
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

E L I D E : A N I N T E R A C T I V E D E V E L O P M E N T E N V I R O N M E N T

F O R T H E E R A S M U S L A N G U A G E

M I T R A NAMI

A THESIS

IN

T H E D E P A R T M E N T

OF

C O M P U T E R SCIENCE & SOFTWARE ENGINEERING

P R E S E N T E D IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

F O R THE D E G R E E OF M A S T E R OF C O M P U T E R SCIENCE

CONCORDIA UNIVERSITY

M O N T R E A L , Q U E B E C , C A N A D A

M A Y 2 0 0 9

© M I T R A N A M I , 2 0 0 9

1*1 Library and Archives
Canada

Published Heritage
Branch

Biblioth&que et
Archives Canada

Direction du
Patrimoine de l'6dition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63179-9
Our file Notre r6f6rence
ISBN: 978-0-494-63179-9

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondares ont ete enleves de
cette thdse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mitra Nami

Entitled: ELIDE: An Interactive Development Environment for the

Erasmus Language
and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. Eusebius Doedel

Examiner

Dr. Olga Ormandjieva

Examiner

Dr. Constantinos Constantinides

Supervisor

Dr. Peter Grogono

Approved by

Chair of Department or Graduate Program Director

20

Dr. Robin A.L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

ELIDE: An Interactive Development Environment for the Erasmus Language

Mitra Nami

The process-oriented programming language Erasmus is being developed by Peter Gro-

gono at Concordia University, Canada and Brian Shearing at The Software Factory in

England. Erasmus is based on communicating processes. The latest version of the compiler

is operating in command-line mode. As the compiler evolved, we recognized that there was

a lack of an editor or an integrated development environment (IDE) for this new language.

Our objective is to construct a suitable IDE for the Erasmus language called ELIDE by

understanding the features of Erasmus language such as cells, processes, ports, protocols,

messages, and message passing, which are the main heart of this programming language.

At the same time we wanted to enable ELIDE with the features that are available in IDEs

of languages like Ruby and Erlang. In this respect, after detailed studies on current text

editors, IDEs and their features and evolution of IDEs, we designed and implemented an

integrated development environment for Erasmus language.

To speed up the implementation process, we decided to choose one of the existing

platforms as our base and develop Erasmus-specific features on top of it. There were many

platforms available. Some of these platforms were under investigation and test. Among

them we finally chose NetBeans. This thesis describes the development of this new tool for

Erasmus programmers. It must be noted that the design of the ELIDE was an iterative

process though what we present is the final result. ELIDE is a strong enviroment for

a complete programming support for Erasmus language with built-in compile/debug/run

ability. The most important features included in ELIDE are syntax coloring, Code folding,

iii

Code completion, Brace matching, Coding tips, Indentation and Annotations. ELIDE is

capable of adding more features later in case there is a need. Furthermore ELIDE can

be used for an easy integration of editing and visualising support for Erasmus language

building block such as cells, processes, ports, protocols, messages, and message passing.

We also conducted a preliminary user survey of Erasmus and ELIDE involving a number

of graduate students. The results were quite encouraging with respect to the group surveyed

and current capabilities of Erasmus and newly designed ELIDE. This study confirmed that

It was a must for the Erasmus language to have a customized IDE to empower Erasmus

language capabilities as a process-oriented language teaching and research purposes.

iv

Acknowledgments

First of all I would like to express and extend my sincere gratitude to my supervisor Dr.

Peter Grogono for his support, encouragement and invaluable guidance and suggestions

throughout my graduate study in Concordia University. His help has been very significant

to my master studies. Also his careful research guidance has led to this research completion.

I am grateful to the members of my examining committee Dr. Constantinos Constan-

tinides and Dr. Olga Ormandjieva who have generously contributed their time and expertise

and provided me with very valuable comments. I should sincerely thank Dr. Joey Paquet

for his advice and comments.

I would like to thank all of professors of Computer Science and Software Engineering

Department at Concordia University whom I had a course with, for the knowledge they

devoted to me in Software Engineering domain.

I am appreciative to Administrative Staff of Computer Science and Software Engineer-

ing Department at Concordia University, especially Graduate Programs Advisor Halina

Monkiewicz for her advice.

Last but not least, I am also very grateful to my husband and children, who have

sacrificed a lot and who have always been there with me, with their love, supports and

understandings. I want also to thank my parents who have always inspired me in my

educations and all steps of my life.

v

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Contributions 1

1.2 Structure of the Thesis 2

2 Problem, Motivation and Proposal 4

2.1 Problem statement 4

2.2 Motivation 5

2.3 Proposal 5

3 Theoretical Background 7

3.1 Evolution of IDEs 7

3.2 Features of an IDE 9

3.2.1 User Interface 9

3.2.2 Single Document Interface 10

3.2.3 Multiple Document Interface 12

3.2.4 IDE-Style Interface 16

3.2.5 Dockable Child Windows 17

3.2.6 Collapsable Child Windows 17

vi

3.2.7 Overlappable Windows 17

3.2.8 Tabbed Document Interface 18

3.2.9 Spliter Window 18

3.2.10 Modal and Non-modal Windows 19

3.2.11 Programming Capabilities 23

3.2.12 Protocol Support 28

3.3 Programming Environment Capabilities 28

3.4 Erasmus Language 29

4 Methodology 33

4.1 Developing an IDE 33

4.1.1 Creating an Editor 34

4.1.2 Registering a Type Extension 34

4.1.3 Building a Model Builder 34

4.1.4 Building Parsing Error Information 34

4.1.5 Managed Build System Integration 34

4.1.6 Toolkit Integration 35

4.2 Software Development Model 35

5 Design 36

5.1 Product Quality 37

5.1.1 Functional Requirements 39

5.1.2 Non-Functional Requirements 41

5.2 Use Case Diagram 44

5.3 State Chart Diagram 44

5.4 Class Diagram 46

5.5 Package Diagram 48

vii

6 Implementation 50

6.1 Platform 50

6.2 User Interface 53

6.2.1 User Interface for Toolkit 53

6.2.2 User Interface for Editor 55

6.3 Software Development Model 58

7 Case Study 62

7.1 A Sample Client Server Program 62

7.2 Compilation and Execution 64

7.3 Verification 65

7.4 Validation 66

8 Evaluation 69

8.1 Preliminary Survey Results 70

8.2 Preliminary Survey Recommendations 71

9 Related Works 72

10 Conclusions and Future Works 74

Bibliography 80

A Implementation in Eclipse 88

B Erasmus programs in ELIDE 93

B.l Sample Program of Client Server 1: testodel 93

B.l.l Source code 93

B.l.2 Execution 93

B.2 Sample Program of Client Server 2: testloopl 95

B.2.1 Source code 95

viii

B.2.2 Execution 95

B.3 Program sample of Client Server 3: testmodl 97

B.3.1 Source code 97

B.3.2 Execution 97

B.4 Sample Program of Client Server 4: testextract 99

B.4.1 Source code 99

B.4.2 Execution 99

C Current Text Editors and IDEs 101

D Study Questionnaire 104

E Grammar and Syntax of Erasmus Language 106

ix

List of Figures

1 Evolution of IDEs (Source: [11,14]) 8

2 Inkscape uses an SDI 11

3 Mac OS X uses SDI implementation 11

4 Adobe Photoshop uses MDI implementation 12

5 IDE-style Interface in RSS Bandit 16

6 Dockable and Undockable Windows in NetBeans 18

7 Splitter SDI Window 19

8 Splitter Static MDI Window 20

9 Splitter Dynamic MDI Window 20

10 Code Folding 24

11 Indentation-based Code Folding 25

12 Token-based Code Folding 25

13 Syntax Highlighting 26

14 A typical program in Erasmus language 31

15 Quality in the software lifecycle (source: [66]) 1 37

16 Use Case Diagram 45

17 Top level State Chart Diagram 46

18 Class Diagram 47

19 Package Diagram 48

20 ELIDE Architecture using NetBeans 52

x

21 User interface in ELIDE 54

22 User Interface Design for tools 54

23 User Interface Design for Editor 56

24 Erasmus program with Code folding 57

25 Erasmus program with Code unfolding 58

26 Erasmus program with Coding tip, Annotations and Jump to certain point

of program 59

27 Erasmus program with Coding tip and Comments 60

28 Erasmus program with no indentation 60

29 Erasmus program with indentation 61

30 Mapping file in XML format 63

31 Client-Server program in Erasmus 64

32 Graphical Configuration of the Client-Server program 65

33 ELIDE Architecture using Eclipse and Antler 89

34 Sample Erasmus program and grammar in ELIDE using Eclipse 91

35 Sample Program 1 Source- Testodel in in ELIDE 94

36 Sample Program 1 Execution- Testodel in ELIDE 94

37 Sample Program 2 Source- Testloopl in ELIDE 95

38 Sample Program 2 Execution Testloopl in ELIDE 96

39 Sample Program 3 Source Testmodl in ELIDE 97

40 Sample Program 3 Execution Testmodl in ELIDE 98

41 Program sample 4 Source- Testextract in ELIDE 99

42 Sample Program 4 Execution- Testextract in ELIDE 100

xi

List of Tables

1 Some existing IDEs for C/C++ 9

2 Some existing IDEs for Java 10

3 Comparison of some existing IDEs and Editors based on User Interface . . 15

4 Classification of capablities of existing programming environment 29

5 Result of Usability Survey -Population of users 71

6 Result of Usability Study - Level of knowledge of users 71

7 list of Current Text Editors and IDEs 103

xii

Chapter 1

Introduction

The study of IDEs has become one of the most important fields with major applications in

the software engineering, debugging, high performance compiler integration, programming

tools and security. In this thesis we present the design and implementation of an IDE for

Erasmus with tool support which we call it ELIDE. Erasmus project is a process oriented

programming language which is being developed by Peter Grogono at Concordia University

and Brian Shearing at Factory in England. Like object oriented programming languages,

Erasmus project provides both a framework and a motivation for exploring the interactions

among its building blocks. This process oriented programming language is mainly based on

cells, processes and their interactions, and provides a full control over these interactions,

which contrast with the object models in which an object doesn't provide a full control over

the sequences in which method calls and events may hit an object.

1.1 Contributions

The main contributions of this thesis can be summarized as follows:

• Literature review of current text editors and IDEs.

• Requirement analysis and design of an IDE for a process oriented language.

1

• Parallel development of the Erasmus IDE on both Eclipse and NetBeans open source

platforms in order to compare the two different approaches and finally choose the best

one.

• Implementing a strong environment for a complete programming support for Erasmus

language with built-in compile/debug/run ability as well as added features such as

syntax coloring, Code folding, Code completion, Brace matching, Coding tips, Inden-

tation and Annotations.

• Demonstrate a proof of concept through a case study.

• Usability study of the IDE, based on the findings of a user survey.

1.2 Structure of the Thesis

This thesis is organized into ten chapters. Chapter 1 introduces the problem, Contribu-

tions and the structure of this thesis.

Chapter 2 will describe problem statement and the motivation for the research presented

in this thesis. We will then describe our proposal and its benefits.

In chapter 3, we introduce the background knowledge we need to know in order to

comprehend this research better.

In chapter 4, we will review features of a suitable IDE for the Erasmus language by

studying current IDEs for programming languages.

In chapter 5 we will define the general framework of the design of our IDE, and subse-

quently, the detailed design of our architecture from different aspects.

In Chapter 6, we will discuss the implementation of a suitable IDE for the Erasmus

language based on reviewing current IDEs for programming languages.

Then in chapter 7 we will consider a case study of a program in detail.

In chapter 8 we will present the result of usability study.

2

Then in the chapter 9 we will introduce related works on IDEs by separating them into

two categories of language-based IDEs and toolkit-based IDEs.

Finally we discuss conclusion and future works in chapter 10.

A list of Abbreviations is presented in the Glossary section.

Appendix A will describe an alternative of ELIDE in Eclipse IDE. Then appendix B

will show more sample programs in NetBeans. Appendix C compares current text editors

and IDEs with their capabilities. Questionnaire for evaluation is presented in Appendix 4

and finally the grammar and syntax of Erasmus Language is included in Appendix 5.

3

Chapter 2

Problem, Motivation and Proposal

In this chapter, first we discuss the problems and motivations behind this research which

constitutes the scope of this dissertation. Then we present our proposal to achieve our

goals.

2.1 Problem statement

Like any other programming language, Erasmus programmers not only need a Graphical

user interface (GUI) for developing their programs, but also they need to be able to rely

on a tool support, in order to be able to develop critical applications. These applications

mostly are concurrent, distributed and fault-tolerant. At the moment such environment

or tool support for Erasmus language does not exist and the lack of appropriate processes

and tools to help these programmers to engineer complex systems is obvious. The research

proposed here will address this current gap. A GUI-based, integrated environment with

the necessary tools to support developing Erasmus language is very essential. On the

other hand without any tools, developing applications is a very pressing problem because

with enriched Erasmus's grammar, as well as its concurrent and distributed programming

capabilities, programmers might easily lose their track of control. One of main issues is first

to create an IDE and second to add a tailor designed toolkit on Erasmus IDE. Mean time

4

we have to take into consideration that this language still is under development and some

of its features are yet to be implemented, therefore the final product should be capable

of incremental development. The desired IDE should have an easy way to guide the user

through his implementation while allowing modifications or feedbacks, finally it should

generate outputs that can be easily deployed. With this in mind, we tried to find out

what Environment, tools or features might be needed for such language. We specified its

functional and nonfunctional requirements.

2.2 Motivation

The above mentioned problems motivated us to investigate comprehension of Erasmus

language and its features and subsequently, review existing Interactive Development En-

vironments and their features and finally reason the core features of an IDE with tool

support. Our objective in this thesis is to design a suitable IDE for the Erasmus Language

based on above study that reflects recent researches in the language support capabilities.

This includes designing an IDE with compile/debug/run ability. Some of features included

in ELIDE are syntax coloring, Code folding, Code completion, Brace matching, Coding

tips, Indentation and Annotations. With ELIDE we will then be able to provide IT-based

assistance for Erasmus programmers to implement Erasmus building blocks such as cells,

processes, ports, message passing and protocols in a consistent environment since these

building blocks are the main heart of this process oriented language.

2.3 Proposal

In order to resolve the problems mentioned earlier, we propose an Integrated Develop-

ment Environment for Erasmus that builds upon NetBeans, enhancing it with syntax and

grammar checking, compile/debug/run facilities and Document generating. ELIDE will

support the current Compiler, grammar and syntax of Erasmus Language as well as it is

5

easy to replace it with later versions of compiler. We have taken into account that this new

language is still evolving, therefore ELIDE will be designed in such a way that will be able

to accommodate new features easily.

The expected contributions of this proposal are to provide an environment for Erasmus

programmers to gain comprehension over Erasmus programs. This can be done by means of

an integrated set of tools that this proposal will deliver to manipulate and process Erasmus

programs. Implementation of this proposal will allow Erasmus developers to get up to speed

with Erasmus programming. The developed IDE will be released in Open Source format,

to promote its adoption and further enhancement by the Erasmus developer community.

6

Chapter 3

Theoretical Background

The need for IDEs became apparent when programmers started to type their programs

in front of console or terminal. Early languages did not have one, since they were prepared

using flowcharts, coding forms, and keypunches before being submitted to a compiler. BA-

SIC was the first language to be created with an IDE. Its IDE was command-based, and

therefore did not look much like the menu-driven, graphical IDEs of today. However it

helped users in editing, file management, compilation, debugging and execution similar to

recent IDEs. In this chapter we review a brief history about evolution of IDEs, next we

review available features of current IDEs and then we take a look at the classification of

capabilities of current programming environment and finally we exlain some features of

Erasmus language.

3.1 Evolution of IDEs

IDEs provide typically large numbers of features for authoring, modifying, compiling,

deploying and debugging software. But the idea is that the IDE abstracts the configuration

necessary to piece together command line utilities in a cohesive unit, which theoretically re-

duces the time to learn a language, and increases developer's productivity. It is also thought

7

S> Increases productivity & efficiency to allow Development time savings
developers to focus on core competencies

Figure 1: Evolution of IDEs (Source: [11,14])

that the tight integration of various development tasks can lead to further productivity in-

creases (for example, code can be compiled while being written, providing instant feedback

on syntax errors). Most modern IDEs are graphical but before the advent of windowing

systems, IDEs were text-based, function keys or hotkeys were used to perform various tasks

(Turbo Pascal is a common example).

The emergence and popularization of Open Source IDEs have played a critical role in IDE

development for example we can refer to Eclipse and NetBeans. The combination of the

Open Source philosophy with an open and extensible framework encourages the creation of

a community of people to extend the capabilities of the IDE, allowing even exotic languages

and applications to be supported by the environment.

Since there is growing interest in visual programming, IDEs are designed to allow users

to create new applications by moving programming building blocks or code nodes to create

flowcharts or structure diagrams which are then compiled or interpreted. These flowcharts

often are UML. Figure 1 shows how IDEs evolved [14], At first they were text editors, later

more functionality were added to them. Then compilers and debuggers were added and later

pre-compile error checking, code completion and syntax checking/recognition were among

Name Developer Latest Stable Release OS Cost
C++ Borland 2006 Windows 1090USD/2490USD
Dev-C++ Bloodshed February Windows Free

Software 2005 Windows
Eclipse CDT Eclipse September Cross free

Foundation 2006 platform
NetBeans Sun October Cross free
C/C++ pack Microsystems 2006 platform
Turbo C++ 2006 Borland 2006 Windows Free/399USD
Visual Microsoft November Windows Free/299USD/
C++ 2005 799USD/10939USD
wxDev-C++ Guru November Windows Free
wxDev-C++ Kathiresan 2006

Table 1: Some existing IDEs for C/C++

new features. Later automatic code generation, refactoring support, UI development tools

and unit testing tools were added. Recently UML modeling, model driven development

support, web services support are added. As it can be seen the trend is toward more

automation and continuous quality assurance and the results are increases in productivity

and efficiency and development time saving [11].

Table 1 and 2 show some existing IDEs for C/C++ and Java are compared in terms of

time of release and cost.

3.2 Features of an IDE

IDEs are usually designed with a number of features. In the following pages we review

some of these important features.

3.2.1 User Interface

IDEs usually are built of many windows each of which relate to one feature. The facilities

for managing these windows are very important. There are several representations which

are as follows [56,57]:

9

Name Developer Latest Stable Release OS Cost
Eclipse Eclipse

Foundation
Stember
2006

Cross
platform

Free

Jbuilder Borland
Software

2006 Cross
platform

Free/499USD/
3500USD

JCreator Xinox
Software

October
2006

Windows free/69USD

JDeveloper Oracle January
2006

Cross
platform

free

NetBeans Sun
Microsystems

October
2006

Cross
platform

Free

Sun Java
Studio
Enterprise

Sun
Microsystem

October
2006

Cross
platform

Free

WebSphere
Development
Studio

IBM January
2006

Windows 1000USD /4500USD

Table 2: Some existing IDEs for Java

3.2.2 Single Document Interface

In graphical user interfaces, a single document interface or SDI is a method of organizing

graphical user interface applications into individual windows that the operating system's

window manager handles separately. SDI window does not have a "background" or "parent"

window containing its menu or toolbar; instead, each window contains its own menu or

toolbar [64]. That is the reason that applications which allow the editing of more than one

document at a time, e.g. word processors, may therefore give the user the impression that

more than one instance of an application is open.

Often, each window is displayed as an individual entry in the operating system's task

bar or manager. Some task managers summarize windows of the same application. For

example, Mac OS X uses a feature called Expose which allows the user to temporarily see

all windows belonging to a particular application. Figure 2 shows a sample Single Document

Interface of Inkscape and figure 3 shows Single Document Interface of Max OS Expose.

10

i 7 7-1 $ - •> a V u'X'rh 2$ a q g l l l B ' * ' ; ' " '•*>*

liJ :

a ;
© r-

y :
V.S:

i*l :
in

/

C5»<gi i S - r ^ w p - U ,) M£?) .-^CP} ESeeu - w ^ f c j)

to ?>. 9 0 • o 0 Q l ® S S S 0 A » »
* i> A s> J s j ^ r Si!-;: »»?»•;:;«»!?«!•:»;:; :j ;TI^iill|

Ti

|lmage:SDI Inktcape.png[IT

hi!-
j ; :

Si -
VZ

/

I*. *

i s» »
f t \

f £ : : ; a s - ? - : uooeotw/ n - v - i u y e r a s . iwu'.-r?»»?u , > t 4 * »

r £ - i . , . ' i ; i M'OT^nr t - jyA. , ? •" 5 fj u ^ ̂ ^ t ^ •> t ? r a t ' t r <

.t-Rich'5 S: £ i > i :: i f <1,., i

J

•eg

Figure 2: Inkscape uses an SDI

f* ' Sa fa r i File Edit v iew HISIOIV Bookmarks Window Hei

Figure 3: Mac OS X uses SDI implementation

11

Fb bit Urpn :

•31 >>"
: VW Wm ~ | r '

• y
/ a
% T

- J 3>
,7 A

iievhr 'J -

•a »w.»<«biia

5—

Rimi Hi • •
Figure 4: Adobe Photoshop uses MDI implementation

3.2.3 Multiple Document Interface

Graphical computer applications with a Multiple Document Interface (MDI) are those

whose windows reside usually under a single parent window (exception is modal win-

dows)^]. In the usability community, there has been much debate over which interface

type is preferable. Generally SDI is seen as more useful in cases where users work with

more than one application. Companies have used both interfaces with mixed responses.

For example, Microsoft has changed its office applications from SDI to MDI mode and then

back to SDI, although the degree of implementation varies from one component to another

[64], Figure 4 shows Adobe Photoshop as a sample of Multiple Document Interface. Each

numbered section identifies as:

• Document Workspace: This is the active image, where all work is done. The window

may be resized, and the image can be zoomed in/out.

Toolbar: Primary PS functions. The toolbar will be covered in more detail.

12

• Tool / Action Options: Shows options available for the currently active tool. Some

tools share the same options.

• Navigator: Shows how much of the image is displayed, and what part of it.

• Colors: Manual color selection tool. Use sliders or type in values directly.

• History: Tracks what actions you have taken to provide a list of undo steps.

• Layers: The primary concept behind Adobe Photoshop is the layers system.

Advantages of MDI are as follows [56,57,64]:

• With MDI, a single menu bar and/or toolbar is shared between all child windows,

reducing clutter and increasing efficient use of screen space.

• An application's child windows can be hidden/shown/minimized/maximized as a

whole.

• Features such as "Tile" and "Cascade" can be implemented for the child windows.

• Possibly faster and more memory efficient, since the application is shared, and only the

document changes. The speed of switching between the internal windows is usually

faster than having the OS switch between external windows.

• Some applications have keyboard shortcuts to quickly jump to the functionality you

need (faster navigating), and this doesn't need the OS or window manager support,

since it happens inside the application.

Disdvantages of MDI are as follows [56,57,64]:

• There is the lack of information about the currently opened windows in MDI while in

a SDI application, the currently opened windows is displayed. In order to view a list

of windows open in MDI applications, the user typically has to select a specific menu

("window list" or something similar).

13

• MDI Can be tricky to implement on desktops using multiple monitors as the parent

window may need to span both monitors.

• Virtual desktops cannot be spanned by children of the MDI. However, in some cases,

this is solvable by initiating another parent window; this is the case in Opera, for

example, which allows tabs/child windows to be dragged outside of the parent window

to start their own parent window (on Windows).

• MDI can make it more difficult to work with several applications at once, by restricting

the ways in which windows from multiple applications can be arranged together.

• Without an MDI frame window, floating toolbars from one application can clutter

the workspace of other applications, potentially confusing users with the jumble of

interfaces.

• The shared menu changes, which may cause confusion to some users.

• MDI child windows behave differently from those in single document interface appli-

cations, requiring users to learn two subtly different windowing concepts. Similarly,

the MDI parent window behaves like the desktop in many respects, but has enough

differences to confuse some users.

• Many window managers have built-in support for manipulating groups of separate

windows, which is typically more flexible than MDI in that windows can be grouped

and ungrouped arbitrarily. A typical policy is to group automatically windows that

belong to the same application. This method can provide a solution without using

MDI.

In recent years, applications have increasingly added "task-bars" and "tabs" to show the

currently opened windows in an MDI application, which is used to see current windows.

This type of interface is called "tabbed document interface" (TDI) which is explained in

14

Name Comment
Internet Explorer 6 SDI
Visual Studio 6 development environment MDI
Visual Studio .NET MDI or TDI with "Window"
Firefox Mozilla TDI by default,can be SDI instead
Opera MDI combined with TDI
GIMP Floating windows(limited MDI with plugin)
Adobe Photoshop MDI in Windows XP version
Adobe Acrobat Purely MDI until version 7.0.
MS Excel 2003 SDI
MS Word 2003 MDI
UltraEdit Combination of MDI and TDI
Notepad++ TDI
PSPad TDI
TextMate TDI
Corel Wordperfect MDI
Macromedia Studio under Windows TDI and MDI
NetBeans IDE-style
Eclipse IDE-style
Visual Studio 6 IDE-style
RSS Bandit IDE-style
JEdit IDE-style
MATLAB IDE-style

Table 3: Comparison of some existing IDEs and Editors based on User Interface

15

-• B e - E f l t , Sew I s * B*S>

i t s ! *> t i U p d m t f f t * * ^ M I M i l M i , j g n a * * r r a K f , 0 . W p S W B f ! <".:• .j. _ / f l ' l

i f s w , 3 ' S o .. v _ i .

l r f . y r . . re* , r w M M M M l

:,:,.,,. ,, 1

i L p BOro Blogs
* Blogs
* _ J C-5IBK3
* ™J E x « 5 € i q u c
« Q Goc<ite Blogs
t Z J Java Fmgrarcming
* * 1 M i ; r a^ l t

5 I D Miscefleoneous
« U] My Love

[1] News
¥ Q fiSS Band*
t, Spaces
t _ l j Yahoo Btogs v

:,:,.,,. ,, 1

i L p BOro Blogs
* Blogs
* _ J C-5IBK3
* ™J E x « 5 € i q u c
« Q Goc<ite Blogs
t Z J Java Fmgrarcming
* * 1 M i ; r a^ l t

5 I D Miscefleoneous
« U] My Love

[1] News
¥ Q fiSS Band*
t, Spaces
t _ l j Yahoo Btogs v

I
I

Headlf® F A Dal® - Topic ^

f p i
/ a a a t f e Reader Feeds

V . M i r f e e d s . .

»

Owns

Figure 5: IDE-style Interface in RSS Bandit

the next topic. When tabs are used to manage windows, individual ones usually can not

be resized. Comparison of some existing IDEs and editors based on their User Interface is

shown in table 3.

3.2.4 IDE-Style Interface

IDE-style interface is the User Interface that has been used in recently-build IDEs. Graph-

ical computer applications with an IDE-style interface are those whose child windows reside

under a single parent window (usually with the exception of modal windows) [58]. An IDE-

style interface is consisting of:

• Overlappable Windows,

• Tabbed Document Interface, and

• Window Splitting.

16

IDE-style window is distinguishable from a MDI interface, because all child windows in

an IDE-style interface are enhanced with added functionality not ordinarily available in

MDI applications. Because of this, IDE-style applications can be considered as a functional

superset and descendant of MDI applications. Figure 5 shows an IDE-style interface.

Some of child-window functionality are as follows:

3.2.5 Dockable Child Windows

When panels are displayed as part of the main window, it is called Dockable. It is possible

to undock each panel, so that it is displayed in a separate window. Once undocked, it is

possible to dock the panel so it appears back in the main window again. It can be useful

to undock a window when using [64]:

• a small screen;

• large tables, queries or forms; and/or

• More than one monitor.

Sample of dockable and undockable windows is shown in Figure 6.

3.2.6 Collapsable Child Windows

A common convention for child windows in IDE-style applications is the ability to collapse

child windows, either when inactive, or when specified by the user. Child windows that are

collapsed will conform to one of the four outer boundaries of the parent window, with some

kind of label or indicator that allows them to be expanded again [64].

3.2.7 Overlappable Windows

It allows each opened document gets its own fully movable window inside the editor

environment

17

• Êrasmus Language Support NetBeans IDE fc.,1
Fie Eeft View Navigate Source Refactor Build Run Profile Verflonircg Tods Window Help

6 0 8 » ; • . Q ••• tt 0 ii> • •
ij] language.nbs * igj) rwwflteJ.era » j k>} newffe.era * * Start Page

- Undockable window

ricwfiif.efa Navuirttoi

-Dockable window

: ff i Task List i

* ^ _ r • —I i is * f . u j ' ^

Figure 6: Dockable and Undockable Windows in NetBeans

3.2.8 Tabbed Document Interface

It allows multiple documents to be contained within a single window, using tabs to

navigate between them. In contrast to MDI applications, which ordinarily allow a single

tabbed interface for the parent window, applications with an IDE-style interface allow tabs

for organizing one or more subpanes of the parent window. Examples are: Eclipse, Visual

Studio 6, Visual Studio .NET, RSS Bandit, JEdit.

3.2.9 Spliter Window

A splitter window appears as a special type of frame window that holds several views in

panes. The application can split the window on creation, or the user can split the window

by choosing a menu command or by dragging a splitter box on the window's scroll bar

[64], After the window has been split, the user can move the splitter bars with the mouse

to adjust the relative sizes of the panes. Splitter windows can be used in both SDI and

18

| Ejle gdit View ffindow Help

D bS a « . - ! # , f '
i B P i i a i W

01 02 0 3

01

D2

The pennycandystore beyond the El
is where 1 first

fell in love
with unreali ty

Jellybeans glowed in the semi-gloom
o f that September a i t e m o o n
A cat u p o n the counter moved among

the licorice sticks
and tootsie lolls

and O h Boy Gum

| Ready

0 4 -

Figure 7: Splitter SDI Window

MDI applications. Examples of splitter windows for SDI and Static MDI and dynamic MDI

application are shown in figures 7, 8 and 9. As is shown Splitter Window can be used to

resize sub-panes of the parent window.

3.2.10 Modal and Non-modal Windows

A non-modal window does not restrict the user's interaction with other open windows

on the desktop in any way. Using non-modal windows gives the user maximum flexibility

to perform tasks within your application in any order and by whichever means they choose

[61]. A modal window, while it is open, prevents the user from interacting with other

windows in the same application (application modal), or in all applications, including the

desktop itself (system modal) [61].

Advantages of the tabbed document interface are [56,57]:

• It holds many different documents logically under one window, instead of holding a

large number of small child windows.

• Sets of related documents can be grouped within each of several windows.

19

/-•.Vvr.'-^ ' ^ I I
File Edit View Help

D 0
00

01

02

01 02 0 3

The pennycandystore beyond the El
is where I first

fell in love
with unreality

Jellybeans glowed in the seitu-gloom
of that September afternoon
A cat upon the counter moved among

the licorice sticks
and tootsie rolls

and Oh Boy Gum

oo

01

02

01 02

The pennycandystore beyond the El
is where I first

fell in love
with unreality

Jellybeans glowed in the semi-gloom
of that September afternoon
A cat upon the counter moved among

the liconce sticks
and tootsie rolls

and Oh Boy Gum

oo

01

02

01 02 0 3

The pennycandystore beyond the El
is where I first

fell in love
with unreality

Jellybeans glowed in the semi-gloom
of that September afternoon
A cat upon the counter moved among

the licorice sticks
and tootsie rolls

and Oh Boy Gum

oo

01

02

01 02

The pennycandystore beyond the El
is where I first

fell in love
with unreality

Jellybeans glowed in the semi-gloom
of that September afternoon
A cat upon the counter moved among

the liconce sticks
and tootsie rolls

and Oh Boy Gum

(Ready

Figure 8: Splitter Static MDI Window

Ejle Edit View Window Help

p Eg a ' , m t W
% ." *" " .dk
00

ULi

01

02

U1 02 0 3

bn The pennycandystore
is where I first

fell in lo /s
wi thunrea

Jellybeans glowed in the
o f that September a f t e m
A cat upon the counter r

the licorice
and tootsie r<

and Oh Boy Gum

fl
0 0 01 0 2 0 3

The pennycandystore beyond the El
is where I first

01
fell in love

01 with unreality
Jellybeans glowed in the semi-gloom
of that September a f te rnoon
A cat u p o n the counter moved among

the licorice sticks
0 2 and tootsie rolls

and O h Boy Gum

V
<

For Help, p r e s s F1

Figure 9: Splitter Dynamic MDI Window

20

• Using tabs instead of new windows to display content creates a smaller memory foot-

print and therefore reduces the strain on the operating system.

• Tabbed web browsers often allow users to save their browsing session and return to it

later.

Although the tabbed document interface does allow for multiple views in one window,

there are problems with this interface.

• One such problem is dealing with many tabs at once. When a window is tabbed to a

certain number that exceeds the available resolution of the monitor, the tabs clutter

up (this is the same problem as with SDI but moved to another place in the user

interface).

• Multi-row tabs are a second issue that will appear in menu dialogs in some programs.

Dealing with multiple rows of tabs in one window has two disadvantages that it creates

excess window clutter and it makes some complications.

• Some people can have difficulty in finding a specific tab in a 3 or 4 level tabular

interface. Part of the issue with this difficulty lies in the lack of any sorting scheme.

Tabs can be strewn about without any sense of order, thus looking for a tab provides

no meaningful understanding of a position to a tab relative to other tabs. Thus,

although tabbed windows are adequate in environments where there is a minimal

necessity for tabs (around ten tabs or less), this scheme does not scale, and alternate

methods may be required to address this issue.

There are methods for addressing scalability of tabs:

• use more than one monitor.

• reduce the width of individual tabs, so that more can fit within the available one

• introduce scrolling to enable tabs to occupy a non-visible region of the screen

21

• introduce sections to spread tabs out to multiple areas

Large numbers of tabbed windows scale better with the tabs along the left or right edges

of the window, instead of the top or bottom edges. That is because tab labels are usually

much wider than they are tall. One can place tabs along the right window edge, and laid

windows out in a vertical column, so each tab will be initially visible, and the user can use

them to raise and lower the windows, drag them around in the column, or pull them out to

anywhere on the screen.

Also tabbed window interfaces can give the user the freedom to position the tabs along

any edge, so all four edges are available to organize different groups of tabs somehow that

the user or application wants to see. Once one had tabbed views that he/she could stick

onto the stack (represented as a "spike"), and then he/she can move the tabs to any edge.

This will enable the users to position the tabs anywhere along any edge, and the tabs pops

up pie menus with window management functions, to uncover and bury windows, etc.

TDI can be confusing for those who got used to SDI, MDI as windows can be hidden

behind other windows. Some MDI applications lack a taskbar or menu to allow quick access

to all windows, so in some cases a window can only be found by closing all others. On the

other hand, since in TDI applications most tabs are visible and directly accessible, it is

much harder for windows to get "lost".

Also TDI windows must always be maximized inside their parent window, and as a

result two tabs cannot be visible at the same time. This makes comparing of documents or

easy copy-and-pasting between two documents more difficult. Full MDI interfaces allow for

tiling or cascading of child windows, and do not suffer from these limitations. One example

of an application that allows either TDI or MDI browsing is Opera. Using TDI by default,

this application also supports full MDI and can also run as a SDI application.

In order to mitigate these problems, some IDEs, such as recent versions of XEmacs

and Microsoft's Visual Studio, provide a hybrid interface which allows splitting the parent

window into multiple MDI-like "panes", each with their own separate TDI tab set. The

22

Ion window manager does the same for the entire desktop. This provides many of the

advantages of both MDI and TDI, although it can still be difficult for users to get used

to. The Konqueror browser (available for the K Desktop Environment on UNIX and UNIX

work-alike, such as Linux) also supports multiple TDI splits within the main window. Table

7 in appendix C shows some of text editors according to above classification. Aquamacs

Emacs and GNU Emacs use a tabbed document interface using the tabbar plug-in while

TextPad comes very close to SDI when configured to "allow multiple instances to run" and

Vim version 7 supports a tabbed document interface. Table 7 in appendix C shows some

of text editors according to editing feature.

3.2.11 Programming Capabilities

Table 7 in appendix C lists text editors according programming features. Brief explana-

tions of some of the useful features are as follows [57,58,60,61]:

• Code Folding is one of important features of some of IDEs that allows the user to

selectively hide and display sections of a currently-edited file as a part of routine

edit operations [23,24], This allows the user to manage large regions of potentially

complicated text within one window, while still viewing only those subsections of the

text which are specifically relevant during a particular editing session [23,24]. This

feature is very useful among developers who manage a high volume and variety of

source code files. Nonetheless, text editors that include this feature often provide

enough flexibility to allow uses, for purposes other than source code management.

In order to support code folding, the IDE must provide a mechanism for identifying

folding points within a text file. Folding points are specified with one or more of the

following conventions [23,24]:

- Token-based folding points are specified using special delimiters that serve no

other purpose in the text than to identify the boundaries of folding points.

- Indentation-based folding points are specified by the position and sequence of

trie E&j ĵ wcr • r̂ v-fja* Ŵtfh p.&̂i Plufi $>mi:v*» j-jelfj
.. V' O* - • J > . / « . - • ' • *

• i Up tor -.'i "" " / dtmcMTCl

<oftffj.cstfte

t.TrtFsgurp
ruiifiqum »fi msuJl sft
U^ftSS.tn

-ttex
V -flk
!

f- .^wtfijjiKr«

(UCfcĴ e' i'CS^t -x TtCl
it^Ktrr) r < 1

Ift't (

tree
('tree pe-terj

htr-y {Ire*

pet*'' Hr-tw

jn, * v» «t»

*«? kics ;>:««; r w w i c s j i] <;
sel -co v«

: Problems
0 tterm

-c. T**k-& Q CoFtoNt

r -i T«= ...cvSi*
• ifcihra ; > ** ^

v .1> S % ® * ^

' kr f r «

u
o cfeiHi

> i«n"i3ffcn
" u pvtifnJ^yfef;

- tu?«*f&
a cBf**ra:»»»

» fpnry
- >«!<»

" dt>w. rcOeic -

- Mii
* Ci-l*

vo

RfiSCulCe Pali

Smart iwrt n: I
mMd

Figure 10: Code Folding

non-printing whitespace (such as tabs and spaces) within the text. This conven-

tion is particularly suitable to syntaxes and text files that require indentation as

a rule by themselves.

Syntax-dependent folding points are those that rely on the specific source code

or programming language of the currently-edited file in order to specify where

specific folding regions should begin and end.

Each of these conventions has its own distinct advantages and difficulties, and it

is essentially up to the developer. When loaded into a folding editor, the outline

structure will be shown (just the headings):

Usually clicking on the marks makes the appropriate body text appear as is shown in

figure 10, 11 and 12. There are some IDEs and text editors that have these features

for example recent versions of the open-source text editor Vim, Emacs, and the Java

IDE Eclipse offer highly-configurable support for code folding. EditPad Pro supports

24

• SSI
gi!S> £#r JtSuiTf ^v.Jjvli' P»<tijiU'! 0/Jfl tfciMifc^ $>l|<

~ » \ v-» « > * * . »
:r ?*1 kvCVSI*

£•50% tog
c>"»n!\t|»rp
i:>-.>« figure sn
instil >ih
w

if!
i

& . "Txro

i- •itr.K.ICi
I- m. x.ffl'Hrtf*

ICSJMtrr 1 Efl •

clasi < was isfcSe "' var̂afiSc isfen

wtod O**-' i) 1
•f n»iv i »-<.»• {

i'stsnil p.'irwr !•

scrtwd ccmcnts U (
! Problems

Dfrepns
'lassVi Q Consote

: Cksimt ;•>

„".; \ & «
• v* Ire?

- tt'-Ui'^n

"r f. clear- I
*

' ' o jwrn^poh-jCi
- fiC

U CQ-If rcsi'

-
-

Smart tnsMt 1 }

Figure 11: Indentation-based Code Folding

fjfc X&s f̂nwff ftf^ttw t&vqm PrôKi |un ftinrfnw tgelp

"I Strst Upiai- i'Z M 3 J gsme.fce! K

conhq (Sthe
conM).t*>9

CiinK^ »«•««•
invuil sh

Vi*4;*ft4ft in

'.fffr.C

^ w t f g w t *
j'tett.Kl
J*. .-*l»!j|ll*ttf

pdiSd^e rctjutr* Tt* 1
'iSfwrt l t d :

1 Tm»p •{' 1 xhlf
1 v^t-lifeif r*n*rtr<n

mttaf e Scjf CI (
1f ii<T :ji«r -- "" 3 f

delete c©i«ct i c - r ur-jr

s«t chlldrcs- f}

r >»(g

« « t c ^ m l {Rob}) f

issthraf I£«i7>ni1,\
r'elwri ^ h i

r OucKne ^ 3
• ^ J rest

a SiSiHixdp

™ » ClMl'.i
• c^Wren

' ' et
• fumg

B CttWKlO

- ilf'V

a
-> ¥0

p»s«.i y-r tiv- -.-t

Sn'An J'i&fft 9 : i

Figure 12: Token-based Code Folding

25

2 <html>
3 <head>
4 <title>Exaciple</title>
5 <link hre t" = "screen , ess" rel="st,y
6 </head>
7 <body>
6 <ht >
9 Header
1 0 < / h l >
11 <ul id="nav">
12
13 One
14
IB <11>
16 Two
17

Figure 13: Syntax Highlighting

code folding through fully editable file navigation schemes. Sun's NetBeans IDE,

Microsoft's Visual Studio.NET, the Code::Blocks IDE, the UltraEdit text editor, the

Zeus IDE , the Mac OS X editors TextMate and BBEdit, the KDE text editor Kate,

Macromedia Dreamweaver, The cross-platform SciTE editor based on the Scintilla

editing component, the GNOME IDE Anjuta and the general source code editor

Notepad++ offer code folding as well [22,61].

Many text editors provide folding capability. Some of them are EditPad Pro, Emacs,

EmEditor, Folding Text Editor, GridinSoft Notepad, jEdit, Kate, Kwrite, Notepad++,

RJ Text Editor, SciTE, STET, TextMate, Vim, Visual Studio, XEDIT (however its

folding was more a filtering) and Zeus for Windows IDE.

Syntax highlighting is a feature of some text editors that displays source code text in

different colors and fonts according to the category of terms. Figure 13 shows syntax

highlighting.

Multiple undo/redo is effective when there are multiple level of history otherwise when

there is only one level of edit history remembered, by successively issuing the undo

command, the last change will only "toggle". Modern or more complex editors usu-

ally provide a multiple level history such that issuing the undo command repeatedly,

will revert the document to successively older edits. A separate redo command will

cycle the edits "forward" toward the most recent changes. The number of changes

remembered depends upon the editor and is often configurable by the user.

26

• Rectangular block selection is useful for concentrating on a section of program. When

a large section of code containing many compound statements nested to many levels of

indentations is selected, it might be very helpful. In this case, there is a risk of losing

track of block boundaries since by the time the programmer scrolls to the bottom of

a huge set of nested statements, he may have lost track of which control statements

go where.

• Bracket matching is a syntax highlighting feature that highlights matching sets of

braces. The purpose is to help the programmer navigate through the code and also

spot any improper matching, which would cause the program to not compile or mal-

function.

• Auto indentation is used to format program source code in order to improve its read-

ability.

• Auto completion involves the program predicting a word or phrase that the user wants

to type in without the user actually typing it in completely. This feature is effective

when it is easy to predict the word being typed based on those already typed, such as

when there are a limited number of possible or commonly used words (as is the case

with email programs, web browsers, or command line interpreters, or when editing

text written in a highly-structured, easy-to-predict language, such as in source code

editors). Auto completion speeds up human-computer interactions in environments

to which it is well suited.

• Text folding is a similar feature used in folding editors and outliners. Text folding is

generally distinguishable from code folding in that the latter tends to be used with the

specific syntax of markup languages or programming languages, whereas the former

can be used with ordinary text. Text folding is a solution for not losing track of braces

which lets the developer hide or reveal blocks of code by their indentation level or by

their compound statement structure.

27

• Compiler integration is used to allow running compilers/linkers/debuggers from within

editor, capturing the compiler output and stepping through errors, automatically

moving cursor to corresponding location in the source file.

3.2.12 Protocol Support

Protocol support has been important for some languages and IDEs offering web services.

Table 7 in appendix C lists text editors according to protocol support or remote file editing

over Internet Protocols. Brief explanations of some of these protocols are as follows:

• FTP: File transfer protocol, is a file transfer protocol for exchanging and manipulating

files over any TCP-based computer network.

• HTTP: Hypertext Transfer Protocol is a communications protocol for the transfer of

information on the Internet. It is used for retrieving inter-linked text documents

• SSH: Secure Shell, is a network protocol that allows data to be exchanged using a

secure channel between two networked devices.

• WebDAV: Web-based Distributed Authoring and Versioning, allows users to collabo-

ratively edit and manage files on remote World Wide Web servers.

3.3 Programming Environment Capabilities

Our study end up with three categories of existing programming support environments

such as program editors, parser compilers, and IDEs as shown in table 3. A complete list

of Editors with their characteristics is shown in Appendix C.

With program editors like Emacs, vi and JEdit, there is a need for independent line editor

such as gdb, cvs, diff and find. There is no ability to have GUI and/or syntax analyzer.

There are some language support such as syntax coloring and identation and code folding.

Also there is ability of defining the lexical analyzer.

28

Type Name Pros Cons
Program editor Emacs

vi
JEdit

needs independent
command line tool

Parser Compiler Antlr
Javacc

IDE Eclipse Creates a frame work
of common components

IDE NetBeans Creates a frame works

Table 4: Classification of capablities of existing programming environment.

Parser compilers such as Antlr and Javacc do not contain support for IDEs. They do

not have the ability to be used as interpreter. They are not incremental and they provide

weak support for error recovery. The positive point about them is that they are useful to

define standards for describing a new programming language.

IDEs such as Eclipse creates a framework of common components for a new language

to be added to them. This framework consists of a customizable editor, source control, a

debugger framework and finally a debugger frame work. It is still a tedious task to create

a full featured IDE by using Eclipse. Although Eclipse provides a rich support for many

programming languages but its performance is influenced by number of listeners. Also

adding a new language support is not simple and fast.

IDEs such as NetBeans allow defining a new language and their API is powerful but

still involves 100 classes. In order to have Build/Run/Debug, we have to integrate the

compiler into NetBeans platform. Also it does not provide any assistance for refactoring

and semantic-based code completion or find usage.

3.4 Erasmus Language

As software development practices evolved, many interesting and crucial problems have

been solved. These successes however created new challenges in computation. To resolve

these new issues, various languages and techniques have been proposed, implemented and

utilized. One of them was transition from procedural to object-oriented programming which

29

helped in implementation of new powerful software applications. The drawback was the

complexity involved as a result of a change in their functionality or environment. As an ex-

ample we can mention the difficulty involved in refactoring or software enhancement. Later

with advancement in manufacturing microprocessors with multiple cores, there is now a

need to write software to exploit hardware parallelism [34,35]. But concurrent program-

ming is not easy because there is no suitable abstraction for expressing and controlling

concurrency [36,37,38]. The process-oriented programming introduces a new approach to

concurrent programming. The benefits of process-oriented programming are as follows [44]:

• Processes are more general to use.

• Processes are loosely coupled and have more autonomy as compared to objects since

they only have effect on one another only on rare and brief communication.

• Processes can unlike object control over the way in which its methods are called

because a process owns its thread of control and can choose when to communicate or

not to communicate.

• In case when a Process operate only on its private data, it will be completely inde-

pendent.

Hoare is the first for proposing communication sequential processes as a method of struct-

ing programs [39,40,41,42], The next process-oriented languages are Joyce, Erlang and

Occam-7r. Erasmus is the latest language based on communicating processes and concur-

rency in Erasmus is based on communicating processes. To get familiar with Erasmus, It

is important to mention some definitions in Erasmus language. The basic building blocks

of an Erasmus program are cells, closures and protocols. Closure is an autonomous process

with its own state and instructions. Each closure may have parameters and communicate

over synchronous channels satisfying some well-defined protocols [6]. A port serves as an

interface for a closure to communicate with another closure. A cell is a collection of one or

30

< I

p2

c .
r ,

Figure 14: A typical program in Erasmus language

more closures. Protocols define constraints on messages that can be transferred with any

port that is associated with the protocol. Cells and processes can be created dynamically

[6]. Erasmus cells, processes and ports can be transmitted from one process to another

and may be sent over a network. A program is a sequence of definitions followed by the

instantiation of a cell. A visual presentation of a typical Erasmus program might look like

as shown in figure 14.

In this example the outer cell, CI, corresponds to the "main program", it consists of two

nested cells, C2 and C4. Processes PI and P2 share a single thread of control and both

have access to variable V. Cell C2 has a third process, P3 but, since P3 is nested inside

cell C3, it has its own thread and cannot access V. The processes communicate using the

channels cl, c2, and c3. With respect to channel cl, process PI is a client (indicated

by "-") and P2 is a server (indicated by "+"). Process P3 acts as a client with respect

to c2 and acts as a server with respect to c3 [5]. The specialty of Erasmus lies in the

distributed programming. Transferring parts of programs, whole programs, parameters,

cells, closures over synchronous channels satisfying some well-defined protocols would not

need any recompiling, redesigning, but instead only its ports needed to be connected in its

new environment.

31

To summarize, we can mention the main differences between Erasmus and object-oriented

languages are as follows [44]:

• Coupling: In object oriented program, when an object is moved to another class, it

will drag an unpredictable number of other objects along with it. But in Erasmus, its

ports needed to be connected in its new environment.

• Protocols: By using protocols in Erasmus, we can specify asymmetries for example a

client might need only a subset of services offered by server.

• Small Components: In object oriented programming small method are encouraged but

not small classes, but Erasmus processes encourage small and reusable components.

• Localized Threads: In concurrent object-oriented programming when an object is

active in multiple threads, it will be difficult to handle. But in Erasmus, first of all

a thread is restricted to a single cell, therefore it avoids race conditions. Secondly

control flow never crosses a cell boundary; therefore it has more autonomy and full

control.

• Abstraction level: Erasmus programs can be easily transformed to object oriented

language but not vice versa [6].

• Message passing: Erasmus processes exchange data by passing messages to one an-

other. It loosens coupling, tightens encapsulation, provides flexible interfaces, and

provides the potential for increase security [6].

The complete Grammar and syntax of Erasmus language is included in Appendix E.

32

Chapter 4

Methodology

Convenience of Integrated Development Environments (IDEs) is virtually unquestioned,

but they are very large projects and typically require several man-years to create them.

Until very recently, IDEs were products of large corporation such as IBM, SUN, Microsoft,

etc. In this chapter we present the methodology used in developing IDEs.

4.1 Developing an IDE

For creating an IDE for a new language, the following steps are needed [47,31]:

• Creating an Editor,

• Registering a type extension,

• Building a Model Builder,

• Building Parsing Error Information,

• Managed Build System Integration (MBS), and

• Toolkit Integration.

33

4.1.1 Creating an Editor

The first step in integrating a new language is building an editor for the new language in

which you can type your program [47].

4.1.2 Registering a Type Extension

The second step is to register a filename extension. So that it can be identified what file

corresponds to te source code of supported language [47].

4.1.3 Building a Model Builder

The third step consists of construction of a parser and structural information for the new

language. Model Builder will construct an Abstract Syntax Tree (AST) and can be built

on a tree view [47].

4.1.4 Building Parsing Error Information

The fourth step consists of building parsing error information which shows the console

view and red markers appearing in the editor. Basic information are filename, line number,

error description and use them to populate problem view. Output of error messages of

compiler will appear in the problem view with corresponding red markers appearing in the

editor. So the parsing error information is created by scanning the output of the compilation

and extracting the filename, line number, and error description, and use this information

to populate the problem view [47].

4.1.5 Managed Build System Integration

Managed Build System (MBS) is not a necessary step but it is useful when users prefer

not to maintain their own make files; they would rather have a "makefile" be automatically

generated and automatically updated as source files are added to and removed from their

34

project. Therefore MBS is responsible for maintaining "makefiles" in these projects, track-

ing dependencies and updating "makefile" as project changes [47]. At this time We didn't

create MBS for Erasmus since we didn't want to handle make file automatically.

4.1.6 Toolkit Integration

Some IDEs have build-in toolkits to assist their users. Developers benefit from using them

in their development process. These tools, depending on the language needs, are different

[56].

Some IDEs have simplified the process of developing new IDEs. Eclipse has simplified

the creation of IDEs by creating a framework of common components i.e. a customizable

editor, source control, a debugger framework and project support even though creating a

full feature IDE remain a hard task. On the other hand NetBeans simplifies the process by

providing more freedom and more user-friendly environment.

4.2 Software Development Model

We have used waterfall lifecycle model of software development. We started with require-

ments analysis and produced System Requirements Document (SRS). Based on SRS, we

designed the system architecture and refined it into detailed designs which were the foun-

dation for the implementation phase; however, we frequently had to go back to the earlier

phases to address the changes that resulted from feedback in the later phase.

In the next chapter we will review the design of ELIDE in more details.

35

Chapter 5

Design

In previous chapter we defined our methodology. In this chapter, we describe some of the

key features and requirements that we have included in design of ELIDE. These features

provide a basis for our design that will be explained in next sections. Our vision for ELIDE

is to provide a teaching and research platform for Erasmus based programs. As mentioned

earlier, we have three ultimate goals for developing ELIDE, (1) to provide a lightweight

integrated environment for Erasmus developers, (2) to provide a platform to future Erasmus

compiler developments and (3) to manage quality properly at each stage of the software

lifecycle consisting internal quality, external quality and quality in use. To achieve the

first goal, ELIDE must have integrated high level tools to support the iterative nature of

program development including editing, checking, compiling and debugging. We integrated

into ELIDE these programming tools. To achieve the second goal, ELIDE must provide a

flexible and extendable framework so that other tools can be easily integrated in the future.

To achieve the third goal, it is necessary to define these perspectives, the specification

and evaluation of quality according to ISO/IEC 9126-1 [66]. In the following sections we

define our product quality according to standards. Next we represent the formulated ELIDE

features and requirements such as main use case diagram, state chart diagram, lass diagram

and package diagram and functional and non-functional requirements. And finally, as part

of software requirement specification, we provide a clear and precise description of the

User quality I ^ >
needs ' Quality in use

" ^ " " l ^ ^ ^ u s e and feedback ^
contribute to specifying indicates

i L
External
quality

requirement
<—- External

quality

validation

contribute to specifying

i
f

indicates

Internal
quality |

requirement
Internal
quality

verification

Figure 15: Quality in the software lifecycle (source: [66])

functional and non-functional Requirements according to ISO/IEC9126-1.

5.1 Product Quality

ISO/IEC 9126-1 defines goal of quality in the software lifecycle is to achieve the necessary

and sufficient quality to meet the real needs of users [66]. Figure 15 shows the relation

between User quality needs, External Quality Requirements, Internal Quality Requirements,

Internal quality, External Quality and Quality in Use to achieve quality in the software

lifecycle.

• "User quality needs can be specified as quality requirements by quality in use metrics,

by external metrics, and sometimes by internal metrics. These requirements specified

by metrics should be used as criteria when a product is validated and normally requires

an iterative approach with continual feedback from a user perspective" [66].

37

• "External Quality Requirements specify the required level of quality from the external

view. They include requirements derived from user quality needs, including quality in

use requirements. External quality requirements are used as the target for validation

at various stages of development. External quality requirements for all the quality

characteristics defined in this part of ISO/IEC 9126 should be stated in the quality

requirements specification using external metrics, should be transformed into internal

quality requirements, and should be used as criteria in evaluation of product" [66].

• "Internal Quality Requirements specify the level of required quality from the internal

view of the product including static and dynamic models, other documents and source

code. Internal quality requirements can be used as targets for validation at various

stages of development" [66].

• "Internal quality is the totality of characteristics of the software product from an

internal view. Internal quality is measured and evaluated against the internal qual-

ity requirements. Details of software product quality can be improved during code

implementation, reviewing and testing" [66].

• "External Quality is the totality of characteristics of the software product from an

external view. It is the quality when the software is executed, which is typically

measured and evaluated while testing in a simulated environment with simulated

data using external metrics. During testing, most faults should be discovered and

eliminated. However, some faults may still remain after testing. As it is difficult to

correct the software architecture or other fundamental design aspects of the software,

the fundamental design usually remains unchanged throughout testing" [66].

• "Quality in Use is the users view of the quality of the software product when it is used

in a specific environment and a specific context of use. It measures the extent to which

users can achieve their goals in a particular environment, rather than measuring the

properties of the software itself" [66].

38

5.1.1 Functional Requirements

In this section we define the Functional Requirements for actor programmer. Functional

requirements define the internal workings of the ELIDE in other words what ELIDE must

be able to do and they are included in the use case Diagram. These Functional requirements

are set by Erasmus language designer and programmers. They are categorized in 5 groups

of Editing facilities, Erasmus Syntax and Grammar facilities, Build facilities, Run facilities

and Documents facilities. The Editing facilities are gifted by platform used but the other

four facilities must be designed and implemented. We used the notion (FR.*) for identifying

the functional requirement number (*).

• Editing facilities

- FR.l Create New Project.

- FR.2 Open Existing Project.

- FR.3 Save Project.

- FR.4 Close Project.

- FR.5 Add New File to Project.

- FR.6 Add Existing File to Project.

- FR.7 Remove File From Project.

- FR.8 Open File

- FR.9 Close File

- FR.10 Enter Text

- FR.ll Edit Text

- FR.12 Paste Text

- FR.13 Undo Edit

- FR.14 Redo Edit

39

- FR.15 Copy Text

- FR.16 Select All

- FR.17 Find/Replace

Erasmus Syntax and Grammar facilities

- FR.18 Check Erasmus Syntax and Grammar

Build facilities

- FR.19 Build

Run facilities

- FR.20 Run

Document handling facilities

- FR.21 View Graphical Representation

- FR.22 View XML file

- FR.23 View Tree view

- FR.24 View Error

- FR.25 View Coding tip

- FR.26 Perform Code folding

- FR.27 Perform Code unfolding

- FR.28 Choose Code completion

- FR.29 Open Help

- FR.30 Close Help

- FR.31 Indent

- FR.32 View Annotation

- FR.33 Jump to certain point of program

40

5.1.2 Non-Functional Requirements

In this section we define the Non-Functional Requirements for actor programmer. Non-

functional requirements specify something about the system itself, and how well it performs

its functions. In other words they specify criteria that can be used to judge the operation of

ELIDE. These functional requirements are listed in the order according to ISO/IEC 9126-4

[69]. The user need weights are set either by Erasmus language designer and programmers

or have been adopted by comparing to other IDEs. The weights are expressed in the

High/Medium/Low manner or using the ordinal type scale in the range 1-9. Therefore we

can conclude low is between 1 and 3, medium is between 4 and 6 and high is between 7 and

9. We used the notion (NFR.*) for identifying the non functional requirement number (*).

• NFR.l Functionality: ISO/IEC 9126-1 defines functionality as "the capability of the

software product to provide functions which meet stated and implied needs when the

software is used under specified conditions." [66]. ELIDE has to encompass the entire

process of syntax checking, syntax coloring, Code folding, Code completion, Brace

matching, Coding tips, Indentation, Annotations, parsing, compiling and executing

of Erasmus programs. ELIDE should support the Erasmus language and its compiler.

The user needs weight was set as high.

• NFR.2 Reliability: ISO/IEC 9126-1 defines reliability as "the capability of the soft-

ware product to maintain a specified level of performance when used under specified

conditions." [66]. The Architecture and Language Definition Files ensure that ELIDE

always uses the Erasmus compiler to interpret and execute the Erasmus instructions

in the intended manner. The user needs weight was set as medium.

• NFR.3 Usability: ISO/IEC 9126-1 defines usability as "The capability of the software

product to be understood, learned, used and attractive to the user, when used under

specified conditions." [66]. ELIDE will be familiar to anyone with experience in

developing program with IDEs. There is also a help system to improve usability for

41

less experienced users. The user needs weight was set as medium.

• NFR.4 Understandability: ISO/IEC 9126-1 defines understandability as "The capa-

bility of the software product to enable the user to understand whether the software

is suitable, and how it can be used for particular tasks and conditions of use." [66].

The user needs weight was set as medium.

• NFR.5 Learnability: SO/IEC 9126-1 defines learnability as "The capability of the

software product to enable the user to learn its application." [66]. The interface is

similar to the standard NetBeans IDE interfaces or what can be seen in other IDEs.

The user needs weight was set as low.

• NFR.6 Operability: SO/IEC 9126-1 defines operability as "The capability of the

software product to enable the user to operate and control it." [66].The user needs

weight was set as high.

• NFR.7 Efficiency: ISO/IEC 9126-1 defines efficiency as "The capability of the software

product to provide appropriate performance, relative to the amount of resources used,

under stated conditions." [66]. The User Needs weight was set as high.

• NFR.8 Maintainability: ISO/IEC 9126-1 defines maintainability as "The capability of

the software product to be modified. Modifications may include corrections, improve-

ments or adaptation of the software to changes in environment, and in requirements

and functional specifications." [66]. The user needs weight was set as medium.

• NFR.9 Portability: ISO/IEC 9126-1 defines portability as "The capability of the

software product to be transferred from one environment to another." [66]. ELIDE

is a Windows application programmed in Java and can be run on any computer that

runs Windows and NetBeans environment. The user needs weight was set as high.

• NFR.10 Adaptability: ISO/IEC 9126-1 defines adaptability as "The capability of the

software product to be adapted for different specified environments without applying

42

actions or means other than those provided for this purpose for the software consid-

ered." [66]. ELIDE should facilitate adaptation to faults and other runtime changes.

This would ensure that the IDE deals with runtime aspects as well. The user needs

weight was set as high.

• NFR.ll Installability: ISO/IEC 9126-1 defines level of installability as "The capability

of the software product to be installed in a specified environment." [66]. The user

needs weight was set as low.

• NFR.12 Performance: ISO/IEC 9126-1 defines level of performance as "Level of per-

formance is the degree to which the needs are satisfied, represented by a specific set

of values for the quality characteristics." [66]. The management and editing features

of ELIDE will be quick and responsive. Debugging relies on emulation, where the

performance is heavily based on the speed of the emulating machine. The user needs

weight was set as high.

• NFR.13 Scalability: ISO/IEC 9126-1 defines scalability as " The internal capacity

(e.g. screen fields, tables, transaction volumes, report formats, etc.)" [66]'. ELIDE

should cater to different versions or CVS. The user needs weight was set as medium.

• NFR.14 Legality: ELIDE is intended to be released as a free product for non-commercial

use. The user needs weight was set as low.

• NFR.15 Security: ISO/IEC 9126-1 defines security as "The capability of the software

product to protect information and data so that unauthorized persons or systems

cannot read or modify them and authorized persons or systems are not denied access

to them" [66]. Given that ELIDE deals with development and even deployment of

new functionality, there is also a need for a clear access control mechanism. This

would ensure that only authorized users are allowed to perform such operations. The

user needs weight was set as high.

43

In next section we will present the use case diagram for ELIDE to show its behavior as

it responds to the requests that originate from outside of ELIDE.

5.2 Use Case Diagram

The top level use case diagram for ELIDE is shown in figure 16, the main use cases are

as follows:

• Edit: edits one or more Erasmus Source code files.

• Check Erasmus Syntax: checks an Erasmus source code file for syntax and type errors.

• Compile (build): Compiles source code file with Erasmus compiler.

• Run: Executes a compiled Erasmus program.

• Document handling: shows and handles with AST, XML, Graphical Representation

and Tokens files of each compiled Erasmus program.

The primary actor is the user of ELIDE who is mainly an Erasmus programmer. The

secondary actors are Erasmus Compiler, NetBeans Platform and NetBeans Schliemann. In

the next section, we will describe the functional behavior of ELIDE and we will present it

in the State Chart Diagram.

5.3 State Chart Diagram

Figure 17 shows the top-level state chart diagram for ELIDE. It describes how the system

interacts with the user by showing the events that initiate transitions from on system state

to another. Essentially, the system allows the user to use all the functionalities of ELIDE

(i.e. editing, checking, compiling, document handling or run). In the next section the Class

Diagram is presented.

44

Figure 16: Use Case Diagram

45

\ !

Figure 17: Top level State Chart Diagram

5.4 Class Diagram

The class diagram identifies the relationships among all major entities within ELIDE, and

identifies their important methods and attributes. The class diagram provides a structural

view of ELIDE that can be complemented with dynamic views in use case diagram. Also

in the class diagram we try to describe the scope of ELIDE. In figure 18, the objects that

directly interact with the users is shown. Every feature is made available after a project is

opened or created. A project is a collection of files and settings that correspond with the

program being developed. A reference is a macro, i.e. a set of commands, or a file. A file

is an entity that can accept input from users and is used in the compilation and execution

of a program. Files contain different types of input, which correspond to features of the

Erasmus language such as labels, commands, and functions, as well as entities to support

debugging, such as breakpoints and information on the values of variables. The debugger

class uses the reference class to know which files exist in the current project, and it uses the

46

File

>̂Name
Q>Variables
^ B r e a k p o i n t s
V̂alues

^ F u n c t i o n s
^ C o m m a n d s

0..n

Projec t

^ R e f e r e n c e s
•̂Mapping
•OpenO
•C loseO
^ChangeMappingO
^AddReferencesO
^RemoveReferencesO

D~n
y 1

Mapping

^>MappingDefinit ion
feName

V

0..n

1
LanguageDefinitions

^Va r i ab leGrammar
§t>CodeGrammar
>̂Nanne

Compiler

^>LanguageDefinit ion
~ ame

0..n

1

Debugger
^>ProgramCounter
^ C y c l e C o u n t e r
!%>CallTalk
%>VariableValues

•startO
•stopO
•PauseQ

Figure 18: Class Diagram

47

Figure 19: Package Diagram

file class to parse the code and creates and runs the program in debug mode. The mapping

class defines the target processor for the project. The language definition class defines what

each instruction for that specific Erasmus language does and is used to tell the debugger

how to handle each command. In next section, we represent the package diagram.

5.5 Package Diagram

The ELIDE package diagram is shown in figure 19. The ELIDE consists of five major

subsystems.

• File handling subsystem: browses files and directories and keeps track of previously

opened files in ELIDE.

• Syntax and Grammar Checker subsystem: provides Erasmus source code editor with

syntax coloring, Code folding, Code completion, Brace matching, Coding tips, Inden-

tation and Annotations. The editor is also used to locate and to view source code

lines corresponding to the error messages.

48

• Tools subsystem: is the interface that is used to invoke compiler.

• Output subsystem: displays both console based outputs e.g. error messages produced

by compiler and GUI-based outputs.

• ELIDE GUI Controller subsystem: manages GUI views of abstract syntax tree (AST)

and XML files.

The most important design goal for ELIDE was to make the design flexible and extensible

so that new ELIDE tools can be easily integrated in the future. We tried to achieve this

goal by identifying and analyzing variable parts of the system and separating them through

well defined interfaces. In the next chapter we explain the Implementation.

49

Chapter 6

Implementation

In this chapter we will explain the way we implemented ELIDE and we also mention

lessons we learned by fulfilling this project.

6.1 Platform

Before starting to code Erasmus IDE, we noticed features such as project creation, file

creation, editing, build/error detection, analyze, online help, search and version control are

available in some of current IDEs. In order to use the most of available technology, we

did a research on available platforms: Eclipse, NetBeans and other IDEs like DLTK and

Aptana. Eclipse and NetBeans were our best choices because not only they would provide

the above mentioned basic features, but also they are extendable. The rest of features can

be added to them as plug-ins. The plug-in development environment helps us to develop and

add those extra as plug-in later. We can also use Eclipse and/or NetBeans as integration

tool to integrate those components and to replace those components with Eclipse and/or

NetBeans native components later. If we use the Eclipse and/or NetBeans suggested API

for making Erasmus plug-in, then its upgrade will be easy. Therefore we will keep up with

new innovations.

We first developed ELIDE in Eclipse platform as is mentioned in appendix A. We created

50

a plug-in to have a powerful editor. Then we used Antlr plug-in in order to be able to have

syntax checking. Unfortunately the Antlr plug-in is designed such that it can parse one

sentence at a time and we could not use it inside the editor to parser the whole file in one

shot. Since these two plug-in acted separately we could not benefit from Antlr inside the

editor, also for compiler integration, the process of creating a user interface was quite time

consuming. At this stage we tried to find alternatives and NetBeans was chosen as our

second choice.

NetBeans is open source software, which enables developers to write their own plug-in

modules to add new toolset features. NetBeans is an IDE framework using a common set of

APIs to connect code editors, compilers, debuggers, and other NetBeans-compatible tools.

Although optimized for Java, NetBeans can work with APIs that hook into other languages.

This Java-based framework is made up of two components: the NetBeans platform, a run-

time library that provides the basic IDE elements such as an application's data presentation,

configuration, and user interface; and the IDE itself, which provides controls, such as editing

and version control, for the platform's functionality [24]. In particular, NetBeans uses the

Abstract Window Toolkit, a widget set that Sun built to work with Java [24]. AWT is a

set of base-level APIs that functions between the Java code and the graphical subsystem

and lets developers create and manage how application elements (including GUI windows,

toolbars, and buttons) will look and work[24]. AWT provides only basic graphics. For more

advanced graphics, including colors and the way an application's appearance will change in

reaction to user input, we need the Swing toolkit, a UI component library that functions

on top of AWT [24],

As is mentioned in the Netbeans website, it is built like LEGO type as shown in the

figure 20. The Modules ELIDE GUI Controller, ELIDE tools, ELIDE Syntax, Grammar

Checker and ELIDE output were what we wanted to built on top of other LEGO pieces.

In this way we can take advantage of years of experience of other build-in modules of

NetBeans. We have implemented ELIDE GUI Controller, ELIDE tools, ELIDE Syntax,

51

E
f- ELIDE Output ELIDE GUI Comtajlfer ELIDE Syntax /Grammar ELIDE Tools
I Checker
D

e
(. Ant Support Java Debugger Schleimann

B
e

Projects Java Language Debugger XML

n
s Text Support Explorer Data System

P
1 Windows, Dialogs, Actions Nodes File System
a
t
f Org.openide.util

0
r

Figure 20: ELIDE Architecture using NetBeans

Grammar Checker and ELIDE output components of figure 19 and used File system of

Netbeans mentioned earlier in chapter 5. We used Schliemann framework of NetBeans

and on top of it we build the complete Editor with syntax coloring, Code folding, Code

completion, Brace matching, Coding tips, Indentation and Annotations. Then we added our

Compiler integration interface with extra tools of XML file related to mapping and graphical

configuration presentation with built-in compile/debug/run ability. Using NetBeans has

several benefits and drawbacks. It will be easy for user to switch between existing languages

supported by NetBeans and new Erasmus language. There is no need to produce the

Erasmus compiler in Java. The ELIDE will be able to use existing compiler which is

working properly or future versions of the compiler. Moreover by using NetBeans, we

avoided reinventing wheels and we bind the ELIDE to what we already have in NetBeans

and we just concentrated to new functionalities. As mentioned earlier, the only drawback

is that the ELIDE would be host application dependent.

52

6.2 User Interface

We have designed two User Interfaces, one is used for tool support Compile/Run/Graphical

configuration and the other User Interface is used for Editor.

6.2.1 User Interface for Toolkit

We started the coding stage by creating a user interface with enough buttons for function

keys and with menus for compile, build, test, and run any Erasmus file with current compiler.

The way the Erasmus IDE works, is to type an Erasmus program in a file with "era"

extension, then this file is compiled with the current version of Erasmus compiler. After

syntax and semantic checking is completed, four different files will be generated. The first

file is the executable file, the second is an equivalent version of program in C++, the third

file is the log file which contains the AST file and Erasmus version of program and finally the

fourth is a file with extension "evm" which is the machine code. If there is any compiling

or execution error, then appropriate error messages will be shown on Erasmus IDE console

view screen otherwise the result of execution will be displayed. The AST in log file will

be used for ELIDE Diagram Support. Figure 21 demonstrates the User Interface used for

editing and executing of any Erasmus program. On the left is the user interface of ELIDE,

on the right is same thing but in command-line mode. The right screen (output in commend-

line) is not part of IDE. It is just used for comparison of IDE execution and Command-line

execution of the same program. The user interface screen consists of 5 views. These view

are project view, navigator view, source code, output and toolkit user interface. The next

step was to design the User interface. The combination of MDI and tabbed window with

IDE-style was the best choice. The next step in problem design was to decide how this new

IDE application should help user to navigate between the windows. In Eclipse platform, we

could use Eclipse IDE as base platform to add Erasmus language as a new language. But

in Net Beans we had to create our own user interface. The user interface for toolkit looks

like as in figure 22.

53

View Navigate Source ftefector Bu8d Run CVS Tods Window Help

Er - il < i>
r? Jav a Application 1
E; r^J Source Packages

£ »B (avaappficattonl
'*•• j i j Main.java

Navigator • {Button lActtorPerformed

Members View
^ NewJFrameO

initComoonencsu
JButtoni AcaonPerforma^A«ion£ve« ayt}

Fters: & ^ 1

j Output • javaAppUcatloni'

[2-Navigator View] I j

H| NewJfrares.jsva x j

BuffecedReadet atdlnput = nsn Bo BuffecedReadet atdlnput = nsn Bo

3-
XnputStreanReaiisr (p. ge

Source BuEteredReadet stdEccoc <• new Bu

Code
InputStreonfteader (p.ge

Str ing s = n u l l ;

! < i 1

System.ouc.println("Hece is the

166:10"";[iN3[["

' 0 . 5

< 0.6
• 0 . 7

' 0 .6
> 0 . 9

» 2.2
• 2 . 3

> che standard c

: = 9.9
C = 9 . 6 0 1

T « 9 . 7 0 2 9 9

: " 9 . 6 0 5 9 6

: • 9 . S 0 9 9

(= 9 . 4 1 4 8

C « 9 . 3 2 0 6 5

(» 9 . 2 2 7 4 5

> 9 . 1 3 5 1 7

(S 9 . 0 4 3 6 2

C « 8 . 9 5 3 3 6

(» 8 . 8 6 3 8 S

{ = 6 . 7 7 S 2 1

T = 6 . 6 8 7 4 6

(= 6 . 6 0 0 5 6

(° 6 . 5 1 4 5 8

(° 6 . 4 2 9 4 3

(> 6 . 3 4 5 1 4

• 6 . 2 6 1 6 9

C = 8 . 1 7 9 0 7

< = 8 . 0 9 7 2 8

< • 8 . 0 1 6 3 1

Output in a iDE] 5- Outout in 1

[&- Tool kit User Interface

-iDfxl
Graphical Representation

Filename: ; testoflel

lG:\er-muy\JavaAppl i Cci t i onJAf :i 1 es> rnec ! es t1 oos:: IMEC (2007 July 11 14:13:49).
iEx trtic t ing SOLIt ce from 'testloopl.tex' to 'tc Inompi in lamp.e'. jUone!
|G : \ersmus\JLwanpplicationl\fiIes> tes tode l T = 0 1 X - 10 r = e 9 X 9 9 T = 0 3 X 9 801 I = 0 4 X 9 70299 T = 0 5 X 9 60596 T = 0 6 X 9 5099 T = 0 7 X = 9 4148 1 = 0 8 X 9 32065 T = 0 9 X 9 22745 T -1 X = 9 t; 517 i - 1 1 X 9 04382 f - 1 2 X 8 95338 1 3 X 8 86385 T = 1 4 X 8 77521 T -1 5 X 8 68746 T = 1 6 X 8 60058 1 1 7 X - 8 51458 1 1 8 X 8 42943 1 = 1 9 X 8 34514 i = 2 X = 8 26169 I = 2 1. X 8 17907 T = 2 2 X 8 09728 T = 2 3 X --- 8 01631 T = 2 4 X 7 93614 T 2 5 X 7 85678 I = 2 6 X = 7 77821 T = 2 7 X 7 70043 1 = 2 8 X 7 62343 T = 2 9 X = 7 54719 1 = 3 X - 7 47172 T -3 1 X 7 397 1 = 3 2 X - 1 32303
V = 3 3 X 7 2498
111 3 4 X 7 17731 1 ô ro

Figure 21: User interface in ELIDE

- i n l x j

Tree View

Filename: ftestodei

Test

Build

Ran

Clear Save cancel Help

Figure 22: User Interface Design for tools

54

XML Button will show the mapping file which is used in compilation and is in XML

format. The Graphical Representation Button will show the graphical view of Erasmus

programs or projects in format of figure 14.

Tree View Button will show the tree view of the Erasmus program files and projects, so

that we can open or save them.

Test Button will help in testing the Erasmus program files and defines breakpoints which

will be used for debugging. In Erasmus test is an integral part of the code and like assertion

and comments, makes them consistent with the codes [33]. Build button will only compile

the Erasmus program files and projects.

The Run button will compile and execute the Erasmus program files and projects.

The Help Button will provide interactive help for Erasmus language syntax and other re-

lated topics.

The Cancel Button will exit from ELIDE.

The Save Button will save the exe files.

The Clear Button will erase the file name.

6.2.2 User Interface for Editor

Our first version of ELIDE produced in August 2008 had been implemented by using

NetBeans platform and it supported only compiler integration, View and change the Eras-

mus programs and tool interface subsystem. Later in December 2008, the second version of

ELIDE has been implemented by using Schliemann in NetBeans. In the second version of

ELIDE, we added the following feature based on Erasmus syntax and grammar:

• Syntax coloring: to distinguish tokens and possibly non-terminals of the Erasmus

language by a color in editor.

• Code folding: to wrap and unwrap pieces of code (e.g. block of statement in a loop)

in editor.

55

.^Erasmus Language ;Suppor,l .^fletOeanvipt^.l;,,';:.'.., r

File Edit View Navigate Source Redactor BuSd Run ProfEa Versicring Tools Window Help

tltjB® OH-t- y ^ t> Ĥ-
P " * " .Jgjmrffeiw . |l) toww. nt. .)——̂Qrammar ami Syntax |

I (Source Code me")
proe ° (|

modulus: In teger ; = 1;
< loop

s tdou t s = " \nHodu lu

(loop
y: In teger 0

s tdou t s• "

:• modulus + " \ n " ,

t (x * y * modulus);

i t i l y >• modulu;

e l l ° (pcoo () ;) ;
e l l () ;

[File View]

f Navigator View]

79:5 [OVR|
Task Ust

Figure 23: User Interface Design for Editor

• Navigation: to browse logical elements of the Erasmus language in Navigator window.

• Code completion: to help user to complete a piece of code based on the typed prefix.

• Brace matching: for a bracket located under the cursor, to highlight the pairwise

bracket.

• Coding tips: to display coding tips on elements of the Erasmus language.

• Indentation: to properly indent documents based on the Erasmus language structure

• Annotations: to annotate specific lines of documents (e.g. error lines)

The implementation of these features is based on the output of lexical and syntactic

analysis.

56

Refeaor Buk) Run Pr Tods Window Hefc<

1

"GS"

i cm

cm
e.U£ (x=y)

HfiS

6:l_ | INS]

•iSJlasklM

-t jr,, tjo-„c

Figure 24: Erasmus program with Code folding

A sample screen shot of ELIDE editor User Interface is shown in figure 23. The user

interface screen consists of 6 views. These view are project view, navigator view, source

code, AST view, token view and file view. In order to show different Erasmus program

files opened by user from File view, the Tabbed Document Interface is used. In this view

the user has opened 3 files of "newfile.era", "newfilel.era" and grammar file of Erasmus

language. One of our challenges was to integrate grammar into ELIDE. Having done that,

later we added one feature at a time. For example Code folding and Code unfolding was

added to ELIDE and is shown in figure 24 and 25.

Later we added the Coding tips, Annotations and Jump to certain point of program

which is shown in figure 26. Also Coding tips and Comment are shown in figure 27. Also

screenshots of before and after indentation source code of Erasmus program are shown in

figures 28 and 29.

57

9 Erasmus language Supfrort Beans .IDE 6.1
File Ecfit View Navjijate Source Redactor &id Run ProfJe Veracring Tods Window Hefe

tltiO® ' 13 % v. -. t 'v E> ti> - ••
; jo! nevrffiel.era* * ; rwjfte.era * • Jgj language. ni» * . '•013 i

whi le (C"d)

(fc-1)
t h r e e : = f our

e l i t (x-y) then

) e lse

Task LM

f<Ir-> » m;wfift'5.«f
• f i -licuiii i.aiiti«i«()c Suppnct - ;y..t:

— • — n t t * - " " T n * T " ' " - - • " f f * ' •»• -J *

Figure 25: Erasmus program with Code unfolding

6.3 Software Development Model

As it was mentioned earlier, we followed waterfall lifecycle model of software development.

We started with requirement analysis and produced System Requirements Document (SRS).

Based on SRS, we designed the system architecture and refined it into detailed designs which

were the foundation for the implementation phase; however, we frequently had to go back

to the earlier phases to address the changes that resulted from feedback in the later phase.

We first developed ELIDE in Eclipse platform details of which is mentioned in appendix

A. Then we developed a plug-in as an editor and then we had to add Antlr plug-in for

parsing. Unfortunately it provided us with the opportunity to parse only one statement

at a time which was not compatible with most of our FRs and some of NFRs. Also for

compiler integration the process of building the user interface was quite time consuming. At

this stage we tried to find alternatives and NetBeans was chosen as our second choice. We

used Schliemann framework of NetBeans and on top of it we build the complete editor with

58

Fife Edfc View Navigate Source Ref actor BuSd Run ProfSe Verstortrrg Tools Window Help

6 0 M r.' t i l
jej newfiel.er newfBe.era » , 'oj tonguaee.nbs

Mh-ile (t w o) { ^ ^
v a r t h r e e tip }
v a r u n u s e d —
i f (t w o »

a \ u

B w h i l e (a = b) 0
!.';l j r h i l c (c - d)
B i • i

6:13 J INS]

jrf^Task List

^ Jurrqi to certain point ri program ^

Support

traumas Languaa« Support.
nfWill^t .»-frt • NiiVMjrttW

Figure 26: Erasmus program with Coding tip, Annotations and Jump to certain point of
program

59

• Erasmus Language Support .-. NetSeans IDE ,6.1

We Edit View Navi^te Source Refattor Bufld Run Profile Ver storing Tools Window Help

fj £3 % Q ' tf to l> %S> • • . *
^ newfile.era * io] rewf8el.e»a* x oi language.nbs *

loop
i n : I n t e g e r p . a a k ;

x : I n t e g e r m * I n ;
do more a o r n

3 i I n t e g e r ; 0 0 ;
< loop o h l i e j < 1000000

p .anaoer x ;

- < p sp |
I n t e g e r s° 1;

l oop
X3T I n t e g e r ••'

s t d o u t := t e x t x -
do more oocX

j : I n t e g e r s® 0 ;

. S@!t

• t e x t xs + "Nn" ;

<
loop w h i l e j < 1000000

+ i ,• j f Ryabethw Stfanee

ISOOl then e x i t end

s q u a r e c e l l 0 I p + : sp I squa re (p)) ;
c l i e n t c e l 1 - (p sp I c l i e n t (p)
c a l l = (p : : s p ; c 1 l e n t e e 1 1 (p) ; s q u a r e c e l l (p)) ;
cellt):

- (C c d b i g tip ^

[C o m m e n t " ^ M'wtito 1 .«'fd N,JWi!3<it(>»

121:5 fOVRj

i^TaskUst

Figure 27: Erasmus program with Coding tip and Comments

File ESt View Navigate Soiree ReFactor Build Run ProHa Versioning Tools WMow

till!*® ..a*
si-newfle.era x : <<?{ newflel.ere* * language .nbs «

I loop
stdout i " "\nHodi
x : Integer 0;

y: Integer :» 0;

t (x • F * modulus

I v >• modulus

eel 1 • (proo {) i) <

79 :S ;OVR[
»<$TaskLiM

* a'. *

J

Figure 28: Erasmus program with no indentation

60

I inguagft Support - NetHcans l!)f £.1
File &£ View Navtsete Sorce Ref act or Build Run Profte Versbrfrig Tods Whdow Hefc - " M'.- t'fc v

newfle.era a o] nswfte s.era • * : c] language.nto *

modulus: Integer 1;

stdout :» "\nHodulua " * i

y: Integer !• 0;

V +- 1;
u n t i l y >° Dodulu!

stdout :» " \ n

: modulus * " \ n " ;

UmIjJ

•QEIfi

Figure 29: Erasmus program with indentation

Syntax coloring, Code folding, Code completion, Brace matching, Coding tips, Indentation

and Annotations. Then we added our Compiler integration on toolkit user interface with

extra tools of mapping file used by compiler and graphical configuration presentation with

built-in compile/debug/run ability.

61

Chapter 7

Case Study

With respect to the cycle of define, design, code, test, deploy and manage cycle, we wrote

some Erasmus programs and run them in both command-line and then we run them in both

platforms of ELIDE in Eclipse and NetBeans and these sample programs were compiled and

executed successfully. In this chapter we illustrate one of these programs as a case study to

show ELIDE's capability for a multiprocessing or distributed system programming.

7.1 A Sample Client Server Program

As it was mentioned earlier, Erasmus cells can be transmitted from one process to an-

other and may be sent over a network. Compilation of this program requires a separate

configuation file that specifies details about mapping of cells onto the participating preces-

sors. The mapping is saved in a file with XML format. The XML file contains properties

about processes in a pair of <mapping> and </mapping> tags. The Mapping consists of :

• a pair of <processor> and </processor> tags called record. It contains the next two

parts:

• a pair of <port> and </port> tags consists of port number of its communication

agent called broker.

62

M
|<mappmg>
I <processor> a l pha .encs . conco rd ia . ca

<port> 5555 < / p o r t >
<ceTI> squarece l l </ce"l"l>

</processor>
<processor> l a t v i a . e n c s . c o n c o r d i a . c a

<port> 5 556 < / p o r t >
<cel"l> c l i e n t C e l l </ce1"l>

</processor>
</mappi ng> |

Figure 30: Mapping file in XML format

• a list of <cell> and </cell> tags.

The mentioned program and its mapping are shown in figure 31 and figure 30 respec-

tively. The configuration file shown above maps squareCell onto the processor identified by

"alpha.encs.concordia" and clientCell onto "latvia.encs.concordia". If program figure 31 is

compiled when no configuation file, it operates for stand alone systems. The squareCell and

clientCell may be mapped onto different processes as shown in the configuration figure 30.

In this program two cells clientCell and squareCell are connected to a channel called chan

through their local ports. The graphical configuration of this program is shown in the figure

32.

The ports use the protocol defined by sqport. The port that provides a service is a server

and has a prefix "+" before name of protocol associated with the port. The port that needs

a service is client port and is declared with "-". In Erasmus when a port has no sign it

creates a channel. Port p of square is server (it provides a square service) while client has

a client port (it needs a square service). When the mainCell is instantiated, clientCell and

squareCell are also instantiated. This causes a concurrent execution of processors in the

two cells. The cell clientCell sends a number (i.e. 10) to Square cell via its local port called

" port". The squareCell sends its reply (i.e. string containing 100, the square of 10) to the

63

I Erasmus Language Support - NetBeans lDE 6,1

Fie Eift View Navigate Source fief act or Build Run Profile Verstortng Tools WiraJow Help

a ^ B £> S " -
language, nbs * • newfttel .ere * ; ioj newfile.era *]

s q P r o t • [» (q u e r y : F l o a t ; " r e p l y : T e x t)] ;
s q u a r e ° < p : + s q P r o t I

q : F l o a t := p . q u e r y ;
p . r e p l y : » t e x t (q » q) ;
e n d > ;

s q u a c e C e l l • (p r o t : + s q P c o t |
s q u a r e (p r o t)) ;

c l i e n t = { p : - s q P r o t I
man : F l o a t . := 10;
p . q u e r y
s y s . o u t
s y s . o u t

1 num;
1 c e x c num + "'2 -
1 p . r e p l y ••• " \ n " ;) ;

c l l e n t C e l l • | p r o t : - s q P r o t |
c l i e n t (p r o t)) ;

m a l n C e l l • (c h a n : s q P r o t ;
c 1 l e n t C e l l (c h a n) ;
s q u a r e C e 1 1 (c h a n)) ;

m a l n C e l l () :

' 193:41 }i(e !
p^j Task Ust

• frrawitK !^iKJi.iof)(" Support

«'»fil<-,eiii Navigator

Figure 31: Client-Server program in Erasmus

client.

7.2 Compilation and Execution

By compiling the above program and mapping file, the compiler reads the XML content

of mapping file extracts the data and organizes the contents into a table. The compiler

generates a unique identification for each cell. This is eventually written to a file called

host.txt in an order determined by cell id; each line of the file contains a record about

a cell. If there is no entry for a cell in the configuration file, local host and portnumber

"0" is written for the cell. This indicates that any available processor may execute the

cell. Although the program solves a trivial function, it nevertheless shows how Erasmus

facilitate, distribution of programs to different architectures. In practice this approach may

help in less maintenance efforts when the software environment changes.

64

cainCe11

Figure 32: Graphical Configuration of the Client-Server program

7.3 Verification

We wanted to ensure that ELIDE fully satisfies all the expected requirements. We did

dynamic verification, by performing all possible tests and experimentation on ELIDE. These

tests verified the internal attributes. The types of tests performed are as follows:

• Unit test (a single function or class or group of classes)

• Module test (a single module)

• Integration test (more than one module)

• System test (the entire system)

First series of tests were performed in Eclipse, and then we imported all program test

files of Erasmus together with the grammar file into Eclipse. The grammar file contains

all grammar rules of Erasmus language. Then we used ELIDE to parse the grammar of

those Erasmus program. By typing any statements of Erasmus language, it will be checked

against the current grammar in ELIDE which does the syntax checking. If there is no

error, then we can run the compiler to run that program otherwise the ELIDE displays

error message. All test file were run successfully and the same results as in command-line

environment outputs. The screenshots of these samples are added to Appendix A.

The second series of tests were performed in Netbeans by using the Erasmus compiler.

The results of unit testing, module testing, integration testing and system testing confirmed

65

that ELIDE has satisfied all functional requirements. Functional requirements FR.l up to

FR.17 were related to editing facilities which were satisfied by NetBeans platform. Func-

tional requirements FR.l8 up to FR.20 were related to Erasmus compiler and were satisfied

by several system tests. Functional requirements FR.21 up to FR.30 were related to toolkit

and were satisfied by Module test, integration tests and system tests by both developers

and language designers. Also we performed an extra set of tests by importing all of existing

program files of Erasmus into ELIDE. After we compiled those programs, we executed them

and we get the same result as command-line execution. The procedure to perform those

tests was to save Erasmus program in text files with "era" extension. Then the file name is

entered in the User Interface of ELIDE in the box called file name, then we press the Build

button. This will cause the Erasmus compiler to compile it. If there is no compiling error,

the output of compiler is shown otherwise the error message will appear on the ELIDE.

If there is no compiling error, then we can press the Run button to see the output of the

program. If there is execution error, then the appropriate error message is shown. All test

file were run successfully and the same results as in command-line version were output.

Screenshots of Some of these tests are added to the Appendix B. The Erasmus development

team was satisfied with test results. As these tests measured purely in terms of the product

itself, separate from its behavior or in other words they measured internal attributes of

product.

The programs tested in this thesis may also vary with regard to their maturity level.

For example, some programs may have gone through many iterations of changes whereas

others may be relatively immature.

7.4 Validation

Validation of ELIDE provides a high degree of assurance that it accomplishes its intended

non-functional requirements and can only be measured with respect to how the product

relates to its environment. This process needs acceptance of end users (existing Erasmus

66

programmers and other product stakeholders (i.e. designers of Erasmus language). Also we

can show the following non-functional requirements are satisfied:

• NFR.l is satisfied since ELIDE can successfully perform Syntax checking, Syntax

coloring, Code folding, Code completion, Brace matching, Coding tips, Indentation,

Annotations, parsing, compiling and executing of Erasmus programs. Also ELIDE

supports the Erasmus language and its compiler.

• NFR.2 is satisfied since the NetBeans and ELIDE have capacity for screen fields,

tables, transaction volumes, report formats, etc.

• NFR.3 is satisfied since NetBeans and ELIDE have capability for different specified

environments without applying actions or means other than those provided for this

purpose.

• NFR.4 is satisfied since ELIDE is understood, learned, used and is attractive to the

user, when used under specified conditions. More details will be discussed in next

chapter.

• NFR.5 is satisfied since ELIDE enables the user to understand whether the software

is suitable, and how it can be used for particular tasks and conditions of use. More

details will be discussed in next chapter.

• NFR.6 is satisfied since ELIDE enables the user to learn its application. More details

will be discussed in next chapter.

• NFR.7 is satisfied since ELIDE enables the user to operate and control it.

• NFR.8 is satisfied since ELIDE maintains a specified level of performance when used

under specified conditions.

• NFR.9 is satisfied since ELIDE satisfies and represents the needs by a specific set of

values for the quality characteristics. The management and editing features of ELIDE

will be quick and responsive.

67

• NFR.10 is satisfied since ELIDE is transferred from one environment to another.

Moreover ELIDE is a Windows application programmed in Java and can be run on

any computer that runs Windows and NetBeans environment.

• NFR.ll is not completely satisfied since at the moment ELIDE can only be used in

the lab and later we will be able to download it over the internet.

• NFR.12 not completely satisfied since, although ELIDE is a free product, at the time

of writing this thesis, it can not be released as a free product for non-commercial use.

• NFR.13 is satisfied since ELIDE protects information and data so that unauthorized

persons or systems can not read or modify them and authorized persons or systems

are not denied access to them.

• NFR.14 is satisfied since ELIDE provides appropriate performance, relative to the

amount of resources used, under stated conditions.

• NFR.15 is satisfied since ELIDE can be modified. It is designed such that modi-

fications like corrections, improvements or adaptation of the software to changes in

environment, and in requirements and functional specifications as well as new features

and tools can be added.

To measure its external attributes, we also performed usability study. As was mentioned

earlier, the detail of this survey is discussed in more detail in the next chapter.

68

Chapter 8

Evaluation

With respect to the cycle of define, design, code, test, deploy and manage cycle, we

deployed ELIDE in our lab. Usability of ELIDE was another very critical aspect of this

software system. Since we knew even when all expected functions are realized correctly,

the product's success still is not guaranteed. Stan and Stahl point out that all systems,

independent of what hard or software and how clever they are built, involve humans [53,54],

This means that there is a need for user interface that eases the use of the system in

question. Non-usable user interfaces might cause users to turn away from product [53,54].

As a quality attribute, usability gives the possibility to differentiate between products. Stahl

and Sommerville define similar attributes for the usability of a software system, which at

the same time give a hint for potential measurements [54,55,62]:

• Learning time or learnability: The Learning time or learnability refers to the time

that a user needs to reach a level of ability to use the system productively.

• Task Performance Time: The Task Performance Time defines the time the user needs

to perform a specific task with the software system.

• Error Rates: The Error Rates show how often a user generates errors. A high error

rate indicates a difficult to use software.

6 9

• Robustness: The Robustness indicates how tolerant a system behaves, in case the user

makes an error.

• Error Recovery Time or Recover ability: The Error Recovery Time or Recoverability

defines how good a system is able to deal with errors made by users.

• Adaptability The Adaptability is a measure of whether it is possible to adapt the

system to different ways of working.

In most literature we studied (Stan, Stahl, Sommerville) the authors state that only the

true users can determine whether a system is usable or not. ELIDE has been demonstrated

to 10 graduate students. ELIDE was used to write small Erasmus program and run them

in ELIDE. We conducted a usability study, some of the findings of which are discussed in

the next section. Sample Questioner is shown in Appendix D.

8.1 Preliminary Survey Results

As was mentioned earlier, we conducted a preliminary usability survey of ELIDE involving

ten Graduate students. Our approach was to ask the participants about their familiarity

with Eclipse, NetBeans and Erasmus. Then we asked for feedback about the tool and its

applicability to programming. Nine out of ten people that we surveyed were familiar with

at least one of them and thought that it is useful. Out of these nine, two were experts in

Eclipse and NetBeans, three moderately familiar, and two novices. The other two didn't

know anything about them. However, none of the participants were aware of any such tool

for Erasmus language. The results of usability servey are shown in table 5 and table 6.

Some of the findings which extracted from the survey are as follows. All people felt that

the tool is more user friendly. Nine out of ten people thought that the output of the tool is

useful. Finally, all of the participants thought that developers would find this tool useful.

70

Title Population of users
familiarity with Eclipse 90%
and/or NetBeans
and/or Erasmus
non-familiarity with Eclipse 10%
and NetBeans
and Erasmus
familiarity with ELIDE 0%

Table 5: Result of Usability Survey -Population of users

Title Experty of users
Expert in Eclipse and/or NetBeans
and with knowledge about Erasmus

20%

Moderately familiar with Eclipse and/or
NetBeans and with knowledge about Erasmus

30%

Novices to Eclipse and/or NetBeans
and with knowledge about Erasmus

20%

No knowledge about Erasmus 20%
No knowledge about any of above 10%

Table 6: Result of Usability Study - Level of knowledge of users

In summary, the results were quite encouraging with respect to the group surveyed and

current capabilities of ELIDE and Erasmus. We consider them as initial feedback which

will be the base for future surveys.

8.2 Preliminary Survey Recommendations

We also got some useful suggestions regarding the enhancement that can be made to the

tool. Some of these are addition of browsing and searching in help and support for visual

(drag and drop) and automatic replacement of the output of the tool in a file. We plan to

work on some of these in future.

71

Chapter 9

Related Works

Several research papers have proposed approaches to implement IDEs in the literature.

These IDEs are created for different purposes. Some of them specifically relates to design

of IDE for languages, though others are more tool based. These new experiences mostly

are introduced by private institution and their design and methodology is hidden from

researcher. But there are a few research papers about adding application software as a plug-

ins in Eclipse for different purpose compared to ours. Of course there are some differences

between the types of plug-in they used and the domain in which they are used. Nevertheless

they provided a good starting point.

The first similar work is Mylar. It is a tool that focuses on the elements visible in IDE

views on the context of a programmer's task [1] [2]. Mylar is designed as a plug-in which will

function as a tool for Eclipse platform. The similarity was the way they created a plug-in

in Eclipse and the way they evaluated their final product. The difference is the fact that

Mylar is not a language. It is rather a tool for Eclipse.

The other related work is Synthy which is an IDE for end-to-end composition of Web

services [7]. This research came to our attention because it was related to IDE Design and

implementation, though the concept was completely different. The similarity was the way

they created plug-in in Eclipse. The difference is the fact that Synthy is not a language and

that it is rather a tool for web services.

72

The next related work is the design of IDE for PSF (Process Specification Formalism)

[3]. The similarity is the way they created plug-in in Eclipse and that it is a language. The

difference is the fact that it is rather a verification tool for process Specification Formalism

and the language is more mathematical.

The next interesting work is called JML4 which is a tool support proposal for an In-

tegrated Verification Environment (IVE) for Java Modeling Language [45,46]. This IDE

is built upon Eclipse's support for Java. It is enhanced with run time assertion checking

(RAC), Extended Static Checking (ESC) and full static program verification (FSPV).

The next work was about extending Eclipse CDT to support a gcc-based top language

(Eightbol). With the experiences gained, the same extensions have used to implement Pho-

tran version 3.6 a full featured IDE for FORTRAN language in Eclipse C/C++ development

tool [47].

Finally the Experience Report of Building an Eclipse-based IDE for Haskell was another

related work on developing an IDE for a Haskell language on Eclipse platform. In this paper

they have provided good comments about the lessons learned from the project [56].

73

Chapter 10

Conclusions and Future Works

In this thesis, we presented the design and development of an Integrated Development

Environment (IDE) for Erasmus language called ELIDE. The design of the IDE was based

on the functional and non-functional requirements of ELIDE based on views of developers

of Erasmus language. What we achieved was a complete IDE as we planned and what is left

for future is refactoring of codes, adding bookmarks, semantic checking of comments and

creating a visual modeling language for Erasmus. The visual modeling language can also be

used for other process-oriented languages. We can achieve forward and reverse engineering

by simply drawing the graphical representation of a program to get source code or by coding

and getting the Graphical representation of program. Also the breakpoint for debugging

needs more elaboration. ELIDE is designed in such a way that it is able to be extended and

any feature gaps can be filled by later plug-ins in both Eclipse and Netbeans versions. The

emphasis was to elaborate around the concept of a perspective that makes it easier to get the

job done, because the appropriate tools were close at hand. It will be more effective tool if

we use an easy navigation within source code by adding bookmarks. Also we can add strong

support for semantic checking of in-line documentation with the associated source to help the

users of Erasmus language in debugging and maintenance and documentation. We had some

difficulties in using plug-ins with Eclipse because each plug-in is written by separate group

for different versions of Eclipse and NetBeans. Therefore there were some inconsistencies at

the beginning. As our knowledge about Eclipse, NetBeans and plug-ins became deeper and

deeper, it became more interesting. At first we developed a version for the only used plug-in

(Antlr) in our design. But this plug-in was designed for a line of program at a time and it was

not very useful when coding large programs. Therefore we searched for other platforms for

providing us more capabilities. We restart the whole process in NetBeans and end up with

ELIDE. ELIDE is a strong environment for a complete programming support for Erasmus

language with built-in compile/debug/run ability. The most important features included

in ELIDE are Syntax coloring, Code folding, Code completion, Brace matching, Coding

tips, Indentation and Annotations. We managed to converted a batch oriented command-

line based interface to an interactive one and increased the productivity and efficiency of

Erasmus programmers. Our aim is to introduce our final product ELIDE and to save it

at Concordia's University Server so that it can easily be downloaded and installed on any

computers. Our product would be open source. This would encourage more application to

be implemented in ELIDE.

75

Glossary

Adobe Photoshop: Adobe Photoshop or simply Photoshop, is a graphics editor devel-

oped and published by Adobe Systems.

Adobe Acrobat: Adobe Acrobat was the first software to support Adobe Systems'

Portable Document Format. It is a family of software, some commercial and some free of

charge.

Aptana Studio: is an open source integrated development environment (IDE) for

building Ajax web applications.

AST: Abstract Syntax Tree is a special kind of tree that can have an arbitrary number

of subtrees(children) which are ASTs themselves. When we walk on the tree one can ma-

nipulate the order in which nodes are visited with all the expressiveness of the manipulation

language. The AST structure is defined in operator precedence Development stage.

Beta form: In computer programming, development stage terminology expresses how

the Software engineering of a piece of software has progressed and how much further devel-

opment it may require.

76

CDDL : Common Development and Distribution License (CDDL) is a free software li-

cense, produced by Sun Microsystems, based on the Mozilla Public License (MPL), version

1 . 1 .

DLTK: Dynamic Library Tool Kit is an IDE that has some features like the Project

Wizard, Code Editor, Code Navigation, Code Assist and Launching and Debugging. This

IDE has been used for TCL and Ruby languages.

Fork: In software engineering, a project fork happens when a developer takes a copy

of source code from one software package and starts to independently develop a new package.

FTP: File transfer protocol, is a file transfer protocol for exchanging and manipulating

files over any TCP-based computer network.

GIMP: The GNU Image Manipulation Program or just GIMP is a free software Raster

graphics editor.

GPL: The GNU General Public License (GNU GPL or simply GPL) refers to free soft-

ware license. A software license which grants recipients rights to modify and redistribute

the software which would otherwise be prohibited by copyright law. A free software license

grants, to the recipients, freedoms in the form of permissions to modify or distribute copy-

righted work.

HTTP: Hypertext Transfer Protocol is a communications protocol for the transfer of

information on the Internet. It is used for retrieving inter-linked text documents

IDE-style interface: IDE-style interface are those whose child windows reside under

77

a single parent window(usually with the exception of modal windows).

Macromedia Studio: Macromedia Studio is a suite of different programs designed for

web content creation and was designed and distributed by Macromedia.

Microsoft Excel: Microsoft Excel is a spreadsheet program written and distributed

by Microsoft for computers using the Microsoft Windows operating system and for Apple

Macintosh computers.

Microsoft Windows: Microsoft Windows is a family of operating systems by Mi-

crosoft. They can run on several types of platforms such as server , embedded devices and,

most typically, on personal computers.

Microsoft Word: Microsoft Word, or Microsoft Office Word, is Microsoft's flagship

word processor computer software.

MDI: Multiple Document Interface (MDI) are those whose windows reside under a

single parent window (usually with the exception of modal windows), as opposed to all

windows being separate from each other (single document interface).

Modal window: In User Interface design, a modal window is a child window, which

has to be closed before the user can return to the operating the parent application.

Multiple instances: Multiple instances of the program can be opened simultaneously

for editing multiple files. It applies both for SDI and MDI programs. Also applies for

program that has an user interface that looks like multiple instances of the same program

(such as some versions of Microsoft Word).

78

NotepadH—Notepad++ is a free source code editor which supports several program-

ming languages running under the Microsoft Windows environment.

Overlappable windows: each opened document gets its own fully movable window

inside the editor environment.

PSPad: PSPad editor is a freeware text editor and source editor for the Windows plat-

form. First released in 2001, this software is produced by the single developer Jan Fiala.

Single document window splitting: window can be split to simultaneously view

different areas of a file.

SSH: Secure Shell, is a network protocol that allows data to be exchanged using a secure

channel between two networked devices.

Tabbed document interface: In Graphical User Interface, Tabbed document inter-

face is the one that allows multiple panes of information to be contained within a single

master window, using tabs to navigate between them.

TextMate: TextMate is a general-purpose text editor for Mac OS X, which tries to

combine the power and flexibility of UNIX text editors such as Vim and Emacs with the

simplicity and elegance of a Macintosh program.

TCL: Tool Command Language is a scripting language created by John Ousterhout. It

is most commonly used for rapid prototyping,

79

UltraEdit: UltraEdit is a text editor for Microsoft Windows created by IDM Computer

Solutions. The editor contains tools for programmers, including macros, syntax highlight-

ing, code folding, file type conversions, project management, regular expressions.

Virtual desktop: Virtual desktop is a term used, usually within the WIMP paradigm,

to describe any of several possible ways in which a computer's metaphorical desktop envi-

ronment is modified, through the use of software.

Window splitting: splitting application window to show multiple documents (non-

overlapping windows).

WebDAV: Web-based Distributed Authoring and Versioning, (WebDAV), is a set of

extensions to the Hypertext Transfer Protocol (HTTP) which allows users to collaboratively

edit and manage files on remote World Wide Web servers.

80

Bibliography

[1] M. Kersten, Focusing Knowledge work with task content (Mylar IDE plug-in), PhD

Thesis, University of British Columbia, (January 1998).

[2] M. Kersten and G.C. Murphy, Mylar: a degree-of-interest model for IDEs Department

of Computer Science, University of British Columbia, Vancouver, BC, Canada (1998).

[3] B. Diertens, Software (Re-) Engineering with PSF III: an IDE for PSE, Programming

Research Group, Faculty of Science, University of Amsterdam.

[4] P. Grogono and B. Shearing, Concurrent Software Engineering: Preparing for

Paradigm Shift, Canadian Conference on Computer Science and Software Engineer-

ing (C3S2E'08), Montreal, Pages 99-108 (May 2008).

[5] P. Grogono and B. Shearing, Modular ConCurrency: a New Approach to Manageable

Software, 3rd International Conference on Software and Data Technologies (ICSOFT

2008), Portugal, (July 2008).

[6] N. Lameed And P. Grogono, Separating program semantic from development, 3rd In-

ternational Conference on Software and Data Technologies (ICSOFT 2008), Portugal,

(July 2008).

[7] G. Chafle et al., An Integrated Development Environment for Web Service Composition,

IEEE International Conference on Web Services (CWS 2007) (2007).

[8] P. Grogono, Sample Erasmus programs (2006) (2007)(2008).

81

[9] D. Gallardo, Migrating to Eclipse: A developer's Guide to Evaluating Eclipse vs. Net-

Beans, International Business Machine Corporation, (September 1992).

[10] D. Gallardo et al., A Guide for Java Developers: Eclipse in Action, Manning, (2003).

[11] K. Williams, Seminar on the Versatility and power of the IDE - Maximising Developers

productivity, Webcast, (March 22, 2006 at 11AM EST).

[12] E. Gamma et al., Eclipse modeling framework, Addison-Wesley, (2004).

[13] G. Goth, Beware the March of This IDE: Eclipse is Overshawing other Tool Technolo-

gies, IEEE SOFTWARE, IEEE Computer Society, (July/August 2005).

[14] G. Coulouris, Jean. Dollimore and T. Kindberg, Distributed Systems Concepts and

design, Addison Wesley, 4th Edition (September 2005)

[15] Y. Zhang, G. Huang, N. Zhang and H. Mei, Editable Replay of IDE-Based Repetitive

Tasks, 32nd Annual IEEE International Computer Software and Applications Confer-

ence, pp 473-480, (2008).

[16] P.B. Goth, The Joyce Language Report, Syracuse University, Syracuse, New York.

[17] Eclipse C/C++ Development Tooling-CDT, Http://www.eclipse.org/cdt/, (Last seen

August 2008).

[18] AJDT:AspectJ Development tools, Http://www.eclipse.org/ajdt/, (Last seen Septem-

ber 2008).

[19] Eclipse Java Development tools (JDT) Subproject, Http://www.eclipse.org/jdt/, (Last

seen August 2008).

[20] P. Grogono, Issues in the Design of an Object Oriented Programming Language, (Jan-

uary 1991).

[21] J. Martin, Rapid Application Developement Macmillan Coll Div, ISBN 0-02-376775-8,

International Business Machine Corporation, (September 1992)

82

[22] J. Martin and W. Scacchi, Collaboration, Leadership, Xontrol, and Conflict Negotiation

and NetBeans. Org Open Source Software Development Community, Institute for Soft-

ware Research, University of California Irvine, Irvine, CA USA 92697-3425(September

1992).

[23] Http://www.eclipse.org/, (Last seen December 2008).

[24] Http://www.netbean.org/, (Last seen January 2009).

[25] Http://www.antlereclipse.sourceforge.net/, (Last seen January 2009).

[26] Http://www.antler.org/, (Last seen January 2009).

[27] Http://www.erlang.org/, (Last seen January 2009).

[28] Http://www.canonware.com/onjrx/, (Last seen January 2009).

[29] Http://www.wikipedia.org/, (Last seen January 2009).

[30] S. Holzer Eclipse, O'Reilly, (2004).

[31] J. Arnowitz, M. Arent, N. Berger Effective prototyping fo software maker, Elsevier,

(2007).

[32] B. Schneiderman, Leonardo's Laptop: Human Needs and the New Computing Tech-

nologies, MIT Press, Cambridge, MA, (October 2002).

[33] K. Olukotun and L. Hammond, The future of Microprocessors, ACM Queue, 3(7) pp

26-34, (2005).

[34] P. Grogono and B. Shearing, A Modular Language for Concurrent Programming, Tech-

nical Report, (September 2006).

[35] H. Sutter, The free lunch is over - A fundamental turn toward Concurrency in

software, Dr. Dobb's Journal 30(3), http://www.gotw.ca/publications/concurrency-

ddj.htm, (2005).

83

http://www.gotw.ca/publications/concurrency-

[36] E.A. Lee, The problem with threads, IEEE Computer, 39(5) pp33-42, (2006).

[37] H. Sutter, The trouble with locks, Dr. Dobb's Journal, (2005).

[38] T. Harris and K. Eraser, Language Support for Lightweight Transactions, ACM SIG-

PLAN Notices, 38(11) pp388-402, (2003).

[39] C.A.R. Hoare, Communication Sequential Processes, Communication of the ACM 21(8)

pp 666-667, (1978).

[40] P. Brich Hansen, Joyce - A Programming Language for Disributed Systems, Software

Practice and Experience 17(1) pp 29-50, (1987).

[41] J. Armstrong, R. Virding, C. Wikstrom and M. Williams, Concurrent Programming in

ERLANG, Printice Hall, Second Edition, (2003).

[42] F. Barnes and P. Welch, Prioritized Dynamic Communicating and Mobile Processes,

IEEE Proceedings Software, 150(2) pp 121-136 (2003).

[43] F. Barnes and P. Welch, Communicating Mobile Processes, Communicating Process

Archtectures, pp 201-218 IOS Press (2004).

[44] Http://www.IBM.com/, (Last seen January 2009).

[45] P. Grogono, N. Lameed and B. Shearing, Modularity + Concurrency — Manageability,

University of Concordia, Montreal, (2008).

[46] P. Chalin, P.R. James and G. Karabotsos, JML4: Towards an Idustrial Grade IVE for

Java and Next Generation Research Platform for JML, Dependable Software Research

Group, University of Concordia, Montreal, (2008).

[47] P. Chalin, P.R. James and G. Karabotsos, An Integrated Verification Environment for

JML: Architecture and Early Results, Dependable Software Research Group, University

of Concordia, Montreal, (2008).

84

[48] J. Overbey and C. Rasmussen, Instant IDEs: Supporting New Languages in the CDT,

Eclipse'05 October 16-17 2005, San Diego, CA, (2005).

[49] A.B. Perez, Y. Cheon and A.Q. Gates, Canica: An IDE For Java Modeling Language,

University of Texas at El Paso, Texas, (2006).

[50] J. Tidwell, Designing Interfaces, O'Reilly, (2006).

[51] D. Benyon et al., A Guide to usability : human factors in computing, Addison-Wesley,

(1993).

[52] J. Tidwell, The Java developer's guide to Eclipse, Addison-Wesley, (2003).

[53] T. Stahl and et al., Model-driven software development: technology, engineering, man-

agement, John Wiley, (2006).

[54] C. Stan, Testing the ergonomics, Machine Design, ppl08-109, (2004).

[55] C. Stahl, Testing for Usability can head off Disaster, Computerworld, vol. 21 pp. 83-89,

(1987).

[56] I. Sommerville, Software Engineering, 7th Edition, Addison-Wesley (2004).

[57] L. Frenzel, Experience Report: Building an Eclipse-based IDE for Haskell, Proceedings

of the 2007 ACM SIGPLAN International Conference on Functional Programming

(ICFP 2007) pp220-222 (2007).

[58] B.A. Myers, A Taxonomy of Window Manager User InterFaces, IEEE Computer

Graphic and Applications, pp65-84 (September 1988).

[59] B.A. Myers, S.E.Hudson and R. Pausch, Past, Present and Future of User Interface

Software Tools, ACM Transactions on Computer-Human Interaction, Vol.7, No. 1,

pp3-28 (March 2000).

[60] S. Shavor et al., The Java Developer's Guide to Eclipse, International Business Ma-

chines Corporation, (2003).

85

[61] S. Shneiderman, Designing the User Interface, Addison-Wesley Longman, 3rd Edition,

(1998). Addison-Wesley, (2003).

[62] J. JanCure and D. Prusa, Generic Framework for Integration of Programming Lan-

guages into NetBeans IDE, Sun Microsystems, (2008).

[63] C. Benson, A. Elmanand andS. Nickell and C. Robertson, GNOME Human Interface

Guildlines, (2002).

[64] B. E. John, Evaluating Usability Evaluation Techniques, ACM Computing Surveys,

Volume 28, Issue 4es, (1996).

[65] Http://www.msdn.com/, (Last seen March 2009).

[66] P. Charles and Et al, SAFARI: a meta-tooling framework for generating language-

specific IDE's,21st ACM SIGPLAN symposium on Object-oriented programming sys-

tems, languages, and applications table of contents, Volume 28, Issue 4es, pp722 -

723,(2006).

[67] ISO/IEC 9126-1, Software engineering Product quality Part 1: Quality model, The

International Organization for Standardization (ISO), First edition 2001-06-15, (2001).

[68] ISO/IEC TR 9126-2, Software engineering Product quality Part 2: External metrics,

The International Organization for Standardization (ISO), First edition 2003-07-01,

(2003).

[69] ISO/IEC TR 9126-3, Software engineering Product quality Part 3: Internal metrics,

The International Organization for Standardization (ISO), First edition 2003-07-01,

(2003).

[70] ISO/IEC TR 9126-4, Software engineering Product quality Part 4•' Quality in use

metrics, The International Organization for Standardization (ISO), First edition 2004-

04-01, (2004).

86

[71] ISO/IEC 9241-11, Ergonomic Requirements for Office Work with Visual Display Ter-

minals (VDTs) Part 11: Guidance on Usability, The International Organization for

Standardization (ISO), (1998).

87

Appendix A

Implementation in Eclipse

The Eclipse as host application provides services which the plug-in can use, including

registering themselves and data exchanging with ANTLR and Erasmus plug-ins. In this

way these plug-ins are dependent on these services provided by the host application and

do not usually work by themselves. Conversely, the Eclipse is independent of the plug-ins,

making it possible for plug-ins to be added and updated dynamically without changes to

the host application [23]. Architecture of ELIDE in this Framework supports extensibility

by providing well defined extension points where other plug-ins can add functionality. We

know that a plug-in is the smallest pluggable component identified by the Eclipse. We can

leverage the work done by other developers by integrating their plug-ins with our tool. This

feature is very useful for developing a complex IDE such as ours that requires support for

multiple functionalities. Loading of plug-ins is delayed until the corresponding functionality

is requested. We can use this specialty to decompose ELIDE into small plug-ins, each being

loaded only when required.

The overall plug-in architecture of ELIDE with extension points is shown in figure 33. It

includes a generic set of components from Eclipse IDE and ELIDE plug-in set. The ELIDE

plug-in set consists of ELIDE Core which is the central part of the IDE where the new

service is actually composed, a set of wizards for creating projects and gathering resource

information and helper view. The ELIDE Perspective binds all into a single integrated

(JUT) Java
Development

Tool

(PDE) Plug-in
Development
Envuonment

Eclipse IDE ELIDE Plug-in Set

Eclipse Platform

Wo&bench

JFace

SWT

Help

I
Team

Onto log/- Plug-m

ELIDE
Perspective

ELIDE Diagram
Support

Figure 33: ELIDE Architecture using Eclipse and Antler

8 9

framework.

• ELIDE Core: this is the main framework for Erasmus programmer; loading, Building,

Running and Testing Erasmus files as well as viewing XML will start there. It then

initiates loading of concept ontology as soon as the Erasmus compiler creates AST

file related to that Erasmus projects. The AST file then is used for ELIDE Diagram

support and ELIDE Debugging components. We need Antlr plug-in for online recog-

nition of tokens, highlighting and syntax checking. Also we can use the AST table

generated while typing an Erasmus program.

• Wizards: New project creations that are repetitive and may involve a sequence of

activities to be performed are made simpler in ELIDE by using guided user dialogs or

wizards. The project creation wizard called, ELIDE Project Builder Wizard, enables

Erasmus programmer to specify locations of all the necessary resources for ontology

processing.

• Help Views: It displays a resource tree representing the organization of the project in

several views. These views are developed using various existing plug-ins demonstrating

easy integration with available tools. ELIDE Perspective: ELIDE Core and Help

Views are encompassed in a single component using a facility provided by Eclipse

known as perspective. A perspective is a visual container for integration among set

of views and editors. The ELIDE perspective controls visibility of items of the model

in the user interface.

• Ontology Views: It enables the user to browse through the concept ontology as well

as its graphical view.

• ELIDE Diagram support: The ELIDE Diagram Support will be used for Graphical

Representation which is specific to Erasmus language. The graphical view of Erasmus

programs or projects is similar to figure 14.

9 0

Java - anUr /s rc /Lg - Ed ip ie SO*

File tesvigate Search Project Ryrc Win&to Hefc
> ! * & * * • ds ti. 6- *] v!̂
i, tg \ tg Zl ' v

vlJ Javi

t ..••'• bin

I
Hair fc P.di P.ai PTot , H c l

' l:-J: src 3 1.3 ' L.ia>
I.sir

J- vza
% Pi
J P V.
ii fTd PToi a t.9

i .dasspa LJ .pm«sa
' e»35ffws

JL1 I -ti ill

/"' I j ' +'} ' I ' s '/ 1
<-• I • \< >•• I '?<»• I

+ S e q u e n c e * ' 5 '
' + > < • + D e c l a r a t i o n

® Symbol :('='{ ' | • . • | • »• | I 1

' f } ' , » r ;' I 'I'I ' ('I') ' I ' [• I ' I ' f« i' g'
Prograia : (ProtocolDefinition I Ciesure&efinition 5 Cell&efinition) Celllnstsntlation,
ProtocolDefimtion s Prot.ocoi.Kame + + Protocol ClosureDefinition : ClosuceNaroe + + Closure Cel IDelinic ion : Cel iName (" •=*1 j +•*') Ceil Protocol s FrotocoJNaree + ProtocoiExpression +)' Closure : ClosureNaroe * '('f Declaration Cell : CeiiNaroe + '('+'*' +Declai:ation + M' + ProtocolExpression : "'•*•' } 'VariatoleDeclaratior. I 1 J'+ Muitipliclty+']"• PcotocolExpression { 1 i ' + PcotocoiExpression •*•'>' + • ;' I '!'••• ProtacolExpteasion • ' 1 ' + ' ; ' S '{'+•(' PrococolExpression ')' Kultiplicity : '? | '* *| '+'

j J
Source' Ovefvsews

s • JVeWewj:.:?, Dectoratwn. Q Consok 'I
Man | Java ̂ pfĉ 'isn} C:\Ptosydffi Bes\3avârel 2008 n'-̂ i'mf

[Main [Java Ajapkafaonj C;iftogram FtesPdva\pf|,S.D_0S\bin̂.3W.&x.e (Aug t?, 2006 11:32:2̂ W)j

A
-* o - *

[ipumtrtM | '.JSKWibleDHi(E;) [) & Java-antl>/wi./.„ ĵer<B»Msamip»w-••.! adobeIteadnt-|m...| | « ^ f)^ ll:34PM

Figure 34: Sample Erasmus program and grammar in ELIDE using Eclipse

Figure 34 shows a screen of ELIDE. It is implemented as a plug-in to Eclipse platform

and therefore NFR.4 and NFR.5 already are taken into account. Eclipse is an open source

and can be used for building other IDEs. By becoming part of the Eclipse framework, the

ELIDE becomes available to the large community of Eclipse user. Moreover, the plug-in

based approach allows tapping into various existing and future components being added to

Eclipse platform. On the middle window is the grammar of ELIDE. On the bottom window,

suppose the following Erasmus program is typed. To enable smooth navigation between the

development, deployment and runtime stages, the IDE provides the user with a guided

traversal of the composition process (NFR.2, NFR.3). For this purpose, it implements a

wizard like feature with the help of tabbed panes. Each of these enables a particular stage

in creating files and projects in Erasmus IDE (NFR.l) and has control buttons that guides

91

the user to the next stage as a logical step from the current activity (NFR.3, NFR.4 and

NFR.5). Since Erasmus IDE is produced as a plug-in, so future addition of plug-ins is

possible (NFR.8). Since Eclipse is capable for adaptation, scalability and security, so does

ELIDE (NFR.10, NFR.13, and NFR.15). The rest of non-functional requirements Except

NFR.9 and NFR.ll are verified since ELIDE uses Eclipse. The remaining non-functional

requirements are proven by performing test cases. The functional requirements are also

verified by performing test cases.

Using Eclipse IDE has several benefits and drawbacks. It will be easy for user to switch

between existing languages and new Erasmus in Eclipse environment. The drawback is the

ELIDE would be Java, Antlr and host application dependent.

92

Appendix B

Erasmus programs in ELIDE

B . l Sample Program of Client Server 1: tes todel

B . l . l Source code

B . l . 2 Execution

93

ix language Support. - Neiflcam ID). 6.1 3ESS
Fie EcB View Nav&ate Sou ca fitfato Btdd Run Prefl

ISS84 Q*®̂ VIS i> © - .
nenfte.era* * ;o} netrfSal.era x . -'oj lan^jege.nbs <

modulus; Integer 1;

sr.i1oiir :» "\nHodulus " * Text. modulus + " \ n " ;
x: lnt.Pi-.ier 0:

y: Integer 0;

stdout " " + Text |x * y * modulus);
y l ;
u n t i l y >- nodulus
end;

Figure 35: Sample Program 1 Source- Testodel in in ELIDE

Fie Edit View Navigate Source Refactor Buttd Run CVS Tools Window Help

D tV fe i':, vA 'A 5' <1 V l> 'V
:di NewJVsms.java x | . -

iBssasHSSSsasi

Members View
-•> NewJFrameO
% IritComponentsO

: Projects
: 45 JavaApplkat ionl

Source Packages
S£J ffes

.- (h lavaappftcationl
Main.java

: Navigator - iButtonlArtknPer formed <0 X

ri
UJSJ

Filters:

Source Design

BufCetedReade t s t d l n p u t » new Bo
ZnputStreanReader(p.ge

B u f f e r e d F e a d e t s t d E t r o r » new Ba
I n p u t S t t e a n R e a d e r (p . g e

S t r i n g s * n a i l ;
S y s t e m . o u c . p r i n t l n C ' H e c e :

i Output • JavsApplicationl (nm-singte)

lompile- s i n g l e :
u n - « i i » g l e |

Here i s t h e s t a n d a r d o u t p u t of t h e comaand:

X = 9.9
X - 9 .801
X • 9.70299
X » 9.60596
X = 9.5099
X » 9.4148
X «• 9.32065
X = 9.2274S
a 9.13S17
X = 9.04382
X ° 9.95338
X =• 8. 66385
X = 6.77S21
X = 8.66746
X • 8.60058
X » 8.S1458
X • 8.42943
X = 8.34514

> 2 X « 6.26169
• 2 . 1 X • 8.17907
• 2 . 2 X » 6.09728
• 2 . 3 X - 8.01631

,laixt
XML Fits i ; Graphical Representation

Fiienane: i testodel

G:\er- ,iiH!s\Jfivrtflpi>] i ca i ionl\f i les>mec 1: est} 00} HEC (2007 July 11 14:13:49).
Extnictiny sou ret; from '!es t loop!.U ?<' t o ' h Comp i inci 1 emp .(•;'. Done *
C: \er mu i\,),iraf!i)n] i co t ionlNf i 1 cs> tea i.odel I = 0 1 X = 10 T = G '> X = 9.9 T = 0 3 X = 9.801 T - 0 4 X = 9.70299 T = 0 5 X = 9.68596 T = 0 6 X = 9.b099 1 = 0 7 X = 9.4148. r = 0 8 X - 9.32065 T = 0 Q X = 9.22745 i = i "x 9.13517 T ™ 1 1 X = 9.04332 T = 1 2 X = 8.95338 T = 1 3 X = 8.86385 T = 1 4 X - 8.77521 T =• 1 5 X = 8.68746 T = 1 6 X = 8.60058 1 = 1 7 X - 8.51458 T - 1 8 X = 8.42943 T = 1 9 X = 8.34514 T = 2 X = 8.26169 1 = 2 1 X = 8.17907 i = 2 2 X = 8.09728 r = 2

O X - 8.01631 T = 2 i X = 7.93614 1 2 5 X - 7.85678 I = 2 6 X = 7.77821. T = 2 7 X = 7.70043 1 = 2 8 X = 7.62343 T = 2 9 X = 7.54719 T = 3 X - 7.47172 T = 3 1 X = 7.397 T = 3 2 X = 7.32303 T = 3 3 X =* 7.2498 T = 3 4 X = 7.1773:1
T - O .' i rtrrco

Figure 36: Sample Program 1 Execution- Testodel in ELIDE

9 4

inguagc £upf>ar<i..r NetlicamJI)f .4.1. .
FOB Edit View Navigate Soiree Redactor btfd Run Profile Versitnfrtg Tool! WWow Hefc

e e % . £) ir te & a>' . •'
newfto-era » ..7) newHsl.era • » : Jj bnguag«.r6> x

modulus; Integer :• 1;

stdout "\nHodulus " + text modulus • "\n'

yi Integer :« 0;

stdout := " " • text (x • y \ modulus
V +• 1;
until y >• modulus

stdout "\n";

I - (proc(); (:

79:S ;OVR(

Figure 37: Sample Program 2 Source- Testloopl in ELIDE

B.2 Sample Program of Client Server 2: test loopl

B.2.1 Source code

B.2.2 Execu t ion

95

Re Ed* Vtaw Navigats Source Refactor Bufld Run CVS Tods Window Help

Projects <Q x \ i FBes ,

•i> v <i>
C; Main.lava

Main

i i , New^rame
<ti iS Porm NewJF(ame

• : NewJFrame.javs * j

Source Design

Buntine t c « Runtiae. cjetRtt®
t r y {

Process p • t t .execC'C

ButfecedReeder s td lnput
InputStreart te

ButfetedReadet scdEccoc

• " • .JI HEC (2007 July 11 U: 13:4-9).
!:xtract ing source from 'test J oop L.tex' to ' temp. e ' . Cornp i I i ug ' temp. e ' . Done'
G: XersfliusVJavaRpp licat ionl\f iles>if error-level 1 goto I.
G: XersmuiAJavaflppl ica I ionlYf i les>cl /EHsc tes tloopl. cpp Microsoft (R) 32 bit C/C-+ Optimizinq Compiler Version 12. C Copyright ! C) Microsoft Corp 1984 1.998. Fill rights reservec
testloopl.cpp Microsoft i R) Xncremen lai Linker Version 6.0G.8/i'W Copyright (C) Microsoft Corp 1.99? 1.998. All rights reserve,:

165:8 iilHSil

JovaAoniicattonl fajn-slmde) * I
JavaAppftcattonl (tun-single)

JovaAoolicBtini] (run-wnole) ' I JavaApplicotion! (run-f
JavaAppficatianl (run-«n$e) I

conpilt-»ingie:
run-single:

output ol the command:

9.9
9. 801
9. 70299|
9.60596
9.5099
9.4148
9.32065
9.2274S
13417
9.04382
8.95336
8.86385
8. ''7521
8.68746
8.60058
8.61458
8.42943
6.34514
26169
8-17907
8•09728
8.01631

93614
85678
77821
70043
62343
54719

7172

Filename: i testicopi Buttd

Rim

/on t: test loopl, c-xo
lestloopl.obj
G :\orsFrms\JciyaApp i :i CrU ioplXf i l es> i T errorievei 1 yo!o /
G: \ersmus\Jaooflppl icat ionl\f i les> testloopl
Modu I l is 1 0
Modulus 2 0 0 0 1
Modulus 3

0 B a U 1 2
0 2 1

Modulus 4 0 0 0 B 0 12 3
0 2 0 2 0 3 2 1

Modulus 15 0 0 0 B B 0 1 2 3 4 0 2 k I 3 0 3 1 4 2 0 4 3 2 1
Oil processes finished. G: XersfnusXĴ iounppl icai ion.l\fi!es>

Probed buJdng JavsAppBca&onl {cun-srtfe}.

Figure 38: Sample Program 2 Execution Testloopl in ELIDE

96

FDe Edit View Navigate Source Refactor Buid Run ProFie Verstoning Tooh Window Heb

titi S® : • ' Gi <$K'P 'o"B C> &>•;.;•
(i j newffle.era * joj rwrfflet.era " * » O1] language,nt»

i n : I n t e g e r s= p . a s k ;
x : I n t e g e r i n • i n ;
— So wore sock
j : I n t e g e r 0;
{ loop w h i l e j < 1000000 3 += l;

c l i e n t M (p - : sp I
x : I n t e g e r 1;
< l oop

x s : I n t e g e r := x « ;
s t d o u t t e x t x + "*2 •

do more work
j : I n t e g e r ;= 0 ;

• t e x t xs + " \ n

<
loop w h i l e j < 1000000 3 +• 1;

1£ x > 1500 t h e n e x i t end

s q u a r e c e l l = (p ap | s q u a r e (p)) ;
c 1 i e n t c e l 1 - (p s p I c l i e n t (p)) ;
c e l l = (p : : s p ; o 1 i e n t c e l 1 (p) ; s q u a r e c e l l (p)) ;
c e l l () ;

121:5 joVR|

Figure 39: Sample Program 3 Source Testmodl in ELIDE

B.3 Program sample of Client Server 3: t e s tmodl

B.3.1 Source code

B.3.2 Execution

9 7

Nsfrtj] $ & 0 a e ^
13 Interne.,, »] 2 Windows I j t O JavatT.,, "||ggC:\WIW>OW- ffl37-apRie... •) &}papert25.do... j 2 AdobeRg...ST|T9XrtcCenter...| tetttoopt.loq...j j

y ^ • - - -

Fte Ecft View Navigate Source Redactor 6u9d Rui CVS Tods Window Help
JfiJjfl

K? ** << t> 8>

% intComponentsO

] x i ; f=a«
[-• 'aj. Main.java & th' Ma,n

f-i MewJPrBme.jBW.
,'j: fa NewJFrame

S Form NewJPrame

- IButtorlActionPerformed

NewJFrame.Jawa *{

Source Deslcp]|
iliSzi

Runtiae 1
t r y {

165:87 ;iIB3

JavatAppiicationl (ruri-stagSe)
JavaApplicatienl (ran-sinete)

daps- jar :
coop i le -s ing le :

Here Is the standard output <

Sanding 12341
Processing 1234$
Received 12345
A l l processes f in ished.
Here i s the standard e r ro r 01

tevaApplicationt (rwt-singie)
3avai
Java*

c oBmand (i t an?):

Graphical Representation
. a i Q j * i

FBename: | lestrnofll

Clear 1 Save

lest

Builrt

Run

ST C:\WlHtiQWS\system32\ero

G : NersmusXJaviifippl ica I ion i Mi 1 es>me (es I modi
0:\orsmus\JfivriRpp 1 i c a t ionl\f i les>i f "" — "" goto ft
G : XersmusXJavaflpp] i.cat ionlXf iles>mcc tcs tmodi MtC (2007 July 11 14:13:49).
Extracting source from ' testmod] , (ex' I o ' temp.e' . Cofflpi 1 i!Vi ' Icrnp. e' . Done!
G: \ersmi.is\Jrivafl|>!).l j c<\t i on] \f i l.ex> i S error 1 cue I 1. got 0 Z
G:\ersfous\JavaflppiicationlXfiles>c.l. /l:lisc testmodl.epp
Microsof t (R) 32 bit C/C* • Opt imizincj Compiler Version 12.00 Copyright (C) Microsoft Corp 1984-1998. fill rights reserved.
tes troodl.epp
Microsoft (TO Incremental Linker Version 6.00.8447 :
Copyright (C) Microsoft Corp 1992-1998. 11 rights reserved.
/out:testmodl.exe testmodl.. obi
G: XersmusXJavallppl ica t ionlXf iles> i f errurlevel .1 goto Z
G: XersmusXJaMaRppl icat ionlXfi tes> test modi Sendi ng 1234b Processing 1.2345 Received 12345 ftll processes finished. G: XersnuisXJctvaRppl ica I ionl \f i les> lea imodl 'leatmodl is not recognised as an internal or external comm operable program or batch file.
G: \ersmi.is\Jrivafippl j ca 1 ionl \f i 1 es>

"13

^

.d
dose Input J

Bidding JayaAepfeetionl (nffv-sngie)...

Figure 40: Sample Program 3 Execution Testmodl in ELIDE

98

fite Eda Vtew Navtgats Source MvXet a id Rui ProNe Verslonlng Toots Window Help

' D̂ '-V- t, i> . •
;rj) rtewRe.ers » ,<t>j nevrftei.era* < ; langua^e-nte » Q

Integei ;

stdout tex t x t "'i - " • tex t i

3! Integer ••= 0:
(

loop uh i le j -
3 l;

it x > 1SOO theo s

IBi

Figure 41: Program sample 4 Source- Testextract in ELIDE

B.4 Sample Program of Client Server 4: testextract

B.4.1 Source code

B.4.2 Execution

99

l l t t a i e
3 Interne... windows ,,.->| 14 3ava(T... ||(8C1\WIJ<D0W_ | B «

f i ^ ~ , , , ' - , :
Rte Edi View Navtoete Source Refactor Budd Run CVS Tools Window Help |

o ^ • ca i- .•' i'4 ^ iMi l)i i li i I ' l i
i \ I, il | I i t 1! i I

I i hi \ I I i i I I 1 1 I
III(i ii)' iii n 1/ n i

, { Z Adobe Re..• f l] TeXnfcCerter.., j .^2 Notepad »| i
% 5:07 PM

j j | J $ $ Monday

13
; l e s t e x t r a c i.

0 NewJFrameO
% in*Compcnents()

gutto" lfefemirfomtacl(ActBr£vert evt)'

<0 xjfiFSw
fe Main.(ava

& & Man
R NewJFrame.iava

f£ £f> MewJFrams
ff: Form NewJFrame

y - IButtonl ActlorPerformed

!C t e s t e x t r a c t

Jj
165:8

OUput

t_x 1 r etc t i n (j s o u r c e I r o m I es I ex t r ac 1 . t o x ' t o I e m p .
Comp i 1 i ng ' i emp. e ' .
Done?

0 : \ e r s r o u s \ J a v a f l p p ' l i c . t ! i on1 \ f i 1 es> i f e r r o r ! e v e ! 1 g

C : \ e r s r n u s \ J a v a H p p l i c a t i o n l \ f I 1 P S > C] / l :H«,c i e s i e x t r
M i c r o s o f t (l i) 3? h i i C/C • • O p t i m i ^ i n c i C o m p i l e r vet
C o p y r i g h t (C) M i c r o s o f t C o r p 1 . 9 8 4 - 1 9 % . fill r i g h t :

-ic.t.cpp
s i on 1 ? . Ol). 8804 f o r

r e s e r v e d .

JavaAppScaticnl (ruivsinflte) *} JavaApplicatioal (run-slngte) * tevaAppfca)

l n l t :

compile-tingle:

Ker« Is the seaadaxd output of the command:

command (i f any):

t e s t e x t r a c t . e p p
M i c r o s o f t (10 I n c r e m e n t a l l i n k e r V e r s i o n 6 . I5t). 844 /
C o p y r i g h t (C) M i c r o s o f t C o r p 1 9 9 / - . I 9 9 8 . fill r i g h t s r e s e r v e d .

/ o u t : t e s t e x t r a c t . e x e
t e s t e x t r o c t . o h j

G: \ e r s f n u s \ J a v a f l p p l i c a t i o n l \ f I l e s > i f e r r o r l e v e l 1 go t o Z

0 : X e r s n u i s V i a v a f l p p l i c a t i o n l \ f i I es> t e s t e x t r a c t
Sum - 8

N i l p r o c e s s e s f i n i s h e d .
C: \ e r s n i u s \ J a v a f l p p I i ca t i on I \ f i .1 es>.-

-ial xt

Filename: .tssteztrscl

Test

Build

Run

Save j ; cancel

ibirl

d

JavaApofcaBonl (njn-sjnsfe),..

Figure 42: Sample Program 4 Execution- Testextract in ELIDE

100

Appendix C

IDEs

The abbreviations used in the next table are as follows:

l=Syntax Highlighting,

2=Multiple Undo/Redo,

3=Rectangular Block Selection,

4=Bracket Matching,

5=Auto Indentation,

6=Auto Completion,

7=Code folding,

8=Text Folding,

9=Compiler integration,

SDI=Single Document Interface,

SDWS=Single Document Window Spliting,

MDI=Multiple Document Interface,

TDI=Tabbed Document Interface,

WS=Window Spliting,

F=File Transfer Protocol,

H= Hyper Text Tranfer Protocol,

S=Secure Shell Handling,

101

Current Text Editors and

W=Web-based Distributed Authoring and Verification

102

Name Programming User Remote File
Capability Interface Editing

Acme ,2, ,4,5,6, , ,9 SDI,SDWS,TDI,MDWS F,H,S,
Alpha 1,2,3,4,5,6, , ,9 SDI,SDWS,OW,MDWS F, , ,
Alphatk 1,2,3,4,5,6,7,8,9 SDI,SDWS,OW,TDI,MDWS F, , ,
Aquamacs Emacs 1,2,3,4,5,6,7,8,9 SDI,SDWS,OW,MDWS F,H,S,W
BBEdit 1,2,3,4,5,6,7,8,9 SDI,SDWS,OW,TDI F, , ,
BDV Notepad 2

, , j j f r SDI y y >

Bluefish 1,2,3,4,5,6, , , SDI,TDI F,H, ,W
Boxer 1,2,3,4,5, , , , SDI,SDWS,OW,TDI,MDWS F, , ,
ConTEXT 1,2,3,4,5,6, , ,9 OW,TDI 5) 5
Crimson Editor 1,2,3,4,5, , , ,9 SD WS, 0 W, TDI, MD WS F, , ,
CRISP 1,2,3,4,5,6,7,8,9 SDI,SDWS,OW,TDI,MDWS F,H,S,
Cssed 1,2,3,4,5,6,7,8, SDWS,OW,TDI,MDWS 5 5)
Diakonos 1,2, , ,5, , , , SDI
EditPadLite ,2,3, ,5, , , , SDI,TDI
EditPadPro 1,2,3,4,5, ,7,8,9 SDI,OW,TDI F, , ,
EditPlus 1,2,3,4,5,6,7,8, SDWS,OW,TDI,MDWS F,H,S,W
gedit 1 2 4 5 Q SDI,OW,TDI F,H,S,W
GNU Emacs 1,2,3,4,5,6,7,8,9 SDI,SDWS,OW,MDWS F,H,S,W
JED 1,2,3,4,5,6,7,8,9 SDWS,MDWS 5 5)
jEdit 1,2,3,4,5,6,7,8, SDI,SDWS,TDI,MDWS F, ,S,W
JOE 1,2,3,4,5, , , ,9 SDW,TDI,MDWS > 5)
Kate 1,2,3,4,5,6,7,8, SDWS,OW,TDI,MDWS F,H,S,W
MadEdit 1,2,3,4,5, , , , SDI,TDI >))

NEdit 1,2,3,4,5,6, , ,9 SDI,SDWS,TDI,MDWS 5 J >
Notepad++ 1,2,3,4,5,6,7,8,9 SDWS,OW,TDI,MDWS 5))
Professional Notepad 1,2, , ,5, , , , SDI
PSPad 1,2,3,4,5,6, , ,9 SDWS,OW,TDI,MDWS F, , ,
skEdit 1,2,3,4,5,6, , , SDI,SDWS,TDI F, ,S,W
SlickEdit 1,2,3,4,5,6,7,8,9 SDI,SDWS,OW,TDI,MDWS F,H,S,
Smultron SDI,SDWS,TDI
TextPad 1,2,3,4,5, , , ,9 SDWS,OW,TDI) 5 ?
TextMate SDI,TDI F, , ,
TextWrangler SDI,SDWS,OW,TDI,MDWS
Vim 1,2,3,4,5,6,7,8,9 SDI,SDWS,OW,TDI,MDWS F,H,S,W
SlickEdit 1,2,3,4,5,6,7,8,9 SDI,SDWS,TDI,MDWS
XEmacs 1,2,3,4,5,6,7,8,9 SDI,SDWS,OW,TDI,MDWS F,H,S,W

Table 7: list of Current Text Editors and IDEs

103

Appendix D

Study Questionnaire

External evaluation was performed by external users to check usability aspects. In this

evaluation, we performed usability check with ten external users using User Testing and

Questionnaire approaches. The goal of usability was to characterize the extent to which a

software system can be used. The Questionnaire consisted of following questions:

1 How much development experience do you have?

2 How much do you know about NetBeans platform?

3 Briefly describe your development responsibilities.

4 Would you describe yourself as a NetBeans beginner, intermediate, or expert user? How

much of your day do you spend in NetBeans?

5 Would you describe yourself as an Eclipse beginner, intermediate, or expert user? How

much of your day do you spend in Eclipse?

6 Would you describe yourself as a Java/C++ beginner, intermediate, or expert user?

7 Would you describe yourself as an Erasmus beginner, intermediate, or expert user?

8 What do you like about Eclipse's navigation mechanisms and tree views? What don't

you like?

9 What do you like about NetBeans's navigation mechanisms and tree views? What don't

you like?

10 What do you like about ELIDE? What don't you like?

104

11 Please list anything else particular about ELIDE.

12 Do you think the ELIDE is user friendly?

13 Do you think the features and tools are useful?

105

Appendix E

Grammar and Syntax of Erasmus

Language

In grammar rules, [• • •] stands for an item that may be present or absent; {• • •} stands for

an item that may be present zero or more times; {• • -}c stands for a list of items with the

character c used as a separator. A list separator is allowed at the end of a list: for example,

the expression {X}, matches both "X,X,X" and "X,X, X,". Formally, with e standing

for 'empty':

[X] = e | X

{ X } = t \X \ X X \

{ X } c = [X { c X } [c]]

Fonts distinguish non-terminal symbols, terminal symbols, and information-bearing to-

kens such as names and literals. Symbols are written in quotes: e.g., ' = ' .

Keywords

106

Structures: protocol procedure thread process cell

Types: Bool Decimal Float Integer Char Text unsigned Void

Constants: f a l s e t rue

Functions: bool byte char decimal execute f l o a t in t rand

tex t ex is t s file_open_read text_open_read file_open_write

text_open_write text_content f i l e . c l o s e file_ok file_eof

f i le_read f i le_wri te # '/,'/,

Qualifiers: a l i a s f a i r ordered random

Operators: and div mod not or

Control: any asser t cases do domain e l i f e lse end exi t

fo r if import in loop loopselect range se lec t skip

s t a r t step such tha t then to u n t i l while

Symbols

Assignment operators: <- : = += -= *= /= %=

Binary operators: / / + - * / % . @ &=

Comparison operators: = ! = < <= > >=

Protocol operators: ? * + I ;

Declaration operators: :

Separators: , ; I ->

Brackets: () [] { } < >

Characters A Character is any character in the character set used by the implementation.

(The character set is currently ASCII but will eventually be Unicode.)

A Letter is a character chosen from {<a',...,'z'}u{'A',...,<Z'}.
A Digit is a character chosen from { ' 0 , , . . .) ' 9 ' } .

A HexDigit is a character chosen from Digit U { ' a ' , . . . , < f ' } u { ' A ' , . . . , ' F ' } .

107

Identifiers Identifiers appear in the syntax as (prefix) Name , where (prefix) is chosen to

suggest the role of the identifier. For example: Cel lName. The compiler sees only identifiers,

and must infer the role from the context.

Identifier = Letter { Letter | Digit | } .

The following symbols are used in the grammar to denote identifiers:

Cel lName ConstantName Fie ldName Fi leName M a p N a m e Por tName

ProcedureName ProcessName ProtocolName T y p e N a m e V a r N a m e

Programs

Program = { ImportDirective | Definition \ Instantiation }; .

ImportDirective = import { FileName }, .

Definitions

108

Definition = ConstantDefinition

TypeDefinition

ProtocolDefinition

ProcedureDefinition

ProcessDefinition

CellDefinition .

ConstantDefinition = ConstantName Type ' = ' Rvalue .

TypeDefinition = T y p e N a m e ' = ' Type .

ProcedureDefinition = ProcedureName ' = ' Procedure .

ProtocolDefinition = ProtocolName ' = ' Protocol .

ProcessDefinition = ProcessName ' = ' Process .

ThreadDefinition = T h r e a d N a m e ' = ' Thread .

CellDefinition = Cel lName (' = ' | ' + = ') Cell .

Descriptions

Protocol = ProtocolName

| ' [' ProtocolExpression '] '

| protocol ProtocolExpression end .

Process = '{' [{ Declaration };] ' I ' Sequence '}'

| process [{ Declaration };] ' I ' Sequence end .

Thread = thread { Parameter };['->'{ Parameter };] ' I ' Sequence end

109

Parameter = VarName ' : ' [' + ' |] Type .

Procedure = procedure { Declaration }; ' I ' Sequence end .

Cell — '(' [{ Declaration }; ' I '] { Declaration | Instantiation }; ')'

| cell [{ Declaration }; ' I '] { Declaration \ Instantiation }; end

Instantiation and Invocation

Instantiation = (Cel lName | ProcessName) ' (' { P o r t N a m e | Rvalue }t ')' .

ProcedureCall = ProcedureName ' (' { Lvalue }_ ')' .

ThreadCall = T h r e a d N a m e ' (' { Rvalue },['->'{ Lvalue },] ')' .

T y p e s

110

Type — T y p e N a m e

BasicType = Void

Bool

BasicType [RangeExpression

EnumeratedType

Map Type

Array Type

Direction Protocol .

Char

Text

unsigned] Byte

unsigned] Integer

Float

Decimal

RangeExpression

CompOp

EnumeratedType

Map Type

Direction

= Rvalue CompOp ' (' ')' CompOp Rvalue

'<> I '<= '

= ' < ' { Identifier } , ' > '

= Type indexes Type

— < + > I < - >

Protocols

111

ProtocolExpression = [' ~ '] Declaration

| [Multiplicity } ProtocolExpression

| { ProtocolExpression };

| { ProtocolExpression }|

| ' (' ProtocolExpression ')' .

Multiplicity = '?' | '*' | ' + ' .

Declarations

Declaration = VariableDeclaration \ PortDeclaration .

VariableDeclaration = [a l i a s] { VarName }, ' : ' Type

[(< = » | < ; = ' | «<->) Rvalue } .

ChannelDeclaration = { Por tName }, ' : ' Protocol .

PortDeclaration — { Por tName }, ' : ' Direction Protocol [' : = ' Rvalue

Direction — ' + ' | .

Sequences

Sequence = { Statement }; .

Statements

112

Statement skip

exit

Assertion

Declaration

Instantiation

ProcedureCall

ThreadCall

Start

Assignment

If

Cases

Loop

Any

For

Select

until Rvalue

while Rvalue

MapName 0 ('start' | 'step')

113

Assertion = assert ' (' Rvalue [' , ' Rvalue } ')' .

Execute — execute VarName .

Assignment — { Lvalue AssignOp Rvalue .

AssignOp = ': = ' | '<-' | '+=' | '-=' | '*=' | '/=' 1'%='.

If = if Rvalue then Sequence

{ elif Rvalue then Sequence }

[else Sequence] end .

Cases = cases [Rvalue } { Guard Sequence } end .

Loop = loop Sequence end .

Any = any Comprehension do Sequence else Sequence end .

For = for Comprehension do Sequence end .

Comprehension — VarName [' : ' Type] { in Set } { such that Rvalue }

Set = Rvalue to Rvalue [step Rvalue }

| Rvalue '<=' ' (' [Rvalue]')'('<' !'<=') Rvalue

| Rvalue '>=' ' (.' [Rvalue]')'('>' | ' >=') Rvalue

| [domain |range] Rvalue

I Type .

Start — start { ThreadCall }; do Sequence end .

Select = (select | loopselect) [Policy] { Guard Sequence } end .

Policy — fair | ordered | random .

Guard = ' I ' [Rvalue] ' I ' .

114

Values

Lvalue

Rvalue

= V a r N a m e { ' [' Rvalue [' . . ' Rvalue } '] ' } [' . ' F ie ldName

Lvalue

Literal

U n O p Rvalue

Rvalue B inOp Rvalue

Rvalue if Rvalue e lse Rvalue

FunctionName Rvalue

FunctionName ' (.' { Rvalue }, ')'

(' Rvalue ')

MapName @ (' f in i sh ' | 'key' | 'value')

FunctionName — bool | char | text | byte | int | decimal | f loat

rand execute ex i s t s '#'

file_open | f i l e_c lose | file_ok

Operators

U n O p

fi le_eof file_read f i le_write .

= ' + ' I ' - ' I '#' I not

BinOp = ' / / ' | ' + ' | ' / ' | div | '%' | mod

<<> I '<=) I <>> I < >= > I ' = ' I ' ! = '

and or

TernaryOp = i f . . . e l s e

Literals

115

Literal — ArrayLiteral | MapLiteral | Bool | Char | Text | Numeric .

ArrayLiteral = '{' { Literal }, '}' .

MapLiteral - ' {' { MapPair }, '} ' .

MapPair = ' (' Literal ',' Literal ')' .

Bool = fa l se | true .

Char = ' " Character ' " | " " Character " " .

Text = ' " { Character } ' " | ' " ' { Character } " " .

Numeric = Integer | Decimal | Hexadecimal .

Integer = Digit { Digit } .

Decimal = Digit { Digit } [' . ' { Digit }] [(' e ' | " E ") Digit { Digit }] .

HexaDecimal = ' 0 ' ' x ' HexDigi t { HexDigi t } .

116

