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Abstract 

Preserving Data Privacy and Information Usefulness for RFID Data Publishing 

Khalil Al-Hussaeni 

Radio-Frequency IDentification (RFID) is an emerging technology that employs radio waves to 

identify, locate, and track objects. RFID technology has wide applications in many areas including 

manufacturing, healthcare, and transportation. However, the manipulation of uniquely identifiable 

objects gives rise to privacy concerns for the individuals carrying these objects. Most previous 

works on privacy-preserving RFID technology, such as EPC re-encryption and killing tags, have 

focused on the threats caused by the physical RFID tags in the data collection phase, but these 

techniques cannot address privacy threats in the data publishing phase, when a large volume of 

RFID data is released to a third party. We explore the privacy threats in RFID data publishing. 

We illustrate that even though explicit identifying information, such as phone numbers and SSNs, 

is removed from the published RFID data, an attacker may still be able to perform privacy at­

tacks by utilizing background knowledge about a target victim's visited locations and timestamps. 

Privacy attacks include identifying a target victim's record and/or inferring their sensitive informa­

tion. High-dimensionality is an inherent characteristic in RFID data; therefore, applying traditional 

anonymity models, such as /^-anonymity, to RFID data would significantly reduce data utility. We 

propose a new privacy model, devise an anonymization algorithm to address the special challenges 
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of RFID data, and experimentally evaluate the performance of our method. Experiments suggest 

that applying our model significantly improves the data utility when compared to applying the 

traditional if-anonymity model. 
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Chapter 1 

Introduction 

Radio Frequency IDentification (RFID) is a prevailing technology for automatically identifying 

objects in an efficient fashion. RFID technology is composed of two entities; tags and readers. A 

tag is a small device that can be attached to a manufactured object or to an item carried by someone 

for the purpose of uniquely identifying that object or that person. A reader is an electronic device 

that retrieves the information stored in an RFID tag by broadcasting a radio signal. Figure 1 

illustrates a typical RFID information system, which is composed of a large collection of tags 

and readers, and can manage huge amounts of RFID data. The reader scans a tag by emitting a 

radio signal to which the tag responds by transmitting the stored information, along with its unique 

Electronic Product Code (EPC) back to the reader [40]. This process causes streams of RFID 

data records to be dumped into an RFID database, which then grows to a gigantic size. Records 

take the format of (EPC, loc.t), where EPC is a unique identifier of the tagged object, loc is 

the location where the reader is positioned, and t is the time when the reader detected the tag. A 

data recipient/analysis module can submit queries to the query engine to request information on 
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Figure 1: Data Flow in an RFID System 

particular tagged objects or general workflow patterns [19]. Afterwards, the query engine processes 

the requests and responds back by binding the RFID data to some related object-specific data stored 

in a separate database. 

RFID technology is useful; however, the uniquely identifiable objects raise privacy concerns 

for the individuals that carry these objects. For example, an adversary might be able to learn 

about a person's movements, and thereby gain an advantage. Several techniques [54] [6] [23] 

[50] including privacy-preserving RFID technologies [40], such as EPC re-encryption and killing 

tags [24], have been proposed to address the privacy issues in the data collection phase where 

communication between tags and readers takes place. We explore the privacy threats that occur 

in the data publishing phase, in which a large volume of RFID data is released to a third party, 

and propose a practical solution, a privacy model, that suits the special nature of RFID data. We 

present an anonymization approach [7] [8] which entails hiding some data before its release. We 
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develop anonymization algorithm for the query engine (see Figure 1) to convert the underlying 

object-specific RFID data from its original raw state to a transformed version that is invulnerable 

to attacks against individuals' privacy. We assume that a data recipient is a potential adversary 

(or attacker), who seeks to identify a target victim's record and/or learn about the target victim's 

sensitive information associated with her record in the published data. This applies to any data 

recipient whom we often describe as a third party. In RFID data, some particular attributes are 

considered to be sensitive. This is because these attributes contain sensitive values about their 

corresponding records' owners. The sensitive value is not be associated with its related individual 

upon publishing of the data. When we speak of RFID data publishing (or releasing), we refer to 

situations where the RFID data is shared with specific recipients, e.g., data analysis institutions, 

or released for public access. The term "data holder(s)" refers to the individual/organization that 

possesses the data and wishes to publish it. In this thesis we assume that in any given RFID data, 

each record belongs to only one individual, whom we refer to as the record owner. 

1.1 Motivation 

We begin by providing a real-life example of sharing person-specific RFID data. This shall demon­

strate the potential risk of compromising individuals' privacy when publishing data. 

The Oyster Travelcard in Transport for London (TfL), is a successful application of RFID tech­

nology in a transit system. Passengers register their personal information when they first purchase 

their RFID-tagged smart cards. Then, the appropriate fare amount is deducted from their cards 

every time they use the transport services. Passengers refill their smart card anytime as needed. 
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able 1: Raw passenger-specific path table T 
Path 

(al -» d2 -* 63 -> e4 -> / 6 -> c7) 
(63 -» e4 — / 6 - • e8) 
(63 — c7 — e8) 
(d2 -» /6 -> c7 -> e8> 
(d2 -> c5 -» / 6 - • c7) 
(c5 - • /6 -» e9) 
(d2 -> c5 -> c7 -» e9) 
</6 -* c7 -» e9) 

Employment 
Status 

On-welfare 
Full-time 
Full-time 
Retired 

On-welfare 
Retired 

Part-time 
Part-time 

Table 2: Anonymous table T' for L=2, #=2, C=50% 
EPC 

1 
2 
3 
4 
5 
6 
7 
8 

Path 

(63 -> / 6 -» c7) 
(63 - • / 6 -* e8> 
(63 -> c7 -» e8) 
(/6 -» c7 -+ e8> 
(c5 -> / 6 -^ c7) 
(c5 - • / 6 - • e9) 

(c5 -> c7 -+ e9) 
(/6 - • c7 -> e9) 

Employment 
Status 

On-welfare 
Full-time 
Full-time 
Retired 

On-welfare 
Retired 

Part-time 
Part-time 

The public transit companies utilize the personal journey data (the RFID data) to improve their ser­

vices. Analyzing RFID data is a non-trivial task; transit companies often do not have the expertise 

to perform the analysis themselves but outsource this process and therefore, require granting a third 

party access to the RFID data and passenger data (object data in Figure 1). The passenger data may 

contain person-specific (sensitive) information, such as age, disability status, and (un)employment 

status. TfL does say that it does not associate journey data with named passengers, although they 

provide such data to government agencies on request [46]. Our goal, in this case, is to answer the 

question: How can an RFID data holder (e.g., the transit company) safeguard data privacy while 

keeping the released RFID data useful for analysis? We exemplify this concept with the following 

scenario. 
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Example 1.1.1 A transit company wants to share Table 1, the passenger-specific path table, with a 

third party for the purpose of performing data analysis. The EPCs, passengers' names, and other 

explicit identifiers are removed from the table to be released. EPCs are included in Table 1 for the 

sake of clarity. Each record contains a path and some passenger-specific information, where path 

consists of a sequence of pairs (lociti) indicating the passenger's visited location loci at timestamp 

£j. For instance, the path associated with EPC#3 is (63 —* cl —• e8), meaning that the passenger 

has been to locations b, c, and e at timestamps 3, 7, and 8, respectively. We assume that the 

passenger-specific path table, Table 1, contains only one sensitive attribute, namely Employment 

Status. In other words, one domain value from the Employment Status attribute is associated with 

each record in the table. Let On-welfare be the only sensitive value. The goal now is to prepare 

a version of Table 1 that is immunized against privacy attacks and still useful for data analysis. 

We will demonstrate how Table 1 is susceptible to privacy attacks and, therefore, compromises the 

individuals' privacy. • 

In Table 1 of Example 1.1.1, some values in the Employment Status attribute are considered 

sensitive; an adversary is not supposed to associate these sensitive values with their related passen­

gers. However, some values are usually considered more sensitive than others, e.g., a passenger 

might not object to people knowing that her employment status is Full-time, in contrast to the sta­

tus of On-welfare. Thus, the data holder specifies a set of sensitive values which is a subset of 

the domain values of a sensitive attribute in the passenger-specific information. Privacy attacks 

manifest when an adversarial data recipient attempts to identify the target victim's record and/or 

sensitive value from the released data. We illuminate the following types of privacy attacks and 

project their impact on Table 1: 
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1. Record linkage: record linkage is a privacy attack in which the adversary exploits the unique­

ness of a passenger's path in the released data table. If a passenger's path is so specific that 

it only matches to a small number of other passengers, linking the victim's record from the 

released RFID data table along with her employment status may become possible. The as­

sumption is that the adversary possesses some knowledge about the locations and timestamps 

(pairs) existing in a victim's path. For example, assume the adversary knows that Alice has 

been to locations e and c at timestamps 4 and 7, respectively. Since Alice's record is the only 

record with a path containing e4 and c7, Alice's record and her sensitive value On-welfare 

can be uniquely identified. 

2. Attribute linkage: attribute linkage is another privacy attack that occurs when a group of 

records that share some combination of pairs contains a frequently appearing sensitive value. 

Even though a target victim's record might not be identified, inferring the victim's sensitive 

value from such a group becomes possible. For example, suppose the adversary is aware of 

the existence of pairs d.2 and /6 in a target victim's path. A group of three records {EPC#1, 

4, 5), which contain d2 and / 6 , has two records with the sensitive value On-welfare. Two out 

of three records having the same sensitive value allow the adversary to infer that the target 

victim is on welfare with 67% confidence. 

Several privacy models have been proposed to combat record and attribute linkage attacks. 

These privacy models, however, target a different type of data, i.e., relational data, /('-anonymity [5] 
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[12] [14] [15] [16] [30] [25] [31] [38] [47] [52] [33] [34], ^-diversity [27], confidence bound­

ing [48], and i-closeness [26] are examples of such privacy models. These models assume a pre­

determined set of particular attributes in the released data table, called quasi-identifier (QID) [8] 

[32], that an adversary can use to identify a target individual. We define QID attributes and back­

ground knowledge below. 

Quasi-identifier (QID) A QID in a table T is a set of attributes which can combine to uniquely 

identify single or multiple records' owners in T with the help of background knowledge. 

Adversary's background knowledge Background knowledge is the information an adversary 

externally obtains about a particular (or multiple) record owner in T, and can be jointly used with 

the set of QID in T to identify a target individual. 

Despite the fact that the abovementioned privacy models have been proven effective for anonymiz-

ing relational data, they become inapplicable for anonymizing RFID data due to the curse of high 

dimensionality [2]. 

High-dimensionality is an intrinsic characteristic of RFID data due to the huge possible com­

binations of locations and timestamps. Consider a subway system having 50 stations that operate 

20 hours a day. The total number of dimensions of the RFID data table would be 50 x 20 = 1000 

dimensions. Each dimension (pair) could be a potential piece of knowledge used by an adversary 

to perform record or attribute linkages; therefore every dimension is considered a potential quasi-

identifying (QID) attribute. If we apply a traditional privacy model, such as /^-anonymity, all 

dimensions would then be included in a single QID and every path would have to be indistinguish­

able from at least K— 1 other paths. In order to achieve K-anonymity, the high dimensional [2] 

nature of RFID data would likely cause most of the data to be suppressed. Consequently, the utility 
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of the resultant anonymous data becomes insufficient for further data analysis. As an example, ap­

plying X-anonymity to Table 1 for a small value of K — 2, i.e., 2-anonymity, results in suppressing 

all pairs of al, d2,63, e4, c7, e9 from the table. 

As mentioned earlier, in the context of RFID data, all attributes (dimensions) could poten­

tially be used by an adversary as background knowledge to launch privacy attacks, i.e., record 

or attribute linkages. Thus, in traditional if-anonymity and its extended privacy models, the as­

sumption would be that all attributes in an RFID data table are included in a single QDD. However, 

assuming an adversary's knowledge about the entire locations and timestamps in a target victim's 

path is unrealistic as it requires non-trivial effort to collect such knowledge from a large number 

of locations at different times. Hence, a real-life scenario would suggest limiting the adversary's 

background knowledge to a maximum of L pairs of locations and timestamps about a target victim. 

This is an essential improvement in our privacy model. 

We define a novel anonymization privacy model, LKC-privacy, which adapts to the challenge 

of high dimensionality in RFID data. LKC-privacy provides a practical solution to accounting for 

an adversary's background knowledge. This is achieved by bounding the amount of information an 

adversary possesses to a maximum threshold of L pairs. The intuition is that, given an RFID data 

table T, we need to make sure that for any path in T, every proper subsequence q with maximum 

length (number of pairs) L appears in at least K records in T. Moreover, the inference confidence 

of any sensitive value s € S from a group of records that contain q is not greater than C, where S is 

a set of sensitive values chosen by the data holder from the domains of the sensitive attributes in T. 

For the three threshold parameters in LKC-privacy, L and K are positive integers and 0 < C < 1 

is a real number. When applying L/<C-privacy, an adversary can successfully perform record 
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linkage attacks with a maximum probability of \jK and successfully perform attribute linkage 

attacks with a maximum probability of C. These probabilities are based on the assumption that the 

adversary's background knowledge does not exceed L pairs of locations and timestamps. 

Continuing from Example 1.1.1, applying our privacy model to Table 1 to satisfy (2,2,50%)-

privacy will transform it into an anonymous version T", Table 2, that adheres to the privacy re­

quirement. As shown in Table 2, pairs al, d2, and e4 from Table 1 have been suppressed in order 

to achieve (2,2,50%)-privacy. In Table 2, there are at least 2 records that share any possible 

subsequence q (from any path) with a maximum length of 2. In addition, inferring the sensitive 

value On-welfare from the records that contain q is achieved with a maximum confidence of 50%. 

Anonymization using (2,2,50%)-privacy preserves a considerable amount of data when compared 

to traditional 2-anonymity, which requires further suppressing pairs £>3, c7, and e9 from Table 2. 

1.2 Outline of the thesis 

This thesis is organized as follows. In Chapter 2, we go through some of the prominent privacy 

models in the context of three common types of data: relational, transaction, and trajectory data. 

We first discuss an essential privacy model for thwarting record linkages, namely the /('-anonymity 

paradigm. Then, we discuss methods for thwarting attribute linkages, such as confidence bounding 

and the ^-diversity principal. We provide illustrative examples for each approach. Furthermore, 

we perform comparisons between each type of data and RFID data, and state the reason(s) why 

anonymization methods for different types of data become ineffective for anonymizing RFID data. 

Chapter 3 formally defines the problem statement. A formal definition is given for the privacy 
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threats along with a new privacy model, called LKC-privacy, for anonymizing high-dimensional 

RFID data. Chapter 4 presents an efficient anonymization algorithm for achieving LKC-privacy. 

We also present the Critical Violation Tree structure, which boosts the efficiency in our anonymiza­

tion algorithm. Chapter 5 evaluates the performance of our proposed model in terms of data quality, 

efficiency, and scalability by employing two different data sets. Data quality is a measure we use 

to describe the distortion inflicted on the original data set due to anonymization. We present a 

comparison of data quality between our new LKC-privacy and traditional /^-anonymity. Finally, 

in Chapter 6 we conclude the work presented in this thesis and point out some possible future 

research directions. 
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Chapter 2 

Literature Review 

In this chapter, we study various approaches that have been proposed to address the problem of 

privacy preservation in different types of data. Publishing data is important and has a versatile 

usage, e.g., academic research, statistical studies, information mining, etc. However, due to the 

potential damage that could arrive if privacy is penetrated, e.g., record and attribute linkages, pre­

serving data privacy has become an important topic in the society. We discuss three commonly 

used types of data; relational, transaction, and trajectory data, each of which, when published, has 

been shown to be susceptible to revealing information that the recipient is not supposed to acquire. 

We describe each type along with its respective approaches, explain how these approaches become 

inapplicable when RFID data is in hand, and end this chapter with a summary of these models and 

methods. 

The goal of privacy-preserving data publishing is to release or share with a third party a person-

specific data set (a table in which each record refers to a unique individual) while maintaining the 

record owners' privacy. Even when removing identifying pieces of information, e.g., SSNs, from 
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Table 3: Alumni: external table 
Name 
Christina 
Daisy 
Julia 
Jordan 
Douglas 
Alex 
Robert 
Peter 
Eric 

DoB 
Jan 1970 
Mar 1970 
Aug 1970 
May 1965 
Jan 1965 
Apr 1960 
Dec 1960 
Dec 1960 
Apr 1960 

Sex 
Female 
Female 
Female 
Male 
Male 
Male 
Male 
Male 
Male 

Major 
Physics 
Psychology 
Biology 
Finance 
Marketing 
Marketing 
Finance 
Electrical Eng. 
Industrial Eng. 

Table 4: Welfare: private table 
DoB 
Apr 1960 
Aug 1960 
Apr 1960 
Feb 1970 
Nov 1970 
Mar 1970 
Dec 1970 

Sex 
Male 
Male 
Male 
Female 
Female 
Female 
Female 

Major 
Marketing 
Finance 
Finance 
Industrial Eng. 
Electrical Eng. 
Psychology 
Psychology 

Class 
A 
B 
C 
C 
B 
A 
A 

the published data set, some attributes called quasi-identifier (QID) [8] [32] can uniquely combine, 

hence compromising some record owners' privacy. When successfully identified by using a QID, 

the victim's record in the released data set can be linked to externally available information per­

taining to the same person, thereby revealing information the recipient is not supposed to know. 

This scenario, called record linkage attack, is illustrated in Example 2.0.1. 

Example 2.0.1 Suppose that a welfare agency in a town is sharing Table 4 with an institute for 

statistical analysis. Table 4 is a list of all the people receiving financial assistance. The amount of 

financial assistance an individual recieves is described in a category of 3 classes: class A, class B, 

and class C. People who belong to class A are the most needy thus they receive a larger amount 

of financial assistance. Class C includes those who need the least assistance. The class that each 

individual belongs to is not to be disclosed; hence, attribute Class is considered to be sensitive 
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(attribute Class is not removed because it is required for the analysis task). Therefore, the agency 

removes identifying pieces of information, e.g., SSNs and phone numbers, from the table to be 

released. Meanwhile in the same town, a university, UniversityX, is posting an up-to-date table 

(Table 3) on its website listing information about the university's alumni, including DoB, Sex, and 

Major. Each record represents the information of a single alumnus. The combinatorial attributes of 

DoB, Sex, and Major (forming the set of QID attributes) in Table 4 can be jointly used with Table 3 

to potentially reveal individuals' identities. For example, Table 4 shows that the first record refers to 

a man receiving financial assistance of class A. In this case, qid = (Aprl%0, Male, Marketing). 

With a background knowledge indicating that some people who graduated from UniversityX are 

currently on welfare, an attacker can use the qid = (Apr1960, Male, Marketing) to narrow down 

the Alumni list to uniquely point out Alex. • 

Based on the QID, Example 2.0.1 shows how information can be linked between released data 

sets to reveal the identities of record owners even though identifying information was removed. 

Example 2.0.1 exemplifies a record linkage attack. In Subsections 2.1.1 and 2.1.2, we discuss 

some of the proposed techniques that attempt to combat record linkage (namely, if-anonymity) 

and attribute linkage attacks, respectively, in relational data. 

2.1 Relational Data 

2.1.1 Record Linkage 

A decent amount of work has been done toward anonymizing relational data. One notable propo­

sition, which emerged in the early stages of research in privacy preservation, is K-anonymity [37] 
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[39] [43] [25]. Initially proposed by Samarati and Sweeny [39], if-anonymity stipulates that in a 

relation R, each record must be indistinguishable from at least K - 1 other records. Relation R 

is the privately held table depicting the data set to be "safely" released, and a record is a row as­

sumed to be the only row representing a unique individual. That is, in any record within a table, all 

attributes' values have to match to a minimum of K — 1 other values (following the same order) in 

different records. A data set that adheres to if-anonymity (satisfies the if-anonymity requirement) 

is said to be if-anonymous. A if-anonymous data set guarantees that linking any of its records 

to externally available information can never exceed the probability of 1/k, since there are K — 1 

duplicates of each record. This is equivalent to saying that the probability of a successful record 

linkage attack is at most 1/k. 

In order to achieve if-anonymity, Samarati and Sweeny employed generalization and sup­

pression [39]. Both techniques can be used jointly or independently. In generalization, the QID 

attributes' values are replaced with more general ones based on a data holder's pre-defined taxon­

omy tree. The purpose of generalization is to eliminate the potential uniqueness resulting from a 

combination of QID attributes' values in a record. In a generalized table, more records (a minimum 

of if) will be grouped under the same qid. Although the data becomes less precise, consistency 

is maintained. We will use the taxonomy trees presented in Figure 2 to generalize Table 4 on 

QID — {DoB, Sex, Major} so that it adheres to if-anonymity for K — 2. This process can also 

be described as anonymizing Table 4 so that it satisfies 2-anonymity, or simply 2-anonymizing 

Table 4. 

As seen in Example 2.0.1, qid = {Aprl%0, Male, Marketing) in Table 4 uniquely identifies 

the individual it relates to when linked to external information. Table 5 shows that this uniqueness 
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Table 5: 2-anonymous Welfare table 
DoB 
1960 
1960 
1960 
1970 
1970 
1970 
1970 

Sex 
Male 
Male 
Male 
Female 
Female 
Female 
Female 

Major 
Business 
Business 
Business 
Engineering 
Engineering 
Arts & Science 
Arts & Science 

Class 
A 
B 
C 
C 
B 
A 
A 

Sex DoB Major 

ANY [1960-1970] Universilyjevel 

Male Female YYYY Arts & Sience Engineering Business 

MMMYYYY Physics Psychology Biology , n d ^ , r l a l Electrical F j n a n c e M a r k e t i n g 

Figure 2: Taxonomy trees 

is eliminated as the anonymous table consists of three distinct groups: qid — (I960, Male, Business), 

qid = (1970, Female, Engineering), and qid = (1970, Female, Arts & Science). Each qid 

group contains at least two records, making any record indistinguishable from at least one other 

record in the same group. 

Suppression is complementary to generalization [39]. Rather than replacing data, suppression 

entails removing some data from the table to be released. Samarati and Sweeny suggest enforcing 

suppression on particular records. That is, when marked as an outlier [39] [5], the entire record 

in the table is removed. Outlier records are those which still fall short of fulfilling the enforced 

/^-anonymity requirement even after the table has been generalized. 

For example, suppose that Table 4 is to be 4-anonymized to table T". Generalization is en­

forced, resulting in Table 5. However, Table 5 is not 4-anonymous; therefore a further sequence 
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of generalization steps is required. A naive approach is to generalize all the QID attributes' values 

to the most abstract form (Figure 2). This approach will eventually produce a 4-anonymous table 

T wherein all of its records have qid = {[I960 - 1970], ANY, Universityjevel). In fact, V 

is 4-anonymous because any of its records matches at least 4 — 1 other records on QID = {DoB, 

Sex, Major}. Table T" is indeed then more privacy-preserving than its original version, but it is 

much less informative as well. Each generalization step results in more data abstraction. To avoid 

unneeded generalization on Table 5, record suppression suggests removing the first three records. 

By doing so, we can perform just one more generalization step on attribute Major. The resulting 

table T" is 4-anonymous with all records having qid = (1970, Female, Universityjevel). 

Generalization and suppression are best enforced together. That is, a maximum suppression 

threshold can be defined by the data holder, and within that threshold suppression is more prefer­

able than generalization. 

Although suppression minimizes the data abstraction caused by generalization, it affects data 

integrity by removing specific records from the table to be released. Generalization, on the other 

hand, preserves consistency in all attributes, but affects all of the records (all values in an attribute 

domain are replaced by others according to a taxonomy tree). Generalization increases data pri­

vacy, but lowers data utility. 

Recalling the purpose of anonymization; we want to "safely" release a privately held data set 

and, at the same time, ensure the data utility. In other words, it is desirable to keep the amount 

of information held by the anonymous data as large as possible. Optimal anonymization [25] de­

scribes the condition at which an anonymous table T" is most informative in comparison to other 
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anonymous versions of the original table T, with T" being the least anonymous (one generaliza­

tion/suppression step from violating a given privacy requirement). Moreover, minimal anonymiza-

tion [21] [42] [22] [49] [13] [15] [16] is achieved when T" is least anonymous with respect to 

a given privacy requirement without necessarily being most informative. Despite the fact that 

achieving optimal if-anonymization has been proved to be NP-hard [29], a few approaches toward 

optimality have been proposed [25] [37] [5]. LeFevre et al. [25] proved that achieving optimality is 

feasible by proposing an algorithm (and a set of its variations) called Incognito that guarantees op­

timality using full-domain generalization. Full-domain generalization [37] [43] [25] is a method 

for achieving K-anonymity with respect to the QID attributes. With this method, if one value 

from a QID attribute is generalized to some level in the taxonomy tree, then all the other values in 

that attribute domain are generalized to the same level. For example in Figure 2, if Marketing is 

generalized to Business, all the leaves of that tree are generalized to their pertinent parent nodes: 

Business, Engineering, and Arts & Science. Although Incognito maintains optimal if-anonymity, 

its complexity grows exponentially with the number of QID attributes. 

The if-anonymity privacy model can be used to thwart record linkage attacks by making each 

record indistinguishable from at least K — 1 other records in an anonymous table. Nevertheless, 

it fails to prevent attribute linkage attacks when a sensitive attribute is present in an anonymous 

table. Next, we come across some works that counter attribute linkage attacks. 

2.1.2 Attribute Linkage 

For some QID attributes in a /^-anonymous table, any record is indistinguishable from at least 

K — 1 other records within a qid group, thereby, preventing an attacker from uniquely identifying 
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a target victim with the help of external data. However, if all or most of the records of a qid group 

share the same sensitive value, deducing the target victim's sensitive information will be highly 

probable. This type of attack is the manifestation of attribute linkage. An illustration follows. 

Example 2.1.1 Suppose that Daisy's friend, Bob, is looking at anonymous Table 5. Bob knows 

that his friend Daisy (2nd record in Table 3) has studied Psychology at UniversityX and was born 

in March 1970. Bob observes that Daisy's record in the Alumni list, based on QID = {DoB, Sex, 

Major}, links to 2 records from the 2-anonymous Welfare table. However, both of the latter records 

indicate that their related individuals belong to class A. In this particular case, Bob is now certain 

that his friend Daisy receives class A financial assistance - the very piece of information Bob is not 

supposed to acquire about Daisy. • 

To thwart attribute linkage attacks, Wang et al. [48] proposed a new privacy model, confidence 

bounding, which can work complementarity with if-anonymity. In a if-anonymous table X", 

confidence bounding prevents the inference of a sensitive value in any qid group from exceeding a 

certain probability threshold. In other words, the confidence of inferring a sensitive value s is upper 

bounded by h, a pre-defined confidence percentage determined at the data holder's discretion. 

To apply confidence bounding, 7" has to satisfy a set of privacy templates of the form (QID —> 

s, h), where QID is a quasi-identifier, s is a sensitive value, and h is a confidence threshold. For 

simplicity, let us assume that T has to satisfy a single privacy template, qid —> s indicates the 

percentage of inferring s from qid. That is, qid —> s represents the number of records containing 

the sensitive value s divided by the total number of records grouped by the same qid. This is 

denoted by conf (qid —> s). The maximum con-f (qid —> s) in any qid group is denoted by 
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ConfiQID -* s). If Conf{QID -> s) < h, then table T satisfies the privacy template (QID —• 

s , / i ) . 

For example, for Q7£> = {DaB, Sex, Major}, enforcing the privacy template (QID —> 

A, 50%) on Table 5 requires that at most 50% of the records in any qid group have sensitive 

value A. Table 5 has 3 qid groups: (I960, Male, Business), (1970, Female, Engineering), and 

(1970, Female, Arts k Science). For each group, the percentages of records with sensitive value 

A are: 33%, 0%, and 100%, respectively. Hence, the aforementioned privacy template is violated 

because the last group violates the confidence threshold. 

Flexibility is an inherent characteristic in privacy templates. The data holder can always lay 

out different templates for different sensitive values depending on how sensitive some values are 

than others. For example, in Table 5, one template for inferring A could be (QID —> A, 30%) 

while another template for inferring C could be (QID —-> C, 80%). 

Another approach that has been proposed to thwart attribute linkage attacks is the notion of 

the ^-diversity principal [27] [35] [9]. Machanavajjhala et al. [27] suggest that for a table to be 

^-diverse, every qid group is required to have at least £ "well-represented" records with respect to 

their relative sensitive values. The reason for describing ^"-diversity as a principal is the possibility 

of interpreting the privacy requirement "well-represented" via several instantiations. One instance 

of the ^-diversity principal is to ensure that in every qid group there are at least £ > 2 different 

sensitive values. In this case, records will be "well-represented" since their associated sensitive 

values are ^-diverse. In other words, at least £ distinct values of the sensitive attribute are in each 

qid group. This notion is captured in Example 2.1.2. 
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Table 6: 3-diverse Welfare table 
DoB 
1960 
1960 
1960 
1970 
1970 
1970 
1970 

Sex 
Male 
Male 
Male 
Female 
Female 
Female 
Female 

Major 
University_level 
University_level 
Universityjevel 
University_level 
Universityjevel 
University_level 
Universityjevel 

Class 
A 
B 
C 
C 
B 
A 
A 

Example 2.1.2 In Example 2.1.1, we illustrated how an attacker can reveal a target victim's sen­

sitive information. With the group of qid = (1970, Female, Arts & Science) from Table 5 in­

dicating that all its related individuals belong to class A, Bob correctly concluded that his friend 

Daisy receives class A financial assistance. In order to fix this "flaw", we can enforce 3-diversity 

over Table 5 to ensure that at least 3 distinct values of the sensitive attribute are present in any qid 

group. This is demonstrated in Table 6. • 

The reason for enforcing diversity over some sensitive values in qid groups is to distribute the 

frequencies of occurrences of these sensitive values for the sake of eliminating inference with high 

confidence. The best-case scenario is to have all sensitive values approximately evenly distributed 

within every qid group. Typically, this is not what we find in practice, mainly because some 

sensitive values are inherently more (or less) frequent than others. In patients' data, for example, 

where disease is considered a sensitive attribute, it is natural to have Allergy more frequently than 

Cancer; generally speaking. 

To measure how evenly distributed sensitive values are in every qid group in a table, Machanava-

jjhala et al. [27] propose another instantiation of the ̂ -diversity principal: Entropy ^-diversity. For a 

table to satisfy entropy ^-diversity, log(£) should not exceed the sum of entropies of every sensitive 
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value s in each qid group. More formally, 

- Y, P(qid, s)log(P(qid, s)) > log{£) (1) 

where 5 is the domain of a sensitive attribute and P(qid, s) is the fraction of records containing 

the sensitive value s in the qid group. Since entropy measures the uncertainty of inferring sensitive 

values, higher entropy implies a more even distribution of sensitive values in qid groups, and 

therefore less inference confidences. 

For example, in Table 6, the entropy of the first group of qid = (I960, Male, 

Universityjevel), is 3 x (-|Zo#(|)) = log(3), and the entropy of the second group of qid — 

(1970,Female,UniversityJevel), is -\log{\) - \log{\) - \log{\) = log{2.82). Therefore, 

Table 6 is entropy ^-diverse for £ < 2.82. 

Unlike confidence bounding which states a probabilistic inference threshold for some sensitive 

values, entropy ^-diversity does not provide the data holder with a clear intuitive translation of 

the diversity measure. For example, as mentioned above, Table 6 satisfies entropy ^-diversity if 

I < 2.82. However, the data holder will not be able to conclude that 2 out of 4 records in a qid 

group are associated with class A sensitive value, i.e., a successful attribute linkage attack on class 

A would be 50%. 

If the goal is to ensure low inference confidences of sensitive values through high diversity, 

clearly I is required to be higher as more records add up to a qid group. However, this also implies 

a larger qid group size by which further generalization (if it was used) would be needed. 
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2.1.3 if-anonymity and RFID Data 

As mentioned earlier, the if-anonymity privacy model addresses the privacy issue related to re­

vealing identities through record linkage attacks in relational data sets. However, /^-anonymity 

becomes inapplicable when anonymizing RFID data. When we describe the if-anonymity model 

as "inapplicable", we are referring to its ineffectiveness in achieving useful anonymous data. The 

following two reasons explain why. First, applying /C-anonymity to high dimensional data will 

result in poor data quality. RFID data tend to be sparse and high dimensional [2], and the set 

of quasi-identifing attributes can contain hundreds of attributes, as will be seen later in Chapter 

5. Each item in an RFID data set record is a potential quasi-identifier. Therefore, enforcing the 

if-anonymity privacy requirement would result in anonymizing most of the records, rendering the 

data utility weak indeed. In Chapter 5 we shall see how relatively huge the amount of distortion 

is when enforcing X-anonymity. In our proposed model, we overcome this obstacle by assum­

ing that the adversary knows up to L pairs of locations and timestamps that a target victim has 

previously visited. The second reason is that the X-anonymity model does not consider sensitive 

attributes' disclosure. This adds an extra burden since now the data holder needs to choose an 

additional appropriate privacy model to mitigate attribute linkage attacks that target sensitive at­

tributes. Example 2.1.1 demonstrates the second reason. Accounting for attribute linkage attacks 

is an essential privacy requirement in our model, enforced by limiting the inference confidence of 

a sensitive value to a pre-determined threshold. 

Up to this point, we have discussed A"-anonymity and some other methods to defend against 

record and attribute linkages, respectively, in relational data. In the next section, we show some 

anonymization approaches for releasing high-dimensional transaction data. 
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2.2 Transaction Data 

In transaction data sets, data is organized as a set of transactions. Each record encompasses an 

arbitrary number of items forming a transaction relating to a distinct individual. A transaction is 

a subset of a much larger population U of items. Click streams, visited web sites logs, online/offline 

shopping, and query logs are examples of transaction data where each item indicates an event: 

clicking a picture, browsing a web site, buying an item (not to be confused with the transactions 

constituent elements items), and performing a query, respectively. A transaction can describe 

one's behavior, making the data set an excellent source for mining [20]. However, such rich data 

raises privacy concerns about its transactions' owners, as illustrated in Examples 2.2.1 and 2.2.2. 

Unlike relational data which in practice tend to have a small number of QID attributes (5 or 

6 [29]), transaction data is considered to be high dimensional. Each item in a transaction data set is 

a dimension by itself because it is a potential piece of knowledge/information previously acquired 

by an adversary and it can be used with a combination of other items to reveal a target victim's 

identity. Regardless of a transaction's variable length (number of items), all items from the large 

population U are considered quasi-identifiers. The following example illustrates an attack scenario 

on high-dimensional transaction data. 

Example 2.2.1 Suppose that an online video sharing web site, VidShare, has released an "anony­

mous" data set about its users' logs, for research purposes. Each record describes recently watched 

videos by a distinct user. Brian and Linda are classmates in business school who always watch their 

favorite movie reviews together on VidShare. In the published data set, Brian noticed a record con­

taining the same movie reviews that he and Linda had watched lately. Moreover, the same record 
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contains videos relating to the same subjects they study in their class. Brian is now certain that 

the record belongs to his Linda's account as it is unique in the entire data set. Brian also noticed 

that the (identified) record contains further videos pertaining to uterine cancer. Considering the 

sensitivity of the matter, Linda may not want to disclose such information about herself. In spite 

of removing identifying pieces if information from the released data set, e.g., name/nickname, 

Linda's record has been identified and has leaked sensitive private information. • 

We further provide a real-life example of the AOL ' incident that reflects actions data holders 

might take if users' privacy is compromised. 

Example 2.2.2 In a data of search queries released by AOL for academic research purposes, 

amongst 650,000 AOL users, record No. 4417749 was successfully traced back to its legitimate 

owner revealing her identity. Ms. Thelma Arnold, a 62-year-old widow, is an AOL subscriber 

who has conducted many search queries which mirrored her daily activities leading to uniquely 

identifying her persona. This incident resulted in AOL's retrieval of the data and, more impor­

tantly, rendered data holders unenthusiastic about publicly releasing their data even when specific 

identifying pieces of information are removed from the published data [4]. • 

Examples 2.2.1 and 2.2.2 capture two major characteristics about transaction data: (1) transac­

tion data is demanded for research purposes especially in the field of data mining and (2) transac­

tion data poses privacy concerns, since removing personal information proved a useless precaution, 

hence the need for further "processing" before data release. Next, we briefly review some of the 

proposed anonymization approaches in the context of transaction data. 

'www.aol.com 
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Some recent studies attempt to tackle the challenges presented when anonymizing high dimen­

sional sparse transaction data [45] [17] [52] [53]. Terrovitis et al. [45] extended the X-anonymity 

paradigm to Km-anonymity. In relational data, K-anonymity assumes that an attacker may be able 

to collect background knowledge with respect to the entire QID attributes, but in transaction data 

this assumption becomes unrealistic for the following reason. As we saw earlier, any item in the 

population U, which may contain tens of thousands of items, is a potential quasi-identifier. Thus 

either the attacker has to exert enough effort to collect information about all the items appearing 

in the target victim's transaction (which is not commonly the case), or the attacker's background 

knowledge can be limited to some extent. i^m-anonymity assumes that the attacker knows about 

a target victim's transaction at most m items. The goal then becomes making any transaction 

with any combination of up to m items indistinguishable from at least K — 1 other transactions 

in the data set. To achieve this goal, Terrovitis et al. [45] used generalization, by which items are 

generalized to more abstract values. They present a suite of three algorithms to anonymize trans­

action data: optimal anonymization which is inapplicable for real-life data sets due to its expensive 

computational cost; and two heuristics: direct anonymization and apriori anonymization. 

In [45] the authors do not account for the existence of a separate column for sensitive values 

in the published data, e.g., medical condition, as they consider any item to be potentially sensitive. 

The works presented in [17], [52], and [53] however, consider the items in U as public quasi-

identifiers used by an attacker to identify a target victim's transaction and/or to infer associated 

sensitive information. To combat such attacks, i.e., record and attribute linkages, [53] proposes a 

privacy notion to protect the published data under some privacy requirements. (h,k,p)-coherence 

is a privacy model that restricts the number of items an attacker could have previously gained 
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about a target victim to p; following the intuition that it is realistic to assume an attacker's partial 

knowledge about a particular transaction in the data set. In addition, the privacy model requires the 

existence (or none at all) of at least k— 1 other transactions in the data set that share any combination 

of up to p items. Within these k transactions, the liklihood of inferring a particular sensitive item 

must not exceed h percent. If a data set adheres to the (h,k,p) privacy requirements, the data set is 

said to be (h,k,p)-coherent. Consequently, an (h,k,p)-coherent data set, with attacker's knowledge 

being up to p items, limits the probability of a successful record linkage to \/k and a successful 

attribute linkage to h [53]. 

Xu et al.( [52] and [53]) employ the same privacy notion (h,k,p)-coherence. However, the 

former work targets preserving frequent itemsets by eliminating moles and withholding as much 

nuggets as possible. Frequent itemsets are sets of items that frequently occur in the data set and 

are essential for data mining purposes. Nuggets are up to p-length itemsets (public or sensitive) 

that occur at least k times in the data set. Moles, on the other hand, are public itemsets that violate 

the (h,k,p) privacy requirements. Instead of enumerating all possible moles and nuggets, Xu et 

al. [52] overcome this bottleneck by introducing a novel border-based representation of moles 

and nuggets which significantly improves scalability. Moles/nuggets are bounded by maximal and 

minimal itemsets from which they are derived. 

Unlike Terrovitis et al. in [45] who use generalization to achieve a privacy requirement, 

both [53] and [52] use global item suppression. This technique has a prominent advantage over 

generalization; i.e., suppression is performed on a single (public) item by deleting it from a trans­

action. Moreover, suppressing an item is performed globally, that is, when suppressed, all occur­

rences of that item in the data set will be suppressed as well. Therefore, consistency is preserved for 
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all the items appearing in the published data, which shall maintain truthfulness in data analysis or 

data mining applications. Generalization, however, is applied to all the children of a subtree node, 

which causes more information loss as the taxonomy tree would be characterized as flat (wide and 

short) and fan-out (many children for a single node). One last point is that preparing a taxonomy 

tree for generalization is not a lightweight task, especially in high-dimensional data. For the above 

mentioned reasons, adopting item suppression is often more practical than generalization. 

In [17], Ghinita et al. introduce a permutation-based approach that takes advantage of the 

sparseness nature of transaction data. Rows (transactions) and columns (every item in a population 

U) are re-arranged in such a way that items in each transaction appear diagonally. This organization 

helps to group transactions with similar items, with these items being considered the group's QID. 

Each group of transactions is then anonymized based on its relevant QID. Sensitive items are 

treated separately, and any transaction can have none, one, or multiple sensitive items. After 

anonymization, any transaction within a certain group is associated to any sensitive item in that 

group with a confidence of up to a maximum (pre-specified) threshold. 

2.2.1 Transaction Data vs. RFID Data 

In this subsection, we denote the distinction between transaction data and RFID data, and show 

why the proposed anonymization approaches for the former data type are inapplicable when anonymiz-

ing RFID data. Despite the fact that both data types share the characteristic of being high-

dimensional and sparse, one essential difference is how items are represented in a record (trans­

action or RFID record). Basically, a transaction is a set of items, e.g., merchandise bought by an 

individual, and an RFID record consists of a sequence of "items". In the next chapter we will see 
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that an "item" in an RFID record is a pair composed of a location and a timestamp. A sequence of 

pairs in an RFID record is called a path. Therefore, transactions {a, b} and {b; a} are equivalent, 

in contrast to paths (a, b) and (b, a). 

In addition to the difference between the nature of transactions and paths, a method for anonymiz-

ing transaction data may not account for attribute linkages [45], i.e., there is no consideration for 

associating a particular individual in the data set to some sensitive information (e.g., medical con­

dition). As for anonymizing RFID data sets, we will see later that our model considers both attacks; 

record and attribute linkages. 

2.3 Trajectory Data 

Trajectory data or moving objects data [1] [44] [55] [28] [36] is a collection of trajectories re­

lating to some moving objects collected at certain points of times. Each trajectory belongs to a 

unique moving object and consists of a sequence of locations the moving object was reported at. 

An example of how trajectories are collected is the Octopus electronic system2 [44] for Hong Kong 

residents where each Octopus smart RFID card holder gets to use the card to pay for transportation, 

shopping, parking, etc. 

The trajectory data set can later be published for behavioral or pattern analysis, for example. 

Of course, users' IDs will be removed along with other identifying pieces of information so that 

no distinct user can be identified. However, publishing the data as collected may pose privacy 

threats to users. For instance, if a trajectory in a published data set shows that its pertinent Octopus 

card user, say Alice, frequently uses the same parking spot every morning for five days a week, 

2 www.octopuscards.com 
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Trajectory 

Possible Motion Curve 

Uncertainty Area 

Figure 3: A graphical representation of an uncertainty trajectory volume [1] 

it is highly probable that it is Alice's work place and it is located somewhere near the parking 

area. Alice's neighbor, Eve, knows where Alice works, and she knows that Alice uses the Octopus 

system. Moreover, Eve notices that in the same trajectory that person often makes purchases at 

the neighborhood store. Being unique, the trajectory was not only successfully linked to Alice, 

but also Eve now can see what other places Alice has been to at different times, revealing personal 

information Eve is not entitled to acquire. 

A few recent works [1] [44] [55] present methods for anonymizing high-dimensional trajectory 

data based on the concept of K-anonymity [37]. In their work entitled jVever Walk ^41one, Abul 
i 

et al. [1] exploited the uncertainty in the moving objects' whereabouts via their proposed privacy 

model (K, 5)-anonymity. In their 3-dimensional space representation, a trajectory is a polyline 

where the coordinates (x, y, t) of each point in the polyline represent the moving object's location 

(x. y) at a specific time t, as depicted in Figure 3. 

Abul et al.'s (K, 8)-anonymity model requires that within a <5-radius proximity to each trajec­

tory, a minimum of K—\ other trajectories co-exist, i.e., the cylindrical volume of radius 5 centered 
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by a trajectory should encompass at least K trajectories so that no trajectory can successfully be 

linked to a specific individual with a probability of more than l/K. To achieve the previous pri­

vacy requirement for a target data set, Abul et al. [1] use space translation to change the location 

coordinates of some points on certain polylines. 

Terrovitis et al. [44] present a privacy model that treats every location in a trajectory as sensitive 

information. This is unlike the set of QID in relational data, which is considered public knowledge 

that an attacker may acquire by different means. The authors assume that different adversaries hold 

different partial background knowledge about individuals' trajectories. Hence their objective is to 

prevent adversaries from uniquely identifying individuals based on their background knowledge 

about target victims' trajectories and, thus further compromising privacy by learning additional 

information about the target individuals' locations. The privacy model requires a user-defined 

threshold of breach probability P^ and uses suppression to achieve an anonymous data set. The 

experimental results in [44] suggest that higher values of P^ (equivalently, less anonymization) 

result in suppressing fewer location points. 

Similar to the work in [44] where the different adversaries' partial knowledge about individu­

als' trajectories are considered quasi-identifiers, Yarovoy et al. [55] "personalize" quasi-identifiers 

for different trajectories. In other words, quasi-identifiers are chosen based on what locations and 

times adversaries may use to uniquely identify individuals. To produce an anonymous version 

of the original data set, /{"-anonymity is modeled by means of space generalization. That is, at 

certain times (QID), locations of a trajectory are generalized to a larger region of locations that 

contains at least K — 1 other individuals. Consequently, the target victim's exact location becomes 

indistinguishable from the rest of the other individuals' locations that co-exist in the same region. 
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2.3.1 Trajectory Data vs. RFID Data 

There is not a great difference between trajectory and RFID data types. In fact, the latter is one 

type of the former, since the movement of the RFID tag holder is reported at different times. We 

describe here how our proposed method varies from the aforementioned ones. 

In the model proposed by Abul et al. [1], namely A/'ever Walk .Alone (J\fWA), the authors 

assume a continuous trajectory in which the expected location is known at each point of time. 

As we will see later, this assumption does not commonly hold for RFID data because readers are 

placed in specific locations where RFID tags are detected and the location of any moving object 

between two consecutive detections is unknown. Moreover, the MWA framework uses space 

translation, which entails changing the actual locations of the moving objects to achieve (K, 5)-

anonymity, rendering the data untruthful for further analyses. Our model, however, preserves data 

truthfulness by using suppression. 

Another major aspect is the consideration of QID. While our model is built on the assumption 

that any combination of location and timestamp is public knowledge and may be used by adver­

saries to lunch attacks, both [44] and [55] require the different adversaries' background knowledge 

to already be known to the data holder in order to perform the anonymization. In real-life sce­

narios, that assumption becomes unrealistic because it requires exploring potential adversaries and 

their prior knowledge about each moving object. 

One last important point is that none of the three works [1] [44] [55] consider the presence of 

a sensitive attribute, and thus ignore attribute linkages. In fact, [44] considers any location in a 

trajectory to be sensitive information. Our model not only anonymizes RFID data, but it is also for 

anonymizing sequential data, as we will see in Chapter 5. 
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2.4 Summary 

To summarize this chapter, we discussed different types of data that pose privacy threats to indi­

viduals when published directly as collected. We presented some of the prominent methods that 

attempt to tackle the privacy issues concerning each type of data set. Some of the works take the 

/('-anonymity model as a building block and extend upon it to satisfy certain privacy requirements. 

There are more techniques and approaches exist in the literature for privacy-preserving data pub­

lishing (PPDP); however, it does not serve our objective in this context to discuss these techniques. 

Fung et al. [11] survey recent and existing techniques for PPDP using descriptive insight and il­

lustrative examples. In the following chapter, we present a formal definition of the problem of 

anonymization in RF1D data, i.e., we formally define the privacy threats and our LifC-privacy 

model. 
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Chapter 3 

Problem Definition 

In this chapter, we formally define our new privacy model - LKC-privacy. We begin by defining 

the structure of RFID data in the table to be released, which we call an object-specific path table 

(Section 3.1). Then, in Section 3.2, we formalize the privacy threats that we mentioned in Chap­

ter 1, namely record linkage and attribute linkage, in the content of RFID data. Next, we formalize 

our privacy model and the problem statement in Sections 3.3 and 3.4, respectively. 

3.1 Object-Specific Path Table 

In this work, we assume that an RFID tag is either attached to a moving object or placed on an 

item that is carried by a moving person, for example, passengers in a transit system. An RFID 

reader is placed at location loc. At any time t when a reader detects an RFID-tagged object, the 

reader creates an RFID data record of the form (EPC, loc, t), where EPC is a unique electronic 

product code for that object. We assume that each row in an RFID data table represents a distinct 
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person, and thus, the streams of RFID records relating to the same EPC are grouped together in 

chronological order constituting a path. A path is a sequence of pairs, where a pair {lociti) indi­

cates that the object has visited location loo, at time tt. In a path, denoted by ((lociti).. • (locnt„)), 

pairs are grouped in a chronological order according to their timestamps. t* is considered a times-

tamp if it is the object's entry time to a certain location. The assumption is that an object stays in 

the same location until the next pair shows that the object has entered another location at a later 

timestamp [18]. Therefore, consecutive pairs (duplicates) indicating an object's presence in the 

same location are removed from the path. There is no restriction on visiting locations; an object 

can revisit the same location, however, at later timestamps. As an illustration, consider the path 

(al —> 63 —» 64 —• 66 —> cl —> 68), pairs 64 and 66 should be removed because the object stayed 

in location 6 for times 3, 4, and 6, thus only the entrance timestamp 3 is considered. Moreover, 

notice that despite removing 64 and 66, we kept 68 because the object was in a different location, 

as the pair just before shows. In any path, timestamps are always increasing, so sequences such as 

al —> 61 are not valid as an object can only be at one location at any point of time. 

From this point onwards, whenever we refer to a "record" in the context of data sets or tables, 

we mean a record of the form 

({lociti) -»...—> (locntn)) : si:...,sp:di,...,dm, 

where ((locitj) —>...—> (locntn)} is a moving object's path, s* € Si are sensitive attributes, and 

d-i 6 Di are attributes containing the object data that form the set of quasi-identifier (QID). In this 

work, we target the paths and the sensitive attributes. The set of QID attributes is considered to be 

of a relational data type, and it can be anonymized by using existing anonymization methods [16] 

[30] [26] [27] [38] [48] for such data. We represent a given data set in an object-specific path table 
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T. An object-specific path table T is a collection of records taking the abovementioned form, 

however, we only consider the paths and the sensitive attributes. 

3.2 Privacy Threats 

In this section, we formally define the attacks on individuals' privacy when the data holder releases 

an object-specific path table T, e.g., for statistical study or data analysis. To "protect" individuals 

from being identified, the data holder removes explicit identifiers such as EPC, name, SSN, and 

DoB. However, we shall see that simply removing explicit identifying information does not protect 

individuals' privacy. The paths and the object-specific attributes are kept intact because we assume 

that they are essential for achieving the objective of publishing the data, e.g., data analysis. As we 

explained in Chapter 1, an adversarial recipient of published data T can attempt to compromise 

individuals' privacy by identifying their paths and/or sensitive values. We refer to an individual 

in T for whom privacy is compromised as a target victim V. We also assume that the adversary 

has gathered information about a target victim V in the form of location and timestamp pairs 

previously visited by the victim. We refer to such information as the adversary's background 

knowledge. Discussing the methods that an adversary uses to gather background knowledge about 

victims is not within the scope of this research. However, a simple example is that people, such as 

family members, friends, and neighbors, commonly share various types of information about each 

other. This example can be included under the general term of social engineering [41] [51]. 

The assumption is that an adversary's background knowledge about a victim V contains at 

most L pairs, which form a subsequence of the victim's path in T. The background knowledge is 
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denoted by K = ((lociti) —>...—»• {locztz)), where z < L. K narrows down all the records in T 

to a group of records G(K) that "matches" K. In other words, K is a subsequence of each path in 

the identified group of records. The notion of matching is formally defined as follows. 

Definition 3.2.1 (Matching) A pair (lociti) matches a pair (locjtj) if loci = locj and U = tj. 

A path px covers a path py if, for every pair (loCyty) in py, there exists a pair (locxtx) in px that 

matches {loCyty). A record matches K if the path of the record covers K. • 

For example if we choose K = (e4 —> c7) in Table 1, we would have a match in EPC#1: 

(al -+ d2 -• 63 - • e4 -» / 6 -» c7) : On - tueZ/are but not in £ P C # 4 : (d2 - • / 6 -> c7 -* 

e8) : Retired. 

In Chapter 1, Example 1.1.1 illustrated two types of privacy attacks: record linkage and at­

tribute linkage. Next, we formally define these privacy attacks. An attacker exploits his back­

ground knowledge about a target victim V to build a set of candidate records G(n). One of the 

records in G(K) is V's record. Based on G(K), an adversary could perform: 

1. Record linkage: the size of the set of the candidate records G(K) is denoted by |G(K)| . 

Record linkage takes places when the adversary's background knowledge K renders |G(K) | 

small. If victim V's record is successfully identified, the adversary would be able to learn 

about all of the pairs in V's path, along with V's sensitive value. 

2. Attribute linkage: this privacy threat arises from the ability of an adversary to infer V's sen­

sitive value s. The confidence of inferring s from the set G(K) is denoted by Con/(s|G(«)), 

and is computed as follows: 

Conf(s\G(K)) = ^ J f l , 
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where the numerator is the number of records from G(K) containing s. The inference con­

fidence Conf(s\G(K)) is therefore the fraction of records that contain the sensitive value s 

in G(K). The privacy threat resulting from this type of attack is proportional to the value of 

Conf(s\G(n)); high values imply high privacy risks. 

3.3 Privacy Models 

Our objective is to provide a method that "processes" the object-specific path table T so that it is 

transformed from its raw state to another version. By "processing" table T, we are referring to 

anonymization, which is defined in Section 3.4. The resultant version of the anonymized table T, 

T', should thus be protected against the privacy threats we defined in the previous section. Next, 

we formalize our privacy model, LKC-privacy, to produce the anonymous table T". But first, we 

divide LifC-privacy into two privacy models: LK-anonymity and LC-dilution. Each of these 

privacy models protects against a different privacy threat; record linkages and attribute linkages, 

respectively. LK-anonymity and LC-dilution are formally defined next. As mentioned earlier, K 

is the adversary's background knowledge of at most L pairs in length. Thus, any subsequence q 

having a length of up to L pairs from any path in T could be a potential instance of K. 

Definition 3.3.1 (L/^-anonymity) An object-specific path table T satisfies LX-anonymity if and 

only if\G(q)\ > K for any subsequence q with \q\ < L of any path in T, where K is a positive 

anonymity threshold. • 

Definition 3.3.2 (LC-dilution) Let S be a set of data holder-specified sensitive values from sen­

sitive attributes S i . . . . . Sm. An object-specific path table T satisfies LC-dilution if and only if 
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Conf(s\G(q)) < Cfor any s G S and for any subsequence q with \q\ < L of any path in T, where 

0 < C < 1 is a confidence threshold. • 

Definition 3.3.3 (LXC-privacy) An object-specific path table T satisfies LXC-privacy */ T 

satisfies both the LK-anonymity and the LC'-dilution conditions. • 

When applying LXC-privacy, an adversary's chance to succeed using record linkage and at­

tribute linkage attacks is bounded to < XjK and < C, respectively. The former probability is due 

to Lif-anonymity and the latter is due to LC-dilution. Higher values of the parameters L, K, and 

C provide greater protection against privacy threats. This is further studied in Chapter 5. 

It is worth mentioning that the probability of a successful attribute linkage attack in T', which 

is < C, represents the confidence of inferring only those sensitive values previously set by the 

data holder. A demonstration Follows. The domain {On — welfare,..., Part — time} of the 

sensitive attribute Employment Status Ses in Table 1 includes sensitive information s, € Ses about 

passengers. Based on the data holder's degree of sensitivity, the data holder specifies a set of 

values S (Definition 3.3.2) from Scs to be considered more sensitive than others, and thus in need 

of more protection. For example, On-welfare could be a sensitive value while Part-time may not 

be. The maximum probability of C = 50% in the anonymized Table 2 is, therefore, the probability 

of successfully inferring the sensitive value On-welfare about a target victim V. Allowing a data 

holder-specified set of sensitive values S reflects the flexibility in our LXC-privacy that allows it 

to accommodate different privacy requirements. 
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3.4 Problem Statement 

In the previous section, we stated that our goal is to anonymize an object-specific path table T, 

which is susceptible to the privacy attacks defined in Section 3.2, by applying our LKC-ph\acy 

model. The anonymization process results in table T" and bounds the probabilities of successful 

privacy attacks to certain thresholds, depending on the input privacy requirement. In order to apply 

LKC-privacy on T, we enforce a sequence of suppressions on certain pairs. Suppressing a pair 

p means removing it from a path. The method for selecting pairs for suppression is discussed 

in Chapter 4. The pairs selected pairs to be suppressed are added to the set Sup. Our method 

employs global suppression, which means that for each pair Pi € Sup, all instances of pt in T are 

completely removed from T. For example, when we suppressed a\, d2, and e4 from Table 1, we 

removed all their instances and the resulting Table 2 did not contain any of the suppressed pairs. 

In Subsection 2.1.1, we discussed two anonymization techniques: generalization and suppres­

sion. We use pair suppression to anonymize RFID data for the following reasons. First, generaliza­

tion requires a pre-defined taxonomy tree (Figure 2) that classifies all domain values into a certain 

hierarchy. Preparing a taxonomy tree is an extra burden on the data holder, and taxonomy trees are 

not commonly available. Second, if generalization is used, and a target value is to be generalized 

to its parent node (given a taxonomy tree), then all siblings of that target value are generalized to 

the same parent node. This means that generalization affects not only the target pair but also its 

"neighbors" causing unneeded data loss. Suppression, on the other hand, provides more flexibil­

ity since only selected pairs (in Sup) will be removed without affecting other pairs. However, the 

actual information loss is dependent on the distribution of data and the availability of the hierarchy. 
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Having that said, solving the problem of anonymization by applying LifC-privacy converges 

to efficiently performing suppressions in T. A formal definition follows. 

Definition 3Al (Anonymization for RFID) Given an object-specific path table T, an LKC-

privacy requirement, and a set of sensitive values S, the problem of anonymization for RFID is 

to identify a transformed version T' that satisfies the LKC-privacy requirement by suppressing a 

minimal number of instances of pairs in T. • 

Our L/fC-privacy model offers flexibility over X-anonymity [38] and Confidence bound­

ing [48], which we introduced in Chapter 2. That is, setting the parameters of our model to L = oo 

and C — 100% metamorphoses the privacy model to X-anonymity, where only the anonymity 

threshold K is the input parameter. Similarly, fixing the parameters to L = oo and K = 1 trans­

forms LKC-privacy into confidence bounding, where only the inference confidence is the input 

parameter. 

The best-case scenario is to find T* such that T" satisfies the given Lif C-privacy requirement 

and has the highest utility due to suppressing the minimum number of pairs. Such a scenario is 

described as the optimal solution of the anonymization problem (T", in this case, would be the 

best solution); meaning that T' is anonymous with respect to a given LKC-privacy requirement, 

and, at the same time, has the least number of suppressed pairs when compared to all other pos­

sible anonymous versions of T. However, achieving optimal LXC-privacy, i.e., finding the best 

solution, is NP-hard because it has been proven that achieving optimal /^-anonymity and optimal 

confidence bounding is NP-hard [29] [48]. In order to achieve the best solution, we need to enlist 

all 2" possible pair suppressions in T and choose T' as stated above, where n is the number of 
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distinct pairs in T. Needless to say, such a naive method requires exhaustive searches as the num­

ber of possible combinations grows exponentially with n. Hence, in the next chapter we propose 

a heuristic approach to efficiently use suppression in order to find the best sub-optimal solution. 

In this case, the achieved T' satisfies a given LKC-privacy requirement, but may not be the most 

useful table among other possible solutions. 

3.5 Summary 

In this chapter, we formalized the representation of RFID data as object-specific path table T, 

which is a collection of records. Each record in T belongs to a distinct individual, and is composed 

of the moving object's path combined with its sensitive information. Then, we formally defined 

the privacy threats in the context of RFID data, namely record and attribute linkages. After that, 

we presented a formal definition for our privacy model LXC-privacy, followed by a formalization 

of the anonymization problem for RFID data. An optimal solution implies that the anonymized 

table 7" satisfies a given LKC-privacy requirement with the least possible amount of data loss. We 

reasoned that achieving optimal solution is NP-hard. In the next chapter we propose an efficient 

algorithm that greedily searches for a "good" solution instead of "the best". 
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Chapter 4 

The Anonymization Method 

In order to enforce LKC-privacy on an object-specific path table T, we argued in the previous 

chapter that we use suppression to leave out selected pairs € Sup from T. In order to build up 

Sup, we first identify all the possible subsequences of any path in T that violate a given LKC-

privacy requirement. Notice that our goal is not only to produce an anonymized RFID table T", but 

also to ensure T"s usefulness for further diversified data usage. Thus, the dual objective is to effi­

ciently remove all violations from T to satisfy the L/fC-privacy requirement, and to maintain data 

usefulness. Section 4.1 defines the notion of violation and critical violation. Section 4.2 presents 

our proposed greedy algorithm for efficiently identifying and removing all (critical) violations. 

4.1 Identifying Violations 

Given an object-specific path table T, we want to remove all violations from T so that it satisfies a 

given LXC-privacy requirement. An adversary knows at most L pairs about a target victim's path. 
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Informally speaking, any subsequence q of any path in T, with q having a maximum length of L, is 

a violation if q does not adhere to Lif-anonymity and/or LC-dilution (Definitions 3.3.1 and 3.3.2). 

In other words, a subsequence q in T is a violation if at least one of the following conditions holds 

true: (1) q does not occur in at least K records, and (2) the confidence of inferring a sensitive value 

s € S within the group of records containing q, G(q), exceeds the maximum threshold C. By 

removing all violations from T, no adversary with a background knowledge n can perform record 

or attribute linkage attacks because K could be any of the eliminated violations. The anonymized 

table T" is, therefore, immune against privacy attacks. A formal definition of violation, followed 

by an example is presented next. 

Definition 4.1.1 (Violation) Let qbeasubsequenceofapath inTwith \q\ < Land \G(q)\ > 0. q 

is a violation WI7/I respect to an LKC-privacy requirement if \G(q)\ < K orConf(s\G(q)) > C. • 

Example 4.1.1 In Table 1, we want to apply the following LKC-privacy requirement: L = 2, 

K = 2, C = 50%, and S = {On - welfare). A sequence qx = (e4 —* c7) is a violation because 

it violates Lif-anonymity since |G((fr)| = 1 < 2. A sequence q2 = {d2 —> /6) is a violation 

because it violates LC-dilution, since Conf(On — welfare\G(q2)) — 67% > 50%. • 

Here, we mention two properties of violation. Property 1: if a subsequence q violates LK-

anonymity, i.e., \G(q)\ < K, then all super sequences of q are violations as well. Let q' be a 

super sequence of q; according to property 1, q' is a violation because |G(q')| < |G(g)| < K. 

We note two implications for this property. The first implication suggests that since any super 

sequence q1 of a violation q is also a violation, the total number of violations is potentially huge. 

As a result, enumerating all violations and removing them from T is not a practical solution. The 
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second implication of property 1 contains the opposite semantic to that of the previous implication. 

That is, if T satisfies I^-anonymity, then it satisfies LiK-anonymity as well, for L\ < L2. This 

is because |G(gi)| > jC(g2)| > K. Property 2: assume that q violates only LC-dilution; that 

is, Conf(s\G(q)) > C and \G(q)\ > K. q', which is a super sequence of q, is not necessarily a 

violation since Conf(s\G(q')) > Conf(s\G(q)) is not necessarily true. We ensure that a table T 

satisfies Conf(s\G(q)) < C not only for every \q\ — L, but for every \q\ < L. 

As we mentioned earlier, identifying all possible violations in T for a given LXC-privacy 

requirement is unfeasible. We argue that we can save a significant amount of effort in searching for 

all violations by stopping the search for further violations at a certain point in the search process. 

We reach such a point the moment we encounter "critical violations". We then show that in table 

T, violations exist if and only if critical violations exist. Critical violations are minimal sequences, 

and are defined below. We follow the definition with an example illustrating the difference between 

a violation and a critical violation. 

Definition 4.1.2 (Critical Violation) A violation q is a critical violation if every proper subse­

quence ofq is a non-violation. • 

Example 4.1.2 In Table 1, assume that K = 2, C = 50%, and S = {On-welfare}. An example 

of a critical violation would be the sequence q\ = (e4 —> c7) because: (1) |G(<?i)| = 1 < 2, and 

(2) both subsequences of q\\ (e4) and (c7) are non-violations. On the other hand, the sequence 

q2 — (d2 —> e4 —> cl) is an example of a violation but not a critical violation, since there is a 

subsequence of <j2, (e4 —> cl), which is actually a violation. • 
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From Definition 4.1.2, we can conclude that a violation is a super sequence of a critical viola­

tion. This leads us to the following observation. 

Observation 4.1.1 A table X" satisfies LKC'-privacy if and only ifV contains no critical viola­

tion, because each violation is a super sequence of a critical violation. Thus, if T' contains no 

critical violations, then T' contains no violations. • 

Observation 4.1.1 clearly sets out the goal for our next algorithm. Algorithm 1 describes our 

proposed methodology for efficiently generating all critical violations in table T that does not 

satisfy a given LK C-privacy requirement. According to Definition 4.1.2, we basically properly 

extend subsequences that are non-violations of size i to super sequences of size i + 1. That is, one 

additional pair is added to the current non-violation, and the resultant subsequence q' is checked 

against the given LA"C-privacy requirement. If q' is a violation, then it is a critical violation. 

Critical violations (if any) appear in the extended subsequences i+1. We denote non-violations of 

size i by Ui and critical violations of size i + 1 by Vj+1. 

Algorithm 1 includes a summary of the steps required to generate critical violations. Initially, a 

set of inputs is provided by the data holder: a raw RFID path table T, an L.K C-privacy requirement, 

and a set of data holder's sensitive values S. In Line 1, we first gather in the candidate set Cand\ 

all of the unique pairs of all the paths in T. Then in Line 4, we scan T once to find |G(g)| for 

every q G Candi and also compute Conf(s\G(q)) for every s € S. In Lines 5 to 13, we verify if 

each candidate subsequence q € Candi violates the given privacy requirement, i.e., |G(g)| < K or 

Conf(s\G(q)) > C. If candidate q passes the verification, then it is a (critical) violation and is put 

in the critical violation set V}; otherwise q is put in the non-violation set [/;. We note that if Candi, 
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Algorithm 1 Generate Critical Violations (GenViolations) 
Input: Raw RFID path table T 
Input: Thresholds L, K, and C. 
Input: Sensitive values S. 
Output: Critical violations V. 

1: let candidate set Candi be the set of all distinct pairs in T; 
2: i = 1; 
3: repeat 
4: scan T once to obtain |G(g)j and Conf(s\G(q)) for every sequence q € Candi and for every 

sensitive value s € S; 
5: for all sequence q 6 Candi do 

if|G(g)| >0 then 
if \G{q)\ <Kox Conf{s\G{q)) > C for any s € S then 

add qloVi; 
else 

add qtoUu 
end if 

end if 
end for 

generate candidate set Candi by Ui-i ixi f/j_i; 
for all sequence q € Candi do 

if g is a super sequence of v for any u e V^-i then 
remove q from Candi', 

end if 
end for 

until i> LOT Candi = 0 
return V = Vi\J...\JVi_1; 

6: 

9: 

10: 

11 

12 

13 

14 

15 

16 

17 

18: 

19 

20: 

21 

22: 

where i = 1, contains a violation, then this violation is a critical violation because its subsequence, 

an empty set, is a non-violation. After increasing the value of ii by 1, Line 15 self-joins the set 

of non-violations t/j_j to create a candidate set Candi. Note that all critical violations in Vj_i 

are excluded when generating Candi because violations (if any) in Candi must only be those that 

are critical, according to Definition 4.1.2. To clarify how two sequences of size i can be joined 

together to create a super sequence of size i + 1, we present the following definition: 

Definition 4.1.3 (Sequences Joining) Sequence qx = ((/ocj'tf) —*...—+ (Zocftf)) can be joined 
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with sequence qy = {{loc\t\) —»...—> (Jocf if)) only when the first i — 1 pairs of both sequences 

are identical and t* < t\. The resulting joined sequence is ((ZoCjtj) —»...—• (ioc^Ljif.j) —> 

(K-i*r-i)>.-

In Lines 16 to 20, we verify that each candidate sequence q 6 Candi is not a super sequence 

of a critical violation v € V$_i. If it is, then q is simply removed from Candi. This is done 

in compliance to Observation 4.1.1. In Line 21, we terminate the running loop for generating 

all critical violations in T when i exceeds the maximum length of the adversary's background 

knowledge L, or when self-joining the set of non-violations t/»_i yields an empty candidate set 

Candi. Lastly, Algorithm 1 returns all of the entire critical violations found in T by combining the 

sets Vi,..., VJ_i into a unified set V. Following is a demonstrative example. 

Example 4.1.3 Suppose that the data holder of the raw Table 1 wishes to generate all the crit­

ical violations for L = 2, K — 2, C = 50%, and S = {On - welfare}. First, we gener­

ate the candidate set that includes all distinct pairs in Table 1 Candi = {al.d2,63,e4, c5,/6, 

c7, e8, e9}. Then, we identify all critical violations in Candi (by scanning Table 1 for |G(q)| < K 

and Conf(On - welfare\G(q)) > C for every q € Candi). Among all the pairs in Candi, 

a\ is a critical violation and is put in V\ = {al}. The non-violations are placed in U\ = 

{d2,63, e4, c5, /6 . c7, e8, e9}. Next, we self-join the set of non-violations U\ to generate Candi = 

{d263,d2e4,d2c5,d2/6,d2c7, d2e8, d2e9, 63e4, 63c5: 63/6, b3c7, 63e8, 63e9, e4c5, e4/6, e4c7, 

e4e8, e4e9r c5/6,c5c7,c5e8,c5e9. /6c7,/6e8 ;/6e9 ;c7e8, c7e9,e8e9}. Again, we scan Table 1 

once to identify the critical violations in Cond2 and put them in V2 = {d263, d2e4, d2/6, d2e8. 

d2e9, e4c7, e4e8}. The entire critical violations based on the enforced privacy requirement on the 

raw Table 1 are returned in the set V = { al, d263, d2e4, d2/6, d2e8, d2e9; e4c7, e4e8}. • 
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4.2 Anonymization Algorithm 

In this section, we propose Algorithm 2 for greedily performing a sequence of suppressions on 

some selected pairs to transform a raw RFID data table T into an anonymous version T" that com­

plies with a given LXC-privacy requirement. The intuition behind our algorithm is that it should 

not only produce an anonymous table T" that satisfies a given LKC-privacy requirement, but also 

ensure the usefulness of the data in T" for further data analysis, study, .. . , etc. After identifying 

all of the critical violations, suppression is performed on a selected pair p in each iteration. Gen­

erally speaking, suppressing a pair p delivers more privacy to T because by suppressing p we are 

removing critical violations; on the other hand, suppressing p also causes information loss since 

all instances of p are removed from T. We use a greedy selection function to pick a pair p, where 

p would be the best candidate for suppression in the current iteration. By "the best candidate" 

we mean that, based on the selection function, suppressing p results in removing the maximum 

number of critical violations and the minimum number of pair instances in T. Next, we formally 

define Score(p), our greedy selection function. 

Scorei ) = PrivGainW (2) 
InfoLoss(p)' 

where PrivGain(p) represents the total number of critical violations that contain the pair p, and 

InfoLoss(p) represents the total number of times pair p occurs in T (or the support of q). Thus, in 

each iteration Algorithm 2 chooses a pair with the maximum PrivGain(p) to InfoLoss(p) ratio. 

An explanation of the anonymization process for RFID data that we constructed in Algorithm 2 

follows. The input data include a raw RFID path table T, an L A'C-privacy requirement, and a set of 
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Algorithm 2 RFID Data Anonymizer 
Input: Raw RFID path table T 
Input: Thresholds L, K, and C. 
Input: Sensitive values S. 
Output: Anonymous T" that satisfies LifC-privacy. 

1: V = Call GenViolations(T, L, K, C, S) in Algorithm 1; 
2: build the Critical Violation Tree (CVT) with Score Table; 
3: while Score Table is not empty do 
4: select winner pair w that has the highest Score; 
5: delete all critical violations containing w in CVT; 
6: update Score of a candidate x if both w and x were contained in the same critical violation; 
7: remove w in Score Table; 
8: add w to Sup; 
9: end while 

10: for every w £ Sup, suppress all instances of w from T; 
11: return the suppressed T as T'; 

sensitive values S. First, in Line 1, Algorithm 2 generates all the critical violations in T by calling 

Algorithm 1; V contains the critical violations. Next, in Line 2, the algorithm structures V in a 

tree-like representation, called a Critical Violation Tree (CVT), and builds a Score Table. The CVT 

and the Score Table will be discussed shortly in Subsection 4.2.1. In Lines 3 to 9, the algorithm 

iteratively goes through the Score Table to identify the pair p that maximizes the PrivacyGain(p) 

and minimizes the InfoLoss(p) - the pair with the highest Score(p) ~ and removes that pair from 

all of the critical violations containing it. We refer to such a pair as the winner pair w. By removing 

w from all of the critical violations containing it, we eliminate these critical violations from the 

CVT. After removing w from the CVT, the algorithm updates the Score of each pair x that co­

existed in the same critical violation with w. Then, w is removed from the Score Table and added 

to Sup, the set of pairs to be suppressed from T. Suppressing all the pairs in Sup is achieved in 

Line 10, where T is scanned once to suppress every instance of w G Sup. Finally in Line J1, the 

algorithm returns the anonymized table X" that satisfies the given LXC-privacy requirement. 
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4.2.1 Critical Violation Tree 

Identifying critical violations containing w and updating the affected pairs in the Score Table (Lines 

5 and 6 of Algorithm 2, respectively) are two operations that require careful handling. In order to 

maintain efficiency in our method, we devise a convenient way to perform these operations in 

an efficient manner. We propose the concept of a Critical Violation Tree (CVT). CVT is a data 

structure that keeps track of critical violations, as depicted in Figure 4. A definition of CVT is 

presented nexr. 

Definition 4.2.1 (Critical Violation Tree (CVT)) A CVT is a tree structure that represents each 

critical violation as a tree path from root to leaf. Each node keeps track of a count of critical 

violations sharing the same prefix. The count at the root is the total number of critical violations. 

A CVT has a Score Table that maintains every pair p that is a candidate for suppression, together 

with its PrivGain(p), InfoLoss(p), and Score(p). Each candidate pair p in the Score Table has 

a link, denoted by Linkp, that links up all the nodes in a CVT containing p. PrivGain(p) is the 

sum of the counts of critical violations on Linkp. • 

Figure 4 shows a CVT structure of the critical violations generated in Example 4.1.3. The root 

node contains the number (count) 8, meaning that there are 8 critical violations in total. Each node 

below the root represents a pair and contains a number (count) that indicates the number of critical 

violations that share the same prefix. For example, node d2 : 5 indicates that there are 5 distinct 

critical violations sharing d2 as a prefix (in this case, d2 is the first pair): d2b3, d2e8, d2e.9, d2f6, 

and d2e4. The Score Table, below the tree, iteratively keeps track of every pair's Score. Next, we 

exemplify the process of deleting a winner pair w from the CVT and updating the Score Table. 
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In the initial Score Table of Figure 4, e4 is the winner pair because it has the highest Score 

among the rest of the candidate pairs. Line 5 of Algorithm 2 is achieved by removing each e4 

node from the CVT, and thus removing the critical violations that contain e4. As mentioned in 

Definition 4.2.1, Linke4 is used to conveniently traverse the path that links up all the e4 nodes. 

Deleting each e4 node from the CVT entails removing the entire subtree rooted by that e4 node. 

Removing critical violations in this manner provides efficiency in our method. Continuing in 

Algorithm 2, next we need to update the Score of the affected pairs (contained in the same critical 

violation with e4) in the Score Table. When removing a node nx from CVT, the number held in 

nx 's parent node is decremented by the number contained in nx. Figure 5 shows the updated Score 

Table after e4 has been removed from the CVT in Figure 4. Consequently, the node d2 : 5 is 

decremented by 1, the entire branch rooted by the node e4 : 2 is deleted, and the node Root : 8 

is decremented to Root : 5. Deleting all nodes of a pair p means that PrivGain(p) = 0. Any 

pair with PrivGain(p) = 0 is removed from the updated Score Table, as demonstrated in Figure 5 

showing the removal of e4. Similarly, any affected pair x with an updated PrivGain(x) = 0 is 

also removed from the Score Table; e.g., deleting e4 causes PrivGain(c7) = 0 and thus removes 

cl from the updated Score Table in Figure 5. 

4.3 Summary 

In this chapter, we presented our novel algorithm for anonymizing a raw RFID data table. The 

result of the anonymization process is a new version of the raw table that has been transformed to 

satisfy a given L/CC-privacy requirement along with the consideration of the information utility 
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factor. We first introduced the notion of violation and critical violation. Our goal was to remove 

all critical violations from the raw table. We presented our algorithm for generating all critical 

violations. Next, we discussed our greedy algorithm for anonymization. Critical violations were 

represented in a data structure called a Critical Violation Tree (CVT) for the sake of efficiently 

performing suppression. We removed critical violations by eliminating a particular pair, which 

we called the winner pair w, from the CVT. The choice of u; was based on a greedy selection 

function called Score that considers both criteria, the privacy gain and the information loss, of any 

candidate pair p in the Score Table. Pair w is the pair with the highest score among other candidate 

pairs, meaning that eliminating w will remove more critical violations and at the same time will 

suppress the minimal number of pair instances from the raw table. At the end, the anonymized 

table is produced. In the next chapter, we will test our algorithm by using two different data sets, 

and compare our method with that of traditional /f-anonymity. 

53 



Chapter 5 

Empirical Study 

In Chapter 4, we devised a novel algorithm for anonymizing an RFID data table. In this chapter, we 

carry out several evaluations of the performance of our method and present a comparison between 

our LKC-privacy and the traditional A'-anonymity model. We begin by introducing and explaining 

the data sets we used in our experiments (Section 5.1). Then, we present the different evaluation 

criteria that were considered throughout the experimental evaluation ( Section 5.2). Finally, we 

provide a broad summary of the empirical result in Section 5.3. 

We used an Intel Core2 Quad 2.4GHz PC with 2GB of RAM to conduct our experiments. In 

all of the experiments, the Score is calculated based on Equation 2, unless otherwise specified. We 

considered three evaluation criteria: the quality of the anonymized data set vis-a-vis information 

loss, efficiency, and the scalability of our anonymization technique. We employed two raw data 

sets throughout our evaluation procedure: Subway and MSNBC. Below, we explain each data set 

in detail. 
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5.1 Data Sets 

Two data sets were employed for evaluation. The first data set, called Subway, is a simulation 

of a subway transit system containing 20,000 passengers. The data set simulates the travel route 

each passenger follows when moving between the 26 stations of the transit system for a period 

of 24 hours '. The object-specific path table consists of 20,000 records; each corresponds to the 

route of a distinct passenger. The dimensionality of this data set is obtained by the total possible 

combinations between stations and timestamps, i.e., 26 x 24 gives a total of 624 dimensions. In 

order to present diversity in the simulated traveling patterns, routes are constructed as follows: the 

majority of the passengers (16,000) do not exceed a path length of four pairs, a smaller grouping 

of passengers (3,500) do not exceed a path length six pairs, and only 500 passengers use the transit 

system every hour thus having a maximum path length of 24 pairs. 

The other data set is a real-life web log data set, called MSNBC [3], which captures the web 

pages visited by users for a time period of 24 hours. Each of the 989,818 records in this data 

set shows the history of the visited web pages, classified into 17 categories (e.g., Sports, Busi­

ness, Weather, etc.). Although the 17 categories are not physical locations, this data set is high-

dimensional, which shares the same property of a typical RFID data set. For both data sets, we 

specified one attribute in the raw object-specific path table to be a sensitive attribute (similar to 

Table 1). The sensitive attribute describes the record owner's medical condition and consists of 

five domain values. One value among these five, namely Cancer, is chosen to be a sensitive value. 

Domain values of the sensitive attribute are randomly assigned to each record. 

'In real-life subway transit systems, data records that describe routes of passengers are constructed (and collected 
later) when passengers use a smart/RFlD card, e.g., http://www.carteopus.info/, to enter a station. We assume a similar 
environment in our simulation. 

55 

http://www.carteopus.info/


5.2 Evaluation Criteria 

In the following subsections, we address the different evaluation criteria for our method and discuss 

the empirical results we achieved. 

5.2.1 Data Quality 

The purpose of this experiment is to measure the data quality (or utility) of a table T' that had 

been anonymized by applying the LKC-privacy model. Furthermore, we compare the result from 

applying our method to the result from applying traditional .ftf-anonymity. In order to measure the 

data quality in T", we measure the information loss from the raw data table T. Information loss 

occurs due to suppression during the anonymization process. We use the distortion ratio as our 

metric for measuring information loss. The distortion ratio is the percentage of lost pair instances 

caused by suppression during the anonymization process for a given LKC-privacy requirement. 

Let N(T) denote the number of pair instances in the raw data table T, and N(T') denote the 

number of pair instances in the anonymized table T'. Hence, the distortion ratio is calculated as 

follows: 

N(T) - N(T) 
Distortion Ratio = . (3) 

Intuitively, achieving a high distortion ratio is not desirable because it implies low data quality. 

There is no specific benchmark for classifying the level of data quality; however, we do compare 

our method with the prominent K-anonymity model. 

The series of experiments showing the distortion ratio on the Subway data set are depicted in 

Figure 6 [10]. The configuration of each set of these experiments is as follows: the maximum 
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path length is set to be 1 < L < 3, the anonymity threshold is increased by 10 < K < 50 each 

round, and the different confidence thresholds C — 20%, 60%, 100% are assigned to each set of 

experiments, respectively. Figure 6 also depicts the distortion ratio when traditional X-anonymity 

is applied to the Subway data set. Generally speaking, the anonymity threshold K does not have 

a significant influence on the distortion ratio, which ranges between 3% and 10% for 1 < L < 3, 

because even with a subsequence q with length L — 3 and K = 50, q would easily be shared by 

at least 50 records since the total size of the data set is 20,000 records. On the other hand, the 

distortion ratio caused by applying traditional K-anonymity is much higher; in fact, it never goes 

below 40%. This suggests that our method is capable of handling high-dimensional data more 

effectively by minimizing information loss. 

We went one step further in our experiments on the Subway data set (Figure 6) and increased 

L to 4. The significant increase in the resulting distortion ratio is due to the fact that 80% of the 

records are four pairs in length (as mentioned in Section 5.1). Hence, setting L — A closely sim­

ulates a if-anonymity requirement. We also note an interesting observation; the distortion ratio 

of the Subway data set is not sensitive to the value of C. This observation is manifested in Fig­

ure 6(c), where setting C — 100% means that the LC-dilution is ignored. Therefore, suppression 

is primarily driven by Lif-anonymity. 

Figure 7 depicts the distortion ratio of the MSNBC data set [10]. Experiments were performed 

for the same values of confidence threshold C and anonymity threshold K as in the Subway data 

set, with maximum path length 1 < L < 3. Figure 7(a) shows that when C = 20%, the distortion 

ratio experiences a steady behavior for the different values of K because the anonymity threshold 

K — 50 is relatively small compared to the total number of records in the data set. Increasing K 
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from 10 to 50 does not have much impact. However, the distortion ratio stays above 60% when 

C — 20%. This is due to the nature of how the values of the sensitive attribute are assigned to 

each record. As we mentioned earlier, there are five domain values in the sensitive attribute, and 

each record is randomly assigned one value. Therefore, the probability of a record having the 

sensitive value Cancer is 20%, which is the same as the confidence threshold in this experiment. 

Thus, more suppression is required in order to satisfy LC-dilution. This fact is also reflected in 

Figures 7(b) and (c), in which the distortion ratio is significantly lower. 

5.2.2 Efficiency and Scalability 

Next, we evaluate the efficiency and the scalability of the proposed anonymization method. We 

tested our method against large data sets and monitored the runtime variations. Figure 8 depicts the 

test cases of five large synthetic RFID data sets, from one million records to five million records, 

and their corresponding runtimes. We captured variations of behaviours by having a variable max­

imum path length throughout all records in a data set. For example, in a data set, among several 

60 

-©•Suppression ^-Reading & Writing 

•^Identifying Violations • T o t a l 



groups of records, one group contains records with a maximum path length of four, while an­

other group contains records with a maximum path length of six. The path length in any group 

ranges from one to the group's maximum path length. In general, the path length in each data set 

ranges from one to six, and the average maximum path length is four. We set L — 3, K = 30, 

and C = 60%. Our method took 258 seconds to anonymize the five million-record data set, in 

which identifying critical violations took 140 seconds and reading the raw data file and writing the 

anonymous file took 118 seconds. Thanks to our Critical Violation Tree (CVT) structure in our 

proposed anonymization algorithm, suppression is done effectively, as it takes less than one second 

to complete. 

5.3 Summary 

Based on the observations from our experiments, we can summarize the results as follows. (1) 

The distortion ratio tends to increase with an increase of the maximum length L. (2) Changing the 

anonymity threshold K has an unnoticeable impact on the distortion ratio. However, this is not the 

case when K is increased to exceptionally large values, e.g., K > 1000. (3) The distortion ratio 

could be sensitive to the change of confidence threshold C, but this depends on the distribution of 

the sensitive value. (4) All the test cases described in this chapter and shown in Figures 6, 7, and 8, 

suggest that our method is effective and scalable for handling large data sets. 

In this chapter, we performed intensive experiments to test our proposed anonymization method. 

We set up three evaluation criteria and provided a comparison between our method and that of tra­

ditional A'-anonymity. We used two data sets to evaluate the performance of our method. The 
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first data set, Subway, is a simulation of the travel routes of 20,000 passengers, and the other data 

set, MSNBC, is a high-dimensional real-life web log that captures visited web pages by 989,818 

users. To measure the effectiveness of our method on preserving data quality after anonymization, 

we presented the notion of distortion ratio. A lower distortion ratio means better data quality. We 

observed a significant decrease in the distortion ratio when evaluating our model compared to tra­

ditional if-anonymity. Thanks to the notion of adversary's background knowledge L in our model, 

the distortion ratio was decreased by up to 40% compared to that of traditional if-anonymity. Fur­

thermore, we tested our method for efficiency and scalability. Five large synthetic RFID data sets 

- one million to five million records - were generated to examine the anonymization runtime and 

its variation. The results suggest that our method can handle large data sets efficiently. 
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Chapter 6 

Conclusion 

Radio Frequency IDentification (RFID) is a technology used for automatic object identification. It 

is being applied in many sectors, including manufacturing, healthcare, and transportation. Such 

data is rich in content and may be used for various real-world applications, e.g., academic re­

search, statistical studies, and information mining. RFID data publishing plays an important role 

in these applications, due to its benefits and versatility. However, data publishing raises real pri­

vacy concerns. In this thesis, we demonstrate two types of privacy threats in the context of RFID 

data publishing: record linkage and attribute linkage. An adversary could utilize his background 

knowledge about a target victim to learn about the target victim's path (record linkage) or to infer 

the victim's sensitive value (attribute linkage). 

In this thesis, we present the importance and applications of RFID data publishing, and discuss 

the potential privacy threats caused by RFID data publishing. We formally define the problem and 

present our proposed method for circumventing potential privacy threats. 
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6.1 Summary of Contributions 

Given a raw RFID data set, we want to transform the data into a new anonymized version that is 

immunized against privacy attacks in accordance with a given privacy requirement. In addition, 

we want to ensure the usefulness of the anonymized data by keeping distortion to a minimum. 

In this thesis, we formally define the privacy threats that arise in RFID data publishing. We 

argue that RFID data is characterized by being high-dimensional and sequential; this presents an 

obstacle in the anonymization problem. We propose and formally define LKC-privacy, a privacy 

model that addresses these challenges. We devise an efficient and scalable algorithm for achieving 

this privacy model. We carry out intensive experiments to evaluate the performance of our method. 

Our experiments on different data sets, including real-life data, suggest that our method is scalable 

and efficient, and that it can effectively handle extremely large data sizes. We also compared our 

method to traditional /f-anonymity, and observed that the former yields a significant increase in 

data quality. 

6.2 Future Work 

We provide the following list of possible future research directions for the work we presented in 

this thesis: 

• Implementing a local suppression strategy: locally suppressing a critical violation v means 

that only partial instances of v need to be removed from T. This will decrease the amount of 

information loss as the rest of the instances remain intact. 
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• Considering publishing updated versions of T: in practice, it is common that the data 

holder may want to publish an updated version of table Tj as new RFID data arrives. The 

anonymized table T[ had already been published and is out of the data holder's control. The 

updated table T2 = 7i ± records is to be published. We need to ensure that neither T[ nor T'2 

leak information that might help an attacker to crack the anonymity of the other anonymized 

table. 

• Implementing a solution that "safely" anonymizes a table owned by more than one data 

holder: multiple data holders may want to collaborate and work together, e.g., to improve 

their services. Each data holder owns a different set of attributes of the same record owners. 

The goal is to merge the different tables into a single integrated one in a way that preserves 

individuals' privacy by not allowing any data holder to acquire any more detailed information 

(from other data holders) about individuals other than what the integrated table discloses. 
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