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Abstract 

Vision based curve reconstruction algorithms and their application to 

graphical password 

Thanh An Nguyen 

Curve reconstruction is the problem of approximating a curve or multiple curves from 

a point cloud. Curve reconstruction problem has received numerous attention over the last 

few decades due to its significant application in geometric modeling. In this thesis, based 

on the relationship between human vision and curve reconstruction, two Gestalt laws have 

been identified for the curve reconstruction: the law of proximity indicating that our vision 

tends to perceptually group near objects together and the law of continuation pointing out 

that objects following a consistent continuous direction are perceptually grouped together. 

Two algorithms have been proposed to implement these two laws in curve reconstruction. 

This first algorithm, DISCUR, connects points based on the law of proximity. The second 

algorithm, VICUR, considers both laws. The algorithms have been compared to the main 

curve reconstruction algorithms available in the literature. 

Another contribution of this thesis is a new application of curve reconstruction in the 

field of cryptography. In the thesis, a new graphical password scheme is introduced. The 

proposed scheme requires users to create their secret by selecting individual points or by 

connecting points into curves from a given set of points. It is reasonable to assume that 

the users will connect points into curves that look natural to their vision so that they can 

recall easily. Consequently, the password may be a part of the reconstructed results of the 

human-vision based curve reconstruction algorithms and the attacker can use these results 

to crack the password. We present the application of curve reconstruction algorithm in 

the evaluation of our graphical password scheme. 

i i i 
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Chapter 1 

Introduction 

1.1 Objectives 

This thesis has two main objectives. The first is to develop human-vision based curve 

reconstruction algorithms whereas the second is to design a new graphical password scheme 

based on the developed curve reconstruction algorithms. Though the first objective belongs 

to the field of computational geometry and the second objective belongs to computer 

security, these two objectives are closely related. 

1.1.1 Objective 1: Human-vision based curve reconstruction 

The main problem of curve reconstruction is to construct piecewise linear curves from a set 

of unorganized discrete points, as shown in Figure 1. Application of curve reconstruction 

can be found in three dimensional (3D) object modeling. Particularly, in medical field, 

constructing 3D objects from a set of planar contours is relatively popular. In the study 

of the structure of microscopic specimens, due to the monocular view of the microscope, 

the view of the specimens is limited to two dimensions. Therefore, the 3D structure of the 

specimens has to be constructed from a series of 2D images [FKU77]. Likewise, medical 

scanning devices such as Magnetic Resonance Imaging (MRI) scanner or Computed To­

mography (CT) scanner can only generate 2D images of internal body parts. For diagnosis 

purpose, sometimes it is required of the physicians to view the 3D structure of the objects. 

In general, the process of modeling 3D object from contour lines requires three main steps. 
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In the first step, the contour lines of desired features are identified and extracted from 

2D images as a set of discrete points as shown in Figure 2. In the second step, the curve 

reconstruction algorithm constructs the polygonal curves for each corresponding point set, 

as illustrated in Figure 3. A point set may include multiple curves with various features 

such as sharp corners or boundaries. Eventually, pairs of constructed curves in neighbor­

ing section are stacked together to generate the mesh over the contour lines as shown in 

Figure 4. The final structure of the reconstructed 3D object will be defined by creating 

the surface over these wire-frame contours. 

(a) Input (b) Output 

Figure 1: A curve reconstruction problem. 

Figure 2: A set of contour points extracted from 2D images. 

Figure 3: The contour points are connected to form curves. 

A critical factor in the curve reconstruction problem is to define the criteria for connect­

ing the unorganized points. One of such criteria is that the curves must be reconstructed in 
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Figure 4: Constructed curves and surface in 3D. 

the way that is natural to human perception. This thesis aims to develop a human-vision 

based curve reconstruction algorithm which connect points based on such criterion. 

1.1.2 Objective 2: Graphical password 

Graphical password is an authentication means alternative to textual password, biometric 

password, smart card, etc. In using graphical password, users can select or draw pictures 

to authenticate themselves to the system. A secure password must satisfy two basic re­

quirements: 1) it must be memorable by its owners, 2) it must be difficult to be guessed by 

attackers. Textual password has been a popular authentication mean. However, with the 

increasing growth in computer hardware and software, many current textual password may 

not be able to satisfy the two requirements. It is well known that a strong textual pass­

word must be random and long enough. However this means the password will be hard 

to memorize by its owner. To solve this problem, researchers have proposed graphical 

password. 

Graphical passwords are classified into two groups: picture based password and user-

drawn based password [Tao]. In the picture based graphical password, users are asked to 

choose pictures as their secret. In general, the pictures are provided by the system but 

in some password schemes users can even upload their own pictures. The authentication 

is successful when users can prove that they know the secret (e.g. by correctly choosing 

the pre-selected images). In the user-drawn based graphical password, users are required 
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to draw an image on a provided canvas. The authentication is successful when users can 

reproduce the same pattern on the canvas. 

In order to make a graphical password memorable, the password must be intuitive to 

human perception. Therefore, this thesis aims to design a new graphical password scheme 

that helps users to create passwords intuitive to their vision. 

A fundamental hypothesis for this research is that human-vision based curve reconstruc­

tion algorithm is an effective method to crack a graphical password based on unorganized 

points. 

To facilitate subsequent discussions, we introduce some notations and definitions in the 

next section. 

1.2 Notat ions and definitions 

For a finite set of points S = {pi,p2, •••,pm} in Rn , the Euclidean distance between two 

points pi and pj is denoted by d(pi,pj) = \\pi — pj\\. \S\ is the total number of points in 

the finite set P. 

A polyline T is a continuous and piecewise linear curve and is denoted by T = 

[qi,q2, ...,qm}, where q\,q2,..., qm are vertices on the polyline and qt ^ qi+i for all i = 

1, ...,m — 1. If qi ^ qm, then T is an open curve; otherwise, T is a closed curve. For any 

closed curve T, [qx, q2, ...qm — q\), [q2, ^3,..., qm-i, <7i, Q2] a n d so on are considered the same. 

For any open polyline T — [qi,q2, •••, qm], a point p can be added to T by [p|Tgi] or [Tgm|p], 

respectively. 

A sample is called a free point if there is no edge connected to it; an end point or 

boundary if there is only one edge connected to it; and interior point if there are two edges 

connected to it. 

The distance mean of the polyline T = [qi, q2, ...,qm] and the standard deviation of 

distance are denoted as h^ and aA respectively where 

Em _ 1 ll/> n II 

i=l WQi ~ Qi+l\\ /-,\ 
n<i = : , Uj 

m — 1 
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* d = M / ^ 3 a • 

An open polyline T — [qi, q2,..., <?m] is called a-smooth if: 

(2) 

7T - a < /.(qi-iqiqi+i) < n + a, % = 2,..., m - 1, (3) 

where /.(qt-iqiqi+i) is the angle at vertex % in the halfspace defined as a clockwise rotation 

from the edge joining p and its nearest curve endpoint to the curve segment incident to the 

curve endpoint. Figure 5 shows the angles at vertices of a polyline T. Value a determines 

the smoothness of the curve. The smaller the value a is, the smoother the curve is. 

Figure 5: Angles at curve vertices 

1.3 Literature review 

1.3.1 Curve reconstruction 

Because of its importance in various application domains, curve reconstruction has been 

attracting numerous research attention over the last three decades. In this thesis, we con­

sider only simple curves that do not have intersections. Thus, the term curve(s) mentioned 

in the thesis is implicitly referred to simple curve (s). There are mainly two kinds of simple 

curves: open and closed curves. A curve without sharp corner is called smooth curve. In 

curve reconstruction problem, to construct the desired curves, the points in a point set must 

satisfy certain condition, called sampling condition. The process of generate points from 

a curve is called sampling. A curve can be sampled either uniformly or non-uniformly. 



There are a few algorithms working for uniformly sampled curves such as alpha-shape 

[EKS83], r-regular shape [Att98] and EMST [dFdMG94]. There are other algorithms that 

work for non-uniformly sampled curves such as CRUST [ABE98, Gol99], Nearest Neigh­

bor (NN or NN-CRUST) [DK99], Conservative Crust (CC) [DMR99], Traveling Salesman 

Path (TSP) [AMOO, Gie99] and GATHAN [DW01, DW02]. Non-uniform sampling allows 

sparser sampling at less detailed section of the curve while uniform sampling unnecessarily 

requires dense sampling in areas where sparse sampling should be enough. Most of the 

existing algorithms for non-uniform sample requires the sampling points to be an e-sample. 

A point set S is called an e-sample of a curve T if any point p on T has a sample within 

distance 7/(p) where 7 is a constant factor and f(p) is local feature size at p defined as 

minimum Euclidean distance from p to medial axis [Dey07]. 

The first provable curve reconstruction algorithm for simple close smooth curves is 

given by Amenta et al. named CRUST [ABE98]. The paper proves that for 7 < 0.252 the 

polygonal reconstruction of a curve is the crust. The crust is constructed by computing De-

launay triangulation on the set of sampling points and Voronoi vertices, and choosing only 

Delaunay edges which have the endpoints belonging to the set of sampling points. Later, 

Dey-Kumar presented Nearest Neighbor algorithm [DK99] which is based on CRUST. The 

algorithm constructs simple close smooth curves by connecting each point to its nearest 

neighbor; then, for each point p that is incident to only one edge e, the algorithm connects 

p to its nearest neighbor in the other halfspace orthogonal to e. In fact, NN-CRUST is 

based on CRUST but with better sampling density. To deal with open curves, Dey et al. 

proposed Conservative Crust [DMR99]. The algorithm constructs the curve by computing 

Delaunay triangulation on the sampling points and choosing only Delaunay edge e which 

has an empty ball of Voronoi vertices centering at the midpoint of e with radius - ^ where 

A; is a parameter for the algorithm and /(e) is the length of edge e. Then it filters all cho­

sen edges e that have a large enough ball centering at the midpoint of e containing a zero 

degree or one degree vertices. Conservative Crust presents 7 as a constant c multiplied 

by parameter k. Later, Funke and Ramos used Conservative Crust with different sam­

pling condition near corner points to guarantee construction of open non-smooth curves 

[FR01]. In 1999, Dey and Wenger proposed an algorithm, named GATHAN, which can 
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construct curves with sharp corners [DW01]. The algorithm has different sampling con­

ditions for non-smooth regions and smooth regions of the curve. The sampling density 

near non-smooth regions is dependent on the angle of the sharp corner. Nevertheless, the 

authors does not guarantee the reconstruction result of their algorithm. In 2002, a guaran­

tee version of GATHAN is introduced called GATHANG [DW02]. Another algorithm can 

reconstruct non-smooth curve is based on traveling salesman problem (TSP). TSP-based 

algorithm defines a modified cost function to set the sampling condition for every two 

adjacent sample points on a curve [AM00]. This condition results in a sparser sampling 

density compared to CRUST, NN-CRUST and CC [AMNS00]. According to [AMNS00], 

the TSP algorithm also works for the same sampling condition proposed in the algorithms 

CRUST, NN and CC [AMNS00]. However, TSP only handles close single curve. Recently, 

a parameter-free, distance-based algorithm DISCUR proposed in [ZNYL08] requires nei­

ther parameters in the algorithm nor parameters in the sampling condition. Algorithm 

DISCUR connects the sample points based on the observation that human eyes tends to 

group near points together given that they are close enough. This observation is called 

nearness property. Guaranteed reconstruction of DISCUR algorithm is based on two the­

orems. The first theorem provides sampling condition for sampling interior points while 

the second theorem ensures that boundaries are detected correctly. DISCUR is proved to 

correctly reconstruct non-smooth open curves. However, since DISCUR uses only nearness 

to quantify human visual perception, it requires very dense sampling near corner areas and 

it may not guarantee construction when there exists a sample p which has more than one 

neighbor with equal shortest distance to p. To address these problems, Nguyen and Zeng 

proposed VICUR which considers, in addition to the nearness property, a second observa­

tion that human eye tends to connect points to form a smooth curve, named smoothness 

property [NZ08]. The algorithm associates each property with a parameter to determine 

which property has stronger influence than the other during the connection process. 
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1.3.2 Graphical password 

In this section, a literature review of graphical password will be given. As mentioned 

in Section 1.1.2, graphical password is categorized into user-drawn based and picture-

based. The password scheme proposed in this thesis belongs to user-drawn based graphical 

password. Thus, the literature review of graphical password will solely focus on this 

category. There are many existing scheme in the literature. We hardly mention all of 

them, instead, we cover the initial user-drawn based graphical password scheme and some 

of its variants. The first user-drawn based password was proposed by Jermyn et al., named 

DAS [JMM+99]. In DAS, users create their passwords by drawing pictures on a G x G 

grid, G is a positive integer. To pass the authentication, users have to reproduce the same 

images in the same order that the images were drawn. Figure 6 shows an example of a 

DAS password drawn on a 4 x 4 grid. The password is encoded by recording the sequences 

of cells being passed by in the same order as the drawing is created. Each cell in the 

grid is mapped to coordinates (x,y) that belong to [ 1 . . . G] x [ 1 . . . G]. A DAS password 

can contain several strokes. Each strokes are separated by a "pen-up" event denoted by 

(G + 1,G + 1). For example, the encoding for the image in Figure 1 is: (2,2), (3,2), (3,3), 

(2,3), (2,2), (2,1), (5,5). In this example, the pair (5,5) is a "pen-up" event. 

The authors of DAS scheme shows that DAS's memorable password space is larger 

than that of textual password. 

In 2008, Van Oorschot et al. proposed a graphical password dictionary that consti­

tutes: 1) mirror symmetrically drawn patterns denoted as Class 51, and 2) the number 

of components less than four denoted as Class 5*2, based on the assumption that these 

two classes contain passwords which are easy to memorize [vOT08]. The assumption is 

supported by a user study conducted by Tao [Tao]. The study was conducted with 167 

subjects showing that when no password policy is applied, 72% of created passwords fall 

into Class 52, and 41% of created passwords fall into Class 51. In addition, the actual 

memorable password space, which corresponds to the combination of Class 51 and Class 

52 with the password length equal to 12 on 5 x 5 grid, of the original DAS scheme is only 

40 bits versus 58 bits of full space. 
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This result shows that attacker aiming at DAS may not lack of knowledge of password 

distribution as assume in [JMM+99]. 

1 2 3 4 

V " [_ — T 

— r — , — i _ 

Figure 6: A DAS example password on 4x4 grid [JMM+99]. 

In [TvO04], the authors claim that given the current user choice of password in a 5 x 5 

DAS grid, increasing the grid size will increase the size of memorable password space. To 

minimize the negative impact of the increase in grid size on usability, the authors proposes 

a selection grid technique in which users select the drawing region; the region will be 

zoomed in and users can proceed to draw the password on the chosen region as they do in 

5 x 5 DAS scheme. An example of grid selection DAS is illustrated in Figure 7. 

Figure 7: Grid selection [TvO04]. 

In the DAS scheme, the center of the grid is more likely to be chosen as the location 

to create passwords. This common choice makes DAS password highly predictable or 

susceptible to graphical dictionary attack. To address this problem Chalkias et al. [CAS06] 

proposed multi-grid DAS. Multi-grid DAS divides the grid into unequal-sized cells as shown 



in Figure 8. Based on user study of 30 participants from non-technical and technical 

background, the result shows the advantage of multi-grid DAS over the original DAS in 

a decrease in grid-centered password and an increase in the numbers of users who can 

memorize the location of their passwords. However, the percentage of ordering errors, 

which is errors occurring when the password is not drawed in the same order as initially 

created, stays the same and even increases in non-technical user group. 

Figure 8: A multigrid DAS example [CAS06]. 

Later, in 2007, Dunphy et al. introduced a background image to DAS, called BDAS [DNO08]. 

Based on the study conducted on the total of 67 participants, the authors claims that in 

BDAS, users tend to create more complex passwords: the password is longer, numbers 

of components are greater and symmetric and centering drawings is reduced whereas the 

recall success rate is comparable to DAS. However, the negative impacts of the background 

image on the password choice is not explored in the paper although it is believed that the 

background image does provide attackers more information of password distribution and 

password patterns. 

Figure 9: A BDAS password example [DY07]. 

Tao proposed another variant of DAS, called Pass-Go [Tao], illustrated in Figure 10. 
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Pass-Go requires the drawing to pass corner of the cells instead of passing the area of the 

cells. Therefore, the scheme allows users to create diagonal lines as well as provides users 

greater number of turns. For instance, starting at one point, user can go up, down, right, 

left, up-left, up-right, down-left, down-right to create a line; in DAS, users can only go 

up, down, left or right. Pass-Go has the smallest dictionary 3.3 times larger than text 

based password containing 7 alphanumeric character (including A-Z, a-z, 0-9). Compared 

to DAS, Pass-Go is claimed to be better resistant to symmetric dictionary attack. 

—.— _ 

1 1 M 

- +-
1| , 

^ 
1 

! 

1 2 3 4 5 6 7 8 9 

Figure 10: A Pass-Go password example [Tao]. 

1.4 Research contribution 

The main contributions of this present thesis are listed as follows: 

1. The necessary and sufficient sampling conditions are proposed and proved for a new 

curve reconstruction algorithm - DISCUR. 

2. A new curve reconstruction algorithm, VICUR is proposed based on human vision. 

3. A new graphical password scheme is proposed by taking a multidisciplinary approach 

combining visual perception, computational geometry and computer security. 
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1.5 Thesis organization 

The thesis is organized as follows: Chapter 2 gives readers an overview of the relationships 

between vision, curve reconstruction and graphical password. The two current vision-

based curve reconstruction algorithms DISCUR and VICUR are presented in Chapter 3 

and 4, respectively. Chapter 5 proposes a new graphical password scheme and evaluates the 

memorable password space using vision-based curve reconstruction algorithm. Eventually, 

conclusions and future works are presented in Chapter 6 . 
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Chapter 2 

Human-vision based curve 

reconstruction algorithm and 

graphical password: A research 

framework 

Curve reconstruction belongs to the area of computational geometry whereas password 

design belongs to computer cryptography. Although they appear to be two distant research 

problems, this chapter shows how these two problems are related and introduces the basic 

concepts underlying this present research. 

2.1 Logical connection between curve reconstruction 

and user-drawn based graphical password 

Curve reconstruction deals with how to connect points so that the original curve can be 

reconstructed from unorganized points as shown in Figure 11. Most existing algorithms in 

the literature address the problem from the geometric point of view [Dey07]. Motivated 

by the fact that human can visualize a curve from a set of points, we have developed a 

set of vision based curve reconstruction algorithms [ZNYL08] [NZ08]. Those algorithms 
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Figure 11: Overview of curve reconstruction problem. 

intend to simulate human vision in the context of curve reconstruction problem. 

The user-drawn based graphical password schemes let users create a password by draw­

ing on a given canvas. Obviously, the number of possible drawings is huge. Hence, theo­

retically the chance for an attacker to select the correct password would be very low. The 

most efficient way for the attacker to select the correct password is to firstly try the draw­

ings that users are likely to draw. For example, in the DAS scheme, users tend to create 

symmetric passwords, which reflect about the central horizonal and vertical axes [vOT08]. 

Figure 12a) and c) respectively shows a user's password and the highest probability reflec­

tion axes that will be used by an attacker as the basic knowledge of password distribution. 

This knowledge is used to simulate the way how users will create passwords. Similarly, in 

our proposed password scheme, users are given a set of points from which they can create 

the drawings by connecting any two points as shown in Figure 13. It is reasonable to 

assume that in this scheme users will draw the password intuitive to their eyes. Thus, the 

created password may be the subset of reconstruction result of human-vision based curve 

reconstruction algorithms. 

The rest of this chapter will introduce Gestalt laws of human visual perception, followed 

by a brief analysis of the relations between Gestalt laws and curve reconstruction and 

between human-vision based curve reconstruction and graphical password. 

14 
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Figure 12: Cracking DAS scheme: many users' passwords are positioned in the center of 

the grid and have components symmetric about the central horizontal and vertical axes. 

Attackers can use this knowledge to crack the password. 
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Figure 13: Cracking proposed graphical password scheme: it is assumed that users are 

likely to create drawings that look natural to their vision. Such drawings may be a subset 

of vision based curve reconstruction result, which can be used by attackers to crack the 

password. 
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2.2 Introduction to Gestalt Law 

Gestalt in German means shape or form. The principles of Gestalt theory are known to 

be proposed by Max Wertheimer in 1912, then further developed and promoted by his 

colleagues Kohler and Koffka. Gestalt concept initially emerged in Ehrenfels's 1890 paper 

"On Gestalt Qualities" [KW07] as apposed to atomism. Atomism believes that our mind 

perceives the whole as summation of the parts whereas Ehrenfels believed the whole is 

summation of the parts plus Gestalt Qualities. Wertheimer, on the other hand, proposed 

the idea of Gestalt theory in which he stated that the whole is even different from the 

summation of its parts, the whole has an inherent structure of itself named Gestalten in 

which the parts are mutually related with each other and their properties are determined 

by the structural law of the Gestalten. In an attempt to find such structural laws, Max 

introduced five laws of perceptual organization. 

1. Law of proximity or nearness: our vision tends to perceptually group near objects 

together. The law of proximity is illustrated in Figure 14(a), we see three columns 

instead of four rows because the distance between the circles in each column is closer 

than the distance between the circles in each row. 

2. Law of similarity: our vision tends to group together objects similar in features. In 

Figure 14(b), the black circles are perceptually grouped into one set and the white 

circles are perceptually grouped into another set. 

3. Law of continuity: objects following a consistent continuous direction are perceptu­

ally grouped together. Figure 14(c) shows the law of continuity, in the picture we 

perceive two smooth lines cross each other instead of four line segments touching at 

one vertex or two V curves touching at their sharp corners. 

4. Law of closure: our vision tends to perceive a whole to maintain the balance and 

harmony of the structure. Figure 14(d) shows the law of closure, we perceptually 

complete the gap between the lines to perceive the complete shape S. 

5. Law of common fate: our vision tends to group objects that move in the same motion. 
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Figure 14: Gestalt laws of perceptual organization. 

These laws are all rooted in the law of Pragnanz which states that human mind tends 

to group the parts to a simple formation. The Gestalt laws of perceptual organization 

had an enormous impact on the field of perception at Wertheimer's time and continues to 

leave its trace in modern perceptual research. However, it should be noted that Gestalt 

theory is not merely the theory of perception. Rather, the study of perception is used to 

demonstrate the Gestalt theory. 

2.3 Relationship between Gestalt Law and vision-based 

curve reconstruction 

According to the Gestalt law of closure, human tend to form objects that are incomplete 

to form an entire structure. As illustrated in Figure 15(a), we can perceive a round shape 

out of a collection of separate points. This property of human perception motivates us 

to develop a vision-based curve reconstruction algorithm which can connect points into 

curves that are similar to the curves perceptually constructed by human vision. Thus, 
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the result of the vision-based reconstruction from the points in Figure 15(a) is a polygon 

as shown in Figure 15(c), which is similar to the curve perceived by our mind shown in 

Figure 15(b). 

(a) A set of points 

(b) How human sees (c) Correct reconstruction 
result of a vision-based algo­
rithm 

Figure 15: Human perception and vision-based curve reconstruction algorithm. 

In the context of curve reconstruction, we observed that the law of proximity and the 

law of continuity are relevant. Therefore, our algorithm is developed based on two criteria: 

1) nearest points should be connected, and 2) points should be connected to form a smooth 

curve. 

A good curve reconstruction should be able to correctly construct closed curves, open 

curves, curve with sharp corners and multiple curves. To achieve this objective, we intro­

duce a function called connectivity function to determine when a sample point p should 

be connected to a curve T. The connectivity function can be denoted by 

E\p,T\ = f(p,V) (4) 

where V is a vector that includes statistical properties of the curve segment T, such as the 
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distance mean, distance standard deviation, angle mean, and angle standard deviation. 

The function f(p, V) can be obtained through experiments or through observations. 

However, in some cases, conflict may arise as depicted in Figure 16. According to 

criterion number one, point q± should be connected to point q*> because point q5 is closer to 

point q\ than point qe, but according to criteria number two, point q^ should be connected 

to point q$ because the connection between q\ and q6 will result in a smoother curve. To 

solve this problem, we propose two solutions. The first solution is to avoid such a conflict 

by considering only nearness property. This solution implies that any points connected 

based on nearness property also forms a smooth curve. The second solution considers 

both criteria and introduces additional parameters to evaluate which criteria should be 

followed when conflict occurs. The two solutions are implemented in DISCUR and VICUR 

algorithms, respectively. More details about these two algorithms will be given in Chapter 3 

and Chapter 4 of the present thesis. 

Figure 16: A case of conflict. 

2.4 Relationship between human-vision based curve 

reconstruction algorithms and graphical password 

In creating a password, users try to satisfy the following requirements explicitly or implic­

itly: 

1. The password has to be easily to remember. 

2. The password needs to be easy to input. 
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3. The password must be difficult to be cracked. 

To satisfy the first requirement, the graphical password should be natural to human 

vision since the major advantage of the graphical password is its intuitiveness, which is 

advantageous for human memory. To satisfy the second requirement, the length of the 

password must not be too long. To satisfy the third requirement, the password either has 

to be random enough so that it is hard to be guessed or the password space has to be large 

enough so that it will be computationally infeasible to select the correct password for an 

attacker. 

From the first requirement, it is reasonable to assume that users will select the pass­

words that look natural or meaningful to their vision. Consequently, the attacker can 

reconstruct the entire curves by using human-vision based curve reconstruction algorithms 

and the users' passwords may be parts of the reconstructed curves. 

Assumingly, from the attacker's point of view, there are three main ways to crack the 

proposed password: 

1. Perform an exhaustive search. 

2. Reconstruct the curves on the whole point set and take the reconstructed curves as 

the foundation for password guessing. 

3. Choose a subset of points from the point set, reconstruct the curves on the subset 

and take the reconstructed curves as the foundation for password guessing. 

If the password space is relatively large, the first approach is unrealistic. Both the 

second and the third approach can be conducted by using vision-based curve reconstruction 

algorithms. The difference is the curve reconstruction algorithms construct curves on the 

whole point set in the second approach while it constructs curves on a subset of the point 

set in the third approach. Figure 2.4b) shows different password drawings. The first 

approach can help attackers to find the drawing (1), which consists of multiple edges or 

intersecting curves; the second approach can help attackers to find the drawing (2), which 

is the subset of the curve reconstruction result and the third approach can produce the 

drawing (3), which is the subset of the reconstruction result on the subset of the point set. 
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Figure 17: An example of a graphical password 

2.5 Summary 

This chapter discusses the relationships between visual perception, curve reconstruction, 

and graphical password. Visual perception is the foundation of curve reconstruction and 

graphical password in that a curve should be reconstructed from unorganized points in 

a way that is natural to human vision and a graphic password created from unorganized 

points should also look natural to the owner's visual perception. Human vision based curve 

reconstruction will be used to evaluate the security property of the proposed graphical 

password scheme. Based on this research framework, the following three chapters will 

address the following three issues. First, how to reconstruct the curves based only on 

nearness property. Second, how to reconstruct the curves by considering the nearness and 

the smoothness properties of human visual perception, third, how to evaluate the proposed 

graphical password scheme based on the principles of human vision and the capacity of 

vision based curve reconstruction algorithms. 
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Chapter 3 

DISCUR algorithm: simulation of 

nearness property of human vision in 

the context of curve reconstruction 

DISCUR algorithm reconstructs curves using Gestalt perceptual law of proximity which 

means that satisfying nearness property implies that smoothness property is also satisfied. 

DISCUR is guaranteed to reconstruct curves correctly from unorganized points 

3.1 Simulation of nearness property 

Based on the vision function defined in Equation 4, the following two rules can be used to 

determine the connectivity of two potentially connectable samples: 

Rule 1: point-curve connectivity. For a curve T = [qi,q2, ...,qi],i > 1, which is 

partially reconstructed from a sample set S, suppose that there exists a sample point p G S 

that is the nearest neighbor to q = qi (or qi). If d(p,q) < E[p,Tq], then p and q can be 

connected. 

Rule 2: curve-curve connectivity. For two curves T1 = [qi, q2,..., qi],T2 = [p\,P2, •••,Pj], 

i,j > 1, which is partially reconstructed from a sample set S, if q\ (or qt) and T2 or px (or 

Pj) and T1 can be connected by Rule 1, then these two curves can be connected. 

In the following, a concrete form of Equation 4, which considers only distance in the 
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equation, is given as follows [ZNYL08]: 

E\p,Tq} = hd-(l + ^)% (5) 
s <?d 

where /i = lJ^,s = ^f1, ô = d(%-i,9i) (or f0 = d(q2,qi)), and Z = d{p,qi) {oil = d(p,ql)). 

ad and /i^ are defined in Equation 1 and 2, respectively. 

Equation 5 shows that the connectivity between the sample p and the curve Tq depends 

on two relations: the relation of p to Tq, defined by ha and ad, and the relation of p to its 

nearest segment qi-iqi (or qiq2), defined by h and s. 

First, let us examine the case when only one edge has been connected, i.e., Tq = [qi, q2\. 

Therefore, h^ = lo = d(q\,q2), &d — 0- Now we want to connect qz to Tq, let I = d(q3,q2) < 

d(q%, qi). In this case, Rule 1 is reduced to I < IQK It is noted that if the difference between 

I and IQ becomes larger, the ratio of j becomes lower, which means that the probability of 

the connection becomes lower. On the other hand, when the difference between I and IQ is 

smaller, the probability of connection is higher. 

Secondly, let us examine when many edges have been connected, i.e., Tq = [q\,q2, •••qi}-

In this case, Rule 1 identifies two factors that affect the connectivity: the reconstructed 

part of the curve and the edge nearest to the sample to be connected. The former factor 

exerts global requirement on the new edge, the later factor a local requirement. These two 

requirements imply that a new edge should not bring about abrupt change to the already 

constructed part in terms of length and that the new edge should be compatible with its 

neighbor. 
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Figure 18: Graphic illustration of point-curve connectivity. 

Figure 18a) shows that it becomes more probable for the point p to be connected 

to the curve Tq as I approaches l0. In the extreme case, if s = 0, then I = l0 and -

becomes infinity. The point p should be added into the curve Tq. Figure 18b) illustrates 

that the connectivity between p and Tq increases as ad of Tq becomes larger. In the case 

where ad —> 0, (1 + !M)hd = lim(l H—i)h<t = 1. As a result, the criterion is reduced 
"A' 

to I < hd^ = 2|°-H an<^ o n ^ *he boundary segment of Tq will have an effect on the 

connectivity. Intuitively, the value of ad indicates how evenly the curve Tq is sampled. The 

more unevenly the curve is sampled, the further a connectable sample can be away from 

the boundary q of the curve Tq. Figure 18c) presents the third case where a greater hd, 

resulted from fewer sampling points in the curve, will enhance the probability of p being 

connected to Tq. Figure 18d) gives the combined effect of hd and ad on the connectivity 

between p and Tq. 
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3.2 Algorithm 

From the rules in Section 3.1, an algorithm named DISCUR is developed to reconstruct 

multiple simple curves that may be open, close, and with or without sharp corners. The 

major steps of the algorithm is given in Figure 19. 

Algorithm DISCUR(SampleSet : S) 
1: Step 1 - Delaunay triangulation and initialization 
2: Step 2 - Determining the connectivity of Delaunay edges 
3: Step 3 - Updating the connectivity of Delaunay edges 
4: Output the reconstructed curves 

Figure 19: Main steps of DISCUR. 

DISCUR takes a set of sampling points as input and reconstructs the curve in three 

main steps. Step 1 computes the Delaunay triangulation for the sample set S and initializes 

the connectivity properties of sample points and Delaunay edges. Step 2 processes all the 

Delaunay edges to determine which edges should be connected, which edges should be 

removed, and which edges should be retained for further processing. Step 3 processes the 

Delaunay edges retained in Step 2 and completes the curve reconstruction. 

In the first step, the algorithm computes Delaunay triangulation, marks all these De­

launay edges as 0 and initializes the degree for each sampling point to 0. Variable mark[e] 

for a Delaunay edge e has two possible values: 0 and 1. If the edge e is not yet processed 

for connectivity then 0 is assigned to mark[e] in Step 2 and to 1 in Step 3; however, if e 

is found to be the shortest edge but cannot be connected because of its connectivity value 

E defined by Equation 5 then mark[e] — 1 in Step 2 and mark[e\ = 0 in Step 3. Variable 

degree[p] for a sample p is used to track the number of shortest Delaunay edges that are 

adjacent to p. Only two nearest neighbors to p should be considered for connection to p, 

which makes 2 the maximum degrees of a sample. As soon as degree[p] is equal to 2, it is 

not necessary to check other points for connection to p. 

It should be noted that there are cases when degree\p] = 2 and p is still a free point. 

Figure 20 illustrates such case. Figure 20b) shows that there is Delaunay edge between 

points p\ and p2 but p\ and p2 are not connected to each other even they are free points as 
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shown in Figure 20c). The reason is that degree\p2] is already 2 because p3 and p$ should 

have been connected to p2 if their connectivity value E were greater than their distances. 

This yields a reconstruction acceptable to human perception as shown in Figure 20c). 

Pseudocode of the first step is given in Figure 21. 

Pi 

ft 

a) Sampling points 

P". 

/ 
P3 " P4 

P2 

c) Reconstruction result 

Figure 20: Meaning of variable degree. 

Step 1 Delaunay triangulation and initialization 
1: Compute the Delaunay triangulation of S 
2: Let De be the set of Delaunay edge 
3: for all e G De do 
4: mark[e] <— 0 
5: end for 
6: for all p G S do 
7: degree[p] <— 0 
8: end for 

Figure 21: Step 1 of DISCUR. 

The second step determines the connectivity of each shortest Delaunay edge. The 

pseudocode is shown in Figure 22. As the shortest Delaunay edge e is found, the degree 

for each vertex incident to the edge e will increase by 1 (line 2). When the degree values 

of both vertices of the edge e are 0, they are connected directly and the Delaunay edge 

is removed (line 3 and 4). Otherwise, the connectivity value at each vertex should be 

computed (line 6 to 12). Two vertices should be connected if either Rule 1 or Rule 2 is 

satisfied (line 13 and 14). If two vertices cannot be connected at this step, the edge is 

marked as 1 so that it can be considered again in Step 3 (line 16). The reason for this is 
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that the connectivity value E may change as the curve may extend. As mentioned in Step 

1, when two nearest neighbors to a sample point p are found, other neighbors should not 

be considered. Therefore, all other adjacent Delaunay edges to p will be removed (line 19 

to 25). 

Step 2 Determining the connectivity of Delaunay edges 
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for each shortest Delaunay edge e = \pi,Pj] € De and mark[e] — 0 do 
degree\pi] <— degree\pi] + 1, degree\pj] <— degree\pj] + 1 
if both pi and Pj are free points then 

Connect pi and pj, De <— De — {e} 
else 

for each pi e {Pi,Pj} do 
P2 +~ Pi + Pj ~ Pi 
E\p2,Tt Pi J 0 
if p\ is an endpoint of a curve TPl then 

Compute the connectivity value E[p2,TPl} 
end if 

end for 
if d(pi,pj) < max(E\puTPj],E\pj,TPi]) then 

Connect pi and pj, De <— De — {e} 
else 

mark[e\ <— 1 
end if 

end if 
for each p € {pi,Pj} do 

if degree[p] = 2 then 
for all e! G -De incident to p and marfc[e'] = 0 do 

De<-De- {e'} 
end for 

end if 
end for 

end for 

Figure 22: Step 2 of DISCUR. 

The third step reconsiders Delaunay edges retained in Step 2 whose values of mark 

were assigned to 1. For each edge e = [pi,pj], if d(pi,pj) > msLx(E[pi,TPj], E[pj, TPi\), e 

is marked as 0 and will be excluded from consideration in the for loop starting at line 

1. This edge e = \pi,Pj] can only be reconsidered when any curve incident to pt or pj 

is updated (line 8 to 14). If d(pi,pj) < max(E[pi,TPj},E[pj,TPi]), then p, and pj will be 

connected. As a result, the curve is extended, which changes the connectivity value E for 

some unconnected Delaunay edges. Thus, as long as the curve is extended, any Delaunay 
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edge incident to the endpoints of this curve should be checked for connection (line 6 to 

16). This step terminates when all Delaunay edges have been examined for connection 

and no more connection can be made. The pseudocode of Step 3 is given in Figure 23. 

Step 3 Updating the connectivity of Delaunay edges 
1: for each Delaunay edge e = \pi,Pj] £ De and mark[e] — 1 do 

if d(pi,pj) < max(E\pi,TPj], E\pj,TPi}) then 
Connect pt and pj 
De+-De- {e} 
Tl^[TPi\TVj\ 
repeat 

T 2 ^ 0 

for each Delaunay edge e = [pm,pn] incident to an endpoint of T1 

do 
if d(pm,pn) < max(E\pm,TPn}, E\pn,TPm}) then 

Connect pm and pn 

De<-De- {e} 
T 2 ^ 

end if 
end for 
Tl <— T2 

until T1 = 0 
else 

mark[e] — 0 
end if 

end for 

l-'Pml-'pnJ 

Figure 23: Step 3 of DISCUR. 

The procedures included in this algorithm is illustrated in Figure 24, where images 

without Delaunay triangulation are included to improve the visibility of reconstructed 

curves. Figure 24a) shows the input of this algorithm, which is a set of sampling points; the 

corresponding Delaunay triangulation is also given. In Figure 24b), [pi,P2] is the shortest 

Delaunay edge and both p\ and p2 are free points; the first edge [pi,P2] is then connected 

and removed from De. Figure 24c) shows an intermediate step where [p3,p<i] is the current 

shortest Delaunay edge and the sample p\ is an interior point. After the edge [p3,p4J is 

connected, all the Delaunay edges connected to p4 are removed from De. In Figure 24d), 

the current shortest Delaunay edge is [pi,Ps] and both pi and ps are endpoints. Obviously, 

these two points has a shorter distance than many connected edges. The edge [pi,Ps] is 

still a Delaunay edge because it was marked as 1 when it could not be connected earlier 
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(a) Original sampling points and its Delaunay triangulation 

Shortest Delaunay 
e d g e p , p 2 . .•••• 

Pi 

Shortest Delaunay 
edge p3p4 

(b) Connection of the first edge 

TPt 

(c) Removal of Delaunay edges after an interior point p4 is generated 

Shortest Delaunay 
edge p,p5 

P2p3"P4 

(d) Generation of an open curve 

Figure 24: Example of the reconstruction process by using DISCUR. 

due to the connectivity value between these two points. At this stage, [pi,ps] is the only 

Delaunay edge left, and TP1 = TP5 = \p\,P2,Pz-,Pi,Pb\- The coordinates of those five points 

are pi(114,131),p2(119,151),p3(143,162),p4(164,151),p5(180,134), respectively. In terms 

of Equation 5, £bi ,TP 5] = 44.274, E[p5,Tpl] = 40.375. Since d(pi,p5) = 66.07 > 44.27, 

points pi and p5 should not be connected and the Delaunay edge [pi,Ps] is removed from 

the set De and no more Delaunay edge exists. The curve reconstruction process ends. 

Figure 25 gives an example of reconstruction of curves with multiple features by using 

this present algorithm. 
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Figure 25: Reconstruction of curves with multiple features. 

3.3 Necessary and sufficient sampling conditions 

Theorem 3.3.1 provides necessary and sufficient conditions for sampling the interior points 

of a curve for DISCUR to work correctly. This deals with Case 1 and 2 as shown in 

Figure 26. Theorem 3.3.2 provides necessary and sufficient conditions for the sampling 

boundary points. 

• V " . p 

"Q /. 

Case 1: wrong connection 
between interior points 

Case 2: wrong connection between 
interior and boundary points 

* 
Case 3: wrong connection 
between boundary points 

Figure 26: Overview of sampling conditions for DISCUR. 

Theorem 3.3.1 Suppose that S is a set of sample points on a curve or a collection of 

curves T. For every sample point p E S, points tp,t^ E S are the two neighbors of p and 

p ^ {ip,ip}- Without loss of generality, assume that rv — d{p,tl
p) — max{d(p,tp),d(p,t^)} 

and C\p,tp] = E[pl,Tpl] — max{E[p,Tti], E[tp,Tp]}. Furthermore, let Np be a subset of S, 

such that Np = {q E S : d(p,q) < rp and q ^ p,tp,tp}. The point p will be connected to 

its neighbors tp and t2
v by Algorithm DISCUR, if and only if the following conditions are 
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satisfied: 

rp < C[p, tp],3Tp, C.T,(p/ — pVpi — tp), and the connectivities 

of all the segments in Tpi do not depend on the connection of [p, tp]. (6) 

[\NP\ = 0] V [d(p,q) >rqAq^ t2
q,Vq € Np}. (7) 

where E\p,Tti] and E[tp,Tp] are the vision function defined in the form of Equation 5 

and rq = d(q, t\) = max{d(q, t\),d{q, t2
q)}. 

The following will provide a mathematical proof of Theorem 3.3.1. The proof of this 

theorem includes two parts. First, the sufficient condition will be proven by showing that 

the algorithm will reconstruct the curve correctly when both conditions in (6) and (7) are 

satisfied. Secondly, the necessary condition will be proven by showing that the algorithm 

will not guarantee the correct connection when any of the condition in (6) and (7) is not 

satisfied. 

[Proof] Proof of sufficient condition. 

Case 1: consider the conditions rp < max{E[p,Tti],E[tp,Tp]}, 3Tti,Tp and \NP\ — 0. 

For any point p £ S, there is no other point q other than its neighbors tp and t2
p such that 

d(p,q) < rp because |7Vp| = 0. Thus [p, tp] and [p,tp] must be the shortest and the second 

shortest edges incident to point p. Hence, for the shortest edge e — [pi,Pj] € De found in 

Algorithm DISCUR, Pj must be one of the two neighbors of p;. There are following three 

possibilities: 

1. Both pi and pj are free points. In this case, pt and pj will be connected directly. 

2. One of pi and pj is a free point. Without loss of generality, let us assume that pj is 

a free point. Let p, = p. If pj = tp, then d(pi,pj) < d{pi,tl). In this case, the edge 

[pi,Pj] would have to be considered before the edge [Pi,tp] when p, was still a free 

point. Hence, pj must be tp. By (6) we have rp < max{E[p,Tti],E[tp,Tp]},3Tti,Tp. 

Therefore, pi and pj will be connected by the algorithm DISCUR. 

3. Both pi and pj are end points. Suppose that U and tj are respectively the other 
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neighbors of pt and Pj. If d(pi,Pj) < d(pi,ti) and d(pi,pj) < d(pj,tj), then the edge 

[pi,Pj] would have to be considered before the edges \pi,U] and \pj,tj] when both p{ 

and pj were still free points. Hence, d(pi,pj) must be greater than or equal to one 

of d(pi,ti) and d(pj,tj). Assume that d(pi,pj) > d(pi,ti). Hence, p% = p and Pj = tp. 

By (6) we have rp < max{E[p,Tti], E[tp,Tp]},3Tti,Tp. Therefore, pi and Pj will be 

connected by the algorithm DISCUR. 

Case 2: consider the condition rp < max{E[p, Tti],E[tp, Tp}}, 3Tti, Tp and \NP\ ^ 0 but 

d{p,q) > rq A q ^ t2
q,Vq £ Np. 

Without loss of generality, suppose that w € Np is the sample closest to p. In this situation, 

w is not a boundary point (w ^ t^) and rw < max{E[w, TJiJ, E[tl
w,Tw}}, 3Tt^,Tw because 

(6) applies to any sample point. Moreover, p ^ Nw since d(p,w) > rw. So, w will be 

connected with its own neighbors, which do not include p. As a result, u; becomes an 

interior point and degree(p) = 2. According to the algorithm DISCUR, Delaunay edge 

[w,p] will be removed from De. This process applies to all the samples in Np, which will 

make \NP\ to be 0. Therefore, p can be correctly connected with its neighbors in terms of 

Case 1. 

In summary, if the conditions in (6) and (7) are met, the curves will be correctly 

reconstructed. This proves the sufficient condition. 

Proof of Necessary condition. 

Case 1: suppose that the condition given in (6) is not met. 

In this case, there exists at least one sample point p € S such that rp > max{E\p,Tti], 

Elt^Tp}}, VTti,Tp. According to Algorithm DISCUR, p and tx
p will not be connected, 

which is not correct. 

Case 2: suppose that the condition given in (6)is met; but \NP\ ^ 0 and there exists a 

boundary point w £ Np such that d(p,w) > rw. 

Without loss of generality, assume that w is the closest to p, among all the boundary points 

in Np. Since it; is a boundary point, t^ — w, d(w,t^) = 0 and rw = d{w,tl
w). However, 

according to Algorithm DISCUR, [w, t^] and [p, w] are respectively the shortest and the 

second shortest edges incident to w. It can be assumed that no other points are closer to 
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w than p. Since d(p,w) < rp, the degrees of p and w will be increased by 1. As a result, 

one of the two neighbors of the point p will not be connectable to p. 

Case 3: suppose that the condition given in (6) is met, but \NP\ ^ 0Ad(p,q) < rqAq^ 

t2
q,VqeNp. 

In this case, there exists at least one non-boundary sample point p such that a non-

boundary point q £ Np will make d(p, q) < rq and d(p, q) < rp. Under this circumstance, 

there exist following possible scenarios: 

1. If d(p, q) < rq and d(p, q) < rp 

- Both p and q are free points. As a result of Algorithm DISCUR, p and q 

will be connected, which makes at least one of p's(and g's) own neighbors not 

connectable to p (and q). 

- Neither p nor q is a free point, [p, q] is the shortest Delaunay edge incident to 

both p and q. According to Algorithm DISCUR, the degrees of p and q will be 

increased to 2. As a result, all other Delaunay edges incident to p and q will be 

removed from De, which makes p's(and q's) second neighbor not connectable to 

p (and q). 

- Without loss of generality, suppose that p is free but q is not. According to Algo­

rithm DISCUR, the degrees of p and q will be increased by 1 since d(p, q) < rq 

and d(p, q) < rp. As a result, degree(q) — 2 and all other Delaunay edges 

incident to q will be removed from De. This makes q's second neighbor not 

connectable to q. 

2. If d(p, q) = rp or d(p, q) = rq 

Edges \p,q] and \p,tp] (or [q,ii]) are the second shortest incident to p (or q). By 

(6) we have d(p,q) - rp < max{E\p,Tti],E[tl,Tp]},irti,Tp (or d{p,q) = rq < 
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max{E[q,Tti], Elt^Tg]}, 3Tti,Tq). Algorithm DISCUR will choose arbitrarily be­

tween [p,q] and [p, tp] (or [q, tq}) for connection. If \p, q] is chosen to be connected, 

then at least one of p's (and q's) own neighbors will not be connected to p (and q). 

In summary, if the conditions (6) or (7) can not be satisfied, at least one sample point 

cannot be guaranteed for the connection to its own neighbor. This proves the necessary 

condition. 

Theorem 3.3.2 Suppose that S is a set of sample points on a curve or a collection of 

curves. For every boundary point p € S, there exists a set Bp, which is a subset of S, 

such that Bp = {q & S : \p,q] is a Delaunay edge}. The point p will guarantee not to 

be connected to any point in Bp by Algorithm DISCUR, if and only if the following two 

conditions are satisfied: 

1. All interior points are sampled according to Theorem 3.3.1 

2. d(p,q) > max{E\p,Tq],E[q,Tp]},Vq € Bp,Tp,Tq. 

where E\p, Tq] and E[q,Tp] are the vision function defined in the form of Equation 5. 

This theorem is self-evident. If both conditions (1) and (2) are satisfied, the curve is 

constructed correctly (as proved in Theorem 3.3.1) and boundary points are not connected 

(from condition (2)). If condition (1) is not satisfied, the curve does not guarantee a correct 

reconstruction as proved in theorem 3.3.1. If condition (2) is not satisfied, boundary points 

p and q are wrongly connected. 

3.4 Comparisons 

In this section, DISCUR and existing algorithms, particularly CRUST [ABE98], NN-

CRUST [DK99], and GATHAN [DW02], are made . 

Table 1 [Dey07] and 2 show a comparison of most existing curve reconstruction al­

gorithms as regard to their sampling condition, their ability to deal with sharp corners 

(smoothness of original curve), their capability to process open curves (curve with bound­

aries), and their ability to reconstruct multiple components. Examples will be given in the 

following to show the performances of these existing algorithms. 
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Table 1: Scope of curve reconstruction algorithms [Dey07] 
Algorithm 

CRUST [ABE98] 
NN-CRUST [DK99] 

TSP [AMOO] 
CC [DMR99] 

Sampling 
Non-uniform 
Non-uniform 
Non-uniform 
Non-uniform 

Smoothness 
Required 
Required 

Not required 
Required 

Boundary 
None 
None 

Must be known 
Any number 

Components 
Multiple 
Multiple 

Single 
Multiple 

Table 2: Scope of GATHAN and DISCUR 
Algorithm Sampling Smoothness Boundary Components 

GATHAN [DW01] [DW02] Non-uniform Not required 
Guaranteed 

Any number 
No guarantee 

Multiple 
No guarantee 

DISCUR [ZNYL08] Non-uniform Not required 
Guaranteed 

Any number 
Guaranteed 

Multiple 
Guaranteed 

3.4.1 Sampling condition and parameters 

Although many existing algorithms can successfully reconstruct curves from " dense enough" 

samples, they require the sampling conditions based on local feature size and have certain 

parameters as inputs. 

(a) Sampling input (b) DISCUR 

(b) GATHAN angle = 10 (d) GATHAN angle = 23 

Figure 27: Reconstruction of GATHAN with different parameters. 

Take the point cloud shown in Figure 27a) as an example, our algorithm DISCUR 

generates two components as shown in Figure 27b), which conforms to human perception. 

GATHAN, however, depends on parameters that in turn depend on the shape of the curve 
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to be reconstructed. Figure 27c) and d) show some reconstruction results from GATHAN 

using minimum corner angle as a parameter. When the minimum corner angle is set to 10°, 

GATHAN would wrongly connect the curve as shown in Figure 27c). After the parameter 

value is set to 23°, GATHAN can reconstruct the sharp corner of the curve correctly. 

3.4.2 Sharp corners 

In the case involving sharp corners as shown in Figure 28, it is very difficult for CRUST 

and NN-CRUST to achieve a reconstruction close to the original curve. With correctly 

chosen parameters, GATHAN can successfully handle curves with sharp corners. 

For the samples given in Figure 28, our parameter-free algorithm DISCUR does not 

obtain desired output since the sampling near the sharp corner violates the sampling 

condition. However, the problem can be corrected easily as in Figure 29b) by adding more 

points to the local area where the sampling connection is violated. 

a) Input points b) CRUST 

c) NN-CRUST d) GATHAN 

Figure 28: Reconstruction of sharp corners. 
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a) Input points b) CRUST 

A ) i A ) K h 
. : 

c) NN-CRUST d)GATHAN e) DISCUR. 

Figure 29: Reconstruction of sharp corner: change of sampling conditions. 

3.4.3 Boundary and multiple components 

In comparison with CRUST and NN-CRUST, DISCUR is able to detect the boundary 

points while NN-CRUST and CRUST wrongly connect them as shown in Figure 30. 

a) Sampling points b) CRUST c) NN-CRUST d) DISCUR 

Figure 30: Reconstruction in the case of open curve. 

3.4.4 Summary of comparison 

Example in Figure 31 shows a more complex sample set, which includes multiple features 

such as uneven samplings, sharp corners, boundaries, and multiple components. 
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a) Input points b) CRUST 

*sV 
i. * ! 

d) GATHAN e) DISCUR c)Dey'sNN 

Figure 31: Reconstruction result from different algorithms. 

3.5 Limitation 

In developing Algorithm DISCUR, we have used only Gestalt law of proximity. The 

algorithm works correctly if sampling conditions in Theorem 3.3.1 are met. However, in 

some cases such as that given in Figure 32a), DISCUR reconstructs the curve as shown 

in Figure 32b), though Figure 33 is more visually acceptable. In order to correct the 

wrong connections by using DISCUR, more sampling points are needed to enforce the 

desired conditions. Alternatively, since the result in Figure 32b) obviously violates the 

smoothness property, the algorithm can be enhanced by adding a quantification of the 

smoothness observation based on angles between two edges to be connected. This research 

is addressed in VICUR algorithm. 

a) Sampling point b) Reconstructed result by DISCUR 

Figure 32: An example of wrong connections. 
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Figure 33: Desired result. 

3.6 Summary 

In this paper, a new algorithm is proposed to reconstruct multiple curves, which may be 

open, closed, and/or with sharp corners. This algorithm is parameter-free. The foundation 

of this algorithm originates from Gestalt law of nearness. To simulate this property, both 

the neighborhood features of a curve and the statistical properties of a set of samples 

are investigated. A general form of vision function E[p,Tq] is proposed to determine the 

connectivity of a point to a curve segment. Then a concrete representation of E[p, Tq] for 

the present algorithm DISCUR is given through observation. 
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Chapter 4 

VICUR algorithm: simulation of 

nearness and smoothness property of 

human vision in the context of curve 

reconstruction 

DISCUR algorithm satisfies the smoothness property in following the nearness property by 

enforcing a necessary and sufficient sampling condition. In relaxing the sampling condition 

near sharp corners and in solving the conflicts between nearness and smoothness properties, 

as was illustrated in Figure 32. In this chapter, we propose a new algorithm, VICUR. 

4.1 Simulation of nearness and smoothness properties 

4.1.1 Connectivity area 

We observe that human eyes tend to connect a point to an existing curve when the point 

lies within a certain area determined by the characteristics of the curve. We name this 

area connectivity area, which is illustrated in Figure 34. 

The connectivity area at an endpoint qi, denoted as A(qi,Rqi), is a set of points 

having the probability of connection to q\ greater than 0 and is defined as a sector of a 
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circle centering at q\ with center angle 9 and radius Rqi — fid where (3 is a parameter and 

d is the average distance of the a-smooth curve. All points within connectivity area are 

called candidate points. Points fall outside the bounded area are considered as outliers. 

» 

(b) 

Figure 34: Connectivity area. 

Figure 34 shows the connectivity area A(q\, Rqi) of a curve T = [<7i, c/2, <73, <74, <7s], p is a 

candidate point, p' is an outlier with respect to q\. 

4.1.2 Connectivity function 

When there are two or more than two sampling points in a connectivity area, all these sam­

ples are candidates to be considered for connection to the corresponding curve endpoint. 

We use the vision function E\p, Tq] = f(p, V) to evaluate the possibility of the connectivity 

for each sample in the connectivity area. In this case, Tq is an a-smooth segment of the 

curve. We set a = 45° for all the experiments. 

From observation and preliminary experiments [Li07] [He08], we derived five factors 

which have the most impact on the construction process. These factors include candidate 

angle, length of candidate segment, average angle, average distance of the curve and stan­

dard deviation of the distance. Based on these elements, a concrete form of the function 
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obtained through observation is given as follows 

*|»rt]-(<4-i)> + (i-c)(^)> + i ) - M 

where bs is the candidate angle, c is a user-defined parameter, b is the angle mean, ds is 

the length of the candidate segment. We assume that if p has the highest value E[p,Tq] 

among other candidate points, then p can be connected to q. 

A^gle a Parameter c 

Figure 35: Relationship between candidate angle and parameter, b = 180° and ds — d 

Figure 35 illustrates the relationship among candidate angle bs, parameter c and the 

connectivity value. Given ds = d and b = 180°, for any parameter c, the connectivity value 

is the largest when the value of the candidate angle bs reaches the value of the angle mean 

b. The effect of the candidate angle bs on the connectivity value increases, when parameter 

c approaches 1. When parameter c equal to 0, the connectivity value remains unchanged 

regardless of the value of the candidate angle because the connectivity value is determined 

by the candidate distance ds only. 

Figure 36: Relationship between candidate distance and parameter, bs = b — 180°. 
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Figure 36 shows the effect of the candidate distance ds and the parameter c on the 

connectivity value. When parameter c approaches 1, the impact of candidate distance ds 

on the connectivity value drops. When the candidate distance ds approaches 0, which 

means that the candidate point is very near curve endpoint, the connectivity value rises 

substantially. When the parameter c approaches 0, the impact of candidate distance da on 

the connectivity value increases. 

Dislancs d5 ° Angle a s 

Figure 37: Relationship between candidate distance and candidate angle, c — 0.8. 

In Figure 37, given the parameter c = 0.8, the largest connectivity value occurs when 

the candidate angle bs reaches the angle mean b and the candidate distance ds approaches 

0. This means points that are very near to the constructed curve endpoint and also form 

the smoothest path with the constructed curve have the high possibility to connect to 

the curve. When the candidate angle bs deviates from the angle mean b, the connectivity 

value decreases. Similarly, when the candidate distance ds is far from curve endpoint, the 

connectivity value decreases. 

In summary, when connecting a point to a curve, two factors should be considered: 

distance from the point to the curve endpoint and the smoothness of the curve after 

the point is connected. If the nearest point to the curve endpoint also forms with the 

constructed curve the smoothest path, connection is easily determined. However, conflict 

arises when the nearest point does not form with the constructed curve a smooth path and 

when a point connects to the constructed curve resulting in the smoothest path is not the 

nearest point. To overcome this difficulty, a parameter c is introduced. 

When parameter c approaches 0, the nearness property becomes more important than 

the smoothness property. In this case, the algorithm tries to connect the nearest neighbor 
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rather than constructing a smooth curve. On the other hand, when parameter c approaches 

1, the algorithm tries to maintain the smoothness of the curve. 

4.1.3 Connectivity rules 

Firstly, we continue to use Gestalt law of proximity, which indicates that human eyes tend 

to connect nearest points to form a curve. However, in some cases two closest neighbors 

are not necessarily two adjacent points on a curve. For example, in the case of sharp 

corner illustrated in Figure 38. Samples p2 and p3 are the nearest neighbors to each other 

but human eyes do not see them being adjacent on the curve. Therefore, an attempt to 

connect any two nearest free points may result in a wrong connection. 

In this case, we observe that the shortest edge p2p3 forms with p3p5 (or p3pi) an angle 

smaller than I(plp3p5). Therefore, before connecting p2 to p3, it should be checked if there 

is an interior angle 7 at p3 (or p2) formed by p2p3 and other incident edges such that 7 is 

larger than other interior angle at p3 (or p2) formed by edges other than p2p3. 

However, there is a case where the edge between two free points forms with other edge 

a largest angle but these two points should not be connected. The situation is illustrated in 

Figure 38 where l{p2p3p&) is the largest angle but p2 should not be connected to p3. This 

leads to another observation: there is a distance for which two points can be considered as 

'a group'. Beyond this value, a point is seen as outlier or belongs to another group. Based 

on our tests, we set the value equal to the average distance of the shortest and second 

shortest Delaunay edges multiplied by a constant cf>. 

Figure 38: Connectivity rule for two free points. 

Secondly, we apply Gestalt law of continuity in the algorithm. Law of continuity states 
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that human eyes connect points into the smoothest path. This property of perception 

suggests that after a point is connected to a curve, it should not change the direction of 

the curve substantially. However, conflict between smoothness and nearness may arise as 

introduced in Chapter 2.3. To deal with the conflict, we add a weight to each property. 

In particular, in the connectivity function E\p,Tq] introduced in Section 4.1.2, parameter 

c is a weight factor for nearness property whereas (1 — c) is a weight factor for smoothness 

property. The weight factor plays as a control to determine which property should be 

followed when conflict occurs. 

We propose the following rules to determine the connection between two samples: 

Rule 1: point-point connectivity. For any shortest edge e = [91,92] where 91 and 92 

are both free points. Let B(qx,r) be a ball centered at qx with radius r = \4>{qxqki + 9i9fc2) 

where qiq^ and qxqk2 are the shortest and second shortest Delaunay edge to qx. For all 

Qi,qj,Qt e B and qi,qj,qt ^ 92, if ^(9t9i9j) < ^(Mifti) where L{qtqxq3) and /.(qiqxq2) are 

the interior angles at qx, then qx and 92 can be connected. 

Rule 2: point-curve connectivity. For an a-smooth curve T = [91,92, •••,9m]) 

m > 1, if there exists a sampling point p E A(qx,Rqi) (or A(qm, Rqm)) such that E\p, Tqi] > 

E[qj,Tqi} (or E[p,TqJ > E[qj,TqJ) for all 9, G A(qx,Rqi) (or A(qm,RqJ) and qj / p, 

then p and gi (or qm) can be connected. 

Rule 3: curve-curve connectivity. For two a-smooth curves T = [91,92, •••,9m], 

T" — [q'x,q'2, ...,q'n],n,m > 1, if qx (or qm) can connect to T" by the rule of point-curve 

connectivity and q[ (or q'm) can connect to T by the rule of point-curve connectivity, then 

these two curves can be connected. 

4.2 Algorithm 

Algorithm VICUR contains two steps, as shown in Figure 39. Step one determines the 

connectivity for each Delaunay edge and step two updates the connectivity when necessary. 

The pseudocodes of the algorithm are given in Figure 40 and 41. 
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Algorithm VICUR(SampleSet: S) 
1: Step 1 - Determining the connectivity of Delaunay edges. 
2: Step 2 - Updating the connectivity of Delaunay edges. 

Figure 39: Overview of VICUR algorithm. 

Step 1 Determining the connectivity of Delaunay edges. 
Compute the Delaunay triangulation of S 
Let De be a set of Delaunay edges 
Let W b e a set of temporarily removed edges 
for each Delaunay edge e = \pi,Pj] G De do 

if pi and pj are both free points then 
Apply point-point connectivity rule 
if pi and Pj cannot be connected then 

R*-RU\pi,pj] 
else 

Connect pt to pj 
end if 

end if 
if Pi is an endpoint of curve T and pj is a free point then 

Consider only a-smooth TPi of curve T. Construct connectivity area A(pi,RPi) 
Let Q = {q:qeA(pi,RPi),piq€ {DeUW)} 
if (\Q\ = 0 ) then 

W^WU\pi,Pj] 
end if 
if (|Q| = 1) then 

Connect Pi to q 
end if 
if (\Q\ > 1) then 

Compute the connectivity value E(q,TPi) for each q G Q 
Choose the point q having the largest corresponding connectivity value to connect to p, 

end if 
end if 
if Pi is an endpoint of curve T and Pj is an endpoint of curve T' then 

Consider only the a-smooth TPi of curve T and Tp. of curve T', respectively 
Construct connectivity area A(pi,RVi),A(pj,Rp.) 
Let Q = {q:q<zA(pi,RPi),Piqe(DuR)} 
Let Q' = {<?' : q' G A(pj,RPj),Pjq' e (DuR)} 
if (|Q| + |Q'| = 0) then 

W^WU\pi,Pj] 
end if 
if (|Q| + |Q'| = 1) then 

Connect pi to q (or connect p, to q' ) 
end if 
if (|Q| + |Q'| > 1) then 

Compute connectivity value E[q,TPi\ for each q e Q and E[q',TPj] for each q' G Q' 
Choose the point with the largest connectivity value to connect to the corresponding 
endpoint 

end if 
end if 
De^De- {e} 

end for 

Figure 40: Step 1 of VICUR. 
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The main idea of the algorithm above is that we first find the closest pair of sampling 

points. If two samples are free, apply rule 1 in Section 4.1.3. If one of the samples is not 

free or both of the samples are not free, construct connectivity area and apply rule 2 or 

rule 3. Currently, value (5 and <f> are set at 1.849 based on observation. 

Step 2 Updating the connectivity of Delaunay edges. 

1: for each Delaunay edge e = \pi,Pj] £ M do 
2: De <- De U {e}] W ^W-{e} 
3: end for 
4: for each Delaunay edge e = \pi,Pj] £ De do 
5: Apply line 5 to 43 in Step 1 
6: if (pi and pj are connected to form a new curve T1) then 
7: repeat 
8: for each e' G (De U W) adjacent to T1 do 
9: Apply line 5 to 43 in Step 1 

10: end for 
11: until (T1 was not extended during line 8 to 10) 
12: end if 
13: end for 

Figure 41: Step 2 of VICUR. 

4.3 Results and comparisons 

4.3.1 Results 

In this section, procedure of VICUR algorithm will be demonstrated. Figure 42 shows input 

sample and corresponding Delaunay triangulation. Figure 43 shows that three situations 

may occur in step 2 of the algorithm. The three situations are described as follows: 

- Figure 43a) shows that p\p2 is the shortest Delaunay edge and both px and p2 are 

free points. The algorithm checks if connection between px and p2 may result in 

potentially wrong connection by drawing a ball B(pi,Rn) as shown in Figure 43b) 

where RPl — ^PlP2^PlP5^. There are six samples in the ball B : Pi,p2,P3,P4,P5,Ps- We 

find that Z(p4PiP5) > L{p2piPA) so p\ and p2 fails the checking test and is temporarily 

removed. 

- Figure 43c) shows prp8 is the shortest Delaunay edge where p-j is an endpoint of TPl = 

[P7iP6] and p8 is endpoint of TPs = [p8,P9,Pw,Pn,Pi2,Pi3\- Construct connectivity 
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area A(p7,RP7) at p7 for TP7 and construct A(p8,RPs) at p8 for Tps because Tps — 

\p8,P9,Pio] is an a-smooth segment of curve TPs. Figure 43d) shows pj G A(ps,RPs) 

and pa E A(pt, Rp,). Thus, pi and p8 is connected and p-rpg is removed from Delaunay 

set. 

- P5P1 is the shortest Delaunay edge, p\ is an endpoint of TPl = [pi,P4,P3,P2] a n d 

P5 is free point. We have [pi,P4] which is an edge of the a-smooth curve TPl = 

[PiiP4;P3,P2]- Construct the connectivity area A(pl,RPl) as shown in Figure 43f). 

Vertex p2 is the only sample in A(pi,RPl) available for connection so p\ and p2 is 

connected and removed from Delaunay set. 

Step 2 repeats until Delaunay set becomes empty. 

Figure 44 shows step 3 of the algorithm. In step 3, all the temporarily removed edges 

in step 2 are reconsidered because during construction process, the curve may be updated 

which makes connectivity value and connectivity area changed. Figure 44 shows that all the 

temporarily removed edges are converted to Delaunay edges for reconsideration. Repeat 

step 2 on new Delaunay edge set. The reconstructed result is depicted in Figure 45. 

To highlight the effectiveness of VICUR, Figure 46 shows an intuitive sample set includ­

ing multiple single open and closed curves. Reconstructed curves from VICUR algorithm 

conforms to human vision. Also, constructed results from other algorithms are presented 

in Figure 47. 

a) b) 

Figure 42: Input sample and Delaunay triangulation. 

48 



<:: 
s \ 

p2 

^ 
i 

x / 
\ ' \ i~; 

J \ 

"\\ 
vf*' 

A,. 

a) 

v\ 

> , ^ 
\ 

•(Pi. Rp,) 

b) 

Ps 

P 2 P 3 

-;• 
^ • • - " P , P4 

P5 

Figure 43: Construction in step two of VICUR algorithm, <f> = (3 = 1.849. 
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Figure 44: Step three of VICUR algorithm. 
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Figure 45: Final result. 
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a) Sample b) VICUR 

Figure 46: Reconstructed curves by VICUR. 

a) NN-Crust b) Crust 

c) Conservative Crust d) GathanG 

Figure 47: Reconstructed curves by other algorithms. 

4.3.2 Sampling condition 

Most of the current algorithms use medial axis or local feature size to determine sampling 

condition. As a result, the sample sets for those algorithms are not intuitive. In contrast, 

VICUR algorithm aims to work for intuitive sampling condition, which implies that the 

samples are connected to form curves that look natural to human eyes. Intuitive sampling 

condition helps users to have better control over the sample set. Figure 48 shows an 

example where connections resulted from VICUR agrees with human perception. 
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a) Sample set b) Crust 
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c) NN-Crust d> GathanG 

\ \ 

e) DISCUR f) VICUR 

Figure 48: Result from VICUR is consistent with human visual system. 

4.3.3 Boundary and sharp corner 

Most of the current algorithms can construct closed smooth curves correctly. To recon­

struct non-smooth curve, Giesen developed TSP but the algorithm can construct only 

single closed curves [Gie99]. Dey-Wenger introduced another algorithm named GATHAN 

which can detect corner point and endpoint well in practice but with no guarantees [DW01]. 

Later, they proposed GATHANG algorithm based on GATHAN [DW02]. GATHANG 

guarantees correct construction on closed curves but not on open curves. Figure 49 shows 

a situation where GATHANG fails. 

The DISCUR algorithm presented in [ZNYL08] can also handle sharp corners but 

the sampling is very dense near the corner compared to our new algorithm as shown in 

Figure 50. Our algorithm correctly construct curve with the sample given in Figure 50a) 

while DISCUR needs a denser sampling, Figure 50d). 

Funke and Ramos also proposed another algorithm that can construct open non-smooth 

curves with guarantees [FR01]. However, due to limited resources we did not do any 

experiment with their algorithm. The only comparison we did is the MPI data set taken 

from the article [FR01] as shown in Figure 51. 
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a) Sample set c ) G a | h a n G 

o ° 
c} Our algorithm 

Figure 49: GATHAN fails to construct open curves. 

a) Sample set b) VICUR c) Discur 

d) Sample set for Discur 

Figure 50: DISCUR requires dense sampling around corner point. 

4.4 Limitation 

Despite the fact that VICUR can handle well many examples, we are aware of the limit of 

our algorithm. Firstly, VICUR is sensitive to vertex position. Figure 52 illustrates such a 

situation where human eyes hardly realize a difference between 46° and 43°. Construction 

result of Figure 52a) and Figure 52c) should be similar. The algorithm, on the other hand, 

detects a significant difference. If 9 is set at 270°, 46° is considered within connectivity 

area boundary where 43° is out of the range. As a result, sample p3 cannot be connected 

to pi, causing construction result Figure 52b) and Figure 52d) to be different. 

Secondly, although checking between two free points prior to connection helps avoid 

wrong connection in case of sharp corner, sometimes it may create a problem as shown 

in Figure 53b). In this case, VICUR detects /-(P1P2P3) as a sharp corner with p2 as a 
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a) Funke-Ramos' algorithm D) VICUR 

Figure 51: Result of MPI data set from Funke-Ramos's article. 

a) <(p2p1p3) = 46 degree b) Construction result 

Pi 

c) <(p2p1p3) = 43 degree d) Construction result 

Figure 52: VICUR is sensitive to vertex position. 

corner point. Consequently, the algorithm does not connect p\,Ps and the construction 

result becomes unnatural to human vision. However, this problem can be fixed easily by 

increasing the sampling density, as is shown in Figure 53. 

p, 

a) Sample set b) Wrong connection 

c) Sampling density increased 

Figure 53: Testing for potentially wrong connection results in wrong construction. 

Additionally, the parameter c needs to be adjusted to produce desired result. An 

example is illustrated in Figure 54. 
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a) Sample set 

b) c,= 0.8 a)c, = 0.9 

Figure 54: Different parameters yields different results. 

4.5 Summary 

We proposed a new algorithm for curve reconstruction named VICUR. Foundation of 

VICUR algorithm is established from two laws of Gestalt theory of perceptual organization: 

law of proximity and law of continuity. VICUR can construct open, non-smooth curve and 

the result is agreeable with human perception. The algorithm is developed based on data 

obtained from observation. Motivation for our algorithm is not only to provide a new 

approach to curve reconstruction problem but also to attempt to quantify some properties 

of human visual perception. 
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Chapter 5 

A new graphical password scheme 

Most of user-drawn based passwords in the literature require users not only to memorize 

the drawing but also the information about how the drawing is created (i.e. exact starting 

cell, ending cell, pen-up event). Studies show that users can remember a picture more easily 

than they remember the process how the picture is created [TvO04]. Thus, including the 

drawing process in the password may increase the password space but also decrease the 

usability of the scheme. Motivated by the curve reconstruction algorithm introduced in 

Chapter 3 and Chapter 4, a new kind of graphical password scheme is proposed to solve 

the aforementioned problem in this chapter. This proposed password scheme is based on 

the hypothesis that a user would create a password that is natural to his or her vision. 

5.1 Introduction to password design 

In this section, we introduce a new user-drawn-based graphical password scheme that does 

not require users to remember the order of the stroke. In this scheme, users are required 

to create a drawing on a given set of points by selecting individual points or by connecting 

any two points. 

To facilitate descriptions in the next sections, we introduce some terminology as follows: 

• n - the total number of given points, n > 0 

• vt - the number of points that are chosen as password points, i > 0. These points 
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are also called isolated points or vertices because they are parts of the password but 

do not connect to any edge. 

• e - the number of edges that form the password. 

• L - length of a password and is defined as the sum of the number of edges and isolated 

points in a password. 

• Lmax - the maximum password's length beyond which the possibility of the password 

being created is zero. 

5.2 A new graphical password scheme 

The password authentication system is divided into two parts: 1) the enrollment process 

or registration process in which user creates his or her secret and 2) the authentication 

process in which user authenticates his or her identity to the system. In the next section, 

we will give further details in each process. In particular, we will discuss how the point 

set is generated, how a password is created, and how a password is encoded. 

5.2.1 Point cloud generation 

In our password scheme, the point set is predefined to the users. Thus, in the enrollment 

process, users can either choose a point set from a set of collection point file or the system 

contains only one point file. 

The point set needs to have sufficient large number of points so that it can yield a large 

number of possible combination, which is not easily exhausted by attackers. A sufficient 

large number of points also reduce the possibility of guessing the right password. 

Another issue is that the points have to be organized in a way that it includes certain 

patterns appearing meaningful to human vision so that users can choose passwords that 

are easy to memorize. The advantage of our password scheme is that by organizing the 

points in such ways, the scheme actually helps users to recall the password. In DAS or 

Pass-Go scheme, the canvas is a grid which can be viewed as a set of points where the 
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distance between two points is uniform whereas in our case the distance between two points 

can be non-uniform. The uniformity in DAS and Pass-Go does not assist users in recalling 

the shape of their password. Our scheme, on the other hand, with the points positioned 

in a way that are natural to human vision, may help users to recall the drawings of their 

password. 

5.2.2 Password generation rules 

The password is created by connecting any two points in a given point set to form a curve 

and any two points can be connected more than one time. A password can be a curve or 

multiple curves- open or closed curves as shown in Figure 55(a) and Figure 55(b), or a 

password can contain intersecting curves as shown in Figure 55(c), or can have multiple 

edges between two points as shown in Figure 55(d). Individual point can also be chosen 

as part of a password. This variety allows a greater password space than DAS which only 

allow connection between neighboring cells and Pass-Go which allow connection between 

two nearest points. Although it appears that users have plenty of options to generate 

password, the scheme does impose three restrictions in the password creation. The first 

restriction is that points that are on a curve cannot be selected as a password component. 

The second restriction is that an edge cannot connect a vertex to itself. Finally, the third 

restriction is that an isolated point selected as a part of a password cannot be selected 

again. Figure 56 shows the two invalid cases. The rules for password generation are 

summarized as follows: 

• Any two points can be connected to form an edge. 

• Any two points can have more than one edge. 

• Loop on a single point is not allowed. 

• Points that are adjacent to an edge can not be chosen as a password component. 

• A point cannot be chosen more than once as an isolated password point. 
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(a) Open curve (b) Close curve 

(c) Intersecting case 

(d) Multiple edges 

Figure 55: Examples of graphical passwords. 

(a) Point selection (b) Curve with loop 

Figure 56: Invalid cases. 

5.2.3 Password encoding 

In our scheme, each point in the point file is identified by its coordinate (x,y). The whole 

password will be encoded as a multiset which consists of several subsets. Each subset 

contains one coordinates (x, y) of the point if the password is an isolated point; if the 

password is a curve, each subset contains the coordinates (x, y) of the endpoints of the 
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edge. For instance, the password in Figure 57 is presented as: 

{{(304,205), (447,201)}, {(313,159), (428,159)}} where A = (304,205), B = (447,201), 

C= (313,159), D = (428,159). 

700 

600 

500 

400 

300 

ZOO 

100 

• «••» * * • • 
• . : . » ; • *»• • 

* • • • • • J * ..•*. •::* *?. • 
• v J * • i * 

100 

• • • 
• • • 

c 
# 
• 

ZOO 300 

• 
• • * • » • 

; B , , 

D *• 
* 

400 500 600 700 

Figure 57: Password encoding. 
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5.3 Password space: Evaluation of the proposed pass­

word scheme 

5.3.1 Full password space 

The password space is computed as follows: 

Password space = log2{Tn,Lmax) (9) 

where n is the a number of points in the point set, Tn:Lmax is the total number of possible 

drawings consisting of 1, 2,. . . up to Lmax password components whose vertices are derived 

from the n points. A password component can be an edge or an isolated points. Tn>Lmax 

is computed as: 

^n,Lmax = iV„,l + Nnfl + ... + Nn>Lmax = J2 Nn,L (10) 

NUti is the total number of graphs of e edges with Vi isolated vertices, e + Vi — L. 

Nn<L (11) 
ft) '** = !< 

When Vi = L, all L components are isolated points, then NUfi is found by simply 

selecting L points from n points. The number of ways to choose such L components is 

(2)- When Vi < L, the L components contain e edges and Vi isolated points (L — e + Vi). 

In this case, NH:L is the total number of graphs consisting of (1 edges, L — 1 isolated 

vertices), (2 edges, L — 2 isolated vertices), ..., and (L edges, 0 isolated vertices). The 

graph contains e edges and Vi isolated vertices, whose vertices are selected from n points 

denoted by G(n, e, Vi). There are L ™ J such selections where ve is the number of vertices 

adjacent to edges; the sum ve + Vi is the total number of vertices of the graph. 

Let ve denoted the number of vertices on e edges. We notice that for a graph containing 

e edges and Vi isolated vertices, the value ve can be ranged from v — |"1+vl1+8e] to 2e. 
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Therefore: 

2e 

G(n,e,Vi) = ] £ n Vi + V( 
9{e,ve (12) 

The number of graphs consisting of e edges and Vi isolated vertices is equal to the 

number of graphs consisting of e edges, ve vertices without isolated vertices denoted by 

g(e,ve). In addition, we need to count the number of ways to select ve from ve + t>j. We 

have (Vi^vj ways. 

We observe that g(e, ve) contains simple graphs and graphs with multiple edges. Hence: 

S(e, ve) = ga{e, ve) + gm(e, ve) (13) 

where gs (e, ve) is the number of simple graphs consisting of e edges and ve vertices, gm(e, ve) 

is the number of graphs with multiple edges consisting of e edges and ve vertices. The 

function gs(e,ve) is calculated as follows: 

gs(e,ve) 

1 \(Ve ) - e + l\ga(e- l,ve) + \ve{ve- l)g8(e - l,ve - 1) 

+l(v*)gs(e -l,ve- 2) if ( f i ± ^ l <ve< 2e) 

U e / 2 - l 

n (ue - 1 - 2i) if (ue = 2e) 
i=0 

(14) 

gs(e,ve) — 0 if [1+v^1+8e] > ue or ve > 2e. A graph with multiple edges can be 

considered as a simple graph with extra edges added on existing edges. gm(e,ve) having e 

edges can be computed by finding the number of simple graphs having m edges (m < e) 

and then add the remaining (e — m) edges to the existing m edges to form multiple edges. 

Adding remaining (e — m) edges to existing m edges is similar to choosing (e — m) "places" 

(repetition is allowed) from the m-edge simple graph. Thus, there are \ + lZ^ ) = \e-m) 

ways to pick. Hence: 

e - l 

gm(e,ve) = ]T 
7 7 1 = 1 

e - l 

e — m 
gs(m,vm) (15) 
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Table 3: Full password space at length Lmax or less, given a set of n points to choose from. 

n=100 
n=75 
n=50 
n=25 

Password length Lmax 

1 
12.3 
11.48 
10.32 
8.34 

2 
23.6 

21.95 
19.63 
15.68 

3 
34.32 
31.84 
28.35 
22.41 

4 
44.62 
41.31 
36.66 
28.72 

5 
54.6 
50.46 
44.64 
34.7 

6 
64.31 
59.35 
52.36 
40.42 

7 
73.8 

68.01 
59.85 
45.9 

8 
83.1 
76.48 
67.15 
51.19 

9 
92.22 
84.77 
74.28 
56.31 

Table 4: Comparison of password space between textual password, DAS-5 x 5 grid scheme 
and proposed password scheme. 

Password length L 
1 9 

95-ASCII characters 
DAS-5 

New scheme (n=25) 
New scheme (n=50) 

6.57 
5 

8.34 
10.32 

13.15 
10 

15.68 
19.63 

19.72 
14 

22.41 
28.35 

26.29 
19 

28.72 
36.66 

32.86 
24 

34.7 
44.64 

39.43 
29 

40.42 
52.36 

46.00 
33 

45.9 
59.85 

52.57 
38 

51.19 
67.15 

59.14 
43 

56.31 
74.28 

Table 3 shows the full password space computed as logi (number of passwords) of the 

passwords having length less than or equal to Lmax. 

Table 4 shows the comparison of password space between 95-printable ascii character 

textual passwords, 5 x 5 DAS scheme and the proposed password scheme (n = 50). We 

notice that at length 7, the number of the proposed passwords are already larger than the 

number of nine-character text passwords. However, this number only represent an ideal 

case where users' passwords are distributed uniformly. In reality, users' passwords may 

cluster into much smaller space, which can be exhausted easily by attackers. 

5.3.2 Memorable password space and vision-based curve recon­

struction algorithm 

In practice, the full password space does not reflect the strength of a password scheme as 

real world users' passwords may belong to a smaller subset of the full password space. This 

password subset may be small enough to be exhausted by attacker's available resources. 

In the literature, researchers refer to this subset of full password space as memorable 

password space. In an at tempt to compute the memorable password space and based on 

the assumption that users will choose a secret that is easy to remember, it is reasonable 

to deduce tha t in our proposed password scheme users will connect the given dots into a 
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drawing that looks natural to their vision so that they can easily memorize their secret. 

Figure 58(b) shows a natural connection of the set of points given in Figure 58(a). By 

simply looking at the point in Figure 58(a), users can visualize the drawing in Figure 58(b). 

In contrast, the drawing in Figure 58(c) is not intuitive to human vision, as a result, it is 

expected that it takes more effort for human to memorize the drawing. Therefore, when 

users construct a secret, we expect that in general, they will try to connect points into a 

pattern that looks meaningful so that they can recall it easily. 

The memorable password space, thus, will include the drawings that look intuitive to 

human vision. 

(a) Sample point 

(b) Connection that is natural (c) Connection that is not nat-
to human vision ural to human vision 

Figure 58: Natural and unnatural drawings. 

To crack this password scheme, instead of exhausting all possible connections, an effec­

tive approach would be to examine the patterns that look natural or intuitive to human 

vision before trying other connections. As a result, the attacker may use vision based 

curve reconstruction to construct all possible patterns or curves. From psychology studies, 

the number of components that a person can memorize ranges from five to nine in which 

seven is the most common number of components that a person can memorize. Based on 

this result, we use seven as the maximum number of components comprising a password. 

A component can be an edge or an isolated point. Thus, a two-component password can 

consist of two edges, or one edge and one isolated vertex, or simply two isolated vertices. 
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We analyze the number of memorable drawing on n points where the points are orga­

nized in a way that is visualized as a closed curve. The number of memorable drawing of 

L components is equal to the number of ways to construct a graph forming from e edges 

and Vi isolated points where e edges belongs to the construction result of the vision based 

curve reconstruction algorithm. 

Let ipa be the number of passwords consisting of passwords having seven components 

and the components are parts of the curve reconstruction result. If the passwords contain 

edge components, these edges are either distinctly separate or consecutive. For example, 

seven components consists of three edges and four points then either all three edges are 

adjacent or none of them are adjacent. The memorable password space cQ is calculated as 

the logarithm base two of ipa. We compute the ?a as follows: 

?a = log2{^a) (16) 

Equation 17 is derived following the process below: We analyze a point cloud containing 

n points sampled from a simple closed curve. Hence, there are n points and n edges to 

select as password components. We calculate the memorable password space in three cases: 

1. First, we consider the case where all the components are isolated points; in this case 

e = 0. There are such (j) ways for such case. 

2. Second, we consider the case where all the edges of the passwords are consecutive. 

All these edges form a single curve. To find the number of ways of choosing this 

curve, we need to count only the number of ways of choosing first edge of the curve. 

There are n ways to choose such an edge from n edges. The remaining password 

components are isolated points v^ = L — e. Because all the e edge components are 

adjacent, the number of points incident to the edges is e + 1 and the number of 

points left is n — e — 1. The number of ways to choose vt points is ("^l^1)- The edge 

components can be 1, 2,... up to L. The sum shows the total number of all possible 

number of edge component in this case. 
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Table 5: Comparison of memorable password space between DAS-5 x 5 grid scheme and 
proposed password scheme where password length Lmax = 7. 

Memorable space 
DAS-5 

33.6 

New password scheme 
n=50 
33.1 

n=75 
37.6 

n=100 
40.7 

3. Finally, we consider the case where no edges are adjacent, each edge occupies two 

places (itself and the position to its right). Thus, in choosing e edges, e places are 

ignored. There are n — e left to choose e edges from and there are (™~e) such choices. 

Moreover, since the curve is closed, we need to add 

("-"-1) [MarOl]. The number of 

points left to choose Vi = L — e points is n — 2e because each edge has two endpoints 

and no edge is adjacent to each other so the number of points incident to the edges is 

2e. This gives (n^) ways to choose Vi points. The edge components can be 1, 2,... 

up to L. The sum shows the total number of all possible number of edge component 

in this case. 

(a) Sample point n=100 (b) Reconstruction result, n=100 

Figure 59: Reconstruction result of a vision-based curve reconstruction algorithm. 

Based on the above equation, we have Table 5 comparing our memorable password 

space with 5 x 5 DAS grid scheme. When n = 75, the memorable password space of 

the proposed scheme is much larger than the DAS. To make any conclusion about the 

effectiveness of the scheme, more analyses need to done to determine what value of n 

should be chosen so that the scheme can yield a sufficiently large memorable password 

space and still remains user-friendly. 
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5.4 Summary and discussions 

L 

Figure 60: Choosing a subset of points from a point set. 

In this chapter, we explore a new user-drawn based graphical password design which 

allows users to choose any point or connect any two points from a given point cloud to 

create a password. As mentioned in Chapter 2, there are three main methods that an 

attacker can use to crack the proposed password scheme: 1) try all possible connections, 

2) choose, from the whole point set, only connections that are natural to human vision, 

and 3) choose, from a part of the point set, only connections that are natural to human 

vision. So far, the analysis of the memorable password space is based on Approach number 

2). Approach number 3) can be done by taking a subset of points, as is shown in Figure 60, 

from the point set and applying the human-vision based curve reconstruction algorithm. 

There are several issues implied in this approach such as how to extract the points from 

the point cloud or which part of the point cloud should be taken. This problem can be 

address in the future research work. 

r-j 
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Chapter 6 

Conclusions and future research 

directions 

6.1 Conclusions 

In summary, our main contributions are: 1) a mathematical proof for the necessary and 

sufficient sampling condition for the distance based curve reconstruction algorithm DIS-

CUR, 2) a new vision based curve reconstruction algorithm, VICUR, which considers both 

nearness and smoothness properties of human visual perception, and 3) a new graphical 

password scheme motivated by vision based curve reconstruction algorithms. 

Firstly, the necessary and sufficient sampling condition for the parameter-free curve 

reconstruction algorithm DISCUR is introduced with two theorems. The first theorem 

determines the sampling for the interior points whereas the second theorem determines 

the sampling for the boundary points. The sufficient sampling condition implies that 

DISCUR guarantees the correct reconstruction result when the point cloud satisfies the 

sampling condition, while the necessary sampling condition implies that when DISCUR 

can construct the correct result from a point cloud, the point cloud certainly satisfies the 

sampling condition. 

Secondly, VICUR is presented to tackle the limitation inherent in DISCUR. VICUR 

uses both Gestalt law of proximity and law of continuity as criteria to construct curves. 

In VICUR, a concept of a—smooth curve is introduced to determine the smoothness of 
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a curve and the concept of connectivity area is introduced to determine the boundary 

of the proximity. Furthermore, as apposed to DISCUR which is parameter-free, VICUR 

algorithm contains parameters to control the impact of nearness and smoothness properties 

during reconstruction process. Under many circumstances, VICUR can produce the correct 

reconstruction result, however, most of the factors in VICUR algorithm were merely 

derived from observations; thus, VICUR does not guarantee correct reconstruction. 

The third contribution is to propose a new user-drawn based graphical password 

scheme. In this scheme, user creates the password by connecting points from an unor­

ganized given point set provided by the authentication system. User authenticates to the 

system by recreating the drawing. This scheme does not require users to memorize how 

the password was created. Instead, users need to memorize only the final drawing. The 

analysis was conducted by applying vision based curve reconstruction algorithm to eval­

uate the memorable password space of the proposed password scheme. The result shows 

that when the number of points n = 75 the proposed scheme is larger than the 5 x 5 DAS 

scheme, given that the maximum length of a password is seven. 

6.2 Future research directions 

Vision-based curve reconstruction algorithm can be viewed as our preliminary attempt in 

quantifying Gestalt properties of human visual perception. Future research will continue 

to study the mechanism of human visual processes in the context of curve reconstruction. 

Moreover, we will consider extending our vision based curve reconstruction algorithm from 

2D to 3D. 

Regarding the proposed graphical password, a comprehensive security analysis should 

be done and several issues can be taken into account such as: what the optimal number 

of points should be in a point set and how the points should be distributed. As too many 

points will slow down the process of user authentication, which will diminish the usability 

of the system, the number of points should be chosen so that the system remains to be 

user-friendly and, at the same time, maintains its security level. In addition, the points 

should be arranged in such a way that does not provide attacker with knowledge about the 
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distribution of users' passwords. Finally, some problems related to implementation should 

be studied (e.g. How the point set will be stored in the system). 
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