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ABSTRACT 

Integrating Capacitated Lot-Sizing and Lot Streaming In Flowshop 

Schedules with Time Varying Demand 

Alipasha Bayat 

Any reasonable production planning contains three important decisions on lot size, lead 

time, and capacity. The common approach in the literature is to divide the planning 

problem into lot sizing, lot sequencing, and lot splitting sub-problems. Very few studies, 

to the best of our knowledge, have been conducted on the interdependencies and three-

way interaction of lead-time, lot size, and actual capacity usage. A particular lot size 

calculated by the sub-problem method, however, will likely yield an infeasible solution or 

at least result in schedule instability (nervousness). This is just because in most 

capacitated lot sizing models, the capacity constraints in the model only take into 

consideration the available time on each work station, ignoring the sequencing of lots, 

sublot sizes, and their effect on makespan and lead times. In this thesis we bridge the gap 

between lot sizing and scheduling in flowshops, and examine the use of the lot splitting 

and sequencing techniques to reduce schedule instability. A mixed integer programming 

formulation is presented, which enables us to simultaneously find the optimal lot sizes as 

well as the corresponding sublot sizes and sequence of jobs. With this model, small size 

problems can be solved within a reasonable time. The computational results confirm that 

this model can be advantageous in dampening the scheduling nervousness. For larger size 

instances, a Genetic algorithm is proposed. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The aim of lot-sizing research is to minimize setup and holding costs by determining 

production lot size and inventory levels to meet a given demand. Lot streaming (Biskup 

and Feldmann, 2006), on the other hand, aims to divide lots into sublots in order to allow 

overlapping process in a multi-stage production system to accelerate the flow of material 

and reduce the lead-time. 

The common approach in the literature (known as the "hierarchical approach") is to 

divide planning problem into lot sizing, lot splitting, and sequencing sub-problems. First, 

using the master production plan, supported by bill of materials, and production structure, 

the lot size for each product or part would be found. Then, after orders are released to 

shop floor, lot splitting and sequencing techniques will be used to find the optimal 

production sequence and sublot sizes. A particular lot size calculated by this common 

practice might, however, gives an infeasible, or at least a poor solution in respect to other 

aspects such as work in process (W1P), inventory holding cost, and set up costs. This 
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infeasibility forces the planner to frequently change the master production plan which 

results in schedule instability (nervousness). This is because most capacitated lot sizing 

models have four major unrealistic assumptions: 

First, conventional capacitated lot sizing models, also known as CLSP, assume that the 

time spent by each lot on each work center is small and negligible. This only makes 

physical sense when a single item transfers from one work center to another (lots of size 

one). However, when the production is by lots, the processing time of a lot depends on 

the size of the lot and may not be negligible. For example, the time spent on machine 1 

by a lot of "«" items with "i>" being the processing time is "n*P". Additionally, machine 

2 would be idle for "n*P" units of time since the first job scheduled on machine 2 cannot 

start until it is completed on machine 1. Thus, the capacity available for production 

depends on the size of the production sublots. 

Second, in most capacitated lot sizing models, the capacity constraints are nothing more 

than the available time of each machine. Again, this assumption is only valid, if there is 

zero idling time. In a flow shop in which production is done in lots, assuming zero idling 

times means ignoring the effects of sequencing and sublot sizes, on makespan and lead 

time. 

Third, in presence of setup times, the limited capacity available for production may be 

reduced by changeovers, causing sequence- dependent setup times. Lot sizing and 

capacity usage therefore depend on both the sequence and the size of the sublots. 
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Fourth, conventional capacitated lot-sizing models consider the lead time as a fixed and 

controllable input data, when it is really an output of other decisions, especially lot sizing 

and sequencing (Lasserre, 2003). 

Capacity Planning 

, ' * 
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Aggregate Production 
Planning 

'' 
Master Production 

Schedule 

1' 
Material Planning 

(Lot Sizing) 

'' 
Scheduling 

(Sequencing & splitting) 
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> 

[ j 

Long term 

Medium term 

Short term 

Figure 1-1: Hierarchical Planning Approach 

Making any of the above assumptions would result in failure to plan capacity and in 

scheduling instability. Scheduling instability is a severe problem in any production 

planning system. It can be caused by one of the following reasons: 

• Uncertain events occurring within or outside the production system such as 

forecast errors and machine breakdowns, 

• Operating factors such as lotsizing rules and capacity utilization 

Traditionally, there are two options for dealing with instability: first to maintain safety 

stock, safety lead time and safety capacity, and second to change the master production 



schedule (MPS). There is a large cost associated with first option, and frequent 

rescheduling leads to system instability. 

Ho (1998) concluded that although forecast errors have impact on instability, use of an 

appropriate lot sizing rule may neutralize the negative impact of forecast errors. He also 

examined dampening effect of different lot sizing rules (Ho, 2005). He concluded that 

part period balancing rule and least total cost rule turn out to be two effective lot sizing 

rules to reduce system nervousness (Ho, 1986; Ho and Law, 1995; Ho, 2005). 

1.2 Objectives and Contributions 

In this thesis we focus on the problem of finding the optimal lot size for multiple items 

with time varying demand in a multistage production system, when lot streaming and 

sequencing are applied simultaneously to ensure order's feasibility and reduce the need 

for rescheduling of the master production plan. The main contribution of this thesis is the 

integration of sequencing and scheduling decisions with lot sizing. We make our decision 

on the sequence of production and the sublot sizes simultaneously in advance, thus, we 

have better schedule because we know the idling times of machines and we can fill them 

with jobs. Moreover this can help us to have better estimate of the lead times. In order 

achieve our goal we propose the following: 

• Formulated the problem as a mixed integer linear programming problem model 

• Developed a genetic algorithm (GA) 

• Generated random problems to evaluate and compare the linear model and genetic 

algorithm 
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1.3 Overview of this Thesis 

Chapter 2 is an introduction to existing literature on the three subjects of lot sizing, 

scheduling, and lead time. It introduces some of the works done on the integration of 

these three subjects. This literature review focuses mainly on the flowshop problem. 

Chapter 3 presents a mixed integer linear formulation of the problem. Later in Chapter 5 

this exact solution will be used as a benchmark for evaluating the genetic algorithm. 

Chapter 4 provides a study on design of genetic algorithms (GA), their design factors, 

and their parameters. Then, it presents our proposed genetic algorithm to solve the lot 

sizing problem (combined with scheduling) in more detail. It also presents numerical 

examples and comparison with the exact solution presented in chapter 3 in order to 

illustrate the efficiency of genetic algorithm. 

Chapter 5 is the summary of this thesis and provides some direction for future research 

works. 
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CHAPTER 2 

LITERATURE REVIEW 

The three research areas of lot sizing, scheduling (sequencing and lot streaming), and 

lead time have direct impacts on this study. The literature on the above mentioned areas 

is vast, though, very few studies are available on the combination of the three. This 

chapter discusses the literature of these three areas, and presents the related studies on the 

integration of scheduling and lot sizing. 

2.1 Lot-Sizing 

In this section, we will discuss the literature of deterministic and dynamic capacitated lot 

sizing problems. By deterministic, we mean that demand is considered as known, as 

opposed to probabilistic demand, and by dynamic we mean that the demand is time 

varying over the planning horizon. The aim of lot sizing research is to minimize setup 

and holding costs by determining production lot sizes and inventory levels to meet a 

given demand. In other words, lot sizing is about answering the questions of when and 

how many to produce. The goal is to find a feasible production plan which meets the 
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demand as stated in master schedule plan (MSP), while having the minimum setup and 

inventory holding cost. 

Based on the literature, solution methods of lot sizing problems can be classified into 

three main categories: simple and common sense techniques, exact optimization methods, 

and heuristic methods. 

2.1.1 Simple and Common Sense Techniques 

Lot sizing research began with simple techniques like EOQ, fixed order quantity, and lot 

for lot (LFL) models and developed further to handle various cases. The EOQ model is 

single level, single item production with no capacity constraints. The demand is 

deterministic and assumed to have constant rate. EOQ model is a continuous time model 

and it is very easy to solve. When the demand variation is small, we can ignore the time 

variability of demand and use the basic EOQ model. 

In the lot for lot method, which is considered to be the simplest method, order quantities 

are the same as demand in each period. This it is not the best method when the setup cost 

is high. 

2.1.2 Exact Optimization Methods 

The most cited optimization method for solving lotsizing problems is the Wagner-Whitin 

algorithm, which uses integer or mixed programming. Development of the dynamic 

method of Wagner-Whitin constitutes a major improvement in solving lot sizing 

problems. Wagner-Whitin (Wagner, 1958) assumes a finite planning horizon which is 

divided into discrete periods. Demand is time-varying and considered to be deterministic 
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and known for each period. But still it was un-capacitated and single level and a single 

item problem. 

The next generation of models is a combination of dynamic methods like Wagner-Whitin 

and the capacity constraints, called the capacitated lot sizing problem (CLSP). Single 

level lot-sizing problem is reviewed by many scholars. In the next sections, we present 

the mathematical formulation and the basic assumptions of this model. 

2.1.2.1 Assumptions and Limitations 

To find the best amount and timing of production, following assumptions were made for 

solving the single item capacitated lot sizing problem: 

• The demand rate is known and deterministic, 

• The cost factors do not change with time. In other words inflation is negligible 

• No shortage is allowed 

• The carrying cost is only applicable to the inventory that is carried over from one 

period to the next period 

• The production has to be completed at the end of each period to meet the demand 

of the next period 

• Jobs should be processed in sequence on m machines or stages 

2.1.2.2 Mathematical Model 

The single item capacitated lot sizing problem (CLSP) can be formulated as follows: 
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(2-1) Minimize TRC = £ AY; + I fh 
7 = 1 

ST. 

Ij = / , + Qj - DJ 

j = 1,..., t 

7 y > 0 

JO = {o,i} 

Demand for each period (Dj) is given. The objective function minimizes the total relevant 

cost of production (TRC) which is the summation of setup (A) and inventory holding 

costs (h). In each period with production a set up cost will be incurred and this is modeled 

by using a binary coefficient in the objective function. The first constraint is flow-balance 

which shows the requirement in each period will produce at least one period before 

needed period. As experiments showed, lot-sizing problems are NP-hard which is why 

this field is dominated by heuristic techniques. The heuristic and meta-heuristic models 

will be discussed in the next sections. 

2.1.3 Heuristics 

Heuristic methods are iterative procedures to solve a problem but do not grantee an 

optimal solution. Heuristic methods are used for NP-hard problems when it is 

computationally infeasible to find an optimal solution. The most common heuristic 

approaches used to solve the lot sizing problem for dynamic demand are the Silver-Meal 

(Meal, 1969), Least Unit Cost (LUC), and Part-Period Balance (PPB) methods. 

9 



Silver-Meal heuristic considers a lot size that equals to the demand of some m periods 

ahead. For example, if m = 3 the lot size equals to the demand of the 3 next periods. The 

average holding and set up cost per period for m period span. Inventory costs (holding 

and setup) per units of time of placing an order at period t, if the order covers m periods, 

can be expressed as follows: 

n 1 , T-omrn \ (settlP cost) + (Total Carring Costs to end of period T) 
(1-2.) lKLUl(t)-

Silver-Meal heuristic starts from ordering for one period ahead and increase the number 

of periods (t) systematically to include the demand of next t periods ahead. It computes 

the cost for each / =1, 2, 3, etc, until the average cost per period starts to increase. The 

best t is the last one before the average cost per period increases. Then, an order to meet 

the demand of the next t periods must be placed. After that, it moves to period t+1 and 

repeat the procedure until all demands are included in orders. 

The Least Unit Cost heuristic is quite similar to the Silver-Meal heuristic, except that it 

accumulates demands until the cost per unit increase. In other words it divides the cost by 

number of units instead of dividing the cost by number of periods (/). 

The idea behind the Part Period Balancing is to select the number of periods covered by a 

setup such that the setup cost is nearly equal to the holding cost. 

In the recent years, meta-heuristics such as tabu search, genetic algorithm, and simulated 

annealing have been used extensively for solving the lot sizing problems as well as its 

variants. Design of meta-heuristic algorithms revolves around choosing ways to represent 

a solution, evaluate each solution and define a neighborhood. Reza and Akgunduz 
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(2007), Ozdamar et al. (2002), Meyr (2000), and Sikora (1996), are a few examples of 

the huge number of the existing literature on different variants of lot sizing. We will 

discuss the design of their algorithms in more detail in the next sections and especially 

those who use genetic algorithm in chapter 4. 

2.1.4 General Characteristics of Lot Sizing Problems 

There are many comprehensive reviews on the lot-sizing literature. Karimi et al. (2003) 

classified the lot sizing problems into four categories based on the number of products 

(single-item or multi-item) and the capacity (un-capacitated, capacitated). They also 

introduced eight characteristic for lot sizing models. The following characteristics are to 

be noted in any lot sizing models: 

Planning horizon: Planning horizon can be discrete or continuous and it can also be 

finite or infinite. For finite planning horizon with deterministic and time varying demand, 

dynamic models like Wagner-Whitin are usually used. 

Planning horizon can be categorized as either big bucket or small bucket. Big bucket 

horizons are those where the time period is long enough to produce multi items, while for 

small bucket problems the time period is so short that only one item can be produced in 

each time period. 

Production level: Production level can be either single or multi-level. Multi-level 

production can further be categorized as serial, assembly, disassembly, and general. In a 

single level production system, the final product with independent demand is directly 

produced from raw or purchased materials, whereas in a multi-level production system, in 
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which items have the hierarchal relationship and output of one item is the input for 

another one. 

Number of products: There are two types of production with respect to the number of 

products, namely single item and multi-item. Presence of sequence dependent setup times 

and costs increase the complexity of planning for production of multi-item. 

Demand for the end item: Demand can be deterministic (known in advance) or 

probabilistic (not known exactly). It can be static (i.e. it will not change over time), or 

time varying and dynamic. 

Setup: Setup can be simple (independent of scheduling decisions) or complex. Complex 

setups can further be categorized as setup with carry over, sequence dependent, and 

family or major setup. 

Deterioration of items: For items which can deteriorate, another constraint would 

restrict the inventory holding time and add to complexity of the problem. 

Inventory shortage: Backlogging and lost sales are two inventory characteristics which 

can be allowed or not. Backlogging means that the demand of a period can be satisfied in 

future. 

2.2 Scheduling (Sequencing and Lot-Streaming) 

A production setting, in which «-job should proceed in sequence of m machines or stages 

and all the jobs are processed in the same sequence, is called a flowshop. Processing 

times of different jobs on different machines may vary. All jobs are assumed to be 
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available at time 0. There are a number of performance measures that can be used to 

evaluate the particular production schedule in a flowshop environment, such as average 

idling time of machinery, total waiting times of jobs, or machinery utilization. However, 

the most common objective is to minimize the makespan. 

Input 
Machine / 

In Process 
Machine 2 

In Process ( 
Machine n 

Output 
• 

Job Flow 

Figure 2-1: m-Machine Flowshop 

Throughout the literature in flowshops, the term scheduling is often used purely to denote 

sequencing of jobs. However, we want to make a distinction between sequencing and 

scheduling. For the purpose of this thesis, "scheduling" means allocating the resources to 

perform different jobs over time with respect to constraints like machines' capacities and 

time bucket length, whereas, sequencing is concerned with the arrangement in which a 

set of jobs should be performed. In other words, sequencing only ranks the jobs to be 

performed. In this thesis, by scheduling, we mean the combination of sequencing and lot 

streaming techniques which enable us to execute jobs in a right order on different 

machines without any capacity violation within time buckets and to find a feasible 

production schedule. The literature on scheduling is vast; but we are only concerned with 

flowshop scheduling with the objective of minimizing the makespan. We are particularly 

interested in production settings in which production takes place in batches as opposed to 

producing individually (unit by unit) that is where literature of both the lot streaming and 

the sequencing problems merge together. 



We follow the three-field classes of scheduling problems introduced by Graham et al. 

(1979). We use Fm/STsitt/Cmax to denote the problem studied in this thesis. In this 

classification problems can be specified in terms of the three-field classification a /p / y 

where a specifies the production environment, p specifies the job characteristics, and y 

describes the objective function. 

Fm represents flowshops with m-machines, in the second field, "STSj, t," sequence 

independent setup times for sublots, and "Cmax " represents the performance measure of 

minimization of makespan. In the rest of this section, the important notions and 

definitions will first be discussed and then the literature of lot streaming and sequencing 

will be presented briefly. 

Sequencing research starts with the very early works of Johnson's 1954 paper on two 

machine flow-shop scheduling (Johnson, 1954). Reiter (1966) introduced the concept of 

lot streaming. 

Lot streaming is the process of splitting a job or a lot to allow overlapping between 

successive operations in a multi-stage production system. This usually results in a shorter 

makespan. In the context of multi-product lot streaming in addition to the sublot sizes and 

the number sublots the production sequence of items is another decision variable. 

Chang and Chiu (2005) classified lot streaming problems into four categories based on 

number of products (single or multiple) and the performance measurements (time-related 

and cost-related). They described lot streaming problems with three main dimensions, 

namely system configuration, sub-lot-related feature, and performance measurement. 
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They also introduced seven sub-dimensions which has several levels as shown in 

appendix 2. 

2.2.1 Notions and Classifications 

In the rest of this section, we introduce the necessary definitions and classifications. 

1. In an m-machine flowshop, a schedule is called permutation if the job sequence 

stays the same on all the machines or stages. Otherwise, it is a non-permutation 

schedule. 

2. Sequencing problem in a flowshop can be categorized further to those with 

independent setup and those with sequence dependent setup times. 

3. A setup is attached if it cannot be started before the production lot or sublot 

becomes available on the machine. If it can starts before availability of sublot a 

setup is detached. 

4. Lot or sublot sizes can be consistent, equal, or variable. Consistent batches have 

the same size over the different stages or machines. If all the sublots' sizes are 

equal it would be called equal sublots otherwise, it would be called variable sublot 

size. 

5. Idling can be allowed or not. Machines can be idle between sublots if intermittent 

idling is allowed. Non-idling means that sublots should be processed one after the 

other on a particular machine or stage. 

6. Setup, production, and transportation are the three types of activities that involve 

a series of operation. 
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7. Sublot size can be a real number or an integer (discrete or continuous). For 

discrete sublots, the number of item in a sublot has to be integer number. While, 

for continuous sublots size there is no restriction on the sublot size. For example, 

in chemical industries sublots take continuous numbers. 

In multi-product setting, if intermingling sublots (preemptions) is allowed, the sequence 

of sublots of a given product may be interrupted by sublots of another product. For non-

intermingling sublots, no interruption in the sequence of sublots of a product is allowed 

(Defersha and Chen 2008). In other words, production of a particular product on one 

machine or stage can be started once the last sublot of the previous product is finished. 

Figure 2-2, in the next page, shows the benefits of lot streaming in reducing the 

makespan (Chang and Chiu, 2005). 
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2.2.2 Common Solution Methods 

There are two main approaches to solve flowshop scheduling problems namely, the exact 

and heuristic approaches. There are a huge number of studies on both the exact and 

heuristic solution procedures developed to solve the scheduling problems in flowshops. 

The exact algorithms are capable of determining the optimal solutions. However, 

heuristics approaches are also very prominent in t2he literature since such problems are 

proven to be NP-complete. 

2.2.2.1 Exact techniques 

Sequencing research starts with the very early works of Johnson's 1954 paper on two 

machine flow-shop scheduling (Johnson, 1954). Johnson developed a procedure that 

minimized the makespan for jobs on two machines. For a two-machine setting, Johnson's 

solution is proven be an optimal solution and it can be extended to a three-machine 

flowshop problem as well. The Johnson's algorithm also known as Johnson rule is as 

follows: 

1. Determine the shortest processing time among all jobs yet to be sequenced on 

machine 1 and 2. 

2. Schedule the job associated with the shortest processing time first in the sequence, 

if it occurs on the first machine. 

3. Schedule the job associated with the shortest processing time last in the sequence, 

if it occurs on the second machine. 

4. Continue until all the remaining jobs are scheduled. 
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Essentially, Johnson's procedure minimizes the idle time on machine 2 by scheduling a 

job with the shortest processing time on machine 1. 

2.2.2.2 Heuristic methods 

In this section we discuss some heuristic and meta-heuristic methods to minimize the 

makespan in flowshops. Palmer's method, NEH heuristic, and CDS algorithm are three 

examples of such heuristic methods developed through application of Johnson's 

algorithm. 

Palmer (1965) developed a heuristic based on the idea of placing jobs, which have 

increasing processing times from one stage to the next stage in earlier positions in the 

sequence. He assigns jobs to later positions in the sequence when they have decreasing 

processing times as they move from one stage to the next as they progress through the 

flowshop. 

The Nawaz, Enscore, and Ham algorithm, known as NEH, is one of the most cited greedy 

constructive methods in literature of flowshop sequencing problem (Nawaz, Enscore, and 

Ham, 1983). The NEH algorithm takes three simple steps as follow: 

1. Schedule the first two jobs so as to minimize the partial makespan as if there were 

only two jobs 

2. Order the remaining jobs by decreasing sums of total job processing times. 

3. Place the remaining jobs in one of the slots between already scheduled jobs such 

that the total makespan is minimized at each step. 
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Campbell et al. (1970) developed an algorithm; known as the CDS algorithm which uses 

Johnson's rules. The algorithm breaks the m-machine problem into several two-machine 

problems, then each of two-machine problems is solved using Johnson's two-machine 

algorithm. 

Sriskandarajah and Wagneur (1999) considered the problem of minimizing makespan in 

two-machine and no-wait flow shop with multiple products. Their objective is to 

determine sublot sizes and sequence the jobs simultaneously. They develop a heuristic 

procedure to solve sequencing and lot streaming of multiple products. Computational 

results are shown to be close to the optimal. Later, Kumar et al. (2000) extends the two-

machine model of Sriskandarajah and Wagneur to m-machines lot streaming problem. 

Lot streaming for multiple products in a multi-stage flow shop with equal sublots and no 

intermingling is discussed by Kalir and Sarin (2001). Their objective was to minimize the 

makespan by finding the right sequence for jobs. They developed a heuristic procedure 

for the lot-streaming and sequencing problems. They used an example to show the 

importance of sequencing in lot streaming problems. 

Hall et al. (2003) studied the problem of minimizing the makespan in flowshop with lot 

streaming. Their model required the sublots to be processed consecutively on each 

machine. Setups occur only between sublots of different families. Setups are either all 

detached or all attached. They showed that this problem can be formulated as a general 

traveling salesman problem. Furthermore, they proposed a heuristic for multiple 

products, no wait processing and lot streaming flowshop problem. 
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Biskup and Feldmann (2006) introduced the very first MIP formulation for single item in 

multi-stage production settings with variable sublots sizes. They showed that significant 

makespan reduction can be achieved by using variable sublot sizes. Defersha and Chen 

(2008) extended the single item lot streaming model of Biskup and Feldmann (2006) to 

multiple products and proposed a genetic algorithm. Their model is outstanding in 

tackling the sequencing and splitting problem simultaneously. Their model also 

outperforms that of earlier approaches because their model of variable sublots also allows 

intermingling of sublots. 

2.3 Integrated Lot-Sizing and Scheduling 

In the most of the literature of production planning, lot sizing and scheduling problems 

are solved independently and, for the sake of simplifying the problem, the 

interdependencies of lot size, sequence, and capacity usage are ignored. The problem 

discussed here is the lot sizing and scheduling of ^-product in a flowshop consist of m 

machines with the objective of minimizing total inventory holding cost and setup costs. 

Demand has a deterministic and dynamic pattern over a finite planning horizon and must 

be met without back-logging. Production takes place in lots. In this condition, lot sizing 

and scheduling of jobs should be done simultaneously because we encounter sequence 

dependent setup times and production which takes place in lots. 

First, in presence of sequence dependent setup times, the limited capacity available for 

production may be reduced by changeovers causing sequence-dependent setup times. 

Thus, lot sizing and capacity usage depends on both the sequence and the size of the 

sublots. 
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Second, when the production is by lots, the processing time of a lot may not be 

negligible, and it would be naive to ignore the machines' idling times. For example, 

machine 2 would be idle since the job scheduled on machine 2 cannot start until it is 

completed on machine 1. Therefore, the capacity available for production depends on the 

size of the production sublots and the sequence of jobs. 

There are a few studies available on the combination of lot sizing and sequencing and 

fewer with lot streaming in mind. In the rest of this section, we will discuss literature on 

studies on the combination of lot sizing and scheduling. 

Szendrovits (1975) presented a model of constant lot size in multistage manufacturing 

system with constant and continuous demand for products. He came up with a modified 

EPQ model that assumes a uniform lot size proceeding though m machines or stages, 

with one setup at each machine. His model allows lot splitting to reduce the 

manufacturing cycle time. The objective of his model is to minimize the sum of the fixed 

production costs and the holding costs of both the WIP (Work in Process) and finished 

product inventories. Szendrovits' work resolves the relationship between the production 

lot size, the manufacturing cycle time and the average work in process. 

Goyal (1978) stated that transportation cost of sublots should be noted in Szendrovits 

model and showed that the total amount of WIP with consistent sublots is less than 

constant sublots. 

Drezner et al. (1984) proposed a model with variable lot size (VLS). Szendrovits and 

Golden (1984) compared the VLS model with ULS, in that they showed that the ULS can 
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give a better result in minimizing the cost in some situations but it depends on the sublot 

transportation cost. 

Smith and Ritzman (1988) presented a mixed integer programming formulation for lot 

sizing problem considering the sequencing problem. Their formulation considers 

sequence dependent set-up times and capacity constraints. However, the MIP formulation 

is not always able to solve real size (large) problems. 

Sikora et al. (1995) studied the problem of flowshops with finite scheduling horizon with 

objective of minimizing the makespan and inventory holding cost. The flowshop they 

discused has the following characteristics: 

• Sequence dependent setup times, 

• Limited intermediate buffer space, 

• capacity constraints, 

• In addition jobs are assigned with due dates that have to be met. 

They developed an integrated approach in order to address the problems of solving 

lotsizing and sequencing decisions independently. It is an iterative approach which does 

the sequencing for each period before an additional lot is scheduled for that period. 

Because of the interdependency between lotsizing and sequencing decision, they came up 

with the framework consist of 3 modules namely lotsizing module, sequencing module, 

and testing module. Figure 2-3 which shows their integrated framework is adopted from 

Sikora et al. (1995). 
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Figure 2-3: The Integrated Framework of Scheduling System 

In each iteration, the lot sizing module calls the sequencing module to find the optimal 

sequences which minimize the makespan. Then, the testing module calculates the 

makespan and residual capacity on the bottleneck machine for the given lot size and 

sequence and information will be returned to lot sizing module before any additional lot 

be scheduled in the period. 

The lot sizing module uses a modified version of Silver Meal heuristic that allows lot 

splitting in order to increase the capacity usage. It calculates b, which is the fraction of 

the next period's (7/ + 1) demand that can be produced in the current period without 

violating the capacity constraints. Then, it quantifies the TRCUT (total relevant cost per 

unit of time) based on this fraction (b), using the following formulation: 
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. . ,, remaining capacit 
(2-3) 9 =mirKl,— 

Wa </;+i) 

A+h^id-T'^+h.D^b, 
(2-4) TRCUT(Ti+l,bi) = ^ 

T.-T 

Where: 

kj Required capacity for producing one unit of product i 

D^ Demand of item / in period d 

Aj Setup cost for item / 

hi Inventory holding cost for item / 

T* The current period 

Tj The number of periods ahead in planning horizon 

The sequencing module uses an improved version of palmer heuristic and the pair-wise 

exchanged which incorporates the sequence dependent set up times and the limited buffer 

capacities. 

Sikora (1996) developed a genetic algorithm for integrating lot sizing and sequencing 

problems in a flowshops with all the characteristics of the integrated approach described 

previously by Sikora et al. (1995). In their proposed genetic algorithm, each possible 

solution is represented by a string of paired values for each period in the time horizon. 

The first number of any pair indicates the type of job and the second number indicates the 

number of units of that job type that have to be produced (lot-size). The order of the pairs 

indicates the sequence of jobs. 
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In order to enable the genetic algorithm to manipulate both data of lot sizing and 

sequencing, they use separate crossover and mutation operators. Their GA uses 

tournament selection mechanism. The feasibility of the initial population is assured by 

scheduling the lot size s equal to demand in that period. Finally, experiments showed that 

their genetic algorithm outperforms both the integrated and sequential approaches. 

Ozdamar and Birbil (1998) developed a hybrid heuristic consisting of meta-heuristics 

such as simulated annealing (SA), tabu search (TS) and genetic algorithms (GA) for 

solving the capacitated lot sizing and loading problem (CLSLP). They define the CLSLP 

problem as determining the lot size of product families and loading them on parallel 

machines. 

Meyr (2000) introduced another model for solving lotsizing and scheduling problems 

simultaneously in a capacitated flowshop with sequence dependent setup times. Their 

model combines a simulated annealing heuristic with the mixed integer model to solve 

the problem by fixing the binary variable of setup sequence and solve the sub-problems 

by heuristic. Then, they discuss that solving each of sub-problems to optimality is too 

time consuming. They develop a mathematical solution which remodels the problem as a 

dual network flow problem. The computational tests prove that their procedure is 

efficient. 

Ramasesh et al. (2000) proposed an EOQ model for a single item in multistage when lot 

streaming is applied. They develop a total cost function consisting of the inventory 

holding costs, setup cost, transportation cost, and also WIP carrying cost, and then they 

discuss a procedure to find the optimal production lot size that minimizes the total cost. 
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Their contribution is twofold; they capture more accurately the components of the 

manufacturing lead time that are encountered in a multistage production environment, 

and they use the lot streaming in a multistage system MRP. 

Hoque and Goyal (2003) claimed that Ramasesh model (Ramasesh, 2000) is not only a 

special case of the model of Hoque and Kingsman (1995) but also is not able to find the 

minimum cost. They solved two examples, which one of them had been solved by 

Ramasesh (2000) and the results showed a significant reduction in cost. 

2.4 Lead Time 

Lead times in MRP systems represent the planned amount of time allowed for orders to 

flow through the manufacturing system (Kanet, 1986). Lead time is important because it 

can affect every component of an MRP-based manufacturing and it is related to capacity 

planning. Lead time structure or the way that lead times are estimated is under 

management's complete control, and can change the pattern of planned order releases as 

well as flow time and the amount of inventory. 

Lead-time determination can change the pattern of planned order releases in an MRP 

system. Moreover, by changing the order release pattern the bottleneck facilities would 

change. This results in unpredictable lead times and capacity. Kanet (1986) compared 

different lead time structures but did not find any evidence to show which structure is 

better. In other studies, the results show that the commonly used structure (processing 

time + setup + waiting time) does not have a better result, especially when the criterion is 

tardiness (Kanet, 1981). 
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Many researchers believe that holding planned lead times down will decrease the 

inventory and eventually yield benefits. They argue that there is a vicious circle of lead 

time, which means that an increase in lead time encourages shop personnel to ignore 

deadlines. As a result more increases in lead time are required. Furthermore, it becomes 

increasingly difficult to plan the MPS because as lead times increase forecasts become 

more inaccurate. However, Kanet (1986) categorizes the inventory and creates an 

example that shows lowering the lead times does not always result in reduction in 

inventory levels. He also came up with a simple and very intuitive rule: 

"If storeroom inventory contains less early inventory than delayed 

inventory then lead times should be increased. If storeroom inventory 

contains earlier inventory than delayed inventory, then lead times 

should be reduced." 

From the above mentioned studies we conclude that we cannot ignore the interaction of 

lead time, lot size, and capacity usage. Since different lot size, sublot size, and sequence 

has direct impact in on lead time we should find way to find the actual lead time while we 

are deciding on lot size. 
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CHAPTER 3 

MATEMATICAL FORMULATION 

As mentioned in previous chapters, our objective is to decide the sequence of the 

production and the sublot sizes while solving the lot sizing problem. This will result in 

better scheduling, since the sublot sizes and the sequence of production are known, we 

will know the idling times of machines and be able to fill them with jobs, and the orders 

released to shop floor will be definitely feasible. 

In this chapter, a mixed integer linear programming (MILP) formulation is presented. It 

enables us to simultaneously find the optimal lot sizes, as well as the corresponding 

sublot sizes and sequences. This model takes the demand as an input and gives the 

optimal lot size, sublot size, and the sequence of production as an output. With this 

model, small size problems can be solved within a reasonable time. This model also 

calculates the makespan, in order to ensure that makespan is less than the available time 

in each period. Moreover, the lead time is explicitly computed in the model. 

3.1 Assumptions and Limitations 

To find the best production batch size will make a number of simplifying assumptions: 
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1) The demand is time varying, known and deterministic 

2) The inventory holding cost is only applicable to the inventory that is carried over 

from one period to the next 

3) Production must be completed at the end of each period to meet the demand, 

4) Jobs should be processed in sequence M machines or stages, 

5) Each production order (lot size) consists of Q identical items which would be 

divided into sublots 

6) Items become available for processing at the next machine whenever the 

processing of the whole sublot has been finished on the previous machine 

7) The entire production lot is produced with a single setup on each machine and 

transferred to the next machine in one or more sublots 

8) The cost factors do not change with time. In other words, inflation is negligible 

9) No shortage is allowed 

The proposed linear programming formulation to solve the lot sizing problem with the 

above assumptions is a combination of the conventional model of lot sizing commonly 

abbreviated as CLSP (Karimi, Fatemi, and Wilson, 2003) and lot splitting with variable 

lot size quite similar to (Biskup and Feldmann, 2006). 

3.2 Notations 

Let the parameters be: 

Djt Demand for the Product j in period / 

St m Setup time of machine m for the Product j 

Sc/ Setup cost for the Product / 
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r Processing time for one unit of the Product / on machine m 

/ Fixed minimum lead time (not include an estimate of delay due to 

machines idling times or capacity constraints) 

h Inventory holding cost 

Capml Available time on machine m in period t 

TBr Available units of time (time bucket) in period / 

S Number of sublots 

s Indices for sublots, s = \,...,S 

N Number of products 

j Indices for products, 7 = 1,...,N 

M Number of machines 

m Index for the machines, m = 1,...,M 

A Sufficiently large number 

Let the Decision variables be: 

Lj, Lot Size (quantity to be produced from product j in each period/) 

U j s, Size of the sublot s of the Product j in period / 

/ ., Ending inventory of the Product j in period / 

Xj k, Binary variable, which takes the value 1 if the Product j on machine m 

has started before the Product k , takes 0 otherwise. 

Yj, Binary variable, which takes value 1 if production of the Product J take 

place in period t 
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b sml Starting time of the sublot s of product j on machine m in period t 

Pjsml Processing time of sublot 5 of product j on machine m in period/ 

3.3 Mathematical Model 

(3-D MIN = x z /,., * *+z i > , * Y.,.> 
7 = 1 / = 1 ,/ = l 1 = 1 

(3-2) / ; ,_, + Lji_r - ihi = DJI j = ],..., N / = /%..., T 

(3-3) ^{L^r^+Stj^Yj^KCap^ t = \,...,T m = ],...,M 
y=i 

(3-4) bjSMj + PJiSMj < TB, j = 1,..., N t = I,..., T 

(3-5) LJI-A*YJI < 0 j = \,...,N t = ],...,T 

(3-6) ! > , , , , = ^ , J = l-,N / = !,...,r 

(3-7) Pj,s,m.,=Uj,s,,*rj,m j = 1,...,N t = ],...,T m = h...,M s = \,...,S 

(3-8) 6,,s,m,, + PJM + Stkm *Ykl < bksm, + (1 - X j k , ) A 

j,k = ],..., N j<k s = ],..., S m = ],..., M t = ],...,T 

(3-9) bksm_, + Pk^, + Stjm * Yhl < bJsml + xJkl * A 

j , k = ],..., N j <k s = ],..., S t = 1,..., T m = 1,..., M 

(3-10) bJ]ni,>bJlm_ll+P/Xm_]l+Sthm j = ],...,N t = ],...,T m = 2,...,M 

(3-11) bJAXl>St„ j = \,...,N t=l,...,T 

(3-12) ^ „ , , > ^ _ L „ , , + ^ . . ( . , . „ , , 
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j = 1,..., N , t = 1,..., T, m = 1,..., M s = 2,..., S 

(3-13) y,,, > * M , j,k = },...,N t = \,...j 

(3-14) / 7 „ ^ / , ^ , , ^ m „ / > / j m , >0 y = l,...,iV / = l,...,r » = 1 M i = l 5 

(3-15)7,,, = 0,or 1 J = l-,N t = ],...,T 

(3-16)Xj.k..=°>or} j,k = ],...,N j<k / = ],..,r 

In the objective function, equation (3-1), we are trying to minimize inventory holding 

cost and setup cost. Note that setup time should not be included in setup cost. Constraint 

(3-2) is flow-balance which shows the requirement in each period will produce at least / 

periods before needed. / is a fixed minimum lead time which doesn't include an estimate 

of delay due to machine's idling times or capacity constraints. (3-3) is the capacity 

constraint in which CAPm\s the available capacity of machine m. Constraint (3-4) insures 

that the makespan is less than each period length (time bucket). Constraints (3-2), (3-3), 

and (3-4) together cause production to start even before / period, this additional lead 

time is because of machine idling times. This ensures that the lead time is explicitly 

calculated by model. Constraint (3-6) ensures that the sums of sublots are equal to lot 

size. With (3-7) the processing time of each sublot is calculated. Constraints (3-8), (3-9), 

and (3-13) determine the sequence of sublots. It means that \iXjxt takes the value 1 then 

product/ is started before the product k in period /. Constraint (3-10) is bound the sublot s 

on machine m to start after sublot s on the preceding machine {m-1) has been finished. As 

the model assumes that completions of jobs are consecutive, constraint (3-12) prevents 

sublot 5 on machine m from starting before sublot s-l on machine m finishes, meaning 

that overlapping operations on a single machine is not allowed. Constraint (3-14) is the 

33 

file:///iXjxt


non negativity constraint. Constraints (3-15) and (3-16) restricts X and Y variables to 

binary form. 

3.4 Computational Experiments 

3.4.1 A Numerical Example 

Through the following example we will show how simultaneous lot streaming can affect 

lot sizing process and how it ensures the feasibility of the orders released to shop floor 

and reduces scheduling nervousness. Assuming a production setting of a single product in 

which each lot of Q units must proceed in sequence of 4 machines with associated unit 

processing time of 8, 4, 8, and 4 respectively on each machine. The availabilities on each 

machine are 160, 80, 160, and 70 units of time respectively. Each lot may be divided into 

4 sublots, though the entire production lot is produced with a single setup of $100 on 

each machine. The inventory holding cost of $10 is only applicable to inventory that is 

carried over from one period to the next period. For each period (Month) we assumed 200 

working units of time. Demand over the planned horizon, order released by conventional 

lot sizing models, and order released by our model are as shown in table 3-1. 

Month 
Demand 
Order released by conventional model 
Order released by our model 

Jan 
10 
5 
6 

Feb 
5 
14 
16 

Mar 
10 
17 
16 

Apr 
20 
17 
16 

May 
15 
17 
16 

Jun 
20 
0 
0 

Table 3-1: Demand and Order released in Planning Horizon 

In order to compare the quality of planning, orders released on March are studied 

separately. The order released by a conventional lot sizing model for this month is 17 

units. We applied lot streaming model of Biskup and Feldmann (2006) for this order size 
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(Q=17), and as shown in figure 3-1 (a), the optimal sublot size would be 5, 5, 5, and 2 

with the makespan of 208 hours. This would be an infeasible order because there are only 

200 available working hours per month. In other words, the conventional lot sizing 

model assigned a load that exceeds the shop floor's available time by 8 hours during the 

months of March, April, and May. Figure 3-1 (b) illustrates order released by our model 

(Q=16) with four sublots of size 4 and the makespan of 200 hours. Given the net required 

values are the same as ones been proposed by conventional lotsizing models, our model 

is able to resolve the infeasibility without changing the Master Schedule Plan (MSP). 
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Figure 3-1: Gantt Chart of Production in Month of March 

3.4.2 Analytical Examples 

For testing, this mathematical model was coded for Lingo 10.0 (see the appendix 3). We 

also generated two sets of random problems with different number of machines, products. 



and number of planning periods. Then, we solved each problem twice with different time 

bucket length. The required parameters of problems are as follows: 

• Number of periods in the planning horizon is 6 or 12. 

• The number of products N:{ 3,7,9,10,12,14,15,17} 

• The number of machines M: {4, 5, 6, 7, 8, 10, 12,15} 

• Maximum number of sublots allowed is 4 

• Inventory holding costs and setup costs are considered constant and equal to 10, 

100 respectively. 

• Required capacity of each machine would be estimated by following formula: 

T N 

(3-17) CapmJ=SU^—. *1.8 

It is important to note that average required capacity is multiplied by a utilization 

factor (u=1.8) to cope with effect of demand lumpiness. Moreover, this is an 

estimation of required capacity and the setup times are totally ignored. 

• The production takes place in 1, 2, or 3 shifts in a day for 25 days a month. So, 

considering 8 hours in each shift, the available time in each month or period (time 

bucket) varied as multiple of 200. 

• Demand for each product in each period is equal to 0 by probability of 0.2 or 

follows the Uniform distribution D j. t ~U (1, 60) with probability of 0.8. It should 

be noted that to avoid time-zero infeasibility the demand for first period tj 

considered as 0. 
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• Processing times of each units of product on each machine m follows the Uniform 

distribution r7 m ~U (1, 5). 

• Setup times follow Uniform distribution St j : m ~U (5, 20). 

We let Lingo to run for maximum of 3 hours on a 1.6 GHz Pentium PC with 1024 MB 

RAM before reporting a solution. Table 3-2 shows the computational result for the first 

set of problems. 

Problem 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

TB 

400 

200 

400 

200 

600 

400 

600 

400 

600 

400 

N 

3 

3 

7 

7 

9 

M 

4 

4 

5 

5 

6 

T 

6 

12 

6 

12 

6 

Iterations 

2853 

72212 

101239 

108702522 

111594 

4668066 

1234777 

28141429 

158945 

8687203 

Processing 
time 

00:00:04 

00:00:54 

00:03:22 

3:00:00 

00:04:14 

3:00:00 

3:00:00 

3:00:00 

00:07:18 

3:00:00 

Objective 
value 

3510 

3610 

5910 

6230 

7370 

9490 

14200 

-

7360 

" 

Objective 
bound 

3510 

3610 

5910 

6190 

7370 

7400 

14157 

14157 

7360 

7360 

State 

Optimal 

Optimal 

optimal 

Feasible 

Optimal 

Feasible 

Feasible 

Unknown 

Optimal 

Unknown 

Table 3-2: Computational Result for the First set of Problems 

As Table 3-2 shows, we find the optimal solution for small problems at an early stage of 

problem running. There are two observations. First, as the number of machines, products, 

and periods increases, it becomes more difficult to find a feasible solution. Second, even 

for rather small problems when time bucket is tightly used for production and the ratio of 

makespans and available time bucket is smaller the complexity of problem increases 

significantly. 
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In the second set of problems, as the number of products increased, demand, processing 

and setup times decreased. 

• Demand for each product in each period is equal to 0 by probability of 0.2 or 

follows the Uniform distribution D j . t ~U (1, 20) with probability of 0.8. 

• Processing times of each units of product on each machine m follows the Uniform 

distribution r7> m ~U (J, 3). 

• Setup times follow Uniform distribution St j . m ~U (I, 4). 

Problem 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

TB 

300 

250 

500 

400 

600 

500 

600 

450 

600 

500 

N 

10 

12 

14 

15 

17 

M 

7 

8 

10 

12 

15 

T 

6 

6 

6 

6 

6 

Iterations 

1615550 

6866325 

1644858 

1385916 

723880 

2277011 

721757 

1833381 

268340 
[ ™ *""""• 

913001 

Processing 
time 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

Objective 
value 

8030 

8290 

11170 

-

14520 

-

-

-

-

0^ j eCt i;e 1 State 
bound | 

7817 j Feasible 

7817 | Feasible 

11150 I Feasible 

11150 J Unknown 

14420 Feasible 

14420 1 Unknown 

11412 J Unknown 

| 
11420 Unknown 

8 

12979 j Unknown 

12979 Unknown 

Table 3-3: Computational Result for the Second Set of Problems 

Computational result suggests, as we knew, that the problem is NP hard and it cannot be 

solved by branch and bound method in a reasonable amount of time. In the next chapter 

we attempt to develop a genetic algorithm to enable us to solve the real size problems in a 

reasonable time. 

38 



CHAPTER 4 

GENETIC ALGORITHM 

During the last decades we have seen a growing interest in heuristic algorithms which are 

based on evolution and survival of the fittest, especially for global optimization problems 

like lotsizing and other NP-hard problems. The best known algorithms of this kind 

include genetic algorithms, Tabu Search, and Simulated Annealing, as well as some 

hybrid algorithms which integrate various features of the above methods. 

This chapter includes an introduction to genetic algorithms and a brief overview of the 

important genetic algorithms used in lot sizing and scheduling problems in the literature. 

Then we present the developed genetic algorithm. 

4.1 Genetic Algorithms: An Overview 

The Genetic Algorithm (GA), developed by Holland in 1975, is a one of the meta-

heuristic methods used to solve complex optimization problems. GA searches the 

solution space randomly and do not guarantee an optimal solution. In practice, however, 

along with advantages; such as flexibility and straightforwardness, the results are usually 

extremely good. GA is an iterative heuristic search procedure following the principles of 
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genetic variation, natural selection, and survival of the fittest. In these algorithms, the 

initial population of individuals, which represent possible solutions, goes through a 

sequence of genetic operators such as crossover and mutation. The population members 

are evaluated based on a given fitness function. Highly fitted population members have a 

higher chance to reproduce through a crossover process with other highly fitted 

population members by exchanging pieces of their genetic information. This process 

produces new generation and continues until satisfying the termination condition. The 

termination of a genetic algorithm is defined by either reaching a number of specified 

iterations or finding the best individuals who represent a near optimum solution. The GA 

procedure is shown in Figure 4-1 (Nasaruddin et al. 2003). 

Initial Population 

Evaluation of Fitness 

New Generation 

i i 

, 
Reproduction 

. • • . - , • , - « . , , „ , . - . ^ r,,.,„.,., ._„,„.. 

Crossover 

....... v .......... 
Mutation 

Figure 4-1: The GA Procedure 
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4.1.1 GA Design Factors 

Design of a GA revolves around choosing four important factors which must be 

addressed systematically: 

1. Solution representation 

2. Evaluation of each solution 

3. Genetic operators 

4. Choice of a selection mechanism 

These factors are interrelated and, used in the right combination, enable GA to solve 

optimization problems like capacitated lot sizing more efficiently. In the rest of this 

section we discuss them along with some of the fundamental terminologies used in the 

genetic algorithms. 

4.1.1.1 Solution representation 

In a GA, the possible solution of a problem is presented with a string of genes 

(chromosomes). Each gene in a chromosome can have a binary digit, integer, or real 

value. Our mixed integer programming model for CPLS problems contains two binary 

variables along with integer or continuous variables. The first set of binary variables is 

used to indicate the setups and the second is used for the sequencing decisions. The 

integer and continuous variables indicate the production order quantities. There are two 

methods for representing a solution (chromosome). In the first option, the solution 

representation includes both the binary variables and the production quantities (Ozdamar, 

Bilbil, and Portmann, 2002; Ponnambalam, and Reddy, 2003). In the second option, the 
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solution representation only shows the binary variables, and production quantities can be 

found by solving the relaxed MIP. A very good example of this is presented by William 

Hernandez and Sue (1999) and Hung and Chien (2000). It should be noted that in this 

article we use the three words "individual", "chromosome", and "possible solution" 

interchangeably. 

4.1.1.2 Evaluation of each Solution 

As mentioned before a GA is an iterative algorithm. In each iteration, all individuals 

(solutions) are evaluated and some individuals are selected for reproduction operators. 

The most common method for evaluating a solution is using the objective function. It is, 

however, possible to obtain an infeasible solution after applying the genetic operators. In 

capacitated lot sizing problems, capacity constraints cannot be violated otherwise the 

solution would be infeasible. In order to treat such infeasible solutions, one method is to 

impose penalty cost proportional to infeasibility. An example of this is imposing a 

backlog cost in Xie and Dong's paper (2002). Another good example is penalty for 

capacity violation in Ozdamar and Birbil (1998). Another method is using a decoder 

method. The decoder method uses the knowledge of lot sizing to avoid infeasible solution 

in the first place. A very good example of decoder method can be found in Xie and Dong 

(2002). 

4.1.1.3 Genetic Operators 

Two genetic operators, crossover and mutation, are used to explore the entire solution 

space. The choice or design of operator depends on the problem and the representation 

model used. 
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Mutation is the procedure by which individuals are randomly modified. The mutation 

operator forces the algorithm search a new solution area to escape from local optima by 

changing a single solution. The most common mutation operator is bit flip in which when 

mutation takes place the binary value switches from 1 to 0 or vice versa. Example of bit 

flip can be found in (Hernandez and Sure, 1999). When solution presentation includes 

production quantities the mutation operator can change the lot size by a random amount 

or switch the quantities of different periods (Ponnambalam and Reddy, 2003). An 

important issue here is that applying mutation should not lead to an infeasible solution, or 

that the infeasibility should be treated in some way. Applying a penalty for capacity 

violation or very high cost for demand which cannot be met is some ways can be seen 

throughout the literature. 

Crossovers combine existing solutions (parents) and create new solutions (children). In 

crossover process, population members exchange pieces of their genetic information. 

This process produces new generation that are hopefully better than both of the parents. 

Crossover occurs according to a pre-definable probability. In the one point crossover the 

strings of the two parents are cut in two at some random point and are recombined into 

one new solution (Xie and Dong, 2002; Hernandez and Suer, 1999). There are also more 

complex crossovers in literature (Hung and Chien, 2000; Ozdamar, Bilbil, and, Portmann, 

2002). 

4.1.1.4 Choice of a Selection Mechanism 

The selection mechanism is the procedure by which chromosomes are chosen from the 

current population in order to apply genetic operators (crossover and mutation) and 
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generate the new population. How to choose individuals for crossing and how many 

offspring each create are questions that should be answered by selection mechanism. The 

selection mechanism randomly selects chromosomes that have higher evaluation function 

or fitter individuals in a population in hopes that their off springs have higher fitness 

values. 

Proportionate selection, ranking selection, elitist selection, and tournament selection are 

some of the commonly used mechanisms. In the popular proportionate reproduction the 

probability of selection of each chromosome is proportional to its fitness value 

(Hernandez and Suer, 1999; Hung and Chien 2000). In these mechanisms the probability 

of selection of ith chromosome {Pi) from the population of size N is calculated as follows: 

(4-1) r> N 

1=1 

Two problems are associated with proportionate selection mechanism. The first one 

occurs when a few strings with high fitness values force the selection mechanism to 

allocate a large number of offspring to them and take over the population, which causes 

premature convergence. The second one occurs in the later stages of the GA, when the 

population has converged and the variance between strings fitness values becomes small, 

the proportionate selection scheme allocates approximately equal numbers of offspring to 

all strings; thereby reducing the chances of selecting better strings. To prevent those 

problems, ranking procedures can be included. 
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Elitist mechanism keeps the best chromosomes from the current population in the next 

population (Ozdamar and Bozyel, 2004). It copies the best solutions had found into the 

next generation without any change in their genetic information. An advantage of elitist is 

that good solutions are never lost. Moreover, in most cases it will result in faster 

convergence. 

Tournament selection is another well known selection procedure. Tournament selection 

ta'kes number of different chromosomes from the population and replaces the worst. An 

advantage of tournament is fewer sorting required by algorithm. 

4.1.2 GA Parameters 

The main parameters of the design of a GA are crossover and mutation probability, 

population size, number of generations, crossover and mutation type, and selection. 

Different values of parameters have effects on convergence, computation time, and may 

result in different solution. Low crossover frequency decreases the speed of convergence. 

High mutation rates introduce high diversity in the population. 

4.2 Proposed Genetic Algorithm 

As previously discussed, designing a GA is revolves around four important factors 

solution representation (chromosome), evaluation of each solution, genetic operators, and 

choice of a selection mechanism. The most important issue is how to fit the lot sizing and 

scheduling problem into the design of genetic algorithm. It is very important for 

chromosome representation and genetic operators to be able to produce and manipulate 

data both for order quantity and item sequencing. The genetic algorithm proposed 
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attempts to include the problem specific knowledge of lotsizing and lot streaming. In 

order to do that a decoding method for lot sizes procedure with penalty considerations is 

designed. 

4.2.1 Chromosome Representation 

Our GA has an initial population which consists of m possible solutions. Each possible 

solution is represented by a chromosome consists of n binary (0, 1) variables that each 

represents the production in a period. The gene f of a chromosome indicates if a 

production order has been placed in period t or not, which has the same interpretation of 

binary variables in MILP models. A value of 1 indicates that a production order and a 

setup has been placed and 0 otherwise. The production quantity in periods which 

production takes place must satisfy the demand of the subsequent periods with no 

production. The length of each chromosome (number of genes) is equal to the number of 

periods in planning horizon. For example, one possible chromosome (solution) for single 

item model can be as follows: 

Period 
1 2 3 4 5 6 7 8 9 10 11 12 

1 0 0 0 0 0 1 0 1 0 0 0 

Figure 4-2: Chromosome for Single Item Lot Sizing 

The chromosome shown in Figure 4-2 indicates that setups are scheduled only in period 

1, 7, and 9. And production quantities in period 1, 7 and 9 should satisfy the demand of 

the subsequent periods till next setup. 
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For multi-item lot sizing problem, two different issues should be addressed. First is 

whether a production order should be placed in period / or not. The second is sequencing, 

which means determination of sequence in which products should be produced or the 

position of each item in the sequence of each period schedule. To do this, we used strings 

of TV (number of items) values for each period in time horizon. As mentioned before we 

only encode the setup pattern and sequencing positions (binary variables of mathematical 

model) in chromosomes. The other variables such as order quantities, inventory levels, 

and makespans must be computed. In the following section we will show how these 

variables can be decoded. An example of a chromosome (a possible production plan) for 

a problem with three items and 12 periods can be as follows: 

Period 
1 2 3 4 5 6 7 8 9 10 11 12 
2 
3 
1 

0 
0 
2 

2 
3 
3 

2 
0 
3 

1 
1 
3 

3 
2 
1 

1 
3 
0 

0 
0 
2 

1 
2 
0 

0 
3 
2 

0 
0 
2 

0 
2 
3 

Figure 4-3: Chromosome for 3-Item Lot Sizing and Sequencing 

A value of between 0 to N will be assigned randomly to each cell. The value of 0 

indicates that production order will not be placed in the period t for an item n. Values 

larger than 0 indicate production order has been placed in period t and also the position of 

item in sequence of each period schedule is declared. For instance, the first column 

indicates the production for all three items are planned in period one. The sequencing 

indicates that item 2 is produced first, second item is 1, and the last item is 3. In the third 

Column, both items 2 and 3 have the same priority number (3). To break the tie, the item 

with smaller index number (item 2) would be first item to be produced, followed by item 
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4.2.2 Decoding Algorithm 

The details of orders released, inventory levels of items, and their corresponding 

makespan must be determined using a decoding algorithm. The decoding algorithm takes 

each chromosome or encoded solution and decodes it into a real solution. Decoding is 

performed to determine the order quantities, inventory levels, and makespans. Ultimately, 

the total relevant cost is determined by adding inventory holding cost and setup cost. 

The decoding algorithm computes the solution as follows: The schedule is generated 

backward. It first computes the lot size in last period (7), and then it goes back to period 

T-l and continues, until the production decisions are made for all the periods. 

Now, consider a period t, when we had made our production decisions for all the 

subsequent periods in time horizon. The cumulative demand for each itemy" in period t 

(Cdjt) which should be satisfied in period / or its previous periods is equal to the demands 

of itemy in subsequent periods minus ordered quantities of itemy in subsequent periods. 

(4-2) CdJt=Y.{D]s-Ljs) 

The minimum of Cdy, or the quantity of item j that can be produced by the available 

capacity of machines will be assigned for production. This means that splitting of demand 

is allowed when cumulative demand cannot be completely scheduled for production due 

to capacity restrictions. The objective of demand splitting is to increase capacity usage 

and reduce the total relevant cost. Before making decision for next item, makespan for 

equal number sublots will be calculated and if the makespan exceeds the time bucket the 
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quantity of last item scheduled in the period is reduced by one and the makespan is 

recalculated. This procedure continues till a feasible production order is found. Then, 

cumulative demand for item j and the residual capacity on machines in the period t will 

be updated. 

(4-3) RCam,=Caml-fjrjm*L/l 
7=1 

At this point, the possibility of production and amount of the item with the second 

position in the sequence of each period will be checked until decisions are made for the 

all items in the period /. The flowchart for the decoding algorithm is shown in figure 4-4 

and the pseudo code for algorithm is presented in the appendix 4. 
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Schedule the demand of first item based 
on the sequencing priority given by gene 

Reduce the amount of the last 
item scheduled bv one 

Schedule the demand of next item in 
sequence base on priority given by gene 

Figure 4-4: Flowchart of Decoding Algorithm 
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4.2.2.1 Numerical Example 

Through the following example we will show how our decoding algorithm works. 

Assume a production setting of 3 products in which each lot of q units must proceed in 

sequence of 4 machines. The capacities on each machine are 299, 151, 229, and 223 unit 

of time in each of 6 periods respectively. The time available in each period (time bucket) 

is 400 units of time. Each lot may be divided up to 4 sublots; although, the entire 

production lot is produced with a single setup of $100 on each machine. The inventory 

holding cost of $10 is only applicable to the inventory that is carried over from one 

period to the next period. For each period (Month) we assumed 350 working hours (time 

bucket). Demand over the planned horizon, unit processing times and setup times on each 

machine are as follows: 

d j , = 

0 3 38 0 7 40 42 

0 2 1 2 39 0 0 

0 13 40 36 13 58 10 

p» = 

5 1 2 2 
2 3 5 1 

1 1 1 3 
stjm = 

18 
11 

20 

11 
16 

15 

16 
12 

9 

19 
13 

16 

Now consider a possible solution (chromosome) as follows: 

Period 

items 
1 
2 
3 

2 
3 
1 

1 
0 
3 

0 
2 
3 

3 
1 
0 

2 
2 
3 

1 
2 
3 

0 
0 
0 

Figure 4-5: Chromosome 3-Item and 6 Periods 

This chromosome specifies the sequence to schedule the items; for example, in the first 

period item 2 is produced first, followed by item 1 and finally item 3. In the third period, 
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only item 3 and item 2 will be produced and item 1 will not be scheduled. Table 4-1 

shows the iterative process of decoding this solution into a real production schedule. 

Period t 

6 

5 
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3 

2 

1 

product 

PI 

P2 

P3 

PI 

P2 

P3 

PI 

P2 

P3 

PI 

P2 

P3 

PI 

P2 

P3 
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PI 

P2 

P3 

Current 
gene 
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2 
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J 

q il 
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58 

14 

P3 

PI 
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L_LL__L 

40 P3 
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— < 

« _ 
3 

P2 

PI 

iDP3 

Residual Capacity 
Machine M 

Ml 
299 

269 

51 

51 

299 

221 

_J33_ 
133 
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116 

, _ _ . 

67 

___L 

175_ 

175 

299 

239 

31 

31 

299 

274 

176 

143 

M2 
151 

126 

75 

75 

151 

78 

53 

53 

_J51_ 
107 

h _ _ i 

34 

M3 
299 

280 

184 

184 

299 

232 

188 

188 

229 

217 

110 

no 
^ 151_ | 229_ 

' "87** | 241 

5 

5 

151 

119 

119 

229 

96 | 250 

47 

1 4 7 
JL_L 

158 
151 i 229 

114 * 252 

59 182 

on 

M4 
223 

177 

78 

78 

_ 2 2 3 _ 

33 ' 

0 

0 

223 

makespan 

9 6 

317 

™ . _ _ _ _ _ _ _ 

171 ! 344 

139 

139 . . __ J 
223 j ^ 

""60 f ~278 

25 j * 

25 

223 

87 j 312 

30 | 

30 I 

223 i „ _ _ 

203 _ 

T 6 8 | 250 

113 I 

Table 4-1: Decoding Example 

In period 6, Product 3 scheduled first with the demand of 10 units which will be produced 

in 4 sublots of size 2, 2, 2, and 4 and the makespan will be 96 units of time. Residual 

capacities on the 4 machines after producing 10 units of Product 3 are as 269, 126, 280, 

and 177 respectively. Followed by Product 3, Product 2 will be scheduled with demand 

of 42 units which will be produced in 4 sublots of size 10, 10, 10, and 12 and the total 

makespan would be 317 units of time. Still there is some capacity left but the demand for 

Product 1 is zero. So, we move back to period 5, Product 3 scheduled first with 

52 



cumulative demand of 58 units. Makespan is checked and then the capacity is up dated. 

The next product in the sequence is Product 1 with total cumulative demand of 40 units. 

However, the residual capacity of 33 units of time on machine 4 allows maximum 

production of 14 units of Product 1. So, the remaining demand (26 = 40 - 14) should be 

produced in the previous periods (1 to 4). 

Moving back to period 4, first position belongs to Product 1 with cumulative demand of 

33, second position belongs to Product 2 with cumulative demand of 39. However, even 

though we have enough capacity we cannot produce 39 unites of Product 2 because the 

makespan of producing 33 unites of Product 1 and 39 units of Product 2 (both with 4 sub-

lots) would be larger than the available time bucket (350 units); therefore, in order to find 

a feasible schedule, the production quantity of Product 2 should be reduced. Thus, we can 

only produce 19 units of Product 2 in period 4 and 20 units remaining demand should be 

produced in the previous periods (1 to 3). In the same way, we move backward to period 

2 and 1 to decode each chromosome and find the feasible production schedule. 

4.2.3 Genetic Algorithm Procedure 

The global genetic algorithm continues iteratively until the termination condition is 

reached. The termination condition we use for our genetic algorithm is a maximum 

generations. This means the GA will stop after of specific number of generations. The 

pseudo code for global genetic algorithm is shown in figure 4-6 and the programming 

code is presented the appendix 5. 
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Global Genetic Algorithm 

generation number^ 0 

create 

While 

initial population randomly 

(g eneration number < max generation) DO 

Decode solutions using the decoding algor 

Evaluate initial population and select pa 

ithm 

rents 

Apply crossover operator each pair and put them 

Mutate child 

Add best chromosomes form old population 

4- • 1_ ^ A. • 1_ 

generation number ̂  generation number 

from 

intc 

the population 

new population 

into new populc 

+ 1 

tion 

Figure 4-6: Global Genetic Algorithm 

4.2.4 Fitness Function Evaluation 

For evaluating solutions we used the objective function, which, as in the MIP model, 

minimize the total relevant cost as follows: 

(4-4) Total Relevant Cost = Inventory Holding Cost + Setup costs 

Infeasibility would not occur in any period other than the first period of each solution 

because decoding algorithm checks the feasibility in every backward step. In order to 

deal with possible infeasibility in the first period we impose two penalty costs, one for 

capacity violation and one for makespans (C) exceeds the available time in the period 

(TB) to avoid or reduce infeasible solutions. 

M .1 

(4-5) T C= TRC + /> * (C, - TB,) + P2 * £ ( £ ((Z.„ • r„ ) + Stjm ) - Capm,) • 
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Given that the objective function values might differ significantly, especially in the first 

population, we only use the objective function to sort the chromosomes, and fitness 

values would be assigned to them based on their rankings. This means the solution with 

lowest total relevant cost should have highest fitness value of N, and the highest total 

relent cost has the fitness of 1. 

4.2.5 Genetic Operators 

4.2.5.1 Crossover 

The crossover operator applies on two chromosomes (parents) to generate two new 

chromosomes (Children). A single cutting point is selected randomly from 2 to T-2. Then 

the two chromosomes exchange their genes from that point to the last position which is 

period T. 

3 

2 
0 

2 ] 
2 i 

1 l 
Parent 1 J 

1 

2 
3 

0 1 

3 ' 

0 ! 
Parent 2 1 

3 
0 
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0 
0 

0 

2 

0 

0 

1 

0 
2 

Cutting point 

1 

3 

0 

3 

1 
1 

2 

1 

3 

0 

0 
2 

1 

2 

3 

0 

3 

0 
Child 1 

3 

2 

0 

2 

2 

1 
Child 2 

3 
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1 

2 

0 

0 

0 

0 

0 

1 

0 
2 

1 

3 

0 

3 

1 
1 

2 
1 

3 

0 

0 

2 

Figure 4-7: Crossover Operator 

4.2.5.2 Mutation 

The mutation operator has a low (e.g. 0.1) probability of being applied to each gene. 

When mutation takes place, the content of the gene switches from 0 to 1 and vice-versa 
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(in the single item case). For multi-item problems, when mutation takes place, another set 

of random numbers will be assigned to the gene regardless of its original content. Thus, 

the mutation operator not only might change the decision of whether or not to produce an 

item in particular period; but also, the sequence of items (products) can be changed 

randomly in each scheduled period. 

4.2.6 Selection Mechanism 

In order to be able to regulate selection pressure and population diversity, we used a 

combination of ranking and elitist selection mechanisms. 

In the proportionate selection chromosomes with high fitness values have higher chances 

of being selected and might take over the population, causing premature convergence, 

whereas ranking selection results in low convergence. The ranking selection also 

maintains the selection pressure in the last generation when the fitness variance is low, 

and proved to successfully search the entire solution. We also combined the elitism 

mechanism into our search mechanism to keep some of the best individuals in the 

population and increase the convergence pressure. 

First, we sort current population base on the objective function values and each 

chromosome is given a fitness value of 1 to TV (Population size). Then the % of best 

chromosomes and their off-springs are copied to the next generation. After copying the 

best chromosomes to the next population, the rest of chromosomes are selected by the 

ranking mechanism. Genetic operators (crossover and mutation) are applied to generate 

the new population. This procedure is repeated for each generation for a specific number 

of generations. The pseudo code for the selection mechanism is as follow: 
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Selection Mechanism 

Sort the Current Population 

Next Population^ The % of the best chromosomes of the current 
population + their offspring 

Next population < Offspring's of the chromosomes between V* and 
% in ranking 

Figure 4-8: Selection Mechanism 

4.3 Tuning GA Parameters 

When developing a genetic algorithm or any other meta-heuristics, it is very important to 

choose the right parameters values. The main parameters of the design of a GA are 

crossover and mutation probability, population size, number of generations, crossover 

and mutation type, and selection operators. All of these parameters have an effect on the 

performance of GA algorithms not only in terms of quality of the solutions obtained but 

also in terms of the amount of time needed to find a solution and computational efforts. 

Thus, one of the major tasks in the design of any GA is to find the best choice of 

parameters in order optimize the performance of GA, which is called tuning. To do so, 

we have two choices: 

1. Use one of the standard parameter settings; 

2. Use experimental design and statistical tools available in it to compare the effect 

of each parameter value (main factor) and their interactions, 
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There are several well known Standard settings in literature. First works were published 

by De Jong (1975) who investigated different parameters' value to increase the 

performance and his results were the first rule for researchers. Table 4-2 shows His 

results. 

Population size 
Crossover rate 
Mutation rate 
Mutation types 
Number of Generation 

50-100 | 
0.6 
0.001 
bit flip 
1000 

Table 4-2: De Jong Parameter Settings 

Later, Grefensette (1986) published parameters which were different than those of De 

Jong. Grefensette parameters are used when, for any reason, such as the computational 

expense, a smaller population is required. His results are shown in the Table 4-3. 

Population size 
Crossover rate 
Mutation rate 
Mutation types 

~"~~IZIIZÎ IZ Î̂ ~** 
_ _ _ ^ _ _ _ _ _ 

_ _ _ _ _ _ _ _ ™ ^ 

[bitflip .... I 
Table 4-3: Grefensette Parameter Settings 

In this thesis, we used a combination of settings recommended by De Jong (1975) and 

Grefensette (1986) with one difference which is larger population sizes. We set number 

of initial population equal to 800 with crossover rate of 60 % and mutation probability set 

at 1%. The type of mutation we used for single item is bit flip, however for multiple 

items production settings, because of the special structure representation we use different 

mutation type as we discussed before. The termination condition or maximum generation 

we use for our genetic algorithm 1000 generations. 
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4.4 Computational Results 

We coded our genetic algorithm in visual C++ 6.0 and run same problems of Table 3-2 

for comparison between linear model and GA results. Table 4-4 shows the result. 
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3:00:00 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

3:00:00 

Lingo 
Objective 

value 

3510 

3610 

5910 

6230 

7370 

9490 

14200 

-

7360 

-

8030 

8290 

11170 

-

14520 

-

-

-

-

-

Lingo 
Objective 

bound 

3510 

3610 

5910 

6190 

7370 

7400 

14157 

14157 

7360 

7360 

7817 

7817 

11150 

11150 

14420 

14420 

11412 

11420 

12979 

12979 

State 

Optimal 

Optimal 

optimal 

Feasible 

Optimal 

Feasible 

Feasible 

Unknown 

Optimal 

Unknown 

Feasible 

Feasible 

Feasible 

Unknown 

Feasible 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Table 4-4 comparison between linear and GA solution 
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As it shown in Table 4-4, GA gives solutions that are optimal or they are very close to the 

optimal. For problems which Lingo cannot find the optimal solution, GA provides better 

answer than the Best Objective find by lingo with an insignificant deviation from the 

objective bound. Moreover, GA found these solutions notably faster than Lingo and gives 

us this opportunity to find a reasonable solution in a shorter time while branch and bound 

technique used by Lingo fails to find even a feasible solution. 

In order to visualize and compare the quality of GA's solution with that of Lingo, the 

percentage deviation of GA's solution from the Lingo objective bound is presented in 

table 4-5. We also plot the Lingo objective bound and GA objective value of all the 

twenty problems in figure 4-9. 

Problem 

1 

2 

3 

4 

5 

6 ' 

7 

8 

9 

10 

11 

12 

, _ j y t _ 
14 
15 

16 

17 

18 

19 " 

20 

GA Objective value 

3510 

3640 

5910 

6540 

7370 

8350 

14180 

Lingo Objective bound 

3510 

3610 

5910 

6190 

7370 

7400 

14157 

14990 | 14157 

7360 

7480 

7360 

7360 

7840 I 7817 

8000 T~ 7817 

11160 _ _ _ 

11330 

11150 

11150 

14420 1. 14420 

14710 1 14420 

11420 

11570 

13550 

11412 

11420 

12979 

12979 

Percentage Deviation of 
GA from Lingo bound 

0.00% 

0.83% 

0.00% 

5.65% 

"o.oo% 
12.84% 

0.16% 

5.88% 

0.00% 

1.63% 

0.29% 

2.34% 

0.09% 

1.61% 

0.00% _ J 
2.01% 1 

0.07% _ _ _ j 

1.31% _ J 
0.01% 1 
4.40% \ 

Table 4-5: Comparison between Lingo objective bound and GA objective value 
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• GA Objective value Q Lingo Objective bound 
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Figure 4-9: Comparison between Lingo objective bound and GA objective value 

As it shown in table 4-5 and figure 4-9, the gap between GA objective value and 

objective bound of Lingo is negligible (i.e. average difference is less than 2%). The 

largest difference between the GA objective value and the Lingo objective bound belongs 

to the problem six with 12.8% deference. However, we should note that the best objective 

value found by Lingo is $9490 which is 12% higher compare to $8350 by GA version. 

Moreover, the objective bound of Lingo may become even tighter if we run the Lingo for 

longer period of time. 

61 



CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

This thesis presents two solution procedures to find the optimal lot size for multiple items 

with time varying demand in a multistage production system, when lot streaming and 

sequencing are applied simultaneously to ensure orders feasibility and reduce the need for 

rescheduling of master production plan. Moreover, it considers machine capacity 

constraints, and limited time bucket length, and independent setup times in flowshop 

environment. 

First, the problem is formulated as a mixed integer linear programming problem (MILP) 

and coded with Lingo 10 software. This model takes the demand as an input and gives 

the optimal lot size, corresponding sublot size, and the sequence of production as an 

output. This model also calculates the makespan in order to ensure that makespan of the 

production orders released to shop floor is less than available time in each period. A 

small set of problems is generated randomly to test the proposed model. The optimal 

solution for small and medium size problems could be found within a reasonable time. 

However for larger size problems, because of the NP-hard nature of lot sizing and lot 

streaming problems, finding even a feasible solution is hard. 
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Second, a genetic algorithm is developed in order to solve the larger size problems, when 

the linear model is unable to function. Then, GA solutions are compared with optimal 

solutions and for the larger size problem with the objective bound of linear model. It is 

concluded that GA results are acceptable. The proposed genetic algorithm attempts to 

include the problem specific knowledge of lotsizing and lot streaming. Because of that, 

this genetic algorithm only works on the two binary variables of mathematical model 

namely setup pattern and sequencing positions. Then, another heuristic algorithm is used 

to decode a solution represented by GA and find the other variables in model like order 

quantities, inventory levels, and makespans. 

One thing that should be done in future is to use the Experimental Design and the 

statistical tools available in it to tune the GA main parameters. The main parameters of 

GAs are crossover and mutation probability, population size, number of generations, 

crossover and mutation type, and selection operators, which all affect the performance 

of GA algorithms not only in terms of quality of the solutions obtained but also in terms 

of the amount of time needed to find a solution and computational efforts. Experimental 

Design allows us to compare the effect of each parameter value and their interactions. 

Another possible future work is to solve more problems to investigate the effect of 

different problem configurations like different ratios of holding cost to setup cost, or 

different capacity utilization rates on the complexity of the problem. 

This thesis only considered independent setup times. However, in presence of dependent 

setup times, the limited capacity available for production may be reduced by changeovers 

that cause larger setup times; and the need for simultaneous lot sizing and scheduling 
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become more vital. Thus, including the dependent setup times and cost in the model 

would make it much more realistic and could be very useful. 

Furthermore, like the studies Ho had done between years 1986 and 2005(Ho, 2005; Ho 

and law 1995; Ho, 1986). A thorough study of dampening effect of this model and the 

impact of it on reduction of the planning instability could be a future work. 
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APPENDIX 1: Classification of Lot Sizing Problems 

\ 

1. Planning horizon f 

Small buckets 

Large buckets 

2. Set up Structure f 

Simple 

Complex 

3. Inventory 1 

4. Demand | 

Lost sales 

Backlog 

Deterministic 

Probabilistic 

! 
! 

[ 

I 

Discrete 1 

Continues 1 

Discrete | 

~ ~- _ ^ 

Continues | 

Carr>' over | 

Major an minor | 

Sequence dependent 1 
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APPENDIX 2: Classification of Lot Streaming Problems 

1. System Configuration H 

2. Sublot-relate Feature 

3. Performance Criterion H 

Production Type t-
Flow Shop 

Job Shop 

Open Shop 

Arborescent Shop 

Number of Products 

Single Product 

Multi-Product 

1 
1 

Time Model y-

Makespan 

Mean Flow Time 

Total Flow Time 

Mean Tardiness 

Number of Tardy 

Total Deviation 

Cost Model 

Total Cost (TC) 

Total Cost (TC (C „,„, K)) 1 
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APPENDIX 3: Lingo Code 

MODEL: 
! MULTI PRODUCTS INTEGRATED LOT STREAMING AND LOT SIZING INTERMINGLING; 

SETS: 
MACHINE/1..12/:CAP; 
PRODUCT/1..15/; 
SUBLOT/1..4/; 
PERIOD/1..7/:C,A_T; 
UNIT_PROCESSING_TIME(PRODUCT,MACHINE):r 
PRODUCTION_LOT(PRODUCT, PERIOD):D,Q,Y,I 
FORMULA1(PRODUCT,SUBLOT,PERIOD):L; 
FORMULA2(PRODUCT,SUBLOT,MACHINE,PERIOD) 
FORMULA3(PRODUCT,PRODUCT,PERIOD):X; 
END SETS 

St; 
E,F; 

:P,B; 

DATA: 
A=1000000; 
SETUP_COST=100; 
H=10; 
A_T=600; 
r=@OLE('C:\Documents and Settings\Data.xls' 
D=@OLE('C:\Documents and Settings\Data.xls1 

st=@OLE('C:\Documents and Settings\Data.xls' 
CAP=@OLE('C:\Documents 
@OLE('C:\Documents and 
@OLE('C:\Documents and 
©OLE('C:\Documents and 
@OLE('C:\Documents and 
©OLE('C:\Documents and Settings\Data.xls' 
END DATA 

'Unite_Processing_Time') 
'Demand'); 
, 'Setup_ time'); 

and Settings\Data.xls','Capacity') 
Settings\Data.xls','L')=Q; 
Settings\Data.xls' 
Settings\Data.xls' 
Settings\Data.xls' 

'Inventory')= 
'Sublot_Size' 
' v' ) =B ,-
•P')=P; 

I; 
)=L; 

! OBJECTIVE FUNCTION; 
! Minimizing the Total Relevant Cost; 

MIN=@sum(PRODUCTION_LOT(j,t):H*I(j,t))+ 
@sum(PRODUCTION_LOT(j,t):SETUP_COST*Y(j,t)); 

! SUBJECT TO; 

!l; 
@FOR(PRODUCTION_LOT(j,t) |t#GE#2:I(j,t)=I(j,t-l)+Q(j,t)-D(j,t)) ; 

!1-1; 
@for(PRODUCTION_LOT(j,t):I(j,1)=Q(j,1)); 
@for(PRODUCTION_LOT(j,t)|t#GE#2:I(j,t-l)>=D(j,t)); 

!2; 
©FOR(MACHINE(m): 
@FOR(PERIOD(t): 

@SUM(PRODUCT(j):Q(j,t)*r(j,m))+ 
©SUM(PRODUCT(j):st(j,m)*Y(j,t))<=CAP(m) )); 

! 2 - 1 ; 
©FOR(PERIOD(t): 

C(t) <= A T(t)); 

!3; 
@FOR(PRODUCTION_LOT(j,t):Q(j,t)-A*Y(j,t)<=0) 
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!4; 
@for(PRODUCT)j): 

@for(PERIOD(t): 
@sum (SUBLOT (s) : L (j , s, t) ) =Q (j , t) ) ) ,-

!5; 
@FOR(F0RMULA2(j,s,m,t):P(j,s,m,t)=L(j,s,t)*r(j,m)); 

!6; 
@FOR(MACHINE(m): 
@FOR(FORMULA3(j,k,t): 

Ofor(FORMULA2(j,s,m,t)|j#LT#k 
:B(j,4,m,t)+P(j,4,m,t)+st(k,m)*Y(k/t)<=B(k/s,m,t) + (l-X(j,k,t))*A) )) ; 

!7; 
©FOR(MACHINE(m): 
©FOR(FORMULA3(j,k,t): 

@FOR(FORMULA2(j,s,m,t)|j#LT#k:B(k,4,m,t)+P(k,4,m,t)+st(j,m)*Y(j,t) 
<=B(j,s,m,t)+X(j,k,t)*A))); 

!8; 
©FOR(FORMULA2(j,s,m,t) |m#GE#2:B(j,1, m,t)>=B (j , 1, m-1, t)+P (j , l,m-
1,t)+st (j,m)); 

!9; 
@FOR(FORMULA2(j,s,m,t) :B(j,1,1,t)>=st(j, 1) ) ; 

!10; 
@FOR(F0RMULA2(j,s,ra,t) | m#GE#2 :B (j , s , m, t)>=B(j,s,m-1,t)+P(j,s, m-1, t) ) ; 

•11; 
@FOR(FORMULA2(j,s,m,t) |s#GE#2:B(j , s, m,t)>=B(j,s-l,m,t)+P(j,s-l,m, t) ) ; 

! 12 ; 
@FOR(FORMULA3(j,k,t) :Y(j,t)>=X(j,k,t)) ; 

!13; 
©FOR(PRODUCTION_LOT(j,t):c(t)>=B(j,4,12,t)+P(j,4,12,t)) ; 

!15; 
@for(PRODUCTION_LOT(j,t):@BIN(Y(j,t))); 

!16; 
@FOR(FORMULA3(j,k,t) |j#LT#k:@BIN(X(j,k,t))) ; 

! Integer; 
@FOR(FORMULAl(j,S,t):@GIN(L(j,S,t))); 

Icostant sublot size; 

!@F0R(F0RMULA1(j,S,t) |s#GE#2 #AND# S#LE#3:L(j,S,t)=L(j,s-1,t) ) ; 

!@FOR(FORMULAl(j,S,t)|s#EQ#4:L(j,s,t)>=L(j,s-l,t)); 
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APPENDIX 4: Decoding Algorithm Pseudo Code 

PRODUCTION QUANTITY 

Input: 
Output: 

Ca m; d j , ; currentgen ;. j. i; P , 
quantity -, , i 

:TB 

FOR product j - * - l UP TO J 
CuDej - * -0 

FOR period t -*-T DOWN TO 1 
Counter -•—0 
FOR machine m -*- 0 UP TO M 

currentca m -*—Ca m 

FOR current gen i •*- ! DOWN TO 1 
IF currentgen j j.i > 0 

Counter -*—Counter + 1 
Cu_De j -»-Cu De j + d ,„,,} 

quantity jTi,,-*—min(Cu_Dei, Capacity-check(current_ca „. i)) 
WHILE TRUE 

smallsub -<— quantity; t\,, /1 
largesub -•—quantity j iS , - smallsub* (1-1) 
FORsubloti-*—1 UPTOl 

SL i -«— smallsub 
SL i_i-<— largesub 

END FOR 
IF makespan (SL. counter, j) >TB 

quantity j, \., -*—quantity , , , -1 
END IF 

END WHILE 
CuDe j •*—CuDe , - quantity ; , , 
FOR machine m - * - 0 UP TO M 

currentca m -*— currentca m - P m j * quantity j, i , +S m , 
ELSE IFcurrentgen , j j -*—0 

Cu_De j •*— Cu_De ,+ d I+1,, 
quantity j i i •*— 0 

END ELSE IF 
END FOR 

END FOR 
END FOR 

Capacity check 

Input: current ca „,; P m j ; S m j 

Output: max-pro 

max-pro -*— (current cao- So.j)/ P m. i 
FOR machine m -*— 1 DP TO M 

IF max-pro > (current_cam- S m j)/ Pm.j 
max-pro -«—(current ca„,-S„ 

END IF 
END FOR 

i ' P . , 

Makespan check 

Input: 
Output: 

*~ counter. 0. 0 ^ *~ 

FOR sublot i -*— 
C olunk, 

END FOR 
FOR machine rrr" 

C 
END FOR 
FOR sublol i - * -

r 
*- inunii'r END FOR 

counter: P m ,; S m ,: SL, 
*- cimnler. 1 M 

,«-,.i.ao + S „ . l + ( S L 0 * P 0 , ) 
1 U P T O I 
i. 0 ~< C counltT-l. 0.0 + ( S L j * P j . j ) 

• - 1 UP T O M 
o. m -•— max(C n „ i „ . k n „,.,: C „„, 

1 I T TO 1 
. m -*— max(C 0,„„ur. i i . m ; C 0 , „„„ . 

w-I.l.m) + S m j + ( S L „ * P m . ; ) 

, „ . , ) + S „ , , + (SL,*P i n . , ) 
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# include "stdio.h" 
# include "conio.h" 
# include "math.h" 
# include "string.h" 
# include <stdlib.h> 
# include <time.h> 
# include <iostream> 
# include <algorithm> 
# include <time.h> 

#define MX SUB 4 
#define MX MACH 12 
#define POP 800 
#define PERIOD 7 
#define T HOR 450 
#define N PRDT 15 
#define GEN 1000 

int number of setup[POP],x [POP],cost [2] [POP],penalty 2[POP],penalty 1 [POP] ; 
int current gen[POP] [PERIOD] [N PRDT] ,d[PERIOD] [N_PRDT] ,inv[POP] [PERIOD] [N_PRD 
T],quantity[POP][PERIOD][N PRDT]; 
int C[N PRDT+1] [MX SUB] [MX_MACH] ,P [MX_MACH] [N_PRDT] ,S[MX_MACH] [N_PRDT] ,Ca [MX_ 
MACH] ,ms [POP] [PERIOD] ; 
void intitial poppulation(),demand(),production_lot(),print_report(),inventor 
y() ,TR CostO ; 
void process timet), setup timed, Capacity(),print_report(int),print_report_ 
file(int), sublot() ,sort b(int [POP] [POP] ,int) ; 
int span(int [MX_SUB],int,int); 

void initial_population(void) 

int j,i,k; 

srand(time( NULL ) ) ,-
//srand(l); 

for (i = 0;i<POP,-i + + ) 
{ 

for (j = 0;j<PERIOD;j + + ) 
{ 

for (k=0;k<N PRDT;k++) 
{ 

c u r r e n t g e n [ i ] [ j ] [ k ] = rand()%2; 
i f ( c u r r e n t g e n [ i ] [ j] [k]= = l ) 
{ 

c u r r e n t _ g e n [ i ] [j] [k]+=rand()%N_PRDT; 

void Demand (void) 
{ 
int j,k; 
FILE * pFile; 

pFile = fopen ( "Demand . txt ", "r" ) ,-
for (k=0;k<N PRDT;k++) 
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{ 
for(j=0;j<PERIOD;j++) 

{ 
fscanf (pFile, "%d",&d[j][k]); 

fclose (pFile); 
} 

void process time(void) 

{ 
int j,k; 
FILE * pFile; 

pFile = fopen ("process.txt","r"); 
for (k=0;k<N PRDT;k++) 

{ 
for(j=0;j<MX MACH;j++) 

{ 
fscanf (pFile, "%d",&P [j] [k]); 

fclose (pFile); 
} 

void setup time (void) 

{ 
int j,k; 
FILE * pFile; 

pFile = fopen ("setup.txt","r"); 
for (k=0;k<N PRDT;k++) 

{ 
for(j=0;j<MX MACH;j++) 

{ 
f s c a n f ( p F i l e , "%d" , &S [ j ] [k] ) ,-

f c l o s e ( p F i l e ) ; 

void Capacity (void) 

{ 
int j ; 
FILE * pFile; 

pFile = fopen ("Capacity.txt","r"); 
for (j = 0;j<MX MACH;j+ + ) 

{ 
fscanf (pFile, "%d",&Ca [j]); 

} 
fclose (pFile); 

} 
int bottle neck(int curr ca[MX MACH],int j) 
{ 

int i,bottle,b; 

b = c u r r c a [ 0 ] - S [ 0 ] [ j ] ; 
i f ( b < 0 ) b = 0 ; 
b o t t l e = b / P [ 0 ] [ j ] ; 
f o r ( i = l ; i < M X MACH;i++) 
{ 

b = c u r r c a [ i ] - S [ i ] [ j ] ; 
i f ( b < 0 ) b = 0 ; 
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i f ( b o t t l e > b / P [ i ] [ j ] ) 
b o t t l e = b / P [ i ] [ j ] 

return bottle; 

void production lot(void) 
{ 

int j,i,k,t,1,z,counter; 
i n t Cu De[N PRDT],current_ca[MX_MACH]; 
i n t m i n ( i n t , i n t ) ; 
int small sub,large_sub; 
int SL [MX SUB] ; 
i n t b o t t l e n e c k ( i n t [MX M A C H ] , i n t ) ; 
/ / i n t S[MX_MACH][N_PRDT]; 

f o r ( i = 0 ; i < P O P ; i + + ) 

f o r ( z = 0 ; Z < N PRDT;Z++) 
Cu_De [ z ] = 0 ; 

f or'( j =PERIOD-2 ; j > = 1 ; j - - ) 
{ 

c o u n t e r = 0 ; 
for(z=0;Z<MX MACH;z++) 
c u r r e n t c a [ z ] = C a [ z ] ; 

for(t=N PRDT;t>=0;t--) 
{ 

for(l=0;l<N PRDT;l++) 
{ 

.1)); 

if(current gen[i][j][l]==t && t>0) 
{ 

counter++ ,-

Cu D e [ l ] + = d [ j + l ] [1] ,-
q u a n t i t y [ i ] [ j ] [ 1 ] = m i n ( C u _ D e [ 1 ] , b o t t l e _ n e c k ( c u r r e n t _ c a 

/ * fo r ( z=0 ;Z<MX MACH;Z++) 
{ 

c u r r e n t c a [ z ] - = P [ z ] [ 1 ] * q u a n t i t y [ i ] [ j ] [1]+S [z] [1] ; 
} * / 

w h i l e ( l ) 
{ 

s m a l l s u b = q u a n t i t y [ i ] [ j ] [ 1 ] / M X SUB; 
l a r g e _ s u b = q u a n t i t y [ i ] [ j ] [ 1 ] - ( s m a l l _ s u b ) * ( M X _ S U B - 1 

for(k=0;k<MX SUB- l ;k++) 
{ 

SL [k] =smal 1 s u b ,-
SL[MX_SUB-1]= la rge_sub ; 

nns [ i ] [ j ] =span (SL, c o u n t e r , 1) 
i f ( m s [ i ] [j]>T_HOR) 
{ 

q u a n t i t y t i ] [ j ] [1] - - ; 
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} 
e l s e 
{ 

Cu D e [ l ] - = q u a n t i t y [ i ] [ j ] [ 1 ] ; 
b reak ; 

f o r ( z = 0;z<MX MACH,-z + + ) 
{ 

c u r r e n t ca [z ] -=P[z ] [1] * q u a n t i t y [i] [j] [1]+S[z] [1] 
} 

} 
e l s e i f ( c u r r e n t gen [ i ] [j] [ l ]==t && t==0) 
{ 

Cu De[ l ]+=d[ j + l ] [1] ; 
q u a n t i t y [ i ] [j] [1]=0; 

} 
} / / end of p roduc t seq s e a r c h ( l ) 

}//end of s e q ( t ) 
}//end of p e r i o d ( j ) 

/ / f i r s t month 
j = 0; 
counter=0; 
for(t=N PRDT;t>=0;t-

fo r ( l=0 ; l<N PRDT/1++) 
{ 

i f ( cu r ren t g e n [ i ] [j] [ l ]==t) 
{ 

counter++; 

Cu De[ l ]+=d[ j+ l ] [1] ; 
q u a n t i t y [ i ] [ j] [l]=Cu_De[l] ; 

small s u b = q u a n t i t y [ i ] [ j ] [ 1 ] / M X SUB; 
la rge_sub=quant i ty [ i ] [ j ] [1 ] - ( smal l_sub)*(MX_SUB-1) 

for(k=0;k<MX SUB-l;k++) 
{ 

/*SL[k]=smal l sub; 
SL[MX SUB-l]=large s u b ; * / 
SL[k]=large sub; 
SL[MX_SUB-1]=small_sub; 

} 

ms[i] [j]=span(SL,counter,1); 

} 
}// end of product seq search(1) 

}//end of seq(t) 

}//end of pop(i) 

void inventory() 

int j,i,1,z; 

for(i=0;i<POP;i++) 
{ 
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} 
} 

f o r ( z = 0 ; z < N PRDT;z++) 
{ 

i n v [ i ] [0] [ z ] = g u a n t i t y [ i ] [0] [z] ; / / - d [ 0 ] [z] ; 
} 

f o r ( j = l ; j < P E R I O D ; j + + ) 
{ 

f o r ( l = 0 ; l < N PRDT;l++) 
{ 

i n v [ i ] [ j ] [1]= i n v [ i ] [ j - 1 ] [1]+ q u a n t i t y [ i ] [ j ] [ l ] - d [ j ] [1] 
} 

} 

i n t m a x ( i n t a , i n t b) 
{ 

i n t o u t p u t ; 
o u t p u t = a ; 
i f ( b > a ) 

o u t p u t = b ; 
r e t u r n o u t p u t ; 

} 

i n t m i n ( i n t a , i n t b) 
{ 

int output; 
output=a; 
if(b<a) 

output=b; 
return output; 

int span (int SL [MX SUB],int counter,int 1) 
{ 

int max(int,int); 
int i, j; 

C [ c o u n t e r ] [0] [0]=C [ c o u n t e r - 1 ] [MX_SUB-1] [0 ]+S[0 ] [1] + ( S L [ 0 ] * P [ 0 ] [1] ) ; 
f o r ( i = l ; i < M X SUB;i++) 
{ 

C [ c o u n t e r ] [ i ] [0] = C [ c o u n t e r ] [ i - 1 ] [0] + ( S L [ i ] * P [ 0 ] [1] ) ; 
} 

f o r ( j = 1 ; j <MX_MACH;j ++) 
{ 

C [ c o u n t e r ] [0] [ j ] = m a x ( C [ c o u n t e r ] [0] [ j - 1 ] , C [ c o u n t e r - 1 ] [MX_SUB-1] [ j ] 
) + S [ j ] [ l ] + ( S L [ 0 ] * P t j ] [1]) ; 

} 

f o r ( i = l ; i < M X _ S U B ; i + + ) 
{ 

f o r ( j = l ; j < M X MACH;j++) 
{ 

C [ c o u n t e r ] [ i ] [ j ] = m a x ( C [ c o u n t e r ] [ i - 1 ] [ j ] , C [ c o u n t e r ] [ i ] [ j - 1 ] ) + S L [ i ] 
* P [ j ] [1] ; 

} 
} 
r e t u r n C [ c o u n t e r ] [MX SUB-1] [MX MACH-1] ; 

v o i d TR C o s t ( v o i d ) 

80 



int i, j,1,z; 
int TCU[MX_MACH]; 

for(i=0;i<POP;i++) 
{ 

number of setup [i]=0; 
for(j=0;j<PERIOD;j++) 
{ 

for(l=0;l<N PRDT;l++) 
{ 

i f ( q u a n t i t y [ i ] [ j ] [ 1 ] > 0 ) 
n u m b e r _ o f _ s e t u p [ i ] + = 1 ; 

} 

for(i=0;i<POP;i++) 
{ 

x[i]=0; 
for(j=0;j<PERIOD;j++) 
{ 

for(l=0;l<N PRDT/1++) 
{ 

x [ i ] + = i n v [ i ] [ j ] [1] ; 
} 

f o r ( i = 0 ; i < P O P ; i + + ) 
{ 

p e n a l t y 2 [ i ] = 0 ; 
f o r ( j = 0 ; j < P E R I O D ; j + + ) 
{ 

i f ( m s [ i ] [ j ] > T HOR) 
p e n a l t y 2 [ i ] + = m s [ i ] [ j ] - T HOR; 

} 
p e n a l t y 1 [ i ] = 0 ; 
f o r ( j = 0 ; j < P E R I O D ; j + + ) 
{ 

for(z=0;Z<MX MACH;z++) 

TCU[z]=0; 
for(1=0;1<N_PRDT;1++) 

{ 
i f ( q u a n t i t y [ i ] [ j ] [1]>0) 

T C U [ z ] + = q u a n t i t y [ i ] [ j ] [ l ] * P [ z ] [1]+ S [z] [1] 
} 

i f ( T C U f z ] > C a [ z ] ) 
p e n a l t y _ l [ i ] + = T C U [ z ] - C a [ z ] ; 

c o s t [0] [ i ] = i ; 
c o s t [1] [ i ] = x [ i ] * 1 0 + n u m b e r _ o f _ s e t u p [ i ] * 1 0 0 + p e n a l t y _ 2 [ i ] * 5 0 0 0 + p e n 

a l t y 1 [ i ] * 5 0 0 0 ; 
. } 

v o i d p r i n t r e p o r t ( i n t genno) 
{ 
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int i,j,k,t; 

printf("Process time on machine j:\n") 
for(j=0;j<MX MACH;j++) 

{ 
for (k=0;k<N PRDT;k++) 
printf("%4d", P[j][k]); 
printf("\n"); 

printf("\n\n"); 

printf("Setup time on machine j: \n") 
for(j = 0;j <MX_MACH;j + +) 

for (k=0;k<N PRDT;k++) 
printf("%4d", S[j][k]); 

printf ("\n"); 

printf ("\n\n") ,-

printf ( "Capacity of machine j: \n"),-
for(j=0;j<MX MACH;j++) 

{ 
printf("%6d", Ca [j]) ; 

printf("\n\n"); 

for(i=0;i<POP;i++) 
{ 

printf {" \n") 
printf (" \n") 
printf("Generation: %d\n",genno); 
printf (" \n") 
printf (" \n") 

printf("Chromosome %d\n",i); 
for (k=0;k<N PRDT;k++) 
{ 

for(j=0;j<PERIOD;j++) 
p r i n t f ("%5d" , cu r ren t_gen [ i ] [j] [k] ) ,-
printf("\n"); 

} 
printf("\n"); 
printf("Demand for Products :" "\n\n" ) ,-
printf(" Jan Feb Mar April May Jun July " " \ n " ) ; 

for (k=0;k<N PRDT;k++) 

{ 
for(j=0;j<PERIOD;j++) 
printf ("%5d" ,d [j] [k] ) ,-
printf("\n"); 

} 
printf("\n"); 
printf("Order Released for each Product:""\n\n"); 
printf(" Jan Feb Mar April May Jun July ""\n"); 
for (k=0;k<N PRDT;k++) 

{ 
for(j=0;j<PERI0D;j++) 
printf ("%5d" .quantity [i] tj] [k] ) ,-
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printf("\n"); 

printf("\n"); 

printf("Makespans:""\n\n"); 
for(j =0;j<PERIOD;j ++) 
{ 

pr in t f ("%5d", m s t i l t j l ) ; 
p r i n t f ( " \ n \ n " ) ; 

printf ("Inventory of each product at the end of each period:""\n\n") ; 
printf(" Jan Feb Mar April May Jun July ""\n"),-
for (k=0;k<N PRDT;k++) 
{ 

for(j=0;j<PERI0D;j++) 
printf("%5d",inv[i][j][k]); 
printf("\n"); 

} 
printf("\n"); 

printf ("\n \n ") ; 
printf("number of setups %4d",number_of_setup [i]); 
printf("\n"),-
printf("total Inventory %4d",x[i]); 
printf("\n"); 
p r i n t f ( " C a p a c i t y v i o l a t i o n Pena l t y % 4 d " , p e n a l t y _ l [ i ] ) ; 
p r i n t f ("\n") ,-
printf("time horizon Penalty %4d" ,penalty_2 [i] ) ,-
printf ("\n") ,-
for(t=l;t<P0P;t++) 

if(cost [0] [t]==i) 
printf("total relevant cost $%4d",cost [1] [t]) ; 

printf("\n"); 
printf("\n\n\n"); 

void print_report_file(int genno) 

int i,j,k,t; 
FILE *report; 

report=fopen("report.txt","w"); 

fprintf (report, "Process time on machine j:\n" ),-
for(j = 0;j <MX_MACH;j + + ) 

for (k=0;k<N PRDT;k++) 
fprintf (report, "%4d", P[j] [k] ) ,-
fprintf(report,"\n"); 

} 
fprintf(report,"\n\n"); 

fprintf(report,"Setup time on machine j: \ n " ) ; 
for(j=0;j<MX MACH;j++) 
{ 
for (k=0;k<N PRDT;k++) 

f p r i n t f ( r e p o r t , "%4d", S [ j ] [k]) ; 
f p r i n t f ( r e p o r t , " \ n " ) ; 

fprintf(report,"\n\n"); 
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fprintf(report,"Capacity of machine j: \n") 
for(j=0;j<MX MACH;j++) 

{ 
fprintf(report,"%6d", Ca[j]),-

} 
fprintf(report,"\n\n"); 

for (i = 0,-i<POP;i + + ) 

{ 

f print f (report," \n") ; 
fprintf (report, " \n") ; 
fprintf(report,"Generation: %d\n",genno); 
fprintf (report, " \n") ; 
fprintf (report," \n" ) ,-

fprintf(report,"Chromosome %d\n",i); 
for (k=0;k<N PRDT;k++) 

{ 
for(j=0;j<PERIOD;j++) 
f p r i n t f ( r e p o r t , " % 5 d " , c u r r e n t _ g e n [ i ] [ j ] [ k ] ) ; 
fprintf(report,"\n"); 

} 
fprintf(report,"\n"); 
fprintf(report,"Demand for Products:""\n\n"); 
fprintf (report, " Jan Feb Mar April May Jun July ""\n"),-
for (k=0;k<N PRDT;k++) 

{ 
for(j=0;j<PERIOD;j++) 
fprintf(report,"%5d",d[j][k] ) ; 
fprintf (report, "\n" ) ,-

} 
fprintf(report,"\n"); 
fprintf(report,"Order Released for each Product:""\n\n"),-
fprintf(report," Jan Feb Mar April May Jun July ""\n"); 
for (k=0,-k<N PRDT;k+ + ) 

{ 
for(j=0;j<PERIOD;j++) 
fprintf(report,"%5d",quantity [i] [j] [k] ) ; 
fprintf(report,"\n"); 

} 
fprintf(report,"\n"); 
fprintf(report,"Makespans:""\n\n"),-
for(j=0;j<PERIOD;j++) 

{ 
fprintf(report,"%5d", ms[i] [j]); 

} 
fprintf(report,"\n\n"); 
fprintf(report,"Inventory of each product at the end of each period:" 

"\n\n"); 
fprintf(report," Jan Feb Mar April May Jun July ""\n"); 
for (k=0;k<N PRDT;k++) 

{ 
for(j=0;j<PERIOD;j++) 
fprintf(report,"%5d",inv[i][j][k]); 
fprintf(report,"\n"); 

} 
fprintf(report,"\n"); 

fprintf (report ,"\n \ 
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n") ; 
fprintf(report,"number of setups %4d",number_of_setup [1J) ; 
fprintf(report,"\n"); 
fprintf(report,"total Inventory %4d",x [i]); 
fprintf(report,"\n"); 
fprintf(report,"Capacity violation Penalty %4d" ,penalty_l [i] ) ,-
fprintf(report,"\n"); 
fprintf(report,"time horizon Penalty %4d",penalty_2 [i]) ; 
fprintf(report,"\n"); 
for(t=l,-t<POP;t++) 

if(cost [0] [t]==i) 
fprintf(report,"total relevant cost $%4d",cost[1][t]); 

fprintf(report,"\n"); 
fprintf(report,"\n\n\n"); 

void sort b(int list [POP] [POP],int count) 
{ 

int i,j,temp; 
for(i=0;i<count;i++) 

for(j=count;j>=i;--j) 
i f ( l i s t [1] [ j - l ] > l i s t [ l ] [ j ] ) 
{ 

t e m p = l i s t [ 0 ] [ j - 1 ] ; 
l i s t [0] [ j - l ] = l i s t [0] [ j ] ; 
l i s t [0] [ j ] = t e m p ; 
t e m p = l i s t [ 1 ] [ j - 1 ] ; 
l i s t [1] [ j - l ] = l i s t [ l ] [ j ] ; 
l i s t [1] [ j ] = t e m p ; 

} 

v o i d g e n ( ) 
{ 

i n t i , j , c u r r e n t _ g e n _ n e x t [ P O P ] [PERIOD] [N_PRDT] , p a r e n t 1 , p a r e n t 2 , 1 , r a n d o m _ b a 
d , b a d s [ P O P / 4 ] ; 

/ / s o r t 
s o r t _ b ( c o s t , P O P - 1 ) ; 

/ / c r o s s o v e r f i r s t b e s t 1/4 
f o r ( i = 0 ; i < ( P O P / 4 ) ; i + = 2 ) 
{ 

p a r e n t l = c o s t [0] [ i ] ; 
p a r e n t 2 = c o s t [0] [ i+1] ; 

f o r ( j = 0 ; j < P E R I O D ; j + + ) 
{ 

f o r ( l = 0 ; l < N PRDT/1++) 
{ 

c u r r e n t gen n e x t [ i ] [ j ] [1] ^ c u r r e n t g e n [ p a r e n t l ] [ j ] [1] ; 
c u r r e n t _ g e n _ n e x t [ i + 1] [ j ] [1] = c u r r e n t _ g e n [ p a r e n t 2 ] [ j ] [1] ,-

} 

for(j=0;j<PERI0D;j++) 
if(j<(PERIOD/2)) 

{ 
for(l = 0;l<N PRDT.-1 + +) 

{ 
c u r r e n t _ g e n _ n e x t [ ( P O P / 4 ) + i ] [ j ] [ 1 ] = c u r r e n t _ g e n [ p a r e n t l ] [ j ] 

[1] ; 
c u r r e n t _ g e n _ n e x t [ ( P O P / 4 ) + l + i ] [ j ] [ 1 ] = c u r r e n t _ g e n [ p a r e n t 2 ] [ 

j ] [1] ; 
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[ 1 ] ; 

j ] t l ] 

e l s e 
{ 

fo r ( l=0 ; l<N PRDT;1++) 
{ 

cur ren t_gen_next [ (POP/4)+i ] [ j] [1 ]=cur ren t_gen[paren t2 ] [j] 
cur ren t_gen_next [ (POP/4)+l + i ] [j] [1]=current_gen [ p a r e n t l ] [ 

//version 1 
for(i=P0P/2;i<P0P;i++) 

for(j=0;j<PERIOD;j++) 
for(l=0;l<N PRDT;l++) 

c u r r e n t _ g e n _ n e x t [ i ] [ j ] [ 1 ] = c u r r e n t _ g e n [ i - P O P / 4 ] [ j ] [ 1 ] ; 

/ / v e r s i o n 2 
/ * fo r (i=P0P/2,-i< (3*P0P/4) ; i + +) 

for(j=0;j<PERIOD;j++) 
fo r ( l=0 ; l<N PRDT/1++) 

c u r r e n t g e n _ n e x t [ i ] [ j ] [ 1 ] = c u r r e n t _ g e n [ i - P O P / 4 ] [ j ] [ 1 ] ; 
for ( i=0; i<POP/4; i++) 
{ 

random bad=rand()%(POP/2)+POP/2; 
for(j=0;j<i;j++) 

if(badstj]==random bad) 

{ 
random_bad=rand()%(POP/2)+P0P/2; 
j = -l; 

} 
bads[j]=random bad; 

} 
for(i=(3*POP/4) ; i<POP;i + + ) 

for(j=0;j<PERIOD;j++) 
fo r ( l=0 ; l<N PRDT;l++) 

cur ren t_gen_nex t [i] [j] [1 ]=cur ren t_gen[bads [ i - (3*POP/4) ] ] [j] [1 

/ / change g e n e r a t i o n s 
for( i=0; i<POP;i++) 

for(j=0;j<PERIOD;j++) 
fo r ( l=0 ; l<N PRDT;l++) 

cu r ren t_gen [ i ] [j] [1] =current_gen_next [ i ] [ j] [1] ,-

/ / m u t a t i o n 
for ( i = 0;i<POP,-i + + ) 

for(j=0;j<PERIOD;j++) 
fo r ( l=0 ; l<N PRDT;l++) 

if(rand()%25==0) 
{ 

c u r r e n t g e n [ i ] [ j ] [ 1 ] = r a n d ( ) % 2 ; 
i f ( c u r r e n t gen [ i ] [ j ] [1]= = 1) 

current_gen[ i ] [ j ] [1]+=rand()%N_PRDT; 

vo id main(void) 
{ 

i n t i ; 
time t s t a r t , e n d ; 
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start = time (NULL); 

printf("Generating initial population.\n"); 
initial population(); 
Demand () ,-
setup time () ,-
process time (),-
Capacity!),-

printf("running the GA\n"); 
for(i=0;i<GEN;i++) 
{ 

if (i>0) 
gen(); 

production lot () ,-
inventory(); 
TR Cost(); 
//getchO ; 

end = time (NULL); 

print report(i); 
print report filed); 
printf("\nTime: %d\n",end-start); 

} 
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