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ABSTRACT 

Computational Studies of Substituted Zirconocenium Catalysts for Olefin 

Coordination Polymerization 

Svetlana Popenova 

Olefin coordination polymerization catalysts consisting of Group 4 metallocene 

dichloride have received considerable industrial interest, as they constitute a highly 

active and selective class of catalysts for a-olefin polymerization. For zirconocene 

dichlorides of general formula [Zr{n5-C5H5_nRn}2Cl2], the Zr atom is n5-coordinated 

to cyclopentadienyl rings that may be substituted or not (R = H, alkyl, aryl...). 

When reacted with an excess of co-catalyst, the zirconocenium complexes 

[Zr{r|5-C5H5-nRn}2Me]+ responsible for the polymerization activity are formed. The 

catalytic performance of these catalysts is greatly influenced by electronic and steric 

factors due to the R substituents on the cyclopentadienyl rings. 

The aim of this work is to understand how the introduction of various length alkyl 

chains modified with Si and F atoms alters the coordination environment and the 

electronic properties of the active metal center, and how these changes may affect the 

olefin polymerization process. A combination of theoretical methods, such as density-

functional theory with natural bond orbital analysis and the quantum theory of atoms 

in molecules, is used to explore these issues. The results of calculations for 

zirconocenium complexes with various substituents are reported, and the structure, 

energy, electron density distribution for the different species are examined, focusing 

on the factors that might control catalytic activity in order to identify optimal 

substituents. The nature of possible intramolecular interactions between substituents 

and the metal, as well as the influence of such interactions on catalytic performance, 

are also investigated. 
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CHAPTER 1 

General introduction 

1.1 Olefin polymerization 

Polyolefins are a class of polymers that includes mostly polyethylene, polypropylene 

and their copolymers with a wide range of monomers. Nowadays, polyolefins with a 

broad variation of chemical and mechanical properties are produced in bulk amounts. 

These polyolefins are used on a large scale for packaging, car bumpers and dashboards, 

fibres and films. Polymerization of a-polyolefins comprises 2/3 of the overall production 

and is the fastest growing segment of the polymer industry. The estimated worldwide 

production of polyolefins in 2010 will reach 140 million tons. " This increase is caused 

largely by the use of new catalysts which make possible the synthesis of a polymer with a 

predictable, controlled structure and, thus, desirable physical properties. Such compounds 

can be designed, if the molecular aspects of the catalytic process are all well understood. 

Some of the key questions are: What happens exactly at the metal center? Precisely 

which factors determine selectivity, polymer chain growth and chain transfer? What 

causes catalyst deactivation? 

1.1.1 Historical background of olefin polymerization 

The first polyolefin of industrial interest was polyethylene. Its synthesis was achieved 

in 1933 by E. Fawcett and R. Gibson at the ICI works in Northwick, England. The 

reaction proceeds only under high pressure (several hundred atmospheres) and became 

the basis for industrial Low Density Polyethylene (LDPE) production beginning in 1939. 

The reaction mechanism is radical. 
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Subsequent landmarks in polyethylene synthesis have revolved around the 

development of the catalyst that promotes ethylene polymerization under milder 

temperature and pressure conditions. In 1953, the German chemist K. Ziegler developed 

a highly active heterogeneous catalytic system based on titanium halides and 

organoaluminum compounds that worked at relatively mild conditions and resulted in 

high molecular weight polyethylene.7 At the same time G. Natta, using a similar catalytic 

o 

system, obtained polypropylene (Figure 1.1). This reaction, called Ziegler-Natta (Z-N) 

polymerization, has been used for high density polyethylene (HDPE) and polypropylene 

production ever since.9 The main advantage of the method is the easy recovery of the 

catalyst, but the stereospecificity is relatively low. 

A homogeneous type of catalytic system, based on metallocenes of group 4 

transition metals and soluble in organic solvents, was discovered in Germany by W. 

Kaminsky and H. Sinn.1 In Kaminsky-type catalysts, the metallocene dichloride 

M {n -CsHs^Cla, where M is a group 4 transition metal, reacts with an excess of a co-

catalyst, to produce active species responsible for the polymerization activity. The 

cyclopentadienyl (Cp) rings can bear various substituents. Specifically engineered 

Kaminsky catalysts are among the most highly active and selective catalysts for cc-olefin 

polymerization. The catalyst yields around 100 tons of polymer per gram of catalyst per 

hour. They also offer unique possibilities for controlling the polymer structure and its 

properties, and the proper choice of catalyst can produce isotactic, syndiotactic or atactic 

polypropylene, or a combination of these. They also allow a better quantitative control, 

with a much greater ratio of desired tacticity or narrower molecular weight distribution 

than previous heterogeneous Z-N techniques. 
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K. Ziegler, 1955 

TiCl4 /AlEt3 
H 2 C = CH2 • 

25°C , 1 bar 
-CH5 -CH5 

polyethylene 
molecular mass: 

n 104-105g/mol 

G. Natta, 1955 

H 2 C = C H 

C H TiCl4/AlEt3 

25°C, 1 bar 
-CH2 

CH3 

C H -

polypropylene 
molecular mass: 
104-106g/mol 

Figure 1.1. Ziegler-Natta polymerization schemes. 

During recent decades, olefin polymerization by metallocene catalysis has drawn a lot 

of attention. Zirconoceniums are the most studied active species for a-olefin coordination 

polymerization, both experimentally and theoretically. The performances of new catalysts 

are typically compared to that of zirconocene dichloride.11 

1.1.2 Reaction mechanism of Z-N olefin polymerization 

The reaction mechanism of coordination polymerization for "single-site" catalysts is 

rather complex and not fully understood. However, it is now widely agreed that it follows 

the Cossee-Arlman mechanism. ' The zirconocene dichloride pre-catalysts are species 

of general formula [Zr{n -CsfLt-R^Cy, where the zirconium atom is r]5-coordinated to 

cyclopentadienyl rings, and R may be H, an alkyl or aryl substituent. Organometallic co-
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catalysts, usually methylalumoxide [MeA10]n (MAO) or borate anion [ B ^ F s ) ^ " , cause 

the alkylation of the transition metal, the creation of a vacant coordination site, and assist 

scavenging of moisture from the reaction environment. 

When the pre-catalyst is reacted with an excess of a co-catalyst, the active species 

responsible for the polymerization activity are formed; it is now agreed that these species 

are the 14-electron cationic zirconocenium complexes [Zr{n5-C5H4 -R}2Me]+[MAO]~ 

(Figure 1.2), where the zirconium center acts as a Lewis acidic coordination site cis- to 

another methyl ligand. These are also often called "single-site" catalysts.15'16 

For the reaction to proceed two coordination sites are required, one for binding the 

unsaturated substrate, and one for the alkyl group R. The polymerization process starts by 

coordination of an alkene at the vacant site of the cationic group 4 metal-alkyl complex 

(71-complex formation), followed by insertion of the alkene into the metal-alkyl bond. 

^ ^ [M(Cp)2R]+ M = Group 4-10 transition metal 

Figure 1.2. Catalytic active species made of cationic and coordinatively unsaturated 

metal-alkyl complexes. 

Subsequent alkene coordination and insertion leads to chain growth. The Cossee-Arlman 

mechanism, depicted in Figure 1.3, provides a framework for all studies of catalysis these 

days. 
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a - t = o t 

Olefin coordination Alkyl migratory insertion 

etc. 

CH2CH2R 

Figure 1.3. Cossee-Arlman mechanism of a - olefin coordination polymerization. 

The Dewar-Chatt-Duncanson diagram of orbital interactions for coordination 

polymerization is also often used to explain why these catalysts are so highly active 

(Figure 1.4).17"19 

In general, the olefin binds to the metal center by donation of electron density from 

the Tt-orbitals of the olefin double bond. This bond is relatively weak and can be 

stabilized by n back donation of electron density from the occupied metal d-orbitals to 

the empty anti-bonding olefin 71-orbitals. In the case of group 4 transition metals, the 

metallocene catalyst metal is in a +4 oxidation state (d ), the electron density from the 

olefin n bond is donated to the empty metal d-orbitals, but the stabilization of the 

intermediate olefin adduct by back-bonding is not possible. 
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a - donation (alkene to metal) % - back donation (metal to alkene) 

,M 71 

(a) 

7t back donation (metal to alkyl) 
a* 

cr bond 

(b) 

Figure 1. 4. Dewar-Chatt-Duncanson diagram of orbital interactions for alkyl 

coordination (a) and alkyl migratory insertion (b) steps. 

The olefins are very weak Lewis bases and the bonding without that stabilization is very 

weak. The d-orbitals of early transition metals are high in energy and, if occupied, would 

greatly increase the activation barrier of the alkyl migration step. In this case, migratory 

insertion does not require much energy to overcome the activation barrier and polymer 

chain grows easily. The chain termination may occur via a variety of pathways, but the 

most common pathways are: p-hydrogen transfer to metal, |3-hydrogen transfer to 

monomer, and chain transfer to activator) (Figure 1.5). The relative rates of chain 

propagation to chain termination determine the chain length and molecular weight of 

polymer. The activity of a catalyst is usually expressed as: 

Activity = weight of polymer / [mole or weight of catalyst x time x moles of 

monomer] or 

Activity = weight of polymer / [mole or weight of catalyst x time] 
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a P 

(a) 

^ 

^ = ^ L2Z* 

L,Z 

H 

TS 

H 

L2Zr< 
> ^ ' 

UZr H 

TS 

H 
L 2 Z / + 

H 

-^UZr % / D 

(b) 

L 2 z V ^ ^ + Me[MAOJ= 

(c) 

\ ' H ' V 
MAO 

L2Z< [ M A O ] ^ = L2Z<^ + P[MAO] 

Me M e 

TS 

Figurel.5. Three reaction mechanisms for Z-N polymerization chain termination 

pathways. P-hydrogen transfer to metal (a); P-hydrogen transfer to monomer (b); transfer 

to activator (c). 

In the case, for example, of the termination pathway by P-hydrogen elimination from 

back-bonding stabilization by electron density, donation from the metal to the empty anti-

bonding a -orbital of the CH2-H bond is not possible (Figure 1.4 b), and the polymer 

chain coordination to the metal is weak. Moreover, the C-H bond is not weakened by 

receiving electron density in its anti-bonding orbital. Hence, for group 4 metal catalysts, 

the activation barrier for hydrogen elimination is higher than for any other metal system 

with occupied d-orbitals. 
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Since the overall reaction rate is determined by the ratio of chain propagation and 

chain termination rates, Z-N polymerization results in relatively high molecular weight 

polyolefins. Tailoring the Cp-ring with electron-donating or electron-withdrawing 

substituents allows "tuning" the electron density on the metal center. The balanced 

amount of electron density on the metal center is believed to be very important for 

determining the structure of polymers and the activity of catalysts. 

1.2 Substituent effects on olefin coordination polymerization 

Catalytic performance is sensitive to both the electronic and steric surroundings of the 

active site. These factors can be regulated by careful manipulation of the ligands, and 

several reports show that the choice of ligands and catalysts' performance is related. In 

the case of metallocenes, it can be achieved by tailoring the Cp ring with various 

substituents. Systematic modification of the ring allows enhancement of catalyst activity 

and control over polymer properties. Therefore ligand design is very important for 

obtaining stereospecific catalysts for olefin polymerization. A rich and varied class of 

catalysts has been obtained by variation of the Cp substituents and bridging group. 

Substituent effects in metallocene complexes of group 4 metals on their performance in 

catalytic olefin polymerization have been reported in the literature. ' 

1.2.1 Steric effect of rigid (aromatic) substituents on polymerization activity 

The steric effect of bulky substituents manifests itself by decreasing the overall 

accessibility of the metal, thus preventing monomers from reacting and decreasing the 

catalyst activity. In fact, the catalytic activity has been claimed to reach a maximum for 

the most accessible zirconium center. The reduced accessibility can be achieved, for 
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example, if the ligand is a bulky indenyl, which also can be viewed as a Cp ring with 

substituent(s) (Figure 1.6). As observed experimentally, this ligand considerably reduces 

the catalyst activity from 1490 (Figure 1.6 a) to 580 kg (PE)(g Zr h)"1 (Figure 1.6 b). 

Cl»-Zr—CI 

(a) (b) 

Figure 1.6. Complexes used for illustration of steric effect of bulky substituents on 

polymerization activity, unsubstituted (a) and substituted (b). 

1.2.2 Ansa-effect on polymerization activity 

Increased accessibility can be illustrated by the ansa-effect. If the Cp ligands are 

connected with a bridge to prevent their rotation, the catalyst is called an ama-catalyst. 

It is now generally recognized that metallocenes with a short, single-atom, rigid bridge 

structure exhibit high activity and stereoselectivity in olefin polymerization. Therefore, 

many single-atom bridged metallocenes, especially single-carbon, silicon or germanium 

bridged metallocenes, have been synthesized and studied for olefin polymerization.6'34"36 

The amount of distortion from the normal metallocene geometry caused by the 

bridge is reflected in the geometrical parameters shown in Figure 1.7. The degree of ring 

tilt is usually represented by the dihedral angle (a) between the ring planes. The angle y 

is between vectors originating in the ring centroids and ending on the metal, P is the 
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angle between vectors normal to the ring centroids. The difference between the angles y 

and (180° - p) reflects the amount of slippage of the metal from an ideal r\ coordination 

to each ring. A single-atom bridge can cause substantial slippage by as much as 20°, 

which might be considered as significant structural distortion. A single carbon atom 

bridge, usually, changes the angle a by 10-13' 37 

ring centroid 

• : ) a X ' r > P 

Figure 1.7. Angular parameters used for the geometry characterisation of bridged 

metallocenes. 

A consequence of the bridging unit is the change in the position of the metal relative 

to an imaginary line connecting the Cp rings (Figure 1.8). The larger the distance D 

between the rings, the more accessible the metal and the higher the activity of the 

catalyst 38 

Figurel.8. Position of the metal in metallocene and ansa-metallocene dichlorides. 

10 



1.2.3 Orientation effect of bulky substituents 

Polymerization with catalysts such as those depicted in Figure 1.9 results in atactic, 

isotactic or syndiotactic polymers. Depending on the geometry, bulky substituents, by 

limiting accessibility from one side, orient the methyl group of polypropylene away from 

themselves, and give stereospecific polymers. 

1. Not sterioselective: unbridged, unsubstitueted Cp ligand 

(a) 

(b) 

,CH3 
R 

M*' + 

2. Stereoselective: bulky and rigid ligand framework 

• 

I© ^N ;H3 I © 

C J I) c •> 

(c) 

; ^ ^ , 

3. Stereoselective: unbridged with one bulky ligand 

Figure 1.9. Orientation effect of bulky substituents, resulting in atactic polypropene for 

unsubstitued circonocenium catalyst (a) and isotactic polypropene (b) or syndiotactic 

polypropene (c) for rigid and bulky substituent framework. 
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1.2.4 Effect of solvent or activator on coordination polymerization 

There is growing experimental evidence that the co-catalyst counterion and solvation 

play a significant role in the structure and energies of ion pairing, and hence, in catalytic 

activity and selectivity. Bulky ligands can prevent competitive solvent (Sol) coordination 

(Figure 1. 10), which without that may result in an inactive catalyst (Path II), rather than 

in an out- of-sphere bonding of A to the catalyst, which must be displaced by weakly 

coordinated alkenes prior to migratory insertion (Path I). Also, depending on the 

substituent nature, the ligand can increase the solubility of the catalyst in different 

solvents 39-41 

Me 

J Me 

if 

^ ^ + /Me ^ 

W 
Mei 

M 

Path I 

naked" cation 

Path II 

^ M e 
L } M ^ // MeA 

olefin separated ion-pair 

^Me 

M M: y 
MeA" 

MeA" 

s ^ ~MeA" 
contact ion-pair ^ - ^ 

^ - , + / M e 
L [ M C . 0 , MeA" 

Sol 

solvent separated ion-pair 

L M: 
,Me 

-Sol 
+ MeA" 

olefin complexed cation solvent complexed cation 

Figure 1.10. Possible reactions of contact ion-pair under typical polymerization 

conditions. 
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1.2.5 Electronic effects on polymerization activity 

Electronic properties of the aromatic ligands are mainly associated with the electron-

withdrawing or electron-donating ability of their substituents. One can presume that 

placing electron withdrawing substituents on the Cp ligand would make the metal center 

more electrophilic, thus affording a potentially more active catalyst by favouring the 

coordination step of Z-N polymerization. But it was found, for example, that electron-

withdrawing groups placed on the Cp ring lower both the propagation rate and the 

molecular weight of polymer. 

The effect of electron withdrawing substituents on the polymerization activity can be 

illustrated by the data in Figure 1.11 and Table l.l,42 where it is seen that electron 

withdrawing substituents as the F and CI atoms lead to a decrease in catalytic activity. In 

the studies cited above, significantly lower activities for the complexes with strong n 

donor such as a methoxy-substituents explained by the coordination of these groups to 

MAO leading to inductive electron withdrawal from the indenyl ligand. 

Figure 1.11. Complexes used to illustrate catalytic activity of electron-withdrawing 

substituents on indenyl ligands. Atoms X for (a) and (b) are given in Table 1.1. 
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Table 1.1. Catalyst activity of metallocene catalysts depicted in Figure 1.11. 

Complex (a) 

A tomX 

H 

-CI 

-OCH3 

-Me 

Activity, kg PE 
(mol Z r h ) ' 

14000 

1900 

122 

2500 

Complex (b) 

Atom X 

H 

-F 

-OCH3 

-Me 

Activity, g PE 
(g Zr bar h)"1 

43000 

18000 

2300 

40000 

Electron-donating substituents increase the electron density on the central atom and 

should, therefore, reduce activity. As shown in Figure 1.12 and Table 1.2, this is true for 

methyl and short hydrocarbon chains. Si-containing substituents on the Cp ring also have 

a negative influence on the activity for short chains, compared to Cp2ZrCl2, the activity is 

highest for intermediate-length chains (n=4) before it decreases again for longer alkyl 

chains.43 Results are obviously very difficult to interpret in terms of the electron-

donating or withdrawing ability of the substituents. 

Figure 1.12. Complexes used to illustrate catalytic activity for catalysts with 

unsubstituted Cp rings(a), electron-donating hydrocarbon substituents on Cp rings (b), 

and Si-containing substituents on Cp rings (c). 
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Table 1.2. Catalyst activity of metallocene catalysts depicted in Figure 1.12. 

Activity, kg PE (g Zr h)"1 

Complex (a) 

1490 

Complex (b) 

(n = 0) 129 
( n = l ) 529 

Complex (c) 

(n= l ) 140 
(n = 2) 350 
(n = 4 ) 4970 
n>4 decreases 

1.3 Intramolecular interactions effect on polymerization activity 

In general, early attempts to divide substituents effects into steric (bulky groups 

attached to the Cp ring) and electronic (substituents with electron withdrawing and 

electron donating groups) showed that in the case of steric effects, the more accessible 

the metal center the more active the catalyst, and in case of electronic effects, contrary to 

common belief: the less electron-deficient the metal the more active the catalyst. These 

electronic effects are more difficult to explain. In addition, for molecules where the 

substituent on the Cp ring is a long and flexible chain, no consistent trend is observed at 

all, although using such relatively long chains of alkyl-like substituents (R) for tailoring 

the Cp ring is common practice in olefin polymerization.27'44 

1.3.1 Long-chain fluorous substituents 

Among long-chain flexible electron-withdrawing substituents, fluorous substituents 

are of particular interest, due to the introduction of the electronegative fluorine atom. The 

application of fluorous catalysts in chemistry and industry relies on ligand modification 
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by attaching fluorous substituents or tails, such as (CH2)X(CH2)CF3 or (CH2)X(C6F5) to the 

ancillary ligand backbone, such as phosphines, phosphates, porphyrins and 

cyclopentadienes.45"47 

Varying the number of fluorine atoms in the alkyl chain makes complexes soluble at 

ambient temperature in hydrocarbon and/or fluorous solvents. Moreover, solubility can 

change with temperature. Those transition metal complexes bearing ancillary ligation 

containing fluorous appendages have been, to date, mainly utilized to render catalysis 

possible in biphasic fluorous/organic or super critical CO2 media. Coordination 

polymerization in fluorous media using fluorous ligands in pre-catalysts has been 

reported. The polymerization using catalyst with fluorous substituents could possibly 

lead to improved physical properties of the polymer produced and could affect the 

reaction mechanism. Several fluorous cyclopentadienyl ligands have been reported.49"53 

Since zirconocenes are extremely air- and moisture-sensitive, they are used strictly 

under anhydrous conditions and require special manipulation techniques and equipment. 

The hydrophobic properties of fluoroalkanes are well known. That is why fluoruos 

substituents are of particular interest as they might help prevent hydrolysis of Lewis acid-

type catalysts and improve the stability and storage properties of catalysts. In some cases, 

Lewis acid- type catalysts with fluorinated ligands can be used even in water emulsions.54 

Theoretically, fluorous substituents can increase the catalytic activity of the 

zirconocenes by increasing the positive charge on the metal center, because of the highly 

electron-withdrawing ability of the fluorine atoms. But, like for other electron-

withdrawing atoms in substituents, is was found that ligands with C-F bonds are not 

innocent bystanders; it was in fact proven by X-ray crystal structure analysis, that 
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intramolecular C-F....Metal interaction often takes place in Z-N catalysts. The energy of 

this interaction is reported to lie around 10± 0.5 kcal/mol, and therefore C-F coordinating 

ligands have typical features of hemilabile ligands.55 They can even permanently block 

available sites for olefin binding if the F atoms strongly coordinate to the metal. Or they 

can decompose at room temperature because of defluorination. 

To prevent this interaction, ethylene or dimethylsilyl spacers are usually introduced 

between the cyclopentadienyl and the perfluoroalkyl chain. " The spacer group is found 

necessary to effectively insulate the cyclopentadienyl ring from the electron- withdrawing 

effect and prevent defluorination (F coordination to the metal) of the perfluoroalkyl chain. 

1.3.2 Flexible long chain (agostic) interactions with metal, its characteristics and effect 

on polymerization 

Electron-donating, alkyl and silicon containing alkyl-like substituents, depending on 

the chain length and the nature of alkyl substituents can interact directly with the Cp ring 

to which they are attached and, as a result, they can increase or decrease the electron 

density on the ring itself, and through inductive-like effects, also change the electron 

density around the metal center. Furthermore, if atoms from the chain are in close 

proximity to the metal center, they can also interact with it. In the case of fluorous 

substituents, the fluorine electron lone pair coordinates to the positively charged metal 

empty orbitals. When the alkyl-like group does not contain electron-withdrawing atoms 

or groups, the only possible interaction is that between C or H atoms and the positively 

charged, coordinatively unsaturated metal center. This type of interactions is called 

agostic (Figure 1.13) 
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X-H 

Figure 1.13. Intramolecular interactions between the positively charged metal and the 

flexible ligand framework. 

The word agostic is the Greek word for "to hold on to oneself and refers to the 

bonding interaction between a H-X polar bond (X = C, Si, Ge) and a metal, and it is 

characterized by distortion of the organometallic moiety which brings an appended X - H 

bond into close proximity with the metal center. Agostic interactions belong to the so-

called secondary bonding interactions, and can be recognized geometrically, when the 

distance between atoms falls bellow the simple sum of their van der Waals radii, and the 

distance is too long to be a single bond. Also it is somewhat directional. The bond energy 

is weak compared to covalent bonds. The most common interactions of this class and 

their energy are shown in Table 1.3. 

Agostic interactions can be determined and characterized in many alkyl systems using 

a number of techniques, described, for example, in Schere's review.61 Since agostic 

interactions exhibit severe bond distortion in the alkyl moieties, they can be characterized 

structurally by neutron diffraction, which can provide more precise hydrogen positions 

than X-ray diffraction. The redistribution of bonding electron density can be revealed by 

using spectroscopic techniques. For example, NMR analysis has been used to determine 
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Table 1.3. Energy of secondary bonding interactions. 

Interaction 

Hydrogen bonds 

Ion- dipole interactions 

Dipole-dipole interactions 

Agostic interactions 

7t- 7i stacking 

van der Waals interactions 

Cation - TC interactions 

Energy, kcal/mol 

2-20 

10-50 

1-10 

1-10 

<10 

<1 

1-20 

!H shifts to high field (5 = -5 to -15 ppm), and reduced coupling constants []J(C, H) = 75-

100 Hz]. Vibrational spectroscopy also gives low vibrational frequencies for the M-H-C 

moiety v(CH) (2100-2300 cm"1) for the stretching mode. Topological analysis of the 

known molecular charge density, which can be experimentally or computationally 

determined, is also one of the powerful tools used recently to detect and study agostic 

interactions in organometallic compounds. The earlier concept invoked metal 

coordination to the methyl fragment, C-H in a M - - rj -HC manner, where the two, C 

and H, dangling atoms coordinate to the metal or metal ion with available coordination 

sites. The bonding was attributed to donation of electron density from one of the C-H a 

orbitals to the metal orbitals. ' This mode of coordination is referred to as a classical 

agostic interaction. More recently, neutron diffraction structural characterization showed 

the C-H bond does not necessarily point towards the metal atom (Figure 1.14). A survey 

of the structures showed in a number of complexes, complex geometry consistent with a 

non-classical M - - r\ -H2C mode of binding. It was also pointed out that the non-
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classical mode of binding is more common for longer alkyl chains (n >2) than the 

classical one.65 

^ - , (CH2)n 

,^NN "'//( 

CpM::-;;H/ vH C P M ~ - ^ ^ H 

(a) (b) 

Figure 1.14 Types of M...H3C agostic interactions, classical M - - n2-HC (a) and non-

classical M - - r)3-H2C ( b). 

Negative hyperconjligation also can be used to explain the bonding mechanism of 

agostic interactions. This is similar to the hyperconjugation concept for carbocations in 

organic chemistry, but C-C+ should simply be changed for C-M+ . 

Generally, hyperconjugation, i.e. the interaction of a bonds with a % network in 

molecules, provides electron density to electron deficient centers or withdraws electron 

density from electron-rich centers, and influences the conformational equilibrium. Three 

types of hyperconjugative interactions are presented in Figure 1.15 as double-bond/no-

bond resonance structures. There is no evidence for sacrificial hyperconjugation in 

neutral hydrocarbons, where the interaction is between a filled a-bond and a 71-

framework, as for example in toluene (Figure 1.15a). This is called sacrificial 

hyperconjugation because the contributing structure contains one two-electron bond less 

than the normal Lewis formula. The concept of hyperconjugation also applies to 

carbenium ions and radicals, where the interaction is now between a-bonds and an 
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unfilled or partially filled n- or p-orbital; referred to as positive hyperconjugation (Figure 

1.15b). The interaction between filled it- or p-orbitals and adjacent antibonding a*-

orbitals is referred to as negative hyperconjugation, as for example in the fluoroethyl 

anion (Figure 1.15c). These two latter cases are examples of isovalent hyperconjugation 

(the contributing structure containing the same number of two-electron bonds as the 

normal Lewis formula). Hyperconjugation is widely used in organic chemistry to explain 

the anomeric effect, the conformational behaviour of backbones in nucleic acids, 

torsional barriers and etc. 

Agostic interactions play an important role in the chemical behaviour of saturated 

organic ligands, especially a-bond (C-H, C-X, H-X) activation processes.66"68 In 1983, 

Brookhart, Green and Rooney proposed a complementary mechanism to the Cossee-

Arlman chain growth scheme, which involves electronic stabilization of the ground state 

sacrificial 

CHh-O-r 
a - rc a - 7i, p Tt, p, n - a* 

filled - filled filled - unfilled or partially unfilled filled - adjacent unfilled 
(a) (b) (c) 

Figure 1.15. Double-bond/no-bond resonance hyperconjugation representations: 

sacrificial hyperconjugation (a), positive (b) and negative (c). 

and the transition state by interaction of the metal with one of the a-hydrogen atoms from 

the polymer chain, a so-called a-agostic interaction. This is known as the modified 
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density distribution for the different species are examined. The nature of possible 

intramolecular interactions between substituents and the metal will be examined and 

discussed. 

In Chapter 3, the calculations are repeated for modified alkyl substituents adding into 

their chains the silicone and fluorine atoms. How the substituent modifications changed 

the nature of possible intramolecular interactions between substituents and the zirconium 

is presented. 

Finally, Chapter 4 focuses on the factors calculated in Chapter 2 and 3 that might 

control catalytic activity. Concluding remarks and outlook are given in Chapter 5. 
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There is a large body of literature on computational studies of Z-N catalyzed olefin 

polymerization with ab initio quantum chemistry and especially density-functional theory 

(DFT) methods. Today DFT is an important tool for computational investigations on 

group 4 complexes. 

1.5 Outline of the thesis 

Our aim is to understand how the introduction of alkyl flexible chains, silicon-

containing, and fluorous substituents, alters the coordination environment and the 

electronic properties of the active metal center. 

On the basis of the literature survey just discussed, model zirconocenium 

complexes of general formula [Zr(n5-C5H5)(n
5-C5H4R)Me]+, are investigated, where R = 

H, T3u, (CH2) nCH3, CF3; SiF3, SiMe2Y Y = Me, F, (CH2)nCHmF3.m, the number of 

fluorine atoms (m) and the length of the hydrocarbon chain (n) varies from 0 to 3. This 

choice of unbridged model complexes does not impose structural constraints and allows 

free ring rotation. Flexible alkyl chains, with or without silicon, and fluorine-containing 

alkyls represent electron-donating and electron withdrawing ligands respectively. The 

hydrocarbon chain between the Cp rings and the fluorous part of the ligand, when present, 

can serve as a model of spacer effects. It is also of interest to understand how substituents 

affect the olefin binding energy and the Zr-Me bonding, factors that are deemed crucial 

for the catalytic activity of the complexes in the polymerization process. Olefin-catalyst 

complexes will be studied, for the same model systems. 

Further in Chapter 2, results of calculations for zirconocenium complexes with alkyl 

substituents with different chain lengths are reported. The structure, energies, electron 
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Green-Rooney Z-N polymerization mechanism with agostic assistance (Figure 1.16). ' ' 

69,70 In Z-N polymerization, the ct-agostic transition state (TS) assists the alkene insertion, 

and controls tacticity of the growing polymer chain (P); (3- and y-agostic interactions 

stabilize the growing polymer chain between periods of chain growth. 

a -agostic 
X TS 

/ 

AE> 
-2IV. 

H v -

•2 l v ' v / H 

H 

7r-complex r -agostic p-agostic 

ure 1.16. Modified Green-Rooney polymerization mechanism with agostic assistance. 

1.4 Computational studies of metallocene catalysts for olefin polymerization 

Catalytic processes, including olefin coordination polymerization, are by nature very 

fast reactions. Very often it is impossible to isolate reaction intermediates experimentally 

and therefore to determine reaction mechanisms and substituent effects on polymerization. 

71 

Computational methods based on quantum chemistry have become reliable tools to 

study mechanisms of catalytic reactions. Quantum chemical characterization provides 

information in terms of molecular geometry, interaction energies, vibrational spectra and 

electron density. 

Morokuma used the Hartree-Fock method to characterize saddle points for the 

reaction of ethylene with [TiC^CHsjV2 A number of olefin complexation and insertion 

activation energies using various catalysts have been calculated with different quantum 

chemistry ab initio levels and basis sets. 
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CHAPTER 2 

Classical vs. non-classical agostic interactions in zirconocenium 
polymerization catalyst 

2.1 Introduction 

Olefin coordination polymerization catalysts consisting of group 4 metallocene 

dichloride pre-catalysts and co-cocatalyst methylaluminoxane (MAO) have received 

considerable industrial interest. They belong to one of the most highly active and 

selective classes of catalysts for a-olefin polymerization, and offer unique possibilities 

for controlling polymer structure and properties.6' 14 In the zirconocene dichlorides of 

general formula [Zr{n5-C5H5.nRn}2Cl2], the zirconium atom is r]5-coordinated to 

cyclopentadienyl rings (Cp). Often one or more hydrogens of the Cp rings are substituted 

(R^H) with alkyl, aryl or other groups and elements. According to the Cossee-Arlman 

mechanism, " when such pre-catalysts are reacted with an excess of a co-catalyst, the 

active species responsible for the polymerization activity are formed; it is now agreed 

that such species are the 14-electron cationic zirconocenium complexes 

[Zr{n5-CsH5-nRn}2Me]+MAO", where the zirconium center has Lewis acidic coordination 

sites. Several reports show that the choice of ligands, and catalyst performance, is related 

and sensitive to both the electronic and steric surroundings of the active site. These 

factors can be regulated by tailoring the Cp rings with various substituents. Such 

systematic modification of the ring allows enhancement of the catalyst activity and 

control of polymer properties. Therefore, understanding how ligand modification affects 

olefin polymerization is very important. Experimental investigations of the substituent 
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effect on the catalytic olefin polymerization performance of metallocene complexes of 

group 4 metals have been widely reported. ' 

To increase the solubility of the pre-catalyst complex and to tune the catalytic activity, 

zirconocenium catalysts substituted with a longer alkyl [R = - (CH2)n -CH3 (usually n = 1 

to 8)] chain are often used. If the substituent is a long and flexible chain, then its 

terminal group of atoms can come close to the metal center. Since the metal is positively 

charged and coordinatively unsaturated, various interactions are possible between the 

relatively electron-rich alkyl and the zirconium (Figure 1.13). This type of interaction is 

known as an agostic interaction.60' 61 Usually agostic interactions are viewed as an 

interaction between the metal and a ligand terminal hydrogen, i.e. classical M - - T] —HC 

coordination (Figure 1.14 a). However, a survey of experimental structures showed that, 

in a number of complexes, the geometry is more consistent with a non-classical 

M - - -n3-H2C mode of binding (Figure 1.14 b).64 It was also pointed out that the non-

classical mode of binding is more common than the classical one for longer alkyl chains 

(n >2). So far there is no explanation for these findings. 

The aim of this work is to characterize computationally the possible interactions, if 

any, between the metal center and the alkyl flexible chains in tailored Cp rings, to 

investigate their nature, and to understand how they alter the coordination environment 

and the electronic properties of the active metal center. 

Good candidates as model zirconocenium complexes for investigation of agostic 

interactions, are complexes with the general formula [Zr(n. -CsHsXr) -C5H4R)Me]+, R = 

H, 'Bu, (CH2) 11CH3, where the length of the alkyl chain on the Cp ring is defined by n 

that varies from 0 to 3. Thus, unbridged zirconocenium catalysts with a monosubstituted 
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cyclopentadienyl, are chosen as a model complex for further investigation. The structures 

calculated in this work are depicted in Figure 2.1. This choice of model complex does not 

impose structural constraints, allows free ring rotation and flexible alkyl chain 

coordination to the central atom, if present. 

CH2CH3 

\ + /CH 3 
Zr+ 

III 

(CH3)3C 

Figure 2.1. Model complexes. 

II a 
(CH2)2CH3 

\ + / C H 3 
Zr+ 

IV 

V .CH, 

VI 

C(CH3)3 

\ + / C H 3 
Zr+ 

l i b 

A diagram illustrating the labeling of carbon atoms in the substituents is shown in 

Figure 2.2. A Greek letter designates the carbon position in hydrocarbon ligand(s). The 

first carbon attached to Zr is labelled as Ca the next in the chain as Cp the third as Cy etc. 
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R R R R 
\ / \ / 

R v / ^ C ^ \ -C 5^ 
R - > C^ 

R R 

-ZrL n 

Figure 2.2. Labelling diagram for carbon atoms in alkyl ligands. 

2.2 Computational Methodology 

To investigate how many and what kinds of interactions are possible in the model 

complexes investigated, calculations based on density-functional theory (DFT) were 

performed. In an attempt to gain deeper insight into the nature of the interactions, the 

Natural Bond Orbital (NBO) analysis and the quantum theory of atoms in molecules 

(AIM) were used. 

DFT has already been successfully used for olefin polymerization studies.73 Becke's 

three parameter exchange functional with the Lee-Yang-Parr correlation functional 

(B3LYP)82"85 is one of the popular DFT methods which has been proven useful for the 

description of polymerization using metallocene catalysts. For quantum chemistry 

calculations of metallocene coordination polymerization, this method is very often 

combined with the LANL2DZ basis set for the metal and a standard all-electron a double-

C, quality basis set such as 6-31G (d,p)86'87 for all other atoms. For the calculations 

performed on complexes similar to those under investigation in this thesis, [Zr{(r| -C5H 

4 )2 SiH2}R]+ (R - ethyl, - w-butyl) + C2H4, DFT (B3LYP/LANL2DZ) results are 

comparable to results of higher-level calculations: geometries are within experimental 

errors, and energies deviate by ~ 1 kcal/mol.7 
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In this work, all structures were fully optimized using the Gaussian 98 software 

package. No local symmetry and no geometrical constraints were imposed in the 

optimizations. Vibrational frequencies were calculated for all stationary points to 

characterize them as minima (no imaginary frequencies) or transition states (one 

imaginary frequency). Relative energies reported include zero-point corrections. To 

evaluate the effect of hyperconjugative interactions and atomic charges, NBO second-

order perturbation analysis has been used, as provided within Gaussian 98. 

AIM2000 was used to analyze the topology of the electron denisty.76 In order to 

include core electrons on the Zr atom, the DZVP (DeMon DFT orbitals) basis set was 

used to obtain wavefunctions for AIM calculations.77 The structures were fully 

reoptimized using this larger basis set before AIM calculations were performed. 

2.3. Results 

2.3.1 Geometry analysis 

The molecular geometry is analyzed by comparing the calculated distance between two 

atoms with the sum of their Van der Waals (VDW) and their covalent radii values (Table 

2.1). In addition, bend angles were compared to the corresponding angles anticipated 

from the hybridization type of the central atom, e.g. spn, or sp3dm (n = 1-3, m = 1, 2). An 

intramolecular interaction is suspected when the distance between two atoms is less than 

the sum of their VDW radii for the elements in question, and if angles are significantly 

distorted from the values expected on the basis of hybridization. 
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Table 2.1. Van der Waals and covalent radii of selected atoms. 

Element 

Hydrogen, H 

Carbon, C 

Zirconium, Zr 

Van der Waals radius, (A) 

1.20 

1.70 

2.01 

Covalent radius, (A) 

0.28 

0.68 

1.56 

2 3.1.1. Uncomplexed ligand Cp' - 'Bu 

It is of interest to compare the geometry of the uncomplexed ligands with those in 

zirconium complexes. As an example of uncomplexed ligand for geometry comparison, 

the ligand with the tertiary butyl substituent was chosen, because it represents a medium-

size alkyl chain with two carbon atoms and the experimental structural data for the 

corresponding catalyst are available. 

The optimized molecular geometry of the ligand, selected angles and bond lengths are 

shown in Figure 2.3. As expected, a methyl group of the tertiary butyl substituent is in the 

plane with the Cp ring for the minimum energy structure (Figure 2.4 a). This calculated 

conformational geometry is referred to as planar hereafter and is in a good agreement 

with reported conformations for similar compounds. 

Calculations indicate that the conformation where one of the methyl groups is 

perpendicular to the Cp plane (Figure 2.4 b) is a transition state lying 1.25 kcal/mol 

higher in energy than the minimum energy planar conformer; connecting 'Bu ligand 

rotational isomers. This conformation is referred to as perpendicular hereafter. 
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_ ^\*/T.540 

1.523t̂  

Figure 2.3. Molecular geometry (H - omitted) for the uncomplexed Cp- 'Bu ligand 

with selected bond lengths ( A ) and angles ( ° ). 

NBO analysis can be used to explain why the planar conformation is more stable than 

the perpendicular one. The Cp ligand is aromatic in nature, with the negative charge -1 

shared by all five ring carbons. The NBO routine replaces the delocalized MO of the Cp 

aromatic 7r-framework with localized Natural Bond Orbitals corresponding to the 

conventional Lewis a- or it-bonds and lone pairs (see also Appendix A). The NBO Lewis 

'Bu substituted Cp ligand structures correspond to the structures shown in Figure 2.4. 

In this case, the Cp ring has five c-bonds, two 7t-bonds and a lone pair of electrons 

(p-orbital in nature), perpendicular to the Cp plane and located on the ring's carbon atom 

attached to the substituent. Since two lone-pair electrons are also located on this carbon, 

the negative charge for the Lewis structure has to be localized on the same carbon. 

NBO analysis also allows the evaluation of derealization of localized electron 

orbitals using a second-order perturbation approach. The NBO predominant 

hyperconjugative interaction for the perpendicular conformation is the interaction 
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between the ring p-electrons and one of the substituent adjacent unoccupied a -orbitals 

(Figure 2.4 b). For the planar conformation similar interaction with the ring p-electrons 

exists for two substituent carbons CJ -orbitals (Figure 2.4 a). Overall these two 

interactions in the planar conformer (13.1 kcal/mol combined) are stronger than that in 

the perpendicular conformation (8.8 kcal/mol). 

Me1 
Me3 

«s»4»«™— Me 

Me Me 

(a) (b) 

Pcccp) v c-c(Me2> 6.5 kcal/mol pC{cp) c c~c (Mei) 8.8 kcal/mol 

af*c-c(Me3) 6.6 kcal/mol 

Figure 2.4. NBO Lewis structures and predominant hyperconjugative interaction for the 

uncomplexed Cp ligand with a fBu substituent; perpendicular conformation (a), 

planar conformation (b). 

2.3.1.2 Neutral pre-catalyst 

The optimized molecular geometry of the model complex JJa is shown in Figure 2.5, 

along with selected bond lengths and angles. The Cp ring substituent orientations with 

respect to the other methyl ligands attached to the zirconium center are shown in Figure 

2.6. 
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Figure 2.5. Molecular structure of the neutral pre-catalyst, Ha, with selected bond 

lengths (A) and angles shown (°). (H - omitted, C in green, Zr in purple) 

(a) (b) (c) 

Figure 2.6. Cp substituent orientation with respect to the two other methyl ligands in Ha; 

view from above, two Cp rings almost eclipsed (a), 3D view from above (b) 

and side view (c). 

The Cp rings are almost in an eclipsed conformation with respect to each other. The 

tertiary butyl substituent is in a planar conformation with respect to the Cp plane, and the 

calculated ligand angles and bond lengths are similar for both the neutral pre-catalyst and 

the uncomplexed ligand. 
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Analysis of the geometry of the neutral pre-catalyst does not reveal structural evidence 

of intramolecular interactions between the substituent of the Cp ring and the metal center. 

For instance, the distance between the closest carbon atom and the zirconium atom (3.98 

A) is longer than the sum of the VDW radii (3.71 A) and far longer than covalent radii 

(2.24 A) for the corresponding atoms. The same holds for all the hydrogen atoms closest 

to the metal (the closest hydrogen to the Zirconium is 3.55 A away from it). Therefore, no 

weak interactions between the carbon/hydrogen atoms and the metal center can be 

inferred from the geometry of the neutral pre-catalyst complex. 

2.3.1.3 Positively-charged catalysts 

In order to transform a neutral pre-catalyst into the catalytically active positively 

charged species, one methyl ligand attached to the Zr atom has to be removed. The 

optimized zirconocenium catalyst geometry of lib is depicted in Figure 2.7. In the 

positively charged zirconocenium catalyst, the Cp ligand bearing a substituent changes 

position, rotating from the common eclipsed conformation of the neutral pre-catalyst to 

an almost staggered conformation (Figure 2.8). One of the ligand atoms (Cy ) is now very 

close to the position of the carbon atom of the methyl ligand that has been removed from 

Ha, suggesting possible interaction between the Cy atom and the metal center. 

Further analysis of the distances and angles reveals additional structural evidence for 

an intramolecular interaction between the terminal CH3 group and the coordinatively 

unsaturated, positively charged metal center. The Zr - Cy, Zr - Hiand Zr - H2 distances are 

2.85 A, 2.52 A and 2.81 A, respectively, and these distances are shorter than the sums of 

the van der Waals radii for the Zr/C and Zr/H atom combinations (3.71A and 3.21 A, 
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respectively). However, these interactions can not be classified as typical ionic bonds in 

Zr hydrides or carbides, since typical Zr-C bond lengths are 2.2-2.3 A in carbides and 

typical Zr-H bond lengths are 1.3-1.5 A in hydrides. This is also consistent with the fact 

that the interatomic distances are also larger than the sum of the covalent radii for Zr-C 

(2.24 A) and Zr-H (1.84 A). The fragment Cp-Cr pointing towards Zr also has the longer 

bond length (1.55 A), compared to other similar bonds (1.53 -1.54 A) in methyl groups 

pointing away from the Zr atom, and analogous bonds in molecules without interactions 

with the metal, such as the neutral pre-catalyst or the uncomplexed ligand (Figure 2.3 and 

2.5). 

Figure 2.7. Molecular structure of the catalyst, lib, with selected bond lengths (A) and 

angles shown (°). (H - omitted, C in green, Zr in purple). 

Finally, the distorted tetrahedral Ca - Cp- CT angle (105.6°) is smaller than the 

corresponding angles in the unconmplexed ligand (111.4°) or in the neutral pre-catalyst 

substituent (111.5°). All of these features point to a weak interaction with the metal 

center of an agostic type. 
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Me, Me 

srip' '««_«»' \ ,''^~J " v 

1 

(a) (b) (c) 

Figure 2.8. Cp ligand orientation with respect to the methyl ligand position in structure 

-lib; view from above (a), 3D view (b), side view (c). 

Optimized molecular geometries of the zirconocenium complexes with longer alkyl 

chains, structures III, IV and V, are shown in Figure 2.9 along with selected distances 

between the metal center and the closest carbon/hydrogen atoms of the substituents. To 

avoid a crowded picture, the Zr-C§ and Zr-CE distances are not shown for complex Vj but 

they are 2.95 A and 2.94 A, respectively. Based on the analysis of the geometry, 

intramolecular interactions between the Zr and the alkyl chain atoms could be suspected 

for all complexes. 

The complex III with an ethyl substituent is similar to the complex Mb with the 'Bu 

substituent, which also contains two carbon atoms in the chain and was described above. 

In both complexes the Cy atom and the two hydrogens attached to it are close to the metal 

center and agostic interactions can be inferred. In IV, with three carbon atoms in the 

chain, based on the distance analysis, there are most likely no intramolecular interactions 

between the zirconium and CTH2 group like those found in i n or lib. On the other hand, 
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in IV, C§ and one of the hydrogen atoms attached to it are close to the metal center. This 

atomic arrangement also meets the criteria for agostic interactions. In V, intramolecular 

interactions with the metal most likely exist for both the C§ and CE atoms, as well as with 

one of the two hydrogens attached to each of these carbon atoms. 

In the case of 'Bu and ethyl sub'stituents, complexes Hb and III respectively, although 

two hydrogens (Hi and H2 in CyHb fragment) are the closest atoms to the metal center, 

none of them are directly pointing towards Zr; they are almost equally remote from the 

«4-
.4 

^ - , > - ^ ^ " i j ' '* 

2.929 -A&" 
if 

issJ- v. 

Ill IV 

Figure 2.9. Molecular structure of the catalysts, III, IV and V with selected bond lengths 

(A) and angles (°) shown. (H in white, C in green, Zr in purple) 

metal and lie below and above the Ca-Cy-Zr plane. The Cy-Hi and Cy-H2 distances are 

longer than CT-H3, angles Ca-Cy-H] and Ca-Cy-H2 have greater values for two H atoms 

closest to Zr, and while the angle Ca-C rH3 is smaller. The geometry of the CH3....Zr 

moiety is thus more consistent with a non-classical M - - r)3-H2C rather than a classical M 

- - rj2-HC mode of coordination, where only one hydrogen atom (Hi) is relatively close 
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to the metal. A classical agostic interaction can be inferred for longer chain alkyl 

substituents as in IV and V. 

2.3.2 NBO analysis of agostic interactions 

NBO analysis provides an alternative to the classical bond concept which has proven 

very useful to characterize weak bonding interactions. A formal electron count would 

predict the Zr atom to be d° in nature. However, NBO analysis allows for departure from 

this formal Lewis model, and partial occupancy of each of the metal 4d orbitals 

hybridized with the 5s orbital. In the complexes investigated, five Zr lone-pair-type 

orbitals were found in the NBO analysis with low electron occupancies, but no two-

center bonding or anti-bonding orbitals were found between the Zr and Cp ligands. The 

remaining orbitals are either core orbitals or Rydberg orbitals. One of the lone-pair-type 

orbital is mostly 5s in nature, whereas the rest are mostly 4d in nature, slightly hybridized 

with 5s; they will be referred as Zr d-orbitals in the following. Because the Zr d-orbitals 

are partially filled, they are capable of both donating and accepting electron density. Due 

to the flexibility of the alkyl chain, the substituent may locate in close proximity to the Zr 

atom; therefore, interactions between a relatively electron-rich alkyl frame and the 

positively-charged, coordinatively-unsaturated central atom become possible. Interactions 

between filled and anti-bonding NBOs orbitals cause a deviation from Lewis structures 

and can be used as a measure of derealization, allowing to evaluate the effect of 

hyperconjugation. The magnitude of the interaction between each donor and acceptor 

NBO is estimated by second-order perturbation theory. The stabilization energy of 
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derealization is a quantitative measure that allows comparisons of the interactions in 

various ligand-metal complexes. 

In the complex I with the methyl-substituted Cp ring, the highest NBO stabilization 

energy of the substituent C-H o bond interactions with the metal orbitals is less than 5 

kcal/mol. Since there is no noticeable angle and bond distortion for this ligand, it is 

assumed that there are no intramolecular interactions between the H atoms of the Cp ring 

substituent and Zr, and all interactions weaker than 5 kcal/mol will not be considered 

hereafter. 

The Lewis structure, the natural charge distribution and hyperconjugative interactions 

for structure lib, are shown in Figure 2.10. 

Me. Me M a Me 

CTC-H(2) " d(3)Z r 6.r'5 
- d(5)Zr 6.57 

<7C-HP) - d(4)Zr 10.63 
- d(5)zr 9.87 

Figure 2.1§. NBO Lewis structure, charge distribution (blue) and predominant 

hyperconjugative interactions for l ib substituent in kcal/mol (red). 
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Unlike the uncomplexed ligand, the ring p-electrons do not interact with the 'Bu 

substituent; rather, the Cp ligand acts as an electron-density donor to the highly positive 

Zr atom (the formal oxidation state is +4). 

;r0..1_7£- :;-6!68> 
R /VunitT: ^ = ^ > ^5^-C(CH 3 ) 3 

ro.oii;, 
(CH2)3CH3 

CHyrun,?;; ^ _ ? Z r + / ~ - CH 

^-•.'{JnitjD ':-9A7fr C-0-.184-- ;'-'6."l72; 

Yi nb v 

Figure 2.11. NBO charges for molecular units of different zircnocenium complexes. 

This results in a reduction of the negative unsubstitued Cp ligand natural charge 

which is only -0.176 in complex VI, whereas the formal uncomplexed Cp ligand charge 

should be -1.00 (Figure 2.11). The 'Bu-substituted Cp ligand natural charge is even less 

negative than the charge for the unsubstituted Cp ring and it is equal to -0.083, while the 

positive charge of the Zr-CH3 unit decreases for substitueted complexes compared to VI. 

Since the second Cp ligands have almost equal negative charges (-0.17 and -0.18) in all 

complexes investigated, the 'Bu-substitueted Cp ligand is a better electron donor to Zr 

than the unsubstituted ligand. 

The flexible substituent attached to the ring redistributes electron density to the metal 

center not only through electron-density donation or electron-density withdrawing with 

respect to the ring, but also by directly interacting with the metal. The key interactions 

are a transfer of electrondensity from the Cy-H] and Cr-H2 a orbitals to the zirconium 

practically vacant d-orbitals. Four Cy(H]/H2)-Zr orbital interactions larger than 5 kcal/mol 
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were found for structure lib, with stabilization energies ranging from 6.6 to 10.6 

kcal/mol, and the molecular geometry is consistent with the M - - r)3-H2C mode of 

agostic coordination. The NBO charge analysis reveals that the Cr atom is significantly 

more negative than the adjacent CJJ, and the Ca atom carrying the smallest charge. 

For structure V, with a longer substituent on the Cp ring with R = (CH2)3-CH33 the 

NBO Lewis structure, charge distribution and predominant hyperconjugative interactions 

are shown in Figure 2.12. 

OC-HI - d Z r 9.21 

o"c-H2 - dzr 26 73 

CTC-H3 - PC 7 04 

CTC-H4 - oc 5.26 

Figure 2.12. NBO Lewis structure, charge distribution (in blue) and predominant 

hyperconjugative interactions (in kcal/mol, in red) for V. 

The alkyl group might act as an electron-density donor to the Cp ring, although the 

stabilization caused is weak. The stabilization energy due to electron-density transfer 

from the C3-H4 a orbital to the Ca p-orbital is 7.0 kcal/mol. It might appear like an 

unfavourable 2e-2e orbital interaction, but it can be justified, as NBO only assigns partial 

occupancy, less than 2 electrons, to the carbon p-orbital. Since NBO only provides an 
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approximate representation of the Cp aromatic n framework and, based on charge 

analysis, the charge for Ca is the lowest. It means that electron density is redistributed 

towards the other carbons, leading to a lower NBO electron occupancy for Ca, possibly 

making this interaction stabilizing. The stabilization energy for the interaction of the Cp-

H3 a orbital in plane of the Cp ring with the Ca-C(cp ring) cr orbital is 5.3 kcal/mol. The 

latter interaction is just slightly larger than 5 kcal/mol and might not be significant. The 

strongest hyperconjugative interactions (up to 26.7 kcal/mol) in this complex involve 

donation of electron density to the zirconium d-orbitals from the C5H1 and CEH2 a 

orbitals. Unlike the shorter substituent in lib, only one of the hygrogens (Hi or H2) from 

each methyl group participates in these interactions. The stabilization energy for the 

CeHi.-.Zr interaction is larger than that for the CEH2...Zr interaction. The molecular 

geometry is more consistent with the classical M - - r\ -HC rather than the non-classical 

mode of binding. 

NBO charge analysis shows that the charge on the Cp ligand with longer n-propyl and 

n-butyl substituents is not negative as it used to be for the shorter 'Bu-substituted Cp or 

the unsubstituted Cp ligand. For example, for complex V, the charge is +0.011 (Figure 

2.11). Therefore, longer alkyls are stronger electron-donating substituents than shorter 

ones. 

Thus, for alkyl substituents, relatively short substituents like ethyl and 'Bu do not 

donate electron density to the Cp ring, which could be further redistributed to Zr. As a 

result, the substituent acts only as a direct electron donor to the metal through the agostic 

interaction of the terminal CH3 group in a non-classical manner. Angle distortion and 

bond elongation are more severe than for the longer chains. In the case of longer alkyls, 
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which are possibly electron-donating groups to the Cp ring, Zr positive charge 

compensation might occur due to both electron donation to the Cp ring and one or more 

direct classical-type agostic interactions. Due to the complexity of the interactions of the 

Cp ligand orbitals with those of the metal, which are not directly comparable for various 

complexes, further comparative investigation of alkyl electron donation to the Zr through 

the Cp ring can not be performed using NBO analysis. 

2.3.3 Atoms-in-molecules analysis of intramolecular interactions 

Figure 2.13 displays the molecular graph for the metal-ligand complexes, while 

Table 2.2 collects data for the electron density (p) and the Laplacian (V2p) at bond critical 

points (BCP). The bond paths connecting carbons and hydrogens with Zr clearly confirm 

the existence of intramolecular interactions between these atoms. Depending on the 

substituent chain length attached to the Cp ring, two kinds of intramolecular interactions 

are found: a non-classical agostic interaction between the Zr and Cy atoms in shorter 

substituents (two-carbon chain), and a classical agostic interaction between the Zr and the 

terminal H atoms in longer alkyl substituents. 

The BCP electron densities for the Zr-Hl/H2 and Zr-C interactions in the various 

complexes are 0.11-0.15 e/A3 and 0.11 e/A3, respectively (Table 2.2). Taking into 

consideration the magnitude of the electron density and the sign of the Laplacians at the 

BCPs, the agostic interactions between the ligands and the central metal can be classified 

as closed-shell, therefore, mostly electrostatic in nature. A closed-shell interaction can be 

characterized by charge concentrations within the basin of each atom. Selected AIM 

charges are shown in Figure 2.14 for the two different modes of alkyl ligand agostic 
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interaction: non-classical for a shorter alkyl and classical for longer alkyl substitents. The 

Cy atom in shorter substitiients is negatively charged, and so are both hydrogen atoms. 

; J 

* * 

1 'a. % ' ,, c: *. 

I lib 
* 

* ' • • • < • • ^ . f * * ' 

* 

III IV 

4; 

t 

V 

Figure 2.13. AIM molecular graph, for metal-ligand complexes. 
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Table 2.2. Electron-density (p) and Laplacian (V2p) at the BCP for model complexes. 

Properties 

p(BCP), e/A3 

V2p(BCP), e/A5 

Interactions 

C(CH3)-Zr 

0.655 

1.259 

C(Cp)-Zr 

0.310-
0.340 

3.181 

in lib, m 

0.105 

1.459 

Hag - Zr 
in IV 

0.158 

2.476 

Hlag - Zr 
H2ag - Zr 

in V 
0.150 
0.109 
2.354 
1.779 

%•" 

^^^^4^f^ 

•?*© 
:f:-c 

0,039 

l ib 

* - # • * ' " 

© * x® * « ^ 

I 
• s . 

LnM 

(CH2)2 

+0.002J ; >NH 
IT _ - - - ~ "S-f ~w. 

"H 
- 0.089 

IV 

Figure 2.14. AIM molecular graphs and selected charges for M - - r\ -H2C and 

M - - T)2 -HC modes of agostic interactions. (H charge is shown for the closest atom to 

Zr). 
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The AIM results concerning the hydrogen charges and the terminal carbon charge in IV. 

are opposite to what was found with NBO analysis. The negatively-charged d e ­

fragment in lib adopt an orientation that maximizes the electrostatic attraction to 

the positive metal center, resulting in a Zr6+ -H2
5"C5" interaction, and M - - r|3 -

H2C binding. On the other hand, for longer substituenst, the carbon atom of the methyl 

group is slightly positively charged, while the hydrogen atom closest to the zirconium is 

negatively charged, and its interaction with the metal center is more favourable. This 

results in a classical M - - r|2 -HC, agostic interaction between the Zr + and the H " atoms. 

2.4 Conclusions 

The analysis of metal-ligand complexes shows geometric evidence of the presence of 

agostic interactions in terms of substituent orientation, angle distortion, short Zr...C or 

Zr....H distances. Although failing to detect two different modes of agostic interaction, 

NBO analysis for hyperconjugation established the existence of these interactions in 

principle. Shorter substituents do not donate electron density to the Cp ring, resulting in 

an electron-rich terminal C7H3 group, whereas longer alkyls might act as electron-density 

donors to the Cp ring, causing a small electron density deficiency on the substituent 

terminal carbon atoms. On the other hand, AIM analysis provides not only evidence for 

the existence of intramolecular interactions, but also clearly distinguishes between 

classical and non-classical agostic interactions. The classical agostic interaction is an 

interaction of the negatively-charged hydrogen with the metal center, while the carbon to 

which the hydrogen are attached is slightly positively charged. The non-classical agostic 
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interaction is in fact the interaction of the metal center and the carbon; which in this case 

is negatively charged. The non-classical interaction is weaker compared to the classical 

one. Both NBO and AIM analyses help explain why the alkyl substituent arranges itself 

around the metal center in two binding modes, depending on chain length and the charge 

distribution on the terminal atoms in the chain. 
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CHAPTER 3 

Computational chemistry studies of intramolecular interactions in 

zirconocenium catalysts with modified alkyl substituents 

3.1 Introduction 

The Cp ring substituent properties which affect the polymerization activity of the 

group 4 metallocene catalysts, are mainly associated with their electron-withdrawing or 

electron-donating ability with respect to the Cp ring, resulting, via a sequence of 

inductive-like effects, in variation of the metal center electronegativity. It is believed, that 

Cp ring electron-donating substituents, for example alkyls, decrease the activity of the 

catalysts by making the metal center less electrophilic and therefore making coordination 

of olefin more difficult. However, the experimental data do not endorse this 

straightforward statement. In Chapter 2, the electron-density donating or withdrawing 

ability of alkyls with respect to the Cp ring was investigated in zirconocenium catalysts. 

It was shown that, based on the alkyl chain length, alkyls can act both as an electron-

donating and as an electron-withdrawing groups. In addition, due to the chain flexibility, 

some alkyl groups can move towards the metal center and interact with it directly. 

Electron-withdrawing substituents on the Cp ligand would make the metal center more 

electropositive, thus it may facilitate an olefin coordination step, resulting in higher 

polymerization activity. Nevertheless, it was found that electron-withdrawing groups 

placed on the Cp ring lower both the polymerization activity and molecular weight of the 

polymer. 

Theoretically, because of the high electron-withdrawing ability of the fluorine atom, 

fluorous substituents can increase the catalytic activity of the zirconocenium catalysts by 
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increasing the positive charge on the metal center. It was confirmed by X-ray crystal 

structure analysis that, very often, intramolecular coordination of a C-F fragment to the 

metal takes place.55 In some cases, it can even permanently block available sites for 

olefin binding if the F atoms coordinate to the metal too strongly,4 or lead to 

decomposition at room temperature because of defluorination. 6 To prevent this ethylene 

or dimethylsilyl spacers are usually introduced between the cyclopentadienyl and the 

perfluoroalkyl chain.57"59 

Therefore, in spite of the obvious electron-donating or electron-withdrawing 

properties of the substituents, the effects on polymerization are very difficult to interpret 

or predict based on experimental data. Computational chemistry can provide valuable 

insight into the metal center electronic properties, which are important for understanding 

the polymerization mechanism. It also allows modeling possible intramolecular 

interactions of the alkyl substituents with the Zr atom. Theoretical methods have already 

proved to be very useful for investigation of similar complexes.74 

The electron-withdrawing and electron-donating ability of the alkyl substituents can 

be modified by including into the hydrocarbon chain more electropositive atoms, for 

example Si, and/or more electronegative atoms, for example F. This chapter focuses on 

computational chemistry studies of the possible intramolecular interactions of the flexible, 

modified, alkyl substituents with the central metal. Good candidates to model active 

catalytic species with modified alkyl substituents are zirconocenium complexes of 

general formula [Zr(n5-C5H5)(r|
5-C5H4R)Me]+, R = H, SiMe3, CF3, SiF3; SiMe2(CH2)nF, 

where the length of the hydrocarbon chain (n) varies from 0 to 3. The SiMe2(CH2)n 

group between the Cp ring and the fluorine atom can also serve to model spacer-effects 
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modeling. These unbridged zirconocenium catalysts with monosubstituted 

cyclopentadienyl do not impose structural constraints and allow free Cp rings rotation. 

The selected model complexes for this study are shown in Figure 3.1. 

SiMe? CF, 

\ Me 
Zr+ 

II III 

(CH2)n-

IV n = 0 - 3 V 

Figure 3.1. Model complexes. 

The molecular structures, energies, electron density distribution and the nature of 

possible intramolecular interactions for the modified alkyls will be compared to those for 

the unmodified ones described in Chapter 2. 
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3.2 Computational methodology 

In this work, all structures were fully optimized using the Gaussian 98 software 

package75 at the Becke three-parameter Lee-Yang-Parr (B3LYP)82"85 level of theory 

utilizing LANL2DZ pseudopotentials for the Zr, atom and the standard all electron 

double-^ quality basis set 6-31G (d,p) for all other atoms. No local symmetry and no 

geometrical constraints were imposed in the optimizations. Vibrational frequencies were 

calculated for all stationary points to characterize them as minima (no imaginary 

frequencies) or transition state (one imaginary frequency). Relative energies (AE) 

reported include zero-point corrections. For selected cases, enthalpies (AH°29&), entropies 

(AS) and free energy changes (AG°29s) were also calculated at 298 K. 

To evaluate the effect of hyperconjugative interactions and atomic charges, a 

Natural Bond Orbital (NBO) second-order perturbation analysis was used, as provided 

within the Gaussian 98 package. AIM2000 was used to analyze the topology of the 

electron density with the quantum theory of atoms in molecules (AIM).76 In order to 

include the core electrons of the Zr atom, a DZVP basis set (DeMon DFT orbitals for 

charges and electron derealization) was used in calculations.77 The structures were fully 

reoptimized using this larger basis set before the AIM analysis was performed. The 

optimized molecular structures were drawn using the MOLEKEL 4.1 molecular 

• * SO 

visualization program. 

3.3 Results 

3.3.1 Geometry analysis 
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Quantum chemistry calculations were performed for the three negatively charged Cp-

substituted ligands, namely Cp-Si(Me)3, Cp-SiF3 and Cp-CFa. All of three substituents 

adopt perpendicular conformations in contrast to the Cp-'Bu ligand in Chapter 2. 

The substituent perpendicular conformations are determined by the hyperconjugative 

interactions of the substituents with the Cp ring n network. According to the NBO 

analysis, the predominant hyperconjugative interaction for the Cp-Si(Me)3 ligand is 

between the Ca p-orbital and a Si -C7 low energy a orbital (Figure 3.2 a). The 

stabilization energy calculated from second-order perturbation theory for this interaction 

is 13.2 kcal/mol. 

H 
H ^ O ^ H 

3Vi« 

(a) 

Pc(cp) - cisi-c(Mei) 13.2 kcal/mol 

0 

(b) 

Pqcp) - cr*si-Fi 28.5 kcal/mol 

Pctcp) - <J *C-FI 48.7 kcal/mol 

Figure 3.2. NBO Lewis structures and predominant hyperconjugative interactions for 

uncomplexed Si(Me)3 (a), and SiF3 or CF3 (b). 

For the Cp~CF3 ligand, the interaction is between the Ca p-orbital and a Cp -F a orbital, 

with a relatively high stabilization energy of 48.7 kcal/mol (Figure 3.2 b). The 

interactions and molecular geometry for the Cp ligand with SiF3 substituent are similar to 

those for the Cp-CFs ligand and they are also shown in Figure 3.2 b. In spite of the 

significant difference in electronegativity, introduction of F or Si atoms in the alkyl chain 
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results in similar orbital interactions and similar conformational geometries, since all 

three substituents act as electron-withdrawing groups with respect to the Cp ring. As was 

shown earlier (Chapter 2), in the analogous uncomplexed ligand, the tertiary butyl 

substituent is in a planar conformation and it withdraws electron density from the Cp ring, 

with a major hyperconjugative interaction between two of the Cp-Cy substituent a 

orbitals and the Cp Ca lone pair. Compared to the modified alkyl substituents described 

above, the stabilization effect from withdrawing electron density from the Cp ring by the 

'Bu is weaker. 

The molecular structures for the calculated modified alkyl substituents are shown in 

Figure 3.3 along with selected bonds and angles. 

(c) 

Figure 3.3. Molecular geometry (H - omitted, C in green, Si in blue, F - in yellow) of 

the uncomplexed Cp substituted ligands along with selected bond lengths (A) and angles 

(°) shown. 
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The dihedral angles between the Cp ring and the Ca-Si/Ca-C/Ca-F bonds vary from 

175.3° to 177.2° (Table 3. 1). Compared to the analogous angle in the ligand with 'Bu 

substituents (180°, Chapter 2), these angles are smaller and more distorted due to stronger 

interactions of the modified substituent and the Cp ring electron density n network. 

Table 3.1. Selected bond lengths and angles for the tertiary butyl, trimethylsilyl, Si(Me)3, 

and fluorous, SiF3/CF3 substituents for the uncomplexed Cp" ligand. 

Substituent 

Bond 

' - ' C p - ^a 

Ccp-Sia 

Si a-Ci, C2, C3 

Si«-Fi,F2,F3 

Ca-Fi, F2, F3 

Bond Angle Atoms 

Ccp-Sia-Fj, F2, F 3 

Ccp-Sia-Ci, C2, C3 

Ccp-C a- Fi, F2, F3 

Dihedral Angle Atoms 

Cp(plane) - (C„-A / 

Si„-A), A = C or F 

SiF3 Si(Me)3 CF3 

Bond Distance (A) 

-

1.785 

-

1.699,1.699,1.700 

-

-

1.823 

1.921, 1.915,1.915 

-

-

1.435 

-

-

-

1.477, 1.418,1.418 

Bond Angles (°) 

113.4,116.5,120.1 

-

115.6,112.1, 112.1 

-

-

-

114.25, 114.26, 117.08 

Dihedral Angle (°) 

175.9 177.2 175.3 

The molecular geometries optimized in this study for two neutral pre-catalyst 

compounds are shown in Figure 3.4. Unlike the 'Bu substituent described in Chapter 2, 

these substituents in the neutral pre-catalysts adopt planar conformations, while the 

uncomplexed ligands have perpendicular conformations. It is worth mentioning that, for 
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these neutral pre-catalysts, there are no significant bond or angle distortions, compared to 

the uncomplexed ligands. 

1 8 9 4 * iftfi7 O - / ^ 1.600'; 1819 

.0 ^ '112.9° 112.4' 

4.359~~ 3.913 

(a) (b) 

Figure 3.4. Molecular geometry of the neutral pre-catalysts for corresponding catalysts I 

(a) and III_ (b). (H - omitted, C in green, Si in blue, F - in yellow, Zr in purple), along 

with selected bond lengths (A ) and angles (°) shown. 

The C or F atoms closest to the metal center are 4.359 A and 3.913 A away from the 

zirconium, respectively. These interatomic distances are longer than the sum of the VD W 

radii of the corresponding elements and far longer than the sum of their covalent radii 

given in Table 3.2.78 Thus, geometry analysis of the neutral pre-catalysts does not reveal 

structural evidence of intramolecular interactions between the modified Cp substituents 

and the metal center. The Cp ring substituent orientations with respect to the other two 

methyl ligands attached to the zirconium center are shown in Figure 3.5. It is also shown 
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that in these complexes the Cp rings are almost in an eclipsed conformation with respect 

to each other. 

Table 3.2. Van der Waals and covalent radii for selected elements. 

Element 

Hydrogen, H 

Carbon, C 

Fluorine, F 

Silicon, Si 

Zirconium, Zr 

Van der Waals radius, A 

1.20 

1.70 

1.47 

2.1 

2.01 

Covalent radius, A 

0.28 

0.68 

0.64 

1.2 

1.56 

\ /CH 3 

(a) 

A|- Si or C, A2 - Me or F 

(b) (c) 

Figure 3.5. Cp ligand substituent position for the neutral pre-catalysts, with respect to 

other two methyl ligands: view from above (a) two Cp rings are almost eclipsed, 3D view 

from above (b), side view (c). 
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According to the Z-N polymerization mechanism, the catalytically-active positively-

charged species are formed when one of the methyl ligands attached to the zirconium is 

removed. Molecular geometries of the zirconocenium catalysts I, II and III are shown in 

Figure 3.6. In these complexes, the Cp ligand bearing a substituent changes position, 

rotating the Cp ring from an eclipsed conformation common for the neutral pre-catalyst 

into a staggered conformation (Figure 3.7), moving one of the substituent's atoms, A2 (F 

or Cy) into the position where the carbon atom of the removed methyl ligand was located. 

Moreover, geometry analysis of I, II and III reveals relatively short Zr-A2 distances 

(Figure 3.6). In addition, two hydrogens attached to the Cy are also very close to the metal: 

they are only 2.58 A and 2.68 A away from Zr. These distances are shorter than the sums 

of the van der Waals radii for the corresponding elements. Besides, pointing towards the 

Zr atom, the Si-CT, Si-F and Cp-F bonds are lengthened, compared to other similar bonds 

pointing away from the Zr atom and the analogous bonds in the molecules without 

interactions such as neutral pre-catalysts or uncomplexed ligands. Finally, Ca-Si-Cr, Ca-

Si -F and Ca-Cp-F angles are smaller than those in corresponding neutral pre-catalyst 

substituents and significantly deviate from the expected tetrahedral values. The calculated 

dihedral angles for the Cp plane-Ap, the angle is 165.6° in complex I, compared to 

177.2° in the uncomplexed ligand, it also becomes smaller in II and n i (168.1° and 

157.4° respectively). Thus, based on geometry analysis, intramolecular interactions of the 

terminal CH3 and F groups with the coordinatively unsaturated, positively charged 

zirconium can be implied. Nevertheless, the interactions can not be classified as typical 

ionic bonds, since typical bond lengths in Zr compounds are 2.2-2.3 A in carbides, 1.8-

1.9 A in fluorides and 1.3-1.5 A in hydrides. Taking into account the results for the 
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tertiary butyl substituent from Chapter 2, one can see that the angular distortion increases 

in the order: 'Bu, SiMe3, CF3, SiF3. 

- ,1 894, i j i 
^-^ -. ( 51875 

99.6° ^ 
u CM 

1.487 

103.30"-1 g 

'.367 

"T.314 

J 820 
/>KSL#^^^'l*580 
% T ^ 96 9°"--' o 

I II III 

Figure 3.6. Molecular geometry of the zirconocenium catalysts I, II and ML (H -

omitted, C in green, Si in blue, F - in yellow, Zr in purple), along with selected bond 

lengths (A ) and angles (°) shown. 

o 
0T 

\ 

A p S i o r C , A 2 - M e o r F 

Figure 3.7. Cp ligand substituent positions for positively charged catalysts, with respect 

to the remaining methyl ligand; view from above (a) where the two Cp rings are 

staggered, 3D view from above (b), side view (c). 

For fluorous substituents, the mechanism of the Zr-F interaction can be easily 

explained by the donor-acceptor interaction common in organometallic compounds. In 
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these zirconocenium complexes, an occupied fluorine lone pair (donor) coordinates to the 

zirconium atom with formal electron configuration d° (acceptor). For ligands with the Si 

atom, where he alkyl group (CH2)m (m=0,3) is also found relatively close to the metal 

center, the existence of agostic interactions is plausible. 

For zirconocenium complexes with SiF3 and -SiMe3 substituents, only one rotational 

conformer is possible, where either the F or CH3 group interacts with the metal center 

(complexes 1F(I) and 1C(II), Figure 3.8). The same holds for substituents with CF3. For 

fluorous substituents where the fluorine atom in the chain is separated from the Cp ring 

by an alkyl spacer, at least two conformers exist. The first is a conformer where the 

fluorine atom is in close proximity to the metal center (complexes 2F(IV n=0) or 3F(IV 

n=l) (Figure 3.8 ). 

F 
/ 

Si—F 

cm 

& 

Me 
/ 

s',—Me 

"CH, 

<& 

Me Me 
\ / 
Six 

/ 
CH, 

CH, 

1F(I) 

Mex Me 
C ^ S i p 

2F(IV n=0) 3F(IV n=l) 

2C (IV n=0) 3C (IV n=l) 

Figure 3.8. Molecular structures for the zirconocenium catalysts with CH3 agostic 

interactions (C-conformers) and fluorine coordination (F-conformers). 
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and the second where the terminal CH3 group is in close proximity to the zirconium atom 

(complexes 2C(IV n=0) and 3C(IV n=0), Figure 3.8). They are denoted as F-conformers 

and C-conformers, respectively. In this study, optimized molecular geometries were 

found for all conformers illustrated in Figure 3.8. 

3.3.2 Charge analysis 

The calculated NBO charges for C- and F-conformers are plotted as a function of the 

substituent structure (Figure 3.9). In the zirconocenium catalysts, the charges on the 

metal are determined only by the type of substituent conformer (F- or C-) and their 

1.74 

1.69 

1.64 

I a 0%? 

1.54 

% 

# 

C-conformer 
F-conforrner 

,.m~..__ 

Vv»-""' 

— ( ) * 

"'""""• ffi 

• 

— m 

• 

Wfex J' 
s 

CB3 

Ms 

(CH2)n 

" % 
^ ^ ^ ^ f t ^ ^ 

Subst i tuent 

Figure 3.9. NBO Zr charges for n - alkyl substituents as a function of the substituent 

structure. 
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corresponding interactions with the metal. For all of the F-conformers the charge is on 

average +1.55 and for all of the C-conformers +1.65 on average. Compared to the 

unsubstituted complex (V), where the Zr charge is +1.74, the metal charges for C- and F-

conformers are less positive. This means that intramolecular interactions partially 

compensate the positive charge of the zirconium atom in the active catalysts. The charge 

compensation is greater for F coordination to the metal in F-conformers than for terminal 

hydrocarbon group agostic interaction with Zr in C-conformers. This can be explained by 

stronger interaction of the fluorine atom with the metal center and therefore, a greater 

ability to compensate the positive charge of the zirconium, compared to the CH3 group. 

3.3.3 Energy analysis 

Calculations of rotational conformations (around the Ca - Si bond) for the 

zirconocenium catalyst with the SiMe2F substituent show that the conformation without 

any intramolecular interaction is a transition state, 7 kcal/mol higher in energy than the 

complex with an agostic interaction (2C-conformer), and approximately 24 kcal/mol 

higher in energy than the complex with fluorine coordination (2F-conformer), Figure 

3.10. Therefore, metal-substituent intramolecular interactions in zirconocenium catalysts 

are stabilizing interactions. 

The calculated relative energies for other conformer pairs, complexes IV (n=0-3) are 

shown in Figure 3.11. 
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Si „<\Me / 

Z K 
CHV 

AE = 7 kcal/mol 
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K M H 
CH, 

AE = 17 kca!/moi 

Figure 3.10. Calculated rotational conformation energy for the 2C/2F conformers. 

The energy analysis also indicates that calculated F-conformers are more 

thermodynamically stable than C-conformers with agostic interactions. Compared to 

agostc stabilization, the stabilization effect of F coordination for n = 1 is higher (23.7 

kcal/mol) than for substituents with the shortest spacer with n=0 (17.2 kcal/mol), and it is 

the highest for the complexes with n = 2 (25.0 kcal/mol). For n>2, when the fluorine 

atom is separated from the Cp ring by a longer alkyl chains, the stabilizing effect of 

fluorine coordination becomes even less (only 13.1 kcal/mol) than that for the C-

conformer with no carbons in the spacer (n=0). Therefore, for F-conformers, the 5- and 

6-membered ring geometries [(Zr...Ca(Cp)...Sip...C? and Zr...Ca(Cp)...Sip.:.Cy...Cg)] 

are the most stable among complexes with a substituent spacer. 

Thus, geometry, charge and energy analyses for zirconocenium catalysts with 

different, flexible, modified alkyl substituents offer strong evidence in favour of 

intramolecular interactions between the positively charged, coordinatively-unsaturated Zr 
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HzCx \ 
Mex yCH2 CH2 

Figure 3.11. Stabilization energy for IV (n = 0-3), fluorous substituents with different 

alkyl-Iikespacer length. 

and atoms in the flexible substituent chain. These interactions cause an overall ligand 

geometry distortion, as well as charge compensation on the Zr atom, and an increase of 

the thermodynamic stability of the complexes. Depending on the nature of the substituent, 

two types of intramolecular interactions (Zr.. .C-H and Zr.. .F-C) are observed. 

3.3.4 NBO analysis 

To understand the nature of the interactions in zirconocenium catalysts, an NBO 

analysis was carried out. Due to the flexibility of the alkyl chain substituent, some atoms 

63 



can come in close proximity to the metal center; therefore, interaction between an 

electron-rich modified alkyl frame (both F- and Si-containing) and the positively charged, 

and coordinatively unsaturated central metal atom becomes possible. The interaction 

between filled and anti-bonding NBOs illustrates the deviation from Lewis structures and 

can be used as a measure of derealization; therefore, it allows to evaluate the effect of 

hyperconjugative interactions. Stabilization energies due to derealization are a 

quantitative measure for various ligand-metal interactions. For the molecules under 

consideration, only the interactions for which the stabilization energy is higher than 5 

kcal/mol were analyzed. 

The main hyperconjugative interactions predicted by second-order perturbation 

theory for structure I are shown in Figure 3.12. The CT - Sip bond should be strongly 

polarized due to the higher electronegativity of carbon relative to silicon. The calculated 

natural charges also reveal that the silicon atom is significantly more positive (+ 1.84) 

than both the adjacent carbon atoms. For the Ca atom the charge is equal to -0.61; besides, 

according to the Lewis structure, an electron lone pair (p orbital in nature) is also located 

on that carbon. The Cy charge is -1.23, which is larger in magnitude than normally 

calculated for carbons in alkyls (from -0.40 to -0.80). As a result, electron density from 

the p orbital of the Ca atom is transferred to the low energy Si-Cy G* orbital. This can 

explain the angle distortions and a significant elongation of one of the Si-Cy bonds. In 

this case the substituent acts as an acceptor of the electron density from the Cp ring and 

adopts a perpendicular conformation. The calculated stabilization energy for this 

interaction is 5.7 kcal/mol. NBO analysis also shows that the positive Zr ion center is 

stabilized by hyperconjugative overlap of both the Ca-Si a and Cy- Si a bonds and the 
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practically vacant Zr d-orbitals that have the suitable symmetry (similar to the beta-

silicon effect on carbenium ions in organic chemistry). This stabilization is usually 

larger than for the unmodified alkyl substituents, with calculated stabilization energies of 

these interactions in the range of 5-8 kcal/mol. 

Other predominant hyperconjugative interactions of the substituents with Zr for 

complex I involve electron transfer from the Cy-Hj and CT-H2 o-orbitals to the zirconium 

d-orbitals. These interactions stabilize the molecule by -16-18 kcal/mol each. This 

symmetric electron density donation from the H-C a bonds to Zr is consistent with a 

non-classical M - - r\ -H2C agostic interaction. 

Me \ Me 
\ / 

V H'H' 
Pc - osi-c 5.1 

\ y ' H i H2 

Me, Me 

^ssf/ ..c—H3 

cc-si - cl(1)Zr 3,3 

- d(5)Zr 5.8 

Me / M e 

Zrf l i fi2 

Oc-Si - d(1)zr 7.0 

- d(4)zr 6.9 

Mev Me 
\ / 

Z r * ^ " 2 

CTC-HI - d(4)Zr 18.5 

aC-H2 - d(4)Zr 16.1 

Figure 3.12. NBO Lewis structures, charge distribution (blue) and predominant 

hyperconjugative interactions in kcal/mol (red) for I. 

The hyperconjugative interactions for the structure with the 'Bu substituent have been 

discussed in Chapter 2. For the complex with the T3u substituent, unlike structure I, the p-
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orbital of the Cp ring is not localized on the Ca carbon attached to the alkyl and no 

significant interaction was found between the Cp ring and the substituent. There is also 

no interaction of alkyl the C-C bond electron density with the zirconium center stronger 

than 5 kcal/mol. In the 'Bu substituted ligand similar to I, the observed key interactions 

are the electron density transfer from the Cy-Hi/Cy-LL; a bond orbitals to the zirconium d-

orbitals; however these interactions are weaker than for complex I. 

For fluorous complex II, the Lewis structures, charge distribution and predominant 

hyperconjugative interactions are shown in Figure 3.13. 

pc - pSi 34.5 pF(sp) - Pxsi 100.8 p yF - dZr{5) 13.9 

PXF - dZr(4) 34.7 

(a) 

(b) 

Figure 3.13. NBO Lewis structures, charge distribution (blue) and predominant 

hyperconjugative interactions with the substituent in kcal/mol (red) (a) and no-

bond/double-bond resonance representation (b) for structure IV (n=0). 
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According to the NBO Lewis structures, the fluorine has a negative charge of -0.64 

and it is not bonded to the silicon atom. Fluorine has four lone-pair-type orbitals which 

are hybridised, but still can be recognized as one mostly s-orbital and three mostly px> py, 

pz-orbitals in nature. Because a bond was not found between F and Si in the NBO 

analysis, another lone-pair-type orbital with low occupancy appears on the Si atom, 

which is mostly px-orbtal in nature. In this complex, the NBO analysis reveals a strong 

hyperconjugative interaction between the Cp ring and the substituent (34.6 kcal/mol). In 

fact, electron density donation from the Ca p-orbital, to a vicinal Si p-orbital is associated 

with increasing the double bond character between the Ca-Si bond. At the same time the 

strongest hyperconjugative interaction is still between the F p- and Si p-orbitals (100.9 

kcal/mol). This negative hyperconjugation interaction is illustrated by the no-

bond/double-bond resonance for representation in Figure 3.13 b. Strong donor-acceptor 

interactions are also found between the two F donor px and py-orbitals and the practically 

vacant Zr d-orbitals. The highest stabilization energy for these interactions is 34.7 

kcal/mol, which is higher than the corresponding energy for the agostic interactions in I. 

For both Si and F modified alkyl substituents, the interaction with the metal is 

essentially electrostatic in nature and results in compensation of the highly positive 

charge on the metal via redistribution of electron density within the ligand skeleton, in 

order to favour an increased negative charge on the terminal groups, which can then 

coordinate to the metal (negative hyperconjugation). In both cases, the Cp ligand acts as 

electron density donor to the substituent. The fact that the calculated natural charges on 

the zirconium center changed from + 1.74 (Cp without substituent) to +1.64 (for C-

conformers) and to +1.55 (for F-conformers) also confirms this findings. 
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3.3.5 AIM analysis 

Figures 3.14 and 3.15 display the molecular graphs for the complexes I, II, III and the 

zirconocenium catalyst with the *Bu substituent, while Tables 3.3 and 3.4 collect data for 

the electron-density (p) and the Laplacian (V2p) at the bond critical points (BCP). The 

bond paths, connecting carbons and fluorines with the zirconium atom, clearly confirm 

the existence of intramolecular interactions between these atoms. In the complex with the 

'Bu substituent (Chapter 2) the agostic C-Zr interaction is close to vanishing or unstable, 

as can be inferred from the fact that the ring critical point almost coincides with the BCP. 

In structure I, this interaction is more stable, as can be judged from the ring critical point 

-and the BCP positions, and the larger electron density at the BCP for I than for the 

complex with the 'Bu substituent. The same conclusion about the interaction strength was 

drawn from the NBO analysis. In both complexes, the agostic interaction can be 

classified as a non-classical or C-agostic interaction. For structures II and III, with Zr-F 

fluorine coordination, the electron density values at the BCP are approximately the same 

as they are for the C-F or Si-F bonds, 0.33 e/AJ and 0.11 e/AJ, respectively. 
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Figure 3.14. Molecular graph for zirconoceneum complexes (I) and the complex with the 

'Bu substituent. 
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Table 3.3. Electron-density (p) and Laplacian (V2p) at the BCP for I and the complex 

with the 'Bu substituent. 

Properties 

p(BCP), e/A3 

V2p(BCP), e/A5 

Interactions 

C(CH3)-Zr 

0.655 

1.259 

C(Cp)-Zr(av.) 

0.330 

3.181 

(C)CpH3-Zr 

0.105 

1.459 

(Si)CpH3-Zr 

0.115 

1.652 

'l-.'&j*4 

Figure 3,15. Molecular graph for U or III. 

Table 3.4. Electron density (p) and Laplacian (V p) at the BCP for II and III. 

Properties 

p(BCP), e/A3 

V2p(BCP), e/A5 

Interactions 

(Si)F- Zr 

0.332 

5.812 

F-Si 

0.331 

3.181 

(Cp)F - Zr 

0.287 

4.982 

F - Cp 

0.285 

2.621 
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The selected AIM charges are shown in Figure 3.16 for I and for the complex with the 

'Bu substituent. The electron density at the BCP for the Zr-C interaction is higher for I than 

for the complex with the ?Bu substituent. The CyH3 terminal group is overall more 

negative in I than in the complex with the rBu substituents, therefore, the AIM charge 

analysis also supports the conclusion that the agostic interaction is stronger for I. 

CMeo 
s i ! I 

i *£>'' V a)."*,. U.107 
n ""v/ H Ln lvL_ ^ ° \ , . 

H n
 Y J ^ H - 0.042 . H _ _ ' ' 

- 0,0,59 

Figure 3.16. H and C charges for M - - n -H2C modes of agostic interactions for 

structure I and the T3u substituents. 

It is also worth mentioning that the zirconium atom is coordinated to the CF3-

substituted ligand in r)2-coordination mode. In general, in bent metallocenes some degree 

of the metal slippage is always present, and it is almost never r\~ -coordination. The 

mode of coordination depends on both how far the metal is from an imaginary line 

connecting the centers of the two Cp rings (the distance D, Figure 1.8, Chapter 1) and the 

amount of Cp ring electron density available for coordination to the metal. As can be seen 

from AIM molecular graphs, in all the zirconocenium complexes calculated here, the 

second unsubstitueted Cp ligand coordinates to the metal in n -coordination mode. The 

mode of coordination of another substituted Cp ligand depends on the substituent nature. 

For the shorter alkyls substituents such as methyl, ethyl and n-propyl, it is rj -
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coordination, while for longer n-butyl, it is r)4-coordination. Geometry analysis shows 

that the distance D is almost the same for all alkyl-substituted complexes. Therefore, an 

increase of the Cp electron density, compared to shorter alkyls, available for coordination 

with the metal can be assumed due to the electron donating nature of n-butyl. Strong 

electron withdrawing substituents and as CF3 deplete the electron density of the Cp ring 

and the latter coordinates to the zirconium atom in r)2-coordination mode. The degree of 

substituent geometry distortion is also higher. 

3.4. Conclusions 

Using computational chemistry methods, intramolecular interactions were found for 

ziconocenium catalysts with modified alkyl substituents attached to the Cp ring. Both 

highly electropositive Si-containing and highly electronegative F-containing substituents 

act as electron withdrawing groups with respect to the Cp ring. Due to their flexibility, 

the substituent alkyl chains can move closer to the central metal and interact with it 

directly. These intramolecular interactions result in an increase in the thermodynamic 

stability of the zirconocenium catalysts, along with charge compensation on the 

zirconium atom. For complexes with fluorous substituents, the stabilization effect is 

stronger for F-coordinated conformers than for conformers with a C-agostic interaction. 

The energy of F coordination can be decreased by adding two or more CH2 groups in the 

spacer alkyl chain. 

From structural analysis it was found that ligand geometry distortion increases with 

the electron withdrawing ability of the substituent on the Cp ring. It was also shown that 

the stabilization energy calculated with second-order perturbation theory is greater for the 
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Zr-F coordination than for Zr-C agostic interaction. Although the electron density can not 

be directly compared for different interacting nuclei, the AIM electron density at the 

BCPs is also higher for the complexes with Zr-F coordination than for those with Zr-C 

intramolecular interactions. Based on this work, it can be concluded that the interaction 

strength for different substituents increases in the following order: 'Bu<SiMe3<CF3< S1F3 

Therefore, for substituted zirconocenium catalysts, the charge on the metal center, 

and possibly its polymerization activity, cannot be predicted simply on the basis of the 

substituent electron-withdrawing or electron-donating ability with respect to the Cp ring 

only. Additional intramolecular interactions of flexible substituents with the central atom 

also have to be taken into account. 
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CHAPTER 4 

Influence of intramolecular interactions on polymerization activity 

4.1 Introduction 

As was shown in Chapter 2, changing the length of the alkyl substituent on the 

cyclopentadienyl ligand will result in a variety of steric and electronic environments 

around the metal center. Longer alkyl substituents are somewhat stronger electron donors 

than hydrogen, and they will thus slightly increase the electron density on the Cp ring and 

result in more compensation of the electron deficiency around the metal center, compared 

to unsubstituted Cp. Furthermore, an increase in the length of the alkyl may result in 

different degrees of steric hindrance. Additional electronic and steric modifications may 

be expected if an agostic interaction is present between the metal and hydrogen on the 

alkyl substituent (Figure 1.13). Additional effects on the intramolecular interactions 

between the metal center, the Cp ring and alkyl substituents might be expected if alkyls 

are modified by introduction of heteroatoms such as Si and F (Chapter 3). 

In an attempt to gain deeper insight into how alkyl substituents might affect 

polymerization, quantum chemical calculations based on density-functional theory (DFT) 

were performed on different monosubstituted zirconocene ethylene complexes. Our aim 

is to address the effect an alkyl substituent on the aromatic ligand may exert on the 

reactions that take place during polymerization. The polymerization behavior of a catalyst 

is intimately related to the structural and electronic environment of the active site. By 

pointing to certain structural and energetic features of model zirconocene cations, we 

attempt to contribute to the mechanistic understanding of these catalysts. Computational 
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results are used to explain experimental results for polymerizations activity. This work 

deals with only the first step of the polymerization mechanism - olefin molecule 

coordination. 

4.2 Computational methodology 

All geometries and energies discussed in this chapter are evaluated with DFT. The 

molecular geometry of ethylene-zirconocenium complexes was fully optimized at the 

B3LYP level of theory combined with the standard all-electron double-^ quality 6-31G 

(d,p) basis set (and LANL2DZ pseudopotentials for Zr) using the Gaussian 98 software 

package. . Vibrational frequencies and thermodynamic properties were calculated for all 

stationary points. Relative energies (A£) reported include zero-point corrections. For 

selected cases, enthalpies {Mi°29%), entropies (AS°29&) and free energy changes (AG°298) 

were also evaluated at 298 K under the rigid rotor-harmonic oscillator approximation. 

Results obtained in Chapters 2 and 3 using NBO analysis (provided as a routine within 

Gaussian 98) and AIM calculations (using the AIM2000 program package ) are also 

used in this chapter. 

4.3 Results 

4.3.1 Correlation of experimental polymerization activity with calculated catalyst 

properies 

The experimental polymerization activity of zirconocenium species I, II, III, IV, V 

from Chapter 2 and V from Chapter 3 is shown as a function of alkyl ligand substituent 

chain length (blue curve), along with the metal NBO charge (red curve) in Figure 4.1, and 
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Figure 4.1. Metal charge as calculated by NBO (red) and observed polymerization 

activity (blue) as a function of ligand substituent chain length. 
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Figure 4.2. Catalytic activity (in blue) and electron density at the agostic interaction 

bond critical point (in red, e/AJ) as a function of ligand substituent chain length. 
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along with the electron density at the bond critical point for the agostic interaction in 

Figure 4.2. 

No obvious correlation can be found between the charge of the central metal and the 

polymerization activity. As was shown in Chapter 3, the metal charge is predominantly 

determined by the stabilization effect of the agostic interaction(s) between the flexible 

and relatively electron-rich alkyl chain fragments and the positively charged metal center. 

Thus, the metal charge analysis is not helpful in predicting the catalytic activity of 

zirconocenium species for olefin polymerization. 

One might assume that the longer the hydrocarbon chain the less accessible the metal 

center, but a noticeable peak in the polymerization activity is observed for catalysts with 

n-propyl and n-butyl ligand substituents. This increase, on the other hand, might be 

explained by weak intramolecular interactions (Figure 4.2). The catalytic activity is the 

lowest for the unsubstituted zirconocenium species. Then a slight increase is observed for 

the catalyst with a methyl-substituted ligand (the NBO metal charge is also larger). The 

activity increases further, but modestly, for the catalyst with an ethyl-substituted ligand, 

for which a non-classical Zr...C agostic interaction was identified. The highest increase 

of catalytic activity for the catalysts with n-propyl and the n-butyl-substituted ligands 

coincides with the presence of classical Zr...H agostic interactions. The strongest single 

agostic interaction was observed for the catalyst with the n-propyl-substituted ligand, for 

which the polymerization activity is maximum. For n-butyl-substituted ligands, the two 

classical agostic interactions might be too strong for olefin complex formation, but still 

the activity is the second highest for the complexes investigated. Therefore, the relatively 

weak, but noticeable agostic interactions might play a role in the increase of catalytic 
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activity, compared to catalysts where there are no such interactions or, if present, the 

intramolecular interactions are much stronger. This catalytic activity increase might be 

achieved by weak ligand coordination to the metal center, preventing competitive solvent 

or co-catalyst binding to the zirconium, while allowing small olefin molecules to displace 

the substituent, since the interaction is not too strong. Formation of an olefin-catalyst 

complex is an essential step of polymerization according to the Z-N polymerization 

mechanism, and this issue is further addressed in the next section. 

4.3.2 Analysis of the olefin-catalyst complex formation 

The molecular structures of ethylene-zirconocenium complexes, along with selected 

geometrical parameters, are shown in Figure 4.3, while their formation/binding energies 

and free energies are shown in Figure 4.4. Ethylene binding is obviously 

thermodynamically less favourable when stabilizing effects on the metal center by ligand 

substituents are stronger. In other words, the larger the stabilizing effect of the 

intramolecular interaction, the weaker the olefin binds to the metal center. Weak olefin 

coordination might facilitate the next step of alkyl ligand migratory insertion and 

therefore increase the catalyst activity. The activity might be thought to be the highest for 

the catalyst with the fluorous ligand substituent, for which the ethylene-zirconocenium 

complex formation/binding energy is the lowest, but in fact, this is not the case. It has 

been reported that, if the olefin-catalyst formation/binding energy is less than 10 kcal/mol, 

no olefin binding actually occurs in the polymerization process; it is also known that 

fluorous substituents very often irreversibly coordinate to the catalyst active center, 

deactivating it. ' ' 
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Figure 4.3. Molecular structures of the ethylene-zirconocenium complexes with 

unsubstituted (a), trimethylsilyl-substituted (b), 'Bu-substituted (c), SiF3-substituted (d), 

CF3-substituted (e) and Si(Me)2F-substituted (f) ligands on the Cp ring, along with 

selected interatomic distances (A). (H - omitted, C in green, Zr in purple. Si in blue. F in 

yellow). 

The electron-donating ability of the flexible ligands to the metal seems to be the most 

predominant factor in determining the formation/binding thermodynamics properties of 

the ethylene-zirconocenium complexes (Figure 4.4). The higher the electron-donating 

ability of the ligand substituent, the stronger its interaction with the positively charged 

metal center. 

Prior to olefin-catalyst coordination, the ligand substituent has to be displaced from 

the metal coordination site. Therefore, the stronger the interaction between the ligand 

substituent and the metal center, the less thermodynamically favourable is the olefin-
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catalyst complex formation, and even more so as temperature rises. Stabilizing effects 

due to agostic interactions for zirconocenium species with alkyl ligand substituents on the 

Cp ring are weak, and thus, the formation of the olefin adducts is thermodynamically 

favourable, even at 298 K. On the other hand, in the case of zirconocenium species with 

fluorous ligand substituents, the fluorine atom is too close to the metal, coordination to 

the metal center is too strong, and ethylene-zirconocenium complex formation under 

ambient conditions is not possible. 

This means that, for catalysts with strong F-Zr intramolecular interactions, 

polymerization is not thermodynamically favorable at 298 K, and making these species 

effective catalysts requires "insulation" of the zirconium from the fluorine atom by 

1 5 Energy, m M 12,9 
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- 5 * 1 .,4 •» <• ' J 
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1-1 1 - 1 0 , 6 
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Figure 4.4. Ethylene-zirconocenium complex formation/binding energy at 0 K (in blue) 

and free energy at 298 K (in red). 
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adding alkyl or alkyl-like spacers between the Cp ring and the fluorous part of the ligand 

substituent. 

Stabilization energies due to fluorine coordination to the metal center were shown in 

Figure 3.11 (Chapter 3) for fluorous ligand substituents with (CH2)n- spacers of varying 

chain length, relative to the strength of the Cy agostic interaction. When there is no spacer 

(n=0), fluorine coordination to the metal center Is —17 kcal/mol thermodynamically more 

favourable than the agostic interaction. If a CH2- spacer (n=l) is placed between the 

silicon and fluorine atoms, the stabilization energy increases and equals almost 24 

kcal/mol. Further addition of a CH2- group to the spacer (n=2) stabilizes the fluorine-

coordination species by 25 kcal/mol, relative to the agostic interaction. For n=3, the 

stabilization energy of the fluorine-coordination species then falls to only 13 kcal/mol. 

For n=l and 2, fluorine-coordination species adopt 5- and 6-membered ring structures 

(Zr...Ca(Cp)...Sip...Cy and Zr...Ca(Cp)...Sip...Cy...Cs), respectively, and these 

conformations are the most stable of the structures with alkyl spacers. Hence, the number 

of carbon atoms in the alkyl spacer has to be more than two to effectively insulate the 

metal center from the fluorine so that polymerization can occur. These findings are 

supported by experimental data. 57~59 

4.4 Conclusion 

In this chapter, the possible effects of intramolecular interactions in catalysts on a-

olefin coordination polymerization were addressed. The experimental polymerization 

activity was found to be the highest for zirconocenium species that happen to exhibit 

classical agostic interactions, the strongest of the two types of agostic interaction, but still 
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a much weaker interaction than F coordination to the metal center. Analysis of ethylene-

zirconocenium complex formation/binding thermodynamics revealed that, for 

zirconocenium species with the strongest agostic interaction, ethylene coordination is 

thermodynamically favourable at 298 K, but much less than for zirconocenium species 

exhibiting weaker, non-classical agostic interactions. The weaker the olefin binding, the 

easier the next step, migratory insertion of the methyl ligand, and as a result, the higher 

the polymerization activity. For short fluorous ligand substituents, olefin binding is not 

thermodynamically favourable at all at 298 K, and therefore polymerization is not 

efficient. This is in good agreement with several published experimental results. ' ' 2 
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CHAPTER 5 

General conclusions and outlook 

This study was brought about by experimental observations in the coordination 

polymerization of a-olefins catalyzed with Group 4 metallocenes. The active species in 

this polymerization process is a zirconocenium complex where the metal is 

coordinatively unsaturated and positively charged. Its catalytic activity is to a large extent 

determined by the steric and electronic environments induced by the ligands. 

Experimental data has shown unambiguously that alkyl substituents on the Cp rings 

affect the polymerization activity of the catalyst and control the structural properties of 

the resulting polymer. Fast catalytic reactions are usually very difficult to monitor and 

rationalize, due to the difficulties in isolating short-lived active species experimentally. 

To shed some light onto the experimental findings, this work involves the modeling of 

zirconocenium catalysts, where the Cp rings bear alkyl substituents with various chain 

lengths or modified alkyl substituents containing highly electronegative F and/or 

electropositive Si atoms. 

The first part of this work (Chapter 2) focused on the molecular geometries, 

energetics and electronic structure of zirconocenium catalysts with saturated hydrocarbon 

substituents of various lengths on the Cp ring. It was observed that, due to the chain 

flexibility, part of the longer substituents can move closer to the metal. In spite of the fact 

that alkyls are relatively poor metal ligands, the metal is so active that weak coordination 

of a saturated hydrocarbon fragment to the zirconium takes place. This kind of interaction 

is known as agostic. In addition, it was found that, depending on the chain length, two 
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types of agostic interaction were possible: classical for the longer chains and non-

classical for the shorter chains. The intramolecular interactions between the alkyl ligand 

substituents and the metal center were analyzed using natural bond orbital (NBO) 

analysis and the quantum theory of atoms in molecules (AIM). According to established 

criteria, both classical and non-classical agostic interactions can be characterized as ionic, 

and the type of interaction is determined by the electron-donating ability of the alkyl 

ligand substituent with respect to the Cp ring, whether it acts as an electron donor or an 

electron acceptor. Depending on the role of the alkyl ligand substituent, the charge 

distribution on the terminal hydrocarbon fragment favours either the classical agostic 

interaction for longer chains or the non-classical agostic interaction for shorter chains. 

The second part of this work (Chapter 3) focused on the investigation of the 

molecular geometries, energetics and electronic structure of zirconocenium complexes in 

which the alkyl ligand substituent was modified with F and Si atoms. Similarly to the 

situation with unmodified alkyl ligand substituents, flexible chains were found to 

coordinate to the electronically and sterically unsaturated zirconium. In spite of the 

difference in electronegativity between F and Si atoms, both F and Si-containing alkyl 

chains act as electron-withdrawing substituents with respect to the Cp ring. In case of the 

Si-containing alkyl ligand substituents, a non-classical agostic intramolecular interaction 

between the terminal hydrocarbon fragment and the metal center was identified. It was 

shown that coordination of the alkyl ligand substituent to the metal center via the F atom 

is different from an agostic interaction and is, in fact, much stronger than for 

zirconocenium species with unmodified alkyl or Si-modified alkyl ligand substituents. 
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Analysis of the energetics revealed that coordination of the terminal alkyl F is the 

strongest for alkyl ligand substiruent chains containing one or two carbons. 

Finally, in Chapter 4, the possible effects of intramolecular interactions in catalysts on 

a-olefin coordination polymerization were investigated. It was found that there is a 

correlation between the experimental polymerization activity and agostic interactions. 

The stronger the interaction, the higher the polymerization activity of the catalyst. In this 

case a long alkyl might act as a semilabile ligand protecting the active metal center from 

interactions with solvent or co-catalyst molecules which might compete with olefin 

binding. 

According to the Cossee-Arlman homogenous Z-N polymerization reaction 

mechanism, the polymerization is a multi-stage process, in which olefin coordination to 

the zirconocenium is only the first step. In order to draw unambiguous conclusions about 

the relationship between agostic interactions and polymerization activity, all 

polymerization reaction steps should be investigated computationally. Given the size of 

the model systems; the computational cost of such analysis might be very high and might 

require a team of several researchers with powerful computational resources. Moreover, 

in practice, it is very difficult to compare polymerization activity data from different 

experimental sources. The many reported polymerization investigations were not 

performed under the same conditions, as different concentrations, solvents, reaction 

temperatures or pressures were used. Confirming that classical agostic intramolecular 

interactions between the metal center and ligand substituents may accelerate 

polymerization will require a specially designed set of experiments, all under the same 
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polymerization conditions, but with the different zirconocenium species investigated in 

this work. 
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Appendix A 

Short description of computational methods used in this study 

A proper description of the energy and geometry is necessary to predict various 

properties of molecules. A geometry optimization is a many-iteration process performed 

to find a stable atomic arrangement on the potential energy surface which is the 

mathematical relationship between the molecular geometries and their corresponding 

energies. A stable arrangement on the potential energy surface is a point where the forces 

are zero and is called a stationary point. A geometry optimization does not indicate the 

nature of the stationary point, that is, whether it is a minimum or a saddlepoint. For this 

purpose, a frequency calculation has to be performed for the optimized geometry, taking 

the second derivative of the energy with respect to atomic positions in order to determine 

whether the observed geometry is a minimum (no imaginary frequencies) or a transition 

state (one imaginary frequency). Since molecules always have some vibrational motion 

even at zero temperature, it is necessary to add the zero-point vibrational energy 

correction to the total energy of the optimized geometry. Theoretical methods have also 

been developed to analyze the calculated electronic structures and provide insight into the 

bonding scheme of molecules. These methods analyze electron wave functions and/or 

density.81 

A.l Quantum chemistry computational methods for molecular geometry and energy 

calculations 

A computational method that does not rely on experimental values is called an ab 

initio method. The Hartree-Fock method is the simplest ab initio method where the 
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electron-electron interaction is considered in an average fashion, i.e. an electron 

experiences the interaction with all remaining electrons via an average field. As a result 

of this, the Hartree-Fock method is not accurate enough for most purposes. Higher-level 

ab initio methods for calculations taking electron-electron interaction, the so-called 

electron correlation, into consideration explicitly were also developed. 

Another important approach that includes electronic correlation is known as density-

functional theory (DFT). In DFT the energy of the electronic system is expressed in terms 

of the electron density. 

A.2 Methods of determining partial atomic charges 

The atomic charge distribution in molecules is often used to explain structure and 

reactivity. Despite its usefulness, the concept of a partial atomic charge is somewhat 

arbitrary, because atomic charges are not measurable properties and they depend on the 

method used to delimit atoms (in reality, atoms in molecules have no clear boundaries). 

As a consequence, there are many methods for estimating partial charges; based on 

various partitioning schemes to define the atomic subspace in a molecule. These methods 

include, but are not restricted to, population analysis based on atomic and molecular 

orbitals (Mulliken population analysis and Natural charges) and partitioning of electron 

density distributions (Atoms-in-molecules quantum theory). 
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A.3 Quantum chemical methods for analyzing the chemical bonds 

A. 3.1 Natural bond orbital analysis 

Molecular orbitals (MO) are generally delocalised over the whole molecule, and 

usually bear no resemblance to "conventional" a, n bonds, or lone-pair orbitals, so they 

cannot be used to support familiar chemical reasoning. Overlap of hybrid orbitals to 

produce localized bonds, proposed by Pauling and used by most chemists ever since, is 

not just a figment of our collective imagination: the calculated electron density can also 

be described in these terms. In natural bond orbital (NBO) analysis The atomic basis 

set is transformed into an equal number of natural atomic orbitals (NAOs), and the MOs 

into an equal number of natural bond orbitals (NBOs) (Figure A.l). These additional 

transformations are not computationally expensive. This analysis was devised by F. 

Weinhold at University of Wisconsin, during the 1980s. NBO analysis is available in the 

Gaussian package. NBO analysis transforms a given wave function into localized form, 

corresponding to the one-center (lone pair) and two-center ("bond") elements of the 

Lewis structure representation. The process involves the following steps: 

o input AO basis sets NAOs 

• Basis functions are transformed to natural atomic orbitals 

o NAOs ^ NHOs 

• NAOs are combined into natural hybrid orbitals, so as to describe 

the atom combination to the molecular electron density 

• The NHOs form orthogonal sets on each A and B atom as 

<JAB
 =

 CAIIA + Cehe (Lewis or bond orbitals) 
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a AB = CAIU - CBIIB (non-Lewis or antibonding orbitals), 

where hA, he are valence hybrids orbital and CA, CB are coefficients 

o NHOs ~-"** NBOs 

• NHOs overlap to produce NBOs 

The total number of orbitals remains the same: 

No. of basis functions = no. of MOs = no. of NAOs = no. of NBOs 

Each set consists of normalized linear combinations of MOs, which also form a valid 

set of solutions to Schroedinger's equation for the molecule. Because there is not a one-

to-one correspondence between occupied or virtual MOs and NBOs, the NBOs are not 

restricted to either occupied or empty, as MOs are and in fact NBOs have fractional 

occupancy between 0 and 2. Many NBOs contain nearly 2 electrons: these correspond to 

classical Lewis-type core, bonding or lone pair orbitals. Some of the remaining NBOs 

are not practically empty: usually these are antibonding orbitals. 

NBO analysis can be used to calculate the stabilization energy arising from orbital 

derealization. This is done by examining all possible interactions between 'filled' (donor) 

Lewis-type NBOs and 'empty' (acceptor) non-Lewis-type NBOs, and estimating their 

energetic importance by 2nd-order perturbation theory. Since these interactions lead to 

loss of occupancy from the localized NBOs of the idealized Lewis structure into the 

empty non-Lewis orbitals (and thus, to departure from the idealized Lewis structure 

description), they are referred to as 'derealization' corrections to the natural Lewis 

structure (Figure A.2). 
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A.3.2 Atoms-in-molecules quantum theory 

The electron density p(r) of a molecule- i.e. the probability of finding an electron of the 

molecule at a given point in space, can be calculated or determined experimentally and 

provides information about the electron distribution within the molecule, which may 

allow for an understanding of molecular properties. The quantum theory of "atoms in 

molecules" (AIM) analyses of its topology of p(r), Vp(r) andV p(r). The topology is 

described by the number and kinds of critical points. Critical points (CP) are the points 

where the first derivative of p(r) vanishes (Vp(r) = 0), thus they determine the positions 

of extremes as maxima, minima or saddle points. Each CP is labelled by rank (eo) and 

signature (a) as (co, a). For example (3,-3) CP with three negative curvatures and occurs 

at nuclear positions. A (3,-1) CP has two negative curvatures and one positive, is found 

between every pair of interacting nuclei is referred to as a bond critical point (BCP) in a 

minimum geometry. Connecting all (3, -1) to their respective (3, -3) CPs produces a 
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&m 

0_(/ @tJj 
LUMO BD - antibonding f<j) orbitals 

"HOMO 

\ ^ HWH 

i JS*^ 
LP - lone pairs 

^ H H \ ^ H 

BD - bonding (a) orbitals spn*3 

{23.9% s, 76.1% p) 

i CR - core electrons 

(a) Delocalized MO (b) N a t u r a l M 0 

Figure A.l. Delocalized MOs (a) and natural MOs (b)for the water molecule. 

urtfiHed(acceptor) 

filled (donor) 

stabilization energy, E - measure of derealizations 
(hyperconjugation) 

Figure A. 2. NBO second-order perturbation approach for bond derealization energies. 
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molecular graph. Figure A 3 displays BCPs of the water molecule. Gradient vectors that 

terminate at a BCP span the interatomic surface. The atom is then defined as the union of 

a (3, -3) CP and its basin (O), the area enclosed by interatomic surfaces. Integration of 

p(r) over a basin determines, for example, an atom's volume, energy and charge. It was 

proposed to use AIM to find and characterize agostic interactions. The sign of the 

Laplacian of the electron density V2p at the BCP defines the shared or closed-shell 

interaction. If the Laplacian is negative then it is defined as shared interaction and if it is 

positive then it is defined as a closed-shell interaction. Covalent bonds typically 

correspond to shared interaction, while other types of interactions are closed-shell 

interactions. The value of p at the BCP for ionic bonds is usually 10 times weaker than 

for covalent and approximately of the order 10"1 e/AJ. 

(a) contour graph of (b) Vp, gradient vector field ^ molecular graph 
electronic density, p(r) 

interatomic surfaces 

Q Atomic basin bond critical points (BCP) 
(2nd order saddle point) 

Figure A.3. Contour diagram and molecular graph for the water molecule. 
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Appendix B 

Supplemental information related to CHAPTER 2 

Table Bl. Geometry of the structure in Figure 2.3. 

B3LYP/6-31G(d,p) 

Atomic 
Number 

6 
6 
6 
6 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Coor 
X 

-1.173308 
-2.525406 
-2.540842 
-1.197206 
-0.338264 
1.187812 
1.724378 
1.724765 
1.761570 

-0.830711 
-3.397596 
-3.426175 
-0.881730 
2.826705 
1.387444 
1.331378 
2.827128 
1.331971 
1.387858 
2.861951 
1.420466 
1.420316 

dinates (Angs 
Y 

-1.138162 
-0.714748 
0.702792 
1.155591 
0.018618 
0.006524 

-0.731700 
-0.728789 
1.443352 

-2.171393 
-1.365508 
1.335173 
2.195375 

-0.779833 
-0.215340 
-1.754117 
-0.776752 
-1.751216 
-0.210479 
1.427514 
1.993946 
1.991765 

stroms) 
Z 

0.000104 
-0.000033 
0.000001 
0.000112 
0.000248 
0.000000 

-1.260266 
1.261746 

-0.001753 
0.000404 

-0.000408 
-0.000117 
-0.000020 
-1.271340 
-2.167268 
-1.297343 
1.272878 
1.301214 
2.167653 

-0.001805 
0.883019 

-0.887830 

E =-350.6821908 hartrees 

v = .33.9726, 144.7987, 212.0046, 237.5774, 282.8360,-286.274 6, 333.8472, 

341.5893, 342.3973, 443.2067, 471.1628, 580.9224, 628.8884, 635.5185, 

670.9425, 692.5104, 761.2685, 791.9701, 818.0127, 881.8339, 913.1820, 

934.6720, 942.2064, 974.5476, 1058.2228, 1068.4770, 1077.4061, 

1083.8654, 1102.5919, 1201.0975, 1229.4641, 1238.4069, 1298.3479, 

1323.0610, 1398.2946, 1415.5619, 1417.0223, 1426.3823, 1444.5035, 

1473.2475, 1514.4701, 1525.5362, 1525.6319, 1530.4317, 1534.6703, 

1537.3544, 1555.2729, 2975.7356, 2985.9905, 3011.4969, 3075.0461, 

100 



3 0 7 7 . 7 8 6 8 , 3 0 8 7 . 5 3 2 6 , 3 1 0 7 . 7 2 0 4 , 3 1 1 3 . 8 6 6 7 , 3 1 1 6 . 5 2 1 3 , 3 1 3 7 . 3 1 9 0 , 

3 1 5 2 . 8 1 1 9 , 3171 .3532 , 3193 .0567 cnf1 

File name (in my CERMM directory): Ligand2.log 

Table B2. Zr. geometry of I. 

B3LYP/6-31G(d,p) on lighter elements and DZVP DeMon DFT orbitals on 

Atomic C o o r d i n a t e s (Angstroms) 
Number X Y Z 

6 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 

40 
6 
1 
1 
1 

1 
2 
2 
1. 
1. 
3 
0 
2 
1. 
0, 
2. 
4. 
3. 

-2. 
-2. 
-2. 
-2. 
-2. 
-2. 
-2. 
-1. 
-2. 
-2. 
-0. 
0. 
1. 

-0. 
-0. 

.290135 

.073024 

.374332 

.765802 

.128634 

.230320 

. 941966 

.399548 

.833501 

.610900 

.928879 

.270749 

.215874 

.554560 

.260575 

.070513 

.221541 

.544741 

.766641 
,227831 
.862532 
,179344 
743939 
,156779 
052272 
029314 
732968 
021834 

-1 
0 

-0 
-1 
-1 
0 

-1 
0 

-1 
-2, 
0 
0, 
1. 
0, 

-0. 
-1. 
-0. 
0. 
1. 

-0. 
-2. 
-1. 
1. 
0. 
2. 
2. 
2. 
2. 

.064325 

.059634 

.070327 

.289426 

.912175 

.851067 

.270897 

.866616 

.693292 

.861893 

.866830 

.506673 

.873947 

.857598 

.329125 

.386445 
,851812 
.532694 
.832392 
.414975 
.418761 
.415577 
.216524 
.213238 
,320293 
,747078 
,977294 
,352610 

1 
1 

-0 
-0 
0 

-1. 
2 
1 

-1. 
0, 

-2, 
-1. 
-0. 
-0. 
-1. 
-0. 
0. 
0. 

-1. 
-2. 
-0. 
1. 
1. 

-0. 
0. 
0. 
0. 
1. 

.493108 

.091261 

.290601 

.740389 

.361223 

.114255 

.497812 

.733104 

.744859 

.345004 

.166316 

.087197 

.729695 

.663804 

.400960 

.476465 

.837407 

.713465 
,084494 
,481430 
.724441 
.760700 
528054 
083917 
689102 
430331 
298999 
786562 

E = - 4006.7936048 hartrees 

V = 

113, 

281, 

469. 

653. 

850. 

= 15.7755, 

.3596, 

.4664, 

.3823, 

.4628, 

,2656, 

133. 

290. 

485. 

678. 

851. 

34.0867, 

.0286, 

.4018, 

.8906, 

.9537, 

.5502, 

165 

307 

497, 

703, 

854. 

62.1696, , 

.7375, 

.8436, 

.2434, 

.8617, 

.5860, 

176 

361 

545, 

822, 

859. 

24.2355 

.9271, 

.8566, 

.3418, 

.3311, 

.9475, 

», 40.4762 

217, 

383 

592. 

835. 

862. 

.0694, 

.1476, 

.4854, 

.7112, 

.7480, 

88 

243. 

386. 

597. 

842. 

909. 

.1474 

,8953, 

.1359, 

,6745, 

7113, 

2328, 

99, 

260, 

436, 

601. 

847. 

928. 

.4851, 

.3377, 

.5140, 

.6035, 

.9809, 

.2853, 
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938.0016, 939.1582, 942.4423, 1036.4578, 1043.3203, 1058.0545, 

1072.2944, 1090.0205, 1091.6138, 1094.0757, 1145.6057, 1186.4353, 

1212.4463, 1256.5227, 1297.7934, 1339.1415, 1377.2969, 1401.1739, 

1406.9639, 1418.2258, 1425.2663, 1439.2685, 1444.5175, 1467.8757, 

1475.0324, 1482.6980, 1516.3182, 3025.3991, 3099.1198, 3120.8828, 

3242.3814, 3248.3365, 3254.7114, 3256.6572, 3263.4073, 3265.5603, 

3270.6771, 3276.2976, 3277.2778 cm"1 

File name (in my CERMM directory): ChainlBS.log 

Table B3. Geometry of Ha. 

B3LYP/6-31G(d,p) on lighter elements and LanL2DZ on Zr 

Atomic 
Number 

6 
6 
6 
6 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

40 
6 
6 
1 
1 
1 
1 
1 
1 
6 

Coordinates (Angs 
X 

0.484595 
0.301976 
1.051843 
1.710644 
1.333214 
2.989446 
2.808864 
4.137701 
2.524406 
0.043949 

-0.302748 
1.130828 
1.668281 
3.268261 
2.080836 
3.787920 
4.085335 
4.966127 
4.372174 
3.357586 
1.615325 
2.398657 

-0.912021 
-0.781801 
-2.583178 
-0.554349 
-1.756019 
-0.031764 
-2.833926 
-3.501523 
-2.279738 
-0.883183 

Y 

2.445880 
1.853318 
0.648431 
0.482699 
1.599116 

-1.567426 
-0.526278 
0.259189 

-1.253937 
3.372350 
2.244796 

-0.019376 
1.790004 

-1.092287 
-2.152284 
-2.267625 
0.987615 

-0.426514 
0.802570 

-1.919047 
-1.860195 
-0.546891 
0.334554 
0.329861 
1.891420 
1.341065 
0.038684 

-0.346914 
2.173627 
1.522697 
2.807441 

-2.136500 

;troms) 
Z 

-0.232311 
-1.507392 
-1.534836 
-0.281660 
0.523894 

-1.059010 
0.062377 
0.203463 
1.393491 
0.108484 

-2.314897 
-2.381756 
1.534124 

-2.005009 
-1.230102 
-0.792603 
1.018239 
0.415555 

-0.717561 
1.647197 
1.333869 
2.218760 
0.154343 
2.436197 
0.012024 
2.797531 
2.849854 
2.863127 

-1.019089 
0.484493 
0.534484 

-0.513711 
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6 - 1 . 6 1 4 0 9 6 - 1 . 4 6 1 4 7 8 - 1 . 5 3 3 2 3 9 
6 - 2 . 8 3 4 2 6 7 - 1 . 0 1 3 2 4 8 - 0 . 9 6 8 7 6 9 
6 - 2 . 8 5 3 9 4 6 - 1 . 4 0 0 1 7 3 0 . 3 9 5 3 3 7 
6 - 1 . 6 5 6 1 7 7 - 2 . 1 0 3 2 0 0 0 . 6 7 4 8 4 2 
1 0 . 0 7 4 4 5 8 - 2 . 6 2 2 7 9 9 - 0 . 6 3 3 7 5 2 
1 - 1 . 3 0 5 2 9 4 - 1 . 3 3 6 8 2 2 - 2 . 5 6 2 7 1 2 
1 - 3 . 6 0 5 7 9 5 - 0 . 4 5 5 6 3 0 - 1 . 4 8 1 4 2 0 
1 - 3 . 6 3 9 7 6 1 - 1 . 1 7 8 6 2 5 1 . 1 0 5 1 2 6 
1 - 1 . 3 7 4 2 2 3 - 2 . 5 2 4 0 4 2 1 . 6 3 0 1 7 5 

E = -670.7964724 hartrees 

v = 26.1767, 37.8443, 65.4853, 97.3239, 124.5995, 133.6733, 140.6140, 

148.1487, 164.9107, 181.0822, 208.9833, 214.9668, 225.7441, 232.6769, 

241.5324, 261.3864, 263.1059, 279.7869, 291.3272, 297.2066, 322.9174, 

336.3501, 345.5002, 370.0564, 441.4077, 454.5262, 465.2425, 467.5424, 

519.2847, 546.0324, 578.2107,595.4393, 598.8221, 603.7714, 641.6446, 

655.2027, 681.3398, 808.5187, 810.4958, 813.9206, 816.6072, 822.3762, 

825.0034, 853.9368, 856.6189, 864.0086, 883.7624, 895.4981, 910.4844, 

911.8971, 926.0891, 935.1409, 945.6185, 966.1885, 1038.6335, 1043.5010, 

1046.2528, 1054.2755, 1069.0720, 1075.3253, 1088.8923, 1089.9343, 

1092.6820, 1154.4373, 1188.0580, 1188.9515, 1196.9543, 1217.8692, 

1229.5099, 1276.9987, 1298.7920, 1306.4895,"" 1382.9448, 1408.8586, 

1410.9811, 1412.4471, 1414.0219, 1431.3543, 1445.4920, 1454.6270, 

1458.3204, 1460.0692, 1463.9012, 1466.3858, 1485.6114, 1488.1034, 

1493.7600, 1497.6957, 1500.8951, 1513.7845, 1517.7327, 1520.6354, 

1536.0466, 3015.4492, 3017.0186, 3039.7528, 3044.6258, 3052.0798, 

3090.5861, 3092.2200, 3101.1645, 3101.5908, 3110.0689, 3113.1209,-

3119.1775, 3123.0730, 3126.2607, 3128.1135, 3244.1291, 3245.1739, 

3247.8727, 3253.0256, 3259.7538, 3261.3421, 3266.1323, 3271.4796, 

3275.5548 

File name (in my CERMM directory): No25tBuNeu.log 

Table B4. Zr .geometry of lib. 

B3LYP/6-31G(d,p) on lighter elements and DZVP DeMon DFT orbitals on 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 2.037244 -1.925583 -0.355411 
6 2.606339 -1.358734 0.823192 
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6 
6 
6 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

40 
6 
1 
1 
1 

3.126989 
2.852915 
2.192316 
1.594026 
2.657802 
3.640445 
3.157299 
1.885233 

-1.748871 
-0.968717 
-0.113826 
-0.362714 
-1.364839 
-2.602781 
-1.615413 
-3.275000 
-3.676369 
-1.024131 
0.564201 
0.112572 

-1.768351 
-2.099757 
-0.828976 
-1.165953 
-3.879441 
-2.547564 
-3.934700 
-4.273829 
-4.352031 
-3.242320 
0.609395 
0.936871 
1.549066 
1.451557 

-0.015812 

-0.084168 
0.155381 

-0.995347 
-2.911143 
-1.831353 
0.588231 
1.026509 

-1.139216 
0.494630 
0.403373 
1.539314 
2.341921 
1.703092 

-0.625395 
-1.511112 
-1.468593 
-0.062977 
-0.380999 
1.776314 
3.285874 
2.078488 

-2.384515 
-1.953247 
-0.968387 
-2.261037 
-1.948603 
-0.848878 
-0.878653 
0.609811 
0.488631 
0.115943 
1.197726 
0.605273 
2.157092 
1.430922 

0.490483 
-0.886598 
-1.411773 
-0.436199 
1.796207 
1.163687 

-1.452280 
-2.439159 
-0.482884 
-1.677114 
-1.744658 
-0.599922 
0.172725 
0.121210 
0.925976 

-0.977684 
1.070704 

-2.420438 
-2.553776 
-0.366170 
1.101743 
1.375162 
0.276704 
1.779607 

-0.526671 
-1.640367 
-1.591382 
1.488317 
0.535239 
1.910614 
0.213721 
2.178843 
2.867618 
2.030993 
2.669184 

-4124.7471585 hartrees 

v = 31.2685, 39.1516, 79.0870, 86.4782, 132.8482, 139.9060, 142.8226, 

203.6836, 227.3691, 228.9255, 244.0818, 250.5397, 261.3842, 280.7733, 

287.4606, 311.8071, 331.9426, 343.0452, 359.6901, 360.1516, 374.8485, 

445.7215, 463.6144, 465.9903, 482.8127, 572.0623, 576.0644, 582.9622, 

589.1906, 681.5879, 694.7587, 809.2019, 827.9900, 835.5236, 842.6281, 

846.6387, 850.5196, 851.6375, 852.7473, 858.9250, 884.8724, 921.9912, 

922.6073, 923.3206, 925.9396, 926.7347, 941.5803, 965.7562, 1015.3107, 

1035.3974, 

1091.1033, 

1229.5200, 

1399.9524, 

1448.7989, 

1043.7238, 

1094.2431, 

1275.7516, 

1406.8296, 

1455.3668, 

1045.7418, 

1145.1361, 

1294 .1485, 

1422.3790, 

1473.7706, 

1069.7438, 

1178.2289, 

1298.3709, 

1427.7453, 

1074.3589, 

1211.2715, 

1378.4464, 

1445.5781, 

1483.6521,1492.4751, 

1088.5750, 

1217.3766, 

1381.5020, 

1447.6060, 

1496.7230, 
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1499.1338, 1501.4084, 1520.8734, 1525.2000, 1532.0352, 2896.4391, 

2970.5231, 3025.3224, 3054.0108, 3057.9719, 3095.6104, 3104.3565, 

3116.5075, 3123.3955, 3126.7897, 3137.7843, 3141.3821, 3239.0045, 

3251.0942, 3252.5047, 3255.7188, 3259.3909, 3267.4751, 3269.5551, 

3277.7830, 3279.6737 cm"1 

File name (in my CERMM directory): No25BStBu.log 

Table B5. Geometry of ILL 

B3LYP/6-3 lG(d,p) on lighter elements and DZVP DeMon DFT orbitals on Zr . 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 1.327735 -2.049000 0.276716 
6 2.113064 -0.941844 0.686217 
6 2.223745 -0.035980 -0.409157 
6 1.496126 -0.596629 -1.500045 
6 0.940101 -1.836997 -1.074435 
6 2.751832 1.378508 -0.337355 
6 1.622878 2.310800 0.144140 
1 1.082004 -2.912096 0.881893 
1 2.560466 -0.809638 1.662256 
1 1.400164 -0.163534 -2.488487 
1 0.374567 -2.524626 -1.689024 
1 3.108643 1.703044 -1.319078 
1 3.599469 1.439410 0.350932 
1 1.299547 2.072339 1.172576 
1 1.919903 3.363249 0.173156 
1 0.755641 2.296629 -0.548331 
6 -2.499130 1.093314 0.340866 
6 -2.025238 1.306955 -0.987655 
6 -1.912754 0.046925 -1.624210 
6 -2.308205 -0.952861 -0.685839 
6 -2.691916 -0.298032 0.520275 
1 -2.701616 1.862122 1.076192 
1 -1.820047 2.269339 -1.441839 
1 -1.601704 -0.127005 -2.645797 
1 -2.375280 -2.015433 -0.880758 
1 -3.062901 -0.778432 1.415046 

40 -0.190315 0.011962 0.220934 
6 -0.341932 -0.279732 2.462126 
1 0.620545 -0.099009 2.955090 
1 -1.094583 0.382378 2.904555 
1 -0.630046 -1.309789 2.714377 

-4046.1131546 hartrees 

= 3 0 . 2 6 9 0 , 3 2 . 9 9 2 9 , 8 8 . 1 6 0 5 , 9 1 . 0 5 2 1 , 1 1 8 . 0 4 9 6 , 1 2 7 . 0 2 1 5 , 1 3 7 . 9 8 9 2 , 
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216.6737, 239.7673, 251.2042, 266.8168, 269.1134, 289.8080, 

357.0936, 360.3823, 433.1689, 450.0616, 480.0675, 589.2141, 

598.5162, 626.3063, 676.0961, 687.2792, 785.9167, 837.8694, 

846.4026, 847.6343, 850.9685, 852.6749, 855.6878, 860.8915, 

920.9579, 927.1312, 929.5198, 933.9786, 975.6576, 1034.8751, 

1043.6806, 1049.6262, 1067.4574, 1078.1671, 1089.4373, 

1094.7500, 1144.7799, 1210.8606, 1244.6625, 1256.3311, 

1297.6514, 1353.3580, 1395.1149, 1398.6800, 1399.7461, 

1428.9059, 1440.2731, 1443.3321, 1461.6650, 1473.3327, 

1491.8116, 1504.7910, 1516.8878, 1521.2086, 2916.3763, 

3022.2790, 3083.1208, 3092.4169, 3116.9502, 3120.8952, 

3237.6110, 3241.3817, 3250.8648, 3252.2295, 3255.6005, 

3266.4454, 3270.1572, 3276.5439 cm"1 

File name (in my CERMM directory): chain2CBS.log 

321 

595 

8 38 

893 

1038 

1091 

1297 

1407 

1483 

2998 

3131 

3262 

.3221, 

.0471, 

.4314, 

.4912, 

.9826, 

.2313, 

.1339, 

.4669, 

.6988, 

.1579, 

.6358, 

.0108, 

Table B6. Geometry of IV. 

B3LYP/6-31G(d,p) on lighter elements and DZVP DeMon DFT orbitals on Zr 

Atomic 
Number 

6 
6 
6 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 

Coordinates (Angs 
X 

0.550928 
1.552871 
2.090907 
1.420929 
0.489673 
3.157145 
2.827484 
1.391871 

-0.025631 
1.859608 
1.614674 

-0.150751 
4.106863 
3.319119 
3.531322 
2.976037 
1.101073 
1.253753 
0.672242 

-2.483047 
-2.082332 
-2.156111 
-2.601140 

Y 

-2.365082 
-1.567979 
-0.681217 
-0.958896 
-2.001841 
0.360446 
1.749070 
2.209920 

-3.146605 
-1.627982 
-0.476508 
-2.449253 
0.010444 
0.447480 
2.479879 
1.760636 
1.997041 
3.286873 
1.783383 
1.380504 
1.344480 
0.002098 

-0.797818 

troms) 
Z 

0.226729 
0.844529 

-0.128229 
-1.365534 
-1.147790 
0.112681 

-0.469511 
-0.164613 
0.705411 
1.879361 

-2.316511 
-1.896180 
-0.310138 
1.192760 

-0.060135 
-1.554687 
0.880288 

-0.295732 
-0.899545 
0.263816 

-1.103563 
-1.550140 
-0.455395 
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6 -2.820293 0.062673 0.657904 
1 -2.544027 2.264424 0.886025 
1 -1.804200 2.200399 -1.706735 
1 -1.941025 -0.349275 -2.550527 
1 -2.802482 -1.860781 -0.486260 
1 -3.179387 -0.236707 1.632873 

40 -0.321682 0.005934 0.182595 
6 -0.348186 0.134228 2.451745 
1 0.660732 0.269197 2.860001 
1 -0.975062 0.966407 2.791380 
1 -0.749763 -0.779920 2.908772 

E =- 4085.4366862 hartrees 

v = 34.4815, 48.8707, 94.8340, 108.3761, 132.2933, 152.6039, 167.3600 

168.7918, 201.8962, 230.0557, 258.5611, 275.9567, 292.0643, 322.3953 

336.7611, 344.4266, 373.3208, 414.5348, 466.0451, 477.8805, 485.6900 

594.4293, 595.4503, 600.1908, 617.9684, 660.0166, 677.5690, 794.9449 

838.7237, 840.2242, 846.2329, 847.5881, 851.5985, 853.3806, 856.2457 

858.3083, 872.9951, 896.3374, 903.1349, 925.6970, 932.0317, 935.6795 

940.7388, 1033.6407, 1036.0110, 1043.8867, 1051.6808, 1065.5030 

1081.9725, 1089.0835, 1091.4266, 1093.1029, 1096.9050, 1145.9780 

1213.2468, 1236.4859, 1253.0323, 1272.0614, 1289.4742, 1298.3463 

1362.2472, 1367.4119, 1381.1668, 1401.0933, 1407.2498, 1408.3085 

1430.6781, 1447.3133, 1448.2235, 1465.9873, 1474.7947, 1484.3400 

1491.3439, 1502.2091, 1506.0075, 1521.7465, 1549.5248, 2870.3452 

2987.0009, 3023.5536, 3053.7586, 3070.3632, 3093.3179, 3096.2761 

3113.9182, 3117.5091, 3123.3743, 3235.9241, 3240.2060, 3249.5184 

3251.5220, 3257.0136, 3265.0075, 3266.5335, 3272.6272, 3275.8519 cm"1 

File name (in my CERMM directory): chain3BS.log 

Table B7. Geometry of V 

B3LYP/6-31G(d,p) on lighter elements and DZVP DeMon DFT orbitals on Zr 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 -0.273728 2.517733 0.323174 
6 -1.378309 1.794926 0.842331 
6 -1.937897 1.001681 -0.197440 
6 -1.162470 1.248810 -1.375465 
6 -0.150243 2.190704 -1.054538 
6 -3.131511 0.087104 -0.063192 
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6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 

40 
6 
1 
1 
1 

-2 
-1 
•1 
0 
•1 
•1. 
0 
•4. 
•3. 
•3 
•3. 
•1. 
•0. 
•2. 
•1. 
•0. 
2, 
1, 
2, 
2, 
2. 
2. 
1. 
1, 
2, 
3. 
0. 
0. 
0. 
1. 
1. 

.958125 

.636530 

.320017 

.344116 

.742988 

.340865 

.570420 

.009876 

.356144 

.792608 

.026358 

.624858 

.811879 

.166556 

.172971 

.450742 

.406257 

.865122 

.009639 

.655006 

.915153 

.458676 

.437231 

.715422 
,956930 
.414935 
.390890 
.812021 
.106274 
.333251 
449344 

-1 
-1. 
-2. 
3 
1 
0. 
2 
0 

-0. 
-1. 
-1. 
-2. 
-1. 
-2, 
-1. 
-2. 
-1. 
-1. 
-0. 
0. 

-0. 
-2. 
-2. 
0. 
1. 
0. 
0. 
0. 
0. 

-0. 
1. 

.287922 

.999695 

.156489 

.215889 

.842940 

.826067 

.606632 

.581275 

.039554 

.933749 

.183359 

.992244 

.493231 

.617860 

.205175 

.796965 

.521221 

.563531 

.279513 

.559746 

.217038 

.349473 

.433238 
,004600 
.586954 
.124866 
.065378 
.359186 
.515065 
.514563 
233113 

-0. 
-0. 
1. 
0. 
1. 

-2. 
-1. 
-0. 
1. 

-0. 
-1. 
-0. 
-0. 
1. 
1. 
1. 
0. 

-1. 
-1. 
-0. 
0. 
0. 

-1. 
-2. 
-0. 
1. 
0. 
2. 
3. 
2. 
2. 

.737350 

.402406 

.091538 

.872320 

.859521 

.356520 

.745502 

.496114 

.001220 

.442737 

.825811 

.865631 

.964454 

.609961 

.635890 

.266498 

.187073 

.129247 

.708508 

.750536 

.410605 

.882487 

.612484 

.710152 
,906301 
,305571 
.196855 
.426430 
.002579 
.834471 
606197 

E = - 4124.7513554 hartrees 

v = 39.4665, 61.0692, 99.4302, 125.8394, 133.7751, 142.1938, 167.1106, 

178.5910, 209.5258, 240.1375, 249.5072, 260.4001, 267.2002, 276.5027, 

294.5266, 322.6109, 330.6801, 344.9469, 362.2107, 392.3486, 465.1899, 

511.3957, 549.6523, 592.7972, 597.1974, 602.2225, 614.5283, 668.4352, 

689.8355, 746.2366, 814.6773, 840.4450, 841.7037, 845.2856, 849.5804, 

852.0148, 852.4609, 857.1006, 861.2668, 870.1985, 899.3665, 928.5655, 

931.3749, 933.4348, 938.3756, 954.7202, 979.3832, 1036.9830, 1045.5594, 

1064.9522, 1069.2625, 1077.3074, 1084.2344, 1090.5345, 1093.3363, 

1096.0753, 1106.8816, 1147.7980, 1206.6008, 1216.9585, 1247.8679, 

1257.0604, 1279.5821, 1295.8652, 1299.7000, 1348.4069, 1376.2565, 

1386.3507, 1403.9273, 1409.7918, 1410.6829, 1433.8774, 1435.1596, 

1454.6274, 1459.8895, 1464.4804, 1477.4168, 1482.9495, 1485.5994, 

1501.0031, 1506.7083, 1522.8301, 1534.7044, 1537.6559, 2813.5297, 

2965.1495, 3031.4263, 3055.4010, 3062.6161, 3086.0302, 3090.9188, 

3096.2564, 3107.6481, 3110.7153, 3118.8142, 3134.9688, 3242.2354, 
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3 2 4 2 . 9 3 5 9 , 3 2 5 2 . 0 6 6 8 , 3 2 5 4 . 0 5 0 4 , 3 2 5 7 . 9 0 1 2 , 3 2 6 3 . 1 3 8 4 , 3 2 6 6 . 8 4 4 1 , 

3 2 7 1 . 8 2 3 1 , 3 2 8 0 . 9 7 4 8 cirf1 

File name (in my CERMM directory): chain2BS.log 
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Appendix C 

Supplemental information related to CHAPTER 3 

Table CI. Geometry of I. 

B3LYP/6-31 G(d,p)on lighter elements and for Zr a DZVP DeMon DFT orbitals 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 

14 
6 
6 
6 
1 
1 
1 
1 
.1 
1 
1 
1 
1 
1 
1 
1 
1 

40 
6 
1 
1 
1 

2.061888 
2.565115 
3.202658 
3.061967 
2.367576 
1.558425 
2.499493 
3.705775 
3.472417 
2.138610 

-1.490086 
-0.644190 
0.350129 
0.134724 

-0.993488 
-2.648062 
-1.361378 
-3.440458 
-3.874542 
-0.747338 
1.112054 
0.715735 

-1.404147 
-1.833279 
-0.589307 
-0.888537 
-4.027373 
-2.703743 
-4.120169 
-4.480385 
-4.558322 
-3.383730 
0.733068 
1.052657 
1.505617 
1.717811 
0.105119 

-1.940228 
-1.654797 
-0.390740 
0.126199 

-0.844261 
-2.850960 
-2.304452 
0.096149 
1.059594 

-0.766055 
0.890278 
0.867813 
1.872707 
2.533550 
1.940319 

-0.501814 
-1.678136 
-1.362572 
0.099669 
0.202944 
2.120372 
3.359103 
2.232901 

-2.601516 
-2.063457 
-1.260415 
-2.226329 
-1.723177 
-0.683559 
-0.730354 
0.835406 
0.568101 
0.077114 
0.835352 
0.054627 
1.707374 
1.143615 

-0.642320 
0.661212 
0.618635 

-0.699932 
-1.483724 
-0. 944283 
1.525161 
1.441997 

-1.062686 
-2.538160 
-0.537923 
-1.697078 
-1.559967 
-0.319920 
0.297570 
0.017849 
0.840563 

-1.447731 
1.301200 

-2.546358 
-2.287530 
0.071185 
1.254460 
1.195623 
0.143952 
1.748857 

-1.117637 
-2.173338 
-1.972945 
1.679862 
0.865182 
2.160543 
0.207178 
2.324348 
2.946583 
2.361905 
2.781010 

E = -4376.1724771 hartrees 
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v = 30.6694, 34.4111, 83.8099, 87.7997, 111.0390, 126.4840, 137.2733, 

151.6430, 156.1590, 159.8547, 184.7232, 195.0165, 222.5322, 225.9945, 

227.7989, 246.4961, 254.8812, 263.7984, 291.1928, 303.5127, 328.6470, 

337.3387, 377.8925, 422.0392, 474.5762, 497.0507, 580.1044, 590.9945, 

595.7500, 600.7414, 637.6416, 679.7299, 685.5336, 690.2824, 712.4118, 

721.7692, 787.3202, 839.5737, 842.9280, 849.5359, 851.6337, 852.0951, 

853.5659, 857.8157, 861.7100, 862.8676, 870.5162, 877.9518, 908.4938, 

916.4179, 926.4107, 937.8931, 938.3653, 1035.0216, 1045.0231, 1069.1226, 

1073.1918, 1089.4679, 1092.7787, 1095.7380, 1146.2765, 1193.9454, 

1214.3235, 1230.0298, 1289.6787, 1298.7209, 1326.2119, 1333.5067, 

1352.1329, 1401.1252, 1408.0939, 1411.1797, 1446.2238, 1448.4486, 

1449.6560, 1463.3549, 1464.3546, 1465.7804, 1474.7331, 1475.3923, 

1481.7372, 1485.0895,1486.2234, 1492.5787, 2926.9268, 2998.5017, 

3026.0514, 3049.5209, 3051.6776, 3102.3531, 3102.8829, 3114.0721, 

3126.0470, 3129.6467, 3131.4971, 3132.6849, 3238.6506, 3239.5889, 

3250.0292, 3250.5792, 3255.0875, 3260.8042, 3266.6313, 3268.6623, 

3278.4035 cm"1 

File name (in my CERMM directory): No25BS.log 

Table C2. Geometry of II. 

B3LYP/LANL2DZ for Zr and B3LYP/6-31G (d,p) for the rest elements 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 1.854466 -1.905073 -0.423657 
6 2.491737 -1.363739 0.729620 
6 3.030908 -0.098337 0.384162 
6 2.701615 0.159369 -0.976206 
6 1.983737 -0.968057 -1.478526 
1 1.361100 -2.867785 -0.483620 
1 2.567388 -1.843984 1.697481 
1 3.595017 0.552778 1.037348 
1 3.002041 1.028063 -1.548467 
1 1.627443 -1.095652 -2.492200 
6 -1.829809 0.520091 -0.471456 
6 -1.061030 0.579729 -1.669319 
6 -0.299824 1.776408 -1.611012 
6 -0.604677 2.445335 -0.392629 
6 -1.545927 1.670130 0.320295 
6 -2.376928 -0.741525 0.079576 
9 -3.216684 -0.620146 1.081107 
9 -1.169180 -1.402636 0.695213 

111 



9 -2.799478 -1.620859 -0.800721 
1 -1.073940 -0.142928 -2.474400 
1 0.354904 2.145432 -2.389371 
1 -0.198213 3.395400 -0.071853 
1 -1.972420 1.900180 1.286943 

40 0.513683 0.149523 0.226695 
6 0.954856 1.194034 2.178069 
1 1.577665 0.568649 2.826209 
1 1.472670 2.153961 2.052410 
1 0.012355 1.407556 2.697827 

E =-4304.5152827 hartrees 

v = 24.2355, 40.4762 , 88.1474, 99.4851, 113.3596,133.028 6, 165.7375, 

176.9271, 217.0694, 243.8953, 260.3377, 281.4664, 290.4018 307.8436 

361.8566, 383.1476, 386.1359, 436.5140, 469.3823, 485.8906, 497.2434, 

545.3418, 592.4854, 597.6745, 601.6035, 653.4628, 678.9537, 703.8617, 

822.3311, 835.7112, 842.7113, 847.9809, 850.2656, 851.5502, 854.5860, 

859.9475, 862.7480, 909.2328, 928.2853, 938.0016, 939.1582, 942.4423, 

1036.4578, 1043.3203, 1058.0545, 1072.2944, 1090.0205, 1091.6138, 

1094.0757, 1145.6057, 1186.4353, 1212.4463, 1256.5227, 1297.7934, 

1339.1415, 1377.2969, 1401.1739, 1406.9639, 1418.2258, 1425.2663, 

1439.2685 1444.5175 1467.8757, 1475.0324, 1482.6980, 1516.3182, 

3025.3991, 3099.1198, 3120.8828, 3242.3814, 3248.3365, 3254.7114, 

3256.6572, 3263.4073, 3265.5603,3270.6771, 3276.2976, 3211.211i 

File name (in my CERMM directory): ChainlBSF.log 

Table C3. Geometry of III. 

B3LYP/6-31G (d,p) on lighter elements, for Zr a DZVP DeMon DFT orbitals 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 1.824710 -1.976208 -0.638922 
6 2.410887 -1.687716 0.627171 
6 3.110413 -0.458972 0.520484 
6 2.929907 0.032273 -0.802901 
6 2.144144 -0.917698 -1.523959 
1 1.238754 -2.854649 -0.881637 
1 2.348292 -2.308849 1.512229 
1 3.679929 0.019636 1.304859 
1 3.369223 0.934101 -1.209887 
1 1.864393 -0.852250 -2.567202 
6 -1.579657 0.959734 -0.529283 
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6 
6 
6 
6 

14 
9 
9 
9 
1 
1 
1 
1 

40 
6 
1 
1 
1 

•0. 
0. 
0, 
1. 
2, 
1. 
3. 
3. 
0. 
1. 
0. 
1. 
0. 
1. 
1. 
1. 
0. 

.718594 

.244594 

.008417 

.123987 

.467749 

.125577 

.060294 

.440278 

.802506 

.007399 

.545943 

.558141 

.658176 

.064627 

.526895 

.725932 

.118896 

1. 
2. 
2, 
1. 

-0, 
-1. 
-1. 
-0. 
0. 
2. 
3. 
2. 
0. 
0. 
0. 
1. 
1. 

.001986 

.019048 

.613125 

.968450 

.540471 

.386142 

.454146 

.403932 

.382305 

.326961 

.432125 
,196341 
.107973 
830986 
035162 
705182 
.119544 

-1. 
-1. 
-0. 
0 

-0 
0, 

-1. 
1. 

-2. 
-2. 
0. 
1. 
0. 
2. 
2. 
2. 
2. 

.677135 

.462083 

.193861 

.382271 

.009562 

.568756 

.149994 

.223194 

.561253 

.165267 

.245902 

.346686 

.226671 
,326099 
.920349 
.375362 
.802010 

E = -4556.0994219 hartrees 

v = 20.8192 , 34.3001, 83.3845, 89.4470, 97.5472, 122.6704, 134.7891, 

163.3212, 202.6273, "'204.5113, 218.1276, 223.5586, 240.4591, 249.3142, 

272.3377, 291.1391, 321.2828, 342.6003, 355.7649, 390.3275, 470.9588, 

485.1065, 509.1953, 572.0223, 575.3966, 582.1899, 603.7401, 639.3487, 

696.6522, 821.1198, 843.2453, 850.4930, 852.5119, 860.6577, 861.8171, 

865.4849, 871.0891, 875.4098, 917.8824, 928.1036, 930.1743, 934.0821, 

941.1774, 953.9909, 1035.3891, 1045.0242, 1071.6344, 1082.5470, 

1104.1213, 1106.0912, 1113.0484, 1134.4266, 1219.2458, 1239.9167, 

1256.5834, 1307.5662, 1360.4350, 1394.6991, 1397.1083, 1402.0981, 

1445.6661, 1453.8980, 1457.0559, 1462.95751, 466.9854, 1469.0313, 

3006.8875, 3101.3290, 3110.5351, 3263.8882, 3269.1259, 3271.3045, 

3275.6581, 3278.8116, 3285.1207, 3289.3554, 3301.4598, 3305.6069 cm"1 

File name (in my CERMM directory): No26BS.log 

Table C4. Geometry of the structure in Figure 3.4 (a). 

B3LYP/LANL2DZ for Zr and B3LYP/6-31G (d,p) for the rest elements 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 -0.023129 2.621127 -0.143259 
6 -0.166071 2.076372 -1.446718 
6 0.686119 0.950428 -1.537895 
6 1.371960 0.770448 -0.291947 
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6 
6 

14 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

40 
6 
6 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 

0.912502 
2.580498 
2.840956 
3.153322 
4.355589 

-0.548846 
-0.818788 
0.811993 
1.235849 
1.749530 
2.368199 
3.482800 
3.368653 
4.019310 
2.303239 
5.252894 
4.212014 
4.552415 

-1.142788 
-0.992205 
-3.010695 
-0.954031 
-1.876971 
-0.110056 
-3.300190 
-3.866626 
-2.841447 
-0.747792 
-1.602127 
-2.860146 
-2.780582 
-1.481061 
0.269533 

-1.345313 
-3.722724 
-3.569979 
-1.110419 

E = -922.2226957 hartrees 

V = 

132. 

200. 

267. 

464. 

629. 

778. 

828. 

879. 

103E 

1092 

27.1537, 41.9943, 58.9219, 7 

.4572, 

.1148, 

.2343, 

1831, 

3096, 

0945, 

7975, 

5473, 

).4262, 

5.5859, 

139.3688, 

204.3607, 

276.5840, 

509.0988, 

641.4999, 

785.5283, 

853.4886, 

881.5732, 

141 

213 

306 

539. 

1044.7407, 

1153.9992, 

.3132, 15' 

.9243, 22( 

.8236, 31" 

1981, 595 

666.1754, 

814 .5187, 

855.5400, 

905.4908, 

1068.9959 

1186.0093 

1 
-1 
-0 
-1 
0 
3 
2 
0 
1 

-2 
-0 
-2. 
-0. 
-2. 
-2. 
0. 
1. 
1. 
0. 
0. 
1. 
1. 

-0. 
-0. 
1. 
1. 
2. 

-2. 
-1. 
-1. 
-1. 
-2. 
-2. 
-1. 
-0. 
-1. 
-2. 

.827153 

.460426 

.366787 

.436479 

.729405 

.482708 

.450071 

.330162 

.998523 

.160907 

.857894 

.047442 

.816986 

.088170 

.079790 

.125433 

.373698 

.379465 

.302724 

.285992 

.616040 

.317139 

.196365 

.236041 

.850229 
,122765 
.570748 
121769 
545658 
301475 
712319 
228501 
451231 
353933 
860975 
628597 
618593 

0 
1 
0 

-1 
0 
0 

-2 
-2 
1 
1 
2 
1. 

-2. 
-1. 
-1 
0. 
1. 

-0. 
0. 
2. 
0. 
2. 
2. 
2. 

-1. 
0. 
0. 

-0. 
-1. 
-0. 
0. 
0. 

-0. 
-2. 
-1. 
1. 
1. 

.559616 

.560980 

.037815 

.493433 

.340607 

.245737 

.225056 

.416354 

.577817 

.432154 

.450657 

.767968 

.370861 

.332006 

.743302 

.517767 

.214881 

.518485 

.164334 

.444204 

.001243 

.819351 

.878-355 

.836496 

.031788 

.478301 

.514721 
569726 
.552962 
947100 
407505 
639247 
727394 
586407 
427372 
142640 
577239 

0277, 

2924, 

3779, 

8864, 

116.5683, 124.0837, 

158.0773, 172.0590, 

228.8160, 237.1861, 

349.4634, 415.3106, 

136, 597.3304 

688 

820 

865 

912 

1073. 

1194. 

.4855, 

.1747, 

.3603, 

.6281, 

.0600,, 

.4063, 

, 602.1508, 

692. 6514, 

822.5121, 

870.2749, 

914.6745, 

1090.1235, 

1204.1977, 

131 

177 

248 

444 

618. 

696. 

823. 

874. 

921. 

1091. 

1229. 

.0573, 

.4863, 

.1703, 

.9459, 

.5563, 

.7688, 

.0459, 

.4328, 

.7522, 

.3970, 

.9201, 
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1299.4888, 

1411.8315, 

1465.3134, 

1485.9231, 

3040.2967, 

3100.6052, 

3131.0801, 

1308.8497, 

1413.7173, 

1468.1182, 

1488.3440, 

3043.9565, 

3115.3457, 

3236.0712, 

1311.8432, 

1454.6002, 

1470.4467, 

1489.4840, 

3045.1390, 

3117.1081, 

3244.6691, 

1320.9103, 1350.0669, 

1456.8097,1458.9833, 

1471.9093, 

1491.6971, 

3090.7539, 

3119.0666, 

3246.1011, 

1480.3191, 

3015.2579, 

3093.0885, 

3122.4514, 

3247.8974, 

3261.2781, 3265.1168, 3266.8766, 3275.8513 cm'1 

File name (in my CERMM directory): No25neu.log 

Table C5. Geometry of the structure in Figure 3.4 (b). 

B3LYP/LANL2DZ for Zr and B3LYP/6-31G (d,p) for the rest elements 

1409.2312, 

1461.8190, 

1481.5070, 

3016.8358, 

3097.7478, 

3123.8365, 

3252.2695, 

Atomic 
Number 

Coordinates (Angstroms) 
X Y 

6 
6 
6 
6 
6 
9 

14 
9 
9 
1 
1 
1 
1 

40 
6 
6 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 

-0 
-0 
0 
1 
0 
2 
2 
2 
4 
•0 

-0. 
0 
1. 
•1. 
•0, 
•3. 
•0. 
1. 
0. 
3. 
•3. 
2. 
0. 
1. 
2. 
2. 
0. 
0. 
1. 
3. 
3. 

.081618 

.214055 

.665529 

.348203 

.879394 

.351864 

.650048 

.783211 

.086979 

.633737 

.881924 

.808684 

.200022 

.080945 

.890000 

.033226 

.949245 

.705488 

.053726 

.390513 

.822425 

.920758 

.478087 
541160 
712891 
370234 
992498 
537049 
474319 
690406 
041015 

2 
2 
1 
0 
1 

-1 
-0 
-1 
0 
3 
2 
0 
2 
0. 
0. 
1. 
1, 

-0. 
-0. 
1. 
0. 
2. 

-2. 
-1. 
-1. 
-1. 
-2. 
-2. 
-1. 
-1. 
-2. 

.710524 

.208957 

.118160 

.915919 

.932176 

.219204 

.314066 

.298370 

.337207 

.540062 

.593815 

.527187 

.069234 

.276050 

.233230 

.446484 

.256597 

.346443 

.201421 

.586353 

.918208 

.442106 

.024232 

.519816 
483629 
944863 
284059 
194501 
241878 
151421 
015252 

-0 
-1 
-1 
-0 
0 
1 
0 

-1 
0 
0, 

-2. 
-2, 
1. 
0. 
2. 
0. 
2. 
2. 
2. 

-1. 
0. 
0. 

-0. 
-1. 
-0. 
0. 
0. 

-1. 
-2. 
-1. 
1. 

.069212 

.393697 

.538767 

.291250 

.604146 

.311158 

.025496 

.231978 

.272822 

.351335 

.153072 

.433569 

.627474 

.174020 

.443514 

.005111 

.837733 

.892174 

.796959 

.023316 

.555251 

.451301 
784228 
585575 
786295 
510131 
511612 
115699 
629582 
105997 
355922 
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1 - 0 . 4 2 7 1 7 1 - 2 . 6 5 7 5 1 4 1 . 3 5 4 3 6 7 

E = -1102.1597378 hartrees 

v = 26.4975, 36.5900, 45.1729, 77.3269, 109.3072, 121.6699, 127.4444, 

132.4003, 143.4621, 158.6820, 170.2033, 207.0051, 219.8773, 226.5477, 

238.1716, 254.6158, 269.9201, 272.9970, 289.1761, 305.4145, 318.4800, 

379.7481, 386.5526, 449.7801, 469.4422, 503.1034, 520.3737, 547.3179, 

595.0103, 598.4728, 599.5468, 622.8848, 643.3341, 662.2981, 815.4331, 

818.0328, 821.9051, 828.2498, 831.5136, 841.6014, 854.1147, 855.3178, 

865.4074, 889.7884, 910.0529, 920.6911, 924.1188, 933.6683, 976.9843, 

987.3821, 1039.5994, 1046.6519, 1073.0292, 1079.8637, 1090.5966, 

1093.3526, 1095.4465, 1152.8835, 1192.3157, 1200.3105, 1231.9755, 

1239.1595, 1301.9494, 1354.8179, 1407.9429, 1411.1745, 1413.2031, 

1453.8927, 1455.0252, 1461.1553, 1463.2443, 1475.5341, 1484.3655, 

1489.1081, 1493.3813, 3015.6307, 3017.0834, 3092.5797, 3093.2984, 

3100.2165, 3102.5568, 3244.0362, 3246.3175, 3250.2762, 3255.3397, 

3262.4265, 3263.0332, 3269.3360, 3272.3206, 3276.9305 cm"1 

File name (in my CERMM directory): No26neu.log 

Table C6. Geometry of the structure in Figure 3.3 (a). 

B3LYP\6-31G(d,p) 

Atomic Coordinates (Angstroms; 
Number X Y 

6 
6 
6 
6 
6 

14 
6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 

0 
1. 
2. 
2. 
1. 
1. 
1. 
1. 
1. 
1. 
3. 
3. 
1. 
2. 
1. 
1. 
3. 

.701657 

.563737 

.894888 

.894876 

.563735 

.120705 

.855599 

.922328 

.856585 

.233498 

.776383 

.776372 

.233585 

.951307 
,471327 
578305 
020822 

-0 
1 
0, 

-0. 
-1. 
0. 
1. 

-0. 
-1. 
2. 
1. 

-1. 
-2. 
1. 
2. 
1. 

-0. 

.000172 

.144202 

.710101 

.710405 

.144543 

.000050 

.539911 

.009794 

.529551 

.181044 

.348668 

.348971 

.181440 

.569638 
,462875 
557266 
,009274 

-0. 
-0. 
0, 
0, 

-0, 
-0. 
-0, 
1. 

-0. 
-0. 
0. 
0. 

-0. 
-0. 
-0. 
-1. 
1. 

.029610 

.006632 

.027745 

.027944 

.006359 

.001465 

.868753 

.744392 

.886074 

.021167 

.037539 

.037970 

.020615 

.802960 

.418643 
,928692 
,706181 
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-1.605037 
-1.605564 
-2.952451 
-1.474082 
-1.577366 

0.868334 
-0.894828 
-1.558879 
-2.457746 
-1.535882 

2.319426 
2.309043 

-0.822594 
-0.4 4 527 4 
-1.945636 

E = -602.2191777 hartrees 

v = 19.4862, 92.5642, 103.8940, 130.5906, 144.2654, 166.6250, 184.0437, 

195.0982, 207.0311, 278.3174, 303.3331, 424.6610, 612.2937, 617.1867, 

641.0273, 641.1610, 643.1290, 660.1902, 672.6191, 691.8184, 763.5396, 

768.4740, 772.5896, 799.2280, 853.3491, 855.2520, 861.1630, 865.1190, 

923.1533, 

1277.7796, 

1475.4645, 

1496.0214, 

3091.8118, 

1062.9191, 

1283.0760, 

1476.5544, 

3007.8501, 

3100.2776, 

1070.3035, 

1292.6841, 

1482.2173, 

3017.3352, 

3105.5248, 

1078.7091, 

1348.1491, 

1482.3284, 

3019.4488, 

3106.9097, 

1220.0136, 

1407.5882, 

1488.1590, 

3082.2677, 

3131.3489, 

3157.3380, 3174.2285 cm"1 

File name (in my CERMM directory): LigandtMeSil.log 

Table C7. Geometry of the structure in Figure 3.3 (b). 

B3LYP/6-31G(d,p) 

1229.1770, 

1469.8840, 

1493.5831, 

3088.8925, 

3142.9234, 

Atomic 
Number 

Coordinates (Angstroms! 
X Y 

6 
6 
6 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

-0.338248 
-1.170439 
-2.517288 
-2.532824 
-1.194384 
1.184286 
1.718520 
1.718017 
1.757866 
-0.827538 
-3.389121 
-3.418086 
-0.878731 
2.819621 
1.330033 
1.382694 
2.819072 
1.328220 
1.382733 

0.019025 
-1.132343 
-0.711688 
0.700252 
1.150545 
0.006501 

-0.727812 
-0.726369 
1.436147 

-2.166084 
-1.363936 
1.333775 
2.190988 

-0.777705 
-1.750512 
-0.215983 
-0.777063 
-1.748439 
-0.212935 

-0.000309 
-0.000023 
-0.000050 
0.000213 

-0.000225 
0.000118 

-1.254987 
1.256113 

-0.000775 
-0.000249 
-0.000486 
0.000185 

-0.000555 
-1.272453 
-1.296103 
-2.163564 
1.273286 
1.298456 
2.163950 
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1 2 . 8 5 7 1 5 6 1 . 4 2 3 6 0 0 - 0 . 0 0 1 0 5 3 
1 1 . 4 2 0 7 3 5 1 . 9 8 9 7 8 8 0 . 8 8 2 1 7 0 
1 1 . 4 2 0 1 7 3 1 . 9 8 8 9 4 7 - 0 . 8 8 4 0 2 2 

E =-350.7841256 hartrees 

v = 3 5 . 1 7 7 0 , 1 4 2 . 6 6 7 5 , 2 1 1 . 0 5 9 1 , 2 3 6 . 5 3 5 8 , 2 8 6 . 3 7 6 4 , 2 8 9 . 5 1 6 6 , 3 2 8 . 2 8 1 2 , 

3 3 6 . 6 4 3 4 , 3 3 7 . 3 0 3 9 , 4 3 3 . 5 8 6 1 , 4 6 1 . 2 7 2 2 , 5 7 6 . 3 6 6 3 , 6 0 1 . 4 7 5 6 , 6 1 2 . 9 7 3 6 , 

6 5 3 . 9 9 3 8 , 6 8 1 . 7 0 1 8 , 7 4 3 . 7 9 1 8 , 7 7 1 . 5 1 9 9 , 8 1 2 . 2 9 1 3 , 8 5 9 . 6 6 5 1 , 9 0 5 . 3 6 5 0 , 

9 2 1 . 8 0 8 9 , 9 2 9 . 5 8 8 8 , 9 4 9 . 1 9 3 1 , 1 0 3 8 . 2 9 8 9 , 1 0 4 8 . 2 4 3 2 , 1 0 6 1 . 9 9 1 1 , 

1 0 7 1 . 8 2 8 2 , 1 0 7 9 . 2 3 5 9 , 1 1 8 8 . 9 4 1 8 , 1 2 1 2 . 8 7 9 3 , 1 2 2 2 . 3 1 2 7 , 1 2 7 1 . 9 3 5 6 , 

1 3 1 3 . 5 6 3 6 , 1 3 8 4 . 3 6 1 5 , 1 3 8 9 . 3 8 0 4 , 1 4 0 0 . 6 8 5 0 , 1 4 1 8 . 6 7 4 2 , 1 4 2 6 . 2 1 9 1 , 

1 4 7 2 . 8 8 8 2 , 1 4 8 2 . 6 7 5 0 , 1 4 9 3 . 6 6 9 7 , 1 4 9 9 . 6 7 9 2 , 1 5 0 5 . 5 7 3 4 , 1 5 0 6 . 2 8 0 4 , 

1 5 2 2 . 9 8 4 6 , 1 5 3 3 . 0 0 4 2 , 2 9 7 3 . 1 1 0 5 , 2 9 8 3 . 3 7 8 0 , 3 0 1 0 . 3 0 0 0 , 3 0 7 1 . 7 5 5 3 , 

3 0 7 4 . 4 0 1 1 , 3 0 8 2 . 6 8 3 0 , 3 1 0 3 . 3 7 8 3 , 3 1 0 8 . 4 5 0 2 , 3 1 1 0 . 8 5 9 1 , 3 1 2 5 . 3 6 3 6 , 

3 1 3 9 . 0 5 7 1 , 3 1 5 5 . 7 9 9 0 , 3 1 7 3 . 7 3 8 8 cm"1 

File name (in my CERMM directory): LigandtBu.log 

Table C8. Geometry of the structure in Figure 3.3 (c). 

B3LYP/6-31G 

Atomic Coordinates (Angstroms) 

Number X Y Z 

6 -2.855327 -0.716817 0.035560 
6 -2.841802 0.713821 0.029836 
6 -1.512554 1.144358 -0.012766 
6 -0.672829 -0.023612 -0.044257 
6 -1.534341 -1.173564 -0.003778 
9 1.898036 -1.186158 -0.931017 

14 1.111265 -0.005232 -0.004039 
9 1.791778 1.453539 -0.529293 
9 1.951551 -0.219290 1.458067 
1 -3.742521 -1.342461 0.056817 
1 -3.717085 1.356094 0.045249 
1 -1.160943 2.169595 -0.036425 
1 -1.208312 -2.207915 -0.016476 

E = -782.0081644 hartrees 

v = 1 2 . 4 5 8 9 , 9 2 . 4 2 6 7 , 1 0 5 . 9 9 8 0 , 2 1 0 . 4 3 4 0 , 2 4 6 . 3 1 5 7 , 2 7 6 . 4 0 5 4 , 3 2 4 . 6 6 7 0 , 

3 5 8 . 7 1 0 4 , 4 7 4 . 0 9 2 8 , 6 3 0 . 0 3 2 2 , 6 3 3 . 4 7 2 2 , 6 8 5 . 5 9 1 5 , 7 1 9 . 5 9 1 3 , 7 7 7 . 1 3 6 7 , 

8 1 8 . 9 4 7 0 , 8 2 7 . 4 9 9 6 , 8 5 8 . 0 3 2 5 , 8 6 6 . 1 1 2 3 , 8 8 2 . 3 2 1 9 , 9 3 9 . 3 7 2 6 , 1 0 6 9 . 3 3 1 2 , 
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1 0 9 9 . 0 9 9 8 , 1 1 0 4 . 0 0 0 3 , 1 2 4 4 . 5 6 2 5 , 1 2 5 3 . 6 0 9 8 , 1 3 6 6 . 8 7 1 9 , 1 4 1 0 . 6 8 1 0 , 

1 4 9 1 . 7 1 6 4 , 1 5 1 0 . 6 4 6 1 , 3 1 7 7 . 5 2 9 5 , 3 1 9 4 . 9 2 6 6 , 3 2 1 5 . 0 9 7 3 , 3 2 2 8 . 1 3 6 7 cm"1 

File name (in my CERMM directory): ligandSiF.log 

Table C9. Geometry of IV n=0 F-conformer 

B3LYP/LanL2DZ on Zr B3LYP/6-31G (d,p) for the rest elements 

Atomic C o o r d i n a t e s (Angstroms) 
Number X Y Z 

6 
6 
6 
6 
6 
9 

14 
6 
6 

40 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 

0.342110 
0.089029 

-1.064712 
-1.540117 
-0.661108 
-1.042331 
-2.590118 
-3.649124 
-3.195518 
0.690364 
1.158785 
1.111469 
0.652876 

-1.502706 
-0.758397 
-4.600326 
-3.888476 
-3.161522 
-3.416515 
-2.467950 
-4.123624 
0.241840 
1.564503 
1.893635 
2.961429 
2.133088 
1.807264 
2.429348 
3.162294 
3.427343 
1.854487 
1.209379 
2.385318 
3.770154 

1.808638 
2.588274 
2.051154 
0.923659 
0.788356 

-1.211078 
-0.461100 
-0.086244 
-1.751647 
0.136694 
1.159065 
2.001016 
3.452580 
2.432041 
0.067329 
0.368723 

-1.005793 
0.602923 

-2. 690785 
-1.967487 
-1.421764 
1.597209 
0.428443 
1.973622 

-0.153057 
-1.193176 
-2.105251 
-1.636015 
-0.445459 
0.651999 

-1.292177 
-3.002583 
-2.122256 
0.124511 

-1.722892 
-0.545913 
0.099924 

-0.663989 
-1.802846 
0.738650 
0.015231 
1.500064 

-1.182942 
0.231654 
2.171553 

-2.458438 
-0.221035 
1.012835 

-2.604363 
1.192799 
2.047826 
2.198072 

-0.661218 
-1.973030 
-1.668742 
2.593590 
2.886699 
2.080402 

-0.823384 
-1.381408 
-0.329993 
0.876834 
0.567164 

-1.376276 
-2.421972 
-0.425826 
1.842948 
1.255436 

E = - 942.0958338 hartrees 

v = 2 7 . 3 4 3 4 , 3 8 . 5 4 5 9 , 8 5 . 5 5 2 4 , 9 7 . 3 4 8 1 , 1 0 1 . 8 9 5 6 , 1 1 1 . 5 1 8 4 , 1 1 8 . 1 7 1 5 , 

1 3 0 . 9 3 8 2 , 1 3 7 . 3 9 5 1 , 1 6 3 . 7 2 0 1 , 1 9 2 . 0 9 8 3 , 2 0 0 . 4 3 5 3 , 2 1 7 . 6 9 4 9 , 2 2 5 . 4 0 4 4 , 
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231.6831, 244.6726, 268.9678, 290.1239, 323.4854, 334.2678, 348.6941, 

396.5333, 432.0233, 474.6261, 492.7270, 514.1227, 577.7821, 581.5659, 

584.9190, 650.9526, 696.3559, 697.2336, 763.8952, 836.0502, 836.7923, 

849.4358, 850.6216, 858.1915, 862.4133, 864.4514, 870.4553, 872.5573, 

878.2274, 905.0400, 916.2449, 921.4726, 928.4320, 938.0170, 948.1013, 

959.2727, 1036.6773, 1044.4435, 1071.1299, 1077.9887, 1103.4948, 

1105.2252, 1108.6148, 1135.8127, 1200.5827, 1236.3000, 1244.7755, 

1307.1168, 1357.4301, 1384.3600, 1391.8015, 1397.5790, 1400.1600, 

1403.5040, 1438.7772, 1459.4704, 1463.7472, 1466.6914, 1467.1464, 

1473.2317, 1475.9799, 1481.0804, 1486.4430, 1493.6886, 3008.6131, 

3052.3465, 3053.8509, 3102.4060, 3111.0256, 3140.4527, 3142.3912, 

3158.0329, 3160.1656, 3263.3145, 3264.2421, 3268.3314, 3269.9172, 

3278.9937, 3280.4998, 3288.3503, 3297.3010, 3305.0706 cm"1 

File name (in my CERMM directory): No29.log 

Table CIO. Geometry of IV n=0 C- conformer 

B3LYP/LanL2DZ on Zr B3LYP/6-31G (d,p) for the rest elements 

A t o m i c C o o r d i n a t e s ( A n g s t r o m s ) 
Number X Y 

6 - 0 . 3 0 3 4 6 5 2 . 2 7 0 8 8 8 - 0 . 5 7 2 5 2 1 
6 - 0 . 3 8 0 0 9 3 2 . 1 8 9 5 2 5 0 . 8 7 4 3 4 3 
6 - 1 . 3 7 3 2 7 9 1 . 2 8 8 9 9 6 1 . 2 1 5 6 2 5 
6 - 1 . 9 5 9 1 1 5 0 . 7 6 2 5 2 3 - 0 . 0 1 6 9 0 1 
6 - 1 . 2 3 1 8 6 5 1 . 3 9 9 8 3 9 - 1 . 1 1 5 6 5 3 
9 - 0 . 2 3 6 1 6 3 - 1 . 5 9 5 4 5 4 - 1 . 1 6 1 6 4 9 
6 - 2 . 9 5 9 0 4 4 - 0 . 1 9 6 3 1 8 - 0 . 1 3 6 8 4 2 
6 - 3 . 6 7 0 5 5 8 - 0 . 7 5 8 1 0 8 1 . 0 4 4 5 6 9 
6 - 3 . 3 4 7 4 6 2 - 0 . 7 5 0 0 7 2 - 1 . 4 6 5 7 1 4 
1 0 . 3 5 4 9 3 6 2 . 9 2 5 7 8 4 - 1 . 1 2 7 5 1 9 
1 0 . 2 1 8 2 4 8 2 . 7 6 7 8 0 1 1 . 5 6 6 2 5 8 
1 - 1 . 6 7 3 3 7 0 1 . 0 3 4 7 8 9 2 . 2 2 1 4 0 3 
1 - 1 . 4 1 8 7 0 1 1 . 2 4 8 5 7 2 - 2 . 1 6 9 9 2 2 
1 - 4 . 7 2 7 8 1 6 - 0 . 4 6 3 6 0 2 0 . 9 8 4 8 0 2 
1 - 3 . 6 6 6 8 3 0 - 1 . 8 5 4 0 9 8 0 . 9 9 2 4 8 8 
1 - 3 . 2 7 5 5 9 0 - 0 . 4 3 8 2 2 6 2 . 0 0 7 1 5 5 
1 - 2 . 6 3 2 3 8 5 - 1 . 5 5 5 8 8 6 - 1 . 6 9 8 6 0 5 
1 - 3 . 2 8 2 7 1 5 - 0 . 0 2 0 0 8 8 - 2 . 2 7 4 3 7 3 
1 - 4 . 3 4 8 2 4 9 - 1 . 1 8 5 7 2 8 - 1 . 4 4 5 9 4 9 

40 0 . 5 1 4 1 9 2 - 0 . 2 4 3 0 1 4 0 . 0 0 6 4 9 8 
6 0 . 1 6 5 7 0 1 - 1 . 2 9 3 8 7 3 1 . 9 6 7 7 2 8 
1 - 0 . 9 0 1 4 0 2 - 1 . 5 3 5 8 9 3 2 . 0 5 3 4 6 2 
1 0 . 7 1 4 7 9 4 - 2 . 2 4 2 7 7 8 1 . 9 2 9 0 6 2 
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1 0.470648 -0.771952 2.880247 
6 2.749017 0.968619 0.391452 
6 2.616036 0.772416 -1.017018 
6 2.670351 -0.621502 -1.272704 
6 2.810306 -1.288144 -0.028002 
6 2.868267 -0.303135 1.000987 
1 2.790569 1.923399 0.899275 
1 2.542985 1.549704 -1.766295 
1 2.590459 -1.095918 -2.242068 
1 2.873593 -2.359562 0.113215 
1 2.999826 -0.496582 2.056192 

E =-942.0673098 hartrees 

v = 26.6632, 42.8436, 72.9675, 90.7028, 105.3780, 122.3046, 136.5329, 

155.6539, 167.0454, 168.9546, 194.7277, 214.2398, 224.0780, 235.4803, 

241.9439, 245.0813, 265.4170, 273.2315, 328.6780, 376.3472, 464.7064, 

477.9867, 484.1122, 568.4242, 576.6505, 582.2369, 583.1322, 587.2412, 

636.0692, 647.3999, 657.1146, 811.7851, 831.3405, 839.0581, 841.6828, 

842.9820, 851.4006, 852.4369, 857.7099, 868.8237, 916.4317, 920.7024, 

925.1507, 941.8066, 948.4520, 956.4358, 983.9479, 1035.8933, 1046.8032, 

1048.7088, 1078.5512, 1090.0163, 1093.0497, 1104.7876, 1111.9328, 

1148.8286, 1174.8526, 1199.4759, 1217.1198, 1294.1096, 1299.7455, 

1359.8065, 1394.0829, 1398.9372, 1403.0778, 1406.2312, 1414.7119, 

1447.0956, 1453.0847, 1457.1724, 1466.8165, 1467.3315, 1476.1868, 

1483.0004, 1487.7331, 1508.2645, 1546.1465, 1606.2018, 3015.9915, 

3027.0890, 3037.8696, 3087.3241, 3102.9867, 3120.2315, 3126.8942, 

3169.2778, 3184.6999, 3249.1637, 3252.1821, 3257.0288, 3261.1432, 

3264.4547, 3268.7543, 3276.3056, 3279.5665, 3287.2972 cm"1 

File name (in my CERMM directory): No29F-Cag.log 

Table Cll . Geometry of IV n=l F conformer 

B3LYP/LanL2DZ on Zr B3LYP/6-31G (d,p) for the rest elements 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 -0.356805 1.970641 1.428968 
6 -0.144302 2.555162 0.150950 
6 0.957014 1.897881 -0.447752 
6 1.448261 0.892991 0.445586 
6 0.617712 0.952215 1.611396 
6 4.306585 0.415374 -0.743981 
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14 
6 
6 
9 

40 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 

2 
3 
1 
0 
-0 
-1 
-1 
-0 
1 
0 
4. 
5. 
4. 
2. 
3. 
3. 
2, 
1. 
• 0 . 

•1. 
2. 
•3. 
2. 
2. 
2. 
3. 
3. 
2. 
1. 
2. 
3. 

.814690 

.234303 

.948187 

.480820 

.875648 

.380102 

.100066 

.714026 

.359340 

.729015 

.031325 

.026568 

.821534 

.362023 

.986810 

. 649902 

.221907 

.967291 

.455915 

.885197 

.028456 

.131456 

.374934 

.138424 
745727 
.378368 
507345 
.059667 
591613 
746127 
946069 

-0 
-1 
-1 
-1. 
0 
0 
2 
3. 
2. 
0. 
1, 

-0. 
1. 

-1. 
-2. 
-0. 
-2. 
-1. 
1. 
0. 
1. 
0. 

-0. 
-1. 
-1. 
-0. 
1. 

-0. 
-2. 
-2. 
0. 

.356525 

.350510 

.508922 

.536626 

.111187 

.887105 

.277491 

.366057 

.128921 

.344114 

.001521 

.347936 

.085359 

.861783 

.113422 

.703066 

.565334 

.141619 

.164290 

.103839 

.771213 

.209183 

.744241 
860908 
604754 
336767 
153488 
640448 
755471 
272695 
132285 

0 
1 

-1 
-0 
-0 
-2 
2 

-0. 
-1. 
2 

-1 
-1. 
-0. 
2, 
1. 
2, 

-1. 
-2, 
-2. 
-2. 
-2. 
0. 
1. 
0. 

-0. 
-0. 
1. 
2. 
1. 

-1. 
-1. 

.091046 

.625510 

.207236 

.876402 

.219776 

.278764 

.152951 

.284015 

.425625 

.500418 

.626492 

.057682 

.047602 

.046026 

.399746 

.404718 

.193522 

.235347 

.801263 

.856334 

.293825 

.888398 

.634371 

.797335 

.464798 

.400516 

.260545 

.664082 
068898 
316957 
191523 

E = -981.3471177 hartrees 

v = 17.5171, 39.9966, 54.0632, 95.1994, 109.4052, 128.1836, 133.0200 

143.0523, 149.4683, 152.6460, 155.8543, 174.7746, 195.0237, 206.9481 

221.2570, 245.8582, 250.8814, 274.3649, 291.8755, 302.2601, 316.9831 

335.5491, 345.0552, 390.9285, 415.4106, 473.5669, 511.0285, 580.2757 

585.5789, 591.0213, 613.2039, 630.9581, 673.0820, 685.3370, 706.0404 

712.6388, 773.9505, 787.5851, 834.8929, 838.0642, 839.9429, 841.8687 

846.1668, 850.2620, 852.3946, 853.6276, 862.6143, 864.3677, 880.5178 

891.5809, 916.7661, 919.4832, 926.6649, 928.5898, 1038.1943, 1045.6030 

1067.8128, 

1193.4475, 

1324.4294, 

1448.4492, 

1474.2263, 

3050.1885, 

3129.9411, 

1074.7800, 

1200.4691, 

1331.3356, 

1449.7114, 

1476.2526, 

3051.2180, 

3131.4957, 

1090.9988, 

1215.5755, 

1353.8339, 

1452.7644, 

1478.3939, 

3103.2216, 

3133.4050, 

1092.5897, 

1233.2324, 

1403.1209, 

1461.8832, 

1486.1368, 

3105.9079, 

3178.8722, 

1096.0973, 

1300.2091, 

1408.3341, 

1462.9762, 

1488.7390, 

3111.5314, 

3243.4213, 

1148.1806 

1309.8766 

1411.8026 

1469.1112 

3024.1947 

3127.7496 

3243.8192 
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3248.6164, 3250.9279, 3257.2275, 3258.5269, 3267.0994, 3269.2530, 

3280.1736 cm"1 

File name (in my CERMM directory): No30Fag-fr.log 

Table C12. Geometry of V. 

B3LYP/LanL2DZ on Zr B3LYP/6-31G (d,p) for the rest elements 

Atomic 
Number 

6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 

40 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Coordinates (Angs 
X 

0.000341 
2.521614 
2.264043 
1.698928 
1.657632 
2.153783 

-1.657599 
-2.152931 
-2.521296 
-2.264870 
-1.699832 
0.000027 

-0.892155 
0.893693 

-0.000915 
2.955094 
2.460502 
1.432474 
1.327347 
2.261069 

-1.327092 
-2.259341 
-2.954542 
-2.462041 
-1.434058 

Y 

2.436429 
0.371931 
0.547975 

-0.662904 
-1.603544 
-0.961389 
-1.603111 
-0.963438 
0.370566 
0.549448 

-0.660280 
0.231955 
2.889160 
2.889306 
2.723212 
1.110071 
1.442104 

-0.864359 
-2.631243 
-1.412113 
-2.630582 
-1.416195 
1.107193 
1.444669 

-0.859545 

;troms) 
Z 

0.103944 
-0.586650 
0.795365 
1.291996 
0.217694 

-0.941484 
0.220298 

-0.940568 
-0.588715 
0.793150 
1.292636 

-0.300633 
-0.346630 
-0.344669 
1.163188 

-1.250620 
1.370380 
2.321518 
0.284379 

-1.921884 
0.289360 

-1.920123 
-1.254530 
1.366210 
2.322760 

E =-473.393185 

v = 22.3715, 44.8822, 96.1957, 249.8640, 252.8466, 273.2899, 283.7769, 

319.4429 363.8779, 578.6770, 581.1621, 587.8802, 687.2387, 833.9128, 

838.1652, 839.7649, 846.2959, 847.0097, 848.0127, 850.7037, 852.3594, 

855.5086, 860.2113, 914.0927, 924.8286, 925.8881, 927.8042, 1032.2956 

1034.3830,1043.0061,1044.9720,1084.3976, 1088.5391, 1090.9652,1094.5834 

1142.8741, 1144.3430, 1211.9766, 1297.0087 cm"1 

File name (in my CERMM directory): Nol-3.log 
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Table C13. Geometry of IV n=l C conformer 

B3LYP/LanL2DZ on Zr B3LYP/6-31G (d,p) for the rest elements 

Atomic C o o r d i n a t e s (Angstroms) 
Number X Y Z 

6 
6 
6 
6 
6 
6 

14 
6 
6 
9 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

40 
6 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 

3.454399 
0.917478 

-0.254234 
-0.600281 
0.351592 
1.305049 
2.495588 
1.275377 
3.592323 
2.716006 
4.109185 
2.790561 
4.079924 
1.419672 

-0.780460 
-1. 424952 
0.360911 
1.746424 
0.436370 
0.898516 
4.225575 
4.243028 

-0.845717 
-0.823146 
0.232444 

-1.337100 
-1.258241 
-3.259797 
-2.730517 
-2.390349 
-2.705552 
-3.267835 
-3.657090 
-2.634260 
-1.985322 
-2.572570 
-3.633273 

-2.221324 
1.074252 
0.975779 

-0.400361 
-1.146401 
-0.236824 
-0.628485 
-0.707272 
0.902311 
1.993173 

-2.159210 
-3.080190 
-2.429530 
1.989365 
1.799933 

-0.807314 
-2.225788 
-1.079904 
-1.415245 
0.291970 
1.139401 
0.811892 
0.155251 
2.335601 
2.617584 
2.509388 
3.014422 

-0.249262 
-1.523000 
-1.465558 
-0.161028 
0.579458 
0.014419 

-2.385255 
-2.279883 
0.190586 
1.595319 

-0.063071 
1.545012 
2.333470 
2.435491 
1.693760 
1.121201 

-0.288632 
-1.767548 
-0.567915 
-0.782450 
0.812199 
0.080418 

-0.937575 
1.266207 
2.798162 
3.005974 
1.597311 

-2.684193 
-1.617187 
-2.049750 
0.294785 

-1.445566 
-0.045592 
-0.600913 
-0.711243 
-1.551793 
0.141468 
0.447450 
0.076024 

-1.296400 
-1.778970 
-0.709732 
1.418986 
0.722322 

-1.885312 
-2.794563 
-0.761220 

E =-981.3092881 hartrees 

v = 3 8 . 0 1 3 7 , 4 5 . 4 3 0 1 , 5 9 . 3 9 2 1 , 8 3 . 4 3 9 2 , 1 0 2 . 3 9 1 0 , 1 1 0 . 8 4 9 7 , 1 2 1 . 0 9 5 6 , 

1 3 2 . 2 2 8 0 , 1 3 9 . 0 3 5 6 , 1 4 3 . 3 1 9 0 , 1 5 2 . 0 0 3 0 , 1 8 1 . 0 8 8 2 , 1 8 8 . 8 3 2 8 , 2 1 4 . 4 2 6 1 , 

2 2 6 . 2 6 3 4 , 2 4 6 . 0 4 2 5 , 2 5 1 . 3 7 1 4 , 2 5 8 . 4 0 1 1 , 2 7 5 . 7 7 5 0 , 2 8 6 . 4 1 6 5 , 3 0 9 . 7 4 5 9 , 
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3 3 5 . 5 9 3 3 , 3 6 8 . 4 1 2 6 , 3 7 9 . 0 1 0 8 , 4 2 1 . 7 4 1 5 , 4 7 1 . 2 8 5 1 , 5 1 0 . 2 4 7 5 , 5 8 1 . 6 7 1 5 , 

5 8 3 . 7 7 1 2 , 5 9 0 . 7 4 2 6 , 5 9 2 . 9 0 5 6 , 6 3 5 . 7 8 6 1 , 6 7 8 . 8 0 5 9 , 6 9 8 . 6 0 5 8 , 7 0 5 . 0 9 6 6 , 

7 1 6 . 5 1 8 9 , 7 6 6 . 9 9 1 8 , 8 0 0 . 8 3 2 6 , 8 3 5 . 7 6 4 9 , 8 3 7 . 9 7 3 5 , 8 4 5 . 9 1 9 7 , 8 4 9 . 7 4 6 3 , 

8 5 0 . 8 8 0 7 , 8 5 2 . 6 4 3 1 , 8 5 5 . 5 7 2 5 , 8 5 9 . 4 4 7 4 , 8 6 2 . 3 5 3 0 , 8 7 2 . 9 1 9 7 , 9 1 1 . 9 4 1 3 , 

9 1 5 . 3 6 6 5 , 9 2 0 . 7 7 9 3 , 9 3 0 . 1 4 8 3 , 9 4 6 . 1 9 7 7 , 1 0 0 9 . 4 6 4 7 , 1 0 3 5 . 3 5 2 4 , 1 0 4 5 . 4 0 7 6 , 

1 0 6 8 . 9 2 0 9 , 1 0 7 4 . 5 0 9 1 , 1 0 8 8 . 8 5 1 4 , 1 0 9 3 . 0 8 7 3 , 1 0 9 5 . 7 8 0 9 , 1 1 4 5 . 9 0 4 6 , 

1 1 9 6 . 5 6 4 3 , 1 2 1 4 . 1 4 1 1 , 1 2 2 6 . 8 4 8 5 , 1 2 3 3 . 0 1 2 9 , 1 2 8 6 . 8 1 1 0 , 1 2 9 9 . 3 1 2 0 , 

1 3 2 5 . 0 3 7 3 , 1 3 2 7 . 7 6 8 2 , 1 3 4 8 . 5 3 7 7 , 1 4 0 0 . 8 0 3 0 , 1 4 0 7 . 4 4 2 1 , 1 4 1 0 . 6 1 5 8 , 

1 4 4 9 . 9 4 7 0 , 1 4 5 0 . 6 9 4 3 , 1 4 5 3 . 2 1 3 7 , 1 4 6 4 . 3 2 7 6 , 1 4 6 7 . 2 1 4 9 , 1 4 7 3 . 5 7 9 8 , 

1 4 7 5 . 5 0 3 5 , 1 4 8 1 . 2 8 4 6 , 1 4 8 3 . 7 4 4 3 , 1 4 8 5 . 5 3 7 9 , 1 4 9 3 . 9 7 3 3 , 2 9 3 5 . 8 5 9 7 , 

3 0 1 2 . 5 8 2 5 , 3 0 2 8 . 3 2 0 8 , 3 0 5 0 . 5 0 3 9 , 3 0 5 3 . 5 9 6 4 , 3 1 0 2 . 7 2 4 3 , 3 1 0 6 . 6 6 9 6 , 

3 1 0 7 . 8 4 1 6 , 3 1 2 4 . 7 7 8 9 , 3 1 2 9 . 0 3 2 3 , 3 1 3 3 . 3 6 7 9 , 3 2 3 5 . 3 9 0 2 , 3 2 3 9 . 9 7 4 8 , 

3 2 5 1 . 1 4 7 9 , 3 2 5 2 . 0 3 9 2 , 3 2 5 6 . 9 1 8 8 , 3 2 6 4 . 2 1 4 1 , 3 2 6 7 . 3 1 5 0 , 3 2 8 0 . 4 7 8 0 , 

3 2 8 4 . 5 5 8 2 cm"1 

File name (in my CERMM directory): No30Cag.log 

Table C 14. Geometry of IV n—2 F conformer. 

B3LYP/LanL2DZ on Zr B3LYP/6-31G (d,p) for the rest elements 

Atomic Coordinates (Angstroms; 

Number X Y 

6 
6 
6 
6 
6 

14 
6 
6 
6 
6 
9 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

•0 

0 
1 
0 
•0 

2 
2 
1. 
4 
3, 
0, 
1. 
1. 
0. 
1. 
3. 
2. 
1. 
1. 
5. 
4. 
3. 

.380050 

.735637 

.335591 

.564873 

.467163 

.919517 

.548066 

.494897 

.228423 

.487392 

.173337 

.022229 

.072050 

.756543 

.192068 
,481025 
,352776 
.649208 
.240829 
.150155 
478114 
.893191 

-2 
-1 
-1 
-1 
-2 
-0. 
1 
2 

-0. 
0. 
1. 

-3, 
-1. 
-1. 
-2. 
2. 
1. 
2. 
3. 

-0. 
-1. 
-0. 

.472444 

.729596 

.042981 

.405556 

.291750 

.010435 

.722708 

.563722 

.815612 

.189881 

.839185 

.100897 

.692383 

.082889 

.752825 

.299330 

.647784 

.746409 

.486261 

.223757 

.814214 
924069 

0 
0 

-0 
-1. 
-0. 
-0. 
-0. 
-0, 
-1. 
1, 

-0. 
1. 
2. 

-2. 
-1. 
-0. 
-1. 
0. 

-0. 
-1. 
-0. 
-2. 

.513203 

.976981 

.122725 

.282876 

.895174 

.083830 

.836737 

.182206 

.165750 

.699922 

.212559 

.117401 

.003652 
,299935 
.552730 
.745093 
.913094 
.881312 
.704324 
172910 
792997 
202490 
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1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 

40 
6 
1 
1 
1 

4 
3 
2. 
3, 
2. 
2, 
3, 
3, 
3, 
2, 
2. 
3. 
3. 
0. 
1. 
0. 
1. 
1. 

.397999 

.726337 

.737737 

.072598 

.703351 

.854403 

.328461 

.475785 

.064997 

.363989 

.678068 

.587196 

.832274 

.981731 

.008485 

.024904 

.563246 

.448347 

0 
-0, 
0. 
1, 
1. 

-0. 
-0, 
0. 
2. 
2. 

-0. 
-1. 
0. 

-0. 
0. 
0. 
1. 

-0. 

.796728 

.782884 

.666303 

.463553 

.258776 

.118657 

.768342 

.215143 

.409925 

.022814 

.586867 

.815299 

.043151 

.025459 

.271651 

.389254 
,184115 
.547201 

1. 
2. 
2. 
0. 

-1. 
-1. 
-0. 
0. 
0. 

-1. 
-2. 
-0. 
1. 
0. 
2. 
2. 
2. 
2. 

.748594 

.142611 

.341074 

.111626 

.245405 

.541297 

.361766 

.652618 

.636957 

.933974 

.500560 

.273479 

. 658520 
,150387 
,392496 
744484 
637864 
972836 

E = - 1020.6741048 hartrees 

v = 21.5814, 31.5942, 48.0908, 95.1251, 106.3532, 116.0586, 123.1976, 

130.9523, 138.1819, 147.0056, 156.8789 164.7014, 173.2423, 186.6608, 

211.5350, 232.2352, 245.6590, 257.3683, 264.1724, 269.6227, 284.3288, 

313.5149, 321.9191, 330.3045, 365.7945, 408.2533, 450.9968, 471.7558, 

525.1848, 581.7093, 583.2528, 589.7818, 589.9796, 627.0603, 663.1958, 

682.5939, 698.5645, 704.8113, 746.8868, 779.1623, 800.6741, 835.6246, 

839.9595, 845.5904, 846.2644, 851.2669, 852.3319, 853.5963, 862.3390, 

864.0999, 873.9693, 904.1784, 915.1478, 918.2218, 928.2137, 930.9262, 

982.9681, 1023.5157, 1039.1199, 1045.8004, 1070.9646, 1072.6152, 

1091.3130, 1093.9425, 1095.9320, 1148.9050, 1177.6829, 1194.3934, 

1199.8764, 1211.8454, 1229.6837, 1300.8781, 1319.8660, 1321.5693, 

1329.4472, 1349.0674, 1394.9143, 1404.5632, 1410.0699, 1414.3164, 

1447.0022, 1451.8452, 1454.6152, 1457.2984, 1462.7554, 1469.2722, 

1475.3286, 1477.6361, 1479.9493, 1485.9446, 1487.6961, 1516.3354, 

3023.8881, 3035.9184, 3045.5265, 3048.7939, 3088.0063, 3101.8574, 

3119.1844, 3119.4254, 3120.7328, 3126.1130, 3127.2391, 3131.7170, 

3191.3807, 3231.0682, 3243.4319, 3248.4824, 3252.4085, 3259.6747, 

3263.5975, 3266.3601, 3271.8346, 3278.7886 cm"1 

File name (in my CERMM directory): No24Fag-2.log 

Table CI5. Geometry of IV n=2 C conformer. 

B3LYP/LanL2DZ on Zr B3LYP/6-31G (d,p) for the rest elements 
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Atomic 
Number 

Coordinates (Angstroms) 
X Y Z 

6 
6 
6 
6 
6 
6 

14 
6 
6 
6 
9 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 

40 
6 
1 
1 
1 

-0.592534 
-0.294069 
0.760746 
1.128918 
0.279850 
3.482486 
2.111832 
2.666362 
0.723904 
4.390070 
4.549475 

-1.324639 
-0.773941 
1.202402 
0.307008 
3.064892 
4.063230 
1.837878 
3.110640 
3.425582 
1.107901 
0.329272 

-0.110467 
5.385392 
3.951772 

-3.679570 
-3.478283 
-2.878264 
-2.684325 
-3.163821 
-4.140393 
-3.796264 
-2.637669 
-2.269158 
-3.170633 
-1.170709 
-1.452920 
-0.482805 
-2.002153 
-2.011710 

-1.725456 
-2.444764 
-1.768501 
-0.612433 
-0.604857 
0.371697 
0.870299 
1.998913 
1.772983 

-0.717523 
-0.511760 
-2.006720 
-3.357141 
-2.077752 
0.123996 
0.047183 
1.279291 
2.296395 
2.914845 
1.501703 
2.695839 
1.204140 
2.157234 

-0.708099 
-1.712345 
0.084271 

-0.341140' 
0.736534 
1.806347 
1.398155 

-0.495033 
-1.286323 
0.741403 
2.776724 
2.002745 

-0.121002 
-1.115595 
-1.354523 
-0.455433 
-2.058201 

-1.673732 
-0.484825 
0.176469 

-0.581955 
-1.736796 
1.266862 
0.057928 

-1.330516 
1.055866 
0.698931 

-0.678079 
-2.419432 
-0.154551 
1.114430 

-2.537683 
2.227713 
1.475283 

-1.982023 
-0.925786 
-1.939518 
1.506526 
1.917759 
0.434000 
1.153658 
0.832840 
0.617758 

-0.725317 
-1.445167 
-0.540192 
0.740294 
1.405201 

-1.146233 
-2.499907 
-0.785129 
1.638797 
0.216040 
2.225731 
2.677067 
2.907064 
2.169580 

E = -1020.6324714 hartrees 

V = 

125 

214 

296 

493 

683 

21. 

1552 

9888 

1947 

8803 

0051 

5111, 

129 

224 

321 

576. 

695 

28.6451, 

.1020, 

.9049, 

5851, 

8857, 

5302, 

139 

235 

331 

57£ 

698 

40.95. 

6205, 

0295, 

2592, 

.7968 

2290, 

127 

, 6 7 . 1 0 0 2 

1 5 2 . 1 4 3 0 , 

2 4 7 . 0 9 5 9 , 

3 7 1 . 8 5 5 2 , 

5 8 4 . 3 2 8 9 , 

7 1 9 . 8 5 5 9 , 

80 

171. 

260. 

420. 

591 

823. 

.3992, 

7188, 

9674, 

5513, 

.0838, 

8624, 

86. 

180 

262 

472 

646 

829 

4481, 

1623, 

9328, 

3631, 

.1170, 

1239, 

1 0 8 . 2 9 0 4 , 

2 0 8 . 8 4 3 8 , 

2 8 2 . 4 4 7 7 , 

4 8 7 . 1 3 6 4 , 

6 6 1 . 9 7 1 7 , 

8 3 3 . 2 1 3 6 , 



8 4 1 . 7 5 2 1 , 8 4 7 . 1 7 7 2 , 8 5 0 . 1 5 4 0 , 8 5 1 . 2 3 1 0 , 8 5 2 . 0 4 7 9 , 8 5 3 . 3 9 5 4 , 8 6 1 . 0 4 2 0 , 

8 7 2 . 3 1 9 6 , 9 0 0 . 7 0 9 3 , 9 0 9 . 6 8 8 2 , 9 2 1 . 4 7 2 8 , 9 2 6 . 3 6 0 5 , 9 2 8 . 2 8 9 6 , 9 5 5 . 8 0 7 8 , 

9 9 4 . 6 7 4 1 , 1 0 3 4 . 1 5 8 7 , 1 0 4 4 . 5 1 5 3 , 1 0 6 9 . 0 9 3 0 , 1 0 7 0 . 9 3 7 9 , 1 0 7 6 . 0 0 5 3 , 

1 0 8 8 . 2 1 1 3 , 1 0 9 1 . 3 0 5 5 , 1 0 9 5 . 4 7 4 6 , 1 1 4 6 . 3 3 7 7 , 1 1 9 5 . 1 8 9 3 , 1 2 0 8 . 9 5 5 5 , 

1 2 1 3 . 3 8 2 1 , 1 2 2 7 . 7 8 0 0 , 1 2 3 6 . 1 7 4 6 , 1 2 9 0 . 5 5 1 0 , 1 2 9 8 . 1 5 1 7 , 1 3 0 9 . 8 4 7 5 , 

1 3 2 4 . 3 8 6 8 , 1 3 5 5 . 4 7 5 9 , 1 4 0 0 . 5 4 5 2 , 1 4 0 7 . 4 2 0 8 , 1 4 1 0 . 5 2 1 5 , 1 4 2 0 . 9 3 2 6 , 

1 4 4 6 . 3 2 8 0 , 1 4 5 1 . 4 0 7 3 , 1 4 5 2 . 2 5 7 7 , 1 4 6 0 . 4 4 6 3 , 1 4 6 4 . 1 3 6 1 , 1 4 6 9 . 6 9 1 8 , 

1 4 7 3 . 8 1 9 7 , 1 4 7 9 . 4 4 5 9 , 1 4 8 5 . 2 8 2 7 , 1 4 8 7 . 3 8 4 5 , 1 4 9 4 . 0 1 4 8 , 1 5 3 1 . 4 2 5 6 , 

2 9 2 3 . 4 4 4 3 , 2 9 9 8 . 3 3 7 2 , 3 0 2 7 . 8 2 0 8 , 3 0 4 7 . 2 5 5 2 , 3 0 5 2 . 4 5 5 4 , 3 0 6 2 . 3 6 3 1 , 

3 0 9 2 . 4 5 5 7 , 3 0 9 6 . 0 1 4 8 , 3 1 0 3 . 5 2 0 7 , 3 1 1 4 . 1 7 9 2 , 3 1 1 8 . 8 1 0 8 , 3 1 2 2 . 8 6 6 1 , 

3 1 5 4 . 1 5 8 5 , 3 2 3 9 . 7 0 6 0 , 3 2 4 3 . 8 9 4 4 , 3 2 5 0 . 3 4 5 6 , 3 2 5 0 . 6 7 6 4 , 3 2 5 5 . 0 9 9 3 , 

3 2 5 9 . 0 9 8 0 , 3 2 6 6 . 8 0 3 2 , 3 2 6 8 . 6 2 6 4 , 3 2 7 9 . 6 9 1 5 cm'1 

File name (in my CERMM directory): No24Cl.log 

Table C16. Geometry of IV n=3 F conformer. 

B3LYP/LanL2DZ on Zr B3LYP/6-31G (d,p) for the rest elements 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 -0.890745 ' -2.836628 -0.098884 
6 0.289852 -2.385291 0.544304 
6 1.006167 -1.511796 -0.332963 
6 0.231913 -1.452128 -1.542462 
6 -0.916762 -2.271384 -1.402692 
14 2.732542 -0.791560 0.011315 
6 3.023956 0.826832 -0.981803 
6 1.915851 1.857747 -1.262792 
6 1.199316 2.402389 -0.058916 
6 4.016847 -2.033534 -0.581375 
6 2.914819 -0.486874 1.863507 
9 1.972609 2.768627 0.945420 
9 0.349287 1.354066 0.529389 
9 0.337884 3.373191 -0.340663 
1 -1.625241 -3.514218 0.318076 
1 0.593995 -2.663072 1.544089 
1 0.495800 -0.909058 -2.442468 
1 -1.670843 -2.447103 -2.158253 
1 3.858332 1.336251 -0.483503 
1 3.418861 0.528490 -1.959840 
1 2.332330 2.740804 -1.763014 
1 1.147629 1.462796 -1.935004 
1 3.894041 -2.270738 -1.643111 
1 5.030747 -1.643175 -0.439562 
1 3.943333 -2.971112 -0.020872 
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1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 

40 
6 
1 
1 
1 

2.738347 
3.938356 
2.240242 
-2.982595 
-2.506121 
-2.847685 
-3.539875 
-3.642002 
-2.880019 
-1.973561 
-2.646104 
-3.972404 
-4.132135 
-1.184662 
-1.457374 
-0.459537 
-1.919319 
-2.053344 

-1.404166 
-0.166178 
0.284186 
1.479316 
1.577509 
0.383562 
-0.459547 
0.232528 
2.235461 
2.420942 
0.160296 
-1.425871 
-0.130434 
-0.325739 
-0.748343 
-0.902693 
0.113674 
-1.632799 

2.435393 
2.086966 
2.247103 
0.456403 

-0.881715 
-1.560505 
-0.638798 
0.599090 
1.224489 

-1.302680 
-2.599724 
-0.862869 
1.491354 
0.208547 
2.406243 
2.838060 
2. 900037 
2.657886 

E = -1258.4633956 hartrees 

v = 21.2516, 38.7548, 58.7782, 61.3322, 87.2816, 96.5229, 111.5420, 

120.2156, 127.2400, 138.5323, 145.8232, 150.3267, 151.7825, 163.4562, 

171.3147, 181.6062, 202.1788, 221.3254, 234.4414, 246.9339, 255.4429, 

274.4783, 283.5990, 313.7748, 325.0741, 336.1681 355.2415, 367.8900, 

400.3899, 447.4018, 471.2588, 512.5020, 517.0504, 533.0757, 582.2448, 

584.3627, 586.3740, 592.1920, 614.2873, 631.8594, 676.9142, 687.8522, 

697.8141, 702.2489, 703.2129, 783.3880, 825.0202, 836.2028, 840.2156, 

843.6210, 845.9150, 849.8092, 851.4798, 854.1666, 857.7225, 862.9975, 

878.6463, 900.4563, 906.1036, 916.8408, 919.9878, 927.6327, 932.2303, 

971.6065, 1036.7614, 1045.5834, 1046.6118, 1068.9701, 1071.5257, 

1090.7050, 1092.9840, 1094.8575, 1148.2650, 1171.6465, 1192.5246, 

1212.1693, 1223.4022, 1230.5489, 1270.5006, 1299.6104, 1312.0455, 

1320.1513, 1329.3526, 1347.8582, 1362.9118, 1402.3269, 1410.3482, 

1415.3114, 1419.6082, 1447.9475, 1450.4873, 1453.2659, 1463.8730, 

1467.0658, 1475.6667, 1477.1602, 1477.7108, 1479.7878, 1486.1112, 

1487.2493, 1491.9633, 3025.1378, 3047.1899, 3050.7550, 3051.9588, 

3062.5531, 3093.3182, 3104.2153, 3110.6200, 3120.7163, 3122.1148, 

3125.6806, 3131.0686, 3135.1269, 3235.8198, 3246.2939, 3247.3517, 

3251.9499, 3259.4291 3263.0020, 3267.2638, 3269.4086, 3280.1987 cnf1 

File name (in my CERMM directory): No4CH2F.log 
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Table CI7. Geometry of IV n=3 C conformer. 

B3LYP/LanL2DZ on Zr B3LYP/6-31G (d,p) for the rest elements 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 
6 
6 
6 
6 

14 
6 
6 
6 
6 
6 
9 
9 
9 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
40 
6 
1 
1 
1 

2.640792 
1.310304 
0.402516 ' 
1.215449 
2.586630 

-1.473059 
-1.341817 
-2.553894 
-3.454337 
-2.202655 
-2.292242 
-2.728891 
-4.124177 
-4.355784 
3.538485 
1.029347 
0.852124 
3.437425 

-1.823839 
-0.809329 
-0.712292 
-2.227477 
-3.163590 
-1.870550 
-3.293678 
-1.902795 
-2.238997 
-3.351727 
1.604778 
0.974326 
1.919862 
3.139425 
2.946711 
1.148863 

-0.046727 
1.757847 
4.070786 
3.691858 
1.514900 
2.335409 
1.915069 
2.091413 
3.426748 

2.163804 
2.338182 
2.014758 
1.640482 
1.716208 
1.735846 
0.039985 

-0.763940 
-1.262077 
1.612187 
3.027291 

-1.878858 
-0.246531 
-2.137661 
2.342425 
2.665763 
1.354129 
1.530727 
3.109645 

-0.666615 
0.240255 

-1.643495 
-0.155856 
0.714491 
1.584944 
2.485302 
4.011868 
2.794475 

-2.703807 
-2.350346 
-1.658675 
-1.580105 
-2.253109 
-3.255943 
-2.582272 
-1.281312 
-1.159046 
-2.392794 
-0.147242 
-0.178040 
0.641587 

-1.130779 
-0.069006 

0.280165 
0.729533 

-0.332936 
-1.448284 
-1.069322 
-0.170406 
0.763373 
1.276656 
0.164266 

-1.894871 
0.912943 

-0.808551 
-0.426651 
0.622535 
0.857579 
1.722651 

-2.427244 
-1.711987 
1.899195 
0.082991 
1.651245 
1.840115 
1.950885 

-2.426343 
-1.865106 
-2.484489 
0.436477 
1.063843 
0.297121 

-0.933605 
-1.727792 
-0.988832 
0.251120 
1.109548 

-1.212986 
-2.728515 
-1.344420 
1.021640 
0.260266 
2.361253 
2.955685 
2.847297 
2.406262 

E =-1258.4387971 hartrees 

v = 1 4 . 3 5 5 3 , 2 4 . 1 0 2 5 , 2 9 . 4 9 6 6 , 3 8 . 6 7 7 9 , 5 5 . 5 9 4 2 , 7 3 . 4 0 3 9 , 7 7 . 3 9 3 1 , 
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103.0641, 111.6871, 132.4303, 134.5893, 139.8984, 143.1407, 145.3217, 

147.6544, 201.2118, 210.0547, 220.4849, 244.2486, 252.7222, 259.5923, 

282.7693, 288.6727, 310.8842, 324.5800, 336.9028, 366.5725, 378.2020, 

421.1039, 457.0458, 471.3651, 486.7601, 523.4721, 536.6015, 573.0870, 

579.1211, 585.0913, 590.1445, 624.7602, 642.4606, 686.7493, 695.6121, 

707.4294, 717.4935, 787.6645, 813.7700, 835.7511, 842.2767, 845.9250, 

846.2147, 850.9360, 851.0551, 855.9544, 857.4454, 863.5088, 872.4293, 

878.8188, 898.0330, 905.5937, 919.3744, 926.0037, 928.0812, 933.8407, 

1031.8436, 1034.9971, 1044.9583, 1061.4955, 1071.3121, 1076.9761, 

1089.7515, 1091.2283, 1094.9033, 1145.4091, 1164.7313, 1191.0798, 

1214.3679, 1228.6685, 1232.1657, 1255.2199, 1267.2546, 1299.7677, 

1324.9534, 1329.0323, 1336.7393, 1351.8986, 1400.3925, 1404.1679, 

1409.1064, 1422.0000, 1443.2160, 1444.5829, 1447.5267, 1460.3808, 

1467.8604, 1471.4979, 1473.5822, 1474.7083, 1484.0883, 1485.5563, 

1491.2137, 1494.5493, 2838.6305, 2959.7577, 3023.5751, 3049.9366, 

3055.8201, 3081.0536, 3098.2384, 3110.7274, 3127.6575, 3128.4791, 

3130.0011 3131.6371, 3158.5270, 3240.1387, 3244.2058, 3246.7128, 

3251.6240, 3256.0035, 3257.6772, 3267.8113, 3269.1813, 3278.6071 

File name (in my CERMM directory): No4-lCH2C.log 

Table C18. Geometry of the structure Figure 3.10 (TS highest energy). 

B3LYP/LanL2DZ on Zr B3LYP/6-31G (d,p) for the rest elements 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 0.320159 1.807520 -1.599266 
6 0.098508 2.519067 -0.388164 
6 -1.003157 1.920373 0.270128 
6 -1.490253 0.834359 -0.526194 
6 -0.657661 0.775188 -1.687669 
6 -1.539725 -1.648867 1.075073 

14 -2.675891 -0.482051 0.095273 
9 -3.634601 0.231388 1.182317 
6 -3.664863 -1.319904 -1.234442 
1 1.061075 2.048742 -2.349791 
1 0.665207 3.371507 -0.037457 
1 -1.414298 2.232312 1.222192 
1 -0.761555 0.082889 -2.513840 
1 -0.660649 -2.013009 0.506077 
1 -2.047499 -2.578652 1.356613 
1 -1.214680 -1.195972 2.022507 
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1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 

40 
6 
1 
1 
1 

• 4 . 

•3. 

• 4 . 

3, 
2. 
2. 
1. 
2. 
3. 
3. 
1. 
1. 
2. 
0. 
1. 
0. 
0. 
2. 

.331405 

.025546 

.282471 

.289326 

.888034 

.071370 

.956798 

.690690 

.937899 

.216476 

.651253 
,427921 
.808238 
.783789 
.337514 
979209 
688667 
344033 

-2 
-1 
-0 
-0 
-0. 
-1. 
-2, 
-1, 
0. 
0. 

-1. 
-3. 
-1. 
0. 
1. 
2. 
0. 
0. 

.071290 

.825160 

.591549 

.307350 

.132853 

.246100 

.088200 

.499141 

.352162 

.658774 

.430542 

.033110 

.911087 

.120924 

.096182 

.101450 
389081 
981045 

-0. 
-1. 
-1. 
0 

-1. 
-1. 
-0. 
0 
0, 

-1. 
-2. 
-0. 
1. 
0. 
2. 
2. 
2. 
2. 

.798689 

.966740 

.769166 

.265325 

.088951 

.455776 

.322939 

.748454 

.824011 

.748993 

.435551 

.284111 

.742968 

.230946 

.164840 

.388241 

.738928 
,567790 

-942.0656528 hartrees 

v = -53.3098, 32.9880, 38.5912, 73.3710, 82.0933, 102.5292, 124.6584, 

133.1605, 142.9321, 158.1236, 188.7659, 198.3224, 217.6753, 231.9025, 

249.6583, 254.9032, 264.6320, 289.3923, 306.7145, 333.3551, 339.7503, 

379.1170, 395.5083, 432.3832, 568.0842, 577.6856, 585.0521, 589.1373, 

607.9425, 645.6579, 682.3455, 700.9309, 727.9765, 790.1993, 808.5453, 

836.8530, 841.0089, 844.0606, 850.2397, 851.4591, 853.4102, 853.8179, 

859.3691, 863.8704, 905.0749, 913.8787, 922.5350, 929.9505, 933.8507, 

950.3200, 1035.7756, 1043.2706, 1065.9756, 1073.2318, 1088.3394, 

1090.5599, 1097.2917, 1144.5472, 1200.3272, 1217.6328, 1233.0763, 

1298.8151, 1305.4952, 1331.4188, 1356.9723, 1389.7057, 1400.1096, 

1404.1693, 1410.4254, 1444.4325, 1453.3063, 1462.2747, 1468.8702, 

1470.6352, 1474.4688, 1482.6919, 1486.7246, 1490.1814, 2858.7813, 

2937.2919, 3052.1370, 3058.1628, 3107.2710, 3127.3166, 3129.2841, 

3140.1659, 3183.6036, 3240.2021, 3246.4616, 3250.1290, 3253.7920, 

3258.9853, 3261.0558, 3268.1240, 3272.3171, 3282.1938 cm"1 

File name (in my CERMM directory): None29.log 
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Appendix D 

Supplemental information related to CHAPTER IV 

Table Dl. Olefin complex geometry in Figure 4.3 (a). 

B3LYP/LanL2DZ on zirconium B3LYP/6-31G(d,p) on lighter elements 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 
40 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
6 
6 
1 
1 
1 
1 

-0.003224 
0.000495 

-0.901704 
0.891540 

-0.000463 
2.590785 
2.245597 
1.631537 
1.638106 
2.223738 
3.107919 
2.433141 
1.323065 
1.310571 
2.417397 

-1.628386 
-2.217324 
-2.590809 
-2.245626 
-1.625640 
-1.294799 
-2.407922 
-3.111105 
-2.436652 
-1.314468 
-0.690990 
0.672467 

-1.271672 
-1.242823 
1.231150 
1.245643 

0.653889 
0.082412 
1.249726 
1.255451 

-0.198533 
0.266014 

-0.841983 
-1.841234 
-1.359123 
-0.059859 
1.159906 

-0.924611 
-2.826885 
-1.909375 
0.544936 

-1.372049 
-0.074206 
0.258140 

-0.844251 
-1.846412 
-1.925978 
0.525788 
1.152803 

-0.921027 
-2.829031 
2.776790 
2.779020 
2.721666 
2.964490 
2.725743 
2.970056 

2.286343 
0.112768 
2.509126 
2.509173 
2.981372 
0.128857 
0.960793 
0.132610 

-1.226232 
-1.226646 
0.451103 
2.021876 
0.452819 

-2.097430 
-2.103408 
-1.223285 
-1.233470 
0.118579 
0.958237 
0.138424 

-2.089668 
-2.114362 
0.433502 
2.019012 
0.465795 

-0.542453 
-0.558725 
-1.459773 
0.375990 

-1.489849 
0.345787 

E=-551.9136298 hartrees 
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v = 29.1617, 40.1493, 62.4238, 85.5264, 106.5036, 149.6560, 154.6631, 

178.0434, 188.8528, 212.6980, 235.0782, 240.9403, 241.6955, 265.4426, 

272.0862, 311.1509, 346.6898, 395.5604, 488.3404, 520.1532, 574.3880, 

580.6383, 582.7292, 588.5574, 701.2110, 832.4083, 841.6743, 847.2787, 

850.7692, 853.4129, 858.4745, 859.5292, 862.4493, 864.4588, 867.3844, 

880.9282, 924.9633, 937.4789, 941.2137, 945.7009, 1024.1162, 1032.7858, 

1035.0185, 1043.5498, 1046.7849, 1049.5104, 1054.7096, 1098.3004, 

1103.5801, 1106.0266, 1110.7001, 1138.0721, 1139.8092, 1237.7626, 

1253.2418, 1306.3133, 1308.1921, 1373.9839, 1396.1568, 1400.2028, 

1402.4249, 1407.7160, 1457.3350, 1458.6201, 1466.3700, 1471.2303, 

1471.5309, 1476.6237, 1490.6171, 1631.1938, 3004.3035, 3102.2130, 

3105.1597, 3160.9241, 3177.5358, 3259.5922, 3262.2159, 3266.5690, 

3271.9344, 3275.3238, 3281.7052, 3284.7734, 3289.7168, 3292.5615, 

3294.5128, 3307.0336, 3309.0039 cm"1 

File name (in my CERMM directory): Nol0-4.log 

Table D2. Olefin complex geometry in Figure 4.3 (b). 

B3LYP/LanL2DZ on zirconium B3LYP/6-31G(d,p) on lighter elements 

Atomic 
Number 

6 
40 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 

14 
6 

Coordinates (Angstroms) 
X 

2.894872 
1.097378 
2.933923 
3.805447 
2.919644 
2.630494 
2.026594 
0.609285 
0.343325 
1.592357 
3.690756 
2.547729 

-0.116795 
-0.616772 
1.737355 

-1.426724 
-0.840333 
0.077099 
0.072549 

-0.822333 
-2.988574 
-4.436231 

Y 

-0.920385 
-0.171344 
-2.019016 
-0.520123 
-0.604548 
1.935949 
2.012596 
2.161920 
2.188906 
2.053524 
1.849609 
1.990697 
2.320428 
2.361495 
2.114297 

-0.694938 
-1.845332 
-2.479722 
-1.730458 
-0.621242 
0.222671 

-0.951443 

Z 

-1.254343 
-0.120339 
-1.244171 
-0.780482 
-2.307676 
0.145633 

-1.145459 
-0.963779 
0.449064 
1.132173 
0.342692 

-2.092448 
-1.747922 
0.912089 
2.202278 

-0.374885 
0.253928 

-0.656333 
-1.870334 
-1.692402 
0.238305 

-0.099670 
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6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
1 
1 
1 
1 

-2.847853 
-3.220648 
-1.103048 
0.627347 
0.626307 

-1.090850 
-4.520002 
-5.384277 
-4.327834 
-3.776623 
-2.028242 
-2.704230 
-4.171151 
-3.276537 
-2.432291 
1.959291 
2.360580 
1.066826 
2.579356 
1.800216 
3.324720 

0.540476 
1.828273 

-2.220151 
-3.394191 
-1.965319 
0.086777 

-1.191699 
-0.493513 
-1.896379 
0.992770 
1.220974 

-0.395126 
2.297060 
1.636501 
2.570217 

-1.977254 
-0.742529 
-2.448802 
-2.581536 
-0.191685 
-0.332416 

2.103552 
-0.739669 
1.236084 

-0.476900 
-2.768542 
-2.465211 
-1.167154 
0.213138 
0.448081 
2.475859 
2.368520 
2.661181 

-0.452184 
-1.819594 
-0.565484 
1.953247 
2.368948 
2.354428 
1.294477 
3.121162 
2.077042 

E = - 674.9688716hartrees 

v = 23.0118, 33.0599, 58.5878, 65.9729, 74.7574, 79.1871, 104.4738, 

114.9732, 119.7585, 132.4529, 139.6128, 142.1253, 147.3104, 160.0118, 

173.5060, 180.9823,201.9684, 209.0134, 215.1534, 229.9670, 238.2677, 

245.5154, 253.5651, 264.8163, 294.9365, 316.5819, 326.0636, 359.1904, 

387.0915, 410.7065, 482.6805, 523.6741, 577.7017, 579.5900, 588.6183, 

615.2680, 630.3895, 701.2340, 715.4225, 722.3275, 770.4354, 828.2895, 

836.3257, 842.5237, 847.1234, 850.8992, 853.3475, 861.0674, 864.1728, 

866.1051, 869.4485, 883.2712, 900.3126, 902.8984, 926.3163, 934.5523, 

936.5593, 942.4599, 948.2027, 949.7394, 1022.3540, 1037.6234, 1039.4539, 

1046.2733, 1051.7474, 1063.9052, 1073.9307, 1104.1108, 1104.8338, 

1109.5933, 1140.2819, 1180.3657, 1109.5933, 1140.2819, 1180.3657, 

1233.6361, 1236.2246, 1253.9453, 1307.5250, 1344.3924, 1359.4100, 

1364.2733, 1372.6113, 1376.6749, 1401.3070, 1404.6952, 1408.8609, 

1425.0063, 1459.7279, 1464.4328, 1469.8183, 1476.8148, 1477.5637, 

1487.4280, 1488.1977, 1491.3180, 1493.6757, 1502.1062, 1505.8612, 

1508.6690, 1631.9771, 3004.6616, 3039.0150, 3042.1351, 3045.1222, 

3098.4376, 3111.8703, 3126.9310, 3129.9226, 3131.2890, 3135.4101, 

3140.6907, 3141.3647, 3160.6254, 3179.0055, 3247.6331, 3262.8744, 

3266.2533, 3268.5996, 3272.4955, 3278.7108, 3289.5912, 3295.5813, 

3296.0429, 3297.2131, 3313.6070 cm"1 

File name (in my CERMM directory): Nol0-25-2.log 

135 



Table D3. Olefin complex geometry in Figure 4.3 (c). 

B3LYP/LanL2DZ on zirconium B3LYP/6-31G(d,p) on lighter elements 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 
40 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
6 
6 
1 
1 
1 
1 

2 
0 
2 
3 
2 
2 
1 
0 
0 
1 
3 
2 

-0 
-0. 
1 

-1 
-1, 
-0. 
-0. 
-1. 
-2. 
-4. 
-2. 
-3. 
-1. 
0. 
0. 

-1. 
-4. 
-5. 
-4. 
-3. 
-1. 
-2. 
-3. 
-3. 
-2. 
1. 
2. 
0. 
2. 
1. 
3. 

.512567 

.864665 

.427233 

.486168 

.525764 

.652281 

.986200 

.627573 

.460634 

.713342 

.699605 

.434578 

.126328 

.440538 

.928881 

.743198 

.212221 

.397602 

.398617 

.190719 

.911508 

.186543 

.781129 

.082044 

.454389 

.101082 
,110567 
.425532 
.322052 
.070310 
139045 
655643 
895276 
730482 
963216 
240472 
226995 
641925 
230739 
725678 
119878 
805712 
208454 

-1 
-0 
-2 
-0 
-0 
1 
1 
2 
2 
1 
1 
1 
2 
2 
1 

-0. 
-1, 
-2. 
-1. 
-0. 
0. 

-0. 
0. 
1. 

-2. 
-3. 
-1. 
0. 

-0. 
0. 

-1. 
1. 
1. 

-0. 
2. 
1. 
2. 

-2. 
-1. 
- 2 . 
- 2 . 
-0. 
-0. 

.071583 

.185700 

.162670 

.812756 

.704229 

.692206 

.906520 

.218718 

.206340 

.885926 

.447288 

.851482 

.489595 

.461319 

.855020 

.462640 

.667995 

.303447 

.488946 

.339642 

.328145 

.508034 

.489287 

.708576 

.080174 

.257866 

.696050 

.441904 

.652710 
010083 
493827 
013969 
068361 
478013 
206616 
622687 
368252 
159044 
029403 
531174 
790141 
456111 
722744 

-1 
-0 
-1 
-0 
-2 
0 

-1 
-0 
0 
1 
0 

-2 
-1 
1 
2 

-0 
0 

-0. 
-1. 
-1 
0. 
0. 
1. 

-0. 
1. 

-0. 
-2. 
-2. 
-1. 
0. 
0. 
2. 
2. 
2. 
0. 

-1. 
-0. 
1. 
2. 
2. 
1. 
3. 
1. 

.405599 

.126450 

.456093 

.970147 

.438097 

.122083 

.107461 

.822404 

.592509 

.173347 

.238890 

.089865 

.547651 

.130741 

.232961 

.277214 

.258012 

.725500 

.879712 

.595770 

.314383 

.014911 

.843023 

.348284 

.229194 

.620153 

.810350 

.305113 

.061218 
,400417 
,487058 
,238626 
.124466 
352954 
065959 
427745 
178722 
801773 
243635 
247958 
057506 
062697 
883325 

E = -709.2805905 hartrees 
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v = 15.2757, 29.0746, 68.8548, 80.4478, 92.6365, 100.5803, 108.0633, 

139.8797, 144.7581, 178.3231, 184.7548, 193.3411, 198.9062, 229.2588, 

230.7110, 249.4275, 251.9476, 262.7871, 269.4526, 277.7815, 284.8866, 

312.2090, 337.5560, 345.4923, 352.8244, 371.2852, 386.2221, 444.9487, 

466.8894, 468.7049, 515.6271, 574.2137, 581.6168, 583.2243, 593.3569, 

661.8160, 701.3545, 814.2983, 833.0491, 834.1052, 837.9891, 843.4975, 

847.0142, 849.2811, 852.4799, 853.9696, 863.8198, 880.3387, 917.1264, 

920.9558, 926.2759, 931.5925, 935.2956, 946.3744, 965.4484, 1000.5753, 

1026.7916, 1038.7478, 1039.4233, 1044.6609, 1047.2684, 1064.6570, 

1066.7800, 1078.3247, 1092.0029, 1092.7418, 1098.1794, 1151.3242, 

1179.4256, 1213.3050, 1216.6322, 1221.1463, 1248.1748, 1276.0781, 

1295.2606, 1300.0084, 1372.9104, 1375.7905, 1406.4922, 1410.6360, 

1414.7877, 1417.0080, 1433.5840, 1448.1440, 1450.9227, 1452.5086, 

1460.7210, 1477.5212, 1480.6911, 1486.9102, 1491.9287, 1495.2197, 

1500.5159, 1509.7481, 1517.7586, 1523.6299, 1534.8078, 1656.4899, 

3027.0326, 3047.5329, 3051.4527, 3061.9779, 3104.4546, 3114.9204, 

3118.3551, 3125.9208, 3126.2149, 3130.5795, 3131.9227, 3139.0139, 

3163.5479, 3172.5531, 3244.7575, 3250.6611, 3254.3313, 3258.3694, 

3261.6635, 3263.4747, 3271.1526, 3275.0928, 3276.9339, 3279.6558, 

3287.2368 cm"1 

File name (in my CERMM directory): NolO-25tBu.log 

Table D4. Olefin complex geometry in Figure 4.3 (d). 

B3LYP/LanL2DZ on zirconium B3LYP/6-31G(d,p)on lighter elements 

Atomic Coordinates (Angstroms) 
Number X Y Z 

6 0.827882 -0.162367 2.311757 
40 0.982029 -0.119940 0.078974 
1 1.634062 0.449571 2.743612 
1 0.916978 -1.190059 2.694015 
1 -0.121006 0.249143 2.686764 
6 0.242002 -2.626318 -0.224909 
6 -0.773363 -1.980670 0.530856 
6 -1.366856 -0.959255 -0.296258 
6 -0.741083 -1.043609 -1.603548 
6 0.256754 -2.047879 -1.548958 

14 -2.835042 0.056678 0.101839 
9 -3.103220 1.103086 -1.163930 
9 -4.214506 -0.804100 0.390596 
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1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
6 
6 
1 
1 
1 
1 

•2 
0 
•1. 
•1. 
0. 
0. 
1. 
2. 
1. 
0. 
•0. 
1. 
3. 
2. 
0. 
3. 
3. 
4 . 
4. 
3. 
2. 

.572639 

.833537 

.060146 

.011923 

.879756 

.011648 

.226881 

.321009 

.778408 

.356728 

.981107 

.305766 

.368913 
,347760 
.342994 
.840282 
.228302 
,270491 
034464 
170303 
926305 

0 
-3 
-2. 
-0 
-2. 
2 
1 
1. 
2, 
2. 
2. 
1. 
1. 
2. 
2. 

-0. 
-1. 
-0. 
0. 

-2. 
-2. 

.998585 

.467790 

.219675 

.456937 

.362360 

.023517 

.785447 

.968224 

.307529 

.341333 

.061904 

.591145 

.961704 

.537374 

.589533 

.576687 

.789720 

.258585 
,054050 
,478382 
,171929 

1 
0 
1. 

-2, 
-2, 
-0, 
-1. 
-0. 
0. 
0. 

-1. 
-2. 
-0. 
1. 
1. 
0. 
0. 

-0. 
1. 

-0. 
1. 

.452186 

.109078 

.545202 

.470936 

.377553 

.859160 

.582585 

.672508 

.614847 

.502756 

.286565 

. 644425 

.936674 

.505278 

.289338 

.147857 

.272362 

.798634 
,012983 
566883 
245974 

E = -854.8996402 hartrees 

v = 2 7 . 1 6 0 7 , 3 3 . 5 1 2 3 , 4 6 . 3 6 2 2 , 6 9 . 3 0 7 0 , 8 3 . 7 6 6 9 , 9 8 . 9 0 9 3 , 1 0 9 . 7 6 5 4 , 

1 1 1 . 4 4 1 2 , 1 3 4 . 9 4 6 2 , 1 4 4 . 5 3 5 5 , 1 4 8 . 0 3 7 3 , 1 7 5 . 5 7 8 3 , 1 9 3 . 6 5 0 0 , 2 0 8 . 3 8 2 1 , 

2 2 4 . 8 6 1 5 , 2 3 4 . 5 1 3 6 , 2 4 1 . 3 5 2 2 , 2 4 8 . 6 6 7 9 , 2 5 9 . 4 2 4 8 , 2 6 8 . 7 9 1 2 , 2 7 6 . 3 0 8 1 , 

2 9 7 . 2 9 8 3 , 3 2 9 . 6 8 2 0 , 3 5 8 . 5 4 2 6 , 3 7 8 . 7 6 6 8 , 4 1 5 . 9 4 0 0 , 4 6 8 . 8 1 3 0 , 4 9 2 . 3 0 3 7 , 

5 3 3 . 2 9 4 9 , 5 7 5 . 8 0 9 2 , 5 8 0 . 0 1 5 5 , 5 8 3 . 6 7 2 9 , 6 2 5 . 6 3 6 2 , 6 8 5 . 1 9 5 4 , 7 5 1 . 0 5 1 5 , 

8 4 7 . 1 4 0 0 , 8 5 0 . 8 5 6 2 , 8 5 9 . 7 3 6 3 , 8 6 0 . 3 5 6 7 , 8 6 1 . 7 6 9 8 , 8 6 3 . 9 2 9 6 , 8 6 6 . 1 2 3 0 , 

8 7 5 . 0 1 8 9 , 8 7 8 . 4 8 8 4 , 8 8 7 . 3 2 9 5 , 9 0 2 . 2 6 1 9 , 9 1 7 . 9 7 1 9 , 9 4 3 . 8 9 3 6 , 9 4 7 . 3 4 0 8 , 

9 5 6 . 7 7 7 1 , 9 7 1 . 9 1 7 7 , 1 0 2 7 . 8 2 8 6 , 1 0 3 8 . 5 1 4 1 , 1 0 4 8 . 0 9 8 2 , 1 0 5 0 . 4 0 1 8 , 

1 0 5 8 . 3 2 7 7 , 1 0 6 3 . 9 8 6 1 , 1 0 8 8 . 8 7 5 5 , 1 1 0 5 . 2 6 4 3 , 1 1 1 1 . 4 5 6 1 , 1 1 1 7 . 8 2 3 0 , 

1 1 3 8 . 7 1 5 9 , 1 2 2 7 . 7 9 5 9 , 1 2 4 0 . 6 1 5 4 , 1 2 5 0 . 6 1 1 6 , 1 2 5 9 . 8 9 6 5 , 1 3 1 2 . 8 1 1 1 , 

1 3 5 5 . 8 0 3 1 , 1 3 7 4 . 0 0 2 3 , 1 3 1 2 . 8 1 1 1 , 1 3 5 5 . 8 0 3 1 , 1 3 7 4 . 0 0 2 3 , 1 3 9 8 . 3 7 9 0 , 

1 4 0 4 . 3 0 5 8 , 1 4 0 6 . 5 4 1 4 , 1 4 5 7 . 4 6 5 3 , 1 4 6 2 . 0 3 1 4 , 1 4 6 2 . 5 5 8 7 , 1 4 7 2 . 9 6 2 8 , 

1 4 7 6 . 8 2 3 9 , 1 4 7 7 . 8 1 8 5 , 1 4 9 2 . 1 2 2 9 , 1 6 2 9 . 7 3 2 0 , 3 0 0 8 . 0 4 7 7 , 3 1 0 5 . 7 2 8 2 , 

3 1 0 8 . 2 7 6 7 , 3 1 5 6 . 9 5 3 4 , 3 1 7 4 . 0 4 1 1 , 3 2 5 9 . 7 3 3 3 , 3 2 6 0 . 8 6 0 4 , 3 2 6 6 . 8 1 0 6 , 

3 2 7 3 . 7 4 4 2 , 3 2 7 8 . 1 9 5 0 , 3 2 8 4 . 2 0 8 1 , 3 2 8 6 . 4 4 2 0 , 3 2 9 0 . 2 4 7 0 , 3 2 9 3 . 0 4 2 5 , 

3 2 9 9 . 6 0 1 9 , 3 3 0 6 . 8 5 0 1 cm"1 

File name (in my CERMM directory): Nol0-26-2.log 

Table D5. Olefin complex geometry in Figure 4.3 (f). 

B3LYP/LanL2DZ on zirconium B3LYP/6-31G(d,p) on lighter elements 
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Atomic Coordinates (Angstroms) 
Number X Y Z 

6 
40 
1 
1 
1 
6 
6 
6 
6 
6 
6 
9 
9 
9 
1 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
6 
6 
1 
1 
1 
1 

0.750127 
0.776296 
1.602937 
0.802208 

-0.158639 
-0.229600 
-1.152936 
-1.672454 
-1.099553 
-0.196363 
-2.816858 
-2.994505 
-3.958097 
-2.603578 
0.306695 

-1.434650 
-1.336285 
0.394433 
0.002865 
0.849983 
2.171825 
2.148191 
0.814183 

-1.057834 
0.543681 
3.051962 
3.006279 
0.470456 
3.541545 
2.849035 
3.997380 
3.769463 
2.727022 
2.508723 

-0.277545 
-0.129891 
0.258948 

-1.328580 
0.144691 

-2.479122 
-1.761062 
-0.705373 
-0.804980 
-1.886376 
0.182448 
1.174296 

-0.513295 
0.756285 

-3.365395 
-1.979201 
-0.169188 
-2.224053 
2.205074 
1.868180 
1.761186 
2.029658 
2.318031 
2.402355 
1.756668 
1.560413 
2.051501 

2.583319 
-0.910333 
-2.067566 
-0.513776 
-0.400979 
-2.643638 
-2.526315 

2 
0 
2 
2 
2 
-0 
0 

-0 
-1 
-1 
0 

-0 
0. 
1 
0 
1. 

-2. 
-2. 
-0, 
-1. 
-1. 
0. 
0. 

-0. 
-2. 
-1. 
1. 
1. 
0. 
0. 

-0. 
1. 

-0. 
1. 

.319883 

.056461 

.751656 

.630501 

.764283 

.249864 

.541101 

.259265 

.563291 

.550670 

.135103 

.766930 

.213504 

.342206 

.060592 

.561219 

.404714 

.393624 

.394948 

.493072 

.002082 

.399089 

.768867 

.452968 
,524673 
.598931 
.057841 
.758817 
099138 
086550 
802691 
031190 
826235 
011027 

E = - 1140.6314237 hartrees 

v = 2 6 . 1 2 2 9 , 3 9 . 6 6 7 0 , 4 7 . 4 0 3 5 , 7 6 . 0 1 8 4 , 9 3 . 2 0 6 9 , 1 0 3 . 5 5 4 0 , 1 0 9 . 1 8 1 6 , 

1 4 1 . 6 3 6 1 , 1 4 6 . 7 7 5 2 , 1 7 9 . 5 2 1 4 , 1 8 0 . 0 8 9 0 , 2 0 0 . 7 6 4 8 , 2 0 9 . 6 6 8 1 , 2 2 4 . 7 2 4 7 , 

2 4 4 . 9 1 0 3 , 2 5 5 . 1 0 7 0 , 2 6 7 . 6 5 0 8 , 2 8 6 . 7 7 1 5 , 3 0 5 . 5 1 9 8 , 3 4 4 . 4 5 6 1 , 3 7 2 . 7 4 8 2 , 

3 9 7 . 1 1 1 2 , 4 0 8 . 5 1 4 9 , 4 2 9 . 9 4 2 4 , 4 7 2 . 5 2 7 4 , 5 2 9 . 2 2 2 1 , 5 3 7 . 6 2 2 7 , 5 7 3 . 8 7 5 6 , 

5 9 2 . 6 4 9 0 , 5 9 6 . 3 5 7 4 , 5 9 8 . 4 1 5 2 , 6 7 5 . 2 2 5 4 , 6 8 6 . 4 8 1 6 , 7 3 3 . 6 8 1 7 , 8 3 4 . 4 1 8 7 , 

8 4 2 . 6 5 7 6 , 8 4 5 . 7 7 6 5 , 8 4 7 . 7 4 8 1 , 8 5 0 . 6 3 2 5 , 8 5 2 . 4 7 8 6 , 8 5 5 . 3 6 7 9 , 

8 6 2 . 8 1 5 7 , 8 7 6 . 0 7 2 5 , 9 0 5 . 0 0 0 4 , 9 1 2 . 5 7 7 0 , 9 3 3 . 7 4 9 6 , 9 3 5 . 3 6 9 6 , 9 4 3 . 7 2 7 4 , 

1 0 0 0 . 5 3 9 0 , 1 0 3 2 . 4 2 3 7 , 1 0 3 6 . 8 6 1 0 , 1 0 4 7 . 7 6 0 6 , 1 0 4 9 . 1 0 4 8 , 1 0 6 6 . 5 7 4 2 , 
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1 0 7 3 . 7 8 5 2 , 1 0 8 9 . 9 7 0 1 , 1 0 9 3 . 2 9 4 6 , 1 0 9 5 . 8 1 5 3 , 1 1 4 5 . 3 6 9 3 , 1 1 5 0 . 8 6 1 2 , 

1 1 8 5 . 9 9 8 8 , 1 2 1 4 . 6 0 9 4 , 1 2 2 5 . 0 4 5 8 , 1 2 4 9 . 9 2 9 1 , 1 2 6 7 . 8 3 9 6 , 1 3 0 0 . 5 4 1 1 , 

1 3 4 5 . 7 7 7 4 , 1 3 7 2 . 7 0 3 0 , 1 4 0 1 . 7 5 7 9 , 1 4 0 6 . 0 0 7 3 , 1 4 1 0 . 6 7 4 9 , 1 4 2 6 . 3 4 9 3 , 

1 4 4 8 . 1 1 8 3 , 1 4 5 7 . 4 3 8 2 , 1 4 7 3 . 2 5 0 9 , 1 4 7 5 . 7 4 2 6 , 1 4 7 9 . 3 8 0 3 , 1 4 8 9 . 7 1 8 8 , 1 5 3 2 . 7 9 6 7 , 

1 6 5 6 . 4 7 9 2 , 3 0 2 4 . 5 6 1 1 , 3 1 0 6 . 1 6 9 3 , 3 1 1 4 . 5 6 4 4 , 3 1 6 1 . 0 7 8 2 , 3 1 7 1 . 5 9 5 1 , 

3 2 4 2 . 6 9 9 2 , 3 2 4 7 . 7 2 1 5 , 3 2 5 1 . 4 8 1 4 , 3 2 5 8 . 2 5 2 3 , 3 2 6 3 . 9 7 5 2 , 3 2 6 7 . 2 5 9 6 , 

3 2 7 3 . 6 0 6 7 , 3 2 7 4 . 9 8 4 7 , 3 2 7 6 . 4 3 4 3 , 3 2 8 1 . 4 4 1 0 , 3 2 8 9 . 2 1 4 2 cm"1 

File name (in my CERMM directory): Nol0-26-3.log 

Table D6. Olefin complex geometry in Figure 43 (g). 

B3LYP/LanL2DZ on zirconium B3LYP/6-31G(d,p) on lighter elements 

Atomic 
Number 

6 
40 
1 
1 
1 
6 
6 
6 
6 
6 
1 
1 
1 
1 
1 
6 
6 
6 
6 
6 

14 
6 
6 
9 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Coor 
X 

2.855346 
1.066219 
2.934633 
3.767070 
2.841472 
2.528832 
1.721865 
0.363287 
0.332820 
1.673212 
3.608240 
2.079563 

-0.499234 
-0.555254 
1.992898 

-1.416155 
-0.814698 
0.108246 
0.082210 

-0.827455 
-2.930991 
-4.409689 
-3.186208 
-2.596587 
-1.049689 
0.693759 
0.654206 

-1.096974 
-4.228281 
-5.288393 
-4.655112 
-4.034799 
-2.313418 

dinates (Angs 
Y 

-0.886039 
-0.160682 
-1.978239 
-0.454062 
-0.591446 
1.982171 
2.005891 
2.123834 
2.169106 
2.086953 
1.915877 
1.959314 
2.220806 
2.306181 
2.167544 

-0.770457 
-1.869714 
-2.518632 
-1.842059 
-0.759000 
0.202251 

-0.276478 
-0.008961 
1.773827 

-2.183304 
-3.399246 
-2.102211 
-0.084511 
-0.097182 
0.307740 

-1.336633 
0.598314 
0.302439 

itroms) 
Z 

-1.290895 
-0.107673 
-1.261634 
-0.858698 
-2.346393 
-0.138831 
-1.301456 
-0.891264 
0.529239 
0.993006 

-0.118682 
-2.321281 
-1.533961 
1.128920 
2.023067 

-0.333085 
0.345148 

-0.523576 
-1.766345 
-1.648576 
0.241755 

-0.789352 
2.081545 

-0.060520 
1.355526 

-0.293208 
-2.645980 
-2.451459 
-1.853877 
-0.496863 
-0.665123 
2.413291 
2.665141 
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1 
6 
6 
1 
1 
1 
1 

-3.414326 
2.053574 
2.461624 
1.183805 
2.644293 
1.929352 
3.399714 

-1.049487 
-1.828276 
-0.596176 
-2.293898 
-2.440029 
-0.028969 
-0.180675 

2.337580 
1.980369 
2.347233 
2.432227 
1.303740 
3.105578 
1.990149 

E = -1020.6886172 hartrees 

v = 15.7193, 27.0694, 50.8789, 76.5998, 84.5761, 95.1506, 104.3519, 

119.7503, 134.9584, 142.0781, 143.8489, 145.8167, 162.3990, 177.4088, 

186.2000, 209.3817, 217.7397, 224.5788, 241.1419, 253.8833, 260.4503, 

268.3315, 274.1757, 306.3351, 322.0872, 338.4463, 361.3496, 380.5246, 

430.4337, 465.8989, 508.4147, 580.4682, 583.6594, 591.5659, 620.8211, 

661.0521, 687.3631, 707.3094, 766.0074, 799.1992, 818.2384, 838.0641, 

845.4143, 847.3848, 847.7556, 850.1047, 852.6062, 857.2276, 858.0609, 

862.1402, 871.4172, 903.0507, 909.8065, 919.3108, 925.9805, 933.6147, 

938.1211, 991.9171, 1020.9692, 1035.1895, 1040.7530, 1056.0043, 

1067.7968, 1079.5708, 1085.3533, 1092.2260, 1097.9124, 1150.5510, 

1194.6862, 1208.6502, 1233.5215, 1248.5309, 1292.2558, 1326.5803, 

1331.5463, 1350.4396, 1370.5524, 1406.0624, 1407.0311, 1412.8567, 

1447.3916, 1450.6062, 1459.7683, 1462.0429, 1467.3667, 1473.8432, 

1474.1976, 1478.7194, 1481.4435, 1483.8477, 1494.5803, 1654.9477, 

3026.4528, 3047.8871, 3051.3570, 3104.8052, 3117.7610, 3124.0520, 

3129.5520, 3131.3233, 3134.3811, 3161.3376, 3170.4099, 3236.9612, 

3248.4391, 3248.7355, 3255.0789, 3255.6664, 3262.2504, 3272.1000, 

3272.8253, 3275.7258, 3280.9365, 3292.4443 cm"1 

File name (in my CERMM directory): Nol0-29.log 
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Appendix E 

Natural charges and second order perturbation stabilization energies 

Legend for donor and acceptor orbitals 

BD( 1) A1-A2 a type NBO between Atom #1 and Atom #2 

BD( 2) A1-A2 7i type NBO between Atom #1 and Atom #2 

LP( #) Al Lone pair(s)-type orbital on Atom #1 

BD*( 1) A1-A2 <j type natural anti-bonding orbital between Atom #1 and Atom #2 

BD*( 2) A1-A2 n type natural anti-bonding orbital between Atom #1 and Atom #2 

LP*( #) Al Unoccupied/low occupancy lone pair(s)-type orbital on Atom #1 

(e.g. d-orbitals on metal) 

Threshold for energy printing: 5 kcal/mol 

No interactions stronger than 5 kcal/mol were found between valence and core orbitals. 

No interactions between Rydberg type and other type orbitals are reported. 
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IE. For uneomplexed Cp" Hgand 

Atom No 
Natural 
Charge 

c 
c 
c 
c 
c 
H 
H 
H 
H 
H 

1 
2 
3 
4 
5 
6 
7 
p 

9 
10 

-0.37695 
-0.37701 
-0.37697 
-0.37699 
-0.37703 
0.17699 
0.17699 
0.17698 
0.17700 
0.17700 

Molecular unit 
Charge unit 

SC5H5) 
-1.00000 

Total -1.00000 

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 

Donor NBO Acceptor NBO kcal/mol 

wit 
BD ( 
BD { 
BD ( 
BD ( 
LP ( 
LP { 

;hm 
2) 
2) 
2) 
2) 
1) 
1) 

unit 
C 
C 
C 
Q 

c 
c 

1 
1 -
1 -
3 -
3 -
5 
5 

- C 
- C 
- C 
- c 

2 
2 
4 
4 

LP 
BD* 
LP 
BD* 
BD* 
BD* 

1) 
2 J 

1) 
2) 
2) 
2) 

C 
C 
C 
C 
C 
C 

5 
3 -
5 
1 -
1 -
3 -

- C 

- C 
- C 

- c 

4 

2 
2 
4 

34.30 
17.54 
34.30 
17.54 
76.23 
76.23 
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2E. For uncomplexed Cp~-?Bu ligand (planar conformation) 

fitom No 
Natural 
Charge 

C 1 
C 2 
C 3 
C 4 
C 5 
C 6 
C 7 
C 8 
C 9 
H 10 
H 11 
H 12 
H 13 
H 14 
H 15 
H 16 
H 17 
H 18 
H 19 
H 20 
H 21 
H 22 

-0.17935 
-0.36870 
-0.35909 
-0.36595 
-0.36476 
-0.04720 
-0.66616 
-0.66614 
-0.66979 
0.18283 
0.18231 
0.18241 
0.18629 
0.19291 
0.22846 
0.22653 
0.19292 
0.22852 
0.22650 
0.202 64 
0.22740 
0.22742 

Molecular unit 
Charge unit 

(C9H13) 
-1.00000 

Total -1.00000 

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 
E 

Donor NBG Acceptor NBO kcal/mol 

wi 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 
LP ! 
LP ( 

th in 
2) 
2) 
2) 
2) 
1) 
1} 
1} 
1) 

unit 
C 
C 

c 
r* 

c 
c 
c 
c 

1 
2 -
2 -
4 -
4 -
1 
1 
1 
1 

c 
C 

c 
c 

3 
3 
5 
5 

LP ( 
BD* ( 
LP ( 
BD* ( 
BD* ( 
BD* ( 
BD* ( 
BD* { 

1) 
2} 
1) 
2) 
2) 
2) 
1) 
1) 

C 
C 

c 
c 
c 
c 
c 
c 

1 
4 -
1 
2 -
2 -
4 -
6 -
6 -

- c 

- C 
- C 
- C 
- C 
- C 

5 

3 
3 
c 

7 
8 

34.09 
17.84 
34.69 
18.48 
78.95 
82.53 
6.55 
6.56 
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3E. For uneomplexed Cp~-'Bu ligand (perpendicular conformation) 

Atom No 

C 
C 
C 
C 
C 
C 
C 
C 
r 
p] 

H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Total 

Natural 
Charge 

-0.18034 
-0.36573 
-0.36205 
-0.36315 
-0.36532 
-0.04693 
-0.66743 
-0.66659 
-0.66728 
0.18370 
0.18224 
0.18225 
0.18440 
0.19955 
0.22824 
0.22571 
0.19802 
0.22781 
0.22599 
0.19122 
0.22792 
0.22777 

-1.00000 

Molecular unit 1 
Charge unit 1 

(C9H13) 
-1.00000 

Second Order Perturbation Theory Analysis of Fock Matrix in MBO Basis 
E 

Donor NBO Acceptor NBO kcal/mol 

vji 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP { 
LP { 

th in 
2) 
2) 
2) 
2) 
1) 
1) 
1) 

unit 
C 
C 
C 
C 
C 
C 
C 

1 
2 -
2 -
4 -
4 -
1 
1 
1 

C 
C 
C 
C 

3 
3 
5 
s 

LP ( 
BD* ( 
LP ( 
BD* ( 
BD* ( 
BD* ( 
BD* ( 

1) 
2) 
1) 
2) 
2) 
2) 
1) 

C 
C 

c 
c 
c 
c 
c 

1 
4 
1 
2 
n 

4 
6 

—. r> 

- c 
- c 
- c 
- c 

3 4 . 1 7 
1 8 . 1 0 
3 4 . 2 4 
1 8 . 2 0 
8 0 . 0 2 
8 0 . 4 9 
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4E. For uncompleted Cp" - Si(CH3)3 ligand 

Natural 
Atom No Charge 

C 1 
C 2 
C 3 
C 4 
C 5 
Si 6 
C 7 
C 8 
C 9 
H 10 
H 11 
H 12 
H 13 
H 14 
H 15 
H 16 
H 17 
H 18 
H 19 
H 20 
H 21 
H 22 

-0.73222 
-0.32327 
-0.35606 
-0.35625 
-0.32319 
1.83578 

-1.19800 
-1.19310 
-1.19300 
0.19017 
0.18716 
0.18717 
0.19024 
0.21754 
0.23610 
0.23635 
0.22062 
0.23798 
0.23858 
0.22073 
0.23857 
0.23811 

Molecular unit 1 (C8H13Si) 
Charge unit 1 -1.00000 

Total -1.00000 

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 
E 

Acceptor NBO kcal/raol 

2 9 . 3 0 
17 .48 
2 9 . 3 0 
17 .49 
6 4 . 0 8 
6 4 . 1 1 
13 .17 

with 
BD ( 
BD { 
BD ( 
BD ( 
LP ( 
LP ( 
LP ( 

Donor 

in unit 
2) 
2) 
2) 
2) 
1) 
1) 
1) 

C 
C 
C 

n
o

o
n

 

NBO 

1 
2 
2 
4 
4 
1 
1 
1 

-
-
-

C 
C 
C 
C 

3 
3 
5 
5 

LP 
BD* 
LP 
BD* 
BD* 
BD* 
BD* 

1) C 
2) C 
1) C 
2) C 
2) C 
2} C 
l)Si 

1 
4 -
1 
2 
2 -
4 -
6 -

- C 

- C 
- C 
- C 
- C 

5 

3 
3 
5 
7 
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5E. For uncomplexed Cp" - CF3 ligand 

10^ 

Atom No 
Natural 
Charge 

c 1 
C 2 
C 3 
C 4 
C 5 
F 6 
C 7 
F 8 
F 9 
H 10 
H 11 
H 12 
H 13 

-0.35201 
-0.35199 
-0.31263 
-0.33262 
-0.31263 
-0.38843 
1.02949 

-0.38849 
-0.40593 
0.19756 
0.19756 
0.21005 
0.21006 

Total -1.00000 

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 

Threshold for printing: 5 kcal/mol 

Donor NBO Acceptor NBO kcai/mol 

within unit 1 
BD 
BD 
BD 
BD 
BD 
BD 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 

1) 
( 2) 
( 2) 
> 1) 
2) 
2) 
1) 
1) 
1} 
1) 
1) 
3) 
3) 
1) 
3} 
3) 
3} 
3) 

C 
C 
C 
C 

c 
C 
C 
C 
C 
C 
C 
F 
F 
F 
F 
p 
F 
F 

1-
1-
1-
2-
2-
2-
4 
4 
4 
4 
4 
6 
6 
8 
8 
8 
9 
9 

C 
C 
C 
C 

c 
c 

5 
5 
5 
3 
3 
3 

BD* { 
LP ( 
BD* ( 
BD* ( 
LP ( 
BD* ( 
BD* ( 
BD* ( 
BD* { 
BD* ( 
BD* ( 
BD* { 
BD* ( 
RY* ( 
BD* ( 
BD* ( 
BD* ( 
BD* { 

1) 
1) 
2) 
1} 
1) 
2) 
2) 
2) 
1) 
1) 
1) 
1) 
1) 
1) 
1} 
1) 
1) 
1) 

C 
C 
C 
C 
C 

c 
c 
c 
F 
C 
C 
C 

c 
c 
F 
C 
F 
C 

4-
4 
2-
4-
4 
"I _ 

1-
2-
6-
7-
7-
7-
7-
7 
6-
7-
6-
7-

C 7 

C 3 
C 7 

C 5 
C 5 
C 3 
C 7 
F 8 
F 9 
F 8 
F 9 

C 7 
F 9 
C 7 
F 8 

5.00 
31.77 
18 
5 

31 
18 
68 
68 
10 
10 
48 
12 
6 
6 

12 
6 
8 

29 
00 
78 
29 
66 
66 
05 
13 
75 
77 
68 
36 
77 
67 
91 
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6E. For uncomplexed Cp" - S1F3 ligand 

) ) 

. / 

Atom No 
N a t u r a l 
Charge 

c 1 
C 2 
C 3 
C 4 
C 5 
F 6 

Si 7 
F 8 
F 9 
H 10 
H 11 
H 12 
H 13 

-0.34203 
-0.34451 
-0.30157 
-0.81291 
-0.30254 
-0.62895 
2.15782 

-0.62882 
-0.63075 
0.20315 
0.20342 
0.21544 
0.21226 

Total -1.00000 

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 

BD 
BD 
BD 
3D 
BD 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 
LP 

Thr esho: d 

Donor NBO 

( 2) 
( 25 
( 2 5 
! 2) 
( 1) 
! 1) 
; i ) 
( i ) 

i ) 
( 2) 
( 2) 
3) 
2) 
2) 
3) 
2) 
2) 
3) 
35 

C 
C 
C 

c 
c 
c 
c 
c 
c 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 

1-
1-
2-
2-
4-
4 
4 
4 
4 
6 
6 
6 
8 
8 
8 
9 
0 

9 
9 

C 
C 
C 
C 
Si 

for 

5 
5 
3 
3 
7 

printing: 5 kcal/mol 

Acceptor NBO 

LP 
BD* 
LP 
BD* 
BD* 
BD* 
BD* 
BD* 
BD* 
BD* 
BD* 
BD* 
BD* 
BD* 
BD* 
BD* ( 
BD* ( 
BD* ( 
BD* ( 

1) C 
2) C 

1) C 
2) C 
DSi 
2) C 
2) C 
1) F 
DSi 
1) C 
DSi 
DSi 
1) C 
DSi 
1) F 
1) C 
1) F 
D F 
DSi 

4 
2- C 
4 
1- C 
7- F 
1- C 
2- C 
6-Si 
7- F 
4-Si 
7- F 
7- F 
4-Si 
7- F 
•6-Si 

4-Si 
6-Si 
6-Si 
7- F 

3 

5 
9 
5 
3 
7 
9 
7 
9 
8 
7 
9 
7 
7 
7 
7 
8 

E 
kcal/mol 

31.75 
17.96 
31.60 
18.14 
5.47 

53.12 
53 . 14 
10.45 
28.49 
5.05 
7.34 

10.91 
5.02 
7.17 

10.56 
5.92 
4.91 
5.90 
8.49 
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7E. For unsubstituted Cp complex. 

""123 

Atom No 
Natural 
Charge 

C 1 
C 2 
C 3 
C 4 
C 5 
C 6 
C 7 
C 8 
C 9 
C 10 
C 11 
Zrl2 
H 13 
H 14 
H 15 
H 16 
H 17 
H 18 
H 19 
H 20 
H 21 
H 22 
H 23 
H 24 
H 25 

-15-13182 
-0.30000 
-0.27388 
-0.32049 
-0.29560 
-0.31445 
-0.28935 
-0.31454 
-0.30583 
-0.27477 
-0.31980 
1.74132 
0.23987 
0.23995 
0.26314 
0.26641 
0.26822 
0.26559 
0.26292 
0.26484 
0.26271 
0.26483 
0.26644 
0.26865 
0.26563 

Molecular unit 1 (CH3Zr) 
Charge unit 1 1.352 4 6 

Molecular unit 2 
Charge unit 2 

Molecular unit 3 
Charge unit 3 

(C5H5) 
-0.17644 

(C5H5) 
-0.17603 

Total 1.00000 

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 

Donor NBO Acceptor NBO kcal/mol 

within unit 1 
LP* ( l)Zr 12 
LP*( 3)Zr 12 
LP* i 3}Zr 12 
BD* ( 1)C 1 12 

LP*( 2)Zr 12 
LP*( 4)Zr 12 
LP* < 5)Zr 12 
LP*( 4}Zr 12 

5.41 
11.59 
22.29 
25.62 

from u n i t 1 t o u n i t 2 
LP*! l ) Z r 12 2) C 2 2 . 6 3 
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LP* ( 
LP* ( 

l)Zr 
3)Zr 

12 
12 

from unit 1 to unit 
LP*( l)zr 12 
LP*( l)Zr 12 
LP*( 3)Zr 12 

from 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD { 
LP ( 
LP ( 
LP { 
LP ( 
BD* ( 

with 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 

from 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 
BD* ( 

with 
BD ( 
BD { 
BD ( 
BD ( 
LP ( 
LP ( 

unit 
1) 
2) 
2) 
2) 
2) 
1) 
1) 
1) 
1) 
2) 
2) 
2) 
2) 
2) 
1) 
1) 
1) 
1) 
2) 

in 
2) 
2} 
2) 
2) 
1) 
1) 

C 
C 
C 
C 
C 
C 
C 
C 
C 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

2 to 
2 -
2 -
2 -
2 -
2 -
2 -
3 -
4 -
4 -
5 -
5 -
5 -
5 -
5 -
4 
4 
4 
4 
5 -

unit 2 
C 
C 
C 
C 
C 
C 

unit 
1) 
2) 
2) 
2) 
2) 
2) 
1) 
1) 
2) 
2) 
2) 
2) 
1) 
1) 
1) 
2) 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

in uni 
2) 
2) 
2) 
2) 
1) 
1) 

c 
c 
c 
c 
c 
c 

2 -
2 -
5 -
5 -
4 
4 

3 to 
7 -
7 -
7 -
7 -
7 -
7 -
7 -
8 -
9 -
9 -
9 -
9 -

10 -
11 
11 
7 -

t 3 
7 -
7 -
9 -
9 -
11 
11 

uni 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
c 
c 

c 

c 
c 
c 
c 

t 
3 
3 
3 
3 
3 
6 
4 
5 
5 
6 
6 
6 
6 
6 

6 

3 
3 
6 
6 

unit 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 

c 
c 

8 
8 
8 
8 
8 
8 
11 
9 

10 
10 
10 
10 
11 

8 

8 
8 
10 
10 

BD* ( 
BD* ( 

BD* ( 
BD* ( 
BD* ( 

LP* ( 
LP* ( 
LP* { 
LP* ( 
BD* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 

LP ( 
BD* ( 
LP ( 
BD* ( 
BD* ( 
BD* ( 

LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 

LP { 
BD* ( 
LP ( 
BD* ( 
BD* ( 
BD* ( 

2) 
2) 

2) 
2} 
2) 

3) 
2) 
3) 
4) 
1) 
3) 
1) 
1) 
2) 
1) 
2) 
3) 
4) 
1) 
1) 
2) 
3) 
4) 
1) 

1) 
2) 
1) 
2) 
2) 
2) 

2) 
1) 
2) 
3) 
4) 
1) 
2) 
3) 
2) 
3) 
4) 
1) 
1) 
1) 
4) 
1) 

1) 
2) 
1) 
2) 
2) 
2) 

C 7 - C 
C 9 - C 
C 7 - C 

Zr 
Zr 
Zr 
Zr 
C 
Zr 
Zr 
Zr 
Zr 
Zr 
Zr 
Zr 
Zr 
C 
Zr 
Zr 
Zr 
Zr 
C 

C 
C 
C 
C 
C 
c 

Zr 
Zr 
Zr 
Zr 
Zr 
C 
Zr 
Zr 
Zr 
Zr 
Zr 
C 
Zr 
Zr 
Zr 
C 

12 
12 
12 
12 
1 

12 
12 
12 
12 
12 
12 
12 
12 
1 

12 
12 
12 
12 
1 

4 
5 - C 
4 
2 - C 
2 - C 
5 - C 

12 
12 
12 
12 
12 
1 

12 
12 
12 
12 
12 
1 

12 
12 
12 
1 

11 
9 - C 

11 
7 - C 
7 - C 
9 - C 

10 

-Zr 12 

12 

-Zr 12 

-Zr 12 

-Zr 12 

-Zr 12 

10 

10 

10.66 
10.12 

10.09 
25.74 
11.90 

8.53 
10.11 
29.93 
11.85 
5.72 
8.94 
7.31 
1.60 
8.97 
8.76 

29.47 
47 
68 
17 

42.91 
20.62 
5.55 
8.08 
8.15 

5 9 . 6 3 
2 0 . 0 3 
5 3 . 1 0 
19 .07 
54 .72 
5 7 . 8 5 

9.04 
6.76 

31.04 
6.15 
6.85 
5.88 
8.21 
8.68 
9.87 
32.38 
12.65 

96 
31 

47.79 
7.11 
5.05 

53 .00 
19 .08 
5 8 . 6 8 
19 .88 
5 7 . 8 3 
55 .22 
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8E. For structure II b (Chapter 2). 

Atom No 
Natural 
Charge 

C 1 
C 2 
C 3 
C 4 
C 5 
H 6 
H 7 
H 8 
H 9 
H 10 
C 11 
C 12 
C 13 
C 14 
C 15 
C 16 
C 17 
C 18 
C 19 
H 20 
H 21 
H 22 
H 23 
H 24 
H 25 
H 26 
H 27 
H 28 
H 29 
H 30 
H 31 
H 32 
Zr 33 
C 34 
H 35 
H 36 
H 37 

-0.33959 
-0.33543 
-0.30419 
-0.35421 
-0.33164 
0.28818 
0.29173 
0.29524 
0.29381 
0.28869 

-0.11519 
-0.36136 
-0.32110 
-0.30026 
-0.31807 
-0.06207 
-0.70326 
-0.68519 
-0.68615 
0.28738 
0.29054 
0.29310 
0.28968 
0.30725 
0.23875 
0.25297 
0.25687 
0.23495 
0.26137 
0.25722 
0.26101 
0.23810 
1.68339 

-1.19151 
0.25234 
0.27538 
0.25129 

Molecular unit 
Charge unit 

Molecular unit 
Charge unit 

Molecular unit 
Charge unit 

(C5H5) 
- 0 . 1 8 4 7 4 1 

SC9H13) 
- 0 . 0 8 3 4 7 

(CH3Zr) 
1 . 2 6 7 8 9 

T o t a l 1 . 0 0 0 0 0 
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Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 
E 

Donor NBO Acceptor NBO kcal/mol 

within unit 1 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 

f r o m 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 
LP ( 
LP ( 
BD* ( 

2) 
2) 
2) 
2) 
1) 
1) 

u n i 

1) 
1) 
2) 
2) 
2) 
2) 

• 1) 
2) 
2) 
2) 
1) 
1) 
1) 
1) 
1) 
1) 
1) 
1) 
2) 

C 
C 
C 
C 
C 
C 

t : 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

1 -
1 -
2 -
2 -
4 
4 

L t o 
1 -
1 -
1 -
1 -
1 -
1 -
2 -
2 -
2 -
2 -
3 -
3 -
4 -
4 -
4 
4 
4 
4 
1 -

C 
C 
C 
C 

u n i t 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

5 
5 
3 
3 

3 
2 
5 
5 
5 
5 
5 
3 
3 
3 
3 
4 
4 
5 
5 

5 

LP ( 
BD* ( 
LP ( 
BD* ( 
BD* ( 
BD* ( 

LP* ( 
LP* ( 
LP* ( 
LP* ( 
L P * ( 
BD* ( 
LP* ( 
L P * ( 
LP* ( 
L P * ( 
LP* ( 
LP* ( 
L P * ( 
LP* ( 
L P * ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 

1) C 
2) C 
1) C 
2) C 
2) C 
2) C 

3) Z r 
2) Z r 
D Z r 
2) Zr 
3) Z r 
1) Z r 
3 ) Z r 
2 ) Z r 
3 ) Z r 
5 ) Z r 
D Z r 
5) Zr 
2) Z r 
4) Zr 
1) Z r 
2 ) Z r 
3) Zr 
5) Z r 
1) Z r 

4 
2 
4 
1 
1 
2 

3 3 
3 3 
33 
3 3 
3 3 
33 
3 3 
33 
33 
3 3 
33 
33 
3 3 
3 3 
3 3 
3 3 
33 
33 
3 3 

- C 

- C 
- C 
- C 

- C 

- C 

3 

5 
5 
3 

34 

34 

within unit 2 
BD ( 2) C 11 - C 15 
BD ( 2) C 11 - C 15 
BD ( 2) C 13 - C 14 
BD ( 2) C 13 - C 14 
LP ( 1)C 12 
LP ( 1) C 12 

from unit 3 to unit 
LP* ( DZr 33 
LP* ( l)Zr 33 
LP*( 4)Zr 33 
LP*( 4)Zr 33 

LP ( 1)C 12 
BD*( 2) C 13 - C 14 
LP ( D C 12 
BD*( 2) C 11 - C 15 
BD*( 2) C 11 - C 15 
BD* ( 2) C 13 

f r o m 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 

u n i t 
1) 
D 
1) 
2) 
2) 
2) 
D 
1) 
1) 
2) 
2) 
1) 
1) 
D 
1) 
D 
D 
D 
1) 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

c 
C 

c 

2 t o 
1 1 • 
1 1 • 
1 1 • 
1 1 • 
1 1 • 
1 1 • 
12 • 
12 • 
1 3 -
13 -
13 -
14 -
14 -
17 -
17 -
17 -
17 -
12 
12 

u n i t 3 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 

- c 
- c 
- H 
- H 
- H 
- H 

12 
12 
15 
15 
15 
15 
13 
13 
14 
14 
14 
15 
15 
2 5 
2 5 
2 6 
2 6 

LP* ( 
LP* ( 
L P * ( 
L P * ( 
L P * ( 
LP* ( 
L P * ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP*{ 
LP* ( 
BD* ( 

2) Zr 
3 ) Z r 
3) Zr 
3) Zr 
4) Z r 
5) Zr 
2 ) Z r 
4 ) Z r 
D Z r 
D Z r 
5 ) Z r 
D Z r 
3) Z r 
4) Z r 
5) Z r 
3) Z r 
5) Z r 
2) Zr 
D Z r 

33 
33 
33 
33 
3 3 
33 
33 
3 3 
3 3 
33 
33 
3 3 
3 3 
3 3 
3 3 
3 3 
33 
33 
33 

14 

34 

BD*( 2) C 1 - C 5 
BD*( 2) C 2 - C 3 
BD*( 2) C 1 - C 5 
BD*( 2) C 2 - C 3 

5 4 . 2 5 
1 7 . 7 4 
5 8 . 5 9 
1 9 . 8 1 
5 8 . 1 1 
5 5 . 2 6 

1 0 . 6 2 
9 . 4 1 
8 . 8 6 

2 4 . 5 5 
6 . 2 7 
6 . 1 2 

1 0 . 0 1 
1 2 . 5 6 
2 1 . 8 2 
1 0 . 6 2 

7 . 9 7 
5 . 8 2 

1 0 . 4 4 
6 . 2 6 

3 8 . 6 7 
2 2 . 1 3 
1 0 . 7 4 
1 1 . 3 5 

6 . 8 9 

5 8 . 4 6 
1 9 . 9 7 
5 8 . 9 7 
1 8 . 5 0 
6 0 . 5 9 
5 9 . 3 4 

9 . 4 0 
6 . 1 1 

1 1 . 2 7 
3 3 . 1 4 

5 . 0 2 
9 . 7 1 

1 2 . 2 0 
6 . 9 0 
7 . 2 3 

2 4 . 2 0 
8 . 0 8 
5 . 9 1 
7 . 6 7 

1 0 . 6 3 
9 . 8 7 
6 . 7 5 
6 . 5 7 

5 6 . 3 6 
1 4 . 3 1 

1 5 . 4 5 
2 7 . 5 2 
4 1 . 3 5 
2 2 . 6 3 

from unit 3 to unit 2 
LP*( l)Zr 33 BD* ( 11 15 .25 
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LP*( 
LP*( 
LP* ( 
LP*( 
LP*( 

l)Zr 
2)Zr 
3)Zr 
4) Zr 
4) Zr 

33 
33 
33 
33 
33 

BD* ( 
BD*{ 
BD* ( 
BD* ( 
BD* ( 

2) 
2) 
2) 
2) 
2) 

C 
C 
C 
C 
C 

13 -
11 -
13 -
11 -
13 -

- C 
- C 
- C 
- C 
- C 

14 
15 
14 
15 
14 

within unit 3 
LP*( l)Zr 33 LP*( 2)Zr 33 10.31 
BD*( l)Zr 33 - C 34 LP*( 5)Zr 33 19.98 
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9E. For structure V (Chapter 2). 

/ " ^ 
// < & « ^ 

,^ 
15- ...-<* W 

f 

fat 

1 * 
• Z 1 > 
;7 

2~04.9; )v 
/<> -

,«*V«*"!\"'-

/ 'SS 11 

3^¥^> s?**i 

m 
\ - J 

18 m 

fttom No 
Natural 
Charge 

C 1 
C 2 
C 3 
C 4 
C 5 
C 6 
C 7 
C 8 
C 9 
H 10 
H 11 
H 12 
H 13 
H 14 
H 15 
H 16 
H 17 
H 18 
H 19 
H 20 
H 21 
H 22 
C 23 
C 24 
C 25 
C 26 
C 27 
H 28 
H 2 9 
H 30 
H 31 
H 32 
Zr 33 
C 34 
H 35 
H 36 
H 37 

-0.31108 
-0.29798 
-0.12476 
-0.35212 
-0.30858 
-0.48727 
-0.46619 
-0.44488 
-0.71507 
0.29345 
0.28846 
0.28521 
0.28870 
0.28964 
0.25671 
0.27091 
0.25664 
0.29489 
0.19299 
0.29567 
0.23598 
0.26974 

-0.33754 
-0.32363 
-0.33433 
-0.34352 
-0.29171 
0.28886 
0.28 611 
0.28808 
0.29210 
0.29411 
1.58962 

-1.16063 
0.24568 
0.24779 
0.26795 

Molecular unit 1 (C9H13) 
Charge unit 1 0.01104 

Molecular unit 2 (C5H5) 
Charge unit 2 -0.18145 

Molecular unit 3 (CH3Zr) 
Charge unit 3 1.17041 

T o t a l 1 .00000 
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Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 
E 

Donor NBO Acceptor NBO kcal/mol 

within unit 1 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 

from 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 
LP ( 
LP ( 
BD* ( 

with 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 

2) 
2) 
2) 
2) 
1) 
1) 
1) 
1) 

C 
C 
C 
C 
C 
C 
C 
C 

unit 
1) 
1) 
2) 
2) 
2) 
1) 
1) 
1) 
1) 
1) 
1) 
1) 
2) 
2) 
2) 
1) 
1) 
1) 
1) 
1) 
1) 
1) 
1) 
2) 

C 
C 
C 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

in uni 
2) 
2) 
2) 
2) 
1) 
1) 
1) 
1) 

c 
c 
c 
c 
c 
c 
c 
c 

1 -
1 -
4 -
4 -
6 -
6 -
3 
3 

1 to 
1 -
1 -
1 -
1 -
1 -
1 -
1 -
2 -
2 -
2 -
3 -
4 -
4 -
4 -
4 -
4 -
8 -
9 -
9 -
3 
3 
3 
3 
4 -

t 2 
23 -
23 -
24 -
24 -
25 -
26 -
26 
26 

C 
C 
C 
C 
H 
H 

uni 
C 
C 
C 
C 
C 
C 
C 
C 
C 
H 
C 

c 
c 
c 
c 
H 
H 
H 
H 

C 

C 
C 
C 

c 
c 
c 

2 
2 
5 
5 
14 
15 

t 3 
2 
2 
2 
2 
2 
5 
5 
3 
3 

11 
4 
5 
5 
5 
5 

12 
19 
21 
21 

5 

27 
27 
25 
25 
26 
27 

LP ( 
BD* ( 
LP ( 
BD* ( 
LP ( 
BD* ( 
BD* ( 
BD* ( 

LP* ( 
LP* ( 
LP* ( 
LP* { 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 

LP ( 
BD* ( 
LP ( 
BD* ( 
LP ( 
LP ( 
BD* ( 
BD* ( 

1) C 
2) C 
1) C 
2) C 
1) C 
1) C 
2) C 
2) C 

1) Zr 
3) Zr 
l)Zr 
3)Zr 
5)Zr 
DZr 
5)Zr 
3)Zr 
5) Zr 
3) Zr 
2)Zr 
2)Zr 
2)Zr 
4)Zr 
5)Zr 
2)Zr 
4)Zr 
3)Zr 
5)Zr 
DZr 
2)Zr 
3)Zr 
5)Zr 
DZr 

D C 
2) C 
1) C 
2) C 
D C 
1) C 
2) C 
2) C 

3 
4 
3 
1 
3 
3 
1 
4 

33 
33 
33 
33 
33 
33 . 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 -

26 
24 -
26 
23 -
26 
26 
23 -
24 -

- C 

- C 

- C 
- C 
- C 

C 

C 

C 

c 
c 

5 

2 

• 4 

2 
5 

34 

25 

27 

27 
25 

61 
21 
54 
17 
7 
5 
61 
59 

7 
6 

23 
13 
7 
8 
5 
12 
5 
5 

12 
12 
26 
7 
6 
5 

26 
9 
5 

48 
7 

31 
6 

17 

60. 
20 
55 
17. 
5. 
5. 

57. 
55. 

.44 

.02 

.16 

.51 

.04 

.26 

.06 

.18 

.53 

.66 
64 
61 
.80 
.76 
02 
65 
03 
13 
00 
42 
65 
92 
32 
07 
73 
21 
83 
36 
74 
07 
94 
56 

73 
41 
42 
32 
47 
02 
54 
99 

from unit 2 to unit 

BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 

D 
D 
D 
2) 
2) 
2) 
2) 
D 
D 
2} 
2) 
2) 
D 
D 
1) 

C 
C 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

23 
23 
23 
23 
23 
23 
23 
24 
24 
24 
24 
24 
25 
26 
26 

- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 

24 
27 
27 
27 
27 
27 
27 
25 
25 
25 
25 
25 
26 
27 
27 

LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 
LP*( 
LP*( 
LP*( 
LP* ( 
LP*( 
LP* ( 
LP*( 
LP* ( 

3)Zr 
3)Zr 
5)Zr 
2)Zr 
3)Zr 
5)Zr 
DZr 
2)Zr 
3)Zr 
DZr 
2)Zr 
3)Zr 
2)Zr 
DZr 
5)Zr 

33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 

C 34 

1 3 . 7 5 
10 .04 

5 .06 
18 .28 
17 .82 

9 .99 
5 .19 
8.40 
6 .89 
6 .10 

23 .32 
10 .60 
10 .63 
10 .18 

6.20 
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LP ( 
LP ( 
LP ( 
LP { 
LP ( 
BD* ( 

from 
LP* ( 
LP* ( 
LP* ( 
LP*( 
LP* ( 
LP* ( 
LP*( 

from 
LP* { 
LP* ( 
LP* ( 
LP* ( 

1) C 
1) C 
1) C 

1) C 
1) C 
2) C 

unit 
1) Zr 
l)Zr 
2) Zr 
2)Zr 
3)Zr 
3)Zr 
4) Zr 

unit 
l)Zr 
1) Zr 
4) Zr 
4) Zr 

26 
26 
26 
26 
26 
24 

3 t. 
33 
33 
33 
33 
33 
33 
33 

3 t< 
33 
33 
33 
33 

25 

within unit 3 
BD ( 1)C 34 - H 37 
LP* ( l)Zr 33 
BD*( 1)Zr 33 - C 34 

LP*( 
LP*( 
LP* ( 
LP* ( 
BD* ( 
BD*( 

BD* ( 
BD* ( 
BD* ( 
BD* ( 
BD* ( 
BD*( 
BD*( 

BD* ( 
BD*( 

BD*( 
BD* ( 

LP* ( 
LP*( 
LP* { 

l)Zr 
2)Zr 
3)Zr 
5)Zr 
l)Zr 
l)Zr 

2) C 
2) C 
2) C 
2) C 
2) C 
2) C 
2) C 

2) C 
2) C 
2) C 

2) C 

4) Zr 
2)Zr 
5) Zr 

33 
33 
33 
33 
33 -
33 -

1 -
4 -
1 -
4 -
1 -
4 -
1 -

23 -
24 -

23 -
24 -

33 
33 
33 

- C 

- C 

- c 
- c 
- c 
- c 
- c 
- c 
- c 

- c 
- c 
- c 
- c 

34 
34 

2 
5 
2 
5 
2 
5 
2 

27 
25 
27 
25 

42 
25 
10 
10 
5 
6. 

6 
7. 
6 
7. 

14. 
15. 
22. 

24. 
14. 
13. 
24. 

5. 
8. 

16. 

.13 

.00 

.38 

.87 

.19 

.59 

.29 

.18 

.63 

.75 

.16 
,31 
.60 

.51 

.77 

.49 

.56 

05 
41 
87 
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10E. For structure I (Chapter 3). 

Atom No 
Natural 
Charge 

C 1 
C 2 
C 3 
C 4 
C 5 
H 6 
H 7 
H 8 
H 9 
H 10 
C 11 
C 12 
C 13 
C 14 
C 15 
Si 16 
C 17 
C 18 
C 19 
H 20 
H 21 
H 22 
H 23 
H 24 
H 25 
H 26 
H 27 
H 28 
H 29 
H 30 
H 31 
H 32 
Zr 33 
C 34 
H 35 
H 36 
H 37 

-0.33400 
-0.33622 
-0.30032 
-0.35232 
-0.33115 
0.28700 
0.29079 
0.29445 
0.29318 
0.28850 

-0.60432 
-0.35042 
-0.31365 
-0.30127 
-0.30186 
1.84732 

-1.21093 
-1.22563 
-1.22634 
0.28370 
0.28804 
0.29142 
0.28548 
0.32462 
0.25651 
0.27344 
0.27834 
0.26441 
0.28183 
0.27910 
0.28149 
0.26757 
1.65893 

-1.18082 
0.25068 
0.27475 
0.24971 

Molecular unit 1 (C5H5) 
Charge unit 1 -0.20009 

Molecular unit 2 (C8H13Si) 
Charge unit 2 -0.05315 

Molecular unit 3 (CH3Zr) 
Charge unit 3 1.25324 

1.00000 
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Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 
E 

Donor NBO Acceptor NBO kcal/mol 

within uni t 1 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 

from 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 
LP ( 
LP ( 
BD* ( 

2) 
2) 
2) 
2) 
1) 
1) 

C 
C 
C 
C 
C 
C 

unit 
1) 
1) 
2) 
2) 
2) 
2) 
2) 
1) 
1) 
2) 
2) 
2) 
1) 
1) 
1) 
1) 
1) 
1) 
1) 
1) 
1) 
2) 

C 
C 
C 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

1 -
1 -
2 -
2 -
4 
4 

1 to 
1 -
1 -
1 -
1 -
1 -
1 -
1 -
2 -
2 -
2 -
2 -
2 -
3 -
3 -
4 -
4 -
4 -
4 
4 
4 
4 
1 -

C 
C 

c 
c 

5 
5 
3 
3 

unit 3 
C 
C 
C 
C 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

2 
5 
5 
5 
5 
5 
5 
3 
3 
3 
3 
3 
4 
4 
5 
5 
5 

5 

LP ( 
BD* ( 
LP ( 
BD* ( 
BD* ( 
BD* ( 

LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* { 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 

1) C 
2) C 
1) C 
2) C 
2) C 
2) C 

3)Zr 
2)Zr 
l)Zr 
2) Zr 
3)Zr 
5)Zr 
l)Zr 
3)Zr 
5)Zr 
2)Zr 
3)Zr 
5)Zr 
l)Zr 
5)Zr 
2)Zr 
3)Zr 
5)Zr 
l)Zr 
2)Zr 
3)Zr 
5)Zr 
l)Zr 

4 
2 
4 
1 
1 
2 

33 
33 
33 
33 
33 
33 
33 -
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 -

- C 

- C 
- C 
- C 

- C 

C 

3 

5 
5 
3 

34 

34 

5 4 . 5 6 
17 .53 
5 9 . 3 6 
20 .00 
5 7 . 1 5 
55 .87 

11 .34 
8.99 
8.67 

2 3 . 6 1 
33 
12 
96 

10 .69 
5 .26 

13 .65 
22 .54 
11 .50 

8.44 
5 .96 

10 .36 
23 
11 

38 .67 
2 4 . 1 8 

9 .21 
11 .22 

5.44 

within uni t 2 
BD 
BD 
BD 
BD 
LP 
LP 
LP 

fl 

BD 
BD 
BD 
BD 
BD 
BD 
BD 
BD 
BD 
BD 
BD 
BD 
BD 
BD 
BD 
BD 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 

( 2) 
2) 
2) 
2) 
1) 
1) 
1) 

C 
C 

c 
c 
c 
c 
c 

"om unit 
1) 
1) 
1) 
1) 
1) 
1) 
1) 
2) 
2) 
1) 
1) 
1) 
2) 
2) 
2) 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

l)Si 
l)Si 
1) 
1) 
1) 
1) 
1) 

c 
c 
c 
c 
c 

12 
12 
14 
14 
11 
11 
11 

- C 
- C 
- C 
- C 

13 
13 
15 
15 

2 to unit 3 
11 
11 
11 
11 
11 
11 
12 
12 
12 
13 
14 
.14 
14 
14 
14 
16 
16 
17 
17 
17 
11 
11 

- c 
- c 
- c 
- c 
-Si 
-Si 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- C 
- H 
- H 
- H 

12 
12 
15 
15 
16 
16 
13 
13 
13 
14 
15 
15 
15 
15 
15 
17 
17 
25 
26 
26 

LP ( 
BD* ( 
LP ( 
BD* ( 
BD* ( 
BD* ( 
BD* ( 

LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 

1) C 
2) C 
1) C 
2) C 
2) C 
2) C 
l)Si 

2)Zr 
3)Zr 
3)Zr 
5)Zr 
l)Zr 
5)Zr 
2)Zr 
2)Zr 
5)Zr 
l)Zr 
l)Zr 
3)Zr 
l)Zr 
3)Zr 
5)Zr 
l)Zr 
4) Zr 
4)Zr 
3)Zr 
5)Zr 
l)Zr 
2)Zr 

11 
14 -
11 
12 -
12 -
14 -
16 -

33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 

- C 

- C 
- C 
- C 
- C 

15 

13 
13 
15 
17 

55 
17 
60 
20 
57 
53 
5 

11 
6 

13 
5 
8 
5 
12 
29 
7 
7 
6 
5 

23 
11 
8 
7 
6 

18 
10 
5 

48 
5 

.20 

.31 

.87 

.25 

.53 

.53 

.72 

.50 
13 
29 
91 
26 
78 
23 
63 
53 
27 
58 
91 
86 
76 
59 
01 
89 
47 
51 
24 
07 
89 
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LP ( 
LP ( 
BD*( 

from 
LP* { 
LP* ( 
LP*( 
LP* ( 
LP* ( 

from 
LP*( 
LP* ( 
LP* ( 
LP*( 
LP* ( 

1) C 
1) C 
2) C 

unit 
l)Zr 
l)Zr 
3)Zr 
4) Zr 
4) Zr 

unit 
l)Zr 
2) Zr 
3) Zr 
3)Zr 
4)Zr 

11 
11 
12 -

3 to 
33 
33 
33 
33 
33 

3 to 
33 
33 
33 
33 
33 

C 1 

unit 

unit 

LP* ( 
LP* ( 
BD* ( 

BD* ( 
BD* ( 
BD* ( 
BD* ( 
BD* ( 

BD* ( 
BD* ( 
BD* ( 
BD* ( 
BD* ( 

3)Zr 
5) Zr 
l)Zr 

2) 
2) 
2) 
2) 
2) 

2) 
2) 
2) 
2) 
2) 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

33 
33 
33 

1 
2 
1 
1 
2 

12 
14 
12 
14 
14 

- C 

- C 
- C 
- C 
- C 
- C 

- C 
- C 
- C 
- C 
- C 

34 

5 
3 
5 
5 
3 

13 
15 
13 
15 
15 

3 7 . 4 4 
7 . 5 3 

2 0 . 7 5 

14.84 
2 7 . 0 0 

5 .98 
29 .08 

8 .71 

5 .65 
7 .34 

16 .82 
10 .49 
19 .52 

within unit 3 
BD*( l)Zr 33 - C 34 LP*( 5)Zr 33 16.98 
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HE. For structure IV (n=0) (Chapter 3). 
16 
jj 

20' ""13 

Natural 
Atom No Charge 

C 1 
C 2 
C 3 
C 4 
C 5 
F 6 

31 7 
C 8 
C 9 

Zr 10 
C 11 
H 12 
H 13 
H 14 
H 15 
H 16 
H 17 
H 18 
H 19 
H 20 
H 21 
H 22 
H 23 
H 24 
C 25 
C 26 
C 27 
C 28 
C 29 
H 30 
H 31 
H 32 
H 33 
H 34 

-0.28545 
-0.26642 
-0.27178 
-0.64 347 
-0.30721 
-0.64841 
1.98141 

-1.17972 
-1.17995 
1.55969 

-1.11444 
0.26143 
0.26412 
0.25901 
0.25728 
0.27676 
0.27686 
0.26513 
0.27614 
0.26273 
0.27714 
0.23083 
0.23777 
0.25434 

-0.31798 
-0.30818 
-0.28778 
-0.30038 
-0.27688 
0.26103 
0.25741 
0.26109 
0.26343 
0.26443 

Molecular unit 1 (C/KlOSi) 
Charge unit 1 0.52402 

Molecular unit 2 (F) 
Charge unit 2 -0.64841 

Molecular unit 3 (CH3Zr) 
Charge unit 3 1.24820 

Molecular unit 4 (C5H5) 
Charge unit 4 -0.18381 

Total 1.00000 

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 
E 

Donor NBO Acceptor NBO kcai/raol 
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within unit 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 

LP ( 

from 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 

BD ( 
BD ( 
BD ( 
BD ( 
LP ( 

LP ( 
LP ( 
LP ( 
BD* ( 

from 

LP ( 
LP ( 

from 

LP ( 
LP ( 
LP ( 
LP ( 
LP ( 
LP ( 

from 
LP* ( 
LP* ( 
LP* ( 
LP*( 
LP* ( 

2) 
2) 
2) 
2) 

1) 
1) 
1) 

C 
C 
C 
C 

C 
C 

C 

unit 

1) 
1) 
2) 
2) 
2) 
2) 

1) 
1) 
1) 
1) 
1) 
1) 
1) 
2) 

C 
C 
C 
C 
C 
C 

c 
c 
c 
c 
c 
c 
c 
c 

unit 

1) 
4) 

F 
F 

unit 

1) 
3) 
3) 
3) 
4) 
4) 

F 
F 
F 
F 
F 
F 

unit 
2)2 
3)2 
3)2 
4) Z 
4) 2 

:r 
;r 
;r 

;r 
;r 

1 -
1 -
2 -
2 -
4 
4 
4 

1 to 
1 -
1 -
1 -
2 -
2 -
2 -

3 -
4 -
4 -: 
4 
4 
4 
4 
1 -

2 to 
6 
6 

2 to 
6 
6 
6 
6 
6 
6 

3 to 
10 
10 
10 
10 
10 

within unit 3 
LP* ( 
BD* ( 

2)Z 

1)Z 

.r 
;r 

10 
10 -

c 
c 
c 
c 

5 
5 
3 
3 

unit 3 
C 

C 
C 
C 
C 
C 
C 
C 
3i 

C 

2 

5 
5 
3 
3 
3 
4 
5 
7 

5 

unit 1 

unit 3 

unit 1 

C 11 

from unit 3 to unit 4 
LP*( l)Zr 10 
LP*( l)Zr 10 
LP*( 4)Zr 10 
LP*( 4)Zr 10 

LP { 

BD* ( 

LP ( 
BD* ( 
LP* ( 
BD*( 
BD* ( 

LP* ( 
LP* ( 
LP*( 
LP* ( 
LP*( 
LP* ( 
LP*( 
LP*( 
LP* ( 

LP* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 

LP* ( 
LP*{ 

LP* ( 
LP*( 
LP* ( 
LP*( 
LP* ( 
LP* ( 

1) C 
2) C 

1) C 
2) C 
l)Si 
2) C 
2) C 

l)Zr 
2)Zr 
2)Zr 
l)Zr 
3)Zr 
5)Zr 
3)Zr 
2)Zr 
1) Zr 

1) Zr 
2)Zr 
3) Zr 
5)Zr 
1) Zr 

l)Si 
l)Si 

4) Zr 
3) Zr 
4) Zr 
5) Zr 
1) Zr 
4) Zr 

4 
2 -
4 
1 -
7 
1 -
2 -

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 -

7 

7 

10 
10 
10 
10 
10 
10 

- C 

- C 

- c 
- c 

- c 

3 

5 

5 
3 

11 

BD*( 2 ) C 2 - C 3 
BD*( 2) C 1 - C 5 
BD* ( 2 ) C 2 - C 3 
LP*( l ) S i 7 
BD*( 2) C 2 - C 3 

LP* ( 
LP* ( 

l ) Z r 
5) Z r 

10 
10 

BD*( 2) C 2 6 - C 27 
BD*( 2 ) C 28 - C 29 
BD*( 2 ) C 2 6 - C 2 7 
BD*( 2) C 28 - C 29 

63 
19 
70 
21 
34 
57 
52 

5 

10 
30 
23 
15 
8 

11 
10 
7 

37 
9 

32 

5. 
16 

10. 
100. 

7. 
10. 
34. 
13. 
5. 

19. 

6. 
13. 
10. 
38. 
14. 

6. 
16. 

12. 
28. 
22. 
8. 

.44 

.23 

.72 

.41 

.56 

.47 

.15 

.35 

.22 

.32 

.03 

.39 

.38 

.31 

.10 

.35 

.41 

.03 

.24 

.10 

.03 

.61 

.94 

.51 

.12 

.72 

.64 

.18 

.82 

30 
16 
17 

35 
50 

69 
53 

36 
47 

25 
51 

from 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 
BD ( 

unit 4 

1) C 
1) C 
1) C 
1) C 
2) C 
2) C 
2) C 
2) C 
2) C 

1) C 
1) C 
2) C 
2) C 
2) C 
2) C 

to 
25 
25 
26 
26 
26 
26 
26 
26 
26 
27 
28 
28 
28 
28 
28 

unit 
- C 
- C 

- c 
- c 
- c 
- c 
- c 
- c 
- c 
- c 
- c 
- c 
- c 
- c 
- c 

3 
26 
29 
27 
27 
27 
27 
27 
27 
27 

28 
29 
29 
29 
29 
29 

LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 

LP* ( 
BD* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
LP* ( 
BD* ( 

2)Zr 
l)Zr 
2)Zr 
3)Zr 
1) Zr 
2)Zr 
3)Zr 
5)Zr 
l)Zr 
3) Zr 
3)Zr 
2)Zr 
3)Zr 
5) Zr 
1) Zr 

10 
10 
10 
10 
10 
10 
10 

10 
10 
10 
10 
10 
10 
10 
10 

11 

C 1 1 

1 0 . 9 6 
6 . 4 1 
6 . 

• 5 . 

1 6 . 

24 
06 
89 

2 0 . 0 8 
9 . 6 0 
5 . 7 6 
5 . 1 0 

1 0 . 1 3 
1 0 . 4 7 
1 4 . 9 8 
2 8 . 5 0 
1 2 . 0 6 

5 . 8 0 
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LP ( 
LP ( 

wi 
BD ( 
BD ( 
BD ( 
BD ( 
LP ( 
LP ( 

1) 
1) 

thin i 
2) 
2) 
2) 
2) 
1) 
1) 

C 
C 

25 
25 

unit 4 
C 
C 
C 
C 
C 
C 

26 -
26 -
28 -
28 -
25 
25 

C 
C 
C 
C 

27 
27 
29 
29 

LP*( 
LP* ( 

LP ( 
BD* ( 
LP ( 
BD* ( 
BD* ( 
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