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Abstract 

Two methods to estimate protein copy number from Drosophila embryo image data 

Lee Zamparo 

Experiments using microscopy which measure gene expression data usually do so indirectly, by 

recording the intensity of messenger RNA or proteins tagged with fluorescent agents, to produce 

semi-quantitative data measured by fluorescent intensity. However, quantitative measurements of 

mRNA or protein concentrations are imperative for developing predictive models of gene regulation 

networks. In the absence of experimental procedures designed to calibrate the conversion from 

intensity to concentration, a statistical model of the intensity values may be used to estimate this 

relationship. In this thesis, two different estimators are developed to estimate the relationship 

between intensity and protein copy number. The methods were applied to a data set of time-lapse 

protein expression data taken from embryos of Drosophila melanogaster. Both methods assume a 

linear relationship between intensity and concentration. When restricted to a specific protein, the 

methods produce very consistent results, and are in general agreement with other methods applied 

to similar data. The software used to generate the estimates is implemented as a series of scripts in 

R. The data is all drawn from FlyEx, and is available at h t tp : / / f lyex .ams . sunysb .edu / f lyex / 

m 

http://flyex.ams.sunysb.edu/flyex/
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Chapter 1 

Introduction 

1.1 Problem statement 

Fluorescent imaging is widespread in the analysis of mRNA and protein expression in single cells, 

in populations of cells, and within tissues or organisms. This type of data is used in many different 

types of genomic studies including: 

• determining the effects of gone knockouts in organisms such as yeast, e. coli, and other bacteria 

and fungi. 

• over or under-expression of genes when the organism under study is subjected to different 

environmental stresses or conditions such as heat shock, change of pH, or change of available 

nutrients. 

• promoter manipulations, understanding regulatory networks. 

• determining co-expression of genes or co-location of gene products, which may indicate com-

plexing. 

• identifying markers for tissue types or processes. 

• inferring protein function. 

As useful as such data is, one limitation is that it usually only gives relative expression values. 

Greater fluorescent intensity implies greater expression, but the actual concentrations or copy num

bers of molecules being imaged are usually not known. Knowing expression in absolute terms can 

be important for detailed quantitative modeling ([BS03]) and for extracting biologically meaningful 

parameters. For example, many current fitting methods express reaction rates in fluorescence units 

(e.g., [TXGB07]), rather than in molecules or moles. 

Absolute expression is also relevant for understanding the sources of noise or variability in gene 

expression ([RWA02]; [SES02]; [Swa04]; [RPA+06]; [RO05]; [BEPM+06]). This is because many 

studies in gene expression variability or expression noise observe isogenic populations of cells, and 
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try to quantify gene expression while explaining the expression variation as either intrinsic or extrin

sic noise. Intrinsic noise involves processes within the cell, such as fluctuations in signal transduction 

or noisy ligands. Extrinsic noise are changes in the cell's transcription or translation routines based 

on stimuli from the cell's environment. Given that expression noise is defined in terms of the ratio 

of standard deviation over mean expression, accurately quantifying gene expression is crucial to un

derstanding this variability. Absolute expression is also important for recent analyses of information 

processing in gene regulatory networks ([GTWB07], [LPS07], [TCB08]). 

1.2 Other approaches to quantification 

Measuring concentration is a difficult problem in molecular biology. One approach that has many ad

vantages is mass spectrometry. Current mass spectrometry technology has the capability to measure 

the number of different masses in a biological sample as well as the intensity of each mass. Advanc

ing technology and protocols for MS technology have improved the accuracy and reproducibility of 

experiments. However, several obstacles remain. Depending on the complexity of the sample under 

analysis, experimental runs may produce inconsistent results [LPDA08]. Measurements may be con

founded due to strong sequence similarity among sample peptides, unexpected ions produced as a 

result of the protein digestion process [PAD07], as well as other different types of noise which remain 

poorly understood. Furthermore, mass spectrometry is unable to measure any spatial expression 

information, due to the sample preparation process. 

This means that any study that depends on measuring expression with spatial information is 

dependent (currently) on interpreting cell images. There are imaging techniques that can result 

in concentration or copy number information, such as fluorescence- and image-correlation spec

troscopy, fluorescence-intensity distribution analysis ([KPUG99]), and photon-counting histogram 

analysis ([CMRG02]). Alternatively, the intensity signal can be calibrated by measuring expression 

of mRNAs or proteins that are at known concentrations (e.g., [BEPM+06]; [GTWB07]). However, 

these methods suffer from some practical drawbacks. 

Gregor et al. [GTWB07] investigated the limits of the information a cell can extract from 

its position. They also use the segmentation process in drosophila as their model. As part of 

four questions relating to noise, they try to measure the absolute concentration of Bicoid (Bed), a 

maternally expressed gene that regulates other genes during the segmentation process. One question 

they want to investigate is how reproducible are the absolute Bed concentrations at corresponding 

locations in different embryos. They construct an experiment using altered embryos that contain 

bicoid-eGFP fusion protein, and use time series images to estimate the rate of diffusion from the 

anterior towards the posterior of the embryo. This method relies heavily upon the previously well 

characterized migratory pattern that is specific to Bed, and may not be widely applicable. 

Kask et al. developed fluorescence-intensity distribution analysis, to measure concentration of 

fluorescently tagged molecules in confocal microscopy studies [KPUG99]. By modeling the empirical 

spatial brighness distribution, and using generating functions to calculation the theoretical photon 
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count number distributions, they can simultaneously determine the correspondance between con

centration and observed brightess values. However, the authors admit their method rests on two 

assumptions: that coordinates of molecules do not change significantly during a counting time in

terval and that the brightness of each molecule can be expressed as a product of a spatial brightness 

function, which is common to all molecules in the sample, and specific brightness, which has a char

acteristic value for each molecule. So the procedure requires sampling images at a rapid rate, as well 

as calibration expertise for the particular microscope. 

Similar in principle to the work of Kask et al., Chen et al. developed a method which they call 

fluorescence fluctuation spectroscopy [CMRG02]. They apply it to images of solutions of fluorescent 

dyes. The fluorescent image data is used to obtain information about the number of fluorescent 

particles in a small volume and the diffusion coefficient from the autocorrelation function of the 

fluorescence signal. They measure the empirical distribution of detected photons, called the photon 

counting histogram, and compare it to a theoretical distribution. While the authors demonstrate 

the effectiveness of their method for samples containing one or two different fluorescently labeled 

dyes, the question of how it would scale to more complex biological samples is unanswered. 

Tian et al. develop a method to relax a differential equations model into a stochastic model using 

poisson processes to represent the birth and death of molecules involved in biochemical reactions, in 

a bid to estimate kinetic parameters [TXGB07]. However, their methods needs to fit a large number 

of parameters, and requires both a large set of time series data, as well as a high abundance of 

molecules in the samples. 

Currently, none of these approaches are nearly as common in practice as direct, un-calibrated 

measurement of fluorescent intensity. This is likely due to a number of factors, not the least of which 

is a considerable amount of required expertise, precise calibration of the microscope instruments, 

or various assumptions about the composition and behaviour of the observed samples. Therefore, a 

method that uses only intensity data should be both widely applicable and useful when constructing 

systems level models of gene product interactions. As I will show, the two methods described herein 

show close agreement with that of Gregor et al. for Bicoid, which is encouraging. 

Motivated by a well-annotated publicly available data set and some previous work on modeling 

regulation of genes in the segmentation network of Drosophila melanogaster ([PJRG06]), I chose 

to focus on that particular system to test the two methods. They are both applicable to similar 

fluorescence data obtained from other organisms. 

1.3 M y work 

Based on a method developed by Rosenfeld and colleagues to estimate protein concentration in 

growing colonies of E. coli in [RPA+06], I developed two methods for estimating copy numbers 

of fluorescently labeled molecules. Each method takes as input the intensity values in the three 

channels of a single image. Each method makes assumptions about the underlying biological state 

of the embryos in each image, and is designed to exploit that state, along with the underlying 

variability of expression. 
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Both methods for estimating protein copy number assume that the observed expression intensity 

in a nucleus for a particular channel is proportional to the copy number of the corresponding protein. 

If we denote the observed expression intensity as Oi, and the true concentration of the protein as 

Ni, then under this assumption these two quantities are related by a proportionality factor v. 

Oi=v*Ni (1) 

The proportionality factor v may vary for different proteins, but is assumed to be constant for 

embryos imaged under similar conditions. Each method estimates v by fitting a probability model 

to the concentration values, and then exploiting relations between the expression values of local 

nuclei. Prom these estimates of u, we can solve equation 1 for the protein concentrations N. The 

two methods make different assumptions about the data, and so they apply hi different situations. 

The first method uses a binomial model for concentration. It is most accurate for embryos where 

the nuclei have just undergone division, and where the sibling pairs can be easily identified. The 

binomial method assumes that proteins present in the mother nucleus are passed to the siblings 

independently and with equal probability. The difference in intensities of the siblings can then be 

related to absolute concentration. 

The second method is for embryos that are near the end of segmentation. It models protein 

concentration as a stochastic process, where each protein is being produced in the nucleus at a rate 

H, and degraded at a rate <5. This is known as a birth-death process. This model is biologically 

plausible as proteins are created and degraded by different processes as needed by the cell. The 

method then exploits the fact that the first two moments of the poisson distribution are the same, 

recovering an estimate of v. Detailed descriptions of both methods appear in chapter 3. Figure 1 

displays how both of the methods are applied from loading the data to producing the estimates. 

1.4 Summary of the Results 

The results of the estimates are very consistent within each transcription factor, and within a factor 

of 4 when comparing the score for the same factors across the two methods. Results are quite 

consistent for the the maternal and gap genes. 

1.5 Outline 

This thesis is organized into five chapters. This first chapter introduced the problem of estimating 

concentrations from image data, some contemporary methods to do so, and summarizes the two 

methods developed as part of this work. The second chapter presents some background knowledge 

about the data set and the segmentation network of drosophila, as well as a brief review of some of 

the relevant molecular biology. A review of systems biology is included, to motivate this work and 

situate the work. The third chapter describes the both of the methods in detail, the two models 

used (binomial model and poisson model), as well as some justification for both models. The fourth 

chapter presents the results of the method on a selection of embryos, and a discussion of noise. The 
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fifth chapter concludes this work with a discussion of the results, some comparison with current 

works, and a discussion of potential improvements and impasses. Figures appearing in the first five 

chapters are re-printed in colour in the first appendix. Further appendices containing the code used 

to run the experiments appear after the bibliography. 
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Figure 1: An activity diagram summarizing the analysis pipeline for both the poisson and binomial 

methods. 
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Chapter 2 

Background and Data Set 

This chapter presents some relevant background knowledge. It is split into two parts: a biology 

section and a statistics section. The biology section is composed of a short introduction to systems 

biology, a primer on the central dogma of molecular biology with a focus on transcription factors, and 

an overview of the drosophila gene network, along with the motivations that drive research in this 

system. The statistics section contains reviews of the two relevant probability distributions used, the 

binomial and Poisson, along with the relation between the two. The method of maximum likelihood 

estimation concludes the statistics section. Finally, the data set used in the work is presented. 

2.1 Biology background 

At the molecular level, different types of biological knowledge (DNA, genes, proteins) can be modeled 

as annotated sequences of symbols drawn from various alphabets. For DNA, the alphabet consists 

of the four deoxyribonucleic acids adenine, cytosine, guanine, and thymine. A, C, G, T. For RNA 

the set of ribonucleic acids shares A, G, C with the DNA alphabet, but thymine is replaced by uracil, 

forming the set A,U,G,C. This strings and alphabets representation of molecular biology allows 

for the conception of molecular biology as computation. This also leads to a natural collaboration 

with computing science, with whom biologists have developed tools to gather, store, visualize and 

annotate biological information. This task is at the core of systems biology, which is explored below. 

2.1.1 Systems biology 

Systems biology is an approach to understanding biological science at a systems level perspective 

([Kit02]). Since at least the middle of the 20th century, systems biology has been proposed and 

discussed, but not until present day has it been even possible. Yet today, three principle factors 

have made systems biology possible. The first is great advances in the field of molecular biology. 

While molecular biology has proven to be tremendously difficult, with every discovery revealing 

new exceptions and levels of complexity, technology has enabled much more efficient representation 

and dissemination of biological knowledge, accelerating the rate of new discoveries. The second is 
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the development of fast and relatively inexpensive whole genome sequencing techniques, as well as 

technologies to simultaneously perform measurements on a genome wide scale for a wide variety of bio 

molecules. The third is the willingness of physicists, computer scientists and biologists undertaking 

new collaborative efforts, with each contributing expertise previously inaccessible to biologists alone, 

with the overall goal of gaining a more fine-grained knowledge of biology. These three factors make 

it possible for biology to be understood as a system operating at the molecular level. According 

to Hood et al., Three principal technological advances have made a systems approach to biology 

practical ([IGH01]). The first is high-throughput techniques for genetic manipulation, which are 

now affordable, standardized and automated. The second is the availability of complete genomic 

sequences, complete with annotated lists of genes and known functions, which has made systematic 

mutagenesis projects possible. The third is technologies for disrupting genes in trans, which allows 

the application of genetic perturbations to a wide range of eukaryotic organisms. 

In addition to technological breakthroughs, systems biology required a change in the philosophy 

of biological science. Ideker et al. say that systems biology is the result of the integration of 

two different approaches to biology: hypothesis driven science and discovery science ([IGH01]). 

Hypothesis-driven science is where researchers survey what is known, create hypotheses to explain 

the unknown, and attempt to distinguish among them by interpreting the results of appropriate 

experiments. Discover)- science is where researchers seek to define all of the elements in a system, 

and to create a database containing that information. Ideker et al. claim that the integration of 

these two approaches is one of the main goals of systems biology. According to Kitano, systems 

biology required a shift in the notion of what to look for in biological experiments ([Kit02]). While 

the basic units of genes and proteins remain important, experiments should aim to reveal instead 

the structure and dynamics of a system of genes or proteins. 

Because a system is more than just a series of genes or proteins, few of its properties can be 

discovered by simply creating a diagram of their interactions. So while this is an important first step, 

Kitano uses the analogy of a roadmap. What we really want to understand is how traffic travels 

along roads, and why traffic patterns occur. A system level understanding of biology depends upon 

knowledge of the following four aspects of the system ([Kit02]): 

1. System structures. Examples include gene interaction networks, pathways, and the knowledge 

of how interactions change the physical properties of cellular structure. 

2. System dynamics. This is how the system behaves over time, under different conditions and in 

response to various stimuli. Examples of techniques to understand system dynamics include 

metabolic analysis, sensitivity analysis, or bifurcation analysis. 

3. Control methods. Mechanisms that systematically control the state of the cell to deal with 

challenges or malfunctions. Examples include transcriptional regulation, protein folding regu

lation, apoptosis, 

4. Design methods. These include strategies to modify existing cellular control methods to engi

neer certain types of cellular behaviour in a principled manner. 
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As previously stated, advances in the above will require advances in computational models for 

biology, more plentiful and reliable genomic data, cheaper and more accurate measurement tech

nologies including microscopy, and easier integration with existing knowledge. In addition, it must 

be made accessible to everyone who is able to make a contribution: biologists, computer scientists, 

chemists, and others. These processes have already been undertaken by a wide variety of groups. 

Knowledge of gene regulatory logic for various organisms are stored in databases available through 

the interned (e.g SCPD, TRANSFAC) ([IGH01]). Similarly, biochemical pathways in various organ

isms are available and (e.g KEGG, EcoCyc) ([IGH01]). 

2.1.2 Elementary Molecular Biology 

Western science views biological systems as being part of two types of information: genes, which 

encode protein machine parts that combine to create life, and networks or regulating interactions, 

which specify the complex patterns in which genes are expressed. This information can be modeled 

in a hierarchy or pathway: 

DNA => mRNA =>• protein =>• protein interactions = > pathways = > networks ==> cells = > 

tissues 

The first part of this pathway, from DNA through to proteins, is known as the central dogma 

of molecular biology. It posits that all the information about our cells is bound in DNA, which is 

transcribed to RNA, and then the RNA is translated into amino acid chains and folded into proteins. 

Proteins then play a central role in both the structure and function of the cell. Not included in this 

extensive list are any of the many small molecules and macro-molecules that are present in the cell 

and which also play a large role in many cellular processes. 

The relevant part of the above pathway for this study begins at the DNA level and ends in protein 

interactions. The proteins in the segmentation network of drosophila bind to DNA to influence the 

process of transcription, and are part of a class of proteins known as transcription factors. Below 

is a review of the mechanisms of transcription, the process by which DNA sequences are read and 

reproduced as RNA, as well as how cells regulate gene expression through transcription. 

Overview of Transcription 

The complexity of each of the steps in the pathway from gene to protein has required that they 

be studied in isolation, and most of our knowledge in this area has been generated using classical 

biochemistry. Using this approach, the biochemist first obtains experimental conditions in which 

the process of interest (e.g., transcription or translation) can be reconstituted in vitro in a cell-

free extract. The protein machineries involved are then purified from the protein extract, allowing 

the process to be recapitulated using purified proteins and allowing the role of each player to be 

analyzed mechanistically. While this type of approach has been very useful, it forces the scientist to 

take a reductionist view. Each step in the pathway (e.g., transcription, pre-mRNA processing, and 

translation) is studied separately, often with little thought being given to the connections between 

steps. Consequently, the different steps have traditionally been viewed as discrete, unconnected 

events. This separation of events is also most compatible with human thought process, which can 
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most easily visualize complex processes as a linear series of events, with each step going to completion 

before the next begins. 

In recent years, the way in which we view gene expression has changed significantly, and decade-

old observations suggesting that consecutive steps in the pathway are interdependent or are influ

enced by one another have taken on new meaning. A growing number of genetic studies have revealed 

functional links between the protein factors that carry out the different steps in the gene expression 

pathway. Similarly, conventional biochemical approaches and large-scale mapping of protein-protein 

interaction networks have uncovered physical interactions between the various machineries. In com

bination, these studies suggest that each stage is a subdivision of a continuous process, with each 

phase physically and functionally connected to the next ([OR02]). It has now been demonstrated, 

for example, that the transcriptional apparatus plays an active role in recruiting the machinery that 

caps and processes the nascent RNA transcript, and that pre-mRNA splicing promotes transcription 

elongation ([OR02]) and is required for efficient export of the resulting mRNA into the cytoplasm. 

The temporal separation of each step has also been questioned: pre-mRNA splicing and packaging 

of the mRNA for export occurs even as the transcript is spooling off of the transcribing RNA Poly

merase II (RNAP II). The picture that is emerging is one in which most steps are physically and 

functionally connected, like a factory assembly line, ensuring efficient transfer from one manipulation 

to the next. This organization of events may also introduce a series of quality control mechanisms, 

as it ensures that no individual step is omitted. 

The results of a large body of work have revealed at least three general principles: 

• The protein factors responsible for each individual step in the pathway from gene to protein 

are functionally, and sometimes physically, connected. 

• Regulation of the pathway is controlled at multiple stages. 

• Different classes of gene are regulated at different stages. 

The next few subsections introduce ideas of how DNA structure is implicated in transcription, 

and how transcription factors act to regulate expression. 

Chromatin in Gene Expression 

The DNA in our cells is not floating freely. Most of the time, it is packaged into a highly organized 

and compact protein structure in the nucleus known as chromatin. The basic organizational unit 

of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped almost twice 

around a protein core containing two copies each of four histone proteins: H2A, H2B, H3, and H4. 

These small, positively charged proteins are the building blocks of our chromosomes. In terms of 

evolution, they are highly conserved among eukaryotes. Further compaction of our genes is achieved 

by nucleosome folding, a process which remains poorly understood. 

Once thought of as being a static organizational framework for DNA, it is now apparent that 

chromatin plays a pivotal role in regulating gene transcription by providing access of the cellular 

machinery responsible for transcription to genes ([OR02]). Chromatin seems to come in one of two 
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classes. Untranscribed regions of the genome are packaged into highly condensed heterochromatin. 

Transcribed genes appear in euchromatin, which is less condensed and therefore more available. 

Different types of chromatin help explain how it is that each cell in our body has the same DNA, yet 

has very different structure and function. It is now known that each cell type packages its genes into 

a unique pattern of heterochromatin and euchromatin, and that this pattern is maintained after cell 

division. The pattern of packaging into these alternative chromatin states determines which genes are 

available to be transcribed in newly divided cells, thus allowing tissue specific cells to divide without 

change of function. Therefore, to initiate gene expression, transcriptional activator proteins must 

find some way to access DNA that may be tightly packaged in chromatin, and presently inaccessible. 

As is explained below, they do this by working with other agents in the nucleus to set in motion 

events which result in a change in chromatin conformation, leading to increased DNA accessibility. 

How do Transcription Factors Regulate Each Other 

Higher eukaryotes have developed sophisticated mechanisms for controlling the rate of gene tran

scription. Many of these mechanisms can be seen as sequences of reactions acting to produce a 

change in the biochemical state of the cell, or cell compartment. These are referred to as signal 

transduction cascades. The result of many signal transduction cascades is the activation of tran

scriptional regulator proteins that bind to short sequence motifs found in the promoter and enhancer 

regions of genes. These regions appear on the DNA, usually upstream of the transcription start site 

of a gene. The regulatory sequences of most eukaryotic genes contain binding sites for multiple 

transcription factors, allowing each gene to respond to multiple signaling pathways and facilitating 

the fine-tuning of transcript levels. The activities of many transcription factors depend upon many 

factors including the presence and concentration of various other proteins, and can be modulated 

by other regulators bound nearby. These complex relationships allow transcription factors to take 

on multiple roles: a single activated transcription factor can induce transcription of one gene while 

repressing that of another. This combinatorial and context-dependent regulation of transcription 

allows metazoan cells to respond to many different stimuli using the same factors, but in different 

combinations. This is in contrast to transcriptional control in prokaryotes, where metabolically re

lated genes are coregulated in common transcription units called operons by a single transcriptional 

activator or repressor. 

Considering the diversity of physiological signals that regulate gene expression, it is not surprising 

that the activities of transcription regulators are subject to multiple modes of regulation. A common 

theme in their regulation is the transport of a protein between the nuclear and cytoplasmic cell 

compartments. This occurs through nuclear pores, which are specialized gateways that span the 

nuclear membrane and control the passage of macromolecules through the membrane. A family of 

transport factors that recognize short amino acid motifs found in proteins mediates the movement 

of proteins through these pores. Two types of transport motif exist: nuclear export signals (NES) 

are found in proteins transported from the nucleus, while nuclear localization signals (NLS) label a 

protein for nuclear import. Transcription factors, which act on DNA that is found in the nucleus, 

possess NLS labels. 
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To respond to changes in stimulus, a cell must be able to change the state of a transcriptional 

activator as quickly as it is induced. A number of recent reports have linked the ubiquitin protease 

system to both transcription factor activation and degradation ([OR02]). Ubiquitin is a small, highly 

conserved protein that modifies proteins by forming a covalent bond with its targets. This bond 

may change various biochemical properties of the target protein, affecting it's function or localiza

tion within the cell. It may also mark the target protein for degradation. The tight coupling of 

transcription factor activation and degradation seems to act as a control against prolonged tran

scription factor activity. Thus, ubiquitination can be though of as a activity license for transcription 

factors by linking their activity to their inactivation. The rapid turnover of promoter bound acti

vated transcription factors resets the signaling pathway and allows the cell to continuously monitor 

its environment. If signaling is prolonged, a newly activated protein will replace the degraded tran

scription factor. In the absence of signal, the degraded factor is not replaced and transcription 

ceases. The role of the ubiquitin ligase system may extend to other phases of transcription. For 

instance, it is known that the largest subunit of RNAP II is ubiquitinated during transcription in 

vitro ([OR02]). Taken together, this suggests that the transcriptional process is closely linked to the 

cellular processes that degrade proteins, allowing the rapid termination of transcription at multiple 

stages in response to various cellular signals. This allows the cell to respond to rapid changes in its 

environment, and to remain viable in the face of different challenges such as infection, changes in 

temperature, changes in pH, and others. 

In addition to protein ubiquitination, a number of other post-translational modifications play 

important roles in regulating transcription factor activity. The next most common modification 

is protein phosphorylation, and is carried out by a family of proteins known as kinases. These 

proteins transfer phosphate groups from a donor protein to a substrate protein. Often the donors 

are molecules such as ATR As with ubiquitination, this transfer alters the biochemical properties 

of the accepting protein, and induces a change in either cellular localization or function. In addi

tion, transcription factors arc subject to many other modifications, including acetylation on lysine 

residues and methylation on arginine and lysine amino acid residues. See [ZR01] for more details. 

Many of the enzymes that catalyze these modifications have been identified only recently. The 

p53 tumor suppressor protein, which responds to stress signals and coordinates a wide variety of 

cellular processes, was among the first transcription factors shown to be acetylated with functional 

consequences. 

How Transcription Factors Regulate Gene Expression 

Transcriptional activator proteins must bind to and decompact repressive chromatin structures to 

induce transcription. The way in which they do this is gradually becoming clear. To elicit their 

effects on gene expression, activators require the cooperation of a diverse family of coregulator 

proteins ([MO02]). The function of these ancillary proteins was obscure until it was found that many 

were subunits of protein complexes that alter chromatin structure, or were themselves chromatin-

modifying enzymes. Thus, the recruitment of coactivators by DNA bound transcription factors 

leads to local chromatin decompaction and allows access of RNAP II and the general transcription 
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machinery to the promoter. 

2.1.3 The segmentation network in drosophila 

The segmentation network in drosophila is a system of genes that are most active during embryoge-

nesis. During the process, cell membranes have not yet been formed to strictly divide the nuclei1. 

Depending on the phenotype induced by the expression of the various genes active during seg

mentation, they may be classified into one of four groups: 

• gap genes are those in which mutations cause multiple adjacent segments to be missing from 

the embryo. 

• pair-rule genes are those in which mutations cause multiple alternate segment size units to be 

missing from the embryo. 

• segment polarity genes are those in which mutations cause deletions in part of each segment 

• maternal genes are genes that are not transcribed in the embryo, but whose transcripts are 

donated by the mother via the oocyte2. 

Segmentation is governed by a program of sequential gene expression. It begins by three maternal 

gene regulatory proteins - including Bicoid, Hunchback and Caudal - which specify an initial 'pre-

segmentation' pattern along the anterior-posterior axis, while the anterior and posterior ends of the 

body are specified independently by the localized activation of the maternal receptor tyrosine kinase 

Torso. The principal target genes of these maternal factors in the embryo's genome are known as 

gap genes, as their lack leads to gaps in the body pattern. The gap genes, such as Kruppel, Knirps 

and Giant, encode sequence-specific transcriptional repressors ([Lev08]). 

The whole process of drosophila embrvogenesis takes place in less than one day. The blastoderm 

stage, during which the segmentation and homeotic genes become active, is reached in just the 

first few hours. During this early period, expression patterns change rapidly. Some early research 

proposed that the interaction between these genes could be characterized as a cascade ([SC87]). The 

first group regulates the expression the following group, and then the following group regulates the 

expression of the next group. However, more recent work shows that the process is more complex. 

There is evidence of auto-regulation of genes, as well as regulatory interactions between non-adjacent 

groups in the cascade ([SPF+04]). 

The interplay of the maternal factors and the gap repressors constitutes one of the leading 

paradigms for the combinatorial control of gene expression in development ([Lev08]). These regula

tory factors bind to the enhancers of the segmentation genes to produce precisely positioned on/off 

repeating transverse stripes of expression for each gene, foreshadowing the subdivision of the em

bryo into a repeating series of body segments. The segmentation genes typically have highly complex 

enhancers, with multiple binding sites for each gene regulatory protein. Each enhancer contains a 

' I n this stage, the embryo is referred to as a syncytium: a single cell with multiple nuclei, which divide regularly 
and roughly at the same time 

2An oocyte is a female germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. 
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specific constellation of binding sites for maternal and gap proteins, and within each nucleus there 

is a particular combination of transcriptional activators and repressors that can bind to these sites. 

This process is of general interest because it is perhaps the best characterized example of a 

morphogenetic field ([SKK+08]). The morphogenetic field is a fundamental object in developmental 

biology. It was shown in the late 19th century that groups of cells underwent collective determination 

events (morphallaxis) in which cell fate was stably assigned to individual cells with exquisite spatial 

precision. 

Success in elucidating genomes, proteomes, and so on suggests the importance of understanding 

the morphome, by which we mean the complete set of determinants of a morphogenetic field. In 

general, the morphome will consist of a description of the quantities of morphogenetic determinants 

at a resolution in space and time sufficient to uniquely determine the biological trajectory of the 

system. Because of the central role of cells and their genomes, the information about the morphome 

must be of at least cellular resolution in space, must include the expression levels of all the genes 

encoding cell fate determinants, and must be of a time resolution shorter than the time in which 

significant changes in the levels of these determinants can take place. 

During segmentation, the embryo is syncytial and only a very limited number of zygotic genes 

are expressed. Only 14 of these genes act in the blastoderm as determinants of the segmentation 

morphogenetic field ([SKK+08]). All of these genes code for transcription factors. Together with 

the syncytial nature of the blastoderm suggests that cell-cell communication by means of signaling 

pathways does not occur in the segmentation morphogenetic field, but rather that spatial interactions 

occur through diffusion of these transcription factors. Mechanical forces and cell migration appear 

to be uncoupled from the segment determination process as well, since mutations in segmentation 

genes do not affect morphology until after gastrulation ([SKK+08]). 

Therefore, estimating the spatial concentration of these gene products during the segmentation 

process is a prerequisite to constructing a working model of the morpheome, and to a quantitative 

systems biology understanding of fundamental developmental processes in animals. The data from 

Reinitz et al. cited in this thesis and in Surkova et al. ([SKK+08], [KMP+02]) claims to be 

quantitative, but in fact only the fluorescent intensity is reported. The correspondance between this 

intensity and the concentration of the associated transcription factor is unknown. 

Given that this system has been actively studied for over twenty years, much of the biological 

knowledge is beyond the scope of this thesis, and is not directly relevant to the central aspect of 

estimating protein concentration. For an in-depth review of the system from a biology perspective, 

see the review by Scott et al. ([SC87]). Some more recent studies are collected in the supplementary 

mateials in Surkova et al. ([SKK+08]). 

2.2 Statistics background 

This section contains a brief summary of the statistical background needed to discuss the estimators. 

The binomial and Poisson distributions are introduced as well as some of their more important 

properties. The connection between them, which is important for understanding the development 
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of the Poisson estimator, is presented. Finally, the concept of maximum likelihood estimation is 

presented since all the parameters in the model are estimated in this way. 

2.2.1 The binomial distribution 

A binomial distribution possesses the following properties: 

1. It is a sum of a finite number, say n, of independent Bernoulli(p) random variables. Each 

Bernoulli random variable is sometimes called a trial. 

2. Each trial results in one of two outcomes. 

3. The probability of success for one trial is p, and is the same in each trial. Correspondingly, 

the probability of failure is always q = 1 — p. 

The probability density function is 

P(Y = k)~ ' " > ~k-n~k 

The expected value /j, is n * p. This can be verified by the properties of expectation: since the 

binomial is a sum of n independent Bernoulli(p) random variables, E(Y) = E(XX + ... + Xn) = 

E(Xi) + E(X2) + ... + E{Xn) = n *E(XX) = n*p. 

2.2.2 The Poisson distribution 

The Poisson distribution is a discrete distribution that is designed to model the number of relatively 

rare events in a certain dimension (space, time, or volume). This can be represented by a number 

N. For the purposes of a formal definition, the span of the dimension is subdivided into small sized 

intervals. For a given subinteraval of the dimension, the Poisson distribution possesses the following 

properties: 

1. P(N = 0) = 1 - p for a given p 

2. P{N = 1) =p 

3. P(N > 1) = 0 

The subintervals are considered to be independent, and so the distribution over the whole interval 

is a sum of Bernoulli(p) random variables, which is binomially distributed. However, usually the 

parameters n, the number of sub-intervals and p, the probability of observing an event in one 

sub-interval are unknown. So the Poisson distribution is usually paramaterized and described by 

the parameter A = np. Taking the limit as n —> oo, we get the probability mass funciton as 

P ( y = 2/) = ^exp(-^A). 

The expected value of a Poisson distributed random variable is A. Interestingly enough, the 

variance of the Poisson distribution is also A. This property is exploited when fitting the Poisson 

expression model. 
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The Poisson as the limiting distribution of the binomial 

Let Y be a random variable that is binomially distributed with parameters (n,p). If we write A — np. 

and let n get large, the probability mass function of Y takes on the form of a Poisson distribution: 

l i m P{Y) = l i m n(n-l)...(n-y+l) /AN" / _ AN"" ' 

(3) 
l i m A ^ / _ A y n ( n - l ) . . . ( n - y + l ) / _A\" 

n^oo y] \ nj n» \ n) 

2/! n-»oo y n) \ n j \ n j \ nj \ n ' 

After applying the identity 

lim (1 ) = exp(-A) 

and noting that all the remaining terms to the right of the limit converge to 1, we see that 

\ k 

P(Y = k) = -exp(~\) 

which is the probability mass function of a Poisson random variable with parameter A. 

2.2.3 Maximum likelihood estimation 

The method of maximum likelihood estimation is a standard method in statistical inference. Central 

in this theory is a model for the data and the data itself. These two are combined in a clever way to 

give rise to a function of the model parameters, which is called the likelihood function. The values 

that maximize this function are deemed to be the maximum likelihood estimates for the model 

parameters. 

Likelihood function 

Suppose that we have a statistical model where each Pg is discrete, with it's probability mass function 

denoted /#(•). That is, each outcome o of the process Pg has fg(o) chance of occurring. Also suppose 

that we have collected a set of data from the process that Pg describes, call it D = (o\, 02 , . . . , on). 

If these observations are independent, then their joint probability is given by the function L(0 \ D). 

which is defined on the possible values of the parameter(s) 6, and L(6 | D) = Y\i=1 nfg(oi). This 

joint probability is a function of the parameter values of the model P, and is called the likelihood 

function. The value of L{0) is called the likelihood of 9. Remember that the value of 0 varies, but 

the data D are fixed. 

The likelihood function allows us to compare different values of 6 by quantifying how likely we 

were to have observed D if the true value of the parameter were in fact 6\ ,0162-, or any other possible 

value, because L(6 \ D) is just the probability of observing D when the parameters of process P has 

the value 0. Thus, when L{0\ | D) > L(02 \ D), 9\ is considered to be more likely to be the true 

value of 0 than 02-
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Finding Maximum likelihood estimates 

Once familiar with the idea of likelihood, and with a properly formed likelihood function, the idea 

of obtaining an estimate using it makes intuitive sense. As before, assume we have a likelyhood 

function L(9 \ D). If we want to obtain a point estimate of 6, then a value 9(D) that maximizes 

L(9 | D) makes sense, as it is this value that best explains observing the data D: 

L (§{D) \D\>L(9\D) (5) 

the value(s) 9 that satisfy this equation are called maximum likelyhood estimates for the parameter 

9. 

2.3 Data Set 

The data used was a set of images of fruit fly embryos that were undergoing a process called 

segmentation. The segmentation process is briefly described below, and the aims of the experiments 

are then summarized. 

The determination of the semgent pattern takes place during embryogenesis in Drosophila. At 

this stage of development, the embryo is a syncytiuma single cell with multiple nuclei that divide peri

odically and roughly simultaneously. The data was collected from experiments performed by Reinitz 

and Samsonova, and is available online at FlyEx ([PPB+04]). Each image captures a Drosophila 

melanogaster embryo. The body of the fruit fly Drosophila melanogaster is made up of repeated 

units called segments. Before the segments morphologically differentiate, their pattern is marked 

out chemically during a process called determination, or segment determination ([MSK+01]). Post 

fertilization, the zygotic nucleus undergoes many rapid nucleic divisions. After the 8th division, the 

nuclei migrate to the outside of the embryo, which marks the beginning of the segmentation process. 

Each subsequent nuclear division is referred to as a cleavage cycle. At this stage of development, 

the embryo is a hollow shell of nuclei which are not yet separated by cell membranes. The embryo 

will undergo six more cleavage cycles (9 through 14A) before cell membranes emerge to separate the 

nuclei, which marks the end of segmentation. Cleavage cycle 14 is much longer than the previous 

cycles, and is further subdivided into eight time classes. Each embryo in cleavage cycle 14 is assigned 

to a time class based on expert human observation of the characteristic expression pattern of the 

even-skipped gene. 

The aim of this series of experiments was to document the spatial expression patterns of a 

14 genes in a network which controls segment determination, by observing and capturing a large 

number of images of gene expression in situ. In the experiments, protein expression was measured 

using fluorescence tagged antibodies ([JKVA+05]). Each gene product was detected in a single 

channel on a confocal microscope, and for each channel two raw images were made corresponding 

to two optical sections fo an embryo separated by two microns. The gain on the microscope was 

calibrated so that each pixel in the images varies in intensity from 0 to 255 on an 8-bit scale. The 

images were averaged, cropped and rotated to output an embryo image that displays the expression 

pattern of a single gene in a given embryo. Each embryo was scanned for the expression of three 
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genes at a time. Unfortunately, the sample preparation process kills the embryo, so each embryo 

is only observed once. Three embryo images were combined and the resulting image is segmented 

to make a nuclear mask. This mask is used to determine the average coordinates of the nucleus 

along the AP and DV axes, and then to estimate the average fluorescence level of each of three gene 

products within the nucleus. At the centroid of each nucleus, the fluorescence data in three channels 

is measured several times, and a mean estimate for each channel is recorded. Each of three channels 

in the image records the intensity of a different tagged protein. Taken together, this procedure 

produces a table of nuclear records. Each nuclear record consists of a nuclear identification number, 

the x, y coordinates of its centroid, and the average fluorescence levels estimated for each of the three 

proteins. See table 1 for an example. There are currently 1355 embryos available in the database. 

Of these, 1100 are from cleavage cycle 14A (including all time classes), 135 are from cycles 11 to 13, 

170 are mutants (which were excluded from this study ([PPB+04])). 

Table 1: A sample of the quantitative data table available for download. The three channels in this 

embryo record the average estimated expression of even-skipped,kruppel, and bicoid respectively. 

Nucleus 

0 

1 

2 

3 

4 

AP 

2.35 

3.21 

4.52 

5.24 

6.31 

DV 

52.21 

37.92 

56.28 

49.02 

62.60 

Eve 

18.11 

13.72 

27.59 

29.90 

25.93 

Kr 

10.72 

8.93 

14.49 

16.84 

13.04 

Bed 

149.08 

99.83 

163.20 

182.01 

135.61 

The embryo is oriented so that the x-axis corresponds to the anterior-posterior axis of the embryo, 

and the y-axis to the dorsal-ventral axis. The x, y coordinates are scaled so they represent the 

percent of the maximum size of the embryo in the x and y directions. Figure 3 shows one such 

embryo. Each embryo was stained for the gap gene even-skipped, as it is expressed throughout the 

segmentation process, as well as two other genes. The embryos used in this study were stained for 

bicoid, even-skipped and caudal. 

As mentioned in this section, each embryo is observed only once, as the process of confocal 

scanning destroys the embryo. 

2.3.1 Data set types 

The Flyex website offers different types of quantitative data for individual embryos. Each type 

of quantitative data is formatted as shown in table 1, but they differ in that some types have 

undergone filtering techniques to try and improve the accuracy of both the positions of the nuclei, 

and the intensity levels in the nuclei. Each of the different data sets in FlyEx are summarized below. 
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Figure 2: A sample of the images from the data set, embryo ad24 from cleavage cycle 11. 

Quantitative data 

This data set is the basis of all the others. Embryos ranging from cleavage cycles 10 through 14A 

are available. The quantitative data embryos are by far the most abundant in the database. While 

it is the 'noisiest' of all the data sets, tests for noise performed by myself did not reveal significant 

additive or multiplicative noise (see chapter 4 for details). 

The criteria for choosing embryos for the binomial data set were the following: 

• The embryo had an image in the database, not merely a data table. 

• The embryo was stained for Eve,Cad,Bcd, which is the most common trio of proteins in the 

database. In the exploratory stages of the project, only embryos from this subset were consid

ered to minimize the potential for variation due to the affinity of antibody-protein staining. 

• The embryo displayed a large subset of easily identifyable sibling nuclei. This was required 

both for the construction of the gold standard data set of hand-paired sibling nuclei. Also, it 

greatly affects the quality of the greedy pairing algorithm (see below). 

The embryos used in the binomial data set appear in table 2. 

For the Poisson estimator, the following criteria were employed when selecting embryos for the 

data set: 

• The embryo had an image in the database, not merely a data table. 

• The embryos were from cleavage cycle 14, and ideally time class 8. 

The embryos used in the Poisson data set appear in table 3. 
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Table 2: Embryos used for binomial data set. The stage column refers to cleavage cycle, while the 

channels column lists the abbreviations of the three proteins stained in that embryo. 

embryo 

abl8 

adl4 

ad33 

ac22 

ad22 

ad23 

ad24 

cbl6 

iz3 

ms21 

ms9 

ms3 

hzl2 

FESce05 

HETaelO 

stage 

11 

11 

11 

11 

11 

11 

11 

11 

12 

12 

12 

12 

12 

11 

11 

channels 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Kr, Bed 

Eve, Kr, Bed 

Eve, Kr, Bed 

Eve, Kr, Bed 

Eve, Hun, Bed 

Fsh, Eve, Sip 

Hun, Eve, TIs 

Data without background 

This data set consists of a subset of the quantitative data set for which a background subtraction 

algorithm has been applied. For each embryo, the non-specific binding distribution, or background 

signal, is approximated by a 2D parabola. The background parabola was fitted based on expression 

in areas of wild-type embryos in which a given gene is not expressed, and used to remove background 

from the entire embryo. The details are reported in ([MSKR05]), and are discussed later in this 

section. Not all embroys in the database have undergone background subtraction, and so some 

parts of the data set used for my work were not available in this data set. So I chose not to use 

it. Furthermore, in some cases the subtraction of-the estimated background expression resulted 

in a measured expression of zero at some nuclei. This introduces numerical instability into my 

estimators, and in some cases the quantity being estimated is not well defined. See the methods 

section for details. 

Embryos used for binomial data set for the data without background appear in table 4 

Embryos used for binomial data set for the data without background appear in table 5 

For the data without background, both the binomial data set and Poisson data set were chosen 

to try and match the corresponding embryos in the quantitative data sets. A sample from one of 

the data files appears in table 6. 
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Table 3: Embryos used for Poisson data set. The stage column refers to cleavage cycle and the time 

class if applicable, while the channels column lists the abbreviations of the three proteins stained in 

that embryo. 

embryo 

ab l l 

dq2 

tu7 

bd5 

cbl5 

aclO 

msl4 

ms36 

dml4 

tn2 

hne8 

fq4 

kf9 

ba3 

rfll 

rf6 

stage (time class) 

14(1) 

14(7) 

14(7) 

14(8) 

14(1) 

13 

14(7) 

14(7) 

14(8) 

14(8) 

14(8) 

14(8) 

14(8) 

14(8) 

14(8) 

14 (8) 

channels 

Eve, Cad, Bed 

Eve, Cad, Bed 

Cad, Eve, Bed 

Cad, Eve, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Kr, Bed 

Eve, Kr, Bed 

Eve, Kn, Hun 

Eve, Kn, Hun 

Eve, Kn, Hun 

Eve, Kn, Hun 

Eve, Kr, Hun 

Eve, Kr, Hun 

Eve, Kr, Hun 

Eve, Kr, Hun 

The formula used to perform background subtraction: 

. , .± „ r r {intensity - (a0 * x2 + a\ * y2 +a2 *x + a3 *y + a4 + a5 * x* y)) 
tntensitynorm = 255 * ——— ^- — —— ———• (6) 

(255 - (ao * x* + a\ * yz + a% * x + a^ * y + a± + a$ * x * y)j 

An example of the coefficients used in the normalization formula is in table 7. 

Regis tered D a t a 

This data set consists of embryos that have undergone registration by one of two methods: spline 

approximation, or a wavelet procedure outlined in ([KMP+02]). The data is also available after 

background subtraction has taken place. Registration means a transformation in coordinates of 

an image. The confocal microscope used to capture these images can only reveal the expression 

of up to three genes in any one image. The registration procedure transformed the coordinates of 

the different embryo images so that they all adhered to the same scale, and could then be overlaid 

onto each other. By overlaying enough images, the three gene limitation of the instrument can be 

overcome, and all 14 genes in the network can be visualized in one image. Since this was not of 

interest for our project, we chose not to use registered data. 
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Table 4: Embryos used for binomial data set, without background. The stage column refers to 

cleavage cycle, while the channels column lists the abbreviations of the three proteins stained in 

that embryo. 

:mbryo 

abl8 

adl4 

ad33 

ac22 

ad22 

ad23 

ad24 

cbl6 

iz3 

ms21 

ms9 

ms3 

hzl2 

stage 

11 

11 

11 

11 

11 

11 

11 

11 

12 

12 

12 

12 

12 

channels 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Kr, Bed 

Eve, Kr, Bed 

Eve, Kr, Bed 

Eve, Kr, Bed 

Eve, Hun, Bed 
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Table 5: Embryos used for Poisson data set. The stage column refers to cleavage cycle and the time 

class if applicable, while the channels column lists the abbreviations of the three proteins stained in 

that embryo. 

embryo stage (time class) channels 

a b l l 

dq2 

tu7 

bd5 

cbl5 

aclO 

msl4 

ms36 

dml4 

tn2 

hne8 

fq4 

kf9 

ba3 

rfll 

rf6 

14 (1) 

14 (7) 

14 (7) 

14 (8) 

14 (1) 

13 

14 (7) 

14 (7) 

14 (8) 

14 (8) 

14 (8) 

14 (8) 

14 (8) 

14 (8) 

14 (8) 

14 (8) 

Eve, Cad, Bed 

Eve, Cad, Bed 

Cad, Eve, Bed 

Cad, Eve, Bed 

Eve, Cad, Bed 

Eve, Cad, Bed 

Eve, Kr, Bed 

Eve, Kr, Bed 

Eve, Kn, Hun 

Eve, Kn, Hun 

Eve, Kn, Hun 

Eve, Kn, Hun 

Eve, Kr, Hun 

Eve, Kr, Hun 

Eve, Kr, Hun 

Eve, Kr, Hun 

Table 6: A sample from the background corrected data for embryo abl8. In the file header, the 

coefficients for the paraboloid are listed, as is the normalization formula. 

0 3.34 41.98 0.00 1.92 119.49 

1 5.77 52.07 5.49 5.17 166.44 

2 5.34 41.38 0.31 0.00 124.84 

3 8.49 62.06 8.93 5.33 153.42 

Table 7: The normalization coefficients for each of the proteins in the embryo abl8, used to remove 

the background noise. 

gene 

eve 

cad 

bed 

aO 

-0.016079 

-0.032261 

-0.003283 

al 

-0.016327 

-0.018883 

-0.003577 

a2 

1.659246 

3.419556 

0.329193 

a3 

1.690695 

1.828046 

0.277711 

a4 

-11.644875 

-46.015909 

0.022621 

a5 

-0.003831 

-8.09E - 4 

3.62E - 4 
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Chapter 3 

Methods 

This chapter describes the two methods for estimating protein copy number. Both methods assume 

that the observed fluorescent intensity of a nucleus in a particular channel is proportional to the 

copy number of the corresponding protein in that nucleus. The proportionality factor, i/, may vary 

for different proteins, but is assumed to be consistent across different embryos imaged in the same 

manner. Both methods work by estimating the factor v , from which protein copy numbers in each 

nucleus can be derived based on their intensity. Each makes different assumptions about the types 

of images to which they are applied, and so the two methods do not compete against each other. 

Rather, they can each be applied depending on the type of data available, which hopefully will 

provide flexibility. 

Both methods employ maximum likelihood inference applied to a statistical model to estimate v. 

They each assume a probabilistic model to explain how the intensity distributions are generated by 

the data. Each of them attribute all variability in protein expression to intrinsic stochastic chemical 

processes. In a more realistic model, the data include other sources of variability, or noise. However, 

for various reasons I chose not to model these other sources of noise explicitly, which are discussed 

in chapters 4 and 5. A consequence of this is that the true variability in protein expression tends 

to be overestimated by the methods, which results in copy number estimates that are biased low. 

In chapter 4, I analytically explore the effects that different types of noise would be present in the 

intensity data, based on our models, and compare with empirical estimates. 

3.1 Binomial Estimator 

Since the proteins of interest in this system are transcription factors, they will be concentrated 

primarily in the nucleus. As discussed in sections 2.1.2 and 2.1.2 many of these transcription factors 

bind the DNA to play their role in the transcriptional program of segmentation. These locations 

cannot be known based on this experiment, and so may be though of as "random". Before nuclear 

division, each protein can thus be thought of as equally likely to be on the DNA copy that goes to 

one daughter as it is to be on the DNA copy that goes to the other daughter. Proteins that are 

not bound to the DNA, assuming they are uniformly distributed throughout the nucleoplasm, are 
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Figure 3: An embryo that has just undergone a recent nuclear division. The developmental program 

in drosophila makes the nuclei divide roughly simultaneously. The recent division makes the task of 

estimating sibling pairs much easier. 

also equally likely to end up in either daughter nucleus. This is because each daughter receives close 

to half of the nucleoplasm of the mother. This reasoning motivates the use of an even binomial 

distribution. 

The binomial estimation method applies to embryos in which nuclei have recently undergone 

division, and sibling pairs can be easily identified (figure 3). 

The method assumes that proteins in the mother of each sibling pair pass independently and 

with equal probability to each daughter nucleus. The difference in intensities of the siblings can 

then be related to absolute concentration. 

More formally, let i\ and i-i denote the members of a sibling pair, and i denote their (unobserved) 

mother nucleus. Let iV, be the unknown number of fluorescent molecules in the mother, and Nn 

and Ni2 be the unknown numbers of molecules in the daughters. Assume that Nn and iVfa are 

both distributed as binomial(iVj, p = 1/2). Nn and N2 are dependent binomial random variables, 

related by the unobserved random variable Nt. Assuming no protein is lost in the division process, 

then Nn + Ni2 — TV, is a good estimator for N. 

The model assumes that the observed fluorescence is proportional to the number of molecules 

present: 0\j = vNij for nucleus / and transcription factor j . If I can estimate v , then I can estimate 

protein copy number in each nucleus simply by solving the previous equation for N,j. Each sibling 

pair provides us with one estimate for v as: 

- ^ 

This is very similar to the estimator used by Rosenfeld and colleagues ([RPA+06]), who applied it 

to sibling data from fluorescent image sequences of growing colonies of E. coli. The main difference is 

that Rosenfeld et al. were working with time series data, so in addition to observed intensity values 
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for sibling cells, they also observed intensity measurements for the mother cells prior to division. 

This allows them to use observed values for the mother nucleus directly, instead of estimating it as I 

do in the denominator above. One mathematical rationale behind the estimator is that its expected 

value, treating Ni as given and Nu, N2, On and 0*2 a s dependent random variables, is: 

Efr) = E 

= E 

(Oq-Oi2)2' 
On + Oa 

(vNn - vNi2 

v2E 

i/Nn + vNi2 

(Nn - Ni2f 

= v 
E(2Na - N)2 

Ni 
u4Var(Nn) 

N 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

The above derivation makes use of the substitutions Ni — E[Nn] = E[Ni2\ and E\Nn] = 

Var{Nn) - (E[Na])2. 

Once the sibling pairs have been estimated for each of the nuclei in the given embryo (see 3.1.1), 

the method is applied to each pair, to produce an estimate of v in each of the three channels. 

These per-channel estimates from each sibling pair are then combined into an overall channel (or 

transcription factor) specific estimate for v based on simple averaging: 

1 M 

M 
i = l 

where M is the number of paired nuclei in a given image. As Rosenfeld and colleagues demonstrate, 

this estimator for v maximizes the likelihood of observing the Oy values if the binomial distributions 

are approximated by Gaussian distributions having the same means and variances [RPA+06]. 

3.1.1 Estimating the siblings 

The task of estimating the sibling pairs is a difficult one. Since the embryos are only ever imaged 

once, there is no prior positional information to help identify nuclear lineage, as was the case with 

Rosenfeld and colleagues[RPA+06]. The problem can be stated as follows: given a set of nuclei, each 

with a pair of coordinates that identify their position in the embryo, assign matches to these nuclei 

so that as many of the true sibling nuclei as possible are paired. Even after inspecting over 400 

images in the data set, only a handful show a majority of clearly identifiable sibling pairs, and so 

even human experts have a difficult time pairing nuclei. I chose to use a heuristic that nuclei which 

are in close proximity to each other are more likely to be related. Since the data lies in a plane (the 

embryos are flattened during the preparation process), Euclidean distance was used as a metric. I 

employed a greedy algorithm to determine the nuclei pairs, described here in pseudo code: 
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• Generate a distance matrix M where M[i,j] is the distance between the ith and jih nuclei. 

Only the lower triangular part is calculated, since M is a symmetric matrix. 

• Add a large value, L, to the diagonal of the distance matrix so that no nucleus is paired with 

itself. 

• Find the minimum value in the matrix, m,j 

• Add the pair of nuclei i,j to the list of paired nuclei 

• Change the values of rows i,j and columns i,j to L. 

• Repeat steps 3-5 until the minimum value in the matrix is L. 

The distance matrix takes 0(n2) to create, while each pass of the elimination loop is also 0(n2), 

and so the overall complexity of the algorithm is 0(n3). The algorithm runs sufficiently quickly 

for images with several hundred nuclei, on the order of a few minutes using my desktop machine. 

However, the algorithm is less appropriate for embryos with several thousand nuclei, such as those 

in cleavage cycle 14. 

3.2 Poisson Estimator 

The second method is applied to embryos that are significantly past their most recent nuclear di

vision1, and where the expression programs of the proteins involved are at a more steady state 

behavior. As with the binomial estimator, the central idea of the model is that variability in expres

sion can somehow be related to copy numbers. However, it is far from clear what an appropriate 

model for the steady state distribution of protein copy number should be. In simpler, prokaryotic 

situations, stochastic chemical kinetic models have been quite successful at capturing and explaining 

stochasticity in gene expression (see [RvO08] for a recent review). Such models usually incorporate 

stochastic production and decay of mRNAs and proteins, and possibly other processes. A common 

finding is that variability in protein levels is often due more to variability in the mRNA levels than 

to the inherent stochasticity in protein production and decay. Bar-Even et al. ([BEPM+06]), in 

an empirical study using S. cerevisiae, found that under a variety of conditions and for a variety 

of genes, variance in protein expression across cells in a population was proportional to mean pro

tein expression. By analyzing different possible sources of expression variability, they came to the 

conclusion that mRNA fluctuations were the main cause, just as in the bacterial models. 

As in Bar-Even et al. ([BEPM+06]), I find that protein expression variance scales roughly 

linearly with mean protein expression. However, I consider it unlikely that mRNA fluctuations are 

as significant a source of noise as they are in that study or in the bacterial models. The Drosophila 

embryo is syntical2 at this stage of segmentation. For most of the segmentation genes, mRNAs are 

transcribed and exported from the nuclei and accumulate in inter-nuclear space, apparently at much 

greater concentration than is typical for the models or experiments cited above. This is supported by 

1 this event is also referred to as a cleavage cycle 
2 there are no cell membranes formed that partition the nuclei into cells 
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mRNA stains in embryos at the same developmental stage ([JSR07]), although, like proteins, mRNA 

copy numbers have not be quantified in this setting. Proteins are translated from mRNAs in the 

extra-nuclear space, and are taken up quickly by nearby nuclei, where they may eventually decay. 

Assuming that the total amount of mRNA in the vicinity of a nucleus is relatively constant, the 

main factors influencing protein expression would thus be stochastic production and uptake along 

with stochastic decay. 

Based on this reasoning, I assume that the number of proteins in a nucleus, Ni, is Poisson 

distributed, with a nucleus-specific Poisson parameter A,. As for the previous estimator. I assume 

that the observed fluorescent intensity of a nucleus, Oi, is proportional to the expression (Oi = vNi). 

Under these conditions, I can relate the ratio of expression to v. 

VarjOj) _ v
2Var(Ni) _ 

~mr~ VEW -v (15) 

So the problem of estimating v reduces to estimating the mean and variances for the Oi. The 

problem is that expression in each nucleus is being driven at a different rate A ,̂ and one single 

observation is not sufficient to estimate the mean and variance of the intensity distribution. 

R ~ Poisson(A) if P(R = k) = exp ( -A)*^ /o rA , k > 0 if Ot = v*Nu where Nt ~ Poisson(X) = > 

Oi ~ Poisson(u * A) 

If the Oi are independent and identically distributed, the joint likelihood is as below 

L(Ol,...,On\v,X)=[exp(-isX)^)...(exp(~i;X)'^\ (16) 

Ylexpi-vX)*-— (17) 
i=i Ui' 

e x p ( - m / A ) n ^ (18) 

Then the log-likelihood is 

n 

l(Oi,...,On I i/, A) - log (exp (-ni/A)) + ^ log ̂
A°* 

-nvX + Y^Oi* (logi/A-logOj!) 

Take the partial derivative of / by i/X to get 

dl ^-, Oi 

i=l 

Set the partial derivative of I by vX equal to zero to see that the optimal value is 

n 

But the Oj are not all independent and identically distributed, as inspection of the image plainly 

shows that the position of the nucleus within the embryo has an great effect on the protein expression. 
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So the A values for the Nt are not identical. For the Poisson estimator to work, I need to group 

nuclei by similar expression levels so as to satisfy the assumption that the TV, are independent and 

identically distributed. 

Since nearby nuclei usually show similar expression levels, because they are subject to similar 

regulatory signals, the proposed solution is to relax the assumption that each nucleus has an inde

pendent value of Xi, and assume that nuclei with similar expression share a common A parameter. 

Then for each nucleus i, other nuclei in the neighbourhood with highly similar expression levels are 

used to estimate E(Oi). With estimates of the mean intensity for each nucleus in a neighbourhood, 

a per-nucleus estimate of v is derived as: 

= (o.-m)? (19) 

These estimates are averaged across nuclei that share similar values for Xi, to generate the 

neighbourhood estimate: 
1 M 

* = M * > ( 2 0 ) 

j = i 

Assuming there are M nuclei in a neighbourhood. After partitioning the nuclei, the Poisson 

estimates for v were obtained for each channel, and were averaged across partitions to obtain v 

estimates for each channel in the embryo. 

3.2.1 Partitioning 

A number of different ways to partition the nuclei in each embryo were explored. The measure of 

validation for the partitioning methods was taken to be the degree of agreement across embryos 

for the estimates produced by the Poisson estimator for a given transcription factor, as well as the 

agreement with the estimate produced by the binomial estimator for the same transcription factor. 

First, I tried to classify the nuclei by establishing three classes of expression level: low, medium and 

high. The thresholds that defined the classes were those values that split the empirical distribution 

over intensity into thirds. This method frequently assigned matches to nuclei which were spatially 

distant from each other, and produced results with excessively large variance in estimates (data 

not shown). Next, the previous thresholding method was applied, followed by a nearest neighbour 

classification algorithm to try and identify regions of low, medium and high classes. This nearest 

neighbour post thresholding approach produced similarly poor results (data not shown). Finally, 

I chose a more fine grained partitioning approach. Each embryo was split into boxes along the 

anterior-posterior (AP) axis. The boxes spanned the length of the AP axis, each box being 5% of 

the total length of the embryo. Each box had a height which began at 40% of the dorsal-ventral 

(DV) axis, and ended at 60% of the DV axis. According to [MSK+01], the measured intensity values 

in the image are most reliable at the midpoint of the DV axis (50%), so nuclei in both extremes of 

the DV axis were discarded. The nuclei in each box were assumed to share a similar value for A .̂ 

This partitioning method achieved the most consistent results not just within the Poisson estimates, 

but across binomial and Poisson estimates. 
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Figure 4: An image of embryo bd5. Notice the curved lines representing the Even-Skipped protein. 

Compared to Caudal and Bicoid, the even-skipped stripes are difficult to isolate in terms of a sub-

interval of the AP axis. 

3.2.2 Estimating mean intensity 

A localized regression model is fitted to predict the expected intensity of each nucleus. For these, I 

generate E{Ot) in three steps: 

1. identify all nuclei in the same neighbourhood box as nucleus i 

2. fit their observed intensities by linear least squares regression, as a function of the AP or DV 

position values 

3. evaluate the regressor at the coordinates of nucleus i to obtain the estimated intensity 

The maternal and gap genes have relatively simple, spatially smooth expression patterns, and 

so linear regression works well enough to capture the expression given the neighbourhoods. For the 

pair-rule genes, such as even-skipped, I tried a full quadratic regression, which fits the observed 

intensities as a function of the linear and squared terms of AP and DV position, as well as the 

AP*DV cross term. 
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Chapter 4 

Results 

This chapter summarizes the results obtained from the experiments performed. Results from the 

binomial method and the poisson method are presented in separate sections. The chapter includes 

a description of two simple image noise models that were applied to try and increase the accuracy 

among estimates. Discussion of the results are postponed until the next chapter. Readers can 

reference the appendix to see the R scripts used to generate the results. All the data used may be 

downloaded from the FlyEx website, found at h t tp : / / f lyex .ams . sunysb .edu / f lyex / . 

I applied the binomial method to the 15 embryos, identified from a thorough search of the FlyEx 

database, which displayed signs of recent division. Also, I applied the Poisson method to 16 embryos, 

most from cleavage cycle 14A, time class 8. Results appear in the tables below for each embryo and 

gene. Results for each gene and each method are also reported, and are obtained by averaging across 

the per-embryo estimates for the same method and gene. 

The binomial and Poisson methods also produced some dramatically large per-nucleus or per-

nucleus- pair estimates. When traced back, these obvious outliers had a variety of causes. Some were 

due to problems with the underlying data, such as falsely detected nuclei in the images or nuclear 

segmentation errors. Some also resulted from poor expected intensity estimates in the Poisson 

method, particularly for complex parts of the pair-rule expression patterns. 

4.1 Biomial Results 

The results for the binomial estimators appear in the tables 8, 9, and 10. Each of the 15 embryos 

were classified as being from cleavage cycles 11 or 12 (see table 2). 
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Table 8: v estimates for embryos stained for Even-Skipped, Caudal, and 

Bicoid 

Binomial Results (Quantitative Data) Eve Cad Bed 

abl8 

adl4 

ad33 

ac22 

ad22 

ad23 

ad24 

cbl6 

0.17190 

0.22614 

0.13556 

0.16454 

0.23921 

0.17811 

0.11234 

0.14463 

0.31617 

0.38697 

0.42078 

0.33208 

0.44745 

0.39404 

0.22964 

0.30007 

0.07740 

0.24118 

0.08333 

0.21805 

0.13639 

0.26862 

0.17684 

0.24257 

Table 9: v estimates for embryos stained for Even-Skipped, Hunchback, 

and Bicoid 

Binomial Results (Quantitative Data) Eve Hun Bed 

h x l l 

hx l6 

hz l2 

0.18843 0.11722 0.30020 

0.11210 0.30868 0.18779 

0.03769 0.11267 0.62909 

Table 10: v estimates for embryos stained for Even-Skipped, Kruppel, 

and Bicoid 

Binomial Results (Quantitative Data) Eve Kr Bed 

iz3 

ms21 

ms9 

ms3 

0.16675 0.03119 0.15768 

0.13646 0.03031 0.18715 

0.13155 0.02297 0.36884 

0.16682 0.06814 0.16438 

32 



4.2 Poisson Results 

The results for the Poisson estimator appear below in table 11. Each of the 16 embryos was classified 

as being in cleavage cycle 14 time classes 7 or 8 (see table 3). 

Table 11: v Estimates for the Poisson method 

Poisson Results (Quantitative Data) Eve Cad Bed 

dq2 

tu7 

bd5 

a b l l 

cb l5 

aclO 

1.53293 

2.01023 

3.83405 

0.28054 

0.27526 

0.13858 

0.14535 

0.16715 

0.12084 

0.29971 

0.43451 

0.46014 

0.18959 

0.19152 

0.16155 

0.22424 

0.57685 

0.40930 

m s l 4 

ms36 

Eve 

1.02874 

1.92512 

Kr 

0.21848 

0.24482 

Bed 

0.07911 

0.06328 

d m l 4 

tn2 

hne8 

fq4 

Eve 

2.92935 

2.55198 

2.03786 

4.19338 

Kn 

2.11017 

2.31921 

0.53148 

2.29609 

Hun 

0.76879 

0.58113 

0.33134 

0.64039 

kf9 

ba3 

r f l l 

rf6 

Eve 

2.21019 

3.27101 

2.75806 

2.94637 

Kr 

0.27503 

0.29012 

0.32786 

0.28394 

Hun 

0.38056 

0.90235 

0.82912 

0.71134 
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4.3 Estimates for v Across Methods 

Table 12: Copy number estimates from the binomial and Poisson estimation methods, along with the 

mean estimates of v and the standard deviation 

BINOMIAL ESTIMATES POISSON ESTIMATES 

v Std Dev Peak Copy i> Std Dev Peak Copy 

Maternal Genes 

Bicoid 0.2293007 0.13494150 1112.077 0.2369300 0.17339670 1076.2670 

Hunchback 0.1795233 0.11187610 1420.428 0.6431275 0.20432390 396.4999 

Caudal 0.3534000 0.07187813 721.562 0.2712833 0.14996930 939.9767 

Gap Genes 

Kruppel 

Knirps 

Pair-rule Genes 

Even-skipped 

0.0381525 

0.0000000 

0.1541487 

0.02032847 

0.00000000 

0.04873279 

6683.704 

0.000 

1654.247 

0.2733750 

1.8142370 

2.1202280 

0.03792682 

0.86027550 

1.23305800 

932.7846 

140.5549 

120.2701 

The estimates for v are shown for each gene, along with the predicted copy number under 

conditions of maximal expression in table 12. This prediction is obtained simply as ^ , as 255 

is the maximum possible intensity in the 8-bit images. The genes are segregated into three classes 

according to the standard categories of maternal, gap, and pair-rule genes. For the maternal and gap 

genes, the binomial and Poisson methods were in broad agreement. For all genes, the estimates of i> 

by each method were within a factor of four of each other. There was particularly good agreement 

for the caudal gene. The agreement between the two methods was worse for the even-skipped gene, 

with the binomial estimate for v being much much smaller than the Poisson estimate. 

4.4 Noise Models 

The models above fail to account for many potential sources of noise. This includes noise in the 

biological system, such as inRNA fluctuations in space or time, diffusion of mRNA or protein, 

fluctuations in regulatory factors, or fluctuations in ribosomes. The models also do not account for 

imaging or image processing noise. The net effect of all these sources of variation is impossible to 

know. In this section, I begin by exploring the effect of simple noise models on the binomial and 

Poisson estimation methods, along with estimates for v. I examined two common noise models, 

additive Gaussian noise and multiplicative Gaussian noise. 
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4.4.1 Binomial model 

For the binomial model, additive Gaussian noise means that On = vNn + en and Oi2 = vNi2 +U2, 

where the tij are independent, mean zero, standard deviation a random variables for all i and j . In 

the presence of this noise, the expectation of the binomial estimator with respect to the noise and 

the randomness in Nn and Ni2 can be approximated as 

, _ E[{On - Oi2f] 
E[On + Ol2\ 

E[(u(Nn - Ni2) + ea - ei2)
2} 

E{u * Nn + en +v*Ni2 + ei2) 

v2 *Ni + 2a2 

(22) 

(23) 

= u + ^ - (24) 
v * Ni 

(26) 

(27) 

Now consider the binomial model in the presence of multiplicative Gaussian noise. The model now 

becomes On = vNnen and Oa — vNi2ei2 where e^ are independent, mean 1, standard deviation 

cr Gaussian random variables for all i and j . In the presence of this noise, the expectation of the 

binomial estimator can be approximated as 

_ E[(On - Oi2f] 
V~ E[On+Oi2]

 ( 2 5 ) 

_ E[(Na *v* en - Ni2 * v* ei2)
2} 

E[Nn * v * en + Ni2 * 1/ * e^] 

~ i/*Ni 

= v + ° ^ - * (1 + Ni) (28) 

In either case, if cr > 0 the binomial estimator will be biased to larger vales than v. Fittingly, 

the size of the bias shrinks as TV, gets large in the case of additive noise, while the opposite is true 

in the case of multiplicative noise. This makes intuitive sense. 

4.4.2 Poisson model 

Similar to the case with the binomial estimator in the presence of noise, additive noise for the Poisson 

estimator means that Oi = vNi+Ci, where the ei are independent, mean 0 Gaussian random variables 

with standard deviation a. If I assume that the local regression for predicting E(Oi) is accurate, so 
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t h a t E{Oi) = vXi then 

E 
(Oi - E(Oj))* 

E(Oi) 

{vNi + ei- v\i)2 

= E 

v\i 

ti;2Nf-2v2Ni\i+(
2
i+v2\n 

u\i 
2x2 u2E[Nj] - 2v2XiE[Ni) + E[e2} + v2X2 

V2{\2 + \i)-P2\2+<J2) 

VX{ 

= v(\i + 1) - v\i + 
vXi 

u + 
V\i 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

If I assume the poisson model is subject to multiplicative Gaussian noise, then O,- = i/7V,-e,, where 

e, are independently distr ibuted Gaussian random variables with mean 1 and s tandard deviation a. 

So then 

E 
(Oi - E{Oj)f 

E(Ot) 
E 

(isNid - v\i)2 

v\i 

EjvNfe2 - 2vNi\iei + uX2} 

Xi 

u{X2 + A,)(CT
2 + 1) - vX2 

Xi 

1/(1 + Ai)(cr2 + 1) - 1/ 

v(Xi+a2(l + \i)) 

(35) 

(36) 

(37) 

(38) 

(39) 

As with the binomial, either source of noise will bias the estimate of v higher, but as A8 grows 

large, the bias will decrease and increase respectively. 

4.4.3 In terpre ta t ion and validation of noise models 

Based on these results, there should be a positive trend between v and intensity for multiplicative 

noise, and a negative t rend between v and intensity for additive noise. If additive noise were present 

in the expression data, there should be a slight but significant negative correlation between the 

per-nucleus (or nuclear pair) estimate for v and the expression intensity. For multiplicative noise, 

there should be a positive correlation between the same. However, the expression da ta does not 

support these models. Figure 5 plots the per-nucleus (or nucleus pair) estimate v against expression 

for three embryos stained for even-skipped. Figures 6 and 7 report the same for the bicoid and caudal 

genes respectively. Similar results were observed for other embryos. 
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Figure 5: Even-skipped intensities versus v estimates for abl8, ad33, ad4 respectively. 
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Figure 6: Bicoid intensities versus v estimates for abl8, ad33, ad4 respectively. 
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Figure 7: Caudal intensities versus v estimates for abl8, ad33, ad4 respectively. 
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Chapter 5 

Discussion and Conclusion 

This chapter discusses the validity of the models in light of the results, and compares the results 

to other reported estimates of protein concentration. Several limitations of the methods and data 

are explored. Some potential avenues of future research are briefly outlined, followed by concluding 

remarks. 

5.1 Discussion 

The agreement of the binomial and Poisson estimators for the maternal and gap genes is encouraging, 

lending some measure of confidence to the methods. Another measure of confidence specific to 

the Poisson estimator is that it is the simplest model in the exponential family consistent with 

the observation that variance in expression seems to scale with mean expression. As previously 

suggested, both methods are expected to produce copy number estimates that are biased low, based 

on the other sources of variability that are all combined into one. Some of the other sources of 

variability include noise in the biological system, such as fluctuations in mRNA levels, diffusion 

of mRNA or protein, fluctuations in the concentration of unobserved transcription factors that 

regulate the observed factor, or fluctuations in the number of ribosomes near the nucleus. Further 

lab experiments would be required to characterize the extent to which each of these sources of 

variability plays a role in the observed fluorescence levels. All things considered, the agreement 

between the two methods is not sufficient to conclude that they produce correct estimates. 

For the pair-rule gene even-skipped, the binomial estimator suggests protein copy numbers 13.7 

times as large as the Poisson estimator suggests. It is unknown which is closer to the true value, 

but I suspect the binomial estimator is closer. A simple explanation is that since both methods 

are expected to underestimate true copy numbers, whichever estimate is higher may be closer to 

the true value. Another reason is that the Poisson estimator relies on the proper identification of 

similarly regulated nuclei by position. But in some parts of the embryos, expression does not vary 

smoothly as a function of position, which makes the task of partitioning the nuclei to into sets that 

share the same A8 parameters very difficult. Consequently the assumptions of the Poisson method 

are not satisfied, and the confidence in the estimate is low for even-skipped. 
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5.1.1 Pairing sibling nuclei 

The greedy approach to identifying nuclear pairs is clearly not optimal, since a simple mistake in 

the ordering of the pairs to be considered will result in a lot of propagated errors. Furthermore, 

in some cases, the correct partner for a nucleus is not the nearest one, but the second or third 

nearest. However, this only becomes clear in the context of the other nearby nuclei, making a 

greedy algorithm only an approximate solution. Pairing the nuclei by hand would produce more 

reliable results, but comes at a cost of too much time. In a situation with a data set of hundreds of 

embryos, each with hundreds of nuclei, pairing by hand is clearly not feasible. 

There are algorithms from computational geometry that can solve this problem in less time 

(a simple computational geometry approach to finding closest pairs will reduce the complexity to 

0(n2logro) ([CLRS01]) but this is still not very satisfying, since it also employs a greedy method 

to pair points. Furthermore, there is a limit to how much information about regulatory inputs can 

be extracted from nuclear position alone ([GTWB07]). A method that could automatically identify 

reliable pairings would be a substantial achievement on its own, and is a possible avenue for future 

research. 

5.1.2 Noise complexity 

Nuclear position within the embryo acts as a surrogate for the more complex regulatory network 

that influences expression. It seems very likely that some for some of the genes, particularly the pair 

rule genes, the expression is clearly not a linear function of nuclear position along the AP and DV 

axes. Other measurements are required to obtain a fuller picture of that network. 

5.1.3 Comparison to other est imates 

Gregor et al. ([GTWB07]) performed experiments to calibrate observed fluorescence to absolute 

expression of the Bicoid protein. They estimated that in the highest expressing nuclei, Bicoid is 

present at a concentration of 55 ± 3 nM, or 33 ± 1.8 molecules/m3. Assuming spherical nuclei 

that are an estimated 6.5 nm in diameter, or 144 /xm3 in volume, this corresponds to 4750 ± 260 

molecules per nucleus. This value is just over 4.2 times as large as I obtained from the binomial 

method, and 4.4 times as large as from the Poisson method. However, like the estimates produced 

in this work, the Gregor et al. estimate may be subject to a number of potential biases. So the 

disagreement between their results and the results reported herein cannot be interpreted as either 

supportive or contradictory. To my knowledge, it is the only available experimental estimate of 

Bicoid protein copy number. Should their estimate be more accurate, it suggests that our estimates 

may be significantly low. This may also be the case for the estimates of the other genes. 

5.2 Conclusion 

I developed and presented two estimators of protein copy number that apply to fluorescence ex

pression images containing clearly identifiable nuclei (or cells). The two methods both assume a 
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proportional relationship between observed intensity and protein concentration, but make different 

assumptions about the concentration distributions. The first method is applied to images where the 

nuclei (or cells) have just undergone division, and assumes an even binomial distribution over the 

proteins passed from the mother nucleus to the daughter nuclei. It tries to exploit this variability 

to estimate v, the proportional relationship between fluorescence and concentration. The second 

method is applied to images where the main factors influencing protein expression are stochastic 

production and uptake along with stochastic decay. It assumes a Poisson distribution over protein 

concentration, and tries to pool nuclei that share the same poisson parameter together to produce 

an estimate of v. Using these two approaches, I estimated copy numbers for 6 genes in the seg

mentation network of Drosophila. Estimates ranged from several hundreds of proteins per nucleus 

up to thousands. These estimates are considered to be lower bounds on the true values, since they 

assume all variability in expression is due to fundamental stochastic chemical processes. The extend 

to which this biases the estimates is unknown. Further calibration experiments would help to reveal 

the extend of this bias, and hopefully lead to an unbiased estimator for protein copy number. 

42 



Bibliography 

[BEPM+06] Arren Bar-Even, Johan Paulsson, Narendra Maheshri, Miri Carmi, Erin O'Shea, 

yitzhak Pilpel, and Naama Barkai. Noise in protein expression scales with natural 

protein abundance. Nature genetics, 2006. 

[BS03] K. S. Brown and J. P. Sethna. Statistical mechanical approaches to models with many 

poorly known parameters. Physical Review, 68(2):021904-1 - 021904-9, August 2003. 

[CLRS01] Thomas T. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro

duction to Algorithms. MIT Press, Cambridge, MA, USA, 2001. 

[CMRG02] Yan Chen, Joachim D. Muller, QiaoQiao Ruan, and Enrico Gratton. Molecular Bright

ness Characterization of EGFP In Vivo by Fluorescence Fluctuation Spectroscopy. 

Biophys. J., 82(1):133-144, 2002. 

[GTWB07] Thomas Gregor, David W. Tank, Eric F. Wieschaus, and William Bialek. Probing the 

limits to positional information. Cell, 130(1):153 - 164, 2007. 

[IGH01] Trey Ideker, Timothy Galitski, and Leroy Hood. A new approach to decoding life: 

Systems biology. Annual Review of Genomics and Human Genetics, 2(l):343-372, 

2001. PMID: 11701654. 

[JKVA+05] Hilde Janssens, Dave Kosman, Carlos E Vanario-Alonso, Johannes Jaeger, Maria Sam-

sonova, and John Reinitz. A high-throughput method for quantifying gene expression 

data from early Drosophila embryos. Dev Genes Evol, 215(7):374-81, 2005. 

[JSR07] Johannes Jaeger, David H. Sharp, and John Reinitz. Known maternal gradients are not 

sufficient for the establishment of gap domains in drosophila melanogaster. Mechanisms 

of Development, 124(2):108 - 128, 2007. 

[Kit02] Hiroaki Kitano. Systems Biology: A Brief Overview. Science, 295(5560):1662-1664, 

2002. 

[KMP+02] Konstantin Kozlov, Ekaterina Myasnikova, Andrei Pisarev, Maria Samsonova. and 

John Reinitz. A method for two-dimensional registration and construction of the two-

dimensional atlas of gene expression patterns in situ. In Silico Biology, 2(2):125-141. 

2002. 

43 



[KPUG99] Peet Kask, Kaupo Palo, Dirk Ullmann, and Karsten Gall. Fluorescence-intensity distri

bution analysis and its application in biomolecular detection technology. Proceedings of 

the National Academy of Sciences of the United States of America, 96(24):13756-13761, 

1999. 

[Lev08] Mike Levine. A systems view of drosophila segmentation. Genome Biology, 9(2):p. 207, 

2008. 

[LPDA08] Vinzenz Lange, Paola Picotti, Bruno Domon, and Ruedi Aebersold. Selected reaction 

monitoring for quantitative proteomics: a tutorial. Mol Syst Biol, 4, 2008. 

[LPS07] Eric Libby, Theodore J. Perkins, and Peter S. Swain. Noisy information processing 

through transcriptional regulation. Proceedings of the National Academy of Sciences, 

104(17):7151-7156, 2007. 

[MO02] Neil J. McKenna and Bert W. O'Malley. Combinatorial control of gene expression by 

nuclear receptors and coregulators. Cell, 108(4):465 - 474, 2002. 

[MSK+01] Ekaterina Myasnikova, Anastassia Samsonova, Konstantin Kozlov, Maria Samsonova, 

and John Reinitz. Registration of the expression patterns of Drosophila segmentation 

genes by two independent methods . Bioinformatics, 17(1):3-12, 2001. 

[MSKR05] Ekaterina Myasnikova, Maria Samsonova, David Kosman, and John Reinitz. Removal 

of background signal from in situ data on the expression of segmentation genes in 

Drosophila. Dev Genes Evol, 215(6):320-6, 2005. 

[OR02] George Orphanides and Danny Reinberg. A unified theory of gene expression. Cell, 

108:439-451, 2002. 

[PAD07] Paola Picotti, Ruedi Aebersold, and Bruno Domon. The Implications of Proteolytic 

Background for Shotgun Proteomics. Mol Cell Proteomics, 6(9):1589^1598, 2007. 

[PJRG06] Theodore J Perkins, Johannes Jaeger, John Reinitz, and Leon Glass. Reverse engineer

ing the gap gene network of drosophila melanogaster. PLoS Comput Biol, 2(5):e51, 05 

2006. 

[PPB+04] Ekaterina Poustelnikova, Andrei Pisarev, Maxim Blagov, Maria Samsonova, and John 

Reinitz. A database for management of gene expression data in situ. Bioinformatics, 

20(14):2212-2221, 2004. 

[RO05] Jonathan M. Raser and Erin K. O'Shea. Noise in Gene Expression: Origins, Conse

quences, and Control. Science, 309(5743):2010-2013, 2005. 

[RPA+06] Nitzan Rosenfeld, Theodore J Perkins, Uri Alon, Michael B Elowitz, and Peter S 

Swain. A fluctuation method to quantify in vivo fluorescence data. Biophys. J., page 

biophysj. 105.073098, 2006. 

44 



[RvO08] Arjun Raj and Alexander van Oudenaarden. Nature, nurture, or chance: Stochastic 

gene expression and its consequences. Cell, 135(2):216 - 226, 2008. 

[RWA02] Christopher V. Rao, Denise M. Wolf, and Adam P. Arkin. Control, exploitation and 

tolerance of intracellular noise. Nature, 420:231-237, 2002. 

[SC87] Matthew P. Scott and Sean B. Carroll. The segmentation and homeotic gene network 

in early drosophila development. Cell, 51(l):689-698, 1987. 

[SES02] Peter S. Swain, Michael B. Elowitz, and Eric D. Siggia. Intrinsic and extrinsic con

tributions to stochasticity in gene expression. Proceedings of the National Academy of 

Sciences of the United States of America, 99(20): 12795-12800, 2002. 

[SKK+08] Svetlana Surkova, David Kosnian, Konstantin Kozlov, Manu, Ekaterina Myasnikova, 

Anastasia A. Samsonova, Alexander Spirov, Carlos E. Vanario-Alonso, Maria Sam-

sonova, and John Reinitz. Characterization of the drosophila segment determination 

morphome. Developmental Biology, 313(2):844 - 862, 2008. 

[SPF+04] Mark D Schroeder, Michael Pearce, John Fak, HongQing Fan, Ulrich Unnerstall, Eldon 

Emberly, Nikolaus Rajewsky, Eric D Siggia, and Ulrike Gaul. Transcriptional control 

in the segmentation gene network of drosophila. PLoS Biol, 2(9):e271, August 2004. 

[Swa04] Peter S. Swain. Efficient attenuation of stochasticity in gene expression through post-

transcriptional control. Journal of Molecular Biology, 344(4):965 - 976, 2004. 

[TCB08] Gaper Tkaik, Curtis G. Callan, and William Bialek. Information flow and optimiza

tion in transcriptional regulation. Proceedings of the National Academy of Sciences, 

105(34):12265-12270, 2008. 

[TXGB07] Tianhai Tian, Songlin Xu, Junbin Gao, and Kevin Burrage. Simulated maximum likeli

hood method for estimating kinetic rates in gene expression. Bioinformatics, 23(1):84-

91, 2007. 

[ZR01] Yi Zhang and Danny Reinberg. Transcriptional regulation by histone methylation: 

interplay between different covalent modifications of the core histone tails. Genes & 

Development, 15(18):2343 - 2360, 2001. 

45 



Appendix A 

Colour figures 

As mentioned in this section, each embryo is observed only once, as the process of confocal scanning 

destroys the embryo. 
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Figure 8: A colour sample of the images from the data set, embryo ad24 from cleavage cycle 11. 

Figure 9: An embryo (in colour) that has just undergone a recent nuclear division. The develop

mental program in drosophila makes the nuclei divide roughly simultaneously. The recent division 

makes the task of estimating sibling pairs much easier. 
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Figure 10: A colour image of embryo bd5. Notice the curvature of the green lines representing the 

Even-Skipped protein. Compared to the red and blue channels, Caudal and Bicoid, the even-skipped 

stripes are difficult to isolate in terms of a sub-interval of the AP axis. 
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Figure 11: Even-skipped intensities versus v estimates for abl8 (red), ad33 (green), ad4(blue) re

spectively. 
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Figure 12: Bicoid intensities versus v estimates for abl8 (red), ad33 (green), ad4(blue) respectively. 
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Figure 13: Caudal intensities versus v estimates for abl8 (red), ad33 (green), ad4(blue) respectively. 
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Appendix B 

Scripts for binomial method 

experiments 

B.l R script to load data 

Listing B.l: R script to load the data 

////// Loads the data in ~ / thesis / text d at a /early 

////// early embryos that have undergone background correction, into the current R workspace 

////•// Meant to be run in R from the working directory <whatever>/ thesis / scripts/ 

#s ave the current directory 

c u r D i r <— g e t w d ( ) 

s p 1 i t D i r <— u n l i s t ( s t r s p l i t ( c u r D i r , ' t h e s i s ' ) ) 

s e t w d ( p a s t e f s p l i t D i r [1] , ' t h e s i s / t e x t d a t a / e a r l y / ' , s e p = ' ' ) ) 

# Load the ECD data 

a b l 8 <— r e a d . t a b l e ( f i l e = " a b l 8 . t x t " , c o l . n a m e s = c ( "num" , "AP" , "DV" , " E v e " . " Cad'1 , " Bed'* ) , s k i p = 5 ) 

a c 2 2 <— r e a d . t a b l e ( f i l e = " a c 2 2 . t x t " ' . c o l . n a m e s = c ( "num" , "AP" , "DV" , " E v e " . " C a d " ," Bed" ) , s k i p = 5 ) 

ad22 < - r e a d . t a b l e ( f i l e = " a d 2 2 . t x t " , c o l . n a m e s = c ( " n u m " , "AP" : "DV" , " E v e " , " C a d " : " B c d " ) . s k i p = 5 ) 

ad24 < - r e a d . t a b l e ( f i l e = " a d 2 4 . t x t " , c o l . n a m e s = c ("num" ."AP" ,"DV" , " E v e " , " C a d " ."Bed" ) , s k i p = 5 ) 

ad 14 < - r e a d , t a b l e ( f i l e = " ad 14 . t x t " , c o l . n a m e s = c ("num" ;"AP" ,'*DV" ; " E v e " , " C a d " ; " B c d " ) . s k i p = 5 ) 

a d 2 3 <— r e a d . t a b l e ( f i 1 e = " a d 2 3 . t x t " , c o l . n a m e s = c ("num" , "AP" , "DV" , " E v e " , " C a d " . " Bed" ) . s k i p = 5 ) 

ad 33 <— r e a d . t a b l e ( f i l e = " a d 3 3 . t x t " , c o l . n a m e s = c ( " n u m " , "AP" , "DV" , " E v e " , " C a d " . " B e d " ) . s k i p = 5 ) 

c b l 6 < - r e a d . t a b l e ( f i l e — " cb 1 6 . t x t " , c o l . n a m e s = c ("num" ."AP" ,"DV" , " E v e " , " C a d " . " B e d " ) , s k i p = 5 ) 

# Load the EHB data 

h x l 6 < - r e a d . t a b l e ( f i I e = " h x l 6 . t x t " , c o l . n a m e s = c ( " n u m " , "AP" ,"DV" , " E v e " , "Hun" . " B e d " ) , s k i p - 5 ) 

h x l l <— r e a d . t a b l e ( f i l e = " h x l 1 . t x t " . c o l . n a m e s = c ( " n u m " , ̂ APJ' , "DV" , " E v e " , "Hun" ," Bed" ) , s k i p —5) 

h z l 2 <— r e a d . t a b l e ( f i l e ~ " h z l 2 . t x t " , c o l . n a m e s = c ("num" , "AP" , "DV" , " E v e " , "Hun" ," Bed" ) . s k i p = 5 ) 

# Load the EKrB data 

i z 3 <— r e a d . t a b l e ( f i 1 e = " i z 3 . t x t " . c o l . n a m e s = c ( "num" , "AP" , " D V , " E v e " . "*Kr': . " B e d " ) , s k i p = 5 ) 

ms21 <— r e a d . t a b l e ( f i l e = " ms21 . t x t " . c o l . n a m e s = c ( " n u m " . "AP" , "DV" . " E v e " , " Kr" , " B e d " ) , s k i p = 5 ) 

ms9 <— r e a d . t a b l e ( f i l e = " m s 9 . t x t " , c o l . n a m e s = c ( "num" . "AP" ."DV" . " E v e " , " K r " . " Bed" ) , s k i p — 5 ) 

ms3 <— r e a d . t a b l e ( f i 1 e = " m s 3 . t x t " . c o l . n a m e s = c ("num" , "AP" . " D V , " E v e " , " K r " . " Bed" ) . s k i p = 5 ) 

# Load next) hand— paired embryos : FESceOS . HETae4 • HETaelO 

F E S c e 0 5 < - r e a d . t a b l e ( f i l e ^ ' B E C a b l " . t x t " ; c o l . n a m e s = c ( "num" : " A P " . ' ' D V , " F s h " . " E v e " ," S i p " ) , s k i p = 5 ) 

F E S c e 0 5 < - FESceOD { ; c ( l : 2 . 3 : 5 . 4 , 6 ) ] 

50 



HETae4 < - r e a d . t a b l e ( f i le="BECabl7 . t x t " , co l . names=c( "num" ,"AP" ,"DV" , "Hun" ."Eve" , " T l s " ) , sk ip =5) 
HETae4 < - HETae4 [ , c ( l , 2 , 3 . 5 , 4 , 6 ) ] 
HETaelO < - r e a d . t a b l e ( f i 1 e=" BECabl7 . t x t " , co l . names=c ("num" ,"AP" ,"DV" ,"Hun" , "Eve" , " T l s " ) , sk ip =5) 
HETaelO < - HETaelO [ , c ( l , 2 . 3 , 5 , 4 , 6 ) ] 

#restore current working directory , clean up temporary vars . 
se twd ( curDir ) 
rm( c u r D i r , s p l i t D i r ) 

B.2 R script to perform experiments 

Listing B.2: R script to perform the binomial estimates 

# Performs the binomial estimates for younger embryos 

////////////////////////• First method of estimates : binomial model 
# This script assumes that the data have been loaded into data frames , 
# each bearing the name of the embryo from which it has been extracted. 

# Step one, find the sibling nuclei in each image 
i f ( ! e x i s t s ( " a b l 8 E D M " ) ) { 

abl8EDM < - genEDM( abl8 [ , 2 : 3 ] ) 

} 
if ( ! e x i s t s ("ac22EDM")){ 

ac22EDM < - genEDM ( ac22 [ , 2 : 3 ] ) 

} 
if ( ! e x i s t s ("ad22EDM")){ 

ad22EDM < - genEDM ( ad 2 2 [ , 2 : 3 ] ) 

} 
if ( ! e x i s t s ("ad24EDM" )){ 

ad24EDM < - genEDM ( ad 24 [ , 2 : 3 ] ) 

} 
if ( ' . e x i s t s ("adl4EDM" )){ 

adl4EDM < - genEDM ( ad 14 [ , 2 : 3 ] ) 

} 
if ( ! e x i s t s ("ad23EDM" )) { 

ad23EDM < - genEDM ( ad 23 [ , 2 : 3 ] ) 

} 
if ( ! e x i s t s ("ad33EDM" )){ 

ad33EDM < - genEDM ( ad33 [ , 2 : 3 ] ) 

} 
if ( ! e x i s t s ("hxllEDM" )){ 

hxllEDM < - genEDM ( hxl 1 [ , 2 : 3 ] ) 

} 
if ( ! e x i s t s ("hxl6EDM" )){ 

hxl6EDM < - genEDM(hxl6[ , 2 : 3 ] ) 

} 
if ( ! e x i s t s ("cbl6EDM" )){ 

cbl6EDM < - genEDM(cbl6 [ , 2 : 3 ] ) 

} 
i f ( ! e x i s t s ("hzl2EDM" )){ 

hzl2EDM < - genEDM(hzl2[ , 2 : 3 ] ) 

} 
if ( ! e x i s t s ("iz3EDM" )){ 

iz3EDM < - genEDM ( i z 3 [ , 2 : 3 ] ) 

} 
if ( ! e x i s t s ("ms21EDM" )){ 

ms21EDM < - genEDM ( ms21 [ , 2 : 3 ] ) 
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} 
i f (! e x i s t s ("msflEDM" )){ 

ms9EDM < - genEDM (ms9 [ , 2 : 3 ] ) 

} 
if (! e x i s t s ("ms3EDM" )){ 

ms3EDM < - genEDM (ms3 [ , 2 : 3 ] ) 

} 
if (! e x i s t s ("FESce05EDM" )){ 

FESce05EDM < - genEDM (FESce05 [ , 2 : 3 ] ) 

} 
if (! e x i s t s ("HETae4EDM")){ 

HETae4EDM < - genEDM (HETae4 [ . 2 : 3 ] ) 

} 
if (! e x i s t s (" HETaelOEDM" )) { 

HETaelOEDM < - genEDM(HETaelO [ , 2 : 3 ] ) 

} 

# load the pairs data from file 

c u r D i r <— getwd () 
s p 1 i t D i r <— u n l i s t ( s t r s p l i t ( c u r D i r , " t h e s i s ' ) ) 
setwd ( p a s t e ( spl i t D i r [1] , ' t h e s i s / t e x t d a t a / pa i r i n g s / ' , sep 

if ( ! e x i s t s ( " a b l 8 s i b s " ) ) { 
a b l 8 s i b s <— read . t a b l e ( f i l e = " a b l 8 p a i r s . t x f ) 

} 
i f ( ! e x i s t s ( " a c 2 2 s i b s " ) ) { 

a c 2 2 s i b s < - f i ndS ibs (ac22EDM) 

} 
if ( ! e x i s t s ( " a d 2 2 s i b s " ) ) { 

a d 2 2 s i b s < - f indS ibs (ad22EDM ) 

} 
i f ( l e x i s t s (" a d 2 4 s i b s " )){ 

a d 2 4 s i b s < - f i ndS ibs (ad24EDM) 

} 
if (! e x i s t s (" ad 14s ibs" )) { 

a d l 4 s i b s < - f i ndS ibs (adl4EDM) 

} 
if (! e x i s t s (" a d 2 3 s i b s " )){ 

a d 2 3 s i b s < - f i n d S i b s (ad23EDM) 

} 
if ( ! e x i s t s ( " a d 3 3 s i b s " ) ) { 

a d 3 3 s i b s <— read . t a b l e ( file—" a d 3 3 p a i r s . t x t " ) 

} 
i f (! e x i s t s (" c b l 6 s i b s " )) { 

c b l 6 s i b s < - f i ndS ibs (cbl6EDM) 

} 
if ( l e x i s t s (" h z l 2 s i b s " )){ 

h z l 2 s i b s <— read . t a b l e ( fi l e = " h z l 2 p a i r s . txt '" ) 

} 
if (! e x i s t s (" hx l 1 s i b s " )) { 

h x l l s i b s < - f i ndS ibs (hxllEDM) 

} 
if (! e x i s t s (" hx l 6 s ib s " )) { 

h x l 6 s i b s < - f i ndS ibs (hxlGEDM) 

} 
if ( ! e x i s t s ( ' * i z 3 s i b s " ) ) { 

i z3s i bs <— read . t a b l e ( f i l e = " i z 3 _ p a i r s . t x t " ) 

} 
if ( ! e x i s t s ( " m s 2 1 s i b s , " ) ) { 
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ms21sibs < - find S i b s (ms21EDM) 

} 
if ( ! e x i s t s ( " m s 9 s i b s " ) ) { 

ms9sibs <— read . t a b l e ( f i l e="ms9_ p a i r s . t x t " ) 

} 
if ( ! e x i s t s (" ms3s ibs" )) { 

ms3sibs < - f i n d S i b s (ms3EDM) 

} 
if ( ! e x i s t s ( " F E S c e 0 5 s i b s " ) ){ 

FESce05sibs < - r e a d . t a b l e ( f i l e = " FESce05 _ p a i r s . t x t " ) 

} 
if ( ! e x i s t s ( " H E T a e 4 s i b s " ) ){ 

HETae4sibs < - f i n d S i b s (HETae4EDM) 

} 
if ( ! e x i s t s ( " H E T a e l O s i b s " ) ) { 

HETaelOsibs < - r e a d . t a b l e ( fi le="HETaelO_ p a i r s . t x t " ) 

} 

#restore current working directory , clean up temporary vars . 
setwd ( curDir ) 
rm( curDi r , s p l i t D i r ) 

# Step two, calculate the binomial model estimates of \hat (nu) 
# pairUpNew: used 
# for embryos where the siblings are estimated via the greedy pairing method. 
# Nuclei in these files are indexed from one. 
# pairUpZero: used for embryos where 
# the siblings are paired by hand. Nuclei in these files are indexed from zero . 

a b l 8 e s t s <— 
c( b i n E s t i m a t e ( 
Cad" ] , a b l 8 s i b s 
c ( b i n E s t i m a t e ( 
" ] , a d l 4 s i b s ) ) , 
c ( b i n E s t i m a t e ( 
Cad" ] , ad33s ibs 
c( b i n E s t i m a t e ( 
" ] , a c 2 2 s i b s )) , 
c( b i n E s t i m a t e ( 
" ] , a d 2 2 s i b s )) , 
c( b i n E s t i m a t e ( 
" ] , a d 2 3 s i b s )) , 
c( b i n E s t i m a t e ( 
"] , a d 2 4 s i b s ) ) , 
c( b i n E s t i m a t e ( 
"J , c b l 6 s i b s ) ) , 

pairUpZero ( a b l 8 [ . " Eve 
)) , b i n E s t i m a t e ( p a i r U p 
pairUpNew ( a d l 4 [ , " Eve" 
b i n E s t i m a t e (pairUpNew 
pairUpZero ( ad 33 [ , " Eve 
)) , b i n E s t i m a t e ( p a i r U p 
pairUpNew ( ac22 [ , " Eve" 
b i n E s t i m a t e (pairUpNew 
pairUpNew (ad22 [ , "Eve" 
b i n E s t i m a t e (pairUpNew 
pairUpNew ( ad23 [ . " Eve" 
b i n E s t i m a t e (pairUpNew 
pairUpNew ( ad24 [ , " Eve" 
b i n E s t i m a t e (pairUpNew 
pairUpNew ( c b l 6 [ , " Eve" 
b i n E s t i m a t e (pairUpNew 

a b l 8 s i b s ) ) . b i n E s t i m a t e ( pa i rUpZero ( ab l8 [ . " 
Z e r o ( a b l 8 { , "Bed" ] , a b l 8 s i b s ) ) ) a d l 4 e s t s < -

, a d l 4 s i b s )) , b i n E s t i m a t e ( pairUpNew ( ad 14 [ , "Cad 
a d l 4 [ ,"Bcd" ] , a d l 4 s i b s ) ) ) a d 3 3 e s t s < -
] , a d 3 3 s i b s ) ) , b i n E s t i m a t e ( pai rUpZero (ad33[ , " 

Zero(ad33 [ , "Bed" ] , ad33s ibs ) ) ) a c 2 2 e s t s < -
, a c22s ibs )) , b i n E s t i m a t e ( pairUpNew ( ac22 [ , " Cad 
a c 2 2 [ , " B e d " ] , a c 2 2 s i b s ) ) ) a d 2 2 e s t s < -
, a d 2 2 s i b s ) ) . b i n E s t i m a t e (pairUpNew ( ad 22 [ , "Cad 
ad22 [ , "Bed" j , ad22s ibs ) ) ) a d 2 3 e s t s < -
, ad2 3sibs )) , b i n E s t i m a t e (pairUpNew( ad23 { , "Cad 
ad23[ ; "Bcd" ] : a d 2 3 s i b s ) ) ) a d 2 4 e s t s < -
. a d 2 4 s i b s ) ) . b i n E s t i m a t e (pairUpNew ( ad 24 [ . "Cad 
ad24 [ , "Bed" ] , ad24s ibs ) ) ) c b l 6 e s t s < -
, c b l 6 s i b s )) , b i n E s t i m a t e ( pairUpNew ( cb l6 [ . "Cad 
c b l 6 [ ,"Bcd" ] , c b l 6 s i b s ) ) ) 

h z l 2 e s t s <— 
c( b i n E s t i m a t e ( pai rUpZero ( hz l2 [ , " Eve 
Hun" ] , h z l 2 s i b s ) ) , b i n E s t i m a t e ( p a i r U p 
c ( b i n E s t i m a t e (pairUpNew ( hx l 1 [ ."Eve" 
"] , h x l l s i b s ) ) . b i n E s t i m a t e (pairUpNew 
c( b i n E s t i m a t e (pairUpNew ( hx l6 { , " Eve" 
" j , h x l 6 s i b s ) ) , b i n E s t i m a t e ( pairUpNew 

i z 3 e s t s <— 
c( b i n E s t i m a t e ( pai rUpZero ( iz3 ( , " Eve" 
. i z 3 s i b s )) , b i n E s t i m a t e (pa i rUpZero ( iz 
c( b i n E s t i m a t e (pairUpNew ( ms21 [ . "Eve" 

] . h z l 2 s i b s ) ) , b i n E s t i m a t e (pa i rUpZero ( hz l2 [ ,' : 

e r o ( h z l 2 [ , "Bed" ] , h z l 2 s i b s ) ) ) h x l l e s t s <~ 
, h x l l s i b s )) , b i n E s t i m a t e (pairUpNew ( hxl 1 [ , "Hun 
h x l l [ ,"Bcd" ] , h x l l s i b s ) ) ) hx lGes t s < -
, h x l 6 s i b s ) ) , b i n E s t i m a t e ( pairUpNew ( hxl 6 [ , " Hun 
h x l 6 [ , "Bed'* ] , h x l 6 s i b s ) ) ) 

. i z 3 s i b s )) . b i n E s t i m a t e ( p a i r U p Z e r o ( i z 3 [ , " Kr" ] 
3 [ . " Bed" ] , i z 3 s i b s ) ) ) ms21ests <— 

T ms21s ib s ) ) . b i n E s t i m a t e ( pairUpNew ( ms21 [ . "'Kr" 

! m s 2 1 s i b s ) ) . b i n E s t i m a t e ( pairUpNew ( ms21 [ . "Bed" ] . ms2 Isibs ) ) ) ms9ests <— 
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c ( b i n E s t i m a t e ( pair Up Zero (ms9 [ , "Eve" ] , m s 9 s i b s ) ) , b i n E s t i m a t e ( p a i r U p Z e r o (ms9 [ ,"Kr" ] 
, m s 9 s i b s ) ) , b i n E s t i m a t e ( pair Up Zero (ms9 [ , "Bed" ] , m s 9 s i b s ) ) ) ms3ests <— 
c ( b i n E s t i m a t e ( pairUpNew (ms3 [ , " Eve" ] , m s 3 s i b s ) ) . b i n E s t i m a t e (pairUpNew(ms3 [ , "Kr" ] , 
m s 3 s i b s ) ) . b i n E s t i m a t e (pairUpNew (ras3 [ , "Bed" ] , m s 3 s i b s ) ) ) 

FESce05es ts < -
c ( b i n E s t i m a t e ( pa i rUpZero ( FESce05 [ ,"Eve" ] , F E S c e 0 5 s i b s ) ) , b i n E s t i m a t e ( p a i r U p Z e r o ( 
FESce05[ . "Fsh" ] , FESce05s ibs )) , bin E s t i m a t e ( pa i rUpZero ( FESce05 [ ," S ip"] , FESce05sibs 
) ) ) HETae4ests < -
c( b i n E s t i m a t e (pairUpNew (HETae4 | , "Eve" ] , HETae4s ibs ) ) , b i n E s t i m a t e (pairUpNew(HETae4 
[ ,"Hun" ] ,HETae4s ibs ) ) , b i n E s t i m a t e (pairUpNew(HETae4 ( , " T l s " ] , HETae4sibs )) ) 
HETaelOests < -
c( b i n E s t i m a t e ( pa i rUpZero (HETaelO [ ,"Eve" ] , HETaelOsibs ) ) , b i n E s t i m a t e ( pairUpZero ( 
HETaelO [ ,"Hun"] .HETae lOs ibs ) ) , b i n E s t i m a t e ( pa i rUpZero (HETaelO [ , " T l s " ) .HETaelOsibs 

) ) ) 

# collect the data in a matrix 

ECBbin <— rb ind ( a b l 8 e s t s , a d l 4 e s t s , a d 3 3 e s t s , a c22es t s , ad22es t s , ad23es ts , ad24es t s , c b l 6 e s t s ) 
rownames(ECBbin) < - c ( " a b l 8 " , " a d l 4 " , " a d 3 3 " , " a c 2 2 " , "ad22" , " a d 2 3 " , "ad24" , " c b l 6 " ) 
colnames(ECBbin) < - c ( " E v e " , "Cad" , "Bed") 

EHBbin <— r b i n d ( h x l l e s t s , h x l 6 e s t s , h z l 2 e s t s ) 
rownames(EHBbin) < - c (" h x l l " ," h x l 6 " , " h z l 2 " ) 
colnames (EHBbin) <— c ( " Eve" , "Hun" ," Bed" ) 

EKrBbin <— rb ind ( i z 3 e s t s , m s 2 1 e s t s , ms9ests , 
rownames(EKrBbin) <— c ( " i z 3 " , " m s 2 1 " , " m s 9 " , 
colnames (EKrBbin) < - c ( " E v e " , "Kr" , "Bed") 

# collect the hand—paired data in a matrix 
HPbin <— r b i n d ( a b l 8 e s t s , ad33es t s , h z l 2 e s t s , i z 3 e s t s , ms9ests , FESce05ests .HETaelOests ) 
rownames(HPbin) < - c ( " a b l 8 " , " a d 3 3 " , " h z l 2 " , " i z 3 " ,"ms9" ,"FESce05" ."HETaelO") 
colnames (HPbin) < - c ( " E v e " , "Cad /Hun/Fsh /Kr" , " B c d / T l s / S l p " ) 

# remove temporary vars 
r m ( a b l 8 e s t s , a d l 4 e s t s , ad33es ts , ac22es t s , ad22es t s , ad23es ts , a d 2 4 e s t s ) 
r m ( c b l 6 e s t s , h z l 2 e s t s , h x l l e s t s , h x l 6 e s t s , i z 3 e s t s , ms21ests , ms9ests . ms3ests . FESce05es t s ) 
rm(HETae4ests , HETaelOests) 

B.3 R functions 

Listing B.3: R functions for the binomial estimator scripts 

$//$$$$$$#• functions needed to generate binomial estimates 

# Takes a euclidean distance matrix EDM, returns a matrix 
# sibs where sibs [i , J is one nuclei pairing 
# Elimination is greedy, which is NOT ideal. 
f i n d S i b s < - f u n c t i o n (EDM) { 

# generate pairing vector 
s i ze < - dim(EDM) [1] 
s i b s <— m a t r i x (0 ,n row=l , nco l=2) 

# make diagonal large (currently zero vector) 
diag(HDM) < - r e p ( 9 9 , s i z e ) 

ms3ests ) 
" ms3" ) 
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# Now. find minimum value in EDM at (rowJnd , collnd) , 
# pair elements in sibs, eliminate row, col 'rowlnd ' row, col 'collnd 
# Keep track of the number of pairings , stop when 
# we've hit floor (rows (EDM) /2) 
s top < - f l o o r (nrow(EDM) / 2 ) 
p a i r s <— 0 
w h i l e ( p a i r s < s t o p ) { 

rowlnd <— which . min( a p p l y (EDM, 1 ,min) ) 
c o l l n d <— which . min( a p p l y (EDM, 2 , min) ) 
s i b s <— r b i n d ( s ib s , c( rowlnd , co l l nd )) 

EDM[ r o w l n d , ] < - r e p ( 9 9 , s i z e ) 
EDM[ , c o l l n d ] < - r e p ( 9 9 , s i z e ) 
EDM[ , rowlnd] < - rep ( 9 9 , s i z e ) 
EDM[ col lnd ,] < - r e p ( 9 9 , s i z e ) 
p a i r s <— p a i r s + 1 

} 
# Remove zero vector in row 1 
s ibs [ - 1,] 

} 

# Generate -what should be a lower triangular distance matrix 
genEDM < - f u n c t i o n (M) { 

EDM < - m a t r i x ( 9 9 ,nrow=dim(M) [1] , ncol=dim(M) [ 1 ]) 
f o r ( i in 1 :dim(EDM) [ 1 ]) { 

for ( j in 1: i ){ 
E D M [ i , j ] < - el2norm(M[i ,] ,M[j , ] ) 

} 
} 
EDM 

} 

# Calculates the Euclidean distance between two vectors , x and y 
e!2norm <— f u n c t i o n (x , y ) { 

1 < - s q r t ( ( x [ l ] - y [ l ] ) - 2 + ( x [ 2 ] - y [ 2 ] ) - 2 ) 
1 

} 

# Performs the same function as pairllpNew, but is intended to take 
# hand—paired sibling matrices (the sibs argument) which count nuclei from 0 
# as opposed to sibling matrices which count nuclei from 1, and therefore cause 
# no problems 
pai rUpZero <— f u n c t i o n ( i n t s , s i b s ) { 

p a i r s <— m a t r i x (0 , n row=l ,nco l = 2) 
bv <— r e p (0 , l e n g t h ( i n t s )) 
fo r ( i in 1:nrow ( s i b s ) ) { 

if ( s ibs [ i , 1J < l e n g t h ( i n t s ) & s i b s [ i , 2 ] < l e n g t h ( i n t s )){ 
i f ( b v [ s i b s [i ,1] + 1] = 0){ 
# add ints[i-hl], ints [ sibs [ i] +1] to pairs matrix 
# flag that both i and sibsfi] are paired in bv 
p a i r s <— r b i n d ( p a i r s , c( i n t s [ s i b s [i ,1] + l ] , i n t s [ s i b s [i ,2] +1] ) ) 
bv [ s i b s [ i , 1 ] + 1 ] < - 1 
b v [ s i b s [ i , 2 ] + 1] < - 1 

} 
} 

} 
# get rid of the first row zero vector 
p a i r s <— p a i r s [ — 1 .] 
p a i r s 
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# Takes a vector of intensity values (M) and a matrix of siblings 

# (either Mf 2 square or (M- 1)/2 square) to generate a matrix (in [~M/2,2]) where each row 

# represents one of the pairs of sibling intensities 

# bv is a bit vector that keeps track of which pairs of siblings are in the 

# pairs matrix already . 

p a i r U p N e w <— f u n c t i o n ( i n t s , s i b s ) { 

p a i r s <— m a t r i x (0 .nrow = l . n c o l = 2) 

bv <— r e p ( 0 . l e n g t h ( i n t s ) ) 

f o r ( i in 1 : n r o w ( s i b s ) ) { 

i f ( s i b s [ i , l ] < l e n g t h ( i n t s ) & s i b s [ i , 2 ] < l e n g t h ( i n t s ) ) { 

i f ( b v | s i b s [ i , 1 ] ] = 0 ) { 

# add ints [ i J , ints [ sibs [i J] to pairs matrix 

# flag that both i and sibsfi] are paired in bv 

p a i r s <— r b i n d ( p a i r s , c ( i n t s [ s i b s [i , 1 ] ] , i n t s [ s i b s [i , 2 ] ] ) ) 

bv | s i b s [i , 1 ]] < - 1 

b v [ s i b s [ i , 2 ] ] < - 1 

} 

} 

} 

# get rid of the first row zero vector 

p a i r s <— p a i r s [ — 1 , ] 

p a i r s 

} 

# Takes a row vector- . Return true if the vector is the zero vector 

# The vectors are strictly positive . so sum == 0 iff vec is the 

# zero vector 

i s Z e r o <— f u n c t i o n ( v e c ) { 

sum ( vec ) = = 0 

} 

# Takes a matrix M where each row represents the intensity values of a pair of 

# sibling nuclei, and. calculates nu. the binomial assumption intensity to 

# concentration estimator 

b i n E s t i m a t e <— f u n c t i o n (M) { 

# remove all zero vector rows 

M < - M[ I a p p l y (M, 1 J s Z e r o ) ,] 

# first . generate a vector of differences squared 

d i f f s < - M[ . 1] - M[ . 2 ] 

d i f f s S q < - d i f f s "2 

# next , generate a vector of sums 

s u m s < - M[ , 1 ] + M[ , 2 ] 

# finally , divide diffs S q by sums and sum the resulting vector to get \hat (k) 

k h a t <— m e d i a n ( d i f f s S q / s u m s ) 

} 

# Using Hmisc ' s latex () fundi on , create a latex file containing a nicely formatted table 

# for the results. 

# Requires : all results wrapped up in a nice matrix. 

# Params : 

# tableName — Title for the table 

# fileName — name of the resulting . tex file 

# rowGroups — vector of tables for each group (of resMatrix) 

# rGparts — vector indicating how resMatrix is to be partitioned by rows 

# resMatrix — matrix with rows tabled for embryo, columns for TF 

m a k e T a b l e <— f u n c t i o n ( t a b l e N a m e . f i l e N a m e . r o w G r o u p s , r G p a r t s , r e s M a t r i x , a v a ! = F A L S E ) { 
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# get current working dir 
curWD < - getwd() 

# set current working dir to ~/ thesis/1ex 
s p 1 i t D i r <— u n l i s t ( s t r s p l i t (curWD , ' t h e s i s ' )) 
setwd( pas t e ( s p l i t D i r [1] , ' t h e s i s / t e x / ' , s ep= ' ' )) 

# write the matrix to a file 
# need to remove wraps (add explicit wraps) 
c e l l , format <— matrix ( rep('"'' ,nrow( r e s M a t r i x ) * n c o l ( r e s M a t r i x ) ) , ncol = 3) 
l a t e x ( r e s M a t r i x , t i t l e = tableName , f i l e = fileName , append=aval , colnamesTexCmd = " i t s h a p e " , 
rownamesTexCmd = '" b f s e r i e s " . cgroupTexCmd = " c o l o r { g r e e n } " . rgroupTexCmd = " p a l a t i n o : ' , 
cel lTexCmds = ce l l . format . numeric, d o l l a r = FALSE, rgroup = rowGroups, n . r g r o u p = r G p a r t s , 
c t a b l e = TRUE, l a b e l = " k ^ e s t i m a t e s " . c a p t i o n — " K „ E s t i m a t e s " ) 

# return wd to the former working directory 
setwd (curWD) 

} 
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Appendix C 

Scripts for poisson method 

experiments 

C.l R script to load data 

Listing C.4: R script to load the data 

### Loads the data in "/thesis/textdata/late 

### into the current R workspace 

////// Meant to be run in R from the working directory <whatever>/ thesis / s crip ts / 

#save the current directory 

c u r D i r <— g e t w d () 

s p 1 i t D i r <— u n l i s t ( s t r s p l i t ( c u r D i r . ' t h e s i s ' ) ) 

s e t w d ( p a s t e ( s p l i t D i r [1] . ' t h e s i s / t e x t d a t a / l a t e / ' , s e p = " * ) ) 

# ho ad the ECB data 

a b l 1 <— r e a d . t a b l e ( f i l e — ' " a b l l . t x t " , c o l . n a m e s = c ('"num" , "AP" , !"DV , ' "Eve ' ' , " C a d " , " Bed' ' ) , s k i p = 5 ) 

c b l 5 <— r e a d . t a b l e ( f i l e = " c b ! 5 . t x t " . c o l . n a m e s = c ( " n u m " . "AP" . "DV" , " E v e " , " C a d " , " Bed" ) . s k i p = 5 ) 

ae 10 <— r e a d . t a b l e ( f i l e = " a c l 0 . t x t " : c o l . n a m e s = c ("num" . "AP" . "DV" , " E v e " ," C a d " . " Bed" ) , sk i p = 5 ) 

# Transform CEB data into ECB data 

CEBbd5 < - r e a d , t a b l e ( f i l e = " b d 5 . t x t " ; c o l . n a m e s = c ( "num" ; " A P " ,"DV" , " C a d " . " E v e " , " B c d " ) , s k i p = 5 ) 

b d 5 < - CEBbd5[ , c ( l , 2 , 3 . 5 , 4 , 6 ) ] 

rm(CEBbd5) 

# Load the EKrH data 

k f 9 <— r e a d . t a b l e ( f i 1 e = " kf9 . t x t ' " , c o l . n a m e s = c ( "num" , " A P " , "DV" , " E v e " , " K r " . " H u n " ) , s k i p — 5 ) 

b a 3 <— r e a d . t a b l e ( f i 1 e = " b a 3 . t x t " , c o l . n a m e s = c ( "num" , " A P " , "DV" , " E v e " , " K r " ,"Hun" ) , s k i p = 5 ) 

r f 1 1 <— r e a d . t a b l e ( f i l e — " r f l l . t x t " . c o l . n a m e s = c ( "num" , "AP" . 'DV" , " E v e " . " Kr" . "Hun" ) , s k i p = 5 ) 

r f 6 <— r e a d . t a b l e ( f i l e — " r f 6 . t x t " . c o l . n a m e s = c ("num" . " A P " , " D V , " E v e " . " K r " , "Hun" ) . s k i p = 5 ) 

# Load the EKnH data 

dm 14 <— r e a d . t a b l e ( f i l e = " d m l 4 . t x t " . c o l . n a m e s = c ( "num" . " AP" . "DV" , " E v e " , "Kn" . "Hun" ) , sk i p = 5 ) 

t n 2 <— r e a d . t a b l e ( f i l e—'" t n 2 . t x t " . c o l . n a m e s = c ( "num" . "AP" , "DV" . " E v e " , "Kn" ; " Hun" ) , s k i p = 5 ) 

l ine 8 <— r e a d . t a b l e ( f i 1 e = " h n e 8 . t x t " . c o l . n a m e s = c ( "num" , " A P " . "DV" , " E v e " , "Kn" , "Hun" ) . s k i p = 5 ) 

fq4 <— r e a d . t a b l e ( f i 1 e = " fq4 . t x t " , c o l . n a m e s = c ( "num" . " A P " , "DV" , " E v e " ."Kn" , "Hun" ) . s k i p = 5 ) 

# Load the new ECB/EKrB data 
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dq2 <— read . t a b l e ( f i 1 e=" dq2 . t x t " , co l . names=c ("num" , "AP" , "DV" , " Eve" . "Cad" .'" Bed'" ) , sk ip =5) 
msl4 <— read . t a b l e ( f i 1 e=" msl4 . tx t" . col . names=c ("num" ,"AP" , "DV1 , "Eve" ." Kr'' . " Bed" ) , sk ip =5) 
ms36 <— read . t a b l e ( f i 1 e="ms36 . t x t " . c o l . names=c ("num" , "AP" , "DV" , "Eve" ."Kr" , " Bed" ) , sk ip —5) 
tu7 <— read . t a b l e ( fi l e = " t u 7 . t x t " , co l . names=c ( "num" , "AP" ,"DV" , "Cad" , " Eve" .'" Bed" ) . sk ip =5) 
tu7 < - tu7[ , c ( l ,2 T3 ,5 .4 ,6)] 

#restore current working directory . clean up temporary vars . 
se twd( curDi r ) 
rm(cu rDi r , s p l i t D i r ) 

C.2 R script to perforin the experiments 

Listing C.5: R script to perform the Poisson experiments 

## Experiment script file to generate the nu poisson estimates for all embryos. The 7'esul ts are 
# returned in a matrix called 'results *. 
.//#//.//.//$////////## Boxes for a given embryo are constructed . statistics are computed and tabled 

# 
# Embryos currently used: 

# 
# abll, hne8, rf6 , aclO, dml4, fc/P . tn2 , baS, dq2, msl4 . tu7, bd5 , ms36, fq4 , rfll 

# 
# Embryos should be organized into groups based on like channels : ECB. EKrB, EKrH, etc. 

# 
# For each embryo group, loop through the embryos 
# for each channel within each embryo 
# — compute the window estimates 
# — compute the statistics 
# — record the estimate in the results matrix 
# 
# Embryo is indicated by 'embryo ' , cycling through the embryos listed above 
# Channel is indicated by 'ch ' 
# Embryo name is indicated by 'embname' 

# Compute two sets of statistics for each box 
# 1) var(Oi) / mean(Oi) 
# Each box is to be (4* (i — 1) to i*5) by (40 to 60) 

# Define temporary vars 

h a t p s t a t s < - r ep (NA,20) 
r e s u l t s <— m a t r i x (0 , n row=l , n c o l = 3 ) 
co lnames ( r e s u l t s ) <— c (" Eve" , " Cad . Kr ,Kn" , " Bed ,Hun" ) 
c h a n n e l s <— c () 

# generate results matrix 
eCb < - c ( " d q 2 " ." t u 7 " , ' ' bd5" . ' " a b l l " , " c b l 5 " , " a c l 0 " ) 
eKrB <— c ( " m s l 4 " , "ms36") 
eKnH < - c ( "dml4" , " t n 2 " , "hne8" ." fq4" ) 
eKrH < - c ( " kf9" : " b a 3 " , " r f l l " , " r f6 " ) 

e m b l i s t < - c(eCb , eKrB .eKnH ; eKrH) 
for ( j in 1 : l e n g t h ( e m b l i s t )) { 

for (k in 4 :6){ 
r e s u l t s [j .k—3] <— t a b u l a t e ( e m b l i s t [ j ] . co lnames ( ge t ( e m b l i s t [j ] ) ) [ k] ) 
c h a n n e l s <— c ( channe l s , co lnames ( ge t ( e m b l i s t [ j ] ) ) [ k ] ) 

} 
# add next row here unless this is the last embryo . 

59 



i f ( j < l e n g t h ( e m b l i s t )) { 
r e s u l t s <— r b i n d ( r e s u l t s , c ( 0 , 0 , 0 ) ) 

} 
} 

# Set up column names, row names for results 
rownames( r e s u l t s ) <— emb 1 ist 

# remove temporary vars 
rm( h a t p s t a t s , embl i s t , channels , j . k , eCb . eKrB ,eKnH,eKrH) 

C.3 R script to generate results 

Listing C.6: R script to generate the Poisson results table 

//#//• Generate a nice looking results matrix for the poisson 
### estimates . 

# Get results matrix by sourcing 'expLate.R' firstl 

if ( [ e x i s t s (" r e s u l t s " ) ){ s t o p ("No„ r e s u l t s ^ ma t r ix . ̂ ^ R u n ^ o n e ^ o f ^ t h e ^ l a t e „ e x p e r i m e n t „ s c r i p t s „ f i r s t ." ')} 

i f ( ! e x i s t s (" rowG roups" )) { s t o p ('" rowGroups^is „ n o t „ d e f i n e d „( embryos „by„ channel ) " )} 

i f ( ! e x i s t s (" r G p a r t s " )){ s t o p ( ^ rG p a r t s „i s _ n o t _ d e f i n e d w ( co r re spond _with_row Groups ) " ) } 

# Merge results into a data frame 
df <~ d a t a . frame( r e s u l t s , s t r i n g s A s F a c t or s—FALSE) 

# Format data frame to 5 significant digits , call latex () on the data frame 
### Fix so that first column doesn't appear I 

l i b r a r y (Hinisc) 
df < - fo rma t . d f ( d f , dec=4) 

# get current working dir 
curWD < - ge twd( ) 

# set current working dir to ~/ thesis/ tex 
s p 1 i t D i r <— u n l i s t ( s t r s p l i t (curWD, ' t h e s i s ' )) 
setwd ( p a s t e ( s p l i t D i r [1] , ' t h e s i s / t e x / ' . sep— ! ' )) 

# make the table 
# rowGroups — vector of lables for each group (of resM atrix ) 
# rGparts — vector indicating how resM atrix is to be partitioned by rows 
# set rgroup to rowGroups, n.rgroup to rGparts when I figure out the ordering 
#rowGroups <— c("Eve — Cad — Bed" ."Eve — Kr — Bed"," Eve — Kn — Hun"." Eve — Kr — Hun") 
#rGparts <— c (length (eCb) , length (eKrB) , length (eKnH) , length (eKrH)) 

l a t e x (df , t i t l e = "Embryos'*, f i l e = r p o i s s o n E s t s . t e x " , colnamesTexCmd = " i t s h a p e " , 
rownamesTexCmd = " b f s e r i e s " , cgroupTexCmd = " c o l o r { g r e e n } " , rgroupTexCmd = " p a l a t i n o ; ' , 
n u m e r i c , d o l l a r = FALSE, c t a b l e = TRUE, l a b e l = " N u ^ E s t i m a t e s " , cap t ion = " N u ^ E s t i m a t e s " . 
rg roup = rowGroups , n . r g r o u p = r G p a r t s ) 

# return tod to the former working directory 
setwd (curWD) 

# remove t emporary vars 
rm( emblist, , df. c h a n n e l s . j . k , curWD . s p l i t D i r . eCb , eKrB , eKnH, eKrH . rowGroups . r G p a r t s ) 
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C.4 R functions 

Listing C.7: R functions for the Poisson estimator scripts 

////////.////.//•/ft/ functions needed to generate poisson estimates 

# Takes a row vector. Return true if the vector is the zero 
# The vectors are strictly positive . so sum == 0 iff vec is 
# zero vector 
i sZero <— f u n c t i o n ( vec ) { 

sum (vec) = 0 

} 

# Using Hmisc ' s latex () function , create a latex file containing a nicely formatted table 
# for the results. 
# Requires : all results wrapped up in a nice matrix. 
# Params: 
# tableName — Title for the table 
# fileName — name of the resulting . tex file 
# rowGroups — vector of lables for each group (of resMatrix) 
# rGparts — vector indicating how resM atrix is to be p artiti one d by rows 
# resMatrix — matrix with rows labled for embryo . columns for TF 
makeTable <— f u n c t i o n (tableName , fileName , rowGroups , r G p a r t s , r e sMa t r ix , aval=FALSE) { 

# get current working dir 
curWD < - ge twd( ) 

# set current working dir to '/thesis/tex 
s p 1 i t D i r <— u n l i s t ( s t r s p l i t (curWD, ' t h e s i s ; )) 
se twd( p a s t e ( s p l i t D i r [ l j , ' t h e s i s / t e x / ' T sep= ' )) 

# write the matrix to a file 
c e l l . f o r m a t <— m a t r i x ( r e p ( " " ,nrow( r e s M a t r i x ) * ncol ( r e sMa t r ix )) , ncol = 3) 
l a t e x ( r e s M a t r i x , t i t l e = tab leName, f i l e = fileName , append=aval , colnamesTexCmd = " i t s h a p e " . 
rownamesTexCmd = " b f s e r i e s " , cgroupTexCmd — '' color { green }" , rgroupTexCmd = " p a l a t i n o " , 
cellTexCmds = ce 11 . fo rma t , n u m e r i c . dol 1 a r = FALSE, rg roup — rowGroups, n . r g r o u p — r G p a r t s , 
c t a b l e = TRUE, l a b e l = " k „ e s t i m a t e s " . c a p t i o n = " $ \ n u $ „ E s t i m a t e s " ) 

# return wd to the former working directory 

setwd(curWD) 

} 

# Generate hat (O- i) values , with intercept term. 
obsHats <— f u n c t i o n ( d a t a , coe f s ){ 

h a t s < - r e p ( 0 , d i m ( d a t a ) [1 ] ) 
for ( i in 1: l e n g t h ( ha t s )) { 

h a t s [ i ] < - coefs ["AP" ] * d a t a [ i , "AP" ] + coefs [ "DV" 1 *da ta [ i , "DV" ] + coefs [ " ( I n t e r c e p t ) ' 1 ] 

} 
h a t s 

} 

# Generate hat(O^i) values, with intercept term for EVE. 
obsEveHats <— f u n c t i o n ( d a t a , coefs ) { 

h a t s < - r e p (0 ,dim( d a t a ) |1 ] ) 
for ( i in 1: l e n g t h ( hat s )) { 

h a t s [ i ] < - coefs ["AP" ] * d a t a [ i ,"AP'" ] + coef s ( "DV" ] *da ta [ i , ''DV'' ] + coefs | ' ' ( I n t e r c e p t ) ' ' ] 
coefs ["AP:DV" ] * d a t a [ i : "AP" ] * d a t a [ i ,"DV"] + coefs [ " I (AP~ 2) " ] * ( d a t a [ i . "AP" j ) " 2 + 
coefs [ " I ( D V - 2 ) " ] * ( d a t a [ i . "DV" ])~2 

} 

vector 
the 
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h a t s 
} 

# For a given embryo / channel , compute the table statistics 
////$#.# Add code to handle missing / empty subsets in the boxes (if dim (box) [ 1J > 0) 
t a b u l a t e <— f u n c t i o n (embname , ch ) { 

for ( i in 1 : l e n g t h ( h a t p s t a t s )) { 
box < - s u b s e t (ge t (embname) , AP > 5*( i - 1 ) & AP < i*5 & DV > 40 & DV < 60, 
s e l e c t = c("AP" ,"DV" , c h ) ) 
i f (dim(box ) [ 1 ] > 0){ # for all non-empty boxes 

i f ( t o l o w e r ( t o u p p e r ( c h ) ) === " eve" ) { 
form < - a s . f o r m u l a ( p a s t e ( c h , ' ! ^ J ' ," I (AP" 2) „+„I (DV 2) M+_AP:DVU+„AP_+J)V 
coefs <— c o e f f i c i e n t s (lm(form ,box) ) 
ha t s <— obsEveHats (box , coefs ) 

} 
e l s e { 

form <— a s . fo rmula ( p a s t e (ch , n _"_" ,"AP„+JDV" )) 
coefs <— c o e f f i c i e n t s (lm(form ,box) ) 
ha t s <~ obsHats (box , coefs ) 

} 
newvar <— ( 1 / l e n g t h ( ha t s ) ) * sum( (box [ , ch ] — h a t s ) " 2 ) 
h a t p s t a t s [ i } <— newvar / m e a n ( h a t s ) 
# hatpstatsfi] <— mean( (box[,chJ — hats)"2 / hats) 

} 

} 
# Return the mean of the corrected estimates 
mean( h a t p s t a t s , n a . r m = TRUE) 

# Takes an embryo, partition size 
# Returns a matrix containing the conditional poisson estimates 
# one row per p artition . All p artitions hop e fully contain some nucleiil 
c p E s t i m a t e <— f u n c t i o n (embryo , s i z e ) { 

min <— min( embryo [ , 2] ) 
max <— max( embryo [ , 2 ] ) 
p a r t s <— seq (min, max, (max — m i n ) / s i z e ) 
estMat <— m a t r i x (0 ,nrow=size , nco l=3) 
co lnames( e s tMa t ) <— c ( co lnames(embryo ) [ 4 : 6] ) 
for ( i in 1: s i z e ) { 

s l i c e <— embryo[ ,2} > p a r t s [ i ] &: embryo [, 2] < pa r t s [ i - J - l ] 
v a l s <— embryo [ s l i c e , 4 : 6 ] 
es tMat [ i , ] <— app ly ( va l s ,2 , v a r ) / a p p l y (va l s . 2 ,mean) 

} 
estMat 

} 

# Takes an embryo, number of neighbours 
# Returns a matrix containing the class conditional poiss on estimates 
# one row per class. 
c l p E s t i m a t e <— f u n c t i o n (embryo , k ,G=c (NA)) { 

if ( i s . n a ( C ) ) { 
C <— i n t e n s i t y CI ass (embryo , k , 2) 

} 
s ize < - dim(C) [2] 
estMat <— m a t r i x (0 ,nrow=size , n c o l = 3 ) 
colnames ( e s tMa t ) <— c ( co lnames( embryo ) [ 4 : 6] ) 
rownames( e s tMat ) <— c ( " low" . "med'" . '"high'") 
for (i in 1 : s i z e ) { 

# isolate values by class . remove NA values 
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chOneVals < - embryo [ ,4] [C[ ,1] = i] 
chOneVals <— chOneVals [ ! i s . na( chOneVals ) ] 
chTwoVals < - embryo [ , 5 ] [C[ , 2 ] = i] 
chTwoVals < - chTwoVals [! i s . na( chTwoVals )] 
chThrVals < - embryo [ , 6] [C[ ,3] = i ] 
chThrVals < - chThrVals [ ! i s . na( chThrVals ) ] 
i f ( l e n g t h (chOneVals) > 10){ 

chOneEst <— v a r ( chOneVals ) / mean( chOneVals) 
} e l s e { 

chTwoEst < 1 

i f ( l e n g t h (chTwoVals) > 10){ 
chTwoEst < - var (chTwoVals ) / mean(chTwoVals) 

} e l s e { 
chTwoEst < - - 1 

if ( l e n g t h ( c h T h r V a l s ) > 10){ 
chThrEst < - va r ( chThrVals ) / mean( chThrVals ) 

} e l s e { 
chThrEs t < 1 

e s t M a t [ i , ] < - c (chOneEst , chTwoEst , chThrEst ) 

} 
es tMat 

} 

# Return the kNN classification of the values for an embryo 
# Takes one embryo matrix , number of neighbours k, and number of breaks br 
# Returns a 3xN matrix of classes for each nucleus in the embryo 
# Currently hardcoded for br — 2 (high, medium, low regions) 
i n t e n s i t y C l a s s <— f u n c t i o n (emb, kval , b r ){ 

l ibrary ( c l a s s ) # need knn. cv from classification library 
class Mat <— m a t r i x (0 ,nrow=nrow(emb) , 3) 
for ( i in 4 :6){ 

c lass Mat [ , i —3] <— t h r e s h o l d (emb [ , i ] . br ) 
# perform knn classification on this channel 
c l a s sMat [ , i - 3 ] < - a s . v e c t o r ( knn (emb [ ,2 :3] ,emb [ , 2 : 3 j , c l a s s M a t [ , i - 3 ] .k=kval , l=kval - 2 ) ) 

} 
c lassMat 

> 

# Takes an embryo, number of neighbours 
# Returns a matrix (\ classes \ x 9) where each row is one class of values 
# and there are three sets of three columns. Within each set, the 
# first , second and third column represent E [ log (O.i ) ] . Var [ log (O.i ) ] , 
# and E[(log(O-i))~3] for each channel. 
momentMatrix <— f u n c t i o n (embryo ,C) { 

s i ze < - d im(C) [2] 
momentMat <— ma t r ix ( — 1 ,nrow=size , n c o l = 9 ) 
colnames(momentMat) < - r e p ( c ( " E [ l o g ( 0 _ i ) ] " ,'' Var [ log (O . i ) ] '' , J,E [ ( log (O.i )) " 3 ] " ) ,3) 
rownames(momentMat) <— c(" low" ,"med" , " h i g h " ) 
for (i in 1 : s i z e ) { 

# isolate values by class , remove NA values 
chOneVals < - embryo (, 4] [C[ , 1 ] = i ] 
chOneVals <— chOneVals [! i s . na( chOneVals ) ] 
chTwoVals < - embryo [ , 5] [C[ , 2 J = i ] 
chTwoVals <— chTwoVals [ l i s . na (chTwoVals)] 
chThrVals < - embryo [ ,6] [C[ ,3] = i] 
chThrVals < - chThrVals [! is . na( chThrVals ) ] 
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# perform log transformation 
logChOne < - log ( chOneVals ) 
logChTwo < - log(chTwoVals) 
logChThr < - log ( chThrVals ) 

# fill in all 9 columns, one set of 3 at a time 
momentMat [ i , c (1 , 2 , 3 ) ] <— c(mean(]ogChOne ) , v a r (logChOne ) , mean(logChOne "3)) 
momentMat [i , c (4 ,5 ,6)] < - c (mean(logChTwo) , v a r (logChTwo) ,mean(logChTwo "3)) 
momentMat [ i , c ( 7 ,8 ,9)] < - c (mean( logChThr ) , v a r (logChThr ) ,mean( logChThr " 3) ) 

} 
momentMat 

} 

# Classification of points that does not include a call to knn 
# Takes an embryo, a number of neighbours to consider (k) 
# and calculates the regression of each nucleus ' class based on the 
# discretization of the k—NN predicted value. 
# Outputs the class matrix. 
i n i t l n t e n s i t y C l a s s <— f u n c t i o n (emb, kval , br , Nmat=c(NA)) { 

l i b r a r y ( c l a s s ) 
N <— nrow(emb) 
c lassMat <— m a t r i x ( — 1 ,nrow=N,3) 
if ( i s .na (Nmat ) ) { Nmat < - getNmat (emb, k v a l ) } 

Wmat <— getWmat (emb, kval ,Nmat) 

# Calculate y_hat, y and assign value for class matrix 
for ( i in 1:3){ 

chVals < - e m b [ , i + 3 ] 
B <— m a t r i x (0 .nrow=N, nco l=kva l ) 
# generate the values matrix 
for (j in 1:N) { 

B[j ,] < - chVals[Nmat[ j , ] ] 

} 

i f ( a n y ( B = 0)) { s t o p (" Z e r o s „ i n „ t h e „ B _ m a t r i x " ) } 
# apply thresholding to the weighted expression estimate vector 
yha t <— t h r e s h o l d ( app ly (Wmat * B, 1 ,sum) , br ) 
y <— t h r e s h o l d ( chVals , b r ) 
for (j in 1:N){ 

if ( y [ j ] = y h a t [ j ] ) { 
c lassMat [ j , i ] <~ y h a t { j ] 

} e l s e { 
c lassMat [ j , i ] < - NA 

} 
} 

} 
c lassMat 

# Calculate a nearest neighbour index matrix 
getNmat <— f u n c t i o n (emb, kval ) { 

N <— nrow(emb) 
Nmat <— m a t r i x (0 .nrow^N. nco l=kva l ) 
# Calculate neighbour matrix, distance matrix 
for ( i in 1:N){ 

Nmat [ i , ] < - n e a r e s t (emb [ , 2 : 3 ] . i , k v a l ) 

} 
Nmat 
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} 

# Calculate a nearest neighbour weight matrix 
getWmat <— funct ion (emb, kval ,Nmat) { 

Dmat <— matrix (0 .nrow=nrow(emb) , ncoI=kval ) 
# Calculate neighbour matrix , distance matrix 
for ( i in l :n row(emb)){ 

Dmnt[i ,] < - apply (emb [Nmat[i ,] , 2 : 3 ] ,1 , el2norm , y=emb [ i , 2 : 3 ] ) 
} 
# Calculate the weight matrix 
Wmat < - Dmat" ( - 2 ) / apply (Dmat"( - 2 ) , 1 ,sum) 
Wmat 

} 

# Takes a vector of levels and a smaller vector of breaks 
# Returns a vector of classes after apply a threshold 
t h r e s h o l d <— func t ion ( l e v e l s , br ) { 

breaks < - h i s t ( l e v e l s , b r eaks — b r , p l o t = FALSE) $ b reaks 
c lassVec <~ rep (0 , l ength ( l e v e l s )) 
chLow <— l e v e l s > breaks [1] & l e v e l s < b reaks [2] 
chMed <— l e v e l s > b reaks [2] &c l e v e l s < b reaks [3] 
chHigh <— l e v e l s > b reaks [3] &c l e v e l s < b reaks [4] 
# write the class number to the class matrix 
c lassVec [chLow] <— 1 
c lassVec [chMed] < - 2 
c lassVec [chHigh] < - 3 
c lassVec 

} 

## Find k nearest neighbors of X[n. ] in the data frame 
## or matrix X, utilizing function knnl k~times . 
n e a r e s t <— funct ion (X, n, k){ 

N < - nrow(X) 
# inds contains the indices of nearest neighbors 
i n d s < - c (n ) : i < - 0 
whi l e ( i < k) { 

# use knnl for one index... 
j <- as. integer (knnl (X [-inds, J, X[n, ], 1: (N-length (inds ) ) )) 

# ...and change to true index of neighbor 
inds <— c(inds, setdiff(l:N. inds)[j]) 

i <- i+1 

} 
# return nearest neighbor indices (without n, of course) 
re turn ( i nds [ — 1]) 

} 

# Plot the class values for one channel of an embryo 
# X is the Nx3 position and class of each nucleus within the embryo 
# title is the title of the scatter plot 
p l o t I n t e n s i t y C l a s s <— funct ion(X. t i t l e ) { 

# set up axes 
plot (X[ ,1] . X( ,2] , x lab=" AP„pos i t ion " , ylab="DV„posi t i on" ,main—ti t le , type 

# collect low, medium, high point sets. Is using cbind over rbind messing 
# things up? 

lowpts < - cb ind(X[ ,1][X( ,3] = 1] ,X[ . 2] [X| ,3] == 1]) 
medpts < - cbind (X [ , 1][X[ ,3] ===== 2] ,X[ , 2 ] [X[ , 3] = 2]) 
h i g h p t s < - cb ind(X[ .1][X[ ; 3] = 3] ,X[ , 2 ] [X[ , 3] = 3]) 

# plot them on the graph 
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p o i n t s ( lowpts , pch=" . " ) 
p o i n t s (medpts , pch = 2) 
p o i n t s ( h i g h p t s , pch = 3) 
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