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Abstract

Combining Integer Programming and Tableau-based Reasoning: A

Hybrid Calculus for the Description Logic SHQ

Nasim Farsiniamarj

Qualified cardinality restrictions are expressive language constructs which extend
the basic description logic ALC with the ability of expressing nmumnerical constraints
about relationships. However, the well-known standard tableau algorithins perform
weakly when dealing with cardinality restrictions. Therefore, an arithmetically in-
forined approach seems to be inevitable when dealing with these cardinality restric-
tions. This thesis presents a hybrid tableau calculus for the description logic SHQ
which extends ALC by qualified cardinality restrictions, role hierarchies, and transi-
tive roles. The hybrid calculus is based on the so-called atomic decomposition tech-
nique and combines aritlinetic and logical reasoning. The most prominent feature of
this hybrid calenlus is that it reduces reasoning about qualified number restrictions
to integer linear programming. Therefore, according to the nature of arithmetic rea-
soning, this calculus is not affected by the size of numbers occurring in cardinality
restrictions. Furthermore, we give evidence on how this method of hybrid reason-
ing can improve the perforinance of reasoning by organizing the search space more
competently. An empirical evaluation of our hybrid reasoner for a set of synthesized
benchmarks featuring qualificd number restrictions clearly demonstrates its superior
performance. In comparison to other standard description logic reasoners, our ap-

proach demonstrates an overall runtime improvement of several orders of magnitude.
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“Information is not knowledge,
Knowledge is not wisdom,
Wisdom is not truth,

Truth is not beauty,

Beauty is not love,

Love ts not music,

and Music is THE BEST.”

Frank Zappa
in “Joe’s Garage: Act II & III” (Tower Records, 1979)
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Chapter 1

Introduction

In the realm of artificial intelligence, developing a machine with the ability of un-
derstanding has always been a goal. The level of understanding grows from data to
information, knowledge and perhaps it reaches wisdom. For this reason, logics where
adopted as a medinm for representing knowledge and to upgrade the level of under-
standing of the machine. Description Logic {DL) is a formal language to represent
the knowledge about concepts, individuals, and their relations. It was intended to ex-
tend semantic networks with formal logical semantics. In the domain of the semnantic
web, the Web Ontology Language (OWL) is based on description logics. Moreover,
it is widely nsed in various application domains such as configuration problems and
medical informatics.

In order to be decidable and have more cfficient decision procedures, description
logic usually covers a limited subset, of first order logic. However, it includes some
expressive operations that are not in propositional logic. One of these constructors
is the so-called numerical restriction which equips the language with the ability of

expressing numerical restrictions on relationships.



1.1 Numbers in Description Logics

Qualified mimber restrictions are expressive constructs which express cardinality con-
straints on the relationships between individuals. For example, to model an engineer-
ing undergraduate program, the expression Student = (> 141hasCredit) states that ev-
ery student must have at least 141 credits. Similarly, the expression EngineeringStudent
= (< 10hasCredit.Arts) implies that every Engineccring student must take at most 10
credits from the departient of Arts.

There is always a trade-off between the expressiveness of the language and the
efficiency of the algorithm implementing inference services. Likewise, adding nu-
merical restrictions brings an extra complexity to the reasoning process. However,
the standard tableau algorithms [HBY1, BBH96, HST00, HS05] approach numeri-
cal expressions from a logical perspective. Therefore, standard reasoning approaches

perform inefficiently when dealing with numerical restrictions.

1.2 Research Objectives and Contributions

Current standard approaches [BBHYG, HST00, HS05) are known to be incfficient in
dealing with numerical restrictions since they deal with numbers similar to logical
expressions and ignore their arithmetic nature. Moreover, their trial-and-error ap-
proach to the problem of numerical constraints can become consideralil® ‘expénsive in
the case of cardinality restrictions. Motivated by [OK99], we propose an algoxitiym

which translates munerical semanties of DL into linear inequations.

1.2.1 Objectives
In this research we pursue the following objectives:

e Develop a formal hybrid caleulus which combines the so-called tableau approach

2



with Linear Integer Programming in order to cfficiently deal with numerical
restrictions. Moreover, the calculus should be well-suited to be extended to

more expressive logics.

e Examine the feasibility of implementing a reasoner based on the proposed cal-
culus and evaluate the performance of such a hybrid reasoner for selected bench-

mark problems.

1.2.2 Contributions

We can suminarize the contributions of this research as follows:

1. We present a hybrid tableau calculus which combines tableau reasoning with
Integer Linear Programming for SHQ ABoxes. Moreover, we give a proof of

termination, soundness, and completeness for the proposed tableau calculus.

o

We analyze the complexity of the proposed hybrid algorithmn in comparison with

the standard approaches.

3. We study practical aspects of implementing such a hybrid reasoner and accord-

ingly propose a set. of optimization techniques.

4. We report on the development of a hybrid prototype for the ALCHQ concept

satisfiability test benefiting from the proposed optimization techniques.

We study the behavior of the hybrid reasoner and evaluate the cffect of the

.C,"'l

techniques with respect to different parameters iifluencing hybrid reasoning.

1.3 Thesis Organization

This thesis consists of § chapters which are organized as in the following outline.

Chapter 2 provides the required background about description logics and integer

3



programing. In Chapter 3, we briefly study current standard tableau algorithms
dealing with cardinality restrictions as well as optimization techniques addressing the
complexity of reasoning with numbers. In Chapter 4 which can be considered as the
theory chapter, we formally present a hybrid caleulus for SHQ taxonomy level which
will later be extended to also handle assertional knowledge. At the end of this chapter
‘we give a formal proof for the correctness of the proposed calculus.

In Chapter 5, we analyze the complexity of the proposed hybrid algorithi together
with a comparison with the standard tableau algorithin. Moreover, in this chapter, we
introduce a set of optimization techniques developed for hybrid reasoning. Afterward
in Chapter 6, we describe the architecture of an impleinented hybrid reasoner and
report on its empirical evaluation in Chapter 7. In the last chapter, Chapter 8, we
conclude this thesis with the lessons we lcarned from the theoretical analysis and

empirical evaluation. Finally, we suggest several future work to pursue.



Chapter 2

Preliminaries

After having motivated the need to design a hybrid algorithm, we now present the
formalisims required to discuss the related work in Chapter 3 and propose a new algo-
rithm in Chapter 4. In the first section we formally define DL languages, knowledge
bases, and reasoning services. Moreover, we define a tableau as a widely used ap-
proach for different DL reasoning services. In Section 2.2, we define and clarify the
use of the term “complexity” which sometimes refers to the inherent complexity of
the input language and sometimes refer to the complexity of the algorithin which
decides it. Finally, we briefly define integer programming and possible alternatives to

solve it.

2.1 Description Logics

Description Logics is a family of conceptual knowledge representation formalisms
which is also in most cases a decidable fragment of first order logics. Since, it is
aimed to be suitable for reasoning about the domain of discourse (the “world”), its
expressiveness is restricted in comparison with first order logics. Moreover, unlike

predicate logics where the structure of the input knowledge is often lost, description



logic is composed of three building blocks: concepts which are subsets of the domain,
roles which define binary relations between elements of the domain, and individuals
which are simply elements of the domain of reasoning. In the following sections we
formally define ALC as the simplest propositionally complete subset of description
logics and afterward define its different possible extensions.

In the following, we use A and B as atomic concept names which are subset of
the domain, R and 8 as role names, C and D as concept expressions (possibly not

atomic) which are built by means of different operators, and a,b,¢,. .. as individuals.

Definition 1 (Interpretation). In order to formally define different variations of
description logics we define an interprelation, T = (AZ,.2) in which AT is a non-
empty set referring to the domain and % is the interpretation function that assigns a
subset of the domain (AT) to every concept name (AT C A?) and a subset of AT x AT

to every role name (RT C A% x AZ).

2.1.1 Knowledge Base

A typical knowledge base presented in description logics is composed of two parts: the
terminological knowledge (TBox) which describes the vocabulary and characteristics
of the domnain and the assertional knowledge (ABox) which contains the asserted
knowledge regarding the actual individuals of the domain.

A concept inclusion ariom is a statement of the form C T D. An interpretation
T satisfies C C D iff CT C D* and similarly satisfies C = D iff C* € D* and
DT c CP.

Definition 2 (TBox). A TBox 7 is a finite sct of axioms of the form € E D or

C = D where C, D are concept expressions.

Definition 3 (ABox). An ABox A with respect to a TBox 7 is a finite set of



assertions of the form « : C, (a,b) : R, and a # b, where a : C is satisfied if a* € C%,

(a,b) : Rif (a,0%) € RT, and a # b if o # V.

2.1.2 Languages

In this section we introduce the syntax and scmnantics of different constructs in de-

scription logics which may vary in different languages. The base DL languagé, AL

(attributive language) introduced in [SSS91}, is coustructed as suggested in {Baa03]

based on the grammar presented in Figure 1.

C,D—

1A
T
L
|-~A

ICN D conjunction

VR.C
I3R.T

atomic concept

top or universal concept
bottom or empty concept
atomic negation

universal restriction
unqualified existential restriction

Figure 1: Gramnar of the basic language AL.

The semantics of the constructs introduced in Figure 1 is defined as follows:

TI
_LI

(-4
(Ccn D)
(YR.C)?
(AR.T)E

!

AI

0

AT\ AT

ctnpD?

{a € A%| Vb, (a,b) € BT = b e C7?}
{a € A%|3b, (a,b) € RT}.

One of the basic DL languages that is propositionally complete is ALC. This lan-

guage contains negation for general concept expressions, disjunction between concept

expressions, and also qualified existential restrictions in addition to AL. More ex-

pressive languages can have several extra features and constructs such as cardinality

7



restrictions, nominals, or inverse roles. In Table 1, we introduce syntax and seman-
tics of basic DL languages as well as some well-known expressive constructs. In the

following, let R#(a, C) denote the cardinality of the set {b € AT|(a,b) € RTAb € CT}.

Table 1: Semantics and symbols of different DL constructs.

Syntax Semantics Symbols
(-C)* AN\C* C
(CubDy | C*uD? 7]
(BR.C)* | {a e AT)3b,(a,b) € RTALECT} &
(> nR.C) | {a € AT|R#(a,C) 2> n} Q
(< mR.C)? | {a € AT|R#(a,C) < m} Q
(> nR)* (> nR.T)? N
(< mR)* (€ mR.T)* N
R~ (a,b) € RT < (b,a) € (R~)* 7z
RLCS (a,b) € RT = (a,b) € (S) H
{0} {0} is a concept and |{o}*} =1 o
Trans(R) | (a,b) € R* A (b,c) € R* = (a,c) € RY S

If ¢ and b are two individuals such that (a%,b%) € R%, we call b an R-successor of a.
Moreovef, b is a role-filler (R-filler) for a. One of the expressive features that can equip
the language with the ability of counting are cardinality restrictions. Unqualificd num-
ber restrictions (AN), specify the least or most number of allowed successors for an indi-
vidual. For example, the concept inclusion axiom Person C (<2 hasBiologicalParent)
M(> 2 hasBiologicalParent} indicates that every individual which is a member of the
concept Person has exactly two (distinct) hasBiologicalParent-successors.

In the case of qualified number restrictions (Q), the cardinality restriction not only
restricts the number of successors, but also specifics in which concept expression they
must be. In fact, unqualified number restrictions, and existential restrictions (£) are
special cases of qualified number restrictions (3R.C = (> 1R.C)). For example, the
assertion a : (< lhasParent.Male) states that a has at-most one hasParent-successor
that is also a member of the concept Male. Notice, since we have the open-world

assumption in DL reasoning, not having asserted that a successor of a is in the



concept Male does not imply that it is a member of ~Male. Therefore, if one of the
hasParent-successors of a is in Male, the rest must be explicitly in —Male.

Transitive roles are another expressiveness that is normally added to ALC which
is referred by S. Role inclusion axioms are also another type of axiom that are
stored in the role hierarchy component of the KB {another component in addition to
TBox and ABox)}. The language of interest in this research is SHQ which is basically
ALC plus role hierarchies, transitive roles, and most significantly qualified cardinality
restrictions.’ Other expressive components such as nominals () which introduce the
use of individuals at the concept level or inverse roles (Z) are not considered in this

thesis.

Example

By means of the example ontology in Figure 2, we wili describe different terms, defined
in this section. In this example, according to the TBox axiom (t.1), Employed and
Unemployed are disjoint concepts. The second axiom (t.2) implies that the concept
Lonely is subsumed by the unqualified nunber restriction (< lhasFriend) and Supported
is a subconcept of the qualified number restriction (> 2hasFriend.Considerate) accord-
ing to (t.3). The last inclusion axiom (t.4), indicates that if an individual is Lonely
or Unemployed, it is also a member of the concept Unlucky. Moreover, since every
instance of Supported has at least two hasFriend-fillers while every instance of Lonley
has at most one hasFriend-filler, the reasoncr can infer that Lonely and Supported are
two disjoint concepts.

In the assertional level, jack as a named individual, is a member of the concept

Unemployed. Therefore, the reasoner can conclude that jack is not a member of the

i this thesis, the terms number restriction and cardinality restriction are different terms refer-
ring to the same concept.



TBox ABox

Employed = —~Unemployed {t.1) | jack : Unemployed (a.1)

Lonely C < 1lhasFriend (t.2) | (jack, jack) : hasFriend (a.2)

Supported C >2hasFriend.Considerate  (t.3) | (jack, joe) : hasFriend  (a.3)

Lonely U Unemployed T Unlucky (t.4) | jack, joe : Considerate  (a.4)
jack#joe (a.5)

Figure 2: Example knowledge base

Employed concept. Moreover, jack has two distinct (according to (a.5}) hasFriend-
successors® that are both Considerate (a.3 and a.4). Therefore, it can be concluded
that jack is a member of the Supported concept. Having more than one hasFriend-
successors, it cannot be a memnber of the concept Lonely. Although jack is a member
of the concept —Lonely, the fact that it is in the concept Unemployed immplies that it
is a inember of the concept expression Lonely LI Unemployed which concludes that jack

is Unlucky.

2.1.3 Reasoning services

There are several reasoning services that a reasoner may provide. The concept sat-
isfiubility test which is one of the most basic services examines the satisfiability of
a concept. In order to verify the satisfiability of a concept expression C, reasoners
assert an unknown individual to this concept as x : C. If this assertion does not lead
o a contradiction and the algorithm can find a model, the reasoner concludes that
C is satisfiable.

Another reasoning service regarding TBoxes is the subsumption test which in-
quires a concept inclusion C C D. Note that this subsumption is equivalent to the
unsatisfiability of the concept expression C N —D. Moreover, unsatisfiability of the

concept C is equivalent to the subsumption test C T L. Therefore, these concept

2Notice that jack is a friend of himself.
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satisfiability and subsumption tests can be reduced to each other. A basic ABox rea-
soning service is instance checking which questions if « is a member of C wherea is a
named individual in the ABox and the reasoner needs to consider the relevant ABox
assertions as well as the TBox. [Instance retrieval returns all the instances (named
individuals) which are a2 member of a given coneept and realization returns the most
specific concept names that an individual is known to be a member of.

The TBoz consistency test is referred Lo as the satisfiability test of all concept
names, with respect to the inclusion axioms in a given TBox. Moreover, the ABoz

consistency test involves asserted knowledge about individuals of a given ABox.

2.1.4 Tableau Reasoning

One widely used approach to provide the reasoning services introduced in the previous
section is tableau reasoning. Tableau reasoning is composed of a set of tableau rules
which are fired by a tableau algorithm which constructs a tableau. A tableau is a data
structure first introduced in [SS8Y1] for ALC which contains a finite descriplion of a
partial interpretation for an input KB. For the satisfiability test of a given concept
C, the tableau algorithin tries to construct a model which contains an element xg for
which xo € C% [BS00].

In the tableau algorithins, we assumne for convenience that the concept expres-
sions are in negation normal form, i.e., the negation sign only appears in front of
concept names (atomic concepts). We compute the negation normal form of concept

expressions according to the following equations.

-(CnD)=-CuU-D, -(CuD)=-Cn=-D
~(VR.C) = 3R.(-C), ~(3R.C) =VR.(-C), ~(<nR.C)=2n+1R.C
—~(>nR.C)=<n-1RC?

3Note that <OR.C is always replaced with VR.~C
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In the case of a concept satisfiability or TBox consistency test, tableau algorithimns
try to coustruct a representation of a model by coustructing a completion graph.
Later on, a model can be retrieved from a complete and clash-free graph. Nodes in
the comnpletion graph have a label which is a subset of possible concept expressions.

‘For this reason we first define clos as the closure of a concept expression.

Definition 4 (Closure Function). The closure function clos(E) is the sinallest set of
concepts such that: E € clos(E), (D) € clos(E) = D € clos(E).
(Cu D) € dos(E) or (CN D) € clos(E) = C € clos(E) and D € dos(E),
(VR.C) € clos(F) = C € clos(E), (3R.C) = C € dos(E),
(>nR.C) € clos(E) or (SmR.C) € clos(E) = C € dos(E).

For a TBox 7 we define clos(7) such that if (CE D)€ 7 or (C= D) € T then
clos(C) C clos(T) and clos(D) C 7. Similarly for an ABox A we define clos function
such that if (a : C) € A then dos(C) C clos(A).

Definition 5 (Completion Graph). G is a completion graph G = (V, E, £) such that
every node z € V is labeled by £(z) C clos(C) for a concept expression C and every

edge {(z,y) € E is labeled by £({x,y}) € Np where Ny is the set of role names.

A tableau algorithm to examine the satisfiability of a concept C starts with a root
node z which is labeled £{z) = {C} and tries to expand the completion graph by
means of the tableau rules. Tableau rules are built based ou the semantics of the
input DL language. For example, in order to impose the semantics of conjunction, a
tableau algorithm may have a rule such as the AND-Rule in Figure 3.

Notice that rules are applied to one node at a time and may modify its label or
add new nodes to the graph. The rules that create new nodes are called generating
rules. Generating rules such as the EXIST-Rule in Iigure 3 create new successors

for the node on which they are fired. In fact, in case of languages such as SHQ,
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tile completion graph will be tree-shaped. However, in the presence of expressive
expressions such as nominals, we lose the tree-shaped model property.

Moreover, in presence of tl_le inverse roles (7), information can propagate back in
the tree from lower levels to higler levels. For example, suppose y is an R-successor
of £ and for the label of x we have {VR-.C} C L(y). In this case, the universal
restriction in the label of y (which is in a deeper level in the tree than z) can modify
the label of z and add C to £(x). In contrast, in the absence of inverse roles, once
the label of a node cannot be modified by any expansion rule (tableau rulc), we can

assure that it will never be changed later after extending the completion graph.

AND-Rule if (CND)e L(z) and {C,D} € L(z)
then set L(z) := L(z) U {C, D}

OR-Rule if (CuD)e L(z)and {C,D}YNL(z)=0
then set £(z) := L(z) U {C} or L'(z) =
L{z)L {D}

EXIST-Rule if {(3R.C) € L(x) and z has no R-
successors in C
then create a new node y and

set £(y) := {C} and L({z,)) = {R}

Figure 3: Sample tableau rules

In case of an ABox consistency test, the given ABox may contain arbitrarily
connected nodes which form not a necessarily tree-shaped graph. Moreover, they are
not necessarily connected to build a single connected graph. Similar to [HSTO00] we

define a completion forest in the following which is used for ABox tableau algorithms.

Definition 6 (Completion Forest). A completion forest ¥ = (V, E, £), for an ABox
A is composed of a set of arbitrarily connected nodes as the roots of the trees. Every
node z € V is labeled by £(z) C dous(A) and each edge (z,y) € E is labeled by the
set £{{z,y)) C Ng in which Np is the set of roles occurring in A and 7. Finally,

completion forests come with an explicit inequality relation # on nodes and an explicit
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equality relation = which are implicitly assumed to be symmetric.*

Blocking

Reasoning in the presence of acyclic TBoxes is shinilar to concept satisfiability test.
In other words, for acyclic TBoxes one can simply expand the definitions by adding
D to the label of every individual e : C for an inclusion axiom C € D. However,
in presence of general TBoxes which may contain cyclic inclusion axioms (where a
concept name appears on both sides of the axiom), the algorithm needs to guarantee
the termination by means of an extra mechanism called blocking.

For example, consider the case z : A with respect to TBox A C 3R.A. The
algoritiun creates an R-successor y for x in A. Moreover, according to the inclusion
axiom, the algorithm needs to create another R-successor for y and therefore the
algoritlun never terminates. Termination can be regained by trying to detect such
cyclic computations, and then blocking the application of generating rules (such as
the EXIST-Rule). Therefore, in such an example, the algorithm reuses y as an R-
successor for itself. To avoid cyclic blocking (of z by y and y by z), we consider an
order for the individual names, and define that an individual x may only be blocked

by an individual y that occurs before z.

Nondeterminism

Due to the semantics of the language, some concept expressions have a nondeter-
ministic nature. In other words, they can be interpreted in more than one way. For
example, a disjunction (C; U Ca. ..U Gy,) is satisfied whenever Cy or Cy or ...or G,
is satisfied. Therefore, it can be satisfied in at least n different ways. In order to

reflect this non-determinism, a tableau rule opens different branches to proceed in

4 According to the interpretation function Z, a#b if oF # V¥ and a=b if o = b%.
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the search space. For instance, the OR-Rule in Figure 3 is a nondeterministic rule
which can have two consequences: L£(z) or £'(x). In fact, it will result in the creation

of two new completion graphs.

2.1.5 Correctness of an Algorithm

A tableau algorithin is correct iff it is sound, complete, and terminates for every
finite KB as input. In order to prove correctness of tableau algorithms, a tablean
needs to be formally defined (first used in [HST99]) as in Definition 7. An algorithm
is sound iff it ereates a tableau for every satisfiable (consistent) input and returns a
clash for every inconsistent (unsatisfiable) input. Morcover, an algorithm is complete
iff it can lead its rules such that it yiclds every given tableau.

Since the language of interest in this thesis is SHQ, we define a tableau for a
SHQ ABox algorithm based on [HST00]. Notice that a tableau is not necessarily
a model and where one defines a new tableau, it must be proven that the defined
tableau preserves the semantics of the input language (i.e., a model can be retrieved

from every tableau). Such a proof is proposed for a SHZQ ABox tableau in [HST00].

Definition 7 (SHQ ABox Tableau). A tableau T" = (S, £,&,.7) is a tableau for a
SHQ ABox A with respect to a role hierarchy R> iff

e S is a non-einpty set {elements in S represent individuals),
o L :8 — 290s(A) 1paps each element in S to a set of concepts,
e £: Ny — 25%5 maps each role to a set of pairs of elements in S, and

e J : 14— S maps individuals occurring in A to elements in S.

Furthermore, for all 5,1 € S, C,C,,C; € clos{A), and R, S € Ny, T satisfics:

5)et R be the set of role inclusion axioms such as RC § where /£,5 € Np.



P1 if C € L(s), then =C ¢ L(s),

P2 if C; N Cs € L(s), then C) € L(s) and Cs € L(s),

P3 if C, UG € L(s), then C; € L(s) or Cs € L(s),

P4 if VR.C € L(s) and {s,t) € E(R), then C € L(t),

P5 if VS.C € L(s) and {s,t) € E(R) for some R E S, Trans(R), then VR.C € L(t),
PG if {s,t) € E(R) and RC §, then (s,t) € £(S),

P7 if <nR.C € L(s), then |[RT(s,C)| < n,

P8 if >nR.C € L(s), then |RT(s,C)| 2 n,

P9 if < nR.C € L(5) and |[RT (s, T)| = m > n,

then |R7(s,-C)| 2 m—n
P10 ifa: C € A then C € £{J(a))
P11 if (a,0) : R € A, then (T (a), T (b)) € E(R)
P12 ifa # b e A, then J(a) # J(b)
where R7(s,C) := {t € S| (s,) € E(R) AC € L(1)}.

Remark 1. Notice that in [HST99, HSTO00] if (< nR.C) € L(s), (s,t} € E(R) then
we have {C,-C} N L({t) # O, which is not necessary but sufficient to satisfy and
at-most restriction. A revised version such as condition P9 guarantees that enough

R-fillers are in -C to preserve (< nR.C).
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2.2 Complexity of Reasoning

The complexity issue is of great importance when evaluating the feasibility of the use
of description logic lo represent knowledge. This term refers to two different concepts
in the literature: (i) complexity of the language which also may be referred to as
theoretical complerity and (i) complexity of the algorithm which is also referred to

as practical complezity.

2.2.1 Complexity of the Language: Theoretical Complexity

The complexity of the language, as its name suggests, is an inherent property of a
language. The complexity of a decidable language is normally determined based on
the size of its model and the time needed to construct the model. In fact, these are
theorctical worst-case analysis. In Figure 4 derived from [Zol07] the complexity of

some well-known languages is shown.

Language Comnplexity

ALC PSpace-Complete
ALCQ PSpace-Complete
ALC+ general TBox | ExpTime-Complete
SHOIQ NExpTime-Complete

Figure 4: Complexity of different DL languages

It is proven in [Tob01] that the satisfiability of ALCQ concepts is a PSpace-

Complete problem, even if the numbers are represented using binary coding.

-

2.2.2 Complexity of the Algorithm: Practical Complexity

In a theoretical analysis, there is no need to introduce an effective procedure which
solves an inference problem. In contrast, in a practical analysis, we determine the

time and space complexity of a particular algorithm which is proposed to implement a
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proposed inference problem. For example, as presented in Figure 4, the complexity of
testing concept satisfiability for both ALC and ALCQ is PSpace-Complete. However,
ALCQ is evidently a more expressive language. Therefore, the algorithm (possibly a
tableau algorithm) which decides ALCQ must be more complicated and may consume
more time and space.

In fact, the theoretical complexity of a language is independent from the algorithm
which decides it and assumes that the algorithm knows which branch will survive
in the case of non-determinisi. Moreover, an algorithm that decides a language
may have different behaviors for different inputs. Therefore, algorithms are mostly
analyzed in average case or typical case scenario.

DL reasoning is known to be very complex and will not terininate in reasonable
time if the algoritluns are implemented exactly similar to tableau rules. Numerous
optimization technicues have been proposed to overcome this complexity. A list of
various recent optimizations that are used by the DL implementers are presented in

[Bec06, Hor03, THPSO07].

2.3 Atomic Decomposition

Atomic decomposition is a technique first proposed by Ohlbach and Koehler [OK99]
for reasoning about sets. Later it was applied for concept languages such as in de-
scription logic for reasoning about role fillers. The idea behind the atomic decom-
position is to consider all possible disjoint subsets of a role filler such that we have
|AU B| = |A| + | B] for two subsets {partitions) A and B. For example®, assume we
want to translate the following numerical restrictions presented as a DL concept into

arithietic inequations:

(< 3 hasDaughter) 1 (< 4 hasSon) N (25 hasChild)

SThis example is taken from [O1K99].
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Different partitions for this set of constraints are defined in the following:

¢ = children, not sons, not daughters.
s = sons, not children, not daughters.
d = daughters, not childrei, not sons.
¢s = children, which are sons, not daughters.
¢d = children, which are daughters, not sons.
sd = sous, which are daughters, not children.
csd = children, which are both sons and daughters.

Since it is an atomic decomposition and subsets are mutually disjoint, we can

translate the three numerical restrictions into the following inequations:

\d| + |sd] + jed] + [esd] < 3
|s] + |sd} + |es| + lesd] < 4

le| + |ed] + |cs| + |esd} = 6

Finding an integer solution for this system of inequations will result in a model for
the initial set of cardinality restrictions. As there may exist more than onc solution

for this system, there may be a non-deterministic approach needed to handle it.

2.4 Integer Programming

A Linear Programming (LP) problem is the study of determining the maximum or
minimum value of a linear function f(x,,z2,...,,) subject to a set of constraints.
This set of constraints consists of linear inequations involving variables :1:1,.3:2, RO
We call f the objective (goal) function which must be either minimized or maximized.

If all of the variables are required to have integer values, then the problem is called

Integer Programming (IP) or Integer Linear Programming (ILP).

Definition 8 (Integer Programming). Integer Programming (IP) is the problem of

19



optimizing an objective (function) f(z1,Z2,....2,) = a1ZTy + G2 + - - + T + d

subject to a set of m linear constraints which can be formulated as:

maximize {minimize) CTX
subject to AX < b

and z; can only get integer values,

where X7 = [z; z2 ... z,)], C is the matrix of coefficients in the goal function, A,nx.
is the matrix of cocfficicnts in the constraints, and b = [b; by ... b,] contains the

limit values in the inequations.

2.4.1 Simplex

It was proven by Leonid Khachiyan in 1979 that LP can be solved in polynomial
time. However, the algorithm he introduced for this proof is impractical due to the
high degree of the polynomial in its running time. The most widely used and shown
to be practical algorithm is the Simplex method, proposed by George Dantzig in
1947.7 The simplex method, constructs a polyhedron based on the constraints and
objective function and then walks along the edges of the polyhedron to vertices with
successively higher (or lower) values of the objective function until the optimumn is
reached [CLRSO01]. Although LP is known to be solvable in polynomial time, the

simplex method can beliave exponentially for certain problems.

2.4.2 From Linear to Integer

Solving the linear programming problem may not yield an integer solution. Therefore,
an additional method is required to guarantee the fact that the variables take integer

values in the solution. There exists two general methods to achieve an integer solution:

7In fact, Leonid Kantorovich, a Russian mathematician used a similar technique in economics
before Dantzig.
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1. Branch-and-bound: Whenever a fractional value appears in the solution set,
this method splits the search in two branches. For examnple, if z3 = 2.4, the
algorithm splits the current problem in two different problems such that in one
of them the new constrain 3 < 2 is added to A and in the other one 23 > 3
is added to A. The optimized solution is therefore, the maximum (minimum)

value of these two branches.

Moreover, the algorithm prunes the fruitless branches. In other words, whenever
a branch cannot obtain a value better than the optimum value yet found, the

algorithm discards it.

2. Branch-and-cut: Whenever the optimum solution is not integer, the algorithm
finds a linear constraint which does not violate the current set of constraints
such that it eliminates the current non-integer solution from the feasible region
(search space). This linear inequation which discards fractional region of the

search space is called cufting plane.

By adding cutting planes to A, the algorithin tries to yield an integer solution.
However, the algorithm may reach a point where it canmot find a cutting planc.
Therefore, in order to complete the search for an optimum integer solution it

starts branch-and-bound.

In this research we decided to use branch-and-bound whenever simplex obtained
a non-integer solution. Since the limits (matrix b) are integer values in our case, and
the algorithm hardly ended up with a non-integer solution, we decided to avoid the

high complexity of the branch-and-cut method.
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2.5 Summary

In this chapter we explained required background and definitions to define our prob-
lem of interest in the next chapter. Starting from description logic formalisms we
introduced qualified cardinality restrictions and the expressiveness they can give to
the language. Furthermore, we introduced tableaux as well as a general framework
in which one can prove correctness of an algoritiun.

Moreover, we distinguished between two different types of complexity used in the
literature: the inherent complexity of the input language vs. the complexity of the
algorithm which decides it. In addition, we introduced atomic decomposition as a
method invented by Ohlbach and Koehler to handle arithmetic aspects of concept
languages. In Chapter 4 we demonstrate a hybrid algorithm which benefits from
integer programming and atomic decomposition to address the high inefficiency of
reasoning in description logics due to numerical restrictions. Before proposing the
hybrid algorithm, in the next chapter we briefly survey the other present alternative

solutions for this problem.
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Chapter 3

Qualified Number Restrictions

In this chapter we will focus on qualified cardinality (munber) restrictions as an ex-
pressive construct which equips the language with the ability of counting. Moreover,
we describe the standard tableau approaches which handle qualified number restric-
tions and try to analyze their practical complexity. Afterwards, we present major
optimization techniques proposed for the standard algorithms, regarding cardinality
restrictions. Finally, we conclude this chapter by building the motivation for a more
arithmetically informed approach.

By means of the cardinality restrictions, one can express numerical restrictions on
the llers of a role. For example, the expression (> ThasParent.Male)(> 1hasParent.Female)
describes a restriction on an entity which has ai-least one mother and af-least one
father. There are two types of cardinality (numerical) restrictions: (1) ungualified
restrictions (A) which are expressed in the forms (> nR) or (< mR); (2) qualified
number restrictions (Q) shown by (> nR.C) or (€ mR.C).! Since the unqual-
ified restrictions can be expressed by qualified constructs (> nR => nR.T and

< mR =< mR.T), we focus our attention on gualified cardinality restrictions.

ITor a more formal.definition see Section 2.1.2.
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Adding cardinality restrictions to ALC can significantly increase the expressive-
ness of a language and consequently raise its practical complexity. Therefore, reason-
ing with qualified number restrictions can become a major source of inefficiency and

requires special attention.

3.1 Standard Tableau Algorithms

Tableau algorithms normally try to examine the satisfiability of a concept or consis-
tency of a TBox/ABox by constructing a model (tableau) for it. Similarly, in order to
handle cardinality restrictions, they create the required number of role-fillers iinposed
by at-least restrictions (>nR.C) and by modifying role-fillers, t;ry to satisly at-most
restrictions (< mR.C) whenever violated. Figure 5 presents a general version of the
tableau rules, handling qualificd number restrictions [HB91, BBHY6]. The tablcan
calculi for more expressive languages also include similar rules to handle qualified

cardinality restrictions [HSTO00, HS05].

>-Rule if (>nR.C) € L(z) and there are no R-successors
Y1, Y2, - - - Yy for z such that C € L(y;) and 1,-.-,:éyj
then create n new individuals y1,%2,.-.,Yn and set
L(y:) = {C}, LUz, 1)) := {R}, and y;7ty; for 1 <
i<j<n

choose- if (<mR.C) € L(z) and there exists an R-successor y

Rule of « such that {C,~C} N L{y) = 6,
then set L(y) := L{y)U{C} or L'(y) := L{y) L {-C}

<-Rule if 1.(<nR.C) € L(z) and = has m R-successors such
that m > n and,

- 2. There exist R-successors y, z for z and not y{éz

then Merge(y, z)

Figure 5: The rules handling Q

It can be observed in Figure 5 that the >-Rule tries to create n R-successors

(R-fillers) in C for the individual x, in order to satisfy at-least restriction (> nR.C).
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Moreover, these individuals need to be distinguished to avoid that they are being
merged later. Therefore, the >-Rule explicitly asserts this distinction by using the #
operator.

Whenever we have an at-most restriction (< nR.C) in the label of an individual,
it is necessary to know how many R-successors of z are in C and how many are not
in C (i.e., are in =C). Since we have the open world assumption in description logics,
in order to remain sound and complete the algorithm nondeterministically decides,
for each R-successor of x, whether it is in C or —=C. This semantic branching can be
achieved by means of a non-deterministic rule such as the choose-Rule in Figure 5
(R? in [HS05]). If there exists an at-most restriction (<nR.C) in the label of a node
z, this rule non-deterministically adds C or —~C to the lahel of every R-successor of z.
Therefore, if there are m R-successors for x, the algorithm opens 2™ branches in the
search space according to the at-most restriction (<nR.C). In [Hor02] by explaining
some sample ontologies derived from UML diagrams, it is demonstrated that this
non-deterministic rule can be a major source of inefficiency in most DL-reasoners.

The <-Rule {a.k.a. merge-Rule) maintains the semnantics of the at-most restric-
tions whenever violated, by merging extra successors. Whenever (< nR.C) is in the
label of = and 2 has m R-successors in C such that m > n, the algorithin needs to
merge them into n nodes. If they are not mergable due to the assertions of the form
a:%y, the algorithm returns a clash. Otherwise, it will nondeterministically try to
merge m nodes into n nodes. Since there exists m — n extra successors, there are
(NN - (") /(m — n)! ways to merge them. This number can grow very fast
when m — n increases. Hence, the <-Rule can also be considered as a significant
source of nondeterminism and consequently, inefficiency.

In these standard approaches, there exist two types of clashes:

1. A node = contains a clash if there exists a concept expression C' such that
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{C,-C} C L(z) or

2. If for a node z we have (< nR.C) € L£L{z) and it has m R-successors ¥1,%2,---,Ym

such that they are mutually distinct and C € £(y;), then z contains a clash.

The second type of clash occurs whenever the merge-Rule fails to merge extra

nodes due to the fact that they are explicitly asserted to be distinct.

3.2 Complexity of Reasoning with Q

From a theoretical point of view ALCQ concept satisfiability test is known to be
PSpace-complete even with binary coding of the numbers [Tob01]. In fact this is
also the upper-bound complexity for the languages ALC and ALCQT, which are less
and more expressive than ALCQ. Moreover, the hardness of TBox consistency for
ALCQ is EXPTime-complete [Tob01]. However, from a practical point of view, the
complexity of reasoning for the expressive languages benefiting from qualified number
restrictions is considerably high (see Section 3.1). In order to propose an algorithimn
that can work within a reasonable amount of time. one has to employ eflective opti-
mization techmiques. In the following section some optimization techniques, regarding

numerical restrictions are presented.

3.3 Optimizing Reasoning with Q

There are many optimization techniques, employed in the reasoters handling quali-
fied number restrictions. In the following, some optimization methods which are more
specifically related to numerical restrictions will be described. The signature calculus
tries to overcome the inefficiency caused by large numbers occurring in qualified num-

ber restrictions [HMO1]. The algebraic methods try to optimize the algorithm when
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creating the successors by choosing a branch which is aritlnnetically more informed
[OK99, HTMO1]. The dependency-directed backtracking technique, on the other hand,
tries to discover the origins of a clash in order to avoid reproducing the same clash

again [Hor02].

3.3.1 Signature Calculus

The complexity of the standard algorithms is evidently a function of the numbers
occurring in qualified number restrictions; i.c., » and n in (< mR.C) and (> nR.C)
(see Section 3.1). By increasing n in (> nR.C), in fact we increase the number
of R-successors of a node and then exponentially increase possible outcomes of the
choose-Rule. On the other hand, the number of possible ways to merge n nodes into
m nodes grows tremendously when increasing m and n. One way to handle large
numbers of successors is by creating one “prozy individual” to represent more than
one R-successor when all the successors share the same label.

The signature calculus presented in [HM01], in the same manner, creates proxy
individuals as role fillers. More precisely, for every at-least restriction (> nR.C) it
creates one proxy individual in C which is a representative of n individuals. However,
it will later split the proxy individual into more than one proxy individual, in order to
satisfy the constraints imposed by the restrictions on the role-fillers. For example, if
(< mR.C) is in the label of a proxy individual z, where m < n it nondeterministically
tries to split z into more than one proxy individuals. In addition, it also requires a
merge rule which nondeterministically merges extra proxy individuals that violate an

at-most restriction.
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3.3.2 Algebraic Methods

As stated in [OK99], “As soon as arithmnetics comes into play, tableau approaches
become very diffieult to use”. Even simple? arithmetic restrictions such as (> nR.C)
and (< m R.C}, can become a major source of inefficiency (see Section 3.1). An
algebraic algorithm has been proposed in [OK99] to decide satisfiability of DL con-
cept expressions. In fact, th.is non-tableau method approaches the problemn from
an arithmetic perspective and the whole reasoning is reduced to inequation solving.
This method assumes that the arithmetic system is able to deal with disjunctions
of inequations and translates disjunctions of logical expressions to “dis-equations”.
Moreover, it is 1ot a tableau approach and does not try to build a model for the input
concept expression. Consequently it only determines whether a concept expression is
satisfiable or not and does not need the solution itself.

This method partitions the set of role-fillers into disjoint atoms by means of the
atomic decomposition method. Furthermore, it translates all of the logical expres-
sions into inequations. Thus, it returns “satisfiable” if there exists a solution for the
corresponding set of inequations. Benefiting from an inequation solver, this method
solves the problem in an arithmetically informed manner. Moreover, in [0I99] some
new arithinetic constructs were introduced that can be handled easily by means of an
inequation solver. However, this method which is not a calculus cannot be used to

construct a model which is one of the major advantages of tableau-based algorithins.

3.3.3 A Recursive Algorithm for SHQ

Combining algebraic methods introduced in [OK99] with tableau-based approaches,

[HTMO1} proposes a hybrid algorithm to decide consistency of general SHQ TBoxes.

21n [OK99] some more complicated structures are introduced that can be very useful in practical
reasoning which are not even supported by the most expressive DI-reasoners (see Section 8.2.2).
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Whenever potential R-successors of an individual (inaximum number appearing in the
al-least réstrict.ious) exceeds the nuinber of allowed R-successors with respect to the
at-most restrictions, the merge-Rule is invoked by the algorithin. This rule coltects
all the numerical restrictions in the label of this node and by means of the atwuwic
decomposition method, partitions the set if role-fillers and calls the in-equation solver.
If there exists no non-negative integer solution for the set of inequations derived from
the numerical restrictions, the algorithm returns a clash.

This algorithin assumes that each partition either must be empty or can be non-
empty. In order to test whether a partition must be empty or not, it tests if the
concept expression corresponding to that partition is satisfiable or not. In other words,
cach partition must be empty iff its corresponding cencept expression is unsatisfiable.
Hence, this algorithmn will recursively eall itself to examine the satisfiability of these
concept. expressions. Although it benefits from tablean rules, this algorithm cannot.
Le considered as a calculus; i.e., its teninination, soundness, and completeness were

not proven.

3.3.4 Dependency-Directed Backtracking

The two previous techniques try to optimize the algorithnn when creating successors.
In fact, by partitioning the set of the role-fillers, they create successors in an informed
manner, to avoid merging them later. Another way to optimize reasoning, in general,
is dependency-directed backtracking (a.k.a. backjumping) [Hor02]. By means of the
backjumping, an algorithin can detect the source of a clash and prune the search
space to avoid facing the samne clash again.

Notice that the only source of branching in the search space is due to the nondeter-
ministic rules. Nondeterminisin is exactly the reason that makes tableau algorithms

incfficient. Therefore, backjumping can significantly improve the performance of the
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highly nondeterministic calculi. The rules handling qualified number restrictions are a
considerable source of non-determinisin; i.e., the <-Rule and the choose-Rule. There-
fore, dependency-directed backtracking can optimize these algorithms even in absence
of large numbers [Hor02]. The technique described in [Hor02] in fact records the
sources of a clash and jumps over choice points that are not related to the clash and

tries to choose another branch at a nondeterministie point that is related to this clash.

3.4 Summary

In this chapter we briefly described the curremt solutions dealing with qualificd num-
ber restrictions. By analyzing the practical complexity of the standard tableau caleuli
which follow the general pattern presented in Figure 5, we illustrated the high ineffi-
ciency of these calculi. Not observing the reasoning from an arithmetic perspective,
these caleuli act arithmetically blind and therefore ineflicient.

Moreover, as long as DL-reasoners perforin very weak when dealing with numbers,
there is no room for proposing new arithmetic constructs. Therefore, an scalable
calculus which deals with numbers more arithmetically informed rather than the
current trial-and-error approaches may bring up this possibility.

In the next chapter we propose a hybrid calculus which in contrast with stan-
dard calculi [HSTO00, 11505, HST99] deals with qualified number restrictions in an
arithmetically infortned manner. Moreover, being a hybrid calculus (arithmetic and
logical), in contrast with [OK99] it preserves the logical reasoning aspects and re-
turns a tableau as a mnodel for the input KB. On the other hand, it is proven to be a

terminating, sound, and complete algorithm for SHQ.
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Chapter 4

A Hybrid Tableau Calculus for
SHQO

Extending ALC with qualified number restrictions provides the ability to express
arithinetic restrictions on the role-fillers. This expressiveness can increase practical
complexity of the reasoning when employing arithmetically uninformed algorithims
(see Section 3.1). Therefore, a tableau calculus which benefits from arithmetic meth-
ods can improve the practical complexity of reasoning for qualified cardinality re-
strictions. In this chapter we propose a hybrid tableau algorithm which benefits
from integer linear progranuning integer to properly handle numerical features of the
language. At the beginning, the input ontology needs to be preprocessed by the
algorithm so that . will be prepared as an input for the tableau rules. After the
application of th - tableau rules the algorithm either returns a clash or a complete
and clash-free graph/forest. In Section 4.5 we extend the algorithm to work with
arbitrary ABoxes as input.

In the following, three disjoint scts are defined; Ne is the set of concept names;
Np = Npp U N is the set of all role names which consists of transitive (Ngr)

and non-transitive (Nps) roles; I is the set of all individuals, while 4 is the set of
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named iudividuals occurring in the ABox A. A role is called simple if it is neither
transitive nor has any transitive sub-role. In order to remain decidable, qualified
number restrictions are only allowed for simple roles. However, recent investigations

in [YKO07] show that this condition could be relaxed in the absence of inverse roles.

4.1 Preprocessing

Before applying the rules, the algorithm modifies the input ontology similar to the
rewriting technique in [OK99]. Afterwards, the input is ready for the algorithm to

compute the partitions and variables based on the atomic decomposition method.

4.1.1 Converting Q to N

Let =C denote the standard negation normal form (NNF) of —C such that 5(>
nR.C) =<(n - 1)R.C, 2(<nRC) = (Z2(n+ 1))R.C, 5(VR.C) = (21R.-C). We
define a recursive function un@ which rewrites a SHQ concept description such that
qualified number restrictions are transformed into unqualified ones. 1t is important
to note that this rewriting process always introduces a unique new role for each

transformed qualified number restriction.

Definition 9 {(un@). This function transforms the input concept description into
its NNF and replaces qualificd munber restrictions with unqualified ones.! In the
following each R’ is a new role in Np with R := RU {R' C R}:

wnQ(C) = C if C € N¢

un@Q(—~C) := -C if C € Ng, unQ(~C) otherwise

un@(VR.C) := YR.un@(C)

unQ{C M D) := unQ(C) NunQ(D)

IThis replacement method was first introduced in [OK99).
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un@(C U D) := unQ(C) U un@Q(D)
un@Q{> nR.C) := (> nR) NVYR unQ(C) (1)
un@Q(< nR.C) = (< nR) NV(R\R").unQ(=C) _ . (2)

Remark 2. According io [OK99] one can replace a qualified number restriction of the
form (>nR.C) by AR : (R' € R) € R A(2nR)MVR'.C and (<nR.C) by 3R/ such that
(R'C R) € R,{(<nRYNYR.CNVR\R.(-C)((1) and (2)). Therefore, the negation
of (> nR.C} which is equivalent to (< (n — 1)R.C) must be equal to the negation
of the rewritten form. Accordingly, the negation of (>nR.C) which is equivalent to
<{(n—1)R.C will be VR' C R; (<(n — 1)R')U 3R .(-~C) which is unfortunately not a
formula expressible in SHQ. Similarly, ~(<mR.C) =>(m+1)R.C will be equivalent
to VR' C R; >(m + 1)R' U 3(R\R').(—~C) which is also inexpressible in SHQ.

Hence, in order to avoid negating converted forms of qualified number restrictions,
un@Q must be applied initially to the negation normal form of the input TBox/ABox.
Since (2) introduces a negation itself; this negated description needs to be converted
to NNF before further applications of un@. In other words, our language is not closed
under negation w.r.t. the concept descriptions created by rule (1) or (2). However,

our calculus ensures that these concept descriptions will never be negated at any time.

Since (2) is slightly different from what is proposed in [OK99], we prove this

equivalence based on the semantics of the interpretation function Z.

Proposition 1. (< nR.C) is equisatisfiable with (V(R\R').-CN < nR') where 3R':
R'C R.

Proof. The hypothesis can be translated to:

(£ nR.CY* = {ae AT|#{yl(a,y) e R Aye CF} <n} &

37 : {a € AT|IR': RT C RYA#{y" | (a,y) € R} < nA(Yh: (a,b) € RT A{a,b) ¢
R* = b e AT\C™)}.
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(<) Ifa € AT, (a,3) € R¥, y € C%, and (. b) ¢ R? we can conclude that
{a,y) € RT (because if (a,y) ¢ R? then we had y € AT\CT). Since we have
#{v| (a,y) € BT} € n we can define Z such that it satisfies (< nR.C)*.

(=>): We can simply define RY' = RT U R"™ such that for all {a,b) € RT il be C*
then (a,b) € R* and if b € AT\C7 then (a,b) € R". m|

4.1.2 TDBox Propagation

Similar to {HST00], in order to propagate TBox axioms through all the individuals
we define Cr := |_|c,-|; DieT unQ(-~C; U D;) and U as a new transitive role in the role
hierarchy R. A TBox 7 is consistent w.r.t. R #ff the concept C7MVU.Cy is satisfiable
w.rt. Ry := RU{RLC U|R & Ni}. By this means, we impose axioms in the TBox

on all of the named and anonymous individuals.

4.2 Atomic Decomposition

For an individual «, based on the power set of R, = {R € Np| (S nR) € L{a) vV (>
mR) € £{a)}, we partition the domain of role fillers for a. For every subset of R,
(except the empty set) we assign a partition p, representing fillers of the roles in that
subset (p* € AZ). Let P, be the set of all the partitions for @, we define the function
8 : P, — P(R,) to retrieve this subset: d(p) := {R|R € R,,p consists of R-fillers}.
Furthermore, we assign a variable v for each partition p € P, (v < p) and by means
of the function o we denote all the roles related to a certain variable. In other words,
a(v) =48(p) ifv—p.

Since we assume we have complete knowledge about the role hierarchy of the roles
related to an individual, the absence of a role in ¢(p) implicitly means the presence of

its complement. Therefore partitions are mutually disjoint. However, the complement
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of roles is not a part of SHQ and comes into play only when the V(R\R').C construct
is used.

Since all the concept restrictions for role fillers in SHQ are propagated through
universal restrictions on roles, we can conclude that all the individuals in a certain
partition share the same restrictions and can be dealt with as a unit. We call this

unit proxy individual which is a representative of possibly more than one individual.

Definition 10 {Individual Cardinality). We define card : 7 — N to indicate cardi-

nality of proxy individuals.

4.2.1 Example

Assume for the node = we have {> 3R/, < 25", > 1R", < 1R"} C L(z) and these are
the only cardinality restrictions in the label of z. Therefore, we will have R,(z) =
{R,5', R"}. Similar to what is described, this algorithm collects all the unqualified
number restrictions? in the label of a node and computes all the partitions based on
the power set of the set of roles. Therefore, for the set of roles R,(z), we have 8
different subsets. Since we never consider the empty sct®, we will have 7 different
partitions such as in Iligure 6.

Afterwards, the algorithm assigns a variable to each partition. Asswning a binary
coding of the indices of variables, where the first digit from the right represents [Z/,
the second digit represents S’, and the last digit represents the presence of R", we

will define Lhe variables such that v; < p;:

a(vonr) = {R'}, ae(voo) = {S'}. (i) = {R"}
a(von) = {R, §'}, a{vi01) = {R', R"}
a(vie) = {9, R"},a(vn) = {R', S, R"}
?Notice that after the application of the un@ function, no qualified number restriction exists in

the label of the nodes.
31f the label of an edge is the empty set in the completion graph, in fact it does not exist.
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d(p1) = {R'},6(p2) = {5}, 6(pa) = { A"}
8(pa) = {R, 5"}, d(ps) = {R', R"}
3(pe) = 181, '), 30or) = (R, S )

-7

Figure 6: Atomic Decomposition Example

Hence, the unqualified number restrictions in £(z) can be translated to the following

set of inequations where = is the placeholder for < and >:

A%
w

vpp1 + Vo11 + V1o + Vin

Voo + Vo1 +FUno+ i1 £ 2

Il
[

Vipo + V101 + Y110 + Y11

4.3 Architecture

From an abstract point of view we can divide the reasoning module of this algorithm
into two parts: The logical module and the arithmetic module. The arithmetic module
is responsible to find an integer solution for a set of inequations or return a clash
if no solution exists. The input of the arithmetic module is a set of inequations,

provided by means of the function £ which translates unqualified number restrictions
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to inequations such that £(R, 9, 1) = (3 peaw i) DA Whereae {£,2}andn > 0.
For instance, in the example of Section 4.2.1 we had &(R’, >, 3) = wvgo1 + vo11 + 1101 +
v 2 3.

Furthermore, the arithmetic module returns solutions using the function o : V —
N which assigns a non-negative integer to each variable. Let V, be the set of variables
assigned to an individual z, we define a set of solutions Q for z as Q(z) := {o(v) =
n | n € Nyv € V;}. Notice that the goal function of the inequation-solver is to

minimize the sum of the variables occurring in the input inequations.

4.4 Tableau Rules for TBox Consistency

In the following we present a tableau algorithm that accepts a general TBox T w.r.t.
a role hierarchy R as input and either returns “inconsistent” if 7" is not consistent
or otherwise “consistent” with a complete and clash-free completion graph. In order
to examine the consistency of 7', the algorithm creates an assertion zq : Cr NVU.Cr
where o € I is a new individual. Then by applying the expansion rules, it tries
to construct a completion graph. Since the hybrid algorithm creates a graph which
is slightly different from the standard completion graph (see Section 2.1.4), we will

redefine it in the following.

4.4.1 Completion Graph

A completion graph G = (V, E, L, Lg) for a general SHQ TBox 7 is a tree with zg as
its root node. Every node z € V has a logical label £(z) C clos(7) and an arithmetic
label £z(z) as a set of inequations of the form £(R, >, n} with e {<, >}; each edge
(z,y) € F is labeled by the set L({z,y)) € Na.

Blocking A node z in a graph G is blocked by a node y iff ¥ is an ancestor of x such
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that £(z) € L{y).? Since we have the tree-shaped model property for SHQ TBoxes,

we can conclude that all of the successors of a blocked node are also blocked.

Definition 11 (Clash triggers). A node 2 contains a clash iff there exists a concept
name A € Ng such that {A,-A} C L(z) or Lg(z) has no non-negative integer
solution. A completion graph is clash-free iff none of its nodes contains a clash, and

is complete if no expansion rule is applicable to any of its ncdes.

4.4.2 Expansion Rules

The algorithm starts with the graph G with zy : Cr N VU.Cr as its root node.
Moreover, for the root node z, we set card(zy) = 1. After the application of the
rules in the Figure 7, the algorithm returns ‘consistent’ if it yields a complete and
clash-free graph or otherwise ‘inconsistent’.

The algorithm considers the following priorities for the expansion rules:
1. All the rules except the <-Rule, the >-Rule, and the fil-Rule have the highest
priority.
2. The <-Rule and the >-Rule have the second highest priority.

3. The generating rule which is the fil-Rule has the lowest priority.
Moreover, there are three limitations on the expansion of the rules:

e priority of the rules,

o rules are only applicable to nodes that are not blocked,

e in order to preserve role hierarchies for every RC S € R: if foranodez € V
we have 7 € a(v) but S ¢ a(v), this variable needs to be always zero and

therefore we set Lg{z) := Lg(z) U {v < 0}.

4Notice that whenever we deal with ABoxes, we must take into consideration that ABox individ-
vals can never be blocked.
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M-Rule
Li-Rule

¥-Rule

V\-Rule

¥.-Rule

>-Rule
<-Rule

ch-Rule

fil-Rule

if (C, NCs) € L{x) and not both C, € L({z) and C; € L(x)
then set L£(2) = L(z) U {C1,Cs}

if (C] L Gz) € 1:(33) and {01,02} n E(SL') = @

then set £(z) = L(z) L {C1} or L(z) = L{z) U {Ca}

if VR.C € L(z) and there exists a y and R’ such that R’ ¢
L{z,»))and C ¢ L(y) and R C R

then set L(y) = L{y) U {C}

if VR\S.C € L(z) and there exists a y and R’ for which
R e L{z,y)), RCR REZS,and C ¢ L(y)

then set L{y) = L(y) U {C}

if YR.C € L£(x) and there exists a ¥ and S for which S €
L{{z,y)), SC R, S & Ngp, and VS.C ¢ L(y)

then set L(y) = L(y) U {V5.C}

If (> nR) € L(z} and £(R, 2,n) ¢ Le()

then set Lg(z) = Lg(z) U {§(R, 2,n}}

If (< nR) € L(z) and §(R, <,n) ¢ Lp(x)

then set Lg{z) = Lg(x) U {€(R, <, n)}

If there exists v occurring in Lz(z) with {v 2> 1, v <0} N
Lg(z) =10

then set £z{z) = Le(z)U{v > 1} or set L'p(z) = Le(z)U
{v<0}

If there exists v occurring in Lg(x) such that o(v) = n with
n > 0 and if z is not blocked and has no such successor
then create a new node y and set L{{z,y)) = a{v) and
card(y) =n

Similar to [FFHMO08b, FFHMO08a] which propose an algorithm for ALCQ concept

satisfiability, the rules in Figure 7 handle the SHQ TBox consistency test. In addition

Figure 7: Expansion rules for SHQ TBox

to [FFHMO0SL, FFHMO08a), this algorithm henefits from prozy individuals.

-4.4.3 TRule Descriptions

The function of the M-Rule, U-Rule, ¥-Rule, and the V.-Rule is similar to standard
tableau algorithms (see Section 2.1.4). The V,-Rule preserves the semantics of the
transitive roles. The ¥y\-Rule handles the new universal restriction expression intro-

duced by the transformation function un@. All these rules which have the highest
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priority among the expansion rules, extend £{z) with new 1ogical expressions. After
the application of these rules the logical label of the node z cannot be expanded
anymore. This fact is a consequence of the characteristics of SHQ TBox consistency
which yields a tree-shaped graph. In other words, the labels of a node cannot be later
affected by its successors in the graph.

<-Rule, >-Rule:
Since all of the logical constraints on a node are collected by the rules with the highest
priority, after their application the algorithm, in fact, has collected all the numerical
restrictions for a node. Therefore, it is possible to compute the final partitioning
with respect to these restrictions. The <-Rule and the >-Rule translate the nu-
merical restrictions, based on the atomic decomposition technique, into inequations.
Consequently, they will add these inequations to £g(z) for a node z.

ch-Rule:
The intuition behind the ck-Rule is due to the partitioning consequences. When we
partition the domain of all the role-fillers for an individual, we actually consider all
the possible cases for the role-fillers. If a partition p is logically unsatisfiable, the cor-
responding variable v <= p should be zero. But if it is logically satisfiable, nothing but
the current set of inequations can restrict the number of individuals being members
of this partition. Hence, from a logical point of view there are two cases: an empty
partition or a non-empty partition. On the other hand, the arithinetic reasoner is
unaware of the satisfiability of a concept representing a partition. Therefore, in order
to organize the search space with respect to this semantic branching, the algorithin
distinguishes between these two cases: v > lorv <0.

fil-Rule:
The fil-Rule with the lowest priority is the only generating rule. It always creates

successors for a node z based on the non-negative integer solution provided by the
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arithmetic reasoner. Hence, it will never create successors for a node that might
violate numerical restrictions of this node. Therefore, there is no need for a inechanism
of merging nodes created by this rule. In order to avoid infinite loops, the fil-Rule

does not create successors for a node which is blocked by another node.

4.4.4 Example TBox

Consider the TBox 7 = {C C (> 2R.D) (< 15.(C 1 D))} and the role hierarchy
R = {R C S}. To test the satisfiability of the concept C, we start the algorithm
by L(zo) = {C} and adding ~C U ((= 2R.D) N (< 15.(C u D))) to the label of xo.
We abbreviate this concept expression by Cr which will later be propagated to other

nodes of the tree by means of the universal transitive role U.

Preprocessing: The algorithm converts the qualified number restrictions by
means of the un@ function such that:
unQ(Cr) = ~Cu((> 2R’ NVYR.D) N (< 15 NVYS\S'.(-C N -D))) where ' and 5§’
are new roles and the role hicrarchy will be extended as R =RU{S'C S, ' C R}.
After applying all the rules with the highest priority, since C is asserted to the

label of zo, we will have:

L(zo) = {C,> 2R',\YR'.D,< 18 ,V5\S'.(-C 0 -D),Cr,YU.Cr}

Consequently the >-Rule and <-Rule becume applicable and the partitions will be
computed by the algorithm. Since there are two numerical restrictions in £{z), there

will be 22—1 = 3 partitions and therefore three variables to construct the inequations.

41



If ave1) = {R'}, a(vp) = {S'}. and a(vy) = { R, 5’} we will have:

N

vor + 1 2

Le(zo) =
v+ <1

The goal function in the inequation solver is to minhize vg; + vy + v1- If the ch-
Rule sets v;; > 1 but the other variable must be less or equal zero, an arithmetic
clash will occur. Therefore, one possible solution can be when vy > 1 and v3; 2 1
which is o(vg) = 1 and o(vy;) = 1. Now that we have a solution, the fil-Rule
becomes applicable and generates two successors z; and x, for the node x4 such that
card(z;) = 1, L{{zo, 1)) = {R'} and card(z2) = 1, L{{xq.:x2)) = {R', 5'}.

Since R’ is in the label of the edges {xy, x;) and (zq, x2) the V-Rule will be invoked
for VR'.D € L{zg) and D will be added to the logical label of »; and z,. In addition,
since R' C S but R £S5’ the V\-Rule will be fired for the node z; and ~C' N =D will
be added to L(zx,).

In the current graph we have {D,-D} C £(z;) which is a clash and the algorithm
needs to explore another branch in the search space. Another solution can be where
v <0, vy <0, and vy, > 1 which is a(vy;) = 2 for which the fil-Rule will create
x3 such that card(zg) = 2, L{{z0,z3)) = {R'}. Similar to x,, this node will contain
a clash. Since no other branch is left to explore, the algoritlim returns only clashes

which meaus the concept C is unsatisfiable.

4.5 ABox Consistency

Handling assertional knowledge can be more difficult than TBox consistency for the

hybrid algorithmn due to the following reasons:
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Extra asserted successors: The hybrid algorithin always creates the role-fillers ac-
cording to the solution provided by the inequation solver. Therefore, it will
never create extra successors that may violate an at-most restriction and need
to be merged. In the assertional knowledge, in contrast, an individual can have
arbitrarily many successors which may be possibly more than what is allowed.
Therefore, a hybrid algorithm, to handle ABoxes needs a mechanism to deteet

if extra successors exist and also a mechanism to merge thent.

Back propagation: One of the characteristics of the SHQ TBox consistency that
makes it efficient for the hybrid algorithm is its tree-shaped model. In other
words, when no more number restrictions can be added by the successors of
a node, the algorithin can compute the partitions just once and locally for a
node. Morcover, the set of inequations for a node will be unaffected by the
successors of a node. This feature can make the algorithm practically cllicient.
to use. However, in the case of ABox consistency, the given ABox can contain
a loop for which it is not possible to define an ordering. Hence, an algorithin
for general ABoxes in SHQ must be able to handle incremental knowledge for

the asserted individuals.

4.5.1 A Hybrid Algorithm for ABox Consistency

In the following we extend our hybrid algorithm to ABox consistency for SHQ which

addresses the requirements of such an algorithm.

Definition 12. Ifx,y € 14 then Ity is the role name which is only used lo represent

that y is an R-filler of x and Ryy C R. In other words whenever (z,2) : Ry, we have

ot = L.

Re-writing ABox assertions: We replace the assertion (b,¢) : Rby b: (21 R,) (<
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1R,.). The reason that we translate ABox role assertions into number restrictions
is due to the fact that they actually iinpose a numerical restriction on a node. For
example, the assertion (b,¢) : R means there is one and only one Ry filler for b
which is ¢. Since the hybrid algorithm needs to consider all the numerical restrictions
before creating an arithimetic solution and generating the successors for a node, it is

necessary 1o consider this restriction as well.

Definition 13 (Completion Forest). Similar to a completion graph we define a com-
pletion forest F = (V, E, L, Lg) for a SHQ ABox A that is composed of a set of
arbitrarily counecected nodes as the roots of the trees. Every node x € V is labeled
by L(z) C dos(A) and Lg(x) as a set of inequations of the form £(R,pq,n) with
g {<, >}; each edge (x,y) € E is labeled by the set £({z,y)) € Np. We maintain

the distinction between nodes of the forest by the relation #.

The algorithm starts with the forest F4, composed of the named individuals as
root nodes. For cach a; € 14 a root node z; will be created and L(x;) = {C|(¢;:C) €
A}. Notice that we do not set the label of the edges as L{(x;, z;)) := {R| (a0, b;): Re
A} since they are encoded as cardinality restrictions of the form (< 1R, )1 (> 1,,0,)
and added to £(x;). Additiomally, for every root node & we set card(x) = 1 and the
root nodes cannot. be blocked.

The following restrictions are imposed on variables due to the semantics of the

logic SHO:

1. In order to preserve ABox assertions of the form ¢ # b if {R,S} € a(v) and

RC R,, and S C R we will set Lg(x) := Le(z) U {v <0}.

2. Also since fillers of R,y and S,y have to be cquivalent, if we have Ry, € a(v)

but Sy ¢ a(v) we will set Lg(z) = Lp(z)u {v <0}



4.5.2 Tableau Rules for ABox Consistency

In the following we present an algoritlun which extends the algorithm introduced in
section 4.4 to handle ABox consistency. We extend the tableau rules presented in
Figure 7 with the merge-Rule and the reset-Rule which have the highest priority
and adapt the fil-Rule for the ABox consistency algorithm in Figure 8. Furthermore,
an adaptation procedure is added to the arithmetic reasoner to maiutan éxisting
solutions according to the current partitioning,.

The hybrid algorithim converts ABox assertions of the form (e, ) : R into numer-
ical restrictions. Therefore, this rewriting will reduce the problem of detecting extra
successors to inequation solving. In other words, the role assertions will be converted
to cardinality restrictions which will be later processed by the arithmetic reasoner.
Morecover, a new rule needs to be added to the tablean rules which merges extra
asserted successors according to the solution provided by the arithmetic reasoner.
Merging example

Consider three nodes x, y, and z as rootl nodes of a forest F and the following labels:
L) = {SIR), R € L({z.,)), R € L({z,2))

The algoritlun converts role assertions to numerical restrictions and we will have
L{z) = {KIR,L1R,,,>1R,,,<1R..,>1R..} where {R,, C R, R, € R} C R.
Consider the variables such that a{vem ) = { R}, a(vow) = {R+y}, a(viee) = {Rz:} .- .,
a{vin) = {R, Ry, R..}. According to the role hierarchy R we will have v < 0,
oo < 0, and vy < 0.

Hence, after removing all the variables that must be zero, the following system of



MN-Rule
L-Rule

V-Rule

Y\-Rule

V.-Rule

>-Rule
<-Rule

ch-Rule

if (C;NCs) € L(z) and not both C, € L(z) and C; € L(x)
then set £(z) = £{z) U {C}, C2}

if (CiuGs) e L{z) and {C1,C}NL(z) =§

then set £(z)} = L(z) U {C} or L'(z) = L(x} U {C>}

if YR.C € £(z) and there exists a y and R’ such that R' €
Lz, y})and C ¢ L(y) and FE R

then set £{y) = L{y) U {C}

if VR\S.C € L(x) and there exists a y and R’ for which
ReL({z,y)), RCR,REZS,and C ¢ L(y)

then set L(y) = L{y) U{C}

if YR.C € L(z) and there exists 2 y and R/, S for which
Rec((z,y), RCS,SC !, S e Npr,and ¥VS.C ¢ L(y)
then set L(y) = L(y) U {VS.C}

If (>nR) € L(x) and E(R, >,n) ¢ Lg(z)

then set Lg(z) = Lp(x) U {£(R, =,n)}

If (< nR)e L(z)and (R, <,n) ¢ Le(x)

then set Lp(z) = Le(z) U {€(R, <, n)}

If there exists v occurring in Lg(z) with {u > 1, v <0} N
then set Le{z) = Lp(x)U{v > 1} orset Lg(z) = L'g(x)U
{v<0)

resel-
Rule

merge-
Rule

fil-Rule

if (< nR) € L(x) or (> nR) € L{x), and for all v € V. we
have R ¢ a{v)
then set Lg(x) = @ and for every successor y of x set
L((z,y)) = 0.
if there exists x,a,b € I4 such that R, € £L({z,b))
then merge the nodes a, b and replace every occurrence of
a by b.
If there exists v occurring in £Lg(x) such that o(v) = n with
n >0
(i) if = = 1 and there exists a Rz € a(v)
then if £{{x,b)) = 0 set L{{x,b)) := a(v)
(ii} elsif x is not blocked and has no sucl successor
then create a new node y and
set L{{x,y)) = a(v) and card{y) = n

Figure 8: Expansion rules for SHQ ABox consistency




inequations in Lg{x) needs to be solved:

Tom -+ Von1 + Vi +vin < 1,
(%) von+vim = 1

v+ = 1

The only non-negative solution for (x) is achieved when it is decided by the ch-
Rule that {v);; > 1) and all other variables are equal zero. This solution which is
a(vi11) = 1 will invoke the fil-Rule in Figure 8 which makes y and z the successors of
z such that £{(z,y)) = {R, Ray, Rz:} and L{{x, z)) = {R, Ryy, R..}. Consequently,
since Ry, € L({z,z)), the merge-Rule in Figurc 8 becoines applicable for the nodes
y, z and merges them.

When a new numerical restriction is added to £(z}, the algorithm needs to refine
the partitioning assigned to = and consequently V... However, the current state of
the forest is a result of existing solutions based on the previous partitioning. In fact,
the newly added numerical restriction has been added to £(z) after an application of
the fil-Rule. Therefore, we can conclude that the newly added numerical restriction
is a consequence of the solution for the previous set ol inequations. Hence, if the
algorithm does not maintain the existing solutions, in fact it may remove the cause
of the current partitioning which would result in unsoundness.

There exist at least two approaches to handle this characteristics of arbitrary

ABoxes, back propagation:

Global decomposition: One can treat an individual in an arbitrary ABox, as a
nominal. Because of the global effect of nominals, the algorithm must consider a
global partitioning for all the roles occurring in the ABox A [FHMO8]. Hence, all
possible partitions and therefore variables will be computed before starting the

application of the rules. Consequently, whenever a numerical restriction is added
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to the label of a node, there is no tieed to recompute the partitioning to construct
the new inequation., Although global part.itionihg enables the algorithm to deal
with back propagation, according to the large number of partitions/variables,
it can make the algorithm highly inefficient in practice. Moreover, since our
algorithm introduces a new role for each ABox assertion (a,)) : R, the number
of role names and consequently partitions will be enormously large for ABoxes

with many assertions.

Incremental local partitioning: In contrast with nominals which increase the ex-
pressiveness of the language and have a global effect on the nodes, individuals
in ABoxes have a local cffect and can be handled locally. Morcover, an input
ABox is assumed to contain a large number of individuals, whereas relatively
smaller numnber of nominals. Therefore, it is more reasonable to deal with back
propagations locally by means of incremental partitioning as proposed in the

following.

In arbitrary ABoxes, similar to the effect of inverse roles, a root node can be
influenced by its successors and suddenly a new atomic decomposition needs to be
computed. On the other hand, since the current state of the forest is based on the
previous solution, the algorithm needs to maintain it and also adapt it to the new
partitioning. In order to fulfill these requirements, the hybrid algorithm performs the
following tasks only for the root nodes.

Whenever a coneept expression of the form (< nR) or (> mR) is added to £(z)®

(which means it did not already exist in £(z)):

1. The reset-Rule becomes applicable for  which sets Lz(z) := 0 and clears the

arithmetic label of the outgoing edges of z.

5This case can occur whenever (i) we have a cycle composed of root nodes and (ii) after merging
two nodes.
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2. Now that Lg(z) is empty, the <-Rule and >-Rule will be invoked to recompute
the partitions and variables. Afterwards they will add the set of inequations

based on the new partitioning.

3. If (o(v;) = n) € Q(z), where v; € V, corresponds to the previous partitioning,

then set .
Lp(z):=Lp(x)U{)_ vi=n, Y o <n}
u;eV;‘ ugev,f
where Vi = {v; € V] | a(u) € ov})} and ¢} € V; are based on the new
partitioning.

The third task in fact maintains the previous solutions in = and records them by
means of inequalities in £g(x). Therefore, the solution based on the new partitioning
will be recreated by the arithmetic reasoner. To observe the functioning of these tasks

in more detail, we refer the reader to Section 4.5.3.

Remark 3. When the algorithm records the solution ¢(v;) = n by means of inequa-
tions, we can consider two cases for the successors that had been gencrated by the

fil-Rule, based on the previous solution:

1. The successor is a root node y. Therefore, the corresponding solution must be
of the form o{v;) = 1 where Ry, € a(v;). This solution will be translated to
> vj = 1 for all j such that that a{v;} C «(v}). The solution for this equality
will be also of the form (o)) = 1 for some v; € V. Since R,y € a(v:) and
a(v;) C afv’), we can conelude that R;, € a(v}). Hence, the new solution will

enhance the edge between z and ¥ and possibly extend?® its label.

2. The successor is not a root node and represents an anonymous individual z;

and card(z;) = n. In this case n in the corresponding solution can be greater or

6Since a(v;) € a(v)), the new solution will not remove any role nane from the label of this edge.
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equal 1 and later the algorithm can create a solution for which p new nodes will
be created, where 1 < p < n. In other words, the node x; will be removed from
the forest and will be replaced by p new nodes. Since there exists no edge from
non-root nodes to root nodes they never propagate back any information in the
forest. Therefore, removing z; from the forest does not violate restrictions on

the root nodes.

4.5.3 Example ABox

Consider the ABox .4 with respect to an empty TBox and empty role hierarchy:
A= {a:<1R,b:VS.(VR.(>35.C)), (a,b) : R,{a,c): R,(b,d): R,(c.d): 5,(d,c}: R}.
Assume the algorithm generates a forest with root nodes a, b, ¢, and d.

Preprocessing:

1. Applying the function un@:
R=RU{S L S}and (>35.C) -2 35nNVvs.C

2. Converting ABox role assertions: R = RU{Ruw E R, Rec E R, R C R, S C
S, .R,[c g R} and L(a) = .C(C&) U {S lRab: 2> ]»Rab: < 1Ruc: 2 lRm:}a £(b) = E(b) U
{5 }-Rbd: 2 led}: £(C) = £(C)U{S 18(:(1: 2 lS(d},C(d) = C(d)U{S 1Rdc: > 1Rdc}

Applying the rules for ABox
The <-Rule and >-Rule are applicable for all of the nodes and translate the numerical
restrictions into inequations (Figure 9). Node g is similar to node x in the merging
ezample in Section 4.5.2 and invokes the merge-Rule for ¢ and b.

Assume the merge-Rule replaces every occurrence of ¢ by b, we will have £L(b) = {<
1Rpa, = 1Rpg, <1844, > 1844, VS.(VR.{> 35' 1VS'.C))} and for d we will have L(d) =
{< 1Ry, > 1Ry} (Figure 10). We have four unqualified number restrictions in £(b)

(equivalent to two equality restrictions) which will be transformed into inequations
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Figure 9: Initial completion graph. Dashed edges do not actually exist.

by the <-Rule and the >-Rule. Assuming a{vn) = {Rwu} and a(vio) = {Sw}. we
will have vg + vy, = 1 and v;p + v;; = 1. According to the second limitation on
variables based on the ABox semantics, vg; < 0 and vyp < 0. Accordingly, there is
only one solution for £z(b) which is g(vn) = 1 and makes the fil-Rule set L({(b,d)) =

{Sbas Ry}

{R, R} —-'“-"' {Ruts Sea} —1@

L) = L(d) = {<1Rw, 2 1Ru}
{< 1Ry, > 1Ry <1544, > 154}V {VR.(> 358'nVS.C)}
{VS.(VR.(= 35' NVS.C)}

Figure 10: Completion graph after merging b and ¢

Afterwards, the Y-Rule becomes applicable for the node b and adds VR.(> 35" N
V5'.C) to £(d). There is only one inequation for d which results in setting £({d, )} =
{Ra)}. After this setting, as Ra C R the V-Rule adds (> 35'MvS’ .C} to L{b). Since
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> 35 did not exist in L£(b), the algorithm performs reset(b). The <-Rule and the >-
Rule will be fired again to rccompute the partitions, considering the new numerical
restriction (> 35'). Let a(vhy) = {Ru}, a(vge) = {Sw}, and a(vig) = {5},
the solution o(v;) = 1 for b must be expanded according to the new partitioning.
Considering a:(v11) = {Rua, Sta} which is a subset of a(vf;;) and a(v},,), the equation

Upyy V47 = 1 will be added to Lz(b) as a placeholder of o(vy;) = 1 and we will have:

;

It
—

’ st t et
Upor + Vo113 F+ Vion T Uin

Il
—

nyt ') o '
Voo + Yo11 + Vi + Vin
(%) — —_——

/ sl (4 !
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According to the second limitation on variables according to ABox semantics, the
variables vy, ¥h;g, Vipy: and v},q must be less than zero. One of the solutions for (**)
can be achieved when v};; > 1, vy, < 0, and v}y > 1 are decided by the ch-Rule
which is o(v};,) = 1 and ¢(v'100) = 2. Subsequently, the fil-Rule will be fired for
these solutions which adds S’ to £({b,d)) and creates a new non-root node 4’ for
which £({(b,¥')) := {8’} and card(V') = 2. Finally, the V-Rule becomes applicable for
vS8'.C in b and adds C to £(b) and L{V') (Figure 11).

4.6 Proof of Correctness

In this section we prove the correctness of the proposed hybrid algorithm for the
Abox consistency test. Weaker problems such as the TBox consistency or concept
satisfiability test can be reduced to the consistency test for ABoxes with respect to
a given TBox and role hierarchy. In order to prove the correctuess of an algorithin,

one has to prove its termination, soundness, and completeness.
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L{F) = {C}
card(t') =2

{5}

{Rav}

@'—{R'a Rab}__."ﬂbd, Spa, 5"}

L)y = - L£(d) = {<1Rup,21Ra}
{<1R, > 1R <15, 21S}JU  U{YR.(> 35’ NVS.C)}
[VS.(VR.(Z 25' NVS".C))u} u{C}
{>35'NVS'.C}

Figure 11: Final completion graph

4.6.1 Tableau

When proving the soundness and completeness of an algorithm, a tableau is defined as
an abstraction of a model to facilitate comparing the output of the algorithm with a
model. In fact, it is proven that a model can be constructed based on the information
in a tableau and for every model there exists a tableau [HS07]. The similarity between
tableaux and completion graphs, which are the output of the tableau algorithms,
makes it easier to prove the correctness of the algorithm.

Due to the fact that the input of the hybrid tableau algorithin is in SHN\?, we
define a tableau for SHA ABoxes with respect to a role hierarchy R. The following

definition is similar to [HST00).

Definition 14 (Tableau for SHMV). Let R4 be the set of role names and 14 the set
of individuals in ABox A, T = (S,L7,£,.J) is a tableau for A with respect to role

hierarchy R, where:

By SHN\ we mean the language SHA with subtraction on the roles and since we removed al}
of the qualified number restrictions from the language, without existential restrictions (3R.C).
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S is a non-empty set of elements (representing individuals),

o LT :S — 29954 maps elements of S to a set of concepts,

£ : R4z — 25%5 1maps each role to a set of pairs of elements in S,

J : I, — S maps individuals occurring in A to clements of S.

Moreover, for every s,t € S, A € Ng. C,C,,C € dos(A), R, S € N the following
properties hold for T', where RT(s) := {t € S|(s,1) € £(R)}:

P1 If A e L£7(s), then —A ¢ L7 (s).

P2 If C,NCy € LT(s), then C; € L7 (s) and Ca € ETts).
P3 If C,uCy € L7(s), then C; € LT (s) or C2 € L7 (5).
P4 If YR.C € L7 (s) and {s,1) € E(R), then C € L7(¢).

P5 If YR.C € L7 (s), for some S T R we have S is transitive, and (s, t) € £(S5), then
vS.C € LT (1).

P6 I VR\R'.C € LT(s), (s,t) € E(F), but {s,1) ¢ E(R), then C € LT(1).
P7 If (s,1) € £(R), and RC S, then (s,1) € £(S).

P8 If > nR e L7 (s), then #R7(s) > n

P9 If < mR € L7 (s), then #RT(s) < m

P10 If (u: C) € A then C € L7 (T (a))

P11 If (a,b) : R € A, then (J(a), T (b)) € E(R)

P12 If e # b€ A, then J(a} # T ()



Lemma 1. A SHQ ABoz A has a tableau iff unQ(.A) has a SHN \ tableau, where

unQ(.A) indicates A after applying unQ to every concepl expression occurring in A.

Lemma 1 is a straightforward consequence of the equisatisfiability of C and unQ(C)

for every concept expression C in SHQ (see Section 4.1 and [OK99]).

4.6.2 Termination

In order to prove termination of thie hybrid algoritlun, we prove that it constructs
a finite forest. Since the given ABox has always a finite number of individuals (i.e.,
root nodes), it is suflicient to prove that the hybrid algoritlin creates finite trees in
which the root nodes represent ABox individuals. On the other hand, due to the fact
that we include non-deterministic rules, the U-Rule and the ch-Rule, we tnust also

prove that the algorithny creates finitely many forests due to non-detenninism.

Lemma 2 (Termination). The hybrid algorithm terminates for a given ABox A with

respect to a role hierarchy RS.

Proof. Let m = |clos(A)] and k be the number of different numerical restrictions after
the preprocessing step. Therefore, 2 is an upper bound on the length of a concept
expression in the label of a node and k& is the maximum number of roles participating
in the atomic decomposition of a node. The algorithin creates a forest that consists
of arbitrarily connected root nodes and their non-root node successors which appear

in trees. The termination of the algorithm is a consequence of the following facts:

1. There are only two non-deterministic rules: the U-Rule and the c¢ii-Rule. The
U-Rule can be fired at most m times for a node z, which is the maximmn length

of £(z). On the other hand, the ch-Rule can be fired at most 2= times and

8Since TBox axioms are propagated through the universal transitive role, we do not mention the
TBox as an input of the algorithm (see Section 4.1)
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V, is bounded by 2%. Accordingly, we can conclude that the non-deterministic
rules can be fired finitely for a node and therefore the algorithm ercates finitely

many forests.

2. The only rule that removes a node from the forest is the merge-Rule which
removes a root-node each time. Since there are |14} root nodes in the forest,
this rule can be fired at most |/ 4| timnes for a node. Moreover, according to the
fact that the algorithm never creates a root node, it cannot fall in a loop of

removing and creating the same node.

3. The only generating node is the fil-Rule which can create at most |V;| siuiccessors

for a node x. Therefore, the out degree of the forest is bounded by V.| < 2%,

4. According to the conditions of blocking, there exist no two nodes with the same
logical label in a path in the forest, starting from a root node. In other words,
the length of a path starting from a root node is bounded by the number of

different logical labels (i.c., m).

5. The arithinetic reasoner always terminates for a finite set of inequations as the

input.

According to (3) the out-degree of the forests is finite and due to (4) the depth of
the trees is finite. Therefore the size of cach forest created by the hybrid algorithin
is bounded. On the other hand, according to {1}, the algorithm can create finitely
many forests. Considering (2) and (5), we can conclude the termination of the hybrid

algorithm. 0
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£4.6.3 Soundness

To prove the soundness of an algorithm, we must prove that the model, constructed
based on a complete? and clash-free completion forest does not violate the semantics
of the input language.’® According to Lemma 1 and the fact that a model can be
obtained from a SHQ tableau (proven in |[HSTO00]), it is sufficient to prove that a

SHN\ tableau can be obtained from a complete and clash-free forest,

Lemma 3 (ABox semantics). The hybrid algorithin preserves the semantics of ABox

assertions; i.e., assertions of the form (a,0) : T and a#d.

Proof. The algorithin replaces assertions of the form (a,0) : B with a : (€ 11,17 >
1R,,). Consider i, is the node corresponding to the individual a € 14 in the forest
F and likewise z,, for b € 15. According to the definition of R, cardinality restric-
tions. and assuming the fact that the algorithm correctly handles unqualified number
restrictions, one can conclude that for some v € V., o(v) = 1 such that 12, € a(v).
Therefore according to the condition (i) of the fil-Rule in Figure 8, R, will be added
to L{{xa,x)). Since the algorithm preserves the role hierarchy and I, © R the
assertion (a, ) : I is satisfied.

On the othier hand, due to the restriction € 112, for every v # v if R,, ¢ a{v’)
then o(v') = 0. Hence, a set of solutions £{{x,,xp)) cannot be modified imore than
once by the fil-Rule for more than one variable and consequently, the label of (z,, 1)
does not depend on the order of variables for which the fil-Rule applies.

Moreover, whenever we have an assertion of the form a#bh, the algorithms sets
v < 0 for all the variables v such that 3R € Ny; R, € a(v)A R, € a(v). By means of
this variable constraint, the algorithin makes it iimpossible for the arithmetic reasoner

to create a solution which requires the algorithm to merge ¢ and b. O

9A completion forest is complete if no expansion rule is applicable to any of its nodes.
W e semantics of SHQ ABox are demoustrated in Table 1.
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S := {z),rs.....&n|for every node x in F, with card(x) = m}

LT(x) = L{x)for1<i<milcard(z)=m
E(R) = {(x,u)|R € L({x,3) AR T R)
J(a) := x*if " is a root node in F representing individual @ € 4.

If z¥ € V is merged by z* such that every occurrence of z*
is replaced by x4, then J(b) = x*.

Figure 12: Converting forest F to tablcan T

Lemma 4 (Soundness). If the expansion rules can be applied to « SHQ-ABox A and
a role hierarchy R such that they yield a complete and clash-free completion forest.

then A has a tableau w.r.t. R.

Proof. A SHN\ tablean T can be obtained from a complete and clash-free completion
forest F = (V, E, £, L) by mapping nodes in F to elements in 7" which can be delined
from F as T := (8, L7, £,T) such as in Figure 12.

In the following we prove the propertics of a SHA tableau for 7
e Since F is clash-free, P1 holds for T.

o I C,NCy € LT(x;), it means that (C; N Cy) € L{(x) in the forest F. Therefore
the r-Rule is applicable to the node x which adds Cy and Ca to £(x). llence
C, and C, must be in £7(x;) and we can conchule P2 and likewise P3 for
T. Similarly, propertiecs 74, P5, and P6 arc respectively guaranteed by the

V-Rule, V-Rule, and ¥\-Rule.

e Assume R C S, il (i, ;) € E(I2), we can conclude that R € L{{x,3)) in F.
The solutions created by the arithmetic reasoner maintain the role hierarchy
by setting v < 0 if R € a(v) but § ¢ a(v). Moreover, since every fI-successor
is an S-successor, the role hierarchy is considered and properly handled by
the V-Rule, V4-Rule, and V\-Rule. Therefore, we will have S € L({x,y)) and

accordingly {xy, ;) € £(S). Hence, the property P7 holds for T'.



o The <-Rule and the >-Rule are invoked after the logical label, £(x), cannot be
extended anvinore. In other words, they create a correct partitioning based on
all the numerical restrictions for a node. Therefore, the solution created by the
arithmetic reasoner satisfies all the inequations in Lg(z). If (< mR) € £ (x;),
we had (€ mR) € L£(z) for the correspouding node in F. According to the
atomic decomposition for x, the <-Rule will add £v; < m to Lg{x). Therefore,
the solution Q;(z) for Lg(x) will satisfy this inequation and if R € a(v?) A
o(v!) > 1for 1 < i <k then (o(v]) + o(vd) + ... + a(v])) < m. For every
a(vf ) = m; the fil-Rule creates an R-successor y; with cardinality m; for z. This
node will be mapped to m; elements in the tableau T which are R-successors
of x; € S. Therefore, z; will have at most 2 R-successors in T and we can

conclude that P9 hold for T' and P8 is satisfied similarly.

e The hybrid algorithm sets card(z,) = 1 and L(z,) := {C | (a : C) € A} for
every node x, in F which represent an individual @ € /4. Thercfore, an ABox
individual will be represented by one and only one node and P10 is satisfied.

P11 and P12 are due to Lemma 3.

4.6.4 Completeness

In order to be complete, an algorithin needs to ensure that it explores all possible
solutions. In other words, if a tableau T exists for an input ABox, the algorithi can
apply its expansion rules in sucli a way that yields a forest F from which we can

obtain T, applying the procedure in Figure 12.

Lemma 5. fn a complete and clash-free forest, for a node x € V and its successors

iz €V, if L((x,y)) = L((x,2)) then L{y) = L(=).



Proof. The only task that extends the logical label of & node is through the L-Rule,
r-Rule, V-Rule, V,-Rule, and the Vy-Rule. Since £{{z,y)) = L({z, z)), the V-Rule,
V,-Rule, and the Vy-Rule will have the same effect and extend £(y) and £(z) similarly.
We can consider two cases:
(i) If y and z are non-root nodes, we have L(y) = L£(z) = § before starting the
application of the expansion rules. Therefore, when extended similarly, they will
remain identical after the application of the tableau rules.

(ii) If y is a root node, then there exists a role name R € Ng such that R, €
L({z,v)). Therefore, if L({z,y)) = L({(z,2)) then R,, € L({z,2)) which results in
merging ¥ and z in a single node by the merge-Rule. Therefore, we can still conclude

that L(y) = £(z). 0

Corollary 1. According to the mapping from a forest F to a SHANY tableau T
(Figure 12), every £T(t) in T is equal to £{(x) in F °f x is mapped to 2. Morcover,
every R € L{{x,y)) is mapped to {{, s} € E(R). Therefore L{{z,y)) = L{({z,2)) is
equivalent to {R € Npj(s, 1} € E(R)} = {R € Ngl{s,t") € E(R)} where z is mapped
to s, y to ¢, and z to ¢'. Furthermore, L{y) = £(2) is equivalent to LT(t) = LT (t').

Thus, according to the Lenuma 5, we can conclude:

{R € Ng|(s,t) € E(R)} = {R € Ny|(s,t"y e E(R)} = LT(t) = LT(Y')

Lemma 6. If a set of non-negative integer solutions Q(x) based on the set of inequa-
tions Lp(x) causes a clash, all other non-negative integer solutions for Lr(z) will

also trigger a clush.

Proof. Assume we have a solution Q(x) = {o(v1) = my,0(v2) = my,..., 0V} =
m,}, which can only occur when v; > 1 for 1 < i < n is decided by the ch-Rule and

all other variables in V. are cqual to zera. Suppose we have a different solution Q'(x
xr (]
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for the set of inequations in Lg(x) including variable constraints decided by the ch-
Rule such that Q(z) = {a'(v;) = p1,0'(v2) = p2,-...0(vs) = pn}. The label of the
edges, created by the fil-Rule only depends on the variables. Therefore, considering
Lemma 5 the forest gencrated based on @'(2) will contain the same nodes as Q(x),
however with different cardinalities. Since clashes do not depend on the cardinality

of the nodes, we can conclude that Q(x) will result in the same clash as Q(x). O

Corollary 2. According to Lemma 6, all of the solutions for Lg(z) will end up with
the same result; either all of them yield a complete and clash-free forest or return a

clash.

Lemma 7 (Completeness). Let A be a SHQ-ABoz and R a role hierarchy. If A has
a tableaw w.r.t. R, then the erpansion rules can be applied to A such that they yield

a complete and clash-free completion forest.

Proof. We assume we have a SHA tableau T = (S, £7,£,7) for A and we claim
that the hybrid algorithm can create a forest F = (V, E, £, Lg) from which T can be
obtained. The procedure of retrieving T from F is presented in Figure 12. We prove
this Ly induction on the set of nodes in V.

Cousider a node x in F and the expansion rules in Figure 8 and let s € Sin T
be the clement that is mapped fromm 2. We actually want to prove that with guiding
the application of the non-deterministic rules on x we can extend F such that it can

still be mapped to T.

e The U-Rule: If (C,UC,) € L(x) then (C1UC,) € LT(s). The U-Rule adds C) or
Cs to £(x) which is in accordance witl the property P2 of the tableau where for
some concept E € {C),C,} we have E € LT(s). The N-Rule, V-Rule, V,-Rule,
and the ¥\-Rule, which are deterministic rules, are similar to the U-Rule. In

fact these rules are built exactly based on their relevant tableau property.
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e The ch-Rule: Consider in T for s we have 3, 1a,...,1, as the successors of s, Le.,
AR € Ng,{s,t;) € E(R). Intuitively, we cluster these successors in groups of
elements with the same label £7. For exa.inple if ¢y, ...,1; have the same label,
according to Corollary 1, Ny := {R € Ng|{(s,t;) € £(R)} will be identical for
t;, k < 7 < 1. We define a variable vy for such set of role names such that
a{vy) = Ny In order to have T as the mapping of F, the ch-Rule must impose

v 2 1.

According to properties P8 and P9 of the tableau, < nR and > mR are satisfied
in T for s. Therefore, the inequations based on these variables will have a non-
negative integer solution. Notice that the set of variable constraints created
based on T may result in a different solution. For example in T, the element
s may have t; and t» as successors with the label £ which sets v > 1 and ¢},
4, and t as successors with the label £; which sets v > 1. However, in the
solution based on these variable constraints we may have three successors with
the label £T and two successors with the label L¥. Nevertheless, according to

the Lemma 6 this fact does not violate the completeness of the algorithin.

e The reset-Rule is a deterministic rule which is only applicable to root nodes.
Clearing the label of the outgoing edges and also Lg(z) does not violate prop-
erties of the tableau mapped from F. This is due to the fact that the label of
the outgoing edges from z will later be set by the fil-Rule which has a lower

priority.

o The merge-Rule is also only applicable to root nodes. Assume individuals
a,b,c € I, are such that b and ¢ are successors of a that must be merged
according to an at-most restriction a :< nR. Since T is a tableau the restriction
< nR e LT(J(a)) imposes that J(b) = J(c). On the other hand, if z,, 7, and

. are root nodes representing a, b, and ¢, the rmerge-Rule will merge z; and
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z,. according to the solution for Lg(z,). In the mapping from F to T, z;, and
x. will be mapped to the same element that implies 7 (b) = J{c) which follows

the structure of T.

e The <-Rule and the >-Rule only modify Lg(x). Therefore, they will not affect

the mapping of T from F.

e The fil-Rule, with the lowest priority, generates successors for z according
to the solution provided by the arithmetic reasoner for Lg(z). Since Lg(x)
conforins to the at-most and at-least restrictions in the label of z and according
to the variable constraints decided by the ch-Rule, the solution will be consistent
with 7. Notice that every node = in F for which card(z) = m > 1 will be

mapped to m elements in S.

The resulting forest F is clash free and comnplete due to the following properties:

1. F cannot contain a node x such that {A,—-A} C £(z) since £L(z) = LT(s) and

property P1 of the dcfinition of a tablean wonld be violated.

2. F cannot contain a node x such that £g(z) is unsolvable. If £g{z) is unsolvable,
this means that there exists a restriction of the form (> nR) or (< mR) in L(x)
and therefore £7(s) that cannot be satisfied which violates property P8 and/or

P9 of a tableau.
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Chapter 5

Practical reasoning

There is always a conflict between the expressiveness of a DL language and the diffi-
culty of reasoning. Increasing the expressiveness of a reasoner with qualified number
restrictions can become very expensive in terms of efficiency. As shown in Chapter
3, a standard algorithm to deal with qualified number restrictions must extend its
tablean rules with at least two non-deterministic rules; i.e., the choose-Rule and the
<-Rule. In order to achieve an acceptable performance, a tableau algofit;hm needs to
employ elfective optimization techniques. As stated in [Hor03], the performance of
the tableau algorithins even for simple logics is a problematic issue.

In this chapter we briefly analyze the complexity of both standard and hybrid
algorithms. Based on the complexity analysis, we address the sources of inefficiency
in DL reasouning. Moreover, we propose some optimization techniques for the hybrid
algorithm to overcome its high practical complezity. In the last section we give special
attention to dependency-directed backtracking as a major optimization technique and

compare its effect on both the standard and the hybrid algorithm.
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5.1 Complexity Analysis

In this section we analyze the complexity of the hybrid algorithm as well as the typical
standard algorithin presented in Figure 5 in Chapter 3. To analyze the complexity of
concept satisfiabilitv test with respect to qualified number restrictions, we count the
number of branches that the algorithin creates in the search space’.

In the following we assume a node x € V in tl'aelcornpletion graph/forest that

contains p at-least restrictions and ¢ at-most restrictions in its label:
{> mR.C1, 2 ngRe.Co. ..., > n,R,.C,} C L(z)

{<mR.Cl, < myRy.Cy,... . < myR.Cl} C L(z)

such that Ry, R} € Ny and C;, C; € dos(T).

5.1.1 Standard Tableaux

A standard tableau algorithm as was shown in Figure 5 creates n R-successors in C
for each at-least restriction of the form > nR.C. Moreover, in order to avoid that
they are being merged, it sets them as mutually distinet individuals. Assuming that
no C; is subsumed by a Cj, there will be N := n;+na+...+mn, successors for z which
are composed of p sets of successors, such that successors in each set are mutually
distinct.

Moreover, according to every at-most restriction < m;R;.C] the choose-Rule will
create two branches in the search space for each successor. Therefore, based on the g

at-most restrictions in £(z), there will be 2¢ cases for each successor of z. Since x has

N successors, there will be totally (29)V cases to be examined by the algorithm. Notice

INotice that every non-deterministic rule that can have k outcomes, opens k new brauches in the
scarch space.
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that the creation of thiese 29 branches is independent from any clash occurrence and
the algorithin will always invoke the choose-Rule N x p times.

Suppose the algorithm triggers a clash according to the restriction < m;R.C]. If
there exist M R!-successors in C! such that M > m,, the algorithm opens f(M,m;)
= (M . (M) /(M = m)! new branches in the search space which is the
number of possible ways to merge Af individuals into rn; individuals. In the worst case,
if m := min{m;;1 < i < ¢} there will be f(/V.m) ways to merge all the successors of

z. Therefore, in the worst-case one must explore (29} x f(N,m) branches.

5.1.2 Hybrid Tableau

During the preprocessing step, the hybrid algorithm converts all the qualified number
restrictions into unqualified ones which introduces p 4+ ¢ new role names. According
to the atomic decomposition presented in Section 4.2, the hybrid algorithm defines
2p+9 _ 1 partitions and consequently variables for x; i.e. |V = 2**9 — 1. The ch-
Rule opens two branches for each variable in V.. Therefore, there will be totally 2"+
cases to be examined by the arithimetic reasoner. Hence, the chi-Rule will always be
invoked |Vy| = 2"*% — 1 times and creates 22" branches in the search space. Hence,
the complexity of the algorithm scems to be characterized by a double-exponential
function of p+¢; moreover, considering the NP-completeness of Integer Programming
one can conclude that the worst case complexity of such an algorithm is dramatically

high.

5.1.3 Hybrid vs. Standard

Comparing the standard algorithin complexity with the complexity of the hybrid

algorithm, we can conclude:

¢ Tle complexity of the standard algorithum is a function of N and therefore the

66



numbers occurring in the most restrictions can affect the standard algorithm
exponentially. Whereas in the hybrid algorithini, the complexity is independent

from N due to its arithietic approach to the problem.

e Let initial complerity refer to the complexity of the tasks that the algoritinn
needs to perform independently fromn the occurrence of a clash. That is to say,
the tasks that need to be done in all the cases (whether worst-case or the best-
case). Particularly, the initial complerity of the standard algorithim is due to
the choose-Rule ((2¢)V) and the initial complezity of the hybrid algorithin is
due to the ch-Rule (22""). Therefore, whenever N x ¢ < 2749, the time spent
for initializing the algorithm is greater for the hybrid algorithm in comparison

with the standard algorithins.

e The major source of complexity in the standard algorithm is due to the merge-
Rule. Being highly nondetensinistic, this rule can be a major source of incf-
ficiency. Therefore, in the case of hardly satisfiable concept expressions, the
standard algorithm can become very inefficicnt. In contrast, the hybrid algo-
rithm generates and merges the successors of an individual deterministically

and based on an arithmetically correct solution for a set of inequations.?

e Whenever a clash ocecurs, the algoritlin needs to backtrack to a choice point
to choose a new branch. The sources of nondeterminism due to numerical
restrictions in the standard algorithun are more than one: the c¢hoose-Rule and
the merge-Rule, whereas in the hybrid algorithin we have only the ch-Rule.

Therefore, in the hybrid algorithin it is casier to track the sources of a clash.

2Note that the hybrid algorithin uever merges anonymous (non-root) nodes.
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5.2 Optimization Techniques

As there are several reasoning services, different optimization techniques have been
developed to address them. For example, absorption [HT00a, HTO0D] or lazy unfold-
ing [BHN%94] are some optimization techniques for TBox services, such as classifica-
tion or subsumption. These optimization techniques nonmally facilitate éubsumption
testing and by avoiding unnecessary steps in the TBox reasoning improve the perfor-
mance of the reasoner. The hybrid algorithin is meant to address the performance
issucs regarding reasoning with qualificd number restrictions independently from the
reasoning service. In other words, by means of the hybrid reasoning, we want to
improve reasoning at the concept satisfiability level which definitely affects TBox and
ABox reasoning,.

At the concept satisfiability level, the major source of inefficiency is due to the
high nondeterminism. In fact, nondeterninistic rules such as the U-Rule in Figure 7
or the choose-Rule in Figure 5 create several branches in the search space. In order to
be complete, an algorithm needs to explore all of these branches in the search space.
Optimization techniques mainly try to reduce the size of the search space by pruning
sotne of these branches. Moreover, some heuristics can help the algorithin to guess
which branches to explore first. In fact, the more knowledge the algorithm uses to
guide the exploration, the less probable its decision will fail later.

Altliough it seeins that the hybrid algorithm is double-exponential and the large
number of variables seems to be hopelessly inefficient, there are some heuristics and
optimizations techniques which make it feasible to use. In the following we briefly
explain three heuristics which can significantly improve the performance of the algo-

rith in the typical case.
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5.2.1 Default Value for the Variable

In the semantic branching based on the concept choose-Rule, in one branch we have
C and in the other branch we have —C in the label of the nodes. However, due to
the ch-Rule {for variables) in one branch we have v > 1 whereas in the other branch
v < 0. In contrast to concept branching according to the choose-Rule,® in variable
branching we can ignore the existence of the variébles that are less or equal zero. In
other words, the arithmetic reasoner only considers the variables that are greater or
equal one.

Therefore, by setting the default value of v < 0 for every variable, the algorithm
does not need to invoke the ch-Rule |V, | times before starting to find a solution for the
inequations. More precisely, the algorithm starts with the default value of v < 0 for
all of the variables in |V,|. Obviously, the solution for this set of inequations, which is
Yu; € Vi;o(v;) = 0, cannot satisfy any at-least restriction. Therefore, the algorithm
must choose some variables in V; to make them greater or equal one. Although in
the worst case the algorithm still needs to try 2¥*! cases, by setting this default value
it does not need to invoke the ¢hi-Rule when it is not necessary. In other words, by
benefiting from this heuristics, the initial complexity of the hybrid algorithm is no

longer 274,

5.2.2 Strategy of the ch-Rule

As explained in the previous section, in a more optimized manner, the algorithmn
starts with the default value of zero for all the variables. Afterwards, it must decide
to set some variables greater than zero in order to find an arithmetic solution. The

order in which the algorithin chooses these variables can help the arithmetic reasoner

The choose-Rule opens two branches in the search space according to the at-most restriction
<mR.C such that in one of them C is in the label of the individual and in the other ~C.
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find the solution faster.

We define don’t care variables as the set of variables that have appeared in an
at-least restriction but in no at-most restriction. Therefore, these variables have no
restrictions other than logical restrictions which later on will be processed by the
algorithm. Therefore, according to arithinetic limitations, any non-negative integer
value can be assigned to these variables and we can let them exist in all of the
inequations unless they trigger a logical clash.

Moreover, we define the satisfying variables as the set of variables which occur in
an at-least restriction and are not don’t care variables. Since these are the variables
that occur in an at-least restriction, by assigning thern to be greater or equal to one,
the algorithin can lead the arithmetic reasoner 10 a solution. Whenever a node that is
created based on v causes a clash, by means of the dependency-directed backtracking
we will set v < 0 and therefore remove v from the salisfying variables set. When
the satisfying variables set becomes empty the algorithm can conclude that the set
of qualified number restrictions in £(z) is unsatisfiable.

Notice that the number of variables that can be decided to be greater than zero
in an inequation is bounded by the number occurring in its corresponding nmnerical
restriction. For example, in the inequation vy + vo + ... + v100 = 5, although we have
100 variables in the incquation, not more than five v; can be greater or equal than

one at the samne time.

5.2.3 Variables Encoding

One of the interesting characteristics of the variables is that we can encode their
indices in binary format to easily retrieve the role namnes related to them. On the
other hand, we do not need to assign any memory space for them unless they have a

value greater than zero based on an arithmetic solution.
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5.3 Dependency-Directed Backtracking or Back-
jumping

As introduced in [hor02)], dependency-directed backtracking or backjumping is a back-
tracking method which detects the sources of a clash and tries to bypass branching
points that are not related to the sources of the clash. By means of this method,
an algorithm can prune branches that will end up with the same sort of clash. As
demonstrated in [Hor02], this method improved the performance of the FaCT systemn
to deal murch more effectively with qualified number restrictions.

Similarly in the hybrid algorithin, whenever we encounter a logical clash for a
sticcessor i of x, we can conclude that the corresponding variable v, for the partition
in which y resides must be zero. Therefore, we can prune all branches for which
v, = 1 € Lp(r). This simple method of backtracking can exponentially decrease
the size of the search space by pruning half of the branches each time the algorithm
detects a clash. For example, in the general case of £(x), by pruning all the branches
where v, > 1, we will in fact prune 211! = 22""*=1 hraches w.r.t. the ch-Rule
which is half of the branches.

We can improve this by a more complex dependency-directed backtracking in
which we prune all the branches that have the same reason for the clash of v,. For
instance, assume the node y that is created based on o(vy) = k& where £ > 1 ends
up with a clash. Since we have only one type of clash other than the arithmetic
clash, assume the clash is because of {A,—A} C L{y) fo: some A € N¢. Morcover,
assutne we know that A is caused by a ¥R;. A restriction in its predecessor x and -A
by VS\7;.(~A) € L(x). It is possible to conclude that all the variables v for which

R; € a(v) AT} ¢ a(v) will end up with the same clash.?

1Notice that in the cases where we have a disjunction in the sources of a clash, there may exist
more than two sources for a clash, For example, assume {VR.{AL~3). VS (BU-C),VI.{Cl-A)} C
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Consider the binary coding for the indices of the variables in which the ith digit
represents 1; and the jth digit represents T;. Therefore, all the variables, where the
binary coding has 1 as its ith digit and 0 as its jth digit must be zero. Since the binary
coding of the variable indices has a total of p+ ¢ digits, the mmuber of variables that
niust be zero will be 2749-2. All other variables which are 2P+ —2P+9-2 can freely take
two types of constraints and open two branches in the search space. Therefore, the
nunber of branches will reduce from 2V#! to 2341Vl which is a significant improvement.
In fact, the atomic decomposition is a method to organize the search space and at the
same time by means of numerical reasoning and proxy individuals remains unaffected
by the value of mumnbers.

For example, consider the case when there are 7 numerical restrictions in £(r)
and therefore 27 variables. Accordingly, the chi-Rule opens 2! branches in the search
space. I g is a suceessor of x which is created based on the solution o{veoinion) = m
and ¥ ends up with a clash, the algorithim can conelude that vy < 0 must be
added to Lz(x). Therefore, based on simple backtracking, 2% branches remain to
be explored. Moreover, assume the clash in y is due to {A, -A} € L(y) where A s
created beeause of YRy A € L(x) and =4 is created becanse of VI\Ry.~A € L(x).
Hence, the algorithim can conclude that for all the variables v where Ry € a(v) and
Ry ¢ a(v), the smne clash will occur. Namely, variables of the form vy where

0O € {1,0} must be zero, Thercfore, 2! = 2932 hranches remain to be explored.

5.3.1 Backtracking in the Arithmetic Reasoner

Normally there could be more than one solution for a set of inequations. According to

Lemma 6 in Chapter 4, when we have a solution with respect to a set of restrictions

L£(r) and we have {R.8, T} € £{(x. y)) am g leads to a clash. In fact, all of these three role names
in £({r, )}, together, are the sources of this clash. Therefore, the algorithm concludes that all the
variables v for which R € a(v) AS € a(0) AT € a(r) will end up with the same clash.



of the form v; > 1, different solntions where the non-zero variables only differ in their
values do not make any logical ditferences. In fact, the algorithm will create succes-
sors with the same logical labels but different cardinalities based on these different
solutions. Since all the solutions minimize the sum of variables and satisfy all the
mimerical restrictions, they do not make any artthmetic differences (as long as the
set of zero-value variables is the same).

1t: addition, notice that backtracking within arithmetic reasoning is not trivial due
to the fact that the cause of an arithmetic clash cannot be easily traced back. In other
words, the whole set of numnerical restrictions together caunses the clash. In the same
sense as in a standard tableau algorithm, if all the possible merging arrangements end
up with a clash, one can only conclude that the corresponding nunerieal restrictions

are not satisfrable together.

5.3.2 Backjumping: Standard Algorithms vs. the Hybrid

Algorithm

By comparing the effect of dependency-directed backtracking on the hybrid algorithm

and on the standard algorithm, we can conclude:

1. In fact, the atomic decomposition is a mechanism of organizing role-fillers of
an individual in partitions that are disjoint and yet cover all possible cases.
Thercfore, it is more suitable for dependency-directed backtracking. In other
wopds, the whole tracking and recording that are performed in order to detect
sources of a clash to prune the search space, are hard-coded in the hybrid

algorithm by means of the atomic decomposition.

2. In the hybrid algorithm, the sources of nondeterminisin are only the ch-Rule

and the U-Rule, whereas in the standard algorithms we have three sources of
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non-detenninisin: the U-Rule, the choose-Rule, and the <-Rule. Therefore, in
contrast to the standard algorithims which have three non-deterministic rules,
the hvbrid algorithin can nore casily backjump to the source of the clash. In
other words, the nondeterminisin due to the concept choose-Rule and the <-

Rule is gathiered just in one level which is the variable ch-Rule.
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Chapter 6

Reasoner Description

In this chapter we explain the architecture of the implemented reasoner which is based
on the hybrid algorithm presented in Chapter 4 and benefits from the optimization
techniques proposed in Chapter 5. Morcover, the backtracking method can be turned
off, switched to the simple level or complex level for the sake of comparison. After
presenting the arcliitecture of the whole reasoner, we zoom into the logical module
and describe its mechanism of rule expansion. To overcome the high complexity of the
ch-Rule (sce Section 5.1.2), its application is moved to the arithmetic module which
is respousible for finding a non-negative integer solution. We explain the arithmetic
reasoner in more detail in the next section. Finally, we describe the problems we

encountered during the implementation of the hybrid reasoner.

6.1 Architecture .

As illustrated in Figure 13, the hybrid reasoner is composed of two major modules: the

logical mmodule and the arithmetic module. The input of the reasoner is an ALCHO!

I'The language ALCHQ is equivalent to SHQ without transitive voles. Since tramsitive roles are
assuned Lo bave no interaction with qualified nmmber restrictions, they were not be implemented in
the hybrid reasoner.



concept expression. The output of the algorithm is either a complete and clash-
free completion graph® if the input concept expression is satisfiable and otherwise
it returns “unsatisfiable®. The complete and clash-free completion graph can be

considered as a pre-model based on which we can construct a tablean (see Figure 12).

ALCHQ
Concept
Expression — I
5L
, - . i
- ; i | Logical ||
- . o ssing | !
Arithmetic Reasoner | | rreprocessing | Reasoner]|
: 5
i (I ?
: Atomic ( Unqualified Number i ;
| Decomposition \ Restrictions !
Expansion ;
| * ,. k Rules s j
| Inequation Non-negalive integer N }
Solver Solutions / ' | Clash |
i ' ; |2 | | Strategy ?
Anthmetic Clash A R A
_Logical Clash
- "F
[ L
| |
“Unsatisfiable~  Complete and Clash-free
Completion Graph

Figure 13: Reasoner architecture

The logical reasoner modifies the input concept expression according to the func-

tion unQ) proposed in Section 4.1. It also provides the arithmetic module with a set

ZNotice that since the input of the reasoner is not an ABox. the algorithm constructs a completion
graph rather than a completion forest.
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of unqualified number restrictions (UCRs). The arithmetic module either returns an
arithmetic clash or a non-negative integer solution based on which the logical mod-
ule generates the successors for an individual. In the following sections we describe

applications of both modules in 1more detail.

6.2 Logical Module

The logical module can be considered as the nain module which performs the ex-
pansion rules and calls the arithmetic reasoner whenever nceded. It is composed of a
preprocessing component which modifies the input ontology (.owl file) based on the
un@ function. Therefore, it replaces qualified number restrictions with equisatisfiable
unqualified ones which are also transformed to negation normal form. Notice that
the converted language is not closed under negation. Accordingly, the reasoner never
negates a concept expression that is a direct or indirect ontput of the preprocessing
component. Moreover, the logical reasoner as illustrated in Figure 14 is composed of
a set of expansion rules, clash strategy component, and some more auxiliary compo-
nertts.

The major data structure in the logical module is state which records a state of
the completion graph. The logical reasoner builds a tree of states such that firing a
deterministic rule creates only one child for a state. On the other hand, the application
of a non-deterministic rule (such as t)-Rule} can generate more than one child for a
state. For example, if the reasoner fires the U-Rule for CiUG,U. .. G, for an individual
z in statel, the current state, statel will have n children each of which contains
one of the disjuncts in £(z). In other words, each state contains a unique completion
graph and if we had no non-deterministic rule, the output would be a single path of
states. Moreover, every state contains all the information of its individuals, including

their label, their cardinality, and the label of the edges.
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Figure 14: Architecture of the logical module

6.2.1 Expansion Rules

The set of expansion rules is based on the tableau rules presented in Figure 7. How-
ever, since the logical module has no inforination regarding the variables and inequa-

tions, the ch-Rule is moved to the arithmetic imodule. All the rules follow the general
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template in Algorithun 1. Each rule has a precondition to be applicable to a state.
Morcover, after its application, a rule modifics a copy of the current state to create a
new state which will be a child of the current state. Furthermore, in each application
of a rule, it will be fired for all of its individuals for which it is applicable. The logical
module trics to apply the expansion rules due to their priority to every state that is
not closed. If no rule is applicable to a state, it will be closed. If all of the states are

clashed and closed the input concept expression is unsatisfiable.

Algorithm 1 Rule expansion template

canApply(State s) {

if s contains an individual for which Rule is applicable then
return frue

clse
return false

end if

}

apply(State s){

newState «— Copy(s)

newState.parent «— s

for all individual in s such that Rule is applicable do
newlnd « apply Rule on indvidual
replace individual with newlnd in newState

end for

return newSlate

}

In the following, we assume that the current state on which the rule is applied is
called statel. There arc two variations of the set of expansion rules according to the
use of backtracking.

Without backtracking: There are two rules which together function as the
fil-Rule, the <-Rule, and the >-Rule: (i} The Collect-And-Initiate-Rule collects all
the ungualified number restrictions in the label of individuals in statel and calls the
arithmetic reasoner. The arithmetic reasoner computes all the cases for the variables

based on the ch-Rule and returns all of the non-negative integer solutions it finds in
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a list. This rule stores the list of solutions in state2 which is a child of statel.

(ii) The Build-Arithinetic-Results-Rule which is a non-deterministic rule, creates sue-
cessors of an individual based on the solutions provided by the Collect-And-Initiate-
Rule (similar to the function of the fil-Rule). Therefore, it is applied to state2 and
creates a new state for each solution. For example, if there exist n different solutions
for an individual = in state2, this rule creates n new states as children of state2
and in each of them expands one solution.

With backtracking: In this case the reasoner does not find all the solufions
at once. In fact it assumes the first solution will end up with a clash-free graph
and if this assumption fails, it will modify its knowledge about the variables and
tries to search a new solution. There are two other rules responsible for this task:
(i) The Collect-And-Create-Rule, similar to the Collect-And-Initiate-Rule with the
lowest priority, collects all the numerical restrictions for each individual in statel.
Furthermore, it calls the arithmetic reasoner which returns the first solution it finds
and generates successors of individuals based on this solution in state2.

(ii) For a detailed description of the Build-in-Silling- Rule, assume an individnal
T in statel that hias a set of numerical restrictions according to which the Collect-
And-Create-Rule has created a set of successors #y,¥2,...,Y, it state2. We call
statel the generuting state of y;s. All of the rules may nodify labels of the ;s in
the succeeding states. If for instance y, ends up with a clash in all the paths of states
starting fromn state2, the reasoner can conclude that y; is a clashed individual and
therefore the corresponding solution in statel is not valid and cannot survive. The
Build-in-Sibling-Rule is applicable to the clashed states that are closed (i.e. cannot be
expanded in another way according to the Or-Rule}. When this rule finds a clashed
individual such as g, in a state, it determines its generating state which is statel in

this case. Furtherinore, it calls the arithmetic reasoner in statel and sets the variable
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rclated to y; to zero and gets a new solution. Afterwards, this rule will generate new
successors of x in a new child state of statel (if any solution exists).

The Rule Expansion Sirateqy component imposes an order of the rules and the
rules are prioritized by their order as in the following. In other words, the logical
reasoner, before applying a rule in statel, ensures that no rule with higher priority

is applicable to it.

I

. The For-All-Rule (V-Rule).

2. The For-All-Subtract-Rule (V\-Rule).
3. The And-Rule (M-Rule).

4. The Or-Rule (U-Rule).

The Build-Arithmetic-Results-Rule or the Build-in-Sibling-Rule.

o

<

. The Collect-And-Initiate-Rule or the Collect- And-Create-Rule.

For example, assume we have i, ¥ as two individuals and we have {C,UC2UCs} C
L{z) and {D, 1 D,} C L(y) in statel. If none of the first three rules is applicable to
any of the individuals in the statel, the Or-Rule checks if Cy, Cy, and Cy are not in
L(z) (or similarly if D, and D, are not in L(y}). Therefore, the Or-Rule is applicable
for the statel and creates 6 states as children of statel such that in each of them
one of the Cis and one of the D;s is selected. In other words, in one application of
the Or-Rule, 6 new states are created.

The structure of the For-All-Rule, the For-All-Subtract-Rule, the And-Rule, and
tho Or-Rule is similar to their relevant tableau rule. However, the function of the
last two rules is slightly different from their corresponding tableau rule. Consider the
case when we have backtracking and the logical module uses the Build-in-Sibling-Rule

and the Collect-And-Create-Rule. For example, if {> 2R, <485, > 3T} C L(x) in
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statel and x has no successors, the Collect-And-Create-Rule collects passes the list
{> 2R, < 4S, > 3T} to the aritlinetic reasoner and receives either “no solution™
which means that statel contains a clash or the first non-negative integer solution
that the arithmetic reasoner finds. Assume the first solution found by the arithmetic
reasoner is of the form v, = 2,v, = 1 such that a(v;) = {R, S, T} and awvy) = {T, S}
(see Figure 15).

Afterwards, the Collect-And-Create-Rule creates a new state state2 as a child of
statel. In state2, it generates two new individuals x; and zz such that =) is an
Ry-successor of x while Ry C R, Ry C S, Ry C T, and card(z,) = 2. Similarly, x,
is Re-successor of x while R C T, Ry C S, and cerd(zs) = 1. Notice that all the
information in statel will be exactly copied to state2 before generating any new
individual.

Later on, assume the individual z, ends up with a clash in state;y, and all
other possible states (such as in state;). Therefore, the Build-in-Sibling-Rule will be
invoked for state;;. This Rulesets v; = 0 and calls the arithmetic reasoner for another
solution which will Le gellzerated in another child of statel, state3. Whenever the
arithmetic reasoner cannot find another solution for the list of numerical restrictions
for x, the statel will clash and the logical reasoner must search i another hranch
for a closed and clash-free state which therefore contains a complete and clash-free
graph. Figure 15 illustrates the function of these two rules in this example.

Another component in the logical module is the Clash Strateqy Component which
triggers a clash for an individual z whenever (i) {A, ~A} € L(z) for a concept name
A, and (ii) an arithmctic clash is detected in the arithmetic corponent. The logical
module returns the first non-clashed and closed state it finds as a complete and clash-

free graph. Otherwise it will return “unsatisfiable” .
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Figure 15: Dlustration of the rules application when backtracking
6.3 Arithmetic Reasoner

The major function of the arithmetic reasoner is to find a non-negative integer solu-
tion for a set of unqualified number restrictions. Notice that the implemented arith-
metic module is slightly different from the arithmetic reasoner proposed in Chapter
4. Firstly, in addition to an inequation solver, it perforins the ch-Rule. Moreover, it
contains a few heuristics to guide the search for a non-negative integer solution. In

this section we describe the architecture of the arithmetic module which is iHustrated

83



in Figure 16. Furthermore, we demonstrate the functionality of eaclh component in

more detail by meaus of pseudo code.
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Figure 16: Architecture of the aritlunetic module

6.3.1 Atomic Decomposition

Let UCR be the set of input unqualified number restriction. After reading UCR, the
arithmetic module determines the number of different numerical restrictions which

will later be the nmnber of inequations. In the following we assume that the size
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of UCR is equal to n. Therefore, the arithmetic module hnplicitly considers 2" — 1
variables such that for UCR =< Ry, R;,..., R, > we will have B; € a{v,,} if in the
binary coding of m, the 7th digit is equal to 1. For example, if n = 4 we can conclude
that a(vg) = {Ry. 3} and a(vys) = {R2, R3, R;}. To retrieve the role naines related
to a variable, the aritlietic module uses the getRelatedRoles function which has

the same output as .

6.3.2 Preprocessing

Before starting the application of the c¢h-Rule to search for an arithmetic solution,
the arithmetic module classifies the variables according to the values that they can

take. We define the freedom?® of a variable such that:

freedom(v) = 2 iff v must be zero due to logical reasons and cannot take any

value other than zero,

freedom(vy = 0 &ff v-fs.decided to be zero by the ch-Rule which can be changed

later Ly e ch-IRe,

Sreedomiad) = ¥ ifff v i decided to be greater or equal 1 by the ch-Rule, and

freedom(v) = —1 iff v is a don’t care variable and can be greater or equal
zero. In other words, it can get any value except in the case that logical reasons

impose a freedom of 2.

The following functions set the freedom of the variables before starting the branch-
ing:
Find don’t care variables: We define don’t care variables as the variables that

occur in an at-least restriction but in no at-most restriction. Therefore, they are not

37T his term should not be confused with any other well-known definition of freedom and the values
assigned to freedom have no particular meaning.
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bounded by any limitations due to the at-most restrictions and can take any value
greater or equal zero. Although logical restrictions nay force them to be zero, the

arithmetic restrictions do not impose any restrictions on them.

Algorithin 2 Find don’t care variables.

fori=1tondo
if UCR]3] is an at-least restriction then
for all j =1 to 2" — 1 such that its ith digit in binary coding = 1 do
if (kth digit of j) = 1 AND UCR]j] is not an at-most restriction then
freedom(v;) = -1
end if
if freedom(v;) # ~1 AND freedom(v;) # 2 then
add v; to satisfying VarieblesList
end if
end for
end if
end for

Find satisfying variables: In order to find an arithmetic solution for the input
UCR list, the arithmetic module constructs a sct of variables, called the satisfying
variables on which it will apply the ch-Rule. In fact, these are the variables occurring
in an at-least restriction which are not. necessarily zero according to the logical reasons
nor the don’t care variables. The find-don't-care function prescuted in Algorithm 2
retrieves don’t core variables and sets their freedom to -1. Moreover, whenever a
variable v is neither don’t care nor freedom(v) = 2, this function adds it to the

satisfying variable list.

Remark 4. It is worth noticing that the order in which t}:c variables are asserted in
the salisfying variables list can significantly affect the performance of the arithmetic
reasoner. In fact, by choosing the variables that are least probable to fail (cither
arithmetically or logically), the reasoner can speed up the procedure of searching for

a complete and clash-free graph.

Thercfore, it seems that the variables which lead to the individuals that are less
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restricted (by the universal restrictions created by the un@Q function), may be a better
choice to Le close to the head of the list. However, by ineans of the following example

we will demonstrate why it is not trivial to find an optimumn order of the variables.

Assuine we have 4 UCRs in the iuput, three of which are at-least restrictions.

Thercfore, we will have the following general inequations: -

oo + Toorr + oaon + vornn + Yoot + Yot +tnor Htunn 2 1
toon + voann + Yoo + Yoy + Yio1e + Vit +F Vimet s 2 2
voico + Yoro1 + Vo110 + Yornn + Viwe + Unies + e+ tun 2 1y
vio00 - Y101 + Yoo + Yionn + Yoo + Yo + ety <

In the set of variables from v, to vs, the variables with the 1st digit (fromn right)
equal to 1 are restricted by the universal restriction related to UQR[1] (similarly for
the 2nd and the 3rd restriction). Likewise, the variables with the 4th digit equal to
0 are restricted by the universal restriction related to UQR[A]".

Inn this example, we can conclude that the least restricted variable is vygop. Nev-
ertheless, not occurring in any at-least restriction, this variable is not even in the
satisfying variables list. Another choice could be the case when variables have only
one restriction such as vy, yo10 and vgee. But this case is exactly similar to the
standard tableau algorithms presented in Chapter 3. Although they seein to be logi-
cally less restricted, by not sharing any individuals between the at-least restrictions,
they are highly probable to fail aritlnnetically (simply when 1y + ny 4+ ng > m).

Another strategy could be starting from variables that occur in more at-least
restrictions (in this exanple vy} which is the case for the implemented arithmetic

module. Therefore, (i) we obtain a faster aritlunetic solution, (ii) we can ensure a

4¥or every at-least qualificd number restriction {> nR.C), we will have > nR'NVR'.C. Thus, the
existence of 1’ and therefore, appearance of 1 in its related digit will invoke the universal restriction
VR'.C. However, in case of the at-most restrictions, we will replace < mft.C by < wmd¥nVR\ R .(-C).
Therefore, the absence of R and accordingly, appearance of 0 in its related digit will invoke the
universal restriction ¥V R\ R.C
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minimum mumber of successors model property®, (iii) although the probability of a
logical clash may be high due to many restrictions, by choosing a highly restricted
variable and detecting a clash, we can set many 1nore variables to zero by backtracking.

Fix role hierarchy: By means of the fix-role-hierarchy function. the arith-
metic module sets the freedom of the variables that cannot be satisfied due to the
role hierarchy to 2. More precisely, if R C S and R € a(v) but S ¢ a(») Algorithm

3 sets freedom(v) = 2.

Algorithm 3 Fix role hierarchy.

fori=1tondo
for j =1tondo
if B; C R; AND i # j then
for all v such that R; related to v and R; not related to v do
sel freedom(v) = 2.
end for
end if
end for .
end for

Backtracking results: In the simple method of backtracking, the arithmetic
module only needs to set the freedom of the variable related to the clashed individual
to 2. In the case of complex backtracking, it the logical module discovers the fact that
the existence (absence) of two or more role names in a variable may cause a clash,
the aritlinetic reasoner, before searching for an arithmetic solution, sets the freedom
of all similar variables to 2.

Heuristics: In the case where we have no at-most restrictions or the numbers
occurring in the at-most restrictions is so high that they cannot be violated by any at-
least restriction, there exists a trivial solution. In this case, sitnilar to standard tableau
algorithins, we can generate successors according to the at-least restrictions and do

not add any aritlunetic complications. More preciscly, for each at-least restriction

5A model lias minimum number of successors property iff for all of its individuals we cannot
have less munber of successors without causing a clash.
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> n R we create n R-successors and we can be sure that this model will not fail.
Assuming N UCRs, M of which are at-least restrictions, the procedure presented
in Algorithmm 4 in fact has the same eflect as the standard algorithms. For every
at-least restriction > n R, this algorithm assigns n as the value of v for which we
have a(v) = {R}. It is worth noticing that in this case the algorithin violates the

yroperty of creating a model with minimal number of successors.
proj 3

Algorithm 4 Heuristic 1

{Assume N UCRs such that UCR[1] to UCR[M] ar~ at-least restrictions.}
forz=1to M do
sumO f Limits — sumO f Limits + UQR/i].limit
end for
MinAtMost — oo
fori=AM to N do
if UQR[i}.limit < MinAtMost then
MinAtMost — UCR|[i).limit
end if
end for
if sumOf Limnits < MinAtMost then
fori=1to M do
value(vy) — UCR]i).limit
end for
end if

6.3.3 Branching

After finalizing the satisfying variebles list, the main function starts the application
of the ch-Rule. As presented in Algorithm 5, the branching function starts letting
the satisfying variables to have the freedom of 1 (i.e., being greater or equal 1). If
there exist k& variables in the salisfying veriables list, in order to be complete, the
algorithim must iry all the 2* cases regarding the freedom of the variables. In the case
of disabled backtracking, the branching function tries all the 2" cases and returns all

the non-negative integer solutions found by the integer programining componeut.
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However, when benefiting from backtracking, the algorithm returns to the logical
module the first non-negative integer solution it finds. If the found solution logically
fails, at least for one variable v, freedom(v) = 1 changes to freedom(v) = 2 which
later will result in a totally different solution and the algorithm cannot compute
the same solution again and falling in a cycle. If branching does not return any
solution, the arithmetic module returns an arithmetic clash. The branching function

in Algorithm 5 assumes the use of backtracking.

Algorithm 5 Branching over the satisfying variables based on the ch-Rule.

branching(satis fyingV ariablesList){
if satisfyingVariablesList is empty then
return null
else
inequations «— build-inequations(satisfyingVariablesList)
if result found by Integer Programming(inequations) then
return result
else
brunchingVariuble — remnove the last element of satisfyingVariablesList
freedom(branchingVariable) — 1
branching(satis fyingVariablesList)
freedom(branchingVariable) — 0
branching(satis fyingVariablesList)
end if
end if

}

6.3.4 Integer Programming

The integer programming or the cquation-solver component, gets a set of linear in-
equations as an input. The goal function is always to minimize the sum of all the
variables, while all of the variables are greater or equal zero. The set of constraints
imposed by the freedom of the variables will also be part of the input in form of
inequations. In other words, if freedom(v) = 1 for a variable, we will have v > 1 as a

part of the input. Notice that in the cases where freedom(v) = 0 or freedom(v) = 2
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the variable v never appears in the set of input inequations.
The integer programming component is composed of a linear programming algo-
rithm according to Simplex method presented in [CLRS01} and branch-and-bound

to obtain integer solutions when the linear solution contains fractional values.

6.4 Problems

This systemn was implemented in Java using OWL-API 2.1.1 which is a Java interface
and implementation to parse the W3C Web Ontology Language OWL [HBN07]. Al-
though choosing Java as the prograniming language gave us the opportunity to utilize
OWL-API, the performance of the reasoner was significantly affected by the overhead
due to Java features. On the other hand, no other major optimization techniques were
implemented.

One of the major problems with this choice of language was the representation
of float numbers. In fact, floating point numbers as a result of lincar programming
cannot be represented precisely. Therefore, sometimes rounding errors can result in
a wrong solution. Especially when having a large number of variables, the suin of the
errors may exceed 1 and may result in a wrong answer. This problem can be solved
when representing fractional numbers by two integers: numerator and denominator.
Unfortunately, these integers can grow very fast and use dynamic memory and also
objects as float numbers can become very expensive in terms of time and memory. In
fact, this error can hardly happen and basically never happened in any of the sample

ontologies we used. Hence, we decided to leave this problem open for future work.
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6.5 Summary

In this chapter we presented an architecture for a prototype experimental reasoner
employing the hybrid algorithm. In order to overcome the high inefficiency due to
the large number of variables, this implementation benefits from several optimization
techniques regarding arithmetic reasoning. Moreover, in contrast with the tableau
rules proposed in Chapter 4, the ch-Rule has been moved inside the arithmetic mod-
ule. Thus, the logical module is unaware of the arithmetic reasoning and its variables.

Furthermore, we have presented the pseudo code for the major algoritlns imple-
mented in the arithmetic reasoner. Finally, we described the problems we encountered

during the actual implementation of this experimental prototype.
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Chapter 7

Evaluation

In this chapter we present the empirical results obtained from an implemented pro-
totype based on the reasoner described in Chapter 6. Before presenting a set of
test cases and the results, we briefly discuss the issue of benchmarking in OWL and
description logics. Afterwards, we identify different parameters that may affect the
comnplexity of reasoning with numerical restrictions. Consequently, based on these

parameters we build a set of benchmarks for which we evaluate the hybrid reasoner.

7.1 Benchmarking

One major problem with benchmarking in OWL is the fact that there exist not many
comnpreliensive real-world ontologies to utilize. In fact, as stated in [WLL*07], the
current well-known benchmarks are not well suited to address typical real-world needs.
On the other hand, qualified number restrictions are expressive constructs added to
OWL 1.1! which has been recently renamed to called OWL 2 [MGH*08]. Therefore,
the current. well-known benchmarks do not contain qualified number restrictions. In

fact, to the best of our knowledge there is no real-world benchinark available which

'The motivations for adding this feature are based on the requirements proposed by Chemical
Functional Groups.
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contains qualified number restrictions. Accordingly, we need to build a set of synthetic
test cases to empirically evaluate the hybrid reasoner.

Since the hybrid algorithm follows the same rules to deal with the constructs
other than numnerical restrictions, we focus our evaluation on concept expressions
only containing qualified number restrictions. In order to study the bebavior of the
hybrid reasoner, we need to develop a set of synthetic benchmarks. We identify
the following parameters that may affect the complexity of reasoning with numerical

restrictions:

1. The size of numbers occurring in the numerical restrictions. Namely, n and m

in the restrictions of the form <nR.C and >mR.C.

o

The number of qualified number restrictions.

3. The ratio of the number of at-least restrictions to the number of at-most re-

strictions.

4. Satisfiability versus unsatisfiability of the input concept expression.

7.2 Evaluation Results

In this scetion we bricfly examine the performance of the hybrid reasoner with re-
spect to the parameters identified in the previous section. Moreover, we present an
evaluation to examine the effect of backtracking technique in different levels.
Tablean reasox;ing in expressive DLs is known to be a very time/memory-consuming
procedure. Therefore, in order to remain practical, most of the reasoners benefit from
numerous optimization techniques. A list of more than 70 optimization techniques

which are widely used in DL reasoners is given in [Bec06).
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Well-known reasoners that support qualified cardinality restrictions such as FaC'T'++
[THOG] or Pellet {SPG*07] implement numerous optimization techniques. Therefore,
their performance is 1'1ot,.f.airly comparable to this hybrid prototype. Accordingly, we
do not base our evaluations on a comparison with the existing reasoners and we try
to study the behavior . the hybrid reasoner.

The following experiments are performed under Windows 32 on a standard PC
with dual-core (2.10 GHz) processor and 3 GB of physical memory. To improve the
precision, every lest was executed in five independent runs. Furthermore, we set the

timeout limit to 1000 seconds.

7.2.1 Increasing Numbers

The wajor advantage of benefiting from an arithmetic method is the fact that reason-
ing is unaffected by the size of numbers. In fact, it translates the numerical restrictions
to a set of inequations. For example, for the concept expression > 3hasChild. Female
the size of the nmmber is three which is relatively small. However, when expressing the
concept (> 141hasCreditn <45 hasCredit.ComputerScience) to model a university
undergraduate engineering program or (> 1200 hasSeat N < 600 hasSeat.(Arena U
GrandCircle)) to model the structure of a theater, larger numbers come into play.
In order to observe this major advantage which is the scalability of the hybrid algo-
rithm with respect to the size of the numbers, we decided to compare its performance
with Pellet. The reasons that we choose Pellet? as a representative implementation

of the standard algorithm are:
e it is a free open-source reasoner that handles qualified cardinality restrictions,

e similar to our prototype it is a Java-based implementation, and

2We used Pellet 1.5.2, released on May 1, 2008.
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e in contrast with FaCT++ which sometiines turned out to be unsound when
dealing with numerical restrictions, Pellet returned correct answers in all of the

experiments.

Notice that FaCT++ has no specific optimization technique for qualified cardinality
restrictions. Therefore, since the goal is to compare the hybrid algorithm with the
standard algoritlun, we considered Pellet as a representative implementation of the

standard algorithin.

Test case description:

The concept expressions for which we exccuted the concept satisfiability test are

(> (2)RS.(AU B)) N (< iS.A) N (< iR.B) N (< (i — 1)T(=A)) U (< iT(~B))

and

(> 2DRS(AUB)N(LiS A N(LIRB)N(L (i = NT.(-AN) V(L (i — 1)T(-B))

with respect to a role hierarchy {R C TS T T\RS C R, RS C S} where i is a
number incremented for each benchmark. We abbreviate the first concept expression
with Cgs7 and the second expression with Cynsar.

The concept expression Csqr is a satisfiable concept where for an assertion z :
Csar, the individual z has (2 x i) RS-successors in (ALt B), i of which must be
in =4 and 7 must be in =B (according to the at-most restrictions (< iS.A) and
(< iR.B)). Therefore, it can be concluded that 7 of them are in (A 17 B) and the
other i successors are in (~B M A). The disjunction (< (i — 1)T.(-A)) U (L iT.(-B))
can be satisfied when choosing (< iT.(—B)} which is not violated due to the fact that

2 has exactly 7 successors in —=B. According Lo a similar explanation, since none of
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the disjuncts can be satisfied, Cynsar is an unsatisfiable concept.

In fact, Csar is not trivially satisficd neither by the hybrid algorithm nor by the
standard algorithis. In the hybrid algorithin, the set of inequations is only satisfied in
the case that all of the variables are zero except »,v' > 1 where a(v) = {RS’, 5, T}
and a(v) = {RS',R'}* The standard algorithin to examine the satisfiability of
Csar creates (2 x i} RS-successors for z in (AU B) and according to three at-most
restrictions it opens 8§ new branches for each successor. However, since (2 x 2} is much
larger than ¢ or i — 1, the reasoner inust start merging the extra successors when an

at-most restriction is violated which happens in all the branches in this test case.

Effect of the Size of Numbers: Hybrid vs. Pellet
Fr ® @ @

> - Hybrid-Sat i
——— Hybrid-Unsss
— Pellet-Sat
& —— Pellet-Unsan

Runtimme (ms)

2 3 4 5 6 7 8 9 10
i in concept expression C

Figure 17: Comparing with standard algorithm: Effect of the value of numbers

As illustrated in Figure 17,7 linear growth of 7 from 2 to 10 has almost no effect

on the hybrid reasoner while it kills the standard algoritlun for numbers as small as

dAssume R, 8, RS, and T¥ are new sub-roles of R, S, RS, and T
1Note that Figure 17 is a log-linear plot and time values are in logarithmic scale. In Figure 18
we can abserve the behavior of the hybrid reasoner in a lincar plot.
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6 and 7. Moreover, we can observe that for i = 6 the satisfiability of Cs.4y is decided
in about 40s while for Cunsar which has a very slight difference this time increascs
up to more than 1000s. Therefore, this gap reveals the fact that by decreasing i to
i — 1 in just one at-most restriction, which leads to unsatisfiability, the complexity of
the problem increases tremendously. In Figure 18 we zoom into the hybrid part of

the Figure 17 to present the behavior of the hybrid reasoner in more detail.

Effect of the Size of Numbers in the Hybrid Approach
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Figure 18: Behavior of tite hybrid reasoner.

In contrast with the standard reasoner, the performance of the hybrid reasoner is
unaffected by the value of the numbers. In Figure 19 we illustrate the linear behavior
of the hybrid algorithin with respect to a linear growth of the size of the numbers in
the qualified number restrictions. Furthermore, to assure that this independence will
be preserved also with respect to expouential growth of 4, in Figure 20 we present the

performance of the hybrid reasoner for i = 10",n = 1,2,3,4,5,0.
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Effect of Linear Growth of i

160

[3 — Hybrid-Sat
130 1 | @ — Hybrid-Unsat
120

g

Runtime {ms)
E

0 10 20 30 40 50 o 70 X %0 100
i in concept expression C

Figure 19: Behavior of the hybrid reasoner: Linear growth of i

7.2.2 Backtracking

One of the major well-known optimization techniques addressing complexity of the
reasoning with numerical restrictions is dependency-directed backtracking or back-
jumping. In this experiment we observe the effect of backtracking on the performance
of the hybrid reasoner. In three different levels we firstly turn off the backtracking,
secondly include backtracking at a simple level, and finally utilize the complex version
of backtracking (see Section 5.3).

In order to better observe the impact of backtracking, we tested an unsatisfiable

concept Dynsar which follows the pattern

(23R.D1) N (23RD2) n...n0 (Z3RD,) Mn (f_:(:h - I)T)

where D; M Dy, = L for 1 < j,k < i,j # k with respect to a role hierarchy R C T.
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Effect of Exponential Growth of i
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Figure 20: Behavior of the hybrid reasoner: Exponential growth of 2

The assertion x : Dyysar tmplies that x has 3 R-successors in Dy, 3 R-successors in
D,, ...and 3 R-successors in [;. Since these 3i successors are instances of mutually
disjoint concepts we can conclude that x has 3¢ distinet (not mergeable) successors.
Therefore, the at-most restriction in Dyysar cannot be satisfied.

In this experiment in cach step we increase ¢ which will result in more numerical
restrictions and therefore a larger number of variables. As the log-limear plot in Fig-
ure 21 suggests, the double-exponential nature of the hybrid algoritlw asad In geveral
the high non-determinisin of the ¢h-Rule makes it inevitable to utilize ek bracking.
Moreover, we can conclude that by using a more comprehensive and infurtned: wigihod
of backtracking we can improve the performance of the reasoning significantly. For

example, in Figure 21 we can observe that for i = 6 reasoning without backtracking

results in a timeout while benefiting from simple backtracking the reasoner concludes
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Effect of Backiracking
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Figure 21: Effect of backtracking in different levels

unsatisfiabilily in about 41s and for the complex backtracking reasoning time is re-

duced to 206ins.
In fact, a better inethod of backtracking can prune a larger number of branches in

the search space. In other words, the unsatisfiability of a concept can be concluded

earlier after facing less number of clashes. In Figure 22, by observing the number

of logical clashes each method produces before returning the result, we can comnpare
their success in narrowing the search space.

7.2.3 Satisfiable vs. Unsatisfiable Concepts
In this experiment the test cases are concepts containing four qualified at-least re-

strictions and one unqualified at-most restriction according to the following pattern

We abbreviate the concept
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Figure 22: Effect of backtracking in different levels: Numnber of clashes

>30R.(B N C)N >30R.(B N -C)N
>30R.(~-B N C)N 230R.(~BN-C)n <iT,

with E; where R C T for i = 1,20,40,...,220,240. Since the concept. fillers of the
four at-lcast restrictions are mutually disjoint, assuming the assertion x : E;, we can
conclude that z must have 120 nonmergeable R-successors. According to the role
hierarchy R £ T, every R-successor is also a T-successor. Therefore, the concept E;
is satisfiable for i > 120 and unsatisfiable for i < 120.

As illustrated in Figure 23, the standard algorithm can easily infer that Fy is
unsatisfiable since 20 < 30 and z has at least 30 distinguished successors. However,
from Esp to Eygp it becomes very difficult for the standard algorithm to merge all
the 120 successors in # individuals. Moreover, Figure 23 provides the fact that no
matter which value 7 takes from 30 to 119, the standard algorithm performs similarly.
In other words, we can conclude that it tries the same number of possible ways

of merging which is all the possibilities to merge 4 sets of mutually distinguished
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Satisfiable vs. Unsatisfiable: Standard and Hybrid Algorithms
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Figure 23: The cffeet of satisfiability

individuals. As soon as i becomes greater or equal 120, since the at-most restriction
is not violated, the standard algorithm simply ignores it and reasoning becoines trivial
for the standard algorithm.
Furthermore, we can conclude froin Figure 23 that for the hybrid algorithm i = 1 is
a trivial case since not more than one variable can have the freedom of v > 1 which is
the case that easily leads {o unsatisfiability for Ey. However, it becomes more difficult
as i grows and reaches its maximum for 7 = 30 and starts to decrease gradually until
i = 120. In fact, this unexpected behavior does not correspond to the formal analysis
of the hybrid algorithi and needs to be analyzed more comprehensively and precisely.
Therefore, we extended our analysis by observing the time spent on arithmetic
reasoning and logical reasoning as well as the number of different clashes. The reason
that i = 30 is a break point is the fact that for i < 30 no arithmetic solution exists
for the set of inequations. Therefore, it seems that for the arithmetic reasoner it is

very difficult to realize the fact that a set of inequations has no solution. Morcover,
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as i grows from 30 to 120, the arithmetic reasoner finds more solutions for the set of
inequations which will fail due to logical clashes. In other words, the backtracking
in the logical reasoner is much stronger than the arithmetic reasoner that whenever

more logical clashes exist, the hybrid reasoner can accomplish the reasoning faster.

Satisfiable vs. Unsatisfiable: Hybrid Algorithin
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Figure 24: The effect of satisfiability: The hybrid algorithm

In order to verify this hypothesis, we built another pattern which is slightly dif-

ferent from FE; and we abbreviate it with Fj:

>30R.(BNCN D)1 >30R.(BN-CnD)Nn
>30R.(-BnCcnD)n >30R.(-BN-CnND)N LiT.D,

where R C T for i = 1,20,40,...,220,240. The major difference between £; and F; is
the fact that in F; the at-most restriction is also a qualified restriction and concept D
is added to the fillers of at-least restrictions. Therefore, the set of inequations always
has an arithmetic solution, however, for i < 120 it will logically fail. In other words,

dependency-directed backtracking discovers the unsatisfiability of the concept. Since
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the clashes and therefore backtracking results are independent from the arithmetic
nature of the problem, as presented in Figure 24, the performance of the hybrid
reasoner stays alimost constant for 1 < i < 240. It is worth noticing, as expected due
to its nature, the behavior of the standard algoritlun for F; remains exactly similar

to E;.

7.2.4 Number of Cardinality Restrictions

According to the complexity analysis of the hybrid algorithm in Section 5.1.2 one can
conclude that the number of cardinality restrictions significantly influences the com-
plexity of reasoning. More specifically, the complexity of the hybrid algorithm seems
to be characterized by a double-exponential function of the number of cardinality

restrictions.

Effect of Number of Restrictions
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Figure 25: The effect of number of qualified number restrictions

In this experiment we build a concept containing one at-least restriction and



extend it gradually. In order to keep the ratio of the number of at-least to the at-
most restrictions fixed, in cach step we added one qualified at-least restriction and
one qualified at-most restriction. In step i the concept which we abbreviate with G;

is of the form

>20RSN >10R.C\N 210R.C, M. N Z10R.CiN
<5R.(~C; U =Co)M >5R.(~Cr U =C3) N...A 25R.(=C; U—Ciy1)

with respect to role hierarchy RS T R. Therefore, in concept C; we have 2¢ + 1
cardinality restrictions. Note that the hybrid algorithm encounters no clashes when
deciding satisfiability of G;.

As presented in Figure 25, the maximum number of qualified cardinality restric-
tions that the hybrid prototype can handle (in less than 1000s) is 17. Notice the fact
that the roles participating in these cardinality restrictions share the same role hier-
archy. Otherwise, we can partition different role names from different role hierarchies

and deal with each partition separately.

7.2.5 Number of At-least vs. Number of At-most

In this section we mention the ratio of the mumber of at-least restrictions to the
number of at-most restrictions by Rpsin/atez. In addition to the numnber of cardinality
restrictions, Rasin/aser seems to affect the complexity of reasoning. Therefore, in this
experiment for a fixed total number of restrictions we cvalnate the performance of the
hybrid prototype with respect to this ratio. The structure of the concept expression
is similar to G; for which no clashes occur during the reasoning.

From Figure 26 we can conclude that the growth of Rasin/aer increases the com-
plexity of the reasoning for the hybrid reasoner. In fact, the hybrid reasoner tries to

satisfy at-least restrictions while not violating any at-most restriction. Therefore, the
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Figure 26: Ratio between number of at-least to the number of at-most restrictions

Table 2: Number of at-least restrictions - number of at-most restrictions

>-< 0-14 | 1-13 | 2-12 | 3-11 | 4-10 5-9 6-8 7-7
Time (s) { 0.174 | 0.589 | 1.310 [ 1.999 | 2.907 | 3.716 | 4.408 | 5.143
> —-< 8-6 9-5 | 104 | 11-3 | 12-2 13-1 14-0

Time (s) | 5.898 [ 6.534 | 7.101 [ 9.028 | 16.481 | 53.138 | 235.098

satisfying variables® list that is the list of variables for which the ch-Rule is applied,
is a function of the number of at-least restrictions.® Therefore, the more at-least
restrictions exist in G;, the harder it becomes for the arithmetic reasoner to find a
solution for the set of inequations.

Note that the at-most restrictions are not the only source of complexity. The fact
that the arithmetic always searches for a minimal solution, significantly affects the
complexity of the reasoning even when 1o at-most restriction exists. For example, in

Table 2, when G; has 14 at-least restrictions and no at-most restrictions, the hybrid

5See Section 6.3 for more detailed descriptions.
6In fact, it contains the variables participating in at least one at-least cardinality restriction.
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prototype accomplished the reasoning process in about 235 seconds. Not considering
the minimal number of successors property. this problem is trivial in absence of at-

most restrictions.”

7.3 Conclusion

In this chapter we evaluated the implemented prototype hybrid reasoner through
different experiments to study its performance with respect to different parameters of
reasoning with cardinality restrictions. The major superiority of the hybrid reasoner,
according to its arithmetic nature, is confirmed to be its scalability with respect to
the size of the numbers appeared in the cardinality restrictions. Moreover, in case of
unsatisfiable concepts or concept expressions that require a lot of merging, the hybrid
algoritlun performs significantly faster than the standard algoritlun.

During the experiment of satisfiability vs. unsatisfiability, we realized the impor-
tance of an efficient arithmetic reasoner whenever no logical information can assist
the process of reasoning. In other words, we nced to equip the arithmetic reasoner
with several effective heuristics or caching to increase its efficiency in comparison with
the logical reasoner. Moreover, we observed how the minimal number of successors
property can affect the reasoning even if no at-most restriction is violated. Therefore,
we can introduce an option of turning off the minimal number of successors prop-
erty where the reasoner simply checks if any at-most restriction is violated before

continuing with arithmetic reasoning.

7See Section 6.3.2 where we propose a method to overcome this complexity in trivial cases.
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Chapter 8

Conclusion and Future Work

Qualificd cardinality restrictions extend basic DL languages with the ability of ex-
pressing numerical constraints about relationships. However, standard tableau algo-
rithms deal with these numerical restrictions in a non-arithmetic manner. For exam-
ple, they create 100 R-successors for z whenever we have the assertion x : (>1002.C).
Moreover, if they encounter a clash due to the violation of an at-most restriction, they
try to seek a model by means of a trial and error method. Thercfore, as soon as num-
bers become large or a kernel source of unsatisfiability exists in the problem, standard
algorithms fail to terminate in a reasonable amount of time. Hence, an structured
and arithmetically informed approach is needed to address this incompetency.

In this thesis we proposed such a tableau calculus based on the atomic decompo-
sition method introduced in [OK99]. Moreover, we formally proved the correctness of
the presented algorithm for SHQ ABox consistency. Furthernore, we analyzed the
complexity of the hybrid algorithm. Since the proposed algorithm contains a high
nondeterminism due to the ch-Rule, we proposed a set of optimization techniques
addressing the complexity of the hybrid approach.

Afterwards, we described the architecture of a prototype reasoner, implementing
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the hybrid caleculus for SHQ concept satisfiability. Finally, we evaluated the hy-
brid reasoner through a set of experiments. In the following section we explain the
advantages and disadvantages of the hybrid algorithm according to the evaluation

results.

8.1 Discussion

Based on the evaluation results presented in Chapter 7 and the complexity analysis
in Chapter 5 we identify the following advantages and disadvantages of the hybrid

algorithm in comparison with the standard approaches.

8.1.1 Advantages

Insensitivity to the value of numbers: According to the nature of Linear Integer
Programming, the value of numbers do not alfect the hybrid algorithm. More
precisely, larger numbers for the same variable only affect the cardinality of its

relevant, proxy individual.

Comprehensive reasoning: Since the hybrid algoritlim collects all of the numerical
restrictions before expanding the completion graph, its solution is more com-
preliensive and therefore more probable to survive. In other words, in contrast
with standard algorithms it never creates extra successors which later need to

be merged.

Structured search space: By means of the atomic decomposition and variables,
hybrid approach searches for a model in a very structured and well-organized
search space. As a result, when encountering a clash, it can efficiently backtrack
to the source of the clash and optimally prune the branches which lead to the

same clash (see Section 5.3).
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Minimum number of successors: According to the fact that the goal function in
the arithmetic reasoner is to minimize the sum of variables, the number of suc-
cessors generated for an individual is always minimized. In fact, as mentioned
in Section 7.2.5, one major source of inefficiency in the hybrid reasoning is that
it always not only searches for a model, but also a model with miniinum number
of successors. This feature of the hybrid algorithm can become interesting for a
set of problems where the number of successors affects the quality of the solu-
tion. For example, in configuration problems, not only a consistent and sound
model is of interest, but also a model which requires less items and therefore

costs less is of great importance.

8.1.2 Disadvantages

Exponential number of variables: According to the nature of the atomic decom-
position, in order to have mutually disjoint sets, the hybrid algorithm introduces
an exponential number of variables. Considering the non-deterministic rule, ch-
Rule, the search for a model can become expensive for the algorithm whenever

Jarge numbers of cardinality restrictions occur in the label of an individual.

Long initialization time: Tle hybrid algorithi needs to perform a preprocessing
step before starting the algorithm. Moreover, it always collects all of the numer-
ical restrictions before generating any successor for an individual. In fact, this
delay is due to the fact that the hybrid algorithm spends some time on choosing
an efficient branch to proceed. However, this initialization time is unnecessary

for trivially satisfiable or unsatisfiable concepts.

Considering all the advantages and disadvantages of the hybrid algorithm, we can
conclude that this approach is inevitable whenever large numbers occur in the car-

dinality restrictions. Morcover, it builds a well-structured search space which makes
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it well-suited for non-trivial concepts. However, in the case of trivially decidable
concepts, it performs slower than the standard algorithms.

In other words, we can conclude that the overhead in the hybrid algerithm is too
high for trivial situations. Moreover, the fact that it minimizes the number of the
suceessors takes an exira effort even when it is unnecessary. Therefore, it is more
reasonable to use the hybrid method in cases where numbers are large and whenever

the satisfiability of the input concept is not a trivial problem.

8.1.3 Comparison with Related Work

As explained in Chapter 3, the Signature calculus was also meant to address the prob-
lem of large numbers in the cardinality restrictions. However, it still has two highly
nondeterministic rules (to split and merge the proxy individuals) and processes the
cardinality restrictions separately. The algebraic method proposed in [OK99] cannot
be considered as a calculus. It neither handles TBoxes with arbitrary axiotns or ter-
minological cycles nor directly deals with disjunctions and full negation. It is unclear
how tliis methodology could be extended to handle inore expressive description logics.

The recursive optinization proposed in [HTMO01] which is implemented by Racer
[HMO03], examines the satisfiability of all the partitions before initializing the Sim-
plex component. Therefore, whenever the number of qualified cardinality restrictions
grows and respectively the number of partitions exponentially grows, Racer becomes
very inefficient. Moreover, in the presence of ABoxes, Racer turns off the Simplex

method and applies the signature calculus approach.
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8.2 Future Work

We can divide the possible future works in two sets: (i) tasks which extend and
optimize the current hybrid calculus on both tableau and implementation level, (ii)
introducing new constructs and expressions which extend the expressiveness of current

DL languages.

8.2.1 Extending and Refining the current research

Turning off minimality: Since the minimal number of successor property is un-
- necessary in many cases, we can put a tag for the reasoner to turn on and off
this property. Therefore, whenever this tag is set off, we can consider the least
restricted variables first in order to find a solution faster. For example, if no

at-most restriction is violated, similar to the standard algorithim, we can create

n successors for every at-least restriction >nRR.C.

Optimizing the arithimetic reasoner: In Section 7.2.3 we realized the fact that

one major source of inefficieney is due to non-optimized arithmetic reasoner:

e To optimize the arithmetic reasoner we can have incremental arithmetic
reasoning; i.e., whenever a solution fails due to logical reasons and the
arithmetic module modifies its knowledge about the variables, it does not
restart the Simplex module. In fact, the Simplex module can continuve its
search for an integer solution, considering the newly discovered constraints

on the variables.

e One other possibility to improve the performance of the aritlnnetic rcasoner
is caching the avitlunetic solutions or clashes to avoid solving the same set

of inequatious several times.
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e As we explained in Chapter 6, one important factor which affects the
performance of the arithmetic module significantly, is theo. 1 of variables
in the satisfying-variables list. Modifyving this list according to the input
concept expression and also the results gained during the backtracking,

can help the arithmetic module find a surviving solution faster.

Extending to more expressive languages: There are two well-known construc-
tors which increase the expressiveness of the language: Nominals () and in-
verse roles (7). In the presence of nominals, implied numerical restrictions due
to the nominals alfect all of the individuals. Therefore, when dealing with nomi-
nals, one has to consider these global restrictions as well as the local restrictions
in the label of the nodes. Developing a hiybrid algoritlun for DL SHOQ is an

ongoing rescarch in our lab [FHMOS).

In the presence of inverse roles the label of individuals may be modified at any
time. Therefore, we can never assumne that we have the complete set of cardi-
nality restrictions. Therefore, a hybrid algoritlm handling SHZ Q needs to deal
with incremental updates of labels of individuals due to the back propagation

»

of knowledge.

8.2.2 Introducing New Structures

A calculus equipped with the ability of arithmetic reasoning can be a motivation
for introducing Jnore complex numerical constructors. As proposed in [0K99], one
possible constraint can address restrictions on the ratio of cardinality of fillers of two
different roles. For example, in the taxonomy which describes the structure of a the-
ater, the concept expression 50 x |hasRoom.WashRoom| > |hasSeat. T| describes the
restriction Lllnlat there must exist at least one washroou for every 50 seats. Similarly,

a percentage restriction such as <20%hasCredit.Business can express a concept which
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at most 20% of its hasCredit successors are in the concept Business.
Since gualified number restrictions can be translated {o an inequation, such an
expression can be transformed to a linear inequation. However, decidability of adding

such coustructors needs to be investigated.
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