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ABSTRACT
On Fontainé Sheaves

Radu Gaba, Ph.D.

Concordia University, 2009

In this thesis we focus our research on constructing two new types of Fontaine
sheaves, AV  and A, in the third chapter andb the fourth one respectively and in
proving some of their main properties, most important the localization over small
affines. This pair of new sheaves plays a crucial role in generalizing a comparison
isomorphism theorem of Faltings for the ramified case.

In the first chapter we introduce the concept of p-adic Galois representation and
provide and analyze some examples.

The second chapter is an overview of the Fontaine Theory. We define the concept
of semi-linear representation and study the period rings introduced by Fontaine while

understanding their importance in classifying the p-adic Galois representations.
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Introduction

The general aim of this thesis is to study p-adic local Galois representations. More
precisely let us fix a prime integer p > 0, a finite extension K of QQ,, an algebraic
closure of K, K and let us denote by G the Galois group of K over K. Then a p-
adic representation of G is a finite dimensional Q,-vector space V' on which Gk acts
linearly and continuously. In chapter 1 we give an alternative way of thinkihg about
these objects as well as many examples of such representations comiﬁg from algebraic
geometry.

The category of p-adic representations of Gx which we denote Repg, (Gk) has a

filtration by sub-categories as follows:
Rep*(Gk) C Repg, (Gx) C Repg (Gx) C Repg;r (Gk) C Repg,(Gk),

where the upper-scripts cris, st,dR, HT refer to-crystalline, semi-stable, de Rham and
Hodge-Tate representations. These are defined using Fontaine’s rings Bis, Bst, Bar, But
and the respective functors: D s, Dy, Dar, Dur. |

The Fontaine rings and functors are described in chapter 2, where many examples
of representations and their images under Fontaine’s functors are given. We should
point out that these examples are known and we only worked out some of the details

of the respective calculations. In fact “the comparison isomorphisms”, i.e. theorems



comparing p-adic étale cohomology of the geometric generic fiber of a smooth, proper,
connected scheme X over K to other cohomology theories associated to X allows one
to decide the nature of the Gx representations H: (X%,Q,). The cohomology theories
we refer to are: the Hodge cohomology of X, the de Rham cohomology of X, the log
crystalline cohomology of the special fiber of a semi-stable, proper vmodel of X over
Ok (if X has semi-stable reduction) or the crystalline cohomology of the special fiber
of a smooth proper model of X over Og (if X has good reduction). For exaﬁxple a
consequence of the crysfalline comparison isomorphism is that if X has good reduction
over Ok then H: (X%, Q,) is a crystalline representation for all 7 > 0. The comparison
isomorphisms (for trivial coefficients) are stated in chapter 2.

Recently, in [AIl], a new proof of the crystalline comparison isomorphism (with
non-trivial coefficients) for smooth, proper connected schemes X over K with good
reduction was given in the case K is unramified over Q,. Our work is an attempt to
generalize these results for the case when the ramification degree of K is larger then 1.
For this we use Faltings’s topology X% associated to X and a smooth, proper model
of it and construct new Fontaine sheaves of rings on this topology. The definition of
Faltings’s topology, which is a Grothendieck topology, is recalled in chapter 3. More-
over, for all n > 1 we construct.in chapter 3 a family of sheaves on Xz, (AY.xn)n>1
and in chapter 4 the family of sheaves (Amaxn)n>1. We also study the properties (;f
these sheaves of rings in these chapters. For the moment we have only constructed
these sheaves in the case K un‘iramiﬁed over Q, but it is possible to construct them
“even in the case when K is ramified. These rings will be used in sequel-work to define
a Riemann-Hilbert correspondence between p-adic locally constant sheaves on X and

F-isocrystals on the special fiber of thé fixed smooth model of X over Ok.



Chapter 1

p-Adic Galois representations

LetQ,CcQ,CcC,= @p and put G := Gal(Q,/Q,).

Definition 1.0.1. A p-adic representation of G is a finite dimensional Q,-vector space
V, with a continuous linear action p : G — Aut(V). By continuity one understands

that the action map:
G x V = V sending (o,v) = ov
is continuous. The category of such representations is denoted Repg, (G).

To better understand the notion of continuity of p choose a basis e := {e;, ez, ..., €4}

of V. For any o € G we have that:
o€ = 2151'91 aji(o)e;.

Consider now the matrix A(0) := (aij(0)) € GL4(Q,) (A(0) is invertible since o € G).
- We then have a non-canonical isomorphism of groups: Aut(V') = GL4(Q,) via the map
o — A(o). Via the above isomorphism one extends the action

G — Aut(V) — GL4(Qp) and we still denote it p. One obtains:



p: G = GLi(Qy); plo) = Al0).

On one hand note that GL4(Q,) C Q:z and since the latest is a topological space
with the product topology induced by the p-adic metric on Y, one can endow GL4(Qyp)
with the subspace topology.

On the other hand, G = Gal(Q,/Q,) is a profinite topological group. We obtain
that p is a map between topological groups and so the notion of continuity is clear. p is
a continuous homomorphism. We have that for o, 7 € G, p(r0) = p(r00) = p(7)- p(0)
where the latest product is the multiplication of matrices in GL4(Q,).

If V is a finite dimensional Q,-vector space of basis {e} then define p.(0) € GL4(Q,)
such that oe = p,(o)e. Remark that the map p = p. depends on the basis e of V: if ¢

*is another basis, e = M - € for some M € GL4(Q;) (the change of basis matrix), then
pe(0) = Mp.(0) M~ (*)

since ge = a(Me') = Moe' = Mpg(o)e = Mpg(o)M™! (for the second equality
one uses the fact that M € GL4(Q,) and that o)q, = id).

We say that p, and p. are conjugate. More precisely, two continuous homomor-
phisms of topological groups p, p’ : G = GL4(Q,) are equivalent p ~ g if there exists
an invertible matrix M such that for every ¢ € G the equation (*) holds. One can
easily see that ” ~” is an equivalence relation.

We have an equivalence between the following sets:

{V | V is a p-adic representation}/ iso {p:G = GL4(Q,) | p is a continuous

homomorphism}/ ~  (¥x)

We’ve just seen the implication from left to right while vice-versa, we can associate
to every continuous homomorphism p the vector space V' = Qg and define the G-
action on V' as: oz = p(0)(z1,Z2,...,24)" for 0 € G and z = (21,22,...,24)' € V.

Now, if we start with a p-adic representation V with the continuous action p, we get a

4



new p-adic representation V' according to the above construction. We need to prove
that V = V' as G-representations in other words that theré exists an isomorphism
f:V = V', Q,-linear such that f(ov) = o f(v) for every c € G and every v € V (i.e.
f is G-equivariant). For this, we choose f to be the application sending the basis e =
{e1, ..., ea} into the canonical basis of Q2 i.e. f(e;) = (1,0,...,0), f(e2) = (0,1,...,0),
etc.

In this way we obtain an equivalent definition of the p-adic representations.
Remark 1.0.2. If K is a finite field extension of Q, one works similarly for Gal(Q,/K).

Also note that if p : G — GL4(Q,) is continuous then I'm(p) is compact since G'is
compact. It is known that GL4(Z,) is a maximal compact subgroup of GL4(Q,) and
that any other maximal compact subgroup of GL4(Q,) is conjugate to GL4(Z,). It

follows that up to conjugation one can factor p as:

G —5 GL4(Q,)
N
GL4(Zyp)

where i : GL4(Z,) — GLd(Qp) is the inclusion mab.

Consider now the Q,-vector space V, of finite dimension d, with its continuous
linear G-action and denote by {e} a basis of it. Let L be the free ‘Zp-submodulé of V-
generated by e, so‘ we have that L C V and oL C L possibly after conjugating p for
all 0 € G. Since L = Zg we have that L ®z,' Q, =V and L/pL = Fg so one gets a
- representation of G on a F,,‘-vectér space',: namely L/pL.

We analyze now some examples of p-adic representations.

1.1 The Tate module of G,,

Definition 1.1.1. G, is the algebraic group defined by the set Al — {0} with the .
multiplication map m : (A! — {0}) x (A! — {0}) — A! - {0} and inverse i : Al — {0} —

5



A! — {0} defined by m(z,y) = zy and i(z) = 7! respectively. (Recall that a variety
A is an algebraic group if one has morphisms m : A x A & A and i : A — A which

make the points of A into an abelian group).

Denote by G‘m[P"](@p) the subgroup of p™-torsion points over Q,. We have that
Gm[P"|(@,) = £ (Q,), Where 1y (Q,) = ppm = {z € Q, | 2" = 1} is the group of
p"-th roots of unity in @p,

Via this remark, G,[p"](Q,) is a free Z/p"Z-module of rank 1. In c;rder to prove
this, fix a primitive p"-th root of unity, say (. Then every element a € p;» can be
uniquely written as ¢ = (7 for some j € Z/p"Z and {(} is a basis of p,». Then,
since Z/p"Z = p» as abelian groups via the map sending j — ¢7, one defines the
Z/p"Z-module structure on i~ via the action j * ¢ := (7.

Now, G acts on ﬂpn as follows: for every o € G and € € p,» one has that o(e) € ppn

since
(e =a(e") =0(1) =1

and pp» becomes a G-representation. Since o is an automorphism and ¢ is primitive
then also o{() is primitive so 0(¢) € ppn — ppn-1, 0(¢) = ¢* with e, € (Z/p"Z)".

Hence we get a (continuous) homomorphism of groups:
Xn:G— (Z/an)*

defined by xn(¢) = a, such that o({) = (%.
In order to prove that x, is continuous, note that since the topology of (Z/p"Z)*

is discrete, it is enough to check that ker(x,) is open. We have that ker(x,) = {o €
G | xn(0) =1} = {0 € G | 0(¢) = ¢} = Gal(Q,/Q,(¢)) and since

Gal(@p/Qp)/Gal(Qp/Qp(C)) = Gal (QP(C)/QP)

we obtain that ker(x,) is of finite index. Since it is also closed, it follows that it is

open ([Ro], 3.3).



One defines now the Tate module of G, T,Gy:

T,Gm = }:ﬂ = gmupn = {(ap, 1, ...) | i € pys and o, = o, Vi > 0}

where the projective limit is taking with respect to the Frobenius morphism: ppi+1 —
Uy sending a — of.

Since ppn is a free Z/p™Z-module of fank 1 we have that Ty is a free Zy,-module of
rank 1 and consequently T,G,, is a free Z,-module of rank 1, a generator for example
being ¢ = (1,¢, (2, ...) where (; is a priinitive p*-th root of unity and ¢f,; = ;. One
obtains that Tpu = Z,e and we have an action of G' on T,u given by:

o(ag, ,...) = (0ag, 00y, ...).
In particulér, oe = (01,0(1,0(,,...) = 1, @)y

Recall that x; : G — (Z/p'Z)*. These maps are compatible i.e. the diagram:

G —= (2/v'Z)

(Z/pi'l'lz)*
is commutative, hence we get a (continuous) homomorphism:
x =limx; : G — im(Z/p'Z)* = Z;

called the Cyclotomic character. Note that X is continuous since it is a projective

limit of continuous maps.

Then o(€) = eX(9) := x(0) - € (we write the action additively, it is a convention) and

we have that:
Top = Zpe = Zp(1) = Z,

where by Z,(1) we mean Z, with G-action given by oz = x(0)z for 0 € G and z € Z,.



1.2 The Tate module of an Elliptic Curve

Let E/F, be an ordinary elliptic curve (i.e. p{a, := 14+p—#E(F,)) and consider the

subgroup of p"-tbrsion points over F,:
_ E[Pn](Fp) & Zp/[P" Ly ,

which is a free Z,/p"Z,-module of rank 1 (see [Sil, Corollary 6.4]).
Denote by GF, the absolute Galois group of F, i.e. Gal(F,/F,). Let’s look at the
action of Gy, on E[p")(F,): if P € E[p"](F,), then since [p"]P = 0, we have that -

[P")(eP) = o([p"}P) = 0(0) = 0

for every o € Gf,.

‘As in the previous section, one defines the Tate module of E as:

T,E = @E[Pn](ﬁp) = @Zp/Pan =12y

which is a free Z,-module of rank 1. And as before, one has a continuous action of
Gr,, call it ¢op : Gy, = GLi(Z,) = Z,.
Note that we have a continuous surjection G = Gal(Q,/Q,) — Gr, and so, by

composing it with ¢ we get a continuous homomorphism, ¢g:
ve:G—Z; giiren by oz = pg(o)z.
Further denote by Zy(¢E) := ToE = Z, together with its G action.
Consider now the following exact sequence:

0—-1-G—Gy,—0.

where I = Gal(Q,/Qy™") is the inertia group. Remark that ¢ is unramified since

for any v € I we have that pg(y) = 1 (by definition a character is unramified if it is

trivial on the inertia group).



Note that for the cyclotomic character x : G — Z;, which is totally ramified we

have a factorization:

0 I G = Gal(Q,/Q,) GF, 0

L

Gal(@p((p‘”)/ Q)

We have that for all o € G, ge = €X(?) and therefore x(c) = 1 <= o(€) = €. From

this it follows that ker(x) = Gal(Q,/Q,((p)). So we get an isomorphism:

X : Gal(Qy(Gpo)/Qp) — Z,.

In general, if ¢ : G — Z; is a continuous character, let’s denote by T := Z,(y) the
G-representation defined as previously by Z, with the G-action oz = p(o)z. If we want
continuous unramified representations then we use the fact that G'Fp ~7 = (].l_n_lZ/ nZ
which is a pro-cyclic group generated by the Frobenius automorphism F'r : ]F‘p — Fp
sending £ — z” hence ¢ is determined by @(Fr).

“Finally, define V := T ®z, Q, =: Q,(¢) = Q, with the G-action given by oz =

¢(o)z, with z € Q,.

1.3 Further examples

As previously denote by G = Gal(Q,/Q,) and remark that if K is a finite field exten-

sion of Q, one works similarly for Gal(Q,/K).

1.3.1 Dimension one representations.

For this case the p-adic representations correspond to characters. We’ve seen in the sec-

tion 1.1 the cyclotomic character, x : G — Z;. This corresponds to the 1-dimensional



representation:
Q,(1) = Q,(x) = Q, as vector space, with action given by o * z = x(0)z, z € Q,.

We have that Q,(1) = Z,(1) ®z, Q, = hm pin ®z, Q.

For n € Z one defines the 1-dimensional representation:
Q,(n) = Q,(x™) = Q, as vector space, with action given by o *x 2 = x"(0)z.

where x" : G — Zj, is also a cyclotomic character and x"(o) = (x(2))".

Remark now that if ¢ : G — Z; is any continuous character then one defines

similarly:
Q, (%) = Qj as vector space, with G-action: oz = 9(0)r, 2 € Q,.

Recall (from section 1.2) that ¢ is unramified if for every o € I = ¢¥(0) = '1. We
have that 1 factors as ¥ : G/I - Gy, and moreover G/I = Gp, = 7= (Fr). So, if
one wants an unramified character it is enough to determine its value on the Frobenius
autdmorphism Fr, ¥(Fr) = a € Z;. We will then have ¢(Fr®) = a® so ¢ will be

completely determined.

1.3.2 Dimension two representations.

Let p: G — GL2(Q,) be a continuous homomorphism. Further, let E/Q, be an elliptic

curve and consider its Tate module:
T,E := lim E[p"](Qy)-

Since char(Q,) = 0, following [Sil, Prop. 7.1, Chapter 3] we have that T,F is a free

Z,-module of rank 2.

Consider now Vg := T,E ®z, Q, which is a 2-dimensional representation over
Q,. From the equivalence of sets (+x) from the first paragraph, Vg corresponds to a

continuous homomorphism pg : G — GL,(Q,). We have that the determinant of this

10



map is the cyclotomic character, det(pg) = x. To see this, take the composition of the

following maps:
G-22>GLy(Qy) *~Q;

which one denotes detpg : G — Q;. Clearly detpg is a continuous character. It follows
that Q,(detpg) is 1-dimensional.
Note that we have the Weil pairing (bilinear, alternating, non-degenerate, Galois

invariant (see [Sil, §8, Chapter 3])):
<,>: E[p"] x E[p™] = ppn
so we get a map (by using the univergai property of the exterior product):
Ve AVE = Q1)

sending z Ay — (z,y) and obtain that Q,(detpg) = VEA Vg = Qp(1) = Qp(x) since

_dimQPQp(detpE) = dimg, Qp(1).

Case 1. Suppose that E/Q, is a Tate curve i.e. that the valuation of its j-invariant
is negative, v(j(E)) < 0. Following [Si2, Theorem 5.3 (Tate), Chapter 5], this is
equivalent to the case when F has split multiplicative reduction. Moreover, via [Si2,
Theorem 5.3(a) (Tate), Chapter 5] there exists a unique gg € Q, with |gg| < 1 such
that E is isomorphic over Q, with By, = Q}/q%, where ¢% = {qh In € Z} is a
discrete subgroup of Q}. ¢ is called the Tate period. The quotient E,, := Q;/¢% is
aﬁ abelian group which admits a hatural structure of G-module via the action on Q.

So one has the isomorphisni of G-modi;leé:
E (Qp) = @;/ qg
and one further obtains that:
E[p"|(Qy) = {[z] € @} /q% | [«]" = [1]}.

11



Note that if (™ € pin — ppn-1 (i.e. (™ is primitive p"-th root of unity) then so is
(¢, 0 < i < p™. Moreover, put q(") = qg” = /qE SO (qE))P = gg € ¢% and one

obtains

Ep)(@y) = {(¢™) (¢, 0<i < p*0< j < p"} |

which is isomorphic to a free Z/p*Z-module of rank 2 with basis {¢(, q(") }-

Remark that for every o € G, we have a(¢™) = ((™)x(®) and o(q )) = qg')(((”))""
for some a, € Z/p"Z. |

Fix now the basis {g7),¢((™}. We then get a map:

1 0
PEn : G = GLy(Z[p"Z) sending 0 —

G0 Xn(0)
Recall that T,F := L m E[p")(Q,) and that Ve =T,FE ®z, Qp By passmg now to the

limit we obtain a map:

1 0
pe : G = GLy(Z,) C GLy(Q,) sending o —
‘ a; x(o)

We also have that a, determines a map a : G — Z, sending o — a,.
Proposition 1.3.1. a, is a 1-cocycle (i.e. a,; = a, + 0 * a, for 0,7 € G).

Proof. On one hand, by using the definition we have that (07)(¢™) = gy¢myoar
On the other hand,

(on)(dD) = a(r(q<"’))
= o(af (™))

=0(g5)o(((™)*)
— qg')(c(n))aa (C(n))a,x(a)
= q(é')(c(n))aa+arx(a)'

We obtain that a,, = a, +a,x(0) = a, + o *a, (where * is the action of G on Q,(1)).
O

12



Remark 1.3.2. One can also show that a, is a 1-cocycle by using the fact that pg is

a group homomorphism. For 0,7 € G, pg(07) = pe(o)pe(T) is equivalent to

1 0 1 0 1 0

il

a;, x(o) ar x(7) asr x(o7)

and hence a,r = a, + x(0)a,.

One can easily prove that the following sequence:.

0—= ;5 (x) 2> Elp") 2> & —>0

is an exact sequence of G-modules where (1) := (™, %(¢™) = 0 and ¥(¢{P) = 1.

By taking now projective limit and after tensoring with Q, over Z, one obtains the

exact sequence of G-modules:

0—>Qp(1) 2> Vg —2>Q—>0 ().

This further induce a long exact sequence of group cohomology:

0—> Q,(1)¢ —> VS —QF 2> HY(G,Qp(1)) —> - (#*)

where §(1) = [a], a being our Kummer cocycle determined by the fact that or(qg')) =
a5 (¢™)e.

Moreover, Q¢ = Q5 al(Qs/ Q) Q, and we claim that Q,(1)¢ = 0 and also V& = 0.

Firstly, take an element z € Q,(1)¢ = Q,(x)€ hence oz = = and gz = x(0)z for
‘any o € G. By choosing now o € G such that x(o) # 1 we obtain that Q,(1)¢ = 0.

We’ve seen that the elements ¢ and (™ form a basis of E[p"}(Q,) so that a.
basis of T,E is given by e := lim (™ and f := lim_ ¢, This allows us to compute

explicitly the Galois action on T,E. For 0 € G' we then have:

ve =lim o((™) = x(0)e

and
of =lim o(¢f’) =lim g’ ((™)* = f +a,e.

13



We also obtain that {¢/, f'} is a basis of Vg where ¢’ :=e® 1 and f':= f® 1 and
moreover that of' = f' + a,€’ and o€’ = x(o)e’. By using a similar type of argument
as in the proof of Q,(1)¢ = 0 one also has that V¢ =0.

One obtains that the sequence () becomes:
0—Q, —> | (G,Qp(1)) —> -

and that further (*) is non-split as an extension of representations of G. Note that
V& = 0 is equivalent to a non-splitting of () since if (*) would have split then we
would have had that Q, < V. | |

Moreover, if K is a p-adic ﬁeld and E/K is an elliptic curve with split multiplicative
- reduction then following [BC, Exafnple 2.2.4] one can show that () is non-split as a

sequence of Q,-representations of G- for all finite extensions K'/K inside K.

Case 2. Assume that E/Q, is an elliptic curve with good ordinary reduction at p
i.e. E/F, is an elliptic curve and p}a, := 1+ p — #E/F, (where E is the reduction
curve). Following [Sil, Theorem 7.4, Chapter 4] and [Sil, Theorem 3.5, Chapter 5],
this is equivalent to saying that the formal group of E, E has height 1. Via [Sit,

Proposition 2.1, Chapter 7] we have an exact sequence:
0 __’E'(@p) — E(Q,) ‘;“"E'(Fp) —>0

hence:

0— E[p"](Q) — Elp")(Qy) —> Blp"|(F,) —>0.
Let’s remark now that E[p"](F,) ;?—Z(z/)) for ¢ : G — Z; unramified character

char(F,) = p and I acts trivially on F,). A '
» ‘ ».

By taking now projective limits we obtain:
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>

T,E—L-TFk 0 (+)

l

Zy(¥)

1R

I
l?.‘

Zy(p)

Denote by {e;} a basis of T,E over Z, and complete it to a basis {e),e;} of T,E
over Z, such that f(e;) = 1 where {1} is the basis of Z, (1) (remark that rankz T,E =
rankgz prE = 1 and that rankz T,E = 2). For o € G we clearly have that:

.ael = p(o)e;. (1)

We want to compute now oe,.

Apply f and on one hand we obtain: f(ge;) = of(ez) = 01 = 9(0) - 1 = (o).

On the other hand, f(¥(0)es) = ¥(0) f(e2) = ¥(0).

One obtains that f(aeg — 9(0)ez) = 0 hence ge; — Y(o)es € ker(f) Which is a
subgroup of T, F' and so oe; — 1,1)(6)62 = aye; for some a, € Z,.

It follows that: oex = aqse; + P(0)es. (2)

From (1) and (2) we obtain that the matrix of o in the basis {e;, e} is :

p(o) @
0 (o)

pe(0) =

hence det(pgr(c)) = x{(o) = ¥(0)p(c). Consequently one obtains that: ¢(c) =

x(0)¥~1(o) and further we can write:

x(@)y (o) @
pe(0) = I-
0 ¥(0)
After tensoring (+x) with Q, over Z, (same procedure as in the Case 1) one obtains

the exact sequence of G-modules:

1) e} —0
0— Q(xy™1) — V& Y Qy(¢) —>0,

{€}, €5} being a Q,-basis of Vg, where e} :=e; ®1 and €, :=e2 ® 1.
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Case 3. Suppose that E/Qp is an elliptic curve with good supersingular reduction
at pie. p|a,:=1+p—H#E/F, |

In this case we have no general fofmula for pg but as in the previous cases,
det(pg(0)) = x(o) for any 0 € G.

In this case, since there aré no p-power pbinté of the reduction curve, we have that

T, E = 0 and so, from the exact sequence

0—T,E—TE—T,E=0

we obtain that T,E = T,E. Following [Sil, Theorem 3.1(v), Chapter 5], the height
of the formal group E associated to E is 2. Since T, £ is irreducible we get that T,E

is also irreducible.

We have that Vg = T,E ®z, Q, is an irreducible representation i.e. for o € G:

a, by
pe(o) = |
‘ Co dy |

where a,, b5, ¢s,d; € Zy,.

Also note that the exact sequence of group-cohomology doesn’t give us any infor-
mation.

However, an important result is obtained by using Tate’s Theorem (see [Ta, The-
orem 3, Coroilary 2] _6r (11, Theorem 2.2.15]), namely that T,E ®z, C, = C, & C,(1).
We also have this isomorphism for elliptic curves in the Case 1 or Case 2 and we will

prove this in the next chapter, Proposition 2.1.14.

Remark 1.3.3. If E/Q, is an elliptic curve with additive reduction (i.e. E/F, has
~ a cusp), after a change of basis the reduction type becomes good (i.e. E/F, is an
elliptic curve) or semi-stable (multiplicative reduction (i.e. E/F, has a node))) (see

[Si1, Proposition 5.4]).

Remark 1.3.4. A more general example than the ones analyzed in subsections 1.3.1

and 1.3.2 is the étale cohomology.
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| Supbose that K is a finite extension of Q,. If X is a proper and smooth variety
over K, then the étale cohomology H}, (X%, Q,) is a p-adic representation, where X% =
X Xspeck Specf. The étale cohomology was the motivation for the study of the p-
adic representations and Fontaine was the one who succeeded in constructing a functor
rel'ating the étale and the crystalline‘cohomologies ofa p—divisjble group. The existence
of this functor was conjectured by Grothendieck in 1970.
Since H;:,(Xf, Q) = (@n H;t(Xf, Z[p"Z)) ®z, Qp, one Anee‘ds first to understand
Hi (X%, Z/p"Z) for i > 0. B
If X is a curve of genus g over K (i.e. a smooth, projective, irreducible algebraic
variety of dimension 1), then following {12, Theorem 2.10.5] and [Mil, Proposition

14.2}, one obtains that:

) .
@}ﬂpn(K) = Tp(pp=) = Zy, i=0;
i im Jac(X)z[p"] = T,(Jac(X%)), i=1;
bm H;\ (X5, Z/p"Z) = d lim Jac( X )x[p"] = Tp(Jac(Xx))
Z,, =2
L0 i>3.

and so, after tensoring with Q, over Z,, one further obtains that:

4

Qp; i=0;
, Vo(Jac(X%)), i=1;
Hy(Xg, Q) =4 "
. ) Qp; i=2;
\ 0, . i>3.

Remark that H}, (X%, Q,) = V,(Jac(X%)) and hence a Q,- representation of di-
mension 2¢g. Consequently, if g = 1 (i.e. if X is an elliptic curve and hence the Jacobian
Jac(X) = X following [Si2, Proposition 2.6, Chapter 2]) we recover the example 1.3.2.
Moreover, from the above description it is clear that the examples analyzed in subsec-

tions 1.3.1 and 1.3.2 are special cases of the étale cohomology.
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Chapter 2

Fontaine Theory

We’ve seen in the previous.cha.pter that Algebraic Geometry provides interesting
p-adic representations of G = Gal(Q,/Q,) i.e. continuous representations of G on
finite dimensional Q,-vector spaces V.

Fontaine constructed period rings C,, Bur, B;ﬁs, B, By, in [Fol] and {Fo2], which
are topological Q,-algebras with an action of G and some additional structures com- -
patible with this action (for example: Frobenius ¢, a filtration Fil, a monodromy
.operator N and a differential operator 8) and using them was able to describe p-adic

G-representations in terms of semi-linear data.

- 2.1 Hodge-Tate theory.
1) We will first analyse what happens when we tensor a p-adic representation of G
with C,.

Definition 2.1.1. Let V € Repr(G). Then V is Hodge-Tate (HT) if we have an

isomorphism as C,-modules with (semi-linear) Gg-action
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V ®q, C, 2 @, Cy(ni)

where d = dimg,V. The numbers n;, 1 < i < d are called Hodge-Tate numbers

(and are not necessarily distinct).

For example Q,(n) € Repg, (G) is HT since Qy(n) ®q, C, & Cy(n).

We have the following central result which is known under the name “Hodge-Tate

comparison isomorphism”

Theorem 2.1.2 (Fa2, Chapter 3, Theorem 4.1 ). Let X the a smooth, proper, geomet-
rically connected scheme over K. Then for all i > 0 we have a canonical iéomorphism

as Cp-modules with (semi-linear) Gk-action

H;t(XT(" Qp) ®g, (Cp = EBa+b=i(Ha(X, Qg(/x) ®K Cp(—b))
The theorem 2.1.2 has the following consequence:

| Corollary 2.1.3. If X is a smooth, proper geometrically connected scheme over K,
then for every i > 0, the p-adic Gg-representations H: (X%, Q) are Hodge-Tate, with
Hodge-Tate numbers given by the Betti numbers of the base change of X to the complez

numbers.

The theorem 2.1.2 is a deep result but corollary 2.1.3 can in some examples be

deduced using elementary methods. We will examine such examples in the next section.

2.1.1 Elementary examples

Firstly we will focus on classifying the representations pg : G = GL,(Q,). In or-

der to do this, it is easier to consider representations over C, which is complete and

algebraically closed:

Q,,C@,,CC,,=@,,
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Definition 2.1.4. A C,-representation of G is a finite dimensional C,-vector space W
equipped with a continuous semilinear G-action G x W — W (i.e. o(az) = o(a)o(z)

forallae C,, z € W, 0 € G).

We denote by Repc,(G) the category whose objects are C,-representations of G
and if V,W are two such, a morphism f: V —- Wis a C,,—Iinear' map which satisfies
flov)=of(v) foranyo€ Gandv e V.
fVisa Q,,-represeﬁtation of G then W = V ®q, C, is an object of Repc,(G). We
will mostly work with representations arising in this way. | '

Let now e := {ey, €y, ...,€,} be a C,-basis of W. For any o € G we can uniquely

write:
oe; = ZKK" aji(o)e; for all 0 < i < n.

Consider now A(0) = (a;;(0)) € GLn(Cp) (A(0) is invertible since o € G). Then

“we get a continuous map A : G — GL,(C,) defined by o — A(0).

Remark 2.1.5. One works similarly if one replaces Q, with a p-adic field K (i.e. a
field of characteristic zero, complete with respect to a fixed discrete valuation, having

a perfect residue field k£ of characteristic p > 0). Then one has

and one denotes by G := Gal(K/K).

Proposition 2.1.6. Suppose {e} is a basis of W. Then:

a) A, defined as above is a 1-cocycle;.

b) If one further choose another basis {f} of W then A, and Ay are cohomologous
i.e. there exists a matric M € GL,(C,) such that A.(c) = o(M)Af(c)M 1.
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Proof. a) Let 0,7 € G. For every x € W one obtains:

Ac(or)x = (07)2
= o(7x)
= 0(Ae(7)z)
= 0(Ae(7))oz
= 0(Ac(7))Ae(0)z

and hence A.(07) = 0(A.(7))Ac(0) i.e. A, isa l-cocycle;
b) If {f} is another basis of W, by letting M to be the change of basis matrix, we
have that e = M - f and hence: ’
oe = o(Mf) = o(M)of = o(M)A(@) = (o(M)Ag(0) M)e.
O

On the other hand, ve = A.(0)e and one obtains A.(c) = o(M)A;(c)M ™! (twisted

conjugation).

Definition 2.1.7. Two cocycles A, B are cohomologous if A(c) = o(M)B(o)M™1.

»

Note that being cohomologous is an equivalence relation; denote it ”~".
Definition 2.1.8. H_,,(G,GL,(C,)) = {cocycles}/ ~.

Also remark that if n > 1 then GL,(C,) is not abelian hence H},,(G,GL,(C,))
is not a group, just a pointed set. However, H. ,(G,GL,(C,)) classifies the n-
dimensional semilinear continuous répresentations of G up to isomorphism. We have

a bijection between the following sets:

{W | W is a C,-representation of G}/«----» H} .(G,GL,(C,)) |
given by: (W,e) = A.
and Wi+ A
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where W4 = Cj as a C,-vector space, with semilinear action of G given by the

multiplication of A. More concretely, we have the following:

Proposition 2.1.9. [A] = [B] € HL,(G,GL,(C,)) & W4 = Wp as semilinear

G-representations.

Proof. (<) Take M the matrix of the isomorphism in the canonical basis. The claim
follows.
(=) If A~ B then let M € GL,(C,) such that A(o) = o(M)B(o)M " for every
o € G. Let {e} be a basis of W4 such that ce = A(o)e and {f} be a basis of Wg such
that oe = B(o)e.
Define ¢ : W4 — Wp such that ¢(e) = M f.
Obviously 1 is an isomorphism of Cp,-vector spaces. We need to show that it
cofnmutes with the action of G.
Indeed, we have that:
P(oe) = y((A(o)e))
= A(o0)y(e)
= A(o)M f
= o(M)B(c)M'Mf
=o(M)B(o)f
=a(M)of
= o(Mf)
= o1p(e).

Let us now examine some easy applications of the above.
Suppose that ¢ : G — Z; is a continuous character. We take V := Q,(¢) and

extend scalars to C, by defining:
W=V ®g, G = Cyly).
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Note that Cp(p) = C, as a vector sp‘ace with a continuous semilinear action:
or = p(o)o(z). Note also that sihée zZ;, c C, = GLy(C,), we can think of ¢ as
¢ : G = GLy(C,). In this way, ¢ is a 1-cocycle.

One question arises, namely, what does it mean that C,(p) = C, as semilinear
G-representations? |

Following Proposition 2.1.9, C,(¢) = C, as semilinear G-representations if and
only if [p] = [1] € HL,..(G,GL,(C,)) (note that the cocycle corresponding to C, is
1:G — C; defined by 1(c) = 1 for any o € G).

Moreover, [¢] = [1] € H],,,(G,GL,(C,)) & there exists 7 € C; such that p(0) =

o(7)1(c)y~!. We've obtained:

Co(p) 2 C, in Repe, (G) & Iy € C; such that ¢(0) = o(y)y™! Yo € G.

In other words, C,(p) = C, in Repc, (G) ¢ 3y € C; such that ¢(0) = 5’%’—2 for any
oceG.
Of crucial importance in the Fontaine Theory is the Ax-Sen-Tate Theorem (see

[BC, Theorem 2.2.7]):

Theorem 2.1..-10 (Ax-Sen-Tate). For any p-adic field K we have that K = CIG{"' =. |
' %GK (i.e. there are no transcendental inbarz’ants) and Cx(r)°% =0 for v # 0 (i.e.,
if z € Cx and o(z) = x(0) "z, for all 0 € Gk and some r # 0 then x = 0). Also
H} (Gk,Ck(r))=0ifr #0 and H},,,(Gk,Ck) is I-dimensional over K.

More generally, if n : Gk — Z,, is a continuous character and Ck(n) denotes Ck
with the twisted Gk-action oz = n(0)o(z) then Cx(n)®% = 0 if n(Ik) is infinite and
Ck(n)®* is 1-dimensional over K if n(Ix) is finite. Also, Hclmt(GK,C}((n)) =01f

n(Ix) is infinite.

Proposition 2.1.11. a) Cp(1) 2 C, as G-representations; |
b) If m # n € Z, then C,(m) % C,(n) as G-representations.
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Proof. a) Suppose that C,o(1) ”=’.C,, as G-representations over C,. Then also their
G-invariants are isomorphic i.e. C5(1) = CS. Following Ax-Sen-Tate theorem for
K = Q, we obtain 0 = CS(1) = C{ = Q, which is absurd.
b) Suppose that C,(m) = C,(n) as G-representations over C,. Also, suppose that

m > n. We then have:
- Cy(m)(=n) & Cy(n)(-n)

hence C,(m —n) = Cp. Again, by taking G-invariants, Ax-Sen-Tate theorem leads
us to 0 = CS(m — n) = CS = Q, which is absurd.

O

Proposition 2.1.12. Let ¢ : G — Z, be an unramified character. Then C,(¢) = C,

as G-representations.

Remark 2.1.13. Firstly, note that Q,(¥) 2 Q, as G-representations.

In order to prove this, suppose that f : Q, — Q,(¢) is an isomorphism. Then

f(1) = e # 0 where {e} is a basis of Q,(%) and for any o € G we have that
e=f(1) = f(o1) = of(1) = oe = Y(0)o(e) = Y(0)e

since o acts trivially on Q,.
It follows that (0) = 1 for any 0 € G and hence % is the trivial character. So

except for the trivial character Q,(¢) 2 Q, as G-representétions.

Proof of Proposition 2.1.12 We want to prove that C,(¢)) 2 C, as G-representations,

in other words, that Q,(v) is HT of HT-number zero for unramified characters (since

Q(¥) ®g, G, = C,(¥) = Cy).
We will construct an isomorphism f : C, = C,(¢). By putting f(1) = e € C;, we

have:
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e= f(1) = f(01) = o (1) = e = P(0)o(e).

In other words, we need e € C; satisfying e =1(o)o(e) for any o € G.

We claim that one can consider e € O*, where O := O, is the ring of integers of
C,. For this, remark that for every o € I, where I Z Gal(@,,/@f;r) C G is the inertia
group, we have that e = e = o(e) since ¢¥(0) = 1, ¥ being unramified and hence
trivial on inertia. It follows that e € C! = Q¥ 2 0.

Assume now that v(p) = 1'(otherwise one normalizes the valuation) and remark

that O/pO =F,. As in Chapter 1, we have that 1 factors through G/I:
¥ : G/I 2 Gal(F,/F,) = Gal(Q¥ /Q,) — Z;

Also recall that Gal(F,/F,) = (Fr) and put (Fr) = a € Z,
Let v(e) = n € Z and define €' := e/p™. For every 0 € G we have that o(¢’) =

o(e)/p" and hence:
o(EW(0) = L2y(o) = & = ¢.

So o(e')Y(o) = € and moreover v(e’) = 0. It follows that we can assume that
e€ O .

Following [Iw, Section 2.3}, if 0 € G/I = Gal(@ /Q,) it is enough to find ¢’ € O*
such that Fr(e')y(Fr) = ¢

Now, Fr—id : O — O is surjective and since ¥(F'r) = a we obtain that it is enough
to find ¢’ € O* such that Fr(e’) = ¢€a~!(modpO®). For this, note that X? —a~'X is
separable in F,[X ](Since D(X?-a&1X) = —a~! # 0). We apply now Hensel’s Lemma

and get:
¢ €lim O/p"0 = 0=0.

In this way, we’ve proved that there exists an element e € @ , € # 0, such that
Fr(e)y(Fr) = e. We obtain that o(e)y(c) = e for any 0 € G and consequently that

we have an isomorphism of G-representations f : C, — C,(¢).
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As a consequence, we have that:
Co(x™¥) = (G()) () = Co(x") = Gy (n)-

where 9 : G — Z, is unramified and x : G — Z; is the cyclotomic character.
This implies that if ¢ is unramified, then V := Q,(x"¢) is HT.

We move now to the elliptic curves and prove the following

Proposition 2.1.14. Let E/Q, be an elliptic curve as in the Case 1 or Case 2 of
1.3.2 (i.e. with good ordinary reduction or a Tate curve respectively). Then Vg is HT.

More ezactly,
Ve ®q, C, = G, @ Gy(1)

as G-representations.

Proof. We consider the exact sequence:

0— Qp(X¢_l) - VE— Qp("/") —0

where ¥ is unramified if F has good ordinary reduction or trivial if F is a Tate

curve.

Since any Q,-algebra is flat, by tensoring with C, over Q,, we get: _

0—C(xy™") — Ve ®0, & — G, (¥)) —>0

A |

CP(]‘) CP

where for the upper left isomorphism, one uses the fact that ¢~ is also unramified

since % is and Proposition 2.1.12 and for the right upper only the Proposition 2.1.12.
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And so we’ve obtained:
0—>Cy(1) 1> Ve ®q, C, 2 C, —>0 ()

We want Vg ®q, C, o C, ® C,(1) as G-representations. This is equivalent to
proving that the sequence (*) is split as a sequence of G-modules. However, C, being
projective (since it is a vector space), (*) is split as a seqtience of vector spaces and
Ve ®q, Cp = C, & Cp(1). So firstly we find a splitting of () just as C,-vector spaces.
Define:

5:C, = V,E ®q, Cp by s(1) := a such that g(a) = 1.

Remark that for every a € C, we then have s(a) = as(1) = aa and so g(s(a)) = a.

Consider now the element ca — o € Vg ®q, C,, 0 € G. Since gloa — a) =
g(oa) — g(a) = og(a) — g(a) = o1 — 1‘= 1 -1 = 0 it follows that ca — a € ker(g)
(note that g(ca) = og(a) since g is a homomorphism of G-modules).

Now, since (*) is exact one obtains that ca — a € I'm(f) hence ca— a = f(a,) for
some a, € C,,(l).

Define now:
B : G — Cy(1) by B(o) = a,.

Then f§ is a 1-cocycle. In order to prove this, let 0,7 € G, apply f to B(o7) and

use the fact that f is injective. Concretely, we have:

f(asr) = f(B(oT)) = oTa —«

=o(ta—a)+oa—a
= o f(a;) + f(a,)
= f(oa;) + f(as) = f(oa- + a,)

and since f is injective we obtain that: a,, = oa, + a, i.e. (o7) = op(7) + B(0).
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Now, since x(I) is infinite, following Ax-Sen-Tate’s Theorem (Theorem 2.1.10) we
have that H! ,(G,C,(1)) = 0 and consequently the class [8] = 0 € H. (G, C,(1)).

cont

In other words, 3 is a coboundary and so there exists an element y € C,(1) such that
Blo) =a; = oy —v=x(0)o(y) -7 forany o € G.

* Since s may not be G-equivariant, we modify now this section by letting:

t:C, = Ve ®q, Cp;
t(1) :==a - f(7)

such that ¢ is G-equivariant.

Remark that got = 1, since g((1)) = g(a — f(7)) = 9(a) = 1.
Recall that {e® 1, f ® 1} is a basis of Vi ®q, C, and since f(l) = e ® 1 we have that
f(7) = v(e ® 1). Moreover, one can take a = f ® 1 and so ¢(1) = f®1 — (e ® 1).
Also recall from the previous chapter that the action of G on the basis is given by
o(f®l)=f®1+a,e®lando(e®1) =x(0)e®1,0€q.

Consequently,
ot(l)=o(f®1—-—7(e®1)=fQ®1+a,e®1—-0(y)x(0)e®1
=f®1+(x(0)o(r) - 1e®L-o(7)x(0)e®@1=f @1 —7(e®1) =t(1)
for all o € G and so t is G-equivariant.

We obtain that Vg ®q, C, = C, ® C,(1) as G-representations.
O

Remark 2.1.15. In general, if E/Q, is an elliptic curve, then since Vg ®q, C, =
C,®C,(1) (by using Tate’s Theorem (see [Ta, Theorem 3, Corollary 2] or [I1, Theorem
2.2.15))) it follows that Vg is HT (see also Corollary 2.1.3).
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The theory of Hodge-Tate p-adic representations can be better expressed in a
slightly different language, as follows.
We first define the category of graded vector spaces over a field. Following [BC],

we have:

.Deﬁnition 2.1.16. A Z-graded vector space over a field F' is an F-vector space V
equipped with direct sum decomposition ®,czV, where.V}, are F-subspaces of V. One
also defines the g—th graded piece of D to be gr?(V) = V;,. The morphismsT : V — V'
between graded F-vector spaces are F—liﬂear maps that respect the grading, in other

‘words T(V,) C V, for all ¢ € Z. The category of the graded vector spaces over the
field F is denoted Grr ahd if dimpV < 00 one denotes by Grry the corresponding

subcategory.

Definition 2.1.17. We have a covariant functor Dk : Repe, (Gk) — Gri defined by:
Dy (W) = @ez(W @cx Cx(9))F = (W Bcy (DgezCx(9)))°*

which is left-exact.

Following Serre-Tate Lemma ([BC, Lemma 2.3.1]) we have that Dy takes values
in Grpy and that dimg Dg (W) s dimc, W with equality if and only if W is HT.

An easy application of Ax-Sen-Tate’s theorem is the computation:

D (Cx (r)) = Byez(Ck (r) ®cic Cx(9))% = Dyez(Crlg+7))°% = K(—r) where
by F(r) one denotes the F-vector space F' endowed with the grading such that the

unique non-vanishing graded component is the one in degree r, r € Z.

Definition 2.1.18. The Hodge-Tate ring of K is the Ck-algebra Byt = ®,czCxk(q),
the multiplication being defined via the natural maps Ck(q) ®c, Cx(¢') = Cx(g+¢’).
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- Remark 2.1.19. Byr is a Cg-graded vector space with a Cg-semi-linear G g-action

(which respects the ring structure and the grading).

If one chooses a basis of Cx (1), one has that:
Bur = Cklt, 1] = ®eezCxt? = @gezCr (q)

and the Gg-action is given by o - t9 = x(0)%9.
We’ve used the fact that there is an isomorphism: f : Ck(g) — t9Cgk given by

f(a) = t%. Note that f is Gk equivariant since for z € Cx(q) and o € Gk:

floxz) = f(x*(0)a(z)) = x*(0)f(o(x))
= x‘f(a)tqa(x) =o0-tlo(z) =0 - f(z).

Remark 2.1.20. A very important result is obtained by using Ax-Sen-Tate’s theorem,

namely that:
(But)®* = (®42Ck (9))* = K.

Moreover, for any W € Repc, (Gk) one has that Dg(W) = @ z(W®Cx Ck(q))Cx =
(W ®c, But)®* in Grg, the grading being induced from Byr.

We introduce now the functor Dyt : Repg,(Gk) — Grg,s defined by:
DHT(V) = DK(V @Qp CK) = (V ®Qp BHT)GK, Vv E Repr (GK),
with grading induced by the one on Byr.

Definition 2.1.21. Let Repur(Gx) C Repg,(Gk) be the full subcategory of p-adic

representations of Gx which are HT.

Remark 2.1.22. The functor Dyr : Repg,(Gk) — Grk,; defined above is faithful
functor (see [BC, Lemma 2.4.10]) but not full. For this, let 7 : Gx — Z; be any finite

order character, n # 1. We then have:
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Dur(Qy(1)) = (Qy(n) ®q, Bur)®x
= (Qp(7) ®q, (PezCx (1)))°* = BeezCx (xn)®* = K(0)

where for the last equality one uses the Ax-Sen-Tate theorem. By using the same

theorem, we also obtain that:

Dur(Q,) = (Qp ®q, Bur)®*
= (Qp ®q, (BeezCk (9)))* = B4ezCxk (q)* = K(0).

It follows that Dyr(Q,(n)) = Dur(Q,) but note that there is no non-zero homo-
morphism from Q, — Q,(7) in Repg, (Gk).
In order to prove this, let f : Q, — Q,(n) be a homomorphism in Repg,(Gx) and

put f(1) := z. Then, for any o € Gk, one has that:
1= f(1) = f(ol) = o+ f(1) = 0z =n(0)a

so z = n(o)z. Choose now o € Gk such that n(o) # 1. It follows that z =0so f = 0.
U

One proceeds further in refining the category Repur(Gk) C Repg,(Gk) to a cate-
gory that includes all representations coming from geometry. One also needs to refine

the target semi-linear algebra category Gri s to a richer one. For this, one introduces

the filtered modules:

Definition 2.1.23. A filtered module over a commutative ring R is an R-module
M equipped with a collection {Fil!M};cz of R-submodules which is decreasing i.e.
Fili*1M C Fil' M for all i € Z. We say that the filtration is exhaustive if UFil!M = M
and the filtration is separated if NFil* M = 0.
For a filtered R-module M, one defines the associated graded module:
gr* (M) = @&;(Fil: M/Fil''1 M).
Similarly, if k is a field, a filtered k-algebra is a k-algebra A equipped with an

exhaustive and separated filtration {A*} of k-subspaces (k-vector spaces) such that
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At- AT C A% forall i,5 € Z and 1 € A®. The associated graded algebra is gr*(A) =
@;(Fil' A/ Fili+1 A).

Remark 2.1.24. Following Definition 2.1.16, if (V, { F'il*(V)}) is a filtered vector space
over F and dimpV < oo then the filtration is exhaustive if and only if Fil'(V) =V for
i < 0 and separated if and only if Fil!(V) = 0 for > 0. We denote by Filr the cate-
gory of finite dimensional filtered vector spaces (V, {Fil}(V)}) over F' with exhaustive
and separated filtration. Note that a morphism between two such objects is a linear

map T : V' — V which is filtration compatible i.e. T(Fil'(V")) C Fil’(V) for all i € Z.

The reason for introducing a new type of period ring is the following: for a smooth
proper variety X over C, Faltings’ comparison isomorphism theorem (Theorem 2.1.2)

leads to:
Ir;odge(X) = ®an_q(X7 Qg(/]{) = DHT(Hgi(X'I_(-a QP)) = (H:i(X‘f{-’ Qp) ®@p BHT)GK

and so, in order to improve the comparison between the the étale and the graded
Hodge cohomology via Bur (note that Hp,...(X) is a graded K-vector space), one
needs to replace the graded K-algebra with a filtered one, which will be called Byg,
such that gr*(Bar) = Bur.

Also one hopes that the new functor Dgr defined on Repg, (Gx) with values in
the category of filtered K-vector spaces is finer then Dyr. We will see in Proposition
2.2.14 that this is the situation and that one has an isomorphism of graded K- vector

spaces: g7°(Bar) = Bur-

2.2 de Rham theory

We briefly review now the construction of Bgg. For the notion of Witt vectors and

their properties see [Se, Chapter 2, §2].
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Firstly, for any IF,-algebra A, one can construct an associated perfect IF,-algebra

R(A) (see [BC, Proposition 4.2.3]):
R(A) =lim A = {(z0, 21, .-.) € [I430 A | 7441 = @i for all i > 0}

the inverse limit being taken with respect to the Frobenius map: Fr : A = A
defined by Fr(a) = a?. |

Note that R(A) is perfect. For this, observe that the p — th power map on R(A)
is surjective because if (y,)n>0 € R(A) thén by letting o := yo/® one constructs a
compatible sequence (z,)n>0 € R(A) which maps fo (Yn)n>0-

It is also injective since if z = (z,)n>0 € R(A) such that z? = 0 for all n > 0 then
the compatibility condition (z? = x,.; for any n > 1) leads to z,_1 =0 for all n > 1

hence z = 0.

Definition 2.2.1. Let S be a cdmmutative Fp-algebra and let ¢ : S — S be defined
by o(z) = 2?, z € S. @ is an F,-algebra homomorphism called Frobenius. We say

that S is perfect if ¢ is an isomorphism.
We will be interested in the following Fp-algebra:

Definition 2.2.2. R(Of) := R(Og/(p)) = Iim Ox/pOx,

where the inverse limit is taken with respect to Frobenius.

Remark 2.2.3. R(Og) is a perfect F,-algebra in view of the above discussion though

Ox/(p) is not a perfect ring (for example (p!/?)? = 0 while p'/? # 0 in Og/(p)).

Note also that since O%/(p) = Oc¢, /(p), sometimes it is more convenient to work
with R(Oc,/(p)) = R(Og) since O¢, is p-adically separated and complete. For

example, we have the following:

Lemma 2.2.4. The multiplicative map of sets:
lim Oc,; > im Ocy, /pOcy = R(Oc, /pOcy ), defined by:

(2™)p>0 > (z™modp), with inverse given by:
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(Zn)nz0 +* (™),50, where ™ = LM sooTmim’ ™ for arbitrary

lifts ; € Oc, of z; € Ocy [pOcy for alli > 0, is bijective.

Proof. We have to show that the inverse map makes sense (the direct one makes sense

and is multiplicative clearly). For this, for each n > 0 and m’ > m > 0, one has that:

— m' —m )

Tnim! E‘ ﬁﬁ"\m (mOdp)

ml

) . —— m ’ . m . - .
hence T, 1pi’ = Zpim (modp™*!) so the sequence (T,4m )m is Cauchy and so

the limit 2™ = limm_,cofnsm’  makes sense for any n > 0 (since Oc,, is complete,
the sequence (Zp4m’ m)m is convergent).

We still have to prove that the limit (™ is independent of the choice of liftings.
So, for any n € N let %, and #, be two liftings of z, and put Z, = ZTn + vy, with v, €
POcy- Then Tmim! — Fngm? = Y00, ngmp "~*yk. Since the p-adic valuation
vp(CEn) = m — v,(k) we obtain that vp(Znim” " — T} > m and further that the
limit is unique. | |

O
Remark 2.2.5. Via Lemma 2.2.4 one can identify R := R(Ox) with:
Im O, = {(z™),, | z™ € Og,, 2"+ =z for all n > 0}

The laws of multiplication and addition are given by the following formulae: for

any z,y € Rand n € N,

(zy)® = gy

(.’L' + y)(n) = im0 (z(n+m) + y(n+m))pm

Moreover, R is a domain. Now, one gives R a valuation by defining vg(z) = v,(z®)
for all z € R. One proves that vy is a valuation on R and that R is vg-adically separated
and complete of residue field k (see [BC, Lemma 4.3.3]).

Now, for any natural number n > 1 we have a ring homomorphism:
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1 1._pﬂ 1-i

b, : W, = W, (Og/pOx) — O%/p" O given by (so, .. ,s,,_l) — Y P ,
where §; € Ox/p"Ox is a lift of s; for every i, where W, is the ring of Witt vectors of

length n (on Ox/pOx valued points).
Denote by u, : W, 4; — W, the homomorphism defined by Frobenius composed
with the truncation map. Also let v, : Ox/p"t'Ox — Ox/p"Ox be the truncation

map.

We have that for every n € N, n > 1 the following diagram is commutative:

0n
Wo1(O/p0%) —> O /p" 10

0n n
W, (O%/pOg) —— Ox/p"Ox

This follows easily since:

y ~ pﬂ."t

0
(0, 51, - Sn) 0 Y or oS

lu,, - 1

eﬂ -3
(38, 311’7 ) 'S'f;—l) - Z,—o p" ;P

By taking now the inverse limit one obtains a continuous G g-equivariant morphism:
6:lim W,(Og/pOg) — lim Og/p"Of = Oc,

Remark 2.2.6. The inverse limit of the projective system (Wo(O%/pO%), Un)nen is
identified with the rmg of Witt vectors W(R).

In order to prove this, we have that the truncation maps W(Oy/p@y(-) — W, (Ox/pO0%)
are defining a morphism between the projective systems (W(Ox/pOx), W(Fr))n and
(W,.(0O%/pO0%), un)n where F'r : Ox/pOg — Ox/pOx is the p-power map. Since the
Witt functor W(.) commutes with the projective limits and via Definition 2.2.2 we get

that the first system is W(R) and consequently we have a ring homomorphism:

W(R) - lim,_ W, (Ox/p0g)
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giveh by (so, 81,---) = ((s (p) s(")(p) o ,,_ (p)))neN This is bijective with in-

(n) . (m) (n)

verse given by ((sg,8] 5y Spo1))neN = ((3(n+m

JneN)men- ‘It is also continuous with

respect to the p-adic topology on Oc,.
Note also that the map v, : W(R) — W, (Og/pO%) defined by:

(50, 81, --) = (87 (0), 55 (p), ..., su; (p))

verifies the relation: v, = u, o ¥p4;.
We want an explicit formula for 8 : W(R) — Oc, 50 let us compute it on the
Teichmueller lifts. For r = (r™),5o € R (which is sent to [r] = (,0,0,...) via the map

R — W(R)), we have that:

0([r]) = Lim 0, (9a([r])) = Lim 6, ([ (modp)))
= lim(r™)*" (modp™) = limr®(modp™) = r(®.

and hence 6(3[ca)p”) = 3 cpm.
It follows that for a general Witt vector (ro,71,...) = D.[r2 " |p",

(o, ) = SO " = (™) Op = 1

Moreover, 8 is Surjective since the map r — r® from R — Oc, is surjective.

Choose>now P € R such that 13<°) = p (in other words p = (p,p*/?,p'/?",...) € R =
im Oc, so vr(P) = vp(p) = 1. Let also £:=[p] —p=(p,-1,...) € W(R) and remark
that 6(£) = 0. Moreover, following [BC, Proposition 4.4.3], ker(f) is a principal ideal
generated by &.

The ring of Witt vectors W(R) is a subring of W(R) [%] and @ induces a G- equiv-
ariant surjection Ox : W(R)[}] = Oc,[l] = Cx and since W(R)[}] is not complete

one replaces it with its ker(fx)-adic completion, namely:

B = lim_W(R)[1)/(kerfx)".
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0 induces a natural G-equivariant surjection 8 : Bjp — Cx. Since W(R)[7] is
an integral domain and ker(fx) = ker(&)[%} a principal maximal ideal, the localization
ring W(R)[%]ker(gx) is an integral domain (being the localization of one), with maximal
ideal that is principal (call it I := ker(HK)W(R)[%]ke,.(oK)) and moreover W(R)[%]ke,(gk)
is separated for the I-adic vtopology (see [BC, Corollary 445]) hence it is noetherian.
Consequently (see [Al-Io, Theorem 2.3.15]) it is a discrete valuation ring hence its
completion B}, is a discrete valuation ring and moreover of residue field Cx (for

further details see [BC, Proposition 4.4.6]).

One defines now the field of p-adic periods Bgg:
Definition 2.2.7. Bgg:=FracBj;.

Remark 2.2.8. Bgg is equipped with its natural G g-action and Gg-stable filtration
via the powers of the maximal ideal of B;’R, in other words, Fil! Bgr is the maximal
ideal of Bj; hence generated by ¢ and for all i € Z, Fil'Bgg is the fractional ideal

(Fil' Br)'.

Choose now an element € € R such that €@ =1, ) # 1 (hence €™ is a primitive
p™-th root of 1) and consider the Teichmueller representant [¢] € W(R). We have that
0([e] = 1) = &® — 1 = 0 hence [e] — 1 € ker(8) C ker(0).

We have that (€ — 1)@ = lim,(¢™ 4 (~1)™)?" = lim,({,» — 1)*" (for p # 2) and
hence:

vr(e — 1) = v,((e — 1)) = lim, (p"v, (Gn — 1)) = lim, ;’T:%inl)— =-E>1

Since [¢] — 1 € Fil' Bgr we get that [¢] = 1+ ([¢] — 1) is a 1-unit in B:R. Moreover,

one obtains a well defined element bf B namely the logarithm
t:= log([e]) = log(1 + ([e] — 1)) = Ly (- 1) 215,
Concretely, by defining s, := Zzzl(—l)k“gfl;—l):, then for m > n we have that

Sm — Sn = Z;cn:n+l(—1)k+1(_[ﬂ%—l)_k € (ker(oK))n+l
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hence |sm — sal < 737 — 0 in the ker(fx)-adic topology. It follows that the
sequence (s,)» is Cauchy and since BJ; is complete with respect to the ker(6x)-adic
topology, we get that (s,), is convergent.

Following [Fod4, Proposition 3.1] or [BC, Proposition 4.4.8], the element ¢ = log([e])
is a uniformizer of Bj;. We have that FilinR=B t* and moreover note that the

action of Gk on t = log([e]) is given by:
at = olog([e]) = log(ole]) = log([eX*)]) = log([e]X?)) = x(0)logle] = x(o)t.
Consequently,
Gr(Bar) = ®1ezGr*(Bar) = Brez( F’:}ﬂfrgdn) ®,ezCx (3) = Bur.
Rémérk 2.2.9. We also have the important relation:
(B;R)GK = Bg}{{ =K

which follows by means of Ax-Sen-Tate’s theorem. Concretely, we have a canonical
G k-equivariant embedding K < BJ; and by taking Gk-invariants one obtains a
natural map K < By ". Since the Gk action on Bggr respects the ﬁltration we get
an injection Gr(BSX) — (Gr(Bur))®* = BS¥ = K hence Gr(BS¥) is 1- dlmensmnal
over K which further implies that BSK is l—dimensional over K.

One further introduces the covariant functor Dyg valued in the category of finite

dimensional K-vector spaces Veck:
Definition 2.2.10. Dgp : Repg, (Gk) — Veck given by Dar(V) = (V ®q, Byg)Cx.

Following [Fo3, Proposition 1.4.2 and Proposition 1.5.2] or [BC, Theorem 5.2.1] we
have that dimg Dgr (V) < dimg,V. In case of equality one says that V is a de Rham

representation.

Let also Rep (G k) € Repg,(Gk) be the full subcategory of the de Rham repre-

sentations.
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Remark 2.2.11. Note that if V € Repg, (Gk) then Dar(V) = (V Qq, B4r)®¥ has
a natural structure of object in Fily, the category of finite dimensional filtered K-
vector spaces with e_:xhaustive and separated filtration. For this, recall that Byr has an
exhaustive, separated and G-stable K-linear filtration Fil*(Byr) = t'Bjy and hence
one obtains a Gk-stable K-linear filtration {V ®q, Fil'(Bar)} on V ®q, Bar which
further induces (after taking G K—invariants) an exhaustive and separated filtration on

Dgyr(V), namely:
Fil' Dar(V) = (V ®q, t'Bf;)Cx.
The main result in the theory of de Rham representations is the following “de Rham
comparison isomorphism theorem”:

Theorem 2.2.12 (T. Tsuji (T, Theorem 4.10.2), G. Faltings (Fa3, Theorem 8.1)).
Let X be a smooth, proper geometrically connected scheme over K. Then, for every
t > 0 we have a canonical isomorphism as By -vector spaces, respecting the Gx-action

and the filtrations

H:;t(Xf7 Qp) ®Qp Bgr = H,;R(X/K) ®k Bgr-

The theorem has the following

Corollary 2.2.13. If X is a s}moroth, proper geometrically connected scheme over
K then the p-adic Gg-representations H:, (X%, Q,) are de Rham and moreover the

filtration on Dyp(HE (X7, Qp)) = Hig(X/K) is the Hodge filtration.

In some simple examples the corollary above can be actually deduced using only

elementary methods, which we’ll examine in the next section.

2.2.1 Examples of de Rham representations

Example. V = Q,(n) is de Rham for all n € Z. Viewing Q,(n) as Q, with Gk-

action given by x" we have that Dyr(Qp(n)) = Kt™" so dimgDgr(V)=dimg,V = 1.
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Moreover,
0, 1> -n

Dir(Qp(n)), i< —n

Fil'(Dgr(Qp(n))) =

We prove now that the de Rham representations are always Hodge-Tate while the

equivalence holds only for the 1-dimensional case:

Proposition 2.2.14. IfV € Repg, (Gk) is a de Rham representation then V' is Hodge-
Tate. Moreover, if dimg,V =1 then V is Hodge-Tate if and only if V is de Rham.

Proof. We prove firstly that if V is de Rham then V is Hodge-Tate.
Note that Dar(V) = (V®gq, Bar)®* and that we have the i** filtration Fil* Dag (V) =
(V ®q, t'Biz)°* C Dar(V). |

One can show by induction that:
(1) dimKG'r(DdR(V))zdimKDdR(V),

where Gr(Dar(V)) = ®1ezGr*(Dar(V)) = Grez (Firisltls).

In order to prove this, consider the finite filtration:
DdR(V) F’tlloDdR(V) 2 lem'HDdR(V) 2. D F’LlJoDdR(V) =0

We have the exact sequence:
0—>FilioH Dyp (V) C Dgr(V)—>=GrioDar (V)—>0 hence:
(2) dlmKDdR(V) = dlmKGTdeR(V) -!- dimKFz'li°+1 DdR(V)
Similarly, from 0—— Fil°*2Dyg(V) C F it Dyp (V)—>Gro+! Dgr(V)—>0,
(2) becomes:
dlmKDdR(V) dlmKGTZODdR(V) + dimKGTi°+1DdR(V) + dimKFili°+2DdR(V).
We continue the procedure and since

0 = FilDgp(V) C Fil**'Dyr(V) = Gr+*!' Dgr(V'), we obtain that:
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dimg Dar(V) = @2 ;,,,dimxGri(Dar(V)).

Now, recall that Dyt(V) = (V ®q, But)®¥ = (V ®q, (®iczCy(1)))%* =
= Biez(V Bq, Cp(1))°¥

and that V is Hodge-Tate if and only if dimyx Dyt (V)=dimg, (V).

We want to prove that if V is de Rham then V is Hodge-Tate. Consider the exact

séquence of Gk modules:

(3) 0t Bl —t' B —>Cyli)—0.

We’ve used the fact that since tBj, is maximal ideal of B}, one has:

Bt

. Bt o .
;‘-‘Jﬁi = tz(ﬁi%) = 'Cp = Cp(3).

By ténsoring (3) with V and taking G invariants we obtain:

0 (V ®q, 1 Bir)*

L H! (GK, % ®Q, ti+lB;'R)

i.e. 0——>Fili+lDdR(V)—*FiliDdR(V)—'%GTi(DHT(V))—->... .

(V ®q, t'Bir)* — (V ®q, Cp(4))°* ﬁ

Hence we obtain an injection:

Gri(Dar(V)) = 7'%’;% <+ Gri(Dygr(V)) and consequently:

Recall now that dimg Dyr(V') < dimg,V and that since V is de Rham, dimg Dgr (V) =
dimg, V. By using now (1), (4) gives us:
dlmeV = dImKDdR(V) = dlmKGT(DdR(V)) < dlmKDHT(V) < dimeV

so we have equality everywhere and hence V is Hodge-Tate. This completes the proof

of the first implication.
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We prove now that if V is HT and dimg,V=1 then V is de Rham.

Firstly, since dimg, V=1, via the subsection 1.3.1, we have thét the dimension 1
representations correspond to chafacters hence V' = Q,(p) where ¢ : Gk — Z; is a
continuous character.

V is HT and of dimension 1 so V ®q, Cp & C,(i) as Gk-modules for some i € Z.

In other words, we get that Q,(¢) ®q, C, = C,(¢) and consequently the isomor-
phism: C,(p) 2 Cp(i) as G x-modules. |

We twist now by x* where x : Gx — Z; is the cyclotomic character and by letting

¥ := @x~* we further obtain:

Cp(9) = Cp(px~%) = C,.

We claim that it is enough to show that Dqr(V) # ¢.

Then, since dimg Dgr(V) < dimg,V = 1 we obtain the equality of dimensions:
dimg Dgr(V) = 1 = dimg,V

hence V is de Rham.

Proof of ihe Claim: We have a Gk-equivariant map: f : C, = C,(¢) and let
fQA):=1.

Take o € Gg. We then have:

oxy=0xf(1)=flo-1)=f(1) =
On the other hand, o * f(1) = ¥(0)o(f(1)) = ¥(0)o(7)

and so we get that v = ¢(0)o(y) or equivalently ¥~} (0)y = a(7) (5). )

Consider now z € O;f.rr C Bl;. Following (5) we have that oz = 9~!(0)z for
o € Gg.

Let now e :=1® zt™* € V ®q, Br. Note that (1) = p(0) since 1 € V = Q,(yp).

We have that:

ve = 0(1) ® (@0 (1) = plo) ® ¥ (O)ax (o)t
=p0) @y o)mt = 1@at =e
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and hence that e € (V ®q, Bar)®* = Dar(V). Moreover, Dgr(V) = K -e.
The claim follows. |

0

Remark 2.2.15. The functor Dyg : Repf’QI:(G k) — Filg is faithful, exact and com-

patible with the tensor product and duality ([BC, Proposition 6.3.3]) but not, full.

We prove that Dgg is not full. Firstly write Darx (V) = (V ®q, Bygr)C* for accu-
racy. Following [BC, Propositidn 6.3.8], for any complete discretely-valued extension
K'/K inside Cg, the natural map Dyr x(V) ®x K' = Dgrx:(V) is an isomorphism
in Filg:. In particular, V is de Rham as a G g-representation if and only if V is de
Rham as a G- representation.

As consequence, we clairh that if p : Gk — Aut(V) is a p-adic representation with
finite image on I, then V is de Rham and Dgg x (V) = (K(0))®4me(V),

It is then clear that Dyg k is not full since Dyr x (V') € Flilk has lost all information
about V. |

Now, for the proof of the above claim, choose L/K finite extension with p(I;) =
1 and let K’ := L* so in particular Gx» = I;. Since V¢ = V we have that
Darxr(V) = (V ®q, Bar)x" =V ®q, B =V ®q, K' = (K'(0))®¥™%(") and
hence dimg'Dag x' (V) = dimg,V.

It follows that V' is de Rham as a Gg/-representation and by the above remark as

a Gg-representation. Since Dar x(V) ®x K’ = (K'(0))®%™me(V) the-result follows.

Remark 2.2.16. We claim that the Frobenius automorphism ¢ : W(R)[:] - W(R)[;]

does not preserve ker (k).

Recall that ker(0x) = ker(0)[%] is principal ideal generated by & := [p] —p =
(p,—1,...) € W(R) so it is enough to show that 8x(p([p] — p)) # 0.

We have that:

(7] - p) = (1)) — po(1) = [P —p =[] - p
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hence O (([5) — 7)) = Ox (")) — p= P — p # 0 in Cxc = O [2].

It follows that ¢ does not naturally extend to Bf := lim W(R)[;]/(kerfx)".
(One can also see this by taking the element '[ﬁl/”] — p which is invertible in B but
if p : Bjy — Bl would be a natural extension of ¢ : W (R;] - W(R)(] then we
would have that p(1/([5%] - p)) = 1/(15] — p) ¢ Bix since Oxc([f] —p) =0.)

So one would like to complete W(R)[ ] such that the completlon is still endowed

with a Frobemus map. For this one defines a subring of B, namely:

2.3 Crystalline theory

In this paragraph, K, will be the maximal unramified extension of Q, in K.

We have the following definition:

Definition 2.3.1. Bt. =

cns

= {z € Bfg | £ = Y 724 %% such that z, — 0 in W(R)[1]}.
Also, let Begss == B [1]. |

Definition 2.3.2. Let K be a p-adic field.

1) A filtered p-module over K is a triple (D, ¢, F'il®) where D is a finite dimensional
- Koy-vector space, g is a Fr-semilinear (i.e. (a-d) = Fr(a) - p(d), for any a € Ko and
d € D) and bijective endomorphism of D, where F'r is the Frobenius automorphism
of Ko = W(k)[1/p] and {Fil'} is a decreasing exhaustive and separated filtration on
Dk =D ®k, K.

A morphism D' — D between two filtered y-modules isa K, o-linear map compatible
with ¢’ : D' - D' and also ¢ : D — D énd has scalar extension D} — Dy that is a
morphism in F'ilx. One denotes by MFy, the category of filtered p-modules over K.

2) A (p, N)-module over Kj is a finite dimensional Ko-vector space equipped with
a bijective Frobenius semilinear endomorphism ¢ : D — D (i.e. an isocrystal over Kjy) |

equipped with a Ky-linear endomorphism N : D — D (called monodromy operator)
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such that Noyp = ppo N. The notion of morphism between such objects is the obvious
one. One denotes by M od}’}’;v the category of (¢, N)-modules over K.

A filtered (p, N)-module over K is a (¢, N)-module D over Ky for which Dg =
D ®k, K is endowed with a structure of object in Filx. The notion of morphism
between such Vobjects is the obvious one. One denotes by M F}?’N the category of |

filtered (p, N)-modules over K.

Further, let A2, be the W(R)-subalgebra of W(R)[1/p] génerated by the elements -

cris

{£ }nen, in other words A%, is the divided power envelope of W(R) with respect to

the ideal EW(R) where £ = [p] ~ p. Also let Acyis be the p-adic completion of A%,
Agis = {ano an% | a, € W(R),a, — 0 in the p-adic topology}.

We have the following:

Proposition 2.3.3. t = logle] € Agpis.

Proof. Since [e] —1 € ker(0) = {W(R), it follows that [¢] — 1 = v for some v € W(R).
Moreover, '
t =log([e]) = Enzl(—l)nﬂ%g = Enzl(_l)n+l(n - 1)“’"%

and so, since ay, := (—1)"*!(n — 1)'v® — 0 in W(R) relative to the p-adic topology

(remark that v,((n — 1)!) —» 0o when n — o), we get t =3 -, an% € Acris-

Proposition 2.3.4. ([T, Lemma A3.1]) We have that ([¢] — 1)P~" € pAcris. |

Proof. Denote by e := (€n41)n30 (S0 € =€) and let also s = ([e]-1)P"1+3 2} Ci(le]—-

1)P~%=1 'We then have:

s-(le] = 1) = P2  CE(le] ~ 1)p~*
=(e]-1+1P-1=[]-1
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and consequently one obtains:
(] = )Pt = 57" - ([e] - 177!
= 975 = TAZ OF (1 = 174

=pE = YR LOF([e] - 1R € pAcs.

Corollary 2.3.5. ([T, Corollary A3.2]) t*~! € pAcns.

Proof. For any n > p+ 1, since (n — 1)! is divisible by p, we have that
M =(n- 1)!£El;l_!ll € pAcris hence:

n

t=3"_ (1) &8 mod pA,.,

in other words it is enough to consider the above finite truncation of the sum.
By the previous Proposition we have that p~!([e] — 1)P~! € Acs and hence
t =r([e] —1) mod pAcris, 7 € Acris, Since the terms for 1 < n < p are As-multiples
of [e] — 1. We apply again the previous Proposition and get that t*~! € pA ;.
O

Denote by ¢ the Frobenius endomorphism of W(R)[%] The answer to the question

of how does ¢ act on the subring A%, is provided by the following important:
Lemma 2.3.6. The W(R)-subalgebra A%, is p-stable and also Gk-stable.

Proof. We have that ¢(§) = [p]’ —p = (£ + p)? — p = &P + pa for some a € W(R)

hence:
o) =5+ ((p- 1€ +a)

and so e =p"-((p— 1)!% + a)® for all n > 1. Since & € Z, for all n > 1 we

obtain that o(£"/n!) € A%, for all n > 1 and since A%, is generated by the elements

cris

- {&™/n'}n, the first claim follows.
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‘Now, since @ is Gk-equivariant and 6(§) = 0 we have that 8(c(£)) = 0 for any
o € Gk so 0(§) € ker(0) = EW(R). Consequently, o(¢) = c(0)€, with c(o) € W(R),.

for any 0 € Gg.

Remark 2.3.7. One extends by continuity ¢ and the action of Gx to Aggs.

Following the Definition 2.3.1, we have that B}, = Acris[%] and that 'Bc;;; = .
B:;is[%] = Ac,is[i,% = Acris|3] (inverting t makes p become a unit since #*~! € pAcy;s
via Corollary 2.3.5). v | |

The rings Beis and Bt are Gi-stable W(R)[-Il;]-suba.lgebras of Bar and B re-

spectively.

We corhpute now:
o(t) = p(logle]) = log(¢([e])) = log([e?]) = log([e]?) = plogle] = pt

and further extend ¢ t0 Beis by putting (t71) = p~ 1t~ L.

One further defines the following functors:

Definition 2.3.8. 1) Deyis : Repg,(Gk) — Veck, given by Deis := (V ®q, Beris)®X;
2) Dy : Repg,(Gk) — Veck, given by Deyis :== (V ®gq, By)Ck.

We have that dimg,Deris(V) < dimg, (V) ([Fo3, Proposition 1.4.2 and Proposition
1.5.2] or [BC, Theorem 5.2.1}) and we say that V is crystalline if the equality holds.
Denote by Repr‘:s the full .subcategory of crystalline p-adic representations of Gg.

Also, dimg,Dt(V) < dimg, (V) and we say that V' is semi-stable if the eduality
holds. Similarly, denote by Rep& the full subcategory of semi-stable p-adic represen-

tations of Gg.

Remark 2.3.9. Note that there is a natural exhaustive and separated descending

filtration on Dg;s(V) ®k, K via the natural injection on Dyr(V'). Recall that we’ve
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extended the action of the Frobenius endomorphism ¢ to A.js and Bgys. Following
[BC, Theorem 9.1.8], ¢ is injective on Ags and in particular, the induced Frobenius
on Bis = Aqis[1/1] is also injective.

One obtains that Dy is valued in M F}. As Dyg, the covariant functor

D6 : Repg}z?(G k) — MF} is exact and commutes with tensor products and duals.

Moreover, one can prove that if V' is a crystalline Galois representation then we
have an isomorphism as B;s-modules which respects Galois actions, Frobenius and

filtrations

Dcris(v) ®K0.Bcris =2% ®Qp Bcris

([BC, Proposition 9.1.9]) and by using [Fo2, Theorem 5.3.7] that D is fully faithful
~ ([BC, Proposition 9.1.11]). This is a non-trivial result and recall that Dygr and Dyt

are not full.

The central result in the crystalline theory is the following “crystalline comparison

isomorphism theorem”:

Theorem 2.3.10 (Fa3, Theorem 5.6). Let X be a smooth proper scheme, geometri-
cally connected over K with good reduction. Then for every ¢ > 0 we have canonical
1isomorphisms as Bes-modules, which respects the Gg-actions, the Frobenii and the
filtrations.

Heit (X'I?7 Qp) ®q, Beis = Hciris(—X—/ W) ®w Beris
where we have denoted X the special fiber of a smooth model of X over Og and
W = W(k) and Ko := W[1/p]. |
The above theorem has the immediate consequence

Corollary 2.3.11. Let X be as in the theorem 2.3.10, then for every i > 0 the Gg-
representation H: (X%, Q,) is crystalline and moreover

Deis(Hi (X7, Qp)) & Hi (X /W) ®z, Q, as Frobenius modules. The filiration on
Deris(Hi (X%, Qp)) ®k, K = Hig (X/K) is the Hodge filtration.
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We arrive now to the main characters of the thesis, namely the rings Amax, B, and

Bmmax. These were first defined by P. Colmez in [Col, Chapter 3, Section 2.

Definition 2.3.12. Let Aax denote the p-adic completion of the ring Ag; := Ains[Yo]/ (pYo—
€), where At := W(R) and recall that & = [p] — p is a generator of the ideal
Ker(0 : Aii — Oc,) and Y; is a variable. One observes that A is p-torsion free
and denote by B, := Anax®z,Q,. Moreover the series t = 37 (—1)""!([e] - 1)*/n

converges in Apax and we denote by Bpax := Amax[1/t].

The group Gk acts naturally on Anax, Bl .., Bmax and the natural Frobenius on

At extends to a Frobenius on all three rings. We have natural inclusions of rings
Acris C Amax and Bgis C Bpax C Bgr which are Gi-equivariant.
The main usefulness of Bp,,y is that it allows to the calculation of the functor D,;.

More precisely, Colmez proved in [Col, Chapter 3, Section 4] the following

Theorem 2.3.13 (Colmez). Let V be a p-adic representation of Gx. Then the inclu-

8ton Beis C Brax tnduces an isomorphism as filtered, Frobenius modules:

cns V) (V ®Qp Bmax)GK .

Geometric interpretation of the ring Amax

>We ‘claim that A_ma" is a formal dilation, i.e. we are claifning that the ring Ag;, it
is a dilation in the sense of Boséh Luetkebohmert, Raynaud, Néron models. More
precisely we have an 1somorphlsm of rings Amf/pAmf 2 R, moreover the natural pro-
jection on the first component gives a ring homomorphism R — Ox/pOx whose
kernel is generated by p € R (see the beginning of Chapter 3). In other words we have
— R — Ox/pOx and the kernel of the composition is

ring homomorphisms A,

the ideal of A generated by (p,£). Let X := Spec(A},) and denote by X := Spec(R)

inf
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its special fiber. We have closed immersions of affine schemes:
Y := Spec(Ox/pOx) = X —= X

and it follows that Spec(Agy) is the dilation of Y in X, in other words it is the affine
ring of a certain open of the blowing-up of X at the ideal 7 = (p,&). Therefore Apax
can be seen as the affine ring of the formal completion along its special fiber of the

above mentioned dilation.
As such Apax has a natural universal property (see [BLR, Proposition 3.2.1(b)]).
In the next two chaptérs we will discuss modp™ versions of Amax and sheafified

versions of these constructions.

2.4 Semi-stable theory

Definition 2.4.1. Denote by By, := Byis[log[p]] the polynomial algebra with coeffi-

cients in B and also let u := .log[ﬁ].

One extends the action of ¢ and also of G to By by putting:

o (log[p]) := p - log[p]

and o(loglp)) := log[p] + a(o)t, for any o € Gk, where afo) € Zp such that .
o() = 5. |

N is called the Bs-derivation of By normalized by N(u) = -1.

One verifies that Ny = ppN (note that Np(u) = —p = ppN (u))‘and that the

action of Gk commutes with ¢ and also with IV since:

o(Nu") = o(nu™1) = n(u + a(o)t)" !

and N(ou") = N((u+ a(o)t)*) = n((u + a(U)t)"—l)
for any 0 € Gk, n € N.

Remark 2.4.2. We have the following important result:
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BS¥ = BS¥ = K.

cris

Note that since W(k) C W(R) C Agis one obtains that Ko = W(k)[1/p] C Beyis and
further since Beis C By C Bag we get: Ko C BSX C BS* C BS¥ = K.

Following [Fol, Proposition '4.7], the natural Gg-equivariant map

Bis ®k, K — Buyr is injective. Moreover, following [Fo2, Theorem 4.2.4] or [BC,
Theorem 9.2.10}, the homomorphism of Beyis ®k, K-algebras By ® x, K — Bar (which
sends u € By, to u € Bgr) is injective. The result follows by using the injectivity of

the second map (the injectivity of the first one only leads to BCG,,'; = Kjy).

Remark 2.4.3. We have that BY=% = B_. This follows easily since by taking an
element f = Y o o a,u" € BY=%, where a, € By, for all 0 < n < m, then N(f) =0is
equivalent to: Y .-, 7 - a,u” ! = 0 and consequently a, = 0 for all 1 < n < m hence

' f =ag € Bcris-

We use now this remark and the fact that Gx commutes with N (previously proved)

and obtain that:
Dsl\trzo(v) =((V B, Bst)GK)N=° =(V g, Bg:“)c" =(V g, BCris)GK = Deis(V)

in MF{ for all V € Repg,(Gk)-

Conéequently, if V is semi-stable and the monodromy operator N vanishes on
Dy (V), then D¢yis(V) = Dgt (V') and so dim gy Deyis(V )=dimg, Dgt (V)= dimg, (V) hence
Vis cryétal]ine.

Also, if V is crystalliné then: -

dimg, (V)=dimg, Deris(V)= dimg, DF=°(V) < dimg,Du (V) < dimg, (V) and so V
is semi-stable hence the crystalline representations are semi-stable.

We conclude that if one works with semi-stable representafions, by observing if N
vanishes or not one keeps track of the crystalline representations.

As for the crystalline case, by using now the additional structure on By, we have

that Dy is valued in M F}@’N and same as D5, the functor Dy : Rep& (Gk) > MF; ,“;’N
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is exact, commutes with tensor products and duals and is fully faithful.

Here are some examples of semi-stable and crystalline representations:

1. Q,(n) is crystalline for all n € Z.

Since K < R and since W(R)[1/p] C B.is (see the remark 2.4.2) one also has the
inclusion Kg" = W(K)[1/p] C Beis. Note that t* € B for all n € Z, where t = logle]
and since ¢ : Buis — Beys is compatible with the Frobenius automorphism of I/{O?’ it
follows that (") = p™ - t"(recall that ¢(t) = p - t).

Thus Deris(Q,(n)) := (Qp(n) ®q, Beris)®* on which Gk acts through x~" has basis
{e®t™"} where {e} is the basis of Q,(n) over Q,. Since Gk acts on Q,(n) through
X" we have that o - (e®t™) = x"(0)e®x ™(0)t™" = e®t™" for any 6 € Gk, in other
words that {e ® t™"} is Gg-equivariant. |

We obtain that dimg, Deris(Q,(n)) = 1 = dimg,Q,(n) hence Q,(n) is crystalline.

2. Let A be an abelian variety over K. Then following [CI1, Theorem 4.7],
Va :=Tp(A) ®z, Q, is crystalline if and only if A has good reduction.
As a consequence, if E/K is an elliptic curve with good reduction over Ok then Vg is

crystalline.

3. If E/K is an elliptic curve with semi-stable and bad reduction over Ok then-
following [Br, Theorem 5.3.2], Vg is semi-stable and not crystalline.

4. Suppose that [k : k7] = p? < o0, where k is the residue field of K , K being a
finite extension of @, and let K be a closed subfield of K, of the same residue field k&
and absolutely unramified. Let {#;,...,%4} be a p-basis of k and t.l, ..., t be the liftings

of t,...,ta in Ok,. Let i € {1,...,d} and X; := G,,/(t%). Moreover, denote by:

Tp(X) = lim (K™ /)i
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its Tate module. Let ¢ = (¢,¢),...) € R = lim Og/pOx such that ¢® = 1,
€M £ 1 (so ™ is a primitive p"-th root of 1). We then have:
Tp(X:) = lim {(e™)(#M),0 < 4,5 < p"}

and hence T,(X;) = Zye ® Z,f where e = lim_ e and f = lim tﬁ“). As computed
before (see subsection 1.3.2, Case 1), the action of Gk on V,(X;) is given by oe = x(o)e
andof=f + a;(0)e where a;: Gk — Z, is the 1-cocycle déscribing the action of Gg

on (), namely ot = (s("))“‘(“)tgn)’and so the matrix of ¢ in the basis (e, f) is:
x(o) ai(o)
o 1

Recall that the action of Gx on t = log([g)) is given by; _
at = olog([e]) = log(ale]) = log([eX?)]) = log([e]¥?)) = x(0)logle] = x(o)t.

Let now €' := t~!le. We then have that ge = x" (o)t " x(0)e = t~'e = ¢’ for all
o € Gk and so €' is Gk-invariant.
Also let o; = log(t;[t;]) where {; € R such that £§°) = t; and u; = [t;] — t;,

1 < i <d. Via [Bri2, Proposition 2.3.7], we have that:

o; == log(1 + ¢ 'w;) = > o0 (1) (n — 1)!%5— € Agis:
The action of G K On is givén by:‘
a0 = log(ot; olt]) = log(t7 ™) [E:])
sinée ot; = o) = (e(o))“‘(")igo) = = t;. We obtain that oo, =+ a;(o)t.

Define now f' := —t 'a;e + f and for o € Gk we have that:

of' = —x" (o)t Hai(o)t + cu)x(o)e + f + ai(o)e =
= —ai(0)e -t 'aze + f + ai(o)e

= —t“a,-e + f = f’-
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and consequently f' is Gk-invariant.

Let v:= Ae+ uf € (V3(Xi) ®q, Bar)®¥, A\, it € Bar. Then
ov=v & (0()x(0) + o{as(ol)e + o(u)f = de +uf

“in other words o{A)x(o) + o(p)ai(c) = X and op = p in the basis (e, f). It follows
that p € BdGP’f = K and by lef,ting X := X+ putla; € Bgg one has v = Ne + pf'.

For o € G, we have that:
o(X) = 0(A) + px (@) e + ai(0)t) = o(N) + px "N (0)t e + ux~(0)ai(o)

“and since o(A\)x(0) + pai(o) = A, multiplying the above relation by x(c) leads to:
o(XN)x(o) = X'. Consequently o(t)') = x(0)to(N) = tX ie. t\ € BS¥ = K.

One obtains that (¢, f') is a Gk-equivariant basis of the K-vector space Dgr(V,(X;))
hence dimxDar(V,(X:)) = 2 = dimgq, V,(X;) so I/;,(Xi) is a de Rham representation.

Moreover, V,(X;) is also crystalline since a;,t™! € Beyis = Aais[1/1)-

Remark 2.4.4. In the classical case of the Tate curve, V,(G,,/¢?) is only de Rham.
Concretely, let K be a p-adic field, fix ¢ € K with |g| <1 -and'set Ey = K*/¢* as a
G k-module through the action on K . Then E,(K)[p"] = {(e("))i(q(")b)j ,0<14,5 < p"}
where ™ are the p™-th roots of 1 chosen as in the previous example and ¢™-th are
the elements defined by ¢(® - g and (¢™+V)P = ¢™). Consequently, a basis of T,(E,) is
(e, f) where e = Lir_nn g™ and f = &iLn,, ¢™. As in subsection 1.3.2, Case 1, the action
of Gk on T,(E,) is given by oe = x(o)e and of = f +‘a(0)e where a(o) is as before
the 1-cocycle describing the action of G on (¢™), namely oq™ = ((™)e(@)g(™),
Define by G := (¢(®,¢V,...) € R and note that o(§) = (c¢®,a¢™,...) = G,
o € Gk and that 0x([d]/¢® — 1) = 0k (g/g— 1) = 0.

Consider now the series

log([dl/q) = log(1 + ([d@)/q — 1)) = Xz, (—1)r+100/a=1"

This element makes sense and converges in Bf;. Concretely, by defining

Sp 1= Ezzl(—l)"“ﬂ‘m—f—lﬁ, then for m > n we have that
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Sm— 8= S (1)U ¢ (ker ()

hence |sm — 5| < -2 — 0 in the ker(fx)-adic topology. It follows that the sequence
(sn)n is Cauchy and since B}y is complete with respect to the ker(fx)-adic topology,
we get that (s,), is convergent.

One can define now the element u := log,(q) + log([g]/q)” = "log([g]). This plays
the role of the o; from the previous example. |

Observe that the action of Gk on u is given by

ou = log([0g]) = log([d} - [e*)]) = log([q]) + log([e*)]) = log([q]) + a(o)log([e]) =
u + a(o)t.

We show now that V,,(E,) is de Rham. A Q-basis of V,(F,) being (e, f), we need
to find a Gk-equivariant basis of Dag (V,(E,)) in terms of e® 1 and f ® 1. As in the
previous example, finding a G-invariant vector is easy: consider ¢ := e ® 1/t and

note that:
oe' = x(0)e@x o)t =e®@1/t=¢.

Now, the second vector is linearly independent to €' so it has to have nonzero f ® 1
component. Since of = f + a(c)e one can search for f’' of the form f'=e®@z+ f®1,
for some x € Byg.

Then o f' = f’ is equivalent to x(0)e®oz+ f®1+a(0)e®1=e®z+ f®1,in
other words to e® x(0)oz+ f®1+e®a(s) =e®z+ f ®1 hence x(o)ax + q(a) =z.
Multiplying this relation by ¢ we get:

(x(0)t)(oz) + a(o)t = xt. Further one can‘write it otoz + a(o)t = zt ie.
o(zt) + a(o)t = xt. This is equivalent to o(zt) — ot = —a(a)i and observe now
that o(—u) = —ou = —u — a(o)t and so we can take zt := —u hence z = —u/ft.
Consequently, f' = —e® u/t + f ® 1 is Gk-invariant and we obtain that:

dimg Dar(Vp(E,)) = 2 = dimg, V,(Ey) so V,(E,) is a de Rham representation.
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Chapter 3

The sheaf AY .

In this chapter we define a new type of Fontaine sheaf, AV, we prove some prop-
erties of it and we study its localization over small affines, the main result being that

AY_ (Ry) = AY..(Ry), where AY,. is the ring defined by O. Brinon in [Bri 2].

Let p > 0 be a prime integer, K a finite, unramified extension of @, with residue

field £ and Ok the ring of integers of K.

3.1 The rings Amaxv,n

Recail from the previous chapter that we hé,ve a ring homomorphism for every n € N,
n>1:
On : W, := W, (O /pOx) — Og/p"Ox given by (so, ..., Sn-1) — S lpisr T
where 5 € Ogx/p"Ox is a lift of s; for every i. Also note that W,(R(Og)) =
Al /P AL, where ALy = W(R(Og)) and R(Ox) = lim Og/pOx, the inverse limit
being taken with respect to Frobenius. In order to prove this, we use the projection

on the first n components:
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LA+
Tn @ Aps

(So, 81y -y Sny ...) — (30, S1y eeny sn-—l)y

with ker(m,) = {(s0,51,...8n,...) € Afe | 50 = 81 = ... = 5001 = 0} = p"A}.
(Recall that p* = (0,0, ...,0,1,0,...) and that R(Oy) is perfect.)
n

Moreover, we have the following:

Proposition 3.1.1. The kernel of the projection g, : R(Of) = lJ'_@(’)?/pOR- —
Oz /pOx on the n + 1-th factor of the limit is generated by P .

Proof. To simplify the notations, put R := R(Of). Let £ = (Zm)m30 € R. Then our
map sends (xm)mzoan. Recall that we have a bijective map: ' |

lim O > lim O /pOg = R, defined by:

(™) >0 = (z™modp), with inverse given by:r

(Zn)n>o 5 (™)n>0, Where z(™) = limm_,oow/m:;p m‘, for arbitrary
lifts Z; € O of z; € O /pOx for all i > 0. Remark that, since

vr(z) = v(z®) = v((z™)*") = p*v(z™) for n > 0, then |

vr(z) > p* © v(z™) > 1 < 2 (modp) = 0. |

One obtains in this way a better description of ker(g,) = {z € R/vgr(z) > p"} =
{z € R/z™(modp) = 0}.

Now, since vp(p”") = v(p*") = p", it's clear that (p°") C ker(g,). For the other
inclusion, let z € ker(g,). Subsequently, v(z(®) > p* hence z(® = p*"y@, for some
y©® € Og. Since (z™), is compatible we have that (z)? = z(® = p"y(© and
one obtains z() = p?"'yM, 4 € O and moreover (yV)? = y©@ (recall that the
multiplication in R (through the above mentioned bijection) is (st)(") = (s)™(t)™ and
that Oy is normal). We construct in this way a compatible sequence y = (¥™), € R

such that z = p""y.

The projection g, induces a ring homomorphism:
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dn : Wa(R(Og)) = W,(Oxz/pOg), given by:
(50, 51, -+, Sn-1) = (55" (modp), s{" (modp), ..., s (modp))
Note that since g, is surjective we have the isomorphism:

Wi (R(O%))/ker(g.) = Wa(Ox/pOg) = W,

Remark 3.1.2. The above map is denoted by ¢, in order to simplify the notations
(it should be callea gnn Where the first n indicates the length of the Witt vector
while the second indicates the component (in this case the n + 1-th)). Note also that
gn(&(modp™)) = pra(&n41) (i-e. the ﬁfst n components of £,41) while gy, n_l(f (modp")) =
&, (recall that £ = [p]—p = (5,0,0,...)—(0,1,0,0,...) € At where = (p,p'/?,p'/?",..) €
R(Ox), 7 = 917 50 s (E ) = (=Y (modp), 0, ..,0) — (0,1,0,..,0) =
(/7" ,0,...,0) — (0,1,0, ...,0) = p, — p = &,). Recall also that 5, = [p'/*""'| € W, is

the Teichmueller lift of p'/?"™" € 07/])07{.

Proposition 3.1.3. The kernel of the ring homomorphism ¢, is the ideal genemied
by {[BF", V([8P"), VA([BF"), -, V> ([8F") }-

Proof. For n = 1 the statement is obvious by using Proposition 3.1.1. For n > 2 we

have the following commutative diagram:

0 —— Wart (R(0)) 2 W, (R(OR) L2 W, (R(OR) — 0

b e

0—> W1 (0g/pOx) —> W,(Og/pOg) = Wy (Og/pO%) —>0

One can easily check the exactness of the second row so we omit it. For the first one,
remark that (Vo(*)?)((so, $1, ---» Sn—2)) = (0,85, 8%, ..., sh_5), si € R(Og),0<i<n-2,
and that (pry o (+)'/7")(0, 55, &%, ., $%)) = pra(0, 55", 81", 55 7)) =

On the other hand, V o (x)? is injective since Verschiebung is injective and (x)?

is bijective due to the fact that R(O%)) is perfect. Similarly, pr; o (*)'/#" remains
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surjective (for sp € W;(R(Ox)), we have that (pr; o (*)1/”")((35;',sl,...,sn_l)) = Sp,
where (s§, 51, ..., 5a-1) € Wa(R(Og))).
~ Take now (sg, 51, ..., Sn_1) € ker(prio(*)1/?") so s(l,/pn = 0. Since R(Oy) is perfect it

follows that so = 0 and consequently (5o, 81, ..., Sa1) = (V o (¥)?)((s/?, 537, ..., s%))
hence ker(pr; o (¥)1/7") C Im(V o (¥)?).

One obtains that the first row is exact.

Note that the first square diagram is exact since, for a choice of s; € R(O),
0 <i< n-2, we have:

C Vot (0,88, %, ..., sP_,)

b -

(5670, 577 0), 572 0) = (0,58 0), 57 p), 0 575 ()

Also the second square diagram commutes since, for a choice of s; € R(Ox),
Ogign—l,wehavé: |

1/p" .
(S0, 51, -+, Sn—1) o) ” (sa™)

(s§(0), 5" (1), - S8 (P)) > (57 ()

One applies further the induction hypothesis at the level of kernels in the main

diagram.
]

Definition 3.1.4. Let A be a p-adically complete Og-algebra and T a variable. Then
we denote by A{T} := lim A[T]/p"A[T].

We define now the rings Amaxn = Wy[d]/(pd — &) and‘let Apay 1= grlln Amaxn- We
then have:

Amax = AbALE]} = A {6}/ (6 ~ &) = {350 0:0° such that a; € A7 and a; — 0
when i — co}. Let Alraxn i= Wald]/(p6 —&ns1)- (By &ny1 we mean here the projection

on the first n components of this vector namely prp(&,41) = (»'/7", -1,0,...,0).)

n
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Note that we also have that:
Vi[pl") = p([p17") " = Pl = P (E+p)" T = P p(S+ 1)) = g =
0 mod p™ Apmax, Where for the first equality one uses the Witt coordinatization ((ro, r1,...) =
3" p™[r2™"] (or one computes it directly)).
By using Proposition 3.1.3 one obtains that ker(g,) C p" Amax-

We will also use this remark in order to prove the following important: -
Proposition 3.1.5. Amayx/P" Amax = Afpax n-

Proof. For 1 = 1, A, = Wald)/(p8 — &) = ZE161/(p0 - &) & ZEIB1/(&) =
%%[5] /(p!'?), since pd = 0 (reduction modulo p).

" On the other hand, since ker(g;) C pAmax we have that:

+ {6}/(p5-£)
pAs = Amax/ (P, ker (1)) Amax = (pker(ql)f)(A.,,f{«s}/w e»
_ .nf{a}/(pa —¢) ~ A*

~ o ker(qx)p6 E)A,,.flé]/pAmf[ﬂ (ker(qx),ﬁ(modp))(A,,,;[ﬂ/pA.nf[ﬂ)
=~ W1 (R(O%))[6]/(ker(q1), &(modp)) = W;[6]/(&2) = ,,07[5]/ (€2) = Alaxa

Note that, since W, (R(O%))/ker(g:) = W, and ¢;({(modp)) = &, ¢ induces the
isomorphism: W, (R(Ox))[0]/(ker(g:), £(modp)) = W1[d]/(&2).
Similarly, for the general case, since ker(g,) C p®Amax, We obtain that:

3 n 548/ 050
g = Amax /(9" ker(gn)) Amax = G0 4% 157/ G0

A0}/ (6-€) o A+

(P” Jker(gn),pé— f)A:;f{J}/(P‘S 3] Amf[a]/(p ke'r(qn) p5 f)Amf[(S]
o~ ,,.;[5]/1’"A.,,f[5] o (Af /o AL )l0]

G her(am)p0— ) A, 01/ AL — (ker(an)po—E(modpm ) (AL 01/ Ay oD

= W, (R(Og))[6)/(ker(gs), p6 — £(modp™)) = Wal8]/ (96 — Ent1) = Alnap

Remark that, since WR(R_((’)R-))/ker(qn) ~ W, and g,(£(modp™)) = &u11, ¢n in-
duces the isomorphism: W, (R(O%))[0]/(ker(g.), pé — &(modp™)) = Wy[6]/(p6 — &nsr)-

Above we've also used the isomorphisms of rings Amf/p"A;;f >~ W,(R(O%)) and

mf[ ]/pnAmf[(s] ( mf/pnAmf)[(S]'

The result follows.
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| O
Remark 3.1.6. One can also prove the previous Proposition by showing that there
is a surjective map Amax —» Al,, , Whose kernel is p™ Apay. We will see later (Lemma
3;2.5). that for any positive integers m > n we also have an iéomorphism of rings
Amax /D" Amax = Amax,m/P" Amax,m-
- Note that, via the isomorphism Apax/p" Amax = Alax 0, We have a surjective map
of rings:
@b - Amax/P" Amax — Amax,n
sending pry, (£n41) — &, induced by‘Frobenius on W, and that we also have a map:
Un * Amaxnt1 = Amax/P" Amax

sending &,41 = pra(&ns1), induced by the natural projection Wy — W,.

3.2 Definition of the sheaf AY,

Let now X be a scheme of finite type over Ok ahd also let M be an algebraic extension
of K. One denotes by X the small étale site on X and by XI¢ the finite étale site
of Xpr = X *spec(ok) Spec(M). Further, one denotes by Sh(X¢) and Sh(XJf) the
categories of sheaves of abelian groups of these two sites, respectively. Following [AIl]

we will construct the site Xjs. Firstly, one has the following:

Definition 3.2.1. ([AIl, Definition 2.1]) Let Ex,, be the category defined as follows:
1) the objects consist of pairs (9 : U = X, f : W — Uy) such that g is an étale
morphism and f is a finite étale morphism. One further denotes by (U, W) this object
to simplify the notations; | |
2) a morphism (U',W') — (U,W) in Ex,, ié a pair (a, 8), where a : U’ — U is a

morphism over X and §: W' — W is a morphism commuting with a ®o, Idum.
Definition 3.2.2. ([AIl, Definition 2.3]) We say that a family of morphisms {(U;, W) —
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(U, W)}icr has the property () if either:

i){U; = U}ier is a covering in X and W; & W xy U; for every ¢ € I, the morphism
W — U used in the fibre product being the composition W — Uy — U,

or

ii) U; 2 U for all i € T and {W; = W}, is a covering in X]¢.

One further endows Ex,, with the topology generated by the families having the
property (x) and one denotes by X), the associated site. One calls X, the locally

Galois site associated to (X, M).

Definition 3.2.3. ([AIl, Definition 2.4]) A family {(U;;, Wi;) — (U,W)}ierjeys is
called a strict covering family if:

i) For each i € I there exists an étale morphism U; — X such that one has U; = U;; -
over X for all j € J;

CW){U; - U}icr is a covering in X,

iii) For each i € I the family {W;; & W xy U;};cs is a covering in X{ft.

Each strict covering family is a covering family (see [AIl, Remark 2.5}).

Let now (U, W) be an object of Ex,,. A. Iovita and F. Andreatta defined in [AI1]
(Definition 2.10) the presheaf Ox,, on Ex,,, by requiring that Ox,,(U,W) consists
of the normalization of I‘(U, Oy) in T'(W,Ow). They also proved ([AIl, Proposition
2.11]) that the presheaf Ox,, is a sheaf.

Now, if X is a scheme of finite type over OK, @xf is the sheaf of rings on Xy
defined by réquiring that for every object (U, W) in X3, the ring @xF(U, W) is the
normalization of I'(U, Oy) in I'(W, Ow). Note that @xf is a sheaf of Ox-algebras.

Let Oy, »=1lim Ox_/p"Ox, € Sh(Xg)".

Also, let E(@xf) be the sheaf of rings in Sh(X%)" defined by the inverse system
{@xr/ p@xf}, the transition maps being given by Frobenius.

For every s € N we define now the sheaf of rings A;f,s,‘ﬁ = limW, % where

62



W, % = W,(Oz/pOx,) is the sheaf (@%?/p@xf)s with ring .operations defined by
Witt polynomials and the transition maps in the projective limit are defined by Frobe-
nius. |

We further define the sheaf of rings A+ = ImW, ¢ in Sh(Xz)N, where the
transition maps in the projective limit are deﬁned as the composite of the projection
W, x — W, and the Frobenius on W, % and W,z := W, (Ox—/pox—) is the
sheaf (Ox_/pOx,. )" with ring operations defined by Witt polynomials.

We also have a morphism 0% : A;;LK — (53_ of objects of Sh(X%)N; we construct
it at the beginning of the 4-th chapter.

Af _ and A+ — are endowed with an operator, ¢, which is the canonical Frobe-

inf,K s, K

nius associated to the Witt vector construction and are sheaves of Ok-algebras.

We are able now to construct the first sheaf mentioned at the beginning, AV e

Firstly, let AY := Amaxn Ow, W, g = Wo[0)/(pd — &) @w, W, ie. AY

‘max,n,K ° max,n,K

is the sheaf on Xz associated to the pre-sheaf given by
(U, W) — Amax,h OOw, Wn'g(u, W) for (u, W) € X%.
Consider the map 7,43 : W, ,, z = W, & given by the natural projection composed

. » . . V V
with Frobenius. This induces a natural map ., g : AL =+ Al nk

Let AY & be the sheaf in Sh(Xg)" defined by the family {A]  .x)In With the
transition maps {r,,,, g}n-
' Secondly, let Almvax,n,ﬁ be the sheaf on X% aséociated to fhe pre-sheaf given by
UW) = Anax/D" Amax Ow,, W, (U, W) for (U, W) € Xx.

Tn+1 induces a natural map 7/ - AV — AV

V
As for A\. n+1,K ° “maxn+l, K max,n, K"

Similarly, let A’V = be the sheaf in Sh(Xz)" defined by the family {AYY -},

K7

with the transition maps {r, _; z}n.

Also, note that (935~/p(9x_ is the sheaf assoc1ated to the pre-sheaf
(u7 W) = Oif—(ua W)/Pox—(uy W)

In order to simplify the notations denote by AY,, := AY K’ Amx,n =AY %
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/V e v 1A% . AIV
A Ama.xK’Amaxn’ Ama.xn}(’

Further let 11 Wan[0]/ (06 — €&ny1) — Wila)/(pa— &) ie. 7h,; ¢ Amaxntr H

Amaxn be the map of rings defined by the natural projection composed with Frobenius.

Oz = Oz, Wo = W, 7 and A := A .

n — 'x (&n )_ 7';{ (Prn+1—-p)
Since 7}, (Pn+1) = Pn, We have that 7, +1(6)--1-"“(5;@) = ] = ah p* =

u 5— = o, hence 7, (pd — &u1) = pa — &,. It follows that 7)1, is well defined.
Let us remark now that, since A; .., = —5-[6]/(52) we have a nice descrip-

tion of Amaxi, namely AV L= Anax) Oy, Wi = [6]/(52) ® o c;— (Ox/p0%) =

(Ox/p0x)[8]/(&2) = ((’)x/p(f)x) [6)/ (pll”) We’ll use this fact in the proof of the follow-

ing:

Lemma 3.2.4. For every n we have an eract sequence of sheaves:

/ 9
0 A;n‘vax,n A:'nvaa(,n+1 > A:-:Ya.x,l >0 ’

where f is the map of sheaves associated to the Verschiebung V : W,, = W, and

Proof. Firstly, let us fix an object (i, W) of % and denote by S = Ox(U, W).

For (S0, 81, -+, Sn—1) € Wy(S/pS), since (ryorz 0 ...r,H.l)(O 80y ory Sn1) =
(ry0730..72)(0, 88, ..., 8P _,) = ... = (ra013)(0, 8" & ) =15(0,82" ) =0,
‘one obtains that go f = 0. |
Let’s prove now tht.e surjectivity of g. Denote by s : W, = W; = Ox/pOx the
natural projection and by s' the induced map of sets Wy1(S/pS)——W;(S/pS)
sending (So, S1, ..., 8n) to So. Since ker(s') = {(so, 51,.--,5n) € (S/pS)"+1/so =0} =
W,(S/pS) = (S/pS)", it’s clear that ker(s) is identified with W, via Verschiebung.
Note that ker(s) is a W,41-module via the projection map W, ; — W, compdéed
with Frobenius on W,, and since W, is a W,-module. We obtain that:

Amax /P Amax ®w,. 1 ker(s) = Amax /D" Amax Ow, ., W

Since s'(€ny2) = ' (Pay2 — p) = p/7"" (modp), it follows that
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Amax /0™ Amax @w,,, Wi 2 Oz /0P O[0]. (1)

Now, since S = Ox(U, W) is a normal ring, Frobenius to the n-th power

@" : S/pMP"S — S/pS is injective (for this, let € S such that ¢™(z) = 0, so
zP" =p-y for some y € S. Since S is normal it follows that z = p!/?" . ¢/, ¥’ € S i.e.
z € S/p'/?*S, in other words f: = 0). So we have an injection @x/pl/”"@x 5 O /pOx

On the other hand, by [AI2], Lemma 4.4.1, (v), Frobenius on Oy /pOy is surjective
with kernel p'/?Oy [pOz hence we have an isomorphisni Ox[p'POx 2 O /pO%. Conse-
quently, Frobenius to the n—fh power on Oz /pOy is surjective with kernel p'/?" O /pOx
hence we have an isomorphism Ox/p'/?" O & Oz /pOx.  (2)

From (1) and (2), one obtains that

AmaX/ P Amay OW,y, Wy = @x/ p@x[é],

Since p"0s = 130730...0T41 : Wpyy — Wy = @x/p@; is surjective, after tensoring
Wwith Amax/P" 1 Amax over Wy, and since tensoring is right exact, we obtain a sur-
jective map A, .1 —>(Ox/pOx)[6] = (Ox/p"/?Ox)[5] where the last isomorphism
follows from (2).

Also by (2) it follows that (Ox/pOx)[6)/(p'/?) = (Ox/p'/POx)[6], in other words
A1 = (Oz/p"/?Ox)|8] and so the right exactness of the displayed sequence is proved.

Now we ﬁeed to prove the left exactness of our sequence. We will show that it is left

exact on stalks. For this, let z be a point of X. Recall that A, , = W,[6]/(pd —&n11).

14 P max,n

Define B := W, (Ox, /pOx,)[0], and similarly, denote by C := W,,,1(Ox, /pOx,)[d]
and by D := (s, /pOs, 6]

Let’s remark that B/(pd — pn+1)B is the stalk A;Xax,n;x of Y., . at z, that C/(pé —

" Pn42)C is the stalk AYY, ., of AV, ., at z and that D/pn42D is the stalk Ay, |

Since &t — Pni1=p ’-’";ﬂ — 1, we have that Al axn = Wi[d)/(p6 ~ Pri)-

of AV 1 at & (A, 1x = D/P"/PD 22 D/pn,,D by using the isomorphism from (2)).

ax,1,x

The following diagram is commutative:
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0 B-L>0—5p—>0

1?6-5n+1 lpt’ —Pnt2 l ~Pnt2

0—=B L0 —2-pD—>90

Sz

where f, is the map sending ¢ — § and inducing the Verschiebung W,,(Ox, /pOx,)
Wat1(Ox,/pOx,) and s, is the natural projection. |

Since the Verschiebung is injective and since B (respectively C) is a free W,,(Ox, /pOx. )-
module (respectively W, ,1(Ox,_/pOx,)-module), one obtains that the map f, is injec-
tive. Also D is a free Ox, /pOx,-module and tfle rows in the above diagram are exact.

Let’s check now the exactness of the two square diagrams of the main one.

For the first square diagram, since  — 4 it’s enough to verify the exactness on
coefficients. Let s € Wn(@x,/p@x,), s = (S0,81,--ySn_1). We have that p, ;-5 =
(p'/7",0, ...,0)- (S0, 51, -y Sn—1) = (PP 50, p/?" 5y, ..., p/P5,_1) and since Ppyp-V(s) =
(®/7"*,0,...,0) - (0,50, ..., 5p_1) = (0,p/""sy, ...,p"/Ps,_;), one obtainé that V(Ppy1 -

- 8) = Ppya- V(s). The composition of the maps on the left lower side of the first square
diagram will then be V(pds — pr115) = péV(s) — V(Pny1 - 8) = pOV(S) — Pra2 V(s) =
(p0 — Pny2)V(s), which is exactly whé.t the composition of the maps on the right upper

side gives us. We obtain that the first square diagram is commutative, i.e.:

™
|
Q

f=

——

PO—Pnt1 P&-ﬁn+2

S
[P S

v
Q

Similarly, for the second one, if t € W,,41(Ox%,/pOx,), t = (to, t1,..., t,), then:

(to, tay -y tn) to

Pé—~Pny2 l = l—i’n+2
S

(P60 — Pny2) -t — —Pryato = —p/P" "' ¢,

With the same type of argument as for the first square diagram we conclude that

the second one is commutative i.e.:
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Note that the sequence of cokernels B/(pé — pp41)B +— C/ (p5 — Pny2)C is the map
on stalks associated to f. We want to -ﬁrove ‘its injectivity. By the Snake Lemma in
the main diagfam this is equivalent to ‘showing that the kernel of the multiplication
by pd — Pny2 on C surjects into the kernel of the mulfiplication by —Pny2 on D. Let’s
remark that fn,» = p'/?"*" in Ox/pOx and that; since ;p itself kills D, the kernel of

ntl_y - n

the multiplication by p*/?*** on D is p-p~V?""'D = p # D = " " D. Take now
n+2

ntl_y :

v € D(so in particular p 7 - v € ker(-p/***")) and let z € C be the lift of v under

s, defined by taking the Teichmueller lifts of the coefficients of = with respect to the
Ox. [pOx,-basis of D. Define u:= ¥y 1 pii n’;‘;;fi_lv. We have that:

. - ;|+l_ . . ntl__ s . n41__ s e omntl__s
(PO = Pry2)u =37 lpz_+15‘+lﬁz+2 CED? =0 lpz‘szf’ﬁn "

n+l on+tl ~pntl
=0P " pP v—pPrv=0

since 6" p*""'v = 0(modp) and ﬁf:;v =p-v=0o0nD.
n n n+1_ 4
On the other hand, s.(u) = p®6°#F, .:21_1-11 =ph :21"1 -v =p »*' .y hence the kernel
of the multiplication by pd — pp42 on C surjects into the kernel of the multiplication
by —pny2 on D which is what we wanted. The left exactness of the diagram of sheaves

follows and with this, one completes the proof.

Consider now the map of sheaves
. v
Uy, ¥ - AXa.x,n+l - A',rna.x,n
associated to the map of pre-sheaves induced by u, : Amaxnt+i = Amax/P" Amax

(defined before Lemma 3.2.4) and by the natural projection W, (U, W) — W, (U, W).
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Also consider the map of sheaves
Q;l,? : A:-:Yax,n - A'I'Za.x,n
associated to the map of pre-sheaves induced by @), : Amax/P"Amax — Amax,n (de-
fined as well before Lemma 3.2.4) and by Frobenius W,,(U{, W) = W, (U, W).
Write g7 := {q;j(-}n PAY, =AY, and ug = {u, g} s AV, — A,
In order to conclude the comparison between axn and AV let’s prove the

following:

Lemma 3.2.5. For any positive integers m > n+ 2 we have an isomorphism of rings
Amax /D" Amax 2 Amaxn/P" Amaxm and the map u, gor,  , 50...07, & : Ay = AT,

induces an isomorphism AY . /p"AY. . =AY, .

Proof. We defined at the beginning of the chapter the surjective maps ¢,, and the
reductioh Tm. Lheir composition is the vsurjective map
Gmm—1© Tm : W(R(OF)) - Wn(R(O%)) » Wi (Og/pOx)

sending (30,31‘, ) (s(()m“l) (modp), ..., st —11)(modp)), which induces the surjec-

tion:
W(R(Og)){é} » Win(Og/pOx)[8] = Wn[0]

defined by 3., a;0* — > is0 @;0*, where @; = (¢m,m—1Tm)(@;) = Gmm—1(a;modp™).
Further we get a surjective map ¥y, : Amax — Amaxm and for any integers m > n + 2,
Y (0" Amax) = P" Amax;m since Pm(p™ ;50 a;0') = p* Z:’ZO a0t = p" Zgzo a;0* where
by 3" we mean finite sum (for the latest equality remark that g, 1 (p"modp™) =
,...,0,1,0,...,0) € W, for m > n + 2). The second isomorphism theorem for rings
gives us now: Apmax/P" Amax %’ Amax,m/P" Amax,m- More explicit, let s be the surjective
map obtained by composing ¥, with the reduction modulo p® map, so

1 Amax = Amaxm = Amaxm/P" Amax,m; Sending

2iz0 ai(%)i - Z:ZO ‘—li(%)i - Zgzo ai(mOdPn)(fl(%M)i-
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Then ker(p) = ¥, (p"Amaxm) = PV} (Amaxm) = P*Amax and so one obtains
Amax/P" Amax = Amax,m/P" Amax,m-

Remafk that the finiteness of the sum appears since a; — 0 in the strong topology
of W(R(O%)) (the p-adic topology) i.e. there exists a natural number N > 0 such
that a; = O(mod p?) for all j > N (we can take N > m so one has p™ | p™ hence
a; = 0(mod p™) for all j > N). |

One can write -p” on W,,, as V o ¢ where V is the Verschiebung and ¢ Frobenius.
Recall that ¢ is surjective on Ox/pOx by [Al2], Lemma 4.4.1(v). As in Lemma 3.2.4
we get an isomorphism W,,/p"W,, = W, induced by the natural projection on the
first n components. One obtains that, via this identification, the map u,or, 20...07r, :
W, = W, is o™ " ! and that at the level of rings sends {m € Win t0 pra(€nt1) € Wi,

We have that (V*(5,))"" = (0° pm)?" " = p*"°- :—':—"; P = pltern ;’%:— =0
in Amax,m/P" Amax,m since (1 + s)p*~° > n, 0 < s < n (the inequality follows easily
by induction over n — s: for n = s the inequality reads s+ 1 > s and forn = s+ 1:
(1+5)-p > 1+ s; suppose that for n =s+k, k> 0, (1+ s)p* > s+ k holds, then for
n=s+k+1 we get (1+s)- P> (s+k)-p>s+k+1).

Now, 2. generates the kernel of o™ ™! on O/ péx. On one hand,- () =
@™ ((p"™)) = (p) = 0 on S/pS(recall that S = Ox(U,W)). For the other

n—

inclusion let = € ker(¢™ ™ 1) so 22" "' = p .y for some y € S. Since S is normal it
follows that = = pl/i""'—"._1 -y, ¥ €S, hence = € (p%,).

We obtain that {V*(p, ) }o<s<n generates the kernel of ¢™ "' on W,,.

Similarly it follows that W,,/p"W,, = W, and that {V*(#2,)}o<s<n generates the
kernel of (p”“";l on W,.

Let’s prove now that p"AY,, . = ker (U, ©Tp42% © - O TmR)-

Firstly, let 2®@w,. ¥ € Amaxm®w,, W (U, W). Since p* € W,,, we have p*(zQw,,y) =
P"z ®w,, ¥ = T Qw,, Py € ker(u, g or, 250 ... 0T, %) clearly.

Secondly, let 3, z;®w,, yi € ker(u, gOT, 5% 0--OT ) The element 3, z; Qw,, v:

is mapped to >, %; ®w, pra(yi) = 0 € Anax,m/P" Amaxm @w, Wi(U, W) (here we use
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the isomorphism Amax/P" Amax = Amax.m/P" Amax,m). We conclude that ), z; ®w,, v; €
P (Amax,m ®w,, Wi (U, W)) and so the second inclusion also holds. The second claim

of the Lemma fdllows.

We study now the localization of AY,, over small affines. _

Let U=Spf(Ry) be a small affine open of the étale site on X, X®. This is an -
object such that Ry ®e, k is geometrically irreducible over k and there are parameters
Ty, T, ...,Ts € R} such that the map Ry := Ox{T{#, T, .., T} C Ry is formally
étale.

We define AY._(Ry) to be the p-adic completion of the sub-W(R(Ry))-algebra of
W(’R(_Ru))[%] generated by p~'ker(J) where the map ¥ is defined as follows (we keep
the notations of [AIl]):

For every n, let ¥, be the composition of the projection (reduction m'odulo p" map):
W(R(Ry)) = WL(R(Ry)), of the map W,(R(Ry)) — W, (Ru/pRy) induced by the
projection R(Ry) = Nm Ru /PRy — Ru/pRy on the n-th component (see Proposition
3.1.1) and of 6, : W, (Ry/pRy) — Ru/p"Ry (defined at the beginning of the chapter).

Then define 9 : W(R(Ry)) — Ry = lim Ry, /p" Ry to be the map z — lim 9, ().

In [Bril,§6] it is proved that ker(d) is a principal ideal generated by £&. We also
have a Frobenius ¢ on AV, (Ry) induced by the Frobenius on W(R(Ry)). Remark fhat
if z € W(R(Ry)) belongs to ker(9) and if n € Ny, one can write zi = p(z/p) €
AY. (Ry) (z!™ is the n-th divided power of z i.e. z"/n!) and hence there exists a
natural homomorphism AY, (Ry) — AY.. (Ry) (which is injective ac—cording to [Bri2,
Propos1t10n 2.3.2]). AY..(Ry) is the p-adic completion of the W(k)-DP envelope of
W(R(Ry)) with respect to the kernel of the map ¥ defined above (see [All, §2.3] or
[Bril, §6j for details). | | -

Note that ¥ makes sense since the following diagram is commutative:
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W(R(Ru)) =5 Ry /y Ry

X 1’"""0’"’

Ru/p" Ry

Let g, be the composite of the projection (reduction modulo}p" map) W(R(Ry)) =
W, (R(Ry)) and of the map v, : W, (R(Ry)) - W, (Ry/pRy) induced by the projec-
tion R(Ry) = L m Ry /pRy — Ry /pRy on the n + 1-th component (defined similar to
gn). As in the proof of Proposition 3.1.5, since AY,.(Ry) = W(R(Ry))[d]/(pd — €) we
have that (denote by R := R(Ry)):

v (B v _ WRI/06-8  ~  WERE =€)
Amax(R“)/p"A wx(Ru) = Rl o) = G e WR 6/ (5=

o~ WR o~ W(R)[d]/p"W(R] ~ n
= Grot) = e et = Wa(R)[6)/ (9 - £(modp™) (1)

50 Ay a(Ru) /P" A ax (Ru) = Wa(R(Ry))[6]/(p6 — €(modp™)) and since gn(€) =
§ns1, We get a map g;, + AL (Ru) /PP A7 (Ru) = Ay n(Ru) = Amax/P" Amax ®w,
(W (Ru)).

We have the following important result:
Proposition 3.2.6. The ring AY,  is p-torsion free.

Proof. By [Bri2, Proposition 2.3.7] and [Bri2, Remark 2.3.8], AY_ can be identified
with a sub-ring of Apax. According to [Bri2, Proposition 3.5.3] we have that p(Anyax) C
Aeris C Amax Where ¢ is the Frobenius and Agis = {Eizo a:é | a; € At and a; = 0
when ¢ — oo}.

Now, let £ € Apax such that‘p"-:c = 0 for some 1z > 0. Then ¢(p™-z) = p™-p(z) =
in Agis. Since Agis has no p-torsion by [Bril, Proposition 6.1.10], it follows that
" ¢(z) = 0. Moreover, since Frobenius is injective on Ap,,, we obtain that z = 0 and so

Apax is p-torsion free and consequently AY,. is free of p-torsion.

We will use this result in the proof of the following:
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Theorem 3.2.7. o) For everyn € N the map g}, : AY, ., (Ru)/[p"AY o (Ru) = Ao n(Ru)
18 tnjective;
b) The map AY._(Ry) — AY, (Ry) defined by 4 is an isomorphism. (note that

¢ = {q. 2}n: AN, = AY . is defined before Lemma 3.2.5).

Proof. a) We have that Ry, is a normal ring and that Frobenius is surjective on Ry, /pRy
by [Bril, Proposition. 2.0.1] and as in the proof of Proposition 3.1.1 we get that the
kernel of the projection R(Ry) = Qgﬁu /PRy — Ry /pRy on the n + 1-th component
is generated by p*".

As in the proof of Lemma 3.2.5 we have that (V*([p]))”" = (p° - [p])*" " =p*" " -
B = pt T B — 0in AT (Ru) /" ATu(Bu), 0 < 5 < 1. Now, via

Proposition 3.1.3, we obtain that {Vs([ﬁ])}f)’;ss,l generate the kernel of v,. As in the

proof of Proposition 3.1.5, it follows that:
AN ax(Be) 7" A ax(Rut) = Wo(Ru/pRu) 6]/ (06 —~ &), (2)

where the isomorphism is induced by the map g, : W(R(Ry)) — W,(R(Ry)).
We prove a) by induction on n. For n = 1 the map
AY o (Bot) [0 AT (Bit) = Ay (Ru) bicomes
(Ru/pRu)[81/ (8 — &2) — ((Ox/pOx)(Ru))0)/(&2)
via the above isomorphism and the remark before Lemma 3.2.4. By using now-
[AI1, Proposition 2.13] and [AI1, Proposition 2.14] we have an injective map
Ru/pRy = Ox(Ry)/pOx(Ru) — (Ox/pOx)(Ry) hence
(Ru/pR)0)/ (*17) = ((O/p03)(Rur))I6)/(p/7) is inective and so the
case n = 1 'is proved (recall that &(modp) = p'/?).

By Proposition 3.2.6, AY_ (R;) has no p-torsion hence we have the exact sequence:

0 AV (Bu) P AV (B A (Ry) 0
7AYo (Rer) P HAY, (Ra) PAY, (Ru)
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This is compatible with the exact sequence obtained by taking the localizations in

the exact sequence of Lemma 3.2.4 i.e. we have the commutative diagram:

5 _Amax(Ru) P A¥e:(Ru) 5 ANax(Ru) ;
0 P AY . (Ru) p"H1AY., (Ry) PAY . (Ru) 0 (+)

9;1 Int1 l 9% 1

0— A:-nvax,n (ﬁu) _:—> A:nvax,n+l(_}?u) L) A;Xax,l (_RU) —0

where the maps f' = fz, and ¢’ = g, are induced by f and g respectively (see
Lemma 3.2.4).

The second square diagram of the main one is commutative since:

> bi($)*(modp™+!) —— 37 bi(£) (modp)

Ini1 l = 19’1

3 bi(&22) (modp™) —L> 37 by( &) (modp)

where the bottom map is induced by Frobenius to the n-th power ¢ composed
with the projection and we have that (proj o ¢™)(£,42) = & and for the vertical maps

we use the fact that g (£(modp”)) = &,,;. Moreover, b; € A (Ry) such that b; — 0

inf

in the p-adic topology and so the above sums are finite.

The first square diagram of the main one is also commutative since:

> bi($) (modp™) —F— 3" p - bi(£) (modp™*)

94.1 = 19;+1

S bi(f52) (modp™) Y- p - bi(*512) (modp™*)

For the commutativity of the above diagram one uses the fact that f’ induces the

Verschiebung at the level of the Witt vectors so that we have:

f,(§n+1) = V(§n+l) = (0’pl/p"’0, - 0) = V(p)
and since V(p) = V(FV (1)) = (VF)(V(1)) = pV (1) = p* we get that
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f'(€arr) = (0,p'7",0, ...,0) — p*.
On the other hand, p- &,42 = VF([pY/*"""]) — p* = (0,p"?",0,...,0) — p? and conse-
quently f'(§nt1) =P - &asa- |
Now we apply the inductive hypothesis (g, injective) and use the Snake Lemma in
“the main diagram, (), so at the level of kernels we get:
0 — ker(gn41) — O hence g;, is iﬁjective (one can also see this directly by

diagram chase). Claim a) follows.

* ! — — — - ! —
b) We prove that for every n € N* we have 9, % OUn R = Tni1, K and u, % oQ 1k =
!
Tn-!-l,_lf'

For the first relation, let’s remark that the following diagram is commutative:

Un K

Ambax,n+1 ®Wﬂ+1 Wn-{»l(ﬁu) Amax,n ®W,. Wn (—Ru)

. ’
q =
k 1 n,K

Amax/pnAmax ®Wn Wn (Ru)

since &n41 OWoi1 1 —n’—i(PT n(§n+l) Qw, 1

’
q —
k‘ l K

gn ®Wn 1

and also (g, S1, ..., Sn) — (S0, 51, -+ Sn1)

quﬁ.

(55, 55 5mt)

For the second relation, we obtain similarly that the following diagram is commu-

tative:

— fnE —
AmaX/pn+1Amax ®Wn+1 Wn+l (RLI) —+_1£ Amax,n-H ®Wn+1 Wn—H (RL()

[
Tn+1,?

Amax/pnAmax Ow, W, (—R—U)
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q; —
since p’f'n+1(£n+2) ®W,,+1 1 '—'+—u‘(’€n+1 ®Wn+1 1

\ lun,?
rn+1,f

prn (€n+l ) ®W‘n 1

'
and also (Sg, 51, ..., Sn) ——> (85, 5%, ..., s2)

) lu"
Tn+1

(Sg, '5}1’7 b sz-l)

By taking now (l.i_lll, the two above mentioned relations give us: q’? ougx = ¢d and
UR © q% = id respectively. Claim b) follows; ug defines the inverse of q’7

O

Corollary 3.2.8. The induced map Ay (Ru) — A (Ru) = imAy,, .(Ry) is an

isomorphism.

Proof. One shows that the transition maps Ay, ...(Ru) — AY,, .(Ry) factor via
AV (Ry)/p"AY,.(Ry) for all n > 1 and by taking projective limit and further using
the fact that AV  (Ry) is complete, one obtains that AY, (Ry) = AV, (Ry). By
Theorem 3.2.7.vb) we have an isomorphism A%, (Ry) = AY_ (Ry) and consequently

we obtain that AY, (Ry) =AY, (Ru).
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Chapter 4

The sheaf Amaw

Let p > 0 be a prime integer, K a finite, unramified extenéion of Q, with residue field
k, Ok the ring of integers of K and denote by K the maximal unramified subfield of
K and by O, its ring of integers.

Recall that we have a morphism 65 : A;fyﬁ - (5357 of objects of Sh(Xz)N con-
structed as follows: let (i, W) be an object of Xz. Denote by S = (’7;?{.(11, W) and.

for fixed n € N, consider the diagram of sets:

(S/p"S)" —— S/p"S
A

b, g
\ I

(5195 |
where b, is the natural projection and a,,(-so, 81y Sn1) = Jomg p"sf"—]_i.
There exists a unique map of sets, call it ¢, : (S/pS)” — S/p™S making the diagram
commutative i.e. ¢, o b, = a,.

We have that c,(so, S1, .-, Sp—1) = z;‘;olp"§gp"—l_", where §; € S/p"S is a lift of
s; € S/pS for all 0 < i <n — 1 and let’s remark that ¢, is well defined:

For this, let (co,c1,...,¢n) € (S/pS)™ such that ¢; = si(p) forall 0 < i < n—1.

Then cf"-H = "7 7'(p~%) and by multiplying the latest relation by p* we obtain

]
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that pic" = is?" " (p) for all 0 < i < n—1. 1t follows that Yo PP =
Z:‘_olp' P '(p ); which is equivalent to €0y €1y oy Cn-1) = €n(S0, S1, -+» Sn-1)(P"),
- in other words c, is well defined.

The map ¢, induces a ring homomorphism ¢, w,w) : Wa(S/pS) = S/p"S, which is
functorial in (U, W), in other words a morphism of presheaves W, x — Oz /p"Ox,. .

One denotes by 6, % the induced morphism on the associated sheaves and let:

= {05} : Al g = imW, x = Oz = lim(Ox, /5" Oxy)

Assume that X is a smooth scheme over Ok and that Ox = W(k) is absolutely
unramified. |

Let Ox be the sheaf on the site X5 defined by Ox (U, W) = Ox(U).

For every n > 1 one defines the sheaf Wy, % := Wn(@x?/p@xf) ®ox Ox of
Ok,-algebras and also the morphism of sheaves of Ok, ®ox Ox-algebras Oy, % :
Wy oz = Oxy/p"Ox, associated to the following map of presheaves: firstly take an
object (U, W) of X such that U=Spf(Ry) is affine (i.e. Ry = Ox(U,W)). Clearly
S= @x.f(a, W) has a natural Ry-algebra structure. Define now:

On, 1) : Wa(S/pS) ®0, Ru — S/p™S by (z ®7) = ca(z)r.

Also denote by 7y,  the sheaf of ideals Ker(0, w,w))-

Let now U=Spf(Ry) be a small affine open of the étale site on X, X*, with pa-
rameters 71,7>,...,Ty € R;; (recall the definition of small affines from the previous
chapter). Further, for n > 0, let Ry, = Ru[(n,Tll/"n, ...,Tl/” ], where Ry o = Ry, ¢,
is a primitive p™-th root of unity with (¥, ='(n and such that Til/ P is a fixed p*-th
root of T; in Ry, with (T;\/? Hl)” =T!*" for any 1 < i < d. Moreover, consider the cat-
egory L[nj consisting of objects (V, W) and a morphism to (U, Spf(Ru») ®o, K)- The
morphisms of this category are the morphisms of objects over (U, Spf(Ry ) ®o, K)
and the covering families of an object (V, W) are the covering families of (V, W) re-
garded as object of Xg. Given a sheaf F on X, one writes Fly - for u.(F) where

u: 4, & = Xg is the forgetful functor.
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Let now (V, W) € 4, ¢ with V = Spf(Ry) affine and let S := Ox_(V,W). Remark
that T,-l/ e Ry, C Sforall1 <7< dsince S is the normalization of ['(V, Oy) = Ry

in (W, Ow). Also denote by:
T: i= (L), [T}77), -, [T}7"), ...) € Gim Wa(Run/PRun)

the inverse limit being taken with respect to the map W1 (Rynt1/PRuni1) —
W, (Rin/PRu,) defined as the composition between the natural projection

Wrt1(Runs1/PRuni1) = Wo(Rynt1/pRuyns1) and the map induced by the Frobe-
nius: Ry n+1/PRun+1 = Run/PRun. Note that the image of T: in W,.(Run/PRuy) is
(TH?" 0, ...,0) i.e. the Teichmueller lift of T/?". For all 1 < i < d, define now:

X, =10T,-T;®1 € W,(Run/PRun) ®ox Ru

and remark that these elements also live in W,(S/pS) ®o, Ry.

We prove now the following:

Lemma 4.0.9. (/All, Lemma 2.28]) The kernel of the map 6, (v w) : W,(S/pS) @0y
Rv — S/p™S is the ideal generated by (&n, X1, .- X4)-

Proof. We claim that &, = p, — p = [p"/?""'] — p, which is a well defined element of
W,.(S/pS) (note that p!/?"™" € §), generafes ker(c,), cn : Wi(S/pS) — S/p"S.

Recall now that Ry = Ox{T;, .., TF'} and so Ro/p"Rp = (Ok /p"Ok)[T7, ..., T{).
We have that the kernel of the ring homomorphism Ry/p" Ry @ Ry/p" Ry — Rp/p" Ry
defined by £ ® y — zy is the ideal :’(Tl ®1-10T,.,.T4®1 -1 T,;). Note
.that Ry/p"Ry — Ry/p"Ry is étale hence I also generates the kernel of the map
Ry/p"Ry®Ry/p"Ry — Ry/p" Ry (), defined by x®y — zy. We tensor now (x) wi-th_
S/p"S over Ry /p™ Ry and since base changing of an étale morphism is étale ([Mi, Propo-
sition 2.11, (c)]) we obtain that I generates the kernel of S/p"S ® Ry/p"Ry — S/p"S.

Proof of the Claim ([AIl, Lemma 2.17)): Firstly recall that c,(so, 51, ..., Sn—-1) =

i=0 i

S piEP" T where §; € S/p*S is a lift of 5; € S/pSAfor al0<i<n-1
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One computes now ¢,(&,) = (p/7" )" —p=p —p =0 hence &, € ker(c,).

We will prove that if z € ker(c,) then z € £, W,,(S/pS) and we show this statement
by induction on n: forn =1, ¢; = id and & =p =0 € W,(S/pS) = S/pS.

Let n > 1 and assume that the statement is true for n — 1. Further, let a =
(g, @y, -y @n_1) € ker(c,) and recall that V : W,,_,(S/pS) — W,(S/pS) is the Ver-
schiebung i.e. V(s, s1, ..., Sa—2) = (0, So, 51, ..., Sn—2), for (0, 51, ..., Sn—2) € Wy,_1(S/pS).

We will prove that there exist elements 8 € W,(S/pS) and v € W;,_;(S/pS) such
that a = &,6+ V().

We have that c,(c) = ca((a0, @1, -y @n1)) = Y10 p57" " = 0 and hence:

pla” . Put & =pc, c€S.

Let now Ry C S'(C S) be a finite and normal extension containing éy and p*/#"~
In particular S’ is noetherian ar;d integrally closed. |

Now, for every height one prime ideal p of S', since S, is noetherian, integrally
closed (because S’ is noetherian and integrally closed respectively), and since diihS;,:htpzl ,
it follows ([Al-Io, Theorem 2.3.15]) that S, is a DVR.

Remark that for every height one prime ideal p, p € S'—p. We have that &f,’n_l /p=
c € S, and moreover, since S;, is a DVR, we obtain that ao/pMP T = e S,, (note
that & = p-c leads to v(ap) > v(P*?"™)). |

It‘follows that éo/p'/?" ™" lives in the intersection of the localizations of S’ at every
height one prime ideal. Since S’ is an integral closed noetherian domain we have that
Netp)=15p = S ([Ma, 2, Theorem 38]) or [Ha, Proposition 6.3 A]). Consequently,

o /p/?" " € S -

Let By be the image of &o/p*?" ™" in S/pS so ap = p'/*"~' B, in S/pS. Moreover,
define B := (By, 0, ...,0) € W,(S/pS).

Note that fn - 8 = (#",0,..,0) - (B,-,0) = (a0,0,..,0) and that p - 8 =
(0,1,0,...,0) - (Bo,0, ..., 0) = FV((Bp,0, ..., 0)) = (0, 55,0, ...,0), where F is the Frobe-

nius map (see [Se, Chapter 2, § 6]). We have that:
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a-&GBf=a—(pn—p)B=a~-pB+pb=
= (@, @1, ., tn_1) — (0,0, ..., 0) + (0, B2, 0, ..., 0) € V(W,(S/pS)).

That is, there exists vy € W,_,(S/pS) such that o — §,8 = V(7). We then have
ca(V(7)) = ca(a — &B8) = 0 (for this, recall that ¢,(a) = ¢,(€,) = 0). Moreover, since
cn(V(7)) = 9¥(cn-1(7)) where by ¢n one denotes. the isomorphism v, : §/p"~1S =
pS/p™S, we obtain that c,_;(v) = 0. By using now the induction hypothesis, there is
ad € W,,_1(S/pS) such that y = &, ;4. -

Write now § = (dy, 41, ..., 0p—2). We use now the following property of the multipli-
cation of Witt vectors: (r,0,...,0,...) - (ag, a1, ., Gn, -..) = (rao,77a1, ..., 77 @y, ...) (see

[Se, Chapter 2, § 6]) and obtain:

gn-—lé- = (pl/p"’"2’ 07 seey O) . (607517 erey 611—2) —P: 0=
= (pl/p"~250’p1/p"—351, ---’p‘S —2) —p d

hence V(£,-18) = (0,p"?" 80, p'7" 61, ..., pbn_2) — V(p8) (1)

Moreover, -

gn N V(é) = §n : (07 501 51a ceey 6n—2) = ﬁn ° (07 50) 611 (322 611—2) - pV((S) =
= (pl/p"'l ’ 0; ey O) : (07 507 617 =0y 611—2) - pV(é) =
= (0,p1/p"_250’ pl/pn—scsl: -")p(sn—Q) - pV(CS) (2)

Now, since V is additive, (1) and (2) lead to: V(¢,-10) = &,V(6) and one further

obtains that:
a=§p6+ V(7) =50+ V(fn—lé) .= &8+ fnv—(‘s) = fn(ﬁ"' V(é))

and so &, generates the kernel of ¢,, the claim being proved.
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Theorem 4.0.10. There ezists a unique continuous sheaf Apay on Xz of AY,, -algebras
such that for every small affine U = Spec(Ry) of X®* we have a canonical isomorphism
as AY. (Ry)-algebras: Amax(Ru) = Amax(Ru). Here the algebra Amax(Ry) is the one
defined in [Bri 2, Definition 2.3.3].

Proof. Let us fix a small affine I = Spec(Ry) and a choice of Ry. Let us now fix n > 0
and let us recall that we defined at the beginning of this section a certain category
Uz, Fix T1,T5, ..., T4 parameters of Ry let us recall ihat we have chosen for every
1 < i < d a compatible family of p-power roots (T;/?")2 , and also a compatible family
of p-power roots on 1, € := (¢(™)%2 . With these choices let us recall that we have
defined the elements X; :=1@T;—T;®1 € Wy . %(V, W) for any (V, W) in Ug .
We define the presheaf Ay, on Uz . by

(Va W) — -All,n(V7 W) = WX,n,?(V7 W)[},O, },17 Y'27 e Yd]/(pyb - fnaplfi - Xi)lSide

for (V,W) in Uz . If we denote by y§"),y£"),;..,y§") the images of ¥7,Y3,...,¥; in
Ayn(V, W), let us remark that AY_ (V,W) C Ayns(V,W) and moreover we have
AunV, W) = AV, VW)™, ..., y$7]. In fact Aya(V, W) is a free AT, .(V,W)-
module with basis the monomials in y§"), yé"), vy y‘(in), therefore the presheaf Ay, is in
fact a sheaf on Uz -

Let us first -remark that we have a natural morphism of Ok-algebras: R, :=
O[T, T, ., TH) — Aya(V,W) given by T, — T;® 1+ X;, for 1 < i < d.
-~ We remark that as T“, is a unit in W,,(Ox/pO%)(V, W) and as X; = py; in Ay .(V, W)
aﬁd therefore nilpotent in that ring, it follows that T.®1+X; € Ay n(V, W)* and so
the definition makes sense.

We extend the morphism 6, : A,Zax,nk;?m — (Ox/p"Ox)lyy, to a morphism

Oun : Aun — (Ox/9"Ox)lu,, by sending y™ to 0, forall 1 <i < d.
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For each (V, W) in Uz, we have a diagram of rihgs and ring homomorphisms |

Aun(V,W) =5 Aya(V, W)
T T
Ro _ — Rv

Let us recall that Aua (V, W) = AL VN, o t] = (O /O2) VW),
and so the morphism Ry — Ay, in the diagram is the natural one. With this
definition the diagram is commutative and moreover Ker(f,:) is a torsion ideal of

Au»(V,W). As Ry is étale over Ry, there is a unique Ry-morphism
RV — -All,n(v) W))

making the two triangles commute and so we obtain a morphisrr‘x.of sheaves on Uz,
hun s Wy o glug . — Aun |

Now let us denote by iz the full subcategory of X% consisting of pairs (V, W) such
that the map V — X factors through Y. We endow iz with the topology induced
from X and consider {5 ,, as a sub-topology of it. Our construction proceeds in several

steps, as follows:

Step 1 The sheaf Ay, on Y , extends uniquely to a sheaf which we denote A,;m Si,n

on the whole of .

For this let us fix an étale open V of X such that the structure map ¥V — X .

factors through U and let V' (respectively V) denote the sub-site of Uz consisting

of pairs (V, W) (respectively consisting of pairs (V, W) such that the structure map

=y Yq )]

W — V factors through Spf(Ry ,,)®0, K. We recall that Ry , = Ry[(;, " ., T;/””].)

To prove the claim it would be enough to prove that the restriction of Ay, to Viet
extends uniquely to V', for all V as above. Let Ay = 73'8(Vg, ) and by A,, its open

subgroup of elements which fix Ry .
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We have the following natural diagram of categories and functors:

Res

Sh(V) =5  Sh(Vfe)
3L } Ly

Rep(Ay) Res, Rep(A,)

where £ and L,, are the ’localization »functors: if F is a sheaf on Vet respectivelly ’
on Vi then L(F) := F(Ry), respectively £,(F) := F(Ry). Therefore we have
L, (Res(F)) = Res(L(F)) and so the diagram is commutative. Both £ and L, are
equivalences of categories, therefore in order to prove that Ay, (seen as .sheaf on
Viet) extends uniquely to a sheaf on V it is enough to show that the A,-action on
Ay n = L,(Ayn) extends uniquely to a Ay-action. _

Let us remark that AV, (By)[y1, .-, Ya) = A¥axn(B)[¥1, .- va], Where until the
end of this chapter we denoted y; := 3,1 < i < d. As AY «n(Ry) has a canonical
action of Ay, we only need to define the action on y;, 1 < i < d. For this let us denote

by ¢; : Ay — Z, the cocycle defined by: if o € Ay
(T )ozo) = (T )2cge ™.

Let us remark that after we fixed the choices of p-power roots of T; and of 1, the
cocycles ¢; are uniquely determined for every 1 <7 < d. Let us denote for every such ¢

and every 0 € Ay by €;(0) € Amax» the image under the natural map Amax — Amax;n

 of the element

(1 - [€]Ci(a))/p € Ama.x-

Then, for every o € Ay, we define
o) =y +e(0)T; ®1 € Ay
By the definition above, Ay, is now a representation of Ay and so let us de-
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note by Apaxun the unique sheaf on iUz such that for every V as above we have

natural isomorphisms as Ay-representations Apax ,u,n(ﬁv) = Ay,. It follows that

A&max,i,l,n I}Jf,n = -Au,n-

Step 2 extension of the morphisms hy n and 0y

We’d like to show that hy , : Wn(OxF/POxYHuK,, — Ay, and Oyp 2 Ay —
(Ox/P"Oxy) lu?'n extend uniquely to morphisms of sheaves hy : Wi (Ox /pOx ) e —
Anax un and respectively 0y, : Apaxyin — (Ox?/p"(’)x?) lstze-

a) The extension of hyn. As the natural inclusion Wy, (Ox, /pOx;) — Afuxp iS
in fact defined over all X, it is enough to show that the natural morphism induced
by hyn, Ox l“f,n — Ay, extends to the whole of $I. Let us fix V as above, then
it is enough to show that the map induced by hyn,, Ry — Ay, is Ay-invariant.
But this map is completely determined by the map Ry — Ay,. In the end we

have to prove that the images of 7;, 1 < 7 < d, are Ay-invariant. Let us recall,

hun(T) =T, ® 1+ X; = T; ® 1 + py;. Therefore,
o(hun(T3)) = o(T:) ® 1+ po(y:) = []*T; ® 1+ ples(0)T: @ 1+ 3i) =

= [e]5OT, @ 1+ (1 — []*)T; ® 1 + X = hua(T3).

b) The extension of Oy p-

Following the same line of arguments as above, after fixing a small affine V, we need
to prove that the map induced by 0y, Ay n — (Ox/P"Ox) (Ry) is Ay-equivariant.
It is then enough to look at the images of y;,1 < i < d. Let us choose such an ¢ and

let 0 € Ay. We have
O (0 (1)) = Ouum(vi + €:(0)Ti ® 1) = Oy (i) + O n(:(0)) 8y n(Ti ® 1) = Ty (e:(0)).

Now €;(0) € Amaxn and we have (1—[e]%)/p = ai(0)(£/p) in Amax, With a;(0) € Af,

we have that e;(¢) = b;(0)d,, where b;(d) € W, is the image of a;(0) and d, € Amaxn
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is the image of Yo. Therefore 8,(e;(0)) = 0,(bi(0))0n(6n) = 0 and s0 Oy u(o(:)) =0= -
U(QU,n(yi))-

Now let us remark that for every n > 0, we have natural morphisms of sheaves
Amaxtint1 — Amaxyun induced by the natural morphism AY_ ..lu — A7, olu,
which make the family Apaxs := {Amaxsin}n>0 into a projective system of torsion
sheaves, i.e. a continuous sheaf. Moreover, the family of maps {hy ,}n>0 induces
a morphism of ‘continuous sheaves hy : O; — Apaxy and the family {0y ,}n>0
induces a morphism of continuous sheaves 6y : Amax a4 — @u?. Here we have de-

noted by Oy the continuous sheaf {Oy/p"Oy}n>o and (’A)u? is the continuous sheaf

{ (Oxf / p"(’)xf) |tz Fn>o0-

Step 3. Gluiné of Amax sz n-

We choose a covering {U;}; of X by small affines. For each j, we have defined
unique continuous sheaves Apaxy; On Llj,'?. By the uniqueness, these sheaves glue
to give a unique continuoué sheaf An.c on Xy, together with morphisms of sheaves

h: At

inf

—> Anax, Azax — Apax and 0 ¢ Ay — (’5357, such for every j7, their

restrictions to U, % are the ones defined above.

(W

The continuous sheaf Apax constructed above have nice properties which we sum-

marize in the following

Theorem 4.0.11. Let us fizn 2> 1.
1) The sheaf Apax has a decreasing filiration by sheaves of ideals Fil'Ana =

(Ker(0))", for all T > 0.

2) There is a unique connection V := {Vo}n>0 : Apax — Amax ®o, Q; 1Ox such
that
0,) VIAV =0

max

b) for every n > 0 and every small affine U of X with parameters Ty, T5, ..., Ty

and for every pair (V, W) in Ux ,, if we denote as before the elements y,, Y2y ooy Yd €
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Ama.x,n(Va W), then Vn(y,') =1QdT; € Ama.x,n(va W) ®ry Q}ZV/OK'
3) The connection described at 2) has the property that it i’s integrable and AY, =
(Amax) - |

4) We have V(Fil" Amax) C Fil' Apay ®0, O

2 2% 0k for everyr > 1, i.e. V satisfies

the Griffith transversality property with respect to the respective filtration.

Proof. Let us first remark that the properties 2) a) and b) define a unique connection
on the restrictions of the sheaf Apayn to Uz ,. We'd like to show that it extends
uniquely to a connection on the whole of 4. For this it would be enough to show
that if we fix an affine open V of X* such that the structure map ¥ — X factors
through U, the connection V, : Ay, — Ay, ®g, Q}zv Ok induced by V, is Ay-
equivariant. It is enough to cheék the elements y;, 1 < i < d. Let ¢ € Ay. Then
on the one hand we have o(V,(y:)) = 0(1 ® dT;) = 1 ® dT;. On the other hand
Va(o(%)) = V(y + e(0)T; ® 1) = V(y;) = 1 ® dT;, which shows that indeed V,, is
Avy-equivariant. ’

Properties 3), 4) are local therefore it is enough to verify them on the restriction
Aun of Apayn to Ug ,, and in that case Ay, is a free Ay, |y, -module with basis
the monomials in y;, ¥, ..., y4. Therefore everything follows from the local definition

of V,.
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Chapter 5

Concluding remarks

We suspect that the sheaves Ay, and AY_  can be defined for the case when K
is ramified over @, and we would like to extend our theory from c}iapters 3 & 4 and
to prove ”localization over small affines”-equivalent theorems for this general case.
Concretely, we expect that the localizations AY_ (Ry) and Ap.(Ry) are respectively

isomorphic to the rings AY, (Ry) and Apa(Ry) for a “small” affine U = Spec(Ry).

Let X be a smooth proper scheme over Ox with geometrically connected fibers.
Let us now introduce the natural functors v : X =+ Xg and v : X* — X defined as
follows: |

w(U, W)=W and v(U) = (U, Us) respectively.

One further defines the morphisms

u, : Sh(XZ) — Sh(X) and v, : Sh(X) — Sh(X*) analogous to the push-forward

in the following wéy: u.(L)(U, W) = L(W) and v,(F)(U) = F(U,Ux) respectively,

where L is a sheaf on Xf}% and F a sheaf on X.

Denote now by L a locally constant Q,-sheaf on X§ which we view via base change
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to X"f‘ and then applying u, as a sheaf on X. We would like to construct a functor
named D37, which makes a (Riemann-Hilbert) correspondence between the category of
locally constant sheaves on X& and the category of sheaves of O, -modules endowed
with an integrable connection, a filtration and a Frobenius endomorphism on X, where
by X we mean the completion of X along the special fiber X;. We define this functor

by:
Dia(L) = va(L ® Apax)°%.

We then make the following:

Conjecture: Dam‘;ax(L) =~ DX (L) as sheaves of Ox, -modules on Xg,

where the sheaf D2r (L) was defined by F. Andreatta and A. Iovita in [AIl] by

setting D%, (L) = v, (]L ® Ais)®* and Ay is a sheaf on X also.constructed in [AID}.
We hope that this conjecture is true since the functor D defined in the second

chapter (see Definition 2.3.8) doesn’t loose any information if one replaces the ring

Bi.x with Bis. Concretely, if V is a p-adic representation of Gk then
(V ®Qp Bmax)GK = (V ®Qp Bcris)GK = Dcris(V)

as filtered modules (see Theorem 2.3.13 (Colmez)).
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