
Integrating Capacitated Lot-Sizing and Lot Streaming In Flowshop Schedules

with Time Varying Demand

Alipasha Bayat

A Thesis

in

The Department

of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Industrial Engineering) at

Concordia University
Montreal, Quebec, Canada

December 2008

© Alipasha Bayat, 2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63294-9
Our file Notre reference
ISBN: 978-0-494-63294-9

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ABSTRACT

Integrating Capacitated Lot-Sizing and Lot Streaming In Flowshop

Schedules with Time Varying Demand

Alipasha Bayat

Any reasonable production planning contains three important decisions on lot size, lead

time, and capacity. The common approach in the literature is to divide the planning

problem into lot sizing, lot sequencing, and lot splitting sub-problems. Very few studies,

to the best of our knowledge, have been conducted on the interdependencies and three-

way interaction of lead-time, lot size, and actual capacity usage. A particular lot size

calculated by the sub-problem method, however, will likely yield an infeasible solution or

at least result in schedule instability (nervousness). This is just because in most

capacitated lot sizing models, the capacity constraints in the model only take into

consideration the available time on each work station, ignoring the sequencing of lots,

sublot sizes, and their effect on makespan and lead times. In this thesis we bridge the gap

between lot sizing and scheduling in flowshops, and examine the use of the lot splitting

and sequencing techniques to reduce schedule instability. A mixed integer programming

formulation is presented, which enables us to simultaneously find the optimal lot sizes as

well as the corresponding sublot sizes and sequence of jobs. With this model, small size

problems can be solved within a reasonable time. The computational results confirm that

this model can be advantageous in dampening the scheduling nervousness. For larger size

instances, a Genetic algorithm is proposed.

iii

Acknowledgements

This thesis is dedicated to the memory of my beloved father and to my mother, Maliheh,

for her love and support throughout my life. As always, I am deeply grateful to her.

I would like to express my sincere gratitude to my supervisor, Professor Dr. Akif Asil

Bulgak, for his patience, kindness, constructive comments, and for his general support

throughout this work. I appreciate all that you did for me and I will miss working with

you very much.

Special thanks to my friend Mohammad Jabbari Hagh for his many hours of assistance

with programming and for all I have learned from him.

I must extend my thanks to Dr. Fantahun Defersha and also to my friends and colleagues

Iman Niroomand and Amir Khataie for our academic discussions.

IV

Table of Contents

List of Figures vii

List of Tables viii

List of Acronyms ix

CHAPTER 1 INTRODUCTION 1

1.1 Motivation 1

1.2 Objectives and Contributions 4

1.3 Overview of this Thesis 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 Lot-Sizing 6

2.1.1 Simple and Common Sense Techniques 7

2.1.2 Exact Optimization Methods 7

2.1.3 Heuristics. 9

2.1.4 General Characteristics of Lot Sizing Problems 11

2.2 Scheduling (Sequencing and Lot-Streaming) 12

2.2.1 Notions and Classifications 15

2.2.2 Common Solution Methods 18

2.3 Integrated Lot-Sizing and Scheduling 21

2.4 Lead Time 27

CHAPTER 3 MATEMATICAL FORMULATION 29

3.1 Assumptions and Limitations 29

3.2 Notations 30

3.3 Mathematical Model 32

v

3.4 Computational Experiments 34

3.4.1 A Numerical Example 34

3.4.2 Analytical Examples 35

CHAPTER 4 GENETIC ALGORITHM 39

4.1 Genetic Algorithms: An Overview 39

4.1.1 GA Design Factors 41

4.1.2 GA Parameters 45

4.2 Proposed Genetic Algorithm 45

4.2.1 Chromosome Representation 46

4.2.2 Decoding Algorithm 48

4.2.3 Genetic Algorithm Procedure 53

4.2.4 Fitness Function Evaluation 54

4.2.5 Genetic Operators 55

4.2.6 Selection Mechanism. 56

4.3 Tuning GA Parameters 57

4.4 Computational Results 59

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 62

Bibliography 65

APPENDIX 1: Classification of Lot Sizing Problems 71

APPENDIX 2: Classification of Lot Streaming Problems 72

APPENDIX 3: Lingo Code 73

APPENDIX 4: Decoding Algorithm Pseudo Code 75

APPENDIX 5: Genetic Algorithm Programming Code 76

vi

List of Figures

Figure 1 -1: Hierarchical Planning Approach 3

Figure 2-1: m-Machine Flowshop 13

Figure 2-2: Gantt Charts of Different sublot Sizes 17

Figure 2-3: The Integrated Framework of Scheduling System 24

Figure 3-1: Gantt Chart of Production in Month of March. 35

Figure 4-1: The GA Procedure 40

Figure 4-2: Chromosome for Single Item Lot Sizing 46

Figure 4-3: Chromosome for 3-Item Lot Sizing and Sequencing 47

Figure 4-4: Flowchart of Decoding Algorithm 50

Figure 4-5: Chromosome 3-Itemand 6 Periods 51

Figure 4-6: Global Genetic Algorithm 54

Figure 4-7: Crossover Operator 55

Figure 4-8: Selection Mechanism 57

Figure 4-9: Comparison between Lingo objective bound and GA objective value 61

vn

List of Tables

Table 3-1: Demand and Orders Released in Planning Horizon 34

Table 3-2: Computational Result for the First Set of Problems 37

Table 3 -3: Computational Result for the Second Set of Problems 38

Table 4-1: Decoding Example 52

Table 4-2: De Jong Parameter Settings 58

Table 4-3: Grefensette Parameter Settings 58

Table 4-4: Comparison between Linear and GA solutions 59

Table 4-5: Comparison between Lingo objective bound and GA objective value 60

V1I1

List of Acronyms

CDS

CLSP

CLSLP

Cmax

EOQ

Fm

GA

LFL

LUC

M1LP

MIP

MRP

MSP

NEH

NP-hard

PPB

SA

STsij,

TRC

TRCUT

TS

Campbell, Dudek, and Smith Algorithm

Capacitated Lot Sizing Problem

Capacitated Lot Sizing and Loading Problem

Minimizing the Maximum Makespan

Economic Order Quantity

Flow shop with m Machines

Genetic Algorithms

Lot For Lot

Least Unit Cost

Mixed Integer Linear Programming

Mixed Integer Programming

Material Requirement Planning

Master Schedule Plan

Nawaz, Enscore, and Ham algorithm

nondeterministic polynomial-time hard

Part-Period Balance

Simulated Annealing

Sequence Independent Setup Times for sublots

Total Relevant Cost

Total Relevant Cost per Unit of Time

Tabu Search

]X

ULS Uniform Lot Size

VIS Variable Lot Size

W1P Work In Process

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

The aim of lot-sizing research is to minimize setup and holding costs by determining

production lot size and inventory levels to meet a given demand. Lot streaming (Biskup

and Feldmann, 2006), on the other hand, aims to divide lots into sublots in order to allow

overlapping process in a multi-stage production system to accelerate the flow of material

and reduce the lead-time.

The common approach in the literature (known as the "hierarchical approach") is to

divide planning problem into lot sizing, lot splitting, and sequencing sub-problems. First,

using the master production plan, supported by bill of materials, and production structure,

the lot size for each product or part would be found. Then, after orders are released to

shop floor, lot splitting and sequencing techniques will be used to find the optimal

production sequence and sublot sizes. A particular lot size calculated by this common

practice might, however, gives an infeasible, or at least a poor solution in respect to other

aspects such as work in process (W1P), inventory holding cost, and set up costs. This

1

infeasibility forces the planner to frequently change the master production plan which

results in schedule instability (nervousness). This is because most capacitated lot sizing

models have four major unrealistic assumptions:

First, conventional capacitated lot sizing models, also known as CLSP, assume that the

time spent by each lot on each work center is small and negligible. This only makes

physical sense when a single item transfers from one work center to another (lots of size

one). However, when the production is by lots, the processing time of a lot depends on

the size of the lot and may not be negligible. For example, the time spent on machine 1

by a lot of "«" items with "i>" being the processing time is "n*P". Additionally, machine

2 would be idle for "n*P" units of time since the first job scheduled on machine 2 cannot

start until it is completed on machine 1. Thus, the capacity available for production

depends on the size of the production sublots.

Second, in most capacitated lot sizing models, the capacity constraints are nothing more

than the available time of each machine. Again, this assumption is only valid, if there is

zero idling time. In a flow shop in which production is done in lots, assuming zero idling

times means ignoring the effects of sequencing and sublot sizes, on makespan and lead

time.

Third, in presence of setup times, the limited capacity available for production may be

reduced by changeovers, causing sequence- dependent setup times. Lot sizing and

capacity usage therefore depend on both the sequence and the size of the sublots.

2

Fourth, conventional capacitated lot-sizing models consider the lead time as a fixed and

controllable input data, when it is really an output of other decisions, especially lot sizing

and sequencing (Lasserre, 2003).

Capacity Planning

, ' *

K.
N

Aggregate Production
Planning

''
Master Production

Schedule

1'
Material Planning

(Lot Sizing)

''
Scheduling

(Sequencing & splitting)

I
J

J

>

[j

Long term

Medium term

Short term

Figure 1-1: Hierarchical Planning Approach

Making any of the above assumptions would result in failure to plan capacity and in

scheduling instability. Scheduling instability is a severe problem in any production

planning system. It can be caused by one of the following reasons:

• Uncertain events occurring within or outside the production system such as

forecast errors and machine breakdowns,

• Operating factors such as lotsizing rules and capacity utilization

Traditionally, there are two options for dealing with instability: first to maintain safety

stock, safety lead time and safety capacity, and second to change the master production

schedule (MPS). There is a large cost associated with first option, and frequent

rescheduling leads to system instability.

Ho (1998) concluded that although forecast errors have impact on instability, use of an

appropriate lot sizing rule may neutralize the negative impact of forecast errors. He also

examined dampening effect of different lot sizing rules (Ho, 2005). He concluded that

part period balancing rule and least total cost rule turn out to be two effective lot sizing

rules to reduce system nervousness (Ho, 1986; Ho and Law, 1995; Ho, 2005).

1.2 Objectives and Contributions

In this thesis we focus on the problem of finding the optimal lot size for multiple items

with time varying demand in a multistage production system, when lot streaming and

sequencing are applied simultaneously to ensure order's feasibility and reduce the need

for rescheduling of the master production plan. The main contribution of this thesis is the

integration of sequencing and scheduling decisions with lot sizing. We make our decision

on the sequence of production and the sublot sizes simultaneously in advance, thus, we

have better schedule because we know the idling times of machines and we can fill them

with jobs. Moreover this can help us to have better estimate of the lead times. In order

achieve our goal we propose the following:

• Formulated the problem as a mixed integer linear programming problem model

• Developed a genetic algorithm (GA)

• Generated random problems to evaluate and compare the linear model and genetic

algorithm

4

1.3 Overview of this Thesis

Chapter 2 is an introduction to existing literature on the three subjects of lot sizing,

scheduling, and lead time. It introduces some of the works done on the integration of

these three subjects. This literature review focuses mainly on the flowshop problem.

Chapter 3 presents a mixed integer linear formulation of the problem. Later in Chapter 5

this exact solution will be used as a benchmark for evaluating the genetic algorithm.

Chapter 4 provides a study on design of genetic algorithms (GA), their design factors,

and their parameters. Then, it presents our proposed genetic algorithm to solve the lot

sizing problem (combined with scheduling) in more detail. It also presents numerical

examples and comparison with the exact solution presented in chapter 3 in order to

illustrate the efficiency of genetic algorithm.

Chapter 5 is the summary of this thesis and provides some direction for future research

works.

5

CHAPTER 2

LITERATURE REVIEW

The three research areas of lot sizing, scheduling (sequencing and lot streaming), and

lead time have direct impacts on this study. The literature on the above mentioned areas

is vast, though, very few studies are available on the combination of the three. This

chapter discusses the literature of these three areas, and presents the related studies on the

integration of scheduling and lot sizing.

2.1 Lot-Sizing

In this section, we will discuss the literature of deterministic and dynamic capacitated lot

sizing problems. By deterministic, we mean that demand is considered as known, as

opposed to probabilistic demand, and by dynamic we mean that the demand is time

varying over the planning horizon. The aim of lot sizing research is to minimize setup

and holding costs by determining production lot sizes and inventory levels to meet a

given demand. In other words, lot sizing is about answering the questions of when and

how many to produce. The goal is to find a feasible production plan which meets the

6

demand as stated in master schedule plan (MSP), while having the minimum setup and

inventory holding cost.

Based on the literature, solution methods of lot sizing problems can be classified into

three main categories: simple and common sense techniques, exact optimization methods,

and heuristic methods.

2.1.1 Simple and Common Sense Techniques

Lot sizing research began with simple techniques like EOQ, fixed order quantity, and lot

for lot (LFL) models and developed further to handle various cases. The EOQ model is

single level, single item production with no capacity constraints. The demand is

deterministic and assumed to have constant rate. EOQ model is a continuous time model

and it is very easy to solve. When the demand variation is small, we can ignore the time

variability of demand and use the basic EOQ model.

In the lot for lot method, which is considered to be the simplest method, order quantities

are the same as demand in each period. This it is not the best method when the setup cost

is high.

2.1.2 Exact Optimization Methods

The most cited optimization method for solving lotsizing problems is the Wagner-Whitin

algorithm, which uses integer or mixed programming. Development of the dynamic

method of Wagner-Whitin constitutes a major improvement in solving lot sizing

problems. Wagner-Whitin (Wagner, 1958) assumes a finite planning horizon which is

divided into discrete periods. Demand is time-varying and considered to be deterministic

7

and known for each period. But still it was un-capacitated and single level and a single

item problem.

The next generation of models is a combination of dynamic methods like Wagner-Whitin

and the capacity constraints, called the capacitated lot sizing problem (CLSP). Single

level lot-sizing problem is reviewed by many scholars. In the next sections, we present

the mathematical formulation and the basic assumptions of this model.

2.1.2.1 Assumptions and Limitations

To find the best amount and timing of production, following assumptions were made for

solving the single item capacitated lot sizing problem:

• The demand rate is known and deterministic,

• The cost factors do not change with time. In other words inflation is negligible

• No shortage is allowed

• The carrying cost is only applicable to the inventory that is carried over from one

period to the next period

• The production has to be completed at the end of each period to meet the demand

of the next period

• Jobs should be processed in sequence on m machines or stages

2.1.2.2 Mathematical Model

The single item capacitated lot sizing problem (CLSP) can be formulated as follows:

8

(2-1) Minimize TRC = £ AY; + I fh
7 = 1

ST.

Ij = / , + Qj - DJ

j = 1,..., t

7 y > 0

JO = {o,i}

Demand for each period (Dj) is given. The objective function minimizes the total relevant

cost of production (TRC) which is the summation of setup (A) and inventory holding

costs (h). In each period with production a set up cost will be incurred and this is modeled

by using a binary coefficient in the objective function. The first constraint is flow-balance

which shows the requirement in each period will produce at least one period before

needed period. As experiments showed, lot-sizing problems are NP-hard which is why

this field is dominated by heuristic techniques. The heuristic and meta-heuristic models

will be discussed in the next sections.

2.1.3 Heuristics

Heuristic methods are iterative procedures to solve a problem but do not grantee an

optimal solution. Heuristic methods are used for NP-hard problems when it is

computationally infeasible to find an optimal solution. The most common heuristic

approaches used to solve the lot sizing problem for dynamic demand are the Silver-Meal

(Meal, 1969), Least Unit Cost (LUC), and Part-Period Balance (PPB) methods.

9

Silver-Meal heuristic considers a lot size that equals to the demand of some m periods

ahead. For example, if m = 3 the lot size equals to the demand of the 3 next periods. The

average holding and set up cost per period for m period span. Inventory costs (holding

and setup) per units of time of placing an order at period t, if the order covers m periods,

can be expressed as follows:

n 1 , T-omrn \ (settlP cost) + (Total Carring Costs to end of period T)
(1-2.) lKLUl(t)-

Silver-Meal heuristic starts from ordering for one period ahead and increase the number

of periods (t) systematically to include the demand of next t periods ahead. It computes

the cost for each / =1, 2, 3, etc, until the average cost per period starts to increase. The

best t is the last one before the average cost per period increases. Then, an order to meet

the demand of the next t periods must be placed. After that, it moves to period t+1 and

repeat the procedure until all demands are included in orders.

The Least Unit Cost heuristic is quite similar to the Silver-Meal heuristic, except that it

accumulates demands until the cost per unit increase. In other words it divides the cost by

number of units instead of dividing the cost by number of periods (/).

The idea behind the Part Period Balancing is to select the number of periods covered by a

setup such that the setup cost is nearly equal to the holding cost.

In the recent years, meta-heuristics such as tabu search, genetic algorithm, and simulated

annealing have been used extensively for solving the lot sizing problems as well as its

variants. Design of meta-heuristic algorithms revolves around choosing ways to represent

a solution, evaluate each solution and define a neighborhood. Reza and Akgunduz

10

(2007), Ozdamar et al. (2002), Meyr (2000), and Sikora (1996), are a few examples of

the huge number of the existing literature on different variants of lot sizing. We will

discuss the design of their algorithms in more detail in the next sections and especially

those who use genetic algorithm in chapter 4.

2.1.4 General Characteristics of Lot Sizing Problems

There are many comprehensive reviews on the lot-sizing literature. Karimi et al. (2003)

classified the lot sizing problems into four categories based on the number of products

(single-item or multi-item) and the capacity (un-capacitated, capacitated). They also

introduced eight characteristic for lot sizing models. The following characteristics are to

be noted in any lot sizing models:

Planning horizon: Planning horizon can be discrete or continuous and it can also be

finite or infinite. For finite planning horizon with deterministic and time varying demand,

dynamic models like Wagner-Whitin are usually used.

Planning horizon can be categorized as either big bucket or small bucket. Big bucket

horizons are those where the time period is long enough to produce multi items, while for

small bucket problems the time period is so short that only one item can be produced in

each time period.

Production level: Production level can be either single or multi-level. Multi-level

production can further be categorized as serial, assembly, disassembly, and general. In a

single level production system, the final product with independent demand is directly

produced from raw or purchased materials, whereas in a multi-level production system, in

11

which items have the hierarchal relationship and output of one item is the input for

another one.

Number of products: There are two types of production with respect to the number of

products, namely single item and multi-item. Presence of sequence dependent setup times

and costs increase the complexity of planning for production of multi-item.

Demand for the end item: Demand can be deterministic (known in advance) or

probabilistic (not known exactly). It can be static (i.e. it will not change over time), or

time varying and dynamic.

Setup: Setup can be simple (independent of scheduling decisions) or complex. Complex

setups can further be categorized as setup with carry over, sequence dependent, and

family or major setup.

Deterioration of items: For items which can deteriorate, another constraint would

restrict the inventory holding time and add to complexity of the problem.

Inventory shortage: Backlogging and lost sales are two inventory characteristics which

can be allowed or not. Backlogging means that the demand of a period can be satisfied in

future.

2.2 Scheduling (Sequencing and Lot-Streaming)

A production setting, in which «-job should proceed in sequence of m machines or stages

and all the jobs are processed in the same sequence, is called a flowshop. Processing

times of different jobs on different machines may vary. All jobs are assumed to be

12

available at time 0. There are a number of performance measures that can be used to

evaluate the particular production schedule in a flowshop environment, such as average

idling time of machinery, total waiting times of jobs, or machinery utilization. However,

the most common objective is to minimize the makespan.

Input
Machine /

In Process
Machine 2

In Process (
Machine n

Output
•

Job Flow

Figure 2-1: m-Machine Flowshop

Throughout the literature in flowshops, the term scheduling is often used purely to denote

sequencing of jobs. However, we want to make a distinction between sequencing and

scheduling. For the purpose of this thesis, "scheduling" means allocating the resources to

perform different jobs over time with respect to constraints like machines' capacities and

time bucket length, whereas, sequencing is concerned with the arrangement in which a

set of jobs should be performed. In other words, sequencing only ranks the jobs to be

performed. In this thesis, by scheduling, we mean the combination of sequencing and lot

streaming techniques which enable us to execute jobs in a right order on different

machines without any capacity violation within time buckets and to find a feasible

production schedule. The literature on scheduling is vast; but we are only concerned with

flowshop scheduling with the objective of minimizing the makespan. We are particularly

interested in production settings in which production takes place in batches as opposed to

producing individually (unit by unit) that is where literature of both the lot streaming and

the sequencing problems merge together.

We follow the three-field classes of scheduling problems introduced by Graham et al.

(1979). We use Fm/STsitt/Cmax to denote the problem studied in this thesis. In this

classification problems can be specified in terms of the three-field classification a /p / y

where a specifies the production environment, p specifies the job characteristics, and y

describes the objective function.

Fm represents flowshops with m-machines, in the second field, "STSj, t," sequence

independent setup times for sublots, and "Cmax " represents the performance measure of

minimization of makespan. In the rest of this section, the important notions and

definitions will first be discussed and then the literature of lot streaming and sequencing

will be presented briefly.

Sequencing research starts with the very early works of Johnson's 1954 paper on two

machine flow-shop scheduling (Johnson, 1954). Reiter (1966) introduced the concept of

lot streaming.

Lot streaming is the process of splitting a job or a lot to allow overlapping between

successive operations in a multi-stage production system. This usually results in a shorter

makespan. In the context of multi-product lot streaming in addition to the sublot sizes and

the number sublots the production sequence of items is another decision variable.

Chang and Chiu (2005) classified lot streaming problems into four categories based on

number of products (single or multiple) and the performance measurements (time-related

and cost-related). They described lot streaming problems with three main dimensions,

namely system configuration, sub-lot-related feature, and performance measurement.

14

They also introduced seven sub-dimensions which has several levels as shown in

appendix 2.

2.2.1 Notions and Classifications

In the rest of this section, we introduce the necessary definitions and classifications.

1. In an m-machine flowshop, a schedule is called permutation if the job sequence

stays the same on all the machines or stages. Otherwise, it is a non-permutation

schedule.

2. Sequencing problem in a flowshop can be categorized further to those with

independent setup and those with sequence dependent setup times.

3. A setup is attached if it cannot be started before the production lot or sublot

becomes available on the machine. If it can starts before availability of sublot a

setup is detached.

4. Lot or sublot sizes can be consistent, equal, or variable. Consistent batches have

the same size over the different stages or machines. If all the sublots' sizes are

equal it would be called equal sublots otherwise, it would be called variable sublot

size.

5. Idling can be allowed or not. Machines can be idle between sublots if intermittent

idling is allowed. Non-idling means that sublots should be processed one after the

other on a particular machine or stage.

6. Setup, production, and transportation are the three types of activities that involve

a series of operation.

15

7. Sublot size can be a real number or an integer (discrete or continuous). For

discrete sublots, the number of item in a sublot has to be integer number. While,

for continuous sublots size there is no restriction on the sublot size. For example,

in chemical industries sublots take continuous numbers.

In multi-product setting, if intermingling sublots (preemptions) is allowed, the sequence

of sublots of a given product may be interrupted by sublots of another product. For non-

intermingling sublots, no interruption in the sequence of sublots of a product is allowed

(Defersha and Chen 2008). In other words, production of a particular product on one

machine or stage can be started once the last sublot of the previous product is finished.

Figure 2-2, in the next page, shows the benefits of lot streaming in reducing the

makespan (Chang and Chiu, 2005).

16

M]

M2

M3

i:*!!

;..S()

1 JO

| Without Splitting!

,.{!>

12!)

i;>»>

t i i n c

M l

M2

M3

<)<> w)

'111

w l M)

f>0

*.""

<>0

S » t

Two Equal Sublots

t i m e

M l

M3

-10 -»<> •H>

~ j t >

(
• t o -1(1

-SO

-It)

-SO

*SU

-1(1

^Mt

(Three Equal Sublots!

t i m e

M 1

M2

M3

"0 5tt

Vi(>

7{i 5is

71 >

M M

M»

<•«)

| Consistent Subk

11 rnc

Figure 2-2: Gantt Charts of Different Sublot Sizes

17

2.2.2 Common Solution Methods

There are two main approaches to solve flowshop scheduling problems namely, the exact

and heuristic approaches. There are a huge number of studies on both the exact and

heuristic solution procedures developed to solve the scheduling problems in flowshops.

The exact algorithms are capable of determining the optimal solutions. However,

heuristics approaches are also very prominent in t2he literature since such problems are

proven to be NP-complete.

2.2.2.1 Exact techniques

Sequencing research starts with the very early works of Johnson's 1954 paper on two

machine flow-shop scheduling (Johnson, 1954). Johnson developed a procedure that

minimized the makespan for jobs on two machines. For a two-machine setting, Johnson's

solution is proven be an optimal solution and it can be extended to a three-machine

flowshop problem as well. The Johnson's algorithm also known as Johnson rule is as

follows:

1. Determine the shortest processing time among all jobs yet to be sequenced on

machine 1 and 2.

2. Schedule the job associated with the shortest processing time first in the sequence,

if it occurs on the first machine.

3. Schedule the job associated with the shortest processing time last in the sequence,

if it occurs on the second machine.

4. Continue until all the remaining jobs are scheduled.

18

Essentially, Johnson's procedure minimizes the idle time on machine 2 by scheduling a

job with the shortest processing time on machine 1.

2.2.2.2 Heuristic methods

In this section we discuss some heuristic and meta-heuristic methods to minimize the

makespan in flowshops. Palmer's method, NEH heuristic, and CDS algorithm are three

examples of such heuristic methods developed through application of Johnson's

algorithm.

Palmer (1965) developed a heuristic based on the idea of placing jobs, which have

increasing processing times from one stage to the next stage in earlier positions in the

sequence. He assigns jobs to later positions in the sequence when they have decreasing

processing times as they move from one stage to the next as they progress through the

flowshop.

The Nawaz, Enscore, and Ham algorithm, known as NEH, is one of the most cited greedy

constructive methods in literature of flowshop sequencing problem (Nawaz, Enscore, and

Ham, 1983). The NEH algorithm takes three simple steps as follow:

1. Schedule the first two jobs so as to minimize the partial makespan as if there were

only two jobs

2. Order the remaining jobs by decreasing sums of total job processing times.

3. Place the remaining jobs in one of the slots between already scheduled jobs such

that the total makespan is minimized at each step.

19

Campbell et al. (1970) developed an algorithm; known as the CDS algorithm which uses

Johnson's rules. The algorithm breaks the m-machine problem into several two-machine

problems, then each of two-machine problems is solved using Johnson's two-machine

algorithm.

Sriskandarajah and Wagneur (1999) considered the problem of minimizing makespan in

two-machine and no-wait flow shop with multiple products. Their objective is to

determine sublot sizes and sequence the jobs simultaneously. They develop a heuristic

procedure to solve sequencing and lot streaming of multiple products. Computational

results are shown to be close to the optimal. Later, Kumar et al. (2000) extends the two-

machine model of Sriskandarajah and Wagneur to m-machines lot streaming problem.

Lot streaming for multiple products in a multi-stage flow shop with equal sublots and no

intermingling is discussed by Kalir and Sarin (2001). Their objective was to minimize the

makespan by finding the right sequence for jobs. They developed a heuristic procedure

for the lot-streaming and sequencing problems. They used an example to show the

importance of sequencing in lot streaming problems.

Hall et al. (2003) studied the problem of minimizing the makespan in flowshop with lot

streaming. Their model required the sublots to be processed consecutively on each

machine. Setups occur only between sublots of different families. Setups are either all

detached or all attached. They showed that this problem can be formulated as a general

traveling salesman problem. Furthermore, they proposed a heuristic for multiple

products, no wait processing and lot streaming flowshop problem.

20

Biskup and Feldmann (2006) introduced the very first MIP formulation for single item in

multi-stage production settings with variable sublots sizes. They showed that significant

makespan reduction can be achieved by using variable sublot sizes. Defersha and Chen

(2008) extended the single item lot streaming model of Biskup and Feldmann (2006) to

multiple products and proposed a genetic algorithm. Their model is outstanding in

tackling the sequencing and splitting problem simultaneously. Their model also

outperforms that of earlier approaches because their model of variable sublots also allows

intermingling of sublots.

2.3 Integrated Lot-Sizing and Scheduling

In the most of the literature of production planning, lot sizing and scheduling problems

are solved independently and, for the sake of simplifying the problem, the

interdependencies of lot size, sequence, and capacity usage are ignored. The problem

discussed here is the lot sizing and scheduling of ^-product in a flowshop consist of m

machines with the objective of minimizing total inventory holding cost and setup costs.

Demand has a deterministic and dynamic pattern over a finite planning horizon and must

be met without back-logging. Production takes place in lots. In this condition, lot sizing

and scheduling of jobs should be done simultaneously because we encounter sequence

dependent setup times and production which takes place in lots.

First, in presence of sequence dependent setup times, the limited capacity available for

production may be reduced by changeovers causing sequence-dependent setup times.

Thus, lot sizing and capacity usage depends on both the sequence and the size of the

sublots.

21

Second, when the production is by lots, the processing time of a lot may not be

negligible, and it would be naive to ignore the machines' idling times. For example,

machine 2 would be idle since the job scheduled on machine 2 cannot start until it is

completed on machine 1. Therefore, the capacity available for production depends on the

size of the production sublots and the sequence of jobs.

There are a few studies available on the combination of lot sizing and sequencing and

fewer with lot streaming in mind. In the rest of this section, we will discuss literature on

studies on the combination of lot sizing and scheduling.

Szendrovits (1975) presented a model of constant lot size in multistage manufacturing

system with constant and continuous demand for products. He came up with a modified

EPQ model that assumes a uniform lot size proceeding though m machines or stages,

with one setup at each machine. His model allows lot splitting to reduce the

manufacturing cycle time. The objective of his model is to minimize the sum of the fixed

production costs and the holding costs of both the WIP (Work in Process) and finished

product inventories. Szendrovits' work resolves the relationship between the production

lot size, the manufacturing cycle time and the average work in process.

Goyal (1978) stated that transportation cost of sublots should be noted in Szendrovits

model and showed that the total amount of WIP with consistent sublots is less than

constant sublots.

Drezner et al. (1984) proposed a model with variable lot size (VLS). Szendrovits and

Golden (1984) compared the VLS model with ULS, in that they showed that the ULS can

22

give a better result in minimizing the cost in some situations but it depends on the sublot

transportation cost.

Smith and Ritzman (1988) presented a mixed integer programming formulation for lot

sizing problem considering the sequencing problem. Their formulation considers

sequence dependent set-up times and capacity constraints. However, the MIP formulation

is not always able to solve real size (large) problems.

Sikora et al. (1995) studied the problem of flowshops with finite scheduling horizon with

objective of minimizing the makespan and inventory holding cost. The flowshop they

discused has the following characteristics:

• Sequence dependent setup times,

• Limited intermediate buffer space,

• capacity constraints,

• In addition jobs are assigned with due dates that have to be met.

They developed an integrated approach in order to address the problems of solving

lotsizing and sequencing decisions independently. It is an iterative approach which does

the sequencing for each period before an additional lot is scheduled for that period.

Because of the interdependency between lotsizing and sequencing decision, they came up

with the framework consist of 3 modules namely lotsizing module, sequencing module,

and testing module. Figure 2-3 which shows their integrated framework is adopted from

Sikora et al. (1995).

23

Daily
Demand"

Lot Sizing

Available Capacity

Setups

Sequence

Lot Sizing

J

Lot Sizing 1

Makespan

Manufacturing
Environment

Daily
Schedule

Figure 2-3: The Integrated Framework of Scheduling System

In each iteration, the lot sizing module calls the sequencing module to find the optimal

sequences which minimize the makespan. Then, the testing module calculates the

makespan and residual capacity on the bottleneck machine for the given lot size and

sequence and information will be returned to lot sizing module before any additional lot

be scheduled in the period.

The lot sizing module uses a modified version of Silver Meal heuristic that allows lot

splitting in order to increase the capacity usage. It calculates b, which is the fraction of

the next period's (7/ + 1) demand that can be produced in the current period without

violating the capacity constraints. Then, it quantifies the TRCUT (total relevant cost per

unit of time) based on this fraction (b), using the following formulation:

24

. . ,, remaining capacit
(2-3) 9 =mirKl,—

Wa </;+i)

A+h^id-T'^+h.D^b,
(2-4) TRCUT(Ti+l,bi) = ^

T.-T

Where:

kj Required capacity for producing one unit of product i

D^ Demand of item / in period d

Aj Setup cost for item /

hi Inventory holding cost for item /

T* The current period

Tj The number of periods ahead in planning horizon

The sequencing module uses an improved version of palmer heuristic and the pair-wise

exchanged which incorporates the sequence dependent set up times and the limited buffer

capacities.

Sikora (1996) developed a genetic algorithm for integrating lot sizing and sequencing

problems in a flowshops with all the characteristics of the integrated approach described

previously by Sikora et al. (1995). In their proposed genetic algorithm, each possible

solution is represented by a string of paired values for each period in the time horizon.

The first number of any pair indicates the type of job and the second number indicates the

number of units of that job type that have to be produced (lot-size). The order of the pairs

indicates the sequence of jobs.

25

In order to enable the genetic algorithm to manipulate both data of lot sizing and

sequencing, they use separate crossover and mutation operators. Their GA uses

tournament selection mechanism. The feasibility of the initial population is assured by

scheduling the lot size s equal to demand in that period. Finally, experiments showed that

their genetic algorithm outperforms both the integrated and sequential approaches.

Ozdamar and Birbil (1998) developed a hybrid heuristic consisting of meta-heuristics

such as simulated annealing (SA), tabu search (TS) and genetic algorithms (GA) for

solving the capacitated lot sizing and loading problem (CLSLP). They define the CLSLP

problem as determining the lot size of product families and loading them on parallel

machines.

Meyr (2000) introduced another model for solving lotsizing and scheduling problems

simultaneously in a capacitated flowshop with sequence dependent setup times. Their

model combines a simulated annealing heuristic with the mixed integer model to solve

the problem by fixing the binary variable of setup sequence and solve the sub-problems

by heuristic. Then, they discuss that solving each of sub-problems to optimality is too

time consuming. They develop a mathematical solution which remodels the problem as a

dual network flow problem. The computational tests prove that their procedure is

efficient.

Ramasesh et al. (2000) proposed an EOQ model for a single item in multistage when lot

streaming is applied. They develop a total cost function consisting of the inventory

holding costs, setup cost, transportation cost, and also WIP carrying cost, and then they

discuss a procedure to find the optimal production lot size that minimizes the total cost.

26

Their contribution is twofold; they capture more accurately the components of the

manufacturing lead time that are encountered in a multistage production environment,

and they use the lot streaming in a multistage system MRP.

Hoque and Goyal (2003) claimed that Ramasesh model (Ramasesh, 2000) is not only a

special case of the model of Hoque and Kingsman (1995) but also is not able to find the

minimum cost. They solved two examples, which one of them had been solved by

Ramasesh (2000) and the results showed a significant reduction in cost.

2.4 Lead Time

Lead times in MRP systems represent the planned amount of time allowed for orders to

flow through the manufacturing system (Kanet, 1986). Lead time is important because it

can affect every component of an MRP-based manufacturing and it is related to capacity

planning. Lead time structure or the way that lead times are estimated is under

management's complete control, and can change the pattern of planned order releases as

well as flow time and the amount of inventory.

Lead-time determination can change the pattern of planned order releases in an MRP

system. Moreover, by changing the order release pattern the bottleneck facilities would

change. This results in unpredictable lead times and capacity. Kanet (1986) compared

different lead time structures but did not find any evidence to show which structure is

better. In other studies, the results show that the commonly used structure (processing

time + setup + waiting time) does not have a better result, especially when the criterion is

tardiness (Kanet, 1981).

27

Many researchers believe that holding planned lead times down will decrease the

inventory and eventually yield benefits. They argue that there is a vicious circle of lead

time, which means that an increase in lead time encourages shop personnel to ignore

deadlines. As a result more increases in lead time are required. Furthermore, it becomes

increasingly difficult to plan the MPS because as lead times increase forecasts become

more inaccurate. However, Kanet (1986) categorizes the inventory and creates an

example that shows lowering the lead times does not always result in reduction in

inventory levels. He also came up with a simple and very intuitive rule:

"If storeroom inventory contains less early inventory than delayed

inventory then lead times should be increased. If storeroom inventory

contains earlier inventory than delayed inventory, then lead times

should be reduced."

From the above mentioned studies we conclude that we cannot ignore the interaction of

lead time, lot size, and capacity usage. Since different lot size, sublot size, and sequence

has direct impact in on lead time we should find way to find the actual lead time while we

are deciding on lot size.

28

CHAPTER 3

MATEMATICAL FORMULATION

As mentioned in previous chapters, our objective is to decide the sequence of the

production and the sublot sizes while solving the lot sizing problem. This will result in

better scheduling, since the sublot sizes and the sequence of production are known, we

will know the idling times of machines and be able to fill them with jobs, and the orders

released to shop floor will be definitely feasible.

In this chapter, a mixed integer linear programming (MILP) formulation is presented. It

enables us to simultaneously find the optimal lot sizes, as well as the corresponding

sublot sizes and sequences. This model takes the demand as an input and gives the

optimal lot size, sublot size, and the sequence of production as an output. With this

model, small size problems can be solved within a reasonable time. This model also

calculates the makespan, in order to ensure that makespan is less than the available time

in each period. Moreover, the lead time is explicitly computed in the model.

3.1 Assumptions and Limitations

To find the best production batch size will make a number of simplifying assumptions:

29

1) The demand is time varying, known and deterministic

2) The inventory holding cost is only applicable to the inventory that is carried over

from one period to the next

3) Production must be completed at the end of each period to meet the demand,

4) Jobs should be processed in sequence M machines or stages,

5) Each production order (lot size) consists of Q identical items which would be

divided into sublots

6) Items become available for processing at the next machine whenever the

processing of the whole sublot has been finished on the previous machine

7) The entire production lot is produced with a single setup on each machine and

transferred to the next machine in one or more sublots

8) The cost factors do not change with time. In other words, inflation is negligible

9) No shortage is allowed

The proposed linear programming formulation to solve the lot sizing problem with the

above assumptions is a combination of the conventional model of lot sizing commonly

abbreviated as CLSP (Karimi, Fatemi, and Wilson, 2003) and lot splitting with variable

lot size quite similar to (Biskup and Feldmann, 2006).

3.2 Notations

Let the parameters be:

Djt Demand for the Product j in period /

St m Setup time of machine m for the Product j

Sc/ Setup cost for the Product /

30

r Processing time for one unit of the Product / on machine m

/ Fixed minimum lead time (not include an estimate of delay due to

machines idling times or capacity constraints)

h Inventory holding cost

Capml Available time on machine m in period t

TBr Available units of time (time bucket) in period /

S Number of sublots

s Indices for sublots, s = \,...,S

N Number of products

j Indices for products, 7 = 1,...,N

M Number of machines

m Index for the machines, m = 1,...,M

A Sufficiently large number

Let the Decision variables be:

Lj, Lot Size (quantity to be produced from product j in each period/)

U j s, Size of the sublot s of the Product j in period /

/ ., Ending inventory of the Product j in period /

Xj k, Binary variable, which takes the value 1 if the Product j on machine m

has started before the Product k , takes 0 otherwise.

Yj, Binary variable, which takes value 1 if production of the Product J take

place in period t

31

b sml Starting time of the sublot s of product j on machine m in period t

Pjsml Processing time of sublot 5 of product j on machine m in period/

3.3 Mathematical Model

(3-D MIN = x z /,., * *+z i > , * Y.,.>
7 = 1 / = 1 ,/ = l 1 = 1

(3-2) / ; ,_, + Lji_r - ihi = DJI j =],..., N / = /%..., T

(3-3) ^{L^r^+Stj^Yj^KCap^ t = \,...,T m =],...,M
y=i

(3-4) bjSMj + PJiSMj < TB, j = 1,..., N t = I,..., T

(3-5) LJI-A*YJI < 0 j = \,...,N t =],...,T

(3-6) ! > , , , , = ^ , J = l-,N / = !,...,r

(3-7) Pj,s,m.,=Uj,s,,*rj,m j = 1,...,N t =],...,T m = h...,M s = \,...,S

(3-8) 6,,s,m,, + PJM + Stkm *Ykl < bksm, + (1 - X j k ,) A

j,k =],..., N j<k s =],..., S m =],..., M t =],...,T

(3-9) bksm_, + Pk^, + Stjm * Yhl < bJsml + xJkl * A

j , k =],..., N j <k s =],..., S t = 1,..., T m = 1,..., M

(3-10) bJ]ni,>bJlm_ll+P/Xm_]l+Sthm j =],...,N t =],...,T m = 2,...,M

(3-11) bJAXl>St„ j = \,...,N t=l,...,T

(3-12) ^ „ , , > ^ _ L „ , , + ^ . . (. , . „ , ,

32

j = 1,..., N , t = 1,..., T, m = 1,..., M s = 2,..., S

(3-13) y,,, > * M , j,k = },...,N t = \,...j

(3-14) / 7 „ ^ / , ^ , , ^ m „ / > / j m , >0 y = l,...,iV / = l,...,r » = 1 M i = l 5

(3-15)7,,, = 0,or 1 J = l-,N t =],...,T

(3-16)Xj.k..=°>or} j,k =],...,N j<k / =],..,r

In the objective function, equation (3-1), we are trying to minimize inventory holding

cost and setup cost. Note that setup time should not be included in setup cost. Constraint

(3-2) is flow-balance which shows the requirement in each period will produce at least /

periods before needed. / is a fixed minimum lead time which doesn't include an estimate

of delay due to machine's idling times or capacity constraints. (3-3) is the capacity

constraint in which CAPm\s the available capacity of machine m. Constraint (3-4) insures

that the makespan is less than each period length (time bucket). Constraints (3-2), (3-3),

and (3-4) together cause production to start even before / period, this additional lead

time is because of machine idling times. This ensures that the lead time is explicitly

calculated by model. Constraint (3-6) ensures that the sums of sublots are equal to lot

size. With (3-7) the processing time of each sublot is calculated. Constraints (3-8), (3-9),

and (3-13) determine the sequence of sublots. It means that \iXjxt takes the value 1 then

product/ is started before the product k in period /. Constraint (3-10) is bound the sublot s

on machine m to start after sublot s on the preceding machine {m-1) has been finished. As

the model assumes that completions of jobs are consecutive, constraint (3-12) prevents

sublot 5 on machine m from starting before sublot s-l on machine m finishes, meaning

that overlapping operations on a single machine is not allowed. Constraint (3-14) is the

33

file:///iXjxt

non negativity constraint. Constraints (3-15) and (3-16) restricts X and Y variables to

binary form.

3.4 Computational Experiments

3.4.1 A Numerical Example

Through the following example we will show how simultaneous lot streaming can affect

lot sizing process and how it ensures the feasibility of the orders released to shop floor

and reduces scheduling nervousness. Assuming a production setting of a single product in

which each lot of Q units must proceed in sequence of 4 machines with associated unit

processing time of 8, 4, 8, and 4 respectively on each machine. The availabilities on each

machine are 160, 80, 160, and 70 units of time respectively. Each lot may be divided into

4 sublots, though the entire production lot is produced with a single setup of $100 on

each machine. The inventory holding cost of $10 is only applicable to inventory that is

carried over from one period to the next period. For each period (Month) we assumed 200

working units of time. Demand over the planned horizon, order released by conventional

lot sizing models, and order released by our model are as shown in table 3-1.

Month
Demand
Order released by conventional model
Order released by our model

Jan
10
5
6

Feb
5
14
16

Mar
10
17
16

Apr
20
17
16

May
15
17
16

Jun
20
0
0

Table 3-1: Demand and Order released in Planning Horizon

In order to compare the quality of planning, orders released on March are studied

separately. The order released by a conventional lot sizing model for this month is 17

units. We applied lot streaming model of Biskup and Feldmann (2006) for this order size

34

(Q=17), and as shown in figure 3-1 (a), the optimal sublot size would be 5, 5, 5, and 2

with the makespan of 208 hours. This would be an infeasible order because there are only

200 available working hours per month. In other words, the conventional lot sizing

model assigned a load that exceeds the shop floor's available time by 8 hours during the

months of March, April, and May. Figure 3-1 (b) illustrates order released by our model

(Q=16) with four sublots of size 4 and the makespan of 200 hours. Given the net required

values are the same as ones been proposed by conventional lotsizing models, our model

is able to resolve the infeasibility without changing the Master Schedule Plan (MSP).

M l

Mi

M i

M l

&;*S | &.-eS 1 , „ 5 1 1 .1

| |

c
1 - 1

S««$ |

c

l - l hi
&aS | !*;:«* | j V>i*2 |

2R3

- 1 l ~ l l - I ' l
ao 2c JO y t so a ; 3o sc- sc iso n e u c iso i-*c i>o ; t o i ;o i sc ist> ?oc 2i5 ^20

b.

M l

M2

Mi

M i l

1

1

4

|

1

1 1 «

1 1
- 1 1

r7" i

i

i i

i

Z3

1 • 1
1 * 1

X*a

1 - 1 - 1 LiJ
3 SO '.'P JO *-•> SO ICO 111? 12C HO 1*0 1>C IttV l?C 3ST 130 ?0O 2S« 2.:.'

Figure 3-1: Gantt Chart of Production in Month of March

3.4.2 Analytical Examples

For testing, this mathematical model was coded for Lingo 10.0 (see the appendix 3). We

also generated two sets of random problems with different number of machines, products.

and number of planning periods. Then, we solved each problem twice with different time

bucket length. The required parameters of problems are as follows:

• Number of periods in the planning horizon is 6 or 12.

• The number of products N:{ 3,7,9,10,12,14,15,17}

• The number of machines M: {4, 5, 6, 7, 8, 10, 12,15}

• Maximum number of sublots allowed is 4

• Inventory holding costs and setup costs are considered constant and equal to 10,

100 respectively.

• Required capacity of each machine would be estimated by following formula:

T N

(3-17) CapmJ=SU^—. *1.8

It is important to note that average required capacity is multiplied by a utilization

factor (u=1.8) to cope with effect of demand lumpiness. Moreover, this is an

estimation of required capacity and the setup times are totally ignored.

• The production takes place in 1, 2, or 3 shifts in a day for 25 days a month. So,

considering 8 hours in each shift, the available time in each month or period (time

bucket) varied as multiple of 200.

• Demand for each product in each period is equal to 0 by probability of 0.2 or

follows the Uniform distribution D j. t ~U (1, 60) with probability of 0.8. It should

be noted that to avoid time-zero infeasibility the demand for first period tj

considered as 0.

36

• Processing times of each units of product on each machine m follows the Uniform

distribution r7 m ~U (1, 5).

• Setup times follow Uniform distribution St j : m ~U (5, 20).

We let Lingo to run for maximum of 3 hours on a 1.6 GHz Pentium PC with 1024 MB

RAM before reporting a solution. Table 3-2 shows the computational result for the first

set of problems.

Problem

1

2

3

4

5

6

7

8

9

10

TB

400

200

400

200

600

400

600

400

600

400

N

3

3

7

7

9

M

4

4

5

5

6

T

6

12

6

12

6

Iterations

2853

72212

101239

108702522

111594

4668066

1234777

28141429

158945

8687203

Processing
time

00:00:04

00:00:54

00:03:22

3:00:00

00:04:14

3:00:00

3:00:00

3:00:00

00:07:18

3:00:00

Objective
value

3510

3610

5910

6230

7370

9490

14200

-

7360

"

Objective
bound

3510

3610

5910

6190

7370

7400

14157

14157

7360

7360

State

Optimal

Optimal

optimal

Feasible

Optimal

Feasible

Feasible

Unknown

Optimal

Unknown

Table 3-2: Computational Result for the First set of Problems

As Table 3-2 shows, we find the optimal solution for small problems at an early stage of

problem running. There are two observations. First, as the number of machines, products,

and periods increases, it becomes more difficult to find a feasible solution. Second, even

for rather small problems when time bucket is tightly used for production and the ratio of

makespans and available time bucket is smaller the complexity of problem increases

significantly.

37

In the second set of problems, as the number of products increased, demand, processing

and setup times decreased.

• Demand for each product in each period is equal to 0 by probability of 0.2 or

follows the Uniform distribution D j . t ~U (1, 20) with probability of 0.8.

• Processing times of each units of product on each machine m follows the Uniform

distribution r7> m ~U (J, 3).

• Setup times follow Uniform distribution St j . m ~U (I, 4).

Problem

11

12

13

14

15

16

17

18

19

20

TB

300

250

500

400

600

500

600

450

600

500

N

10

12

14

15

17

M

7

8

10

12

15

T

6

6

6

6

6

Iterations

1615550

6866325

1644858

1385916

723880

2277011

721757

1833381

268340
[™ *""""•

913001

Processing
time

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

Objective
value

8030

8290

11170

-

14520

-

-

-

-

0^ j eCt i;e 1 State
bound |

7817 j Feasible

7817 | Feasible

11150 I Feasible

11150 J Unknown

14420 Feasible

14420 1 Unknown

11412 J Unknown

|
11420 Unknown

8

12979 j Unknown

12979 Unknown

Table 3-3: Computational Result for the Second Set of Problems

Computational result suggests, as we knew, that the problem is NP hard and it cannot be

solved by branch and bound method in a reasonable amount of time. In the next chapter

we attempt to develop a genetic algorithm to enable us to solve the real size problems in a

reasonable time.

38

CHAPTER 4

GENETIC ALGORITHM

During the last decades we have seen a growing interest in heuristic algorithms which are

based on evolution and survival of the fittest, especially for global optimization problems

like lotsizing and other NP-hard problems. The best known algorithms of this kind

include genetic algorithms, Tabu Search, and Simulated Annealing, as well as some

hybrid algorithms which integrate various features of the above methods.

This chapter includes an introduction to genetic algorithms and a brief overview of the

important genetic algorithms used in lot sizing and scheduling problems in the literature.

Then we present the developed genetic algorithm.

4.1 Genetic Algorithms: An Overview

The Genetic Algorithm (GA), developed by Holland in 1975, is a one of the meta-

heuristic methods used to solve complex optimization problems. GA searches the

solution space randomly and do not guarantee an optimal solution. In practice, however,

along with advantages; such as flexibility and straightforwardness, the results are usually

extremely good. GA is an iterative heuristic search procedure following the principles of

39

genetic variation, natural selection, and survival of the fittest. In these algorithms, the

initial population of individuals, which represent possible solutions, goes through a

sequence of genetic operators such as crossover and mutation. The population members

are evaluated based on a given fitness function. Highly fitted population members have a

higher chance to reproduce through a crossover process with other highly fitted

population members by exchanging pieces of their genetic information. This process

produces new generation and continues until satisfying the termination condition. The

termination of a genetic algorithm is defined by either reaching a number of specified

iterations or finding the best individuals who represent a near optimum solution. The GA

procedure is shown in Figure 4-1 (Nasaruddin et al. 2003).

Initial Population

Evaluation of Fitness

New Generation

i i

,
Reproduction

. • • . - , • , - « . , , „ , . - . ^ r,,.,„.,., ._„,„..

Crossover

....... v
Mutation

Figure 4-1: The GA Procedure

40

4.1.1 GA Design Factors

Design of a GA revolves around choosing four important factors which must be

addressed systematically:

1. Solution representation

2. Evaluation of each solution

3. Genetic operators

4. Choice of a selection mechanism

These factors are interrelated and, used in the right combination, enable GA to solve

optimization problems like capacitated lot sizing more efficiently. In the rest of this

section we discuss them along with some of the fundamental terminologies used in the

genetic algorithms.

4.1.1.1 Solution representation

In a GA, the possible solution of a problem is presented with a string of genes

(chromosomes). Each gene in a chromosome can have a binary digit, integer, or real

value. Our mixed integer programming model for CPLS problems contains two binary

variables along with integer or continuous variables. The first set of binary variables is

used to indicate the setups and the second is used for the sequencing decisions. The

integer and continuous variables indicate the production order quantities. There are two

methods for representing a solution (chromosome). In the first option, the solution

representation includes both the binary variables and the production quantities (Ozdamar,

Bilbil, and Portmann, 2002; Ponnambalam, and Reddy, 2003). In the second option, the

41

solution representation only shows the binary variables, and production quantities can be

found by solving the relaxed MIP. A very good example of this is presented by William

Hernandez and Sue (1999) and Hung and Chien (2000). It should be noted that in this

article we use the three words "individual", "chromosome", and "possible solution"

interchangeably.

4.1.1.2 Evaluation of each Solution

As mentioned before a GA is an iterative algorithm. In each iteration, all individuals

(solutions) are evaluated and some individuals are selected for reproduction operators.

The most common method for evaluating a solution is using the objective function. It is,

however, possible to obtain an infeasible solution after applying the genetic operators. In

capacitated lot sizing problems, capacity constraints cannot be violated otherwise the

solution would be infeasible. In order to treat such infeasible solutions, one method is to

impose penalty cost proportional to infeasibility. An example of this is imposing a

backlog cost in Xie and Dong's paper (2002). Another good example is penalty for

capacity violation in Ozdamar and Birbil (1998). Another method is using a decoder

method. The decoder method uses the knowledge of lot sizing to avoid infeasible solution

in the first place. A very good example of decoder method can be found in Xie and Dong

(2002).

4.1.1.3 Genetic Operators

Two genetic operators, crossover and mutation, are used to explore the entire solution

space. The choice or design of operator depends on the problem and the representation

model used.

42

Mutation is the procedure by which individuals are randomly modified. The mutation

operator forces the algorithm search a new solution area to escape from local optima by

changing a single solution. The most common mutation operator is bit flip in which when

mutation takes place the binary value switches from 1 to 0 or vice versa. Example of bit

flip can be found in (Hernandez and Sure, 1999). When solution presentation includes

production quantities the mutation operator can change the lot size by a random amount

or switch the quantities of different periods (Ponnambalam and Reddy, 2003). An

important issue here is that applying mutation should not lead to an infeasible solution, or

that the infeasibility should be treated in some way. Applying a penalty for capacity

violation or very high cost for demand which cannot be met is some ways can be seen

throughout the literature.

Crossovers combine existing solutions (parents) and create new solutions (children). In

crossover process, population members exchange pieces of their genetic information.

This process produces new generation that are hopefully better than both of the parents.

Crossover occurs according to a pre-definable probability. In the one point crossover the

strings of the two parents are cut in two at some random point and are recombined into

one new solution (Xie and Dong, 2002; Hernandez and Suer, 1999). There are also more

complex crossovers in literature (Hung and Chien, 2000; Ozdamar, Bilbil, and, Portmann,

2002).

4.1.1.4 Choice of a Selection Mechanism

The selection mechanism is the procedure by which chromosomes are chosen from the

current population in order to apply genetic operators (crossover and mutation) and

43

generate the new population. How to choose individuals for crossing and how many

offspring each create are questions that should be answered by selection mechanism. The

selection mechanism randomly selects chromosomes that have higher evaluation function

or fitter individuals in a population in hopes that their off springs have higher fitness

values.

Proportionate selection, ranking selection, elitist selection, and tournament selection are

some of the commonly used mechanisms. In the popular proportionate reproduction the

probability of selection of each chromosome is proportional to its fitness value

(Hernandez and Suer, 1999; Hung and Chien 2000). In these mechanisms the probability

of selection of ith chromosome {Pi) from the population of size N is calculated as follows:

(4-1) r> N

1=1

Two problems are associated with proportionate selection mechanism. The first one

occurs when a few strings with high fitness values force the selection mechanism to

allocate a large number of offspring to them and take over the population, which causes

premature convergence. The second one occurs in the later stages of the GA, when the

population has converged and the variance between strings fitness values becomes small,

the proportionate selection scheme allocates approximately equal numbers of offspring to

all strings; thereby reducing the chances of selecting better strings. To prevent those

problems, ranking procedures can be included.

44

Elitist mechanism keeps the best chromosomes from the current population in the next

population (Ozdamar and Bozyel, 2004). It copies the best solutions had found into the

next generation without any change in their genetic information. An advantage of elitist is

that good solutions are never lost. Moreover, in most cases it will result in faster

convergence.

Tournament selection is another well known selection procedure. Tournament selection

ta'kes number of different chromosomes from the population and replaces the worst. An

advantage of tournament is fewer sorting required by algorithm.

4.1.2 GA Parameters

The main parameters of the design of a GA are crossover and mutation probability,

population size, number of generations, crossover and mutation type, and selection.

Different values of parameters have effects on convergence, computation time, and may

result in different solution. Low crossover frequency decreases the speed of convergence.

High mutation rates introduce high diversity in the population.

4.2 Proposed Genetic Algorithm

As previously discussed, designing a GA is revolves around four important factors

solution representation (chromosome), evaluation of each solution, genetic operators, and

choice of a selection mechanism. The most important issue is how to fit the lot sizing and

scheduling problem into the design of genetic algorithm. It is very important for

chromosome representation and genetic operators to be able to produce and manipulate

data both for order quantity and item sequencing. The genetic algorithm proposed

45

attempts to include the problem specific knowledge of lotsizing and lot streaming. In

order to do that a decoding method for lot sizes procedure with penalty considerations is

designed.

4.2.1 Chromosome Representation

Our GA has an initial population which consists of m possible solutions. Each possible

solution is represented by a chromosome consists of n binary (0, 1) variables that each

represents the production in a period. The gene f of a chromosome indicates if a

production order has been placed in period t or not, which has the same interpretation of

binary variables in MILP models. A value of 1 indicates that a production order and a

setup has been placed and 0 otherwise. The production quantity in periods which

production takes place must satisfy the demand of the subsequent periods with no

production. The length of each chromosome (number of genes) is equal to the number of

periods in planning horizon. For example, one possible chromosome (solution) for single

item model can be as follows:

Period
1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 1 0 1 0 0 0

Figure 4-2: Chromosome for Single Item Lot Sizing

The chromosome shown in Figure 4-2 indicates that setups are scheduled only in period

1, 7, and 9. And production quantities in period 1, 7 and 9 should satisfy the demand of

the subsequent periods till next setup.

46

For multi-item lot sizing problem, two different issues should be addressed. First is

whether a production order should be placed in period / or not. The second is sequencing,

which means determination of sequence in which products should be produced or the

position of each item in the sequence of each period schedule. To do this, we used strings

of TV (number of items) values for each period in time horizon. As mentioned before we

only encode the setup pattern and sequencing positions (binary variables of mathematical

model) in chromosomes. The other variables such as order quantities, inventory levels,

and makespans must be computed. In the following section we will show how these

variables can be decoded. An example of a chromosome (a possible production plan) for

a problem with three items and 12 periods can be as follows:

Period
1 2 3 4 5 6 7 8 9 10 11 12
2
3
1

0
0
2

2
3
3

2
0
3

1
1
3

3
2
1

1
3
0

0
0
2

1
2
0

0
3
2

0
0
2

0
2
3

Figure 4-3: Chromosome for 3-Item Lot Sizing and Sequencing

A value of between 0 to N will be assigned randomly to each cell. The value of 0

indicates that production order will not be placed in the period t for an item n. Values

larger than 0 indicate production order has been placed in period t and also the position of

item in sequence of each period schedule is declared. For instance, the first column

indicates the production for all three items are planned in period one. The sequencing

indicates that item 2 is produced first, second item is 1, and the last item is 3. In the third

Column, both items 2 and 3 have the same priority number (3). To break the tie, the item

with smaller index number (item 2) would be first item to be produced, followed by item

47

4.2.2 Decoding Algorithm

The details of orders released, inventory levels of items, and their corresponding

makespan must be determined using a decoding algorithm. The decoding algorithm takes

each chromosome or encoded solution and decodes it into a real solution. Decoding is

performed to determine the order quantities, inventory levels, and makespans. Ultimately,

the total relevant cost is determined by adding inventory holding cost and setup cost.

The decoding algorithm computes the solution as follows: The schedule is generated

backward. It first computes the lot size in last period (7), and then it goes back to period

T-l and continues, until the production decisions are made for all the periods.

Now, consider a period t, when we had made our production decisions for all the

subsequent periods in time horizon. The cumulative demand for each itemy" in period t

(Cdjt) which should be satisfied in period / or its previous periods is equal to the demands

of itemy in subsequent periods minus ordered quantities of itemy in subsequent periods.

(4-2) CdJt=Y.{D]s-Ljs)

The minimum of Cdy, or the quantity of item j that can be produced by the available

capacity of machines will be assigned for production. This means that splitting of demand

is allowed when cumulative demand cannot be completely scheduled for production due

to capacity restrictions. The objective of demand splitting is to increase capacity usage

and reduce the total relevant cost. Before making decision for next item, makespan for

equal number sublots will be calculated and if the makespan exceeds the time bucket the

48

quantity of last item scheduled in the period is reduced by one and the makespan is

recalculated. This procedure continues till a feasible production order is found. Then,

cumulative demand for item j and the residual capacity on machines in the period t will

be updated.

(4-3) RCam,=Caml-fjrjm*L/l
7=1

At this point, the possibility of production and amount of the item with the second

position in the sequence of each period will be checked until decisions are made for the

all items in the period /. The flowchart for the decoding algorithm is shown in figure 4-4

and the pseudo code for algorithm is presented in the appendix 4.

49

Schedule the demand of first item based
on the sequencing priority given by gene

Reduce the amount of the last
item scheduled bv one

Schedule the demand of next item in
sequence base on priority given by gene

Figure 4-4: Flowchart of Decoding Algorithm

50

4.2.2.1 Numerical Example

Through the following example we will show how our decoding algorithm works.

Assume a production setting of 3 products in which each lot of q units must proceed in

sequence of 4 machines. The capacities on each machine are 299, 151, 229, and 223 unit

of time in each of 6 periods respectively. The time available in each period (time bucket)

is 400 units of time. Each lot may be divided up to 4 sublots; although, the entire

production lot is produced with a single setup of $100 on each machine. The inventory

holding cost of $10 is only applicable to the inventory that is carried over from one

period to the next period. For each period (Month) we assumed 350 working hours (time

bucket). Demand over the planned horizon, unit processing times and setup times on each

machine are as follows:

d j , =

0 3 38 0 7 40 42

0 2 1 2 39 0 0

0 13 40 36 13 58 10

p» =

5 1 2 2
2 3 5 1

1 1 1 3
stjm =

18
11

20

11
16

15

16
12

9

19
13

16

Now consider a possible solution (chromosome) as follows:

Period

items
1
2
3

2
3
1

1
0
3

0
2
3

3
1
0

2
2
3

1
2
3

0
0
0

Figure 4-5: Chromosome 3-Item and 6 Periods

This chromosome specifies the sequence to schedule the items; for example, in the first

period item 2 is produced first, followed by item 1 and finally item 3. In the third period,

51

only item 3 and item 2 will be produced and item 1 will not be scheduled. Table 4-1

shows the iterative process of decoding this solution into a real production schedule.

Period t

6

5

4

3

2

1

product

PI

P2

P3

PI

P2

P3

PI

P2

P3

PI

P2

P3

PI

P2

P3
1

PI

P2

P3

Current
gene

1

2

3

2

2

3

3

1

_ _ J L _

0

- 2 .
3

1

0

3

Cumulative
Demand

^JJJJI>I+II

0

0

0

_ & ! i '
10

42

0

0 J 40

~*T~~iir"
^ T ^ J ~ 5 8

o h*~
—JL—ILi3™,

0

20

1 13

0

—^1—

° ™t 38

0

14

40
• * • " ' " " " • ' " ' —

* " Y " I 0 ~ ~j_~13 ~

J

q il

™10™T*P3
_ _ ^ _ _ ,

58

14

P3

PI

_ _ _ _ _ _ _

19 P2

4 9 T J E L .
L_LL__L

40 P3

I B J P T '

— <

« _
3

P2

PI

iDP3

Residual Capacity
Machine M

Ml
299

269

51

51

299

221

J33
133

_ _ _ _ _
116

, _ _ .

67

___L

175_

175

299

239

31

31

299

274

176

143

M2
151

126

75

75

151

78

53

53

J51
107

h _ _ i

34

M3
299

280

184

184

299

232

188

188

229

217

110

no
^ 151_ | 229_

' "87** | 241

5

5

151

119

119

229

96 | 250

47

1 4 7
JL_L

158
151 i 229

114 * 252

59 182

on

M4
223

177

78

78

_ 2 2 3 _

33 '

0

0

223

makespan

9 6

317

™ . _ _ _ _ _ _ _

171 ! 344

139

139 . . __ J
223 j ^

""60 f ~278

25 j *

25

223

87 j 312

30 |

30 I

223 i „ _ _

203 _

T 6 8 | 250

113 I

Table 4-1: Decoding Example

In period 6, Product 3 scheduled first with the demand of 10 units which will be produced

in 4 sublots of size 2, 2, 2, and 4 and the makespan will be 96 units of time. Residual

capacities on the 4 machines after producing 10 units of Product 3 are as 269, 126, 280,

and 177 respectively. Followed by Product 3, Product 2 will be scheduled with demand

of 42 units which will be produced in 4 sublots of size 10, 10, 10, and 12 and the total

makespan would be 317 units of time. Still there is some capacity left but the demand for

Product 1 is zero. So, we move back to period 5, Product 3 scheduled first with

52

cumulative demand of 58 units. Makespan is checked and then the capacity is up dated.

The next product in the sequence is Product 1 with total cumulative demand of 40 units.

However, the residual capacity of 33 units of time on machine 4 allows maximum

production of 14 units of Product 1. So, the remaining demand (26 = 40 - 14) should be

produced in the previous periods (1 to 4).

Moving back to period 4, first position belongs to Product 1 with cumulative demand of

33, second position belongs to Product 2 with cumulative demand of 39. However, even

though we have enough capacity we cannot produce 39 unites of Product 2 because the

makespan of producing 33 unites of Product 1 and 39 units of Product 2 (both with 4 sub-

lots) would be larger than the available time bucket (350 units); therefore, in order to find

a feasible schedule, the production quantity of Product 2 should be reduced. Thus, we can

only produce 19 units of Product 2 in period 4 and 20 units remaining demand should be

produced in the previous periods (1 to 3). In the same way, we move backward to period

2 and 1 to decode each chromosome and find the feasible production schedule.

4.2.3 Genetic Algorithm Procedure

The global genetic algorithm continues iteratively until the termination condition is

reached. The termination condition we use for our genetic algorithm is a maximum

generations. This means the GA will stop after of specific number of generations. The

pseudo code for global genetic algorithm is shown in figure 4-6 and the programming

code is presented the appendix 5.

53

Global Genetic Algorithm

generation number^ 0

create

While

initial population randomly

(g eneration number < max generation) DO

Decode solutions using the decoding algor

Evaluate initial population and select pa

ithm

rents

Apply crossover operator each pair and put them

Mutate child

Add best chromosomes form old population

4- • 1_ ^ A. • 1_

generation number ̂ generation number

from

intc

the population

new population

into new populc

+ 1

tion

Figure 4-6: Global Genetic Algorithm

4.2.4 Fitness Function Evaluation

For evaluating solutions we used the objective function, which, as in the MIP model,

minimize the total relevant cost as follows:

(4-4) Total Relevant Cost = Inventory Holding Cost + Setup costs

Infeasibility would not occur in any period other than the first period of each solution

because decoding algorithm checks the feasibility in every backward step. In order to

deal with possible infeasibility in the first period we impose two penalty costs, one for

capacity violation and one for makespans (C) exceeds the available time in the period

(TB) to avoid or reduce infeasible solutions.

M .1

(4-5) T C= TRC + /> * (C, - TB,) + P2 * £ (£ ((Z.„ • r„) + Stjm) - Capm,) •

54

Given that the objective function values might differ significantly, especially in the first

population, we only use the objective function to sort the chromosomes, and fitness

values would be assigned to them based on their rankings. This means the solution with

lowest total relevant cost should have highest fitness value of N, and the highest total

relent cost has the fitness of 1.

4.2.5 Genetic Operators

4.2.5.1 Crossover

The crossover operator applies on two chromosomes (parents) to generate two new

chromosomes (Children). A single cutting point is selected randomly from 2 to T-2. Then

the two chromosomes exchange their genes from that point to the last position which is

period T.

3

2
0

2]
2 i

1 l
Parent 1 J

1

2
3

0 1

3 '

0 !
Parent 2 1

3
0

1

0
0

0

2

0

0

1

0
2

Cutting point

1

3

0

3

1
1

2

1

3

0

0
2

1

2

3

0

3

0
Child 1

3

2

0

2

2

1
Child 2

3

0
1

2

0

0

0

0

0

1

0
2

1

3

0

3

1
1

2
1

3

0

0

2

Figure 4-7: Crossover Operator

4.2.5.2 Mutation

The mutation operator has a low (e.g. 0.1) probability of being applied to each gene.

When mutation takes place, the content of the gene switches from 0 to 1 and vice-versa

55

(in the single item case). For multi-item problems, when mutation takes place, another set

of random numbers will be assigned to the gene regardless of its original content. Thus,

the mutation operator not only might change the decision of whether or not to produce an

item in particular period; but also, the sequence of items (products) can be changed

randomly in each scheduled period.

4.2.6 Selection Mechanism

In order to be able to regulate selection pressure and population diversity, we used a

combination of ranking and elitist selection mechanisms.

In the proportionate selection chromosomes with high fitness values have higher chances

of being selected and might take over the population, causing premature convergence,

whereas ranking selection results in low convergence. The ranking selection also

maintains the selection pressure in the last generation when the fitness variance is low,

and proved to successfully search the entire solution. We also combined the elitism

mechanism into our search mechanism to keep some of the best individuals in the

population and increase the convergence pressure.

First, we sort current population base on the objective function values and each

chromosome is given a fitness value of 1 to TV (Population size). Then the % of best

chromosomes and their off-springs are copied to the next generation. After copying the

best chromosomes to the next population, the rest of chromosomes are selected by the

ranking mechanism. Genetic operators (crossover and mutation) are applied to generate

the new population. This procedure is repeated for each generation for a specific number

of generations. The pseudo code for the selection mechanism is as follow:

56

Selection Mechanism

Sort the Current Population

Next Population^ The % of the best chromosomes of the current
population + their offspring

Next population < Offspring's of the chromosomes between V* and
% in ranking

Figure 4-8: Selection Mechanism

4.3 Tuning GA Parameters

When developing a genetic algorithm or any other meta-heuristics, it is very important to

choose the right parameters values. The main parameters of the design of a GA are

crossover and mutation probability, population size, number of generations, crossover

and mutation type, and selection operators. All of these parameters have an effect on the

performance of GA algorithms not only in terms of quality of the solutions obtained but

also in terms of the amount of time needed to find a solution and computational efforts.

Thus, one of the major tasks in the design of any GA is to find the best choice of

parameters in order optimize the performance of GA, which is called tuning. To do so,

we have two choices:

1. Use one of the standard parameter settings;

2. Use experimental design and statistical tools available in it to compare the effect

of each parameter value (main factor) and their interactions,

57

There are several well known Standard settings in literature. First works were published

by De Jong (1975) who investigated different parameters' value to increase the

performance and his results were the first rule for researchers. Table 4-2 shows His

results.

Population size
Crossover rate
Mutation rate
Mutation types
Number of Generation

50-100 |
0.6
0.001
bit flip
1000

Table 4-2: De Jong Parameter Settings

Later, Grefensette (1986) published parameters which were different than those of De

Jong. Grefensette parameters are used when, for any reason, such as the computational

expense, a smaller population is required. His results are shown in the Table 4-3.

Population size
Crossover rate
Mutation rate
Mutation types

~"~~IZIIZÎ IZ Î̂ ~**
_ _ _ ^ _ _ _ _ _

_ _ _ _ _ _ _ _ ™ ^

[bitflip I
Table 4-3: Grefensette Parameter Settings

In this thesis, we used a combination of settings recommended by De Jong (1975) and

Grefensette (1986) with one difference which is larger population sizes. We set number

of initial population equal to 800 with crossover rate of 60 % and mutation probability set

at 1%. The type of mutation we used for single item is bit flip, however for multiple

items production settings, because of the special structure representation we use different

mutation type as we discussed before. The termination condition or maximum generation

we use for our genetic algorithm 1000 generations.

58

4.4 Computational Results

We coded our genetic algorithm in visual C++ 6.0 and run same problems of Table 3-2

for comparison between linear model and GA results. Table 4-4 shows the result.

Proble
m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

TB

400

200

400

200

N

3

3

600 I

400

600

400

600

400

300

250

1
500

400

600

500

600

450

/

7

9

10

12

14

15

• " — — !)

600 J
_ | 1 7

500 1

_ L

M

4

4

5

5

6

7

8

10

12

15

r

6

12

6

12

6

6

6

6

6

6

_ 1

- - — — — — I

GA
Objective

value

3510

3640

5910

6540

7370

8350

14180

14990

7360

7480

7840

8000

11160

11330

14420

14710

11420

11570

12980

13550

GA
Processing

time

00:00:02

00:00:22

00:00:25

00:00:25

00:00:41

00:01:22

00:01:09

00:03:45

00:00:53

00:01:15

00:00:12

00:00:17

00:01:40

00:02:12

00:04:10

00:06:21

00:04:21

00:05:34

00:06:31

00:09:53

Lingo
Processing

time

00:00:04

00:00:54

00:03:22

3:00:00

00:04:14

3:00:00

3:00:00

3:00:00

00:07:18

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

3:00:00

Lingo
Objective

value

3510

3610

5910

6230

7370

9490

14200

-

7360

-

8030

8290

11170

-

14520

-

-

-

-

-

Lingo
Objective

bound

3510

3610

5910

6190

7370

7400

14157

14157

7360

7360

7817

7817

11150

11150

14420

14420

11412

11420

12979

12979

State

Optimal

Optimal

optimal

Feasible

Optimal

Feasible

Feasible

Unknown

Optimal

Unknown

Feasible

Feasible

Feasible

Unknown

Feasible

Unknown

Unknown

Unknown

Unknown

Unknown

Table 4-4 comparison between linear and GA solution

59

As it shown in Table 4-4, GA gives solutions that are optimal or they are very close to the

optimal. For problems which Lingo cannot find the optimal solution, GA provides better

answer than the Best Objective find by lingo with an insignificant deviation from the

objective bound. Moreover, GA found these solutions notably faster than Lingo and gives

us this opportunity to find a reasonable solution in a shorter time while branch and bound

technique used by Lingo fails to find even a feasible solution.

In order to visualize and compare the quality of GA's solution with that of Lingo, the

percentage deviation of GA's solution from the Lingo objective bound is presented in

table 4-5. We also plot the Lingo objective bound and GA objective value of all the

twenty problems in figure 4-9.

Problem

1

2

3

4

5

6 '

7

8

9

10

11

12

, _ j y t _
14
15

16

17

18

19 "

20

GA Objective value

3510

3640

5910

6540

7370

8350

14180

Lingo Objective bound

3510

3610

5910

6190

7370

7400

14157

14990 | 14157

7360

7480

7360

7360

7840 I 7817

8000 T~ 7817

11160 _ _ _

11330

11150

11150

14420 1. 14420

14710 1 14420

11420

11570

13550

11412

11420

12979

12979

Percentage Deviation of
GA from Lingo bound

0.00%

0.83%

0.00%

5.65%

"o.oo%
12.84%

0.16%

5.88%

0.00%

1.63%

0.29%

2.34%

0.09%

1.61%

0.00% _ J
2.01% 1

0.07% _ _ _ j

1.31% _ J
0.01% 1
4.40% \

Table 4-5: Comparison between Lingo objective bound and GA objective value

60

• GA Objective value Q Lingo Objective bound

16000
15000
14000
13000
12000
11000
10000

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

—

»

—

ra

• -

J

r-

I ' in i

^ - . JSL •

_ L i

i !

""I I

* !

| f ~
i

t

i

1
!
•:

;

B - a * — • - - --4- - J — l

i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4-9: Comparison between Lingo objective bound and GA objective value

As it shown in table 4-5 and figure 4-9, the gap between GA objective value and

objective bound of Lingo is negligible (i.e. average difference is less than 2%). The

largest difference between the GA objective value and the Lingo objective bound belongs

to the problem six with 12.8% deference. However, we should note that the best objective

value found by Lingo is $9490 which is 12% higher compare to $8350 by GA version.

Moreover, the objective bound of Lingo may become even tighter if we run the Lingo for

longer period of time.

61

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This thesis presents two solution procedures to find the optimal lot size for multiple items

with time varying demand in a multistage production system, when lot streaming and

sequencing are applied simultaneously to ensure orders feasibility and reduce the need for

rescheduling of master production plan. Moreover, it considers machine capacity

constraints, and limited time bucket length, and independent setup times in flowshop

environment.

First, the problem is formulated as a mixed integer linear programming problem (MILP)

and coded with Lingo 10 software. This model takes the demand as an input and gives

the optimal lot size, corresponding sublot size, and the sequence of production as an

output. This model also calculates the makespan in order to ensure that makespan of the

production orders released to shop floor is less than available time in each period. A

small set of problems is generated randomly to test the proposed model. The optimal

solution for small and medium size problems could be found within a reasonable time.

However for larger size problems, because of the NP-hard nature of lot sizing and lot

streaming problems, finding even a feasible solution is hard.

62

Second, a genetic algorithm is developed in order to solve the larger size problems, when

the linear model is unable to function. Then, GA solutions are compared with optimal

solutions and for the larger size problem with the objective bound of linear model. It is

concluded that GA results are acceptable. The proposed genetic algorithm attempts to

include the problem specific knowledge of lotsizing and lot streaming. Because of that,

this genetic algorithm only works on the two binary variables of mathematical model

namely setup pattern and sequencing positions. Then, another heuristic algorithm is used

to decode a solution represented by GA and find the other variables in model like order

quantities, inventory levels, and makespans.

One thing that should be done in future is to use the Experimental Design and the

statistical tools available in it to tune the GA main parameters. The main parameters of

GAs are crossover and mutation probability, population size, number of generations,

crossover and mutation type, and selection operators, which all affect the performance

of GA algorithms not only in terms of quality of the solutions obtained but also in terms

of the amount of time needed to find a solution and computational efforts. Experimental

Design allows us to compare the effect of each parameter value and their interactions.

Another possible future work is to solve more problems to investigate the effect of

different problem configurations like different ratios of holding cost to setup cost, or

different capacity utilization rates on the complexity of the problem.

This thesis only considered independent setup times. However, in presence of dependent

setup times, the limited capacity available for production may be reduced by changeovers

that cause larger setup times; and the need for simultaneous lot sizing and scheduling

63

become more vital. Thus, including the dependent setup times and cost in the model

would make it much more realistic and could be very useful.

Furthermore, like the studies Ho had done between years 1986 and 2005(Ho, 2005; Ho

and law 1995; Ho, 1986). A thorough study of dampening effect of this model and the

impact of it on reduction of the planning instability could be a future work.

64

Bibliography

Adar A. Kalir, S. C. (2001). A near-optimal heuristic for the sequencing problem in

multiple-batch fow-shops with small equal sublots. International Journal of Management

Science, 577-584.

Biskup, D., and Feldmann, M. (2006). Lot streaming with variable sub-lots: an integer

programming formulation. Journal of the Operational Research Society , 296-303.

Campbell, H., Dudek, R., and Smith, M. (1970). A heuristic algorithm for the n-job, m-

machine sequencing problem . Management Science , 630-637.

Chang, J. H., and Chiu, H. N. (2005). A comprehensive review of lot streaming.

International Journal of Production Research , 1515 - 1536.

Cohen, J. (1988). Statistical Power Analysis for Behavioral Science. New York:

Academic Press.

Czarn, A., MacNish, C, Vijayan, K., Turlach, B., and Gupta, R. (2004) Statistical

exploratory analysis of genetic algorithms. IEEE Transaction on Evolutionary

Computation , 405-421.

De Jong, K. (1975). An analysis of behavior of a class of genetic adaptive systems,

Doctoral Thesis, Department of Computer and Communication Sciences. University of

Michigan, Ann Arbor.

Defersha, F. M , and Chen, M. (2008). A Genetic Algorithm for One-Job M-Machine

Flowshop Lot Streaming with Variable Sublots. In the proceeding of the sixth annual

65

international symposium on Supply Chain Management, October 15-17, 2008, Alberta,

Calgary, Canada

Defersha, F. M, and Chen, M, (2008). A hybrid Genetic Algorithm for Flowshop Lot

Streaming with Setup and Variable Sublots. To appear in the International Journal of

Production Research

Defersha, F. M., and Chen, ML, (2006). Lot streaming with variable sub-lots: an integer

programming formulation. Journal of the Operational Research Society (2006) 57, 296—

303,296-303.

Drezner, Z. A. (1984). Multi-stage production with variable lot sizes and transportation

of partial lots. European Journal of Operational Research , 221-231.

Goyal, M. A. (2003). On lot streaming in multistage production systems . International

Journal of Production Economics , 195-202.

Goyal, S. K. (1978). Economic batch quantity in a multi-stage production system.

International Journal of Production Research , 267-73.

Graham, R. L. (1966). Bounds for Certain Multiprocessor Timing Anomalies. Bell

System Technical Journal, 1563-1581.

Graham, R., Lawler, E., Lenstr, J., and A. K. (1979). Optimization and approximation in

deterministic sequencing and scheduling. Annals of Discrete Mathematics .

Grefenstette. (1986). Optimization of Control Parameters for Genetic Algorithms. IEEE

Transactions on Systems, Man and Cybernetics , 122-128.

Haase, K., and Kohlmorgen. U. (1996). Parallel genetic algorithm for the capacitated lot-

sizing problem. Karlsruhe : Operations research proceedings.

66

Hall, N. G., Laporte, G., Selvarajah, E., and Sriskandarajah, C. (2003). Scheduling and

Lot Streaming in Flowshops with No-Wait in Process. Journal of Scheduling, 339-354.

Hernandez, W., and Suer, G. (1999). Genetic Algorithms in lot sizing Decision,

Evolutionary Computation, Proceedings of the 1999 Congress. Evolutionary

Computation, Proceedings of the 1999 Congress, (pp. 2280-2286).

Ho, C. J. (1986). An investigation of alternative dampening procedures to cope with

MRP system nervousness. International Journal of Production Research , 137-156.

Ho, C. J. (2005). Examining dampening effects for alternative dampening procedures to

cope with system nervousness. International Journal of Production Research, 4009—

4033.

Ho, C.-J., and Law, W.-K. a. (1995). Uncertainty-dampening methods for reducing MRP

system nervousness. International Journal of Production Research , 483 - 496.

Holland, J. (1975). Adaptation in Nature and Artificial Systems. Ann Arbor: MI:

University of Michigan Press.

Hung, and Chien. (2000). A multi-class multi-level capacitated lot sizing model. Journal

of the Operational Research Society, 1309-1318.

Johnson, S. (1954). Optimal two-and three-stage production schedules. Naval Research

Logistics Quarterly, 61-68.

Kanet, J. J. (1981). Designing Lead Times for MRP Inventory Management Systems.

Proceedings Academy of Management (pp. 327-331). San Diego: Academy of

Management.

67

Kanet J. J., Christy David P. (1989). Manufacturing Systems with Forbidden Early

Shipment: Implications for Setting Manufacturing Lead Times. International Journal of

Production Research , 783-792 .

Kanet, J. J. (1986). Toward a Better Understanding of Lead Times in MRP. Systems

Journal of Operations Management, 305-315.

Karimi, B., Fatemi Ghomi, S. M. T., and Wilson, J. (2003). The capacitated lot sizing

problem: a review of models and algorithms. The International Journal of Management

Science , 365 - 378.

Kingsman, M. H. (1995). An optimal solution algorithm for the constant lot-size model

with equal and unequal sized batch shipments for the single product multi-stage

production system. International Journal of Production Economics , 161-174.

Kumar, S., Bagchi, T. P., and Sriskandarajah, C. (2000). Lot streaming and scheduling

heuristics for m-machine no-wait flowshops. Computers and Industrial Engineering ,

149-172.

Lasserre, (2003). On the importance of sequencing decisions in production planning and

scheduling. International Transactions in Operational Research , 779 - 793.

Meal, E. S. (1969). A simple modification of the EOQ for the case of a varying demand

rate. Production and Inventory Management, 52-65.

Meyr, H. (2000). Simultaneous lotsizing and scheduling by combining local search with

dual reoptimization. European Journal of Operational Research , 311-326.

Millas, V., and Vosniakos, G. (2006). Transfer batch scheduling using genetic algorithms

. International Journal of Production Research . 1-24.

68

Montgomery, D. C. (2005). Design and Analysis of Experiments. New York : John Wiley

and Sons.

Nasaruddin, Z., Ahmad, Rahman, and Rosmah, A. (2003). A Genetic Algorithm For

Solving Single Level Lotsizing Problems. Jurnal Teknologi, 47-66.

Nawaz, M , Enscore, and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job

flow-shop sequencing problem. Omega , 91-95.

Nicholas G. Hall, G. L. (2003). Scheduling and lLot Streaming in Flowshops with No-

wait in Process. Journal of Scheduling , 339-354.

Ozdamar, L., and Bozyel, M. A. (2004). The capacitated lot sizing problem with overtime

decisions and setup times . HE Transactions , 1043-1057.

Ozdamar, L., Bilbil, I., and Portmann, M. (2002). Technical note: New results for the

capacitated lot sizing problem with overtime decisions and setup times. Production

Planning and Control ,2-10.

Palmer, D. S. (1965). Sequencing jobs through a multi-stage process in the minimum

total time-a quick method of obtaining. Operational Research Quarterly , 101-107.

Ponnambalam, S., and Reddy, M. (2003). A GA-SA Multiobjective Hybrid Search

Algorithm for Integrating Lot Sizing and Sequencing in Flow-Line Scheduling . The

InternationalJournal of Advanced Manufacturing Technology , 126-137.

Ranga V. Ramasesh, H. F. (2000). Lot streaming in multistage production systems.

InternationalJournal of Production Economics , 199-211.

Raza, S. A., and Akgunduz, A. (2007). A comparative study of heuristic algorithms on

Economic Lot Scheduling Problem . Computers and Industrial Engineering , 94-109 .

69

Reiter, S. (1966). A system for managing a job-shop scheduling. Journal of Business .

Sikora, R. (1996). A genetic algorithm for integrating lot-sizing and sequencing in

scheduling a capacitated flow line. Computers and Industrial Engineering , 969-981.

Sikora. R., Chhajed, D., and Shaw, M. J. (1995). Integrating the Lot-Sizing and

Sequencing Decision for Scheduling a Capacitated Flow Line. Computers and Industrial

Engineering, 659-679.

Smith-Daniels, V. L., and Ritzman, L. P. (1988). A model for lot sizing and sequencing

in process industries. International Journal of Production Research , 647 - 674 .

Sriskandarajah, C , and Wagneur, E. (1999). Lot streaming and scheduling multiple

products in two-machine no-wait flowshops. HE Transactions , 695-707.

Sugihara, K. (1997). Measures for performance evaluation of genetic algorithms. Proc.

3rd Joint Conference on Information Sciences . Hawaii.

Szendrovits, A. Z. (1975). Manufacturing cycle time determination for a multi-stage

economic production quantity model. Management Science , 298-308.

Szendrovits, A. Z., and Golden, M. (1984). The effect of two classes of process

organizations on multi-stage production/inventory systems. EFFECT OF TWO CLASSES

Canadian Journal of Operational Research and Information Processing, 40-55.

Wagner, H. M. (1958). Dynamic Version of the Economic Lot Size Model. Management

Science, 89-96.

Xie, J., and Dong, J. (2002). Heuristic genetic algorithms for general capacitated lot-

sizing problem. Computers and Mathematics with Applications , 263-276 .

70

APPENDIX 1: Classification of Lot Sizing Problems

\

1. Planning horizon f

Small buckets

Large buckets

2. Set up Structure f

Simple

Complex

3. Inventory 1

4. Demand |

Lost sales

Backlog

Deterministic

Probabilistic

!
!

[

I

Discrete 1

Continues 1

Discrete |

~ ~- _ ^

Continues |

Carr>' over |

Major an minor |

Sequence dependent 1

71

APPENDIX 2: Classification of Lot Streaming Problems

1. System Configuration H

2. Sublot-relate Feature

3. Performance Criterion H

Production Type t-
Flow Shop

Job Shop

Open Shop

Arborescent Shop

Number of Products

Single Product

Multi-Product

1
1

Time Model y-

Makespan

Mean Flow Time

Total Flow Time

Mean Tardiness

Number of Tardy

Total Deviation

Cost Model

Total Cost (TC)

Total Cost (TC (C „,„, K)) 1

72

APPENDIX 3: Lingo Code

MODEL:
! MULTI PRODUCTS INTEGRATED LOT STREAMING AND LOT SIZING INTERMINGLING;

SETS:
MACHINE/1..12/:CAP;
PRODUCT/1..15/;
SUBLOT/1..4/;
PERIOD/1..7/:C,A_T;
UNIT_PROCESSING_TIME(PRODUCT,MACHINE):r
PRODUCTION_LOT(PRODUCT, PERIOD):D,Q,Y,I
FORMULA1(PRODUCT,SUBLOT,PERIOD):L;
FORMULA2(PRODUCT,SUBLOT,MACHINE,PERIOD)
FORMULA3(PRODUCT,PRODUCT,PERIOD):X;
END SETS

St;
E,F;

:P,B;

DATA:
A=1000000;
SETUP_COST=100;
H=10;
A_T=600;
r=@OLE('C:\Documents and Settings\Data.xls'
D=@OLE('C:\Documents and Settings\Data.xls1

st=@OLE('C:\Documents and Settings\Data.xls'
CAP=@OLE('C:\Documents
@OLE('C:\Documents and
@OLE('C:\Documents and
©OLE('C:\Documents and
@OLE('C:\Documents and
©OLE('C:\Documents and Settings\Data.xls'
END DATA

'Unite_Processing_Time')
'Demand');
, 'Setup_ time');

and Settings\Data.xls','Capacity')
Settings\Data.xls','L')=Q;
Settings\Data.xls'
Settings\Data.xls'
Settings\Data.xls'

'Inventory')=
'Sublot_Size'
' v') =B ,-
•P')=P;

I;
)=L;

! OBJECTIVE FUNCTION;
! Minimizing the Total Relevant Cost;

MIN=@sum(PRODUCTION_LOT(j,t):H*I(j,t))+
@sum(PRODUCTION_LOT(j,t):SETUP_COST*Y(j,t));

! SUBJECT TO;

!l;
@FOR(PRODUCTION_LOT(j,t) |t#GE#2:I(j,t)=I(j,t-l)+Q(j,t)-D(j,t)) ;

!1-1;
@for(PRODUCTION_LOT(j,t):I(j,1)=Q(j,1));
@for(PRODUCTION_LOT(j,t)|t#GE#2:I(j,t-l)>=D(j,t));

!2;
©FOR(MACHINE(m):
@FOR(PERIOD(t):

@SUM(PRODUCT(j):Q(j,t)*r(j,m))+
©SUM(PRODUCT(j):st(j,m)*Y(j,t))<=CAP(m)));

! 2 - 1 ;
©FOR(PERIOD(t):

C(t) <= A T(t));

!3;
@FOR(PRODUCTION_LOT(j,t):Q(j,t)-A*Y(j,t)<=0)

73

file://'C:/Documents
file://Settings/Data.xls'
file://'C:/Documents
file://Settings/Data.xls1
file://'C:/Documents
file://Settings/Data.xls'
file:///Documents
file:///Documents
file:///Documents
file:///Documents
file:///Documents
file:///Documents
file://Settings/Data.xls'
file://Settings/Data.xls'
file://Settings/Data.xls'
file://Settings/Data.xls

!4;
@for(PRODUCT)j):

@for(PERIOD(t):
@sum (SUBLOT (s) : L (j , s, t)) =Q (j , t))) ,-

!5;
@FOR(F0RMULA2(j,s,m,t):P(j,s,m,t)=L(j,s,t)*r(j,m));

!6;
@FOR(MACHINE(m):
@FOR(FORMULA3(j,k,t):

Ofor(FORMULA2(j,s,m,t)|j#LT#k
:B(j,4,m,t)+P(j,4,m,t)+st(k,m)*Y(k/t)<=B(k/s,m,t) + (l-X(j,k,t))*A))) ;

!7;
©FOR(MACHINE(m):
©FOR(FORMULA3(j,k,t):

@FOR(FORMULA2(j,s,m,t)|j#LT#k:B(k,4,m,t)+P(k,4,m,t)+st(j,m)*Y(j,t)
<=B(j,s,m,t)+X(j,k,t)*A)));

!8;
©FOR(FORMULA2(j,s,m,t) |m#GE#2:B(j,1, m,t)>=B (j , 1, m-1, t)+P (j , l,m-
1,t)+st (j,m));

!9;
@FOR(FORMULA2(j,s,m,t) :B(j,1,1,t)>=st(j, 1)) ;

!10;
@FOR(F0RMULA2(j,s,ra,t) | m#GE#2 :B (j , s , m, t)>=B(j,s,m-1,t)+P(j,s, m-1, t)) ;

•11;
@FOR(FORMULA2(j,s,m,t) |s#GE#2:B(j , s, m,t)>=B(j,s-l,m,t)+P(j,s-l,m, t)) ;

! 12 ;
@FOR(FORMULA3(j,k,t) :Y(j,t)>=X(j,k,t)) ;

!13;
©FOR(PRODUCTION_LOT(j,t):c(t)>=B(j,4,12,t)+P(j,4,12,t)) ;

!15;
@for(PRODUCTION_LOT(j,t):@BIN(Y(j,t)));

!16;
@FOR(FORMULA3(j,k,t) |j#LT#k:@BIN(X(j,k,t))) ;

! Integer;
@FOR(FORMULAl(j,S,t):@GIN(L(j,S,t)));

Icostant sublot size;

!@F0R(F0RMULA1(j,S,t) |s#GE#2 #AND# S#LE#3:L(j,S,t)=L(j,s-1,t)) ;

!@FOR(FORMULAl(j,S,t)|s#EQ#4:L(j,s,t)>=L(j,s-l,t));

74

APPENDIX 4: Decoding Algorithm Pseudo Code

PRODUCTION QUANTITY

Input:
Output:

Ca m; d j , ; currentgen ;. j. i; P ,
quantity -, , i

:TB

FOR product j - * - l UP TO J
CuDej - * -0

FOR period t -*-T DOWN TO 1
Counter -•—0
FOR machine m -*- 0 UP TO M

currentca m -*—Ca m

FOR current gen i •*- ! DOWN TO 1
IF currentgen j j.i > 0

Counter -*—Counter + 1
Cu_De j -»-Cu De j + d ,„,,}

quantity jTi,,-*—min(Cu_Dei, Capacity-check(current_ca „. i))
WHILE TRUE

smallsub -<— quantity; t\,, /1
largesub -•—quantity j iS , - smallsub* (1-1)
FORsubloti-*—1 UPTOl

SL i -«— smallsub
SL i_i-<— largesub

END FOR
IF makespan (SL. counter, j) >TB

quantity j, \., -*—quantity , , , -1
END IF

END WHILE
CuDe j •*—CuDe , - quantity ; , ,
FOR machine m - * - 0 UP TO M

currentca m -*— currentca m - P m j * quantity j, i , +S m ,
ELSE IFcurrentgen , j j -*—0

Cu_De j •*— Cu_De ,+ d I+1,,
quantity j i i •*— 0

END ELSE IF
END FOR

END FOR
END FOR

Capacity check

Input: current ca „,; P m j ; S m j

Output: max-pro

max-pro -*— (current cao- So.j)/ P m. i
FOR machine m -*— 1 DP TO M

IF max-pro > (current_cam- S m j)/ Pm.j
max-pro -«—(current ca„,-S„

END IF
END FOR

i ' P . ,

Makespan check

Input:
Output:

*~ counter. 0. 0 ^ *~

FOR sublot i -*—
C olunk,

END FOR
FOR machine rrr"

C
END FOR
FOR sublol i - * -

r
*- inunii'r END FOR

counter: P m ,; S m ,: SL,
*- cimnler. 1 M

,«-,.i.ao + S „ . l + (S L 0 * P 0 ,)
1 U P T O I
i. 0 ~< C counltT-l. 0.0 + (S L j * P j . j)

• - 1 UP T O M
o. m -•— max(C n „ i „ . k n „,.,: C „„,

1 I T TO 1
. m -*— max(C 0,„„ur. i i . m ; C 0 , „„„ .

w-I.l.m) + S m j + (S L „ * P m . ;)

, „ . ,) + S „ , , + (SL,*P i n . ,)

75

include "stdio.h"
include "conio.h"
include "math.h"
include "string.h"
include <stdlib.h>
include <time.h>
include <iostream>
include <algorithm>
include <time.h>

#define MX SUB 4
#define MX MACH 12
#define POP 800
#define PERIOD 7
#define T HOR 450
#define N PRDT 15
#define GEN 1000

int number of setup[POP],x [POP],cost [2] [POP],penalty 2[POP],penalty 1 [POP] ;
int current gen[POP] [PERIOD] [N PRDT] ,d[PERIOD] [N_PRDT] ,inv[POP] [PERIOD] [N_PRD
T],quantity[POP][PERIOD][N PRDT];
int C[N PRDT+1] [MX SUB] [MX_MACH] ,P [MX_MACH] [N_PRDT] ,S[MX_MACH] [N_PRDT] ,Ca [MX_
MACH] ,ms [POP] [PERIOD] ;
void intitial poppulation(),demand(),production_lot(),print_report(),inventor
y() ,TR CostO ;
void process timet), setup timed, Capacity(),print_report(int),print_report_
file(int), sublot() ,sort b(int [POP] [POP] ,int) ;
int span(int [MX_SUB],int,int);

void initial_population(void)

int j,i,k;

srand(time(NULL)) ,-
//srand(l);

for (i = 0;i<POP,-i + +)
{

for (j = 0;j<PERIOD;j + +)
{

for (k=0;k<N PRDT;k++)
{

c u r r e n t g e n [i] [j] [k] = rand()%2;
i f (c u r r e n t g e n [i] [j] [k]= = l)
{

c u r r e n t _ g e n [i] [j] [k]+=rand()%N_PRDT;

void Demand (void)
{
int j,k;
FILE * pFile;

pFile = fopen ("Demand . txt ", "r") ,-
for (k=0;k<N PRDT;k++)

76

{
for(j=0;j<PERIOD;j++)

{
fscanf (pFile, "%d",&d[j][k]);

fclose (pFile);
}

void process time(void)

{
int j,k;
FILE * pFile;

pFile = fopen ("process.txt","r");
for (k=0;k<N PRDT;k++)

{
for(j=0;j<MX MACH;j++)

{
fscanf (pFile, "%d",&P [j] [k]);

fclose (pFile);
}

void setup time (void)

{
int j,k;
FILE * pFile;

pFile = fopen ("setup.txt","r");
for (k=0;k<N PRDT;k++)

{
for(j=0;j<MX MACH;j++)

{
f s c a n f (p F i l e , "%d" , &S [j] [k]) ,-

f c l o s e (p F i l e) ;

void Capacity (void)

{
int j ;
FILE * pFile;

pFile = fopen ("Capacity.txt","r");
for (j = 0;j<MX MACH;j+ +)

{
fscanf (pFile, "%d",&Ca [j]);

}
fclose (pFile);

}
int bottle neck(int curr ca[MX MACH],int j)
{

int i,bottle,b;

b = c u r r c a [0] - S [0] [j] ;
i f (b < 0) b = 0 ;
b o t t l e = b / P [0] [j] ;
f o r (i = l ; i < M X MACH;i++)
{

b = c u r r c a [i] - S [i] [j] ;
i f (b < 0) b = 0 ;

77

i f (b o t t l e > b / P [i] [j])
b o t t l e = b / P [i] [j]

return bottle;

void production lot(void)
{

int j,i,k,t,1,z,counter;
i n t Cu De[N PRDT],current_ca[MX_MACH];
i n t m i n (i n t , i n t) ;
int small sub,large_sub;
int SL [MX SUB] ;
i n t b o t t l e n e c k (i n t [MX M A C H] , i n t) ;
/ / i n t S[MX_MACH][N_PRDT];

f o r (i = 0 ; i < P O P ; i + +)

f o r (z = 0 ; Z < N PRDT;Z++)
Cu_De [z] = 0 ;

f or'(j =PERIOD-2 ; j > = 1 ; j - -)
{

c o u n t e r = 0 ;
for(z=0;Z<MX MACH;z++)
c u r r e n t c a [z] = C a [z] ;

for(t=N PRDT;t>=0;t--)
{

for(l=0;l<N PRDT;l++)
{

.1));

if(current gen[i][j][l]==t && t>0)
{

counter++ ,-

Cu D e [l] + = d [j + l] [1] ,-
q u a n t i t y [i] [j] [1] = m i n (C u _ D e [1] , b o t t l e _ n e c k (c u r r e n t _ c a

/ * fo r (z=0 ;Z<MX MACH;Z++)
{

c u r r e n t c a [z] - = P [z] [1] * q u a n t i t y [i] [j] [1]+S [z] [1] ;
} * /

w h i l e (l)
{

s m a l l s u b = q u a n t i t y [i] [j] [1] / M X SUB;
l a r g e _ s u b = q u a n t i t y [i] [j] [1] - (s m a l l _ s u b) * (M X _ S U B - 1

for(k=0;k<MX SUB- l ;k++)
{

SL [k] =smal 1 s u b ,-
SL[MX_SUB-1]= la rge_sub ;

nns [i] [j] =span (SL, c o u n t e r , 1)
i f (m s [i] [j]>T_HOR)
{

q u a n t i t y t i] [j] [1] - - ;

78

}
e l s e
{

Cu D e [l] - = q u a n t i t y [i] [j] [1] ;
b reak ;

f o r (z = 0;z<MX MACH,-z + +)
{

c u r r e n t ca [z] -=P[z] [1] * q u a n t i t y [i] [j] [1]+S[z] [1]
}

}
e l s e i f (c u r r e n t gen [i] [j] [l]==t && t==0)
{

Cu De[l]+=d[j + l] [1] ;
q u a n t i t y [i] [j] [1]=0;

}
} / / end of p roduc t seq s e a r c h (l)

}//end of s e q (t)
}//end of p e r i o d (j)

/ / f i r s t month
j = 0;
counter=0;
for(t=N PRDT;t>=0;t-

fo r (l=0 ; l<N PRDT/1++)
{

i f (cu r ren t g e n [i] [j] [l]==t)
{

counter++;

Cu De[l]+=d[j+ l] [1] ;
q u a n t i t y [i] [j] [l]=Cu_De[l] ;

small s u b = q u a n t i t y [i] [j] [1] / M X SUB;
la rge_sub=quant i ty [i] [j] [1] - (smal l_sub)*(MX_SUB-1)

for(k=0;k<MX SUB-l;k++)
{

/*SL[k]=smal l sub;
SL[MX SUB-l]=large s u b ; * /
SL[k]=large sub;
SL[MX_SUB-1]=small_sub;

}

ms[i] [j]=span(SL,counter,1);

}
}// end of product seq search(1)

}//end of seq(t)

}//end of pop(i)

void inventory()

int j,i,1,z;

for(i=0;i<POP;i++)
{

79

}
}

f o r (z = 0 ; z < N PRDT;z++)
{

i n v [i] [0] [z] = g u a n t i t y [i] [0] [z] ; / / - d [0] [z] ;
}

f o r (j = l ; j < P E R I O D ; j + +)
{

f o r (l = 0 ; l < N PRDT;l++)
{

i n v [i] [j] [1]= i n v [i] [j - 1] [1]+ q u a n t i t y [i] [j] [l] - d [j] [1]
}

}

i n t m a x (i n t a , i n t b)
{

i n t o u t p u t ;
o u t p u t = a ;
i f (b > a)

o u t p u t = b ;
r e t u r n o u t p u t ;

}

i n t m i n (i n t a , i n t b)
{

int output;
output=a;
if(b<a)

output=b;
return output;

int span (int SL [MX SUB],int counter,int 1)
{

int max(int,int);
int i, j;

C [c o u n t e r] [0] [0]=C [c o u n t e r - 1] [MX_SUB-1] [0]+S[0] [1] + (S L [0] * P [0] [1]) ;
f o r (i = l ; i < M X SUB;i++)
{

C [c o u n t e r] [i] [0] = C [c o u n t e r] [i - 1] [0] + (S L [i] * P [0] [1]) ;
}

f o r (j = 1 ; j <MX_MACH;j ++)
{

C [c o u n t e r] [0] [j] = m a x (C [c o u n t e r] [0] [j - 1] , C [c o u n t e r - 1] [MX_SUB-1] [j]
) + S [j] [l] + (S L [0] * P t j] [1]) ;

}

f o r (i = l ; i < M X _ S U B ; i + +)
{

f o r (j = l ; j < M X MACH;j++)
{

C [c o u n t e r] [i] [j] = m a x (C [c o u n t e r] [i - 1] [j] , C [c o u n t e r] [i] [j - 1]) + S L [i]
* P [j] [1] ;

}
}
r e t u r n C [c o u n t e r] [MX SUB-1] [MX MACH-1] ;

v o i d TR C o s t (v o i d)

80

int i, j,1,z;
int TCU[MX_MACH];

for(i=0;i<POP;i++)
{

number of setup [i]=0;
for(j=0;j<PERIOD;j++)
{

for(l=0;l<N PRDT;l++)
{

i f (q u a n t i t y [i] [j] [1] > 0)
n u m b e r _ o f _ s e t u p [i] + = 1 ;

}

for(i=0;i<POP;i++)
{

x[i]=0;
for(j=0;j<PERIOD;j++)
{

for(l=0;l<N PRDT/1++)
{

x [i] + = i n v [i] [j] [1] ;
}

f o r (i = 0 ; i < P O P ; i + +)
{

p e n a l t y 2 [i] = 0 ;
f o r (j = 0 ; j < P E R I O D ; j + +)
{

i f (m s [i] [j] > T HOR)
p e n a l t y 2 [i] + = m s [i] [j] - T HOR;

}
p e n a l t y 1 [i] = 0 ;
f o r (j = 0 ; j < P E R I O D ; j + +)
{

for(z=0;Z<MX MACH;z++)

TCU[z]=0;
for(1=0;1<N_PRDT;1++)

{
i f (q u a n t i t y [i] [j] [1]>0)

T C U [z] + = q u a n t i t y [i] [j] [l] * P [z] [1]+ S [z] [1]
}

i f (T C U f z] > C a [z])
p e n a l t y _ l [i] + = T C U [z] - C a [z] ;

c o s t [0] [i] = i ;
c o s t [1] [i] = x [i] * 1 0 + n u m b e r _ o f _ s e t u p [i] * 1 0 0 + p e n a l t y _ 2 [i] * 5 0 0 0 + p e n

a l t y 1 [i] * 5 0 0 0 ;
. }

v o i d p r i n t r e p o r t (i n t genno)
{

81

int i,j,k,t;

printf("Process time on machine j:\n")
for(j=0;j<MX MACH;j++)

{
for (k=0;k<N PRDT;k++)
printf("%4d", P[j][k]);
printf("\n");

printf("\n\n");

printf("Setup time on machine j: \n")
for(j = 0;j <MX_MACH;j + +)

for (k=0;k<N PRDT;k++)
printf("%4d", S[j][k]);

printf ("\n");

printf ("\n\n") ,-

printf ("Capacity of machine j: \n"),-
for(j=0;j<MX MACH;j++)

{
printf("%6d", Ca [j]) ;

printf("\n\n");

for(i=0;i<POP;i++)
{

printf {" \n")
printf (" \n")
printf("Generation: %d\n",genno);
printf (" \n")
printf (" \n")

printf("Chromosome %d\n",i);
for (k=0;k<N PRDT;k++)
{

for(j=0;j<PERIOD;j++)
p r i n t f ("%5d" , cu r ren t_gen [i] [j] [k]) ,-
printf("\n");

}
printf("\n");
printf("Demand for Products :" "\n\n") ,-
printf(" Jan Feb Mar April May Jun July " " \ n ") ;

for (k=0;k<N PRDT;k++)

{
for(j=0;j<PERIOD;j++)
printf ("%5d" ,d [j] [k]) ,-
printf("\n");

}
printf("\n");
printf("Order Released for each Product:""\n\n");
printf(" Jan Feb Mar April May Jun July ""\n");
for (k=0;k<N PRDT;k++)

{
for(j=0;j<PERI0D;j++)
printf ("%5d" .quantity [i] tj] [k]) ,-

82

printf("\n");

printf("\n");

printf("Makespans:""\n\n");
for(j =0;j<PERIOD;j ++)
{

pr in t f ("%5d", m s t i l t j l) ;
p r i n t f (" \ n \ n ") ;

printf ("Inventory of each product at the end of each period:""\n\n") ;
printf(" Jan Feb Mar April May Jun July ""\n"),-
for (k=0;k<N PRDT;k++)
{

for(j=0;j<PERI0D;j++)
printf("%5d",inv[i][j][k]);
printf("\n");

}
printf("\n");

printf ("\n \n ") ;
printf("number of setups %4d",number_of_setup [i]);
printf("\n"),-
printf("total Inventory %4d",x[i]);
printf("\n");
p r i n t f (" C a p a c i t y v i o l a t i o n Pena l t y % 4 d " , p e n a l t y _ l [i]) ;
p r i n t f ("\n") ,-
printf("time horizon Penalty %4d" ,penalty_2 [i]) ,-
printf ("\n") ,-
for(t=l;t<P0P;t++)

if(cost [0] [t]==i)
printf("total relevant cost $%4d",cost [1] [t]) ;

printf("\n");
printf("\n\n\n");

void print_report_file(int genno)

int i,j,k,t;
FILE *report;

report=fopen("report.txt","w");

fprintf (report, "Process time on machine j:\n"),-
for(j = 0;j <MX_MACH;j + +)

for (k=0;k<N PRDT;k++)
fprintf (report, "%4d", P[j] [k]) ,-
fprintf(report,"\n");

}
fprintf(report,"\n\n");

fprintf(report,"Setup time on machine j: \ n ") ;
for(j=0;j<MX MACH;j++)
{
for (k=0;k<N PRDT;k++)

f p r i n t f (r e p o r t , "%4d", S [j] [k]) ;
f p r i n t f (r e p o r t , " \ n ") ;

fprintf(report,"\n\n");

83

file:///n/n/n

fprintf(report,"Capacity of machine j: \n")
for(j=0;j<MX MACH;j++)

{
fprintf(report,"%6d", Ca[j]),-

}
fprintf(report,"\n\n");

for (i = 0,-i<POP;i + +)

{

f print f (report," \n") ;
fprintf (report, " \n") ;
fprintf(report,"Generation: %d\n",genno);
fprintf (report, " \n") ;
fprintf (report," \n") ,-

fprintf(report,"Chromosome %d\n",i);
for (k=0;k<N PRDT;k++)

{
for(j=0;j<PERIOD;j++)
f p r i n t f (r e p o r t , " % 5 d " , c u r r e n t _ g e n [i] [j] [k]) ;
fprintf(report,"\n");

}
fprintf(report,"\n");
fprintf(report,"Demand for Products:""\n\n");
fprintf (report, " Jan Feb Mar April May Jun July ""\n"),-
for (k=0;k<N PRDT;k++)

{
for(j=0;j<PERIOD;j++)
fprintf(report,"%5d",d[j][k]) ;
fprintf (report, "\n") ,-

}
fprintf(report,"\n");
fprintf(report,"Order Released for each Product:""\n\n"),-
fprintf(report," Jan Feb Mar April May Jun July ""\n");
for (k=0,-k<N PRDT;k+ +)

{
for(j=0;j<PERIOD;j++)
fprintf(report,"%5d",quantity [i] [j] [k]) ;
fprintf(report,"\n");

}
fprintf(report,"\n");
fprintf(report,"Makespans:""\n\n"),-
for(j=0;j<PERIOD;j++)

{
fprintf(report,"%5d", ms[i] [j]);

}
fprintf(report,"\n\n");
fprintf(report,"Inventory of each product at the end of each period:"

"\n\n");
fprintf(report," Jan Feb Mar April May Jun July ""\n");
for (k=0;k<N PRDT;k++)

{
for(j=0;j<PERIOD;j++)
fprintf(report,"%5d",inv[i][j][k]);
fprintf(report,"\n");

}
fprintf(report,"\n");

fprintf (report ,"\n \

84

n") ;
fprintf(report,"number of setups %4d",number_of_setup [1J) ;
fprintf(report,"\n");
fprintf(report,"total Inventory %4d",x [i]);
fprintf(report,"\n");
fprintf(report,"Capacity violation Penalty %4d" ,penalty_l [i]) ,-
fprintf(report,"\n");
fprintf(report,"time horizon Penalty %4d",penalty_2 [i]) ;
fprintf(report,"\n");
for(t=l,-t<POP;t++)

if(cost [0] [t]==i)
fprintf(report,"total relevant cost $%4d",cost[1][t]);

fprintf(report,"\n");
fprintf(report,"\n\n\n");

void sort b(int list [POP] [POP],int count)
{

int i,j,temp;
for(i=0;i<count;i++)

for(j=count;j>=i;--j)
i f (l i s t [1] [j - l] > l i s t [l] [j])
{

t e m p = l i s t [0] [j - 1] ;
l i s t [0] [j - l] = l i s t [0] [j] ;
l i s t [0] [j] = t e m p ;
t e m p = l i s t [1] [j - 1] ;
l i s t [1] [j - l] = l i s t [l] [j] ;
l i s t [1] [j] = t e m p ;

}

v o i d g e n ()
{

i n t i , j , c u r r e n t _ g e n _ n e x t [P O P] [PERIOD] [N_PRDT] , p a r e n t 1 , p a r e n t 2 , 1 , r a n d o m _ b a
d , b a d s [P O P / 4] ;

/ / s o r t
s o r t _ b (c o s t , P O P - 1) ;

/ / c r o s s o v e r f i r s t b e s t 1/4
f o r (i = 0 ; i < (P O P / 4) ; i + = 2)
{

p a r e n t l = c o s t [0] [i] ;
p a r e n t 2 = c o s t [0] [i+1] ;

f o r (j = 0 ; j < P E R I O D ; j + +)
{

f o r (l = 0 ; l < N PRDT/1++)
{

c u r r e n t gen n e x t [i] [j] [1] ^ c u r r e n t g e n [p a r e n t l] [j] [1] ;
c u r r e n t _ g e n _ n e x t [i + 1] [j] [1] = c u r r e n t _ g e n [p a r e n t 2] [j] [1] ,-

}

for(j=0;j<PERI0D;j++)
if(j<(PERIOD/2))

{
for(l = 0;l<N PRDT.-1 + +)

{
c u r r e n t _ g e n _ n e x t [(P O P / 4) + i] [j] [1] = c u r r e n t _ g e n [p a r e n t l] [j]

[1] ;
c u r r e n t _ g e n _ n e x t [(P O P / 4) + l + i] [j] [1] = c u r r e n t _ g e n [p a r e n t 2] [

j] [1] ;

85

file:///n/n/n

[1] ;

j] t l]

e l s e
{

fo r (l=0 ; l<N PRDT;1++)
{

cur ren t_gen_next [(POP/4)+i] [j] [1]=cur ren t_gen[paren t2] [j]
cur ren t_gen_next [(POP/4)+l + i] [j] [1]=current_gen [p a r e n t l] [

//version 1
for(i=P0P/2;i<P0P;i++)

for(j=0;j<PERIOD;j++)
for(l=0;l<N PRDT;l++)

c u r r e n t _ g e n _ n e x t [i] [j] [1] = c u r r e n t _ g e n [i - P O P / 4] [j] [1] ;

/ / v e r s i o n 2
/ * fo r (i=P0P/2,-i< (3*P0P/4) ; i + +)

for(j=0;j<PERIOD;j++)
fo r (l=0 ; l<N PRDT/1++)

c u r r e n t g e n _ n e x t [i] [j] [1] = c u r r e n t _ g e n [i - P O P / 4] [j] [1] ;
for (i=0; i<POP/4; i++)
{

random bad=rand()%(POP/2)+POP/2;
for(j=0;j<i;j++)

if(badstj]==random bad)

{
random_bad=rand()%(POP/2)+P0P/2;
j = -l;

}
bads[j]=random bad;

}
for(i=(3*POP/4) ; i<POP;i + +)

for(j=0;j<PERIOD;j++)
fo r (l=0 ; l<N PRDT;l++)

cur ren t_gen_nex t [i] [j] [1]=cur ren t_gen[bads [i - (3*POP/4)]] [j] [1

/ / change g e n e r a t i o n s
for(i=0; i<POP;i++)

for(j=0;j<PERIOD;j++)
fo r (l=0 ; l<N PRDT;l++)

cu r ren t_gen [i] [j] [1] =current_gen_next [i] [j] [1] ,-

/ / m u t a t i o n
for (i = 0;i<POP,-i + +)

for(j=0;j<PERIOD;j++)
fo r (l=0 ; l<N PRDT;l++)

if(rand()%25==0)
{

c u r r e n t g e n [i] [j] [1] = r a n d () % 2 ;
i f (c u r r e n t gen [i] [j] [1]= = 1)

current_gen[i] [j] [1]+=rand()%N_PRDT;

vo id main(void)
{

i n t i ;
time t s t a r t , e n d ;

86

start = time (NULL);

printf("Generating initial population.\n");
initial population();
Demand () ,-
setup time () ,-
process time (),-
Capacity!),-

printf("running the GA\n");
for(i=0;i<GEN;i++)
{

if (i>0)
gen();

production lot () ,-
inventory();
TR Cost();
//getchO ;

end = time (NULL);

print report(i);
print report filed);
printf("\nTime: %d\n",end-start);

}

87

file:///nTime

