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ABSTRACT 

On The Complexity of Polynomial Factorization Over P-adic Fields 

Olga Erzsebet Veres, Ph.D. 
Concordia University, 2009 

Let p be a rational prime and $(x) be a monic irreducible polynomial in Zp[x]. Based 

on the work of Ore on Newton polygons (Ore, 1928) and MacLane's characterization 

of polynomial valuations (MacLane, 1936), Montes described an algorithm for the 

decomposition of the ideal pOx over an algebraic number field (Montes, 1999). 

We give a simplified version of the Montes algorithm with a full M A P L E implemen­

tation which tests the irreducibility of $(x) over Qp. We derive an estimate of the 

complexity of this simplified algorithm in the worst case, when $(x) is irreducible 

over Qp. We show that in this case the algorithm terminates in at most 

0((deg$)3 + e^p(disc$)2 + £) 

bit operations. 

Lastly, we compare the "one-element" and "two-element" variations of the Zassenhaus 

"Round Four" algorithm with the Montes algorithm. 
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Introduction 

Factorization According to Zassenhaus. 

In an algebraic number field K with ring of integers OK-, factorization of the ideal 

pOfc, for p prime, can be determined via polynomial factorization over the field of 

p-adic numbers Qp (Hensel, 1908). 

If K = Q ( Q ) for a given a G OK such that the index \OK '• Z[o;]] is not divisible 

by p then the factorization of the ideal POK can be determined by polynomial fac­

torization modulo p (Dedekind, 1871, 1876, 1878). In practice, efficient techniques 

for polynomial factorization modulo p (Berlekamp, 1967, 1970; Cantor and Zassen­

haus, 1970) combined with Hensel lifting (Hensel, 1908; Zassenhaus, 1975) solve the. 

problem of factoring pOK in a straightforward and effective manner when p does not 

divide the index. 

The complications arising when p divides the index [OK '• Z[cc]] have been the subject 

of considerable study. Current ideas are derived from the "Round Four" algorithm 

of Zassenhaus (Zassenhaus, 1975), which has evolved into two main variations, the 

"one-element" method (Ford, Pauli, and Roblot, 2002) and the "two-element" method 

(Pauli, 2001). Variations of the one-element method are used by MAPLE and PARI. 

The two-element method is used, e.g.. by Magma. 

The Approach of Monies. 

The algorithm of Montes (Montes, 1999) is in a separate category. 
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Given a prime p and a monic polynomial F(X) in Zp[X], the Montes algorithm 

determines the number of irreducible factors of F(X) in ZP[X] and their respective 

degrees. (It is understood that , in practice, the algorithm works with a sufficiently 

precise approximation of F(X) in Z[X].) 

The algorithm exploits classical results of Ore on Newton polygons and provides an 

alternative to the methods based on ideas of Zassenhaus. 

A familiar application of Newton polygons gives the jp-adic valuations of roots of a 

polynomial in Zp[X]. If F(X) G ZP[X] has two roots with different p-adic values then 

Hensel-lifting techniques can be applied to construct a non-trivial p-adic factorization 

of F to any desired degree of precision. 

This process constitutes "level 0" of the Montes algorithm. 

For each factor of F revealed at level 0, the algorithm proceeds to higher levels, either 

to discover a refined factorization or to establish irreducibility. 

At levels r > 1 the algorithm constructs the following: 

• J\fr(F), the Newton polygon of F with respect to the valuation vr\ 

» a valuation iv+i on QP[J^]; 

• an irreducible monic polynomial (pr+i(X) G ZP[X]: 

• the "associated polynomial" ty^ F(X) £ F9 r[X] for each segment S of the New­

ton polygon Afr(F). 

The number of edges of Mr{F) and the number of distinct irreducible factors of 

tyr
s F{X) give information for the factorization of F: if either is more than one then 

F is reducible. 
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Chapter Summary. 

In Chapter 1 we present a short history of the development of factorization algorithms 

previous to the Montes algorithm. 

In Chapter 2 we give definitions and theorems which are used in the Montes algorithm, 

together with the construction of ipr, the so-called "key polynomial" (MacLane, 1936), 

for r > 1. 

Our goal being to give an estimate of the complexity of the worst case of the Montes 

algorithm, we have simplified the algorithm so that it merely decides the question 

of irreducibility of a given polynomial. It is apparent that irreducibility is the most 

costly case for the original algorithm (i.e., the case that reaches the most levels). In 

this case the Newton polygon at each level is a single segment (a necessary condition 

for irreducibility), and so our modified algorithm operates under the assumption that 

this is always the case; the failure of this condition terminates the modified algorithm. 

An important gain from this approach is a substantial simplification of the notation, 

with a corresponding clarification of the operation of the algorithm. It should be noted 

that in the interest of simplicity we have abandoned most of the original notation in 

(Montes, 1999) and invented our own. 

In Chapter 3 we give a complete MAPLE implementation of the modified Montes 

algorithm. In parallel with the presentation of this implementation we give complexity 

estimates for the various steps, ultimately arriving at an estimate of 

0(n3+€vp{discF)2+e) 

bit operations, with n = deg F, for the entire (modified) algorithm. 

In Chapter 4 we compare the one-element and two-element methods with the Montes 

algorithm. 
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Chapter 1 

History 

1.1 Kumraer 

Our discussion of ideal factorization necessarily begins with Kuramer. 

In 1844, Kummer pointed out that unique factorization into primes is impossible for 

certain (algebraic) numbers. He was the first to discover the possibility of "ideal" 

factorization in cyclotomic fields (although he used different terminology). 

At the time Fermat's "Last" theorem and the higher reciprocity laws were topics 

of wide interest. Kummer himself was concerned with computations of cyclotomic 

integers. He denoted a cyclotomic integer (or complex number, to use Hummer's 

terminology) by 

f(a) = a0 + aja + --- + aA_iaA_1, 

with a0, .. •, a>_i rational integers and A an odd prime, with a being a A-th primitive 

root of unity: 

Q A = 1. 

Computing with cyclotomic integers, (Kummer, 1847) gives prime factorizations of 

prime numbers p < 100 such that p = 1 (mod A) and A < 19. 

Also in (Kummer, 1847) are given cyclotomic integers f(a) such that 

N(f(a))=p 
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for p < 1000 and 5 < A < 19. 

Thus in each of these cases there is a unique factorization of the prime p. 

In the case A = 23 Kummer found cyclotomic integers f(a) with the property that 

N(f(a)) = p, namely 

599 = JV(1 + a15 - a1 6) , 691 = N{l + a + a 5 ) , 829 = N(l + an + a 2 0 ) . 

However for p = 47 and p = 139 he found different representations. Specifically 

47 = / ( a ) / ( a
4 ) / ( a - 7 ) / ( a - 5 ) / ( a 3 ) / ( a - 1 1 ) / ( a 2 ) / ( a 8 ) / ( a 9 ) / ( a - 1 0 ) / ( a

6 ) , 

1.39 = g(a) g(a4) g (a" 7 ) g(aS) g(a3) g(a-u) g(a2) g(a8) g(a9) g(a-10)g(ae), 

with 

f(a) = aw + a1 3 + a8 + a 1 5 + a7 + a16 , 

g(a) = a 1 0 + a1 3 + a 8 + a 1 5 + a 4 + a1 9 , 

and, since / ( a ) = / ( a - 1 ) and g(a) = ^ ( a _ 1 ) , 

472 = N ( / ( a ) ) , 1392 = N(g(a)), 

and hence the conditions 

47 =N(h(a)), 139 = N(k(a)), 

cannot be satisfied by any cyclotomic integers h(a), k(a). However, since 

47- 139 = J V ( l - c t + a<21), 

it follows that 1 — a + a21 has no nontrivial factor, and yet is not a prime. A detailed 

explanation appears in (Edwards. 1977) and (Edwards, 1980). 

Since the factorization of some rational primes into algebraic primes was impossible. 

Kummer introduced ideal prime factors. 

5 



For given primes q and A with A ^ q he considered / the smallest positive integer 

such that qf. = 1 (mod A) and e = (A — 1 ) / / , which is an integer since gA_1 = 1 

(mod A). 

Kummer did not give a definition of ideal prime factors, he described them, gave some 

properties of them, and laws of divisibility by them; nor did he give a definition of 

ideal numbers. In (Kummer, 1851) he wrote: 

"Nous remarquons aussi que la notion du nombre ou facteur complexe 

ideal sera employee aussi bien dans le sens plus large ou les nombres com­

plexes existants, comme cas particuliers, sont compris parmi les nombres 

complexes ideaux, que dans le sens plus etroit ou les nombres ideaux sig-

nifient le contraire des nombres complexes existants, de meme que, dans 

l'Algebre, le mot imaginaire est employe dans ce double sens." 

In (Kummer, 1851) and (Kummer, 1846) some properties of ideal prime factors are 

proved. (In what follows the terms cyclotomic integer and complex number have the 

same meaning.) 

"The product of two or more complex numbers has precisely the same ideal 

prime factors as the factors taking (taken) together.1' 

"Each complex number, represented as a product of some factors, is divis­

ible by q if and only if it contains all e ideal prime factors of q." 

"A complex number, containing all the ideal prime factors of q, containing 

each at least n times, is divisible by gn." 

"If the complex number f(a) contains n ideal prime factors of the number 

q (belonging to the exponent f), in other words all this factors are different 

of not, the norm N(f(a)) contains all the time the factor qnf. but it never 

contains a higher power of q." 

6 



"Each given complex number contains only a finite number of ideal prime 

factors, perfectly determined." 

"Two complex numbers, containing (having) the same ideal prime factors, 

differ only by a complex unit, by which they can be multiplied." 

"In order that a complex number f(a) be divisible by <p(a) it is neces­

sary and sufficient that all the ideal prime factors of the divisor <p(a) be 

contained in the dividend / (a) ." 

Considering these properties one can see that ideal numbers (complex numbers) have 

the unique factorization property. 

In the case A not prime, Kummer generalized the theory of ideal numbers. He ex­

tended the theory to cyclotomic numbers that are roots of the equation 

wx = D(a), 

where D(a) is a A-th root of unity. Kummer also tried to extend his theory for 

factorization of some algebraic numbers. 

An example appears in (Edwards, 1980) with a = y/~^% for which Hummer's gener­

alization fails. The reason for this failure is that, if p = 2, v = 1 + \/—3, and p = 23, 

then p does not divide v, although pk does divide pvk for every positive integer k. 

In the following section we will describe work of Dedekind that led to a generalization 

of Rummer's theory. 

1.2 Dedekind 

In generalizing Rummer's theory Dedekind gave the definition of algebraic numbers 

and determined many of their properties. 

Definition. A (real or complex) number a is called an algebraic integer (or simply an 

integer) if it is a root of an equation P{x) = x" •+p1x
v~'1 + • • • +pn, where p}, . . . . p„ 

are rational integers. 



Some basic properties are the following. 

1. The sum, difference, and product of two algebraic integers are algebraic integers. 

2. Each root of a monic polynomial with algebraic integer coefficients is an alge­

braic integer. 

3. A rational integer is an algebraic integer. 

4. All conjugates of an algebraic integer are algebraic integers. 

The ideas of ring of (algebraic) integers and integral basis of an algebraic number 

field are due to Dedekind. 

Other basic definitions are the following. 

• The norm N(b) of a number b is the product of the n conjugate numbers 

b™, &(2\...,&("),i.e., 

N(b) = b{1)b^---b^. 

» The discriminant A(c^\ c^2\ ..., c ^ ) of the numbers C\, c2, •.., cn is 

A( C l l c 2 l . . . ,cn) = det(S:±c(1)c<2> • • - C H) 2 . 

• A main invariant of an algebraic number field K is its discriminant A(K) which 

is a nonzero rational integer defined by 

A(K) = A(uj1,oj2j...,ujn) 

where (u\,u!2, •. . ,oJn) an arbitrary integral basis for the ring of integers OK. 

The value of A(K) does not depend upon the choice of integral basis. 

• Let 6 e OK with K = Q(6) and let n = [K : Q]. The index of 0 is defined as 

the positive integer k = [OK '• Z[6>]]. where 

Z[9] = {a0 + ai6+ •••or(_i# | a, G Z. i = 0, . . . : n.- 1 }. 



The following relation holds: 

A(l,e,...,9n-1) = k2A(K). 

• The integer a is divisible by the integer b if a = be for some integer c. 

Having defined the ring of integers OK, Dedekind generalized Kummer's theory in 

the following important theorem (Dedekind, 1871). 

Theorem 1. Ifx, a, b are nonzero integers in OK such thatxar is divisible 

by bT for r = 0, 1, 2, . . . , then a is divisible by b. 

E x a m p l e . Taking a = y^-3 it can be shown that OK = Z [ |(1 + \ / - - 3 ) ] , a n d in this 

ring 2 divides 1 + yf—%. 

Dedekind considered the set of all numbers a G OK which are divisible by a given 

ideal number and called this set an ideal. In this way he found a correspondence 

between a given ideal number and a given ideal. Based on the properties of algebraic 

integers and on the elementary theory of divisibility, Dedekind gave the definition of 

an ideal. 

A subset a C OK is called an ideal if it satisfies the following two proper­

ties. 

I. If any two elements a.b G a. then their sum and difference a ± b E a. 

II. If a. G a and x G OK, then their product ax G o. 

Dedekind also defined the divisibility of ideals and the notion of prime ideal. 

An ideal a is divisible by the ideal D if a = Db for some ideal b. 

An ideal p not equal to OK or the zero ideal is said to be a prime ideal if. 

whenever a product of integers ab is in p. so is either a or b. 
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The lemma below, from (Dedekind, 1871), is used in the definition of a simple prime 

ideal. 

L e m m a 1. If an integer c is not an element of an ideal a, then there is 

an integer a divisible by c such that the roots x G OK of the congruence 

ax = 0 (mod a) 

form a prime ideal. 

Definition. Given an integer b G OK, which is not a unit, and any integer a G OK, -

it follows from Lemma 1 that there is a prime ideal p such that 

P = Pb:a = { x G OK I xa = 0 (mod b)}. 

Such a prime ideal is called simple prime ideal. 

If x G p then we can say the simple prime ideal p divides x. 

Given b, a as above Dedekind considered the the r-th power of p, 

p r = {yeOK | yar = 0 (mod br)} 

where r is a nonnegative rational integer. (Note that p° — OK-) 

Some important results about simple ideals are given in (Dedekind, 1871, §163, 5). 

T h e o r e m 2. Let b and c be two integers. If. for every simple prime ideal 

p, every power of p dividing b also divides c, then b divides c. 

One can see the similarities between the properties of prime ideal factors and simple 

prime ideals. An interesting presentation concerning these similarities can be found 

in (Edwards. 1980). 

An immediate result of Theorem 2 is the following. 

10 



Corollary 1. Any principal ideal (b) is the least common multiple of all 

powers of simple prime ideals dividing b. 

Dedekind gave this important consequence of Theorem 2. 

Corollary 2. Each prime ideal is a simple prime ideal. 

From now on, Dedekind could use prime ideals instead of simple prime ideals. 

Dedekind showed that an ideal a divides an ideal b if and only if a C b. This important 

theorem may be summarized briefly by saying that to divide is to contain and leads 

immediately to the key result of this theory. 

Theorem 3. Each ideal a different from OK is a prime ideal or it can be 

written uniquely as a product of prime ideals. 

Dedekind defined the norm N(a) of an ideal a as the number of mutually incongruent 

integers in OK modulo a and this number is finite assuming a ^ 0. 

An important result is the following (Dedekind, 1876, 1877). 

Proposit ion 1. The norm of a product of ideals is equal to the product 

of the norms of the factors: N(ab) = N(a)N(b). 

Each prime ideal in OK occurs in the factorization of exactly one rational prime p. If 

the prime ideal p divides POK, then N(p) = pf and / is called the inertial degree of 

the prime ideal p. (Note that OK/p is a finite field of degree / over Fp.) In general, 

the factorization of POK has the form 

pOK = P?---pe/, 

where the prime ideals p l s . . . . pg are assumed to be mutually distinct from each 

other. The exponent. ex > 1 is known as the ramification index of the prime ideal p;. 

If fi is the inertia] degree of p,. the following general relation holds 

" = E L *ifi: 
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where n = [K : Q]. If any ramification index e, is greater than one then the rational 

prime p is said to ramify in the field K. Only a finite number of rational primes 

ramify in a given algebraic number field K and Dedekind proved the following crucial 

theorem regarding ramification. 

Theorem 4. A rational prime p ramifies in a number field K if and only 

if p divides the discriminant A (if). 

An important result later proved by Minkowski states that |A(/sf)| > 1 whenever 

[K : Q] > 1, and coupled with Theorem 4 we see that at least one rational prime 

ramifies in any number field K ^ Q. The key result of this section with regard to 

the factorization methods developed later in this thesis is the following theorem; see 

(Dedekind, 1878, §2) and also (Dedekind, 1876, 1877). 

Theorem 5. Let K = Q(0). where 9 G OK, and let k be the index of 9 

whose minimal polynomial is denoted by F{x). Assume the prime p does 

not divide the index k and that 

F = F^---F^ {modp), 

where Fj, . . . , Fg are distinct irreducible polynomials (incongruent prime 

functions) of degrees fi, • • •, fg, respectively. Then the ideal pOx has g 

distinct prime ideal factors and each prime function Fi corresponds to a 

specific prime ideal pj whose inertial degree is fi and whose ramification 

index is e,. Furthermore, pi = gcd(pOx, Fi{9)C>K)-

Given the result in Theorem 5, it is natural to wonder if it is always possible to find 

an integer in any given number field whose index is one. Dedekind saw that there are 

some number fields which contain no integer of index one. The cubic field K = Q(6>). 

where F(x) = x3 — x2 — 2a; — 8 is the minimal polynomial of 9, is a classic example 

of such a field. 
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1.3 Hensel 

Hensel, like Dedekind, was occupied with unique factorization of algebraic numbers. 

He believed there had to be an analogy between algebraic function theory and alge­

braic number theory. He first wrote about this in (Hensel, 1897), showing that the 

decomposition of algebraic numbers into prime factors can be replaced by a simpler 

approach using the expansion of algebraic functions around an arbitrary point, and 

he introduced the theory on which this statement is based. The first basic result is 

the following. 

Proposition 2. If K is a field and K{a) is an extension of K of degree 

n then any element of K(a) satisfies some polynomial of degree n 

(*) F(X) = 0 

Considering (*) as a congruence modulo pM, with p is a prime number and M arbi­

trary large, he showed the following. 

Proposition 3. The congruence 

F{X) = 0 (mod pM) 

possesses exactly the same number of roots as its degree. The n roots 

X\, . . . , Xn always can be expanded in power series which progress by 

increasing powers of p and have at most a finite number of initial member 

with negative exponents. Thus 

X, = A_hp-fl + --- + A^1p-1+A0 + AlP+---.i 

for i = 1. ..., n. where h is a nonnegative integer. 

Hensel was aware of the work of Kummer, and later Dedekind and Kronecker. in 

extending an algebraic number field while preserving unique factorization. Hensel 
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was inspired by Weierstrass's theory of the representation of algebraic functions as 

infinite power series 
CO 

x—n 

where n is any integer. 

It is an important fact that this representation of / as an infinite power series is not 

unique, and this led Hensel to give different representations, the p-adic representations 

for any prime p, of algebraic numbers. Hensel studied the properties of p-adic numbers 

and developed the theory of their use, including the well-known Hensel's Lemma. 

Hensel considered the field of p-adic numbers Qp. He called a p-adic number a, p-adic 

integer if in its there are only positive exponents of p. (The ring of p-adic integers is 

denoted Zp.) 

Assume 

f(x) = A0x
n + A1x

n-' + --- + An 

is a polynomial with p-adic coefficients, and let A] be the kth (rational) approxima­

tion of Ai: for i = 0, . . . , n. Then 

/(*>(x) = A(
0
k)xn + A^x"-1 + --- + A™ 

is called the kth approximation value of f(x). 

Hensel was preoccupied with factorization of such polynomials into irreducible factors. 

The problem of decomposability was determined by the following. 

Proposit ion 4. Let F(x) be a p-adic function with discriminant D{F) — 

psE where 5 > 1 is an integer. Then F(x) decomposes in lower degree 

polynomials if and only if the 8th approximation value F^ modulo p5+1 

decomposes, namely each decomposition 

Fi6)(x)=J{x)g(x) (modp5+1) 

specifies a unique decomposition 

F(x) = f(x)g(x) 

14 



inZp[x], with f(x) and g(x) being approximation values of f(x) and g(x) 

respectively. 

The next proposition is a consequence of the preceding. 

P r o p o s i t i o n s . Consider the modular factorisation 

F(x) = f0(x) g0(x) ( m o d / + I ) 

withr+1 > 2p andp thep-adic valuation of Rx(fo(x), g0(x)), the resultant 

of fo(x) and g0(x). Then there is a factorisation 

F(x) = f(x)g(x) 

in Zp[x] such that the (r — p)ih approximation value of f(x) and g(x) are 

fo(x) and go(x) respectively. 

From the propositions above Hensel derived a theorem of great importance. 

T h e o r e m 6 (Hensel's Lemma). Let F(X) be a polynomial in Zp[x] and 

let fo(x) and go(x) be polynomials in Z[x] such that 

F(x) = f0(x) g0(x) (mod p). 

Assume further that the resultant Rx(fo(x),go{x)) is not divisible by p. 

Then there exists a factorisation 

F(x) = f(x)g(x) 

in Zp[x] such that the 0th approximation values of f(x) and g(x) are fo(x) 

and g0(x) respectively. 

In (Hensel, 1918) there appears an explicit procedure (now known as Hensel lifting) 

to construct arbitrarily precise p-adic approximations to f(x) and g(x). 

Hensel lifting was the starting point for the subsequent work of Zassenhaus. 

Lastly we present the theorem of Hensel giving the relation between polynomial fac­

torization and ideal iactorization. 
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Theorem 7. Let K = Q(a) be a algebraic extension of Q and let p be a 

rational prime not dividing the index of a. Let F(X) be a polynomial in 

Zp[x] such that F(a) = 0. Suppose F(X) has the factorization 

F(x) = F1(x)---Fh(x) 

into distinct irreducible factors F\(x), ..., Fh(x) in Zp[x], with 

Fi(x)= T{{x)^ (modp), 

Ti{x) irreducible modulo p, and deg.Fi = fi, for i = 1, . . . , h. Then 

POK = p?---p? 

with 

Pi=pOK+Fi(a)0K 

and pi having inertial degree fi and ramification index e;7 fori ~ 1, ..., h. 

In (Zassenhaus. 1969) Zassenhaus developed a method based on Hensel's lifting pro­

cedure to factorize a polynomial with rational integer coefficients. 

Let 

f{x) = x" + ajx""1 + -.. + an = iri(x-Zi) 

be a monic polynomial with rational integer coefficients. Defining 

®f = max1<i<n(\ai\/(1))1/l 

we have 

m i n ^ ^ n l ^ l < $ / < m a x ^ ^ n l ^ l < 
x 2 - 1 

and it follows that 

$9 < 
y/2- 1 
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for any factor g(x) of f(x). Assuming 

g(x) = xm + hx™-1 + • • • + bm 

with m < [n/2\, it is easily seen that 

fm\ ( $ / 
xasxx<i<m\hi\ < maxi<j<m I . I I —=—-

The Zassenhaus Hensel factorization algorithm combines Hensel lifting with Berle-

kamp's algorithm for factorization modulo p, where p is any prime not dividing the 

discriminant of / . Taking e such that 

e o / > / 2 j \ / $ / \ 2 

p > 2max1<i<Ln/2J (̂  . j y^_xJ 

and g and m as given above, it follows that 

maxKK™ |6,| < pe/2. 

From the Berlekamp algorithm we have 

f(x) = gi,i(x) • • • gr,i(x) (mod p) 

with g\,\{x), . . . . gr_\{x) irreducible modulo p. Applying e — 1 iterations of Hensel 

lifting yields 

f{x) = ghe(x) ••• gr,e(
x) (modpe). 

We know that any factor of / of degree at most [n/2j will have coefficients in the 

range [-M.+M], where M = [pe/2\. Products gri{x) ••• gik(x) of degree at most 

[n/2j. with coefficients reduced to the range [-M., +M], are tested as factors of f{x). 

If / is reducible then such a factor will be found: otherwise / is irreducible. 

It is clear that this algorithm is exponential in its worst case: if / is irreducible over 

Z but splits into linear factors modulo p then 2n~1 tests will be required to establish 

the irreducibility of / . (In practice this exponential behavior is rarely encountered.) 

The Hensel-Zassenhaus algorithm was subsequently improved. 



• Based on the inequality 

f[tei< a+zr=i N2)1 /2 

1 = 1 

from (Specht, 1949), Mignotte, in (Mignotte, 1974), sharpened Zassenhaus's 

bound on the coefficients of g. For fc=l,...,mwe have 

N < (3(i+EL,Kir < ([${)(i+EIL, wr2 

• In (Lenstra, Lenstra, Lovasz, 1982) lattice basis reduction is applied to the 

testing phase to give a polynomial-time algorithm. 

In (Zassenhaus, 1975) Zassenhaus was again occupied with factorization of polynomi­

als with coefficients in Z, this time considering the case when the prime p divides the 

polynomial discriminant. This work gave rise to the original version of the "Round 

Four" algorithm (Ford, 1978, 1987) for the computation of integral bases and facto-

riazion of polynomials over the field of p-adic numbers. 

1.5 Ore and MacLane 

The central technique of the Round Four algorithm is the attempted construction 

of a root of a polynomial in Zp[x] as a power series with respect to a uniformizing 

element of an algebraic extension of Qp. 

In contrast, Montes and Nart, building on work of Ore and MacLane, developed the 

idea of generalized Newton polygons, derived from valuations of the ring Qp[x]. 

The Contributions of Ore 

Considering the factorization in Zp[x] of a monic irreducible polynomial with integer 

coefficients 

F(x) = F,(x)---Fg(x) 
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with 

Fi = i% (mod p) 

for i = 1, . . . , g, Ore constructed the Ne-ivton polygon Afi(Fi) of each factor Fi (Ore, 

1928). For this construction let <fi(x) 6 Z[x] be monic and irreducible such tha t 

(fi = T/'J (mod p). 

For i = 1, . . . , <?, Ore considered the following representation of F: 

with m = |_deg F/ deg y?jj, deg Qj < deg </?j, and p\Qj, for j = 0, . . . , m. The Newton 

polygon A/"i(Fj) consists of the lower convex hull of the set of points 

{ (0 ? a 0 ) , ( l , a i ) , . - . , ( m , 0 ) } . 

Remark. The complete definition of Newton polygons appears as Defini­

tion 4 in Section 2.1 below. 

The edges of J\f\{Fi) provide information about factorizations of Fi and ramification 

indices. 

For each edge Si, Ore defined an associated polynomial ^ F. with coefficients in a 

finite field F ? . . where <& = pdes^>. A factorization of this associated polynomial gives a 

factorization of Fi. In particular, if an irreducible factor of the associated polynomial 

appears with multiplicity one then the corresponding factor of Fi is irreducible. 

Remark. The complete definition of the associated polynomial appears as 

Definition 10 in Section 2.3 below. 

T h e o r e m 8 (Ore: Theorem of the Product). Let F(x) £ Zp[x] be a product 

F(x) = F1(x)---F5(x) 

of monic polynomials in Zp[x}. Then the edges with negative slope of N\(F) are con­

structed by joining the edges of .N\(F\). . . ., jN\{F^) with positive length arid negative 

19 



slope. Moreover, if S is the segment with slope —d/e of J\f\{F) then 

*$« = n ^(x) 
\St\>0 

where Si is the segment of N\(Fi) of slope —d/e, for i = 1, . . . , S. 

Theorem 9 (Ore: Theorem of the Polygon). Let F(x) be a monic polynomial in 

Zip[x]. Let Si, ..., S-f be the edges of N\{F) of negative slope and let 

~d1/e1, ..., -d7/e1 

be their respective slopes. Then F(x) admits a factorization 

F(x) = F1(x)---F1(x). 

Each factor Fi(x) is a monic polynomial in Zp[x] for i — 1, . . . , 7, with Ni(Fi) 

consisting of the single edge % having slope —di/ei and 

Moreover, if 6i is a root of Fi(x) then 

v(ipi(Qi)) = di/ei. 

Theorem 10 (Ore: Theorem of the Associated Polynomial). Let F(x) G Zp[x] be 

a monic polynomial such that Af\(F) consists of a single segment S, with S having 

slope —d\/e\. 

Assume that the associated polynomial of F with respect to S has the factorization 

with ipi(Y), . . . . €'i(Y) distinct irreducible polynomials in Fqi [Y]. 

Then F(x) admits a factorization 

F(x) = G1(x)---Gs(x) 

where 
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o Gi(x) is a monic polynomial in Zp[x], 

o J\f\{Gi) consists of a single segment Si, 

o Si has slope —d\fe\, and 

for i = 1, . . . , 5. Moreover, if at = 1 then Gi is irreducible. 

The Contributions of MacLane 

Montes's work is built on the valuation theory of MacLane, who characterized all 

valuations of the polynomial ring Z[x] in terms of "inductive values" of Z[x}. 

Definition 1. If K is a ring then the map v : K[x] - ^ Z U {oo} is called a valuation 

oiK[x] if 

i) v(F) = co if and only if F = 0, 

ii) v{FG) - v{F) + v{G) for all F(x), G{x) G K[x]*, 

iii) v(F + G)> min { v(F), v{G) } for all F(x), G(x) G K[x). 

Definition 2. Let W be a valuation of Z[x] and let F(x), G{x) G Z[x). 

We write 

F\WG 

to express the condition 

W{G - QF) > W(G) 

for some Q(x) G Z[x]. 

MacLane defined inductively the values V\. V2,.... Vk such that each value Vk is ob­

tained from the value Vk~\ using a suitable key polynomial ok. 

A key polynomial with respect to the valuation 11" of Z[.x] is a monic polynomial 

o(x) in Z[.r] such that 
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i) if 0 \w F G then <f> \w F or <f> \w G, and 

ii) if 0 \w F and F ^ 0 then deg F > deg ^. 

First Stage Valuation Vy 

Let a rational prime p be given, let vp denote the standard p-adic valuation of Q, and 

let 

F(x) = An xn + • • • Ay x + A0 

be a polynomial in Z[x]. 

Define the key polynomial for the first stage to be 4>y (x) = x and define 

Vy : Z[x] - • Z^° 

by Vy((f>i) = [Ay, with fly an arbitrary nonnegative integer, and in general 

Vy(F) = mm{vp(Ai) + t/iy | 0 < i < n). 

We denote this definition compactly by 

Vy = [i/p, <pi, Mi]-

We note that if Li-y = 0 then Vi(F) = z/(content(F)). 

fcth S t a g e Va lua t ion Vk, k>2 

Defini t ion 3. For k > 2 we choose 4>k to be a key polynomial with respect to Vk_y 

such that 

I) deg<£fc > deg0 fc_i, and 

ii) Vk^y((bk - <bk^y) = min { /ifc_i; V ^ ^ ^ . ) }. 

Considering the expansion 

F(x) = Ak_0(x) + AkA (x) ok(x) + • - - + Ak,v(x) 6k(x)m 



with Akii(x) € Z[x] and d e g ^ i < deg ^ for i = 0, ..., m, we define 

Vk : Z[x] -> Z^° 

by Vfc(0fc) = Vk > 14_i(0fc), with f̂c a positive integer, and in general 

Vfc(F) = min{Vk_1(Akii) + ifik | 0 < i < - m } . 

We denote this definition compactly by 

Vk = [Vfc_i, (f>k, /.ifc]. 

MacLane proved that Vk is a valuation on Z[x]. 

Let Vj, V2, - • -, V4,... be an infinite sequence of values defined as above. MacLane 

defined a limit-valuation as 

^ ( / ( z ) ) - lim Vk{f{x)), 

and proved that it is a valuation on Z\x\. He gave the following theorem. 

Theorem (Maclane). / / every value of the field K is discrete, then every non-

archimedean value W of the ring K\x\ can be represented either as an inductive or as 

a limit-valuation. 

Remark. As we have seen, Ore worked with first stage valuations. MacLane notes that 

"similar 'second-stage' values V2 appear implicitly in the irreducibility investigations 

of Ore. Kiirschak, and Rella.n 
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The Montes Algorithm 

2.1 Newton Polygons 

Definition 4. Let v : Z[x) —̂  Z-° be a valuation of Z[x] and let <p(x) be an 

irreducible monic polynomial in Z[x], Suppose F(x) e Z [ i ] has the <p-adic expansion 

F(x) = 40(x) + Ax{x) ip(x) + ••• + Am{x) tp(x)m 

with degAi < degv? for z = 0, . . . . m. Then tiie Newton polygon of F with respect 

to v and (f is the lower convex hull of the set of points 

{ (i, v{Ai) + iv(ip)) | 0 < i < m } 

and is denoted by Nv.ip{F) 

Y 

(0,v(Ao)) 

O (\0,v{Aw<P10)) 

o 
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As we will show below, the Montes algorithm constructs 

o a sequence vo, V\, . . . , of valuations of Qp[x], 

o a sequence <p0, tpi, ..., of irreducible monic polynomials in Zp[x], 

o a sequence —d0/e0, —d\je\, ..., of rational slopes, 

with dT and er relatively prime, do/eo = 0, and —dT/er < 0 if r > 0. 

Definition 5. For F(x) <G Z[x] and r > 0 we define 

K(F)=Kr^r(F). 

2.2 Valuations in the Montes Algorithm 

Let v : Qp - > Z U {oo} denote the standard p-adic valuation on Qp. 

Definition 6. For r > 0 we define the valuation 

vr : Qp[x] —> ZU {oo} 

as follows. If F(x) £ Qp[x]* then 

{ y(contentp(F)) if r = 0, 

a^r - i i - i +yr-ier-i i f r > l , 
where (xr_i,yr_-i) is any point on the edge of Afr-\(F) with slope —dT_i/er_i. 

By definition tpo{x) = x, and it follows that t'o(^o) = 0. 

For 6 £ Qp we have 

•17(0) = er_;it7-i(0) = er-}er-2Vr-2{d) = (er_1er_2 • • • ei)f(0). 

Since A/"r_](^r_i) consists of the single point (l.z7_1(yr_1)) it follows that 
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and from the construction of ipr it follows that 

vr(<pr) = e r _i / T . _ 1 f r (^ r _i ) . 

Since v^ipx) = e0/o^i(<^o) = e0fQV\{x) = 0 we have vx = v0. 

If the ipr^i-adic expansion of F is 

F{x) = B0(x) + Bi{x) (pT-i{x) + • • • + Bk(x) <pr-i [xf 

it can be shown tha t 

vT{F) = min { er-iVT-i(Bj) +jvr(ipr-i) | 0 < j < k }. 

In an obvious generalization of MacLane's notation we have 

f [u, x, 0] ifr = 0, 
fr = < _ _ 

[ [er_iVr-i, (fr-U A«rL w i t h V-r = yr(<£V-l), if r > 1. 

2.3 Miscellaneous Definitions 

At any given time the algorithm operates at some "level", say level r, with r > 0. At 

level r the algorithm is concerned with the Vr-adic" expansion of a given polynomial, 

from which is determined a "slope" —dT/er., with dr and eT coprime. do = 0. e\ = 1. 

and dr > 0 and er > 0 for r > 1. 

Def in i t ion 7. For r > 0 we define 

m r = (l/dr) m o d e r . 

For positive integers r and v we define 

civ.i/ = vd~l m o d e r , 

,5 r^ = {v - ar:„dr)/er, 

%.u = { {OTM + Aer: !3rM - Xdr) | 0 < A < [drM/dr\ } : 

C>r,v = { (x; ?/) | c/rx + ery = u }. 

For 7' > 1 and K(X) a nonzero polynomial in Zp[A"] we define 
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o Sr>K to be the segment of Afr(K) having slope —dr/er, 

° (s*r,Ki PT,K) to be the left endpoint of STIK, 

° {®r,K + 7r,/cer, 0r,K ~ 1T,K&T) to be the right endpoint of ST#, 

o urK = dTar_K + erPr,K, 

For r > 0 we define 

Jir = 0, Vr = 0, if r = 0, 

Jlr = dr-i + er^iVr_Xl Vr = er_1/r_i7Zr, if r > 1. 

Remark 1. It is readily seen that 

° if Pr,u > 0 then Tru is the longest segment of CrM with 

endpoints having nonnegative integer coordinates, and 

o if f$TV < 0 then Try is empty. 

For example, if d^ = 3 and e2 = 4 then the segment 72.41 has endpoints 

(11,2) and the segment T2.5, with /?2,s = — 1, is empty. 

For r > 1 we have (ar.i7r+1! &,i7r+1) = (0, / r / V n ) -

For r > 1 it is easily shown that JIr = vT(ipr-i) and Vr = u r (^ r ) -

It is always the case that Sr.i< Q %.uT K Cj £-r,vr K • 

The line Cr,vT K is the tangent line to j\fr(K) of slope —dr/er. 

The set of integer points on Sr_x is given by 

{ (5r,K + J e r : A-Ji ~ JC?r) I J = 0. . . . , %K } . 

If deg/T < deg<pr then A/"r(/0 = {(0,vr{K))} so tv+iUO = e ri ' r(A r). 

If K(X) is a nonzero polynomial in Zp[A'] with 

A'(A") = ArX)(X) + .4 r ](.Y) ^ r (A' ) + • • • + .4r.„(A') ^(Xy 



its (£>r-adic expansion and 

JT.K = { k | 0 < k < n, A g t P O ^ 0 } 

then J\fT(K) is the lower convex hull of the set 

{ (k, vT{Ar,k(p
k
T)) | k G JT,K } = {(k,yk)\ke Jr.K }-

Since K(X) G ZppsT] we have yk > 0 for k G Jr.K- It follows that 

vr>K = min { drk + eryfc | k G Jr>/f }, 

5r>x = min { k \ k G J,-^, dr&: + er2/fc = ^V,K }> 

A-.K = 2/5r,K = *V(A-,5r,K) + 5 r ^ F r . 

Furthermore 

f r + 1 ( / f ) = i/riK = drOLTiK + er/3rrA-

= drar>K + ervr(Ar^rK) + er5v,.ft-^v 

= ®r,K(dr + erVr) + ervr(AriSrK) 

= <Xr,K~Pr+l + ^r+l(A-,5r,K)-

Defini t ion 8 (Sum of Segments). If 

Si = K^, &)>; ,# ) ] , s2 = [(a2,&),(o4#)] 

are two segments with the same slope —dT/er then their sum is the segment of slope 

—dT/er with endpoints 

(a,P) = (ai + a 2 , ft + /? 2 ) , (a',0') = (a'j + a2 ) ft +.&). 

Defini t ion 9. For r > 1 and /c > 0 and S an arbitrary segment of slope —dr/er with 

left endpoint (a, (3) we define 

9 i ( r ; s ) = msfsJis+1nr/ns+i for s = 0, . . . , r - 1, 

(8-kdr) - (Q + /cer)z7,. 
02(5 :r ?A;) m r _i 

C r - l 

p _ Oa-fA-e rC02(5.r.A-) y 
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Definition 10 (Associated Polynomial). Let r > 0, let a and 0 be nonnegative 

integers, and let 5 be an arbitrary segment of slope —dr/er with left endpoint (a,P). 

Assume K(X) G ZpLY] has <^r-adic expansion 

K(X) = A0(X) + AX{X) MX) + ••• + An{X) Vr(X)n 

with drj + ervr(Aj ip3
r) > dra + eTf3 for j = 0, . . . , n and let 

J={k\0<k<[(n- a)/e.r\, (a + ker, vr(AQ+kertf
+ke')) eS}. 

We define the level-r associated polynomial of K with respect to S to be 

^K(Y) = Zk,jVkY
k 

with rjk G Fqr constructed as follows. 

o If r = 0 we let 

Vk — AQ+ke0-

o If r = 1 we let Bk{X) = Aa+kei(X)/'p3'^ and we let 

7]k = Bk{£0). 

o If r > 2 we let vk = vr(Aa+ker) and we set 

Example 1. Let r > 1, let K(X) = 1, and let S = Trfi = { (0, 0)}. Then 

K = A0<p°r, A0 = l, K{K) = {(0,0)}, J = { 0 } ; u0 = 0: 

and we have 

If r = 1 then 

*S- = % = 50(eo) = i 
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and if r > 2 then by definition we have 

r — no ce2(rr-.o^o) _ ce2(rr.o,r,o) _ c0 _ -, 
lTr,o,r,0 - " r W - l — S r - 1 — S r - l ~ -1 

and therefore 

= r T r
1

O ) r , 0 ^ _ l ! O , l ( C r - l ) 

= ^TT!o,r,O^Tr--,l0,r-l,0 ^T r_2 ,o,l ( & - 2 ) 

= r V ^ c r . O ^ . ^ o . r - l . O ' ' ' ^0,2,0-^7-1,0,1 (£ l ) = 1-

Example 2. Let r > 1, let K = </?rr/r> and let S = 7 ^ . ^ . Then 

i r = Aerfr<pe
r
rf*, Aerfr = 1, MT{K) = { {erfr, erfrVT) } , 

[a ,P)=(0,frJir+1), J={fr}, Vfr=Vr(Aerfr) = 0. 

If r = 1 we have 

Bh{X) = AQ+hei(X)/p?-^ = Aeifl(X)/pf^-™ = 1 

so that rjf1 = 1 = f̂ 61-" and therefore 

<1} .1/1(y) = »7/1>
r/l = nr i / , y / l -

- '1 .572 'Vl 

If r > 2 then 

and we have 

* ( r - l ) (r-1) 
Jr-l,vjr,Aerfr\ I i r - l , 0 , l \ ' 

* (0 
r / r ( y ) = »//ry

/r 

with 

Bv definition 

^ = r5^. /X:^er /r(^-i) = r5-|/r. 

e 2 ( 5 . r ; / r ) •m r_ r 

" ' ' r-r 

(/? - /rrfr) - (a + frer) vr 

er-i 

frji-r + l - frdr ~ /rCr ^ r 

e r - i 
= 0 
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so that 

r — 0 Q + /'"e'-^e2(5'r'^r^ — Oer/r 
lS,rJr — i6r S r - 1 — " r 

and therefore 

*f /P(y) = nr-^-y^. 

Definition 11. We define the natural level-r associated polynomial of K to be 

and the extended natural level-r associated polynomial of K to be 

Remark 2. For r > 0 and A" and 5 as above we have the following, 

o If we let Qo = 1 then for r > 1 we have 

Jsij- — J t r _ j S r - 1 

o "'(r) 

W)eF,[K]. 

— (r) 

o tyK
K

J has nonzero constant term. 

^ T r , v r + i (*>•'< 

Lemma 2. Ifr> 1 and F(X), G(X) <E Zp[X]* u^/z vT F = i/rG = z/ i/ien 

for any segment Sr C £r,?-

Proof. Let H = F + G. It is clear that either 6V # C £ r p or else SrJJ lies entirely 

above £r.p. 
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Let (ar,pr) be the left endpoint of «Sr. We consider the <^r-adic expansions 

with Cj = Aj + Bj for j > 0, and we let 

JA = {k\(ar + ker, vr(Aar+ker(p^+ker)) eSr}, 

JB = {k\ (av + ker, vr(BaT+kertp°/+keT)) e Sr j ? 

Jc = {k\{ar + ker, vT{Car+keTip0
r
T+keT)) e Sr }, 

JU = JAUJBU JC-

It is evident that 

(JA-JB)V{JB-JA)CJCCJA\JJB = JU. 

For k > 0 there exist a^, &*, Cfc G Fgr such that 

*iUY) = EkejA*kY
k = ZkeJuaky

ki 

*1]G(X) = T.k,jB hYk = E f c e J t , ^ 

* £ ! * W - Ekejc ckY
k = EkeJu ckY

k. 

It is obvious that 

^ke{Ju-JA)akY =^k€(Ju-JB)bkY ^^keiJu-Jc)0^ = °-

We will proceed by induction on r. 

Let r = 1. Then for k > 0 we have 

a* = >U(fo), h = Bk(£0), ck = Ak(£0) +Bk{£0) = ak + bk 

and therefore 

*£Un + *SG(n = Eke* **yk+EfreJu ^ * 

= £*=.*>* + 6*)y* = ZkeJu ckY
k = *{

S%(Y). 

Now assume r > 2. Let A(X): B(X) £ ZP[.Y]* and let C = -4 -f 5 . 
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o If z/r_i./i < vr_iB and cSr_! = Tr^r_1 A it is clear that W$ __ B = 0 and 

*£!!c = *£!!. = CI'.+*fc,V 

o If Ev_]ij4 > VT-\}B and <Sr_i = 7 ^ ^ B it is clear that ^$7-1.A = 0 and 

o If z/r-M = ^r-i,s and «Sr_i = T ^ j . ^ = %.yT^.B then 

C1 )c = *i::!),+•£:,'!» 

by induction. 

It now follows that 

for all k £ Ju. By definition we have 

k { 0 \ikiJA, 

k \ 0 if fc £ J B , 

c = f r^$£ l r (^ ) if*G^, 
fc \ 0 ifk<£Jc. 

Hence 0̂  = 0^ + bk for all A: £ Jv- D 

Lemma 3. 7/Y. a. and (3 are nonnegative integers and K(X) is a nonzero polynomial 

in Zp[X] then the point 

(a + ker,vr(Kip°+ker)) 

lies on the line Lr. dra+er0 tf and ori^V lf 

vr{K) = {3- kdr)- {a + ker)Vr. 
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Proof. W e have 

(Or + ker, Vr{Ktf + ker)) e £r,dra+ert rP 

<=» dr(a + ker) + ervr(Kip°+k6r) = dTa + erp 

<=>• kdrer + ervr(K ip°+k€r) = erP 

<=> kdT + vr{K<p?+ker) = p 

-£=>• kdr + vr(K) + (a + ker) vr = p 

<̂ =̂ > vr(K) = (P — kdr) — (a + ker)Vr . 

Lemma 4. If r > 1 and i> > F r + 1 and 0 < i < fr — 1 then 

(a •rt\ ( , • \ - y ~ ( a r ,^ + ge r )7Z r + 1 _ 
\Pr,v ~ f-dr) — (a:r.„ + ier) l/r — > VT. 

Proof. S ince v > vr+\ = erfr]Jr+1 we h a v e 

er((fir,v — idr) — (ar>u + ieT) vr) — er[,PT.y — idr) — er(aT:V + ier) vr 

~—* p-^T IS^T C-Cy Ujy Cy I (_Xy -y \ L\Z.y j Is y 

= v — arMdT — ier Vr 

= v — {ar_y + ier){erVr + dr) 

= v - (ary + ieT) /I r + 1 

and 

v - (a™ + ?er) JLr+1 > v - ((er - 1) + (/ r - l)e r) ^ r + 1 

= v- (erfr - l)/x r+1 

= erI7r + dr 

> erT>r. 
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2.4 Pseudo-valuations 

Let ipr(y) be a monic irreducible polynomial with nonzero constant term of degree 

fr in F9r[y]. Taking v^,r to be the valuation associated with tpr we give the definition 

of the pseudo-valuation u>r on Zp[x] and enumerate some of its properties. 

Definition 12. (Pseudo-valuation) Let v be a valuation of QP(X). 

A pseudo-valuation of QP(X) with respect to v is a mapping 

u : QP{X)* -> Z 

satisfying three conditions for all F(X) and G(X) in ZP[X]*: 

(1) u{FG) = u{F) + u(G); 

(2) w(F/G) = u/(F)-c«/(G); 

(3) Iiv{F) = u(G) and w(F) ^ u(G) then 

UJ(F + G) = min{ a;(F), a;(G) }. 

Proposition 6. The mapping oor : Qp(X)* —• Z defined by 

Ur(K) = , ~ ( r _ l h 

v^K/p^W) ifr = l, 

v^&t") ifr>2. 
is a pseudo-valuation of QP(X) with respect to the valuation vr 

Proof. If r = 1 it is clear that u\ satisfies properties (1) and (2) of the definition. For 

property (3), assume V\(F) = v\(G) = A and OJ\{F) ^ u\(G). Then 

-Vo (F/p* )=u1(F)? a,! (G) = vi„ (G/p*) 

by assumption, and it follows from the definition of the valuation of a polynomial 

that i'i(F + G) — A. It is also clear that 

;2 (F + G) = vV0 ((F + G)/pA ) = V,;Q ( F/p> + G/p> ) 
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and it follows that 

u1(F + G) = mm{uj1(F),uj1(G)}. 

The case r > 2 is an immediate consequence of Lemma 5 below. • 

L e m m a 5. If r > 2 and F(X), G(X) € Zp[X}*, with vr(F) = vr(G) and ujr(F) < 

UJT(G), then vr(F + G) = vT{F) and LOT{F + G) = OJT(F). 

Proof. We adopt the following notation. 

o We let v = vr(F) = vr{G). 

o We let F = ]T) - Aj f3
T_i be the <^r_i-adic expansion of F. 

o We let G = V • Bj ^p'T_1 be the c/v-i-adic expansion of G. 

o We let S be the shortest segment containing both £7—I,F and Sr-i_c-

o For j > 0 we let Xj = {y — ~p,rj)/eT-i. 

For j > 0 and C.,(X) G ZP[X] we observe that 

(above) r V r - 1 ( C , ) > A J - J 

(j , •yT-_i(Cj</^_1)) lies < on > £r-i$ if and only if < vr-i(Cj) = Xj, 

I below . > 
1 } { Vr-^Cj) < Xj. 

We know vr(F + G) >u. If we assume vr(F + G) > v then we have 

Vj : ^ - i ( ^ ) > Xj, V? : t v - i ( ^ ) > Xj, Vj : t ' r - i ( ^ + Bj) > Xj, 

Sj : vr-i{Aj) = Xj, 3j : vr-i(Bj) = Aj. 

It follows that tv- i (A,) = Aj if and only if tv_i(—-&,) = A7- and therefore 

Applying Lemma 2 we have 

SfF — V 5 F — *S.-G ^ VS.F+G ~~ VS.-G ~ ^-G 
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which implies u)r(F) — ur(—G), a contradiction. It follows that vr(F + G) — v. 

We have Sr^jiF+G C Lr-\^- By definition the respective left and right endpoints of 

S are ((XLIPL) and {aRl fiR), where 

aL = min { 5 r_1 ; j F , a r _i , G }, pL = {u - dr-iaL)/er-i, 

aR = m a x { a r _ l ! F , a r _ i > G } , AR = (v - dr-iOtR)/er-i-

It is clear that if j? < a^ or j > aR then tv_i((;4j + Bj) <fl_i) > Aj and it follows 

immediately that Sr-i,p+G Q $• 

Let H(X) = X. Since «Sr_iFJp C <Sr_! ; ir+ G Q S and <Sr-i,G C Sr-i.p+G ^ <5 there exist 

nonnegative integers s, s;, s" such that 

HS n$ = *&% = *&> + ^ G
1 } = H'*1;-"+Hs"*tx)-

Since g c d ^ r - i , H) = 1 and io>r(F) < a;r(G) it follows that 

ur(F + G) = v+r_1(H>¥;;g) 

= UJT(F). D 

Remark 3. We can observe easily that 

e UJJ is not a valuation; if F ( X ) = —ibo{X) and G(X) = ipo(X) +p then u>i(F) — 

w1(G) = 1 b u t a ; 1 ( F + G ) = a ; 1 ( p ) = 0 < min{ w(F), <<;(<?) }. 

» ^ ( F ) = 0 if and only if F'(f0) ^ 0, where F'{x) = F(x)/pv^. 

9 If F has (/?!-adic expansion 

with n = deg F . rii = deg(^1: and A,- = z ' ^^ , ) . then 

u,'](F) = min{ ? : A, = Vj{F) }. 
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Indeed, if A = vi (F) then 

= «*, (£££BlJ Mx)Mxy/^) 

= «*, (Ei^ni J (^PO/V) wW*) 

= min{ i : Xi = V\(F) } 

since
 E^A^A) MX)/PXi = °-

Remark 4. If F is either a monic polynomial or a polynomial such that Vi(F) = 0, 

and if ipQ is an irreducible factor of F with degree of multiplicity ao, then 

Remark 5. Assume r > 2. 

G cj r(F) = 0 if and only if Vv-i \ ^ r _ 1 ) -

o If F p Q <E ZP[X]* is a polynomial, then 

ur-i{F) > v{Pr_i(F) + e r_i/ r_1wT .(F). 

Froo/. By the definition of A/"r_i(F) the difference av - i (F ) — fv, r_1(F) is greater 

than or equal to the length of the projection of Sr-i,F onto the x-axis, but by 

definition this is fir-i7r-I.FJ a r , d 7r-i.F > fr-\UJr{F). D 

© If £r_i is a root of Vv-i and F(X) G ZP[X]* then 

Wr(F) = o <=* ^ r ^ - o ^ o 

and co'r(F) = 0 if deg F < nr. 
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Proof. The first affirmation is evident from the definition of u)r. Now, if deg F < 

nT = n r _ i e r _ i / r _ i , then from the (/?r_!-adic expansion of F, 

we get that the length of the projection of <Sr-i,F on the a;-axis is less than 

e r _i / r _i ; it follows that deg^ jT - < / r _ i = deg-i/V-1, i-?--, ur(F) = 0. • 

• If 1 < k < r then cok((pr) = YfcZl &iU-

Proof. We will use induction on k. 

Let k — 1. By the construction of <pr we have Tpr = <^1
er- l / r~1""ei-" and hence 

ui(<Pr) = r i i=i e*/*-

Now we assume 

for some k in the range 1 < k < r — 1. 

By the construction of ipr we have 

^fe(^r) = efcgfe = efc/fcafc = ekfkujk+i(<pT). 

Therefore, applying the induction hypothesis, we have 

U!k((pr) 1 T-rr-l r Tir-l t f-l 
^ W w ) = 7— = —7- lli=fc Cifi = H i = f c + 1 et-/i- • 

• If F(X) has <^r-adic expansion 

with n = deg F . nT = deg<^r. and A, = vr(Al ip'). then 

cj r(F) = min{ ? : A, = vr(F) }. 
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Proof. Let A = vr(F). Then 

= £(i:A,=A) MX) <Pr(XY + E{i:A,>A) ^ P O ^ ( X ) 4 

= G(X) + H(X). 

Thus G(X) = E(i:A i=A)^POv?rPO !, with vT(Aitp\) = A for each i in this 

summation. It is clear that vr(G) = A. By the above properties of ur we get 

tur(Aiipi.) = 0 + i-l = i 

and since u>r is a pseudo-valuation we have 

ujr(G) = min{ u;r(ylj (/̂ ) | A; = A } = min{ i \ Aj = A }. 

Now we can see that vr(H) = vr(F — G) > A. Therefore the points of Nr-\{H) 

are above the line Cr-itc
 s o we have 

ST-I,F ~ ST-\,G = S 

which implies 

It follows from the definition of cur that ur{F) = min{ z : Aj = A }. • 
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2.5 A Fundamental Property of Valuations 

P r o p o s i t i o n 7. Ifr> 1 and F(X) G Zp[X] has <pr-adic expansion 

F(X) = Art0(X) + Ar<1(X) <pr(X) + ••• + Ar,n(X) <pr(X)n 

then vr(F) = min0<j<n{ Vr{Arj^r) } . 

Proof. Let ymin = mm0<j<ra{ vr{ArjifPT) } and let 

J = {j\0<j <n,vr(ArJ<4)=ymm}-

The yv-adic expansion of F can be written 

F = H + K 

with H = J2jcj Ar,j fl and K = Ylj<tj ^r.j ft- We have 

vr(F - H) = vr(K) = Vrfcj^jArj itf) > mmJtj{vr(ArJ(p
J
r) } > ymin. 

From the definition of UJT and Proposition 9 we have 

For j G J we know that 0 < degAr_j < deg <pr = e r_i/ r_i deg(/?r-i and therefore the 

</?r_a-adic expansion of Arj is of the form 

Arj{X) = E r = 0 / r " 1 _ 1 BrdJe{X)fPr.y(X)k. 

Hence the integer points on iSr_i.,4r - must all belong to the set 

{ (ar-^A^+ker-!, Pr-i,ATfj- kdr^) | 0 < k < / r _ i - 1} 

which implies deg^F^ . < / r_i = deg^ r _i and it follows that 

For j , k G J with j < k we have 

vT{Arj ipJ
r) = vr{ArM ipk

r) = ymin, 

u}r{Ar_j ifl) = j < k = u}T(Ar.k (pk). 

It follows from Lemma 5 that v,(H) — ymm < vT(K) and therefore 

vr{F) = vr(H + K) = vr(H) = ymin = mm7{ tv(-4,- .^) }. D 
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2.6 Algori thm 1 and t h e Const ruct ion of (pr 

Algorithm 1. Given ds, es, fs, etc., for 1 < s < r and given 

• an integer t in the range 1 < t < r, 

• an integer v > Vt+i, 

• a nonzero polynomial 5(Y) € Fgt[Y] of degree less than ft, 

to construct a polynomial HtiU,&{X) £ ZP[X] such that 

• degHttl/j < nt+i, 

• vt+1 (Ht^5) = v, 

Construction. Let Co, ..., C/(-i m F94 be such that 

Since S(Y) ± 0 the set Js = { i \ 0 < i < ft - 1, 0 ^ 0 } is not empty. 

For i G Js we construct Ki(X) as follows. 

• We take 5{(Y) to be the unique polynomial in F ^ J Y ] of degree less than ft_i 

such that 

» If t = 1 we take P1{X) to be a polynomial in Zp[X] of degree less than f0 such 

that P , 0 0 = 6i(Y) and we set 

Ki(X)=^-idlPi(X). 

o If t > 2 we let Vj = (:3tM — idt) — (cxtM + iet)~vt and we set 

Ki(X) = Ht-i.„i.&,(X). 
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Having constructed Ki(X) for i E J's, we set 

Ht,„AX) = Y.iejs
 K^X) MX)*"**'. • 

Proposition 8 (Montes, Proposition 3.2). Algorithm 1 is correct. 

Proof. We will proceed by induction on t. 

If * = 1 then we have Hhl/tS(X) = E i e ^ A ' ^ ^ P O PiP0 Q l ' " + i e i . 

» By assumption v > V2 = e\f\d\. Hence for i 6 J$ we have 

(/?!_„ - zd^ei = /?iit/ e1 - id1e1 

— v — a.\^ d\ — id\e\ 

> v - (ex - l)di - (/i - 1 ) ^ 6 ! 

= v-elfldl + di 

> 0 . 

It follows that /?!,„ — zdj > 0 for all i G J$ and therefore Hit„.s{X) € rLp\X\. 

® We have 

d e g F ^ < max i e J i{degP, + (<*!,„ + zei) deg ipx } 

< ni -f (ej - 1 + (/a - l)ei)n! = e ^ n i = n2. 

• For i £ Js we have -Pj(£o) = C; 7̂  0 so that v2(Pi) = 0. It follows that 

M t f w ) = min i 6 J ,{ ^ ( p * - " ' * ^ <^" + i e i ) } 

= mmiej6{ [Phv -idi)v2{p) + v2(Pz) + {altl/ + iel)v2{y{) } 

= min iG^{ {0ht/ - idi)ei + ( a ^ + ze^c/i } 

= l\^\ + «irl/rfi 

= v. 
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• We have 

with Aaiv+iei(X) =p/3^-idlPi(X) for % e Js. It follows that 

with 
= ^ l t > + f e l ( X ) = pft--«*i*(X) = 

for i £ J5, and therefore 

Now we assume Algorithm 1 is correct for t = s — 1 for some s > 2. By this 

assumption, if \i > Vs and TJ(Y) is any nonzero polynomial in F 9 s l [ y ] of degree less 

than /<,_! then Algorithm 1 returns a polynomial Hs-i^^X) € "ZP[X] with 

deg #,_!,„,„ < ns, vs{Hs^^) = //, ^ t ' i ^ . ^ i n = 5{Y). 

We will prove the algorithm is correct for t = s. 

From Lemma 4 we have Vi > Vs and thus the construction gives 

HS,VAX) = £ l G J , Hs_hViA{x)ifs{xY°^. 

• Since Hs-\il/usx{X) e ZP[X] for i 6 J<5, it is clear that HSit/is{X) G ZP[X]. 

• Since a5 „ < e5 — 1 we have 

deg HSM:S < max JeJ j{ deg Hs_hUi:5l + {aSM + ies) deg tpa } 

<ns + ((es - 1) + (fs - l)es)ns = esfsns = n s + 1 . 

9 Since degi^s-i.^.,^. < ns < n s + 1 we have 
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and from Lemma 4 we have esz/j + (aStV + ies)fis+1 = v. It follows that 

Vs+i(Hs,„,s) = mmiejs{vs+i(Ha-iiViiSi ^s,u+ie$) } 

= miai€j{{v3+i(H3-iiVi,Si) + (as,„ + ies)vs+1((ps) } 

= min i(=j5 { esVi + (aSi„ + ies)/Za+1 } 

= v. 

• For i G J<5 the polynomial Hs-iiViisf was constructed so that 

o vs(i7s_lit,.i(5.) = vu 

0 ^s - l ,H s _ l i I / t . , 4 j . ^ ^ - l . i / i , 

Writing a?s, z/, 5 for (5Sj//s ^ — ots_v)jer it follows that 

#<f> ry) = y * w #(») (y) 

"= 2 ^ , 6 ^ ^ , ^ 5 , 2 ^ r s _ 1 , ^ , / / s _ i i l / . , s . ( ^ - i ) ^ l 

= £ * * ^ , , , ^ ( 6 - 1 ) 1 * 

= E£o1C,-y* 

= <5(y). n 

Proposit ion 9. Lei dS; es. fs, ipSl ips. etc., be given for 1 < s < r. let 

-yr(Y) = cr(A(Y)-Y^) 

where cr = Q~erfr e F* and let 
' i (Jr 

ipr+1(x) = <pr(xy^+Hr.Vr+1„r(xy 

Then ipr+i(X) is a monic polynomial in 7JP[X] with the following properties. 

© d e g y ; r + ] = 7 ? r + ] . 
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a J\fr((pr+i) consists of the single segment Sr,tpr+i • 

. ¥;r
}
+1(Y) = crA(Y)-

9 ipr+i is irreducible over Zp. 

Proof. Let Co, • • •, C/r-i £ Fgr be such that ^T{Y) = X^o* Ci ^ a n d define 

J7r = { z | 0 < z < / r - 1, Ci^O}. 

By the definition of the associated polynomial ipr has nonzero constant term, so 

Co = cripr(0) ^ 0 and hence 0 G J7r. 

• Since ipr(X) G Zp[X] and Hr,Vr+i_lr(X) G Zp[X] it is clear that 

<pr+i(X) = MX)erfr+ Hr^T+inr(x) e zp[x] 

and since degHr^r+ulT < nr+\ it is clear that fT+i is monic with 

deg(/?r+1 = erfr deg ipr = erfTnr = nr+1. 

& The ^-adic expansion of ipr+i(X) is 

and therefore AfT(ipr+i) is the lower convex hull of the set 

S = { (av,i7r+] + 2er, v r(^i) + (ani7r+i + ^ M O | i G J7r } 

U{(e r / r , e r / r F r ) } . 

If T = 1 then for i G J7l we have KZ(X) = p^^-^Pt(X) with ^(P*) = 0 and, 

since V\ — 0 and i'i(p) = 1. it follows that 

VjiKi) + (Q1:F, + 2ei)F1 = t'i (Ki) 

= (31J?2 - idi)vi{p) + vj(Pi) 

= Pi.v2-id}. 
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If r > 2 then for i e J1T we have Ki{X) = Hr-i^^iX), so that 

*v(^) = z/j = (/?r,!7r+I - «dr) - (ar,i/r+1 + ier)ur 

and thus 

vr{Ki) + (ar,Fr+i + ier)vT = Pr.vr+l - idr-

In either case we have 

S = { {ar,vT+1 + ier, Pr,vr+lL - idr) \ i E Jlr } U { (e r / r , er/rZ7r) }. 

It is clear that d ra + er(5 = z7r+1 for every point (a, /?) € 5". It follows that 

Afr(ipr+i) consists of a single segment and that this segment has endpoints 

(oir,vr+1,PrMT+1) and (e r / r , eTfTVr). Hence A/"r(yv+i) =S r>¥V+1 . 

• It follows from the definition of t>r+i that 

» It was shown in Example 2 that 

¥;> eTfr(Y) = Q;e^Y^ = cTY^. 
Jr,vT+1:<PT 

It is clear that <Sr^r+i C 7^j7r+]. and since Sr,lfirA_^ and %,vr+1 have the same left 

endpoint it follows that 

*(r) (Y) = *i r ) (y) 

= *M
 er/ (y) + 4r ) H (Y) 

= crY
fr+lr(Y) 

= cri;r(Y). 

o Since the associated polynomial 

is irreducible over F,,., it follows from the theorem of the associated polynomial 

that vjr+] is itself irreducible over Zp. D 
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By construction, the degree of any irreducible factor of F is greater than or equal to 

nT. From this fact and Proposition 4.1 of (Pauli, 2001) we have the following. 

Proposi t ion 10 (Pauli). Let 771, ..., rjN be the roots of monic square-free polynomial 

F(X) in an algebraic closure of Q p . Assume that each irreducible factor of F has 

degree greater or equal to deg y?r and that 

for j = 1, .. ., N. Then d e g F = nr and hence F(X) is irreducible over Q p . 

See also Proposition 15 below. 

Remark 6. From theorem of the polygon we have 

v(<Pr(Vi)) = ••• = v(ifr(rjN)) = (vr((pr) + — ) = —T-^—. 
e\ • • • eT-\ \ erJ e\ • • • eT 

Thus Proposition 10 gives a termination condition for the Montes algorithm: 

Mr+i 2v{d\scF) 

e\ • • • er N 

Coro l l a ry 3 . If erfr = er+1fr+l = • • • = er+rnfr+m = 1 and 

1 / . . J , \ 2v(discF) 
VrWr) + dr -\ b dT+m > 1 - / V r ' / ' ' ' ' ' Tin i - A 7 

ei • • - e r_! V J N 

then d e g F = n r and hence F(X) is irreducible over Q p . 

Proof. Let 771, . . . , n^ be as in Proposition 10. 

By the properties of (fk+i w e know 

Vk+iifk+i) = ekfk{ekvk{<pk) + dk) = vk{<pk) + dk 

for k = r. . . .. r + m — 1. and by the theorem of the polygon we have 

v(<?k+i[r]j)) = (vk+1(ipk+1) + ^ l l 

6 ] • • • e k - ] 6 k \ ek+j 
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for j = 1, . . . , N. Thus we can write 

Vr+n((fr+n) = Vr((Pr) +dT-\ h d r + n_i 

for n. = 1, . . . , m. Hence for j = 1, . . . . TV we have 

v{tpr+m(Vj)) = ( f r + m ( ( / 7 r + m ) + 
ei • • • e^_ier • • • er+m-i \ 

(vr((pr) + dr H hrfr+m 

> 

ei • • • e r _ 1 

2v(discF) 
TV 

By Proposition 10 we conclude that F is irreducible over Q p . • 

P r o p o s i t i o n 1 1 . The Montes algorithm terminates. 

Proof. Let N — degF. The algorithm constructs the sequence ipi, </?2, ••• with 

deg(pr = nr, 1 < rii < n2 < • • • < N, and nT + 1 = n r if and only if e r / r = 1. 

It is clear that the case erfT > 2 can occur at most log2N times, since n r + i = erfTnr 

and N is an upper bound on nr. 

Furthermore, from Corollary 3 it is clear that the case erfr = 1 cannot occur infinitely 

often, since for each root rj of F the terms of the sequence 

V{ipr+m(rj)) = [VriVr) + dT + h dr+m ) 
e i • • • e, ._i V / 

are bounded above by 

e a •• -e r _i 

2v(discF) 

and increase bv 

at each increment of m. 

N 

&r+rn ^ J- ^ *• 

e i - - - e r _ ! ei---er-i N 

It follows that the Montes algorithm constructs only finitely many levels and therefore 

must terminate. • 
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2.7 Three Important Theorems 

2.7.1 The Theorem of the Product 

The following two theorems appear, in a more general form, as Theorem 6.1 in 

(Montes, 1999). 

T h e o r e m 11 {Theorem of the Product: Segments). Let r > 1. let F1(x) and F2(x) 

be nonzero polynomials in 7JP\X], and let S\ and S2 be the segments of slope —dr/er 

of the Newton polygons Mr{F\) and Nr(F2) respectively. Then Si +S2 is the segment 

with slope —dr/er of J\fT{F-[F2). 

Proof. We denote 

F = FiF2, S — S\ + S2, C — CTj}r F = £r,vr+1(F)-

We can assume that (pr \ F\ and tpr \ F2. 

Let Fi and F2 have (^r-adic expansions 

Then 

Since deg BjCk < 2nr — 2, each term J2j+k=iBjCk has t^v-adic expansion 

Ylj+k=i B3Ck = Di = Dhi<pr + Di.o 

with deg/^,0 < nr — 1 and degDiA < nT — 2. Taking 

the ^ - a d i c expansion of F is 

F — ^ 5 + t + 1 A " ! 

with .4, = £>,--i.I + A.o for ? = 0. . . .. s + t + 1. 
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Let us denote A* = vr(Di^pl
r), with A_i = oo, and U{ = vr(Ai^pl

r). 

We have to show that S is an edge of Nr{F). 

Let ( a i , A ) , {ai,P[), ( a^ , / ^ ) , {a
2,P'2) t>e t n e 1 ^ a n ^ " § n t endpoints of Si and the 

left and right endpoints of S2 respectively. By definition 

(a, P) = (ai + a 2 , f r + & ) , (a',P') = K + a'2,p[+P'2) 

are respectively the left and right endpoints of S. 

For j > 0 and k > 0 we have 

drj + eri>j > vr,Fi if J < o;i, drk + erwk > vr,F2. if k < a2, 

dTj + ert'j = ^V.JTJ if j = a.\, drk + eTwk = vTyF2 if & = »2, 

dTj + eru, > vr,F\ if Q'i < J < a ' i ; drk + eTwk > ?r,F2 if a 2 < & < &'2, 

d r j + eTVj = 1 / ^ if j = a'j, drk + erwk = vr.F2 if fc = a4> 

d rj + er-t'j > z?r ,pj if j > Q'i, drA: + erwk > vr,F2 if ^ > a y 

L e m m a 6. 7 /7 < a or 7 > a ' i/ien (7, A7) lies above £. 

Proof. For all 7 > 0 we have 

> min { vr{Bji(tr) + vT{Ck^) \ 3 + k = 7 } 

= min { Vj + wk \ j + k = 7 }. 

If 7 < Q and j + k = 7 then either j < 07 or A: < a2 and hence 

"r.F = vr.Fl + vT p7 < drj + erVj + drk + erwk = dr-j + er(v3 + wk). 

Taking j ' + k' = 7 such that vy + wk> = min { 17 + wk | j + A: = 7 } we have 

z/rjr < d r7 + er(vy + wk>) < dr~f + e,-A7 

and thus (7, A-,) lies above L. 

A similar argument shows that (7. A-.) lies above £ if 7 > a'. O 
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Lemma 7. If(j,k) — ( Q ' I , ^ ) then 

Vj +Wk = P 

and if j + k < a and (j, k) ^ (a\, a2) then 

Vj +Wk> p. 

Proof. It is clear that vai + wa2 = P\ + p2 — fi­

ll j + k < a and (j, k) ^ (a\, a2) then j < ct\ or k < a.?,. If j < a.\ then 

drj + ZrVj > Vr.Fn drk + erVJk > Vrp2] 

dTQL\ + erPi = K,Fi, dra2 + erp2 — vrF2; 

vrF-drj dr vr,F2-drk dr 
Vj > = Pi + —(ai - J), Wk > — = P2 {k- a2 

\f,y \Z-y Cy ^-"T 

Vj + wk > pi + — («! - j) +p2 -{k- a2) 

= fi\ + P2 + —{a1-j-k + a2) = p. 
er 

A similar argument applies if k < a2. and the result follows. 

Remark 7. It follows from Lemma 7 that AQ. = fi, hence (a, AQ) lies on C. 

Lemma 8. If(j.k) = (a[,a'2) then 

Vj +Wk = P' 

and if j + k > a' and (j, k) ^ (a[, a2) then 

Vj + Wk > P' • 

Proof. The proof is closely similar to that of Lemma 7. 

Remark 8. It follows from Lemma 8 that A0* = 3'. hence (a'. Aa>) lies on C 

L e m m a 9. If ~ > 0 then u~, > min { A 7 _ j . A 7 }. 
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Proof. For 7 > 0 the yv-adic expansion of D1 is D7.o + Dlti<pr. 

It follows from Proposition 7 that 

vr(D7) = min { ur(I>7,o), vr{DlA(pr) } 

and thus 

A7 = vr(Dy(p}) = min { vr(D^0^), vr{D1^
1
T

+l) }. 

Since 

vr(i47y?7) = vT(D7_ltltf + DlfiyPT) > min {vr(D^1A(pJ), vr(Dli0tf) } 

it follows that 

-u7 = ^ ( A , , ^ ) > min { A7_i, A7 }. • 

Lemma 10. / / 7 < a or 7 > a' then (7, w7) Hes a&ofe £. 

Proof. If 7 < Of or 7 > a' then the point (7, A7) lies above £ and the point (7 — 

1, A7_i) lies on or above C, i.e., 

VTF - drj vr,F - dr(7 - 1) vr,F - dr7 

Z A 7 > , ^7—1 dL 5* j 

so that 

u7 > mm { A7_ 1, A7 ) > —: . 

Hence (7,1^) lies above L. D 

Lemma 11. It is the case that ua = (3 and ua> = p'. 

Proof. Since DQ = J2,+k=a BjCk w e have 

Vr{Da<p? - BajCQ2rf) > m h l { V3 + U'k I 3 + k = <*: (j: *0 7̂  (Ctl: «2) } 

and it follows that 
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0 Vr-l,Da = Vr{DQ) = Vr(BQlCa2) = Vr-l,BaiCa2, 

o Nr-\{Da — BaiCa2) lies entirely above the line CT-\^T_^ D , 

° «5r-l,Z7a = 5'r_1;JBaiCQ2-

We apply Lemma 2 to obtain 

with T = iS,--^^ = Sr-itBa ca • From the definition of o;r we obtain 

•̂ rC-Oo) = wr(£Q]CQ2) =w r (S Q l ) + wr(CQ2). 

Since degBj < nr and degCfc < nr we have ur(Bai) = tor(Ca2) = 0 and thus 

u!r(Da) = 0. 

The < r̂-adic expansion of D a is DQx, + DQ_i(pr, hence vT{Da) = vr(Da0), and therefore 

Vr(Daio(p?) = VT{Da(p°) = AQ. 

It is clear that ^(i'a-i.i1!5?) > Aa_1; and since (a — 1, AQ_i) lies above £ and (a, AQ) 

lies on C it follows that AQ_! > AQ. Since 

Aatf = Da.ltltf + Da,Q<p° 

we conclude that wQ = vr(Aaip") = AQ = /?. 

In the same way it can be shown that ua- = 0'. • 

Lastly, since no vertices of NT{F) can lie below £ it follows that 

if a < 7 < ay. Hence S must be a segment of .<Vr(F). • 
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Theorem 12 [Theorem of the Product: Associated Polynomials). Let Fi, F2, <S1; S2, 

and r be as in Theorem 11. Then 

Proof. Throughout this proof we will use the notation from Theorem 11. 

Let us define 

J = { i I (a + ier,ua+ier) eS}. 

J\ = {j\ ("i +jer,va,+jer) e Si }, 

J2 = { k I (a2 + fcer, wQ2+fcer) G S2 }. 

Using a similar argument as in Lemma 6 we have the following. 

Lemma 12. If a < 7 < a! then (7, A7) Hes aoove or on £. 

Lemma 13. IfiEJ then ua+i£r = AQ+ier. 

Proof. Let 7 = a + ier. Then the case 7 = a and 7 = a' is clear from Lemma 7 and 

Lemma 8. 

Since (7 — 1, A7_j) and (7, A7) lie above or on C by Lemma 12 and Lemma 6 and 

Ury > min{ A7_2, A7 } by, Lemma 9 we then get w7 = A7. • 

Lemma 14. Let a < 7 < a'. Consider 

Then vT(D1_iA) > vr(D1,0). 

Proof Let us review the following notation: 

D^x) = DlA(x)-Mx) + D^.o(x) 

£>7-i(z) = £>7-i.i(-T)v?r(x) + A-i.o(^). 
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Then by the property of vT we have 

A7_i < VriD^^ipl). 

On the other hand 

?z7 > min{ vr{D^1Aif1), ^(Z^oV? }) 

> min{ A7_i, vr{Dlfiip? }). 

Since u7 = A7 < A7_i, we have 

vr(D^hl^) > A7_x > vr(Dlfi(pJ) D 

To prove the theorem we will proceed by induction on r. 

Let r = 1. We need the following notation 

B'^x) = Bai+jer(x)/p^-^ C'k{x) = Caa+fcer(x)/pft-fc* 

4 ( s ) = / l Q + 2 e r ( x ) / / - ^ £>;(*) = Da+ie-r(x)/^-^. 

Then by the definition of the associated polynomial we have 

We obtain the last equality by Lemma 14. 

Now we will calculate the right hand side of the required equality. 

* £ ! * V) * £ * (Y) = ( £ , 6 J l mYi) (EkeJ2 nkY
k) 

= ZxAZi+^j(So)c'k(Zo))Yi 

= ^jD'Mo)Y\ 
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Since 

Di(x) = DLl{x)ipr{x) + A,o(z) 

and Ui = A,, then 

Eftx) = D[0(x). 

Now we assume the theorem is correct for r = t — 1 for some t > 2. By this assumption 

we have 

We will prove the theorem is correct for r = t. 

Remark 9. For £ > 0 and K and 5 are as above we have the following. If Uf, = (3 — kdt 

(mod et-\) then ott-\,vk = (P — kdt) mt-i mod et-\ and therefore 

{a + ket) 9 i (t, < - 1) + 02(5, t, k) = {mt_, {p - kdt) - at_Xvk)/et^ . 

Then we have the following . 

p - l _ r)Q:-l-ietc8(t-l,i) 

ls.t.i ~~ iH-i st-i ) 

with 6(t - 1, z") = (ct't-i^ - mt-i(P - idt)) and i/j = i;t(>lQ+iet). 

It is sufficient to show that 

By definition 

m = rsliVtllA^JZt-y) 

=fi^e?iri-°*t1
iu+,t(et-i) 

- " t - i Ci-3 u'r(_1.1,:rJD0+,-t,.o^t-^ 

The last equality is obtaind by the same observation as in the particular case t = 1. 
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To calculate the right hand side of the required equality we observe the following for 

j 6 J\, k G J2 and j + k = i G J: 

a t - i ^ . + a 4 - i , ^ = a t-i,i + 5jiket-\ 

6{t - l,j) + 6{t -\,k) = 6(t-\,i) + 5j,k 

where 
( 1 if at-lMj + <yt-\,uk > et-i, 

Oj,k = < 

[ 0 if at-i,uj + at-i,vk < et-i-

Then we have 

( f i a 2 + ^ ^ M - l ) ^ - 1 ) j 

_ aa+iet /y- .e(i,t-l)+e(fc!t-l)+<5J,fc .-r.(i-l) (f: x\ 
- " i - i lZ^j+fc=z€i-i *r4_i,„;.+rt-i,^,sQ1+;,-e(cai+fcetKt-i;>l 

_ Q Q + i e t / V - > ^ ( t - l : i ) T ( t - 1 ) , , . N\ 

= fif_+rer1'',*t>
1U0+,„te-,) 

= nr1-"cfi'r,",*£,,U„.,„.„(f.-)-
The second-to-last equality follows from Lemma 2 and the last equality by the same 

observation as in the particular case t = 1. • 

2.7.2 The Theorem of the Polygon 

T h e o r e m 13 (Theorem of the Polygon). Let r > 1. Assume J\fr(F) consists of a 

single segment and (fj \ F for j = 0, 1. . . . , r. Then 

i) d e g F = ergrnr: 

ii) //;<; endpomis of Nr{F) are 

(0. f/.r<7r + ergrvr{pr)). (ergr. ergrvr{pr)). 

58 



iii) if rj is a root of F then 

1 
v{fr{v)) = (vr{<Pr) + dr/eT), 

e 0 e i • • •e r _! 

iy) if 9r = 1 then F is irreducible. 

Proof. The first two items are obvious. 

To prove (iii). let G(X) = X ^ o 0 * ^ ' ^ e the minimal polynomial of ipr(v)- Using the 

Viete relations between the coefficients of a polynomial and its roots we get 

v(a0) = nv(ipr{r))), 

i.e., 
V(a0) l , xv 

n 

which is the slope of J\f0(G). The polynomial G being irreducible, MQ{G) is a single 

segment, and each point (i, v(a-i)) is either on that segment or above it. We can write 

v{a-i) > (0 - id) > v{a0) - % — = (n - t)v{(fr(r/)), 
n 

for any i, 0 < i < n. 

Taking the polynomial 

H{X) = G{MX)) = UtowW e o[x) 

we get 

vr(aiipl) = Vria,) + ivr(ipr) 

= eGej • • • er-iv(a,i) + ivr((pr) 

> e0ei • • • e r_j(n - i)v(<pr(r))) + tvr(tpr) 

= nvr(ipr) + (n - i){e0el • • • er^v{^r{ri)) - vr{<pr)). 

The conditions i = 0 or i = n equals the above inequality. Hence J\fr{H) is a single 

segment with slope 

vr(aQ) - m v ( w ) 

— n 
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We have F \ H or H | F since 77 is a root of H, thus by the Theorem of the Product 

Afr(F) and J\fr(H) have the same slope, i.e., 

— - = - e 0 e i • • • er_1u(v?r(77)) - v r(yv), 

which gives the desired formula. 

Statement (iv) follows from the Theorem of the Product. 

Assume F = F1F2 and let Si and S2 be the segments of A/^Fj) and Mr(F2) of slope 

—dr/er, respectively, and let S = Afr(F). By the Theorem of the Product we have 

S = Si + S2. 

If |«Si| = }tS*2! = 0 then S = S\ + S2 would consist of a single point, implying gr = 0, 

which is assumed not to be the case. 

If, say, j«S"i I > 0 then the cc-coordinate of the right endpoint of Si would be at least 

er, so that degFj > ernr = deg F. implying that degF 2 = 0. Hence F must be 

irreducible. - O 

2.7.3 The Theorem of the Associated Polynomial 

Defini t ion 13. For the statement of the crucial Theorem 14 below we need to es­

tablish some notation. 

• We say the monic polynomial G{X) E ZppsT] has r-type ip if 

o <ps{X)\G{X), 

o MS{G) consists of the single segment Ssc, 

o there exist cs > 0 and Xs G Fg= such that 

with A0 = 1. tps = ifs if s < r. and %-r = t . 

for 5 = 0 . . . . . r. 
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9 With m 0 = 0 and m ; = (l/df) m o d e* for 1 < z < r we define 

, m ^ - 1 

so that mjrfj — m'ej = 1. 

® We let TT0(X) = p and for 1 < z < r we define 

*<(*) = , ,f L,n. , v ^ ( * ) = - 4 ^ r , 7ri+1(x) = ; 

Remark 10. We have m 0 = 0 and TTIQ = — 1. so that 

- tp\l 

TTi=p $i=<Pi Ml = — r 

^2 = — r $ 2 = -3777 / '2 ™ 

T h e o r e m 14 (Theorem of the Associated Polynomial). Let r > 1. /Iss'ume F(X) is 

monic with (r — I)-type tbr-i and that the factorization 

¥;\Y) = \^rA(Y)c^ • • • wrn(YT-> 

is given, where A 6 Fqr and ipr>i (Y), . . . . ibr>1(Y) are distinct irreducible monic polyno­

mials in Fgr[Y] with respective degrees / r l . . . . . fT1. Then F(X) has the factorization 

F{X) = GrA(X)---Grn{X) 

with Gr_i, ..., Grn satisfying the following. 

o GrA(X) is a monic polynomial in OK[X] of degree erfT.i cTA nr. 

e GrA(X) has r-type f:rj. 
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• Let rji be a root of Gr,i; let /j,ir = nr{Vi)> let °i ^ Gal(Fgr/Fgo) be such that 
ai(Cj) — ~P-%,j for 1 < J? < ~̂ — 17 and let r^ = a"1. Then Vi(fj,ir) = 0 and ipTti is 

the minimal polynomial offff^T over Fgr. 

Furthermore, if c^i = • • • = crn = 1 then each ofGr>i, . . . , G>,7 is irreducible. 

Proof See (Ore, 1928: Montes, Nart, 1992; Montes, 1999). • 
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Chapter 3 

The Modified Montes Algorithm 

3.1 Simplification of the Original Algorithm 

Given a prime p and an irreducible monic polynomial $ (x ) in Z[x], the Montes 

algorithm finds the inertial degrees and ramification indices of the prime factors of 

the ideal pOx in OK, with K the extension of Q generated by a root of $ and OK its 

ring of integers. 

As is well known, this data can be derived from the factorization of <J>(x) into irre­

ducible factors in Zp[2;]. 

In terms of execution time, the worst case for the Montes algorithm is the case with 

$ irreducible over Qp. Each of the tests that would reveal reducibility must fail, and 

hence the maximum number of such tests must be performed. 

Our intention is to analyze the complexity of this worst case. Hence there will be no 

need to consider the less time-consuming cases, and the algorithm can be simplified 

considerably. 

Our simplified version of the algorithm, of which a full M A P L E implementation is 

given below, is a test for irreclucibility only. Its output is t r u e if $ is irreducible and 

f a l s e otherwise, with no further information being given. 

A considerable advantage to this approach is a substantial simplification in the nota-
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tion required. We have in fact mostly abandoned the original notation and invented 

our own. 

A complete MAPLE implementation of the modified algorithm appears in section 3.3 

below. An extend example is given in Appendix B. 

3.2 Complexity of Fundamental Operations 

Notation. 

We let ( a ) denote the number of operations required to compute a. 

We use the notation 

f(n) € 0(nfc+£) 

as an alternative to the perhaps more familiar "soft-0" notation 

f(n) E 0-(nk) = f(n) e 0(nk(lnn)c) 

for some positive constant c (von zur Gathen and Gerhard. 1999). 

For n > 3 and q a prime power we define the following. 

L(n) = Inn In Inn 
F(n, q) = n M(n) ln(gn) 

M(n) = nL(n) 
R(n,q) = M(n)lnln(g'n) 

K(g) = M(ln f i n i n g 

Ari thmetic in Zp . 

We are concerned with the reducibility of a monic polynomial F0(x) G Zp[x] for some 

prime p. 

Let p6* denote the p-adic reduced discriminant of this polynomial (Ford. Pauli, and 

Roblot: 2002, Appendix A). If Fi(x) G Z[x] with 

FiW^Foix) imoc\p25^]Zp[x}) 
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then F0(x) is reducible in Zp[x] if and only if Fi(x) is reducible in Zp[x]. Thus in 

our computations p-adic integers can be represented as rational approximations with 

25$ + 1 p-adic digits of precision, i.e., as rational integers reduced modulo p2(5*+1. 

Shonhage and Strassen have shown that the time required to perform an arithmetic 

operation on two rational integers of length m is 0(M(m)); see (von zur Gathen and 

Gerhard, 1999, Ch.8, §8.3). 

It follows that if we represent p-adic integers in this fashion then the cost of an 

arithmetic operation is 

0(M(<J*lnp)). 

For clarity we will omit this factor from our subsequent complexity estimates; these 

estimates can therefore be interpreted as the cost in arithmetic operations in Zp. 

Arithmetic in Fq. 

By (von zur Gathen and Gerhard. 1999, Ch.14, §14.7), a single operation in Fg can 

be performed in 0(K(q)) word operations. 

Under the simplifying assumption that Inp E 0(1) we have 

\nqr = / r*_jlnpG 0(/ r*_i) 

and thus the cost of an operation in Fgr is 

0(K(? r)) = C>(M(lngr)lnln9r) 

C O ^ O n / ^ ^ l n l n / ; . , ) 

For a G FqT and any integer n the cost of computing a" is 

o(\ngr K(9r)) c ov;-j;±\+t)) = o(/;j;+0) 

since we may assume 0 < n < qr — 1. 
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By (Shoup, 1994, Theorem 10), the cost for constructing an irreducible polynomial 

of degree n over the finite field Fq is 

O ((n2 log n + n log q) L(n)). 

Polynomial Ari thmet ic . 

The number of operations required to evaluate a polynomial of degree n at a given 

point using Horner's rule is 0(n). 

By (Schonhage and Strassen, 1971) and (Cantor and Kaltofen, 1991), the number of 

operations needed to multiply two polynomials of degree at most n is 

0(M(n)) . 

It follows that the number of operations needed to compute the mth power of a 

polynomial of degree n is 

nm) ' . 

Let q be a prime power and let K = Fq. Then by (von zur Gathen and Gerhard. 

1999, Ch 14, §14.4 and §14.5), the number of operations in K needed to factorize a 

polynomial of degree n over K is 

0 ( F ( n , ? ) ) 

and the number of operations in K needed to find all roots in K of polynomial in 

K[x] of degree n is 

0(R(n,q)). 

Let ip(x) be a monic polynomial in Zp[x] of degree n v . let f(x) be a polynomial in 

Zp[x] of degree n. and let k^ = [n/n^\. Let E(f, kv) denote the number of operations 

in Z p needed to compute the c^-adic expansion 

f(x) = Z-^ot(x)^(x). 
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From (von zur Gathen and Gerhard, 1999, Ch 5, §5.11), we have 

E(f, hp) e 0(M**> + l)nj) = Oinlfy = 0{n2). 

To evaluate a polynomial f(x) at n points, #i, . . . , 6n we have to compute f(x) mod 

(x — 0i), which, by (Aho, Hopcroft and Ullman, 1974, Ch.8, §8.5), requires 

arithmetic operations in Zp. 

Matrix Arithmetic. 

By (Strassen, 1969), finding the inverse o f a n x n matrix over a field K requires 

0(n l o g2 7)CO(n 2 8 1) 

operations in K. 

3,3 Complexity of the Modified Algorithm 

We give a complete MAPLE implementation of the modified Montes algorithm, with 

proofs and explanatory comments interspersed. 

We begin with an outline, showing the three major phases of the algorithm. 

The algorithm begins in phase L0 ("level 0"), then alternates between phase Li and 

phase L2 ("level r", for r = 1, 2, . . . ) . 
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• input: $(x) G Z[x] monic and irreducible, p € Z prime 

{ TRUE if $(x) is irreducible over Qp[x], 

FALSE if $(x) is reducible over Qp[x]. 

L0. o Factorize $ modulo p: 

o If po > 1 then return FALSE. 

If pa = 1 and a0)i = 1 then return TRUE. 

o Set r <— 0 and define 

(pr(x) — x, nr = 1, dr = 0, er = 1, 

•̂V = ^r)1) / r = degt/v, ir a root of ^ r . 

o Replace r <— r + 1. 

Lj . o If r = 1 let v?i(x) be a monic polynomial in Z[x] such that 

^ i = ipo-

o If r > 1 construct // r_i according to Algorithm 1 and let 

o Define 

n r = er_i/r_i?v_i = d e g w 

o If er-ifr-\ = 1 then replace y?T._1 <— (/v and r <— r — 1. 

o Go to L2. 
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L 2 . o If <pr = $ then return TRUE. 

If <pr | $ and </?r =£ $ then r e t u r n FALSE. 

o Let iSrii, . . . , Srtsr be the segments of A/"r($) and let 7 ^ + 1 be the number 

of points on 5 ^ with integer coordinates, for k — 1, . . . , <5r. 

o If <yr > 1 then return FALSE. 

If 5r = 1 and 7 r l = 1 then r e t u r n TRUE. 

o Let —dT/er be the slope of <Srl and construct 

¥^(x) = cr^;i
1---i;^eFqr[x} 

with cr G F9 r a nonzero constant. 

o If pr > 1 then r e t u r n FALSE. 

If p r = 1 and a r i = 1 then r e t u r n TRUE. 

o Define 

ipr = ipri, fr — degzZ-v, Cr a root of tpr. 

o Replace r «— r + 1. 

o Go to Lj. 
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############################################################################# 

unprotect(norm,trace) : unassign(norm,trace): with(linalg): with(padic,ordp) : 
############################################################################# 

montes := proc (FO, pO) 

local Fl, vr, xp, u, v: global p, x, y, z: 

p := pO: x : = 'x': y := 'y': z := 'z': ##### global ###### 

vr := ordp(rres(FO,diff(F0,x)),p) : xp := 1 + 2*vr: Fl := mods(F0,p~xp) : 

u := montLO(Fl): 

if u then v := "irreducible" else v := "reducible" fi: 

printf("\n F is %s over Q_7.d. \n\n" ,v,p) : 

end: 

############################################################################# 

Given the polynomial $ = F0 and a prime p = po, the coefficients of <J> are reduced 

modulo p 2 5*+ 1 to yield the approximation F\. 

The procedure montLO(Fi) performs the algorithm proper, returning t r u e if F^{x) is 

irreducible in Zp[x] and f a l s e if F\(x) is reducible in Zp[x]. 

In what follows it implicit that the results of arithmetic operations in Z are reduced 

reduced modulo JO2<5*+1; for clarity we have suppressed these operations. 

############################################################################# 

r r e s := proc (f, g) ##### reduced r e s u l t a n t of f, g ##### 

loca l A, n: global x: 

A := i h e r m i t e ( s y l v e s t e r ( f , g , x ) ) : n := rowdim(A): r e tu rn (A[n ,n ] ) : 

end: 

############################################################################# 
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############################################################################# 

aub := proc (A) return(op(2,op(2,eval(A)))) end: ###### array upper bound 

############################################################################# 

ival := proc (v) 

### input: v = integer 
### 

### output: p-adic valuation of v 

global p: 

if v = 0 then return(+infinity) else return(ordp(v,p)) fi 

end: 

############################################################################# 

phexp := proc (r, F) 

### input: r = level 

### F = polynomial 

### 

### output: coefficients of phi_r-adic expansion of F (array) 

global p, d, e, f, m, n, mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z: 

local j, q, A, B: 

if F = 0 then q := 0 else q := floor(degree(F,x)/n[r]) fi: 

A := F: B := array(0..q): 

for j from 0 to q do B[j] := s o r t ( r e m ( A , p h i [ r ] , x , ' A ' ) ) od: 

r e tu rn ( eva l (B) ) : 

end: 

############################################################################# 

It is clear that 

( i v a l ( v ) ) G 0 ( ln ( l + \v\)) 

and that for all r we have 

<phexp(r :F)> G 0 ( (degF) 2 ) . 
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############################################################################# 

valf := proc (r, F) 

### input: r = level 

### F = polynomial in x 

### 

### output: v = v_r(F) 

global p, d, e, f, m, n, mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z: 

local j, k, v, w, A: 

##### Step 1 

##### Step 2 

if 

els 

r = 
V 

se 

A 

k 

V 

0 then 
= ival(content(F)): 

= phexp(r 

= aub(A): 

= +infini 

for j from 0 

od 

w := d[r-
if w < v 

-1,F) 

ty: 

to k 

-l]*j 
then 

do 

+ e[r 

v : = 
-1] 
w f 

*valf(r-

l: 

-l,A[j]): 

##### Step 3 
##### Step 4 

fi: 

return(v) 

end: 

############################################################################# 

T h e o r e m 15. Forr > 1 let us define 

){r,d) = max{ ( v a l f (r,g)) \ g(x) e Zp[x], degg < d}. 

Thenu(r,d) e 0{d2+e). 

Proof. Assuming degg < d with d > n r - i , we observe the following. 

1. time: ( v a l f ( 0 : p ) ) G 0(d) since | content(F)\ < p 2 d * + 1 ) 

2. time: (phexp(r - 1. g)) € 0(d2 

3. The number of iterations in the for-loop is 1 + k == 1 + [d/nr-i 

4. time: at most C0 + u.'(r - L nT-Y - 1). with C0 G 0(1) . 
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Step 4 requires at most 

(1 + [d/nr^\)(C0 + u(r - l . r v - i - 1)) 

operations. It follows that 

u(r, d) < hu(r) + (1 + \djnr-XJ)u(r - 1, nr_i - 1) 

with / ^ ( r ) <E 0(d 2 ) . 

Proposi t ion 12. For r > 1 it is the case that 

v(r, nr - 1) < hu{r) + e r_1 / r_1o;(r - 1, n r _i - 1)) 

withhu(r) eO(nf). 

Proof. We have 

and therefore 

1 + 
nr — 1 

- w r - l -
= 

" nr " 
nr-i 

C r - l / r - l 

u; (»", ™r) < E L l M O nj=, 6j/i + ^(°> ™o) I1J=0 ei/j 

G O(rn^ + n rcj(0,no)) 

C 0 (n2. log2 n r + n r n 0 ) 

C 0{n2
rlnnr) 

C 0 ( n 2 + e ) . D 

In the general case the for-loop at Step 3 makes at most 1 + [d /n r _i j iterations. 

Hence the time-complexity of the for-loop is 

1 + 
d 

nr-i 
uj > - Mr-! - 1) e o(—^\) = 0(<f^S) 

and we have 

u{r, d) E 0(d2 + dnl±\) C 0(rf2 + £). 

Lastly, we note that the case fi < r?,T-_1 is simpler and yields a similar result. We omit 

the details. • 
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############################################################################# 

vale := proc (r, A) 

### input: r = level 

### A = array (0..k) of polynomials 

### 

### output: P = array ( [0,v_r(A_0 p h i _ r ~ 0 ) ] , . . . , [k,v_r(A_k phi_r~k)] ) 

g lobal p , d, e, f, m, n, mub, nub, p h i , p s s , p s l , rho, psh, x i , rhh, x, y, z : 

l oca l j , k, P: 

k := aub(A): P := a r r a y ( 0 . . k ) : 

for j from 0 to k do P[ j ] := [ j , v a l f ( r , A [ j ] ) + j*nub[ r ] ] od: 

r e tu rn (evaKP) ) : 

end: 

############################################################################# 

Let #A denote the number of entries in the array A. We have 

( P [ j ] ) e O ( u , ( r , n r ) ) 

and therefore 

E j=o ( P [ J ] > e O ( £ j = o " f o * r ) ) =0{#A-u(r,nr)) 

which implies 

(valc{r,A)) G 0(#A • u{r, nr)) C 0(#A • n2
r\nnr). 
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############################################################################# 
zrho := proc ( r , h) global p , rho, z: ##### z <— rho_r 
re tu rn(subs (z=rho[ r ] , eva l (h ) ) mod p) 
end: 
############################################################################# 
rhoz := proc ( r , h) global p , p s l , rho, z: ##### rho_r <— z 
if p s l [ r ] then r e tu rn (evaKh) mod p) 

e l se r e tu rn ( subs ( rho[ r ]=z ,eva l (h ) ) mod p) f i : 
end: 
############################################################################# 
rhoy := proc ( r , h) global p , p s l , rho, y: ##### rho_r <— y 
if p s l [ r ] then re tu rn (eva l (h ) mod p) 

e l se re tu rn(subs ( rho[ r ]=y ,eva l (h ) ) mod p) f i : 
end: 
############################################################################# 
rhox := proc ( r , h) global p , p s l , rho, x: ##### rho_r <— x 
if p s l [ r ] then r e tu rn (eva l (h ) mod p) 

e l se re tu rn(subs ( rho[ r ]=x ,eva l (h ) ) mod p) f i : 
end: 
############################################################################# 
rhhrs := proc ( r , s , h) global p , p s l , rho, rhh: ##### rho_s <— r h h _ { r , s } 
if p s l [ r ] or r = s then re tu rn (eva l (h ) mod p) 

e l se r e tu rn ( subs ( rho [ s ]= rhh [ r , s ] , eva l (h ) ) mod p) f i : 
end: 
############################################################################# 

The procedures zrho, rhoz, rhoy, rhox, and r h h r s are of a technical nature and were 

necessitated by our decision not to use the M A P L E GF package. As a consequence we 

were obliged to provide several different representations of elements in finite fields: 

as polynomials in x, y, or z, or in RootOf notation. These five procedures convert 

between the various representations. The details of these representations are given in 

Appendix A.l . 

The execution time of each procedure is no worse than the time required to evaluate 

a polynomial, of degree d, say, at an element of FqT. Using Horner's method, the time 

required for this evaluation is 

o(d/;ii+0). 
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############################################################################# 

FFFacts := proc (h, r) ##### finite field factorization ##### 

### input: h(z,y) = polynomial in F_p[z,y], z < — rho[r] 

### r = level 

### 

### output: f a c to r s of h mod p ( [ coeff, l i s t ] ) in F_p[z,y] 

global p , d, e, f, m, n, mub, nub, p h i , p s s , p s l , rho, psh, x i , rhh, x, y, z : 

loca l j , k, w: 

if p s l [ r ] then 
w := Factors(h) mod p : ##### Step 1 

e l se 
w := F a c t o r s ( z r h o ( r , h ) , r h o [ r ] ) mod p: ##### Step 2 
w[l] := r h o z ( r , w [ l ] ) : ##### Step 3 
for j from 1 to nops(w[2]) do 

w[2][j] [1] := rhoz(r ,w[2] [j] [1]) ##### Step 4 
od: 

f i : 

return(w) 

end: 

############################################################################# 

With dh denoting the degree of h we observe the following. 

1. time: 0{F{dh, gr)) = 0(dk M(dh) Hqrdh)). 

2. time: 0{dhf;l\
+t)+ F(dh,qr)). 

3. time: 0(f;l\+e)). [ Note that h(pr,y) - wx JJ, w2lj,i(y)w^. } 

4. time: 0 ( £ \ degw2J,i f ^ ) Q 0{dhf;l\
+i)). 

Consequently 

<FFFacts(/i:r)> e 0(dhM(dh)\n(qrdh) + dhfrl\
+c)). 
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Since 

4 M ( 4 ) \n(qrdh) = d\ In dh In In dh{f*_l lnp + In dh) 

= d\ In2 dh In In dh + f*_xd\ lnp In dh In In dh 

it follows that 

(FFFacts(A,r)> G O ^ - / ^ + <4/r*i!+£)) C O ^ / ^ 0 ) -

############################################################################# 

randrt := proc (h, r) ##### finite field factorization ##### 

### input: h(z,y) = polynomial in F_p[z,y], z < — rho [r] 

### r = level 

### 

### output: roo t of h (in F_p[z]) 

g lobal p , d, e, f, m, n , mub, nub, p h i , p s s , p s l , rho , psh, x i , rhh , x , y, z: 

loca l s , w: 

w := FFFacts(h. r ) : 

r e tu rn(s impl i fy (y - z rho( r ,w[2] [1] [1] ) mod p) ) 

end: 

############################################################################# 

We note in passing that the M A P L E finite-field factorization procedure returns factors 

in random order; hence the name r a n d r t . 

It is clear that 

< r a n d r t ( / i ; r ) ) G O K 2 + 7 ; i ! + e ) ) . 
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############################################################################# 

Ichull := proc (P) local S, jl, j2, j, k, w, wO: 

### input: P = sequence of points (array 0..k) 

### 

### output: S = v e r t i c e s of lower convex h u l l ( l i s t ) 

k := aub(P): 

for j from k by -1 to 0 do 
if P[ j ] [2] < i n f i n i t y then j l := j f i : 

od: 

S := [ PCjl] ] : 

while j l < k do 
j 2 := j l : wO := + i n f i n i t y : 
for j from j1+1 to k do 

w := (P[ j ] [2] - P [ j l ] [ 2 ] ) / ( P [ j ] [ l ] - P [ j l ] [ l ] ) : 
if w <= wO then wO := w: j2 := j f i : 

od: 
S := [ op(S>, P[j2] ] : j l := j 2 : 

od: 

re turn(evaKS)) 

end: 

############################################################################# 

lcsgmt := proc (r, P) local j, k, v, w, PI, P2: global d, e: 

### input: r = level 
### P = sequence of points (array 0..k) 
### 

### output: S = segment of lower convex h u l l of slope -d_r /e_r 

k := aub(P): v := + i n f i n i t y : 

for j from 0 to k do 
w := d [ r ] * P [ j ] [ l ] + e [ r ] * P [ j ] [2 ] : 
if w < v then PI := P [ j ] : v := w: f i : 
if w = v then P2 := P [ j ] : f i : 

od: 

r e t u r n ( [ P I , P 2 ] ) : 

end: 

############################################################################# 
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############################################################################# 

fsegs := proc (S) local Dx, Dy, g: 

### input: S = segment (two points) 

### 

### output: g = number of "fundamental" segments in S 

Dx := S[2,13 " S [ l , l ] : 
Dy := S[2,2] - S [ l , 2 ] : 

g := igcd(Dx,Dy): 

re turn(g) 

end: 

############################################################################# 

slopes := proc (S) local t, k, j, w: 

### input: S = vertices of Newton polygon (list) 

### 
### output: slopes of edges (list) 

t := [ ] : 
k := nops(S): 
for j from 2 to k do 

w := (S[ j ] [2] - S [ j - l ] [ 2 ] ) / ( S [ j ] [ l ] - S [ j - l ] [ l ] ) : 
t := [ o p ( t ) , w ] : 

od: 

r e t u r n ( e v a l ( t ) ) 

end: 

############################################################################# 

These simple procedures provide basic operations on polygons and segments. 

It is clear that 

( l chu l l (P ) ) G 0{#P2)., (fsegs{S)) G 0(1), 

(lcsgmt(r,P)> G 0{#P): (slopes(S)) G 0 ( # 5 ) : 

where # P and # 5 denote the number of points in P and 5" respectively. 
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############################################################################# 

Upsilon := proc (r) ##### construct Upsilon_r ##### 

### input: r = level (r > 0) 

local Ups, fr, fs, fq, h, j , k, w: global p, f, pss, rhh, xi, y, z: 

fr := f [r]: fs := degree(pss[r],y): fq := fs / fr: 

Ups := matrix(fs,fs): 

for j from 0 t o fr - 1 do 
for k from 0 t o fq - 1 do 

w := s impl i fy(rhh[r , r - l ] ~k*xi[r] " j) : 
w := s o r t ( r h o z ( r , w ) , z ) : 
for h from 0 to f s - 1 do 

Ups[l+h,l+j+k*fr] := coeff(w,z,h) mod p 
od: 

od: 
od: 

return(evalm(Ups)) : 

end: 

############################################################################# 

We observe the following. 

1. The number of iterations occurring in the for-loop is fr. 

2. The number of iterations occurring in the for-loop is f*_1-

3. Since pr.r-i £ Fp[pr] = F 9 r + 1 and £,r E Fp[pr] = F 9 r + 1 the cost is 

o(/; ( 2 + e ) + /; (2+£)) = o(/; ( 2 + e )) . 

4. The number of iterations in the for-loop is j * . 

Together these imply 

<uPsiion(r)> e o{fr/;_,(/:l2+t) + /;)) = o(/;(3+f))-

##### Step 1 
##### Step 2 
##### Step 3 

##### Step 4 
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############################################################################# 

Gamma := proc (S, r , k) ##### Gamma in F_p[rho_{r-l>] ##### 

loca l alpha, be t a , ake, bkd, T2, G: g loba l p , d, e, m, nub, x i , Omg: 

alpha := S[l] [1] : ake := alpha + k*e[r] : 
beta := S [ l ] [ 2 ] : bkd := beta - k * d [ r ] : 

T2 := f loor(m[r- l ]*(bkd - a k e * n u b [ r ] ) / e [ r - l ] ) : 

G := simplify(Omg[r]"ake * xi[r-1]~T2) mod p : 

re turn(G): 

end: 

############################################################################# 

Since Qr G Fqr and £r_! 6 FQr we have 

<Ganuna(S,r, *)) € 0(f;^ + f ^ ) = Oft™). 

############################################################################# 

AP := proc ( r , S, A, P) 

### input: r = level 

### S = segment of slope -d_r/e_r 

### A = phi-adic expansion 

### P = [ [ j, v(A_j phi_r"j) ] ] 
### 

### output: FS = associated polynomial in F_p[rho_{r-l}][y] 

global p, d, e, f, m, n, 

mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z, Dmg: 

local g, j, k, s, alpha, beta, gamma, ae, bd, 

nuk, Tnuk, eta, vA, J, AA, PA, FA, GA, FS: 

alpha : = S [ 1 ] [ 1 ] : be ta : = S [ 1 ] [ 2 ] : gamma := min(S [2] [1] ,aub(P)) : 

g := f loor( (gamma - alpha) / e [ r ] ) : ##### to s tay within both S and P 

ae := a r r a y ( 0 . . g ) : 
bd := a r r a y ( 0 . . g ) : 

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 

J := { >: 
for k from 0 to g do 

ae[k] := alpha + k * e [ r ] : bd[k] := be ta - k*d[r] : 
if P[ae[k]][2] = bd[k] then J := J union { k } f i : 

od: 

if r = 0 then ################################## 

FS := add((A[ae[k]] mod p) * y"k, k = J ) : 

e l i f r = 1 then ################################ 

FS := add((subs(x=rho[r - l ] ,A[ae[k] ] ) / p 'bd[k] ) * y~k, k = J) : 

FS := simplify(FS) mod p: ##### FS in Fp[y] ##### Step 2 

##### Step 1 

else ########################################### 

eta := array(0..g): 

for k in J do 

nuk : = bd [k] - ae [k] *nub [r] : 

Tnuk := cT(r-l,nuk): 

########### r > 1 

##### Step 3 

##### step 4 

AA := phexp(r-l,A[ae[k]]): ### expansion of A_ae[k] ##### Step 5 

PA := valc(r-l,AA): ### v_{r-l> points (array) ##### Step 6 

##### step 7 FA 
FA 

AP(r-l,Tnuk,AA,PA): 

simplify(rhhrs(r-l,r-2,FA)): 

GA := Gamma(S,r,k): 

eta[k] := simplify((l/GA)*subs(y=xi[r-1],FA)) mod p: 

od: 

FS := add(eta[k] * y~k, k = J) mod p: 

fi: ############################################ 

FS := sort(FS,y): 

return(evaKFS)) : 

end: 

##### step 8 

##### Step 9 

#### Step 10 

############################################################################# 
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Theorem 16. For r > 2 let us define 

g{r,d)=max{ <AP(r, S,A3ir, Pg,T)) \ g{x) G Zp[x], degg<d} 

where 

o S is a segment having slope —dr/er and contained in the first quadrant. 

» Ag<r is the array of coefficients of the ipr-adic expansion of g, 

Pgr is the corresponding sequence of "valuation points". 

Then g{ryd) G 0(dn i
+ f ) 

Proof. We note that if d = deg g then the array AgT has 1 + [d/nr\ entries, 

9,T L 9:r,0> 9ir>l> • • • ) g,r,[d/nr\ j> 

and if dy < d2 then g(r, d\) < g(r, d2). 

We will first estimate g(r, d) for the special case d < n r + 1 . In this case we have 

#Agrr — #Pg:r — 1 + 
d_ 

< 1 + 
nr+l - 1 

nr 

#J<1 + 
d 

I v-r C-f -J 
< 1 + 

nr+\ - 1 
/ 67- C -T -

fr + 

nr 

nrer — 1 

erjr, 

--fr-

For this special case we note the following. 

1. time: g(0,d). 

2. time: g(l,d). 

3. The for-loop makes at most fr iterations. 

4. time: 0 (1) . 

5. time: (phexp(r - l.AQ+k€r)) < ix{r - \,nr) G 0{n2
T). 

6. time: ( v a l c ( r - l.AA)) G 0{er_lfr_]n
2

r_l In nr-i) 

= 0(nrnr-i ln??r_]). 
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7. time: at most g(r — l,nr — 1). 

8. time: (Gamma(5,r, k)) G 0(f*[\+e)) 

9. time: 0(degFA - ft™) C O ^ / ^ ) C 0 ( / ^ + e ) ) . 

10. time: 0 ( / r ) . 

Thus the time-complexity of the for-loop at Step 3 is 

/ r ( l + n2
r + n r7v_i lnn r _i + g(r - l , n r - 1) + /*J?+£)) 

= fr + frnr{nr + n r_i In n r _i ) + frf*-l+e) + / rP( r - 1, n r - 1) 

and this yields the following. 

Propos i t ion 13. For r > 2 we have 

g(r, nr+1 - 1) < hp(r) + frg(r - 1, nr - 1) 

ty«i/i /?p(r) 6 0(frnr(nr + nT-\ l nn r _i ) + f* )• 

Writing £>r for g(r,nr+i — 1) and hr for /ip(r) it follows that 

Qr < K + frQr-j 

< hr + / r( / i r_i + fr-iQr-2) 

< hT + fr(hr-l + fr-\{hr-2 + fr-2Qr-z)) 

<hr+ fT{hr-.i + fr-i(hr^2 + fr-2(hr-3 + fr-^Qr-A))) 

= K + -J^{hr-\ + 7 ^ ( ^ - 2 + 7 ^ ( / l r - 3 + 7 ^ ( ^ - 4 ) ) ) 
J r - I J7--2 Jr-3 Jr-4 

= J-.K + -£-hr-\ + -£-K-2 + -S-hr-3 + J^-Qr-A 
IT J r - 1 J r - 2 ^ r - 3 J r - 4 

< E 3 £r^-i + f PI 

with 

E U /,-* V / * € 0{rfrnr(nr + n r_j lnn T - i ) + r / ; ( 2 + e ) ) 

(see Remark 11 below). We also have g} E 0(nifl ) so that 

rrQi/n e c u w r ) = o(/;/07r) c o(/;(2+<)). 
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In the general case we know that the for-loop makes at most 1 + gT iterations, with 

9r — [d/(nrer)\. In this case the time-complexity of the for-loop is 

(1 + gr){\ + 71* + rirJV-! lnn r_! + gr_x + f*l]+e)) 

+ (r - lJ/r.xrv-iCnr-i + n r_2mn r_2) + (r - l ) /*i?+ 0]) 

^ ° ( ^ K + rnTnT^ lnn r_x + rf*M+e)]) 

= Ol^rdrir + ^rdrir.j l n n ^ j + 4rd/ r*j!+e)) C 0(dnj >i+n 

Since Step 12 requires time 0(d/(nrer)) C 0(d), the theorem follows. D 

Remark 11. There exists a positive constant C such that 

fr^k/fk = frfr-l ' ' ' fk+\hk 

< Cfrfr-i • ••fk+i(fknk(nk + nk-i l n n ^ ) + fk
{2+e)) 

< C{frfr^l • • • fk+ifknk{nk + nfc_j lnnfc_i) + f*{2+e)) 

< C{frnr(nr + nr_j l n n ^ ) + /r*
(2+e)) 

for k = 2. . . . , r. 

############################################################################# 

cT := proc (r, nu) local g, a_0, b_0, a_g, b_g: global d, e: 

### input: r = level with d_r > 0 

### nu = positive integer 
### 

### output: longest integer-endpoint segment of L_{r,nu} in first quadrant 

a_0 := (nu/d[r]) mod e[r]: 

b_0 := (nu - a_0 * d[r])/e[r]: 

g := floor(b_0/d[r]): 

a_g := a_0 + g * e[r]: 

b_g := b_0 - g * d[r]: 

return([ [a_0,b_0], [a_g,b_g] ]) 

end: 

############################################################################# 
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It is clear that 

(cT(r,*/)) = 0 ( l ) . 

############################################################################# 

Hr := proc (t, nu, delta) ##### Algorithm 1 

### input: t = integer in { 1, ..., r > 

### nu = integer (at least bar{nu}_{t+l}) 

### delta = nonzero polynomial in F_q_t[Y] of degree < f_t 

### 

### output: H_{t,nu,delta} 

global p, d, e, i , m, n, nub, phi, pss, rho, x, y, z, Upsinv: 

local h, Gz, Vk, Vm, fr, fs, fq, 

i, zeta, ae, bd, J, K, Ttnu, atnu, btnu, del, dnu, H: 

Ttnu := cT(t,nu): atnu := Ttnu[l][l]: btnu := Ttnu[1] [2]: 

zeta := array(0..f[t]-1) : 

J := { }: 

for i from 0 to f [ t ] - 1 do ##### Step 1 

z e t a [ i ] := c o e f f ( d e l t a , y , i ) mod p : ### in F_q = F_p[rho_{t- l}] 

z e t a [ i ] := s i m p l i f y ( z e t a [ i ] ) mod p : 

if z e t a [ i ] <> 0 then J := J union { i } f i : 

od: 

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 

for i in J do ##### Step 2 

ae [ i ] := atnu + i * e [ t ] : 
bd[ i ] := btnu - i * d [ t ] : 

if t = 1 then ##### xi_0 = rho_0, Gamma_{T_{l,nu},1,i} = 1 ##### 

K[i] := p"bd[i] * r h o x ( t - l , z e t a [ i ] ) : ##### Step 3 

e l se 

fr := f [ t - l ] : f s := d e g r e e ( p s s [ t - 1 ] , y ) : fq := fs / f r : 

Gz := simplify( Gamma(Ttnu,t,i) * z e t a [ i ] ) : 
Gz := r h o z ( t - l , G z ) : ##### Step 4 

Vk := vec to r ( f s ) : 
for h from 0 to f s - 1 do ##### Step 5 

Vk[l+h] := coef f (Gz,z ,h) : 
od: 
Vm := evalm(Upsinv[t-l] &* Vk): ##### Step 6 

dnu := bd[ i ] - a e [ i ] * n u b [ t ] : 
del := add( add( Vm[l+j+k*fr] * r h o [ t - l ] " k , 

k=0 . . fq - l ) * y ~ j , j = 0 . . f r - l ) mod p: ##### Step 7 
del := s impl i fy(del) mod p: 

K[i] := H r ( t - 1 , d n u , d e l ) : ##### Step 8 

f i : 

od: 

H := a d d ( K [ i ] * p h i [ t ] ~ a e [ i ] , i = J ) : ##### Step 9 

H := s o r t ( c o l l e c t ( H , x ) , x ) : 

re turn(H) : 

end: 

############################################################################# 

T h e o r e m 17. Fort > 2 let us define 

K-(t:v) = max{ (Hr{t,i/,5)) \ 5(x) G Fgt[x]; cleg8 < f t } . 

Then.K{t:i/) e 0(tn3
t+{). 
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Proof. We observe the following. 

1. The for-loop at Step 1 makes ft iterations. 

2. The for-loop at Step 2 makes at most ft iterations. 

3. time: K(0, U) G 0 ( / „ / O ( 1 + £ ) ) = Wo*(2+£)) = 0{n\^) 

4. time: 0(f£+t) + K(gt) + #_,) C W ^ ) 

5. time: O(fU) 

6. time: 0 ( / ^ + e ) ) + f*J[ Q 0(f*^+€\ with 2 < a < 3 

7. time: 0(/;_1 K(ft)) C OUlJl^) = 0(f^+i)) 

8. time: at most n(t — l,v)-

9. time: 0(ntlnlnn,lnetft) C O((e t / tn t)
( 1 + 0) = 0 ( n j ^ 0 ) -

The time spent in the for-loop at Step 2. excluding Step 8, is 

o(/t(m + / t T 0 + /;_! + f?T} + f:Te))) <= o(/t/;_?+e)) 

and the time spent executing Step 8 is at most 

fMt-his). 

Taking account of Step 9, it now follows that 

K{t,v)<hK(t} + ftK(t-l,v) 

with 

KWeOiftft^ + nlZ). 

As in the proof of Proposition 13 we have 

<t,u) < (/;//,*) K(i.*/) + £U/r /#)M*) 

with 

EU/ ; / / ; ) M O e o{tfj;«+t) + / « ) • 
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since 

max { (f;/f*)K(z) | 2 < i < t} = hK(t). 

We also have 

fi(V)eO(nf£ + ^+ f). 

Since K(1, U) < n(t, v) we obtain 

K{t.v) G 0 ( i / ; ( 3 + e ) +tn\Xt) C 0(<n£i)- D 

Remark 12. The computation of 5j(y) in Steps 4 through 7 above is explained in 

Appendix A.2. 

############################################################################# 

montLO := proc (F) ##### Level 0 — Initialization 

### input: F = monic polynomial (in x) 
### 
### output: true if F is irreducible over Q_p 

### false if F is reducible over Q_p 

global PHI, p, d, e, f, m, n, 

mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z, Omg: 

local r, FLO, vF, wF, psi: 

wF := Factors(subs(x=y,F)) mod p: 

if nops(wF[2]) > 1 then ################################################## 

printfC F has multiple irreducible factors mod p. <<\n\n"): 

FLO := false: ### reducible (==> Hensel lifting) 

elif wF[2][l][2] = 1 then ################################################## 

printfC F is irreducible mod p. <<\n\n") : 

FLO := true: ### irreducible mod p ### 

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 



else ################################################## 

if subs(x=0,F) mod p = 0 then 

PHI := sort(collect(subs(x=x+l,F),x),x): 

psi := sort(collect(subs(y=y+l,wF[2] [1] [1]),y),y): 

e l se 

PHI := s o r t ( c o l l e c t ( F , x ) , x ) : 

p s i := so r t (co l l ec t (wF[2] [1 ] [ 1 ] , y ) , y ) : 

f i : 

r := 0: d[r] := 0: mub[r] := 0: m[r] := 0: 

e [ r ] := 1: nub[r] := 0: 0mg[r] := 1: 

p h i [ r ] := x: n [ r ] := deg ree (ph i [ r ] , x ) : 

psh[r ] := p s i : f [ r ] := d e g r e e ( p s h [ r ] , y ) : 

p s s [ r ] := p s i : p s l [ r ] := evalb(degree(pss [ r ] , y ) = 1) : 

rho [r] := RootOf(psi) mod p : x i [r] := r h o [ r ] : r h h [ r , r ] := rho [ r ] : 

FLO := montLl(r+l) : 
f i : ################################################## 
return(FLO): 
end: 

############################################################################# 

Taking n$ = deg F we have 

(montLO(F)) < //0(n<J>) + (montLl(l)) 

with 

//o(n*) G 0(F(n*,p)) = 0{n* M(n*)ln(pn*)) C 0{n^€) = 0{n%+e). 
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############################################################################# 

montLl := proc (r) 

### input: r = level (r > 0) 

### 

### output: t rue if PHI i s i r r educ ib l e over Q_p 
### fa l se if PHI i s reducib le over Q_p 

global PHI, p , d, e, f, m, n, 

mub, nub, p h i , p s s , p s l , rho, psh, x i , rhh, x, y, z , Omg: 

loca l FL1, A, P, S, T, h, j , k, s , f s , n f s , wfs, gamma, Phi : 

##### 0. I n i t i a l i z e ####################################################### 

mub [r] 
nub [r] 

n [ r ] 

= d [ r - l ] + e [ r - l ] * n u b [ r - l ] : 
= e [ r - l ] * f [ r - l ] * m u b [ r ] : 
= n [ r - l ] * e [ r - l ] * f [r-1] : ##### S t e p l 

Omg[r] := r h h r s ( r - l , r - 2 , 0 m g [ r - l ] ) ~ ( e [r-1]*f [ r -1]) 

* x i [ r - l ]~ (m[ r - l ]* f [ r - l ]*mub[ r ] ) : 

Omg[r] := simplify(Omg[r]) mod p : ### in F_p[rho_{r-l}] ##### Step 2 

if r = 1 then ############################################################## 

ph i [ r ] := subs(y=x,psh[ r -1] ) : ##### Step 3 

e l se 

gamma := Omg[r-l]~(-e [r-1]*f [ r -1 ] )* (z rho( r -2 ,psh[ r -1 ] ) - y " f [ r - l ] ) : 

gamma := sor t (col lect (s impl i fy(gamma),y) ,y) mod p: ##### Step 4 

ph i [ r ] := p h i [ r - 1 ] " ( e [ r - 1 ] * f [ r - 1 ] ) + Hr(r-1,nub[r],gamma): ##### Step 5 

ph i [ r ] := s o r t ( c o l l e c t ( p h i [ r ] , x ) , x ) : 

f i : ######################################################################## 

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 

i f ( r > 1) and (e[ r -1]*f [r-1] = 1) then #################################### 

p h i [ r - l ] := p h i [ r ] : 

FL1 := montL2(r- l ) : 

e lse 

FL1 := montL2(r): 

f i: ######################################################################## 

return(FLl) 

end: 

############################################################################# 

We observe the following. 

1. time: 0(1). 

2. time: 0(fr[\+i)). 

3. time: 0{n{). 

4. time: Otfl?* + / r ^ + 0 + fr-J^) C 0(f;i]+t)). 

5. time: 0(rn^+e), since the time required to calculate ife
r
T~i is 

and ( H r ( r - 1 ,^ ,7)) e 0(rn;!+£). 

Remark 13. If e r_i/ r_i > 1 then the total time is at most 

/i](r) + (montL2(r)) 

with fi^r) E 0{rnl+*). 

Remark 14. The case eT-\fr-i = 1 can recur at most 
e* 

2 - ^ r p ( d i s c $ ) < 2i-p(disc$) 

times, where 77* = deg<J> (see Proposition 10 above). 
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############################################################################# 

montL2 := proc (r) ##### Continuation of montLl 

### input: r = level (r > 0) 

### 

### output: true if PHI is irreducible over Q_p 

### false if PHI is reducible over Q_p 

global PHI, p , d , e , f , m , n , 

mub, nub, phi, pss, psl, rho, psh, xi, rhh, x, y, z, Upsinv: 

local FL2, A, P, S, T, h, j, k, s, fs, nfs, wfs, 

gamma, chig, Ng, Dg, Ag, Bg, Gg, Phi: 

##### 1. Create N_r(PHI), d_r, e_r ######################################## 

A := phexp(r,PHI): ### phi_r-adic expansion of PHI ##### Step 1 

P := valc(r,A): ### v_r points (array) ##### Step 2 

S :=lchull(P): ### vertices of N_r(PHI) (list) ##### Step 3 

T := slopes(S): ### slopes of edges (list) ##### Step 4 

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 

Let n<i> = deg$. Then #A = # P = 1 + [n$/nr\. 

The execution times of Steps 1 through 4 are as follows. 

1. time: (phexp(r. $ ) ) € 0{n%). 

2. time: (va lc ( r , A)) G <9(n<j>nr l nn r ) C 0{n<$>nl
r
+<L). 

3. time: ( lc rml l ( l + [n^fnr\)) G 0{{n^/nrf). 

4. time: (slopes(S)) G 0 ( # S ) . 
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 

if A[0] = 0 then ##### BREAK if phi_r I PHI #################### 

if n[r] = degree(PHI,x) 

then FL2 := true: printfC phi_7.d = PHI «",r): 

else FL2 := false: printfC A_7„d,0 = 0, phi_7.d =/= PHI «",r,r): 

fi: printf("\n\n"): 

elif nops(T) > 1 then 

FL2 := false: 

elif fsegs(S) = 1 then 

FL2 := true: 

else 

##### BREAK if > 1 segment (Newton) ########### 

printfC #E = 7.a «\n\n" ,nops(T)) : 

##### BREAK if irreducible (Eisenstein) ####### 

printfC -d/e = 7.a",op(T)): 

printfC g = 7.a «\n\n" ,f segs(S)) : 

##### CONTINUE ################################ 

d[r] 

e[r] 

m[r] 

numer(-T[l]) : 

denom(-T[l]) : 

(l/d[r]) mod e[r] 

##### 2. Create tAP~r_PHI ############################################# 

fs 
wf s 
nf s 

= AP(r,S,A,P): 
= FFFacts(fs,r-l): 

= nops(wfs[2]): 

if nfs > 1 then 

##### associated polynomial ##### Step 5 

##### Step 6 

##### BREAK if > 1 irreducible factor ##### 

printfC AP_7od has 7.d distinct irreducible factors.. «\n\n" , 

r,nfs): 
FL2 := false: 

elif wfs[2][1] [2] = 1 then ##### BREAK if AP irreducible ##### 

printfC AP_%d is irreducible. <<\n\n",r): 

FL2 := true: 

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 

The execution times of Steps 5 and 6 are as follows. 

5. time: g(r.n$,) E 0(n^n;+€). 

6. time: (FFFacts ( r - 1)) £ 0{d\+i f * r ^ 2
+ t ) ) . 

with dy = d e g ^ < [nt-p/{nrer)j. 
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# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 

e l se ##### CONTINUE ############################ 

##### 3 . Create psh_r, e t c . ####################################### 

psh[r ] := r h o z ( r - l , w f s [ 2 ] [ l ] [ 1 ] ) : ##### Step 7 

f [r] := degree(psh [ r ] , y ) : 

k := mul(f [ j ] , j = 0 . . r ) : 
h := y~k: 
while not I r reduc(h) mod p do ##### Step 8 

h := y~k + randpoly(y, degree=k-l , coeffs=rand(p)) : 
od: 
p s s [ r ] := s o r t ( h . y ) : ######## i n F _ p [ y ] 

rho[r ] := RootOf(pss[r]) mod p : 
p s l [ r ] := eva lb (degree (pss [ r ] ,y ) = 1 ) : 

for s from r by -1 to 0 do 
if s = r then 

r h h [ r , s ] := rho[r] ##### Step 9 
e l i f s = r - 1 then 

r h h [ r , s ] := r and r t (p s s [ s ] , r ) #### Step 10 
e l se 

r n h [ r , s ] := s imp l i fy ( rhh r s ( r , s+ l , r hh [ s+ l , s ] ) ) #### Step 11 
f i : 

od: 
x i [ r ] := r a n d r t ( s u b s ( z = r h h [ r , r - l ] , p s h [ r ] ) , r ) : #### Step 12 

Upsinv[r] := Inverse(Upsi lon(r ) ) mod p : #### Step 13 

##### 4. Next Level ############################################### 

FL2 := montLl(r+l) : #### Step 14 

f i : 

f i : ################################################# 

return(FL2) 

end: 

############################################################################# 
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The execution times of Steps 7 through 14 are as follows. 

7. time: 0(frfrl\
+e)) C 0(f?{1+e)) 

8. expected time: 0{ff L(/;) log / ; + /r* L(/;iogg r)) C 0 ( / ; ( 2 + e ) ) . 

9. time: 0(1) 

10. time: Oif^f^) = 0 ( / r ^
e ) ) 

11. degps+1,s = / s , 0 < 5 < r - 2: 

total time: O^Zlfsf^) C 0 ( r / r ^ ° ) 

12. time: 0(frf;±\+e) + f ^ f ^ ) = 0(/ r*
(2+e)/;_i) C 0(/r*

(3+e)) 

13. time: 0(/ r*ii+e) + /;_«) C 0( / ; i 3 + e ) ) , with 2 < a < 3 

14. time: ,(montLl(r + 1)) 

The total time (excluding step 14) is given by 

^{r) G 0(n\ + (n<$,/nr)n
2
r\r\nr + (n$/nr)

2 

+ n*n^ + 4 + 7 ; ^ + 0 + r/;i?+e> + /r* (
3+e>) 

C 0 ( n | + n*n r In n, + n*nl+< + d ^ - S ^ + r f ^ + /r*
(3+e)) 

c o ( n | + n w r ^ + 4 + v ; ^ + 0 + ^ / ; i i + £ ) + /;(3+£)) 
co(n | + e + /;<3+«>) 

CO(n | + f ) -

Proposition 14. We /iat>e 

(montL2(r)) < ii2{r) + (montLl(r + 1 ) ) 

with n2{r) e 0{nl+e). 

Remark 15. If eTfr ^ 1 then 

(montLl(r + 1)) < /;,(r + 1) + (raontL2(r + 1)) 

with jui(r + l) G 0 ( ( r + l ) - n ^ ) . 
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Conc lus ion . 

It will be convenient to let 

L0(F) denote montLO(F), 

L\{r) denote montLl(r) for r > 1, and 

L2(r) denote montL2(r) for r > 1. 

We will estimate the time required for the chain of computations 

L0(F) - L j ( l ) -> L 2 ( l ) - L2(2) ^ L2(2) -> • • • ^ L^m) -+ L2(m) 

where m < [log2 deg F\. 

Substituing the time required for each term in the chain and assuming that the 

algorithm terminates at level m we get the following. 

( J L 0 ( F ) ) < M o ( n ) + (L 1 ( l )> 

< / i 0 ( n ) + A*i(l) + ( L 2 ( l ) ) 

< M n ) + Mi(l)+/U2(l) + ( £ i ( 2 ) ) 

< fi0{n) + A*I(1) + /i2(l) + /ii(2) + (L2(2)> 

< /i0(n) + A*I(1) + At2(l) + Mi(2) + //2(2) + <Li(3)) 

< /x0(n) + / i i ( l ) + /z2(l) + Mi(2) + /i2(2) + //!(3) + (L2{3)) 

< Mn) + E r = i ^ i ( r ) + E ^ /x2(r) + (L2(m)) 

G 0 ( n | + £ + m 2 n | + e + (m - l ) n | + f + 4 + e ) 

C O ( n | + e ) . 

Note that, since the algorithm terminates at level m, we have 

(L2(m))eO(nl+<). 

We will give a bound B2(r) for the time taken by the sequence 

!](•/•) - Z 2 ( r - 1) - Li(r) 
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which happens when er-ifr_x = 1 for some r > 1. We have 

< L 1 ( l ) ) < y u 1 ( r ) + ( L 2 ( r - l ) ) 

when e r _i / r _i = 1, and on the other hand 

( £ 2 ( r - l ) ) < M 2 ( r - l ) + <Li(r)) . 

Thus we can take 

B2(r) = /xa(r) + /i2(r - 1) G 0(rn r
2 + f + n | + £ ) C 0 ( n | + £ ) . 

From Proposition 10 it follows that the sequence 

L^r) ^ L2(r - 1)-* L^r) 

can occur at most 2t>p(disc$) times in the course of the computation. 

It now follows that the Montes algorithm terminates in time 

0(nl+i + 2n|+ ewp(disc$)) C 0 ( n | + % ( d i s c $ ) ) . 

Since this estimate counts operations in Zp and F p together, it follows that the bit-

complexity of the Montes algorithm is 

0(4+%(disc$)2+e). 
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Chapter 4 

Comparisons 

4.1 The One-Element Algorithm 

The One-Element Method is in essence the original Round Four algorithm of Zassen-

haus (Ford, 1987), with various improvements in detail. In what follows we will refer 

to the version given in (Ford, Pauli, and Roblot, 2002). 

Let f(x) be a monic polynomial in Zp[x] with nonzero discriminant, let K be the 

extension of Q p generated by a root a of / , and let Ox be the ring of integers of K. 

We will let v denote the extension of the standard p-adic valuation of Q p to K. 

A prime element IT of Ox has minimal positive valuation: 

0 < v(n) = 1/e < v{p) = 1 

and there is no 6 e OK such that 0 < v{9) < v(ir). 

The one-element method exploits the fact that if the polynomial g is irreducible over 

Q p then all roots of g are algebraic conjugates over Qp . Otherwise stated, if / is 

reducible over Q p then there must exists two roots of / that are not conjugate. 

Let R^ be a complete set of representatives of irOx in Ox and let 

u = iie/p = AO(Q-) + Ai(a)/7 + A2(Q)7T2 + • • • 

Avith A0(a). Ai(a). A2(rv). ...eR^. 
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The (not necessarily distinct) roots uai, ..., wffr of \iw are given by 

(*) a"* = \o(aai) + X^ofi)-*** + AaK'X*"'7 ' )2 + * • • 

where {ax, ..., ar } — Ga\(K/Qp). Note tha t although Xk(a
a) changes with a, the 

polynomial Ajt(x) does not. This fact is employed in the construction of the minimal 

polynomial nw{x) ofcu. 

As the algorithm progresses an element 

Wfc-i = A0(a) + Xi{a)n + ••• + A ^ a ) ^ " 1 

will have been constructed and it will be necessary to find A*.(x) such that 

« ( ^ - A t ( a ) ) > 0 . 

If it happens that there is more than one choice for A*, (a) G Rv then there is more 

than one choice for /iw(x) and this leads to a factorization of f(x). 

On the other hand, if the expansion (*) can be extended sufficiently far it would 

follow that deg/u^ = deg / and thus / would necessarily be irreducible (Ford, Pauli. 

and Roblot, 2002, Proposition 4.5). 

We will now give a brief sketch the algorithm. 

Assuming f(x) = (x — £j) • • • (x — £„) and 6{x) G Qp(x), we define 

Xe(t) ={t- 0 (6 ) ) • • • ( * - 0 ( 6 ) ) = Resx(f(x,t- 6(x)). 

The algorithm constructs a polynomial a(x) G Q(x) and seeks to determine if the 

elements a(£i), . . •, a(6i) a r e conjugate over Qp. If so then / is irreducible over Q p : 

if not then a proper factorization of / is constructed. 

Reducibility is established either by xa{x) e Fp[x] having more than one distinct 

irreducible factor or by Afo(xQ) having more than one edge. 

We define — DQ/E0 to be the slope of the (unique) edge of A'oCxa)- with Ea > 0 and 

gcd(Da/Ea)=l. 
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The irreducible polynomial ua(x) € Fp[x] is given by xa(
x) ~ ua{x)e f ° r some e > 0, 

and we define Fa = degi/Q. 

Irreducibility of / is established if EaFa = n. 

Initially a{x) <— x. The algorithm iteratively constructs a'(x) with either Ea> > Ea 

and Fa' — Fa or Eai > Ea and Fa> > FQ , replacing a(x) <— a'(x), until a terminating 

condition is achieved. 

It is a consequence of Proposition 10 that the algorithm will terminate before v(/jw(ct)) 

exceeds 2v(dlscXw)/n. 

4.2 The Two-Element Algorithm 

In (Pauli, 2001) Pauli presented the Two Element Method for factorization of poly­

nomials over local fields, together with a complexity analysis. 

In the following we recall this algorithm. 

Let f(x) be a squarefree monic polynomial in Zp[x] with 

/(*) = (*-&) •••(*-£„). 

Initially: E <— 1. tp <— x 

The algorithm constructs the following: 

» a sequence ipu tp2, . • •. <fih e Zp[x], with E <— lcm(£Lj , EV2,.... E^h): 

• a sequence 771, 772, . . . , rjk G O such that Qp(?7i . % : • • • : Vk) is an unramified 

extension of Q p ; with F *- [Qp(r/iT ry2;. . .. rjk) • QP] -

Termination: 

© If EF = n then / is irreducible over Q p . 

In this case the algorithm returns elements ~. TT £ O such that 
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° QplTj is a n unramified extension of Q p of degree F, and 

o Qp(7, ?r) is a totally ramified extension of Qp(7) of degree E. 

• If, for some a(x) with Xa(x) £ Zp[a:], either of the conditions 

° XaC^) ~ va(x)e w ^ h e > 0 for some irreducible FQ(x). 

° # ) ) = - = «(a(e,)), 

is violated, then / is reducible over Q p . 

In this case the algorithm returns a proper factorization of / . 

We now cite two results from (Pauli, 2001). 

The first, Proposition 15 below, ensures the termination of the Two Element algo­

rithm. The termination of the One Element Method is also a consequence of this 

proposition, and we used it to establish the termination for the Montes algorithm as 

well. 

P r o p o s i t i o n 15 (Pauli). Let 

/ ( x ) = ( x - £ i ) - - - ( * - & , ) , 

ip{x) = (x - ai) • • • {x - am) 

be two polynomials in Qp[x] such that f(x) is squarefree and the degree of any irre­

ducible factor of f(x) is greater than or equal to m. Assume further that 

n 
v{disc(f)) > -maxi<i<nv{tp{€i)). 

Then f(x) is irreducible over Qp. 

The second result is an estimate of the complexity of the two-element method for the 

general case of polynomial factorization over a finite extension of Q p . 

For the special case of factorization over Qp , Paulrs estimate simplifies to 

0(A r 3 +%(disc<I>) ] + e + N^'vpidisc®)-') 



bit operations, where N = deg $. 

We now consider an equivalence relation given in (MacLane, 1936). 

Definition 14. Let a(x), /3{x) two nonzero polynomials in Qp[:c] and v be a valuation 

on Qp(x). Then the equivalence relation ~ on Qp[x] is given by 
V 

a~P -<=> v (a — P) > v(a). 
V 

We use the following notation from (Ford, Pauli, and Roblot, 2002) and (Pauli, 2001). 

For a(x) a nonzero polynomial in Qp[x] we denote 

Vp{&) = min{t; (a(^))}-
^ l<i<n 

Note that if a G Qp then v*(a) = vp(a). 

The polynomials ipi, f2, • • •, constructed in (Pauli, 2001) satisfy 

ft+i = f t - $tipt 

with v*p{tpt) = v*p{?pt) for t > 1. 

Remark 16. We have 

(ft+i ~ ft-
vp 

By the construction of 5t in Algorithm 5.1 in (Pauli, 2001), we have v*(St) ^ 0, so 

that 

Vp{ft+\ ~ ft) = v*(5ti't) > v*(^t) = v*((pt). 

Now we consider the construction of tpt+i from the Montes algorithm. By Propo­

sition 9 we have vt(ipt) = Vt and vt{yt+l) = etftT/t, since (etft,etftVt) is the right 

endpoint of Nr(</?t+1). Then we have the following. 

Remark 17. The equivalence 

ft+j ~ ft 
Vt 

is false. 

The "key" polynomial ft+\ constructed in (MacLane. 1936) also does not satisfy the 

above equivalence relation. 
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4.3 Further Development 

Conspicuously absent from recent research is any attempt at a complexity analysis of 

the one-element method. 

Experimental results suggest that the one-element algorithm is comparatively fast, 

but it remains to be discovered whether this is due merely to the relative simplicity 

of the algorithm (reducing the overhead costs) or if it is the result of an intrinsically 

superior complexity. 
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Appendix A 

Finite Field Computations 

A.l Implementing Finite Fields 

We decided not to use the M A P L E GF package, choosing instead to represent a finite 

field directly as 

Fp[x] J i>*(x)Fp[x] 

with ip*(x) an irreducible monic polynomial in F p [x] . 

By definition q0 = p. 

For each r > 0 the algorithm finds a monic polynomial ipr(x) in F9r[:r], irreducible 

over FQr, having degree fr and a root fr. 

The field F g r + 1 is given by 

F 9 r + 1 = F9 r[f r] = Fp[£o, . . . , fr] - Fp[pr] 

with pr an arbitrary root of an arbitrary irreducible monic polynomial ib*{x) £ F p [x ] , 

with deg^r* = / ; = / o - - - / r -

In general an element of Fqr is represented as a polynomial in Fp[pr^i}. and this 

(rather inconveniently) necessitates expressing fs and ps as polynomials in pr, for 

0 < s < r. 
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To summarize, for r > 0 we have the following: 

f F„ if r = 0, 
F = < 

Qr lF , r _ 1 [^_ 1 ] = Fp[Co, --->er-i] = Fp[pr_1] i f r > 0 ; 

[ F9r+1 : F? r ] = fr and gr+1 = qf/ = pf*. 

For 0 < s < r we adopt the following notation. 

^ r ( Y ) e F 9 r [ y ] 0 = ^ r(£ r) deg^ r = /r 

# ( y ) e Fp[y] o = rr(pr) deg^; = /; = /0• • • fr 

$r(Z,Y) e FP[Z}[Y] ibr(Y) = $r(Pr-i,Y) 

Pr,s € Fp[pr] 0 = if;*(prjS) 

£r € Fp[pr] 0 = ^r(Cr) = $r(pr-l,€r) 

We construct $v, ip*, p r , pr.r-i> £r as follows. 

1. Ar Vv00° r • - Fac tors (^ r ) (y) , /o r _i ) , with Xr e Fgr, ar > 1. 

2- / r = degi/v and wr{Z, Y) such that {/^-(p^^y) = i^r(Y) are given. 

3. Choose ^ ( y ) random in Fp[y], monic of degree f*. 

4. Set pr = RootOf ( ^ p . {formal) 

5. { y - p(p r K | fc = 0, . . . , /;_! - 1 } *- Fac to r sC^ . ! (Y), p r ) . 

6. Choose Pr.r-i <— p(pr)- (arbitrary) [•^*_1(pr.;7._1) = 0] 

7. For s = r — 1, r — 2. . . .. 1: pi-.s-i <~ subs(ps = p r S ! Ps.s-0 • 

8. { y — rjkiPr) \ k = 0, . . . , fr — 1 } <— Factors(•^ r(p r. ! r._] ;y) ;p r). 

9. Choose £ r <•—77jt(pr)• (arbitrary) \ipr(Pr-\- 6 ) = 0] 
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A.2 Computing Si(Y) 

The polynomial Httl/is{Y) in Algorithm 1 is computed as Hr(t,u,5). Here we give 

the (somewhat complicated) details of the construction of Si(Y) for a given i £ J$. 

Comput ing T r . 

If r > 0 we construct T r G FP
T T r _ 1 such that 

Pr-l & = J2h=0 (Tr)h,j,k Pr 

fo r j = 0 , . . . , / r - l , f c = 0 , . . . , / ; _ ! - l . 

In practice we construct T r £ Fp r and A7/ £ Fp such that 

(T r)i+/ l ii+j+fc/ r = (T r)fcji, Mi+j+kfr = Mj,k, 

for /i = o , . . . , / ; - i, j = o , . . . , fr - 1 , k = o , . . . , /;_, - i. 

Der iv ing <5; from T t _ x . 

Given z £ J and t > 2, let 

F ^ ^ C = «i,0 + «U Pt-l H 1- KiJ^-l Pt'-l e F p[P t - l ] = F9t-

For j = 0, . . . , ft-j - 1, A; = 0, . . . , / ;_2 - 1, let MiiJfe £ F p satisfy 

X^L~o ZV=o {Yt-i)h,j,k M],k = «i,ft 

for h = 0, . . . . /t*_i - 1, and let 

i n 



Then Si(Y) e F> t _ 2 ] [Y] = Fg t_ : [Y] and 

= 2^ft=0 ^j=0 }2k=0 \^t-l)h,j,k Mj>k pt_y 

— Wt*- ! " 1 ft 
— Z^ft=0 ^hh Pt-\ 
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Appendix B 

An Extended Example 

Let p = 2 and let 

F(x) = x16 - 12x14 - 84a:13 - 196x12 + 2856X11 + 6328x10 

- 42336x9 - 64820a:8 - 171824x7 - 225360x6 - 203232x5 

+ 261872x4 + 215776x3 + 221280a:2 + 127328x + 2256. 

The reduced resultant of F is 512 = p9 and hence it would suffice if all computations 

in Zp were performed modulo p19 = 524288. (We have omitted this reduction in this 

example.) 

L0. Since F(0) = 0 (mod p) we set 

$ (x)<- F(x+1) 

and now 

$( x ) = x16 + I6x15 + 108x15 + 308x13 - 560x12 - 6048X11 - 3220x10 

+ 62260x9 + 81862x8 - 841760x7 - 4504236x6 - 11496820x5 

- 17916176x4 - 17316592x3 - 9498860x2 - 2114868x + 129833 

with 

$(.T) = ( x + l ) 1 6 (mod p). 
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level 0 we have 

d0 = 0 

e0 = l 

(po{x) = x 

My) = y +1 
Co = Po 

n0 = o 
Tso = 0 

n0 = 1 

/o = l 

Po,o = Po 

m0 = 0 

fio = l 

^S(2/) = y + i 

with po = 1. 

Lj. Ascending to level 1 we have 

Mi = d0 + e0^o = 0 

"i = eo/o^i = ° 

" I = ^oe0/o = 1 

Q — C)eofO£mofoJii 

and we set 

<Pi(x) <— x + 1 = ip0(x) (modp). 

L2. Below are the c^-adic coefficients and valuation points of $. 

4> = 
A = 
A2 = 

A3 = 

A4 = 

A,= 

^ 6 = 

A7 = 

A8 = 

A9 = 

A10 = 

An = 

Au = 

A13 = 

A14 = 

Aro = 

-4:6 = 

2256 

127328 

221280 

215776 

261872 

-203232 

-225360 

-171824 

-64820 

-42336 

6328 

2856 

-196 

-84 

-12 

0 

1 

Po = 

Pi = 

P2 = 

Pz = 

PA = 

P> = 

Pe = 

P7 = 

Ps = ( 

P9 = ( 

Pw = ( 

Pn = ( 

Pl2=( 

Pl3=( 

Pu = ( 

Po = ( 

Pl6=( 

(0,4) 

(1,5) 

(2,5) 

(3,5) 

(4, 4) 

(5, 5) 

(6, 4) 

7,4) 

8,2) 

9,5) 

10,3) 

11,3) 

12,2) 

13,2) 

14,2) 

15, oo 

16.0) 
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It follows that N\{<&) is the single segment Si with endpoints 

{(0 ,4) , (16,0)} 

so that 

0i = 4 > l , di = l, ei = 4, mi = 1. 

In computing ^{
s%(y) = AP(l,SlfA,P) we find J = { 0, 2, 4 } so tha t 

«£!•<») = 0 > 4 + ( £ V + ( # ) - »4+y2+1 = fe2+^+D! 

We now have 

6 = Pi pi,i = Pi Pi.o = i 

with pi an arbitrary root of if;*. 

i. At level 2 we have 

fx2 = di+ exVi = 1 n2 = nidfi = 8 

V2 = eif{ji2 =8 Sl2 = ^ h ^ h ^ = Pl + l. 

We set 

7 2 ( y ) - f i r i / l ( ^ i ( y ) - y / , ) = 2/ + i 

and call Hr(t,z/,<5) with 

t = r - 1 = 1, v = V2 = 8, <%) = 72(2/) = y + 1. 

Then 
J5 = { 0,1 } Co = 1 ae 0 = 0 bd0 = 2 K0 = 4 

d = 1 aei = 4 bdj = 1 ^ = 2 

giving 

Hitv2,n(x) = 4^ i (x)° + 2 ^ ( x ) 4 = 2x4 + 8x3 + 12x2 + 8x + 6 

and we set 

ip2(x) ^ ^(xyifl + H^2r:2(x) 

= Xs + Sx7 + 28x6 + 56.T5 + 72:r4 + 64 x3 + 4 Ox2 + 16x + 7. 



We have ei/i = 8 > 1 and 

(p2(x) = (x + l)8 (modp). 

Below are the </?2-adic coefficients and valuation points of $. 

A0 = -177536x7 - 1480768x6 - 5274912x5 - 9985280x4 P0 = (0, 

- 10389248x3 - 5326048x2 - 396768x + 813600 Pi = (1, 

Ax = -12x6 - 156a;5 - 800x4 + 976x3 p2 = (2> 

+ 12700x2 - 22188a: - 97688 

A2 = l 

It follows that Af2(&) is the single segment S2 with endpoints 

{(0,22), (2,16)} 

so that 

g2 = 2>l, d2 = 3, e2 = 1, m2 = 0. 

In computing ^ $ ( 2 / ) = AP(2,S2,A,P) we find J = { 0, 2 } so that 

^slM = V2y2 + vo = (PI + i)?/2 + PI = (PI + i)(y + A ) 2 

We now have 

My) = y + p\ h = i ^2 (y) = v2 + 2/ + 1 

6 = P2 P2,2 = P2 P2,l = P2 P2,0 = 1 

with p2 = p\. 

At level 3 we have 

jt3 = d2 + e2u2 = 11, ^3 = e2f2p3 = ll: n3 = n2e2f2 = n2. 

We set 

iM - a?2f2(My) - yh) = to + i)"Vi = PI +1 

and call Hr (£,;./, 5) with 

t = r - l = 2. 7y = z 7 3 = l l . ( 5 ( y ) = 7 3 ( ? y ) = p 1 + i. 
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Then 

Js = { 0 }, Co = Pi + 1, ae0 = Oit,v = 0, bd0 = (3t,v = H-

Calling Hr(t — l,z/0,^0) with i/0 = 11, <$o(y) = y yields 

K0(x) = Ht_hUQi5o{x) = 2x7 + 14x6 + 42x5 + 70x4 + 70x3 + 42x2 + 14a: + 2. 

Hence 

HtiV,s(x) = K0(x) <P2(x)at" = ir0(x) 

and, since e2/2 = 1, we set 

Mx) ^ Mix)"12 + HtM 

= x8 + 10x7 + 42x6 + 98x5 + 142x4 + 134a3 + 82a:2 4- 30x + 9. 

L2. We have 

<p2(x) = {x + lf (modp). 

Below are the y?2-adic coefficients and valuation points of <£>. 

A0 = -220192a7 - 1767424x6 - 6097568a5 - 11463488a4 

- 12316192a3 - 7036224a2 - 1254048a: + 296576 

Ax = -4a 7 - 36a6 - 200a5 - 664x4 + 1748a3 

+ 8060a2 - 33920a - 18536 

A2 = 1 

It follows that 7V2($) is the single segment <S2 with endpoints 

{(0,26), (2,16)} 

so that 

92 = 2 > 1. d2 = 5, e2 = 1, 7772 = 0 

In computing ^ . M = AP(2,S2 , / l , P ) we find J = { 0: 1, 2 } so that 

®slM = V2 V2 + Vi V + Vo 
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Po=(0,26) 

Fi = (l,21) 

P2 = (2,16) 



with 

% = r^2i24;^Q+2e2(6) = Pi + i, 

and therefore 

*s2*fo) = (pi + Vv2 + y + Pi = (Pi + l)(y + Pi + l)(y + 1). 

(2) 

Since ^ $ has two distinct irreducible factors, it follows from the Theorem of 

the Associated Polynomial that $(x), and hence F(x), is reducible in Q2[z]-
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