) 16 Storey 
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3.4 Seismic excitation, and selection of earthquake records 

In a dynamic analysis, the most suitable ground motions would be earthquake records 

from the region that the building would be built in. Since, such records do not exist for 

Vancouver, a series of records that can provide the most similar outcomes should be 

used. 

Characteristics of earthquake records vary very much from record to record. Key 

features of these records including the intensity, frequency content, and duration of strong 

shaking are functions of different factors such as earthquake's magnitude, local site's 

condition, and the epicentral distance. Difference in earthquake features can lead to 

essential differences in building structures' responses. Frequency content is of the 

fundamental factors that affects the structural responses. Peak ground acceleration to 

peak ground velocity ratio (A/V) is a simplified way of estimating frequency content of 

an earthquake record (Heidebrecht and Lu, 1988). Statistical studies have proven that 

records with high A/V values have high frequency content and are typically associated 

with moderate to strong earthquakes at small epicentral distances, and low A/V values 

normally have low frequency content and represent large earthquakes at large epicentral 

distances. 

Naumoski (Naumoski et. al., 1988) presented three ensembles of recorded 

accelerograms with different A/V ratios: high A/V ratios (A/V > 1.2), intermediate A/V 

(0.8 < A/V <1.2), and low A/V ratios (A/V < 0.8), where A is in g, and V is in m/s. Each 

group consists of 15 accelerograms. All the selected accelerograms are recorded on rock 

or stiff soil sites. 
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Seismic zoning map of NBCC 1995 provides typical A/V ratios for different zones. 

This ratio for Vancouver area is about 1.0. The second (intermediate) group of 

accelerograms provided by Naumoski et. al. (1988) as mentioned above, have A/V 

varying from 0.8 to 1.2 (average of about 1 for the group) that fits into the Vancouver 

area; these records are presented in Table 3-1 and used in this research. 

On the other hand, NBCC 2005 provides the 5% damped Acceleration Response 

Spectrum (ARS) values for the reference ground conditions that correspond to Uniform 

Hazard Spectrum with 2500 years return period (UHS-2500) as a representative of the 

earthquake intensity level for the areas and requires the design spectral acceleration 

values to be calculated based on that. 

There are different methods for scaling the intensity of an earthquake record intensity 

to a required level, which include ordinate, partial area, and full area methods. In doing 

so, spectral analysis is carried out for each ground motion record, and the actual response 

spectrum is scaled up or down to match Vancouver's design spectrum. 

Ordinate Method (OM) is based on building's fundamental period of vibration. In that 

case, the ground motion time history are scaled up or down by multiplying them by a 

ratio equal to the design spectral acceleration, Sai divided by the actual spectral 

acceleration, Sa2 the scaling factor (Fig. 3-8). On the other hand, in the Partial Area 

Method (PAM), A2 which is the area under the actual ARS between the second period 

"T2" and 1.2 times the fundamental period "Tl" is scaled to equal the area under the 

design spectral acceleration curve "Ai" between the same period range, then all values of 

the actual acceleration response spectrum are scaled by using A1/A2 as the scaling factor. 
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Full Area Method (FAM) is similar to PAM, but A] and A2 are areas between the 

minimum and maximum period range, which is taken as 0.01 here. 

The scaled records are used to excite the buildings along their principle axes, similar 

to the response spectrum, and ESL method analyses. 
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CHAPTER 4 

4. BUILDINGS DESIGN 

To achieve the objectives set earlier, three Reinforced concrete (RC) Buildings with 

shear wall Seismic Force Resisting System (SFRS) are configured, modeled, analyzed 

and designed, after which the performance evaluation of the buildings are carried out. 

Four, eight, and sixteen storey RC buildings with plan views, illustrated in Fig.4-5 to 

Fig.4-7 series, that fall into the definition of regular symmetric buildings of NBCC 2005 

are analyzed and designed, regarding which a summary of the design procedure is 

presented in this chapter. It also should be noted that the buildings are of heights equal to 

15.8, 30.4, and 59.6m respectively, which are within the limit of Equivalent Static Load 

(ESL) provided in NBCC 2005, as well as varying levels of the domination of flexural 

behavior and shear. Moreover, sensitivity of buildings' performance against torsional 

effect is studied here by varying the level of mass eccentricity within a range of 0 to 10% 

of building width as recommended in NBCC 2005 for accidental torsion. 

In a region like Vancouver, not only buildings with fundamental frequency similar to 

that of the earthquakes are hit by the ground motions, but all buildings with all 

frequencies are hit with the same earthquakes. Therefore all of these buildings need to 

satisfy similar performance objectives as buildings that are in tune with the ground 

motion (A/V =1). This is the same approach used in NBCC. The code does not require 

the spectral acceleration and relevant parameters (for buildings with A/V = 1 frequency 

content) to be applied to buildings with other frequencies, but gives an spectrum from 

which the spectral acceleration for each period can be extracted. 
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In another word, studying buildings with different periods could, for instance, result in 

a response spectrum like solution that can be used for buildings with different periods. 

4.1 Buildings' description 

Three 3 bays by 3 bays 4, 8, and 16 storey office buildings with flat slab (0.25 m 

overhang) are analyzed and designed. The 1st floors' heights are 4.85m and the height of 

all other floors above the first floor are 3.65m. Buildings are located in Vancouver 

representing high seismic activity in Canada, and founded on class "C" soil. 

The fundamental periods of the buildings, calculated using the empirical formula of 

the code, are found to be 0.3962, 0.6473, and 1.0725 as given in Ta =0.05(hn)
3/A 

(Equation (3-2)) for 4, 8, and 16 storey buildings, respectively. On the other hand, the 

code requires that the fundamental period calculated from the model analysis does not 

exceed twice that obtained using the empirical equation. For the four and eight storey 

buildings, the fundamental period computed using ETABS are larger than twice that by 

the empirical formula of the code. Therefore, the values of the fundamental periods are 

revised to 0.7925,1.2947, and 2.0178 respectively. 

The material properties include concrete with an unconfined compressive strength^.' 

equal to 30 MPa; concrete initial modulus of elasticity Ec is considered equal to 26,600 

MPa and it has a normal density of 24 kN/m3. The reinforcing steel is weldable and has a 

tensile specified yield strength^, of 400 MPa. 

The design live load (L) is equal to 2.4 kN/m for all floors except for the first storey 

that is 4.8 kN/m2. The snow load is 2.3 kN/m2. Exterior walls dead load are 0.85 kN/m2, 

46 



for partition on floors 1 kPa, 0.5 kPa for ceiling and mechanical services on all floors, 

and 0.5 kPa for roofing. Critical loads combinations are 1.25D + 1.5L + 0.5S 

and D + E + 0.5L + 0.25S. 

The four and sixteen storey buildings have no beam element and their floors are of the 

flat plate type; however the eight storey building configuration for just flat plate resulted 

in large punching shear in the corner columns and proved the need of perimeter beam 

element presented in Fig.4-12 with the portion of slab as the effective flange width. 

Premier beams in the 8th storey building are designed to allow for the formation of 

plastic hinges at the end of beams before the columns, so that the strong column-weak 

beam requirement set by the standard is satisfied. 

The stiffness of the members is based on the CSA-A23.3-04 (2004) requirements for 

seismic resisting buildings and is averaged over every few floors. For instance, the eight 

storey walls, sections view of which are shown in Fig. 4-8, are modeled with a flexural 

rigidity of 0.68EIg for stories one to four, and 0.64EIg for stories 5 to 8. These values of 

flexural rigidity are used in the static and response spectrum analyses of the building 

models for calculating the design moments and shear in the structural elements. 

However, for the detailed structural analysis involving nonlinear dynamic analysis, the 

effective flexural rigidities are calculated by Perform 3D using the fibre models as 

described earlier. 

47 



4.1.1 Structural Analysis 

The analysis of structures are carried out based on dead, live, and snow load as 

mentioned earlier, and the earthquake load as discussed below. For ductile shear walls, 

Rd= 3.5 and Ro= 1.6, are considered as recommended in the code. The seismic load is 

assumed to be unidirectional and along one of the principal axes of the buildings. 

Located in Vancouver, the buildings are assumed to be founded on a class "C" soil, 

the acceleration-based coefficient Fa and the velocity based coefficient Fv are both equal 

to 1.0, and the higher mode factor varies from one for the four storey, 1.044 for the eight 

storey, and 1.2 for the 16 storey buildings. The 5% damped spectral response 

acceleration, Sa(T), and design spectral response acceleration values, S(T), for Vancouver 

are as shown in Table 4-1 andFig.4-1. 

Table 4-1: Acceleration Response spectrum 

Sa(T),S(T) 

T<0.2 

0.94 

T = 0.5 

0.64 

T = l 

0.33 

T = 2 

0.17 

T > 4 

0.085 
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a 
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Fig. 4-1: Design spectral response acceleration 
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Using Equation 3-1 of the ESL method for the 8 storey building results in design base 

shear equal to V = 2494 kN, while the minimum and maximum limits imposed by the 

code are Vmin = 1145 kN and Vmax = 4221 kN 

Torsional sensitivity as described in section 3.2 is determined, and the "B" parameter 

defined by the code equals to 1.11 that is smaller than the limit of 1.7 set by the code; 

therefore the building is not a torsionally sensitive building, and dynamic analysis is not a 

necessity; this is also true for four and sixteen storey buildings. 

However response spectrum linear dynamic analyses for all the buildings are carried 

out; in these processes, the first 12 modes are taken into account. For instance, the 8 

storey building results in cumulative modal participation mass ratios of all greater than 

97.8% that is bigger than the minimum 90% required by the code. In pursuing the results 

from dynamic analysis, the elastic base shears from linear spectral dynamic analysis is 

multiplied by IE/(RCI RO) to obtain the design base shear that code requires to be equal or 

greater than 80% of that for ESL method. 

Then to obtain the design values, the forces and deflections are multiplied by Vd / Ve. 

Also, to obtain the realistic deformation values, the earlier design values are scaled by the 

factor (RdRo)/lE. 

80% of the base shear "Vd" resulting from the ESL method, as given by 

Equation (3-1), is equal to 1995 kN; and design base shear for linear dynamic analysis 

equals to 2325 kN that is greater than 80% of the design base shear from ESL method, 

therefore the scaling factor would be equal to 0.1786. 
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The maximum base shear resulting from RSA, for the critical wall, is equal to 1126 

kN as compared to that of revised ESL method which is 1254 kN. Similarly, the 

maximum inter-storey drift is equal to 0.22% that is slightly smaller than 0.21% from the 

response spectrum method, and both are well below the code's limit 

To maintain shear wall's ductility the standard requires the inelastic rotational demand 

at hinge to be smaller than that of capacity; for the 8 storey ESL method 0jd , 

Equation (3-6), equals to 0.0062 which is smaller than 0ic = 0.0071 , Equation (3-7), and 

satisfies the code requirement; this requirement is satisfied for the other two buildings 

too. 

The Code also requires the modified factored shear to be smaller than the capacity as 

defined in Equation 3-8 and Equation 3-9 the demand value for the 8 storey building on 

the critical shear wall is 2285KN that is smaller than the capacity of 2924 kN; this 

requirement is also satisfied for the other two buildings. 

For comparison, base shear demand and its distributon along the height of the critical 

wall for each building and for different analysis methods are shown in Fig.4-2 to 

Fig. 4-4 series. It can be seen that the base shear resulting from ESL methode using 

fundamental period is well comparable with that of actual RSA using OM and PAM of 

scaling. 
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The final results of design for the buildings are presented in graphical form in the 

following drawings, Fig.4-5 to Fig.4-14 series. All buildings consist of 3 bays in either 

orthogonal directions, and the width of the buildings in both directions is the same and 

equal to 21m from center to center of columns as shown in Fig.4-5 to Fig.4-7. It should 

be noted that the building configurations chosen here are idealized structures, the 

placement of the shear walls may in some cases not represent a common application 

where the architectural correlations would be important for the placement of these walls. 
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Fig. 4-5: Plan view; 4 Storey Building 
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Fig. 4-6: Plan view; 8 Storey Building 
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B D 

3 > 

7m 

21m 

Fig. 4-7: Plan view; 16 Storey Building 
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The 4 storey building consists of 4m wide walls, Fig.4-8, with a constant thickness of 

35 cm along the height to the roof of the building; however the reinforcement varies 

along the height, the concentrated bars for the first 2 stories consists of 8-25M and it 

turns to 8-15M for the 2nd set of top stories. The concentrated confining bars near the 

edges of the walls vary along the height too; it includes closed ties at 100 mm plus an 

additional cross-tie in each direction for the first two stories, and similar arrangement for 

the 2 top stories but with spacing equal to 150mm; horizontal and vertical distributed bars 

are 10M at 220mm that would be almost equal to the minimum requirement. 

Similar trend can be seen for the columns (illustrated in Fig.4-9), also for core slab 

strips and beams (illustrated in Fig.4-10 Fig.4-14 series) for all buildings. It should be 

noted that the structural configurations are set up in a way to keep all aspects of building 

design/construction including ESL method requirements, practical and economical 

features optimized. 
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CHAPTER 5 

5. EVALUATION OF BUILDINGS' PERFORMANCE 

5.1 Introduction 

The best and most accurate way to evaluate performance features of a building is to 

run a nonlinear time history dynamic analysis. Such evaluation would require exposure of 

the building to a group of earthquake records that should include an adequate number of 

seismic accelerograms each of which has features representing the region of interest; 

while the EDPs can be extracted and then assessed. 

Key Engineering Demand Parameters (EDPs) studied in this research include inter-

storey drift, plastic hinge rotation of shear wall, shear on shear wall, tensile strain values 

of bars, and compressive (crushing) strain values of the concrete. It should be noted that 

all values in the evaluation part are nominal but the design loads. 

Based on the NBCC 2005 seismic provisions' acceptable solution, buildings should be 

able to attain the "Collapse Prevention" performance level in the case of a UHS-2500 

event, where for instance the inter-storey drift is limited to 2.5% for the buildings 

considered in this work. 

For the purpose of dynamic analysis, a group of 15 earthquake records Table 3-1 

offered by Naumoski (Naumoski et. al., 1988), are scaled to fit in to the code's requirement, 

as described in section 3.4. The calculated scaling factors for the three methods, FAM, 

PAM, and OM, are presented in Table 5-1. Although, Full Area Method "FAM" is not 

employed in the time history dynamic analyses, it does not reduce its importance. FAM 
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can specially be of a bigger interest when the building enters into inelastic phase in such 

case building periods would increase. 

The envelope curves over the 15 scaled response spectrums, resulting from the actual 

accelerograms, prove a well identifiable margin with some spikes above the Vancouver's 

design spectrum curve defined by the code; that is true for all methods and all buildings, 

Fig. 5-1 to Fig. 5-3. 

The impact of such difference is shown in Table 5-2 and figures Fig4 4-2, Fig. 4-3, and 

Fig. 4-4. The results proves that base shears resulting from PAM and OM envelopes of 

scaled response spectrums analysis are much more in tune with the ESLempirical method 

than with the ESLrevised or DRS method of analyses. 

67 



o 
•*—» 

Fa
c 

no 
c 

Se
al

 

•a 

ec
o 

K 
a> 

^ 
cS 
3 

X ! 

ts 
C3 

w 

-1
 

l/~> 

<L) 

.£> 
CO 

H 

©1 
s 

t » 
• P4 

s 

re
v 

B
 

o 

*o 1-H 

ST) 
s. 
O 

OS 
UH 

CJb 
e • P N 

os 
o 

cc 
05 

t 3 

O 

4> 

£ 
J * 

3 
a-

JS 

E
ar

t 

* 

R
ec

or
d 

'1 
s 

J3 

84 
W 

V ) 
i - H 

CtS 

TT 
1—1 

tf 

t o 
r H 
PS 

«N 
T-t 

tf 

I - I 
I H 

« 

e <-H 
OS 

Os 
PS 

8 

PS 

so 
as 

£ 

3 

2 

2 

i - ^ 

PS 

-

«r» 
•vi
e s 
T — 1 

f M 

en 
00 
r-
00 
? — * 

<=fr 
V© 
• * 

r-

r-, 
r«l 
• / - i 
00 
T 

1 " 
o 
ON 

o 
• o 

• n 
-3-
o 
o 
— 

CN 
r-
o 
—̂ 

C N 

oc 
•r i 
r~ 
r 1 
C N 

•— 
-r 
m 

o 
oo 
o 
r 
r j 

— 

r i 
rN 
•r i 

Os 
»—i 

</>. 

cN 

oo 
v© 

2
2 

r-i 
SO 
C I 

r J 

»—* 
r n 
1—1 

o 
1—( 

o 

C3 

2 
< 

s H 

CN 
O 
CN 
O 
cN 

e> 
r -
•— 
so 
— 

r<-> 
r -
oo 
so 
— 

V * 
T — 

o 
<r> 
v© 

CN 
O 
K1 
00 

T — • 

r-
CN 
m 
• > * • 

CN 

OC 
r-~ 
C I 
|_— 
CN 

( N 
r-
C4 

oc 

o 
<N 

< * s 

"vf 
s© 
00 
CN 

c*s 
oo 
o 
r-
o 

- i -

o 
r N 
CN 

s© 
CN 

f~ 

<•«•> 

\ D 
<n 
CN 

^* 
SO 
oo 
oo 
o 

5' 

J 
"7* 
r t , ' 
U 
* > * • > , 

oo 
^~ 
os 
VO 
— 

o 
m 
c-i 
^J-

m 
~— 
ON 
v> 
— 

oo 
oo 
ON 

.—. 
^J-

r-
en 
«-i 
• " S - -

o\ 
o 
oo 
o 
CN 

o 
• * 

r~-
ON 

OO 
• * 

c> 
CN 

CN 

m 
•<* 
SO 

r̂  
ON 
i n 
SO 
CN 

00 
ON 
SO 

Os 

OO 
o 
m 
o 
CN 

OO 
OO 
ON 

vt 
»— 
>/-l 

oo 

CN 
CN 
SO 
oo 
o 

M
et

ho
d 

83 

21 
< 

S5 
PH 

WD 
S • PM 

•T3 
• P* 

3 
PQ 
V 

o 
s/5 

00 
L. 

a 
o -»^ 
tj 
C5 

W) 
c 

^« 

C/5 
09 

TJ 

o 
0> 
Pi 
o 

est 
3 
CT 

05 

w 

•g 

1 
2£ 

j j 

3 

* 

J 

«r. 
T - ( 

PS 

T 
i - ^ 

PS 

»o 
^^ 
r* 
S i 

r< 
32 

^ 4 

^ 4 

r^ 

O 
^^ 
PS 

PS 

ao 
j g 

. 

r 
d 

S 
• 

m 
OS 
— 

OS 

1*1 
PS 
- — 

2 

M 

PS 

• * 
v> 
t N 
«—i 

<N 

"* 
O 
SO 
oo 
— 

>n 
r 
r*~ 
r~-

o 
• 0 0 

'«n 
t -
• * 

• > * 

i n 
r-
SC 
i n 

ON 
* T 
Os 
OO 
— 

o 
»— 
Os 
o 
CN 

t 
•/") 
CN 
SO 
CN 

n 

i—1 

r>j 
V , 
.-« 

• 

»© 
o 
<n 
»« 
« 

o 
o 
<n 
- * 
a* 

30 
SO 
<N 
*0 
CN 

v© 
v© 
IT) 
CN 

r-i 

—̂ 1 -
^« 
n 

CN 
w> 
O 
o 
— 

© 

s 
<0 
u 
< 
"3 

sC 
1 -
t 
-r 
— 

r̂  
Cs 
C 
r̂  
O 

f -
o 
rs( 
o 

i~-
r~ 
O-
>n 
r ) 

- f 
C I 
ON 
ON 

-r 

• * 

• * 

<N 
O 
r» 

Ox 
"* 
s© 
Os 
CN 

r 
00 
r"1 
sO 
— 

SO 
-r 
o 
o 
o 

— 
— 
00 
r i 
OO 
— 

o 
' / " ] 

-t-
SO 
r-

o 
r<-> 
ON 

r~; 

< — I 

I — 1 

OO 
Os 

^ H 

^ 

- i t 
• « * : 

,~©' 
! ^ 
a.©-; 

<3h « * 
£,*< 

CN 
OO 
oo 
r~-
— 

o 
o 
CN 
f -
— 

r--
Os 
in 
m 
~̂ 

, , 
C^ 
<n 
r-~ 
r o 

r o 
ON 
u-» 
O 
^ f 

o 
^r 
OO 
r-

m 
CN 
CN 
00 

v© 
«o 
o 
rn 
c i 

oo 
f -
t -
r f 
~̂ 

o 
oo 
»—1 

n 
CN 

ON 
ON 
ON 

** 
OO 

O 
r̂  
r~-

CN 

ON 
o 
^« 
00 

cr> 
SO 
^r 
00 

vn 
m 
r̂  
oo 
© 

"O 
o 

• • - » 

4> 

s 
< 

!s 

ox 
s • P H 

'O 
•^•1 
3 

cu 
La 

o 
C/3 

u o «*H 

o 
-w 
o 
05 

OX) 
_c 
^ 1 ^ 

05 

cn 
T3 
U 
O 

4> 

o» 

05 
3 
o-• a 

• * - > 

im 

05 

w 

O 

u 

03 

cr 
t: 
cs 

W 

V ) 
I—I 

CS 

• ^ 

T H 

PS 

eo 
PS 

f N 
i—1 

PS 

rH 
i—1 

PS 

o 
PS 

§ 

00 
PS 

r-
PS 

v© 
PS 

H 

s 

2 

2 

> • * 

PS 

00 
o 
f -
o 
CN 

ON 
so 
r*1 
OO 
— 

t-
V~i 

CN 
t ~ 

^* 
1 -̂
f » 
t -
^ 

Os 
T - J 
* - f 

V I 
*n 

>o 
>o 
ON 
OO 

r-
Os 
,^-
o 
CS 

r — 

o 
~̂ 

CS| 

CA 

•O 
"O 

</-> 
, 

o 
!3 
so 
C I 

T 
ON 
t ~ 

Os 

r~i 
f -
r̂ -
r~i 

J^ 
tn s 
c-SE 
o 

f4 
CM 
<N 
Os 
© \ 
o 

TJ 
O 

JS 

1 
"3 
fc, 

SO 
OO 
>/-. 
- t 
— 

-r 
t -
00 
r̂  
— 

r 4 
C^ 

0 \ 
i—< 

oo 
m 
CN 

— 1 

f N 
o 
00 
CN 

r~ 
CN 

£*». O 
-tf- >n 
cfe — 

^ 4 
- t 
' / • > 

CA 
SO 
c-1 

Ci 
O 
1 ^ 
oo 
CN 

. „ 

>n 
^ f 
ON 

O 

ON 
CN 
CN 
r-
r o 

oo 
m 

SSSr-» 0 | | | sD 

r E 

r~-
o 
o 
C^ 

'HH'* 
'^a v © r a < ^ 
sf f lcN 
C g C N 

u « 1 ' ^ 
M H 

oo 
Os 

O 
Ci 

r-
rn 
so 

CN 

r i 
oo 
o 

CN 
r i 
ST) 
s© 

t^-
r-̂  
C N 
oo 
o 

J-

I1 
c5'« 

CN 
i n 
^ 

O 
ON 
CN 
,—— 
CN 

r-
<n 
Os 
o 
00 

r-
s© 
m 
9C 
CN 

^ f 
- t 

rl 
r» 
•<+ 
r-; 

>n 
SO 
m 
oo 
o 

• o 
© 

s 

PH 

cn 
-O 
O 
f 

•4—• 

0> 

E 
CO 

oo 
5 
E 
E 
3 

E 

oo 
SO 

•o 
O 
f >-» 
<D 

E 
m 
oo 
c 
o 
E 
CS 

£ 
_3 

•5 
<u 

" 1 

E 
, 3 

E 
1 
s 



It is also observed that the spectral accelerations corresponding to each method of 

scaling varies well around the design spectral acceleration values defined by the code, 

except for the exact value of Tl in OM of scaling to which spectral values for all the 15 

earthquake records are equal. The ARSs for the 15 accelerograms are shown with 

Seriesl to Seriesl5 and with solid lines; and the envelop spectrum over the 15 records are 

shown with dotted line, Fig.5-1 and Fig.5-2. It can be seen that if a building enters to 

inelastic phase, the building's period and spectral acceleration will both increase (the 

thick lines in Fig.5-3); the rate of such increasing declines as the buildings height 

increases. That is despite the case of design ARS defined by the code in that the response 

spectrum will decrease as the period increases. 

After a building yields, its fundamental period will increase. Then, the increased 

fundamental period will be within the range of periods considered in Full Area Method 

(FAM), and or Partial Area Method (PAM). However, this increased fundamental period 

is different from that of Ordinate Method (OM) of scaling. Therefore, in such case, PAM 

and FAM scaling approaches can be used as preferable methods compared to OM. 

Then, an overall envelope spectrum over the 3 earlier envelopes (i.e., the envelop for the 

15 accelerograms for each of the 3 methods of scaling), also a synthesized accelerogram 

representing this overall response spectrum can be created. These spectra, and the 

synthesized accelerogram can be used for response spectrum and time history dynamic 

analyses respectively instead of 45 run for each case. 
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A comparison of results from different methods of analyses as shown in Table 5-2 indicates 

shows that "EDP /EDPReVised" ratio for M (moment at the base of wall) and for Af (maximum 

displacement at the roof level) for each method analysis are very close for all three buildings. 

"EDP /EDPRevised" ratio for M and Af decreases as the building hight increases. However, an 

irregularity is observed in the case of 8 storey building that can be because of perimeter beams in the 

8 Story building. "EDP /EDPRevised" ratio for "V" (base shear in wall) follows similar pattern but in 

the reverse order (in an ascending order), and with similar irregularity in the 8 story building. 

Also, EDP /EDPRevised for (V) divided by that of M or Af increases as the buildings' height increases. 

This can be due to higher mode effects and is in a good agreement with the N21.6.9.1 explanatory 

note on CSA standard A23.3-04 (Cement Association of Canada, 2006) that states "the inelastic 

effects of higher mode result in a need to increase the shear capacity in wall, but there is not any 

simplified method to incorporate that yet". This also is true for ESL methods for the other 2 

buildings; however, the ratio for base shear (V) resulting from actual response spectrum analyses 

gets larger than those for M and Af as the buildings' heights increases. This similar to the 

irregularity mentioned earlier for the 8 storey building. 
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After employing the scaled accelerograms in the inelastic dynamic analysis process, the results 

are extracted and depicted in terms of D/C ratios in Fig. 5-4 to Fig 5-11. 

D/C ratio of nine EDP are illustrated in these figures. Levels of the D/C ratio for shear in wall 

are shown with short horizontal line segments (Fig. 5-4); in order to avoid a jerky view such short 

line segments are not shown for any other EDP. In order to be able to easily follow the trend in 

change of D/C for each EDP, and to make one EDP well distinguishable from the others, D/C values 

for each of the 15 records are connected to each other by line segments (hereafter called tracing line). 

Therefore, the level of D/C ratio for EDPs other than shear in walls can be recognized only as the 

pivot points, the point in which the 2 tracing lines converge. Such illustrations are provided for two 

scaling methods, OM and PAM. Then, the mean, mean plus standard deviation and the maximum 

statistical values over the 15 records and for each method of scaling ( OM , PAM) are depicted with 

horizontal line segments. This type of graph is given for 0% , 5% and 10% mass eccentricities. 

Then, in a 2nd type of graph such as Fig. 5-5 (lower graph), only the statistical values of D/C 

(horizontal line segments) for each mass eccentricity (0% 5% 10%), and under each scaling method ( 

OM , PAM) are ilustrated together for each building. In this type of graph, each horizontal line 

segment is connected to that of preceeding or succeeding one just to provide a step-like look to 

visualize the change magnitude in corresponding quantities. 

To have just the statistical values of the EDPs for all buildings in one view, the second type of the 

grapghs are put together in Fig. 5-10 and Fig. 5-11 5-11. Fig. 5-11 illustrates the statistical D/C 

values only for shear in the wall as the chief EDP; this is similar to the second type of graphs 

described above. 
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As it can be seen, in Fig. 5-4 to Fig. 5-9, D/C values for shear in wall are well above one, also 

there is a clear gap between D/C values for shear in wall and D/C values for all other EDPs. Clearly, 

the shear capacity of the walls are inadequate for the selected ensemble of the ground motion 

records. 

Since the evaluation phase is based on the nominal strength of materials, to have an adequate 

margine of safety that the standard requires through empoying factored values, D/C of shear in wall 

should be well bellow "one", about the same level as the other EDPs. 

Variation of EDPs, depicted in the graphical illustration of D/C statistical values, takes place at very 

small and almost equal steps, which implies D/C values are not torsionally sensitive for zero to 10% 

mass eccentrisities studied in this research. Moreover, "shear in wall" D/C statistical values (Fig. 

5-11 5-11) show that OM and PAM give almost equal values for the four and the eight storey 

buildings, while there is a noticeable difference in the case of sixteen storey building. In this regard, 

the ratio of the partial area under the envelope of the response spectra of the 15 scaled records, 

AOM / A PAM are calculated (Table 5-3) and it indicates a possible corelation between AOM / A PAM 

ratio and the above mentioned difference in EDPs, due to possible result of higher mode effects. 

Table 5-3: Ratio of areas under response spectrum curves of different scaling methods 

Building's 
Storey 

16 Storey 

8 Storey 

4 Storey 

Area under the Envelop of 15 Scaled Response Spectrum 
Curves; Between periods T2 & 1.2 Tl 

A PAM 

1.0572 

1.0281 

0 .7978 

AOM 

1.7553 

1.0861 

0.8732 

AOM / A PAM 

1.6603 

1.0564 

1.0945 
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It can also be seen that for the four and eight storey buildings that shear on wall D/C value 

increases as the building height increases, while it drops for the 16 storey building which could be a 

result of the higher mode effects. 
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It is evident from Table 5-4 to Table 5-6 that buildings torsional stiffness reduces as the building's 

height increases; for instance in case of 0%-5% deviation in mass eccentricity, the "Mean + SD" of 

D/C values for OM in "shear in wall" increases from 1.77% for 4 storey, to 5.8% for 8 storey, and to 

7% for 16 storey building. 

The results point out to a need for magnifying the walls' shear capacity. The key values in 

Table 5-2 are shown in red bold font. The ratio of shear in wall demand resulting from 

ESL (T Empirical), PAM Scaled Response Spectrum Load (RSL (T computational)), OM Scaled 

RSL (T computational) to that from ESL (T Revised) show fairly close values. 

VESL (Empirical) to VESL (Revised) ratio, still the most simplified method of calculation, could be 

taken as a reasonable coefficient to bring D/C ratio of shear on wall below one. However, in order to 

bring that to a level with reasonable margin of safety, a modification value such as the ratio of shear 

D/C to maximum of all other D/C "S9 / Max[Sl-S8]" as shown in Tables 5-5 to 5-7 would be more 

reasonable. 

These values show that a modification factor ranging from 1.3 to 1.55 for the hinge region could 

be used to scale up the wall's shear capacity in the hinge region which is the critical area that could 

undergo excessive shear and fail if not modified. 
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Table 5-4: Comparisons of D/C variation over the 15 scaled records; 4 storey building 

SI 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

, MinofSl.toS8 
- :MaxoFSlt6S8, * 

S9/Max[Sl-S8] 

|Mean + SD1 of D/C for OM 

0.7124 
0.3107 
0.4881 
0.1396 
0.3976 
0.4737 
0.7090 
0:4222 
1.2774 
0.1396 
0.7124 
1.7931 

Sccimfricit; 

r' 5% -' 
0.7084 
0.3165 
0.4996 
0.1413 
0.4131 
0.4755 
0.7151 
0.4405 
1.3000 
0.1413 
0.7151 
1.8180 

0.7431 
0.3340 
0.5218 
0.1476 
0.4495 
0.4765 
0.7535 
0.4657 
1.3339 
0.1476 
0.7535 
1.7703 

Variation (in %) of 
Eccentricity 

5% from 0% 10% from 5% 
-0.5574 
1.8637 
2.3424 
1.2404 
3.8828 
0.3707 
0.8556 
4.3385 
1.7745 

4.9036 
5.5547 
4.4483 
4.4365 
8.8087 
0.2103 
5.3670 
5.7080 
2.6021 

SI 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

MinofSltoS8 > 
Max of SI to S8 j 

S9/Max[Sl-S8i: 

[Mean + SD] of D/C for PAM 
Eccentricity 

0% 
0.9781 
0.2996 
0.6652 
0.1334 
0.7342 
0.6360 
0.9625 
0.5679 
1.2729 
0.1334 
0.9781 
1.3014 

5% 
0.9989 
0.3028 
0.6709 
0.1340 
0.7783 
0.6193 
0.9943 
0.5949 
1.2868 
0.1340 
0.9989 
1.2882 

10% 
1.0395 
0.3225 
0.6955 
0.1404 
0,8470 
0i6l42> 
110323 
0.6195 
1.2885 
0.1404 
1.0395 
1.2396 

Variation (in %) of 
Eccentricity 

5% from 0% 
2.1199 
1.0667 
0.8561 
0.4373 
5.9966 

-2.6328 
3.3067 
4.7556 
1.0864 

10% from 5% 
4.0669 
6.4873 
3.6730 
4.7369 
8.8331 

-0.8250 
3.8229 
4.1357 
0.1382 

1% Tensile Strain Boundary Level at hinge region (SI) 

0.3% Tensile Strain Boundary Level outside of hinge region (S2") 

Compressive(Crushing) Strain Boundary Level in hinge Region (S3) 

Compressive(Crushing) Strain Boundary Level outside of hinge Region (S4) 

Beam Rotation; FEMA Near Collapse Boundary Level (S5) 

Column Rotation; FEMA Near Collapse Boundary Level (S6) 

Wall's Hinge Rotation; CSA-A23.3-04 (S7) 

2.5% Inter-Storey Drift Limit; NBCC 2005 (S8) 

Shear in Wall; CSA-A23.3-04 (S9) 

— Series 1 

Series2 

— Series3 

— Series4 

SeriesS 

— Series6 

Series7 

— Series8 

— Series9 
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Table 5-5: Comparisons of D/C variation over the 15 scaled records; 8 storey building 

SI 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

' Miit of SI to S8 -
.,Maxof,s£tdS8 
S9>Max[Sl~S81 

[Mean + SD] of D/C for OM 
Eccentricity 

0% 
0.3771 
0.6684 
0.5526 
0.2774 
0:1943 
0.1604 
0.3370 
0.3244 
1.4413 
0.1604 
0.6684 
2.1562 

5% 
0.4001 
0.6978 
0.5677 
0.2848 
0.1995 
0.1619 
0.3546 
0.3374 
1.5256 
0.1619 
0.6978 
2.1863 

10% 
0.4239 
0.7324 
0.5812 
0.2932 
0.2044 
0.1621 
0.3723 
0.3515 
1.6082 
0.1621 
0.7324 
2.1957 

Variation (in %) of 
Eccentricity 

5% from 0% 
6.1170 
4.3915 
2.7387 
2.6695 
2.6458 
0.9268 
5.2228 
3.9984 
5.8505 

10% from 5 % 
5.9525 
4.9656 
2.3792 
2.9453 
2.4514 
0.1375 
4.9810 
4.1791 
5.4165 

SI 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

MinofSltoS8 
Max of SI toS8 

S9/Max[Sl-S8| 

IMeaiBH- SD| of D/C for PAM 
* r, Eccentricity 

o%V 
0.5728 
0.5391 
0.6737 
0.2561 
0.2073 
0.2112 
0.4866 
0.3583 
1.4599 
0.2073 
0.6737 
2.1669 

5% 
0.6028 
0.5588 
0.6947 
0.2632 
0.2117 
0.2135 
0.5104 
0.3715 
1.5494 
0.2117 
0.6947 
2.2302 

. 10% 
0.6414 
0.5818 
0.7294 
0.2703 
0.2166 
0.2154 
0.5414 
0.3899 
1.6307 
0.2154 
0.7294 
2.2358 

Variation (in %) of 
Eccentricity 

5% from 0% 
5.2385 
3.6526 
3.1153 
2.7841 
2.1008 
1.0918 
4.8834 
3.6784 
6.1303 

10% from 5% 
6.3976 
4.1244 
4.9847 
2.6781 
2.3386 
0.8858 
6.0744 
4.9700 
5.2478 

1% Tensile Strain Boundary Level at hinge region (SI) 

0.3% Tensile Strain Boundary Level outside of hinge region (S2) 

Compressrve(Crushing) Strain Boundary Level in hinge Region (S3) 

Compressive(Crushing) Strain Boundary Level outside of hinge Region (S4) 

Beam Rotation; FEMA Near Collapse Boundary Level (S5) 

Column Rotation; FEMA Near Collapse Boundary Level (S6) 

Wall's Hinge Rotation; CSA-A23.3-04 (S7) 

2.5% Inter-Storey Drift Limit; NBCC2005(S8) 

Shear in Wall; CSA-A23.3-04 (S9) 

88 



Table 5-6: Comparisons of D/C variation over the 15 scaled records; 16 storey building 

SI 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

MinofSltoS8 
MaxofSltdS'g., 

S9/MaxfSl-S8l 

[Mean + SD1 of D/C for OM 
Eccentricity 

0% 
0.2732 
0.8317 
0.5125 
0.3791 
0.4446 
0.5779 
0.1643 
0.2987 
1.2977 
0.1643 
0.8317 
1.5603 

5% 
0.2914 
0.8635 
0.5360 
0.3881 
0.4438 
0.5839 
0.1761 
0.3101 
1.3886 
0.1761 
0.8635 
1.6080 

f 

10% 
0.3045 
0.9042 
0.5575 
0.3977 
0.4393 
0.5868 
0.1875 
0.3201 
1.4689 
0.1875 
0.9042 
1.6245 

Variation (in %) of 
Eccentricity 

5% from 0% 
6.6513 
3.8203 
4.5688 
2.3604 

-0.1720 
1.0290 
7.1638 
3.8245 
6.9988 

10% from 5% 
4.5229 
4.7162 
4.0197 
2.4772 

-1.0186 
0.4976 
6.4983 
3.2236 
5.7870 

SI 
S2 
S3 
S4 

. S5 
S6 
S7 
S8 
S9 

MinofSltoSS 
Max of SI to S8 

S97MaxfSl-S81 

|Mcan + Sl)| or l)/( 

0% 
0 2162 

-0.5215 
0.4511 
0.3143 
0.3778 
0,5150 
0.1202 

' 0.2427 
1.0860 
0.1202 
0.5215 
2.0825 

•Zcccntricih 
5% 

"()2>05 
"~ 0.5448 

0.4710 
0.3232 

:~ 0.3764 
' - 0.5306 

0.1304 
0.2539 
1.1755 
0.1304 
0.5448 
2.1579 

forJ^AJVl 

10% 
0 2409 
0.561~9~ 
0.4878 
0.3289 
0.3706 
0.5426 
0.1387 
0.2619 
1.2494 
0.1387 
0.5619 
2.2235 

Variation (in % ) of 
Eccentricity _ 

5% from 0% 10% from 5% 
6.6016 
4.4661 
4.4224 
2.8103 

-0.3758 
3.0263 
8.4610 
4.5864 
8.2474 

4.4897 
3.1491 
3.5655 
1.7635 

-1.5236 
2.2616 
6.3872 
3.1614 
6.2864 

1% Tensile Strain Boundary Level at hinge region (SI) 

0.3% Tensile Strain Boundary Level outside of hinge region (S2) 

Compressive(Crushing) Strain Boundary Level in hinge Region (S3) 

Compressive(Crushing) Strain Boundary Level outside of hinge Region (S4) 

Beam Rotation; FEMA Near Collapse Boundary Level (S5) 

Column Rotation; FEMA Near Collapse Boundary Level (S6) 

Wall's Hinge Rotation; CSA-A23.3-04 (S7) 

2.5% Inter-Storey Drift Limit; NBCC 2005 (S8) 

Shear in Wall; CSA-A23.3-04 (S9) 

— Seriesl 

—-Series2 

— Series3 

—Series4 

Series5 

— Series6 

— Series7 

— Series8 

—— Series9 
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CHAPTER 6 

6. SUMMARY, CONCLUSION, AND FUTURE WORK 

6.1 Summary 

One of the primary objectives of the building design regulatory authorities is avoidance, or 

reduction of losses from hazards including earthquake. To achieve such goals, the performance level 

expected from buildings, during and following an earthquake, should be known. However, current 

building code procedures have been presented to sustain life safety in the major earthquakes and 

decrease property damage and loss in the moderate ones. 

Traditionally, life safety and property loss avoidance have been accomplished by indirect ways 

through which designer has never really had an evaluation of the performance level of a building. 

This kind of design methodology may or may not assure the level of damage and loss protection 

recognized by the owner. To resolve this deficiency, many building code authorities around the 

world have been working toward establishing a better criterion. The result was creation of 

Performance-Based Earthquake Engineering that includes Performance-Based Seismic Design 

(PBSD). 

PBSD allows engineers to design buildings with more predictable and reliable levels of 

performance in the occasion of a seismic activity of a given degree. It seeks to ensure that a building 

as a whole will perform in some predictable way, in terms of safety and functionality. Progress of 

computers gave the chance of broadening analysis from static to dynamic, and from linear to non

linear, allowing a more realistic envisions on the condition of structures exposed to, in particular, 

lateral forces. 
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In conclusion, The literature survey in this research shows that an immense effort made in order to 

find new, simplified, accurate and reliable methods to accomplish PBSD of structures. Yet, it seems 

there is an insufficiency of endeavour in improving and bringing performance level of the existing 

simplified method to the PBSD level, where the performance level of a building, designed using the 

simplified method, can be addressed; so that performance level can be scaled up or down to achieve 

a particular performance objective. 

In pursuing to fill such a gap, three sets of RC buildings, four, eight, and sixteen storeys, with 

shear wall SFRS, and using NBCC 2005 the Equivalent Static Load (ESL) method provisions are 

modeled, analyzed, and designed. These buildings are also analyzed using the NBCC 2005 dynamic 

elastic response spectrum method for comparison with the Equivalent Static Load. The buildings are 

also analyzed by using the inelastic dynamic approach for performance evaluation. 

Fifteen actual earthquake records which are scaled and fitted into the design response spectrum 

defined by the code are used here for dynamic analyses of the buildings. 

The Engineering Demand Parameters (EDPs) considered here include inter-storey drift, plastic 

hinge rotation of shear wall, shear on shear wall, tensile strain values of bars, and compressive 

(crushing) strain values of the concrete. All values in the assessment part are nominal. 

Buildings are designed to attain the "Collapse Prevention" performance level with 2% probability 

of exceedance in 50 years, or UHS-2500, where inter-storey drift as one of the main damage 

controlling boundaries is limited to 2.5% for the buildings considered in this work. The results are 

then assessed. 

In the evaluation process, the demand to capacity ratio (D/C values) for Engineering Demand 

Parameters (EDPs) are illustrated for each individual actual accelerogram that has been scaled up or 
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down to fit into Vancouver's design spectrum. The scaling methods used in this process are 

Ordinate Method (OM) and Partial Area Method (PAM) as discussed earlier. Mean, mean plus 

standard deviation, and maximum of D/C values for the selected EDPs over each ensemble of 15 

accelerograms are then calculated. Assessment of the processed data shows that demand to capacity 

ratios for shear in wall is well above one and an unreasonable gap between D/C values for shear in 

wall and all that of the others exist. 

6.2 Conclusions 

The present study focuses on the evaluation of buildings designed based on the ESL method. 

Response spectrum, and nonlinear dynamic analysis have been employed in the design and 

evaluation process. The factored loads and nominal material strength values are used in the 

evaluation of the seismic performance. The main conclusion of this study is that the D/C value for 

shear in wall is well above one and fallen apart from D/C for all other EDPs. This seems to be in 

agreement with the observation made in the N21.6.9.1 explanatory note on CSA standard A23.3-04 

(Cement Association of Canada, 2006). This explanatory note states that there is a need for 

magnifying the shear strength in wall due to inelastic effects of higher modes. Other findings are as 

follow: 

• Demand to capacity ratio of shear on wall is well above "one" for all buildings studied in this 

research 

• All demand to capacity (or boundary limit) ratios other than "shear on wall" are virtually well 

bellow "one"; where that provides a clear margin of safety as such boundary of safety is 

intended to be maintained by using different safety factors in the design process 

• There is a clear gap between D/C ratio of "shear on wall" and all of the others; and that is true 

for all of the buildings and both scaling methods 
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• Over the range of zero to 10% mass eccentricities, D/C ratios for all the buildings and in all 

cases vary almost linearly. This would lead to the conclusion that the buildings, within the 

specified ranges are not torsionally sensitive 

• For the 4 and the 8 storey buildings, both ordinate and partial area method of scaling for 

ground motion records result in nearly equal values, while that is not true for the 16 storey 

building; such difference could be due to higher mode effects 

• The ratio of area beneath the response spectrum curve scaled by OM to that of PAM proves a 

similar trend as the above mentioned item 

• The shear D/C varies in an increasing pace for the 4 and the 8 storey buildings, while it is 

otherwise for the 16 storey building; and such change could also be the result of higher mode 

effects 

• The shear D/C variation for different mass eccentricities (variation of D/Co% ECC from that of 

5% , or variation of D/CIO%ECC from that of 5% ) increases as the building's height increases; 

that implies that the rotasional stiffness of the building reduces with the increase of building's 

height 

• The base shear resulting from linear dynamic RSA (OM and PAM) are well in tune with that 

of ESL (T Empirical )method 

• VESL (T Empirical) to VESL (Revised) ratio is fairly well close to shear D/C ratios resulting 

from non-linear dynamic analysis; using this ratio as "wall's shear capacity" modification 

factor will bring this ratio down close to "one" 

• Using magnification factors ranging from 1.3 to 1.55 for the hinge region, in which the 

critical section is located, reduces the value of D/C to a level below one. 

• Such modification as the above is even a cost wise rational modification, since it is equal to a 

very small portion of the whole expenditure 

93 



6.3 Recommendations for future work 

This research has been carried out for 3 buildings that provide reasonably assuring results, within 

this scope of this work. 

However, more buildings are required to undergo similar process in order to ascertain a more 

reliable pattern of correlation of different EDPs in such buildings. Then, a well defined level of 

performance for buildings that are designed based on ESL method can be achieved. This will allow 

a modification of the ESL method such that a desired level of seismic performance can be achieved. 
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