TRANSFORMING ARCHITECTURAL DESCRIPTIONS
OF COMPONENT-BASED SYSTEMS FOR FORMAL
ANALYSIS

NASEEM ISMAIL IBRAHIM

A THESIS
IN
THE DEPARTMENT
OF

COMPUT'ER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FoR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

DECEMBER 2008
© NASEEM ISMAIL IBRAHIM, 2008

i+B

Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’'s permission.

Ottawa ON K1A ON4
Canada
Your file Volre référance
ISBN: 978-0-494-63331-1
Our file Notre référence
ISBN: 978-0-494-63331-1
AVIS:

L'auteur 2 accorde une licence non exclusive
permettant 2 la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par téléecommunication ou par 'Internet, préter,
distribuer et vendre des théses partout darns le
monde, & des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése. Ni
la theése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thése.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

CONCORDIA UNIVERSITY
School of Graduate Studies
This is to certify that the thesis prepared

By: Naseem Ismail Ibrahim
Entitled: Transforming Architectural Descriptions of Component-based
Systems for Formal Analysis

and submitted in partial fulfillment of the requirements for the degree of
Master of Computer Science
complies with the regulations of this Unijversity and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Peter Grogono
Examiner
Dr. Sabine Bergler
Examiner
Dr. Olga Ormandjieva
Supervisor

Dr. Vangalur Alagar

Approved

Chair of Department or Graduate Program Director

20

Dr. Robin A.L. Drew, Dean

Faculty of Engineering and Computer Science

ABSTRACT

Transforming Architectural Descriptions of Component-based Systems for

Formal Analysis

Naseem Ismail Ibrahim

Design time analysis is an important step in the process of developing software sys-
tems. with the goal of ensuring that the system design conforms to the design constraints
that are stated as part of the functional and non-functional requirements. The well-known
techniques for formally analyzing a design are model checking, axiom-based formal verifi-
cation, and real-time schedulability analysis that takes into account resource constraints. In
this thesis, model checking and real-time schedulability are the techniques useil to verify
that the system under development is both safe and secure.

The architecture of a trustworthy system, formally described in Trustworthy Architectural
Description Language (TADL), is taken as the input for the analysis stage. Instead of de-
veloping new tools to perform the analyses, the thesis has developed transformation tech-
niques to transform TADL descriptions into behaviour protocols used by existing verifica-
tion tools. ‘The transformation rules are described independently of the transformation pro-
cess, thus allowing both reuse and easy extendability. A tool based on such techniques has
been designed and implemented which automatically generates two types of models froma
TADL description. One is the UPPAAL model, on which the security and safety properties
of the system under design are formally verified. The second output is the TIMES model,
on which real-time schedulability analysis is performed. The techniques and tools are ap-
plied to The Common Component Modelling Example (CoCoME), a case study defined by
the component development community, to demonstrate that TADL is expressive enough

to formally describe component-based systems.

ACKNOWLEDGMENTS

First, 1 would like to show my profound thanks and appreciation to my supervisor Dr,
Alagar for his guidance and support. This work would not exist without him.
Furthermore, I would like to acknowledge and appreciate the help and support of my
friend and colleague Mubarak.
Finaily, and mos: importantly, I would like to thank my parents, who provided the item

of greatest worth - opportunity. Thank you for standing by me.

iv

Contents

List of Figures viii
List of Tables xi
1 Introduction 1
1.1 Trustworthy Computing System Development 2
1.1.1 Real-Time Reactive System (RTRS) 2

i.1.2 Trustworthiness Credentials 4

1.1.3 Component-based Development (CBD) 4

1.1.4 ScopeoftheThesiso v v v i v v 5

2 Basic Concepts 7
2.1 Meta-model for Component-based Trustworthy Real-time Reactive System 8

2.2

2.1.1 Componentdefinitionoy 8
2.1.2 Architecturedefinitiono oo e 8
213 Safely comracl . . v v v v v v o e e e e e 10
2.14 Securitymechanism o e 10
2.1.5 Systemdefinition Lo 11
2.1.6 Atribute, Constraintand Package 12
UPPAAL Model Checker o o o v i i it i i i e e e 12
221 UPPAALarchitectureo vttt v v v v o 13
2.2.2 UPPAAL modellinglanguage 14
223 UPPAALToOIKit. v v v i et e 16

2.3 TIMES Tool

..................................

23.1 TIMESarchitecture v« v v v v v v v v e e e e e e a e e
232 TIMESinputlanguage«
233 TIMEStooloverview o ittt e
24 SUMMATY . . . o o i i et e e e e et ot ittt e e e

System Transformation, and the TransformationTool

3.1 Transforming the System to the UPPAAL Model
3.1.1 Transformationrules e e
3.1.2 Transformation algorithm
3.2 Transforming the System to the TIMES Model
321 Transformationrules 00
3.2.2 Transformationalgorithm
33 Transformation Tool o i e
3.3.1 Architecture overview oo e b e e e e e
3.3.2 Architccture diagram i o e e e e e e e
34 SUMMATY ittt e e e e e e e e e e e e e s

Transformation Tool Implementation
4.1 Transformation Rules Component oo osan
410 XSLT o e e e e e e e e e e e e e e
4,1.2 Rationale behindselection o oo
413 TransformationrulesinXSLT
42 TADLXML ot e e e e e e e e e e
4.3 Transformation ProcessandGUI 0o
44 UPPAALorTIMESXML
4.5 TransformationTool Demonstration.o ot o a v
4,6 Experience with UPPAALandTIMES
47 SUMMATY o v 4 o v v v v o n v ot m e e et e e e et e

Vi

5 Case Study 75
5.1 Common Component Modelling Example -CoCoME 75
531 Introduction . . . v v v v i v it e e e e e e 76

5.1.2 SYSEMOVEIVIEW i vt v it et et e e 76

5.1.3 SystemRequirementso 77

S.1.4 TADLrepresenmtation vt v o i o v me e 81

5.1.5 UPPAALRepresentation v v o e v o v oo v oo v o 97

52 Minearainage L i i o e e e e e e 106
521 Introduction.ottt ittt e 106

522 SySIGMOVEIVIEWt ottt i e e e 107

523 Systlemrequirementso e i e e e e e 107

524 TADLrepresentalion . . - v v v vt v v o vt oo e e 108

52.5 TIMESrepresentation 110

5.3 SUMMALY . . ¢ v vt o o e e e e e e e e e e e e s 111

6 Conclusion 115
6.1 Future Work i i e e e e e e e 116
6.1.1 Transformation rule and TransformationTool 116

6.1.2 UPPAAL transformation and TIMES transformation 116

6.1.3 XSLT and model transformation 117
Bibliography 118
Appendix A 121
Appendix B 138

vil

List of Figures

(LT - IS B v T R T B o

N = O @ % W W bk W N = O

Meta-model e e e e e e 9
Model CheckerOverview« i i v it i i e e e 12
UPPAAL Architecture & o o it i i e it e 14
UPPAALEdItOr o o et et et e e it e e ettt e e e 17
UPPAAL Simulator ¢ ¢ v v v o i o i et v e e et e e e e e e e 18
UPPAAL Verifier 0 o i i e e e e 19
TIMES ArchiteClure v v v v v o i e e v e e e e e e e e e e 21
TIMES Tool e e e e e e e e e 23
TADL1OUPPAAL o ittt i e et et s 28
ComponenttoTemplate« o b v ettt i e 29
Contract Transformation« o v v bt i it et 30
Service Request Transformation oo oo oo 32
Contract Transformation« o o v vt v i i i 33
RBAC Transformation v v i i vt i v e v e e e oo e o 35
TransformationFlowChart 0 o 4]
Pipe and Filter Architecture oo 42
Component Diagram Lo 44
XSLT ProcessingModel oo 46
Input XML file 0o vt i e e e 47
XSLTstylesheeto o i i i e 48
Output XML file it e e 48
Sample Global Declaration TransformationRule 51

viil

23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51

Sampte Template Declaration TransformationRule 32

Sample Location TransformationRule 53
Sample Edge TransformationRule Part I 55
Sample Edge Transformation Rule Part2 56
Sample Edge Transformation Rule Part3 57
System Declaration TransformationRuleo 58
TIMES Task TransformationRule 59
ComponentType Schema 62
ArchitectureType Schema oo o 63
Reactivity Schema oo it e 64
ServiceTypeSchema 60
Transformation Procees and GUI Class Diagram 66
UPPAAL XMLDTD . . i i ittt e e e e ot et s e oo es 68
TransformationTool MainView v vt 69
TransformationTool Input Open Window 69
TransformationTool Input Text Viewo o0 v 70
TransformationTool Input Tree Viewo oo h 70
TransformationTool Output Tree View v Tl
TransformationTool Qutput Text View - oo v v v v v 71
TransformationTool Output Save Window o v v v v v v 72
Cash Desk i i e e e e e e e e e e e 77
Store System Componentso . e oo e 83
Trading System e e 85
Transformation of CoOCoME TADL to UPPAAL 97
Global Declaration in UPPAAL o oo oo h s 98
Cash Box Local Declarationin UPPAAL 99
Cash Box template in UPPAAL o o0 v v v oo s 100
Cashier Template in UPPAAL oo 100
Scanner, Printer, Bank and Stock Manager Templates in UPPAAL 101

52
53
54
55
56
57
58
5%
60
61
62
63

Inventory Templatein UPPAAL 101
DisplayCard and CardReader Templates in UPPAAL 102
EnterpriseServer Template in UPPAAL 102
StoreClient Templatein UPPAALo oo i v oo a 103
Manager Template in UPPAAL 103
System Declarationin UPPAAL oo iia L 104
Verifying Safety and Security Properties in UPPAAL 106
Mine Drainage Control System Components 108
Mine Drainage Case Study in TIMES 112
Pump Controller Template in TIMES 112
Water-, AirFlow-, CH4- and CO-Scnsor Templatesin TIMES 113
Environment Monitor Template in TIMES 113
Schedulability Analysis Resultsin TIMES 114

List of Tables

O O~ v RN -

No—= © Y e NN R W N = O

System-level Vardables o oo 34
Data Parameters for the Services of the Cash Box Component 85
Cash Box Component Reactivities 86
Cashier Component Reactivities oo 87
Scanner Component Reactivityo 87
Printer Component Reactivity 88
Data Parameters for the Services of the Card Reader Component 88
CardReader Component Reactivitieso oo v v v oot 88
Bank Component Reactivities . . .« o v v v v v v v v oo v v i e e 89
StockManager Component Reactivity« ..o oo 89
DisplayLight Component Reactivitieso oot 90
Data Parameters for the Services of the Enterprise Server Component . . . 9]
EnterpriseServer Component Reactivities oo oo o v el 91
Data Parameters for the Services of the Manager Component 92
Manager Component Reactivities o oo v v v oo 93
Data Parameters for the Services of the Store Client Component 94
StoreClient Component Reactivities 95
Inventory Component Reactivities oo 95
Data Parameters for the Services of the Inventory Component 96
Sample UPPAAL Safety and Security Properties 105
Tasks Priorities o o e e e e e e e 107
System-level Variableso oo 109

xi

23 PumpController Component Reactivities . . .

24 Environment Monitor Component Reactivities

Xii

................

Chapter 1

Introduction

Research in the development of Trustworthy Computing Systems (TCS} is relatively new.
In January of 2002, Microsoft published a paper on Trustworthy Computing. In October of
2002, arevised version of this paper was made available on the Web [MdVHCO02]. One can
safely say that this paper created immense interest in the research community. Our research
group began work on TCS in 2005. My thesis is a small contribution to the extensive and
on-going studies being carried out by our research group.

As humans, we tend to trust a technology when it becomes so dependable that we are
oblivious to its internal technical details as it operates in our daily lives. The automobile,
electricity and the telephone are classic examples of trusted technologies which have been
broadly adopted in our world, because they work as advertised and they are there without
fail when we need them. By comparison, although computers and computing services have
become commonplace, we are not yet in a position to trust them. The computing paradigm,
in spite of its pervasive nature, has not changed in the last 30 or 40 years. The TCS ini-
tiative is about to change that paradigm through a combination of engineering principles,
business practices and regulatory service provision. Abstracted, these are the principles
governing safety, reliability, and business integrity. The chalienge is to ensure that the
qualities associated with these principles are inherent in the artifacts produced throughout
the various stages of the software development process, and the procedures followed dur-

ing the deployment of the system and its management when it is operational. The TCS

research group, working under the supervision of Dr. Alagar, is undertaking research in the

component-based development of TCS, which involves the following:
1. Arigorous process model, with a formal architecture and its description
2. A formal definition of trustworthiness properties
3. A formal definition of trustworthy components, and their composition
4. Languages and methods for specification and design
5. Formal techniques for design-time validation and verification
6. Rigorous methods for implementation, reuse, and deployment
7. A framework for developing TCS based on the above techniques

This thesis constitutes a contribution to framework development. It focuses on the design-

time analysis to ensure that the system design confirms to the design constraints that are

stated as part of the functional and non-functional requirements.

1.1 Trustworthy Computing System Development

Alagar and Mubarak [AMO07a)] have proposed a component-based development approach
for TCS which is also a real-time reactive system (RTRS) approach. An un-timed TCS is a
special case of a trustworthy RTRS. In this section, we give a quick summary of the RTRS,
we define the TCS and component models, and we describe the development approach
proposed in [MAOQ8a].

1.1.1 Real-Time Reactive System (RTRS)

Reactive systems interact with their environment in a continuous and ongoing way. They
are event-driven, they interact intensively with their environment through stimulus response

behavior, and they are regulated by strict timing constraints. Furthermore, these systems

might also consist of both physical and software components which continuously control
the physical devices. Although reactive systems are also interactive, they are fundamentally
different from interactive systems. Whereas both environment and processes have synchro-
nization abilities in interactive systems, a process in a reactive system is solely responsible
for the synchronization of its environment. That is, a process in a reactive system is fast
enough to react to a stimulus from the environment, and the time between stimulus and
response is sufficient for the dynamics of the environment to be receplive 1o the response.
For example, a human-computer interface is an interactive system, whereas a controller that
regulates the amount of steam escaping from a boiler is clearly reactive. In the case of real-
time reactive systems, stimulus-response behaviour is also regulated by timing constraints,
and the major design issue is performance. Examples of RTRS include telephony, air traffic
control systems, nuclear power reactors and avionics. The major factors that contribute to

the complexity of RTRS are the following:

e size: telephony and air traffic control systems are made up of a large number of

hardware and software components;

e time constraints: telephony imposes only soft time constraints, a violation of which
may not lead to a catastrophe, but may affect user trust; however, avionics and nuclear
power control systems impose hard (strict) time constraints, which, if violated, will

cause damage and injury to human safety, and perhaps shatter user trust entirely;

e criticaliry: a nuclear power reactor is a safety-critical system, in the sepse that its

failure would be unacceptable;

o heterogeneity: sensors, actuators and system processes have differct Jevels of fune-

tional and time-sensitive synchronization requirements.

It is evident from the above discussion that RTRS must be trustworthy, and that the essential

features of the RTRS that determine its trustworthiness are safety and reliability.

1.1.2 Trustworthiness Credentials

In general, trust is a social concept that is hard to define formally. However, in the software
industry [ALRO1, SBI99), there is a consensus on its definition. In the software devel-
opment community, the terms zrustworthiness and dependability are used interchangeably.
Trustworthiness is the system property that denotes the degree of user confidence that the
system will behave as expected [SBI99, CL02]. Dependability is defined as the ability to
deliver trusted services [ALRO1]. A comparison of the two terms presented in [ALRO1] has
concluded that the they are equivalent in their goals and address similar concerns. The goals
of dependability are: (1) to provide justifiably trusted services; and (2) 1o avoid service out-
age that is unacceptable to the consumer. Thus, dependability and trustworthiness involve
achieving availability reliability, safety, security and survivabiliry. Safety and security are
non-functional requirements which can be formally specified as system properties at design
time. Reliability is a quality to be measured while the system is operational. System avail-
ability and survivability are 10 be assessed in an operational environment under different
load factor assumptions, and patterns of attacks on the security of the system. If safety and
security are assured, they will eventually ensure a higher rate of system availability and re-
liability. Therefore, in [AMO07a], they have considered safety and security as the essential
credentials of trustworthiness during the design stage, and reliability and survivability as
properties to be assessed after implementation of the system. For the latter, the framework
provides a comprehensive set of tools in the implementation and run-time environment of

the system.

1.1.3 Component-based Development (CBD)

CBD is the type of software engineering development in which systems are built by con-
structing units, called components, that perform simple tasks, and assembling them to cre-
ate composite components that perform complex tasks. Some potential benefits of applying
CBD for RTRS include complexity reduction, time and cost savings, predictable behaviour

and productivity increase {CL02]}. In [AMO07a], a review of the literature on CBD is given.

Their discussion points out the inconsistency in existing component definitions and a need
to define components more formally. They have proposed a component model which col-
lectively addresses the requirements of RTRS and the credentials of trustworthiness. A
central challenge in building trustworthy systems using the CBD method is composing
trustworthy components such that each individual component is trustworthy. Their main
contributions in [AMO07a] are: (1) a definition of the requirements of a component model
for developing trustworthy RTRS; (2) a formal definition for trustworthy hierarchical RTRS
components; and (3) a compositional theory for composing components so that safety and
security are preserved in the composition. Because the component definition is richer and
more intricate than existing component definitions, it is not possible to adapt the existing
tools in an implementation of new trustworthy component models. This sets the stage for

discussing the scope and contribution of this thesis.

1.1.4 Scope of the Thesis

The primary goal of the development framework is to provide a basis for the rigorous de-
velopment, analysis and deployment of TCS. The application developer, who is normally
an expert in the application domain, should be permitted to focus on the modeling and anal-
ysis aspects without being burdened by the formalism. That formalism should be working
in the background, ensuring that nothing improper is done in the construction of the sys-
tem. Another goal is to reduce the complexity in the process of understanding the results
and behaviour of the system through the introduction of task-oriented descriptions in the
development framework which are easy to use and easy to learn. These arc the strong
motivations behind the development of a Visual Modeling Tool. From a visual model, the
formal behaviour model is automatically generated and formally verified for trustworthi-
ness properties. Using the Real-time View, a formal schedulability analysis is performed.
In this thesis, behaviour model generation and schedulability analysis are the two primary
goals. The architecture of a trustworthy system, formaily described in Trustworthy Archi-
tectural Description Language (TADL), is taken as the input for the analysis stage. Instead

of developing new tools to perform the analyses, the thesis has developed transformation

5

techniques to transform TADL descriptions into behaviour protocols used by existing ver-
ification tools. A tool based on such techniques has been designed and implemented. The
tool automatically generates two types of models from a TADL description. One is the
UPPAAL model, on which security and safety properties of the system under design are
formally verified. The second output is the TIMES model, on which real-time schedulabil-
ity analysis is performed.

Chapter 2 discuses the TADL, UPPAAL and TIMES models representing the input and
output units for the transformation process. A detailed description of the transformation
process, rules and algorithm are presented in Chapter 3, which also contains the transfor-
mation tool design. The transformation tool implementation is presented in Chapter 4. Two
case studies are presented in Chapter 5, and tested using the techniques and tool presented

in this thesis. Finally, Chapter 6 provides the conclusion of this thesis and directions for

future research.

Chapter 2

Basic Concepts

In Chapter 1, a brief introduction to the component-based model for devolving trustwor-
thy real-time reactive systems (TADL model) has been given and the contribution of the
work done in this thesis discussed. This thesis is concerned with the design-time analy-
sis of a system designed using our component model. The design-time analysis includes
model checking and real-time analysis. This Chapter presents a more detailed discussion
of the basic concepts on which the rest of the thesis depends. Scction 1 discusses the meta-
model of our component-based model, which is defined in [MAO8b] and reviewed here
to provide a broader understanding of the model and its main elements. This will help in
understanding the process and the rules applied in transforming a system defined using this
component model to the UPPAAL and TIMES models. Section 2 discusses the UPPAAL
model checker tool, which will be used to check the behaviour of the system defined us-
ing our component model, as well as the UPPAAL architecture, which will be of major
importance when discussing the transformation of systems from our component model to
the UPPAAL model. Section 3 presents the TIMES tool, the TIMES architecture and input

language.

2.1 Meta-model for Component-based Trustworthy Real-

time Reactive System

In Chapter 1, a brief introduction to the component-based model for developing real-time
reactive systems (TADL model) has been introduced. This section will provide a more
detailed discussion by reviewing the meta-model of this component model. A meta-model
is a model that explains a set of related models [Ama04]. It is used to model architectures
by defining types from which system architecture can be defined. Figure 1, which is taken
from [MAOS8b], shows the meta-model for our component model. The main elements of

this meta-model are described below.

2.1.1 Component definition

A component is an instance of a component type. A component type is an aggregation of
interface types. An interface type is an access point through which services can be provided
or requested. A service is a functionality provided by or requircd by a component. Each
service can be provided by only one interface, which is an instance of an interface type. A
service can also have multiple data parameters. A data parameter is a variable passed on

to a component within a request for a service or passed on with a provided service.

2.1.2 Architecture definition

A component type can be primitive or composite. A compositc component type is con-
structed from multiple component types connccted to one another using connector types.
An architecture defines the structure of a composite component, it defines the components
of which it consists and the internal connection between them. A component type can
have one or more architectures associated with it. Components initialized from component
types are connected in the architecture. This connection is made by connccting their in-

terface types to different connector roles of the same connector. A connector defines the

[PPSR A A L LR L L R A L L L]

e T LL LT TR T

A L L L L R

Safety
Property

Reactivity

T n 0: Data
/ Constraints

0: Time
Contract ——< ¢onstraints

Services Data
Parameter
1:n
1n Interface

Type

Role

i
’ ll'.n
H

Privilege

B T L L L R L

Conneclor
Role

+
+

'

1

]

.

'

.

Il

.

. .
1’1 " :
I

.

'

.

]

1+

.

]

:

*

B TR T T T Y

1:1 H
Component 7., : . | Connector
Type |: : Architecture ——‘—t Type
! tun
: Component Definition Architeciure Definition
--------------------------- tin Tn n Software Elemenls
: ‘ E Package
: | Hardware . . :
: | Component 1:n | Configuration : N g?:rtneg“
System Definition . m/ .
Constraint Attribute
name Class

— ¢ Apgregation

— 1 Association

———D Inheritance

1:n Cardmamy

Figure 1: Meta-model

connectivity between components. A connector role defines an access point of communi-
cation. The connector role serves as an interface to a connector. A primitive component

has no architecture.

2.1.3 Safety contract

A safety property is considered a contract on a component type. It controls the way services
are provided or requested. Each contract has a one-to-one relationship with a component
type. A contract can have one or more safety properties, where a safety property defines
an invariant over the component behaviour. Each contract should contain at least one reac-
tivity property, cach of which expresses a relationship between a stimulus (request) and a
response. A contract may have an optional data constraint and an optional lime constraint.
A data constraint is a condition that must be satisfied to enable the reactivity property; in
other words, it is a constraint that should be checked to decide whether 1o send a specific
response to a request or not. Data constraints are defined over the values of the data param-
eters of the stimulus service. 1t is possible for the same stimulus to have multiple responses.
It is also possible to define data constraints which are mutually exclusive for each response,
and so, depending on the results of evaluating those data constraints, only onc response is
chosen. A time constraint defines the maximum allowed time between receiving a request
and providing a response. An example of a time constraint would be: a response must be

sent within 4 seconds of receiving the request.

2.1.4 Security mechanism

A security property is concerned with controlling access to the services and the data com-
municated with those services. The same security mechanism can be associated with sev-
cral component types, and there is a one-to-many relationship between a security mech-
anism and component types. Role-based access control is currently enforced as the only
security mechanism, and has the following main clements: user, group, role and privilege.

A user defines the identity on behalf of which the component will exccute. A group is

10

a collection of users, and a user may belong 1o more than one group. A role defines the
responsibilities that can be assumed by a user or a group in the system. A role aggregates a
set of privileges, where each privilege defines a permission to perform a service or access a
data parameter. Security can be divided into two types: service security and data security.
Service security is concerned with securing the services provided by the components. It

docs that by ensuring that:

e cvery request received at a component interface is initialized by a user who has per-
mission to request this service - if the user has no access permission, the request is

ignored;

e the user of a response sent from a component interface has permission to receive that

response - if the user has no access permission, the response will not be sent.

Data security is concerned with securing the data transferred with services. This is done by

cnsuring that:

e the person initializing a request at a component interface has permission to access all
the data parameters associated with that request - if the user has 10 access permission

to the data parameters, their values are set to null;

e the user receiving a response from a component interface has permission to access
all its data parameters - if the user has to access permission to the data parameters,

their values are set to null.

2.1.5 System definition

System definition consists of: hardware components and configuration. Definition of the
hardware components includes specification of the deployment units that will host software

components. The configuration definition contains the system specifications, including:

e description of the hardware and software components with the initialization of their

Iacal attributes;

11

e specification of the system users and their assignment to security groups and roles;

e the deployment specification, which states the hardware component to which each

software component is deployed.

2.1.6 Attribute, Constraint and Package

An attribute is used to define semantic information which can be associated with any meta-
model element using typed, named values. A constraint is used to define predicates which
can be assigned to any clement of the meta-model. A package can include definition of any

meta-model element. Packages are mainly used to facilitate the reuse of those dcfinitions.

2.2 UPPAAL Model Checker

In the last decade, the computer science community has made great progress in developing
tools and techniques for checking the requirements and design of software systems. One of
the most successful approaches is called model checking. Figure 2, extracted from [Pal04],
shows the main idea behind model checking: the model checking tool takes as an input
the requircments or design (called models) and a property (called the specification) that the
system should satisfy. The output of the tool is either yes if it satisfies the specification,

and no otherwise. [Pal04]

——— e s ————— P

) Answér

I 4
Cavste ; - i Yes if model satisfies "
(system requirements e cificaton Lg ‘

4

1 Counter-example if rnodelf‘
! does not satisty speclﬂcat_ﬁn

e
Specification ;
{system property),

Figure 2: Model Checker Overview

There are many model checking tools in the literature, such as UPPAAL, which is

an important example of such tools. UPPAAL is used for thc modelling, simulation and

12

verification of real-time systems, and was jointly developed by Uppsala University and
Aalborg University [ABB*01]. It is a mature tool that was developed more than a decade
ago, and has been through a number of modifications and improvements. It is designed
to verify systems which can be modelled as networks of timed automata extended with
integer variables, structured data types, and channel synchronization [BDLO4].

To be able to understand the UPPAAL mode! and tool, we need to discuss the following
three major concepts: UPPAAL architecture, UPPAAL modeling language and UPPAAL
ToolKi1.

2.2.1 UPPAAL architecture

Figure % shows the architecture of the UPPAAL model. This model represents a system in
terms of timed automata (additional details in the next section). In it, a system is defined as
a parallc] composition of extended timed automata along with global and system declara-
tion scctions. An extended timed automata is defined as a template. The global declaration
scction comprises global-level variables, channels, which are events that can cause syn-
chronous transitions in two timed automata, and user-defined global functions. The system
declaration part includes instances of templates and system definition as a parallcl compo-
sition of these instances. Each template contains the definition of a timed automata. The

template’s major elements are:
o Local declaration conaining the declaration of local variables and clocks;

e Locations defining the states of timed automata. Each state can have an invariant

representing a time constraint that should be satisfied in this state;

e Edges representing transitions between states. Each edge contains the addresses of

two locations, the source and the target of the transition. Each edge can contain:

— A guard statement, which is a constraint that restricts a transition;

— A select statement, which is a statement that assigns values to variables;

13

Global System
| Declaration | 1.n _Declartion |
Template
\o Locat
De ion
n $‘ .

Edge _‘.ic. Location [——y Invariant

—

/S =

Synchranizatiil)n Update Guard Selecl

Figure 3: UPPAAL Architecture

— An update statement, which represents the post condition of the transition, and

assigns values to variables after the transition is performed,

— A synchronization statement, which defines the synchronized, shared transition

that occurs simultaneously.

2.2.2 UPPAAL modelling language

UPPAAL [BDL04] is designed to verify systems which can be modelled as a network of
timed automata (TA) that work in paraliel. A TA is a finite-statc machine extended with

clock variables. It can be formally defined as a tuple (L.l K,A, E,I) where:
e L is a set of locations denoting the states.
e [y is the initial state.
e K is aset of clocks.

e A is a sct of actions that cause transitions between locations.

14

o Eisasetof edges, EC LxA x B(K) x 2 x L, where B(K} is the set of data and time
constraints that restrict the transitions and 2 is the set of clock initializations to set

clocks whenever required.

e [is a set of invariants, where I : L — B(K) is a function that assigns time constraints

to clocks.
UPPAAL cxtends the definition of the TA by defining the following features:

e Templates: TA can have parameters which are local variables specific to that tem-

plate, and should be initialized during template declaration.

e Constants: These arc integer values that cannot be modified and defined as const name

value.

e Bounded integer variables: Thesc are defined as int [min,max] name, where

min is a minimum value and max is a maximum value.

e Binary synchronization: In UPPAAL, actions causing synchronous transitions arc
defined as channels. A channel can be an input (followed by ?) or output (followed
by 1). An edge labelled ¢! synchronize with another edge labelled ¢?. Channels are

declared as chan c;.

e Broadcast channel: In broadcast channels, one input action can synchronize with
more than one output action. Any receiver can execule its output action, and, if there
are none, the input action can still be exccuted. Broadcast channels are declared as

broadcast chan c;.

e Urgent synchronization: 1f a channel is defined as urgent, no delays are allowed on
the edges containing those channels, and those edges can have no time constraints.

They are declared to be urgent chan c;

o Urgent locations: If a location is defined as urgent, it means that time is not allowed

to pass when the system is in this location.

15

Committed locations: These are more restricted than urgent locations. In a commitied
location, time cannot pass and also the next transition must contain an outgoing edge

of at least one of the committed locations.

Arrays: These can be used with clocks, channels, constants and integer variables.

Initializers: These are used to initialize integers and arrays of integers.

Expressions: There are three important types of expression:

—~ Guard: This is a Boolean expression that can only contain clocks, integers,
constants or an array of those types. Guards are used to restrict the behaviour

of transitions between locations, and are defined at the edges.

— Invariant: This is a Boolean expression that can only contain clocks, integers,

constants or an array of those types. Invariants are defined at the locations, and

define the conditions that should always be true.
~ Assignment: This expression is used to assign values to clocks and variables at

the edges.

o Edges: These define transitions between locations, every edge consisting of the fol-
lowing expresstons:
— Select, which assigns values to variables within a specific range;
- Guard, which checks that the guard expressions are true;
— Synchronization, which specifies the channels and their directions;

- Update, which resets the values of variables and clocks to the required values.

2.2.3 UPPAAL ToolKit

The main goal of this tool is to model a system with timed automata using a graphical
editor, simulate it to validate that the behaviour is as intended and then verify that the
model is correct with respect 10 a certain set of properties. To achieve this goal, the tool

was divided into three tabs, as follows:

16

e BT Ve TAGt amoas YubE

i

Figure 4: UPPAAL Editor

e Editor: Each system consists of TA’s (processes) that work in parallel. Figure 4

shows the editor part of the UPPAAL tool. The user can use the editor to:

— Define each Template (parameterized TA), by defining the locations, edges, ini-
tial locations and properties, and naming each of those elements. The user can

also make a local declaration that is specific to each template;

— Define the Global declarations, which can be integers, clocks, channels and

constants;
~ Define System declaration, where templates are instantiated and the contents of

the system are defined by assigning instantiated processes to a system.

e Simulator: The simulator can trace transactions in three ways: (1) by tracing a pre-
defined set of transactions, (2) by tracing a random set defined by the simulator, or

(3) by manually setting transactions chosen by the user, one by one as he goes along.

17

The main goal of the simulator is to help the user to validate that the model is be-
having as expected. It can also catch deadlocks when they occur. Figure 5 shows the

simulator part of the UPPAAL tool.

Sap LI wuna T3 Anmiems sl

DGE] LRE Qo

lms-kuv-f-

C Drag ok h Dreg ot I -
Enabied Teanutors Qs = L c
Quar e yady n) ol
fovek: LM =3 € - Cusara: FLIN
fovel: LM -2 C Ut v
et LM =3 € € erotecZhen ey ™
Wovet L4 -3 € Loty unt . . - T~
al:Ma=>C C .ot stTloch 2w O - o
M= LM e S e Btle L C T s NACRE AT SoF s i b
controlisesiats: M —» ¢ - Cograrugae dm 0000 20 Fwes AR o L -’ Q
ot m - : TA=L ket S —— heuiial N rd o~
- G Mgl el atela, Do . ot a R Vd g
[vea 7| meve € izeri it = L3 2 ot PR ”‘\\ N A __,/‘:
et b e e L Tl L O, / L o - \l‘ /‘,-“'-’ ey
Seiation Trace - BE-T-IT0 TX - .“*ﬁ'
UL ET TS . . S N
- [N
{contr ok pvel, controkave, kie) JRE SR N e e
contral: § =¥ LM N\ A - S P
ATV ST (4 ERTE S N R o TP LY
(s, e, 20 \ { P -
oM -3 C © N\ L \ L
~
(conroneved, conyol evet, 1) '\ Y - !
control € =2 1M \ \ T e -..D_/
(comw ey, is,) N, - ,; L
< -“ .;" .nw.. @‘—, - . .
{cionaPurg, de, o) W
< \-—L‘w—'— -'-':'_.—'-'—'
e, e, b} .
flu] -
Trace Mis: [.
Prov J _ . —
,_
o"._._j _.__.._J Rar """__l‘ € (1.] -
Sowm Fast . » | -

Figure 5. UPPAAL Simulator

e Verifier: The user can specify a set of properties to be verified using this feature.
Figure 6 shows the verifier part of the UPPAAL tool. In UPPAAL, the checking
formula can be a combination of the following [BY04]:

— A], which means o will invariantly happen

- E< >, which means ¢ will possibly happen

A<>, which means ¢ will always happen eventually
~ E[], which means ¢ will potentially always happen

- --> 1, which means ¢ will always lead 10

13

fir 31 ~view 't Cotiomn Mo
ResM@ 7L E WWQ .o

[eoor | Srmiem [v | .

. Evereme

A[) ferail (2 2z ane[1,21) M usersei 4o JuentityFazsneterded ACply DataSccurily(l,i)=eiiuse
R.chechkdtatus ~-» C.CherkStatud

A[] Eetadl 41 @ 3me(1,2]) C.userssi 15 C.mAtchOFT itply IVERtIecurity(i.1)==irue

Al) C.uses=+2 izply not C.svirchQrr

o)

o]

[+]

[+] 1
LT wiTchort Q i Remeew 4

<

(o]

(o]

A} C.cpenValve izpl¥ quUAAtiILY»=ReX
ALl CreproPuap iEQlY QUANTItYS=FiD
T.contzolievel ca Quenticy<eMin =-> QUEALICY>NLN &4 QUADTITY<Max

waary

Al torsii ¢ - ingt, 2D L user=m &8 Cuanttef 0 imply O (1 Eatrue

ey,

- ———
Sekus
[TR SR e A L R bl

WPPAAL version 4.0.6 {rev, 2086), Merch 2007 = pwrver
Deconnrctad.

Poladteacrmt Ot s Il e e
LPPALL wersion 4.0.6 (rev. Z900), Marth JCO7 — sstver,

Figure 6: UPPAAL Verifier

Where ¢ and ¢ are Boolean expressions defined on locations, integer variables, and

clocks constraints. The properties that can be checked using this verifier are [BDL04]:

— Reachability: We can check whether or not it is possible to reach a certain
location. We can also check whether or not there is a deadlock in the system,

declared in UPPAAL as A[] not deadlock;

— Safety: We can check whether or not anything bad will ever happen, declared

in UPPAAL as something good is always true;

- Liveness: We can check whether or not something will happen eventually.

2.3 TIMES Tool

This sections presents a brief introduction of the TIMES tool, a more detailed explana-

tion of which can be found in [AFM*02] and [AFM*03]. TIMES is a modelling and

19

schedulability analysis tool for embedded real-time systems which was developed in 2001
at Uppsala University. It is suitable for systems which can be described as a set of preemp-
tive or non-preemptive tasks which are triggered periodically or sporadically by time or
external events, It provides a graphical interface for editing and simulation, and an engine
for schedulability analysis. To be able to understand TIMES and how it works, three major
facets of the tool will be discussed: the architecture, the input language and the tool itself

(an overview).

2.3.1 TIMES architecture

Figure 7 shows the architecture of the TIMES model. A system defined using it contains

the following elements:
o A global declaration containing the declaration of the global level variables;

o A scheduling policy for the system tasks, which can be: deadline monotonic, rate
monotonic, earliest deadline first, first-come first-served, or based on user-defined

priorities;
s A system declaration containing the instantiation of the templates;
- o Templates, each representing a TA and containing:

— alocal declaration of template-level variables and parameters;

~ locations, which represent the state of the TA. Each location may have an in-
variant that defines the time constraint of this location, and can include a task

that will be executed at this location;

— edges, which represent the transitions of the TA and may contain synchroniza-
tion, update, guard and probability statements, all of which expect the probabil-
ity statement to be the same as in the UPPAAL edges. The probability statement

defines the probability that this transition will be chosen.

20

o Tasks define the system-level tasks that can be executed on the template locations.
Each can contain multiple attributes, which are: (1) the deadline of the task, (2)
the behaviour of the task, which can be sporadic ”S”, temporarily periodic "TP” or

periodic ”P”, (3) the priority level of the task, (4) the computing time of the task, and

(5) the period of the task.
L)
Period o Task System —ﬁ
- Global
/ > R \O | aciarstien |
Behaviour Prionty CD?'puting Deadling 595"3“"“9

1.n

System

Templato
Invariant 1.
AR} Local
> _Regladien |

K Location O 21 | Edge

& N

Synchronization Update Guard Probability

Figure 7: TIMES Architecture

2.3.2 TIMES input language

The heart of the input language of TIMES is the TA with real-time tasks (TAT). A TAT
is a TA that has been extended with tasks which are triggered by events. A task is an
executable program characterized by its worst execution time and deadline, and possibly
other parameters such as scheduling priorities. Each task may have different task instances
that are copies of the same program with different inputs. Another major concept in TIMES

is that of the task model, which is a task arrival pattern, such as a periodic or sporadic task.

21

Task Parameters and Constraints

Three types of constraints are addressed in TIMES:
o Timing Constraints: A task deadline would be a typical timing contraint;

e Precedence Constrainis: Task executions may follow specific precedence relations.
These relations are described in TIMES by means of a precedence graph in which

nodes represent tasks and edges represent precedence relations;

e Resource Constraints: These are resources and data variables which are protected by
semaphores and may be shared by tasks. A task must follow its semaphore access

pattern,

TA as Task Arrival Patterns

As mentioned earlier, the core of the input language is the TA extended with data variables
and tasks. As in the UPPAAL model, cach edge in the extended TA has labels, which, in
TIMES, are the following:

e guard label, containing a clock constraint and/or predicate on data variables;
s action label, which can be an input or an output action;

e assignment label, containing a sequence of assignments in the form x:= 0 or v:= E,
where x is a clock, v is a data variable and E is a mathematical expression over data

variables and constants.

In the extended TA, a task or set of tasks may be attached to locations which will be trig-
gered when the transition leading to the location is made. The triggered tasks will be placed
in a task queue and scheduled to run according to a given scheduling policy. The scheduler
is responsible for making sure that all the task constraints are satisfied in scheduling the
tasks in the task queue, Networks of automata are constructed, in the standard UPPAAL

way, to model concurrency and synchronization between automata.

22

Fde Run Optons Wwndew Meip

Schreduling poicy
ColedDeadine Ft = 4 Peempwe
T b B P MR (OET] |
DFbwtor £ =D % e]
peaRytsen < oyt
‘Pupdreres <

Gwmw £

aa Peron [onpenoac”

5ol
a,u_;:.“;-;_;_-. ity ..;i'.f.j.:J i

Povtem i Qa2 | Dynavceconna] T povete | [t | () stvan| [2) sovex | Dy wpe | O3 beton
oot vl I N il .
{
- - - : I
Producion Cell . Enviconmant t
I RobotControl] Brick] :
RobatConirald abrickg :
MoveTa Robot
r sovaTod | I AHoLOEROTATION_Y, ﬂoa.oml
I Err l)
. Aamg
- UodatePastions :
| BetPos I
. Ut ..
1 e |

T Pradervan Coll Madel by Klank, Fonl, a0d Tobior. K02,

Figure 8: TIMES Tool

Shared Data Variables

There are four ways in which data variables can be uscd for communication and resource

sharing:

o Tasks may share variables with each other.

o Tasks may read and update global variables.

¢ Automata can read variables owned by the tasks.

e Automata may share variables with cach other.

2.3.3 TIMES tool overview

Figure 8 shows a snapshot of the TIMES tool. We begin our discussion of it {an overview)

by introducing its main features, which are as follows:

23

e Editor: Which is used to graphically model the abstract behaviour of a system and
its environment. The system consists of a network of extended TA with the tasks
and a task list. A task is described by: (1) the task code (in C), (2) its worst-case
computation time and relative deadline, and (3) optional priority, period and minimal
inter-arrival time. Task precedence can be specified using an editor for AND/OR

precedence graphs.

e Simulator: Which is used to visualize the dynamic behaviour of a system model as
Gantt charts and message sequence charts. The simulator can be used in three ways:
(1) possible execution traces can be randomly generated, (2) the user can control the
execution by selecting the transition to be made, and (3) the error traces produced in

the analysis phase can be visualized.

e Analyzer: Which is used to check that the tasks associated with a system model are
guaranteed (o always meet their deadline. If the analysis shows that the task is failing
to meet its deadline, a trace is generated and visualized in the simulator. In addition
to scheduling, it is possible to analyze the safety and liveness properties specified as

temporal logic formulae.
e Compiler: : It is responsible for gencrating executable C code from TA with tasks.

e Animator: Which is used to transform hybrid TA modelling the controlled environ-
ment into C code simulating the controlled objects in the environment of the embed-
ded system, The simulated environment helps the designer to experiment with the

design before implementation.

The TIMES tool performs three functions: system specification, system analysis and
code generation.
System specification function

With this function, the user models a system to be analyzed. The function is made up

of three parts: (1) the control automata modclled as a networked of extended TA with

24

tasks, (2) a task table containing information about the processcs triggered when the control
automata changed locations, and (3) a scheduling policy. The Editor is a tool for drawing
the control automata of the system model. It is also used to define the task parameters.
The task parameters currently supported are: deadline, execution time, priority, period, a
reference 1o the task code and the task behaviour. The task behaviour can be: sporadic ”S”,
temporarily periodic "TP” or periodic "P”. The scheduling policy can be: first-come first-
served, fixed priority, rate monotonic, deadline monotonic and earliest deadline first. The
Editor output is an XML representation of the control TA. The TIMES tool has a Scheduler
Generator. It uses the information from the task table and the scheduling policy to generate
a scheduler automaton which is composed in parallel with the controller automata to ensure

that the system will behave according the scheduling policy and task parameters.

System Analyzer function

The System Analyzer takes as an input the parallel composition of the control automata
and the scheduler automaton. It consists of two main components: a Simulator and a
Schedule Analyzer. The user can explore the dynamic behaviour of the system model and
observe how the tasks execute according to the chosen scheduling policy in the Simulator.
The Schedule Analyzer performs a schedulability analysis of the system by rephrasing
scheduling to a reachability problem that is solved with an extended version of the UPPAAL
tool verifier. If the analysis has a negative output, the analyzer generates a trace of the

system which ends in a state i.. which one of the system Lasks fails to meet its deadline.

Code Generator function

The Code Generator uses the control automata and the task programs to synthesize exe-

cutable C code. Currently, the only platform supported is the LegOS operating system.

25

2.4 Summary

This Chapter presented the basic concepts on which the rest of the thesis is built, and has
presented, both formally and informally, a summary of the component model definitions.

It has also presented the UPPAAL and TIMES tools.

26

Chapter 3

System Transformation, and the

TransformationTool

In this Chapter, the rules and process for transforming a system defined using the TADL
model to the UPPAAL or TIMES models are discussed. Section 1 presents the transforma-
tion rules and algorithm for the UPPAAL transformation. Section 2 presents the transfor-
mation rules and algorithm for the TIMES transformation. Section 3 presents the design of

the TransformationTool.

3.1 Transforming the System to the UPPAAL Model

Instead of defining and implementing a new model-checking tool, we can use the UP-
PAAL model-checking tool, as it is mature and well established. The process of transform-
ing a system defined using the TADL meodel to the UPPAAL model has been presented
in [AMO7b]. While that work forms the basis for the work carried out here, the transforma-
tion rules defined in [AMO7b] have been modified and improved. The main contributions
of this work are, then, to improve the transformation rules so that they can be applied to
larger-scale models, to define thosc rules in multiple views to make them easier to under-
stand and, finally, to define the transformation algorithm that will be of major importance

in developing the transformation tool.

27

3.1.1 Transformation rules

Each component-based system is translated to a UPPAAL model in a one-to-one relation,

as can be seen in Figure 9. The definition of a component-based system ~ontains a network

of connected components and the security mechanism which is based on the role-based se-

curity access control (RBAC). The transformation is divided into two parts the component-

level transformation and the system-level transformation.

‘frustworthy component-based
System Configuration

R e e e L e i S

Googeted S

ComponentType

Each System is translated
toa Uppaal Model

Deployment

S R AR T s w

Figure 9: TADL 1o UPPAAL

Component-level transformation

Uppaal Model

oD X : 2

i1 Templates

;‘I! 1 %3 ﬁ&;‘ :t*‘ -ab"
. .u \ tf\"; ,‘::ﬁ..‘- J, 1L

Each component is translated to a UPPAAL template in a one-to-one relation (Figure 10).

As discussed carlier, a UPPAAL template is a TA which can be defined in the wple (L, o,

K, A, E, 1), where

e L is alist of locations or states;

28

[

lo denotes the initial location;
o K is a list of clocks;

A is a list of actions;

o]

E is a list of edges;

1 is a function assigning clocks to locations as invariants.

To the tuple we can add u, which is the parameter of the template that represents the user
identification (ID) that will be used for security purposes, as will be discussed later on. So

the final tuple is (L, lo, K, A, E, I, u).

ComponentType UPPAAL template

LIV YT WA\ NI RGeS0 T o A T

Locations (L) K

Each Component is :
translated to one template £ Expressions:

RS AT !’h 3 1.Se|ect
M’*‘M&%&“ 94 2.Guard

g4 3.5ync
i 4.Update

Figure 10: Component to Template

The transformation rules will be described from two points of view, the first in terms
of the input units and the second in terms of the output units. The reason for using two

different views in the description is to make the transformation rules easier to understand.

29

Transformation rules in terms of input units

Component: Each component consists of many elements, as shown in Figure 10, one of
which is the contract. The contract defines the behaviour of the component, and w1 there-
fore be the focus of the transformation.

Contract: Within the contract, we have a list of reactivity rules defining the stimulus-
response relationship, where the stimulus represents the event requesting a service and the

response is the event responding to a service. The contents of the contract can be seen in

Figure 11.
ContractType UPPAAL template
Create a committed locationfor . S ——
Every action R i
dentmtroks G] Loeatlons(L) [
"“_"P‘?ﬁ':;!"* A if{reaction type notinternal) |3-| { i
M ""5&:‘1& *:“ : Cfeale acﬂon ;%-:.— FAC e) ST e ek T ~.‘~:-:~4§E
i v BR i n
) N 10520 Q.q -':i
.!Wﬂ-_ e -‘:, . ‘*‘3
= T Transformation detalls TR n.}mvg,,,,;,,,,j;%g
In nextlevel F
Edges (E) £y
i Expresslons: ;_-;
%] 1.Select i
=1 2.Guard 3
%1{3.Sync 5
b 4 ALK
Reactlons B ' 4-UPdatf3 2
— U d t — — Used In Update -c ..->>r;-t::.-(rl(:.,ln-,-'-,....q-...':t_-_-v.".-w.::-n,t»;:._g.;,:‘
e ate” . o
o prate.] Used In Guard conditions Invarlants (i ;%I
- Data Constraint’ [%] createaninvariantfor s m“f*%wﬂ‘**‘«—""%‘*m’wﬂ'-‘a’ﬂ
- —35] everytime constrain 85 i
e COns! - oG Clocks (K) N
Time Constraint - [Createa Clockforevery] r
time constrain fows 7or = h e e T R T b e

Figure 11: Contract Transformation

Reactivity: Each reactivity has two services, a request service and a response service,
the request service representing the stimulus event and the response service representing
the response event. As part of the contract, there is also a time constraint and a data con-
straint, which are used for safety purposes, reactions which define the list of reactions to

the stimulus event and the update which defines the post condition of the reactivity. The

30

transformation rules for the reactivity level are (Figure 11):

e Create a UPPAAL committed location for the list of all reactions.

Create a UPPAAL action for every reaction that is not internal.

Create a UPPAAL clock for every time constraint.

Create a UPPAAL invariant for every time constraint.

Use time constraint elements in the guard condition on UPPAAL edges.

Use update elements in UPPAAL update statements on the edges.

Service: Within reactivity, we have the service request and service response events. The

transformation rules of those two services are (Figures 12 and 13):

Create a location for every service request.
Create an action with the service request name.

Create an edge from idle to the service request location, and include the created

action as a synchronization of the edge.
Use data parameters for setting values in update statements in the created edges.

If the Contract Reactions list is not empty, create a committed location for every

service response, and create an edge from the service request location to this location.

If the service request type is not internal, create an action with the service request

name.

If the Contract Reactions list is empty, create an edge back from the service request

location to the idle location

31

Service-request UPPAAL template

Create a location for every Service-request,

! > Locations (L)

Create an action for every Service-request

! Actions (A)

Create an edge from idle Edges (E)

| Expresslons:
1.Select
2.Guard
3.Sync
4.Update

it
Yo T T DN WO R L e
;

-
P

PR

Create anedge back to idle

™
VR
AR NN

Setvalues in update

A

A

oo 3
Pty

Invariants (1) [

3

R S AT RS R T

Clocks (K)

B

B N T O T o e
e T B Sy IR S

Figure 12; Service Request Transformation

Transformation rules in terms of output units

UPPAAL template: : Each component is translated into one template, and each template
has a parameter representing the user ID, which also defines the component. Each template
consists of locations, clocks, invariants, actions and edges.

Locations (L): The transformation rules for creating these are as follows:

e Create an .nitial location Iy for every template to denote the idle state where the

compone at is waiting for a stimulus.
e Create a location for every stimulus event to represent the processing of this service.

¢ Create a committed location for every stimulus reaction that is in the reaction list

except the last one, as defined in the contract.

Clocks (K): There is only one transformation rule for creating these, which is to create

one for every time constraint defined in the contract. Clocks are defined as local variables

32

Service-response UPPAAL template

Iffactions Is notempty) ;
Create a location for every Service-responsF i

: & Locations (L)
If(type Is not “intemal”) e
Create an action for every Service-response

| - | Actions (A) »

Create an edge from idle - Edges (E) Jﬁ

>! Expressions: }
& 5

v - Createanedgebacktoidle |[.. 1.Select -
gﬁ ®: | 2.Guard
Tk e UL % 3.8ync iz,
o % M 2 |§' * 2K
%@ﬁ;& e <) 4.Update)
G 2 T Setvalues In update
iidataParameter; :

R

T R R R

Figure 13: Contract Transformation

with respect to the UPPAAL template.
Invariants (I): The only transformation rule for these is to create an invariant associated
with the service request location for every time constraint defined in the contract.

Actions (A): The transformation rules for these are as follows:

e Create an action for every service request.

» Create an action for every service response that is not internal.
¢ Create an action for every reaction service that is not internal.

Edges (E): As discussed earlier, each edge consists of select, guard, synchronization

33

and update statements. The select statement contains a temporary variable which is as-
signed to data parameters in the update statement. The guard statement contains the pre-
conditions that must be met to go through this edge. The synchronization statement con-
tains the actions associated with this edge. The update statement contains the post condi-

tions of the edge. The transformation rules for the edges are:

e Create an edge for every stimulus event from the idle location to the service request

location. If there is a time constraint, reset the clock in the update statement.

e Create an edge for every response event, back to the idle location. In the update

statement, include the contents of the update element in the reactivity.

¢ Create an edge for every reaction defined in the reactivity.

System-level transformation

The system definition includes instances of the declared templates. The global declaration
section includes the security mechanism. The RBAC defines the security properties of the
system in the TADL model. Those properties are transformed to the UPPAAL model using

the following rules:

e Create an array of users representing the user IDs that are obtained from the RBAC

user list.
e Create an event access control matrix which defines the tuples (user, event, privilege).
e Create a data access control matrix which defines the tuples (user, data, privilege).

e Define an event security function, EventSecurity, which searches the event access
control matrix of users-events and returns whether or not a user has the privilege of

accessing the event.

e Define a data security function, DataSecurity, which searches the data access control
matrix of data-events and returns whether or not a user has the privilege of accessing

the data parameter.

34

UPPAAL template

\..';i R T R R T e O S
2%]

= Locations (L)

5"';“ a_" PRSI LR - PR ."-"-

3

o

3 Actions (A)

|

Used to define security,

d dt' " R O R T AR fx'ﬂ‘.hjnal‘:.g
as guard conditions i T
annleges-for—serwces @ Edges (E) g«a
& Expressions: L2

SRl B T, 74 1.Select 8
h‘;" ‘& ﬁimh\% ""H«W\‘{'R?}Q T 4 v X i #
Vé jél}q'f:a}ﬁavr)i.’tf‘:\.‘ g "a 2 Gual’d ';?j
wﬁ,. v{l ms ", ¥ -1'3 i?,-{ b ‘E‘*
, ‘ B ?
. Prlvileges-for—data g I
5 . Invariants (1) £

L T on 0y s R e 2 g et TR V25 2

§ Clocks (K) Fy

Y& A‘,-;

B TR T e R R R b &

Figure 14: RBAC Transformation

3.1.2 Transformation algorithm

Below is the transformation algorithm that takes as an input the component-based system

and returns as an output the UPPAAL model representation of this system.

TADL to UPPAAL transformation algorithm
INPUT : The sets: components CM and System RBAC.
OUTPUT: The sets: locations "L"”, Edges "E”, Clocks "K", Local declaration "LD",

Global declaration "GD” and Invariants "T".

From RBAC Create serviceSccurity Matrix and add to GD;
From RBAC Create dataSecurity Matrix and add to GD;

for Component € CM do

35

Create a new template with name Component.name;

Add Component.parameters as parameters to the new template;

Create a location "idle” to denote the idle state;

R = sct of Reactivity inside the contract inside the component C;

for Reactivity € R do

Create a location 1" called Reactivity.service-request;

Add ,11" to 1|L’,;

!ll)!

Create an edge "e” from idle to "I’ and:
Add Reactivity.service-request in Syn followed by (?) and add channel declaration
to GD;
if Reactivity.service-request.parameter =! Empty then
for parameter € Parameters do
Add parameter to Select;
end for
end if
if Reactivity.timeconstrain =! Empty then
Create clock k™ and reset it;
Add "k” to "K";
Add "clock k;” to LD;
Add timeConstraint as invariant ’q”
Add”g" 10 T”
end if

Add !Se!i lo |’E!!;

in location 17

if Reactivity.actions == Empty then
Create an Edge "el” from "1 to idle;

if Reactivity.dataConstraint =! Empty then

36

Add Reactivity.dataConstraint.Constraint to guard;
end if
if Reactivity.service-response.type =! "Internal” then
Add Reactivity.service-response in Syn followed by (') and add channel dec-
Jaration 10 GD;
end if
if Reactivity.update =! Empty then
Add Reactivity.update to Update;
end if
Add ’el” 10 ”E™;
end if
if Reactivity.actions =! Empty then
Create a committed location 11" called Reactivity.service-response;
Add 11" to "L";
Create an Edge “¢1” from "I" to "11” and:
if Reactivity.dataConstraint =! Empty then
Add Reactivity.dataConstraint.Constraint o guard;
end if
if Reactivity.service-response.type =! “Internal” then
Add Reactivity.service-responsc in Syn followed by (!) and add channel dece-
laration to GD;
end if
if Reactivity.update =! Empty then
Add Reactivity.update to Update;
end if
Add "el” 10 "E";
for uction € Reactivily.action do
if not last action then

Create a committed location VIx™;

37

Add "1x” to "L”;
Create an edge “ex” from previous action to this action location and:
if Reactivity.service-response.type =! "Internal” then
Add Reactivity.service-response in Syn followed by (!) and add channel
declaration to GD;
end if
Add "ex” to "E”;
else
Create an edge "ex” from previous action location to idle and:
if Reactivity.service-response.type =! "Internal” then
Add Reactivity.service-response in Syn followed by (!) and add channel
declaration to GD;
end if
Add "ex” 1o "E”;
end if
end for
end if
end for

end for

3.2 Transforming the System to the TIMES Model

Transforming a system defined using the component model to the TIMES model is very
similar 1o the transformation to the UPPAAL model. The only major deference is that the
TIMES model supports tasks which are not available in the UPPAAL model. Instcad of
repeating the transformation rules defined in the previous section, only the differences will

be discussed here,

38

3.2.1 Transformation rules

Each component-based system is also translated into one TIMES system, and each compo-
nent is translated into one template. The main differences in the transformation rules can

be summarized as follows:

e In TIMES, we need to define the tasks, and the transformation rule for this is: create

a task for every service in the model, map the service attributes into task attributes.

o Somc templates in TIMES are environmental templates, and whether or not a compo-

nent is translated into an environmental or regular template is decided by an attribute

defined in the component.

e In TIMES transformation, we need to assign tasks to locations. The transformation
rule for this is: for every location created, add to this location a task that represents

the service proceeding at this location.

o In UPPAAL, we had an RBAC transformation, which is not supported in TIMES.
The analysis performed in TIMES is concerned with the schedulability analysis, not

the safety and sccurity analysis.

e In TIMES, cdges do not contain select statements, and so the selecr statements de-

fined in the reactivities will be ignored.

3.2.2 Transformation algorithm

The transformation algorithm is very similar to the UPPAAL transformation algorithm.
The major difference is in the definition of tasks. So, below is an algorithm for creating
those tasks, which will be added to the locations representing the processing of the service

responsc.

TADL to TIMES transformation algorithm

INPUT : The sets: components CM and System RBAC.

39

OUTPUT: The set of Tasks "T".

for Component € CM do
R = sct of Reactivity inside the contract inside the component C;
for Reactivity € Rdo
Create a task with pame Reactivity.service-response;
P = sct of properties inside the Scrvice-response;
for Property € P do
Create a property in the task with the same name and value;
end for
if Reactivity.timeConstraint=! Empty then
Create a property in the task with the name D" and value of the timeConstriant ;
end il
end for

end {or

3.3 Transformation Tool

As part of the work done in this thesis, a tool was developed to automate the transformation
from a real-time reactive system developed using the trustworthy component-based model
(TADL mode)) to an extended TA understood by UPPAAL or an extended TA understood
by TIMES. This tool is called the TransformationTool. Figure 15 shows the process for
transforming the model to the UPPAAL model. A similar flow chart can be used to describe
the transformation to the TIMES model. The first element is the TADL XML file, which
represents the input to the transformation tool. The tool can then perform two types of
transformation, depending on the transformation selected. It can result in two types of
XML files. If the UPPAAL transformation is selected, the XML file produced adheres
to the UPPAAL model, and the resulting file is input to the UPPAAL model checking

tool to perform the required verification and simulation, as can be seen in Figure 15. If

40

TIMES transformation is selected, the XML file produced adheres to the TIMES model,
and the resulting file is input to the TIMES tool, where schedulability analysis can be
performed. The following subsections will introduce the architecture and design of the

TransformationTool.

Verification and Simulation

TADLXML UPPAALXML

= " ——

Coy
O TransformationToo)
Figure 15: Transformation Flow Chart

-

3.3.1 Architecture overview

The software architecture defines the hierarchical structure of the program components,
and the way these components interact with one another and the structures of data that
are used between components [Pre01]. In [SG96], software architecture is defined as the
structure or structures of the system, which includes software components, the externally
visible properties of those components and the relationships between them. There are many
software architecture styles, such as the client-server system, event-driven, peer-to-peer
architectures, and the pipe and filter architecture. The choice was made to usc the pipes and
filters architecture in the design of the Transformation Tool, and below is an introduction

to this architecture, its advantages and the rationale behind this choice.

41

Filters ==

Pipes

Figure 16: Pipe and Filter Architecture

Pipe and Filter architecture

In the Pipe and Filter style, each component has a set of inputs and a set of outputs, A
component reads a stream of data as input and generates a stream of data as output. This
process usually includes data transformation, which makes the components act as filters,
and hence they are called filters. By contrast, the connectors act as conductors for the data
streams from one filter to another, which makes the conneclors act as pipes, and hence they
are called pipes, and the whole architecture is called Pipe and Filter. {GS94]. Pipes and
filters arc usually connected sequentially, where the input to the first filier is the input to
the system, and the output of the last filter is the output of the system. Figure 16 shows a

simple view of this architecture, which has a number of advantages:
e It makes the system behaviour easier to understand on the part of the designer. [GS94]
o It supports the reusability of the filters. [GS94]

e It increases the maintainability of the system; filters can be maintained separately,

and they can be replaced by other filters with better performance. [G594]

e It ensures low coupling, in that filters only interact in a limited way. [LBK98]

42

e It eases the concurrent executions of the system, where filters can be run on multiple

processors or multiple threads on the same processor. [LBK98]

Rationale behind the selection

Pipe and Filter is the architectural style we used in our design becausc it makes the system
behaviour easicr to understand, and it improves reusability and maintainability. As thisisa
rescarch tool, it is very important that the design be clear for future users who might need
to improve it. It is also important to increase its reusability, as some components may be
required for other tools. Finally, maintainability is an essential property for a research tool,

as it is very likely that more improvements will be made to it in the future.

3.3.2 Architecture diagram

Figurc 17 represents the component diagram of the TransformationTool, and shows the
components that make up the tool. As the figure shows, there are five components which
communicate with one another following the Pipe and Filter architecture through the pipes.

These are as follows;

e The first component is the Transformation Rules component, which defines the rules
for transforming the TADL model to the output model. The output model can be the
UPPAAL model or the TIMES model. The rationalc behind defining the transforma-
tion rules in a separate component is to increase the maintainability and extensibility
of the tools. If a modification to the transformation rules is needed, all that is required
is to modify the transformation rules component, and there is no need to go into the

tool implementation details.

e The second component is the TADL XML component, which is the XML file con-
taining the definition of the system which satisfics the trustworthy componeni-based
model XML schemas.

e The third component is the Transformation Process and graphical user interface

43

(GUI) component. This component will be responsible for performing the trans-
formation on the TADL XML file following the transformation rules defined in the

transformation rules component.

o The fourth component is the output of the transformation generated from the previous
component. This output can either be a UPPAAL XML file or a TIMES XML file,

depending on the type of transformation performed.

L1 TADLXML
[\\
] Transformation 1 UPPAAL or
| Processand TIMES XML
| GUI -
[1 Transformation /’
Rules
[]

Figure 17: Component Diagram

3.4 Summary

In this Chapter, the transformation process, rules and algorithm for transforming 2 TADL
system to the UPPAAL or TIMES models were presented. The TransformationTool was

introduced and the architectural design of this tool was discussed.

Chapter 4

Transformation Tool Implementation

In this Chapter, the implemnation of the TransformationTool is discussed. As explained in
Chapter 3, the design of the TransformationTool contains four major components. In the
following sections, the implementation of each of those components will be described, and

a demonstration of the way the TransfromationTool works will be presented.

4.1 Transformation Rules Component

This component incorporates the rules for transforming a system defined in the TADL
model to the UPPAAL madel or the TIMES model. These rules, which were discussed in
Chapter 3, were defined separately in a single component to increase the 100l’s extensibility
and maintainability by ensuring that a change in the transformation rules will not affect the
implementation of the rest of the tool. There are many ways to represents these transforma-
tion rules, using standard programming languages such as Java, or specific XML languages
such as XSLT. We chose to use XSLT, Below is an introduction to XSLT, its advantages

and our rationale for choosing it.

4.1.1 XSLT

Extensible Stylesheet Language Transformations (XSLT) is a powerful and flexible XML-

based language for transforming XML documents into other formats, for example an HTML

45

document, another XML document, a Portable Document Format (PDF) file, a Scalable
Vector Graphics (SVG) file, a Virtual Reality Modeling Language (VRML) file, Java code,
a fiat text file or a JPEG file, among many others [Tid01]. XSLT was developed by the
World Wide Web Consortium (W3C). The most recent version is XSLT 2.0, which reached
W3C recommendation status on January 23, 2007, and will be used here. Figure 18 shows

the XSLT processing model, which includes the following:

one or more XML source documents;

one or more XSLT stylesheet modules;

the XSLT template processing engine (the processor);

¢ one or more result documents.

XML Input
Document

Result
Document

XSLT Code

Figure 18: XSLT Processing Model

The dominate feature of a typical XSLT stylesheet (XSLT code) is that is consists of a
sequence of template rules, each of which describes how a particular element type or other
construct should be processed. The rules are not arranged in any particular order, they
don’t have to match the order of the input or the order of the output. This is what makes
XSLT a declarative language, because you specify what output should be produced when
particular patterns occur in the input, while in procedural language you have to say what
tasks to perform in what order.

Following is a simple example of how to use XSLT to change the structure of an XML
file. This is done by transforming the original XML file to a new file that have the new
structure. In our example, the input XML file have a list of students, each student is defined

by its name and address. The name is divided into first and last. The address is divided into

46

<student>
<name>
<first>Mike </first>
<last>Jack </last>
</name>
<address>
<unit>4 </unit>
<street>King St, </street>
<city> Ottawa, </city>
<country> Canada </country>
</address>
</student>

Figure 19: Input XML file

street, city, province and country. In the output XML file we need the name to be presented
as a one XML element and the same for the address. Figure 19 shows the input XML.
Figure 20 shows the XSLT stylesheet that defines the transformation rules. It specifies
that for each <name> tag in the input file create a new XML tag in the output file called
<FullName> it contains the string associated with the two XML tags <first> and
<last> defined in the input file. And for every <address> tag in the input file create
a new XML tag in the output file called <FullAddress> that contains the strings of the
<street>, <city>, <province> and <country> tags. The resulted XML file can
be seen in Figure 21.

XSLT has many advantages, among them the following:

o Itis specifically designed for XML, which means that there is no need to worry about
the details of reading or writing XML files. This is not the case with other languages

like Java.

o The transformation code is smaller than other languages, which makes it easier to

understand and improves its maintainability.

o It enables us to define the transformation rules and process at the same time.

47

<xsl:stylesheet xmlns:xsl="'http://www.w3.0rg/1993/XSL
/Trasnform" version="2.0">

<xsl:output method="xml"/>

<xsl:for-each select="name">
<FullName>
<xsl:sequence select="xs:string(name/first)"/>
<xsl:sequence select="xs:string(name/last)"/>
</FullName>
</xsl:for-each>

<xsl:for-each select="address">
<FullAddress>
<xsl:sequence select="xs:string(address/unit)"/>
<xsl:sequence select="xs:string{address/street)"/>
<xsl:sequence select="xs:string(address/city)"/>
<xsl:sequence select="xs:string(address/province)"/>
<xsl:sequence select="xs:string(address/country)"/>
</FullAddress>
</xsl:for-each>

</xsl:stylesheet>

Figure 20: XSLT stylesheet

<student>

<FullName>Mike Jack</FullName>

<FullAddress>4 King St, Ottawa, Canada </FullAddress>
</student>

Figure 21: Output XML file

48

e XSLT stylesheets are XML documents, which makes it feasible to manipulate them

programmatically to produce new stylesheets on the fly.

o The tools and support are widely available in the industry. XSLT is an open standard,
and there are several open-source XSLT engines available for Java, such as Xalan

and Saxon.

4.1.2 Rationale behind selection

XSLT was chosen to represent the transformation rules for many reasons, the most im-
portant, besides the advantages discussed earlier, being the ability to formally define the
transformation rules separately. Component models evolve with time. New concepts can
be added, and existing concepts can be removed or updated. Therefore, the transformation
rules may require continuous updates which can be easily achieved using XSLT. Also, it is
possible for the transformation process to use many different types of sources. Therefore,
using XSLT enables casy management and evolution of the transformation process with no

need to redevelop, rebuild or redistribute the model’s Transformation Tool.

4.1.3 Transformation rules in XSLT

Each transformation rule presented in Chapter 3 should be formally defined in XSLT, and
ecach set of transformation rules implemented in XSLT in a single file. The UPPAAL trans-
formation is defined in one file, and so is the TIMES transformation. The full contents of
those two files can be found in Appendix B. Below is a detailed discussion of the UPPAAL
and TIMES transformation rules in XSLT.

UPPAAL transformation rules

The rules are defined in a single file, the structure of which is as follows. First, it includes
definitions for creating the global declaration section. Then, it defines the rules for trans-

forming each component into one single template. The template definition contains the

49

rules for transforming the locations and edges, and the local-level declarations. Finally, it

defines the system-level declaration. Below is a more detailed discussion.

Global declaration rules

The global declaration is defined in UPPAAL as an XML tag <declaration> con-
taining a string. The global declaration rules are responsible for generating the global

declaration for the UPPAAL system. This declaration will contain:

the global-level variables, which are transformed from the TADL global level at-

tributes;

the channel declaration, which represent the synchronization events that wigger the

transitions;

the user 1D declaration (each user identity is given a unique integer valuc),

the definition of the security mechanism, which includes:

— a User Event Access Matrix defining the user’s right of access to each event;

- a User Data Access Matrix defining the user’s right of access to each data pa-

rameter;

— the Event Security function, which retrieves the correct right of access from
the User Event Access Matrix and the Data Security function, which in turn

retrieves the correct right of access from the User Data Access Matrix.

Figure 22 shows a simple portion of the transformation rules for declaring the channels in
the global declaration. The rule states that, "for every service-request (stimulus) in every
reactivity, create a channel in the UPPAAL template.” This example shows how we ulilized
the XSLT function "for-each-group” 10 loop through all the reacvtivities and perform the
required transformation. “for-each-group” was used instcad of *'for-each™ because it sorts
the result into groups, depending on the values defined in “group-by”. This sorting is

important 1o enable us to overcome the problem of repetition, as we can sort the entries

50

<declaration>

<xsl:for-each-group select="components/contract/reactivity/
service-request" group-by="name">
<xsl:variable name="p" select="position()"/>
<xsl:for-each select="current-group () [1l]/name">
<xsl:sequence select="fn:concat {’'chan ', xs:string (.},
*: const int ’,xs:string(.),’ID = ’,$p,’ ;’,$newline)"/>
</xsl:for-each>
</xsl: for-each-group>

</declaration>

Figure 22: Sample Global Declaration Transformation Rule

and choose only the first clement and perform the transformation on that clement. As can
be seen in the previous example, if we had used "for-each”, we would have a multiple-
channel declaration for the same service request, as it may be a member of more than one
reactivity. XPath expressions werc used to locate the source items in the TADL XML file.
For example, select= "contract/reactivity/service-request” is used to locate all the service

"

requests in reactivity definitions. Then, the XPath function "fi: concai(String, String)”
is used to declare the channel name, which is the same as the stimulus name. Finally, the

resulting string is added to the global declaration.

Template transformation rules

Every template corresponds to onc component. Each template consists of: name, list of
parameters, local declaration, locations and edges. The name of the template is the same
as the name of the corresponding component. The list of paramelers contains the user
identity. The local declaration contains the declaration of the local-level variables and
clocks declaration. Figure 23 shows the transfromation rules for the template name, list
of parameters and local declaration. The transformation rule for declaring clock states

that; "for every time constraint create a clock with the time constriant name.” The XPath

51

- = &

<xsl:for-each select="components">

<template>
<xsl:for-each select="name">
<name>
<xsl:sequence select="xs:string(.)"/>
</name>

</%xsl:for-each>
<parameter>int user</parameter>
<declaration>
<xsl:for-each-group select="contract/reactivity/
timeConstraint"group-by="name">
<xsl:for-each select="current-group() [1]/name">
<xsl:sequence select="fn:concat{’clock ’,
xs:string(.),’';’"y"/>
</xsl:for-each>
</xsl:for-each-group>
<xsl:for~-each select="attribute">
<xsl:variable name="name" select="name"/>
<xsl:variable name="type" select="datatype"/>
<xsl:variable name="value" select="value"/>
<xsl:sequence select="fn:concat ($type,’ ’,S$name,
r = ,S$value,’ ;")"/>
</xsl:for-each>
</declaration>

Figure 23: Sample Template Declaration Transformation Rule

function sequence is used through the transformation rules to write strings inside the XML

tags. XSLT variables were used to hold temporary values inside the local block. One

important note on the use of XSLT variables is that the value of those variables cannot be

changed, and they are only defincd inside the block that contains them. For inslance, in the

previous example, the variable "name” is only defined within the scope of the “for each”

loop

The location transformation rules were discussed in Chapter 3. Figurc 24 shows a sim-

ple portion of the transformation rules for creating UPPAAL locations. This rule states

52

<xsl:for-each~-group select="contract/reactivity/service-request"
group-by="name">
<xsl:variable name="nuuu" select="count (current-group()}"/>
<xsl:for-each select="current-group() [1l]/name">
<location>
<xsl:attribute name="1id">
<xsl:sequence select="xs:string(.)"/>
</xsl:attribute>

<name>
<xsl:sequence select="fn:concat (xs:string(.),’S")"/>

</name>

<xsl:variable name="vv" select="../../timeConstraint
/name" />

<xsl:variable name="max" select="../../timeConstraint/
maxSafeTime"/>

<xsl:if test="../../timeConstraint">

<label kind="invariant">
<xsl:sequence select="fn:concat (S$vv,’ < '
, Smax)"/>
</label>
</xsl:if>
<xsl:1if test="Snuuu = 1">
<xsl:if test="../../service-response/type='internal’">
<committed/>
</%xsl:if>
<xsl:if test="../../service-request/type='internal’">
<committed/>
</xsl:if>
</xsl:if>
</location>
</xsl:for-each>
</xsl:for-each-group>

Figure 24: Sample Location Transformation Rule

53

that, "for every service-request (stimulus) in every reactivity, create a location in the UP-
PAAL template. If this reactivity has a time constraint, then add an invariant to the lo-
cation. Also, if either the stimulus or the response is an internal evenl, then make the
location conunitted (a committed location is a location where time does not pass).” We
use XPath expressions to locate the source items in the TADL XML file. For example,
select="contract/reactivity/service-request” is used to locate all the service requests in the -
reaclivity definitions. Then, a location with thc same name is created as an XML tag
<location>, which conforms to how UPPAAL dcfines locations. Later, attributes are
added to the location. We used the XSLT function "xsl:if” for condition control, which is
very similar to “if statements” in traditional programming languages. The xsl:attribute is
uscd to define XML 1ag attributes.

The edge transformation rules were discussed in detail in Chapter 3. Figures 25, 26
and 27 show a simple portion of the transformation rules for creating UPPAAL edges. This
rule states that, “for every service-request (stimulus) in every reactivity, create an edge
in the UPPAAL template. The edge starts from the idle location and ends at the location
representing the processing of the stimulus. 1If the stimulus is not an internal event, add
the channel that represents the stimulus in synchronisation statements on the edge. If the
reactivity has a select statement, add this statement to the edge. If the reactivity has a time
constraint, assign the clock that has the same name as the time constraint to zero and add it
to the assignment statement on the edge.” We use the XPath expressions ™ or-each-group”,
"group-by” and "count” to ensure that, in casc of multiple service-requests which are used
in different reactivitics, only one edge is created in the UPPAAL template, as discussed
carlier. The XML tag <transition> represents the edge in the UPPAAL model. The
XML <source> and <target> tags define the start- and end-points of the transition,
After defining the source and target of the transition, checks are made in order to decide
whether or not to include the synchronization, select, guard and assignment statements
following the rule prescnted above.

The last part of the transformation rules contains the transformation rules for creating

the system-level declaration. That declaration is responsible for creating instances of the

54

<xsl:for-each-group select="contract/reactivity/service-request"
group—-by="name">
<xsl:variable name="nu" select="count (current-group(})"/>
<xsl:for-each select="current—-group() [1]/name">
<transition>
<source>
<xsl:attribute name="ref">
<xsl:sequence select="'idle’"/>
</xsl:attribute>
</source>
<target>
<xsl:attribute name="ref">
<xsl:sequence select="xs:string(.)"/>
</xsl:attribute>
</target>
<xsl:if test="not(../type = 'internal’)">
<label kind="synchronisation">
<xsl:for-each select="../../service-request/name">
<xsl:sequence select="fn:concat
(xs:string(.), 2’)"/>
</xsl:for-each>
</label>
</xsl:if>
<xsl:if test="../type = ‘internal’">
<xsl:if test="$nu = 1">
<label kind="synchronisation">
<xsl:for-each select="../../service-response
/name™>
<xsl:sequence select="fn:concat (xs:string(.),
I!f)ll/>
</xsl:for-each>
</label>
</xsl:if>
</xsl:if>

Figure 25: Sample Edge Transformation Rule Part 1

55

* ..

<xsl:if test="../../select">
<xsl:for-each select="../../select">
<xsl:variable name="na" select="name"/>
<xsl:variable name="ty" select="type"/>
<xsl:variable name="min" select="min"/>
<xsl:variable name="max" select="max"/>
<xsl:variable name="t" select="to"/>
<label kind="select">
<xsl:sequence select="fn:concat ($na,’:’,Sty,
‘[*,$min, ", ,$max, " 1")"/>
</label>
<xsl:if test="../timeConstraint">
<xsl:variable name="vv" select="../
timeConstraint/name"/>
<label kind="assignment">
<xsl:sequence select="fn:concat ($vv,’:=0")"/>
<xsl:sequence select="fn:concat(’,’,5$t,” =’
, $na)"/>
</label>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:if test="not (exists(../../select))">
<xsl:if test="../../timeConstraint">
<xsl:variable name="vv" select="../../
timeConstraint/name"/>
<label kind="assignment">
<xsl:sequence select="fn:concat ($vv, :=0")"/>
</label>
</Xsl:if>
</xsl:if>

Figure 26: Sample Edge Transformation Rule Part 2

56

<label kind="guard">
<xsl:if test="not(../type = ’‘internal’)">
<xsl:sequence select="fn:concat
(' EventSecurity (user,’,xs:string(.) ,'ID}")"/>
<xsl:for-each select="../parameterType/name">
<xsl:variable name="pamName"
select="xs:string(.)"/>
<xsl:for-each select="/Configuration/rbac/
privilegesForDataParameters/dataParameter/name">
<xsl:variable name="temp"
select="xs:string(.)"/>
<xsl:if test="$pamName = Stemp">
<xsl:sequence select="fn:concat (' & &
DataSecurity (user,’,xs:string(.), ID)")"/>
</xsl:if>
</xsl:for-each>
</xsl:for-each>
</xsl:if>
<xsl:if test="$nu = 1">
<Xsl:if test="../../dataConstraint">
<xsl: for-each select="../../dataConstraint
/constraint">
<xsl:sequence select="fn:concat (' & & ',
xs:string(.))"/>
</xsl:for-each>
</xsl:if>
</xsl:if>
</label>
</transition>
</xsl:for-each>
</xsl:for-each-group>

Figure 27: Sample Edge Transformation Rule Part 3

57

<system>
<xsl:for-each select="components">
<xsl:sequence select="fn:concat (‘comp’,position(),’ =
,Xs:string(name),’ (adminID);’, $newline)"/>
</xsl:for-each>
<xsl:sequence select="xs:string(’system ’'}"/>
<xsl:variable name="c" select="count (components)"/>
<xsl:for-each select=%"components">

r

<xsl:if test="position() != $Sc">
<xsl:sequence select="fn:concat (‘' comp’,position(),’,")"/>
</xsl:if>

<xsl:if test="position{() = $c">
<xsl:seguence select="fn:concat (‘comp’,position(), ;"}"/>

</xsl:if>
</%xsl:for-each>
</system>

Figure 28: System Declaration Transformation Rule

created templates by passing values for the template parameters. Figure 28 shows the
transformation rules for creating the system-level declaration. The rule states that, "for
each component that has been translated to a template, create one template instance and

pass the component user as the template parameter.”

TIMES transformation rules

TIMES transformation rules are also defined in a single XSLT file. The transformation rule
implementation is very similar to that of the UPPAAL transformation rules. The main dif-
ference is the way TIMES defines its elements, as it follows a different XML schema than
UPPAAL. But the same concept is applied as in UPPAAL. TIMES has an extra concept,
which is the task concept. Figure 29 shows the transformation rules for creating those tasks
in TIMES. The transformation rule states that, "for every service request (stimulus), create
a task that represents the processing of this event.” The full transformation rules can be

found in Appendix B.

58

LI I

<tasktable schedulingpolicy="EDF">
<xsl:for-each select="components/contract/reactivity">
<xsl:for-each select="service-response”>
<task>
<xsl:for-each select="property">
<xsl:attribute name="name" select="value"/>
</xsl:for-each>
<xsl:attribute name="name" select="fn:concat
(name, T’)"/>
<xsl:if test="../timeConstraint">
<xsl:attribute name="D" select="../timeConstraint
/maxSafeTime"/>
</xsl:if>
</task>
</xsl:for-each>
</xsl:for-each>
</tasktable>

Figure 29: TIMES Task Transformation Rule

Issues in using XSLT for defining transformation rules

Despite all the advantages of XSLT, some limitations were encountered during the imple-

mentation of the transformation rules in XSLT, some of which are the following:

e XSLT variables cannot change their values and are only valid in context. For exam-
ple, a variable assigned a value in a loop cannot be accessed either outside the loop or
in the next iteration of the loop, nor can the value be modified. The only way to deal
with this problem is to repeat the process of calculating the values of the variables

whenever needed, as a variable can neither be stored nor reused.

o For first-time users, it is not easy to implement such complicated business rules.

59

4.2 TADL XML

The TADL XML file contains the specifications of component-based systems defined using
TADL. The XML schema of the file conforms to the component meta-architecture dis-
cussed in Chapter 2, and represents the input to the Transformation Tool. XML was chosen
for the internal representation of the system defined using our component model. What
is meant by the internal textual representation is the internal format in which the model
will be internally defined. This format will be hidden from the end-user and automatically
generated by the Visual Modelling tool (VMT) which is used to design the component
systems visually. The model’s components are stored in this internal representation in
the repository. The main goal of such an internal representation is to facilitate checking,
design-time analysis and transformation of the system into different models, such as the
behaviour model and the real-time model, and it will make it much easier to exchange
information between different platforms and software products. One of the requirements of
such a format is to be platform-independent. Extensible Markup Language (XML)is used to
describe documents in a standardized text-based format [BD03]. XML is also considered
to be a framework for projects involving moving information from place to place, and
even software product to software product [GP02). We decided to use XML language for
the internal representation of TADL specification because: (1) it is widely supported by
standards committees, tool vendors and practitioners, (2) it is platform-independent, and
so not restricted to a particular hardware or network architecture, (3) linking is allowed
within XML documents, which allows specific elements and attributes to be indexed, (4)
off-the-shelf tools are available for constructing, editing and visualizing XML documents,
and (5) there is support for modular extensibility [DvdHTO5].

There are many ways to define grammars against which to validate XML documents.
Two of the most popular are DTD and XML schema. DTD has less support for modular
extensibility where the XML schema is much more effective, and provides an easy method
for defining a construct and extending it later on [ABD*01]. Because of this, we chose to

use the XML schema to define the grammar for our models.

60

One of the contributions of this thesis is to define the XML schemas for representing
the TADL model. The main objective is to make those schemas readily understandable,
extensible and reusable. This will help us to modify these XML schemas in the future if we
want to add more elements and structures to our model. To achieve this, modularity was
used extensively, defining related elements as complex types to increase that modularity
and to improve reusability. The XML schemas constitute the basis for this work, the goal
being to take a system defined using TADL model and store it in an XML format that sat-
isfies those predefined schemas, and then perform the necessary transformations to enable

execution of the design-time analysis.

TADL XML schemas

The TADL XML schemas were defined to conform to the TADL meta-model presented in
Chapter 2. The definition of this schema was divided into six files to increase its maintain-
ability and make it easier to understand. Below is a detailed discussion of the content of

those files.

ComponentType file: This file contains the componentType and architecture definition.
Figure 30 shows the portion of the file that contains the componentType definition. Each
component may have a name, a list of properties, a list of attributes, a list of constraints, a
user, a list of interfaceTypes, an architectureType, a contract and a description. Figure 31
shows the XML schema for defining architectureTypes. Each architectureType may contain
a name, a list of componentTypes, a list of connectorTypes that connect components, a list

of attributes, a list of constraints, a list of attachments and a description.

ConnectorType file: This file defines the connectorType that is responsible for connect-
ing the components to one another in the architectureTypes. The content of this file can be

found in Appendix A.

ContractType file: This file contains the definition of the contractType and its main ele-

ments. Each contract contains a name, a list of reactivity, a list of safety properties and a

61

<xs:complexType name="ComponentType">
<XSs:sequence>
<xs:element name="name" type="xs:string"/>

<xs:element name="property" type="Property" minOccurs="0"

maxOccurs="unbounded" />

<xs:element name="attribute" type="Attribute" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"
minQccurs="0" maxOccurs="unbounded"/>

<xs:element name="user" type="User" minOccurs="0"/>

<xs:element name="interfaceTypes" type="InterfaceType"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="architectureType" type="ArchitectureType"

minQccurs="0"/>
<xs:element name="contract" type="ContractType"
minQOccurs="0"/>
<xs:element name="discreption" type="xs:string"
minOccurs="0"/>
</Xs:sequence>
</x%s:complexType>

Figure 30: ComponentType Schema

description. Each of those elements is defined in this file. The most important is the reactiv-
ity. Each reactivity contain a name, an ID, a service-request (stimulus), a service-response,
a data constraint, a time constraint, an update element (post conditions), a select element
(preconditions), a list of actions (responses) and a description. Figure 32 shows the XML

schema for defining the reactivity. The full content of this file can be found in Appendix A.

InterfaceType file: This file defines the interfaceType and its main elements. Each in-
terface may contain a name, a protocol, a list of attributes, a list of service-Types and a
description. The serviceType schemas is defined in this file. Each serviceType may contain
a name, an ID, type, a list of attributes, a list of constraints, a list of parameterTypes (data
parameters), a list of properties and a description. Figure 33 shows the XML schema for

the ServiceType. The full schema of this file can be found in Appendix A.

62

<xs:complexType name="ArchitectureType">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="componentType" type="ComponentType"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="connectorType" type="ConnectorType"
minOccurs="0" maxOccurs="unbcunded"/>

<xs:element name="attribute" type="Attribute"minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="constraint" type="xs:string"minOccurs="0"

maxQccurs="unbounded" />
<xs:element name="attachments" type="Attachment"
rminOccurs="0" maxCccurs="unbounded"/>
<xs:element name="descreption" type="xs:string"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>

.- . »

Figure 31: ArchitectureType Schema

PackageType file: This file defines the packageType that might be used 1o store clements
for future reuse as packages. Those packages can contain interfaces, contracts, connectors

or components, The full XML schema of this file can be found in Appendix A.

RBAC file: This file defines the RBAC mechanism for ensuring the security of the sys-
tem. it defines the users, the privileges and the access rights of cach user to the services

and data parameters. The full content of this file can be found in Appendix A.

System file: This file defines the system configuration where all the previous files comes
together. When a system is defined, it should conform to this XML schema. It contains
the deployment rules for physical and software components and also the RBAC security

definitions. The full content of this file can be found in Appendix A.

63

<xs:complexType name="Reactivity">
<xs:Sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="id" type="xs:string"/>
<xs:element name="service-request" type="ServiceType"/>
<xs:element name="service-response" type="ServiceType"/>
<xs:element name="dataConstraint" type="DataConstrain"
minOccurs="0"/>
<xs:element name="timeConstraint" type="TimeConstrain"
minQccurs="0"/>
<xs:element name="update" type="Update" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="select" type="Select"” minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="action" minOccurs="0"
maxOccurs="unbounded">
<xs:complexType>
<xs:complexContent>
<xs:extension base="ServiceType">
<Xs:sequence>
<xs:element name="from" type="xs:string"/>
<xs:element name="FromlId" type="xs:string"/>
<xs:element name="to" type="xs:string"
minOccurs="0"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>
<xs:element name="descreption" type="xs:string"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>

Figure 32: Reactivity Schema

4.3 Transformation Process and GUI

The component represents the implementation of the transformation process and the imple-
mentation of the GUI of the tool. Java programming language was chosen to implement
this component. There were many reasons for this, some of which are: (1) the widespread
popularity and simplicity of Java: onc of the main concerns was that the tool be main-
tainable, and using a popular and simple programming language would facilitate this; and
(2) Java is portable: our tool must run on different platforms without the need to recom-
pile, and this language is platform-independent. Figure 34 shows the class diagram of this

component. It contains five classes, which are the following:

e TransformationTool class: This is the main class of this component. It contains the
implementation of the GUI and the implementation of the transformation process. It
uses an external XSLT processor to perform the transformation, which is defined in

the two Java Archive files, saxonsa.jar and xercesImpl.jar.

e TreeBuilder class: This class is used to define a Tree view of an XML file, which in

turn is used to represent the input or oulput XML file in the GUL

e XmiFilter class: This class is used for filtering XML files when opening or saving

the input or output of the transformation tool.

o TimesPatch class: This class is responsible for defining a patch that is used for the
transformation to the TIMES tool, The reason for having such a file is that the TIMES
tool does not support the logical operator "OR”. As mentioned carlier, data con-
straints arc "predict” statements. They can contain the logical operators "AND"™ and
"OR”. Since UPPAAL supports them, there is no need to perform any special kind of
transformation. By contrast, TIMES does not support them. To solve this problem,
the transformation rules were modified so that, if a reactivity has a data constraint
containing "OR”, the reactivity is translated into multiple reactivities that have as a
data constraint a statement which does not contain "OR". This modification to the

transformation process is implemented in this class.

65

. .

<xs:complexType name="ServiceType">
<XS:!sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="id" type="Xxs:string"/>
<xs:element name="type" type="xs:string" minOccurs="0"/>
<xs:element name="attribute" type="Attribute" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="constraint" type="xs:string"” minOccurs="0"
maxQOccurs="unbounded"/>
<xs:element name="parameterType" type="ParameterType"
minOccurs="0" maxQccurs="unbounded"/>
<xs:element name="proprty" type="Property" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="discreption" type="xs:string"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>

P

Figure 33: ServiceType Schema

Transformation
Tool

TreeBuilder TimesPatch

XmlFitter

Figure 34: Transformation Procees and GUI Class Diagram

66

44 UPPAAL or TIMES XML

This component represents the output of the system. It can be either a UPPAAL XML
file understood by the UPPAAL tool, or a TIMES XML file understood by the TIMES
1ool. Each of these files should conform to the UPPAAL or TIMES schemas. The XML
DTD schema for the UPPAAL XML file is shown in Figure 35. It defines the struclﬁre
of thc UPPAAL XML file. The root should always be the <nt a> XML element contain-
ing the <declaration>, <template> and <system> clements. The <template>

clement contains the local declaration, locations and transitions.

4.5 TransformationTool Demonstration

This section will present a simple demonstration of the TransformationTool. To run the
tool, the TransformationTool jar filc is double-clicked and the tool should start. Figure 36
shows a view of the tool. 1t consists of the menu bar, tool bar, input panel and output panel.

LI L

The tool bar contains three buttons: "Open”, "Transform” and "Save”. It also contains two
buttons, one offering the option "To UPPAAL” and the other "To TIMES”. To open an
input TADL XML file, the "Open” button is clicked and a select-file window opens, as in
Figurc 37. The input TADL XML file can be sclected and opened by clicking on it. The
input will then be displayed in the input pancl. There arc two views for the input XML, the
trec view as in Figure 39 and the text view as in Figure 38. The user can select cither
the "To UPPAAL" or "To TIMES" option, depending on the type of output requircd by
the user. The default option selected is "To UPPAAL”. The "Transform™ button can then
be clicked to perform the transformation. This button is only active when an input file is
opened. After clicking the "Transform™ button, the transformation is viewced in the output
pancl, which shows the transformation result, either in the tree view as in Figure 40 or in the
text view as in Figure 41, To save the resull, the user can click on the “Save™ button, which
opens a save-filc window as in Figurc 42, and sclect a name and the location for saving
the transformation result. The saved file can be opened in UPPAAL if "To UPPAAL™ was
selected or in TIMES if "To TIMES™ was selected.

67

<!ELEMENT

nta (imports?, declaration?,

system)>

<!ELEMENT
<'ELEMENT
<!ELEMENT
init?,
<!ELEMENT
<!'ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

imports (#PCDATA)>
declaration (#PCDATA)>
template (name, parameter?,
transitionx)>
name (#PCDATA)>
name X CDATA #IMPLIED

Yy CDATA #IMPLIED>
parameter (#PCDATA)>
parameter x CDATA #IMPLIED

y CDATA #IMPLIED>

location (name?, labelx, urgent?,
location id ID #REQUIRED

x CDATA #IMPLIED
y CDATA #IMPLIED>

<!ELEMENT
<!ATTLIST
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST
<!ELEMENT
<!ATTLIST
<! ELEMENT
<!ATTLIST

init EMPTY>
init ref IDREF #IMPLIED>
urgent EMPTY>
committed EMPTY>
transition (source, target, label~,
transition X CDATA #IMPLIED

Yy CDATA #IMPLIED>
EMPTY>
ref IDREF
EMPTY>
target ref IDREF
label (#PCDATA}>
label kind CDATA

source
source
target

#REQUIRED>
#REQUIRED>

#REQUIRED

X CDATA #IMPLIED
Y CDATA #IMPLIED>

<!ELEMENT
<'ATTLIST

<! ELEMENT
<!ELEMENT

nail EMPTY>

nail x CDATA #REQUIRED
Y CDATA #REQUIRED>

instantiaticn (#PCDATA)>

system (#PCDATA)>

Figure 35: UPPAAL XML DTD

63

template+,

declaration?,

instantiation?,

locationsx,

committed?)>

nails)>»

{23 Teanztormation Tool ‘a3
1 ¥ Vdew Heip

M - open| L. s v TOUPPAAL < To TIMES
.1 Oper
1 Taos | Tem |

Fres [ven [

Figure 36: TransformationTool Main View

R)

Hile View ol
. [0 enl Tl e Suve @ JOUHPAAL ') Fo 1IMLS
A(Cvwa v | e S . . :
i
I %
8 [F s e e i b
{| Lovkin] TranstoliationYaolv1.2 k
» =i ;
[T b
=] Rulos .|
[schieitas i
L
i
’;!
r
K
fie Name: | i i
Fites of Jypo: {)'(Mi.ht-nmeii‘.mnu Ivl : k
i —— . —I |} I
. Qpen] I Cancol i b !Jl
3
[
\
e S TR ek i SR i e e e e iz |

Figure 37: TransformationTool Input Open Window

69

= e

- g UNHPAAL,

<0 To VIMES

E- e T TS ERTFCTE Bk B« S TRRT PTEVL L KL 4 P M B
| i“" wdited Wirth WMLSEy w2002 16l T 3p2 (DUD Ao Ay N L2 Dy MOF TAIWIS0R (Tundet e 3 .
=TTl AR i geisoated by Kk Spr « 2008 el XU htip deiww Aty a com) -

|~ GO h U Iturt AINS ALE"HED A w3 200 ARSI S HISEARCET 351 NOMIMISRICL FanumaLeC Ibons S DaoLng
- LA e * Gl IO e

—AnflLutes =

~fiame 2 Anfn e oA -
=datanpe =it i glatyper =
*ealue =1 %I~

wiaNGBUTe .

LE UL CTIE LS
“namea-mady= nanve=
“AMNAHDAVIAT A MINDE-
= Nues Tk A

LA LT DL B

~ Mnbulags

il yii] wiNG Al et A .

PR

Figure 38: TransformationTool Input Text View

e To UPAAL) To TIMES

@ M Cunfigututivn
LY noMamuspacesunomalsc suon = o

we] harnw
< T bnbuleb
o [akovies
~] iibutes
e 1L atinibruta s
- T4 compronents
- l:: COTIPONeniy
w (7] comppnenty
Lol v PO ETITEN
= (2] componefits
= [T cornpunomns

- |21 componants

Figure 39: TransformationTool Input Tree View

70

{5 Temnsbumation Tool | 431 lem s

- - C e .. -3
{ Opan . Trmwieom Sﬂl; - JoUPPAAL ™ To TIRACS

. At .
k |-L~ wAtad wth XML 2000 16l 2 2l (NUP s JHI36 T COM) by Mae Qawiand (CoNEordia pe-»

e ATl TR T JARSl At hy XHLGOY 2005 1ad 3 U (hilgr 2 avum Athara cor
[~ CONLGUIDNON RTINS ACE"DND YAvwa w3 of 2P0V RLEChema-insiance”™ agi
O DTie e IhHIQ= B

O AN LA 2B e mal o Mtns" O D ecunm

- Mirshute s
EUE LD ED LD R LR Lt
“datan pavints NI A
andiUd =1 2Aaiue=

REE LT L

=AM iDutes -

"TRAMS=ICAqy = 'NAmy -
O AT PS == A AT
ELELYU LB REE IPE L

*SAMIRLIA =
- IMICuIE ™
s - - a e - 1
i Tr i Tt] o .
u T Winvi s ML A 4wt M D v s oA Tr 20l A4l ot Y1 Moty

e ima

o L7 dwchaation
-] wniphate

-) teriptaty
= (T vanci e
— 9 1renglate
e L e plate
=) wemplals
- (29 teiy te

) srstem

iy
| Open | Transtotm | m1 w Jo UNNPAAL L To TIMLE
oo | Tow |

e i whtmisna 07 eng s inga U AT -
Fet OV WD AL By w2008 (01 D TRl S0 S AOLE L) Ly MO MaAland Conedia ey -
e 1 B AN WML Tile Jwttet shaad £y YEILSDY o 2008 1ml 3 00 (hillge Yavmve atiors o
1= CIARQLY AU SIS S8 " HIN AA A W D G P01 UL Bt v ML ianc o” sl 0l ve S P33l aleon = S ADecun
X FHAMy vt ge I ANIe
=atitibutes s
“nMMe rAane s INAane -
saMItypevnlamatahpas
vIUe=Y ARG
SN e 6
A Mohutes
sfaney Mty S HNG =
sdatay = fif alaty) iy
srater s N cludline .
=fdfliibutun .
L LU FIEL
SNIMNE AT A= iIM -

I te

RO o T "ALhnnE AT
R BTN EC PR AT | P
1At wl Mg =" gy B0l Jpan” s AuthoinizaticiH ek uiti=fabels
=lalel kind " guard* v venldas utity{user AUthontatonF s sulD M Aabal~
AR SIAY
“Mempiale>
~Ry Rl =camp Y = S AT,
Lol = akhlion {Rannindld),
coMmp I & BeancrgadminiCn
Suropd * lnvdaluvig(adomeil).
oyt s Fyntte{adimnmity)
CLIPE m Sardfloa
ot T o Bank Ladie
SYStUM SwMmPl (GRS MR CONRrd L arptt v T s g e

Figure 41: TransformationTool Qutput Text View

71

: = Teanafannarian Toal L S ey e e ,"-i:j;-,_s--.-." e et L, Temm o1t w2 |

Fle View Hol

D .o a w1 mmg————

. Open - Ilf_l_ﬂ'!_t_l’v:zm: ‘* TeUPPAAL " To TIMES
Tirme | TeNT |
o PanM sargionm 't O 4ae odings LITF. P2 -

et - GBRGI WD ~MLEDy w2003 rél. 2 3T (NP Laain Ditowd Surm; By Mo§ MIMIND (Toncordia j - =
L-Batnpiy FML file gutaisled Dy LGN « 2C0S 16, 3 U (MNR Jaraw IMued COM)es &

=,
i~

ieaiig]ica)igsles |

1 -]
SN el

| fie ame: |CoCoMeTaSLpPAB e T T T ‘
| Fhes of ype: v Misu s e i

=lapwi ki “
. «nranamonil
[~Avmplate
| ssystemrconip

)
romp2 = CashBDox{agrmumD;! !
comp) = 5S¢ ana(AdmniD; it
Sompd = invgmaiy{admniD) !
cemps & PauntecdaamuniDy]
LompPd = CAAREIAN(IANNMD),

twnpT ® Bank(adminlD)

system compt, ¢omp, campd. (ompd. compé. comind comp? ~ISysiame

Figure 42: TransformationTool Output Save Window

4.6 Experience with UPPAAL and TIMES

In this section, I offer my personal experience with using UPPAAL and TIMES tools.
While the UPPAAL tool is a mature too} that has been available for more than a decade
now, it is still not perfect. TIMES tool is a much younger tool. Following are my own

observations

o UPPAAL has a strange way of dealing with boolean expressions, in that it does not
understand expressions with two sides. For example, in order for UPPAAL to under-
stand the expression 1 <x<4, we would need to define it as 1<x AND x<4. Itis very
important to acknowledge this peculiarity, because, although UPPAAL will not give

you an error message if you use the first format, the logical result will be wrong.

e UPPAAL is easy to use and friendly. It has some attractive features, onc of them
being generate counter example, which is very useful when a verification test fails. In
this case, UPPAAL provides an example showing how the test failed and what values

caused the failure. Moreover, it helps the user to visualize it using the simulator.

72

e With UPPAAL, the user needs to be careful in choosing limits for the selected vari-

ables when performing the verification test, because taking too wide a range of values
may cause the process 1o stop. For example, for one of the tests, in which I had three
values, a, b and c, to which I assigned values of 100, 200 and 300 respectively, verifi-
cation took more than 10 hours and I did not obtain a result. 1 repeated the test more
than once, and still did not obtain a result. I then replaced the values with a=10, b=20
and ¢=30, and a result was returned in a couple of minutes. It is very important to

bear this limitation in mind when working with UPPAAL.

UPPAAL does not accept spaccs in template names, so it is important not to use them

in component names.

UPPAAL will not return an error message if two variables with the same name ure
defined in the global and local declarations. The tool will sometimes use the value
defined in the local declaration and sometimes the value defined in the global decla-

ration, so it is imortant not to use a name for a variable more than once.

UPPAAL does not allow use of a name for an element more than once, even if it
applies to different elements. For example, the tool will reject a channel name and
a location name if they are the same. We need to make sure to name elements in a

unique way, such as adding an "'S” after each location (state) name.

TIMES does not define the logical operation OR. This is a problem, for example,

when data constraints contain predict statements containing OR.
Syntax error messages returned by TIMES are very useful.

TIMES is more complicated to use than UPPAAL; moreover, it is easier to define

states and edges in UPPAAL than in TIMES.

73

4.7 Summary

In this chapter, the implementation of the TransformationTool has been presented, and the
implementation of all four components of the tool design have been described. In addition,
a demonstration of the tool was provided. To conclude, a brief summary of the author’s

personal experience with the TIMES and UPPAAL tools was presented.

74

Chapter 5

Case Study

This Chapter presents two case studies that are used to illustrate the transformation process
from a system defined using TADL model to UPPAAL and TIMES models. First, a de-
scription of each case study is presented. Then, the TADL presentation of this case study
is presented. The UPPAAL representation of the first case study and the TIMES represen-
tation of the second case study are also presented. Finally, the verification performed using
UPPAAL and TIMES is presented. Due to space limitation the TADL XML of the case

studies will not be presented here, it can be found in [Ibr03].

5.1 Common Component Modelling Example - CoCoME

A common compenent modelling example (CoCoME) has been introduced by the com-
ponent development community [HKW*08] to be used by different component models to
evaluate and compare the practical application of existing component models using a com-
mon component-based system as a modelling example. One of the contributions of the
work presented in this thesis is the application of the component-based model for develop-
ing a trustworthy RTRS on this common example. Below, we introduce this case study and

show how it was applied using the TADL model.

75

5.1.1 Introduction

The CoCoME defines the Trading System, which is concerned with all aspects of handling
sales at a supermarket, including the interaction with the custome- at the cash desk (product
scanning and payment) and recording of the sale for inventory purposes. It also deals with

ordering goods from wholesalers and generating various kinds of reports.

5.1.2 System overview

We begin the system overview with the cash desk. Figure 43, which was extracted from [H Kw+08],
shows an overview of the parts of the cash desk, where, the customer pays for the products
he wants to buy. An express checkout is available to customers with only a few items, to

speed up the transaction process. The cash desk consists of the following:

e a Cash Box, which begins and ends the transaction, and holds cash reccived from

customers;
e a Bar Code Scanner, which is used to identify the products being purchased;

e a Card Reader, which handles card payments (cash payments arc handled by the
Cash Box);

e a Printer, for printing the bill to be handed 10 the customer at the end of the transac-

tion;

e a Light Display, 1o signal to the customer whether the cash desk is currently operating

in normal or in express mode;
e a Cash Desk PC, for handling the transaction and communicating with the Bank.

Each store has multiple cash desks. Also, each store has its own Store Server and a Store
Client which are connected. The Store Client is used by the manager to view reports, order

products, and administer the inventory. Each store is connected to an Enterprise Server.

76

Cash Desk

Card Reader e T

-
6y

laeu
[-E
| aemn

Sy
WL

....

Bar Code
Scanner

Printer

Light Display

Bank

Figure 43: Cash Desk

5.1.3 System Requirements

This section introduces the functional and non-functional requirements of the Truding Sys-

tem. A more detailed presentation of these requirements and the related Use Cases can be

found in [HKW+08).

Process Sale

The system has to handle the purchase transaction at a cash desk. The customer arrives at
the cash desk with items to purchase. The cashier begins the new sale process by pressing
the Stari New Sale button at the Cash Box. The cashier then enters the item identifier
using the Bar Code Scanner. The system takes the item identificr and returns the product

description, price and running total. These steps are repeated until all the items have been

77

scanned, at which point the cashier presses the Sale Finished button and proceeds to the
payment options. The cashier can either press the Cash Payment button o initiate a cash
payment, or the Card Payment button to initiate a card payment. In the case of a cash
payment, the customer hands the cash to the cashier .:nd the cashier returns the change,
if any, and ends the sale. In the case of a card payment, the customer hands the card to
the cashier, who pulls it through the Card Reader and waits for the Bank to validate the
payment. Finally, the system logs the completed sale information in the inventory, and the
receipt is printed and handed to the customer. The time requirements for processing the

sale are the following:
o Time for pressing the Srart New Sale bution, 1.0 s;
o Time for scanning an item, 5.0 s;
e Time for showing product description, price and running total, 1.0 s;
o Time for pressing the Sale Finished bution, 1.0 s;
e Time for processing a cash payment, 120.0 s;
e Time for pressing the Card Payment button, 1.0 s;
e Time waiting for validation, 30.0 s;
e Time for updating the inventory, 2.0 s;

o Time for printing the receipt and handing it to the customer, 3.0 s.

Manage Express Checkout

The system should be able to change Cash Desks to express mode. This is done by checking
that the condition for express mode is fulfilled, which is that 50% of the sales in the pre-
ceding 60 minutes be for fewer than 8 items. The change to express mode should proceed
automatically and the cashicr should have the option of disabling it. The time requirements

for managing an cxpress checkout are the following:

78

+ Time for switching the light display, 1.0 s;
e Time for pressing the Disable Express Mode bution, 1.0 s;

e Time for switching to express mode, 1.0 s.

Order Products

The system should permit managers to order products by producing a list of all the products
available and a list of the items running out of stock. The manager selects the products he
wants to order, enters the corresponding quantities and then presscs the Order button on the
Store Client. The system chooses the suppliers and sends them the orders, at which point

the order details arc displayed. The time requirements for ordering products are as follows:

e Time to wail before the lists of all products and missing products are shown, 1.0 s;

o Time for choosing the products to order and entering the quantitics, 10.0 s.

Receive Products Ordered

The system should remember what new products have been ordered. When the products
arrive, the stock manager checks the identifiers attached to those orders against the list of
products ordered to ensure that the delivery is complete and correct. 11 it is, he enters the
order identifiers and presses the Roll in received order button. The system then updates the

inventory. The time requirements for receiving ordered products are as follows:

» Time for pressing the Roll in received order button, 1.0 5;

e Time for updating the inventory, 1.0 s;

Show Stock Reports

The system should be able to provide stock-related reports. These are created by the man-
ager entering the store identifier and pressing the Create Report button. The system then
provides a report on all the available stock items in the store. The time requirements for

showing stock reports are as follows:

79

e Time for entering store 1D and pressing the Create Report button, 1.0 s;

¢ Time for gencrating the report, 1.0 s

Show Delivery Reports

The system should calculate the mean time for delivery to an enterprisc. A dclivery report is
created by the manager by entering the supplier 1D and pressing the Create Reporit bution.
The system generates a report showing the mean time to delivery for a specific supplier.

The time requirements for producing delivery reports arc as follows:
e Time for entering supplier 1D and pressing the Create Report button, 1.0 s;

e Time for generating the report, 1.0 s,

Change Price

The system should ciable the manager to change the price of an item. The system presents
a list of all the available items, The manager sclects a product and changes its price and
confirms that price by pressing ENTER. The time requirements for changing the price of a

product are as follows:
e Time for generating the overview, 1.0 s;
o Time for sclecting a product and pressing ENTER, 6.0 s;

¢ Time for changing the price in the inventory, 5.0 s.

Product Exchange

If a store runs out of a product, the system should provide the functionality required for the
store to send a request to the Enterprise Server with the product ID. The Enterprise Server
will ask all stores that are less than 300 km away 1o update their data in the Enterprise
Server, so that the enterprise can make the necessary calculations to determine which store

has the available product and whether or not it is cconomically feasible to send the product

80

from one storc to another. The time requirements for the product exchange functionality

are as follows:

Time for the Store Server to query the Enterprise Server, 2.0 s;

Time for the Enterprise Server (o query one Store Scrver, 2.0 s;

Time for flushing the cache of onc Store Server and returning the result, 2.0 s;

Time for determining from which store to deliver, 1.0 s;

Time for marking goods as incoming on the Store Server, 2.0 s;

L

Time for sending a delivery request to the Store Server, 2.0 s.

Security Requirements
The system should satisfy the following sccurity requirements:

e Only the Manager can request changes to product prices. Any attempt by the cashier

to do so is denied.

e Only the Manager can order new products. Any attempt by the cashier to do so is

denied.

o Only thc Manager can request delivery reports. Any aticmpt by the cashier to do so

1s denied.
e Only the Manager can request stock reports. Any attempt by the cashier to do so is

denied.

5.1.4 TADL representation

The TADL representation begins by presenting the component diagram. From the previous
description of the CoCoME case study, it can be concluded that the system has a sub-system

which represents the store system. Figure 44 presents the components of the store system.

81

Those components are: Cash Box, Printer, Bar Code Scanner, Card Reader, Bank, Light
Display, Cashier, Store Client, Manager, Stock Manager and Inventory. The Cash Box,
Printer, Bar Code Scanner, Card Reader, Light Display and Cashier components represents
the Cash Desk. The store systems are connected to the enterprisc inventory, and together
they create the Trading System, as depicted in Figure 45. Before going into the details
of each component, it is important to understand that global-level variables are needed to
model! the system. These variables are introduced as system-level attributes, and are listed
in Table 1.

Below is a detailed description of the TADL representation of the above components.
The focus will be on the contract part of each component and their reactivities, as they are
the only parts included in the transformation process because they define the behaviour of

the component.

Cash Box

This component performs the selling operation initiated by the cashier. It provides the

following scrvices:

e Input Services : Passltem, BarCode, Cash, Card, Approved, Info, SalcFinished, De-

clined, CheckIfExpress, YesExpress, NotExpress and DisableExpress.

o Qutput Services : Scan, Getlnfo, ReadCard, Print, Pay, CheckLastHour, TurnLightOn,
AddTolnventory, IsMorcltem and TurnLightOfT.

o Internal Services : ReturnChange, AddTotal, Ignore and ChangeModeToNormal.

These services have data parameters which are used to hold information sent and received
between components. The data parameters for the Cash Box services can be seen in Table 2.
The Cash Box component contract has 12 reactivitics. Table 3 shows the main elements
of cach reactivity. The request represents the service requested (stimulus), The response
represents the corresponding service response. The data constraint (DC) represents the

precondition for this reactivity. The time constraint (TC) presents the time conditions of the

32

Stock

Manager

Manager -~

Display
Light

Printer

Figure 44: Store System Componcents

83

&q Inventory
T
55, = Scanner
Cash Desk
Cashier Card E3={"1 Bank
Reader

Variable Type | Description

Mode int | Used to conirel the mode of the Cash Box.

Ready int | Used to represent the ready mode of the Cash Box.

inSale int | Uscd to represent the mode of the Cash Box when it
is in a sale process.

Waiting int | Used to represent the waiting mode of the Cash Box.

disable int { Used to represent the disable mode of the Cash Box
when it is in the process of disabling the express
mode.

isExpress int | Used to represent the opcration of the Cash Box,
which can cither be in express or in normal mode.

Express int } Used to represent the express operation of the Cash
Box.

normal int | Used to represent the normal operation of the Cash
Box.

NewMode int | Used to control the mode of the Store Client and it is
defined as an integer variable.

Recadyy int | Usedto represent the ready mode of the Store Client.

itemOrder int | Used to represent the mode of the Store Client when
it is in the middle of an item ordering process.

report int | Used to represent the mode of the Store Client when
it is in the middle of an report ordering process.

deliveryReport | int | Used to represent the mode of the Store Client when
it is in the middie of a delivery report ordering pro-
cess.

priceChange int | Used to represent the mode of the Store Client when
it is in the middle of the price-changing process.

rollln int | Used to represent the mode of the Store Client when

it is in the middle of rolling in orders that have been
arraived in the inventory.

Table 1: System-level Variables

84

&5

Enterprise |_

Server
Figure 45: Trading System

Service Data Parameter Notes

BarCode Code:int Holds the bar code number of the scanned
item

Getinfo Code:int Holds the bar code number of the scanned
iem

Approved transactionNun:int | Holds the authorization results

Dcclined transactionNum:int | Holds the authorization results

Print Salelnfo:string Holds the sale information

AddTolnventory | Salelnfo:string Holds the sale information

Info ItemInfo:string Holds the information about the item, for ex-
ample its name and price

CheckLastHour | CashBoxNumber:int | Holds the number of the cash box

Table 2: Data Parameters for the Services of the Cash Box Component

85

Request Response DC TC | Update Actions
Passltem Scan
BarCode Geilnfo Mode:=done AddTolnventoryt
Print
Cash ReturnChange 120s
Card ReadCard Is
Approved Print Mode:=done AddTolnventory
Info AddTotal 1s IsMoreltem
SaleFinished Pay Is
Declined Pay
CheckifExpress | CheckLastHour Mode== Mode:=waiting
done
YesExpress TurnLightOn Is Mode:=ready,
iSEx-
press:=express
NotExpress Ignore Mode :=ready,
isExpress
:=normal
DisableExpress | TumModeToNormal Is isExpress := | TurnLightOff
normal

Table 3: Cash Box Component Reactivities

reactivity. The updite presents the post-conditions and the actions represent other services

triggered by this teaditivity.

Cashier

This component represents the cashier who operates the Cash Box and is responsible for

scanning the items to be sold, completing the payments, either by cash or by card, and

managing the Cash Box mode (express or normal). This component needs two local-level

variables, which will be defined as component-level attributes, to control the operation.

Those variables are; isMore which is used to decide whether or not there are more items to

be scanned; and paymentMethod which is used to decide on the method of payment (cash

or card). The services defined in this component are as follows:

o Input Services: IsMoreltem and Pay.

e Quiput Services: Passltem, SaleFinished, Cash, Card and DisableExpress.

86

Request Response Data Constraint TC | Update
StartSale Passliem Mode==ready Is | Mode:=inSale
IsMoreltem Sai:Finished isMore==1
IsMorelTem Passliem isMore==2
Pay Cash paymentMethod==
OR isExpress ==
express
Pay Card paymentMethod==2
OR isExpress ==
normal
CancelExpress | DisableExpress | Mode ==ready Mode :=dis-
able

Table 4: Cashier Component Reactivities

o Internal Services: StartSale and CancelExpress.

The reactivities of this component can be seen in Table 4.

Scanner

This component is responsible for scanning the items to be sold and reading their bar code.
It offers two services: Scan and BarCode. Scan is an input service (stimulus) and BarCode
is an output service. The BarCode service has one data parameter, which is Code of the

int rype, and it holds the bar code number of the item scanned. Table 5 shows the only

reactivity it has.

Request | Response | Time Constraint
Scan BarCode | Ss

Table 5: Scanner Component Reactivity

Printer

This component is responsible for printing the sale receipt. It offers two services, which
are: Print and Printed. Print is an input service (stimulus) and Printed is an internal service

representing the printing operation. The Print service has one data parameter, which is

87

Request | Response | Time Constraint
Print Printed 3s

'Table 6: Printer Component Reactivity

Service Data Parameter | Notes

AuthorizationResult | Result:string Holds the result of authorization process

Approved transactionNum:int | Holds the authorization results

Declined transactionNum:int | Holds the authorization results

Authorization CardInfo:string Holds the information of the card being used
for the payment

Table 7: Data Parameters for the Services of the Card Reader Component

Salelnfo of the string fype. and it holds the sale information, Table 6 shows the only

reactivity it has.

CardReader

This component is responsible for managing the card payment process. It will read the

card information and send it to the Bank for payment approval. This component offers the

following services:
o Input Services: ReadCard and AuthorizationResult.
e Quiput Services: Authorize, Approved, and Declined.

These services have data parameters that are used to hold information sent and received
between components. The data parameters for the Card Reader services can be seen in
Table 7. The Card Reader component defines one local variable, called authorization, that

is used to hold the result of the authorization process. Table 8 shows the reactivities that

this component has.

Request Response | Data Constraint | Time Constraint
ReadCard Authorize 2s

AuthorizationResult | Approved | authorization==1
AuthorizationResult | Declined | authorization==2

Table 8: CardReader Component Reactivities

88

Request | Responsc Time Constraint
Authorize | AuthorizationResult | 30s

Table 9: Bank Component Reactivities

Request Response | Time Constraint
RecieveQOrder | Rollln Is

Table 10: StockManager Component Reactivity

Bank

This component represents the financial institution that is responsible for performing and
approving the card payment. It offers two services, which are: Authorize and Authoriza-
tionResult. Authorize is an input service (stimulus) and AuthorizationResult is an output
service representing the result of the authorization process. The Authorize service has
one data parameter, CardInfo, of the st ring rype, which holds the card information of
the used for payment. The service AuthorizationResult has a data parameter, result, of
the st ring fype, which is used to hold the authorization result. Table 9 shows the only

reactivity it has,

StockManager

This component represents the stock manager, which is responsible for receiving arriving
orders, checking them and rolling them into the inventory. It offers two services, which
are: ReceiveOrder and Rollln. ReceiveOrder is an internal service and Rollln is an output
service. The Rollln service has one data parameter, orderNum of the int rype, which holds

the number of the order being rolled into the inventory. Table 10 shows the only reactivity

it has.

DisplayLight

This component represents the display light above the Cash Box which is used to indicate
whether or not this Cash Box is in express mode. This component offers the following

services:

89

Request Response | Time Constraint | DC Update
TurmnLightOn | On Is

TurnLightOff | Off Is Mode == disable | Mode := ready

Table 11: DisplayLight Component Reactivities

o Input Services: TurnLightOn and TurnLightOff.
e Internal Services: On and Off,

Table 11 shows the reactivities that this component has.

EnterpriseServer

This component represents the enterprise server. Each Trading System has only one enter-
prise server, which is responsible for managing a stock item being transferred between a
store which is running out of the item and another store in which the item is available. This

component offers the following services:
e Input Services: Requestltems and Newlnventory.
e Quitput Services: Incoming, Updatelnventory and SendToStore.
e Internal Service: FindNearStore, Process and updatelnternaiData.

The data parameters for these services can be seen in Table 12. Table 13 shows the reactiv-

ities that this component has.

Manager

This component represents the store manager, who can request reports and change the price

of items in the inventory. This component offers the following services:
e Input Services: ShowList and ShowltemsPrice.

e Output Services: Showltem, SelectAndOrder, CreateReport, GetDeliveryReport, Item-

sPrice and SelectAndChange.

90

Service Data Parameter Notes

Requestitems | ItemNum:int Holds the ID of the item being requested from
the Enterprise Server

Requestltems | StoreNum:int Holds the ID of the store requesting the item

FindNearSiore | StoreNum:int Holds the ID of the store that needs to find the
item within 300 km

Incoming ItemNum:int Holds the 1D of the item that will be coming
in order to change its status to incoming in-
stead of low

Newlnventory | Inventorylnfo:string | Holds the updated version of the store inven-
tory

Newlnventory | StoreNum:int Holds the ID of the store that is updating its
inventory on the Enterprise Server

SendToStore | ltemNum:int Holds the ID of the item being sent to the
store

SendToStore | Quantity:int Holds the quantity being requested

SendToStore | StoreNum:int Holds the ID of the store requesting the item

Table 12: Data Parameters for the Services of the Enterprise Server Component

Request Response Data Con- | TC | Update Action
straint

Requestltems | FindNearSiore | EnterpriscMode| 2s | EnterpriseMode| Updatelnventory
==rcady :=waiting

NewlInventory | updateinternalDpta 2s | EnterpriscMode

:=visable

Process Incoming EnterprissMode| 2s | EnterpriseMode; SendToStore

==visable :=ready

Table 13: EnterpriseServer Component Reactivities

o1

Service Data Parameter | Notes

ShowList TtemNum:int[] Holds the IDs of the items available in the
store

ShowList ItemQuantity:int[] | Holds the quantities of the items available in |
the store

SelectAndOrder ItemNum:int[]® Holds the IDs of the items selected by the
manager

SelectAndOrder ItemQuantity:int[] | Holds the quantities of the items ordered by
the manager

ShowltemsPrice ItemNum:int]] Holds the IDs of the items available n the
storc

ShowltemsPrice Price:int(] Holds the prices of the items available in the
store

AddTolnventory Salelnfo:string Holds the sale information

SelectAndChange ItemNum:int[] Holds the IDs of the items changed by the
manager

SelectAndChange NewPrice:int[] Holds the prices of the items changed by the
manager

GetDeliveryReports | SupplierNum:int | Holds the 1D of the supplier to whom the de-
livery reports belong

Table 14: Data Parameters for the Services of the Manager Component

e Internal Service: Order, Reports, DReports and ChangePrices.

These services have data parameters that are used to hold information sent and received be-

tween components. The data parameters for the Cash Box services can be seen in Table 14,

Table 15 shows the reactivities that this component has.

StoreClient

This component represents the store client, which is used by the store manager to perform

the required operations, such as changing item prices or ordering items. The store client

services are:

e Input Services: ListOfItem, DR, GetDeliveryReport, ItemsPrice, Price, Report Se-

lectAndChange, CreateReport, SclectAndOrder and Showltem.

e OQutput Services: ShowList, GetltemsPrice, ShowltemsPrice, ChangePrice, GetRe-

port and GetltemLisL

92

Request Response Data Con- | TC | Update
straint

Order Showlitem NewMode NewMode :=itemOrder
==readyy

ShowList SelectAndOrder NewMode Is
==itemOrder

Reports CreateReports NewMode 1s | NewMode :=report
==readyy

DReports GetDeliveryReports | NewMode Is | NewMode :=deliveryReport
==readyy

ChangePrices ItemsPrice NewMode NewMode :=priceChange
==readyy

ShowliemsPrice | SelectAndChange | NewMode
==priccChange

Table 15: Manager Component Reactivities

e Internal Service: Show, GetDR, ShowTheReports and OrderSelecetedAndShowlID.

These services have data parameters which can be seen in Table 16. Table 17 shows the

reactivities that this component has.

Inventory

This component represents the store server (Inventory), which stores all the information

for that specific store, including product information and stock levels, delivery reports,

transaction records, and so on. The Inventory component offers the following services:

o Input Services: Getlnfo, AddTolnventory, ChangePrice, GetltemsPrice, Rolllnlnv,

GetltemList, GetReport, GetDR, CheckLastHour, Updatelnventory, Incoming and

*SendToStore.

o Output Services: Info, Price, ListOfltem, Report, DR, Yes, No, Requestlicms and

Newlnventory.

o Internal Service: InfoAdded, PriceChanged, Rollltl, RequestltemFromEnterprise,

setincoming and sendit.

Tables 18 and 19 shows the reactivities and data parameters the Inventory component has.

93

Service

Data Parameter

Notes

Rollln orderNura:int Holds the ID of the order being added to the
inventory

Rolllnlnv orderNum:int Holds the ID of the order being added to the
inventory

ShowList ItemNum:int|] Holds the IDs of the items available in the
store

ShowList ItemQuantity:intf] Holds the quantities of the items available in
the store

GetDeliveryReports | SupplierNum:int Holds the ID of the supplicr to whom the de-
livery reports belong

GetDR SuppliecrNum:int Holds the ID of the supplier to whom the de-
livery rcports belong

DR DeliveryReports:string | Holds the delivery reports

SclectAndOrder ItemNum;int{] Holds the IDs of the items selected by the
manager

SclectAndOrder ltemQuantity:int|} Holds the quantitics of the items ordered by
the manager

ShowltemsPrice [temNum:int[] Holds the IDs of the items available in the
store

ShowltemsPrice Price:int{] Holds the prices of the items available in the
store

SelectAndChange ItemNum:int|[} Holds the IDs of the items changed by the
manager

SelectAndChange NewPrice:int|] Holds the prices of the items changed by the
manager

Reports SalesReports:string Holds the sale reports

Price ItemNum:int[] Holds the list of 1Ds of all items in the inven-
tory

Price Price:int[] Holds the list of prices of all items in the in-
ventory

ChangePrice [temNum:int{] Holds the IDs of the items changed by the
manager

ChangePrice NewPrice:int{] Holds the prices of the items changed by the

manager

Table 16: Data Parameters for the Services of the Store Client Component

94

Time Constraint

Request Response Update
ListOfltem ShowList
DR Show NewMode :=readdy
GetDeliveryReport | GetDR
ItemsPrice GetltemsPrice NewMode :=readyy
Price ShowltemsPrice
SclectAndChange | ChangcPrice 6s
Reports ShowTheReports NewMode :=readyy
CreateReport GetReport
SclectAndOrder OrderSelectedAndShowID { NewMode :=rcadyy | 10s
Showltem GetltemList
Rollln Rolllnlnv

Table 17: StoreClient Component Reactivities
Request Response Update Time Constraint
Getlnfo info
AddTolnventory InfoAdded 2s
ChangePrice PriceChanged | NewMod :=rcadyy | S5s
GetltemsPrice Price Is
Rolllninv Rollltln NewMode :=rcaddy | Is
GetltemList ListOfltem
GetReport Report Is
GetDR DR Is
Checkl.astHour YesExpress
CheckLastHour NotExpress
RequestitemsFromEnterprise | Requestitems
Updatelnventory Newlnventory 2s
Incoming sctlncoming Is
SendToStore Sendit 2s

Table 18:

95

Inventory Component Reactivities

Service

Data Parameter

Notes

Getlnfo Code:int Holds the bar code number of the item

Info ItemInfo:string Holds item information like name and price

ChangePrice | ltemNum:int[] Holds the IDs of the items changed by the
manager

ChangePrice | NewPrice:int(] Holds the prices of the items changed by the
manager

Price ItemNum:int[}] Holds the list of IDs of all items in the inven-
tory

Price Price:int[) Holds the list of prices of all items in the in-
ventory

Rolllnlnv orderNum:int Holds the ID of the order being rolled into the
inventory

GetDR SupplierNumtint Holds the ID of the supplier to whom the de-
livery reports belong

DR DeliveryReports:string | Holds the delivery reports

Requestltems | ItemNum:int Holds the ID of the item being requested from
the Enterprise Server

Requestltems | StoreNum:int Holds the ID of the store requesting the item

Incoming ItemNum:int Holds the ID of the item that will be coming
in order to change its status lo incoming in-
stead of low

Newlnventory | Inventorylnfo:string Holds the updated version of the store inven-
lory

Newlnventory | StoreNum:int Holds the ID of the store that is updating its
inventory on the Enterprise Server

SendToStore | ItemNum:int Holds the ID of the item being sent to the
store

SendToStore | Quantity:int Holds the quantity being requested

SendToStore | StoreNum:int Holds the ID of the store requesting the item

Table 19: Data Parameters for the Services of the Inventory Component

96

i ‘Onm:'llnldwln;l Save © ToUPPAAL ¢! TaTIMES
4 Tiwe ¢ Text | ~
T £ compensats :-4
?] name
D) cashees
-~ A pcpity
- T user
o T intertaca Types
o [conbact
= [wscrephon
¥ C}componants
¢ Clname

D Scaner
o= CJorrpsty
o Cussr
-] imertaceTypes
I o2 me 11,0100
“Tree ! Tex |
¢ o 12 replate
% CIname
D) casngex
= (3 parameter
o 7] declaration
o] lucabon
o (T 1cauon
o 3 1ucausn
o (O3 Intabon
= [lvgabon
o [locwuun
* (Jiacanon
o Y Incanen
o [locanon
& Y lecaten

Figure 46: Transformation of CoCoME TADL to UPPAAL

5.1.5 UPPAAL Representation

The TADL XML representation of the CoCoME case study was defined in a single XML
file. This file was passed to the TransformationTool, which produced the UPPAAL repre-
sentation of the system. Figure 46 shows a snapshot of the TransformationTool during the
transformation process. The resulting XML file was opened in the UPPAAL tool. Below
is a brief preview of the resulting UPPAAL system.

Global Declaration: Figure 47 shows the global declaration of the CoCoME system
that was automatically generated by the transformation process. It contains the declara-
tion of the channels, the global-level variables, Data Security function and Even Security
function.

Cash Box template: The Cash Box component was discussed earlier in the TADL
representation. As a result of the transformation, the Cash Box template was automat-

ically created and represents the Cash Box component. Figure 49 shows a view of the

97

() CherytimeemDeskiop/New Hewr NS TAD

Fie Edt Wew Tools Optiora Help

Ca@aaaBQwo

chaa Showltem; censt -nt ShowltemId
chwn Rollln: censt tnt RollleId = 52 ;

chas TurolightOn: cenat ity TurpLightomtt = 53 ;
tonn TurnlaghtOff; censt iu* Tuzalightoffld = 04
chan Hequestltems; censt int Requesttemalld = 55
chan Mewlovesotory; const :nt KewlnvesotoryIP ¥ 56
chan Process; censt 1nt ProceasId = 57 ;

const 1ut adminip = 1 ;

oenst 1.t casbierld = 2 ;

censt jur mateix = 77

censt struct { int user; iut event; bral accezs; |
UserBventhecessMutrix[mateis] = { [edminiD, Poayld, Liue},
{cashicrid, Showltensbraceld, falc),
{emohier1D, Shout ik 1D, fulae},
{cashierID,SeleceandChangelD, tulse),
{cavhier 1D, Showltemld, fal=-),

(adminid, CrenteRepor tID, trur),

iadmanlb, CethelivetyReport1D, true)

b
buol EventSecuraty(int user,irt eveat} |
for {3 z w0, matrax=1]) {

{£ (UsesEventhcceooMattax[1).user == user && UserEventAccessMatrin(i].evest==event)
zetuxn Uzer¥ventAccesaMatrix[i) .wccens;
1
eturm Tpun)
1
const int truelb = 1 ;
consl a5t priceld x 1 ;
const lut qIp =) ;
const 11t Saleinfoll = 4 ;
const 1nr mUtCikK = 45

coamad mmriick f dis smems st esmEsaksms

Figure 47: Global Declaration in UPPAAL

08

Fie Edt View Tooh Options Help ' |
|l DaB| ¢ RQwo

1 Drag ot]} tome: Cathies Prameters: moser l
Prowt btcck €; clock €C; cleck 1p slosk SP; ¢leek SetPrpressTime: clock DisehleTime; ‘

Figure 48: Cash Box Local Declaration in UPPAAL

TA representing this component, while Figure 48 contains the local-level declarations that
were automatically generated, including the clock declarations. It can also be seen how the
reactivitics defined carlier were transformed into locations and transitions following the

transformation rules discussed in Chapter 3.

Figures 50, 51, 52, 53, 54, 55 and 56 show the UPPAAL representation of the rest of
the components. Figure 57 shows the systcm-level declaration that was generated automat-

ically, and includes the instantiations of the templates by passing the User parameters.

99

Salernshas Pascliiems Sarouges

SHASTTE .
Deattet praced DisabieE: ness Tnan @ L R L a0

O — p S

RImY

S cali SamIF AU tRInE
DAaLkTims = P L ©

[RED e

Mazyzare
Int33630T 70l e e Rt
C Saers

Q C

P
LEL

. ume

\T-‘ﬁ T

. 1=t SN A 03 W3y Eprzss=niend
s A
ATpIEHTT .

P ! B DR

[X
K

Iszeeltems

e REARCPS LR S i
A BT

LIS

CaneEspeeseh

[3 - ST |]
PR SN CRN T PRI S A XD

Figure 50: Cashier Template in UPPAAL

100

Scanner Template Printer Template

FR TR L
o bentte e Y et
<wans i

prztmeg -3
Fants 13l

te pecde L
[P e N
szannTims jaiTimne =0
Auttvonizatan Tane = 33 L . . . - .
. - Eue- ERR TS| SRYY LY BT ol Tt bl JURT ol ST S SPR @ B . .
AU S _:l._l Yo 1il= ' Fecimymn e 1=

| SRR UUM R Sl [KT
Tdeatd D3 =raltin

FrodlneTme: « !

[e ETINY [N TLD ER S B
-t e -

AUt T S10or

Tl =D o
Eoendtn
RoltnTime =0

Bank Template Stock Manager Template

Figure 51: Scanner, Printer, Bank and Stock Manager Templates in UPPAAL

LianaTme < 2

4T MOy S .
LaiTalnvartaryS CottemLists

cnangeFuceS () A

ShatdeF i e Time < 5

[AT A TL
e iTod
aTins =0 Cutfeg aniTune g L o thre

GetReprn

Hashldde sr23

G-IDF=p M+ 1
GetDRS

sbareTime . 2

" '-'ilF",\.'t

cettemsPrnceTime su ., . .
Y o1 [C PR TE o |

(RS N AL F O

Getitemad s une < |
GetltemisFrces

VR S

e 0 StoreTame =0 camingTums =i
(Lol 11 HES
LIS R ARt S TENT N LAty e,

2Rl i‘m\ﬁd& urs Gendlastares

Figure 52: Inventory Template in UPPAAL

101

Eventharuntaussr DecisdlDy S amn s ahen== 2
[Ry I 1
Suihnqs -1

Eorl it rOlr —tnon o0

R 41U T P11 SR LA 1 s IT) Il 5 B TR BTt [
2uthonZallon =

R M MR B

AUTNMTI SUINFESIETE

v S

B e T 11 S A Ead IR T LUtV H]
—T Tt
ey S 7 et S5 o= T AN ANt Tt 1| [

CardReader

TurnnTimis 4
TurnLigntons

Ko pon:

R ‘ O — A C) TurnLigrtTins
Displayl.ight TNt e me:-r?nln-:- |

TurnZHTime =0
Ee=rt et oS- Tonnd i, S - m st At

Figure 53: DisplayCard and CardReader Templates in UPPAAL

Fequsstitems IFindtl arstas Faquestit=ms®
C)RequestizemsTime - 2

Entemrisidads =waiung
DI e o | § BT L

Processs
WSl bETimes 2

Entemris<hlgde =visabils
ey
telpriseiade =red

Sed

. vigatbile llncaming
Mewlmventonys ()viEskls !
FlushSerysrTime « 2

Figure 54: EnterpriseServer Template in UPPAAL

102

DFs SepectindChandsTims < £
@ = 0d3E S readyy SelectandChang=s

\ SetectandCnangeTime =0
TR AR
Prices

GetDelivenPeparts .

Getlie S

ltemsPnces .

f3egremsl =l

Repats(C vy

Newillode =rea3ey

e

Selectandonders

SreaePenats(— Oy e rorrerve

Figure 55: StoreClient Template in UPPAAL

TR NE

Neoaktdlz sdmdes

LIRS

Penotgs

R ARG

Wepamsh ettt
Dzep wisfe 1 gaat” - 200

T

Figure 56: Manager Template in UPPAAL

103

RS T T G D S 1

L-gCMMM@MYW-Mm- i
Tde Eox vuew Tools Oppons Help R T

Dald xaa BQeso

Cotor “Semgatn | Narfier

¢ Tl [compl ® Cashier (aduinid);
- rojert corpl ® CashBox [edminid),;
§ Deciyecors comp} *# Scaner (adminill;
Biwo 4 ® iaventory(adminlb);
D cwn comp y i
v Ganer corpS © Pricter {mdminll);
o) twemtory compk % CardReader ladmanlD}:
- D comp? = Bank(adminib}:
* [CrReso W‘P' = _
- Reww comp Manger (edmanld];
] cowpl ¥ StpckMenger (acminibl;
r B KodMegw complD & ZtpreClient {admanlli;

cowpll = DispluylLight (edmanll);
corplil = EnterpriscScrver (adminIl);
system cowpl, compl, comp), rompl., compS, coeph, cowp?, compl, comp9. cowplld., cowpll, compll;

¥

Figure 57: System Declaration in UPPAAL

Verification Rules

The UPPAAL verifier can be used to check the behaviour of the system by defining differ-
ent checking formulas, This can be done manually by the user after the system has been
transformed into the UPPAAL model and opened using the UPPAAL tool. TableTable 20
contains a sample of the safety and security properties that were tested on the resulting
UPPAAL model of the CoCoME case study. It also contains a brief description of each
property. Figure 58 shows how those properties were written within the UPPAAL tool and

their corresponding verification results, which are displayed in the status bar.

104

Verification Rules

Notes

Af{] not deadlock

Checks whether er not the system
contains a deadlock

E<> compl.StartSaleS

Means that there exists a way for the
cashier to start a sale

A[] comp2.CardS imply
isExpress == normal

Means that, if the system is process-
ing a card payment, then the cash box
can only be in the normal mode

E<> compl.CancelExpressS

Means that there exists a way for the
cashier to cancel the cash box’s ex-
press mode

A[] compl.StartSaleS
imply Mode==ready

Means that, if the cashier is starting a
sale, then the cash box should be in
ready modc

A[} comp2.CheckIfExpressS
imply Mode==done

Means that the cash box can only
check whether or not it should trans-
fer to express mode if the cash box is
in done mode

E<> comp8.0rderS

Means that there exists a way for the
manager to start an order process

A[] comp8.0OrdersS
imply NewMode == readyy

Means that, if the manager is ordering
new items, the store client is in ready
mode

E<> comp8.DReportssS

Means that there exists a way for the
manager to request delivery reports

E<> comp8.ChangePricesS$S

Means that there exists a way for the
manager to start the change of price
pro.ess

E<> comp9.RecieveOrderS

Means that the stock manager can
start the receive order process

comp2.CashS --> comp2.CashlPrint

Means that a cash payment this will
eventually result in the printing of a
receipt

comp2.InfoS --> comp2.InfolAddTotal

Means that, if the cash box receives
the ttem information, then it should
update the sale total

A[] compl2.ReguestitemsS imply
compl2?.EnterpriseMode == compll.red

Mecans that the Enterprise Scrver can
only process a request order in the
ready mode

A[] comp8.user == cashierID imply
EventSecurity (cashierID,
SelectAndChangelID)==false

Means that the cashier cannot?
change the price of itcms, can only be
done by the manager

Table 20: Sample UPPAAL Safety and Security Properties

105

;Muﬂﬂﬁmw-
Fue Eia View Tools Cptions Help

Dﬁ Ell{:\ < ‘“ﬁl-Q"’n o

N
[Eacor [amtster vevder -
y
Overmew ;
:’h‘jw’ SIATRPULLYD TITPL Y MEVTSOYT W T SomemAmeam e pmrmaTm 2 T T v‘jj E
{EC> compB.DFepoctasS o H |
‘A[] coEPE.TTderS 1mply Mewod® == Ieadyy i [« 'i
; Arae Venfication, !
!zo coxpd.fraoe3 Rul 0 i
'al] compl.CheckIfExpreasd aaply Nudr--dons [=] i
lal) compl.StarcSales imply Nodessready o |
{E<> coxpl.CancelZxprenss [= I
1AL} compZ.CardS imply 1sExpreoss == normal o:ft
]
239 euwl StertSates O
I T e A R R W R o A A R A T T O -l
Query s . — RN -
A not deddiekh
|
b e e e e ——— et e o
Comment
Satus
g = et gl " rmm by e = o n e _
L]
€< corol.ConceBapresss
B ! e 4] Verification
] tompZ CardS aply sEXpress see noemal Besults

RSN &
E<>:ml RertSakeS
"f- st ot vatn el
Nlndd!sﬁtk

aemt, s ivabed

Figure 58: Verifying Safety and Security Properties in UPPAAL
5.2 Mine drainage

In this section, a simplified version of the Mine Drainage [BW90) case study is presented
to illustrate the transformation process to the TIMES tool. This case study was chosen

because it defines run-time requirements for the system.

5.2.1 Introduction

The example that has been chosen is based on one that commonly appears in the literature
of real-time systems. It shows the software necessary to manage a simplified pump control

system in a mining environment. The system is used to pump mine water, which collects

in a sump at the bottom of the shaft, to the surface.

106

Task Priority
Water Sensor 10

CO Sensor 7

Air Flow Sensor { 5

CH4 Sensor 3

Table 21: Tasks Priorities
5.2.2 System overview

The system consists of iwo stations: one which controls the pump itself and one which
monitors the environment in which the pump operates. The pump control station monitors
the water levels at the sump. When the water reaches a high enough level, the pump turns on
and the sump is drained until the water reaches the prescribed low level. The environment
monitor detects the level of methane (CH4) in the air, the level of carbon monoxide (CO)
in the mine, and whether or not there is an adequate flow of air. There are levels of CH4

and CO beyond which it is not safe to operate the pump.

5.2.3 System requirements

This section presents the functional and non-functional requirements of the Mine Drainage
Control System. A more detailed presentation of the requirements can be found in [BW90].

Those requirements arc:

s The CH4 sensor checks the CH4 level every 10 seconds.

The CO sensor checks the CO level every 25 seconds.

The air flow sensor checks the air flow every 60 seconds.

The water flow sensor checks the water flow every 30 seconds.

The tasks representing the processing of the sysiem services have the priorities shown

in Table 21.

107

Water Level

[

Pump
Controlier

I
Sensor
Air Flow -
Sensor

Figure 59: Mine Drainage Control System Components

Environment ..,

Controller

A

CO2 Level
Sensor

5.2.4 TADL representation

i

CHA4 Level
Sensor

The TADL representation starts by presenting the component diagram. From the previous

description, it can be concluded that the system consists of six components, as depicted

in Figure 59. Those components are: Pump Controller, Environment Monitor, Water Level

Sensor, CH4 Sensor, CO Sensor and Air Flow Sensor. Before going into the details of each

component, it is important to understand that, to be able to model the system, global-level

variables arc needed. These variables are introduced as system-level attributes and can be

scen in Table 22. Following is a detailed description of the TADL representation of the

above components. The concentration will be on the contract part of cach component and

108

Variable | Type Description

water int {1, 10] i Used to hold the water level.

co int Used to hold the CO level.

ch int Used to hold the CH4 level.

air int Used o hold the air flow level.

Table 22: System-level Variables

Request Response Data Constraint Update
WaterLevel | isSafe water<5
WaterLevel | doNothing water>=5 AND water <8
WaterLevel | TurnPumpOff | water>=8 pump := off
safe turnPumpOn pump :=on
notSafe doNothing

Table 23: PumpController Component Reactivities

the reactivities, as they are the only part included in the transformation process because

they definec component behaviour.

Pump Controller

This component is responsible for controlling the operation of the pump. Mt provides the

following services:
e Input Services : WaterLevel, safe and notSafe.
o Qutput Services : isSafe.
e Internal Services : doNothing, turnPumpOff, turnPumpOn and doNothing.

This component has 5 reactivities, which can be seen in Table 23n

Water-level Sensor

This component is responsible for obtaining the water level. It provides two services:
checkLevel (internal) and WaterLevel (output). The WaterLevel service represents a task
that has the following propertics: Priority, which is equal to 10, and Period, which is equal

to 30 seconds.

109

Air Flow Sensor

This component is responsible for monitoring the Air Flow. It has two services: checkair
(internal) and AirFlowSyn(output). The AirFlowSyn service represents a task with the fol-

lowing properties: Priority, which is equal to 5, and Period, which is equal to 60 seconds.

CH4 Sensor

This component is responsible for monitoring the CH4 level. It provides two services:
checkch4 (internat) and CHSyn(output). The CHSyn service represents a task with the fol-

lowing properties: Priority, which is equal to 8, and Period, which is cqual to 10 seconds.

CO Sensor

This component is responsible for monitoring the CO level. It provides two services:
checkco (internal) and COSyn(output). The COSyn service represents a task with the fol-

lowing properties: Priority, which is equal to 7, and Period, which is equal to 25 scconds.

Environment Monitor

This component is responsible for monitoring the air flow, CH4 and CO sensors. 1t provides

the following services:
e Input Services : isSafe, CHSyn, COSyn and AirFlowSyn.
o Output Services : safe and notSafe.
e Internal Services : doNothing.

This component has five reactivitics, which can be seen in Table 24.

5.2.5 TIMES representation

The TADL XML representation of the Mine Drainage case study was defined in a single
XML file. This file was passed to the TransformationTool, which produced the TIMES

110

Request Response | Data Contraint

isSafe safe air==0 AND co==0 AND ch==0
isSafe notSafe air+co+ch =0

CHSyn doNothing

COSyn doNothing

AirFlowSyn | doNothing

Table 24: Environment Monitor Component Reactivities

representation of the system. The resulting XML file was opened in the TIMES tool. Below
is a brief preview of the resulting TIMES system.

Figure 60 shows an overvicw of the TIMES tool after opening the resulted file from
the transformation process. It shows the global-level declaration, which was automatically
generated by the transformation process and contains the declaration of the global-level
variables and the channels. The tasks definition can also be seen is Figure 60, which defines
each task and its properties. These properties can be: Task Behaviour (B), Priority (P),
Computing Time (C), Deadline (D) and Period (T). The system-level instantiation of the
templates can also be seen in Figure 60.

Figure 61 represents the TIMES template of the PumpController component, while
Figure 62 shows the TIME templates of the WaterSensor, AirFlowSensor, CH4Sensor, and
CO2Sensor component. Finally, Figure 63 represents the TIMES templates of the Envi-
ronmentMonitor component. The transitions and states that can be seen in each template
correspond to the reactivities defined earlier and resulted by applying the transformation
rules discussed in Chapter 3.

The TIMES tool is used to perform the schedulability analysis of the system tasks.
Figure 64 shows the resuit of the schedulability analysis performed on the Mine Drainage

case study.

5.3 Summary

In this chapter, two case studies have been presented. The first case study is the CoCoME

case study which is used to illustrate the transformation to the UPPAAL model. The second

111

Schwechubng pobcr
Unar-tofnsd Piontins - - 2] Preempites

Ll I
& CommT

1 weme T NP ilc J0
& WateLrwdl L J}:u j'o 'n Ln
(@ arfomsn? P 5 0
P o9

oY e T =

}| @t | © 1ok | CE el Jowlﬂrmﬂﬂmmc tserer | () enztonser | [oo

- _J [—

Figure 61: Pump Controller Template in TIMES

112

€ checklevelS

WaterSensor AirFlowSensor

Ch4Sennsor COSensor

Figure 62: Water-, AirFlow-, CH4- and CO-Sensor Templates in TIMES

ch+coi=0
afel

TEhe=0

air==0,co==0
safel .

isSafeS '

Figure 63: Environment Monitor Template in TIMES

113

oy NP @ vk Deeeaes | DY sgonde | Q) waeriens | D crormras | D ovtsorr | Dcttmer | Qemmermererest

‘w-ddnd_'rm v .J. Frecrpbve

['H-'_-'}‘.Y!'!‘..r‘}l[’c‘.':[D'J'[" !
| @ Weotee? #0323 20 PumpContolierCompotan CO25ensorComponany
[0w @ PumpConmoier) CoSensor)

€ :lﬂ 'lﬂ
* ==l ™ T ChzSangorComponsd
S Ereris
o ——

Sropct arTEaLes L . .

Hame Propest i Enmeronmentconsd (D TenesTeal” 42 ¥ =, - EmDST BJ)
[T SRR E T

cd “w ™

*
[

T hva T Tepa il JErme, 1

LeThFAL

o s i et i g nn e i = et ¢ B s m R et Ah Se . ARk Mmoot Ak A L L LS S . S A L AT e e e te = mve

Ready

Figure 64: Schedulability Analysis Results in TIMES

case study is the Mine Drainage case study which is used to illustrate the transformation to

the TIMES model.

114

Chapter 6

Conclusion

This thesis presents an automatic approach for analyzing ADL specification and generating
behavioral models using model transformation techniques. The input for our transforma-
tion is TADL [MAO8b], an architecture description language for trustworthy systems, and
the output is UPPAAL [BDL04] extended timed automata or TIMES [AFM*02] extended
time automata.

The significance of the approach presented here lies in its ability to separate the transfor-
mation rules from the transformation process, and utilize new technology to implement the
transformation rules. This is very important, as it will increase the extensibility and main-
tainability of the model transformation. By defining the transformation rules separately,
we will be able to change the input and output types by changing only the transformation
rules, and not the transformation process.

In conventional approaches, the transformation rules are implemented using a series of
Loops and if..else code in standard programming languages like Java or C#. The novelty
of our approach is in utilizing new XML technology to implement the transformation rules
using XSLT [Tid0!1]. XSLT has been very successful in representing the formal transfor-
mation rules, its most important advantage being its ability to formally define the transfor-
mation rules separately. Component models evolve with time, and new concepts can be
added, removed or updated. Therefore, the transformation rules may require continuous

updating, which can easily be achieved using XSLT. For example, in the early stages of our

115

work here, reactivity contained no update part. When this part was added, it became easy
to modify the transformation rules written in XSLT to transform them into UPPAAL.

A tool was developed to automate the process of transformation from TADL XML to
UPPAAL or TIMES XML. The tool uses the transformation rules that were defined in
XSLT to perform the transformation.

Finally, this thesis presented the Common Component Modelling Example (CoCoME)
case study, which was defined by the component development community to test the dif-

ferent component models, using TADL for the first time.

6.1 Future Work

6.1.1 Transformation rule and TransformationTool

In this thesis, the rules for transforming a system defined using TADL to the UPPAAL
and TIMES models were defined. The same technique can be used to define the rules for
transformation to other nodels, such as Promela. XSLT can also be used 1o define other
transformation rules. The new transformation rules will enable us to verify the trustworthi-
ness properties of the systems.

The TransformationTool defined in this thesis can also be easily extended to include
new output models. This can be done by including only the transformation rules defined

using XSLT. This is one of the main advantages of defining the transformation rules sepa-
rately in XSLT,

6.1.2 UPPAAL transformation and TIMES transformation

UPPAAL tool gives a visual presentation of the extended TA as states and transitions. The
resulting UPPAAL XML file from the transformation process presented those states and
transitions without their coordinates on the screen (x and y). The coordinate is automat-
ically given by the UPPAAL tool when it opens the file. This usually causes a problem

in the case of complex templates. Currently, the user has to move the states or transitions

116

manually to increase the comprehensibility of the resulting view. A future improvement
could be to introduce a new algorithm to automatically arrange the states and transitions in
a clear way, which would eliminate the need for the user 1o manually arrange them.

The TIMES tool uses a different technique, in that it does not automatically give the co-
ordinates to the containing elements, which means that the transformation process shouid
add the coordinates to the transitions and states during that process. Currently, this is
achieved by a very simple method, the user manually arranging the transitions, which usu-
ally generates a view that is not very clear. A future improvement could be to develop a

more advanced algorithm to fix this problem.

6.1.3 XSLT and model transformation

The successful use of XSLT to perform model transformation opens the way for new uses
of XSLT in the automatic transformation of component models. As XML is increasingly
being used for model representation, the use of the transformation approach introduced in

this thesis will increase as well.

117

Bibliography

[ABB*01]

[ABD*01]

[AFM*02)

[AFM*03]

Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio,
Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G.
Larsen, M. Oliver Moller, Paul Pettersson, Carsten Weise, and Wang Yi.
UPPAAL - Now, Next, and Future. In F. Cassez, C. Jard, B. Rozoy, and
M. Ryan, editors, Modelling and Verification of Parallel Processes, num-
ber 2067 in Lecture Notes in Computer Science Tutorial, pages 100-123.
Springer—Verlag, 2001.

M. Altheim, F. Boumphrey, S. Dooley, S. McCarron, S. Schnitzenrbaumer,
and T. Wugofski. Modularization of xhtml, W3C recomendation report.
Available at hitp://www.w3.org/TR/xhtml-modularization/, April 2001.

Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. Times - a too! for modelling and implementation of embedded
systems. In 8th International Conference, TACAS 2002, part of the Joini
European Conferences on Theory and Practice of Sofrware, ETAPS 2002,
Grenoble, France, April 2002.

Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. Times: a tool for schedulability analysis and code generation of
real-time systems. In Ist International Workshop on Formal Modeling and
Analysis of Timed Systems, FORMATS 2003, Marseille, France, September
2003.

118

[ALROI1]

(AMO7a}

[AMO7b]

[|Ama04]

[BDO03]

[BDLO4]

[BWOO0]

[BYO4]

Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fundamental

concepts of dependability. Research report n01145, laas-cnrs, April 2001.

Vasu Alagar and Mubarak Mohammad. A component model for trustwor-
thy real-time reactive systems development. In International Workshop on
Formal Aspects of Component Software (FACS07), Sophia-Antipolis, France,
September 2007.

Vasu Alagar and Mubarak Mohammad. Specification and verification of
trustworthy component-based real-time reactive systems. In SAVCBS'07,
Specification and Verification of Component-Based Systems, Dubrovnik,

Croatia, September 2007.

Xaviar Amatriain. An Object-Oriented Metamodel for Digital Signal Pro-

cessing. Phd thesis, Universitat Pompeu Fabra, October 2004,

Brian Benz and John R, Durant. XML Programming Bible. Wiley Publishing,
2003.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UP-
PAAL. In Marco Bernardo and Flavio Corradini, editors, Formal Methods
for the Design of Real-Time Systems: 4th International School on Formal
Methads for the Design of Computer, Communication, and Software Systems,
SFM-RT 2004, number 3185 in LNCS, pages 200-236. Springer—Verlag,
September 2004.

Alan Burns and Andy Wellings. Real-Time Systems and Their PRogrammniing
Languages. Addison Wesley, 1990.

Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithims
and tools. Report 316, The United Nation University, P.O.Box 305, Macau,
September 2004,

119

[CLO2]

[DvdHTO5]

[GP02]

[GS94]

[HKW*08]

{Ibr08]

[LBK98]

[MAO8a]

{MAO8b]

Ivica Crnkovic and Magnus Larsson, editors. building reliable component-

based Software Systems. Artech House Publishers, 2002.

Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A comprehen-
sive approach for the development of modular software architecture descrip-

tion languages. ACM Trans. Softw. Eng. Methodol., 14(2):199-245, 2005.

Charles F. Goldfarb and Paul Prescod. XML HANDBQOOK. Prentice Hall
PTR, 4th edition, 2002.

David Garlan and Mary Shaw. An introduction to software architecture.
Technical Report CMU-CS-94-166, Carnegic Mellon University, January
1994.

Scbastian Herold, Holger Klus, Yannick Welsch, Constanze Deiters, An-
dreas Rausch, Ralf Reussner, Klaus Krogmann, Heiko Koziolek, Raffacla
Mirandola, Benjamin Hummel, Michael Meisinger, and Christian Plaller.
The Common Component Modeling Example, volume 5153 of LNCS, chap-
ter CoCoME - The Common Component Modeling Example, pages 16-53.
Springer, Heidelberg, 2008.

Nascem Ibrahim. Naseem ibrahim home page, December 2008.

http://users.encs.concordia.ca/~n_ibrah/.

Paul Clements Len Bass and Rick Kazman. Software Architecture in Prac-

tice. Addison Wesley, 1998.

Mubarak Mohammad and Vasu Alagar. A framework for the development
of trustworthy component-based systems. In DSN°08, Submitted for review:
IEEE/IFIP International Conference on Dependable Systems and Networks,
Alaska, USA, Junc 2008.

Mubarak Mohammad and Vasu Alagar. TADL - an architectural descrip-

tion language for trustworthy component-based systems. In Proceedings of

120

[MdVHCO02]

[Pal04]

[Pre01]

[SBI99]

[SG96]

[Tid01]

the 2nd European Conference of Software Architecture (ECSA'08), volume
LNCS 5292, pages 290-297, Paphos, Cyprus, 2008. Springer-Verlag.

Craig Mundie, Pierre de Vries, Peter Haynes, and Mait Corwine. Trustwor-

thy computing. Microsoft White Paper, October 2002.

Girish Keshav Palshikar. An introduction to wmodel checking.
htp:/fwww.embedded.com/columns/technicalinsights/17603352? _requestid=179878.
December 2004.

Roger S. Pressman. Software Engineering: A practitioner’s approach. Mc-

Graw Hill, fifth edition, 2001.

Fred B. Schneider, Steven M. Bellovin, and Alan S. Inouye. Building trust-

worthy systems: Lessons from the ptn and internct. IEEE Internet Comput-
ing, 3(6):64-72, 1999.

Mary Shaw and David Garlan. Software Architecture: Prospectives on an

emerging discipline. Prentice Hall, 1996.

Doug Tidwell, Mastering XML Transformation XSLT. O’Reilly, 2001.

121

Appendix A

TADL XML schema

ComponenType schema

<7xml version="1.0" encoding="UTF-8"7>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema™

ciementFormDefault="qualified” atiributeFormDefault="unqualified™>

<xs:include schemalLocation=".\interfaceType.xsd” />

<xs:include schemaLocation=".\connectorTypec.xsd"/>

<xs:include schemaLocation=".\contractType.xsd"/>

<xs:include schemaLocation="RBAC. xsd" />

<xs:complexType name="ComponentType™>

<xs:sequence>

<xs:element name="name™ type="xs:string”/>

<xs:clement name="property” type="Property” minOccurs="0"
maxOccurs="unbounded” />

<xs:element name="attribute” type="Attribute”™ minOccurs="0"
maxOccurs="unbounded” />

<xs:element pame="constraint” type="xs:string” minOccurs="0"
maxOccurs="unbounded™ />

<xs:clement name="user" type="User” minOccurs="0"/>

<xs:clement pame="interfaceTypes” type="InterfaceType™
minOccurs="0" maxOccurs="unbounded” />

<xs:element name="architectureType"” type="ArchitectureType"”
minOccurs="0" >

<xs:element name="contract™ type="ContractType” minOccurs="0
">

<xsielement name="discreption™ type="xs:string” minOccurs="0

n,>

</ xs:sequence>

</ xs:complexType>

<xs:compicxType name="ArchitecturcType™>

<xs:sequence>

122

<xs:element name="name” type="xs:string™/>
<xs:clement name="componentType” type="ComponentType™
minOccurs="0" maxOccurs="unboundcd™ />
<xs:element name="connectorType” type="ConnectorType”
minOccurs="0" maxOccurs="unbounded™ />
<xs:eclement name="attribute™ type="Atiribute™ minOccurs="0"
maxOccurs="unbounded™/>
<xs:element name="constraint™ type="xs:string” minOccurs="0"
maxQccurs="unbounded™ />
<xs:element name="attachments™ type="Attachment™ minOccurs="
0" maxOccurs="unbounded” />
<xs:element name="descreption” type="xs:string"” minOccurs="0
">
</xs:sequence>
</xs:complexType>
<xs:complexType name="Attachment™>
<xs:sequence>
<xs:clement name="name” type="xs:string"/>
<xs:element name="connectorType—from™ type="ConnectorType™/>
<xs:clement name="roleType—from™ type="ConnectorRoleType™/>
<xs:element name="interfaceType—Trom™ type="InterfaceTypc"/>
<xs:element name="componcntType—to™ type="ComponentType™/>
<xs:element name="interfaceType—to™ type="lInterfaceType”/>
<xs:element name="descreption™ type="xs:string” minOccurs="0
">
</ xs:sequence>
</ xs:complexType>

</ Xxs:schema>

123

InterfaceType schema

<?xm) version="1.0" encoding="UTF-8"7>
<xs:schema xmlins:xs="http: //www.w3.org/2001/XMLSchema™
clementFormDefault="qualified” attributeFormDefault="unqualified™>
<xs:complexType name="Property">
<xs:sequence>
<xs:element name="name™ type="xs:string”/>
<xs:element name="value™ 1ype="xs:string"/>
</ Xxs:sequence>
</ xs:complexType>
<xs:complexType name="ServiceType™>
<xs:secquence>
<xs:element name="name” type="xs:string”/>
<xs:element name="id"” type="xs:string”/>

<xs:element name="type™” type="xs:string” minOccurs="0"/>
<xs:element name="attribute™ type="Attribute” minQOccurs="0"
maxOccurs="unbounded” />
<xs:element name="constraint” type="xs:string” minOccurs="0"
maxOccurs="unbounded” />
<xs:clement name="paramcterType” type="ParamecterType”
minOccurs="0" maxQccurs="unbounded”/>
<xs:clement name="propriy” type="Property”™ minOccurs="0"
maxOccurs="unbounded" />
<xs:clement name="discreption"” type="xs:string” minOccurs="0
">
</ xs:iscquence>
</xs:complexType>
<xs:complexType name="ParameterType™>
<Xs:sequence>
<xs:clement name="name” type="xs:string”/>
<xs:element name="datatype™ type="xs:string”/>
<xs:element name="value” minOccurs="0"/>
<xs:element name="descreption”™ type="xs:string”™ minOccurs="0

vI>

124

</ xs:sequence>
</ xs:complexType>
<xs:complexType name="Attribute ">
<xs:sequence>
<xs:element name="name” type="xs:string”/>
<xs:element name="dalatype™ type="xs:string”/>
<xs:element name="value” type="xs:string” minOccurs="0"/>
<xs:element name="discription” type="xs:string”™ minOccurs="0
">
<{Xs:sequence>
</xs:complexType>
<xs:complexType name="InterfaccType™>
<xs:sequence>
<xs:clement name="name" type="xs:string"/>
<xs:clement name="protocol”™ type="xs:string”™ minOccurs="0"/>
<xs:element name="attribute” type="Attribute™ minQOccurs="0"
maxOccurs="unbounded” />
<xs:element name="serviceType” type="ServiceType” minOccurs=
0" maxOccurs="unbounded”/>
<xs:element name="deiscreption” type="xs:string"” minQOccurs="
0" /i>
</ xs:sequence>
</ xsicomplexType>

<fxs:schema>

125

ContractType schema

<?xml version="1.0" encoding="UTF-38"7>
<xs:schema xmlns:xs="http: //vww.w3. org/2001/XMLSchema”
clementFormDefauli="qualified™ attributeFormDefault="unqualified™>
<xs:include schemalocation=".\interfaceType.xsd"/>
<xs:complexType name="SafetyProperty™>
<xs:sequence>
<xs:element name="name” Lype="xs:string”/>
<xs:element name="serviceType” type="ServiceType” minOccurs=
"0" maxOccurs="unbounded™/>
<xs:element name="constraint” type="xs:string"/>
<xs:element name="descreption” type="xs:string"” minOccurs="0
>
</xs:sequence>
</ xs:complexType>
<xs:complexType name="ContractType">
<xs:sequence>
<xs:element name="name" type="xs:string”/>
<xs:clement name="dataConstraint™ type="DataConstrain”
minQccurs="0" maxOccurs="unbounded” />
<xs:element name="timeConstraint” type="TimeConstrain”
minQccurs="0" maxOccurs="unbounded™ />
<xs:element name="reactivity"” type="Reactivity” minOccurs="0
" maxQOccurs="unbounded™ />
<xs:element name="safetyProperty”™ type="SafetyProperty”
minOccurs="0" maxOccurs="unbounded™ />
<xs:element name="descreption™ type="xs:string” minOccurs="0
">
</ xsisequence>
</xs:complexType>
<xs:complexType name="Reactivity™>
<xs:sequence>
<xs:element name="name” type="xs:string”/>

<xs:element name="id” type="xs:string"/>

126

<xs:element name="service—-request™ type="ServiceType"/>

<xs:element name="service—response” type="ServiceType"/>

<xs:element name="dataConstraint” type="DataConstrain”
minOccurs="0"/>

<xs:element name="timeConstraint™ type="TimeConstrain™
minOccurs="0"/>

<xs:element name="update” type="Update” minOccurs="0"
maxOccurs="unbounded™ />

<xs:element name="select™ type="Select” minOccurs="0"
maxQccurs="unbounded™ />

<xs:element name="action” minOccurs="0" maxOccurs="unbounded
2
<xs:complexType>
<xs:complexContent>
<xs:extension base="ServiceType™>
<xs:sequence>
<xs:element name="from"” type="xs:string”
>
<xs:element name="Fromld™ type="
xs:string”/>
<xs:clement name="to" type="xs:string”
minQccurs="0"/>
</ xs:sequence>
</ xs:extension>
</ xs:complexContent>
</ xs:complexType>
</ xs:element>
<xs:element name="descreption™ type="xs:string” minOccurs="0
">
</xs:sequence>
</xs:complexType>
<xs:complexType name="TimeConstrain™>
<xs:sequence>

<xs:element name="name” type="xs:string™/>

127

<xs:element name="attribute"” type="Attribute” minOccurs="0"

maxQOccurs="unbounded” />

<xs:element name="constraint” type="xs:string” minOccurs="0"

maxQccurs="unbounded” />

<xs:element name="service —request™ type="ServiceType"

minQccurs="0"/>

<xs:element name="service ~resonse”™ type="ServiceType"

minOccurs="0"/>

<xs:element

name="maxSafeTime" type="xs:int”/>

<xs:element name="descreption™ type="xs:string” minOccurs="0

!|’>
</ xs:isequence>

</xs:complexType>

<xs:complexType name="DataConstrain'>

<xs:sequence>
<Xxs:element
<xs:element
<xs:element
<xs:element
<xs:element

</ xs:sequence>

</xs:complexType>

name="name” type="xs:string”/>
name="service—request” type="ServiceType" />
name="service—response” type="ServiceType"/>
name="constraint™ type="xs:string"/>

name="descreption™ type="xs:string"”/>

<xs:complexType name="Select™>

<Xxs:sequence>
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element

">
</ xs:sequence>

</ xs:complexType>

name="name"” type="xs:string"/>
name="min" type="xs:string”/>
name="max" type="xs:string"/>
name="type” type="Xxs:string”/>
name="to" type="xs:string"”/>

name="descreption” type="xs:string"” minOccurs="0

<xs:complexType name="Update”>

<xs:sequence>

128

<xs:element name="toBeUpdated™ type="xs:string"/>
<xs:element name="value™ type="xs:string”/>
</ xs:sequence>
</ xs:complexType>

</ xs:schema>

129

InterfaceType schema

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:xs="http: //www.w3.0rg/2001/XMLSchema™
elementFormDefault="qualified™ attributeFormDefault="unqualified™>
<xs:include schemalocation=".\componentType.xsd"/>
<xs:include schemaLocation="_\RBAC.xsd"/>
<xs:complexType name="SystemElement™>
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="descreption™ type="xs:string” minOccurs="0
">
</ xs:sequence>
</xs:complexType>
<xs:complexType name="Deploy”>
<xs:sequence>
<xs:element name="hardwareComponenetType” type="
HardwareComponeniType" />
<xs:element name="componentType” type="ComponentType”/>
</xs:sequence>
</ xs:complexType>
<xs:complexType name="HardwareComponentType™>
<xs:sequence>
<xs:element name="pame” type="xs:string"”/>
<xs:element name="attributes™ type="Atiribute” minOccurs="0"
maxOccurs="unbounded”/>
<xs:element name="constraint” type="xs:string” minOccurs="0"
/>
<xs:element name="interface™” type="InterfaceType” minOccurs=
"0” maxQOccurs="unbounded” />
<xs:element name="descreption” type="xs:string” minOccurs="0
">
</xs:sequence>
</ xs:complexType>
<xs:element name="Configuration™

130

<xs:complexType>
<xs:sequence>
<xs:element name="name” type="xs:string”/>
<xs:element name="attributes™ type="Attribute” minOccurs
="0" maxOccurs="unbounded™/>
<xs;element name="components” type="ComponentType”
minOccurs="0" maxOccurs="unbounded” />
<xs:element name="deploy"” type="Deploy” minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="descreption™ type="xs:string”
minOccurs="0"/>
<xs:element name="rbac” type="RBAC” minOccurs="0"/>
</ xs:sequence>
</ xs:complexType>
</ xs:element>

</xs:schema>

131

ConnectorType schema

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmilns:xs="http: //www.w3.0rg/2001/XMLSchema™
elementFormDefault="qualified” attributeFormDefault="unqualified” >
<xs:include schemaLocation=".\interfaceType.xsd"/>
<xs:complexType name="ConnectorReleType >
<Xs:sequence>
<xs:element name="name” type="xs:string”/>
<xs:element name="attribute” type="Attribute™ minOccurs="0"
maxQccurs="unbounded” />
<xs:element name="constraint™ type="xs:string” minOccurs="0"
maxQccurs="unbounded” />
<xs:element name="interfaceType” type="InterfaceType”/>
<xs:clement name="descreption” type="xs:string” minOccurs="0
">
</ xs:sequence>
</xs:complexType>
<xs:complexType name="ConnectorType™>
Lxs:sequence>
<xs:element name="name"” type="xs:string”/>
<xs:element name="connectorRoleType” type="ConnectorRoleType

minQccurs="0" maxQccurs="unbounded” />

<xs:element name="attribute” type="Attribute” minOccurs="0"
maxQccurs="unbounded™ />
<xs:element name="constraint” type="xs:string” minOccurs="0"
maxQccurs="unbounded” />
<xs:element name="descreption” type="xs:string” minOccurs="0
">
</xs:sequence>
</xs:complexType>

</ xs:schema>

132

RBAC schema

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
elementFormDefault="qualified” attributeFormDefault="unqualified™>
<xs:include schemalocation=".\interfaceType.xsd”/>
<xs:complexType name="RBAC">
<Xxs:sequence>
<xs:element name="name” type="xs:string”/>
<xs:element name="users" type="User” minOccurs="0" maxOccurs
="unbounded™ />
<xs:element name="groups” type="Group” minOccurs="0"
maxQccurs="unbounded” />
<xs:element name="roles™ type="Role” minOccurs="0" maxOccurs
="unbounded™ />
<xs:element name="privileges” type="Privilege” minOccurs="0"
maxQccurs="unbounded™ />
<xs:element name="userGroupsAssignments™ type="
UserGroupAssignments” minOccurs="0" maxOccurs="unbounded
">
<xs:element name="userRolesAssignments™ type="
UserRolesAssignments” minOccurs="0" maxOccurs="unbounded
">
<xs:element name="groupRolesAssignments™ type="
GroupRolesAssignments” minOccurs="0" maxQccurs="
unbounded” />
<xs:element name="serviceType” 1ype="ServiceType” minOccurs=
0" maxQOccurs="unbounded™ />
<xs:element name="parameterType” type="ParameterType™
minQOccurs="0" maxOccurs="unbounded” />
<xs:element name="privilegesForService"” type="
PrivilegesForServices” minOccurs="0" maxOccurs="

unbounded™ />

133

<xs:element name="privilegesForDataParameters™ type="
PrivilegesForDataParameters” minOccurs="0" maxQOccurs="
unbounded™ />
<xs:element name="descreption”™ type="xs:siring” minQOccurs="0
">
</xs:sequence>
</xs:complexType>
<xs:complexType name="User”>
<xs:isequence>
<xs:element name="name” type="xs:string”/>
<xs:element name="attribute” type="Attribute” minOccurs="0"
maxQccurs="unbounded™ />
<xs:element name="contraint™ type="xs:string” minOccurs="0"
maxOccurs="unbounded"” />
<xs:element name="descreption”™ type="xs:string” minQccurs="0
>
</xs:isequence>
</ xs:complexType>
<xs:complexType name="Group”>
<Xxs:iseguence>
<xs:element name="npame” type="xs:string”/>
<xs:element name="atiribute” type="Attribute"” minOccurs="0"
maxQccurs="unbounded™ />
<xs:element name="constraint” type="xs:string” minOccurs="0"

maxQOccurs="unbounded™ />

<xs:element name="descreption™ type="xs:string” minOccurs="0
>
</xs:sequence>
</ xs:complexType>
<xs:complexType name="Role™>
<xsiscquence>
<xs:element name="name” type="xs:string”/>
<xs:element name="atiribute” type="Atiribute” minOccurs="0"

maxQccurs="unbounded™ />

134

<xs:element name="contraint” type="xs:string” minOccurs="0"
maxQccurs="unbounded™ />
<xs:element name="descreption™ type="xs:string”™ minOccurs="0
">
</xs:sequence>
</xs:complexType>
<xs:complexType name="Privilege™>
<Xxs:sequence>
<xs:element name="name™ type="xs:string”/>
<xs:element name="attribuie” type="Attribute™ minOccurs="0"
maxOccurs="unbounded” />
<xs:element name="contraint”™ type="xs:string” minOccurs="0"
maxOccurs="unbounded™ />
<xs:element name="descreption” type="xs:string” minOccurs="0
Y -1
</ Xxs:sequcnce>
</xs:complexType>
<xs:complexType name="UserGroupAssignments™>
<xs:sequcnce>
<xs:element name="uses” type="User"/>
<xs:clement name="group” type="Group™”/>
</ xsisequence>
</ xs:complexType>
<xs:complexType name="UserRolesAssignments™>
<xs:sequence>
<xs:clement name="user” type="User"/>
<xs:clement name="role™ type="Role™/>
</ xs:sequence>
</xs:complexType>
<xs:complexType name="GroupRolesAssignments™>
<xsisequence>
<xs:element name="group” type="Group"”/>
<xs:element name="role” type="Role”/>
</ xs:sequence>

</ xs:complexType>

135

<xs:complexType name="PrivilegesForServices™>
<xs:secquence>
<xs:clement name="service” type="ServiceType />
<xs:clement name="privilege™ type="Privilege™/>
<xs:clement name="role” type="Role”/>
</ xs:sequence>
</ xs:complexType>
<xs:complexType name="PrivilegesForDataParamcters”>
<Xs:sequence>
<xs:element name="dataParameter” type="ParamcterType™/>
<xs:element name="privilege"” type="Privilege™/>
<xs:element name="roie¢™ type="Role"/>
<lxs:sequence>
</xs:complexType>

</ xs:schema>

136

PackageType schema

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlins:xs="http://www. w3, org/2001/XMLSchema™
elementFormDefault="qualified” attributeFormDefault="unqualified”>
<xs:include schemaLocation="componentType.xsd"/>
<xs:include schemaLocation="interfaceType.xsd”/>
<xs:include schemalocation="connectorType.xsd"/>
<xs:complexType name="PackageType™>
<xs:sequence>
<xs:element name="name” type="xs:string”/>
<xs:clement name="Version"/>
<xs:element name="interfaceTypes™ type="InterfaceType"”
minOccurs="0" maxOc¢curs="unbounded™ />
<xs:element name="contractTypes” type="ContractType"

minQccurs="0" maxOccurs="unbounded” />

' 13

<xs:element name="conncctorTypes”™ type="ConnectorType’
minQc¢curs="0" maxOccurs="unbounded” />
<xs:element name="componentTypes” type="ComponentType”
minOccurs="0" maxOccurs="unbounded” />
<xs:clement name="descreption” type="xs:string” minQOccurs="0
">
<xs:element name="packages” type="PackageType” minOccurs="0"
maxQOccurs="unbounded” />
</ xsisequence>
</ xs:complexType>

</ xs:schema>

137

Appendix B
XSLT Transformation Rules

To UPPAAL Transformation rules

<?xml version="1.0" encoding="UTF-8"7>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/
Transform™ xmlns:xsi="http: //www.w3.org/200§/XMLSchema—instance™
xmlns:xs="http: //www, w3, 0rg/2001/XMLSchema™ xmlns:fn="http: //www.w3.
org/2005/xpath—functions™ exclude—result—prefixes="fn_xs.xsioxsl™>
<xsl:output method="xml” encoding="UTF-8" indent="yes” doctype—system=
" .\ schemas\ flat —1_0.dtd™ />
<xsl:template match="/Configuration™>
<xsl:variable name="newline”>
<xsh:text>
</ xslhitext>
</xsl:variable>
<nta>
<declaration>
<xsl:for —each sclect="attributes™>
<xsl:variable name="n" sclect="name" />
<xsl:variable name="d1" seclect="datatype”/>
<xsl:variable name="value" select="value"/>
<xsl:sequence sclect="{n:concat($dt, o' ,$a, =" Svalue, ' .3
newline)" />
</ xsl:for —each>
<xsl:sequence seleet="fn:concat(’ bool.grant_=.true;’ . $newline)"/
>
<xsl:sequence select="$ncwline™/>
<xsl:for —each—group sclect="components/contract/reactivity/
service —request” group—by="name">
<xsl:variable name="p" selecct="position()"/>
<xsl:for—cach select="current—group(}11]/name™>
<xsl:sequence sefect="fn:concat(chan.’,uxs:string () . "ic

constointo’, xs:string (.),'IDo=2",8p, "u; " .S newline)" />

138

</ xsl:for —each>
</ xsl:for —each—group>
<xsl:variable name="stimCount™ selecct="count{components/contract
/rcactivity/service—request)”/>
<xsl:Tor —each—group selcct="components/contract/reactivity/
service —response” group-by="name">
<xsl:variable name="p" seleci="position()"/>
<xsl:for—ecach select="current-group()f1]/name™>
</ xsl:for —each>
</ xsl:for —each—group>
<xsl:variable name="responsCount™ select="count(components/
contract/reactivity/service —response)” />
<xsl:for —each=group sclect="components/contract/reactivity/
action™ group-by="name">
<xsl:variable name="p" select="position()"/>
<xsh:for ~each select="current~group()[1]/name™>
</ xsl:for —each>
</ xsl:for —¢ach—group>>
<xsl:for —each select="rbac/users/name">
<xsl:sequence select="fn:concat(' const.int.’, xs:string (.),'ID.
=.",position(}, o: " . $newline)"/>
</ xsl:for —each>
<xsl:variable pname="co” selcct="count(rbac/privilegesForService)
">
<xsl:sequence select="fn:concat({ const.intomatrix.=.",§co.,";".$
newling)"/>
<xsl:sequence select="xs:string('constustructo{.int_ouser;.int.
event;.bool.access:.}UserEventAccessMatrix [matrix Jo=.{")"/>
<xsl:for —cach select="rbac/privilegesForService”>
<xsl:variable name="priv"” sclect="privilege /name™/>
<xsl:variable name="role" seclect="role/name™/>
<xsl:variable name="service” select="service/name”/>
<xsl:if test="$co. l=_position()™>
<xsl:sequence select="fn:concat('{".$role,’ID,” $service,'ID

L WSpriv,}, " Snewline)" />

139

</ xsl:if>
<xsl:if test="$co.=_position()">
<xsl:sequence select="fn:concat('{'.$role,’ID," $service,’'ID
LW 8priv,} .$newline)" />
</ xsl:if>
<{ xsl:for —each>
<xsl:sequence select="fn:concat(xs:string('}:’) .$newline)”/>
<xsl:sequence select="xs:string (" bool_EventSecurity (int.user,int
cevent)o{oooforo(ic:int [0, matrix — 1) ecvo{amaanif (
UserEventAccessMatrix[i]. usero=_user . &:& o
UserEventAccessMatrix|i]. evenl==event)._return.
UserEventAccessMatrix [i]. access;oo.}oreturnotrue; .} ") />
<xsl:sequence sclect="$newline”/>
<xsl:for —cach—group select="rbac/privilegesForDataParamecicrs/
dataParameter” group-by="name">
<xsl:variable name="po” select="position()"/>
<xsl:for —each select="current—group()[I])/name™ >
<xsl:sequence select="fn:concat{ ' const.int.’,xs:string (.).'
ID.=L"$po, "oy " 3 newline)" />
</t xsl:for —each>
</ xsl:for—each-group>
<xsl:variable name="coo™ select="count(rbac/
privilegesForDataParameters)™ />
<xsl:sequence sclect="fn:concat(’const.int.matrixx.=.",$coo.
LS newline) />
<xsl:sequence select="xs:string ("const_struct.{_int.user;.int.
parameter;.bool.access:_}UserParameterAccessMatrix [matrixx].
=.{"" />
<xsl:for—each select="rbac/privilegesForDataParameters™>
<xsl:variable name="priv"” select="privilege /name™/>
<xsl:variable name="role” select="role/name™/>
<xsl:variable name="data™ sclect="dataParameter /name™/>
<xsl:if test="Scoo.l=_position()™>
<xsl:sequence sclect="fn:concat('{",$role,"ID," ,$data,’ID

WS priv,}, L Snewline)”/>

140

</ xsl:if>
<xsl:if test="$coo.=.position()">
<xsl:sequence select="fn:concat('{,$role,.’ID," ,$data.’ID
L WSpriv,’} .$Snewline)” />
</ xsl:if>
</ xsl:for —cach>
<xsl:sequence select="fn:concat(xs:string("};") . .$newline)”/>
<xsl:sequence select="xs:string (' bool_DataSecurity(int.user, int.
parameter)o{acecforo(iv:aint [0, 1]) cmac{aanaanif(
UserParameterAccessMatrix []. usero==Luser &:& .o
UserParameterAccessMatrix | i]. parameter==parameter)..return.
UserParameterAccessMatrix [i]. access:ico }oreturn_true;.}")"/>
</declaration>
<xsl:for —cach select="components™>
<template>
<xsl:for=cach select="name">
<pame>
<xsl:sequence select="xs:string (.})"/>
</name>
</ xsl:for —each>
<parameter>int user</parameter>
<declaration>
<xsl:for—each—group select="contract/reactivity/
timeConstraint™ group—by="name">
<xsl:for—each sclect="current—group()[1]/name”>
<xsl:sequence seleci="fn:concat{'clock.’ ., xs:string (.}
RERIRS
</ xsl:for —each>
<fxsl:for-cach—group>
<xsl:for—cach select="atiribute ">
<xsl:variable name="name"” select="name"”/>
<xsl:variable name="type” seclect="datatype™/>
<xsl:vartable name="value” select="value”/>
<xsl:sequence select="fn:concat($type . . .$name,’ .=_.".8

vatue , "o ") />

141

</ xsl:for —each>
</declaration>
<xsl:for —each—group select="contract/reactivity/service-
request” group—by="name”>
<xsl:variable name="nuvu™ select="count{current—group(})}”/>
<xsl:for —each select="current—group()[1]/name”>
<location>
<xsl:attribute name="id"><xsl:sequencs select="xs:string
(.)"/><lxsl:attribute>
<name>
<xsl:sequence select="fn:concat(xs:string (.),'S")"/>
</name>
<xsl:variable name="vv"” select="../../timeConstraint/
name” />
<xsl:variable name="max"” select="../../timeConstraint/
maxSafeTime” />
<xsl:if test="../../timeConstraint™>
<label kind="invariant™>
<xsl:sequence select="fn:concat(Svv, <." ,$max)"/
-
</label>
</ xsl:if>
<xsl:if test="%nuuu.=.1">
<xsl:if test="../../service—response/type.=."internal’
s,
<committed />
</ xsl:if>
<xsl:if test="../../service—request/type.=_"internal °”
>
<xsl;if test="not(exists (../../action))">
<committed />
</ xsl:if>
</ xsl:if>
<l xsl:if>

</location>

142

</ xsl:for —each>
</ xsl:for —each—-group>
<location>
<xsl:attribute name="id"><xsl:sequence select=""idle "7 />/
xsl:attribute>
<name>
<xsl:sequence select=""idle ""/>
</name>
</location>
<xsl:for-each select="contract/reactivity™
<xsl:variable name="ren™ select="."/>
<xsl:if test="action">
<location>
<xsl:for—each select="service—response™>
<xsl:for—each select="name">
<xsl:variable name="renn" select="Sren/name”/>
<xsl:variable name="re" as="xs:string” select="
fn:concat(xs:string($renn}),.xs:string (.))"/>
<xsl:attribute name="id"><xsl:sequence select="3re"/
></ xsl:attribute>
<name>
<xsl:sequence select="Sre"/>
</ mame>
</ xsl:for —each>
<xsl:if test="type.=.'internal '">
<committed />
</xsl:if>

</ xsl:for—-each>

</location>
</ xsh:if>
</ xsl:for —-each>
<xsl:for —each select="contract">

<xsl:for—each select="reactivity™>

143

<xsl:variable name="reactivity —-n™ select="."/>
<xsl:for—each select="action">
<xsl:variable name="action—-n" select="."/>
<xsl:if test="not(exists(to))™>
<location>
<xsl:for—each select="Sreactivity —n/name™>
<xsl:variable name="reactivity —name” select=".7/>
<xsl:for —each select="%action-n/name”>
<xsl:variable name="result™ as="xs:string”
select="fn:concat(xs:string(Sreactivity —name
).xs:string (.})"/>
<xsl:attribute name="id"><xsl:sequence select="5
result”/></xsl:attribute>
<name>
<xsl:sequence select="3result”/>
</name>
</ xsl:for —each>
</ xsl:for —each>
<xsl:if test="S$reactivity -n/type.=."internal '">
<committed/>
</ xsl:if>

</location>
</ xsl:if>
</ xsl:for —each>
</ xsl:for —each>
</xsl:for —cach>
<init>
<xsl:attribute name="ref"><xsl:sequence select=""idle ' "/></
xsl:attribute>
</linit>
<xsl:for—each—group select="contract/reactivily/service—
request” group-by="name">
<xsl:variable name="nu" select="count{current—group ()} />

<xsl:for—each select="current—group()[1]/name">

144

<transition>
<source>
<xsl:attribute name="ref"><xsl:sequence select=""idle’
“I></ xsl:atiribute>
<fsource>
<target>
<xsl:atiribute name="ref”><xsl:sequence select="
xs:string (.)"/></xsl:attribute>
</target>
<xsl:if test="not(../type.=."internal ")">
<label kind="synchronisation™>
<xsl:for—each select="../../service—request/name™>
<xsl:sequence select="fn:concat(xs:string (.) ,"'?")}"
>
</xsl:for —each>
</label>
</ xsl:if>
<xsl:if test="../type_.=."internal ">
<xsl:if test="8nu_=_1">
<xsl:if test="not(exists (../../action)})">
<label kind="synchronisation™>
<xsl:for —each select="../../service—response/name”
>
<xsl:sequence select="fn:concat(xs:string {(.)
Iyt
</ xsl:for —each>
</label>
</ xsl:if>
</ xsl:if>
</xsl:if>
<xsl:if test="../../select”™
<xsl:for—each select="../../select™>
<xsl:variable name="na” select="name"”/>
<xsl:variable name="ty" select="type"/>

<xsl:variable name="min" select="min"/>

145

<xsl:variable name="max" select="max"/>
<xsl:variable name="t" select="10"/>
<label kind="select™
<xsl:sequence select="fn:concat($na,’: . 5ty,"'[.8
min,’, . $Smax, "]")"/>
</label>
<xsl:if test="../timeConstraint™>
<xsl:variable name="vv"” select="../timeConstraint/
name” />
<label kind="assignment”>
<xsl:sequence select="fn:concat($vv,':=0")"/>
<xsl:sequence select="fn:concat(’,’ .$t, :=",$na)
">
<xsl:if test="../type_=_"internal '">
<xsl:if test="S%nu_.=._1">
“<xsl:if test="update™
<xsl:sequence select="",""/>
<xsi:for—each seleci="update™>
<xsl:variable name="toBeUpdated”
select="toBeUpdated™ />
<xsl:variable name="value" select="
value™/>
<xsl:if test="position().=.1">
<xsl:scquence select="fn:concat($
toBeUpdated, ' :=",$value)"/>
</ xsl:if>
<xsl:if test="position () _!=_1">
<xsl:sequence sclect="fn:concat
(','.,$toBeUpdated,’:=",5value)"/
>
</ xsl:if>
</xsi:for—cach>

</ xsl:if>
</ xsliif>
</ xsl:if>

146

</label>
</ xsl:if>
<xsl:if test="not{exists {../timeConstraint))}”">
<xsl:variable name="vv™” select="_../timeConstraint/
‘name"l>
<label kind="assignment™>
<xsl:sequence select="fn:concat($t,’:=",5na)"/>
</label>
</ xsl:if>
</ xsl:for—each>
</ xsl:if>
<xsh:if test="not(exists (../../ select))">
<xsl:if test="../../timeConstraint™>
<xsl:variable name="vv™" select="../../timeConstraint
/name” />
<label kind="assignment™>
<xsl:sequence seclect="fn:concat($vv,’' :=0")"/>
</labei>
</ xsliif>
<lxsl:if>
<label kind="guard”>
<xsl:if test="not(../type.=."internal ")">
<xsl:sequence select="fn:concat(’ EventSccurity (user
Cuxsistring (L) oL TID))N
<xsl:for—each select="../parameterType/name">
<xsl:variable name="pamName" selcct="xs:string (.}"
/>
<xsl:for —cach select="/Configuration/rbac/
privilegesForDataParameters/dataParameter/name
">
<xsl:variable name="temp" seleci="xs:string (.)"/
>
<xsl:if test="$pamName_=.$temp” >
<xsl:sequence seleci="fn:concat(’&:&.

DataSecurity (user,”,xs:string (.),’'1D))" />

147

</ xsliif>
</ xsl:for —each>
</ xsl:for —cach>
</ xsl:if>
<xsl:if test="S%nu_=_.1">
<xsk:if test="not (../typec.=."internal ")7>
<xsl:if test="../../dataConstraint™>
<xsl:for—each select="../../dataConstraint/
constraint™>
<xsl:sequence select="fn:concat('&&.”’,
xs:string (.})"/>
</ xsl:for—each>
<l xsliif>
</ xsh:if>
</ xsl:if>
<xsl:if test="%nu_=_1">
<xsh:if t1est="..ftype.=."internal " 7>
<xsl:if test="../../dataConstraint”>
<xsl:for—each sclect="../../ dataConstraint/
constraint”>
<xsl:sequence select="xs:string (.)"/>
</ xsl:for—cach>
</ xsl:if>
</ xsl:if>
</ xsl:if>
</label>
</transition>
</ xsl:for —each>
</ xsl:for —each—group>
<xsl:for —each seclect="contract/reactivity >
<xsl:if test="action™>
<xsl:variable name="aa™ select="name" />
<transition>
<source>

<xsl:for—cach se¢lect="service—request/name™>

148

<xsl:attribute name="ref"><xsl:sequence select="
xs:string (.)"/></xshk:attribute>
</ xsl:for —each>
</source>
<target>
<xsl:for—cach select="servicec—response/name™>
<xsl:variable as="xs:string” name="aaaa” seclect="
fn:concat(xs:string ($aa),oxs:string (L))"/>
<xsl:attribute name="ref"><xsl:sequence select="3%
aaaa™/></ xsl:attribute>
</ xsl:for —cach>
</targel>
<xsl:if test="not(service—rcsponsc/typeo=o internal ")">
<label kind="synchronisation">
<xsl:for —each select="se¢rvice —response/name™>
<xsl:sequence sclect="fn:concat(xs:string (.),"!")"
1>
</ xsl:for —cach>
</label>
</xsliif>
<xsl:if test="update">
<label kind="assignment™>
<xsl:for—each sclect="update™>
<xsl:variablec name="toBcUpdated” seclect="
toBeUpdated™ />

<xsl:variable name="value" sclect="value"/>
<xsl:if test="position()_=.1">
<xsl:sequence select="fn:concat($toBeUpdated, :
=" $value)" />
</ xsh:if>
<xsliif test="position()_!=.1">
<xsl:isequence select="fn:iconcat(’,’ . $StoBeUpdated
L i="8value)" />
</ xsliif>

<fxsl:Tor—-each>

149

</label>
<l xsliif>
<label kind="pguard™>
<xsl:if test="not(service—response/type.=."internal)"
>
<xsl:for —each select="service —response/name”>
<xsl:sequence seclect="1n:concat(EventSccurity (
user, ', xs:string (.)..'ID}"}"/>
</ xsl:for —cach>
<xsl:for —cach select="servicc~response/parameterType
/name™>
<xsl:variable pame="pamName™ select="xs:string (.)"
/>
<xsl:for—cach seclect="/Configuration/rbac/
privilegesForDataParameters/dataParameter/name
-
<xsl:variable name="temp” seclect="xs:string (.)"/
>
<xsl:if test="$pamName.=.$temp”>
<xsl:sequence select="fn:concat (" &&.
DataSeccurity (user,’, xs:string (.).'1D))" />
</ xsliif>
</ xsl:for —cach>
</ xsl:for —cach>
<xsl:if tesi="dataConstraint™>
<xsl:for—cach sclect="dataConstraint/constraint”™>
<xsl:sequence select="fn:concat ("&&."’,
xs:string (L))" />
</ xsl:for —cach>
</ xsliif>
</ xsltif>
<xsl:if test="service —response/type.=_"internal '">
<xsl:for —cach select="dataConstraint/constraint™>
<xsl:sequence select="xs:string (.)"/>

</ xsl:for—each>

150

</ xst:if>
</label>
~<xsl:if test="update™
<label kind="assignment™>
<xsl:for —cach select="updale™™>
<xsl:variable name="toBeUpdated™ sclect="
toBeUpdated™/>

"

<xsl:variable name="value

"

select="value”/>
<xsl:if test="position () o=ui">
<xsl:sequence select="fn:concat($toBeUpdated. " :
=" $value)"/>
</xsl:if>
<xsl:if test="position (Y.!=.1">
<xsl:sequence select="fn:concat (', ,$toBeUpdated
Vi 8value)" />
<fxsl:if>
</ xsl:for —each>
</label>
</ xsl:if>
</tiransition>
</ xsl:if>
<xsl:if test="not(exists {action))">
<transition>
<source>
<xsl:for—cach sclect="service-request/name™>
<xsl:attribute name="rel"><xsl:secquence sclect="
xs:string (L)y"/></xslatiribute>
</ xsl:for —cach>
<{source>
<target>
<xsl:attribute name="ref"><xsl:isequcnce sclect="
xsistrinpg (“idle ") /></ xsl:attribute>
</target>
<xsl:if test="not(service —response/type.=."internal ')">

<xsh:if test="not(service~request/type_=."internal *)">

151

<label kind="synchronisation™>
<xsl:for —each select="scrvicec ~-response /name™>
<xsl:sequence sclect="fn:concat(xs:string (.)
RS I b
</ xsl:for —each>
</label>
</ xsl:if>
</xsl:if>
<xsl:variable name="kn” select="service-request/name”/>
<xsl:variable name="nu">
<xsl:for—each~group sclect="../reactivity/scrvice
request” group-by="name™>
<xsl:for—each select="current—group{) [1]/name">
<xsliif test="xs:string (.)o=.8kn">
<xsl:scquence select="count(current—group())"/>
</ xsl:if>
</ xsl:for —each>
</ xsl:for—cach—group>
</xsl:variable>
<label kind="guard">
<xsl:if test="not{service—response/type.=."internal *)"
>
<xsl:for—each select="service—response/name'™>
<xsl:sequence seclect="fn:concat('EventSccurity(
user, ', xs:string (L) 2, 'ID)Y)Y/
</ xsl:for—ecach>
<xsl:for—cach sclect="scrvice—responsc/parameierType
/mame™>
<xsl:variable name="pamName” sclect="xs:string (.)}"
>
<xsl:for —cach select="/Configuration/rbac/
privilegesForDataParameters/dataParameter/name
"
<xsl:variable name="temp” select="xs:string (.)"/

>

152

<xsl:if test="$pamName.=_5temp”>
<xsl:sequence selcct="fn:concat(&:&:.
DataSecurity (user,” . xs:string (.),'1D) ")"/>
</ xsl:if>
</ xsi:far —cach>
</ xst:for —cach>
<xsl:if test="dataConstraint™>
<xsl:if test="$nu !=_1">
<xsl:for—each select="dataConstraint/constraint”
>
<xsl:sequence select="fn:concat(&.& ",
xs:string ())"/>
</ xsl:for —each>
</ xsl:if>
</ xsl:if>
</ xsl:if>
<xsl:if test="service—response/type_=."tnternal ">
<xsl:if test="dataConstraint™>
<xsl:if test="3%nu.!=_1">
<xst:for—cach sclect="dataConstraint/constraint™
>
<xsl:sequence select="xs:string (.)"/>
<ixsl:for—-each>
</ xsl:if>
</ xsl:if>
</ xsl:if>
</ label>
<xsl:ifl test="update™
<label kind="assignment™>
<xsl:for ~each sclect="update™>
<xsl:variable name="toBeUpdated™ sclect="
toBeUpdated™ />

<xsl:variable name="value” select="value”/>

<xsl:if test="position()_=.1">

133

<xsl:sequence select="fn:concat($toBeUpdated.,":
=", $value)™/>
</ xsl:if>
<xsl:if test="position().!=.1">
<xsl:sequence select="fn:concatr (', ,$toBeUpdated
=" S value)" />
</ xsl:if>
</ xsl:for —each>
</label>
</ xsl:if>
</transition>
</ xsl:if>
</ xsl:for—each>
<xsl:for —ecach select="contract/reactivity ">
<xsl:variable name="rcact—name” sclect="name"” />
<xst:for—cach sclect="action™>
<xsl:if test="not{exists(to})">
<transition>
<source>
<xsl:for—~cach select="from™™>
<xsi:variable name="reso"” as="xs:string” seclect="
fn:concat(xs:string($react—name) ,.xs:string (.)
Yyt >
<xsl:attribute name="ref"><xsl:sequence select="$%
reso"/></ xsl:attribute>
</xsl:for -cach>
</ source>
<target>
<xsl:for —each sclect="name">
<xsl:variable name="res” as="xs:string"” seclect=
fn:concat(xs:string(Sreact—name),oxs:string (.)
YU
<xsl:attribute name="ref "><xsl:sequence select="3
res™/></ xsl:attribute>

</ xsl:for —each>

154

</target>
<xsl:if test="not(type.=_"internal *)">
<label kind="synchronisation™>
<xsl:for—each selecct="name">
<xsl:sequence select="fn:concat(xs:string (.)
A M b
</ xsl:for —each>
</label>
</ xsl:if>
<label Kind="guard™>
<xsl:if test="not{type.=."internal)™ >
<xsl:for —each sclect="name">
<xsl:sequence sclect="fn:concat (' EventSecurity(
user ., . xs:string ()., 7ID) ") />

</ xsl:for —each>

<xsl:for—cach select="parameterType /name™>
<xsl:variable name="pamName"” select="xs:string (.)"
>
<xsl:for—each select="/Configuration/rbac/
privilegesForDataParameters/dataParameter/name
>
<xslivariable pame="temp” select="xs:string (.)"/
>
<xsl:if test="$pamName_=_$temp™>
<xsl:sequence select="fn:concat("&:&.
DataSecurity(user,’,xs:string (.} .'ID))" />
<l xsl:if>
</ xsl:for —cach>

<fxsl:for —cach>
<l xsliif>

</label>

<[transition>

155

<fxsl:if>
<xsl:if test="to">
<tramnsition>
<source>
<xsl:for —each select="from™>
<xsl:variable name="resss™ as="xs:string” select="
fn:concat({xs:string(Sreact—name),.xs:string (.)
)y
<xsl:attribute name="ref"><xsl:sequence select="3%
resss”/></ xsl:attribute>
</ xsl:for —each>
</source>
<target>
<xsl:attribute name="ref"><xsl:sequence select=""
idle ""/></xsl:attribute>
</target>
<xsl:if test="not(type_=_"internal ’)">
<label kind="synchronisation™>
<xsl:for —each select="name">
<xsl:sequence select="fn:concat(xs:string(.)
Syt
</ xsl:for-each>
</label>
</ xsl:if>
<lab | kind="guard">
<xsl:if test="not(type.=.'internal ")">
<xsl:for -each select="name">
<xsl:sequence select="fn:concat('EventSecurity(
user ,’, xs:string (.)-,'ID) ") />
</xsl:for —each>
<xsl:for -cach select="parameterType/name">
<xsl:variable name="pamName” select="xs:string
(">

156

<xsl:for ~each select="/Configuration/rbac/
privilegesForDataParameters/dataParameter/
name™>
<xsil:variable name="temp” select="xs:string (.)
>
<xsh:if test="$pamName_=_Stemp">
<xsl:sequence select="fn:concat('&:&:._
DataSecurity (user ,’, xs:string (.) ,'ID))"
>
</ xsl:if>
</ xsl:for —each>
<l xsl:for—each>
</ xsl:if>
</label>
</transition>
</ xsl:if>
</ xsl:for —each>
</ xsl:for —each>
</template>
</ xsl:for —each>
<system>
<xsl:for~-each select="components™>
<xslisequence select="fn:concat(comp’,position(). .=.",
xs:string (name) , '(adminID): "' ,$newline)"/>
</ xsl:for —each>
<xsl:sequence select="xs:string (’'system.")"/>
<xsl:variable name="c¢” select="count{components)”/>
<xsl:for —-each select="components">
<xsl:if test="position().!=_%¢">
<xsl:sequence select="fn:concat('comp’,position(},’,")"/>
<f/fxsl:if>
<xsl:if test="position ().=.8c">
<xsl:sequence select="fn:concat(comp’,position(},' ")"/>
</ xsl:if>

</ xsl:for —each>

157

</system>
</nta>
</ xsl:template>

</ xsi:stylesheet>

158

To TIMES Transformation rules

<?xml version="1.0" encoding="UTF-8"7>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/
Transform” xmlns:xsi="http: //www.w3, . 0org/2001/XMLSchema—instance”
xmins:xs="http: //www,w3.0rg/2001/XMLSchema™ xmins:fn="http: //www.w3.
org/2005/xpath—functions™
exclude—result —prefixes="fn.xs.xsi_xsl™
<xsl:output method="xml"” encoding="UTF-8" indent="yes"/>
<xsl:template match="/Configuration™
<xsl:variable name="newline”>
<xslitext>
</ xsl:text>
</ xsl:variable>
<times>
<system>

<name>Project</name>

<declarations>
<xsl:for —each select="attributes">
<xsl:variable name="n" select="name”/>
<xsl:variable name="dt" select="datatype™/>
<xsl:variable name="value™” select="value”/>
<declaration name="{3n}" type="{$dt}" value="{$value}” />

</ xsl:for —each>

<xsl:for —each—group select="components/contract/reactivity/
service—request™ group—by="name">
<xsl:variable name="p” seclect="position()"/>
<xsl:for —each select="current—group()[1]/name”>
<declaration name="{xs:string (.)}" type="chan” value="0"/>
</ xsl:for—each>
</ xsl:for —each—group>
</ declarations>

<xsl:for —each select="components™>

159

<process>
<portcontainer>
<nailcontainer>
<labelcontainer>
<object>
<metrics h="50" w="140" x="80" y="50"/>
<misc color="b6d2c2™ id="0"/>
</object>
<xsl:for—each select="name™>
<label text="{fn:concat{xs:string (.) . Component')}"
x="92" y="62"/>
</ xsl:for —each>

</labelcontainer>
</natlcontainer>
</portcontainer>
<xsl:for —each select="name">
<misc template="{xs:string (.)}"/>
</ xs):for—each>
</process>
</ xsl:for —each>

</system>

<tasktable schedulingpolicy="EDF">
<xsl:for—each select="components/contract/reactivity™>
<xsl:for —each select="service —response™
<task>

<xsl:for—each select="property™>
<xsl:attribute name="name” sclect="value”/>

<!/ xsl:for -each>

<xsl:attribute pame="name” select="{n:concat(name,’ T)"/>

<xsl:if test="../timeConstraint™>
<xsl:attribute name="D" select="../timeConstraint/

maxSafeTime” />

</ xs):if>

160

</task>
</ xsl:for—each>
</ xsl:for—each>
</ftasktable>
<xsl:for ~each select="components™>
<template>
<xsl:for —each seleci="property™>
<xsl:if test="name.=.'environment’ ">
<xsl:attribute name="environment"” select=""true '"/>
</xsl:if>
</xsl:for—each>
<xsl:for —each select="name">
<name>
<xsl:sequence select="xs:string (.)"/>
</name>

</xsl:for —each>

<declarations>

<xsl:for—each—group select="coniract/reactivity/
timeConstraint” group—by="name">
<xsl:for—each select="current—group()[1]/name™>
<declaration name="{xs:string (.}}" type="clock” value="0
">
</ xsl:for —-each>

</ xsl:for —each—group>

<xsl:for—-cach select="attribute™>
<xsl:variable name="name”™ selcct="name”/>
<xsl:variable name="typc”™ select="datatype"/>
<xsl:variable name="value” sclect="value™/>
<declaration name="{$name}” type="{$type}” value="{$value}
">
</ xsl:for —each>

</declarations>

161

<xsl:for —each—group selcct="contract/reactivity/service—
request™ group—by="name”>
<xsl:variable name="nuuu” select="count{current—group())"/>

<xsl:variable name="i" select="current—-group()|1]/id"/>
<xsl:for—each select="current—group{()[I]/name™>
<location>
<portcontainer>
<nailcontainer>
<labelcontainer>
<object>
<metrics h="40" w="100" x="340" y="140"/>
<misc id="{$i}"/>
</object>
<label text="{fn:concat{xs:string (.)."S")}" x="352
v oy="150" />

</labelcontainer>
</nailcontainer>
</ portcontainer>
<xsl:variable name="vv" select="../../timeConstraint/
name" />
<xsl:variable name="max" select="../../timeConstraint/
maxSafeTime™ />
<xsl:if test1="../../timeConstraint”™>
<misc invariant="{fn:concat($vv, <:. ' $max)}"/>
<l xsl:if>
<xsl:if test="$nuuu.=_1">
<xsl:if test="../../service—response/type.=_"internal’
",
<misc committed="truec"”/>
</ xsl:if>
<xsh:if test="..f/../service-request/typew=.’internal ™"
>

<misc committed="true"/>

162

</ xsl:if>
</ xsl:if>
</location>
</ xsl:for —cach>
</ xsl:for —cach—-group>
<location>
<portcontiziner>
<nailcontainer>
<labelcontainer>
<object>
<metrics h="40" w="100" x="110" y="140"/>
<misc id="0"/>
</objecit>
<label text="idle” x="147" y="150"/>

</labelcontainer>
</nailcontainer>
</ portcontainer>
<misc initial="true"/>

</location>

<xsl:for —each sclect="contract/reactivity ™
<xsl:variable name="ren” select="."/>
<xsl:if test="action™>
<location>
<xsl:for —cach select="service —response™
<xsl:variable name="n" sclect="name" />
<xsl:for—each sclect="id">
<xsl:variable name="renn” select="Sven/id"/>
<xsl:variable name="re” as="xs:string” select="
fn:concat(xs:string ($renn) . .xs:string (.))"/>
<poricontainer>
<nailcontainer>

<labelcontainer>

<objcct>

163

<metrics h="40" w="100" x="390" y="70"/>
<misc id="{Srec}"/>
</object>
<fabel text="{fn:concat($n,$ren/name)}” x="400
" y="80"/>

</ labelcontainer>
</nailcontainer>
</ poricontainer>
<misc commitied="true” tasktype="{fn:concat($n,’'T")}
">
</ xsl:for—each>
</ xsl:for—cach>
</location>
</ xsl:if>
</ xsl:for—each>

<xsl:for —cach select="contract™>
<xsl:for—ecach sclect="reactivity ">
<xsl:variable name="reactivity —n™ select="."/>
<xs!l:Tfor~cach sclect="action™>
<xsl:variable name="action-n" sclect="."/>
<xsl:if test="not{exists(to))"™>
<location>
<xsl:for—cach select="$recactivity -n/id">
<xsl:variable name="recNa" selecet="_../name”/>

"

<xsl:variable pame="rcactivity —name” select=","/>
<xsl:for—cach select="%action-n/id™>
<xsl:vartable name="rcsult™ as="xs:string”
sclect="Tn:concat(xs:string (S reactivily —name

Y. xsistring (L))" />
<portcontainer>

<nailcontainer>

<labelcontainer>

164

<object>
<metrics h="40" w="100" x="20" y="280"/>

<misc id="{$result}”/>
</object>
<label text="{fn:concat(§action-n/name,$
recNa)}™ x="43" y="290"/>

</labelcontainer>
</ nailcontainer>
</ portcontainer>
<misc committed="true™ tasktype="{fn:concat($
action—n/name, "T") }"/>
</ xsl:for —cach>
</xsl:for —ecach>
</location>
</xsl:if>
</ xsl:for —cach>
</ xsl:for —cach>

</xsl:for—cach>

<xsl:for —cach—group select="contract/reactivity/service —
request™ group—by="name">
<xsh:variable name="nu" select="count(current—group())”/>
<xsl:variable name="po” sclect="position()"/>
<xsl:variable name="i" seclect="current—group()[1]/id"/>

<xsl:for—cach select="current —group () |11/ name™>

<transition>
<edge fromport="2" fromvertex="0" toport="1" tovertex="
{$i}">
<nailcontainer>
<labelcontainer>
<object>
<metrics w="130" x="210" y="160"/>

165

<misc id="{$po}"/>
</object>
<label align="left™ x="239" y="123"/>

</labelcontainer>
<nail cursor="{8po}” id="0" x="207" y="I157"/>
<nail cursor="{$po}” id="1" x="337" y="157"/>
</nailcontainer>
</edpge>
<metrics 1x="239" ly="123" sx="210" sy="160"/>

<xsl:variable pame="syn™>

<xsl:if test="not (..f/type.=."internal ")™

<xsl:for—e¢ach select="../../ service—request /name™>
<xsl:sequence select="fn:concat(xs:string (.) A
/>
</ xsl:for —e¢ach>
<lxsl:if>
<xsl:if test=",./1ypeo.=."internal "7>
<xsl:if test="Snu_=c1™>
<xsl:for—each select="../../service —response/name”
>
<xsl:sequence select="In:concat(xs:string (.)
S A A 1
</ xsl:for —each>
<fxsl:if>
</ xsl:if>

</ xsl:variable>

<xsl:variable name="assig">

<xsl:if test="../../timeConstraint™>

166

<xsl:variable name="vv" select="../../timeConsiraint
Iname” />
<xsl:sequence select="fn:concat($vv,':=0")"/>
</ xsl:if>

</ xsl:variable>

<xsl:variable name="GU">

<xsl:if test="$nu_=_1">
<xsl:if test="../../dataConstraint’™>
<xsi:for—each select="../../dataConstraint/
. constraint™>
<xsl:sequence select="xs:string (.)"/>
</ xsl:for—cach>
</ xsi:if>
</ xsl:if>
</xsl:variable>
<misc sync="{$syn}" guard="{$GU}" assign="{$assig}”
showdetails="1rue” />
</transition>
</ xsl:for —cach>

</ xsl:for—each—group>

<xsl:for~cach seclect="contract/reactivity™

"

<xsl:variable name="p" sclect="position ()7/>
<xsl:if test="exists (action)™>

<xsl:variable name="aa” sclect="id"/>

Ztransition>
<xsh:variable name="from">
<xsl:for—cach sclect="service—request/id™>
<xsl:sequence sclect="xs:string (.)"/>
</ xsh:for—cach>

<fxsl:variable>

167

<xsl:variable name="to">
<xsl:for—-cach select="service—-responsc/id™>
<xsl:variable as="xs:string” name="aaaa" select="

fn:concat(xs:string ($aa),.xs:string {.))"/>

<xsl:sequence seclect="%Sapaa"/>
</ xsl:for —each>
</ xsl:variable>
<edge fromport="2" fromvertex="{$from}” toport="1"
tovertex="{$to}">
<nailcontainer>
<labelcontainer>
<object>
<metrics w="130" x="210" y="160"/>
<misc id="%p"/>
</object>
<label align="1left”™ x="239" y="123"/>

</labelcontainer>
<nail cursor="3%p"” id="0" x="207" y="157"/>
<nail cursor="%p" id="1" x="337" y="157"/>
</ natlcontainer>
</edge>
<metrics Ix="239" 1ly="123" sx="210" sy="160"/>

<xsl:variable name="syn”>
<xsl:if test="not(service-—response/type.=_"internal ")"
>
<xsl:for —each select="service~response/name’>
<xsl:sequence sclect="fn:concat{xs:string (.) .'!")"
>
<{xsl:for —cach>
</ xsl:if>
</xsl:variable>

<xsl:vartable name="assig™>

168

<xsl:if test="update™>
<xsl:for —each select="update™
<xsl:variable name="toBeUpdated” select="
toBeUpdated™ />
<xshl:variable name="value"” seclect="value™/>
<xsl:if test="position(J_=.1">
<xsl:sequence select="fn:concat($1oBeUpdated,”:
=" $value)" />
</ xsl:if>
<xsl:if test="positton()_!=.1">

<xsl:sequence select="fn:concat("," . $toBeUpdated

.

=" Svalue)" />
</ xsliif>
</ xsl:for—cach>
</ xsl:if>
</ xsl:variable>
<xsl:variable name="GU">
<xslzif test="dataConstraint™>
<xsl:for —cach sclect="dataConstraint/constraint™>
<xsh:sequence select="xs:string (.)"/>
</xsl:for —each>
</ xsliif>
</xsl:variable>
<misc sync="{$syn}" puard="{$GU}" assign="{Sassig}”
showdetails="true”/>
</transition>

</ xsl:if>

<xsl:if test="not(exists{action)) >
<tlransition>
<xsl:variable name="from">
<xsl:for—-each seclect="service-rcquest/id">
<xsl:sequence sclect="xs:string (.)"/>
</ xsl;for —cach>

</ xsl:variable>

169

“l”

<edge fromport="2" fromvertex="{S$from}" toport=
tovertex="0">
<nailcontainer>
<labelcontainer>
<object>
<metrics w="130" x="210" y="160"/>
<misc id="8$p" />
</object>
<label align="left” x="239" y="123"/>

<f{labelcontainer>
<nail cursor="$p" id="0" x="207" y="157"/>
<nail cursor="$p" id="1" x="337" y="157"/>
</nailcontainer>

</edge>
<metrics 1x="239" 1y="123" sx="210" sy="160"/>

<xsl:variable name="syn">
<xsl:if test="not(service—response/type.=."internal ")"
>
<xsl:if test="not(service—-request/type.=."internal ')
s,
<xsl:for —each select="service —response/name">
<xsl:sequence select="fn:concat(xs:string (.)
RS b
</ xsl:for —each>
</xsl:if>
</ xsl:if>
</xsl:variable>
<xsl:variable name="assig">
<xsl:if test="update™>
<xsl:for —each select="update”>

<xsl:variable name="toBeUpdated” select="

toBeUpdated™/>

170

<xsl:variable name="value” select="value™/>
<xsl:if test="position().=.1">
<xsl:sequence select="fn:concat($StoBeUpdated.":
="*,$value)”/>
</ xsl:if>
<xsl:if test="position()ui=.1">
<xsl:sequence select="fn:concat(',".$toBeUpdated
L' i=",8value)"/>
</ xsl:if>
</ xsl:for —each>
</ xsi:if>
</ xsl:variable>

<xsl:variable name="kn" select="service—request/name”/>
<xsl:variable name="nu">
<xsl:for —each—group select="../reactivity/service~
request” group—by="name">
<xsl:for —each select="current-group () [1]/name™>
<xsl:if test="xs:string (.).=.8kn">
<xsl:sequence select="count(current—group())"/>
</ xsl:if>
</ xsl:for —each>
</ xsl:for—each—group>

</ xsl:variable>

<xsl:variable name="GU">
<xsl:if test="%nu.!=_1">
<xsl:if test="dataConstraint™>
<xsl:for—each select="dataConstraint/constraint™>
<xsl:scquence select="xs:string (.)"/>
</ xsl:for —each>
</ xsl:if>
</ xsl:if>
</xsl:variable>

171

<misc sync="{$syn}” guard="{SGU}" assign="{Sassig}”
showdetails="true"/>
<f{transition>
</ xsl:if>

</ xsl:for —each>

<xsl:for —each select="contract/reactivity”>
<xsl:variable name="react-—name” select="id"/>
<xsl:for-each select="action™>
<xsl:if test="not(exists(to))">
<transition>
<xsl:variable name="f">
<xsl:for—each select="Fromid">
<xsl:variable name="reso” as="xs:string” select="
fn:concat(xs:string($react—name),.xs:string (.)
)" 1>
<xsl:sequence select="$reso™/>
</ xsl:for —each>
</ xsl:variable>
<xsl:variable name="t">
<xsl:for—each select="id">
<xsl:variable name="res" as="xs:string” select="
fn:concat(xs:string(Sreact—name),_xs:string (.}
YU >
<xsl:sequence select="%res"/>
</ xsl:for ~each>
</ xsl:variable>
<edge fromport="2" fromvertex="{8§f}" toport="1"
tovertex="{§t}">
<nailcontainer>
<labelcontainer>
<object>
<metrics w="130" x="210" y="160"/>
<misc id="$p"/>

</object>

172

<label align="left™ x="239" y="123"/>

</labelcontainer>
<nzail cursor="$p" id="0" x="207" y="157"/>
<nail cursor="$p" id="1" x="337" y="157"/>
</nailcontaincr>
</edge>
<metrics 1x="239" 1y="123" sx="210" sy="160"/>

<xsl:variable name="syn">
<xsl:if test="not(type.=."internal "}">
<xsl:for —each select="name">
<xsl:sequence select="fn:concat{xs:string (.}
R R -4
</ xsl:for~each>
</ xsl:if>
</ xsl:variable>
<misc sync="{$syn}" showdetails="true™/>
</transition>
</ xsl:if>
<xsl:if test="to"™>
<transition>
<xsl:variable name="f">
<xsl:for—each select="Fromld”>
<xsl:variable name="resss"” as="xs:string"” sclect="
fn:concat(xs:string ($react-name),.xs:string (.)
y'i>
<xsl:sequence select="%resss”/>
</ xsl:for —each>
</ xsl:variable>
<edge fromport="2" fromvertex="{$f}" toport="1"
toveriex="0">
<nailcontainer>
<labelcontainer>

<object>

173

<metrics w="130" x="210" y="160"/>
<misc id="$p"/>
</object>
<label align="left™ x="239" y="123"/>

</labelcontainer>
<nail cursor="3$p" id="0" x="207" y="157"/>
<nail cursor="8p” id="1" x="337" y="157"/>
</ nailcontainer>

</edge>
<metrics Ix="239" ly="123" sx="210" sy="160"/>

<xsl:variable name="syn">
<xsl:if test="not(type.=."internal ')">
<xsl:for-each select="name">
<xsl:sequence select="fn:concat(xs:string (.)
AR N
</ xsl:for —ecach>
</ xsl:if>
</ xsl:variable>
<misc sync="{$syn}” showdetails="true"/>
</transition>
</ xsl:if>
</ xsl:for ~each>
</ xsl:for —each>
</template>
</ xsl:for —cach>
</times>
</ xsl:template>

</xsl:stylesheet>

174

