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ABSTRACT 

An Anytime Deduction Heuristic for First Order Probabilistic Logic 

Md. Istiaque Shahriar 

This thesis describes an anytime deduction heuristic to address the decision and optimiza­

tion form of the First Order Probabilistic Logic problem which was revived by Nilsson in 

1986. Reasoning under uncertainty is always an important issue for AI applications, e.g., 

expert systems, automated theorem-provers, etc. Among the proposed models and methods 

for dealing with uncertainty, some as, e.g., Nilsson's ones, are based on logic and probabil­

ity. Nilsson revisited the early works of Boole (1854) and Hailperin (1976) and reformulated 

them in an AI framework. The decision form of the probabilistic logic problem, also known 

as PSAT, consists of finding, given a set of logical sentences together with their probability 

value to be true, whether the set of sentences and their probability value is consistent. In the 

optimization form, assuming that a system of probabilistic formulas is already consistent, 

the problem is: Given an additional sentence, find the tightest possible probability bounds 

such that the overall system remains consistent with that additional sentence. Solution 

schemes, both heuristic and exact, have been proposed within the propositional framework. 

Even though first order logic is more expressive than the propositional one, more works have 

been published in the propositional framework. The main objective of this thesis is to pro­

pose a solution scheme based on a heuristic approach, i.e., an anytime deduction technique, 

for the decision and optimization form of first order probabilistic logic problem. Jaumard 

et al. [33] proposed an anytime deduction algorithm for the propositional probabilistic logic 

which we extended to the first order context. 
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Chapter 1 

Introduction 

1.1 Motivation 

Reasoning under uncertainty is a crucial issue in many artificial intelligence applications, 

e.g., expert systems, automated theorem provers, security systems, circuit testing and sev­

eral other applications. Uncertainty may lie in the data, or in the data collection method or 

in the inference rules that are used to answer the queries. Due to its importance in multiple 

disciplines, uncertainty has been viewed from many different perspectives and consequently, 

several models have been proposed for modeling it. Some of them belong to the fuzzy logic 

formalism while others are based on classical logic and probability. The earliest work of 

classical logic and probability is due to Boole in 1854 and more than a century later revis­

ited by Hailperin in 1976. Almost another decade later, in 1986, Nilsson reshaped them in 

an artificial intelligence framework, under the name of probabilistic logic problem, for both 

propositional and first order cases. 

In this thesis, the main focus is on the probabilistic logic problem in first order context. 
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Nilsson, in his seminal publications [50], addressed two forms of probabilistic logic problems, 

namely: decision and optimization forms. The decision form, also commonly known as 

Probabilistic satisfiability problem, amounts to finding, given a set of logical sentences 

together with their probability that these sentences are true, whether the set of sentences 

together with the probability values is consistent. Upon the assumption that the system is 

consistent, the optimization form attempts to find, given an additional sentence, the tightest 

possible probability interval such that the resulting system of sentences and their probability 

values remain consistent. The optimization form of the probabilistic logic problem is also 

known as probabilistic entailment problem. 

1.2 Thesis Contribution 

In this thesis, the first contribution is an extension of the anytime deduction method called 

AD-SOLPPL, proposed by Jaumard et al. [33], for propositional case to first order logic. It 

is to be noted that an anytime deduction technique is one in which the solution process can 

be stopped at any time and the information on how the solution value is reached can be 

yield. 

Jaumard et al. [33] developed a special set of inference rules for the propositional 

case which they called 'primitives'. At first, we made a straightforward extension of these 

inference rules to first order context. As the second contribution, we make a suggestion for 

a modified set of inference rules w.r.t. the set of primitives used in Jaumard et al. [33] 

as a simple extension from propositional to first order logic set is not sufficient enough to 

get satisfactory results. Recall that a set of so-called primitives consists of a small set of 

logical sentences together with probabilities for which the analytical solution is available. 
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As the third contribution, we have developed an improved version of the first algorithm 

AD-SOLPOPL, a straightforward extension of the initial AD-SOLPPL of Jaumard et al. [33] and 

named as AD-SOLFOPL+. This improved version can lead to better probability values and 

reaches tighter probability bounds as compared to the initial algorithm. Indeed, building 

an efficient algorithm is a trade off between tighter bounds and reasonable (not too large) 

computation times. 

The proposed heuristic is much more scalable compared to the exact algorithm proposed 

in [63] and developed within the master's thesis of Sultana [63]. In [63] [29] the authors 

propose an efficient algorithm, SOLFOPL, for solving first order probabilistic logic problems 

(both optimization and decision form) using column generation techniques. It is an exact 

algorithm but in most of the cases it sacrifices the computation times in exchange with 

the tightest bounds, i.e., the optimal probability bounds. While SOLFOPL can only solve 

instances of size 35 formulas at most, the AD-SOLFOPL+ algorithm is capable of solving 

instances up to 100 formulas with 50 predicates and 40 different variables in a reasonable 

amount of time. 

1.3 Thesis Organization 

In Chapter 2, we provide an introduction to the probabilistic logic problem, its background 

and mathematical programming formulations. Basic concepts related to first order logic are 

also discussed there. We start Chapter 3 with a categorization of various models which deals 

with uncertainty by different means; some of the models consider probability as a means to 

express uncertainty while the others, e.g., fuzzy logic, portrays uncertainty issue without 

probability consideration. We present analytical and numerical methods and models for 
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dealing with uncertainty in terms of probability for both propositional and first order cases. 

A few exact numerical methods and heuristic approaches for numerical solution are explored 

in Chapter 3. In the subsequent chapter, Chapter 4, we explain the mathematical model 

and the newly proposed algorithm for the first order probabilistic logic problem. Chapter 5 

presents the experimental setup, numerical results and performance analysis of the proposed 

algorithm with respect to a previous work [63], an exact algorithm for first order probabilistic 

logic. Finally, in Chapter 6, we conclude with the findings and a few suggestions made for 

future works which might be carried out in a similar direction. 
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Chapter 2 

Introduction to Probabilistic Logic 

2.1 Propositional Probabilistic Logic PPL 

Uncertainty is an important issue that needs to be dealt in many artificial intelligence 

applications, e.g., expert systems often require the ability to reason with a new information 

from the problem domain and knowledge base where both the knowledge and inference rules 

are not known with certainty. To deal with the probability of logical formulas, in either 

propositional or first-order logic, Nilsson [50] proposed the concept of the probabilistic logic 

problem in 1986 for both the decision and the optimization forms. 

Given a set of sentences with their associated probabilities, the decision form of the 

probabilistic logic problem, also known as probabilistic satisfiability or pP S A T
) answers the 

question: Are these probabilities consistent? Now, let us assume that, the given set of 

sentences and their associated probabilities is consistent. The optimization form of proba­

bilistic logic problem, also known as probabilistic entailment or pPENTAIL problem finds the 

best possible probability value or intervals, for an additional logical sentence to be true, 
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such that the augmented set of sentences remains consistent together with its probability. 

In other words, the probabilistic entailment problem determines the range of values of the 

probability associated with a new logical sentence such that the overall set of sentences, 

after adding the new sentence, remains consistent. 

2.1.1 Decision form 

The probabilistic logic problem in decision form, also called FPSAT
) is denned in [30] as 

follows. Let <S = {Si, S2, • • ., Sm} be a set of logical sentences defined on a set of n prepo­

sitional (boolean) variables X = {x\,X2,... ,xn} with the usual Boolean operators. These 

variables correspond to a set of elementary facts which are either true or false. Assume 

probabilities 7ri,7T2,. • • ,7rm, for these sentences to be true, are given. Are these probabili­

ties consistent? 

In propositional calculus, a literal is either a propositional variable or its negation, e.g., 

yj and y~j are positive and negative literals respectively. Let us consider propositional 

sentences and also assume, as in most expert systems, that the sentences Si's are logical 

implications of the form: 

Si : <pi => ipi (1) 

where < 
ipi the antecedent or premise of the implication 

ipi the consequent 

are boolean functions. There are two normal forms of a boolean expression, the Disjunctive 

Normal Form or DNF and the Conjunctive Normal Form or CNF. A sentence is in DNF if 

it is expressed as a set of disjunctions of conjunctions of literals, whereas, a sentence is in 
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CNF if it is expressed using a set of conjunctions of disjunctions of literals. For instance, 

((Vji A Vj2) v (Vji A 2/j3>) and {{yix V yj2) A (yj3 V y^)) are examples of DNF and CNF 

respectively. 

In propositional calculus, a clause is often expressed as a disjunction of literals, e.g., 

Vji v y?2- O n the contrary, conjunction of literals are expressed as yji A y,-2. 

If the v?j are written in CNF and the ipi are written in DNF, then Si in (1), is a DNF 

expression: 

f Aw=> Vw = [ V ^ v V w l - (2) 

Usually, sentences are represented in clausal form as shown above in (2) whereas a clause 

is often expressed as a disjunction of literals (positive or negative form). 

Nilsson [50] defines a world as any truth assignment w over S. A world w is possible if 

there exists a truth assignment over the set of X of variables which leads to w over <S, and 

the world is impossible otherwise. From now onward, we will only consider possible worlds. 

Let p — (pi, p2> • • •) be a probability distribution on the set W of possible worlds. Assume 

we are also given probabilities TTI, 7T2,..., nm, one for each logical sentence. The probability 

distribution satisfies the set of logical sentences together with the probabilities if: for each 

sentence Si (i — 1, 2 , . . . , m), the sum of all pj 's over all truth assignments Wj which satisfy 

Si equals 7Tj. 
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Let A be an m. I W I matrix such that: 

a-ij = < 

1 if vjj satisfies Si 

0 otherwise. 

(3) 

The Probabilistic satisfiability PPSAT can be defined as follows: Is there a probability distri­

bution p such that the following system admits at least one solution? In a mathematical 

framework, it amounts to: Is there any p € [0, l]\w\ such that the following mathematical 

program has a solution? 

l - p = l 

/ DPS AT \ < A„ — Ap = ir (4) 

P > 0 , 

where 1 is a k unit row vector and (k = \W\) <2m. The value of k is 2m in the worst case but 

in practice it is smaller than 2m due to the fact that (i) most often not all worlds are feasible 

and (ii) two different value assignments on the variables may lead to the same possible world. 

Let p and n denote the column vectors (pi,p2, • • • ,P\w\)T a n d {^i, ^2, • • •, nm)T respectively. 

Example 1: Consider the set of sentences, with x\ — Montreal wins today's match in NHL 

and X2 = Montreal qualifies next round. 



S i = xi TTl = 0.8 

52 = Xi V X2 7T2 = 0.6 

S 3 = X2 7T3 = 0 . 3 . 

Let us denote by 1 the 22 unit row vector [ 1 1 1 1 ] and consider 

P = 

-

Pi 

P2 

P3 

P4 

, 7T = 

7Tl 

7T2 

7T3 

— 

0.8 

0.6 

0.3 

Now, let us show how to find the set of possible worlds W from the possible assignments 

on variables x\ and xi. For example, let us assign the values (1, 1) to the variables (x\, 

X2). After computing the truth values of sentences, (Si, S2, S3), we come up with a first 

possible world, w\= (1, 1, 1). Similarly, by considering the assignments (1, 0), (0, 1) and 

(0, 0) for (xi, £2) and then making the interpretation for the sentences, we get three more 

possible worlds (1, 0, 0), (0, 1, 1), (0, 1, 0) respectively. Then the corresponding matrix A 

becomes: 

Si 

S2 

s3 

W\ W2 W3 Wi 

1 1 0 0 

1 0 1 1 

1 0 1 0 

(5) 
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The mathematical program for the FP S A T problem associated with this example can be 

written as follows: 

l - p = [1111] x 

Pi 

P2 

P3 

P4 

= Pl + P 2 + P 3 + P4 = 1, 

Ap = 7T = 

1 1 0 0 

1 0 1 1 

1 0 1 0 

X 

~ 
Pi 

P2 

P3 

P4 

= 

0.8 

0.6 

0.3 

Pi 

P2 

P3 

P4 

>0; 

i.e., it reduces to find p such that : 

Pi + P2+P3 + P4 = 1 

Pi + P 2 = 0.8 

Pi +P3 + P4 = 0.6 

P2 +P3 = 0-3 

P i > 0 , j = 1,2,3,4, 

or show that there is no such p. For example, in the above example there is no such p tha t 
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satisfies all those constraints, i.e., this instance is inconsistent. 

Constructing a possible world is easy as it requires to interpret the values of a set of 

sentences, using a given set of value assignments to those variables which constitute the 

sentences. Checking whether a given world is possible is however NP-complete as it reduces 

to the well known SAT problem. 

2.1.2 Opt imizat ion form 

Suppose we are given an instance of the pPSAT problem (S,n) which is said to be consis­

tent. Let Sm+i denote an additional logical sentence (which is deduced possibly from S) 

with an unknown probability value 7rm+i. The probabilistic entailment or pPENTAIL prob­

lem determines the best possible lower and upper bound [ zrm+1, nm+i ) of the probability 

7rm+i associated with Sm+i, such that (S \J Sm+i, (n, 7rm+j)) remains consistent. In or­

der to solve the pPENTAIL problem, let us consider the objective function Am+ip, where 

Am+i = (am+ij),j ~i,2,... and 

1 if Sm+i is true for the possible world Wj 
am+i,j = <, (6) 

0 otherwise. 

We next determine ZLm+i = minj4m_|_ip and Tfm-\-\ = max Am+ip subject to the consistency 

constraints, as described by (4). Note that it is possible that Sm+i may contain some 

variables which do not appear in the logical sentences of S. No matter what, due to the 

addition of a new sentence, the set of possible worlds might remain the same or be doubled 

in the worst case. The mathematical formulation of the probabilistic entailment problem 
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can be written as follows: 

min (max) Am+\p 

l - p = 1 

(pPENTA,L) s u b j e c t t o : < j^ = 7 r 

P> 0. 

(7) 

Example 2: Let us consider Example 1 again, setting n^ to 0.5 to obtain consistency. Add 

a new logical sentence S4 = Montreal wins today's match in NHL => Montreal celebrates, 

i.e., S4 = x\ —> X3 with £3 = Montreal celebrates. As there is a new logical variable £3 

which was not present before in the sentences of <S, there are now eight truth assignments 

on X, and six possible worlds, i.e., (1, 1, 1, 1), (1, 0, 0, 1), (0, 1, 1, 1), (0, 1, 0, 1), (1, 1, 1, 

0) and (1, 0, 0, 0). The third one corresponds to the truth assignments (0, 1, 1) and (0, 1, 

0) over X and the fourth one to the truth assignments (0, 0, 1) and (0, 0, 0). The matrix 

A looks like: 

Si 

S2 

S3 

S4 

w\ ^ 2 ^ 3 W4 W5 WQ 

1 1 0 0 1 1 

1 0 1 1 1 0 

1 0 1 0 1 0 

1 1 1 1 0 0 

(8) 
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We want to find the probability range for 774 associated with S4 so tha t the system 

1SLKS4} remains consistent. As in the above matrix, there is a probability distribution pt 

associated with each possible world W{. For example, to obtain 7T4 associated with 64, we 

examine the last row (of all the listed possible worlds) in the above matrix. Finally, the 

mathematical formulation of the corresponding probabilistic entailment or p P E N T A I L problem 

looks like: 

min (max) 7r4 = px + p 2 + P3 + P4 

subject to: 

Pi + P2+P3 + P4+P5 + Pe = 1 (S4) 

P1+P2 +P5+P6= 0.8 (si) 

Pi +P3+P4+P5 =0 .6 (S2) 

Pi +P3 +P5 = 0.5 (S3) 

P j > 0 , 3 = 1,2,3,4,5,6. 

Its optimal solution yields [n4,7F4] = [0.2, 1]. 

2.1.3 Extens ions 

In this section we discuss two extension to the decision and optimization for propositional 

probabilistic logic. The first one we discuss extends the precision of probability that is 

assigned to an individual sentence, i.e., it assigns a range of probability values instead 

of a point probability. In the second extension we introduce the concept of conditional 
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probability to the already described forms and extensions. 

2.1.3.1 Interval probabilities 

It is often more realistic to use probability intervals in place of single point probability 

values, as already observed by Hailperin [19], in order to consider the imprecision on the 

sentences. The PPSAT problem, with given probability intervals for the sentences to be true, 

is then defined as Is there a probability distribution p such that the system (S, IT) admits at 

least one solution? In terms of a mathematical program, it leads to: 

(pPSATN 

l - p = 1 

ZL < Ap < ?f 

P> 0. 

(9) 

The optimization form, pPENTAIL problem, can be written as follows: 

(PPENTAIL) subject to: { 

min(max) Am+\p 

l - p = 1 

ZL < Ap < W 

P> 0. 

(10) 

2.1.3.2 Conditional probabilities 

A generalized system should be capable of handling conditional probabilities as many of 

them make use of knowledge which is known with sufficient precision only in some situations. 
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Usually this kind of situation is expressed with conditional probabilities as illustrated by 

Jaumard et al. in [30]. 

Let us assume that T is a set of first order formulas of size m together with their 

probability value. But not all the probability values are of the same type. Only the first 

q < m of them are known with simple probabilities while the rest are conditional. Let 

Q = {1,2,... ,q}. Assume that the last m — q appear, with possibly some or all of the first 

q — 1 formulas, in conditional probabilities 7TJ/J = Tr(Fi\Fj)^j)eT where T C M x M and 

M = { l , 2 , . . . , m } . Let C C M be the index of the formulas appearing as condition in the 

probabilities ^%jy By definition 

TTV - n(F\F) - *& A ^ - ^ A Ai)p 

where Ai A Aj = (a^ A ajk)k. 

Then the conditional first order probabilistic logic problem can be expressed as follows: 

Determine irm+1 ,7fm+i such that 

Hm+i = mmAm+ip 

15 



subject to: 

TLi < Aip < 7fi i e Q 

AjP -TTJ = 0 j G C n (M \ Q) 

* (4i A Aj)p - Wi/jiTj < 0 (i, j ) £ T 

TTJ > o j e c n (M \ Q) 

p > 0. 

and 7fm+i = max>lm + ip subject to the same set of constraints. 

2.2 First-Order Probabilistic Logic FOPL 

So far, we have described the probabilistic logic model in the context of propositional logic. 

In this section, we will introduce the probabilistic logic model in the context of first order 

logic. 

2.2.1 Decis ion form 

Consider a set of q logical predicates V = {P\,P2, • • •, Pq} defined on a set of n variables 

X — {xi,X2, • • •, xn}. Let J be a set of m formulas in prenex normal form defined as 

follows: 
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T = {Ft = (Q\Xl)(Q2x2)... (Q^ n ) (M, ) : 

Mi = Si(Pl,P2,...,Pq), z = l , 2 , . . . , m } (11) 

where (QljXj),j — 1,2, . . . , n is either (3XJ) or (VXJ), and Si is a logical sentence that 

contains no quantifier and is built on the set of predicates using the logical connectives 

-i, A and V. (Q\xi)(Q2x2) • • • (Ql
nxn) is called the prefix and Mj is called the matrix of the 

formula Fi, i = 1,2,.. . , m. For instance, Vx3y[P\(x,y) V P2{y)} is a first-order formula, 

where P(x,y) and Q(y) are predicates, x is universally quantified and y is existentially 

quantified. 

The decision form of first-order probabilistic logic problem, or pFOPSAT for short, is 

defined as follows: given a set J7 of m formulas in prenex normal form, and a probability 

vector TT = (TT\, TT2, ..., nm) associated with these formulas, is the set (J7, IT) consistent? 

We use the definition of a world as any truth assignment w over J7, as in Nilsson [50]. 

A world is possible if there exists a truth assignment over the set of predicates which leads 

to w over J7, and the world is impossible otherwise. 

Building a possible world amounts considering possibly several truth assignments on 

the set of predicates, i.e., one value assignment for an existentially quantified variable, 

but two value assignments for a universally quantified variable. Checking whether a world 

is possible amounts to checking whether a set of first-order formulas is satisfiable: it is 

therefore a NP-complete problem since it is generalized to the NP-complete satisfiability 

problem for probabilistic logic. [16] [9]. 
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2.2.1.1 Decidability 

Before we discuss the solution for the pF 0 P S A T problem, let us have a closer look to the 

specific difficulties of first-order logic. One of the major difficulties to be considered is 

the decidability issue. According to [27] there are problems that cannot be solved by any 

algorithm that can run on a computer; they are called undecidable problems. In other words, 

a problem is said to be decidable if there exists an effective algorithm (computer program) 

that can solve that problem. More general references on decidability and undecidability can 

be found in [58]. Unlike the propositional calculus, first-order logic is undecidable, provided 

that the language has at least one predicate having at least 2 variables. Let us recall the 

following two fundamental results as well. 

Theorem 1. (Church [10], Turing [65]). The satisfiability problem for first-order logic is 

undecidable. 

Theorem 2. (Trakhtenbrot [64], Craig [12]). The satisfiability problem for first-order logic 

on finite structures is undecidable. 

In spite of these negative results, i.e., no sound and complete proof system for validity 

even on finite structures, several studies were conducted in order to explore decidable set of 

first-order sentences. A recent survey written by Hustadt et al. [28] provides references to 

the known decidable set of first-order sentences. Indeed, there are several well decidable set 

of first-order sentences (see [53] for detail), e.g., the AEA class is decidable which consists of 

all the relational (i.e., without function symbols) first-order sentences with quantifier prefix 

of the form V3V [17], (see, e.g., Dreben and Goldfarb [13] and Aspvall et al. [2]), or the set 

of sentences with two-variable (see, e.g., Gradel et al. [17]). From now onward, we will only 
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consider sets of formulas belonging to some set of decidable first-order sentences. 

2.2.1.2 First-order concepts 

In this section, we describe some first-order logic concepts for better understanding. 

• Literal ([40], p. 517): A literalis an atomic expression or the negation of an atomic 

expression. 

• Clause ([9], p. 48): A clause is a finite disjunctions (or V) of zero or more liter­

als. For example, (-<lily(X) V flower(X)) is a clause with two literals -ilily(X) and 

flower(X). 

• Empty clause ([9], p. 48): An empty clause (•) can be attained by creating con­

tradiction between two sets of literals having opposite sign. For instance, f lower (X) 

and -iflower(X) results in a null or empty clause ( • ) . 

• Function ([40], p. 53): A function denotes a mapping of one or more elements in a 

set (called the domain of the function) into a unique element of another set (the range 

of the function) where elements of the domain and range are objects in the world of 

discourse. Every function has an associated arity, indicating the number of elements 

in the domain mapped onto each element of the range. For instance, father(salma) 

denotes a function of arity 1 that map people onto their (unique) male parent and 

plus(2, 3) is a function of arity 2 that maps two numbers onto their arithmetic sum 

5. 

• Term ([40], p. 54): A term is either a constant, variable or function expression 

which is used to denote objects and properties in a problem domain. 
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For example, cat, mother(muller), etc. 

• Predicate ([40], p. 55): A predicate names a relationship between zero or more 

objects in the world where the number of objects so related is the arguments of the 

predicate. An example of predicate with 2 arguments is likes (X, jane) where, X is 

a variable and jane is a constant. The arguments of a predicate may include terms 

and also variables or function expressions. For example, friends(fatherof(salma), fa-

therof(raika)) is a predicate describing a relationship between two objects in a domain 

of discourse. If the function expressions (fatherof(salma) is John and fatherof(raika) 

is shawn) are evaluated, the expressions become friends (John, shawn). 

• Interpretation ([9], p. 31): An interpretation for a first-order formula F consists of 

a nonempty domain D, and an assignment of values to each constant, function symbol 

and predicate symbol occurring in F. 

• Satisfiable ([9], p. 34): A formula F is satisfiable (consistent) if and only if there 

exists an interpretation I such that F is evaluated to T in I. If a formula F is T in an 

interpretation I, we say that I is a model of F and I satisfies F. 

• Logical consequence ([9], p. 34): A first-order formula Fm+i is a logical con­

sequence (logically follows) of (from) set of formulas F\, F2, • •., Fn if and only if for 

every interpretation I, if F\ A F2 A • • • A Fn is true, Fm+i is also true in I. 

• Inference rules ([40], p. 65): An inference rule for both the propositional and 

first-order logic can be defined as a formal way of generating a new formula which is 

a logical consequence of a given set of existing formulas. 

• Sound ([40], p. 66): An inference rule is sound if every formula produced by the 
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inference rule from a set T of formulas also logically follows from T. 

• Complete ([40], p. 66): An inference rule is complete if, given a set T of formulas, 

the inference rule can infer every formulas that logically follows from T. 

• Refutation complete ([40], p. 529): An inference rule is refutation complete if, 

given an unsatisfiable set of clauses, the unsatisfiability can be established by use 

of this inference rule alone. All resolution based automated theorem provers use 

refutation proof procedure for first-order formulas ([40], p. 517). 

• Proof procedure [40], p. 66): The proof procedure is a combination of an inference 

rule and an algorithm for applying the inference rule to a set of formulas. In first-order 

logic, a formula that logically follows from a given set of formulas can be produced by 

using proof procedures. The modus ponens is a sound (but not complete) inference rule 

for first-order logic. There are two kinds of proof procedures namely, direct proof and 

refutation proof (lecture notes of Dr. Haarslev, Concordia University, winter 2006). 

Consider a set of formulas F\, F%,..., Fn. Direct proof shows that a new formula Fm+\ 

is a logical consequence. That means direct proof shows that (F\, F2, • • •, Fn) —> Fm+\ 

leads to consistency. Whereas, refutation proof adds the negation of the new formula 

- iFm + i and proves that {F\ A F2 A • • • A Fm A ->Fm+i) leads to an inconsistency. 

Refutation proof is sound and refutation complete. 

• Substitution ([9], p. 75): A substitution is a finite set of theform {ti/v\,..., tn/vn}, 

where every Vi is a variable, every t\ is a term different from Vi, and no two elements 

in the set have the same variable after the stroke symbol. The following two sets are 

substitutions: {f(z)/x,y/z} , {a/x,g(y)/y, f(g(b))/z}, i.e., a substitutes x. 
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• Unification ([9], p. 76): A substitution 8 = {t\/v\,... ,tn/vn} is called a unifier 

for a set of expressions {E\,..., Ek} if and only if E\8 = E28 = • • • = E^8. The set 

{ £ 1 , . . . , Ek} is said to be unifiable if there is a unifier for it. For example, the set 

{P(a,y), P(x, f(b))} is unifiable since the substitution 8 = {a/x, f(b)/y} is a unifier 

for the set. 

2.2.1.3 Resolution refutation 

In first-order formulas, we have to deal with quantifiers, predicates and functions, conse­

quently, possible worlds for first-order logic cannot be obtained as easily as in propositional 

logic. Determining the set of possible worlds from a set of decidable first-order formulas 

amounts to checking whether a set of first-order formulas is consistent. In practice, it is 

done using the resolution refutation method. This section briefly explains the rules followed 

by the resolution refutation method for our better understanding. Before going more into 

the resolution procedure, let us first understand the skolemization technique in order to deal 

with the quantifiers and reach a standard form also known as a skolem standard formula 

(see also [9], p. 47) on which the resolution procedure can be applied . 

Let J17 be a set of m formulas in prenex normal form defined as follows: 

F={F% = (Q\x{){Q\x2)... (QJ,x„)(Mi) : 

Mi = Si(Pi,P2,...,Pq),i = 1,2,...,m} (12) 

where (Ql,Xj),j = 1,2, . . . , n is either (SXJ) or (VXJ), and Si is a logical sentence that 
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contains no quantifier and is built on the set of predicates using the logical connectives -i, A 

and V. The first part, i.e., (Q\x\)(Ql
2X2) • • • {Q%

nxn) is called the prefix and M, is called the 

matrix of a formula. Now, the basic idea behind the skolemization technique is as follows: 

If we can remove all the existential quantifiers from a formula with proper replacements 

such that their effects remain same on that formula, a first order formula is transformed to 

a standard form which is very similar to a propositional formula and the general rules which 

can be applied on a propositional formula can also be applied on it. To achieve that form, 

an existential quantifier is replaced either by a constant or a function (also known as skolem 

constant). An example is presented shortly which explains the skolemization technique as 

an essential part of resolution refutation. 

The resolution refutation ([40], p. 517) proof procedure answers a query or deduces 

a contradiction out of a set of clauses (i.e., after skolemization in order to deal with the 

quantifiers) where contradiction is represented by the null clause ( • ) . The contradiction is 

produced by using the modus ponens rule for resolving pairs of clauses from the database. If 

the resolution procedure fails to produce a contradiction directly, then the resolvent clause 

produced by the resolution is added to the database of clauses and the process continues. 

More precisely, in a refutation proof procedure, the new formula is negated and added to 

the set of formulas (axioms) that are known to be true. Then, it uses the resolution rules 

of inference to show that this leads to a contradiction. If the theorem prover shows that 

the negated goal is inconsistent with the given set of formulas, it follows that the original 

goal was consistent. A strategy is said to be complete if it guarantees to find contradiction 

using refutation-complete inference rule whenever a set of formulas is unsatisfiable ([40], p. 

529). Resolution refutation proofs involve the following general steps ([40], p. 517): 
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1. The formulas (after dealing with the quantifiers) or axioms are arranged into clause 

form. 

2. The goal is negated in clause form and added to the set of axioms. 

3. A set of clauses are resolved together, producing new clauses that logically follow from 

them. 

4. A contradiction is reached by generating the empty clause ( • ) . 

5. The aim of a substitution is to produce a clause whose truth value is opposite to the 

negated goal which eventually results in an empty clause ( • ) . 

Binary resolution is the most common form of resolution which is applied between two 

clauses when one contains a literal and the other one its negation ([40], p.517). Unification is 

needed if these literals contain variable to make them equivalent. Eventually, the resulting 

new clause comprises of the disjuncts of all the predicates in the two clauses minus the 

literal and its negative instance, having been resolved away. The resulting clause undergoes 

the necessary unification and substitution which make sure the predicate and its negation 

are equivalent. For example, the knowledge base for the dead dog problem ([40], p.518) may 

be represented in clause form as: 

(-idog(X) V animal(X)) A (^animal(Y)) V die(Y)) A (dog(fido)). 

To this expression, we add (by conjunction) the negation of our goal which is ->die(fido). 

The resolution proof for this is shown in Figure 1. 

Transforming formulas into clause form requires 8 steps which are given below ([9], p. 37): 
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-idog(X) v animal(X) -.aniinal(Y) v die(Y) 

dog(fido) -ndog(Y)vdie(Y) 

{fido/Yf 

die(fido) —idie(fido) 

Figure 1: Resolution proof for the dead dog problem 

1. Use the following laws to eliminate the logical connectives <-> (equivalence) and 

(implication). 

F^G = (F->G) A(G-*F). 

F -^G = ^FwG. 

(13) 

(14) 

2. Repeatedly use the following laws to bring the negation signs immediately before 

atoms: 

n(-.F) = F. (15) 

and De Morgan's laws: 

n (FvG) = - iFA-.G, 

n(F A G J E n f V -.G. 

(16a) 

(16b) 
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and the laws 

^((\/X)F(X)) = (3X)(->F(X)), (17a) 

-^((3X)F(X)) = (VX)(-.F(X)). (17b) 

3. Rename variables so that no two quantifiers bind the same variable. 

4. Use the following laws to move the quantifiers to the left of the entire formula to 

obtain a prenex normal form: 

(QX)F(X)VG = (QX)(F(X)VG). (18a) 

(QX)F(X)/\G = (QX)(F(X)AG). (18b) 

{\/X)F{X) A (VX)H(X) = (iX)(F{X) A H(X)). (19a) 

(3X)F(X) V (3X)F(X) = (3X)(F{X) V H(X)). (19b) 

(QiX)F(X) V (Q2X)H(X) = (Q1X)(Q2Z)(F(X) V H(Z)) (20a) 

(Q3X)F(X) A (Q4X)H(X) = (Q3X)(Q4Z)(F(X) A ff (Z)) (20b) 
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For instance let us obtain a prenex normal form for the following formula: 

(vx)(vr)((3Z) (P(X,Z)AP(Y,Z)) - (3t/)g(x,y,c/)). 

Using (14), we get: 

(VX)(VY)H(3Z) (p(X, Z) A p(Y, Z))) V (3£/)9(X, y, [/)). 

Using (17b) and (16a), we get: 

(VX)(VY)((VZ) (-.(p(X, Z) V -,p(Y, Z)) V (3<7)g(X, Y, U)). 

Using (18a), we get: 

(VX)(VT)(VZ)(3C/) (-.(p(X, Z) V ̂ p(Y, Z) V 9(X, Y, U)). 

So, we obtain the last formula as a prenex normal form of the first formula. 

5. Replace each existentially quantified variable by a skolem constant or skolem function 

and remove the quantifier 3. 

case 5a. If x is not universally quantified, replace x by unique, fresh skolem constant. 

For example: 3Xp(X) is skolemized to p(a). Similarly, 

3X\/Yp(X, Y, X) => VYp(b, Y, b) and 

3X3Y\/Zp{X, Y, Z) => VZp(a, b, Z). 

case 5b. If the predicate has more than one argument and the existentially quanti­

fied variable is within the scope of universally quantified variables, the existential 

variable must be a function of those other variables. For example: 

3XVYVZ3U\/V3W p(X, Y, Z, U, V, W) =» VYVZVV p(a, Y, Z, f(Y, Z), V, g(Y, Z, V)). 

6. Remove all universal quantifiers 
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7. Convert the expression to the CNF form. This requires using the associative and 

distributive properties of V and A. 

8. Rewrite as a set of clauses, where " A" is considered to be default between clauses. For 

instance, (p(X, Y) V r{X)) A q(Y) is written as two separate clauses (p(X, Y) V r{X)) 

and q{Y). 

2.2.1 A Strategies and simplification methods for resolution 

Resolution is a method of theorem proving that proceeds using proof by contradiction. This 

method can be viewed as a search problem where the solution is the path from the initial set 

of clauses to the empty clause (contradiction). An exact resolution employs breadth-first 

search strategy which is exponential. Therefore, we have to apply heuristic strategy for 

large problems. A strategy is complete if by using it with a refutation-complete inference 

rule, it is guaranteed to find the refutation whenever a set of clauses is unsatisfiable ([40], 

p. 529). Let us discuss some of the well known strategies used in resolution. 

• Breadth-first strategy ([40], p. 529): In breadth-first search the comparison 

among the clauses is done in an exhaustive manner. Therefore, it guarantees to find 

the shortest solution path. It is also a complete strategy in the sense that if it continues 

to search for long enough, it is guaranteed to find a contradiction if one exists. 

• Set of support strategy ([40], p. 530): Set of support of Wos and Robinson [67] 

is a good strategy for large clause space. In this strategy, a subset T is specified from 

a set S of input clauses for resolution. It can be proved that, if S is unsatisfiable and 

S — T is satisfiable, then this strategy is refutation complete. It is complete only if 
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the right (correct) subset is chosen. 

• Unit preference strategy ([40], p. 531): The unit preference strategy usually re­

solves with shorter clauses specially, clauses with one literal, called unit clause when­

ever they are available. This strategy guarantees that the resolvent is smaller than the 

largest parent clause. Unit resolution is a related strategy that requires that one of 

the resolvent must be a unit clause. However, it is an incomplete strategy. The com­

bination of unit preference and set of support strategy can produce a more efficient 

complete strategy. 

• Linear input from strategy ([40], p. 531): Linear input from strategy directly use 

negated goal and the original set of formulas. It takes the negated goal and resolves 

it with one of the formulas at a time. This process repeats until the empty clause is 

produced. However, this is an incomplete strategy. 

We can use some simplification methods in order to reduce the search space and speed 

up a resolution-based problem solver for finding a solution. Let us see a few of them below. 

• Elimination of tautological clauses ([40], p. 533): A tautological clause does 

not need to be considered as it will never be falsified. Therefore, it does not play a 

useful role in a solution attempt. 

• Subsumption ([40], p. 533): Subsumption is a complete strategy in which more 

specific clauses are removed, e.g., if S contains predicates FATHER(x, y) then we can 

remove FATHER(john, salma). 
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2.2.2 Optimizat ion form 

In his paper on probabilistic logic, Nilsson [50] also discussed about the optimization form 

of first order predicate logic or FOPL which can be stated as follows: Given a set T of m 

formulas in prenex normal form, and a probability vector n associated with these formulas, 

such that the set (J7, n) is consistent. Let us consider an additional formula Fm+\. The 

optimization form deals with how to compute bounds on the probability of Fm+\ so that 

the system ( f UFm + i ,7r) remains consistent. 
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Chapter 3 

Literature Review 

The concept of uncertainty is a relation with some form of information deficiency. Uncer­

tainty results whenever any form of incompleteness, impreciseness, fragmentation, unreli­

ability, vagueness, contradiction or information deficiency takes place. Lakhsmanan and 

Sadri [39] defined uncertainty for an agent's knowledge about a piece of information in the 

form of a confidence level. A more precise definition came from Smithson [60], who defined 

uncertainty as a subjective measure of certainty of something (e.g., occurrence of some 

events) therefore, it can be modelled in terms of a quantitative measure, i.e., a numerical 

value between 0 and 1 where 0 denotes falsity and 1 denotes truth. Klir and Yuan ([37], 

p.268) categorized uncertainty into two basic types as fuzziness or vagueness and ambiguity 

(ambiguity may further be divided into imprecision and discord). The authors ([37], p.267) 

also claimed, reasoning under uncertainty is an important issue in several theories, e.g., 

fuzzy set theory [68], possibility theory [69, 14]. 

In this chapter, we will briefly discuss about few uncertainty based models in AI, for 

propositional as well as for first-order logic. As we will see, some of them have their main 
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focus on probability theory while the rest are fuzzy logic or other formalism based. In prob­

abilistic logic, classical propositional and first-order formulas are extended with probability 

while formulas remain true or false. Even though expressed differently, in practice it is 

equivalent to a probability logic. Our main focus will be on the probabilistic logic model, 

equivalent to Nilsson's [50] formalism and its extension. 

This chapter is organized as follows: In Section 3.1, we briefly describe some mostly 

studied models, for propositional case, which treat uncertainty by different means. Some 

of the models consider probability as a means to express uncertainty while the others, 

e.g., fuzzy logic, portrays uncertainty issue without probability consideration. Section 3.2 

presents models (with and without probability) which deal with uncertainty for first order 

case. In section 3.3 we present analytical methods to deal with propositional probabilistic 

logic problems while in Section 3.4 we discuss some numerical methods for propositional 

probabilistic logic problems. We discuss exact numerical methods and heuristic numerical 

methods in this section. In Section 3.5, we describe the exact numerical method for first 

order logic. A few first order issues and heuristic strategies for numerical solution are also 

explored in this section. 

3.1 Propositional Models Dealing with Uncertainty 

Uncertainty has been studied and treated under many different types of models and per­

spectives for propositional case. Broadly they can be categorized into two major groups: 

non-probabilistic and probabilistic formalisms. In the following two subsections we will 

see some approaches for non probabilistic and probabilistic cases which are taken from the 

classification suggested by Lakhsmanan and Sadri in [39]. 
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3.1.1 Propositional non-probabilistic models 

Fuzzy logic programming: Fuzzy logic programming was introduced by van Emden 

in his seminal paper on quantitative deduction [66], and further developed by various re­

searchers, including Steger et al. [61] and Schmidt et al. [59]. Instead of going for absolute 

value of uncertainty, they go for an approximation on how uncertainty can be expressed 

and measured. 

Annotated logic programming: Annotated logic programming framework was intro­

duced by Subrahmanian [62] and later studied by Blair and Subrahmanian [5] and Kifer 

and Li [35]. Kifer and Li extended the framework of Subrahmanian [62] to a formal seman­

tics for rule-based systems with uncertainty. Finally, this framework was generalized by 

Kifer and Subrahmanian into the Generalized Annotated Programming (GAP) framework 

[36]. 

Evidence theoretic logic programming: Evidence theoretic logic programming has 

been mainly studied by Baldwin and Monk [4]. They use only Dempster's evidence theory 

as the basis for dealing with uncertainty in their logic programming framework. It is to 

be noted that The Dempster-Shafer theory is a mathematical theory of evidence based on 

belief functions and plausible reasoning [4], which is used to combine separate pieces of 

information, known as evidence, to calculate the probability of an event. 

3.1.2 Propositional probabilistic models 

Logic and Probability based approach: The earliest works of logic and probability are 

due to Boole in 1854 [7] and more than a century later they were revisited by Hailperin [21] 
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in 1976. In 1986, Nilsson [50] used a 'possible worlds' approach and reshaped them for Arti­

ficial Intelligence under the name of probabilistic logic problem both for propositional logic 

and first order case. Carnap ([8] also presented a seminal work on probabilistic logic. Some 

of the probabilistic logic programming works are based on probabilistic logic approaches, 

such as Ng and Subrahmanian's work on probabilistic logic programming [49]. 

Annotation based approach: Ng and Subrahmanian [49] were the first to propose a 

probabilistic basis for logic programming. The idea is that uncertainty is always associated 

with individual atoms (or their conjunctions and disjunctions), while the rules or clauses 

are always kept classical. In Ng and Subrahmanian [49], uncertainty in an atom is modeled 

by associating a probabilistic truth value with it, and by asserting that it lies in an interval. 

The main interest is in characterizing how precisely we can 'bound' the probabilities asso­

ciated with various atoms. However, as pointed out in Ng and Subrahmanian [49], even if 

one starts with precise point probabilities for atomic events, probabilities associated with 

compound events can only be calculated to within some exact upper and lower bounds, 

thus naturally necessitating intervals. 

Implication based approach: The first implication based framework for probabilistic 

deductive databases was proposed in Lakshmanan and Sadri [38]. The idea behind implica­

tion based approach is to associate uncertainty with the facts as well as rules in a deductive 

database. 

3.2 First Order Models Dealing with Uncertainty 

First order logic is much more expressive than propositional logic. But things are more 

complex due to many reasons. The addition of quantifier and the issue of decidability are 

34 



two such points among them. 

3.2.1 First order non-probabil ist ic mode l s 

Next we briefly mention about two non-probabilistic approaches which are means to deal 

with uncertainty without probabilistic approach. 

3.2.2 First order probabilistic mode l s 

An overview 

In this section, we explore some first-order models with probabilities. Several papers 

have been published on the first-order probabilistic logic [22, 49, 42, 52, 47]. We will discuss 

a few of those models which are related to our work on models for reasoning uncertainty 

with probabilities. In the subsequent sections, we will cover Halpern's [22] degrees of belief 

and chance setup, Lukasiewicz's [42] probabilistic logic programming and Milch and Russell's 

[45] Bayesian logic or BLOG. 

Halpern's semantics for probabilistic logic 

Halpern [22] provided semantics to first-order logics for two different approaches of 

probabilistic reasoning. One of them deals with the probability in the domain or at the 

level of statistical information which is illustrated with the statement "The probability that 

a randomly chosen bird flies is greater than 0.9". The other one deals with uncertainty at 

the level of possible outcomes or worlds (Nilsson [50]). Halpern illustrated the second one 

with the statement "The probability that Tweety (a particular bird) flies is greater than 

0.9". The first approach of Halpern is also called chance setup [18] while the latter one is 

called "degrees of belief [3]. A similar type of semantics was also studied by Bacchus [3]. 
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For the probability on domain, Halpern [22] assumed that there is a given first-order 

language for reasoning about some domain. If a formula <p in logic is given, formulas of 

the form wx(<p) > 1/2 are also allowed which can be interpreted as "the probability that a 

randomly chosen x in the domain satisfies ip is greater than or equal to 1/2". For instance 

[22], wx(Son(x,y)) describes the probability that a randomly chosen x is the son of y, 

whereas wy(Son(x,y)) describes the x is the son of randomly chosen y. Halpern extended 

this to allow arbitrary sequences of distinct variables in the subscript by providing the 

syntax and semantics of a two classified languages. The function and predicate symbols, 

and a limited class of object variables x°,y°,..., in the ip are considered in the first class 

which describe the elements of the domain of reasoning. The second class defines syntax 

for binary function symbols + and x, constant symbols 0 and 1, and limited class of field 

variables xf>y?,..., with the intention of ranging over the real numbers. Halpern [22] 

allowed only two field functions + and x in his syntax and did not consider Bacchus's [3] 

measuring functions which map object terms into field terms. 

In the semantics of chance setup, Halpern [22] gave a probability structure called type 

1, where probability functions are defined over the domain. These probability functions are 

standard real-valued and countably additive which make them significantly different from 

the semantics of Bacchus [3] where non-standard probability functions are considered which 

take values in arbitrary ordered fields and are only finitely additive. 

The syntax and semantics for degrees of belief is essentially the same as in the former 

approach except for few cases. Among them, probability is defined over the set of states or 

possible worlds [50] instead of taking over domain. The functions or predicates might have 

different meaning for different states. The probability structure called type 2 is defined 

36 



for reasoning about possible worlds. Some simplifying assumptions were also made for the 

representation of probability on possible worlds. For example, all functions and predicates 

can take fixed or flexible structure. Moreover they also assume that there is only one domain 

and only one predicate measure on the set of states. 

Halpern [22] used a deductive mechanism to infer new information for chance setup 

and degrees of belief. Deductive mechanism (e.g., modus ponens) usually concludes a new 

information from a given certain premises. 

Halpern [22] used an axiom system which is sound, but is complete only for bounded 

sized domains. For instance, in order to provide complete axiomatization, problems are re­

stricted to unary predicates for the probability on a domain. However, there is no straight­

forward way to capture statistical information from degrees of belief or vice-versa. There­

fore, in order to simultaneously reason about statistical information and degrees of belief, 

these two approaches are combined by Halpern [22] in one framework. 

Bayesian logic or BLOG 

Milch and Russell [45] pointed out that in order to express the real world problem, 

propositional probabilistic languages such as Bayesian network or BN are inadequate. This 

inadequacy of BN results from the fact that a fixed set of random variables as well as 

dependencies and probability distributions for each of the variables must be specified in­

dividually. Real world problems often involve many objects and their dependent objects 

which are unknown or uncertain in nature. So, to define uncertainty using a fixed set of 

random variables and a fixed dependency structure is not sufficient. For example tracking 

multiple people from a video sequence, is very difficult to define using a fixed set of variables 

and structures as the number and the types of people are unknown in advance. 
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Milch and Russell [45] proposed a new probabilistic modeling language, called Bayesian 

logic or BLOG which can model large families of random variables compactly by abstract­

ing over objects and mapping between objects and observations. The authors [45] define 

probability distribution over relational structures with varying sets of objects. For a par­

ticular scenario, BLOG specifies certain non-random aspects which is handled by a typed 

first-order language and the remaining aspects are specified with a probability model. The 

probability model describes a generative process for constructing a possible world in two 

steps. At the first step, boolean functions are assigned values to evaluate some objects. In 

the second step, new objects are added to their world. 

In order to infer, Milch and Russell [45] use a sampling-based inference algorithm which 

proved to be too slow for many tasks. Therefore, they are still working on improving their 

inference mechanism. 

3.3 Analytical Solution for PPL 

In this section, we present studies on analytical solution for Propositional Probabilistic Logic 

problem or PPL in short. At first, we will discuss Boole's analytical solution [7] in algebraic 

form to PPL problem. Later on, we will discuss about Hailperin's extensions of Boole's 

method. Hailperin was one of the first authors who investigated Boole's analytical solution. 

He pointed out that there is a way to find an analytical expression for the solution using the 

enumeration of the extreme points of a particular polyhedron. Finally, Hansen et al. [24] 

formulated and provided the proof of the consistency condition for the analytical expression. 

Let us start with Boole's algebraic method. 
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3.3.1 Boole's algebraic method 

To solve the decision and optimization forms of probabilistic logic problem analytically, 

Boole outlined some algebraic manipulations in his book of 1854 [7], and in several of his 

contemporary and subsequent papers which are similar for both cases. The simplest and 

most efficient method carries on as follows [23] : 

Step 1. All m logical sentences are expressed as sum of complete products, i.e., products 

of all variables in direct or complemented form. 

Step 2. Associate each of these products with an unknown probability pj, write linear 

equations such that for each associated logical sentence Yl Pj — ^% f°r S% t° be true. 
o 

Noted that j < 2m , because not all the products are valid and some of the products 

may be duplicated. Add constraints stating that Y^Pj — ^ an<^ each pj is non-negative. 
i 

Step 3. Eliminate as many pj as possible from the so obtained equalities and inequalities 

(we will see in an example later). 

Step 4. From the inequalities obtained in the previous steps eliminate the remaining 

probabilities pj as well as 7rm+i by considering all upper and lower bounds on one of 

them, stating that each lower bound < upper bound, removing redundant constraints 

and iterating. 

Thus we obtain relations involving m, 7T2,..., nm which are called conditions for feasible 

experience by Boole. Moreover, these relations involve 7rm+i which gives the best possible 

bounds on the probability of the additional logical sentence. 

39 



This is known as the solution to Boole's general problem. Let us see an example to solve 

a problem by using the above steps 1 to 4. 

Example 1 (Boole [6]) Find the best possible bounds on the probability of SQ = x% 

considering the following: 

prob(S\ = x{) = n\ 

prob(S2 = x2) = 7T2 

prob(S3 = X1X3) = 7T3 

prob(S4 = X2X3) = 7T4 

prob(Ss = xix2x3) = 0. 

Step 1, gives 

X\ = X\X2X3+XiX2'X2)+Xi'X2X2,+X\X2X'i 

X2 = XlX2X3 + XiX2X3 + Xia:2a;3+^1^2^'3 

XIX3 -X1X2X3+X1X2X3 

X2X3 =XiX2X3+XiX2X3. 

Set pi — prob(xix2x3), p2 = pro6(x 1 x 2 x 3 ) , p 3 = prob(xix 2 x 3 ) , p 4 = pro6(xix 2 x 3 ) , p5 = 

prob(x\X2X3), p% = prob(x~iX2X~3), p-j = prob(x"iX2X3), ps = pro6(xiX2X3). Step 2 yields the 

following equalities and inequalities: 
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Pi + P2 +P3 +P4 = 7Ti 

Pi + P2 +P5 +Pd = 7T2 

Pi +P3 = 7T3 

Pi +P5 = 7T4 

+P7 = 0 

Pi + Pi +P3 + P4+P5 + P6+P7 + P8 = 1 

Pl,P2,-.- ,P8 > 1 

Eliminating successively the variables P7,P4,P3,Pe,P5,pi and p2 yields, at the end of 

Step 3, the bounds 

max{7r3,7r4} < TT& <min{l-7ri+7r3,7r3+7r4,l-7r2+7r4} 

and the consistency conditions 

7I"i < 7T3 7T2 > 7T4-

Eliminating TTQ yields the additional condition 

7Tl — 7T3+7T4 < 1. 

Hailperin [20] extended and provided a systematic t reatment for Boole's algebraic method 

to deal with conditional probabilities. Hailperin showed [20] tha t , the extensions can be 
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done along two directions, either using conditional probability in the objective function or 

using conditional probability in the constraints. 

3.3.2 Polyhedral method 

Polyhedral method has been contrived for obtaining an analytical solution of probabilistic 

logic problem which is different from Fourier-Motzkin elimination. It is based on the study 

of dual polyhedra of (7) as expressed by the following two linear programs (LP1, LP2): 

LPl = 

LP2 = 

min yo + try 

subject to: ly 0 + Aly > ^ + 1 . 

max yo + 7ry 

subject to: lyo + Aly < At
m+1. 

(21) 

It can be observed that, the polyhedra defined by (21) includes the vector (1, 0)((0,0)) 

respectively, therefore, the corresponding polyhedra are non empty. In order to obtain the 

condition under which the probabilities are consistent, consider the dual of the probabilistic 

satisfiability problem in decision form (4), with a dummy objective function, Op, to be 

maximized: 

min y0 + Try 

subject to: ly 0 + Aly < 0. (22) 

Hansen, Jaumard and Poggi de Arago [24] showed that: 
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Theorem 1. The probabilistic satisfiability problem (4) is consistent if and only if 

( l , 7 r ) t r < 0 (23) 

for all extreme rays r of (22). 

Using the duality theorem of linear programming, Hailperin [19] showed that: 

Theorem 2. The best lower bound for Trm+i is given by the following convex piecewise 

linear function of the probability assignment: 

Zm+lW = . ^a* O-^fylnax (24) 

where j/max for all j represent the kmax extreme points of (21). 

The best upper bound for 7rm+i is given by the following concave piecewise linear function 

of the probability assignment: 

Wm+i(7r) = min ( l . ^ ' i / ^m (25) 

where y^in for all j represent the kmin extreme points of (21). 

This result provides best possible bounds on 7rm+1 and 7fm+i. Both Theorems 1 and 2 

readily extend to the case of probability intervals (10) but not to the case of conditional 

probabilities [23]. Here we present examples for the theorem 1 and theorem 2 on small 

logical systems. 
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X\ [2Ll,7Tl] 

S:xiVx2 [Es,ns] 

X2 7T2? 

The upper and lower bound is given by the analytical expressions: 

7T2 = min{l, ns} and n_2 = max{0, (TIS — n_i)}. 

The consistency condition is enforced by 

0 < ZLj < 1; TLi < Tfi * = 1) 5, 

and 

Tfs > ZLi-

3.4 Numerical Solution for PPL 

Numerical methods are needed to assess the solution of the Propositional Probabilistic Logic 

problem (or PPL for short) in practice as analytical solution can be used only for very small 

instances. Numerical solution methods for PPSAT and pPENTAIL can be categorized into two 

types namely, exact and heuristic methods. Let us briefly describe what are these exact 

and heuristic methods. 
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Table 1: Examples of analytical solutions and consistency condition for small logical sys-
tems. 

Logical 
Systems 

5 : x\ V X2 

Xi 

X2 

S : X\ V X2 V X3 

X\ 

X2 

x3 

S : x\ V X2 V X3 V X4 

X\ 

X2 

X3 
X4 

S\ : X\ V X2 

S2 : x\ Vx2 

X\ 

X2 

Probability 
Assigned 
[2Es.7fs] 
[TLl.TTl] 

7T2 ? 

IlLS.Tfs] 
[2Ll,7Tl] 

[2L2.7T2] 
7T3 ? 

[TLS.TTS] 

[TLl.TTl] 
[H2>7r2] 

[2L3.7T3] 
7T4? 

kspTfs,] 
[2Ls2'

7rS2] 
fel.TTl] 

7T2? 

Consistency 
Conditions 

^ < 1 i = l , 5 
7 r i > 0 i = l , 5 

Ei < 7r i i = 1,5 
7fS > TTj 

TTJ < 1 i = 1 ,2 ,5 
?f j > 0 i = l , 2 , 5 

Tjj < ¥i z = 1 ,2 ,5 

7TS > 7T2 

7TS > E l 
TEi < 1 « = 1 ,2 ,3 ,5 
Tfi > 0 i = 1 ,2 ,3 ,5 

TLi < TFi i = 1 ,2 ,3 ,5 

7f S > 2El, 7TS > 7T2 

7TS >2E3 
7f i > 0 i = 1, S\, 52 

TLi < Tfi * = 115i, 52 
7T, < 1 i = 1, Si, S2 

E l < 7TS2 

7T1 + 7f S2 > 1 

TTSi + 7fS2 > 1 

Probability 
Bounds 

7E2 = max{0,7X5 — 7fi} 
7T2 = min{l,7T5} 

7E3 = max{0,2E5 ~^i — 7F2} 
Tf3 = min{l ,7f s } 

7r4 = max{0,7Es - Tfi - TT2 - TX3} 

7f4 = min{l ,7fs} 

TT2 = max{ l - TTs2, TTJ + TLs, ~ ^s2, 

E i + E S l - 1 } 

TT2 = min{7f5], Tfi + TTS] - j£S2, 
1 + 7f 1 - TLs2} 

3.4.1 Exact numerical methods for PPL 

An exact algorithm guarantees to find the best optimal solution if there exists one whereas, 

a heuristic algorithm usually only finds a good or near optimal solution without necessarily 

any information on how far it is from the optimal solution. However, it may take too much 

time to solve large sized PPL problems using an exact method. Therefore, one might need 

to use a heuristic method in order to find a solution in a reasonable amount of computing 

time. 

In the subsequent sections, we will discuss about the linear programming solution with 

simplex or revised simplex algorithm ([11], P-97) and the linear programming solution with 

the column generation technique ([11], p. 195), both of them correspond to an exact method. 

Next, AD-SOLPPL or AD-SOLFOPL (based on anytime deduction) and variable neighborhood 
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search which fit into the category of heuristic solution methods are also discussed. Linear 

programming and column generation methods can solve PPL problem comprised of instances 

of conditional and unconditional probabilities. 

Linear programming modeling 

It has been already shown in Chapter 2 that the probabilistic satisfiability or the prob­

abilistic entailment problem can be reformulated as linear programs. The simple method 

for solving (4), (7) and (10) problems include firstly searching for the overall set of possible 

worlds (see Chapter 2), and secondly, solving the resulting linear program. We can solve the 

linear program by using simplex or revised simplex algorithm [11]. Although simple, this 

method can be used only for small instances since the size of the input grows exponentially 

with the increase of the number of logical variables x\, X2, • • •, xn. In view of the enormous 

size of these programs (about 1018 columns for min{m, n] = 60, where m is the number 

of sentences and n is the number of logical variables in these sentences), it is impossible 

to solve large sized probabilistic satisfiability or probabilistic entailment problem using this 

method. This led Nilsson [51] to suggest looking for heuristic solution methods only. Such 

a view is overly pessimistic as we will see in the next section. 

Column generation solution 

When linear programs cannot be solved using the simplex or revised simplex algorithm, 

tools from large scale optimization come to rescue. In operations research, there exist some 

tools, namely the column generation technique which deals with solving linear programs 

with a huge number of variables. In this section, we will see how column generation tech­

nique works using a description from [31]. 
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Column generation starts by solving a small, manageable part of a problem (few of the 

possible worlds). By analyzing this partial solution it determines an additional small subset 

of the worlds (one or more possible worlds) to be added in the model, and then solves 

the enlarged model. This column-wise modeling repeats this process until it satisfies an 

optimality condition for the problem. More formally, column generation technique extends 

the revised simplex algorithm (see e.g., Chvatal [11], p.97), in which only a small number 

of columns are kept explicit, by determining the entering column through the solution of 

an auxiliary subproblem. 

To describe the general principle of column generation technique, let us assume, without 

the loss of generality, a linear program (26) for a minimization problem in order to get the 

lower bound in the optimal solution: 

min{cx : Ax > 6, x > 0} (26) 

The coefficients of variables x of the equations of (26) form the columns of the matrix 

A. Therefore, variables and columns are used with the same meaning. By using either the 

simplex algorithm or the column generation technique, the optimal solution (which provides 

a lower bound) of equation (26) can be obtained. However, when the number of variables 

is very large, it is better to use the column generation methods. 

In column generation methods, the initial linear program is decomposed into a restricted 

linear program and a pricing problem. The restricted linear program is called the restricted 

master problem which corresponds to a linear program associated with a restricted matrix 

A' such that, A' is a sub-matrix of A. In principle, if there exists an optimal solution for the 
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restricted linear program, it may also be an optimal solution for the initial linear program. 

However, it depends on the signs of the reduced costs of the missing columns, i.e., columns 

which are not explicitly considered in (26). 

Column generation methods proceed as follows: the linear program corresponding to 

a sub-matrix Al{= A') of dimension m x n\ of the original matrix is solved by using the 

simplex algorithm, and a feasible solution xl
Lp is obtained. Note that, the cost of the 

columns of A1 are denoted by c1 which is a sub-vector of c. 

min clx 

Alx>b 
(27) 

subject to: Q < x < 1 

i e l n i . 

Does there exist a column aJ € A\AX such that cj < 0 ? i.e., can we find a column of the 

matrix A\Al for which the reduced cost is negative? If the answer is no, then the feasible 

solution xl
LP is optimal for (26). If the answer is yes, we must add one or more columns 

ah to the matrix A1 in order to find the optimal solution. Therefore, we need to solve the 

following system 

min c2x 

A2x>b 
(28) 

subject to: Q < x < 1 

x€Rn2. 
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with A2 = A1 U {aj} such that Cj < 0. 

This process is repeated until a column j with a negative reduced cost is found, i.e., 

Cj < 0. However, if no more iteration is possible, we conclude that we have obtained an 

optimal solution for equation (26). 

Now in order to find if there exists a column with a negative reduced cost one has 

to solve the so-called pricing problem. Considering the master problem, e.g., (27), let us 

assume that we want to find if there exists a column aJ with a negative reduced cost. So, 

we must solve the pricing problem according to: 

min Z{a^) 

< with constraints on the components of (aJ) 
(29) 

in order to guarantee thatA2 C A, 

where A2 is the concatenation of A1 and a? : A2 = (A1 | a-7). 

For the master problem, the reduced cost is defined in the matrix form as follows: 

c = c — vA 

where v is the vector of the dual variables associated with equation (26). For the master 

problem, we obtain: 

Cj = Cj — vxa? — Cj{a?) — v1 • a? 

for the column j where Cj is the reduced cost of the column j , v1 is the optimal dual vector 

obtained when solving (27). 
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Solving the pricing problem is equivalent to solving the following problem: 

c* = min{c(a) = c(a) — va : a E A}, 

where A— {a E Km : (A1 \ a) is a sub-matrix of A} and c* is the best known reduced cost. 

The column generation process is summarized in Table 2. 

Table 2: Column generation process 

Identify an initial set of (artificial) columns 
Solve the restricted master problem 
WHILE (there exists a column a,j with a negative reduced cost as a solution of the pricing problem 

Include a? to the restricted master problem 
Solve the restricted master problem 
Solve the pricing problem 

The pricing problem (29) is often a NP-complete problem which is very difficult to 

solve. However, it is not mandatory to solve the pricing problem exactly at each iteration. 

In order to ensure an iteration of the revised simplex algorithm to take place, it is enough 

to find a column with a negative reduced cost. Therefore, a heuristic algorithm can be 

designed for finding such a column. If a feasible solution (i.e., a column with negative 

reduced cost) is obtained heuristically, the decision form of the probabilistic logic problem 

is solved. However, finding no feasible solution by choosing the entering column in a heuristic 

way cannot guarantee that none exists. Therefore, when no more column with a negative 

reduced cost is obtained heuristically, it is necessary to turn to an exact algorithm either 

to prove that, there is no feasible solution for the decision form of the probabilistic logic 

problem or to prove that, there exists no feasible solution which gives better bounds than 

the incumbent one for the optimization form of probabilistic logic problem. 
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In order to start the column generation technique either a set of artificial columns or 

a feasible set of columns is needed. Usually, it starts with an artificial solution which can 

be generated in an insignificant time. The set of artificial columns corresponds to a set of 

columns (tiny compare to the number of variables), which constitute a square matrix as 

large as the number of constraints. It is to be noted that, in order to minimize the objective 

function, the algorithm needs a negative reduced cost, but if the aim is to maximize the 

objective function, then a positive reduced cost is required. 

3.4.2 Heuristic numerical methods for PPL 

Exact methods are accurate but at the cost of possibly long computation times. That is 

why alternative solution methods have been explored and suggested by several authors. 

Anytime deduction technique. 

One of the pioneer works in this ground (for the probabilistic logic problem) for both un­

conditional and conditional cases of probabilities (point and interval cases) is due to Frisch 

and Haddawy [15]. Their procedure takes a set of propositional sentences associated with 

their probability values and a query (either an atomic propositional sentence or conjunc­

tion of them) as input. Propositional sentences of the form (Sj\Si)[Wsj,]Ls } a r e expressed 

with conditional probability while for unconditional probability it reduces to (Si\T)[Wsi,Ks-} 

taking an ever-true value for Sj. The anytime deduction approach proceeds by comput­

ing increasingly narrow probability intervals for the query (i.e., the additional sentence) 

that contain the tightest entailed probability interval. They call this approach "anytime 

deduction" as the process can be stopped at any time and approximate information on the 

tightest probability interval of an additional sentence can be yielded. The principal focus of 
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their work is not necessarily on finding the optimal solution, instead it tries to find a near 

optimal solution (which gives an estimation of the complete solution) very quickly. This 

is good specially for very large instances to stop anytime and get the information how the 

probability bound is achieved through the deductive process. 

The authors claim that the heuristic solution developed by their procedure is valid 

but may be not very precise (i.e., not the tightest probability bounds) even on very small 

instances. They have used a set of sound (not complete) inference rules to reach the solution. 

Still the authors do not provide an explicit and well-defined procedure to perform the 

probability interval tightening. Moreover, the consistency issue is not considered, i.e., the 

instances are not checked for consistency before proceeding with their anytime deduction 

method. For instance, Hansen et al. [25] show that one of the examples considered by 

Frisch and Haddawy is indeed inconsistent although their procedure does not detect it. 

Yet this gives a good approximation on the bound of probability in a small amount of 

time. They also suggested for an extension in first order logic but did not provide any clear 

direction. 

The procedure starts with a probability interval [0,1] which they called current derived 

interval and proceeds by applying the inference rules in order to find a better probability 

bound. Suppose the procedure has obtained a current probability bound [7^,7^] for sentence 

Si and it finds a new interval [n2ew, Tf™ew] where at least one of the the new probability 

bounds is better than the current one, the value for the current probability bound will be 

updated applying the rule for intersection of the bound intervals. The main focus of their 

work is on the anytime nature, which says that at anytime the process can be stopped and 

a correct value can be obtained together with how the result is obtained. The authors also 
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states that the aim of the process is to direct the interval tightening in such a direction 

such that it always keeps track of the tightest entailed probability intervals. This concept 

is similar to that of the inference rules presented in ADPSAT [32] by Jaumard et al.. 

Constraint propagation with imprecise conditional probability . 

Though Frisch and Haddawy [15] discussed both conditional and unconditional proba­

bilities, a stronger focus on conditional probabilities is due to Amarger, Dubois and Prade 

[1]. They propose a constraint propagation algorithm, similar to anytime deduction type. 

Similar to Frisch and Haddawy they proposed two local inference rules. But they have 

considered the consistency issue and checked it at the beginning with help of linear pro­

gramming as similar to that of [50], see also Section 2.1. Then they try to gather as much 

information as possible about the given system before applying the inference rules for the 

entailment problem. They call it information gathering process. As compared to the linear 

programming tools, they are considered more flexible and scalable. But they are somewhat 

restricted to particular types of systems in order to apply the information gathering of the 

network successfully. 

Their process works as follows: The knowledge base, which they call network, is a 

collection of general statements involving a group of general objects while these objects are 

set of logical terms. The network is presented only in terms of conditional probabilities. At 

this point, it is worth mentioning that the input is a set of sentences such that for some of 

the sentences both n^s-) a n d TT(S-|SJ) forms exist. In order to work with the unconditional 

probability the statements are represented in the form ir(Si\x) where X is the set of logical 

terms which corresponds to ever-true propositions or tautologies. Next, their procedure 

checks the consistency of the network globally by linear programming. If the network is 
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inconsistent, it quits the procedure, otherwise it uses the first set of inference rule on the 

network which the authors named Quantified Syllogism, QS for short. The purpose of this 

rule is to gather as much information as possible about a given query. This gathering process 

is done by repeatedly applying the Quantified Syllogism inference rule to get the missing 

information. For example assuming that the probability bounds for ir^^s), ^(s \Si)-> ^(S^S ) 

and Tt(s \sk) are given, applying the Quantified Syllogism inference rule in order to try to 

get either first probability bounds on "K(sk\Si)i or tighter bounds. 

The lower bound given by the QS inference rule is as follows : 

K(Sk\St) = KiSjlSi) max{0,1 - l z ^ ! ^ l } 

whereas the upper bound is calculated as: 

nSk\Si) = min{l, 1 - sto-ISO + - ( 5 j l ^ t ' 5 i ) ' _ _ _ _ K{i>i\bj) 
W(Sj\Si).Tf(Sk\Sj) Tf{Sj\Si).W(Sk\Sj) ri , . , 

Next the inference rule named Generalized Bayes theorem is applied on all the gathered 

information (probability values) which assumes that unconditional probabilities like n(Si) 

or n(Sj) are not known in advance. In order to calculate the final probability bound for the 

query, maximum value of the lower bound and the minimum value of the upper bound is 

taken into consideration. Their proposed inference procedure is polynomial in the number 

of nodes in a network but it takes most of its time to gather the information about the 

query from the network. Finally, the process stops when there is no more improvement in 

the probability bounds otherwise it repeats from the step of applying Quantified Syllogism 

rule. Although they mention extension to first order, the method proposed by Amarger et 

al. [1] does not provide any (explicit) guideline for first order probabilistic logic. 
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Probabilistic logic programming and local probabilistic deduction techniques 

over events of different types. 

Similar to Halpern's [22] semantics to formulas that describe degrees of belief, Lukasiewicz 

[42] proposed an approach called probabilistic logic programming where uncertainty is han­

dled by assigning probability distribution over the set of possible worlds (i.e., same as [50], 

in Section 2.1). In order to deduce a tight probability bounds for an additional clause 

(i.e., similar to an additional sentence), they proposed two solutions. As a first solution, 

Lukasiewicz et al. [42] showed that it is possible to compute the tight bounds by using 

straightforward linear program (i.e., same as [50] discussed in Section 2.1). However, they 

also proved that when the number of variables (or possible worlds) increases, the solu­

tion grows exponentially. Therefore, in order to handle this difficulty, Lukasiewicz et al. 

[42] proposed another solution technique to generate linear programs that generally have a 

much lower number of sentences as well as variables. For this purpose (i.e., to lower the 

number of sentences), they partitioned the probabilistic logic program (V) into a set of 

logical program clauses (pure propositional sentences) (£) and a set of purely probabilistic 

program clauses (propositional sentences having conditional probabilities) (P \£ ) . As for 

example, (Sj|Si)[21,5..,^.] ; [ESP^SJ} S [0,1]; \T£S. > 0,WSj < 1]; Si ^ true, belongs to 

the later group whereas propositional sentences are of the form Si —> Sj without associated 

probability interval. 

Now the number of generated possible worlds is reduced in size and finally the proba­

bilistic deduction problem is solved using two linear programs (for calculating the upper and 

lower bounds). The authors claim that this linear programming approach for probabilistic 

deduction shows efficient result only in restricted cases. 
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Lukasiewicz et al. proposed a set of inference rules which they call magic inference 

rules for probabilistic deduction in [41]. Here, they presented four groups of inference rules 

namely: Sharpening, Chaining, Fusion and Combination which works in a similar fashion 

(but not same) as we already found in [1], They also claimed that those inference rules 

are, what they called, locally complete and sound. In contrast to the approaches like linear 

programming (e.g., of Nilsson's approach [50] see also in Section 2.1), which are globally 

complete (i.e., able to find the tightest probability bound if there is one), their approach 

is able to compute tightest bounds but only for a maximum of four probabilistic formulas. 

The main focus of this work is on the proposed inference rules and the procedure to apply 

them for restricted cases, there is no algorithm presented here. They did not discuss about 

any extension of their work of [41] to first order logic. 

Two more works due to Lukasiewicz in this sequence are published in [44] [43]. In 

[44], the author proposes a polynomial time probabilistic deduction procedure for a par­

ticular case, i.e., conditional constraint trees which are indirected trees with basic events 

as nodes and with bidirectional conditional constraints over basic events as edges between 

the nodes. The input is a form of graph consisting of propositional sentences of the form 

(Sj\Si)\WSj,Es-] a n d {Si\Sj)[TfSi,KSi\ having edges [Sj —> Si, Sj <— Si] and from this they 

form a conditional constraint tree by taking a particular direction. But Lukasiewicz did not 

provide any algorithm for this procedure in [44]. Initially, the conditional constraint tree is 

represented by a set of basic propositional events and conditional probabilities of the form 

{Sj\Si)\TrSj,Es] w i th r e a l numbers [TTSJ,ES-]
 e [0'1] a n d basic propositional sentences Si 

and Sj. The author has provided result only for the local deduction method to compute 

bounds on the query. 
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In [43], Lukasiewicz presents another linear time probabilistic deduction scheme for 

one more particular case, namely, taxonomic and probabilistic knowledge bases over con­

junctive events. In this work he proposed a general algorithm which integrates a whole 

set of inferences rules (with conditional probabilities) and which may detect inconsistency. 

The inference rules are applied on taxonomic and probabilistic formulas over propositional 

events. Here taxonomic formulas are expressions of the kind Si —> Sj with propositional 

events Si and Sj and probabilistic formulas are expressions of the form (Sj\Si)[Jrs-,iLs•] 

with real numbers \T?SJ>ES] ^ [0)1] a n d propositional events Si,Sj. The inference rules 

applied are very complex for scalability as the author claims. In [43] Lukasiewicz mentions 

that it improves on previous works but he did not provide proof with any numerical results 

comparing his algorithm with global approaches using linear programming tools. 

Variable neighborhood search. 

Variable Neighborhood Search, or VNS in short, was introduced by Mladenovic and 

Hansen [46]. VNS is a meta-heuristic which helps escaping when the search process is 

trapped in a local optimum by changing the neighborhood structures systematically. Ini­

tially, a set of neighborhood structures is preselected, a stopping condition is determined 

and an initial local solution is found. In the main loop of the method, it searches for a bet­

ter solution by changing the neighborhood structures using three process (i) shaking, (ii) 

local search and (iii) move or not. It moves to a new solution from the current best known 

solution if the new one is better or it may accept a worse solution with certain probability 

in order to escape the local optima and move toward the global optima. 

For solving the probabilistic logic problem, Jovanovic et al. [34] suggested using VNS 

based heuristic. Hansen and Perron [26] use VNS to generate multiple columns (or possible 
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worlds [50]) with negative reduced cost simultaneously at each iteration of the column 

generation method. Adding multiple columns at each iteration instead of only one column 

reduces the number of iteration and speeds up the algorithm [26]. 

ADPSAT 

A more generalized approach of explicit deductive nature has been proposed by Jaumard 

et al. [32] called ADPSAT, using their previous work [24] on the analytical solution of Nils-

son's [50] probabilistic logic problem. In ADPSAT, only a small subset of logical sentences 

(typically one or two) together with the interval probability values of a small subset of 

variables (typically one to four) are considered at each step to determine the probability in­

terval values of either a selected variable or a selected sentence. Afterwords, another subset 

of sentences is considered to compute the probability interval values and the newly com­

puted probability value is compared with the previously computed probability values. By 

repeating this deductive mechanism, the final tight probability interval value is determined. 

ADPSAT is capable of checking inconsistency of a given set of sentences very quickly 

but it does not always guarantees to do so. However, in practice, ADPSAT is able to find 

very often the tightest probability bounds, for instance, usually when the sentences contain 

two variables.The entailment is achieved using a sequential deductive approach. In their 

approach [32], the authors have used an ordered set of well thought combinations of small 

number of sentences and variables which they call primitives. Actually these are a set of 

sound inference rules to be applied in order to find the probability bounds. Finally, ADPSAT 

has solved, by far, some of the largest instances with 1000 variables and 2500 sentences for 

a reasoning under uncertainty model based on probability theory. 
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3.5 Numerical Solution for FOPL 

3.5.1 Exact numerical methods for FOPL 

A numerical solution scheme for First Order Probabilistic Logic using column generation 

methods has been proposed by Sultana [63] in her Master's thesis, see also [29]. In this work, 

a mathematical modeling for the first-order probabilistic logic problem or FOPL is provided. 

This is originally arisen from the mathematical model for propositional probabilistic logic 

[30] or PPL, based on a column generation formulation. While in propositional calculus, 

the underlying considerations are only with propositional variables and symbols, in first-

order logic, it is mandatory to handle quantifiers, predicates and functions. Therefore, [63] 

claimed it to be more difficult to provide a mathematical model for first-order probabilistic 

logic than for propositional probabilistic logic. 

Based on their mathematical model, they have developed a solution scheme for the 

FOPL mathematical model. While the model could be solved by linear programming tools 

using the simplex or revised simplex algorithms [11], the approach becomes limited to very 

small sized instances as the number of variables grows exponentially with the number of 

predicates. However, as for PPL, by using column generation techniques (see Chvatal [11], 

p. 195), these limitations can be overcome. Moreover, it is much faster than the classical 

simplex algorithm for solving linear programs since it is not required to consider explicitly 

all the possible worlds to guarantee an optimal solution. Just to recall that, by a possible 

world they mean a truth assignment on the set of sentences such that the set of sentences 

is satisfiable for that truth assignment. In the column generation model a possible world 

corresponds to a column in the matrix. Column generation technique begins with taking a 
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small, manageable set of columns (a few of the possible worlds), solves the associated LP, 

then analyzes its partial solution to determine an additional small subset of worlds (one or 

more possible worlds) to be added to the model. Each time there is an addition of a column 

or set of columns, then the procedure again solves the expanded model. The column-wise 

modeling repeats this process until it satisfies an optimality condition for the problem. 

From the above discussion it's obvious that column generation technique does not solve 

the whole problem at a time as does the straight forward LP solution scheme. Instead 

the column generation method relies on a decomposition of the initial linear program into 

a master and a pricing problem. At each iteration, we consider only a restricted master 

problem, i.e., the master problem with only a small number of variables, i.e., a small subset 

of possible worlds. The pricing problem corresponds to the mechanism of generating possible 

worlds which improve the value of the current solution and which are added to the restricted 

master problem. Therefore, in order to solve the FOPL problem, an algorithm has been 

provided for both the restricted master problem as well as for the pricing one. 

Usually solving the restricted master problem is easy but solving the pricing problem 

is more difficult because of its nature. The pricing problem is an optimization problem. 

Therefore, it is defined by an objective and a set of constraints. The objective of the pricing 

problem is to find a world with an appropriate (negative or positive) sign for the reduced cost 

such that it will improve the current solution (provided by their restricted master problem). 

The reduced cost is an indication (metric) that is used to check the optimality criteria of a 

solution in LP [11], The set of constraints, in the pricing problem, corresponds to the set of 

rules associated with the definition of a possible world. In PPL, a world is a possible or valid 

truth assignment over the sentences, i.e., it is possible if there exists a truth assignment on 
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the variables that leads to that truth assignment on the sentences. Finding a possible world 

is easy in PPL, indeed, the truth assignment or number of interpretations of a propositional 

sentence is finite. Whereas, in FOPL, it is more difficult to obtain a possible world (see 

Chang and Lee ([9], p. 31) for more information). 

The basic definition of the satisfiability problem for first-order logic and propositional 

calculus is same whereas, the definition of interpretation is different for them. However, 

[63] has made use of the idea that finding a feasible solution of the pricing problem can be 

reduced to the well known satisfiability problem of first-order logic in AI. 

In order to solve this satisfiability issue, Jaumard et al. [29] and Sultana [63] have used 

a theorem prover package named Theo-2006. This package reaches a decision by searching 

for contradiction or inconsistency rather than satisfiability using the resolution refutation 

principle (see [48] for more information). However, addressing the satisfiability issue is 

just only a part of the pricing problem, corresponding to the search of a feasible solution. 

Each time the pricing problem runs with the objective of finding a negative reduced cost in 

order to reach the optimal solution. The issue of finding the negative reduced cost (i.e., for 

minimization problem) has been addressed by employing the well-known branch-and-bound 

technique. Although the branch-and-bound technique is an exact method (i.e., the solution 

is found if there exist one), this can be used within a heuristic by stopping it as soon as a 

node with negative reduced cost is identified. 

Finally they have devised an algorithm for solving the pricing problem which is an 

exact algorithm. It is to be noted that, an exact algorithm is one which guarantee to 

find the optimal solution if there exists one. They claim their algorithm is scalable as it is 

comfortable to solve medium sized first-order instances. By far it is the first exact algorithm 
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for solving the first-order probabilistic logic problem. 

3.5.2 First order strategies 

In this section we describe some essential strategies for first order probabilistic logic. In 

the first part we discuss some practical and scalable procedures, i.e., regarding satisfiability 

issues used in some well known theorem provers. In the second part, we discuss their special 

strategies behind success. 

3.5.2.1 Practical and scalable procedures for satisfiability issues in first order 

logic 

Although the satisfiability problem, i.e., SAT problem, is associated with PPL, in first-order 

logic, automated theorem provers are used to prove the satisfiability of a set of formulas. 

In order to serve the purpose of checking satisfiability of a set of given first-order formulas, 

we were searching for a suitable and efficient theorem-prover. We decide to focus on the 

theorem provers which participated in the CADE ATP System Competition. Among them, 

Vampire, SPASS, Theo are the most well reputed theorem provers in the international 

competitions. Next, we go through their underlying assumptions and strategies. 

Vampire uses saturation with resolution and paramodulation; SPASS combines satura­

tion with superposition (a variant of demodulation), conventional splitting with branching 

and backtracking; and Theo uses resolution refutation. 

We have already discussed refutation proving, some strategies and simplification meth­

ods for resolution proving in Section 2.2.1.4. In order to make resolution more efficient, 

several sophisticated inference rules have also been developed and applied in the efficient 
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theorem provers. In this section, we will discuss two of such techniques: paramodulation 

and saturation. Moreover, some recent adaptive strategies that are used to improve the 

performance of resolution based first-order theorem provers are also discussed in the last 

section. 

3.5.2.2 Adaptive strategies 

Several strategies are used to enhance the performance of first-order theorem provers. 

Among them Limited Resource Strategy (LRS) of Riazanov and Voronkov [54, 56] 

greatly improves the effectiveness of saturation algorithm. This strategy addresses the prob­

lem of reasoning in limited time. According to the authors, LRS is an adaptive strategy as 

it can dynamically adjusts the limit on some weight of clauses. This dynamic adjustment 

is based on the collected statistics on the earlier stages of proof searching. 

The cost of backtracking is usually very high as it may contain several hundreds or 

thousands of clauses, literals. In order to prevent this problem, Riazanov and Voronkov 

suggested another strategy Splitting Without Backtracking (SWB) in [55]. The SWB 

is an intelligent backtracking that contains the splitting history. Therefore, by analysing 

the history, it is easy to identify the path of splitting to reach a contradiction. For instance, 

consider, a set S of clauses where C\ and C% are two new clauses. Now to refute the set 

S U {Ci V C2} we can split it as S U {Ci} and S U {C2} and check refutation. 

Riazanov and Voronkov also showed in [57], the use of demodulation in two different 

modes, forward demodulation and backward demodulation. In forward demodulation, ac­

cording to the unit equalities that already exist in the current clause set, newly derived 

clauses are re-written. While in the backward demodulation, old set of clauses is rewritten 
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based on the positive unit equalities of the newly derived clauses. One needs a technique 

to retrieve instances in order to re-write the subset of clauses with unit equalities. The 

authors [57] have also introduced a technique called Path Indexing for retrieval instances 

smoothly. 
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Chapter 4 

An Anytime Deduction Algori thm 

for First Order Logic 

In Chapter 2, we denned the model for probabilistic logic problem in the first order case. 

We recall from Chapter 3 that a numerical solution for this model can be achieved in two 

ways, namely: Exact methods and anytime deduction methods. An exact method is one 

which solves the problem in such a way that it guarantees to find a solution if there exists 

one, and guarantees to find one with the best possible objective value. On the other hand, 

an anytime deduction method can be stopped anytime during its execution and we get a 

partial result (i.e., a near optimal solution) at that point along with the explanation, (i.e., 

how the solution is reached as opposed to the exact methods). 
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4.1 AD-SOLFOPL: An Anytime Deduction Algorithm 

In this chapter we describe an anytime deductive approach, called AD-SOLFOPL, for solving 

the first order probabilistic logic and entailment problem. Before going any further into the 

detail of the deductive procedure, let us recall the two forms of FOPL problem in brief. The 

first-order probabilistic logic or FOPL problem has been formally defined in Section 2.2.1. 

The decision form of FOPL (pF0SAT for short), is defined as follows: Given a set T of m 

formulas in prenex normal form, and a probability vector IT = (ir\, TTI, • • •, irm) associated 

with these formulas, is the set (J7, IT) consistent? The optimization form of FOPL (pPOENTA!L 

for short), formally defined in Section 2.2.2, can be stated as follows: Given a set T of m 

formulas in prenex normal form, and a probability vector n associated with these formulas, 

such that the set (J7, it) is consistent, considering an additional formula Fm+i, what are the 

probability values for Fm+\ to be true so that the overall system (J7 U Fm+i,7r) remains 

consistent. 

Now, the AD-SOLFOPL procedure is a sequential procedure in which, at each iteration, 

we examine the impact of a set of inference rules, i.e., a small subset of logical sentences 

(typically one to three) together with the interval probability values of a small subset of 

predicates, on the probability interval values of either a selected predicate or a selected 

sentence. In other words, at each iteration, it tries to tighten the probability interval of a 

predicate or of a sentence, and consequently defines a deductive approach corresponding to 

a sequential tightening procedure. We explain the outline of the AD-SOLFOPL procedure in 

the subsequent paragraphs but before moving to that part let us have a quick look into a 

special set of inference rules, a small but an essential concept for the overall AD-SOLFOPL 

procedure. 
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4.1.1 Set of inference rules 

In the next two subsections we state a set of inference rules which plays a very important 

role for the anytime deduction algorithm. First, we explain the set of inference rules which 

were proposed by Jaumard et al. [33] for propositional case with the AD-PPL procedure. 

In the succeeding subsection we present the proposed set of inference rules adapted and 

extended for first order case from the one proposed by [33]. 

4.1.1.1 Set of inference rules for AD-PPL 

Jaumard et al. [33] has defined a particular set of inference rules, which consists of a small 

set of logical sentences together with their probabilities for which the analytical solution is 

available. For example, let Si be a logical sentence with two or three literals. Let Xk be one 

of the variables appearing in Si, either as a positive literal (xk) or a negative one (xfc). The 

formation of the first inference rule is as follows: an analytical expression of the tightest 

possible probability interval for Xk or x^, given probability intervals for Si and for all other 

literals involved in Si. 

The general idea behind this proposed set is that: At most two sentences are given with 

their associated probability bounds such that these sentences are true. Each sentence is 

represented as the combination of positive or negative literals of at most four distinguishable 

variables. In an inference rule, the variables which make up a sentence are either given 

explicit probability bounds or assume probability bounds of [0,1]. We have to find the 

probability intervals of an additional sentence having at most two literals either in positive 

or negated form. Now, let us consider the following example: A probabilistic sentence S, 

described in terms of the variables x\ and X2, is given with its probability bounds. One of 
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the literals of the sentence (i.e., x\) is also provided with probability bounds; the inference 

rule is able to calculate the probability bounds on the literal (i.e., x^) and check consistency 

of the calculated bounds. 

S:xx\Jx2 [ES^S] 

X2 7T2? 

The upper and lower bound is given by the analytical expressions: 

7F2 = min{l,7fs} and 7r2 = max{0, (]is — Ki)}-

The consistency condition is enforced by: 

0 < 7Tj < 1; 7£i < 7Ti i = 1,S, 

and 

7f s > 7T1. 

Other simple examples of inference rules from Jaumard et al. [33] are shown in the appendix. 

They are varied based on several criteria. Some of them have only one sentence defined 

in terms of positive literals only while others have both negative and positive literals in 

them. The size of a sentence varies from two to a maximum of four literals (both positive or 

negated form). A set of more complex inference rules include two logical sentences and the 

literals having sign of both type. The most complex set of inference rules contains query 

having at most two literals while simple queries have only one literal. 
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4.1.1.2 Set of inference rules for AD-SOLFOPL 

Initially, we used a straightforward extension for the inference rules described in the pre­

ceding section. For instance, an extension (only considering the existential quantification) 

of the above mentioned inference rule from propositional probabilistic logic to first order 

case can be: 

3x3y [P(x,y)} [ZEn^i] 

S:3x3y \P[x,y) V Q(y)} [Ks,7fs] 

3y [Q(y)] M 

The consistency condition in this case is different from those in AD-PPL because of the 

introduction of the quantifiers in first order logic. More particularly, they are similar for 

the upper and lower bounds of individual sentences and predicates but the relation between 

quantified predicates and quantified sentences is yet to be explored (in future work). For 

the numerical values of the bounds, we used the exact algorithm proposed in [63] and [29] 

(presented in Section 3.5.1). 

In most of the cases, the straightforward extension technique does not look sufficient to 

help finding the tightest probability bounds for the additional sentence in the optimization 

form of FOPL (i.e., pFOENTAIL) Having a closer look, it reveals that the issue of the quantifiers 

is not fully explored in the straightforward extension scheme (first algorithm). Here, we 

propose another extension of inference rules from the first set to an enhanced one based on 

the exploration of the quantifiers of the formulas. We present this idea with the following 

example. Let us consider the previous example (the original inference rule and its naive 
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extension) once more. Suppose, we have a different sentence this time and the rule looks 

like: 

3x3y [P(x,y)] [iLi^i] 

S:\fx3y [P(x,y) V Q(y)} [Ks,Ws] 

3y \Q(y)] to?] 

Having a closer look will reveal that we have considered only one particular case of 

quantification (existential) for both the constituent predicates of sentence S while there are 

others are yet to be considered. This seems to have incomplete information to evaluate 

the bounds of Q(y). To be more clear on what we are missing, let us check the following 

instance. 

S:\/x3y [P(x,y) V Q(y)} 

VzVy [P(x,y)} 

\/x3y [P{x,y)} 

3x\/y [P(x,y)] 

3x 3y [P(x, y)] 

Vy [Q(y)\ 

3y [Q(y)\ 

Now, we have more information about the probability bounds for both the predicates, 

P(x, y) and Q{y)- If a predicate has no given probability bound, the bound for the predicate 

[7Ll2,7fl2] 

[2El3>7fl3] 

[2L21-¥2l] 

[7T22?] 
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is initialized with [0.0, 1.0]. Although this extension scheme helps to find the tightest 

bound on Q((y) in most of the cases, it looks like an exhaustive enumeration of all possible 

quantifications on the predicates of the sentence S. More importantly, it may take a long 

time to compute the bounds when we have too many constraints in a single inference 

rule. The benefit of this scheme seems outweighed by the possibly high computation time 

overhead. Again, we have following combinations of the sentence S for each of which we 

have to consider all the combinations of the quantified predicates as shown in the above 

example. 

S°:Vx3y [P(x,y) V Q(y)} [TTS ,^] 

S^.VxVy [P{x,y)VQ(y)\ [TT, ,^] 

S2:3xVy [P(x,y) V Q(y)} [7rs,7fs] 

S3:3x3y [P(x,y)V Q(y)} &,,¥,] 

Clearly, the inference rules can be generalized to the following form: 

AixA 2 y [P(x,y)} [Hn^i] 

S:AlXA2y [P(x,y)VQ(y)] [KS,^S} 

An/ [Q(y)] W\ 

where A2 and Ai assume values from all combinations of the quantifiers (i.e., Vx and 3y). 

This is a complete set of inference rules for a particular combination of sentences and 

predicates that can be applied but we apply only a subset of these rules based on some 

heuristics. It is to be noted that the order of application of the inference rules is very 
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important to get a improved bound for a particular predicate or a sentence. 

Suggestions 

Instead of taking all the combinations of the predicates we can take a reduced subset which 

are effective to produce a good result (i.e, a tight probability bound). Initially, we try 

to improve the probability bound of each quantified combination of the predicates. Some 

values are improved, some are not (i.e., remains with [0, 1] probability bounds). Next, from 

the inference rule, we eliminate some of the quantified combination of the predicates which 

still have the [0, 1] bounds after the first attempt to improve their bounds. But in this 

process we do not exclude those quantified combination of the predicates which have the 

same sequence as is in the original sentence. For example, if the sentence S has the value V3 

for the generalized quantifiers Ai and A2, we do not exclude any predicate having the same 

sequence as S for quantifiers (e.g., V3 [P(x,y)] even with [0, 1] probability bounds will not 

be excluded). This suggestion is very effective because applying the modified inference rule 

(of reduced size) we do compute the same probability interval but the computation (i.e., 

CPU) time is greatly reduced. This is one of the main issues considered on the improved 

version of the algorithm called AD-SOLFOPL+. 

4.1.2 Outline of the AD-SOLFOPL procedure 

Suppose, we are given a set of logical sentences, S = {S\,S2, • • • ,Sm}, associated with 

their probability intervals [zLs ,7fsfc] for k = 1,2, . . . , m , and defined on a set of boolean 

variables X — {xi, £2, • • • >£n} by a set of predicates V — {Pi, P2,..-, Pr} associated with 

the probability intervals [7 ,̂ 7f,] for i = 1, 2 , . . . , r. The AD-SOLFOPL procedure attempts to 
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produce a tight probability interval [zrTO+i, 7fm+i] for an additional sentence Sm+i, in such a 

way that the overall system (5U5 m +i , [7r, ?r]) where 7r,7f G [0, l ] m + 1 , remains consistent. If 

some of the predicates are given without prior probability, at the initialization, all predicates 

for which no information is given on their uncertainty are assigned the trivial probability 

interval [0,1]. 

At the beginning, each individual predicate Pi(x), for i = 1, 2 , . . . , r is marked as .false, 

which means none of the probability intervals of the predicates has been attempted to be 

tightened yet. Each of the sentences 5^, for k = 1,2,... , m, is also marked .false, which 

means none of them has been searched for updating the probability intervals. Updated 

bound, which means being successful at updating one probability bound after solving a 

probabilistic entailment problem is also set to .false, at the beginning for all the predicates. 

The AD-SOLFOPL procedure starts with the examination of the additional sentence Sm+i 

and focuses on improving the probability interval of one of its predicates, Pj(x), one at 

a time. Then, it searches for an occurrence of the predicate Pj(x) (either in negated or 

positive form) in the set of given sentences. Whenever a sentence, which contains Pj(x), 

is found it tries to update the bounds of the remaining predicates (i.e., which are still 

marked as .false.) of the newly identified sentence by following the same procedure. The 

AD-SOLFOPL procedure solves a probabilistic entailment problem, following the predefined 

set of inference rules, whenever all the predicates in a sentence are marked as .true, (i.e., 

their probability intervals are either tightened or attempted to be done so). It is a recursive 

procedure which continues until all the predicates are either updated or, more precisely, an 

attempt to improve the bounds has been made. 
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Let, S be an arbitrary sentence. Each time the algorithm AD-SOLFOPL solves a prob­

abilistic entailment problem T>
e{{Sh)k€K^S) using the exact method of [63], [29], not only 

it generates the probability interval of the target sentence S, but also checks whether the 

problem Ve({Sk)keK,S) is consistent. If the problem is not consistent, it implies that the 

original probabilistic entailment problem (V) is not consistent either, and the algorithm 

AD-SOLFOPL stops at that point. 

As the AD-SOLFOPL algorithm is iterating, probability intervals are tightened for a small 

set of sentences and predicates and the current set of probability intervals assigned to the 

predicates and sentences. This small set of sentences and predicates are selected according to 

the set of inference rules described in Section 4.1.1.2. The AD-SOLFOPL procedure defines 

an order in which the inference rules are applied in order to find the tightest possible 

probability intervals of an additional sentence with a minimum number of iterations. AD-

SOLFOPL starts with the investigation of the additional sentence, i.e., it examines each of 

the predicates it contains and looks for the logical sentences those contain them. Next, it 

makes recursive attempts to improve the probability intervals of those predicates. 

At first, the algorithm tries to improve the bounds of a predicate by involving inference 

rules where only one formula and its constituent predicates are involved. In the second 

stage, it tries to improve the bounds of a predicate by involving two of the sentences where 

both the sentences contain the predicate for which we try to improve the bound. 

Now, we will see an illustration of the AD-SOLFOPL procedure on a small example. Let 

us consider the following example with 5 formulas defined as follows. We assume that the 

subset composed of the first four sentences is assumed to be consistent and that we are 

interested in the tightest possible range of the probability values that can be assigned to 
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the additional sentence, S5, such that the overall set of formulas (all five) remains consistent. 

S1=\/x3y [P(x,y)VQ(y)} [0.85,0.90] 

52 = 3x hR(x)} [0.55,0.60] 

53 = 3y hQ(y)] [0.55,0.60] 

SA = \/x\Jy hP(x, j / )ViJ(x)VQ(y)] [0.65,0.70] 

S5 = 3x3y [->P(x,y)] [lL,7f]?. 

As we have stated, we are interested in the largest possible range of the probability 

values of S$ = 3x 3y [-iP(x, y)] such that the overall set of sentences and probability 

intervals are consistent. 

Let us apply the sequential deductive approach of the AD-SOLFOPL algorithm starting 

with the additional sentence, S$ = 3x 3y [->P(x,y)]. Now we will try to find the sentence 

that contains the predicate P(x, y) from the additional sentence. The procedure examines 

all the sentences that contain the predicate P(x, y) and in the successive steps try to improve 

the probability bound of the remaining predicates of those sentences in order to improve 

the bound of S5. 

For this particular example, let us consider S\, which contains P(x,y) in positive form. 

In addition to P(x,y), S\ contains predicate Q(y). Now Q(y) becomes the predicate for 

which we try to tighten the probability interval. Again, we start from the beginning (i.e., 

from Si) but this time searching for Q(y). In Si, both predicates (P(x,y) and Q(y)) are 

already marked .true, and Si does not contain any unmarked predicate. We therefore 

attempt to improve the probability interval of Q(y). The inference rule that comes in to 
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play to solve the entailment problem looks like: 

5 : V x 3 y [P(x,y) V Q(y)} [0.85,0.90] 

3x3y [P(x,y)] [0.0,1.0] 

Vy [Q(y)} [zr,7P]? 

Note that we only considered the positive literal for both the predicates and when there 

is no prior value of probability is given, we assume [0,1] for predicate P(x, y) which is 

originated from 55. In order to get the best possible values for TX_ and n, we use the exact 

AD-SOLFOPL procedure developed by [63] based on [29]. Just to recall from Chapter 3, this 

implementation used column generation technique instead of straightforward LP solution. 

We get the probability interval of [0.0,0.9]. 

We compare it with the incumbent interval, i.e., the initialized value, [0,1], update and 

keep the tighter bound, [0.0,0.9] as current bounds. Next, 53 is encountered with Q(y) and 

from there we get a better bound of [0.4,0.45] for Q(y) as compared to the current bounds. 

Note that, a bound is updated only when either the new upper bound is smaller than 

the previous upper bound or the new lower bound is greater than the previous lower bound. 

But in no case the lower bound is allowed to be greater than the upper bound. In this case 

AD-SOLFOPL procedure claims the original problem instance to be inconsistent. 

In the continuing way of AD-SOLFOPL procedure, 64 is encountered and R(x) becomes 

the new predicate to be evaluated. The inference rules that gets considered next is the 

following: 
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Vx Vy hP(x, y) V R{x) V Q(y)} [0.65,0.70] 

3x3y [P(x,y)\ [0.0,1.0] 

3y [Q(y)] [0.55,0.60] 

Vx h-R(x)] [7T,7f]? 

leading to the probability intervals [0.0,0.7] for R(x) but the bound from S2 (i.e., 

[0.4,0.45]) is already tighter and we keep the tighter one as current value. Again, at this 

point the recursive evaluation for R(x) ends and the procedure backtracks to S4 for evalu­

ation of Q(y). 

VxVy hP(x,y) V i?(x) V Q(y)] [0.65,0.70] 

VxVy [P(x,y)] [0.0,1.0] 

3x hi?(x)] [0.55,0.60] 

Vy [Q(y)] [TLTT]? 

resulting in [0.0,0.7] for Q(y) but we already have a tighter bound. Now calling for Q(y) 

ends and the recursive evaluation for P(x, y) resumes at Si with the following inference 

rule: 
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\fx3y [P(x,y)vQ(y)} [0.85,0.90] 

3y [Q(y)} [0.0,1.0] 

VxVy [P(x,y)} [ZL,¥]? 

Bounds for P(x,y) is changed to the newly found bounds [0.0,0.9]. 

Next, P(x,y) is found in S4, all the predicates are marked .true., calling the following 

inference rule: 

VxVy [->P(x,y)VR(x)VQ(y)] [0.65,0.70] 

Vx [R(x)\ [0.55,0.60] 

Vy [Q(y)\ [0.55,0.60] 

VxVy [P(x,y)} [TT.TF]? 

where we find the result [0,1], we keep the previously found tighter one, [0.0,0.9]. Finally, 

the bounds for the additional sentence F5 = S5 = 3x 3y [-^P(x, y)} becomes [0.1,1.0] from 

VxVy hP(x,y)}. 

To add to the performance to this algorithm, it is to be mentioned that the optimal 

solution obtained with the application of the exact algorithm of [63] based on [29] on the 

whole set of sentences is also [0.1,1.0], which implies the AD-SOLFOPL algorithm is able to 

find the tightest probability bound (i.e., the optimal solution) in this case. 
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4.1.3 Algori thm AD-SOLFOPL 

We now describe, in detail, the AD-SOLFOPL algorithm. As we already mentioned, it uses 

the implementation of the exact algorithm of [63], [29], detects whether a given instance 

(S, 7r,7f) is consistent and, in case of consistency, attempts to provide tight bounds on the 

probability interval of the given logical sentence Sm+\. 

The AD-SOLFOPL algorithm starts with the investigation of the predicates of the addi­

tional sentence in order to tighten the probability intervals, through a call to EVAL_SENTENCE 

(Sm+i, [zim+ijTfm+i])- Once this tightening step is completed, AD-SOLFOPL attempts to 

tighten the probability interval of Sm+i using the improved probability intervals of its pred­

icates. If, during an iteration, the probability interval of a predicate Pj(x) is tightened, 

UPDATED_BOUNDS is set to .true.. When AD-SOLFOPL investigates the probability interval 

of a predicate Pj(x), a flag MARK_PRED is set to .true., similarly for the sentences that 

contains Pj(x) or Pj(x). Once a predicate or a sentence is marked, it is no more selected 

for bound tightening by AD-SOLFOPL during the same iteration. The algorithm is presented 

below. 

Algorithm 4.1: Algorithm AD-SOLFOPL. 

Initialization 
MARK_PRED(PJ(X)) <— .false, for all Pj(x) G V; 
MARK_SENTENCE(5fc) <— .false, for all Sk G <S; 
UPDATED_BOUNDS(PI(X)) <— .false, for all Pi(x) G P; 

Main i terat ion 
EVALJSENTENCE(5m+i,[7Tm+1,7fm+1]). 
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There are two possibilities for tightening the probability interval of a given logical sen­

tence. Either, we first tighten the probability intervals of the predicates defining this sen­

tence using [63], [29]; or we directly attempt to tighten the interval probability of the 

sentence. 

Algorithm 4.2: EVAL_SENTENCE (Sfc, [Ksk>^Sk]) 
{* Tightening the probability interval of a logical sentence *} 
for all Pj(x) € Sk do 

EVAL_PRED(Pj (X), [ffj, Tfj] 
end for 

The EVAL_PRED procedure not only tighten the probability intervals of some predicates, 

but along its search for improved bounds, updates the probability intervals of either other 

predicates and possibly some sentences. 

Next, we use the procedure EVAL_PRED_2SENTENCE(Pj(x)) for tightening the bounds 

for the predicate with inference rules involving two sentences. This procedure is able to 

tighten the bounds further as it has more information with the sentences. In practice it 

increases the computation time slightly (which is quite understandable) but improves the 

bounds a lot. 

Once the bounds for the predicates are tightened, we try to tighten the bounds of the 

sentences. If any improvement is achieved for sentences' bound, the procedure for improving 

the bounds of the predicates is re-computed. As one can observe it, the AD-SOLFOPL 

algorithm is an anytime algorithm in the sense that, if one stops the algorithm before the 

stopping conditions are met, we still get a solution. However, it is not necessary the best 

possible one. 
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4.2 AD-SOLFOPL+ Procedure 

We found reasonable computation time and a satisfactory level of scalability with the appli­

cation of the first version of our proposed algorithm, called AD-SOLFOPL. But the calculated 

bounds were not the tightest ones in most of the cases. That is why we identified a few 

drawbacks of our scheme which was directly followed from the AD-PPL proposed by Jaumard 

et. al. in [33]. We propose a heuristic procedure which follows from our first proposed one 

with some major modification in its approach. They are discussed below. 

As we already mentioned, the first version of the AD-SOLFOPL algorithm follows some­

what similar set of inference rules as those are used in AD-PPL proposed by Jaumard et. 

al. in [33]. But we found that by using those inference rules, it is not possible to reach 

the optimal solution very often. This is because inference rules in the first version, we are 

restricted to only a particular case of quantification, existential one. For instance, for the 

above case, we were missing except the first quantification for predicate P(x,y). Taking 

this point into consideration, AD-SOLFOPL heuristic solves for all four variations of P(x, y) 

listed in the extended inference rules structure. This action gives rise to a better bounds in 

many cases. 

When we extend the set of inference rules, at the beginning somehow it was an exhaustive 

enumeration of all possible quantification of a predicate. Later on we tried to reduce the 

number of possible enumeration while keeping the process effective to get the tightest bound. 

As we already explained in Section 4.1.1.2 some of the predicates with probability bounds 

[0,1] are not considered. But in the inference rules we do not exclude those quantified 

predicates which have the same quantifier sequence as are present in the original sentence. 
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While sending the set of predicates and sentences following a particular inference rule, 

we do not send any predicate having trivial bound of [0,1]. This reduces the computational 

time in small scale for each iteration and in turn lowers the overall computation time in 

larger scale. 

When all the constituent predicates of the additional sentence (objective function) have 

been updated, we tighten the bound of the additional sentence. We make a small suggestion 

for the inference rules; to include the sentences which contains the predicates of the objective 

function. In the first version of the proposed algorithm, the inference rule is used only once 

to tighten the probability bound of the additional sentence as a whole. In the improved 

version the additional sentence is sent for tightening as many times as we have occurrence 

of the predicate(s) of the objective function. 

Fi = Mw Vy [B{w) V -iA(y)] [0.61,0.66] 

F2 = 3y3x\/z [A(y)V^C(x,z)] [0.71,0.76] 

F3 = 3y K4(y)] [0.64,0.69] 

FA = ^x3z\/y [C{x, z) V A(y)} [0.71,0.76] 

F5 = 3y Vw \/v 3x [->A(y) V ->B{w) V ->D(v,x)] [0.91,0.96] 

F6 = 3y3v3x [~<A(y) V ->D(v,x)] [0.85,0.90] 

F7 = 3v 3x [D(v, x)] [0.55,0.60] 

F8 = 3w3x3z [B(w)V -iC(x,z)] [K,TT] 

For example, in the instance with eight sentences, the first version, AD-SOLFOPL solves for 
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the bound of F% only once after the bounds of its constituent predicates B(w) and C(x, z) 

are updated. But in the improved version, AD-SOLFOPL+, F% is solved twice for B(w). 

Fy=VwVy [B(w)V^A(y)] [0.61,0.66] 

Vtw [Q(w)] [ztn-'Tii] 

3w [Q(w)] [zr12,7fi2] 

VxV2 [C(x,z)] [l[21,7f2l] 

3x32 [C(a;,z)] fe^^] 

F8 = 3w 3x 3z [B(w) V ->C(x, z)] [TT, 7f] 

F5 = 3yVu>Vv3x h^l(y) V ->B{w) V -.£)(«, x)] [0.91,0.96] 

Vw [Q(w)] [ZLn, 7fn] 

3u; [Q(w)] [Hi2)7fi2] 

VxVz [C(x,z)] [2r21,7r2i] 

3 x 3 2 : [ C ( x , z ) ] [ZE24,vf24] 

F8 = 3w 3x 3z [B(w) V ̂ C(x, 2)] [TT, W] 

Then it is solved twice more with F2 and F4 as well in the same manner. Now we take the 

best result (i.e., the smallest upper bound and largest lower bound) as for the final interval. 

Therefore, we find that the proposed heuristic is able to obtain tight probability bounds 

(i.e., optimal solution) in most of the cases with small computation time. When this heuris­

tic is applied on large instances, the benefits of the heuristic becomes more obvious. Again, 
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the AD-SOLFOPL+ algorithm is an anytime one. 
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Algorithm 4.3: EVAL_PRED {Pj(x), [jLj,^j}) 

{* Tightening the probability interval of a predicate by taking one logical sentence into 

account *} 

{* Initialization *} 
MARK_PRED (Pj{x)) <— .true. 

{* Main Iteration *} 
for each Sk € S such tha t Pj{y) G Vk and MARK_SENTENCE(Sfc) = .false, do 

if for all Pi(x) €Vk\ {Pj(x)}, MARK_PRED(Pi(x)) = . t rue . t h e n 
MARK_SENTENCE(5'fc) <— .true.; 
for all Pi(x) € Pk \ {Pi(x)} d o 

if U P D A T E D _ B O U N D S ( P J ( X ) ) = .false, t h e n 
EVALJPRED(Pi(x), [ZLi, 7ft]); 

end if 
end for 
Consider all the probabilistic logic problems Ve defined by (Sk, []Lsk^sk]) and 
(Pi(x), [Ki,T?i}) for all combinations of P%(x) G Pk\ {Pj(x)} and quantifiers (Bandi); 
if Ve is inconsistent t h e n 

STOP: the initial system is inconsistent 
else 

Solve Ve probabilistic logic problem using the appropriate inference rules and LP 
solution in order to deduce a new interval probability [zr^EW, ?r"EW] for Pj(x); 
if Ej > ¥;

NEW or Wj < 7r£EW t h e n 
an inconsistency has been detected, STOP: the initial system is inconsistent ; 
IFrrj < TT™EV/ 

set 7^ <— 7r^EW and UPDATED_BOUNDs(P,-(x)) <— .true.; 
else 

if rfj > 7f;
NEW t h e n 

set Wj <— 7f̂ EW and U P D A T E _ B O U N D S ( P J ( X ) ) <— .true.; 
end if 

end if 
MARK_SENTENCE(5fc) <— .false.; 

e n d if 
end if 

end for 

{* Mark label of Pj(x) *} 
M A R K _ P R E D ( P J ( X ) ) * - .false.; 

{* Further bound tightening using a special set of inference rules tha t include 2 sentences 

*} 
EVAL_PRED_2SENTENCE(Pj (X)) 
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Algorithm 4.4: EVAL_PRED_2SENTENCE(PJ(X)) 

{* Evaluating the probability interval of a predicate by taking two logical sentences into 
account *} 
for all Si such that Pi(y) <E Pi and |5/ | = 2 do 

for all Sk 7̂  Si such that Pi(y) G Pk and 1^1 = 2 do 
Consider the probabilistic logic problem (Pe(Sk,Si,Pj(x))) denned by 
(Sk, [7r5fc,7F<yJ), (Sh [7r5i,7F5(]) and (Pj(x), [T^TF;]) for all P4(x) £ f t \ {Pj(s)}; 
if P e is inconsistent then 

STOP: the initial system is inconsistent 
end if 
Solve probabilistic entailment problem using the special set of inference rules to 
determine the new interval probability [TV^EW ,W^EW] of Pj(x); 
if nj > n]EW or Jfj < K]EV/ then 

an inconsistency has been detected, STOP: the initial system is inconsistent ; 
end if 
if 7T(z) < 7rfEW then 

update Bounds (Pj(x)) <— true ; 
end if 
if Wj > TT]EW then 

update Bounds (Pj(x)) <— true ; 
end if 

end for 
end for 
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Chapter 5 

Experimental Results 

5.1 Setup and Programming Environment 

We have implemented two proposed algorithms, AD-SOLFOPL and AD-SOLFOPL+ under 

Linux environment in C++. The supported compilers that we used are gcc 3.4.4 and 

higher versions. The implementations amount to around 3000 lines of code, compiled and 

run under Linux Red Hat 3.4.4-2. For the optimization part, we have used ILOG CPLEX 

10.1.1, in order to solve the linear programs (i.e., using the exact algorithm of [63], [29] 

which uses column generation technique). We run our test instances in computers with 

AMD dual processors, CPU speed 2392.132 MHz, RAM up to 15.6 GBs. 

5.2 Instances for AD-SOLFOPL 

We build a set of first order instances in order to evaluate the performance of the AD-

SOLFOPL and AD-SOLFOPL+ algorithms. In the next paragraph, we explain some reasons 
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why we did not take the advantage of the available libraries of test problems for first order 

logic. 

5.2.1 Instances from the t p t p library 

There is a collection of instances for theorem provers called The Thousands of Problems 

for Theorem Provers or TPTP in short. This library provides a variety of problems for 

different types of theorem provers. Initially we tried to work on problem instances from 

TPTP library. However we found that usually those problems are in a mixed format, i.e., 

some of them are in CNF while the others are in FOF format. Moreover, none of the 

problems has formulas having probabilities values associated with them. Most problems 

have a small number of formulas but each formula is very long. On the contrary, our focus 

is on problem instances where we have a large number of formulas but each individual 

formula is of moderate (small) size. That is why we use the strategy proposed by Jaumard 

et al. [30], instead of going for a multi-step preprocessing for using the problem instances 

from TPTP library. One, further interested about the collections and instances, can check 

http://www.cs.miami.edu/ tp tp/ for more detail about TPTP library. 

5.2.2 Generated instances 

In order to run our proposed algorithms, we use randomly generated test instances similar 

to those proposed in Jaumard et al. [30]. For the generation of the instances, two different 

issues have to be taken care of. First, we need a set of consistent first order formulas which 

are generated based on a given set of input parameters. Second, for each of these generated 

formulas, we need a range of probability values that each formula is true, so that the overall 
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set of sentences is true (consistency). 

More particularly, in our generator, the logical formulas correspond to clauses (disjunc­

tion of predicates) with at most 3 predicates. Formulas with 1, 2, 3 predicates are distributed 

as uniformly as possible. Again, the positive or negative predicates are distributed almost 

evenly, i.e., number of positive occurrences is almost equal to the number of negative oc­

currences. We keep at most two variables in each predicate in order to build a decidable 

instance [17]. Next comes the issue of the quantifiers, which are chosen and associated to 

variables of each formula in a random nature. We keep the number of variables equal to 

about 60 % of the number of formulas in a particular instance. The maximum size (number 

of predicates) of the additional sentence, defining the objective function, is choosen as two. 

For the second issue of the instance generation, we associate consistent probability 

values to those first-order formulas we already have generated. For this, we try to generate 

a world (see Section 2.1.1 for the definition) for the complete set of formulas by randomly 

associating 0 or 1 values to each formula. Then we check whether this 0-1 truth assignment 

on the formulas leads to a possible world with the help of a theorem prover (theo 2006, see 

[48] for more information). If the world is found as a possible one, we keep it, otherwise, 

we reject this assignment and try to generate a new possible world. By following this 

strategy, we generate a given number of possible worlds for m first-order formulas. In the 

next step, a uniform probability distribution is assigned over the set of possible worlds, 

assigning probability distribution 1/p to each possible world. Then, by summing up all the 

probability distributions (i.e., 1/p) for which there is a 1 value for a particular formula, a 

fixed probability value is calculated. 

Now, by subtracting a small value (e.g., 0.02) and adding up a similar one (e.g., 0.08) 
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to the fixed probability value, we finally generate the lower and upper probability bounds 

respectively. Consistency of these formulas are then checked with the associated interval 

probability values by using CPLEX tools and instances which are found inconsistent are 

discarded. An illustration of generating consistent probability values for a test instance with 

7 first-order formulas (for 12 randomly generated possible worlds) is shown in the Appendix 

A. 1.1. A set of instances that we have used for our proposed algorithm can be found in the 

Appendix too. 

5.2.2.1 Generated input format 

When we generate an input instance, we need to set several parameters. The structure and 

meaning of the parameters of a given problem instance can be seen below in Figure 2. 

fy''obj X C xmxnxnnF 

- • Maximum number of predicate/formula 

-* Total numberof distinct variables 

-* Total number of Formulas 

'Total number of distinct predicates 

•* Number of predicates in the objective function 

Figure 2: Structure and meaning of the parameters of a problem instance. 

Here, npF0i,j is the number of predicates in the additional sentence (objective function). 

In our generated problem instances, this parameter varies from 1 to 3. Parameters q and 

m are total number of distinct predicates used in a problem instance and total number of 
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formulas whereas n is the total number of variables. Usually, n is chosen as 60 % of the 

total number of formulas. Finally, npF expresses the maximum number of predicates used 

in any formula. 

5.3 Performance of AD-SOLFOPL and AD-SOLFOPL+ 

Here, we discuss the computational results and the performance of our two proposed al­

gorithms. Table 3 and Table 4 show a list of problem instances and its parameters as we 

described in Figure 2, upper and lower bounds for probability values and computation time 

to reach those bounds. In Table 3, we show the result of the first algorithm, AD-SOLFOPL, 

which can be better described as a straightforward extension from the AD-PPL proposed 

by Jaumard et al. [30]. In this algorithm, we followed a set of inference rules where only 

existential quantification is considered with those predicates which were not given explicitly. 

Table 3: Results of AD-SOLFOPL. 

nvFobi 

1 
2 
3 
2 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Instances 
q m 

3 4 
4 7 
4 8 
5 10 
8 15 
10 20 
11 25 
11 30 
11 35 
20 40 
22 45 
25 50 
30 55 
30 60 
50 100 

n 

3 
4 
4 
6 
7 
12 
14 
18 
21 
24 
26 
30 
32 
36 
40 

nvF 

3 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

AD-SOLFOPL 

Probability 
TL 

0.100 
0.037 
0.000 
0.000 
0.000 
0.242 
0.000 
0.000 
0.390 
0.000 
0.448 
0.000 
0.118 
0.000 
0.000 

•K 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

CPU time 
(sec.) 

0.160 
0.370 
0.760 
0.840 
1.250 
1.480 
1.620 
1.970 
2.350 
1.000 
1.370 
1.720 
1.420 
1.630 
2.670 

After the first algorithm, the set of inference rules were extended for all possible quan­

tifications. With this extension we are able to find the tightest probability bounds for most 
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Table 4: Results of AD-SOLFOPL+. 

npFobi 

1 
2 
3 
2 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Instances 
9 

3 
4 
4 
5 
8 
10 
11 
11 
11 
20 
22 
25 
30 
30 
50 

m 

4 
7 
8 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
100 

n 

3 
4 
4 
6 
7 
12 
14 
18 
21 
24 
26 
30 
32 
36 
40 

npF 

3 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

AD-SOLFOPL+ 

Probability 
TL 

0.100 
0.037 
0.274 
0.551 
0.249 
0.450 
0.188 
0.000 
0.390 
0.960 
0.448 
0.138 
0.446 
0.150 
0.238 

•K 

1.000 
1.000 
1.000 
1.000 
0.978 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

CPU time 
(sec.) 

0.540 
1.190 
2.250 
2.190 
2.810 
2.360 
4.900 
3.720 
3.400 
2.960 
4.330 
3.970 
4.710 
4.570 
5.810 

of the instances. But the computation time becomes too high, specially, for larger instances. 

Therefore, we developed a heuristic technique to find out a reduced set of inference rules. 

With the help of this heuristic technique we are able to find the same probability intervals 

but the (CPU) computation time is reduced by a an approximate factor of 5. 

We present the results using the second algorithm AD-SOLFOPL+ in Table 4. From these 

results (i.e., of Table 4), we find that the (CPU) computation time has increased slightly 

compared to those of Table 2 but the probability bounds are tightened a lot. The results of 

AD-SOLFOPL shows a wider probability bound or close to [0.0,1.0] in most of the cases with 

smaller computation time. But for AD-SOLFOPL+, the probability bounds are improved and 

the computation time is also reasonable. 
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5.4 Comparison of AD-SOLFOPL with an Exact Method 

In this section we compare the result of our proposed algorithm with the exact algorithm 

called SOLFOPL proposed in [63], [29], We evaluate the performance of our heuristic algo­

rithm w.r.t. this exact one (see Chapter 3 for more information on this exact algorithm.) 

At first, we present a comparison between the AD-SOLFOPL and SOLFOPL for a set of 

consistent examples in Table 4. The parameter values are arranged in the same way same 

as in the previous tables. 

Table 5: Results of an exact method using column generation technique. 

npFobi 

1 
2 
3 
2 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Instances 
q m 

3 4 
4 7 
4 8 
5 10 
8 15 
10 20 
11 25 
11 30 
11 35 
20 40 
22 45 
25 50 
30 55 
30 60 
50 100 

n 

3 
4 
4 
6 
7 
12 
14 
18 
21 
24 
26 
30 
32 
36 
40 

npp 

3 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

SOLFOPL 
Probability 

7T 7T 

0.100 
0.037 
0.462 
0.551 
0.249 
0.450 
0.188 
0.000 
0.390 

1.000 
1.000 
1.000 
1.000 
0.978 
1.000 
1.000 
1.000 
1.000 

CPU time 
(sec.) 

0.09 
0.19 
0.22 
0.33 
2.06 
1.65 
18.7 

18.37 
11.10 

> 1 week 
> 1 week 
> 1 week 
> 1 week 
> 1 week 
> 1 week 

From Table 4 and 7 we draw a few conclusion as below. 

Firstly, the scalability issue: The exact algorithm, SOLFOPL, can solve problem instances 

of length up to 35 formulas whereas the AD-SOLFOPL+ solves up to 100 formulas (and 

possibly more) in a reasonable amount of time. For the larger instances, SOLFOPL was 

forced to stop after several days of ongoing computation. This improvement of scalability 

of AD-SOLFOPL+ is a good achievement over the exact algorithm [63] and [29]. 
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Secondly, AD-SOLFOPL+ is able to find the tightest probability bounds for most of the 

cases when the instances are solved by the exact algorithm. This shows the merit of a good 

heuristic method. 

Finally, we find a huge improvement in computation time when we use the AD-SOLFOPL+ 

algorithm. For the small instances, (e.g., 5 formulas), the computation time is slightly higher 

than the exact algorithm but the computation time benefit of the heuristic becomes obvious 

when we compute bounds for larger instances (e.g. 25 formulas). This is shown clearly in the 

graph of Figure 3 where x axis represents the increasing size (w.r.t. number of formulas) of 

the input problem instances and y axis represents the (CPU) computation time (in seconds) 

for the probability of an additional sentence. This graph clearly reveals, at the beginning, 

computation time for the exact algorithm is lower than that of the heuristic approach. As 

the problem size increases, the computation time for the exact algorithm increases abruptly 

whereas it increases almost linearly for the heuristic algorithm AD-SOLFOPL+. 

Based on the random instance generator, even with the same input parameters that we 

currently use, the generated instances are different. Table 6 illustrate this fact with the 

results using the exact algorithm. That is why we consider this as a potential future work 

to find the complex relationship among the parameters. Other parameters which are not 

mentioned here (e.g., choice of quantifiers, size of the predicate, size of the formula and 

their proportion etc.) should be considered as well. Next, we also show a few cases (for 

randomly generated instances) where we compare how both the algorithms identified the 

inconsistency in the original example. 

In the graph of Figure 3, we compare the computation time (i.e., CPU Time) between 

SOLFOPL and AD-SOLFOPL for input instances of different sizes. In this graph, the formula 
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Table 6: Results multiple instances for same generation parameters. 

npFobi 

2 
2 
2 
2 
2 
2 
3 
3 
3 

Instances 
9 

4 
4 
4 
5 
5 
5 
8 
8 
8 

m 

7 
7 
7 
10 
10 
10 
15 
15 
15 

n 

4 
4 
4 
6 
6 
6 
7 
7 
7 

Tlpf 

2 
2 
2 
3 
3 
3 
3 
3 
3 

SOLFOPL 
Probability 

TL 

0.186 
0.394 
0.320 
0.323 
0.303 
0.227 
0.355 
0.449 
0.456 

IT 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

CPU time 
(sec.) 

0.22 
0.22 
0.18 
0.47 
0.51 
0.51 
3.29 
3.20 
1.61 

Table 7: Comparison between SOLFOPL and AD-SOLFOPL in case of inconsistent instances. 

npFabi 

2 
2 
2 

Instances 
Q 

11 
20 
25 

m 

35 
40 
50 

n 

21 
24 
30 

npF 

3 
3 
3 

CPU time (sec.) 
solfopl 

> 2 sec 

AD-SOLFOPL 

< 1 sec 
< 1 sec 
< 1 sec 

% INCONSISTENT 

(problems found by AD-SOLFOPL) 

100 
100 
100 

size (i.e., number of formula in the instance) is plotted along the x axis and the computation 

time (CPU time in sec) is shown along the y axis. Here it is obvious that there is a great 

improvement in the computation time for larger instances, specially beginning from mid 

sized instances. There is a spike in the graph due to problem instance of 25 formulas, which 

is due to the specific nature (e.g., number of predicates in a formula, number of positive 

and negative predicates in the large formulas etc.) of that generated problem. It is not 

completely obvious to generate random instances with the same solution complexity when 

increasing the number of formulas without dealing with the other parameters as well. We 

wish to reveal more on the apparently random nature of the generated instances in future 

works. 
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No. of formula In the Instance 
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Figure 3: Comparison of computation time between the proposed algorithm and an exact 

one. 
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Chapter 6 

Conclusion and Future Work 

In this thesis, our main focus is on those models which deal with reasoning under uncertainty, 

a heuristic implementation technique where uncertainty is described in terms of probability 

values. In 1986, Nilsson published an article [50] on the probabilistic logic and mentioned 

its two forms: namely, the decision and the optimization form. The decision form (or 

probabilistic satisfiability) checks the consistency of a set of logical sentences together with 

their probabilities that these sentences are true. On the other hand, in the optimization 

form (or probabilistic entailment problem), it tries to find the best possible bounds on 

the probability values 7rm+i associated with an additional sentence 5m+i, such that the 

overall system remains consistent. Except the probability issue, Nilsson's PPSAT and pPENTAIL 

problem can be reduced to the satisfiability and the logical consequence problem of AI 

respectively. 

The probabilistic logic problem (combination of both PPSAT and pPENTAIL) can be ad­

dressed in two general ways: using exact methods or anytime deduction methods. Recall 

that an exact solution scheme is one which guarantees to find the solution, if there exists 
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one. Usually, it attains a greater accuracy at the cost of possibly a higher computation 

(CPU) time. 

A straightforward exact method to solve the probabilistic logic problem could be by 

adopting a linear program solution or LP solution using the simplex or the revised simplex 

algorithm (see e.g., Chvatal [11], p.97 for more information). Unfortunately, this solution 

scheme becomes unmanageable even for a moderate sized problem. However, there are 

some powerful tools in operations research which are efficient enough to handle this kind of 

unmanageable situation. The Column generation techniques (see [11], p. 198) is one such 

example which is proved to be efficient in solving probabilistic logic problem in propositional 

sentences or PPL for short. This has been tested successfully for moderate sized (i.e., w.r.t. 

number of formulas) first order instances as well (see [63] for more details). The powerful 

expressive nature of First-order logic has made it closer to a human like representation as 

compared to, e.g., propositional calculus. That is one of the major issues that made us 

interested about investigating the anytime deduction technique for first-order probabilistic 

logic or FOPL for short. Another issue for interest has arisen when we closely studied the 

high computation time setback for solving large instances while using the exact method 

(implemented by R. Sultana in [63]). 

In this thesis, first, we try to extend the anytime deduction solution for propositional 

probabilistic logic, or AD-SOLPPL proposed by Jaumard et al. in [32], to first order logic, 

AD-SOLFOPL. But the extension is not something really straightforward. There are lot of 

differences between the propositional case and the first order one, e.g., the consideration of 

quantifiers, the issue of decidability etc. 

The general procedure is as such: we are given a set of decidable logical sentences in 
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first order form, S = {S\, S2,. • •, Sm} associated with their probability intervals [Esk> ^Sk] 

for k = 1,2, . . . , m , and defined on a set of boolean variables X = {x\,X2,-.-,xn} by 

a set of predicates V = {pi,P2, • • • ,Pr} associated with probability intervals [2Ei, Wi] for 

i = 1, 2 , . . . , r. The AD-SOLFOPL procedure attempts to output a tight probability interval 

[7rm+1,7fm+i] for an additional sentence Sm+i, in such a way that the overall system (<S U 

5 W i i [2L)7f]) where [zr, 7f] € [0, l ] m + 1 , remains consistent. 

The AD-SOLFOPL procedure starts with the examination of the additional sentence 5m+i 

and takes one predicate at a time from it. Then it searches for an occurrence of the predicate 

Pj(x) (either in negated or positive form) in the set of given sentences. Whenever a sentence 

is found, which contains Pj(x), it tries to update the bounds of the remaining predicates of 

the newly identified sentence by following the same procedure. It's a recursive procedure 

which continues until all the predicates or sentences are either updated with their bounds 

or attempted to be updated. 

As the second contribution, we have suggested a generalized set of inference rules, an 

extension to the set used in Jaumard et al . [32]. As compared to Jaumard et al. [32], our 

proposed set is more general as it considers the quantifications on the variables for which 

the predicates are defined. 

As the third contribution, we have developed an improved version of the first algorithm 

AD-SOLFOPL and named that version as AD-SOLFOPL+. This improved version has bet­

ter probability values and reaches a tighter bound as compared to the basic algorithm. 

Sometimes we have to trade off the tighter bound with the computation time. 

Finally, we have implemented two versions of the heuristic algorithm successfully. The 

experiments and results of those experiments based on our implementation are described in 
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Chapter 5. A comparison is made between the performance of our algorithm, and that of 

SOLFOPL [63]. The SOLFOPL is an exact algorithm based on column generation method. 

Drawbacks and future directions: 

Firstly, when the generated instances are large enough, it tends to produce [0, 1] bounds 

more often for the additional sentence while solving the optimization problem for first order 

case. We tried to study the effect of the probability intervals for individual formulas on the 

bound of an additional sentence for the optimization problem. This led to an interesting 

observation. If the probability bounds for individual sentences are tighter, it tends to 

produce tighter bounds for an additional sentence. But to achieve that is not very easy, 

specially for larger instances, because the probability value variation is not smooth as it very 

quickly moves from a consistent system with [0,1] interval to an inconsistent system. Future 

works may be carried out in this direction in order to develop a more robust generator for 

first order case. 

Secondly, the computation time becomes too large when we increase the size of the 

objective function (additional sentence) for large instances. So, still we keep at most two 

predicates for the objective function. Even for other formulas, the maximum size is three 

predicates per formula. 

Thirdly, our proposed algorithm is explored only for unconditional probability in first 

order probabilistic logic. AD-SOLFOPL algorithm can be extended for conditional probability. 

Moreover, a tool can be developed in order to evaluate a heuristic algorithm considering 

how far we are from the tightest probability interval. This we leave as a possible future 

work. 

Fourthly, an enhanced set of inference rules can be proposed with more complexity. The 
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more complex the set of inference rules become, i.e., more information is included, better 

the quality of the bound becomes. Although it is not practical, if we add more information 

in the inference rule and increase the size of it so that it includes all the formulas of the 

given problem instance, it behaves similar to the exact algorithm. 
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Appendix A 

Appendix A 

A.l Input Generation Process 

A. 1.1 An illustration of the probability generation 

An illustration of generating consistent probability values for a test instance with 7 first-

order formulas is shown below. 

A.1.2 An input file 

We show the screen shot of an input file which shows the format of the formulas and the 

probability values associated with each one. 
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| [POSIT IVE FORMULAS] 
r o f (T—1> ax iom 
C ! Cx5] 
0. 5 61 
0 . 611 
f o f C f _ 2 , a x i om 
C ? [ X 2 ] 
0 . 8 5 1 
0, 901 
f o f ( f _3 , a x i om 
C ! [ X 2 ] 
O. 657 
0 . 707 
f o f Cf—4 . a x i om 
C ? [ X 2 ] 
0. 5 61 
0. 611 
f o f C f _ 5 , a x i om 
C ? [ X 2 ] 
0 . 722 
0 . 772 
f o f C f _ 6 , a x i om 
C ? [ X 5 ] 
0. 867 
0. 917 
f o f C f _ 7 , a x i om, 
C 7 [ x3 ] : ? [X5] 
0 . 754 
0 . 804 
f o f C f _ 8 . a x i om, 
C ! [ X 2 ] : ! [ X 5 ] : b i g _ p l C x 2 3 | ~ b i g _ p 2 C X 5 3 3 3 . 
0. 399 
0 . 4 4 9 
f o f C f _ 9 , a x i om, 
C 7 [ X 2 ] : ? [ X 3 ] : 7 [X53 : b i g _ p l C x 2 3 I ~ b i g _ p 3 C X 3 , X 5 3 35-
O. 657 
0 . 707 
f o f Cf_J-6, a x i o m , 
C ! [ X 2 ] : ! [ X 3 ] : ! [ X 5 ] : ! [ X 6 ] : ? [ X I ] : b i g _ p l C x 2 3 | ~ b i g _ p 3 Cx3, X53 I ~ b i g _ p 4 C x 6 , x l 
0 . 6 5 7 
0. 707 
f o f C f — 1 1 , a x i o m , 
C ? [ X 2 ] : 7 [ X 5 ] : b i g _ p l C x 2 3 I b i g _ p 2 C X 5 3 35 -
1 . 0 
1 . 0 
[NEGATIVE FORMULAS] 

? ' [ X 3 ] : b i g _ p 2 C x 5 3 I ~ b 1 g _ p 3 C X 3 , X 5 3 33 -

! ' [ X 4 ] : ! [ X 6 ] : 7 [ x i ] : b i g _ p l C x 2 3 | b i g_p5 < x 2 , X4 3 | ~ b i g_p4 Cx6, x l 3 3 3 . 

? [ X 5 ] : ! [ X 6 ] : ! [ X I ] : b 1 g _ p l C x 2 3 I ~ b i g _ p 2 C X 5 3 I ~ b i g _ p 4 C x 6 , x l 3 33-

~ b i g _ p 5 C x 2 , X 4 3 35-

? [ X 5 ] : b i g _ p l C x 2 3 I ~ b i g _ p 5 C X 2 , X 4 3 | ~ b i g _ p 2 C X 5 3 33-

! [ X 6 ] : ? [ x l ] : b i g _ p 2 C x 5 3 I ~ b i g _ p 3 C x 3 , X 5 3 | ~ b i g_p4 Cx6, x l 3 33-

b i g _ p 3 C x 3 , x 5 3 33-

[X4] 

[X4] 

[X3] 

Screen shot of a input file 2p4x5x3p 

A.2 List of Generated Inputs 

A.2.1 Instance 1 (4 formulas): 

Fx=^x3y [P(x,y)vQ(y)} [0.85,0.9] 

F2 = 3x hR(x)} [0.55,0.6] 

F3 = 3y hQ(y)] [0.55,0.6] 

FA = VxVy [->P(x,y) V R(x) V Q(y)] [0.65,0.7] 

F5 = 3x3y hP(x,y)} 2L,7T 
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A.2.2 Instance 2 (7 formulas): 

Fi = Vw Vy [B(w)y ~iA(y)} 

F2 = 3y3x\fz [A(y)V-,C{x,z)] 

F3 = 3y \-,A{y)] 

F4 = Vx32Vy [C(x,z)VA(y)] 

F5 = 3y Vu> Vv 3x [->A(y) V ->B(w) V -

F6 = 3y 3v 3x [-<A(y) V ->D(v, x)} 

F7 = 3v3x [D(v,x)] 

F8 = 3w 3x 3z \B{w) V -iC(i, 2)] 

[0.61,0.66] 

[0.71,0.76] 

[0.64,0.69] 

[0.71,0.76] 

-.£>(«, x)][0.91,0.96] 

[0.85,0.90] 

[0.55,0.60] 

[lL,7f] 
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A.2.3 Instance 3 (8 formulas): 

Fi 

F2 

F2 

FA 

F5 

F6 

F7 

Fs 

F9 

= 3w [B(w)] 

= Vy Vw 3x 3z [A(y) V B{w) V -

= \lyVw3xVz \A{y) V -iB{w) V 

~3y\/w [A(y)VB{w)] 

= \/y 3w 3v 3x \A(y) V -iB(io) V 

~3y3v\/x [~>A{y) V-iD(v,x)\ 

= 3yVxV* [A(y)V^C(x,z)] 

= 3v3x3w [D(v, x) V -nB(to)] 

.C(x,. 

-«C(a 

^£>(i 

= 3y3x3z3v [yl(y) V C(x, 2) V £>(v,: 

[0.72,0.77] 

«)] [0.72,0.77] 

:,z)] [0.72,0.77] 

[0.63,0.68] 

>,x)][0.81,0.86] 

[0.72,0.77] 

[0.68,0.73] 

[0.81,0.86] 

c)] [n,W] 
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A.2.4 Instance 4 (10 formulas): 

F1=\fx3v [ 5 ( X ) V - I C ( V , I ) ] 

F2 = 3u \/w Vy 3t [A(u) V E(u, w) V -.D(y, £)] 

F 3 =Vu3xVyV£ [yl(u) V^B(x) V-n£>(y,i)] 

F4 = 3u 3w [->E(u, w)] 

F5 = 3u 3w 3x [A(u) V ->E(u, w) V ->B(x)] 

F6 = 3x 3v Vy 3i [B(x) V -.C(u, x) V ->D{y, t)} 

F7 = 3v 3x [C(x, z)] 

Fg^VuVx [A(u) V -iJ5(x)] 

F9 = 3-u 3w 3x [A(u) V ->C(v, x)] 

[0.56,0.61] 

[0.85,0.90] 

[0.66,0.71] 

[0.56,0.61] 

[0.72,0.77] 

[0.87,0.92] 

[0.75,0.81] 

[0.40,0.45] 

[0.66,0.71] 

Fio = Vu Vt; Vx Vy 3t [yl(ii) V ->C(v, x) V -.D(y, 4)] [0.66,0.71] 

Fn = 3u3x [A(u)VB(x)] [lL,A 
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5 Instance 5 (15 Formulas) : 

Fi = Vt W 3x [E(t, v) V -C(x)] [0.5170.567] 

F2 = Vt 3v Vx Vs 3u [A(£) V F(v, x) V -iif (s, u)} [0.6250.675] 

F3 = 3w By 3s 3u [G(w, y) V -^B(w) V i f f (s, it)] [0.80.85] 

F4 = Vt 3™ [A(t) V J3(u;)] [0.6820.732] 

F5 = 3w [-^B(w)\ [0.640.69] 

F6 = Vt Vu 3x 3w [A(t) V -iF(r, x) V ->B(iu)] [0.7860.836] 

F7 = 3w Vt Vx [D(u) V -.£(i, v) V -C(x)] [0.7380.788] 

F8 = 3u;3y [G(w,y)j [0.5070.557] 

F9 EE 3x [C(w)} [0.850.9] 

F1 0 = Vt Vv [A(t) V nfl(«)] [0.7010.751] 

Fn = 3v3x {F(v,x)} [0.5990.649] 

F12 = 3t 3x [A(t) V ->C(x)] [0.6290.679] 

F1 3 = 3w Vy Vv Vx [G(w,y) V -nF(w,x) V -.J9(io)] [0.80.85] 

F w = 3t Vu Bio [ £ ( t , » ) v D ( » ) v B W ] [0.8660.916] 

F15 = Vu> Vy Vt Vu 3x [G(w, y) V -.£(i, u) V -C(x)][0.5010.551] 

Fie = 3t 3v \A{t) V Z?(u) 7T, 7T 

108 



A.2.6 Instance 6 (20 formulas): 

Fx = 

F2 = 

F 3 E 

FA = 

F5 = 

F6 = 

F7 = 

F8 = 

F 9 E 

Fio 

Fn 

Fi2 

Fn 

Fu 

F15 

Fie 

Fn 

Fl8 

Fl9 

EBoVn [E(o)y^A{n)} 

EBiwVoVgBu [E(o) V F(o, q) V -i J(u, w)] 

= Vr 3y Vg Vs [D{r) V -C(y) V ->H(g, s)] 

E3O3<? h/(o,g)] 

EVio3oVg [B(u;) V-.F(o,g) V-i/(o,g)] 

E Vo 3y 3n [£(o) V -.C(j/) V -vl(n)] 

E 3r [£>(r)] 

E 3n [4(n)] 

i3w\/o [B(w)y ->E(o)] 

= 3o3q [F(o,q)) 

EEVwVn [J3(io) V ->A{n)] 

= W3o3q3y [£>(r)V--F(o,g)V-.C(y)] 

= VzVoVy3q [G(z ,o)vC(y)V/(o , 9 ) ] 

= W3zVoVn [£>(r) V--G(z,o) V-u4(n)] 

= Vz Vo 3y [G(s, o) V -C(y)] 

EEVg3s3u; [-.#(g,s)V-iB(iu)] 

EEEV<2 3 S V Z 3 O [ % s ) V G ( z , o ) V n £ ( o ) ] 

[0.98,1.0 

[0.86,0.91 

[0.71,0.76 

[0.53,0.58 

[0.76,0.81 

[0.68,0.73 

[0.39,0.44 

[0.77,0.83 

[0.68,0.73 

[0.66,0.71 

[0.55,0.60 

[0.68,0.73 

[0.94,0.99 

[0.64,0.69 

[0.50,0.55 

[0.71,0.76 

[o.98, i.o; 

= Vr3n3u3w [£>(r) V -iA(n) V -.J(u,u;)] [0.98,1.0 

EE3O [E(O)] [0.98,1.0 
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F 2 0 = 3n 3r \^A{n) V -.£>(r)] [0.98,1.0] 

F2l = 3w 3y [B(to) V C(y)} [ZL.TT] 

A.2 .7 Instance 7 (25 formulas) 

Fi = Vi Vt [£(0 V -iC(t)] [0.73,0.78] 

F2 = 3r 3x 3z 3v [ i ( r ) v J ( x ^ ) V - L ( « , i ) ] [0.61,0.66] 

F3 EE 3n Vg 3u Vtu [D(n) V -5 (g ) V ->K(u,w)] [0.68,0.72] 

F4 = Vr 3q [A(r) V 5(g)] [0.74,0.79] 

F5 = 3q [-5(g)] [0.62,0.67] 

F6 EE 3r 3z Vg [i4(r) V -.F(z) V -5(g)] [0.72,0.79] 

F7 = VJ Vt Vv 3u 3u> [£?(Z) V ->/(*, t>) V -.G(u, to)][0.76,0.81] 

F8 = 3w3y [ 5 > , y ) ] [0.63,0.68] 

F9 = 3u3u; [G(ti,u;)] [0.61,0.66] 

Fio = 3r VI [A(r) V -.£7(0] [0.55,0.60] 

Fn = 3x3z [J(x,z)} [0.50,0.55] 
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F12 = 3z [-nF(z)] 

F1 3 = 3n hl>(n)] 

F u = Vr Vt [A(r) V -.C(t)] 

F15 = 3w Vy 3z V<? [ff (iw, y) V -.F(z) V -i£(g)] 

F1 6 = Vn Vt 3u 3w [D(n) V -.C(t) V -,G(u, w)] 

Fi7 = Vm3o3<? [Af(m,o) V-iB(g)] 

Fi8 = Vu 3iu Vy [A"(u, w) V -i#(i<;, y)] 

F19 = 3u \/w 3t 3m Vo [K(u, w) V C(t) V -^M{m, 

F20 = 3n 3t 3v Vx [£>(n) V -.C(t) V -.L(u, x)] 

F21 = 3/ [E(l)\ 

F22 = Vq Vt 3u Vn [-"JB(g) V -i/(t, v) V -i/?(n)] 

F23 = 3uVu;3y [-iG(u, w) V ->H(w, y)] 

F24 = 3t hC(t)] 

F2 5 = Vr Vx \fz [A(r) V -. J(x, z) V ne#F(»] 

F26 = 3r 3t 3u (A(r) V / ( i , v)] 

[0.71,0.76] 

[0.81,0.86] 

[0.71,0.76] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

.0)] [0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[TLM 
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8 Instance 8 (30 formulas): 

Fi = 3p 3k [F(p) V -iD(fc)] [0.84,0.89 

F2 = 3r3x3z [->M(i,k)V G(r)V-<K(i,k)] [0.53,0.58; 

F 3 = V r 3 j V s V u [->B(q) V -./(t, v) V --jD(n)] [0.98,1.0 

F 4 E E 3 J 3 / h/(j,Z)] [0.48,0.53 

F5 = 3u;3o3gVjV/ [-.B(w) V J{o,q) V - . / ( j , /)] [0.98,1.0 

F6 = \/p Vq 3s 3k [F(p) V -.I(g, s) V -.JO(fe)] [0.67,0.72 

F7 = 3r [E(r)\ 

F8 = 3k [D(k)} 

F9 = 3u)Vp [B(w) V ->F(p)] 

Fio = 3r [G(r)] 

Fu=Vu;Vfc [B(w) V --C(fc)] 

[0.51,0.56 

[0.75,0.80 

[0.61,0.66 

[0.48,0.54 

[0.41,0.46 

Fi2 = 3pVg3sVfc [F(r) V-iJ(o,g) V ^A(j)} [0.98,1.0 

Fis^VrVA; [F(r) V ->C(fc) V ->£(*:)] [0.71,0.76 

F H = Vr 3i Vj [JV(r, t) V ̂ A(j)} [0.98,1.0 

Fis = 3s 3u Vi 3A: [-itf(s,u) V ->0(i, k)] [0.53,0.58; 

F16 = Vs 3u Vfc 3p h # ( s , it) V C(fc) V -iF(p)] [0.93,0.98; 

F1 7 = 3 r W 3 j [JS(r) V-.C(fc) V #(*, fc)] [0.88,0.93 

F1 8 = 3p [F(p)] [0.71,0.76 

Fi9 = 3j3ZViVfc [ n / ( j , i ) v ^ ( j ) V ^ ( J , f c ) ] [0.98,1.0 

112 



F20 = Vfc 3r [-.£>(*) V -.£(r)] [0.83,0.88] 

F2i = 3fc [C{k)\ [0.98,1.0] 

F22=Vw3oVq3jVl [M(i,k)V^G(r)V-,J(o,q)} [0.98,1.0] 

F2 3 = Vfc Vr 3t [C(k) V -.W(r, t) V G(r)] [0.98,1.0] 

F24 = \/w 3j \/l [B(w) V I{j, I)} [0.98,1.0] 

F2 5 = 3jVfc [A(j)V^C(k)} [0.98,1.0] 

F26 = 3w 3o Vg [B(w) V -. J(o, q)] [0.98,1.0] 

F2 7 = 3/c Vg 3s [D(fc)vL(g,s)] [0.98,1.0] 

F 2 8 E E 3 J 3 * 3 £ : [-^(j) V 0(z, fc)] [0.98,1.0] 

F2 9 = 3j Vs Vu 3u; [A{j) V - .#(s ,u) V -.£(«;)] [0.98,1.0] 

F3 0 = 3 9 3 S hL(g,s)] [0.98,1.0] 

F3i = 3™ 3j [B(u>) V A{j)} [vr, Tf 
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A.2.9 Instance 9 (35 formulas): 

Fx = 3e 3o [G(e) V ->B(o)] [0.79,0.84 

F2 = 3v V/ 3h VZ Vn [i4(u) V J( / , / i ) V--0(Z,n)] [0.65,0.7; 

F3 = 3/v3*u3z [#(fc) V -.C(u) V - F ( i , fc)] [0.65,0.70 

F4 = 3t; [i4(u) V C(v)} 

F5 = 3r [-.D(r)] 

[0.98,1.0 

[0.69,0.74 

F6 EE Vv Vm Vo 3r [i4(u) V -.A"(m,o) V -iD(r)] [0.98, l.o; 

F7 = 3y3eWVo [Q(y,e) V -.F(t) V --B(o)] [0.98,1.0 

F8 = 3k \H(k)} 

F9 = 3o [-.J3(o)] 

Fio = Vv 3e [A(v) V -iG(e)] 

F n = 3/3/ i [J(/,/i)] 

Fi2 = W 3o [i4(u) V ->5(o)] 

[0.31,0.37; 

[0.69,0.74 

[0.66,0.71 

[0.49,0.54 

[0.73,0.78 

F13 = Vfc Vm Vo Vv [if(fc) V -.A"(m, o) V -iC(u)] [0.79,0.84 

F M = 3/Vn 3v 3r [ t ( i ,n)vC(i ) )VJ)( r ) ] [0.98,1.0 

F1 5 = Vu 3w V/ 3o [M(u, w) V -.£?(/) V -<B(o)] [0.81,0.86 

F3 = W3n3v [L(Z,n)V-.C(i>)] 

F17 = Vh3j hN(h,j)V^I(h,j)} 

[0.56,0.61 

[0.56,0.61 

F1 8EE3/i3jV/Ve [iV(/z, j)VF(/)V-G(e)] [0.98,1.0 

Fig = V/fe 3 / VZ 3n [#(*:) V- .£ ( / ) V->0(Z,n)] [0.82,0.87 
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-^20 

•^21 

F22 

F23 

F24 

F25 

F26 

F27 

F28 

F2Q 

F30 

F31 

F32 ; 

F33 

F34 '• 

F35 '• 

-F36 ; 

= 3y3e [Q(y,e)} 

= Vr 3i Vu \/w [->D(r) V ~^F(t) V ->m(u, w)} 

= V/i 3 ; W 3e [7(/i, j) V C(u) V -.G(e)] 

= Vo 3A; [-.S(o) V ^H(k)} 

= 3/ h^(/)] 

EE Vv 3 / 3/i Vm 3o [4(u) V -.J(f, h) V ^K(m, 

= yf3l3n3h [E(f)vL(l,n)VJ(f,h)} 

= 3l3nVv [I(h,j)VC(r)] 

E E W 3 / [F(i) V-£?(/)] 

= Vi> 3m 3o [>l(u) V -iK(m, 0)] 

= 3t 3fr Vj 3v [F(i) V iJV(/i, j ) V -u4(v)] 

= 3u hC(u)] 

= 3u 3w 3e [M(u, u>) V G(e)] 

= \/uVw3l3n3iVk [M(u,w) V L(l,n) V -./->( 

= 3/i3j [iV(/i,j)] 

= VrVo [-.D(r) V-iiS(o)] 

= 3/ i3 j3t [J(/i,j)VF(f)] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

0)] [0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[0.0,0.03] 

[0.98,1.0] 

i,fc)][0.98,1.0] 

[0.98,1.0] 

[0.98,1.0] 

[ZL.Tf] 

A.3 Inference Rules 
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Table 8: Examples of inference rules for prepositional probabilistic logic. 
Inference 

Rules 

5 : x\ V X2 
X\ 

X2 

S : X\ VX2 V X3 

X\ 

X2 

xz 

5 : x i VX2 V x 3 VX4 

Xl 

X2 

X3 

X4 

5i : x i V x 2 

5 2 : x i V x 2 

Xi 

X2 

5i : x i V x 3 

5 2 : x 2 V x 3 

Xl 

X2 

%3 
5 3 : x i V x 2 

Probabili ty 
Assigned 

[Hl.TTl] 

7T2 ? 

[Hs,7fs] 
[ZLl.TTl] 
[3:2^2] 

7T3 ? 

[ H S . H S ] 

[TLl.Tfl] 
EzL2>7r2] 
[2E3,7f3] 

7T4? 

[ H S 2 , 7 T S 2 ] 

[2Ll,7Tl] 

7T2? 

[Hs2,7rs2] 
[Hl,7Tl] 

[HS-^S] 

7TS3 ? 

Consistency 
Conditions 

7Li < 1 i = 1, 5 
7f i > 0 i = 1,5 

ZEi < Ki i = 1, 5 

Tfs > Hi 
TTj < 1 i = 1 ,2 ,5 
?f i > 0 i = l , 2 , 5 

7Tj < 7f j Z = 1,2, 5 

7TS > H2 

*S >2Ll 
Ki < 1 1 = 1 ,2 ,3 ,5 
7 f j > 0 i = l , 2 , 3 , 5 

Hi < Tfj i = 1,2,3, 5 

7TS > H i , 7f S > H2 

TTS > H 3 

Wi > 0 i = l , 5 i , 5 2 

Hi < 7f» i = 1, Si, 5 2 

Hi < 1 i = 1, 5 i , 52 
Hi < 7fs2 

7fl + HS2 > 1 

7Tj < 1 i = 1,2,3, S i , 52 
7fj > 0 i = 1,2,3, S i , S2 

Hi < 7fi i = 1,2,3, S i , 52 
H3 < 7fs2 

TTi + HSi > 1 i = 1, S 2 , 3 
7T2 + Ws2 < 1 

H2 + Hs2 - ^3 < 1 
Hi + H3 + Hs: < 2 

Hi + H2 + TTSI + Hs, < 3 

Probabili ty 
Bounds 

7r2 = max{0,7r s — 7fi} 

7f2 = min{l,7Fs} 

7r3 = max{0, T£s — 7f 1 — 7F2} 
7F3 = min{l ,7rs} 

TLj = max{0,7Ts — Tfi -7f2 - 7 f 3 } 
7T4 = min{l ,7 f s } 

7r2 = max{ l - 7 r s 2 , H i + H s ! - ^ s 2 > 

H i + H S l - 1 } 

7f2 = min{7fS], ?f 1 + ?rSl - 7[S2, 

1 + 7 T 1 - H 5 2 } 

7T53 = m a x { 0 , 1 — 7fi, 1 - 7 f 2 , H s 2 -7T3> 

Hs : + H s 2 - ! , H 3 + HSi - 1. 
3 - 7f 1 - 7f2 - 7fSj - 7fS2 } 

7fs3 = m i n { l , l + 7fSl -n2,l + Hs2 - H n 

7fs2 - Hi - H3 - Ks, + 2, 
2 - H i - H 2 -

7T3 + 7fs, - H 2 - H s 2 + !} 
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