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ABSTRACT

On The Complexity of Polynomial Factorization Over P-adic Fields

Olga Erzsébet Veres, Ph.D.
Concordia University, 2009
Let p be arational prime and ®(z) be a monic irreducible polynomial in Z,[z]. Based
on the work of Ore on Newton polygons (Ore, 1928) and MacLane’s characterization
of polynomial valuations (MacLane, 1936), Montes described an algorithm for the

decomposition of the ideal pOj over an algebraic number field (Montes, 1999). -

We give a simplified version of the Montes algorithm with a full MAPLE implemen-
tation which tests the irreducibility of ®(z) over Q,. We derive an estimate of the
complexity of this simplified algorithm in the worst case, when ®(z) is irreducible

over Q,. We show that in this case the algorithm terminates in at most
O((deg @)** v, (disc )**°)
bit operations.

Lastly. we compare the “one-element” and “two-element” variations of the Zassenhaus

“Round Four” algorithm with the Montes algorithm.
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Intr’oduction

Factorization According to Zassenhaus.

In an algebraic number field K with ring of integers Oy, factorization of the ideal
- pOg, for p prime, can be determined via polynomial factorization over the field of

p-adic numbers Q, (Hensel, 1908).

If K = Q(a) for a given @ € Ok such that the index [Ok : Z[a]] is not divisible
by p then the factorization of the ideal pOx can be determined by polynomial fac-
torization modulo p (Dédekind, 1871, 1876, 1878). In practice, efficient techniques
for polynomial factorization modulo p (Berlekamp, 1967, 1970; Cantor and Zassen-
haus, 1970) combined with Hensel lifting (Hensel, 1908; Zassenhaus, 1975) solve the.
problem of factoring pQOj in a straightforward and effective manner when p does not

divide the index.

The complications arising when p divides the index [OK : Z[a]] have been the subject
of considerable study. Current ideas are derived from the “Round Four” algorithm
of Zassenhaus (Zassenhaus, 1975). which has evolved into two main variations, the
“one-element” method (Ford, Pauli, and Roblot, 2002) and the “two-element” method
(Pauli, 2001). Variations of the one-element method are used by MAPLE and PARI

The two-element method is used, e.g., bv Magma.

The Approach of Montes.

The algorithm of Montes (Montes, 1999) is in a separate category.



Given a prime p and a monic polynomial F(X) in Z,[X], the Montes algorithm
determines the number of irreducible factors of F(X) in Z,[X] and their respective
degrees. (It is understood that, in practice, the algorithm works with a sufficiently

precise approximation of F(X) in Z[X].)

The algorithm exploits classical results of Ore on Newton polygons and provides an

alternative to the methods based on ideas of Zassenhaus.

A familiar application of Newton polygons gives the p-adic valuations of roots of a
polynomial in Z,[X]. If F(X) € Z,[X] has two roots with different p-adic values then
Hensel-lifting techniques can be applied to construct a non-trivial p-adic factorization

of F' to any desired degree of precision.
This process constitutes “level 0” of the Montes algorithm.

For each factor of F' revealed at level 0, the algorithm proceeds to higher levels, either

to discover a refined factorization or to establish irreducibility.

At levels r > 1 the algorithm constructs the following:

o N.(F), the Newton polygon of F" with respect to the valuation v,;
e a valuation v.4; on Q,[X];
e an irreducible monic polynomial ¢,1(X) € Z,|X];

the “associated polynomial” ¥ o(X) € ¥, [X] for each segment & of the New-

ton polygon N, (F).

The number of edges of AM(F) and the number of distinct irreducible factors of
W% ¢(X) give information for the factorization of F: if either is more than one then

I is reducible.



Chapter Summary.

In Chapter 1 we present a short history of the development of factorization algorithms

previous to the Montes algorithm.

In Chapter 2 we give definitions and theorems which are used in the Montes algorithm,
together with the construction of ¢, the so-called “key polynomial” (MacLane, 1936),

for r > 1.

Our goal being to give an estimate of the complexity of the worst case of the Montes
algorithm, we have simplified thé algorithm so that it merely decides the question
of irreducibility of a given polynomial. It is apparent that irreducibility is the most
costly case for the original algorithm (i.e., the case that reaches the most levels). In
this case the Newton polygon at each level is a single segment (a necessary condition
for irreducibility), and so our modified algorithm operates under the assumption that

this is always the case; the failure of this condition terminates the modified algorithm.

An important gain from this approach is a substantial simplification of the notation,
with a corresponding clarification of the operation of the algorithm. It should be noted
that in the interest of simplicity we have abandoned most of the original notation in

(Montes, 1999) and invented our own.

In Chapter 3 we give a complete MAPLE implementation of the modified Montes
algorithm. In parallel with the presentation of this implementation we give complexity

estimates for the various steps, ultimately arriving at an estimate of
O (n®*v,(disc F)*+€)

bit operations, with n = deg F', for the entire (modified) algorithm.

In Chapter 4 we compare the one-element and two-element methods with the Montes

algorithm.



Chapter 1

History

1.1 Kummer

Our discussion of ideal factorization necessarily begins with Kummer.

In 1844, Kummer pointed out that unique factorization into primes is impossible for
certain (algebraic) numbers. He was the first to discover the possibility of “ideal”

factorization in cyclotomic fields (although he used different terminology).

At the time Fermat’s “Last” theorem and the higher reciprocity laws were topics
of wide interest. Kummer himself was concerned with computations of cyclotomic
integers. He denoted a cyclotomic integer (or complex number, to use Kummer’s

terminology) by

fla) =ag+aja+---+ay_ 0”7,

with ag, ..., ax_; rational integers and A an odd prime, with a being a A-th primitive

root of unity:

o’ =1.

Computing with cyclotomic integers, (Kummer, 1847) gives prime factorizations of

prime numbers p < 100 such that p = 1 (mod A) and A < 19.

Also in (Kummer, 1847) are given cvclotomic integers f(a) such that

N(f(a))=p



for p < 1000 and 5 < A < 19.
Thus in each of these cases there is a unique factorization of the prime p.

In the case A = 23 Kummer found cyclotomic integers f(a) with the property that
N(f(e)) = p, namely

599 = N(1+a'® —a'®), 691 =N(1+a+a°), 829=N(l+a''+a®).
However for p = 47 and p = 139 he found different representations. Specifically
47 = f(a) f(a®) f(@ ) f(a™®) f(®) fa™) f(@®) f(a®) (@) f(a™™0) f(a®),
139 = g(a) g(a) g(a™") g(a™) g(e”) g(a™") g(e®) 9(e®) g(a®) g(a™"") g(®),
with
flay=a"%+a®+a®+a®+a" +a'°,
g(a) = +a® + b+ a®+ o +a'?,
and, since f(a) = f(a™!) and g(a) = g(a™),
47 = N(f(@),  139° = N(g(a)),
and hence the conditions
47 = N(h(a)), 139 = N(k(a)),
cannot be satisfied by any cyclotomic integers h(«a), k(a). However, since
47-139 = N(1 — o + o?Y),

it follows that 1 — a + a?! has no nontrivial factor, and yet is not a prime. A detailed

explanation appears in (Edwards, 1977) and (Edwards, 1980).

Since the factorization of some rational primes into algebraic primes was impossible.

Kummer introduced ideal prime factors.



For given primes g and A with A # ¢ he considered f the smallest positive integer
such that ¢/. = 1 (mod ) and e = (A — 1)/, which is an integer since ¢*! = 1
(mod ).

Kummer did not give a definition of ideal prime factors, he described them, gave some
properties of them, and laws of divisibility by them; nor did he give a definition of

ideal numbers. In (Kummer, 1851) he wrote:

“Nous remarquons aussi que la notion du nombre ou facteur complexe
idéal sera employée aussi bien dans le sens plus large ou les nombres com-
plexes existants, comme cas particuliers, sont compris parmi les nombres
complexes idéauz, que dans le sens plus étroit ou les nombres idéauzx sig-
nifient le contraire des nombres complexes existants, de méme que, dans

I’Algebre, le mot imaginaire est employé dans ce double sens.”

In (Kummer, 1851) and (Kummer, 1846) some properties of ideal prime factors are
proved. (In what follows the terms cyclotomic ihteger and complex number have the

same meaning.)

“The product of two or more complex numbers has precisely the same ideal

prime factors as the factors taking (taken) together.”

“Each complex number, represented as a product of some factors, is divis-

ible by q if and only if it contains all e ideal prime factors of ¢.”

“A complex number, containing all the ideal prime factors of ¢, containing

each at least n times, is divisible by ¢™.”

“If the complex number f(c) contains n ideal prime factors of the number
q (belonging to the exponent f), in other words all this factors are different
of not. the norm N(f(«)) contains all the time the factor ¢/, but it never

contains a higher power of ¢.”



“Each given complex number contains only a finite number of ideal prime

factors, perfectly determined.”

“Two complex numbers, containing (having) the same ideal prime factors,

differ only by a complex unit, by which they can be multiplied.”

“In order that a complex number f(a) be divisible by () it is neces-
sary and sufficient that all the ideal prime factors of the divisor ¢(a) be

contained in the dividend f(a).”

Considering these properties one can see that ideal numbers (complex numbers) have

the unique factorization property.

In the case A not prime, Kummer generalized the theory of ideal numbers. He ex-

tended the theory to cyclotomic numbers that are roots of the equation

where D(a) is a A-th root of unity. Kummer also tried to extend his theory for

factorization of some algebraic numbers.

An example appears in (Edwards, 1980) with @ = /-3 for which Kummer’s gener-
alization fails. The reason for this failure is that, if u =2, v =1+ /-3, and p = 23,

then p does not divide v, although u* does divide pv* for every positive integer k.

In the following section we will describe work of Dedekind that led to a generalization

of Kummer’s theory.

1.2 Dedekind

In generalizing Kummer’s theory Dedekind gave the definition of algebraic numbers
and determined many of their properties.

Definition. A (real or complex) number « is called an algebraic integer (or simply an
integer) if it is a root of an equation P(z) = 2" + p1x™™? + -+ p,, where py, ..., Dy

are rational integers.



Some basic properties are the following.

1. The sum, difference, and product of two algebraic integers are algebraic integers.

2. Each root of a monic polynomial with algebraic integer coefficients is an alge-

braic integer.
3. A rational integer is an algebraic integer.

4. All conjugates of an algebraic integer are algebraic integers.

The ideas of ring of (algebraic) integers and Integral basis of an algebraic number

field are due to Dedekind.

Other basic definitions are the following.

o The norm N(b) of a number b is the product of the n conjugate numbers
b, b(2), b e
N(b) = p V2 . pn)

o The discriminant A(c), @ .. ™) of the numbers ci, ¢y, ..., ¢, is

A(Cl, Coy, -,y Cn) = det(z j:c(l)c(Q) . C(n))Q.

e A main invariant of an algebraic number field K is its discriminant A(K) which

is a nonzero rational integer defined by
A(K) = Awy,wa, ... ,wy)

where (wi,wy, ...,wy,) an arbitrary integral basis for the ring of integers Oj.

The value of A(K) does not depend upon the choice of integral basis.

e Let § € Oy with K = Q(0) and let n = [K : Q). The index of 0 is defined as

the positive integer k = [Oy : Z[#]]. where

zl0) ={ap+ail+ apafla;€Z.1=0,....n— 1}

8



The following relation holds:

A(L,6,...,00 ) = B A(K).
o The integer a is divisible by the integer b if a = bc for some integer c.

Having defined the ring of integers Ok, Dedekind generalized Kummer’s theory in

the following important theorem (Dedekind, 1871).

Theorem 1. Ifz, a, b are nonzero integers in Ok such that xa” is divisible

by b” forr =0, 1, 2, ..., then a is diwisible by b.

Example. Taking a = /=3 it can be shown that Ox = Z[$(1++/=3)], and in this
ring 2 divides 1 + +/—3.

Dedekind considered the set of all numbers o € Ok which are divisible by a given
ideal number and called this set an ideal. In this way he found a correspondence
between a given ideal number and a given ideal. Based on the properties of algebraic
integers and on the elementary theory of divisibility, Dedekind gave the definition of

an ideal.

A subset a C Oy is called an ideal if it satisfies the following two proper-

ties.

I. If any two elements a, b € a, then their sum and difference a +b € a.

II. If a € a and z € Oy, then their product az € a.
Dedekind also defined the divisibility of ideals and the notion of prime ideal.

An ideal a is divisible by the ideal 0 if a = 0b for some ideal b.

An ideal p not equal to Oy or the zero ideal is said to be a prime 1deal if,

whenever a product of integers ab is in p. so is either a or 0.

9



The lemma below, from (Dedekind, 1871), is used in the definition of a simple prime

ideal.

Lemma 1. If an integer ¢ ts not an element of an ideal a, then there is

an integer a divisible by ¢ such that the roots € Ok of the congruence
az =0 (mod a)
form a prime ideal.

Definition. Given an integer b € Ok, which is not a unit, and any integer a € Oy, -

it follows from Lemma 1 that there is a prime ideal p such that
p="pre={2 €Ok |za=0 (modbd)}.
Such a prime ideal is called simple prime ideal.
If z € p then we can say the simple prime ideal p divides z.
Given b, a as above Dedekind considered the the r-th power of p,
p’={y €Ok |ya =0 (mod &)}
where 7 is a nonnegative rational integer. (Note that p® = Oy.)

Some important results about simple ideals are given in (Dedekind, 1871, §163, 5).

Theorem 2. Let b and ¢ be two integers. If, for every simple prime ideal

p, every power of p dividing b also divides c, then b divides c.

One can see the similarities between the properties of prime ideal factors and simple
prime ideals. An interesting presentation concerning these similarities can be found

in (Edwards. 1980).

An immediate result of Theorem 2 is the following.

10



Corollary 1. Any principal ideal (b) is the least common multiple of all

powers of simple prime ideals dividing b.
Dedekind gave this important consequence of Theorem 2.

Corollary 2. Each prime ideal is a simple prime ideal.

From now on, Dedekind could use prime ideals instead of simple prime ideals.

Dedekind showed that an ideal a divides an ideal b if and only if a C b. This important
theorem may be summarized briefly by saying that to divide is to contain and leads

immediately to the key result of this theory.

Theorem 3. Each ideal a different from Oy is a prime ideal or it can be

written uniquely as a product of prime ideals.

Dedekind defined the norm N(a) of an ideal a as the number of mutually incongruent

integers in Oy modulo a and this number is finite assuming a # 0.
An important result is the following (Dedekind, 1876, 1877).

Proposition 1. The norm of a product of ideals 1s equal to the product

of the norms of the factors: N{ab) = N(a)N(b).

Each prime ideal in Ok occurs in the factorization of exactly one rational prime p. If
the prime ideal p divides pOf, then N(p) = p/ and f is called the inertial degree of
the prime ideal p. (Note that Oy /p is a finite field of degree f over F,.) In general,

the factorization of pOk has the form
pOx = p7' - pg,

where the prime ideals p;, ..., p, are assumed to be mutually distinct from each
~other. The exponent e; > 1 is known as the ramification index of the prime ideal p;.

If f; is the inertial degree of p;. the following general relation holds

n= Z;’]:] E‘zfzr

11



where n = [K : Q]. If any ramification index e; is greater than one then the rational
prime p is said to ramify in the field K. Only a finite number of rational primes
ramify in a given algebraic number field K and Dedekind proved the following crucial

theorem regarding ramification.

Theorem 4. A rational prime p ramifies in a number field K if and only

if p divides the discriminant A(K).

An important result later proved by Minkowski states that |[A(K)] > 1 whenever
[K : Q] > 1, and coupled with Theorem 4 we see that at least one rational prime
ramifies in any number field K # Q. The key result of this section with regard to
the factorization methods developed later in this thesis is the following theorem; see

(Dedekind, 1878, §2) and also (Dedekind, 1876, 1877).

Theorem 5. Let K = Q(6), where § € Ok, and let k be the index of 6
whose minimal polynomial is denoted by F(z). Assume the prime p does

not divide the index k and that
F=F'--Fj¢ (modp),

where Fy, ..., F, are distinct irreducible polynomials (incongruent prime
functions) of degrees fi, ..., fq, Tespectively. Then the ideal pOg has g
distinct prime ideal factors and each prime function F; corresponds to a
specific prime ideal p; whose inertial degree is f; and whose ramification

indez 1s e;. Furthermore, p; = ged(pOy, F;(6)Ok).

Given the result in Theorem 5, it is natural to wonder if it is always possible to find
an integer in any given number field whose index is one. Dedekind saw that there are
some number fields which contain no integer of index one. The cubic field K = Q(#).
where F(z) = z° — z? — 2z — § is the minimal polynomial of 8, is a classic example

of such a field.



1.3 Hensel

Hensel, like Dedekind, was occupied with unique factorization of algebraic numbers.
He believed there had to be an analogy between algebraic function theory and alge-
braic number theory. He first wrote about this in (Hensel, 1897), showing that the
decomposition of algebraic numbers into prime factors can be replaced by a simpler
approach using thé expansion of algebraic functions around an arbitrary point, and
he introduced the theory on which this statement is based. The first basic result is

the following.

Proposition 2. If K is a field and K(a) is an extension of K of degree

n then any element of K(«) satisfies some polynomial of degree n

(+) F(X)=0

Considering (*) as a congruence modulo p™, with p is a prime number and M arbi-

trary large, he showed the following.

Proposition 3. The congruence
F(X)=0 (modp™)

possesses exactly the same number of roots as its degree. The m roots
Xy, ..., X, always can be expanded in power series which progress by
increasing powers of p and have at most a finite number of initial member

with negative exponents. Thus
Xi=App "+ +Aap T+ Ao+ Arp -,

fori=1, ..., n, where h s a nonnegative integer.

Hensel was aware of the work of Kummer, and later Dedekind and Kronecker. in

extending an algebraic number field while preserving unique factorization. Hensel

13



was inspired by Weierstrass’s theory of the representation of algebraic functions as
infinite power series
o<
f(z) = z ;7"
=n
where 7 is any integer.

It is an important fact that this representation of f as an infinite power series is not
unique, and this led Hensel to give different representations, the p-adic representations
for any prime p, of algebraic numbers. Hensel studied the properties of p-adic numbers

and developed the theory of their use, including the well-known Hensel’s Lemma.

Hensel considered the field of p-adic numbers Q,. He called a p-adic number a p-adic
integer if in its there are only positive exponents of p. (The ring of p-adic integers is

denoted Zy.)

Assume

flz) = Agz™ + Az + -+ A,

is a polynomial with p-adic coefficients, and let Agk) be the £*® (rational) approxima-

tion of A;. for 2 =0, ..., n. Then
() = Aék)xn + A(lk)ac"—l 4+ AW
is called the k' approzimation value of f(z).

Hensel was preoccupied with factorization of such polynomials into irreducible factors.

The problem of decomposability was determined by the following.

Proposition 4. Let F'(z) be a p-adic function with discriminant D(F) =
p°E where § > 1 is an integer. Then F(z) decomposes in lower degree
polynomials if and only if the 6% approzimation value F© modulo pS*!

decomposes, namely each decomposition
F(z) = f(z)g(x) (mod p’*)

specifies a unique decomposition



in Z,[z], with f(z) and g(z) being approzimation values of f(z) and g(z)

respectively.

The next proposition is a consequence of the preceding.

Proposition 5. Consider the modular factorisation
F(z) = fo(z) go(z) (mod p™*)

with r+1 > 2p and p the p-adic valuation of R,(fo(x), go(x)), the resultant

of fo(z) and go(x). Then there is a factorisation

in Z,|z) such that the (r — p)™ approzimation value of f(z) and g(z) are

fo(z) and go(z) respectively.
From the propositions above Hensel derived a theorem of great importance.

Theorem 6 (Hensel’s Lemma). Let F(X) be a polynomial in Z,|z] and
let fo(z) and go(x) be polynomials in Z[x] such that

F(z) = fo(z) go(z) (mod p).

Assume further that the resultant R.(fo(x), go(x)) is not divisible by p.

Then there exists a factorisation

in Z,| x| such that the 0" approzimation values of f(z) and g(z) are fo(z)

and go(z) respectively.
In (Hensel, 1918) there appears an explicit procedure (now known as Hensel lifting)
to construct arbitrarily precise p-adic approximations to f(z) and g(z).
Hensel lifting was the starting point for the subsequent work of Zassenhaus.

Lastlv we present the theorem of Hensel giving the relation between polynomial fac-

torization and ideal factorization.



Theorem 7. Let K = Q(«) be a algebraic extension of Q and let p be a
rational prime not dwiding the index of a. Let F(X) be a polynomial in

Z,[z] such that F(a) = 0. Suppose F(X) has the factorization
F(z) = Fi(z)-- - Fu(z)
into distinct irreducible factors Fy(z), ..., Fy(z) in Zy[z], with
Fi(x) = Fiz)* (mod p),
Fi(z) irreducible modulo p, and dég Fi=fi, fori=1, ..., h. Then
POk = py*---py”

with
p; = pOx + Fila) Ok

and p; having inertial degree f; and ramification indexe;, fori =1, ..., h.

1.4 Zassenhaus

In (Zassenhaus, 1969) Zassenhaus developed a method based on Hensel’s lifting pro-

cedure to factorize a polynomial with rational integer coeflicients.

Let
f@) =2+ g+ 4 an = [TH e - €)

be a monic polynomial with rational integer coeflicients. Defining
Bf — | nyy 1/
f= maXlSiSn(lail/(i))

we have

of

S mingcicy 1§ < O < maxicicn &) < 75 1

and it follows that

(I)f
g <
=%
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for any factor g(z) of f(z). Assuming
g(z) =™ +byz™ 4 by

with m < |n/2], it is easily seen that

m Ib[ < max ( ) < f )i
axX 1<i<m |03 <m .

The Zassenhaus Hensel factorization algorithm combines Hensel lifting with Berle-

kamp’s algorithm for factorization modulo p, where p is any prime not dividing the

discriminant of f. Taking e such that

P > 2maXicicin/2) <L”{2J> <%>

and g and m as given above, it follows that
maXi<i<m [bzl < pe/2.
From the Berlekamp algorithm we have

@) =gialz) - gra(z)  (mod p)

with ¢y 1(z), ..., g-1(z) irreducible modulo p. Applying e — 1 iterations of Hensel
lifting yields
f(@)=g1e(z) - gre(z) (mod pf).

We know that any factor of f of degree at most |n/2]| will have coeflicients in the
range |—M,+M]|, where M = |p®/2]. Products g;,(z) --- g; () of degree at most
|n/2}, with coefficients reduced to the range [, +A1], are tested as factors of f(x).

If f is reducible then such a factor will be found; otherwise f is irreducible.

It is clear that this algorithm is exponential in its worst case: if f is irreducible over
Z but splits into linear factors modulo p then 2"~ tests will be required to establish

the irreducibility of f. {In practice this exponential behavior is rarelv encountered.)
The Hensel-Zassenhaus algorithm was subsequentlv improved.

17



» Based on the inequality
n » 9
[Tlsl < (+ S el
i=1

from (Specht, 1949), Mignottel, in (Mignotte, 1974), sharpened Zassenhaus’s

bound on the coefficients of g. For k=1, ..., m we have

el < (1) @+ Sl < (2 (04 S e

e In (Lenstra, Lenstra, Lovédsz, 1982) lattice basis reduction is applied to the

testing phase to give a polynomial-time algorithm.

In (Zassenhaus, 1975) Zassenhaus was again occupied with factorization of polynomi-
als with coefficients in Z, this time considering the case when the prime p divides the
polynomial discriminant. This work gave rise to the original version of the “Round
Four” algorithm (Ford, 1978, 1987) for the computation of integral bases and facto-

riazion of polynomials over the field of p-adic numbers.

1.5 Ore and MacLane

The central technique of the Round Four algorithm is the attempted construction
of a root of a polynomial in Z,[z] as a power series with respect to a uniformizing

element of an algebraic extension of Q,.

In contrast, Montes and Nart, building on work of Ore and MacLane, developed the

idea of generalized Newton polygons, derived from valuations of the ring Q,[z].

The Contributions of Ore

Considering the factorization in Z,[x] of a monic irreducible polynomial with integer

coefficients

Fla)= Fi(z) - Fy(z)



with
Fi=47 (modp)

fori=1, ..., g, Ore constructed the Newton polygon Ni(F;) of each factor F; (Ore,
1928). For this construction let ;(z) € Z[z] be monic and irreducible such that

i = (modp).

Forz=1, ..., g, Ore considered the following representation of F":
F(z) =370, p% Qs(z) pilx)

with m = |deg F// degg; ], deg Q; < degy;, and pt@Q;, for j =0, ..., m. The Newton

polygon N (F;) consists of the lower convex hull of the set of points

{(0,aq), (1,v1), --., (m,0)}.

Remark. The complete definition of Newton polygons appears as Defini-

tion 4 in Section 2.1 below.

The edges of N;(F;) provide information about factorizations of F; and ramification

indices.

For each edge S;, Ore defined an associated polynomial \I/g)F with coefficients in a
finite field F,,, where ¢; = p?¥i. A factorization of this associated polynomial gives a
factorization of F;. In particular, if an irreducible factor of the associated polynomial

appears with multiplicity one then the corresponding factor of F; is irreducible.

Remark. The complete definition of the associated polynomial appears as

Definition 10 in Section 2.3 below.
Theorem 8 (Ore: Theorem of the Product). Let F(z) € Z,[x] be a product
Fz) = B(z)- - Fy(x)

of monic polynomials in Z,[x]. Then the edges with negative slope of N1(F) are con-

structed by joining the edges of NZ(Fy). ... N (Fs) with positive length and negative
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slope. Moreover, if S is the segment with slope —d/e of N1(F) then

Tsr(Y) = [[ ¥6)n()
|S:{>0

where S; is the segment of N1(F;) of slope —dJe, fori=1, ..., 8.

Theorem 9 (Ore: Theorem of the Polygon). Let F(x) be a monic polynomial in
Z,[z]. Let Sy, ..., S, be the edges of N (F') of negative slope and let

—di/ey, ..., —d /e,
be their respective slopes. Then F(z) admits a factorization
F(z) = Fi(z)--- F, ().

Each factor Fi(z) 1s a monic polynomial in Z,{z] for i = 1, ..., ~y, with Ni(F})

consisting of the single edge T; having slope —d;/e; and
W (V) = U5p(Y)
Moreover, if 8; is a oot of F;(z) then
v(p1(6:)) = dife;.

Theorem 10 (Ore: Theorem of the Associated Polynomial). Let F(z) € Z,[x] be
a monic polynomial such that Ni(F') consists of a single segment S, with S having

slope —d1/e;.
Assume that the associated polynomial of F' with respect to S has the factorization
CEL(Y) = (Y) - s(Y)
with ¥;(Y), ..., (YY) distinct wrreducible polynomials in F,, [Y].
Then F(z) admits a factorization
F(z) = Gy(z)---Gs(x)

where
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o Gi(z) 1s a monic polynomial in Z,[z],
o Mi(G;) consists of a single segment S;,
o §; has slope —d; /ey, and

0 Wi (V) = (V)™

fori=1,..., 6. Moreover, if a; = 1 then G; ts irreducible.

The Contributions of MacLane
Montes’s work is built on the valuation theory of MacLane, who characterized all
valuations of the polynomial ring Z[z] in terms of “inductive values” of Z[z].
Definition 1. If K is a ring then the map v : K{z] — Z U {co} is called a valuation
of K[z] if

i) v(F) = oo if and only if F' =0,

ii) .»v(FG) = v(F) 4+ v(G) for all F(z), G(z) € K[z]*,

iii) v(F 4+ G) > min {v(F), v(G) } for all F(z), G(z) € K|[z].
Definition 2. Let W be a valuation of Z[z] and let F(z), G(z) € Z[z].

We write
Fi, G
to express the condition
W(G - QF) >W(G)
for some Q(z) € Z[z].

MacLane defined inductively the values V.V, ... V. such that each value V; is ob-

tained from the value V;_; using a suitable key polvnomial ¢y.

A kev polvnomial with respect to the valuation 117 of Z[z] is a monic polynomial

o(x) in Z[r] such that



i) if ¢|,, F'G then ¢|,, F or ¢|,, G, and
i) if ¢, F and F' # 0 then deg F > deg ¢.

First Stage Valuation V;

Let a rational prime p be given, let v, denote the standard p-adic valuation of Q, and

let
F(z)=A,2" +---Ajz + A

be a polynomial in Z[z].
Define the key polynomial for the first stage to be ¢;(z) = = and define
Vi ztx] — Z=°
by Vi(¢)) = w1, with gy an arbitrary nonnegative integer, and in general
VI(F) = min{vp(A;) +im [0<i<n}
We denote this definition compactly by
Vi = ['Up, o1, ,U'l]-

We note that if y; = 0 then V(F') = v(content(F)).

ktP Stage Valuation Vi, k > 2

Definition 3. For £ > 2 we choose ¢, to be a key polynomial with respect to Vi_;

such that
i) deg ¢x > deg ¢y, and
1) Viy(or — dpn) = min { g1, Vie1(6x) }-

Considering the expansion

F(l) = fl/\-{)(;lf) + fl;‘v_] (’l) O/\-(.'.Z',) + -+ ‘4/\\;777(.1") C‘);\-(..’L‘)m
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with Ag;(z) € Z[z] and deg Ax; < deg ¢y for i =0, ..., m, we define
Vit Z]z) — z=°
by Vi(édx) = px > Vi_1(¢r), with p a positive integer, and in general

Vi(F) = min{ Vi1 (Ag;) +tpe |0 <4 <m )

We denote this definition compactly by
Vi = Vo1, ¢k, ik ]

MacLane proved that Vi is a valuation on Z[z].

Let Vi, V5, ..., V4, ... be an infinite sequence of values defined as above. MacLane

defined a limit-valuation as

Vool f()) = lim Vie(f(2)),

k—o0

and proved that it is a valuation on Z[z]. He gave the following theorem.

Theorem (Maclane). If every value of the field K is discrete, then every non-
archimedean value W of the ring K[z] can be represented either as an inductive or as

a limit-valuation.

Remark. As we have seen, Ore worked with first stage valuations. MacLane notes that
“similar ‘second-stage’ values V, appear implicitly in the irreducibility investigations

of Ore, Kiirschak, and Rella.”

[N
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Chapter 2

The Montes Algorithm

2.1 Newton Polygons

Definition 4. Let v : Z[z] — Z2° be a valuation of Z[z] and let ¢(z) be an

irreducible monic polynomial in Z[z]. Suppose F'(z) € Z[z] has the p-adic expansion
F(z) = Ao(z) + Ai(z) p(2) + - - + An(z) p(z)"

with deg A; < degy for i = 0, ..., m. Then the Newton polygon of F' with respect

to v and ¢ is the lower convex hull of the set of points
{ (4, v(A) +iv(p)) |0<i<m}
and is denoted by N, .(F).’

Y

& (0,v(Ao))

o (10,v(A10 "))

X




As we will show below, the Montes algorithm constructs

o a sequence v, vy, ..., of valuations of Q,[z],
o a sequence g, ¥1, - .., of irreducible monic polynomials in Z,[z],
o a sequence —dg/eg, —dy /ey, ..., of rational slopes,

with d, and e, relatively prime, do/eq = 0, and —d, /e, < 0if 7 > 0.
Definition 5. For F(z) € Z[z] and r > 0 we define

No(F) = N, o, (F).

2.2 Valuations in the Montes Algorithm

Let v : Q, — Z U {co} denote the standard p-adic valuation on Q,.

Definition 6. For r > 0 we define the valuation
vt Qplz] = Z U {00}
as follows. If F'(z) € Q,[z]* then

v (F) =

v(content, (F)) ifr=0,
Tr_1dr—1 + Yro1 €021 ifr>1,

~ where (z,_1,¥,-1) is any point on the edge of M,_(F) with slope —d,_,/e,_.
By definition ¢o(z) = z, and it follows that vo(yg) = 0.
For 6 € Q, we have

'l’r(e) = €rfll’rA1(9) = €r~1€r~2‘l’r~2(9) = (er—1€r~2"‘€1)71(9)~

Since N, _(¢,_1) consists of the single point (1.v..(¢,-1)) it follows that

vr(er1) = emrtr 1 () + dr
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and from the construction of ¢, it follows that

v (pr) = er_1fr-10-(0r 1)

Since v1 (1) = €pfov1(wo) = eofovi(z) = 0 we have v, = vp.
If the ¢,_;-adic expansion of F is

F(z) = Bo(3) + Ba(2) @rr(s) + -+ + Belz) grs (a)*
it can be shown that

v(F) = min { er_lv,_l(Bj) +jvr(<pr_1) I 0<j5<k }

In an obvious generalization of MacLane’s notation we have

[U7 I:O] ifvT:O,
VU =
[er——lvr—l; Pr—1, ﬁr]a with ,Ur = UT(SOrﬁl)y if 7 Z 1.

2.3 Miscellaneous Definitions

At any given time the algorithm operates at some “level”, say level v, with r > 0. At
level r the algorithm is concerned with the “@,-adic” expansion of a given polynomial,
from which is determined a “slope” —d,/e,, with d, and e, coprime. dy = 0, ¢; = 1,

and d, > 0 ande. >0 forr> 1.
Definition 7. For r > 0 we define
m, = (1/d;) mod e,.
For positive integers 7 and v we define
a, = vd; ' mod e,,
Brv = (v —a,.d;)/er,
Trw ={{ary+ Aer, By = M) [0 S A< 50 /dr] }.
Lo, ={(z.y)ldz+tey=v}
For r > 1 and (X)) a nonzero polynomial in Z,[X] we define
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o S,k to be the segment of NV, (K) having slope —d, /e,

(@ K, BT,K) to be the left endpoint of S, g,

o]

(or. i + Yr K Er, BT,K — 7 kd) to be the right endpoint of S, g,

o]

Vrg = drar,K + er;Br,Kv

o]

.For r > 0 we define

i, =0, 7, =0, if r =0,
b =dr_1+ €1V, Ur = 1 fro1lhr, ifr > 1.

Remark 1. It is readily seen that

o if 8., > 0 then 7;, is the longest segment of £,, with

endpoints having nonnegative integer coordinates, and
o if 8., < 0then 7;, is empty. -
For example, if d; = 3 and ey = 4 then the segment 754, has endpoints (3,8) and
(11,2) and the segment 755, with 25 = —1, is empty.
For r > 1 we have (a5, Bro,.y) = (0, frlie:)-
For 7 > 1 it is easily shown that i, = v,(ir—1) and 7, = v.(i2,).
It is always the case that S, x C Tr5  C Ly, -
The line £, 5, is the tangent line to NV;(K) of slope —d, /e..
The set of integer points on &,  is given by
{(Gr s + Jer. IBTJ( —3d.) 3=0, ... Yk}
If deg & < deg i, then N (K) = {(0,v.(K))} so vr11(K) = e,v,.(K).
If K(X) is a nonzero polvnomial in Zl)[,X’] with
FCOX) = Aol X) 4 A (X) () o A () 2 (X
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its y,-adic expansion and
e ={k|0<k<n, A x(X)#0}
then NV, (K) is the lower convex hull of the set
[k, 0r(Arsb)) | B € s} = { (ki) | K € o 1.
Since K(X) € Z,[X] we have yx > 0 for k € J, . It follows that
Ve =min{d,k+eye |k € Jk}
arx =min{k| k€ J g, dk+eye= IZ,K 3
Briic = Y= Vr(Arg, ) + Gy
Furthermore
V1 (K) = Uk = dp O i + BTBT,K
=d,arx + e (Arg, ) T €r0r K Vr
— Gpsclds + e7) + ervr(Ar, )
= Cr i P y1 T Ur1(Ara, )
Definition 8 (Sum of Segments). If
Sy = [(en, B1), (e, B, 2 = [(0, o), (a, )]

are two segments with the same slope —d, /e, then their sum is the segment of slope

—d, /e, with endpoints
(Ct’, /8) = (a] + g, ﬁl + ;82)7 (al7 /8,) = (all + al27 ﬁ; +ﬁé)

Definition 9. For » > 1 and £ > 0 and S an arbitrary segment of slope —d,. /e, with

left endpoint (a, 5) we define
O1(7,8) = My fslgp1Mr/Tst fors=0,...,r—1,

©:(r.0 O1(r.r—-1
Qr _ 60 1(r,0) 67_11r ).

(8- kd,) — (o + ke,) 7, J

€r-1

@2(5: T A) = [mrq

ke SEIENS
r _ Q?"A(’Trcoz( 71\,’6 qu'

Srk Sr—1
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Definition 10 (AsSociated Polynomial). Let r > 0, let @ and § be nonnegative
integers, and let S be an arbitrary segment of slope —d, /e, with left endpoint («, §).

Assume K (X) € Z,[X] has p,-adic expansion
K(X) = Ao(X) + A1(X) 0, (X) + -+ An(X) g (X)"
with d.j + e;v,(A;)) > d;a+e,0 for 5 =0, ..., n and let
J = {k | 0< k< |(n—a) e, (a+ke, v, (Agare, ST )) € S }
We define the level-r associated polynomial of K with respect to S to be
Ue(Y) = Spey ¥

with n, € F,_ constructed as follows.

o If r =0 we let

e = Aa-l—keo-

o If r =1 welet Be(X) = Agire, (X) /p’g‘kdl and we let
e = Bi(&o)-
o If r > 2 welet vy = v, (Agike, ) and we set

- T—1
e = PS7i,k\p7(}_1:),,k,‘4o+ker(gr*l)-

Example 1. Let r > 1, let K(X) =1, andlet S= 7,5 ={(0,0) }. Then
K =A@ Ag=1 N(K)={(0,00}. J={0}, =0,

and we have

V(Y) = B (V) =gV =n0.

Ifr =1 then



and if r > 2 then by definition we have
Promo = Q&AM = 4700 =€) | =1
and therefore
T (Y) =m0 =T7L B8 (&)
=Tk U ()
= F%—}o,T,OF’Z_—rl_LO,T—lO (: 22)01(5 2)
- F’; .0 TOF';.,—I 1,07—1,0 "7 FT;O,QO ’([1)0 1(51)

Example 2. Let 7 > 1, let K = &/ and let S = 7,5,_,,. Then

K Aerfr eTf'r) Aerfr = 17 N’I‘(K) = {(erfr7 e’r‘f’rv’(‘) }:

(a7/6) = (07 fTﬁr+l)) ‘]: {f'f‘}: Vfr:UT(Aerfr):O'
If r =1 we have
Bfl (X) = Aa+f181 (X)/pﬁ_f]dl = Aelfl (X)/pf]ﬁz_fldl =1
so that 77, = 1 = Q7' and therefore
(1) _ h _ o-ahivh
\Pﬂ_gz,wjlfl Y)=npY "t =0 Y,

If » > 2 then
and we have

with
R ( r;!
i = S fr T~ Loy Aerfr é‘T 1) S.r.f,

By definition

g fid) — e )T,
(5., fr) = [77?r~1( f )e..f? + frer) J

frﬁr—L] - frd-r - frer Z_/,»
— [77']T,] ! J — O

€,
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so that
rer +92(S,7,fr rlr
Ts, s = QetlergQ2Sni) - et

and therefore

g (V)= Qr‘erfryf'r'

7—7‘.~F‘r+l’ T
Definition 11. We define the natural level-r associated polynomial of K to be
TN (r)
Wy’ = ‘IJSTT,K,K
and the extended natural level-r associated polynomial of K to be
T (r (r
v = xpﬁ?;r’K,K_
Remark 2. For r > 0 and K and S as above we have the following.

o If we let €29 = 1 then for » > 1 we have

QT — Qer—lfr~lgmr—1fr—lﬁr
r—1 .

r—1

© WIk(Y) € Fo Y],

o \Tlﬁp has nonzero constant term.

o) \IJ}? — \I/(Ti?urﬂ(}():]('
o WPY) = YT rm WP (),

Lemma 2. Ifr > 1 and F(X), G(X) € Z,[X]|" withv, p =V, c = U then

{r) (r) (r)
Vs ' ric =¥ r+ s ¢

for any segment S, C L, 5.

Proof. Let H = F + G. It is clear that either S,y C L, or else S, y lies entirely

above L, ;.
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Let (e, B;) be the left endpoint of S,. We consider the ¢.-adic expansions
= ijo Ajpl, G= ijo Bjyl, H= ijo Ciel,
with C; = A; + B; for 7 > 0, and we let
Ta = {k | (@ + ker, v (Aaysre, 077 H)) €S, },
Tp = {k | (ar + kep, v (Boyie, 027 7) €5, },
Jo = {k| (ar + ker, v(Copsre, 07 ) € S, 1,
Ju =\7AU\73U.70-
It is evident that
(T T8)U (T = Ta) € T € JaUTa = Ju.
For k > 0 there exist ay, bk, ¢, € F,_ such that
‘I/éifF(Y) = 2 res, uY" = zl;eju aY*,
‘I’éi),c(y) =2 keds bY* = > kedy beY",
‘I/gr)H(Y) = Zkejc aY* = Zkeju cY'*.

It is obvious that

k= ko ko
Poketgy-ga) WY F = Doke(gp-gm) WY E = Lie(gp-gey k¥ F = 0.

We will proceed by induction on 7.
Let 7 = 1. Then for k¥ > 0 we have

ar = Ax(€o), bx = Br(€), cx = Ax(&0) + Bi(o) = ax + by
and therefore

\Ij\(Slx?F()/) + \I’é‘lx)c(y> = Zkéju aY* + Zkeju bY"

= Yokeg (@ +0)YE =300 5 aYE = \I’é‘]]).]-/(y).
Now assume r > 2. Let A(X). B(X) € Z,[X]" and let (' = 4 + B.
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o Ifv, 14 <Vpypand Sy =7, it is clear that \IJ(T I)B =0 and

T Vr—1,A

-1 _ 3= (T 1) (r-1)
‘I’sr_l,c—‘l’srr_l,zx Vs at¥s 5

o fv, ya>v,1pand S, =T, it is clear that \Ifgrj)A =0 and

Tygr—l,B
(r—1) _ ;g,(r=1) ('r 1) (r=1)
\I]Sr_],c _ \IJST_I,B \D A _,_ \I,ST 1,B'

=7,

™Wr-1,B

o v, ya=v,1pand S, =T, then

T)DT—I:A
(r=1) r—1) r—1
v =wl ), el

by induction.

It now follows that

A(r Y (&rq) = (T X (& 1)+‘I’(T Y (&-1)

a+ke a+k a+ke

for all k € Jy. By definition we have

a .: Fgrk Ta+1,3€ <§r 1) if k e j_f;,
* 0 ifkd Ja,
b, = Pgik (Ta:k)E (§r 1) ifk e jB:
‘ 0 if k ¢ s,
o T U () TR E T,
‘ 0 if k ¢ Je.

Hence ¢, = ar, + by, for all k € Ty O

Lemma 3. Ifr, o, and 3 are nonnegative integers and K (X) is a nonzero polynomial
in Z,{X] then the point |
(o + key, v, (K ptFer))

lies on the line L. 4 ate,5 if and only if

v () = (8= kd,) — (o + ke, ) 7,



Proof. We have

(o + ker, v, (Ko2%7)) € Ly dratens
d.(a + ke,) + e,v, (K petker) = d o+ e, 3
kd e, + e,v, (K p2tFker) = e,
kd, + v (K @ot*er) =
g

v (K) = (B—kd.) — (a + ke,) U, .

I

kd, +v,.(K) + (o + ke, ) U,

Fr 111

Lemma 4. Ifr>1 andv > U,y and 0<i< f, — 1 then

v—{a,,+1e.) 1 '
(B, —id,) — (r, +ie,) Uy = (o 1) By > 7,
: .

Proof. Since v > Vry1 = e frfi,,, We have
e ((Bry — 1d,) — (ary + i) U,) = e, (Br0 — id,) — e(r + i€,) Uy
= Brver — it dy — ey, + i€,) Ur
= v — o, d; —le,d; — e (a,, +ie) T,
=v— (0o, +te)(eUr +d;)
= v = (Qry +1€r) gy
and
v (Qp t i8) Ty > v — (e = 1)+ (fr = es) Ty

=v—(efr— l)ﬁvr-)—l

v

Hry1
=e VU +d,

> €.V,



2.4 Pseudo-valuations

Let 9,.(Y) be a monic irreducible polynomial with nonzero constant term of degree
fr in Fy [Y]. Taking vy, to be the valuation associated with 1, we give the definition

of the pseudo-valuation w, on Z,[z] and enumerate some of its properties.
Definition 12. (Pseudo-valuation ) Let v be a valuation of Q,(X).
A pseudo-valuation of Q,(X) with respect to v is a mapping
w:Qu(X) —Z
satisfying three conditions for all F/(X) and G(X) in Z,[X]*:
(1) w(FG) = w(F) +w(G);
(2) W(F/G) = w(F) - w(G);
(3) ¥ v(F) =v(G) and w(F) # w(G) then
o(F + G) = v(F) = v(G),
w(F 4+ G) = min{ w(F),w(G) }

Proposition 6. The mapping wr - Qp(X)* — Z defined by

U (K /pr D)) af r =1,
wr(K) = -0y r
U'L.br—l(\IJK ) ZfT 2 2.

is a pseudo-valuation of Qp(X) with respect to the valuation v,.
Proof. If r = 1 it is clear that w; satisfies properties (1) and (2) of the definition. For
property (3), assume vy (F) = v1(G) = A and w;(F) # w1(G). Then

Ugo (F/p) = w1 (F) # w1 (G) = vy (G/P)

by assumption, and it follows from the definition of the valuation of a polvnomial

that vy (F' + G) = A. It is also clear that

w1 (F+G) = vy ((F +G)/p*) = v (F/p + G/p)



and it follows that
w1 (F + G) = min{ w,(F), w1(G) }.

The case 7 > 2 is an immediate consequence of Lemma 5 below. O

Lemma 5. If r > 2 and F(X), G(X) € Z,[X]*, with v.(F) = v,(G) and w,(F) <
w(G), then v,(F + G) = v,(F) and w,(F + G) = w,(F).

Proof. We adopt the following notation.

o Welet v =u,(F) =v(G). _

[e]

Welet F'=>) . A; ©!_| be the ¢,_i-adic expansion of F.

[e]

Welet G =} B; @), be the o, _;-adic expansion of G.

We let S be the shortest segment containing both S,_; r and S, ¢.

o

[e]

For 7 >0 welet \; = (v —1,75)/e—1-

For 7 > 0 and Cj(X) € Z;,[X] we observe that

vr——l(Cj) > )‘]

above
(7, vr1(C; 2 _,)) lies on L, 15 if and only if ¢ v,_1(C;) = A;,
below v (Cy) < Ay

We know v, (F + G) > v. If we assume v,(F + G) > v then we have
Vi:u(A;) >N, Vivu1(Bj) >N, Viiv_i(A4;+ Bj) > A,
F7va(A) =X, 35 v0(B)) = A

It follows that v,_1(A;) = A; if and only if v,_;(—B;) = A; and therefore

Soar=8-1.¢=S
Applving Lemma 2 we have
e e SRR A S (e e
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which implies w,(F') = w,(—G), a contradiction. It follows that v.(F + G) = v.

We have S,_1 pr¢ € £,_15. By definition the respective left and right endpoints of

S are (ay, (1) and (ag, Br), where
@y = min { Qr_1,F; 5r—1,G }, fr= - dr—laL)/er——h
ap = max{ ar—l,Fy a'r—l,G’ }7 ﬁR = (17‘_ dr—laR)/er—l-

It is clear that if § < ay or j > ag then v,_;((A; + B;)¢’_;) > A; and it follows

immediately that S;_; pyg € S.

Let H(X)=X. Since S;,_1r € Sr-1p46 € S and S;16 € S;-1 546 © S there exist

nonnegative integers s, s’, s” such that
HOTE = 9 = D 4 WD = D R
Since ged(Yr_1, H) = 1 and w,(F) < w,(G) it follows that
n(E+G) = vy, (H* T )
= vy (HIUETY + HUG)

= w,(F). O

Remark 3. We can observe easily that

e w; is not a valuation; if FI(X) = —o(X) and G(X) = (X)) + p then w(F) =
wi(G) =1 but wi(F +G) = wi(p) = 0 < min{w(F),w(G) }.

o wi(F) =0 if and only if F'(&) # 0, where F'(z) = F(z)/p(F).
o If F' has ¢-adic expansion
F(X) = S AdX) (X,
with n = deg F'. n1 = deg ¢y, and A; = v1(A;). then
wi(F)=min{7: )\, = (F)}.
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Indeed, if A = v, (F') then

wy (F) =U¢'0(W)
= oo (I AT 27 )
:vwo(zl"/"” X)/P*) (X))

1,\ ,\) )/P ) Po(X ))
=min{i: \ = v (F)}

= Uyyg

/\

since 3 ;.50 Ai(X)/pY = 0.

Remark 4. If F' is either a monic polynomial or a polynomial such that v;(F) = 0,

and if ¥y is an irreducible factor of 7 with degree of multiplicity ao, then
w1 (F) = vy (F) = vy (L0 1) = .
Remark 5. Assume r > 2.
o w.(F) =0 if and only if ¢,_, 1 TV
o If F(X) € Z,[X]* is a polynomial, then
w1 (F) Z v, () + er 1 froawe (F).

Proof. By the definition of M, _,(F) the difference w,_(F) —v,,_, (F) is greater
than or equal to the length of the projection of S,_; p onto the z-axis, but by

definition this is e,—1%—1.F, and V1.7 > froywr (F). O

o If &) is aroot of 1,_y and F(X) € Z,]X]* then
w(F) =0 «= T (g ,)#0

and w,(F) = 0 if deg F' < n,.
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Proof. The first affirmation is evident from the definition of w,. Now, if deg F' <

n, = n,_1€,_1fr_1, then from the ¢,_;-adic expansion of F,
F(X) = Yicer s fooy AilX) ora(X)Y,
we get that the length of the projection of S,_; p on the z-axis is less than

€r—1fr_1; it follows that deg U™V < f,_) = deg,_,, i.e., w,(F) = 0. 0

If 1 <k <7 then wi(p,) = [[12; e fi-

Proof. We will use induction on k.

—er—1fr—1---€1f1

Let k£ = 1. By the construction of ¢, we have @, = p, and hence
-1
%! ((Pr) = H::l eifi~
Now we assume
-1
wk(QOr) = H::k eifi
for some k in the range 1 < k <7 —1.
By the-construction of ¢, we have
wk(2r) = exgr = exfrax = ex frwi(r)-

Therefore, applying the induction hypothesis, we have

wk(‘ﬂr) 1 r—1 r—1
w r) — = . ] = _ €;Ji- O
k+1(tpr) ex ex fr Hz_k f Hz_k+l [

If F(X) has p,-adic expansion
FX) = T AdX) (X'
with n = deg F'. n, = deg ¢,, and \; = v.(4; ¢'), then

w(F) = min{i A= ‘1’1-(F) }
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Proof. Let A = v.(F). Then

F(X) = 0 AdX) @ (X
= ey A0 0 (X + Dn sy Ai(X) 0 (X

= G(X) + H(X).

Thus G(X) = > 4,20 Ai(X) o (X))}, with v (4; %) = A for each i in this

summation. It is clear that v,(G) = A. By the above properties of w, we get
wr(A4; L) :0+i- 1=z
and since w, is a pseudo-valuation we have
wr(G) = min{w,(A; ) | Ny =X} =min{i |\ = A}

Now we can see that v,(H) = v,(F — G) > A\. Therefore the points of N,_(H)

are above the line £,_; ¢ so we have
Sr—l,F = Sr—l,G =S8
which implies
@gq) qlérFl) \Ij(qrcl) n \P(r 1) qlércl) qlg 1

It follows from the definition of w, that w,(F) = min{i: X; = A }. O
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2.5 A Fundamental Property of Valuations

Proposition 7. Ifr > 1 and F(X) € Z,[X] has p,-adic expansion
F(X) = Aro(X) + Ann(X) 9r(X) + -+ A n(X) 0, (X)"
then ’UT(F) = min o<j<n{ v-(Ar;¢7) }-
Proof. Let Ymin = Mino<j<n{ v- (A7) } and let
T ={i10<35<n v(Ar;0]) = Ymin }-

The @p,-adic expansion of F’ can be written

F=H+K
with H = Zj‘ej Arjpl and K =37, - A; 5 pl. We have

v (F— H) =v(K) =1 (ij Arj 1) = minje 7 {v:(Ar;01) } > Ymin.
From the definition of w, and Proposition 9 we have
wr(pr) = vy, (BE) = vy s (eratry) = 1.

For j € J we know that 0 < deg A, ; < degy, = e,_1 fr_1degy,_; and therefore the
©r_1-adic expansion of A, ; is of the form
Ars(X) = "7 B (X)) ora (X)F.
Hence the integer points on Sr—err,j must all belong to the set
{(ar-1,a,,+ ker, BT—I,A,-_J- —kd,_1)|0< k< fioy—1}
which implies deg {Ivf/((;jl) < fr—y = deg,_; and it follows that
wr(Arj) = vy, (B V) =0.
For 7, k € J with 7 < k we have
ur(Ars 1) = 0 (Ark ©F) = Yumin,
wrlAr;0l) = § <k = wo(Ar e 2F).

It follows from Lemma 5 that v, (H) = Ymin < v-(/) and therefore

’l'r(F) = 'Z',«(H + ]\) - 1,7_(]{) = Ymin = Inillj{ Zr("l']kf’”l) } 0
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2.6 Algorithm 1 and the Construction of ¢,

Algorithm 1. Given d;, e, f, etc., for 1 < s < r and given
e an integert in the range 1 <t <,
® an integer v > Uyyq,
* anonzero polynomial §(Y) € F,,[Y] of degree less than fi,
to construct a polynomial H,, 5(X) € Z,[X] such that
o deg Hy 5 < nyy1,

® 'Ut+1(Ht,u,6) =V,

Construction. Let (o, ..., (f—1 in F,, be such that

o) =L Gy
Since 6(Y) #0theset Jy={:]|0<:< f; —1, { # 0} is not empty.
For i € Js we construct K;(X) as follows.

o We take §;(Y) to be the unique polynomial in F,,_,[Y] of degree less than f;_;

such that

51'(51—1) = F:rtru,t,i Q‘-

e If t =1 we take (X)) to be a polynomial in Z,[X] of degree less than f; such
that P;(Y) = §,(Y) and we set

Ki(X) = pPe0 PX).
o If t > 2 welet v, = (3, —id,) — (ay, + ie;)7; and we set
KG(X) = Hiy, 6(X).
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Having constructed K;(X) for i € Jj;, we set

Hyys(X) = e gy Ko X) u(X)etree.

Proposition 8 (Montes, Proposition 3.2). Algorithm 1 is correct.

Proof. We will-proceed by induction on t.

If ¢ = 1 then we have H; ,s(X) = 3", ;. pPre—idi P(X) ) (X))o Hier,

e By assumption v > 7, = e; f1d;. Hence for ¢ € Js we have

(,31,1/ - idl)el = 51,1/ e1 — td1e
=v—o,d —idie;
>v—(e1—1)dy — (/L — 1)dse,
=v—efid +d;

> 0.
It follows that £;, — id; > 0 for all ¢ € Js and therefore H;, 5(X) € Z,[X].
e We have
deg Hy 5 < max ey, { deg.Pi + (o1, +iey)degey }
<m + (e1 — 1+ (f1 — Dey)ny = e; fing = ny.
e For i € J; we have P;(&) = ¢ ;é 0 so that vy(F;) = 0. It follows that

va(H5) = mingey, { vo (PP P, @?l’y“el) I
= minieJ,s{ (Brv — id1)va(p) + v2(F) + (01, +de1)va(w1) }
= nlin’ie]&{ (B1, —idy)ey + (a1, + te1)dy }
= [y €1+ q1.,.d;

= V.
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e We have
HI’V’J(X) = ZiEJ,g Aa1,u+iel (X) (P1(X)al"’+iel

with Ag, , tier (X) = pP» 4 P(X) for i € J;. It follows that

o (V) =Y, Bil&) Y

with

Aoy, rier (X) PPt (X))
Bl(X) = pﬁl,u“(al,y+iel—al,u)d1/61 - pﬁl,u—idl = R(X)

for ¢ € Js, and therefore

@%?WHW(Y) = §(Y).

Now we assume Algorithm 1 is correct for ¢ = s — 1 for some s > 2. By this
assumption, if u > 7, and 7(Y") is any nonzero polynomial in F,,_,[Y] of degree less

than f,_; then Algorithm 1 returns a polynomial H,_; ,,(X) € Z,[X] with
deg Hoo1pn <oy Us(Homrun) =p, TSP o (¥)=4(Y).
We will prove the algorithm is correct for ¢ = s.

From Lemma 4 we have v; > U, and thus the construction gives

Hsp5(X) = 3 ie s Hom1,0,8(X) s (X )00

o Since Hy_1,,s(X) € Zp[X] for ¢ € Js, it is clear that H,, s(X) € Z,[X].
e Since s, < e; — 1 we have

deg Hs,uﬁ S n]aXiEJ‘s{ deg Hs—l,l/,-,éi + (as.u + ies) deg Ys }

<ns+((es — 1) + (fs — Des)ns = esfons = ngq1.

e Since deg Hs 1,.5 < ns < ney we have

1’5+1(Hs~],u,~.6i) - esl's(Hs—l.u,-.é,) = €1



and from Lemma 4 we have e;v; + (as, +i€;5)f, .1 = v. It follows that

’Us—{—I(Hs,u,cS) = minieJ6 { US+1(HS—1,V,~,51- (pgsw'*’ies) }
= miniEJé { vs-{—l(Hs—l,l/i,&) + (asyy + ies)vs+1((ps) }
= miniey, { esvi + (@) +i€6) gy }

= V.

o For 7 € J; the polynomial H,_;,, 5, was constructed so that

o vS(HS—l,l/.h(si) = I/’iJ

o wkY 5 (Y) = 6,(Y).

s 1y Hs 1.V4,
Writing as, v, 6 for (as p, , 5 — s, )/ e, it follows that
U,y (V)= YR U ()

7:9,1/:Hs,u,6
— YOws D -1 gD (£1) Y™ 85,08
i€Js Ts v8,d ST s—1

Ly, slu6

= 2ies; FTS X ‘I"gf 11)u Ho,, u,..a,.(gs—ﬁ Y
= Eing 7’5;,31 (‘gs 1)
=yl

=4(Y).

Proposition 9. Let ds, es, fs, ps, s, etc., be given for 1 < s <r, let
w(Y) = (i (Y) - YF)
where ¢, = Q¢ € F, and let
Gri1(X) = 0o (X)F + Hy 0 (X).

Then f;rH(X) is a monic polynomial in Z,[X| with the following properties.

o deg iy = Ny



N:(@r41) consists of the single segment S, , ;.

@

o Urp1(@re1) = Ury1.

(Ingr)ﬂ Y) = e (V).

(-]

41 tS wrTeducible over Z,.

@

Proof. Let (o, ..., (5,—1 € F,. be such that v.(Y) = Zif;gl (; Y* and define

By the definition of the associated polynomial 1), has nonzero constant term, so
Co = ¢ (0) # 0 and hence 0 € J,,.
e Since p,(X) € Z,[X] and H,z,,, ., (X) € Z,[X] it is clear that
(pT+1(X) = (pT(X)eTfT+ Hrvl_’r+1:'7r(X) G ZP[X]
< ny41 it is clear that ¢y, is monic with

and since deg H,

Vrg1r

deg p, 41 = e, f, degor = e, finy = nry.

o The y,-adic expansion of @,;1(X) is
Pre1(X) = 2oy, Ki(X) @ (X)oromntier 4 (X)o7
and therefore N, (p,.1) is the lower convex hull of the set
S = {(Qrp, 4y + 16, 0 (K) + (@7, 6, )7,) |1 € Jy, }
Ul et}

If = 1 then for i € J,, we have K;(X) = pP7~* P,(X) with v;(P;) = 0 and,

since 7y = 0 and v;(p) = 1, it follows that

vi(K) + (arp, +ie)71 = vi(K;)

= (815, — idy)v1(p) + v1(P)

= ;‘31_;2 — fd].
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If 7 > 2 then for 7 € J, we have K;(X) = Hy_1,,5,(X), so that
v (Ky) =y = (Br,ﬁr“ —id,) — (ar,UrH + e, )Ur

and thus
UT(Ki) + (aT,UrH + ier)l—jr = /37'77T+1 — idy.

In either case we have
S ={(arpss T i€, By —ide) |1 € Iy U {(enfr, enfiTr) }

It is clear that d,a + e.3 = T,y for every point (a, ) € S. Tt follows that

N:(¢ry1) consists of a single segment and that this segmentv has endpoints

(aT-,vr-}.l?lBT,pr-{-]) and (erfry erfrvr)- Hence Nr(‘ﬂr—i-l) = Smpr+1'
e It follows from the definition of v,; that
Ur+1(tpr+1) = ar,ﬁ,._,_ldr + ﬁr,l_/,-_n €r = ir+1~

e It was shown in Example 2 that

(7'4) — -erfr fr_ f'r
B V)= YR = oY

It is clear that S, ., € 7-5,,,, and since S, ,, and 7,5 _,, have the same left
endpoint it follows that

G — i)

\Ilér)-l-l (Y) - ‘I,Sr.,u,:‘.,-+1 cPr4+1 (Y)

_ g
- Z—,ﬁrﬂ,tprﬂ( )

v WY ()

5y 410 95 Trr Hreigor

=Y +7.(Y)
= C'rwr(y)-

o Since the associated polynomial

g (Y) = ¢, (Y)

Er4d
is irreducible over F,, . it follows from the theorem of the associated polynomial

that o, is itself irreducible over Z,. U
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By construction, the degree of any irreducible factor of F' is greater than or equal to

n,. From this fact and Proposition 4.1 of (Pauli, 2001) we have the following.

Proposition 10 (Pauli). Let n, ..., ny be the roots of monic square-free polynomial
F(X) in an algebraic closure of Q,. Assume that each irreducible factor of F has

degree greater or equal to degw, and that

() > 22 T)

forj=1,..., N. Then deg F' = n, and hence F(X) is trreducible over Q,.

See also Proposition 15 below.

Remark 6. From theorem of the polygon we have

1 d,

o (m)) = -+ = vl () = ———(wnlp) + ) = FL

Thus Proposition 10 gives a termination condition for the Montes algorithm:

Ty S 2v(disc F).

€1 €r N
Corollary 3. Ife,f, = erp1fri1 = = €rymfram = 1 and
1 2v(disc F
——('vr(%) +d- + ---+dr+m> > 2y(disc )
€1 Cr_1 N

then deg F' = n, and hence F(X) is iwrreducible over Qp-
Proof. Let ny, ..., ny be as in Proposition 10.

By the properties of ¢ we know

Vipr (k1) = exfrlerve(er) + di) = vi(or) + die

for k=r..... 74+ m— 1. and by the theorem of the polvgon we have
1 dit
1"($’5k+1(77j)) - ('Uk-ﬂ(%’?kﬂ) + )
€1 Cp-1€k €kl



for j =1, ..., N. Thus we can write

v‘r+’n,(90‘r+n) = ,UT‘(QOT) + dr Jf" Tt J[" dr+n—-l

forn=1, ..., m. Hencefor j=1,..., N we have
1 d,
o(Prim(n;)) = (rm{pram) + 222

€1 €16 Erym—1 r+m

: 1

= ——““(vr((pr) + dr + -+ dr+m)
€1 €1

- 2v(disc F)
—~

By Proposition 10 we conclude that F'is irreducible over Q.

Proposition 11. The Montes algorithm terminates.

Proof. Let N = degF. The algorithm constructs the sequence ¢, wo, ...

degw, =n,, 1 <ny <ny <...< N,and n,4; =n, if and only if e, f, = 1.

with

It is clear that the case e, f, > 2 can occur at most log, NV times, since n,4+; = e, f;n,

and N is an upper bound on n,.

Furthermore, from Corollary 3 it is clear that the case e, f, = 1 cannot occur infinitely

often, since for each root 7 of F' the terms of the sequence

1
U prym(n)) = ——— <‘Ur('wpr) +do+ -+ dr+m)

€1 €1

are bounded above by
2v(disc F)
N

and increase by

dr+m 1 1

> >

€€ €161 ]\/

at each increment of m.

It follows that the Montes algorithm constructs onlyv finitelv many levels and therefore

must terminate.
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2.7 Three Important Theorems
2.7.1 The Theorem of the Product

The following two theorems appear, in a more general form, as Theorem 6.1 in

(Montes, 1999).

Theorem 11 (Theorem of the Produc‘t: Segments). Let r > 1, let Fi(z) and Fy(z)
be nonzero polynomials in Zy[z], and let S; and S, be the segments of slope —d. /e,
of the Newton polygons N, (F\) and N,(Fy) respectively. Then S + S, is the segment
with slope —d, /e, of N.(FyF3).

Proof. We denote
F=RF, S=58+S8, L=Lgy =Ly (F)r

We can assume that ¢, { F] and ¢, { F5.
Let F; and F3 have ¢,-adic expansions

Py =33 o Bigl, Fr=) Cret.
Then

b= Zfié(ZjJrk:i B]C’k)c,oi.
Since deg B;Cy < 2n, — 2, each term sz:i B;Cy has r-adic expansion
Zﬁk:i B;Cr = Di = D; 1o, + Dy
with deg D; o < n, — 1 and deg D;; < n, — 2 Taking
DAl =D_19= D—l,l =0

the ¢,-adic expansion of F is

R sHt+l 4 g
F‘Zf:o Aiv’r

with 447 = DT’._]_] + D,;AQ fori=10. .. LS5+ T+ 1.



Let us denote A; = v,(D;p!), with A_; = co, and u; = v, (A;%).
We have to show that S is an edge of NV, (F).

Let (ay, £1), (a1, 1), (a2, B2), (a5, B5) be the left and right endpoints of S; and the

left and right endpoints of S, respectively. By definition
(QJﬁ) = (a1+a2;ﬁl +ﬁ2)7 (al3ﬁ,) = (a,1+a12716; +ﬁ;)
are respectively the left and right endpoints of S.

For 7 > 0 and £ > 0 we have

d;j+ev; >vp if § <a, dr'k + e wk > Uy, if k< an,
d.j+ev; =v,p if j=oay, d.k+ewe =0, F, if k= ay,
dj+ev; >0 ifa) <j<ai, d-k+ew, > Urp if an <k < a,
drj+ev; =0, g if §j=al, dk+ew, =0 if k=,
dj+ ev; > U if J > a, d-k+ e;wy, > Upp, if k> d.

Lemma 6. If v <a ory > o then (v,A,) lies above L.

Proof. For all v > 0 we have
A, = Ur(2j+k:~,' B; Cr )
> min { ve(Bjgl) + v (Cop}) [+ k =7}
=min{v;+wx |7+ k="}
If vy <aand 7+ k= then either j < aj or £ < ay and hence
Vrp = Urp, + Upp, < drj + €05 + dok + e;wy = dey + (v + wy).
Taking j' + &' = v such that vy + wp = min{ v; + wy | j + k = 7} we have
Uvrr < dey e (v +wp) < dey e
and thus (7. A.) lies above L.
A similar argument shows that (5. A.) lies above £ if 7 > a’. 0
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Lemma 7. If (5,k) = (a1, a) then

v+ wg =0
and if j+ k < a and (4, k) # (o1, a2) then

v; + wi > B.

Proof. Tt is clear that vy, + Wa, = 51 + G2 = 5.

Ifj+k<aand (j,k) # (a1,a2) then j < a; or k < a. If j < a; then

d.j+ e vy > Uy gy, dok + e;wy > Urpy;
d Q) + er/Bl = Ijr o dra'Q + erﬁ? = FZ;T,FQ;
'U]'> Vrp — drd = [ + (011—3) wp > T2 = By — L (k — ay);
er 'r er e’f‘

d, A d,
vj +wg > P +e—(01 —7)+ B — —e—(k—CYQ)

T T

d,
/31'LBQ+ (01—]—l\,+a2):,8

T

A similar argument applies if k& < a9, and the result follows.

Remark 7. It follows from Lemma 7 that A, = [, hence (@, A,) lies on L.
Lemma 8. If (j,k) = (o), a5) then
v, +w, =0
and if 7+ k > o and (3, k) # (o}, ah) then
v+ w > G
Proof. The proof is closely similar to that .of Lemma 7.
Remark 8. Tt follows from Lemma 8 that A, = 3. hence (a’. A,/) lies on L.

Lemma 9. If~ > 0 then u, > min{ A, _;. A\, }.
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Proof. For v > 0 the p,-adic expansion of D, is Do+ D, 140,

It follows from Proposition 7 that

Ur(Dv) = min { vr(Dv,O): IUT(D’Y,I()OT)}

and thus
A, = UT(D'Y‘PZ) = min { vr(Dv,O‘PZ), UT(DW,I‘PTH) }

Since
Ur(Ay97) = vr(Dy-1,19] + Dao]) = min { v, (Dy—11¢]), vr(Dy09]) }

it follows that
Uy = 0 (Ayp)) > min{ A1, A, } O

Lemma 10. If v < a or vy > &' then (v,u,) lies above L.

Proof. If v < a or v > o then the point (y,A,) lies above £ and the point (y —

1, A, ;) lies on or above L, ie,

Urp — dpy Upp —de(y— 1 Uy p — dyy
A',v > F ’7’ Aqr—] Z r.F (’7 ) > F rf)’
er er er
so that
Upp — dpy
u, >min{A,_;, A, } > Uk = &0
€r

Hence (7v,u,) lies above L. O

Lemma 11. [t is the case that uq = 3 and uy = 3.

Proof. Since D, = > B;Cy we have

j+k=o
0D = BayCayie®) 2 min{v; + w0y | 7+ & = . (7.K) # (1. 2) )

e
> 7;’01 —+ u"QQ il Z"Y'r‘(BCn C(lg‘?’r)

and 1t {ollows that
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© DT—I,DQ = Ur(Da) = UT(B(:QCQQ) = ~r—1,B<,1C(,2.7

o N;_1(Dqg — By, Ca,) lies entirely above the line £,_15 _,

O Or-1,Dq = Pr—1,BayCay-
We apply Lemma 2 to obtain

vy = ‘I’;Bz Coy Tt ‘1’(TT,B?—BOJCQ2 = ‘I’(TT,HB?] Ce,
with 7 = S,y p, = 7—1,Ba; Coy From the definition of w, we obtain
wr(Da) = wr(Bay Cay) = wr(Ba,) +wr(Cq,)-
Since deg B; < n, and deg Cy < n, we have w,(By,) = wr(Cq,) =0 and‘thus
wr(Dg) = 0.
The ¢,-adic expansion of D, is Dy g+ Da1¢-, hence v,.(Dy) = v,(Da), and therefore
Ve (Daowl) = v (Datpy) = Aa

It is clear that v, (Dy-1192) > As-1, and since (o —1, Ayp) lies above £ and (a, A,)

lies on L it follows that A, > A,. Since
Aoy = Do_1168 + Do oy
we conclude that ug = v, (Agp%) = Aq = 0.
In the same way it can be shown that u, = 3. O
Lastly, since no vertices of A.(F) can lie below L it follows that
dy+ ey, > Ve

if @ < v <« Hence S must be a segment of A, (F). O



Theorem 12 ( Theorem of the Product: Associated Polynomials). Let Fy, Fy, S1, Sa,

and r be as in Theorem 11. Then

\Ijérlll—szyFle (Y) = \I{g)Fl (Y) \Iléze(Y)

Proof. Throughout this proof we will use the notation from Theorem 11.

Let us define

J = {Z I (a_f‘ ier,ua+1-er) S S},
J1 = {] l (011 + jeruvarkjer) €& }7

J2 = {k | ((12 + ke,,wa2+ker) € SQ }

Using a similar argument as in Lemma 6 we have the following.
Lemma 12. If a < v < a' then (v, A,) lies above or on L.

Lemma 13. Ifi € J then ugiie, = Datie, -

Proof. Let v = « + ie,. Then the case v = @ and v = o’ is clear from Lemma 7 and

Lemma 8.

Since (v — 1,A,_;) and (. A,) lie above or on £ by Lemma 12 and Lemma 6 and

u, > min{ A;_1, A, } by Lemma 9 we then get u, = A,,.
Lemma 14. Let o < v < «’. Consider

A () = Doy1(2) + Dy ol2).

y

Then v.(Dy_y1) > v.(D~o)-

Proof. Let us review the following notation:

D.(z) = Dy1(x)er(z) + D-olx)

i

D, () = Doy a(v)pe(x) + Doy o).

OJ



Then by the property of v, we have

On the other hand
wy > min{ vr(Dy-1197), v (Do o7 })
> min{ A1, v (Dao07 ).
Since u, = A, < A,_;, we have

U (Dy-1197) 2 By1 > v (Do 00])

To prove the theorem we will proceed by induction on 7.

Let r = 1. We need the following notation

Bj(z) = Buay4je, (z) /P77 CL(z) = Cyy s o, (z) /K
Al2) = Aasier (@) /7 Di(2) = Dosyie, (2[5

1

Then by the definition of the associated polynomial we have
\Pé:)—FSE.FIFZ(Y) = D e MY =2, A&)Y?
- Ziej(-ﬁ;—l,l(go) + Ei,o(go))yi = Ziejﬁ;.o(éo)yi~

We obtain the last equality by Lemma 14.

Now we will calculate the right hand side of the required equality.

‘Pé:)Fl (Y) ‘PéZ?Fz(Y) = (Zjeh njyj) (Zker nkyk)
= Zie.](zﬂ-k:i njnk)yi

= Zie] (Zj+k:i Ej (§O)Ck(sc0)) Y

= Yoy Dil&)Y".



Since

Dy(z) = Di (z)pr(z) + Dio(z)

and u; = A;, then
Di(z) = Djy(z).
Now we assume the theorem is correct for r = t—1 for some ¢t > 2. By this assumption

we have
- —~1 -
V§ T d nn(Y) = WA (V) UERY).
We will prove the theorem is correct for r = ¢t.
Remark 9. Fort > 0 and K and S are as above we have the following. If v, = 0 — kd,;

(mod e;_;) then ¢o;_;,, = (6 — kd;) m;—; mod e,_; and therefore

(Ol + ket) @1 (t/t - 1) + @2(8,t7 k) = (mt_l(ﬂ — kdt) — Cl’t_.'lyk)/@tﬁl .

Then we have the following

-1 _ (yatie 0(1—-1,9)
FS.t,‘i - Qt—l gt—l 3

with 6(t — 1,7) = (a1, — My-1(0 — id;)) and v; = v;(Agtie, )-

It is sufficient to show that

(&t-1)

-1 3,0-1)
T]‘i - I_‘S.t,i\P,Tt—l.uer

aties
= Zj+k:i 57k -
By definition

me = D5l wi=D (&1)

7—1—1,1/1:‘40 +1et

_ oadtier f0(-1.4) g (t=1) ¢
- Qt"l gt—l \117—!—1.111744a+1ct (St_l)

_ atie B{t-14) 1 (1-1)
- Qt/] t—1 \IJ'T:~).UI»3D0+7'<,‘,0 (51—1)

The last equality is obtaind by the same observation as in the particular case t = 1.

g
=1



To calculate the right hand side of the required equality we observe the following for

jeh, kel and j+k=1€ J:
t—1,uj B0+j€g + Z—l,uka CC!JrkEg C_: z—l,via Boz+jetCa+ket
A1y T Xl = Q-1 + 0; k€11

Ot —1,7)+60(t—1,k)=0(t—1,7) + d;«

where

1 Hoyyy, + a1y, = €1,
Ojk =

0 if at—l,l/j + Q1 v < €4-1-

Then we have

_ +jes 00(j:1—-1) 7, (=1
Zj+k:i N = Z]‘+k:i(Qta—11]e &y \I‘ﬁ—l,uj,Baﬁjet(&_]))
¢ Ok, i=1) 1 (1—1
(zreely ™ wy ) )

Ti—1,04 Cogt ke (§1—1)
= O (s & T T Uy B Cor e (E-1)
= O (i &R oo (G01)
= e e L (&)
_ Q?jlietgﬁt;l,z‘) \I‘(t—l) (gt—l)-

Tt—1,0; Datier.0

The second-to-last equality follows from Lemma 2 and the last equality by the same

observation as in the particular case t = 1. g

2.7.2 The Theorem of the Polygon

Theorem 13 (Theorem of the Polygon). Let r > 1. Assume N,(F) consists of a

single segment and p; tF for7=0,1,...,7. Then
i) deg F = erg,n,.
i) the endpoints of N.(F) are
(0. drgr + ;e (20)). (ergr. €2t (20)).
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iii) ifn is a root of F then

U(%Dr(ﬁ)) = —"1——'(UT(QDT) + dr/eT)v

€0€1 - €r1

iv) if g. =1 then F is irreducible.

Proof. The first two items are obvious.

1=

To prove (iii), let G(X) = >, a; X" be the minimal polynomial of ¢, (7). Using the

Viete relations between the coefficients of a polynomial and its roots we get
v(ao) = nv(e-(n)),

Le.,
’U(ao)
n

which is the slope of MVy(G). The polynomial G being irreducible, Ny(G) is a single

= —v(pr(n))

segment, and each point (¢,v(a;)) is either on that segment or above it. We can write

oe) 2 (8~ id) 2 (o) — 122 = (n — syu(i. (),

forany i, 0 <1 <n.
Taking the polynomial
H(X) = Gle(X)) = g aer(X)' € O[X]
we get
'Ur(ai"foi) = v,(a:) + v, (2r)

= eger - & 1v(a;) + 1w (ior)

> coer -+ e_3(n = 8)u(ir () + 10 (1)

= nvr((r"ﬂr). + (n - i)(eoel e V(@ (77)) - UT(@T))'
The conditions ¢ = 0 or ¢ = n equals the above inequality. Hence N,(H) is a single

segment with slope

vr(ao) — nve(r)
—n

= —coey 602 (0) — l'?‘(’%/n"r)-
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We have F'| H or H | F since 7 is a root of H, thus by the Theorem of the Product
N, (F) and N, (H) have the same slope, i.e.,

d,
T —eper -+ - er1v(- (1)) — v, (1),
which gives the desired formula.

Statement (iv) follows from the Theorem of the Product.

Assume F = F| F, and let S; and S; be the segments of N;(F}) and N,.(F,) of slope
—d,/e,, respectively, and let S = N, (F). By the Theorem of the Product we have
S - Sl -+ 82.

If |S1] = |Sz| = 0 then S = S; + S> would consist of a single point, implying g, = 0,

which is assumed not to be the case.

If, say, |S1| > 0 then the z-coordinate of the right endpoint of S; would be at least
e, so that deg [7 > e,n, = deg F'. implying that deg F;, = 0. Hence F must be
irreducible. - ' O

2.7.3 The Theorem of the Associated Polynomial

Definition 13. For the statement of the crucial Theorem 14 below we need to es-

tablish some notation.

e We say the monic polynomial G(X) € Z,[{X] has r-type ¢ if

o ¢s(X)1G(X),
o N,(G) consists of the single segment S; ¢,

o there exist ¢, > 0 and A, € F,, such that
TEY) = Ay )
with Ap = 1, ; — v ifs <7 oand vy = O
fors=0.. .. 7.
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o With mg =0 and m; = (1/d;) mod e; for 1 <i < r we define

’ midi —1

m; =
€

so that m;d; — mle; = 1.

o We let mo(z) = p and for 1 < ¢ < 7 we define

pi(z) Pi(z)* P, (z)™
d;(z) = . () = , minl(z) = ;
i(z) 7ri_l(I)fi—lvi(Lpi—l)’ palz) ()% i+1(2) m(z)™
Remark 10. We have my = 0 and mj = —1, so that
o =Pp Py =1z Mo =2
€1
-y
m =P P = ¢ M1 = ‘%
p 1
my €2 ym)dy
2= (pfln' q)Q - Z61‘2f1 H2 = T(:l?dzp dy f
p 1 p (p p 1/1€2
ey o R
ko My k Tfk—ﬂ’k(‘ﬁk—l) Hk .z
Ty k-1 k

Theorem 14 (Theorem of the Associated Polynomial). Let r > 1. Assume F(X) is

monic with (r — 1)-type ¥,_, and that the factorization
U (Y) = A (V) (V)

is given, where A € ¥y, and ¥,1(Y), ..., ¥, ,(Y) are distinct irreducible monic polyno-

3

mials in ¥, [Y] with respective degrees f, 1, .... fro. Then F(X) has the factorization

with G, ..., Gy salisfying the following.

o G,;(X) ts a monic polynomial in Ox[X] of degree e, fri cri .

o G,;(X) has r-type v ;.
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o Let m; be a root of Grs, let piy = pr(m), let oy € Gal(F, /Fy) be such that
o) =W for 1 <j<r—1, andletn, = o7, Then v, (ui,) =0 and 1y, is

the minimal polynomial of 1} over F .

Furthermore, if ¢,1 = --- = ¢,y = 1 then each of Gy1, ..., Gy is trreducible.

Proof. See (Ore, 1928; Montes, Nart, 1992; Montes, 1999). O



Chapter 3

The Modified Montes Algorithm

3.1 Simplification of the Original Algorithm

Given a prime p and an irreducible monic polynomial ®(z) in Z[z], the Montes
algorithm finds the inertial degrees and ramification indices of the prime factors of
the ideal pOy in Ok, with K the extension of Q generated by a root of ® and O its

ring of integers.

As is well known, this data can be derived from the factorization of ®(z) into irre-

ducible factors in Z,[z].

In terms of execution time, the worst case for the Montes algorithm is the case with
@ irreducible over Q,. Each of the tests that would reveal reducibility must fail, and

hence the maximum number of such tests must be performed.

Our intention is to analyze the complexity of this worst case. Hence there will be no
need to consider the less time-consuming cases, and the algorithm can be simplified

considerably.

Our simplified version of the algorithm, of which a full NAPLE implementation is
given below, is a test for irreducibility only. Its output is true if ¢ is irreducible and

false otherwise, with no further information being given.

A considerable advantage to this approach is a substantial simplification in the nota-



tion required. We have in fact mostly abandoned the original notation and invented

our owin.

A complete MAPLE implementation of the modified algorithm appears in section 3.3

below. An extend example is given in Appendix B.

3.2 Complexity of Fundamental Operations

Notation.

We let <a> denote the number of operations required to compute .

We use the notation

f(n) € O(n**)

as an alternative to the perhaps more familiar “soft-O” notation
f(n) € O~(n*) = f(n) € O(n*(Inn))

for some positive constant ¢ (von zur Gathen and Gerhard, 1999).

For n > 3 and ¢ a prime power we define the following.
L(n) =Inninlnn
F(n,q) = nM(n)In(gn)
M(n) =nlL(n)
R(n,q) = M(n) Inln(gn)
K(g) = M(Ing)Inlng

Arithmetic in Z,.

We are concerned with the reducibility of a monic polynomial Fo(z) € Z,[z] for some

prime p.

Let p denote the p-adic reduced discriminant of this polynomial (Ford, Pauli, and

Roblot. 2002, Appendix A). If Fi(z) € Z[x] with
Fi(z) = Fy(x) (mod p*¥17Z,[2])

64



then Fy(z) is reducible in Z,[z] if and only if Fi(z) is reducible in Zy[z]. Thus in

our computations p-adic integers can be represented as rational approximations with

205 + 1 p-adic digits of precision, i.e., as rational integers reduced modulo p?+!.

Shonhage and Strassen have shown that the time required to perform an arithmetic
operation on two rational integers of length m is O(M(m)); see (von zur Gathen and

Gerhard, 1999, Ch.8, §8.3).

It follows that if we represent p-adic integers in this fashion then the cost of an

arithmetic operation is

O(M(65 In p)).

For clarity we will omit this factor from our subsequent complexity estimates; these

estimates can therefore be interpreted as the cost in arithmetic operations in Z,.

Arithmetic in F,.

By (von zur Gathen and Gerhard, 1999, Ch.14, §14.7), a single operation in ¥, can

be performed in O(K(g)) word operations.

Under the simplifying assumption that Inp € O(1) we have
Ing. = fl_yInp € O(f_,)
and thus the cost of an operation in F,_ is

O(K(g-)) = O(M(Ing,) InIn g,)
O(f 1(In *—1)2}n]nfr*-1)
O(f*(He))

N

For a € F,, and any integer n the cost of computing o™ is
Olng, K(g,) € O(f;_, £75") = O(£,5%)

since we may assume 0 <n < g, — 1.
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By (Shoup, 1994, Theorem 10), the cost for constructing an irreducible polynomial

of degree n over the finite field F is

O((n*logn +nlogg)L(n)).
Polynomial Arithmetic.

The number of operations required to evaluate a polynomial of degree n at a given

point using Horner’s rule is O(n).

By (Schonhage and Strassen, 1971) and (Cantor and Kaltofen, 1991), the number of

operations needed to multiply two polynomials of degree at most n is
O(M(n)).

It follows that the number of operations needed to compute the m'" power of a

polynomial of degree n is
O(nmIn*(nm)) C O((nm)**).

Let ¢ be a prime power and let X = F,. Then by (von zur Gathen and Gerhard,
1999, Ch 14, §14.4 and §14.5), the number of operations in K needed to factorize a

polynomial of degree n over K is

O(F(n,q))

and the number of operations in K needed to find all roots in K of polvnomial in
K|z] of degree n is
O(R(n. q))-

Let ¢(z) be a monic polynomial in Z,[z] of degree n,. let f(z) be a polvnomial in
Z,[z] of degree n, and let k, = [n/n.]. Let E(f. k) denote the number of operations

in Z, needed to compute the ¢-adic expansion

flz) =Y ailx) ().
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From (von zur Gathen and Gerhard, 1999, Ch 5, §5.11), we have
E(f, ko) € O(ky(k, +1)n) = O(nZk2) = O(n?).

To evaluate a polynomial f(z) at n points, 0y, ..., 8, we have to compute f(z) mod
(z —6;), which, by (Aho, Hopcroft and Ullman, 1974, Ch.8, §8.5), requires O(n In®n)

arithmetic operations in Z,.

Matrix Arithmetic.

By (Strassen, 1969), finding the inverse of a n x n matrix over a field K requires
O(nlog2 7) C O(n2'81)

operations in K.

3.3 Complexity of the Modified Algorithm

We give‘ a complete MAPLE implementation of the modified Montes algorithm, with

proofs and explanatory comments interspersed.
We begin with an outline, showing the three major‘ phases of the algorithm.

The algorithm begins in phase Lg (“level 07), then alternates between phase L; and

phase Ly (“level v, forr =1, 2, ...).



o input: ®(z) € Z[z] monic and irreducible, p € Z prime

TRUE if ®(x) is irreducible over Q,[z],

e output:

Lo.

O

FALSE if ®(x) is reducible over Q,{z].

Factorize ® modulo p:

® =gy - Yool (mod p).

0.00

If pg > 1 then return FALSE.

If pop = 1 and ag; = 1 then return TRUE.
Set 7 « 0 and define
o (z)=2z, n.=1, d. =0, e =1,
Yr =11, fr=degy,, & aroot of .
Replace 7 «—r + 1.
If 7 =1 let ¢1(z) be a monic polynomial in Z|z] such that
@1 = to.
If » > 1 construct H,_; according to Algorithm 1 and let
er_1fre

or =@, 37+ Heoy

Define

Ny = €r—1fr—1Mr—1 = deg @
If e,y f,—1 = 1 then replace ¢,_; — @, and 7 — 7 — 1.

Go to Ls.
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If ¢, = ® then return TRUE.
If o, | & and ¢, # ® then return FALSE.

Let Sy 1, ..., Sr5, be the segments of M, (®) and let 7, x+ 1 be the number

of points on S, ; with integer coordinates, for k =1, ..., 4.

If §, > 1 then return FALSE.

If 5, =1 and ,; = 1 then return TRUE.

Let —d, /e, be the slope of S,; and construct

V(@) = ey iy € Fy o]

“with ¢, € F,, a nonzero constant.

If p, > 1 then return FALSE.

If p. =1 and a,; = 1 then return TRUE.

Define
Uy =, fr=degv,, & aroot of Y.

Replace r «— 7 + 1.

Go to L.
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BEd 23 00,3 213080 5 5130305038 2081303 3150315 505 808 5305151 8:3131313131815:5:5:3:5:5:305:5 31520515513 15513:51505515:515:55: 55533552
unprotect(norm,trace): unassign (norm,trace): with(linalg): with(padic,ordp):
R R R R HEEEEHEHEHEEEE R S R
monfes := proc (FO, p0O)

local Fi, vr, xp, u, v: global p, x, y; z:

p:=p0: x :=7x: y:=7y’: z :=72: ##### global ######
vr := ordp(rres(F0,diff(F0,x)),p): xp := 1 + 2%vr: Fi := mods(FO,p"xp):

u := montLO(F1):

if u then v := "irreducible" else v := "reducible" fi:

printf("\n F is ¥%s over Q_%d.\n\n",v,p):

end:

HE# B R R HEHE EHEHE R HHEEE R R R R R R

Given the polynomial ® = Fy and a prime p = py, the coefficients of ¢ are reduced

modulo p**+! to yield the approximation Fj.

The procedure montL0 (Fy) performs the algorithm proper, returning true if Fy(z) is

irreducible in Z,[z] and false if Fi(z) is reducible in Z,[z].

In what follows it implicit that the results of arithmetic operations in Z are reduced

reduced modulo p%%¢+?: for clarity we have suppressed these operations.

- HE R S R R R R R R R R
rres := proc (f, g) ##### reduced resultant of £, g #####
local A, n: global x:

A := ihermite(sylvester(f,g,x)): n := rowdim(A): return(Aln,nl):

end:

HEHG AR HHHFHSFH SR A BRI RS HAFHG RS HRAF R AR H SRS HRFHBHBHRAERRBHRA RSB RSRABAH SRR RS



HEH SRR S R S R R R S R
aub := proc (A) return(op(2,op(2,eval(A)))) end: ###### array upper bound
Fi2:2:3:3:3:3 131313 1313:5:5:5:51313:3:3131313 35 512:5:3:3:512:3:3:315:5:30813:205: 21531 3- 51505 215:3:3131915:3:315:8:8:315::30515: 35131 5:3:315:5: 5.8
ival := proc (v)

Hit# input: v = integer

#H#
### output: p-adic valuation of v

global p:

if v = 0 then return(+infinity) else return(ordp(v,p)) fi

end:
#############################################################################
phexp := proc (r, F)

220 input: r = level

#HH# F = polynomial

#it#
### output: coefficients of phi_r-adic expansion of F (array)

global p, d, e, £, m, n, mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z:
local j, q, A, B:

if F = 0 then q := 0 else q := floor(degree(F,x)/nlr]) fi:

A :=F: B :=array(0..q9):

for j from 0 to q do B[j] := sort(rem(A,philr],x,’A’)) od:

return(eval(B)):

end:

HABFHFRE RGBS SR R R R R R

It is clear that
(ival(v)) € O(In(1 + Jv]))

and that for all r we have

(phexp(r. F)) € O((deg F)?).



f:2:3:8:3:3:8:3:9:5:5:1 33151313180 5: 5158 $19:5:3:3:5:8:3:5: 5818313 Fi 5315 FeB Fi3iF1215:518:5:53:5:313:3:3:5:3:5:5:3:5:5:3:5:3:5:3:5:3:3:5:3:5:8:23
valf := proc (r, F)

###  dinput: 1 = level

H## F = polynomial in x
###

###  output: v

1]

v_r(F)
global p, d, e, £, m, n, mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z:
local j, k, v, w, A:

if r = O then

v := ival(content(F)): #i###t Step 1
else
A := phexp(zr-1,F): #i###  Step 2
k := aub(A):
v = +infinity:
for j from 0 to k do ‘ #HH##E Step 3
v = dlr-1}*3 + e[r-1]*valf(zr-1,A[3]): #u###  Step 4
if w < v then v := w fi:
od:
fi:
return(v)
end:

A R SR
Theorem 15. Forr > 1 let us define

w(r,d) = max {{valf(r,g)) | g(z) € Zy[z], degg < d}.
Then w(r,d) € O(d**€).

Proof. Assuming deg g < d with d > n,_;, we observe the following.

1. time: <va1f(v0;g)> € 0(d) (since | content(F)| < p¥*+1).
2. time: (phexp(r —1,¢9)) € O(d?).
3. The number of iterations in the for-loop is 1 + k = 1+ |d/n,_1 |.

4. time: at most Cp +w(r — 1.n,_; — 1). with Cy € O(1).

72



Step 4 requires at most
1+ 1d/n1 ] NCo +w(r —1,n,_; — 1))
operations. It follows that
w(r,d) < ho(r) + 1+ |d/n—1})w(r —1,n,_1 = 1)
with h,(r) € O(d?).
Proposition 12. Forr > 1 it 1s the case that
wir,n, — 1) < h,(r)+e 1 frqw(r—1,n,.1 —1))

with h,(r) € O(n?).

Proof. We have

1+ [nr —1J = [ o ] =e—1fra

Ny nr—

and therefore
w(r,ny) < 3y hu(@) TTZ €5 f; +w(0,m0) [T;0 €5/
€ O(rn? + n, w(0,no))
C O(n?logy nr + n.no)
C O(n?lnn,)

C O(n2te). O

In the general case the for-loop at Step 3 makes at most 1 + [d/n,_;] iterations.

Hence the time-complexity of the for-loop is

<1 + ['ni1J>W(T —1,n_1—-1)€ O<_d_n3-|_-§> _ O(dnifi)

N1

and we have
w(r.d) € O(d* + dn}t}) C O(d**).
Lastly. we note that the case d < n,_; is simpler and yields a similar result. We omit

the details. O
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valc := proc (r, A)

###  input: 1 = level
#H# A = array (0..k) of polynomials
#Hi#t#

i

### output: P = array ( [0,v_r(A_O phi_r"0)], ..., [k,v_r(A_k phi_r°k)] )
global p, d, e, £, m, n, mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z:
local j, k, P:

k := aub(A): P := array(0..k):

for j from O to k do P[j] := [ j, valf(r,A[j]) + j*nub[r] ] od:

return{eval(P)):

end:

#ERFHRBHH R SRR B R R R R R R R

Let #A denote the number of entries in the array A. We have
(P[31) € O(w(r,n,))
and therefore
Z§:0<P[j] ) € O(Z;‘Czow(f» n.)) = O(#A-w(r.n.))
which implies

(valc(r,A)) € O(#A - w(r, n.)) € O(#A-nln nr).‘
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zrho := proc (r, h) global p, rho, z: : #i#t### z <~- rho_r
return(subs(z=rho[r],eval(h)) mod p)

end:

BHH BRSO SR S R H R R SRR R R R R R RS
rhoz := proc (r, h) global p, psl, rho, z: ##### rho_ r <-- z

if psllr] then return(eval(h) mod p)
else return(subs(rho{r]=z,eval(h)) mod p) fi:

end:
BHEH A R R R R R S R R R R R
rhoy := proc (r, h) global p, psl, rho, y: #H### rho_r <-- y

if psl[r] then return(eval(h) mod p)
else return(subs(rho[r]=y,eval(h)) mod p) fi:

end:
M R S S S R S S R
rhox := proc (r, h) global p, psl, rho, x: #####t rho_r <-- x

if pslir] then return(eval(h) mod p)

else return(subs(rholr]=x,eval(h)) mod p) fi:
end:
HEFBHAHBHBBH B HBH B HBEH B H R BB R BB BB HRAGHGHBH BB HH B R R B R B S H ¢
thhrs := proc (r, s, h) global p, psl, rho, rhh: ##### rho_s <-- rhh_{r,s}
if psl{r] or r = s then return(eval(h) mod p)

else return(subs(rho[s]=rhh{r,s],eval(h)) mod p) fi:

end:
BRFSRBHBHRRHAH B HE B RHBRH RS R H B RS H  HH R R AR R R B R R

The procedures zrho, rhoz, rhoy, rhox, and rhhrs are of a technical nature and were

necessitated by our decision not to use the MAPLE GF package. As a consequence we

were obliged to provide several different representations of elements in finite fields:

as polynomials in z, ¥, or z, or in Root0f notation. These five procedures convert

between the various representations. The details of these representations are given in

Appendix A.1.

The execution time of each procedure is no worse than the time required to evaluate

a polynomial, of degree d, say, at an element of F, . Using Horner’s method, the time

required for this evaluation is

O(df ™).

~1
[\
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FFFacts := broc (h, 1) #####  finite field factorization #####

#Hit# input: h(z,y) = polynomial in F_pl[z,y], z <-- rhol[r]
#i## r = level

#i#

###  output: factors of h mod p ([ coeff, list ]) in F_plz,y]

global p, d, e, £, m, n, mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z:
local j, k, w:

if psl[r] then

w := Factors(h) mod p: ‘ ##### Step 1
else
w := Factors(zrho(r,h),rho[r]) mod p: - ###t## Step 2
w[1] := rhoz(xr,wl[1]): #it### Step 3
for j from 1 to nops(w[2]) do
w21 [j1[1] := rhoz(r,w[23[j1[1]) ##### Step 4
od:
fi:
return(w)
end:

HASHIHERH W R R R R R R B R R R RN R R R R AR R R AR A

With d) denoting the degree of h we observe the following.

1. time: O(F(dy, ¢-)) = O(dn M(dy,) In(g,dy)).
2. time: O(dp £ + F(dn, ¢.))-

T

3. time: O(f*_(?’e)). [ Note that h(p,y) = wi [, w21 (y)"272. ]

r

4. time: O(Zj degwsg ;1 :—(iﬂ)) C O(dhfr*_(iﬂ))'

Consequently

(FFFacts(h.7)) € O(dy M(dy) In(gedy) + di f757).



Since

dp, M(dy) In(grdn) = d2Indp Inlndp(f7_, Inp + Indy)

=d?In*d,Inlndy + f* ;d:Inplnd,Inind,
it follows that

(FFFacts(h, 7)) € O(d2f, + dnf7 7)) C O(d2*£7179).

RIS RR AR R R R R R R R
randrt := proc (h, r) ##### finite field factorization #####

Hu# input: h(z,y) = polynomial in F_plz,y], z <-- rholr]
### r = level

HH#

###  output: root of h (in F_pfz])

global p, d, e, f, m, n, mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z:
local s, w:

w := FFFacts(h,r):

return(simplify(y - zrho(r,w[2]1[1][1]) mod p))

end:

BRSSPSR R R S HEH SRR B AR R R R R R R B R R

We note in passing that the MAPLE finite-field factorization procedure returns factors

in random order; hence the name randrt.

It is clear that
(randrt(h,7)) € O(d}21+€f:_(ll+€))-
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1chull := proc (P) 1local S, ji, j2, j, k, w, wO:
### input: P = sequence of points (array 0..k)

#it#
### output: S = vertices of lower convex hull (list)

|

k := aub(P):

for j from k by -1 to 0 do
if P[j]1[2]) < infinity then jl1 := j fi:
od:

S := [ P[j1] 1:

while j1 < k do
Jj2 := jl: w0 := +infinity:
for j from ji1+1 to k do
w := (P[§102) - P[j11[2])/(P[j1[1] - P[j11[1]):
if w <= w0 then w0 := w: j2 := j fi:
od: ‘
S := [ op(8), P[32] 1: j1 := j2:
od:

return(eval(s))

end:

BEBBRBHHH R R R R S R R R

lcsgmt := proc (r, P} 1local j, k, v, w, P1, P2: global d, e:

H## input: 1 = level
#it# P = sequence of points (array 0..k) .
### ‘

### output: S = segment of lower convex hull of slope -d_r/e_r
k := aub(P): v := +infinity:
for j from O to k do
w o= d[r)*P[j111] + elr]*P[j][2]:
if w < v then P1 := P[j]: v :=w: £i:
if w = v then P2 := P[j]: fi:
od:
return([P1,P2]):

end:

HEF SRR H A AR R R SRR R R H R R R A R RS R AR AR R R S R R R

=1
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fsegs := proc (8) 1local Dx, Dy, g:

i

### dinput: S = segment (two points)
##4# i
### output: g

number of "fundamental" segments in S

I

S[zyl] - S[l,l]:
S(2,2] - s[1,2]:

Dx
Dy :

il

g := igcd(Dx,Dy):
return(g)

end:

£i3:2:2:2.3: 328,318 8:3:313:3.3: 3.3 $:8:3:5:5:3:3:3:3:3:3.F:3:3:5:3:5:3.3::3:3:3:8:2:3.2.8:3.2:3.£:3:3:3:3::3.3:3.3:3.2:5:5:3:3:3.:3:3:3:2:3.:3:3.:5:3. 33
slopes := proc (S) 1local t, k, j, w:

### dinput: S = vertices of Newton polygon (list)
###
### output: slopes of edges (list)

t :=[1:

k := nops(S):

for j from 2 to k do
w = (S[§102] - S[3-11[21)/(S[3111] - S[j-11[11):
t = [op(t), wil:

od:

I

return(eval(t))
end:

HA#FHAH AR HHH BB R R F AP AR H AR R AR R RS R AR R R R R SRR R R R R R R RS R R

These simple procedures provide basic operations on polygons and segments.

It is clear that

7

(1chull(P)) € O(#P?) (fsegs(S)) € O(1),
(1csgmt(r, P)) € O(#P). (slopes(S)) € O(#S5).

where # P and #S denote the number of points in P and S respectively.
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Upsilon := proc (1) ##44#  construct Upsilon r #####
###  input: 1T = level (r > 0)

local Ups, fr, fs, fq, h, j, k, w: global p, f, pss, rhh, xi, y, z:

fr := f[r]: fs := degree(psslr]l,y): fq := fs / fr:

Ups := matrix(fs,fs):

for j from 0 to fr - 1 do ##### Step 1

for k from 0 to fq - 1 do ##4##  Step 2
w = simplify(rhh(lr,r-1]"k*xi[r]"j): ####%  Step 3
w := sort(rhoz(r,w),z):
for h from 0 to fs - 1 do ##4##  Step 4

Ups[1+h,1+j+k*fr] := coeff(w,z,h) mod p:

od:

od:

od:

return(evalm(Ups)):

end:

#H#FHEHEEEEEHHEEEERRE R R R R R R R R

We observe the following.

1. The number of iterations occurring in the for-loop is f;.
2. The number of iterations occurring in the for-loop is f’_;.
3. Since pr,r—; € Fplp,] = F,,,, and & € F,[p,| = F,_,, the cost is

Of; 9 + 1) = O(f7#+9).
4. The number of iterations in the for-loop is f;.

Together these imply

(psilon(r)) € O(f 2 (£ + 11)) = O(£:149).

o0
[



F:3:2:3:2:3:213:3:2:3:8:3:3:3 1813 3:3:3:3:3:313:3 8.8 313:3: 3.3 3131 8:3:3:8:3:2:3:3:3:3:3:3:8:3:3:5:3:3:3:3:9:8:3:3:313:3:3:2:3:3:3:5:3:3:13:3:33:3:3.3:5.1
Gamma := proc (S, r, k) ##### Gamma in F_p[rho_{r-1}] ###u#

local alpha, beta, ake, bkd, T2, G: global p, d, e, m, nub, xi, Omg:

il

S[11[1]: ake := alpha + kxel[r]:
S[1]1[2]: bkd := beta - kxd[r]:

alpha :
beta

il
1]

T2 := floor(m[r-1)*(bkd - akexnublr])/elr-11):

G := simplify(Omglr]-ake * xi[r-1]"T2) mod p:
return(G) :
end:

#i## AR AR R R R S R R R AR R R R R R R R R AR R R R

| Since §), € F, and &, € F,, we have

(Gamma(S,7,k)) € O(fr3%9 + 2519) = O(£;4%9).

HESRBRAHHAREGH BB R EHHB ARSI H BRI RS R B H A A R H R S H

AP := proc (r, S, A, P)

### input: r = level

Hit# S = segment of slope -d_r/e_r
#Hi# A = phi-adic expansion

### P=1[1[3j, vA_j phi_r"3) ] 1]
#i#

### output: FS = associated polynomial in F_p[rho_{r-1}][y]

global p, d, e, f, m, n,
mub, nub, phi, pss, psl, rho, psh, xi, rbh, x, y, z, Omg:

local g, j, k, s, alpha, beta, gamma, ae, bd,
nuk, Tnuk, eta, vA, J, AA, PA, FA, GA, FS:

alpha := S[1]J[1]: beta := S[1][2]: gamma := min(S[2][1],aub(P)):
g := floor( (gamma - alpha) / e[r] ): #####  to stay within both S and P

ae := array(0..g):
bd := array(0..g):

li

HH g H AR HHEE AR AR HBEREERBHBHBHERHE N
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J :={}:
for k from 0 to g do
ae[k] := alpha + k*efr]: bd[k] := beta - kxd{r]:
if Plaelk]]{2] = bd[k] then J := J union { k } fi:
od:

if r = 0 then #H####H#HBHBSHBHBRHHBHABHBHEHHENHR
FS := add((Alaelk]] mod p) * y°k, k = J): #if##  Step 1

elif r = 1 then ###HdHHHHH#HRRRIERH IR Y

FS := add({subs(x=rho[r-1],Aflae[k]]) / p~bdl[k]) * y°k, k = J):
FS := simplify(FS) mod p: ##### FS in Fply] ##### Step 2
else ###H##HHH S R £:2:3:3:5:3:3:3:2 5.5 2 b B |

eta := array(0..g):

for k in J do #it###t  Step 3
nuk = bdfk] - aelk]*nublr]:
Tnuk := cT(r-1,nuk): #i###t Step 4
AA := phexp(r-1,Alael[k]]): ### expansion of A_aelk] ##### Step 5
PA  := valc(r-1,AA): ###  v_{r-1} points (array) ##### Step 6
FA := AP(r-1,Tnuk,AA,PA): #Ht###  Step 7
FA := simplify{rhhrs(r-1,r-2,FA)):
GA := Gamma(S,r,k): ##### Step 8
etalk] := simplify((1/GA)+*subs(y=xilr-1],FA)) mod p: #H#H###  Step 9

od:

FS := add(etalk] * y"k, k = J) mod p: ####  Step 10

T1:  HEHHHEHHHS R H R AR B E R
FS := sort(FS,y):

return(eval(FS)):

end:

HEHBBHAHSHBH B HSHBHEHSHH BB H BB HB A S BB A B S HARIBHBHSH U ARG S HEH S SRS AR HH AR

o
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Theorem 16. Forr > 2 let us define
o(r,d) = max{ (AP(r, S, Ay, Pyr)) | 9(z) € Z,[z], degg < d}
y;here
o S is a segment having slope —d, /e, and contained in the first quadrant,

e Ay, is the array of coefficients of the p,-adic expansion of g,

o P, is the corresponding sequence of “valuation points”.

Then o(r,d) € O(dnl*e).
Proof. We note that if d = deg g then the array A, has 1+ |d/n,] entries,
Ag,r = [Ag,r,Ov Ag,r,l: sy Ag,r,[d/nrj ])

and if d; < d5 then o(r,d;) < o(r, da).

We will first estimate o(r, d) for the special case d < n,,1. In this case we have

#Agr = #Fpr =1+ [nij <1+ [”%"IJ = |22 =t

T

d =1 e — 1
#J§1+[ J§1+[_”+1 Jz[fr+——ne J:fr.
n,€, nre, nee,

For this special case we note the following.

1. time: o(0, d).
2. time: o(1,d).
3. The for-loop makes at most f, iterations.

4. time: O(1).
time: (phexp(r — 1. Aqike,)) < @(r — 1.n,) € O(n?).

Ut

time: (valc(r—1.AA)) € Ole—y froini_yInn,_y)

&

= O(nyn,_1Inn._4).



7. time: at most o(r — 1,n, — 1).
8. time: (Gamma(S,,k)) € O( fr3tey
9. time: O(degFA- £-3%9) C O(f,_, 711y c O(fr 2.

10. time: O(f,).

Thus the time-complexity of the for-loop at Step 3 is

fr(l +n2+nminn,_ +o(r —1,n, — 1)+ f*(2+€))
= fr+ fin.(n, +n_1Inn,_ 1)+ff*(2JrE

and this yields the following.

Proposition 13. For r > 2 we have
Q(T> Nry1 — 1) S hp(r) + fr@(r - 17nr - 1)

with h ( )E O(frnr(nr+nr 1lnnr 1)-{—f*(2+€)

Writing o, for o(r.n,41 — 1) and h, for h,(r) it follows that
Or S h'r -+ fr@r—l

< hr + f'r‘(hr—] + fr—l@r-«Q)

< hr + f ( -1 +fr 1( T2 +f‘r—20r—3))

< hy + fr(hr~] + fr—l(hr~2 + fT—Q(hT—3 + fT—3QT—4)))
£
£ (g, 1))
= Ehe+ by oo+ b+ o

- fr—2 fr—3 T—4

< Yo e+ o

= fo/fl+ i T/ 2

> fri_
= h, + %_L](h,r_l + 72 (hyo

fr.
7 _z(h -

with
S a Fhel i € O fmna 4 ) & 12449

(see Remark 11 below). We also have g; € O(nlfl*(lﬁ)) so that

fror/ T € 0L f7) = O f5 /1) € O ),

84

+ fTQ(T - ]-7n‘r -

1)



In the general case we know that the for-loop makes at most 1 + g, iterations, with

gr = |d/(n.e;)]. In this case the time-complexity of the for-loop is

(1+gr>(1+n +nrnr llnnr 1+ 0= 1+fr 2+€)>

€ O(;% [” +n.ne_lnn,_ 1+f*(2+€)

+ (7” - ]')fr—-lnr—l(nr-—l +n,_2ln nr—2> + (T N 1>f:—(§+6)])

* (2+e)] )

( d [rn +rnn._Inn,_y +7f,
(%rdnr rdnr Inn, + = df*(1+€)) C O(dnlte).
Since Step 12 requires time O(d/(n.e,)) C O(d), the theorem follows. O
Remark 11. There exists a positive constant C such that
Fh/fi = frfr1 - frarha

< Cfrfr=1- frar (feru(nue + ne—1 In 1) + f*(2+6))

< C(frfrot- frrr femi(ne + neoy Inng_y) + f7 )

< C(fine(ne +neyInn,_y) + fr@9)
for k=2, .., r.

HHHBHHH B HHBHH B R R R R e

c¢T := proc (xr, nu) local g, a_0, b_0, a_g, b_g: global d, e:

### input: r = level with d_r > O
H## nu = positive .integer
#it#

### output: longest integer-endpoint segment of L_{r,nu} in first quadrant

a_0 := (au/d[r]) mod elr]:

b 0 := (nu - a_0 * dlr])/elr]:
g = floor(b_0/d[r]):

a_g := a0+ g* elr]):

b_g :=b_0 - g *x d[r]:

return([ [a_0,b_0], [a_g,b_gl 1)
end:

HEHAHAHHEHHHHBH DA S H U B HBH R AR H A A H B HH B R R R R R R R e s e
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It is clear that
(cT(r,v)) = O(1).

###HHHN B EEHEEHEHEEEREEE S R RN EEREREEEE RN

Hr := proc (t, nu, delta) ###44  Algorithm 1
### input: t = integer in { 1, ..., r }

#it# nu = integer (at least bar{nul}_{t+1})

#H4 delta = nonzero polynomial in F_g_t{Y] of degree < f_t

###

### output: H_{t,nu,deltal}
global p, d, e, f, m, n, nub, phi, pss, rho, x, y, z, Upsinv:

local h, Gz, Vk, Vm, fr,‘fs, fq,
i, zeta, ae, bd, J, K, Ttnu, atnu, btnu, del, dnu, H:

Ttnu := cT(t,nu): atnu := Ttnul1l(1]: btnu := Ttonul1][2]:

zeta := array(0..f[t]-1):

J =41}
for i from 0 to f[t] - 1 do #####  Step 1
zetali] := coeff(delta,y,i) mod p: ### in F_q = F_p[rho_{t-1}]

zetali] := simplify(zetali]) mod p:

1

if zeta{i] <> 0 then J := J union { i } fi:
od:

R I A A A IR A A
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for i in J do #H4H##

ae[i] := atnu + i * e[t]:
bd[i] := btnu - i * d[t]:

if 't = 1 then ##### xi_0 = rho_0, Gamma_{T_{1,nu},1,i} =1
K[i] := p~bd[i] * rhox(t-1,zetali]): HHu###
else
fr := f[t-1]: fs := degree(pss[t-1],y): fq := fs / fr:
Gz := simplify( Gamma(Ttnu,t,i) * zetal[i] ):
Gz := rhoz(t-1,Gz): : ####H
Vk := vector(fs):
for h from 0 to fs-1 do #H##H#
Vk[1+h] := coeff(Gz,z,h):
od:
Vm := evalm(Upsinv[t-1] &* Vk): #it
dnu := bd[i] - ael[il*nubl[t]:
del := add( add( Vm[1+j+k*fr] * rho[t-1]"k,
k=0..fg-1 ) * y~j, 3=0..fr-1 ) mod p: #####
del := simplify(del) mod p:
K[i] := Hr(t-1,dnu,del): HH#HH
fi:
od:
H := add(K[i]*phi[t] "ae[i],i=J): ##t###
H := sort(collect(H,x),x):
return(H) :
end:

Step 2

#H#H#HH

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

HUBARRBHH RS S RSB B SRS S R R R R R S R R

Theorem 17. Fort > 2 let us define
k(t.v) =max{ (Hr(t,r.0)) | 6(z) € F,[z]. degd < f, }.

Then «(t.v) € O(tn ).

[oe]
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Proof. We observe the following.

1. The for-loop at Step 1 makes f; iterations.

2. The for-loop at Step 2 makes at most f; iterations.
3. time: w(0,v) € O(fofy ™) = O(f**) = O(n}*)
4. time: O(f," *(2+€) + K(g) + f,) € Of *(2+€))
5. time: O(ft*_l)
6. time: O(f,§*9) + £73 € O(f; ™, with2 < o <3
7. time: O(f, K(a)) € O(fr fi54H9) = 0(£%79)

8. time: at most x(t — 1,v)

9. time: O(nyInlnn,lne f,) C O((etftnt)(”‘)) = O(nt(ff)).

The time spent in the for-loop at Step 2, excluding Step 8§, is
O(felm + 570 4 gy + 7579 4 7 55)) C 0 (71579)
and the time spent executing Step 8 is at most
fir(t — 1, v).
Taking account of Step 9, it now follows that
k(t,v) < h(t) + fir(t —1.v)

with
he(t) € O(fufr 519 + nlfs).

As in the proof of Proposition 13 we have
Kk(t.v) < (. t*/fl*) k(1.v) + Zf:z(ff/ff) hi(7)

with
ST R € O i85 w inl).
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since

max { (f/f{)ha(i) | 2 <0 <t} = h(t).

‘We also have

k(1,v) € O(nZ + nite).

Since x(1,v) < k(t, ) we obtain

k(t,v) € Otf; 9 +enlts) C O@nity). O

Remark 12. The computation of §;(Y") in Steps 4 through 7 above is explained in
Appendix A.2. |

HEBFHHH R BRI R R R R BB R R RS
montL0O := proc (F) ##### Level O -- Initialization

### dinput: F = monic polynomial (in x)

#Hi#
### output: true if F is irreducible over Q_p
Hi# false 1if F is reducible over Q_p

global PHI, p, d, e, £, m, n,
mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z, Omg:

local r, FLO, vF, wF, psi:
wF := Factors(subs(x=y,F)) mod p:
if nops(wF[{2]) > 1 then B SRS S SR S HSH A S s R R Y
printf(" F has multiple irreducible factors mod p. <<\n\n"):
FLO := false: ### reducible (==> Hensel lifting)
elif wF([2][1]1[2] = 1 then #as#####M#HHHHHHHHHEHHHH I A R R H
printf(" F is irreducible mod p. <<\n\n"):
FLO := true: ### irreducible mod p ###

HAE S A A H R HE BB H AR RS H



HHEEHRH

else

IR RN NN RN EEEEE

I R RN R R

if subs(x=0,F) mod p = O then

PHI
psi

else

PHI :=

psi

phil[r]
pshlr]
psslr}

rholr]

:= sort(collect(subs(x=x+1,F) ,x),x):
:= sort(collect(subs(y=y+1,wF[2]) [1][11),y),y):

sort(collect(F,x) ,x):
:= sort(collect(WF[2] [11[1],y),y):

d[r] := 0: mub[r] := 0: m(r] := 0:
efr] := 1: nublr] := 0: Omglr] := 1:
i= x: n(r] := degree(philr],x):
:= psi:  flr] := degree(pshlrl,y):
= psi: psl[r] := evalb(degree(pss([r],y) = 1):

Root0f (psi) mod p: xilr] := rholr]: rbhir,r] := rholr]:

FLO := montLi(r+1):

fi:

return(FLO) :

end:

HASFHBF R B RS HHEE R H E  H

HESHRBFFHBHEEE R R R R A R R R R R R R R R R R

Taking ne = deg F' we have

with

(montLO(F)) < pio(ne) + (montL1(1))

to(ns) € O(F(ng.p)) = O(na M(ng) In(pns)) C O(ngng'®) = O(ng'e).
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HESHSH R AR B AR SRR R R R R R R R R AR R R

montLl := proc (r)

### dinput: 1 = level (r > 0)

#Hitt
### output: true if PHI is irreducible over Q_p
#H## false if PHI is reducible over Q_p

global PHI, p, 4, e, f, m, n,
mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z, Omg:

local FL1, A, P, S, T, h, j, k, s, fs, nfs, wfs, gamma, Phi:

##### 0. Initialize #####HHHEHIHHEHEEHEEHHE S S E R R e

mub[r] := d[r-1] + elr-1]*nub(r-1]:
nub(r] := el[r-1]*f[r-1]*mublr]:
nlr] := nlr-1l*elr-1]*f[r-1]:

Ong(r] := rhhrs(r-1,r-2,0mg(r-1]) "~ (elr-1]*f[r-1])
* xi[r-1] " (m[r-1]*f[r-1]*mub[r]):

Omglr] := simplify(Omglr]) mod p: ### in F_plrho_{r-1}]

##H###  Step 1

#####  Step 2

if r = 1 then #H####HHHHRSEHHNHHHE MRS H B SRS HES IR RS R R

philr] := subs(y=x,psh[r-1]):

else
gamma := Omglr-1]-(-e[r-1]1*f[r-1])#*(zrho(x-2,psh[r-1]) - y~
gamma := sort(collect(simplify(gamma),y),y) mod p:
philr] := philr-1]-(elr-11*f{r-1]) + Hr(r-1,nub(r],gamma):
philr] := sort(collect(philr],x),x):

#####  Step 3

flr-11):
#####  Step 4

##### Step 5

f1:  HESSSHHESHER RN R R R I R R R R R R R e

HRER A BB AR RS R R RHH

#H B HHEEH



HAE BB R A EBHRE RS R BBE R BB RERE RS H

if (r > 1) and (elr-11*ilxr-1]1 = 1) then #H#sd###HH R

philr-1] := phifr]:

FL1 := montL2(zx-1):

else

i}

FL1 := montL2(r):

Ti:  HHHFBEHREREIEEE R R R B R R R R R R R R R R R

return(FL1)
end:

HESRBHSHEHBF R BH B RS R B RBHHH S F B R B R BB HRAF B BB R R BRI R B R R R R0

We observe the following.

1. time: O(1).
2. time: O(f7319).
3. time: O(n;).

4. time: O(£7457 + £7579 + £, 7579) < 0(£,579).

5. time: O(rn2*¢), since the time required to calculate ¢ et

()((nr~ler—lf}—l)l+{) ::()(ni+€)
and (Hr(r — 1,7,,7)) € O(rn¥te). _
Remark 13. If e,_1 f,_; > 1 then the total time is at most

wt(r) + <montL2(T)>

with p;(r) € O(rn2*e).

Remark 14. The case e,_; f,_; = 1 can recur at most

e*
2 ;*2 vy(disc @) < 2v,(disc )
&

times. where ng = deg @ (see Proposition 10 above).
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B R R R R R R R HEHEEE T R R R R

montlL2 := proc () #####  Continuation of montLl

###  input: 1 = level (r > 0)

###
### output: true if PHI is irreducible over Q_p
#it# false if PHI is reducible over {_p

global PHI, p, d, e, f, m, n, /
mub, nub, phi, pss, psl, rho, psh, xi, rbh, x, y, z, Upsinv:

local FL2, A, P, S, T, h, j, k, s, fs, nfs, wfs,
gamma, chig, Ng, Dg, Ag, Bg, Gg, Phi:

#H## 1. Create N_r(PHI), d_r, e_r #ts#siiaadiantib a4t t f a3 44 4 4 44

A := phexp(r,PHI): ### phi_r-adic expansion of PHI #H##s  Step 1
P := valc(r,): ### v_r points (array)  ##### Step 2
S := 1chull(P): ### vertices of N_r(PHI) (list)  ##### Step 3
T := slopes(8): ### slopes of edges (list)  ##### Step 4

AAE AR H AR AR AR H AR R R AR R YR H

Let ng = deg®. Then #A = #P =1+ |ng/n.].

The execution times of Steps 1 through 4 are as follows.
1. time: <phexp(r7®)> € O(n2).
2. time: <va1c(r,A)> € O(nen,Inn,) C O(nent™®).
3. time: (1chull(l+ |ne/n,])) € O((ne/n,)?).

4. time: (slopes(S)) € O(#S).
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R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEERE:NS::
if A[0] = O then ##### BREAK if phi_r | PHI  ##s#sittas i aitns

if n{r] = degree(PHI,x)

then FL2 := true: printf(" phi_%d = PHI <<",r):
else FL2 := false: printf(” A_%d,0 = 0, phi_%d =/= PHI <<",r,r):
fi: printf("\n\n"):

elif nops(T) > 1 then ##### BREAK if > 1 segment (Newton) ###########
FL2 := false: printf(" #E = Ja <<\n\n",nops(T)):

elif fsegs(S) = 1 then ##### BREAK if irreducible (Eisenstein) #######
FL2 := true: printf(" -d/e = %a",op(T)):

printf (" g = %a <<\n\n",fsegs(8)):
else ###44# CONTINUE #####38nn43 #4844 H 404 $H 4 H## S RS 1

d[r] := numer(-T[1]):
elr] denom(-T [1]):
m[r} (1/d(r]) mod elr]:

#H### 2. Create tAP r_PHI  ####H####### #3434 f ittt I S i  4

fs = AP(r,S,A,P): ##### associated polynomial #iH### Step 5
wfs := FFFacts(fs,r~1): #####  Step 6

nfs := nops(wis[2]):
if nfs > 1 then ##### BREAK if > 1 irreducible factor #i#t###
printf ("  AP_%d has %d distinct irreducible factors.. <<\n\n",
r,nfs):

FL2 := false:

elif wfs[2][1]1(2] = 1 then ##### BREAK if AP irreducible fi2:3:2:3 3

printf (" AP_%d is irreducible. <<\n\n",r):
FL2 := true:

ERE I R EEEEEEEEEEEEEEEEEEEEEEEEES::

The execution times of Steps 5 and 6 are as follows.

5. time: o(r, ng) € O(ngnl™®).

6. time: <FFFacts(r — 1)> ¢ O(dg}ﬂ 71(12+e)>A

with dy = deg ‘I/‘gf) < naf(nye.)].
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A HHBHBREAAE RSB B H AR ER AR RHRH

else : ###4##  CONTINUE  #it#i#####dHa s #a#ti

##### 3. Create psh_r, etc. #HH####RSHHHHARHRHHARARHHHHHBRBARAHARAUHHS
pshlr) := rhoz(r-1,wfs[2][1][11): ###4#4  Step 7

flr] := degree(pshlrl,y):

k :=mul(£[j],j=0..1):
h = y"k:
while not Irreduc(h) mod p do ####4 Step 8

h := y"k + randpoly(y, degree=k-1, coeffs=rand(p)):
od: ‘
psslr] := sort(h,y): #udgada#  in F_plyl

\

i

rho[r]
psllz]

Root0f (pss(r]) mod p:
evalb(degree(pssir],y) = 1):

]

for s from r by -1 to 0 do
if s = r then

rhh([r,s] := rhofr] ##4## Step 9
elif s = r-1 then
rhhlr,s] := randrt(pssl(s],r) #i###  Step 10
else
rthh(r,s] := simplify(rhhrs(r,s+1,rhh[s+1,s])) ####  Step 11
fi:
od:
xilr] := randrt(subs(z=rhhlr,r-1],psh[zr]),r): ####  Step 12
Upsinv{r] := Inverse(Upsilon(r)) mod p: ####t Step 13

##### 4. Next Level #H######H I H$HH S HHHEHEH RS H R 8 41

FL2 := montL1(r+1): #i## Step 14
fi:
fi: #H#HH R AR SRS R HE S S A B SRS H SRS RS R SR R AR R RN
return(FL2)
end:

HEFHBARA S HEH B HH AR RS RAH R A SR ARBH B EAHHH B RBAR GRS R BB SR RS H AR R R HR R R A



The execution times of Steps 7 through 14 are as follows.

7. time: O(f,£24%9) ¢ 052 %)

8. expected time: O(f72L(f7)log f7 + f2 L(f7 logq,)) € O(f; ®*9).
9. time: O(1)

10. time: O(£,579 f1_,) = 0(£,57)

1L degﬁs%—l,s =f,0<s<r—-2;

total time: O(3_1_2 fof; (l+6)) CO(rf; 2+€))
12. time: O(f, £2579 + 727942 ) = O(F*7fr)  O(£ %9
13. time: O(f7 8™ 4 o) C O(f73%9), with2 < a < 3
14. time: \<montL1(T + 1)>
The total time (excluding step 14) is given by

po(r) € O(n?I> + (ng/n)n?lnn, + (ne/n.)?

+ngnt + dBt frGT) 4 GFO 4 gy

C O(n; +nan,Inn, + ngn, ™ + dgf‘f:_“;e) + rf*g“) +f (3+e))
- C O(n§ +nen.*e F e Or9 g Bre 4 £7 39y

C O(nZre + f20+)

C O(nir).

Proposition 14. We have
(montL2(r)) < po(r) + (montLi(r + 1))

with pa(r) € O(n3te).

Remark 15. If e, f, # 1 then

<montL1(-r + 1)> <yu{r+1)+ <montL2(T + 1)>

3+e

with gy (r +1) € O((r + 1) n3Y).
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Conclusion.

It will be convenient to let
Lo(F) denote montLO(F),

Li(r) denote montLi(r) forr>1, and
Ly(r) denote montL2(r) forr > 1.

We will estimate the time required for the chain of computations
Lo(F) — L1(1) = Ly(1) — L1(2) = L2(2) — -+ — Li(m) — La(m)
where m < |log, deg F'|.

Substituin.g the time required for each term in the chain and assuming that the

algorithm terminates at level m we get the following.
(Lo(F)) < po(n) + (L(1))
< po(n) + (1) + (L2(1))
< po(n) 4+ p (1) + po(1) + (L1(2))
< po(n) + (1) + p2(1) + p2(2) + (L2(2))
< po(n) + pa (1) + po(1) + pa(2) + 12(2) + (L1 (3))

< po(n) + pa (1) + p2(1) + p1(2) + 12(2) + 12(3) + <L2(3)>

< po(n) + 307y p(r) + 07 alr) + ( La(m)
€ O(ng" + m*n3r + (m — L)ny" +n3™)
C O (n‘?;e).
Note that, since the algorithm terminates at level m. we have
(Ly(m)) € O(ng*e).
We will give a bound Bs(r) for the time taken by the sequence
Li(r) — Lo(r — 1) — Ly(7)
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which happens when e,_; f,_; = 1 for some 7 > 1. We have
(L) < () +(Lolr = 1))
when e._, f,_; = 1, and on the other hand
<L2(7' — 1)> < pg(r—1) + <L1(r)>.

Thus we can take |

Bo(r) = pa(r) + po(r — 1) € O(rn?T + n3t) € O(n3H).
From Proposition 10 itr follows that the sequence

Li(r) — La(r — 1) — Ly(r)
can occur at most 2vp(disc ®) times in the course of the computation.
It now follows that the Montes algorithm terminates in time
O(n3t + 2n3 v, (disc @)) € O(nj v,(disc ®)).

Since this estimate counts operations in Z, and F, together. it follows that the bit-

complexity of the Montes algorithm is

O (nytev,(disc @)*°).



Chapter 4

Comparisons

4.1 The One-Element Algorithm

The One-Element Method is in essence the original Round Four algorithm of Zassen-
haus (Ford, 1987), with various improvements in detail. In what follows we will refer

to the version given in (Ford, Pauli, and Roblot, 2002).

Let f(z) be a monic polynomial in Z,[z] with nonzero discriminant, let X be the
extension of Q, generated by a root a of f, and let Ok be the ring of integers of K.

We will let v denote the extension of the standard p-adic valuation of Q, to K.
A prime element 7 of Ok has minimal positive V&lU&‘Lbn:

O<wv(m)=1/e <wu(p) =1
and there is no § € Ok sﬁch that 0 < v(0) < v(w).

The one-element method exploits the fact that if the polynomial g is irreducible over
Q, then all roots of g are algebraic conjugates over Q,. Otherwise stated, if f is

reducible over Q, then there must exists two roots of f that are not conjugate.
Let R, be a complete set of representatives of 7O in Ok and let
w=7/p = dola) + A(a)7 + Ao(a)w? + -

with Ag(a). A(a). Aa(a). ... € R..
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The (not necessarily distinct) roots w, ..., w’ of u, are given by
(%) w = Ao(a%) + A (@7) 77 4 Ay(a) (77 )2 4 - - -

where {0y, ..., 0r } = Gal(K/Q,). Note that although A;(a”) changes with o, the
polynomial Ax(z) does not. This fact is employed in the construction of the minimal
polynomial p,(z) of w.

As the algorithm progresses an element

W = Jo(@) + (@) + -+ Ao (@)

will have been constructed and it will be necessary to find A¢(z) such that

v(w—_—ub — )\k(a)) > 0.

ok
If it happens that there is more than one choice for A\;(a) € R, then there is more

than one choice for p,(z) and this leads to a factorization of f(z).

On the other hand, if the expansion (x) can be extended sufficiently far it would
follow that deg p,, = deg f and thus f would necessarily be irreducible (Ford, Pauli,

and Roblot, 2002, Proposition 4.5).
We will now give a brief sketch the algorithm.

Assuming f(z) = (z - &) -+ (z — &,) and 0(z) € Q,(x), we define
xolt) = (6= 0(€1)) -+ (t = 6(1)) = Res, (f(a,t - 6(z)).

The algorithm constructs a polynomial a(z) € Q(z) and seeks to determine if the
elements a(&y), ..., a(&,) are conjugate over Q,. If so then f is irreducible over Q,;

if not then a proper factorization of f is constructed.

Reducibility is established either by %,(z) € F,[z] having more than one distinct

irreducible factor or by My(x,) having more than one edge.

We define — D,/ E, to be the slope of the (unique) edge of Ay, ). with £, > 0 and
ged(D,/EL) = 1.
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The irreducible polynomial 7,(z) € F,[z] is given by X (z) = T(z)¢ for some e > 0,

and we define F, = deg7,.
Irreducibility of f is established if FoF, = n.

Initially a(z) « z. The algorithm iteratively constructs o/(z) with either Fy > E,
and Fy = F, or Ey > FE, and F, > F,, replacing a(z) « o'(z), until a terminating

condition is achieved.

It is a consequence of Proposition 10 that the algorithm will terminate before v(u.,(a))

exceeds 2v(disc x,)/n.

4.2 'The Two-Element Algorithm

In (Pauli, 2001) Pauli presented the Two Element Method for factorization of poly-

nomials over local fields, together with a complexity analysis.
In the following we recall this algorithm.

Let f(z) be a squarefree monic polynomial in Z,[z] with
fl)=(z—=&) - (z=&)

Initially: F 1, ¢ —=zx

The algorithm constructs the following:
e asequence ¢y, Yo, ..., pp € Lylz], with £ — lem(E,,, Eg,, ..., By, );

® a sequence 7, M2, ..., T € O such that Qu(n1,7m2,....m) is an unramified

extension of Q,, with F' « [Qp(m,ng, CeTR) Qp],
Termination:
o If EF = n then f is irreducible over Q.

In this case the algorithm returns elements ~. 7 € O such that
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o Qp() is an unramified extension of Q, of degree F, and

o Qp(y,m) is a totally ramified extension of Q,(7) of degree E.

o If, for some a(z) with x.(z) € Z,|z], either of the conditions

0 X,(z) = Uu(x)® with e > 0 for some irreducible 7,(x),
o v(a(&)) = =v(a(&)),
is violated, then f is reducible over Q,.

In this case the algorithm returns a proper factorization of f.

We now cite two results from (Pauli, 2001).

The first, Proposition 15 below, ensures the termination of the Two Element algo-
rithm. The termination of the One Element Method is also a consequence of this
proposition, and we used it to establish the termination for the Montes algorithm as

well.

Proposition 15 (Pauli). Let
f@)=(z=&) - (z—&),
o@)= (@) (z )

be two polynomials in Qpz] such that f(z) is squarefree and the degree of any irre-

ducible factor of f(x) is greater than or equal to m. Assume further that
) n
v(disc(f)) > 5 MAX1<icn v(e(&)).
Then f(z) is irreducible over Q.
The second result is an estimate of the complexity of the two-element method for the
general case of polynomial factorization over a finite extension of Q,,.
For the special case of factorization over Q,, Pauli’s estimate simplifies to
O N7 g (dise @)1 4+ Vo (disc B)*7)

102



bit operations, where N = deg ®.

We now consider an equivalence relation given in (MacLane, 1936).
Definition 14. Let a(z), 5(z) two nonzero polynomials in Q,[z] and v be a valuation

on Qu(z). Then the equivalence relation ~ on Q,[z] is given by
v

a:»ﬁ <~ v(a—F) > v(a).

We use the following notation from (Ford, Pauli, and Roblot, 2002) and (Pauli, 2001).

For a(z) a nonzero polynomial in Q,[z] we denote

vy (a) = min { vp(a(&)) }-

1<i<n

Note th'at if @ € Q, then v} (a) = vp(a).

The polynomials ¢, @2, ..., constructed in (Pauli, 2001) Satisfy
P41 = Q1 — Oty

with vy (r) = vy (¢ for t > 1.

Remark 16. We have

Pr+1 Y §r-
Up

By the construction of é; in Algorithm 5.1 in (Pauli, 2001), we have v;(d;) # 0, so
that
U;(SDH] — ) = 'U;(étlbt) > U;('ébt) = U;(LPt)-

Now we consider the construction of ¢y, from the Montes algorithm. By Propo-
sition 9 we have v;(p;) = ¥, and v (pi1) = e fily, since (e fy, e, fiU;) is the right
endpoint of N, (¢¢yy). Then we have the following.
Remark 17. The equivalence

Pi+1 ~ 4

is false.

The “key” polynomial ¢;4, constructed in (MacLane, 1936) also does not satisfv the

above equivalence relation.
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4.3 Further Development

Conspicuously absent from recent research is any attempt at a complexity analysis of

the one-element method.

Experimental results suggest that the one-element algorithm is comparatively fast,
but it remains to be discovered whether this is due merely to the relative simplicity
of the algorithm (reducing the overhead costs) or if it is the result of an intrinsically

superior complexity.
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Appendix A

Finite Field Computations

A.1 Implementing Finite Fields

We decided not to use the MAPLE GF package, choosing instead to represent a finite
field directly as
Fylz] / 4" (2)Fpz]

with ¥*(z) an irreducible monic polynomial in F,[z].
By definition ¢o = p.

For each 7 > 0 the algorithm finds a monic polynomial 9, (z) in F, [z}, irreducible

over F, . having degree f, and a root &,.
qrs O

The field F'

7.1 18 given by

qu+1 = ]qu[f?"] = Fp[&h SR fr] = Fp[pr]
with p, an arbitrary root of an arbitrary irreducible monic polynomial ¥} (z) € F,[z],
with degv* = f = fo-- f.

In general an element of F, is represented as a polynomial in ¥,[p,_;]. and this
(rather inconvenientlv) necessitates expressing & and p, as polynomials in p,, for

0<s<r.
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To summarize, for 7 > 0 we have the following:

F, { ¥y ifr=0,
" Fo_1[ér-1] = Fpléo, ..., &l = Fplpr-1] ifr>0;

[Fyiy 1 Fo ] = f> and goy1 = gf = p*.
For 0 < s < r we adopt the following notation.
Pr(Y) € Fy, [Y] 0=14:(&) deg ¥, = f;
Ur(Y) € Fp[Y] 0=19:(pr) degdy = f; = fo--- fr
P(ZY) €FRAZIY]  4:(Y) = Belprs,Y)
pr,s € Fplor] 0= 9:(or.s)

& € Fplor] 0=9:(&) = ¥r(pr-1. &)
We construct ., ¥, pr, Prr-1, & as follows.
1 A (V)™ — Factors(U(Y), p,_1), with A, € F,, a, > 1.
2. f, = degt, and ¥,(Z.Y) such that ¥, (p,_1,Y) = ¢, (Y) are given.

3. Choose 97(Y") random in F,[Y], monic of degree f;.

4. Set p, = RootDf (7). (formal)

5 {Y —pulp)? | k=0,..., f~ | —1} « Factors(¢*_,(Y), pr).

6. Choose fpr_1 «— p(pr). (arbitrary)  [¥7_y(prr1) = 0]
7. Fors=r—1,r—2, ..., 11 prsq  subs(ps = prs, Pss—1)-

8. {Y - ﬁk(pr) l k=0,.. s fT - 1} - FaCtors(iET(ﬁr,r——l:Y):pr)v

9. Choose & « Tr(p,). : (arbjtra'ry) [, (pr1.&) = 0]
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A.2 Computing 6;(Y")

The polynomial Hy, s(Y) in Algorithm 1 is computed as Hr(¢,v,4). Here we give

the (somewhat complicated) details of the construction of 6;(Y") for a given 7 € Js.

Computing Y,.

;Xfrxf:

If r > 0 we construct T, € F, ~! such that

k j fr-1
pr1 &l = h=0 (Tr)h,j,k Pf

forj:07"'7f7‘_]~ak:07"'7f:—]_1'

In practice we construct T, € fof? and M € F}’:; such that

(To)isnadirrs, = (To)nje,  Migjpres, = Mk,
forh=0,...,f=1,j=0,...,f,—1,k=0,..., f7 ;-1
Deriving ¢; from Y, ;.
Giveni¢ € J and t > 2, let
fiy—l
FTt,uft,i G = Kig+Kigpr1+ -+ Rifr -1 pt—ll € Fp[ﬂt—l] = Fy,.

Forj=0,..., fici—=1,k=0,..., fr,—1, let M, € I, satisty

fi—1—1 fip—1 _
20 2k (Teednje Mk = Kin

for h=0,.... f; — 1, and let

TR D N
5(Y) = IO (0T Mok plly) Y7
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Then 6,(Y) € Fylpr_s][Y] = F,,_,[Y] and

t— ft -1
0i(&-1) = Zf 1 o Mixpt o€,
1 ft -1 fii—1
— Zf: 1— 2 ]\411c Z - 1 (Tt—l)h,j,k py}:l—l

f -1 1 f -1
_ tl thl 12 (Tt l)h]kM]kpt .

fi -1 h
= r=0 fih Pt

= Iz G
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Appendix B

An Extended Example

Let p =2 and let

F(z) = z'% — 122" — 842" — 1962'* + 28562 + 63282'°
— 423362° — 64820z® — 171824z" — 225360z° — 2032322°

+ 261872z 4+ 21577623 + 221280z° + 127328z + 2256.

The reduced resultant of F is 512 = p° and hence it would suffice if all computations
in Z, were performed modulo p'? = 524288. (We have omitted this reduction in this

example.)
Lo. Since F(0) =0 (mod p) we set
O(z) — F(z+1)
é.nd now

(z) = 2 + 162 + 108z'® 4 308z'® — 560x'? — 6048z — 3220z'°
+ 62260z° + 818622% — 841760z — 45042362° — 114968202

— 17916176z — 173165922% — 9498860z — 2114868z + 129833

with
®(x) = (2 + 1) (mod p).
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L,.

At level 0 we have

with pg = 1.

do =0
€y =
po(z) =
Yoly) =y +1
&0 = po

Ascending to level 1 we have

and we set

vy = eofolly

ﬁl :d0+60—170:0

p1(z) — 2+ 1= o(z)

=0

Q) = ngfogglofoﬁ]

(mod p).

11 = ngeofo =1

Below are the ¢;-adic coefficients and valuation points of ®.

Ag = 2256

Ap = 127328
Ay = 221280
A = 215776
Aq = 261872
As = —203232
Ag = —225360
A7 = —171824
Ag = ~64820
Ag = —42336
Ao = 6328

Ap = 2856

Ay = —196
Az = —84
A= —12

Ay =0

Ay =1
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Py =(0,4)
P, = (1,5)
P, =(2,5)
P =(3,5)
Py = (4.4)
P; = (5,5)
Fs = (6,4)
P; = (7,4)
Py = (8,2)
Py = (9,5)
Pp = (10,3)
Py o= (11>3)
Py = (12: 2)
Py = (13,2)
Py = (14~. 2)
5 = (15.00)
Pis = (16.0)

=1



L.

It follows that N;(®) is the single segment S; with endpoints

{(0,4), (16,0) }

so that

g=4>1, d, =1, e1 =4, my = 1.

In computing \I/éi)q,(y) = AP(1,85;,A,P) we find J = {0, 2, 4} so that
W) = (S2)t+ (50)02+ (52) =v 4+ P 4 1= Py + 1)
p p p
We now have
hiy) =y’ +y+1  H=2 Py =y +y+1
&1 =m P11 =p1 pro =1

with p; an arbitrary root of ¥7.

At level 2 we have
ho=d1+ev;1 =1 Ny =nye fr =8
vy=efifl;, =8 Qp = Qe = p 41
We set

1o(y) — U (Wily) —y) =y +1

and call Hr (¢, v,4) with

t=r—1=1, v =Ty =8, S(y) =rly)=y+1

‘Then

Js=1{0,1} (=1 aepg=0 bdg=2 Ky=4
é.l:l 391:4 bd]zl ]{1:2
giving

Hy 5y (2) = 401 (2)° 4+ 201 (2)* = 22% + 82° + 1227 4+ 82 4 6
and we set

s:2(1') — S;:’l(.’z')EJfl + Hl.Dg.",Q(I)

= 2% 4 8x" +282% + 5627 + 7221 + 640° + 4027 + 161 + 7.
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L,. We have e;f; =8 > 1 and
w2(z) = (z+1)® (mod p).
Below are the gj-adic coefficients and valuation points of ®.

Ay = —1775362" — 1480768x° — 5274912x° — 9985280z* Py = (0,22)
— 10389248z° — 53260482” — 396768z + 813600  p, = (1,21)

A; = —122° — 1562° — 800z* + 9762 . P=(2,16)
+ 12700x2 — 22188% — 97688

Ay =1

It follows that N5(®) is the single segment S, with endpoints
{(0,22), (2,16) }

so that
92=2>17 d2:3) 82:17 m2:0-

In computing \I/g)@(y) =AP(2,S5,,A,P) we find J = {0, 2} so that
(2) _ 2 _ 2 _ 2
Vs, o(y) =my” +m0= (o1 +1)y° + o1 = (p1 + 1)(y + 1)’

We now have
Uay) =y +m fo=1 Ys(y) =y’ +y+1
Eo = po P22 = P2 /32,1 = 02 P20 =1

with ps = p1.
L,. At level 3 we have
Hz = d2 + eovp = 11, vz = exfofi; = 11, ng = ngez fo = ny.

We set
13(y) = B (W (y) —y") = (p + 1) =+ 1

and call Hr (¢, v ,d) with



Then

Js={0}, Co=p+1, aep=a, =0, bdyg=pg, =11

Calling Hr (t — 1,15,00) with vy = 11, do(y) = y yields

Ko(x) = Hy_1,0.6(x) = 227 + 142° + 4225 + 70z* + 702° + 4222 + 14z + 2.

Hence

Hyy5(z) = Ko(z) pa(x)* = Ko(z)

and, since e; f; = 1, we set

p2(w) — a(2) + Hyy o(x)

= 2% + 102" + 4225 + 982° + 142z* + 1342% + 8222 + 30z + 9.

L,. We have

0a(z) = (z+ 1) (mod p).

Below are the ps-adic coefficients and valuation points of ®.

Ag = —22019227 — 17674242° — 60975682° — 11463488z Py
— 1231619223 — 703622422 — 1254048z + 296576 P,
Ay = —4z" — 362° — 200z° — 664z + 17482° P,
+ 80602 — 33920z — 18536
A, =1

It follows that Ny(®) is the single segment S, with endpoints
{(0,26), (2,16}

so that

92:2>1; dy = e; =1, Mo = 0.

(&2

= (0, 26)
= (1,21)

= (2,16)

In computing \lfgi)@(y) = AP(2,S55,A,P) we find J ={0.1, 2} so that

2)
\Iﬂ(g}p(,y) =T y2 +my-+ o
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with
=T33, 00 (&) =
0 = 15,20 71 00,40 1 P1;
-1 (1) .
771 = P827211\I’7—1,v1714a+22 (51) o 17

_ 1
T = P821,2,2 \Ijé—l’)yrAa_’_252 (51) = =+ 1)
and therefore
VW) = (o + D +y+ o = (o + Dy + o + 1)y + 1).

Since \I/g)’q> has two distinct irreducible factors, it follows from the Theorem of

the Associated Polynomial that ®(z), and hence F'(z), is reducible in Qa[z].



