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ABSTRACT 

LARGE EDDY SIMULATIONS FOR COMPRESSIBLE TURBULENT JET 

FLOWS 

Nima Tajallipour, Ph.D. 
Concordia University, 2009 

Large Eddy Simulation is generally perceived as a very effective and highly promising method that can 

considerably improve our modeling of turbulent flows. Application of LES has considerably increased in 

the past decade among thermofluid scholars as well as within different industries. The main obstacles in 

further implementation of this method for engineering applications are its relatively high computational 

cost and also unavailability of well tuned and tested numerical tools and therefore there is a great interest in 

modification of available low order numerical tools which are computationally reasonable in order to use 

them for LES. 

This dissertation is investigating the possibility of applying an available finite element/volume 

numerical code; used previously for RANS simulations of compressible flows, in order to carry out LES. In 

this work, a self-adaptive upwinding method, which is compatible with Roe's scheme and reduces the 

numerical dissipation of low order flux calculation on unstructured elements, is developed. At first, the 

proposed method is evaluated using channel flow stability test and decaying isotropic turbulence. The 

method is then used to numerically investigate a high Reynolds compressible turbulent free jet and compare 

the results with recently published set of experimental data. At the end, a hydrogen jet releasing from a 

high pressure reservoir is also numerically studied. During these simulations, the performance of the 

developed numerical tool for subsonic, sonic and supersonic flows at high Reynolds numbers will be 

extensively analyzed. 
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Chapter 1 

Introduction 

1.1 Motivation 

COMPRESSIBLE jets have many engineering as well as scientific applications. Investigation of 

these jets can improve the design of reacting turbulent jets (Ref. 1,2) or cross flow jets applicable in 

combustors (Ref. 3), increase the efficiency of coaxial jet mixers (Refs. 4,5), provide a better understanding 

of jet noise generation mechanisms which will eventually lead towards designing aircrafts with lower noise 

emission (Refs. 6,7), decrease the screech noise generated by over or under-expanded jets (Ref. 8) or 

improve the design of high pressure gas vessels. The obtained knowledge about the physics of 

compressible jets can be even applied in the medical science to predict human's speech (phonation), 

because the primary source of human's voice is the pulsation of glottal jet (with the Reynolds number in 

the order of 10,000) generated by the vibration of vocal folds (mentioned in Ref. 9). Since Lighthill 

(1952),10'" many attempts have been made based on his work to numerically predict the generated noise of 

compressible turbulent flows. 

Theoretically studying the jet flows specially when the Reynolds number is high and the flow is 

turbulent is very difficult. On the other hand, experimental techniques are rather expensive, quite 

complicated and always contain a degree of uncertainty. As a result, numerical methods have been 

implemented in the past to achieve a better understanding of these flows. Large eddy simulation, in 

particular is considered as an optimum method because of its potential ability to simulate the larger scales 

of motion present in the flow and its lower computational cost in comparison to Direct Numerical 

Simulation (DNS). 
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In order to carry out reliable large eddy simulations, development of accurate numerical tools is 

fundamental. As it will be explained in the literature review section, there has not been enough research 

done on the performance of low order, upwinding schemes when they are used for LES. The effect of using 

unstructured grids is also not fully understood. In a typical LES intended for the industrial applications, 

given that considered flows are usually geometrically complex, it is not appropriate to use extremely 

refined models or highly accurate methods. Therefore there is a very high interest in modifying the 

available low order numerical tools in order to make them suitable for LES. That is the main objective of 

this study. 

In this research, the performance of an available finite element/volume numerical code, previously used 

for RANS simulations of compressible flows, is extensively studied using channel flow stability test, single 

standing vortex simulation and isotropic decaying turbulence test. These numerical tests are used in order 

to review and investigate some of the main aspects of the turbulent flows' numerical simulation such as 

cascade of energy from high to low scale eddies, effects of subgrid modeling, numerical dissipation, 

accuracy, robustness and stability. A self-adaptive upwinding method, inspired by Refs. (12,13) and 

compatible with the available numerical scheme, is then implemented in order to improve the results. A 

compressible turbulent jet is simulated and the ability of the numerical method in predicting the average 

and fluctuating flow variables are determined using a recently published series of experimental data. 

Finally a hydrogen jet, releasing from a high pressure reservoir into the atmosphere is numerically studied 

and results are discussed and presented. 

1.2 Literature Review 

Until the 1990s, study and investigation of compressible jets have been mainly based on experimental 

measurements and theoretical approaches such as momentum integral method.I41516 it was only in the late 

1990s that numerical methods were used to simulate and study compressible jets. Since then, obtaining an 

accurate prediction of jets' spreading rate and the length of their potential core has been a challenge. The 

length of the potential core is defined as the axial location downstream of the flow where the centerline 

mean velocity (Uc) equals 0.95 of the jet's axial velocity at the nozzle's exit (£/ •) . 
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Garnet and Estivalezes (1998),lv used a finite volume, high-order 2-4 MacCormack numerical scheme 

(2nd order accurate in time 4lh accurate in space) to carry out the DNS and LES of a hot jet at Reynolds 

numbers equal to 1000 (2D simulation) and 3xl0 4 (3D simulation) respectively. The potential core's 

length in their simulation was over-predicted. 

Zhao et al. (2001),'8 simulated two compressible turbulent jets at Ma =0.9, Re = 3.6xl03 and 

Ma = 0.4, Re = 5x l0 3 using a combination of Fourier pseudospectral method and a 6* order compact 

finite difference method for the spatial discretization while turbulence fluctuations were forced at the inlet 

boundary condition. In their study, decaying rate of the axial velocity and the length of the potential core 

were accurately predicted using both dynamic Smagorinsky and mixed subgrid models. Similarly, Freund 

(2001),19 investigated the sound generation mechanism of a turbulent jet in a Mach of 0.9 and Reynolds 

number of 3600, using DNS. In his work, a 6th order compact finite difference method was used for the flux 

calculation in which the derivatives were computed with the Fourier spectral method. The potential core 

was accurately predicted but in their simulations, the intensity of the fluctuation at the inflow was set in an 

ad hoc fashion. 

DeBonis and Scott (2002),20 used a 4th order central difference spatial operator and a 6lh order filtering 

technique to add the necessary artificial dissipation in order to simulate a compressible supersonic turbulent 

jet at Ma = 1.4 and Re = 1.2 x 106. Their simulation over-predicted the decay rate of the flow and therefore 

the potential core was shorter than the experimental value. They suspected that adjustment of subgrid 

model's constant can positively affect the length of the potential core. They have also mentioned few 

references in their paper in which the length of potential core has been over-predicted. Andersson et al. 

(2003),2I simulated a compressible unheated turbulent jet at Ma = 0.75 using a 3rd order low-dissipation 

upwind scheme for convective fluxes, centered difference approach for the diffusive fluxes and a 2nd order 

Runge-Kutta for temporal discretization. Their model had 3x10 cells and the Smagorinsky model was 

used to compensate the effects of subgrid scales. In their simulation they failed to predict the length of the 

jet potential core. The applied numerical method over-predicted the spreading and therefore the length of 

the potential core was under-predicted. Based on the given discussion, we conclude that depending on the 

case, the length of the potential core might be accurately predicted, over-predicted or under-predicted. 
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The mixing rate and therefore the potential core's length are mainly affected by subgrid scale viscosity, 

numerical scheme, entrainment and inflow boundary condition (Ref. 22). The importance of applying a 

realistic- turbulent-inlet boundary condition in LES has been mentioned in the literature, especially for wall 

bounded flows (Ref. 23) but surprisingly in some simulations no significant effect has been observed. 

Andersson et al. (2005),24'25 recently studied the effects of these parameters on the LES of turbulent jets. 

Forcing external fluctuation at inlet didn't show any detectable effect on the statistics of the flow near the 

nozzle. The test case with lower subgrid contribution started to mix immediately as the jet exited the nozzle 

and this mixing was less rapid and violent in comparison to the test case with higher subgrid model. 

Increasing the subgrid scale filter width resulted in augmented high frequency content of the forward 

radiated sound as well as significant changes to the sound radiated to the rear arc. It was shown that the 

length of the potential core directly affected the overall intensity as well as the frequency content of the 

predicted noise. Despite including the geometry of the nozzle in their simulation, the potential core's length 

was under-predicted. They mentioned that increasing the subgrid-scale dissipation resulted in decreasing 

the length of the potential core despite an increase in the mixing rate. This conclusion however is not 

consistent with other similar studies. 

The effect of the subgrid model on the flow regime of compressible turbulent jets seems to be 

significant but at the same time it is rather difficult to assess. Morris et al. (2002),26 simulated a circular 

heated (Ma = 1.48) and an unheated (Ma = 2.1) jet at Re = 105 by solving nonlinear disturbance equations 

using a finite difference method, including a 4,h order optimized DRP scheme accompanied with the 6,h 

order artificial dissipation. They recognized the significant effect that subgrid model could have on the flow 

variables as well as on the generated noise. Suto et al. (2004),27 simulated incompressible round jets at 

different Reynolds numbers (Re = 1,200 - 100,0000) using a 4th order central difference numerical method. 

In their simulation, they used constant and dynamic Smagorinsky subgrid models. They observed that in 

the regions close to the inlet (xl D < 2), the dynamic model predicted high values of subgrid constant but 

that value decreased along the radial direction. At the fully-developed region (xlD> 8) the average value 

for the subgrid coefficient that was predicted by the dynamic model was higher that the value 

recommended for isotropic turbulent decaying and was also higher that the predicted values close to the 
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inlet. The maximum value at every axial location was still predicted at the center of the jet. The overall 

subgrid constant predicted by the dynamic model at xl D > 2 was Cs ~ 0.04 based on the definition given 

in chapter 2.3.1. They also reported that decay of mean velocity was somewhat stronger for their coarser 

mesh. 

DeBonis (2004), used a central difference spatial discretization and an explicit low-dispersion 

Runge-Kutta temporal discretization in order to simulate a compressible turbulent jet at Ma = 0.9 and 

Re = l . lx l0 6 , using 2.4xlO6 nodes. Their results indicated a strong dependence of the solution's accuracy 

on the value of Smagorinsky subgrid model's coefficient. When its value was set to 0.012 (typical for 

decaying isotropic turbulence), significantly large scales appeared in the mixing layer and it resulted in 

rapid spreading of jet and generation of a much shorter potential core. However, when subgrid coefficient 

was set to 0.1, the spreading was weaker and the length of the potential core was much closer to the 

experimentally predicted value. 

Boersma (2005),29 simulated an incompressible jet with Re = 11000 using a 2nd order finite volume 

method and 2nd order Adams-Bashforth temporal discretization. He chose a significantly higher value for 

the Smagorinsky coefficient Cs =0.15 and the decaying rate of the central velocity matched very well with 

the experimental data. It is interesting to mention that strong overshoots in the instantaneous axial velocity 

distribution along the centerline were observed. 

Culter et al. (2006),30 recently simulated a coaxial (He, air) turbulent jet at Ma = 1.8 using a 

structured, finite volume code, k - a turbulence model, one-third MUSCL scheme accompanied with the 

approximate Riemann solver of Roe problem and a 2nd order central method for the viscous fluxes. They 

have observed that the various simulated quantities deviated from the experimental values, especially near 

the boundary of coflow stream and the shear layer of jet and this deviation could be corrected by increasing 

the radial diffusion of turbulent kinetic energy. In their simulation the nozzle geometry has been included. 

Bogey and Bailly (2006),31 simulated a compressible jet at Ma = 0.9 and for 2.5xl03 < Re < 4 x l 0 5 using 

a numerical method already optimized in the Fourier space to minimize the dispersion and dissipation 

errors and calculates the spatial derivatives using a 4lh order centered finite differencing and 2nd order 

Runge-Kutta algorithm. Grid-to-grid oscillations were removed by an explicit 4'h order (13 point and 21 
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point) filter. They have concluded that having stronger subgrid model would result in a slightly longer 

potential core, even though it significantly increased the axial velocity decaying rate further downstream, 

and the dynamic subgrid model dissipates a significant part of the energy through a wide range of the 

spectrum. The dynamic subgrid model predicted an average value of 0.02 for the Smagorinsky constant 

(similar to isotropic decaying turbulence) while instantaneous overshoots reached to 0.04. The 

computational domain contained 12.5 million points and the peak value of the velocity fluctuation 

increased when the SGS model was activated. 

Based on the above discussion, we can conclude that dissipation resulting from the subgrid model is 

expected to decrease the mixing and increases the length of the potential core. The correct value of subgrid 

coefficient however is very dependent on the applied numerical method. Therefore, as one of the objectives 

of this study, the valid range for Cs is investigated for jets. 

Regarding the effects of entrainment, Babu and Mahesh (2004,2005),32'33 have simulated laminar and 

turbulent incompressible jets (DNS) and have investigated the effects of the entrainment on the flow by 

adjusting the length of the buffer region behind the flow inlet. They used a predictor-corrector algorithm 

which has been shown earlier to be nondissipative and yet robust at high Reynolds numbers and for 

complex geometries. They have shown that the inflow entrainment reduced the length of the potential core 

and increases the peak levels of the pressure fluctuations while the peaks of axial turbulent velocity 

remained the same. The iength of the potential core in this simulation was under-predicted. 

Randomly forced fluctuation at the inflow and the thickness of inflow's shear layer are expected to have 

significant effects on the flow and the acoustic field. Application of artificial forcing however can be 

justified only when the geometry of the nozzle is not included in the numerical model. Bogey et al. 

(2003),34'35 simulated a compressible turbulent jet at ReD = 65,000 and Ma = 0.9, using the seven-point 

stencil, Dispersion-Relation-Preserving (DRP) finite-difference scheme accompanied with random velocity 

fluctuations at the inflow. Both the flow development and emitted sound were shown to depend appreciably 

on the initial parameters. A thinner initial jet shear layer thickness increased the noise levels in the sideline 

direction but it reduced them in the downstream direction. The most important changes were obtained when 

the four azimutal modes of forcing were removed. It noticeably reduced the noise levels. 
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Heating and Mach number also can affect the generated noise. Following the standard Reynolds 

decomposition (as it was explained in Ref. 36), the noise generated by a turbulent flow can be divided into 

three different sources: shear noise (interaction of turbulent fluctuations and the mean flow), self noise 

(interaction of turbulent fluctuations with themselves) and entropy component (result of deviation of the 

pressure and density from the isentropic relation in the turbulent flow). Therefore accurate calculation of 

turbulent flow has direct impact on the accuracy of the simulated noise. Lew et al. (2007),36 have shown 

that when a high speed subsonic compressible jet is heated while the ambient jet Mach number remains 

constant, significant cancellations occur in the far-field between the shear and entropy noise and therefore 

the overall level of noise decreases. Heating also reduces the intensity of the nonlinear self noise terms. For 

low speed heated jets, the main contributing source is the entropy noise while the shear and self noise 

hardly contribute to noise level at the far field. 

The randomly forced fluctuations at inlet could potentially introduce some negative effects into the 

numerical results. For example Uzan et al. (2004),7 simulated a compressible turbulent jet using a 6lh order 

accurate non-dissipative compact schemes. Since the actual nozzle geometry has not been included in their 

simulation, they have added randomized velocity perturbations in the form of a vortex ring into the jet 

shear layer at the D/2 distance from the inflow boundary. They have explained that the random inflow 

could be the reason for over-prediction of the generated noise. The overall predicted noise of their 

isothermal jet is more than the similar experimental results for cold jets which is not acceptable despite 

implementing aratherfine grid (20xlO6nodes). 

It is suspected that simulating the nozzle geometry in the simulation would positively affect the 

instability characteristics of the flow close to the jets exhaust and therefore it might improve the accuracy 

of the results. To the best of our knowledge, no study has been done yet to measure the importance of this 

parameter, even though in some cases, despite the inclusion of the nozzle's geometry, the expected effects 

have not been detected. For example in the jet simulation of Andersoon and el. (2005),6 length of the 

potential core was less than the experimental value and no fluctuation was detected at the inlet despite the 

fact that inlet's geometry was included in the simulation. 
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All the parameters mentioned above, significantly affect the LES results of compressible turbulent jets 

and therefore a special attention is needed in order to determine the best combination, based on the 

available numerical tool and computational resources. 

1.3 Objectives and Thesis Outline 

The applied numerical model plays a significant role in the accuracy especially for high Mach number jets. 

The issue in the supersonic flows is to concentrate the numerical dissipation only at the regions where 

shocks are present (Ref. 38) and confine their effects only to the highest scales. It has been shown however 

that numerical errors and subgrid models affect the entire turbulent energy spectrum of the flow and not 

only the high frequency fluctuations (Ref. 39). There are many different sources of error which may 

negatively affect the results. For example, in the case of unstructured grids which automatically require 

non-uniform filtering, the filtering and the differentiation operation do not commute. Ghosal and Moin 

(1995),40 have shown that the application of standard large eddy equations introduces an error term which 

has the same order of magnitude as the 2nd order finite difference method which was used in order to 

disretize the LES equations. Other sources of error such as discretization or aliasing errors must also be 

taken into consideration. It is rather difficult to increase the accuracy of numerical method especially for 

unstructured discretization. There has been however many attempts to improve the accuracy of numerical 

methods for LES of jets. For example Constantinescu and Lele (2002)4I have proposed a highly accurate 

method in the cylindrical coordinate system. It should be also mentioned that, large eddy simulations of jets 

are usually very slow and require a long computational time. Fureby et al. (2002),42 have explained that 

because the NS equations are formally not filtered in time for LES, they should be fully resolved with 

At < TK (At is the time step and tK the Kolmogorov time). In practice, however, only the large scales are 

aimed to be retained and therefore higher values of At might be chosen. It should however be considered 

as another source of error. 

There are not many studies about the effects of upwinding in the LES of compressible jets. Shur et al. 

(2005), "44 have investigated the possibility of predicting the noise emitted from a typical jet engine by 

applying an upwinding method. They used a finite-volume method, based on flux-difference splitting 
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algorithm of Roe and Monoton Upstream-centered Schemes for Conservation Laws (MUSCL) to simulate 

the flow over a structured grid. In order to control the excessive dissipation generated by the upwinding, 

they have decreased the contribution of the upwinding term by multiplying it into an upwinding 

parameter (crupw). This parameter has provided a gradual switch from nearly centered 

scheme (crupw = 0.25) in the internal region of the domain towards the full upwinding 

scheme (u„pw = 1.0) at the boundaries. They have concluded that the amount of upwinding and the strength 

of subgrid model directly affect the features of flow such as shear-layer roll-up, three-dimensionalization of 

the flow and transition to turbulence. They have shown that full upwinding scheme can considerably delay 

the transition of the flow and therefore increase the length of the potential core. In their simulation, higher 

grid resolution has resulted in an earlier transition and a shorter potential core. They have also shown that 

increasing the coflow results in more stabilization of the flow field and therefore further delay of the 

transition accompanied with a longer potential core. Assigning the value of <j based on an overall 

judgment about the flow domain (Ref. 45) prohibits their method to be generally applicable. 

Application of LES for simulation of turbulent jets is expected to highly expand in the future. At the 

present time, there is a great interest among the researches and also in the industry, to use low order 

numerical method such as upwinding methods for LES. In this research, the effect of upwinding on the 

large eddy simulation of turbulent flow is investigated and after applying necessary modification, the 

developed numerical method will be used to simulate a compressible turbulent free jet. The performance of 

the numerical method is evaluated by comparing the results with the available experimental data. As the 

final step of this research, hydrogen release from a high pressure reservoir (100 atm) will be simulated and 

the advantage of the proposed scheme will be further demonstrated. 

In the remaining portions of this chapter the structure of compressible turbulent free jets is explained 

and the Kelvin-Helmholtz instabilities which transform the relatively laminar flow exiting from the nozzle 

into a fully developed turbulent jet are discussed. At the end flow, characteristics of an underexpanded jet, 

releasing from a high pressure reservoir is studied. A more detailed literature review about the turbulent jets 

has been previously provided in References 46 and 47. 
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1.4 Structure of Turbulent Free Jets 

Free shear flows are a category of flows in which there is no solid surface present in the flow regime. In 

this class of flows usually jets, wakes and simple shear layers are studied. Round jets are categorized 

among the free shear flows,48'49 in which the flow is exiting from a circular nozzle of diameter D and is 

released into an open space. The flow regime is characterized by a significantly higher velocity in the axial 

direction while the great gradients are present in the transverse directions. These gradients gradually 

remove the irregularities present between the jet flow and the stagnant medium. This phenomenon makes 

the flow become more turbulent as it travels further downstream. A potential core is formed right after the 

nozzle's exit and it contains an irrotational-laminar flow. The interface between the turbulent jet and the 

surrounding flow is referred to as the mixing layer which has a random shape and is unsteady. This mixing 

layer thickens while moving away from the nozzle's exit and it reduces the diameter of the potential core 

while increasing the jet's diameter. 

After the disappearance of the potential core, a fully-developed region is formed where the flow 

gradually reaches a similarity regime and the mean flow quantities such as density, velocity and 

temperature, at different locations along the axial direction can be collapsed using the proper scaling (Fig. 

1.1). The amount of turbulence also increases as the jet travels downstream and its peak value happens 

close to the transition region which exists between the potential core and the fully developed region. 

Experimental and numerical analyses have shown that this flow is very difficult to predict because of its 

strong dependence on many different parameters. Lau, Morris and Fischer (1979),50 have proposed the 

following empirical equation in order to estimate this length of potential region for the air to air experiment 

and for the same density: 

j T 
- ^ = 4.2 + 1.l(Ma;+l—]-) (1.1) 
D J Ta 

Harsha (1971) also has proposed another formula for air to air axisymmetric jets: 

^ = 2.13(ReD)0097 (1.2) 

10 



Nozzle Exit 

E 

Potential Core Region 
* -

Fully Developed Region 

Transition 
Region 

Fig. 1.1 Different flow regions formed after the nozzle's exit. 

Lighthill (1963),51 has shown that the frequency of jet noise which arises from the turbulent mixing of 

the flow exiting from the nozzle with surrounding air is inversely proportional to the size of the eddies, thus 

the high frequency sound derives from the mixing region close to the nozzle and the low frequency sound 

emanates from the fully-developed jet which is well downstream of the nozzle. 

From the theoretical point of view, the laminar, incompressible round jets which are flowing into an 

open medium at rest is the simplest case to be analyzed. These flows are usually studied using the similarity 

solutions. A detailed analysis is given in Appendix A. 

The presented analysis is only for laminar and incompressible flows. Analytical analysis for turbulent 

flows is only possible for the fully developed region. That analysis however is highly dependent on the 

similarity assumption and experimental data is required in order to determine unknown coefficients. 

Therefore the extension of analytical approach for the turbulent jets is not included in the Appendix. As it is 

shown in Appendix A, the following closed form solution is obtained from the analytical method: 

U = 
37 

%7lpVX 
1 + 

3JT]1 

(1.3) 

U„ 
37 

%7CpVX 
(1-4) 
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u 
u„ 

1 + 
3JTJZ 

(Axpv1 (1-5) 

In which 77 = — • 

1.4.1 Kelvin-Helmholtz Instability 

Let's consider a 2D horizontal discontinuity surface (Vortex sheet) where the velocity is equal to ux above 

the surface while its value is equal to u2 at bottom and Uj >u 2 (Fig. 1.2). The vertical velocities are 

initially negligible. 

Fig. 1.2 Deformation of the discontinuity surface (time is passing from a to f). 

Horizontal discontinuity sheet gradually turns into a shear layer. In this layer vorticity is approximately 

uniform while it is equal to zero at each side of the layer as velocities are uniform. It is know that the shear 

layer is potentially unstable and an external perturbation may cause self-attenuating oscillations. Pressure in 

concavities will become higher than pressure in convexities and the amplitude of the oscillation continues 

to grow up and eventually the upper part of the sheet is carried by upper fluid instead while the lower part 

of the sheet is carried by the lower fluid. This phenomenon is known as rolling up (Ref. 52) which also 
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appears in high Reynolds number turbulent free jets and results in generation of a wide range of eddies and 

also aerodynamic noise. 

1.5 Hydrogen Release Jet from a High Pressure 

Reservoir (100 atm) 

Fossil fuels generate the major part of the energy which we consume every day. They are all carbon-based 

and therefore their consumption generates a considerable amount of pollution which is of a great 

environmental concern and is suspected to be the main cause of global warming. Another main concern 

about these resources is that they are limited and therefore finding a safe, reliable, environmentally clean 

and also economically reasonable alternative seems to have a great priority. Available fossil resources 

cannot even satisfy the ever growing energy demand of today's planet and in order to guaranty the energy 

security of the future generations, a gradual shift towards the alternative energy resources is unavoidable. 

Hydrogen is one of the cleanest resources of energy and in theory it can decrease the pollution 

generated by the vehicles to zero. Its combustion only generates water and therefore many attempts have 

been made so far in order to manufacture economical vehicles which run on hydrogen. One of the main 

issues in regard to these vehicles is the storage of hydrogen inside these vehicles. Obviously safe and 

reliable high pressure reservoirs will be required and therefore the mechanical design and the safety 

features of these reservoirs are very important. In order to determine the safety requirements in 

transportation, distribution and also consumption of hydrogen, understanding of the hydrogen flow 

characteristics in the case of an accidental leakage from high pressure reservoirs is very crucial. Because 

the pressure of such reservoirs is relatively high, an accidental gas leakage forms a highly underexpanded 

jet, therefore careful study of underexpanded jets seems to be necessary. 

There have been some attempts in the past to analytically analysis the flow characteristics of 

underexpanded jets. Adamson et al. (1958),53 have presented an analytical method to predict the location 

of the first normal shock or Mach disk, behind a highly underexpanded nozzle. The method gave good 

results in comparison to the experimental data for a wide range of pressure ratio (from 5 to 140). Their 

results however are for steady state conditions and therefore they do not completely represent the unsteady 
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release of gas from a reservoir. Given the complex nature of the considered flow, applications of 

experimental as well as numerical methods appear to be desirable. 

Ishii et al. (1999),54 have experimentally and numerically investigated the time evolution of circular 

jets released from a shock tube into a large test section. When the shock enters the test chamber, it is 

diffracted and then gradually moves toward the downstream. Time zero was assumed to be when the shock 

arrives at the open end of the shock tube. In their work the Reynolds number based on the nozzle diameter 

was about 100,000. Based on their observation, unsteady development of an underexpaned jet can be 

divided into four major stages: 

• "The first stage of jet evolution is known as the diffraction phenomenon of the shock wave around 

a corner. The first shock, which passes through the open end of the tube or orifice, begins to diffract 

around the corner (Fig. 1.3). 

• In the second stage, a second shock which is generated in the vortex near the nozzle lip tends to 

spread towards the jet axis and finally to form a curved shock with an unsteady Mach disk (Fig. 1.3). 

• In the third stage, the first shock-cell structure is constructed and for a strong jet, a slip surface is 

generated downstream of the Mach disk. This surface produces Kelvin-Helmholtz instability waves 

and is responsible for generating the second vortices (Fig. 1.4). 

• In the final stage, a quasi-steady shock cell is formed near the open end and it begins self-

sustained oscillation, radiating very strong pressure waves calledv screech'." 

Pedro et al. (2006),55 have also numerically studied the development of the bow shock-wave and the 

jet structure behind it using FLUENT. Their results also confirm the mentioned jet development stages. 

Kameshki (2007), recently simulated the invisid hydrogen and air release from a high pressure vessel, 

initially at pressures equal to 100 and 180 bars, using a Roe-MUSCL numerical method. He has 

demonstrated how the density of the releasing gas affects the unsteady development of the underexpaneded 

jet. 

As it was mentioned before, the final part of this dissertation will be about a simulated hydrogen jet 

releasing from a high pressure reservoir at 100 atm into a stagnant medium of hydrogen at 1 atm pressure. 
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This simulation will provide the opportunity to test the performance of the self-adaptive method for 

transient supersonic flows and also evaluate its ability to provide accurate realizations for such flows. 

16 



Chapter 2 

Large Eddy Simulation 

THE complex nature of turbulent flows, as demonstrated by Leonardo da Vinci in his sketches has 

always been intriguing for scientists during the past centuries. It is difficult even for expert 

researchers to completely agree on a definition for turbulence. It is generally agreed that turbulent flows 

have three dimensionality, unsteadiness, strong vorticity, unpredictability in details and also a broad 

spectrum. These complex characteristics are because of many small eddies with different amplitudes, which 

are present in a typical turbulent flow. These scales interact with each other and exchange energy. 

The numerical methods have already been used for many years to study turbulent flows. As it has been 

mentioned in Ref. 57, not all turbulent flows can be treated by numerical methods. Significant success of 

different numerical simulations shouldn't persuade us to apply similar numerical methods for the flows 

which the numerical method has not been properly tuned to handle. Given the complexity and 

unpredictability of turbulent flows, a combination of numerical and experimental methods is usually 

applied in order to achieve reliable results. 

Among many different numerical methods, Large Eddy Simulation (LES) appears to be very promising 

and its application is expected to extensively increase in the future. It has already become a user option in 

different commercial CFD (computational fluid dynamics) packages and an extensive work is underway at 

different research centers in order to further develop this method. 

2.1 Definition and application 

The Navier-Stokes equations (NSE) which describe all the flow phenomena in a linear viscous fluid, can be 

solved directly (without any need for filtration or averaging) for the laminar flows, using different 
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numerical methods, while for the turbulent flows, the wide range of present eddy scales rules out direct 

numerical simulation method (DNS). That's specially the case for high Reynolds number flows. Therefore 

direct numerical simulation of turbulent flows is still out of reach for many industrial flows and most of the 

DNS simulations which have been carried out in the past were for very simple geometries and at low 

Reynolds numbers. 

In DNS, all the scales from the large energy containing scales (integral scales) to the dissipative scales 

(Kolmogorov scales) are simulated. DNS is essentially exact and its most important advantage to 

experiment is that all of the conditions such as initial conditions or boundary conditions that are influential 

in the flow can be precisely defined. This enables DNS to answer some of the problems and also provide 

detailed explanations for the probable discrepancies of experimental results.58'59 

An alternative approach to DNS is solving the Reynolds-averaged Navier-Stokes (RANS) equations. 

They are obtained by averaging the Navier-Stokes equations over time, over homogeneous directions, or 

across an ensemble of equivalent flows. The solution of these equations requires having additional 

information about the turbulence structure and its relation to the mean flow and therefore it will need a 

form of turbulence modeling. 

Researchers have struggled for quite some time to find a general turbulent model for RANS method that 

is applicable for a wide range of flows. Unfortunately their attempts have not been successful but have 

resulted in better understanding of the complex nature of turbulent flows. Even though the subgrid scales 

compose only a small fraction of the total kinetic energy of the flow, they are far from identical. Their sizes 

and frequency distribution are different for every flow and their appearance in time and space is quite 

random. Maybe one of the reasons for this irregular behavior is the remains of old larger structures which 

have broken into smaller ones. This lack of regularity makes them so difficult to model and therefore it is 

unlikely to find a simple method for predicting all flows. 

Another alternative method for DNS is large eddy simulation (LES) which is discussed in this chapter. 

The main idea is to resolve the large scale turbulent fluctuations or eddies present in the flow, but to model 

only the small scales. This method, at least in theory, is superior to RANS because of its ability to resolve 

more of the complex features of the turbulent flow and therefore to decrease the undesirable effect of the 

applied turbulence model originated from its inaccuracy. 4260"63 in addition, it is less costly than DNS 
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because it only requires the resolution needed to resolve the most energetic eddies. Given that less energetic 

eddies are more universal and isotropic, they are preferred to be modeled. 

In LES, the spatially filtered Navier-Stokes equations are numerically solved. The spatial filtering 

separates and then gathers the effects of small scale eddies in the subgrid scale (SGS) stresses and heat 

transfer terms. On the other hand, the large energy containing eddies, generated by the older turbulent 

motions and the dynamic motions inside the flow field and those which are the most interesting in 

engineering applications are simulated. 

As it has been explained in details in Ref. 75, free shear flows at high Reynolds numbers seem to be 

ideal candidates for LES. For this case, there is a cascade of energy dominantly from the resolved large 

scales, to the statistically isotropic and universal small scales (Fig. 2.1). There are, therefore, strong reasons 

to expect LES to be successful for the free shear flows, primary because the quantities of interest and the 

rate-controlling processes are directly affected by the simulated large scales. 

In other applications the situation can be different. For example, in turbulent combustion at high 

Reynolds number (Ref. 2), molecular mixing and chemical reactions which are the rate-controlling 

processes occur at the smallest scales. They are not simulated; therefore they have to be modeled the same 

as in RANS. In this case, LES is not predicted to be very successful; even though it may provide a more 

realistic prediction of the turbulent flow and therefore obtain more accurate results. 

Turbulent boundary layer on the solid walls is another example. In the viscous sublayer the momentum 

transfer is performed by very tiny structures which are comparable in size to the viscous length scale. In 

that region there are no large eddies and therefore flow cannot be simulated and it has to be modeled as a 

result of high computational costs (Refs. 65,66). In this case LES could improve the results but it is not 

necessarily going to provide the optimal performance. There are many examples of LES done for subsonic 

and supersonic turbulent boundary layers and transition phenomena (Refs. 67-70) or compression corners 

(Refs. 71-74) in which good agreement with experimental results has been achieved. 

As a conclusion, LES method is supposed to be more reliable when the rate-controlling processes and 

the affiliated scales are simulated by the method. On the other hand when the rate controlling processes are 

not simulated and therefore modeled; this modeling causes a fundamental dependency in the results and 
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therefore LES is expected to perform weaker in these cases. A more detailed discussion about the 

application of LES has been given in Ref. 75. 
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Fig. 2.1 Cascade of energy (Ref. 76). 

If we analyze the LES method from the energy point of view, we can say that in LES, the kinetic energy 

spectrum is decomposed into a resolved part (large scales) and a subgrid part (small scales). It is believed 

that large eddies are responsible for transports of momentum, energy, and scalars. As it was mentioned in 

Refs. (75-77) they are assumed to be "anisotropic, subjected to history and nonequilibrium effects, and 

strongly dependent on geometry and boundary conditions, which make their modeling difficult. Small 

eddies instead tend to be more isotropic and less flow dependent (universal), which makes their modeling 

easier". 

Let's assume that we would like to solve the NSE inside a domain with periodic boundary conditions. 

Letu(K) = FT(u) represent the Fourier transform of the velocity field with dual variable K(k],k2,k3)\n 

which: 

k=\K\ = (k?+ki+k$)u2 (2.1) 

Energy spectrum is defined as: 

1 H*l 3 , 
E(k,t) = - J S !?,•(*)•</* 

2 *=o I=I 
(2.2) 
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and 

£(&)= \\m—\lE(k,t)dt (2.3) 

If the data is plotted on (log (k), log E(k)) axes, a universal pattern will be discovered (see, e.g., Refs. 

77-80). As it is shown in Fig. 2.2, the spectrum starts by a peak at relatively low wave-numbers, which its 

length scale is an important characteristic of the turbulence and is approximately the integral length 

scale, L (See Ref. 57): 

L = — * ~\EWhdk= 
2°° n / * 

2x-\E(k)dk° 

lKx]E{kY,dk 
o /K 

Ax°\E{k)dk 
o 

(2.4) 

After this peak, there is the integral subrange region, whose length is different from a flow to another and is 

a function of Reynolds number. In this region, E(k) profile has the form of k~5n through a wide range of 

wave-numbers. The spectrum finally ends by a sharp decrease at the viscous dissipation-dominated region, 

whose wave length is scaled by the Kolmogorov scale (TJ) . 
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Fig. 2.2 A depiction of observed energy spectrum for isentropic turbulence. 

In an LES, it is usually agreed that the computational domain must be as large as the largest turbulent 

eddy in the flow and therefore its dimensions must be as long as few integral length scales (L). On the 
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other hand, the grid spacing should not be very smaller than Kolmogorov scale (77) because there is no 

eddy smaller than that size. 

Kolmogorov has provided a theoretical analysis for the inertial subrange (Ref. 81). Considering a region 

inside a high Reynolds number flow, far away from the solid walls and after passing a long period of time, 

we can assume that time averages of turbulent quantities depend only on one number, the time-averaged 

energy dissipation rate: 

e= \\m-\le(t)dt (2.5) 

As it has been shown in Layton (2002),81 two important consequences of the Eq. 2.5 are that the smallest 

eddy in a turbulent flow has the diameter of 0(Re~3/4) and E(k) must take the universal form 

E(k) = a(£)2l3(kT5>3,a = lA (2.6) 

inside the inertial range. The time-averaged energy dissipation rate ( e ) will be supposedly unique for 

every turbulent flow. The first estimate ofO(Re_3/4) also leads to the required grid resolution of 

0(Re"9/4) for the DNS of turbulent flows in 3D space. 

When a numerical method is used for the LES of turbulent flows, it should be capable to emulate the 

energy transport with an appropriate slope of -5/3 (in log-log domain) at regions where an isotropic fully 

developed turbulent flow is expected to be present. It is important to mention that turbulence in general is 

not an equilibrium phenomenon therefore we should be very careful about the conclusion drawn about the 

slope as well as the behavior of the inertial range. The analysis presented above has been highly simplified. 

There are even some processes, such as vortex roll-up and pairing that transfer energy from the small scales 

to larger ones. As mentioned in Ref. 57, there are perhaps many other processes which yet remain to be 

discovered. 

As it was mentioned in Refs. (82,83), based on the conditions, the following parameters affect the 

quality of an LES: 
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• The discretization scheme, which affects any LES solution but becomes also responsible of sub-

grid scale closure in the implicit LES approach. 

• The sub-grid scale model (for non-implicit LES). 

• The explicit filtering procedure (for the modeling approaches that require explicit filtering), and 

the associated filter function (especially for the unstructured implementation). 

• The mesh quality and resolution 

Each one of these parameters could be assumed to be as a filtering function or an error term (modeling 

error or numerical error), applied or added to the solved equations. They can potentially have very different 

behaviors in the spectral domain; sometimes positive but also could be negative, and the final result is 

always affected by cumulative effects of them together. 

As it has been mentioned in Ref. 12, second order schemes are usually the choice for unstructured grids 

and because of their low order accuracy, normally they generate a strong numerical dissipation which 

dominants over the subgrid scale term and completely affects its performance. This is obviously an 

example of negative interaction between the subgrid model and the error terms originated from the applied 

numerical method. As an another example for destructive interaction, in some LES simulations sometimes 

a theoretically unacceptable situation occurs, where the resolved total turbulent kinetic energy of the LES is 

greater than the total turbulent kinetic energy of an equivalent DNS (Ref. 83). It is expected that after 

filtering the DNS results, the amount of turbulent kinetic energy decreases, simply because the turbulent 

kinetic energy of the subgrid scales supposedly will be absent. However erroneous components which 

affect the simulation may result into a surprising outcome. 

Based on the discussion given in Ref. 82, when the filter size is a function of the grid's size, a good 

LES is the one which leads to DNS as the grid is refined more towards the Kolmogorov scales. Grid-

independent LES under this condition doesn't exist in theory, because a grid independent LES is essentially 

DNS and the philosophy of LES loses its meaning if it is grid independent. As it was proposed in Ref. 83, 

the best approach to assess the quality of an LES is to compare the amount of the resolved turbulent kinetic 

energy to the total turbulent kinetic energy. A good LES should resolve at least 80% of the total turbulent 

kinetic energy. It is not however an easy task to have an estimate for the total kinetic energy and usually a 

sort of experimental measurement is required. 
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Finally, it should be mentioned that in RANS, generally speaking, unsteady motions are regarded as 

turbulence and therefore turbulence models are usually designed to remove all the unsteadiness in the flow. 

It sometimes happens that a RANS simulation doesn't converge to a steady state solution and an unsteady 

result is produced. It may be claimed that these simulations are a form of LES but, given the original 

purpose and design of RANS turbulence model, this claim doesn't seem to be very convincing and a 

careful assessment is needed before using the results of such simulations. 

2.2 Governing Equations 

For an arbitrary function / ( * , , t), filtering is defined as: 

/U,.,r) = jDG(x,.-# / ,A)/(#,. , /)^1 . (2.7) 

A is the filtering size and is related to the size of the computational mesh. For compressible flows the 

Favre-filtering operation is defined as: 

f(x,,t) = € (2.8) 
P 

By this definition, a variable is decomposed into its Favre-filtered component and fluctuating component 

according to: 

f(xi,t) = f(xi,t) + f\xi,t) (2.9) 

If we assume that the filtering operations commute with the derivative operators and then apply the 

definitions in Eqs. (2.7,2.8) to the compressible Navier-Stokes equations; the filtered governing equations 

are obtained as follows:63-65-8485 

^ + ^ = 0 (2.10) 
dt dx: 

dpt. | dpufij _ dp | diTij+ffij) 

dt dx .• dx, dx: 
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dpe d(pe + P)uj _ 

_ M(T)Cp 3f . 

3/ 3;c, dx; 

p = pRT 

(2.12) 

(2.13) 

e is the filtered total energy per unit mass and is defined as: 

pe=pcj+-piiiui (2.14) 

The molecular viscous stress tensor c?,-,- is approximated by: 

'' 3 dxk 'J dx; dx, 
V J ' 

(2.15) 

where fi(T) is molecular viscosity and is calculated by Sutherland equation: 

//(f) = (1.711xlO-5)(-^-)2 / 3U3 8 3-5 5 ) M 273.15 V + 110.4 
(2.16) 

The applied notation may be further simplified by dropping the tidle and overbar signs and also non-

dimensionalize the equations using the reference values(p^U „,,pJUl„L„T„). The governing equations 

therefore become in the following form assuming that Fconv = (Fx
conv, F{onv, F3

conv) and 

pdiff =ipdiff pdiff pdiff^ . 

dt 
+ div(Fcom' + Fdiff) = 0 (2.17) 

P 

pit 2 

Pu3 

pe 

(2.18) i- ctmv 

pUj 

puju, + pSjt 

pUjll2 + p8j2 

piijUi+pSji 

Uj(pe+p) 

(2.19) 
fW = 

'j3~lj3 

p(T)Cp df „ 

(2.20) 
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2.3 Subgrid Scale Models 

In the Eqs. (2.10-2.12), Ty and Qj are the subgrid scale stress tensor and the subgrid scale heat flux 

respectively and they need to be modeled. According to Ref. 48, there are two main strategies in order to 

address the challenge of subgrid modeling: 

• Functional modeling: in this method the overall action of the subgrid tensors are 

approximated by introducing appropriate dissipative or dispersive terms and function into the 

simulation. (—— = F, (w,) and —J- = F2 (u()) 
dXj OX: 

• Structural modeling: in this method different approximations of the subgrid scale tensors, 

based on the resolved flow field are considered (Ty = F,(M ;) and Qj = F2(Uj) ) 

In the functional modeling approach, it is generally assumed that the modeled scales are influencing the 

resolved scales mainly through the energy exchange mechanism which takes place between the resolved 

and modeled scales. These models can be categorized in three main categories: 

• Models based on the resolved scales (such as Smagorinsky model86) 

• Models based on the energy at the cutoff scale (such as Structure Function model) 

• Models based on the subgrid scales(such as Yoshizawa model) 

The structural models, on the other hand, are built without considering any knowledge about the nature of 

the interactions between the subgrid and resolved scales. They can be categorized in several groups: 

• Models based on formal series expansions (such as models based on approximate 

deconvolution or Kosovic's simplified Non-linear Model) 

• Differential Subgrid Stress models which are based on transport equations for the subgrid 

tensor components (such as Deardorff model) 
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• Deterministic Models of the subgrid structures which are constructed using different 

assumptions about the structure of subgrid scales (such as S3/S2 Alignment model) 

• Models based on Scale Similarity hypothesis (such as Bardina model) 

• The mixed models which are based on liner combinations of the functional and structural 

types (such as Smagorinsky-Bardina model) 

• Models based on an explicit reconstruction of the subgrid velocity f!uctuations( such as 

chaotic map model) 

• Implicit structural models based on specific numerical algorithms, whose errors are designed 

to mimic the subgrid forces (MILES) (such as scale residual model) 

The functional models generally provide a more accurate and realistic energy transfer between resolved 

and subgrid scales. However the structural models better approximate the structure of subgrid tensor and 

therefore are better capable to capture anisotropic effects and disequilibrium in the flow. In this work the 

Smagorinsky subgrid model is implemented and is described in details in the next section. 

2.3.1 Smagorinsky Subgrid Scale Model 

The Ttj is the subgrid scale stress tensor which is modeled by compressible extension of the Smagorinsky 

subgrid-scale as follows: 

T,J = -(puiUj - puiuj) = pCs A2 fiju {2S,j - - SkkSi}) (2.21) 

The rate-of-strain tensor is defined as: 

1 du, du 

and the model for the filtering size is: 
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A = {Vol(Ci))
ln (2.23) 

where Vb/(C,) is the volume of cell C, which belongs to node i. 

The Qj is the subgrid scale heat flux and is modeled using eddy viscosity model: 

Qj = -cp (pujT - pSjf) = pCP ^ A2 pklSk! — (2.24) 

in which Pr, = 0.6. 

2.4 Statistical Analysis of Turbulence 

In order to study the fluctuating quantities of turbulent flows, statistical analysis is needed to be performed. 

It would enable us to define and calculate the average and the fluctuating quantities for different variables 

and therefore makes it possible to qualitatively compare the numerical results with experimental data. We 

assume that X(j),j = 0,...,N-l is a set of data with N different data samples. The statistical definitions, 

used in the proceeding chapters are as follows: 

• The average value of a variable (Xy) is calculated as: 

J V - l 

N 
X=±± (2.25) 

in which N is the total number of available data points. 

• Root-mean-square is defined as follows: 

N-\ _ 
L(Xj-X)2 

Xrms=MJ^-^ (2-26) 
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Chapter 3 

Numerical Method 

3.1 Numerical method for LES 

T
HE importance of applying accurate numerical methods in LES, especially when it involves an 

upwinding term in the flux calculation has been previously reported in the literature.66987 The 

upwind schemes, regardless of the applied numerical method, add some artificial dissipation and therefore 

are known to be much more stable than central difference schemes and have been used successfully in the 

past for RANS simulations. This additional dissipation however can negatively influence the accuracy. 

Spyropoulos and Blaisdell (1998),69 used a 5th order, upwind-biased finite difference scheme for the 

inviscid flux calculation in order to simulate a spatially evolving supersonic boundary layer. They 

recognized the fact that the upwinding schemes provide artificial dissipation, and therefore they preferred 

to use the upwind-biased scheme. Mary and Sagaut (2002),87 used a 2rd order MUSCL, cell-centered 

control volume scheme in order to simulate the flow around an airfoil near stall using structured multi-

block meshes. They applied a sensor in order to minimize the numerical dissipation originated from the 

upwinding. Andersson et al. (2005),6 simulated a compressible jet using a 3rd order upwinding scheme in 

which the contribution of the upwinding term was decreased to one eighth in order to make the numerical 

method less dissipative. 

The additional dissipation of a numerical method highly depends on the nature of the emulated flow and 

the local resolution of the grid, and under some circumstances it can even be higher than the dissipation of 

applied subgrid scale model. That is specially the case when a low order numerical discretization as the one 

applied in this research is used. For example, Hahn and Drikakis (2005),88 simulated the decaying 
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turbulence and the compressible flow around open cavities for low and high Reynolds numbers. They 

concluded that the numerical dissipation of their numerical method was satisfactory and therefore addition 

of an explicit subgrid model (SGS) was not justifiable. 

In this dissertation a 2nd order Roe-MUSCL flux calculation (fly scheme) is used for the LES and the 

objective is to evaluate and possibly control its numerical dissipative error. In the Roe-MUSCL 

(fiy scheme) flux calculation, the contribution of the upwinding term is adjusted using a coefficient 

{y) which is directly multiplied into that term during the flux calculation. Coefficient (/?) is also used in 

order to predict the value of variables at the boundaries of control volume cells. 

A complete analysis of the accuracy of Roe-MUSCL (fiy scheme) and its relation to the structure of 

generated grid has been reported by Carpentier (1980).89 In that study, the dissipative and dispersive error 

terms of 2D advection equation have been analyzed using two different meshes (a uniformly distributed 

triangular mesh and a structured quadrangular mesh). He concluded that the J3 = l/3,y = 0.0 will result in 

4th order dispersive error and 5th order dissipative error. This high order dissipative error requires the 

scheme not to have any upwinding (^=0.0). It was also observed that these error terms were functions of 

the CFL number related to the applied 4* order Runge-Kutta time discretization scheme. If /? = l/3but 

y±- 0.0 then the dissipative error will be 3rd order while the dispersive error will still remain 4th order. In 

addition, it was also found that the uniform triangular mesh potentially has higher dispersive and 

dissipative error in comparison to quadrangular mesh. 

As a result, there have been several attempts in order to lower the applied value of y and consequently 

decrease the numerical dissipation of the flux calculation method. For example Bui (1999),90 simulated the 

turbulent flow inside a square duct using Roe scheme and using a structured grid. He tried to use the 

smallest possible value of y for which the simulation was still stable. Camarri et al. (2002),6I applied a 2nd 

order mixed finite volume-finite element code using Roe-MUSCL method in order to study the 

contribution of upwinding to the numerical dissipation and its interaction with SGS. They also used the 

lowest possible fraction of the upwinding term in order to minimize the dissipative error and also satisfy the 

30 



stability condition of the simulation. In all of these cases, several simulations were needed to be carried out 

in order to determine the lowest value of y that was still able to keep the simulation stable. 

Ciardi et al. (2005),12 recently developed a new scheme for the unstructured meshes based on finite 

volumes for inviscid and viscous flux calculations. They adjust the contribution of upwinding term using a 

wiggle detector and therefore there is no need for several simulations to determine the lowest value of y. In 

their method the objective is to completely damp the wiggles of a certain size detected by the sensor. This 

method however, can partially lead to damping the energy in the smallest scales captured in the simulation. 

Since in LES, the smallest scales of simulation fall within the inertial subrange, it is necessary to preserve 

the energy of such scales. 

In this dissertation a new self-adaptive upwinding method, inspired by Refs. 12 and 13, is developed 

and implemented. This method is compatible with classic numerical scheme for compressible flows, based 

on Roe-MUSCL (fiy scheme) and is also applicable to unstructured grids. It uses a wiggle detector which 

has been inspired by Ref. 91. The wiggle detector proposed by Ref. 12 detects the wiggles along three 

consecutive edges which are not necessarily collinear and it could lead to some uncertainty. Therefore a 

new method, for wiggle detection is proposed here which is expected to be more reliable. In addition, the 

developed scheme does not completely damp the wiggles detected by the wiggle detector, but instead 

permits some wiggles to develop up to a preset threshold of intensity inside the computational domain. The 

importance of that will be shown in the validation step to be crucial in order to adjust the slope of the 

energy spectrum. 

It is generally agreed that turbulent flows are characterized by their unsteadiness and unpredictability 

and the largest part of the turbulent energy is constructed by truly random motions which could be the 

remains of old coherent structures.57 We also know that in a typical simulation, whenever the grid 

resolution is not high enough to capture all the scales of the flow (LES), application of a central scheme 

would generate random fluctuations and wiggles. That is the case when y is lowered by the wiggle 

detector. As a result, the developed scheme introduces a degree of randomness into the solution which 

could be favorable and generate more realistic results. 
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The applied numerical method in this work is a mixed finite volume-finite element method,84'9 which 

has been developed to solve the unsteady Navier-Stokes equations. It operates on unstructured grids, using 

2nd order Roe-MUSCL upwind formulation (/}y scheme) for the convective fluxes and a 2nd order finite 

element method for the diffusive fluxes. As it was mentioned in the chapter 2, subgrid scale terms are 

modeled by the Smagorinsky model. A second order implicit scheme is also used for the temporal 

discretization. The system of equations is then solved, using an iterative GMRES solver and MPI parallel 

programming. In our simulations, reference 93 has been used for the purpose of parallel programming. 

3.2 Spatial Discretization 

In order to spatially discretize and then numerically solve the problem, the weak formulation of the 

averaged Navier-Stokes is written by multiplying a test function to the Eq. (2.17) and then integrating it on 

the entire spatial domain (Q.): 

\&-x¥ + divFconv{qyV)dv=\[-div{.Fdiff{q)yV\lv (3.1) 
n ot n 

Then Q. is discretized into separate Ci cells which don't have any overlapping. This approach will 

break the Eq. (3.1) into sub-equations for every of those cells. The result would be the discrete formulation 

for every cell (Eq. (3.2)). These equations are obtained by using the characteristic function tpt of the finite 

volume cell C, as the test function for the convective part of the equation and the piecewise linear finite 

element basis function fa as the test function for the diffusion term: 

\&- + divFconv(q))(Pidv= \[-div(Fdiff (q)Wdv (3.2) 
c, dt X c.-

Green's theorem now is applied to the convective fluxes, while the viscous terms are integrated by 

parts. After some manipulations, the variational formulation is achieved as follows: 
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\^-dv + i[Fcom(g)'iii]dcT^ I [F'"ff(q)»div^i)]dv-i[(Fdiff(q)^)»m]da 
c, dt 

(3.3) 
ac, ic, 

where n,is the outward unit vector to the boundary (dC () of cellC, (Fig. 3.1), such that 

ni={nix+niy+niz) and wis the outward unit vector to the boundary ( T ) of elements (£c;) sharing node 

i. Since the viscous part of the compressible NSE is parabolic, it is discretized using an accurate finite 

element method. The integral term j[(Fd'^ (g)0,) • m]d<7 appears to be small therefore it is not considered. 
r 

Fig. 3.1 Share of the cell C, from an adjacent tetrahedron. 

3.2.1 Convective Flux Calculation 

Roe-MUSCL method is the base for the convective flux calculation in this work. In this method the normal 

component of the inviscid flux at the boundaries of neighboring cells is defined as a sum of an average term 

calculated by fluxes of two nodes belonging to the edge which the flux is calculated along it and an 

upwinding term. 

2 J 2< > 
(3.4) 
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Fig. 3.2 Control volumes and convective flux calculation. 

qis the average value of q_ and q+ evaluated at the boundary of a cell or control volume using Roe 

method. q_ and q+ are calculated using <p_ and <p+ which are obtained by approximating the numerical 

primitive variables of those two nodes at the boundaries of the cell 3C, (inter nodal values between nodes i 

and j) using the following equations: 

(3-5) 

in which lup!; ={\- pKqfj-ft)* p<y<p)'f(X j-Xi), Ap! ={\-p){<Pj - ft) + p{V ?)«> • (Xj - X , ) , 

hq> = #?•—#>, and q> = [p,u,v,w,p]\s the primitive variables' vector. This approach is used in order to 

improve the precision of the method without changing the approximation space.84,92 

The parameter /? determines to what extent central interpolation is used in order to calculate g>+ and <p_ . 

As it has been recommended in Ref. 89, we set the value of /? equal to 1/3 in order to minimize the 

dissipative and dispersive errors. (V<p)jj and (V^>) .. are defined as left hand and right hand gradients (Figs. 

3.2). These gradients are computed respectively on the upstream (Z.) and downstream (R) tetrahedrons 

associated with edge ij (Fig. 3.3). Local average gradients also can be used as an approximation. This is an 

extension of the MUSCL method to the finite element, because the gradient of the primitive variables' 

vector (<p) is computed using the finite element technique. 

Since Roe-MUSCL scheme is based on a linear approximation of the variables in every cell to the 

boundaries, it can generate oscillations close to the discontinuities. In order to solve this problem, the 

34 



values of gradients used in the approximation are bounded using a nonlinear function. This function is 

called limiter function (g(x, y)) and it gives the MUSCL scheme the needed TVD property. In our 

simulations, the Van Leer-Van Albada limiter is applied and it has the following definition: 

g(.x,y) = 

0 
{x2 +e)y + (y2 +e)x 

2 2 

x +y +e 

xy <0 

xy>0 (3.6) 

in which e is usually a very small number and in our simulations it is set to 10 -16 

V L 

\ /' \ 
1 -

J^fy / J 

7\ ^ \ 

Fig. 3.3 Convective flux calculation. 

3.2.2 Self-Adaptive Upwinding Scheme 

The Roe-MUSCL scheme has given good results for Euler or laminar simulations but it has been found to 

be too dissipative for the LES.I3'61'90 In order to control the amount of Roe upwinding dissipation a 

coefficient ( y) is used, such that: 

^™v*n(,-- = {(^^v(?J + ^'MV(9-))-«ff-rU|^.«(,-)|(9+-?-) (3.7) 

where 7 can change between 0 and 1. In Eq. (3.7), y = 0 corresponds to central differencing, and y—\ 

corresponds to the full Roe-MUSCL method. Omitting the Roe upwinding term altogether ( y-0) causes all 
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calculations to be unstable therefore for a given grid size, a minimum amount of upwinding dissipation is 

always required in order to provide stability. In general, a finer grid would require a smaller value of y. 

In order to determine and adjust upwinding parameter ( y ) dynamically, a wiggle detector has been 

implemented. It checks to see if the intensity of the local wiggle is higher than a preset value. If this is the 

case then the scheme increases y towards the full Roe-MUSCL scheme, using a linear function. Otherwise 

the scheme is more centered and y is decreased. 

In the present computations we extend the wiggle definition, given in Ref. 91 for our numerical method. 

A wiggle is assumed to be present along an arbitrary edge, if the gradients change sign twice along that 

edge. That is, if for any flow primitive variable <i> (<t> e cp = [p, u, v, w, p]) 

^ i - * i _ 1 ) ( * i + , - « D i ) < 0 (3.8) 

(4>i+2-3>i+ I)(* i + 1-*i)<0 0.9) 

are true, then a wiggle is present. A simplified example is illustrated in Fig. 3.4. In this example there is a 

wiggle along the edge connecting nodes i and i+1, but there is no wiggle along the edge connecting nodes i-

1 and i. 

i-3 i-2 i-1 i i+1 i+2 i+3 

Fig. 3.4 The definition of a wiggle in the present computations (Ref. 91). 

A new method is developed here to be a more general and appropriate approach for the purpose of LES. 

Let's consider a tetrahedron having ij as an edge (Fig. 3.3). Along ij we compute (V<t>) ( "C" as 

centered) which f V4> f • «•• = (<I> - - 3>,)/ I X f — Xt \. Xt and X • are the position vectors of nodes i and j 

respectively. Now we replace the inequalities (3.8,3.9) with the followings: 

[(V<i>)L.riij][(V<P)c»tij} = [(V<!>)L.Hij][(<PJ-®i)/\Xj-Xi \]<0<O (3.10) 
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[(V*)£ •nij]KV<t>f . ^ ] = [(V*)^. • n # ] [ ( * ; -<Pi)/\XJ-Xi \]<0<O (3.11) 

If inequalities (3.10,3.11) are satisfied then the local wiggle's intensity is more than the preset value 

(#) and y should be increased. This increment is a linear function of 0 — A//n{[(V<i>) •«,-,• ][(V<I>) •«#]} . 

On the other hand, when inequalities (3.10,3.11) are not satisfied, it implies that the intensity of the wiggle 

is less than the preset value (0) andy can be decreased. This time, the decrement would be a linear 

function of Mox{ [(V*) • ntj ] [(V4>)c • ni} ]} - 6. 

In both linear functions,(V*)E [(V4>)^,(V4>)"],4>€ [p, u,v,w,p] and the value of (y) is chosen 

between 0 and 1. The value of 6 is either negative or zero and usually has a small absolute value 

(= -0.00001 to -0.0001). The idea is to use the products of the gradients as a way to measure the intensity 

of a local wiggle. 

For DNS, the grid is fine enough to capture the smallest scales of eddies present in the flow field. 

Therefore the highest mode of the flow's energy spectrum (E(k)) is lower than the highest mode that the 

numerical method can capture. In other words, the smallest eddies present in the flow have an average 

diameter which is fairly bigger than local average size of the grid (h) and therefore no energy is expected to 

be present in the scales belonging to h. It implies that there should not be any local wiggle present in the 

flow and 0'm the non-equalities (3.10,3.11) must be set to zero. 

For LES, however, the situation is different because even in the best cases, the cutoff mode is expected 

to fall within inertial subrange and therefore there will be some energy in the highest scales which are 

expected to be captured by the simulation. Therefore, 0is replaced by a negative and relatively small value 

which will represent the existence of energy in the smallest scales and by changing the value of 0, the 

amount of that energy is adjusted. 

Considering the high computational resources, required for some of the simulations that will be 

explained in details during the coming chapters, application of the parallel computational method is 

unavoidable and therefore, parallelization of the self-adaptive upwinding scheme is necessary. In order to 

parallel the proposed scheme, for every edge that is connected to a node which belongs to the boundaries of 

a specific subdomain, a search is carried out among all the elements of its own neighboring as well as the 
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subdomains which share that particular node. During that search, the best candidates for the upstream (L) 

and downstream ( R ) tetrahedrons are determined. During the following iterations, the values of those 

preselected elements are used by the wiggle detector to do the required calculations and therefore the 

numerical method remains consistent everywhere within the domain. 

3.3 Temporal Discretization 

The spatial discretization procedure described above leads to a discretized formulation which has to be 

integrated in time. We use a second order implicit scheme in order to perform the time integration. The 

governing equation for every cell (Eq. (3.3)) can be rewritten by taking the temporal term to left hand side 

and the rest of the terms to the right hand side of the equation as: 

\^dV = ̂ K(qi,q}) (3.12) 
c, ot j 

qi is the variable vector of the cell C, and qj represents the variable vector of any other cell C • which is 

exchanging flux with C, . The discretized temporal term is integrated by assuming constant qt over the 

cell C,: 

VoKC^ 
at 

= I *(<?,, <?,) (3-13) 
i J 

For 1st order approximation — 
dt 

can be replaced by ^ L , j n which Aq? = q"+l - q" and At" = tn+l -1" . 
At" 

In order to implement an implicit temporal method, right hand side of Eq. (3.12) is evaluated at time 

n+1. Therefore the equation is rewritten as follows: 

VOKC& 
at 

•I.K(qf+],qn
j
+i) (3.14) 
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Right hand side now can be approximated and more expanded in order to achieve a 2" order accurate 

scheme: 

Y.K{q, ,q- )=Z1K(qi,qj)+Z( — At") 

| dK{qi,q})dq} 

3 *q} & 
Af") + I ( 

j oq, 

dK(qi,qj)d
2

q. 

dt2 

(At")' 
•) + 

+ ZC 
8K(qi,qj)9

2qj 

9qj 3t2 <*!£) +0((Atn)2) (3.15) 

Derivative terms in Eq. (3.15) are replaced by: 

3(9,0 
dt 

,n L ~ 2 _ (1 + It) /(I + T)g,"
+ - (1 + T)g," + TZ /(l + T)g|?"' = (1 + 2T) /(l + T)Ag," - T*8 /(l + T)Ag; 

At" ~ At" 

n-\ 

9(9,0 
3r 

"_(a)(Ag,n)-(fc)(Ag,"-') 

A/" 
(3.16) 

a2 (?,) 
dt2 

2r/(l + r)9,"
+1 - (2r)g,"+(2r2)/(l + r)g;'-' _ W(l + r)Ag," - r2 / ( l + ̂ Ag," ' 

(A/")2 (A/")2/2 

32(9,0 
3/2 

(c) (A g , n ) -W(A9D 
(Af")2/2 

(3.17) 

in which 

r = At" IAt"-{ 

a = (l + 2r)/(l + T) 

b = T2l(\ + T) 

c = r/(l + r) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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Equation (3.16) has been used for the left hand side of Eq. (3.14). Finally Eq. (3.14) becomes in the form 

of: 

^ , f l + c ) I ( ^ , 
At" J dqt 

a , . _ ( 0 + , ) I ( . ^ ; > . . - . 
J fyj 

-)M"j 

ZK(qr.,J)^)I(B^^-«+B^^) + b V ^ A q - + o((A.,», (3.22) 
At" 

Equations similar to Eq. (3.22) are then considered for every cell inside the domain and then the system 

of equations is solved, using an iterative GMRES solver. 

3.4 Boundary Conditions 

By neglecting the viscous terms in the Eq. (2.17), we obtain the Euler equations: 

^ + ̂ F-(9)) = | i + V.(F^(9)) = ̂  + (Mp^).v, = ̂ + £(^^ x | 2 . ) = o(3.23) 
dt dt dt dq dt ;=i dq dxt 

We can drive the quasi-linear form of the Euler equations as follows: 

dq 3 dFi
LOm (q) dq „ dq 3 dq. dq 7 ^ . 

dt ,=1 dq dXj dt ;=i cte, dt 
(3.24) 

in which At = — ! and they are defined for the real gases as: 
dq 

2 Y~\\-\2 
<ir+-—\u\ 

l\"2 

1 

(3-r)«i 

- W . W l"3 

-u^ye-{y-\)\U\2) je-?-±(\u\2+2uf) 

0 

-(y-\)u2 

"1 

0 

-(y-l)uiu2 

0 

-{y-\)u3 

0 

M, 

- ( ^ - 1 ) M , M 3 

0 > 

y - 1 

0 

0 

7"\ 

(3.25) 
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— uxu2 
2 X—11—12 

-ui + - \u\ 
2 2 M 

-u2u3 

-(r-D«i 
0 

(3-r)«2 

o o N 

o o 
- (^- l )M 3 ^ - 1 

K, 0 

-«2(je-(^-l) |w|2) - ( ^ - 1 ) M , M 2 ?e - -^— ( |M | 2 +2«2) -(y-l)u2u3 ju2 

(3.26) 

A3 = 

*1"3 

i2u3 

r-hr.\2 
-U-, + - \U 

0 0 

u3 0 

0 u3 

-{y-\)ux -{y-X)u2 

i-|2 
M ^ - ^ - 1 ) ! " ! ) - ( r _ 1 )wi"3 - ( r - 1 )«2 w 3 ?«-

1 0 ^ 

ux 0 

u2 0 

(3-y)«3 r - 1 

.£jL(|2|2+2iif) JU3 

(3.27) 

The Jacobian matrix for the convective fluxes passing through a surface with the normal vector 

h = {nx,n2,n3)\s defined as: 

A*n =Ainl +A2n2 +A3n3 (3.28) 

In order to change the vector of conservative variables (^)to the primitive variables (V), the 

appropriate transformation matrix is needed to be multiplied into the Eq. (3.24): 

M^- + M (A){M _ I M ).V<7 = ^-2- + {MAM "' ).MVq = 0 Hi 
dt dt 

dV - i - dV 
— + ( M A M - ' ) . V V = — + (Ap).VV = 0 
dt dt 

(3.29) 

in which A? = MAM ' and: 
* i 

V = M2 

M3 

(3.30) M 
dV_ 

dq 

1 

-M, 1 p 

-u2l p 

-u3l p 

^(r-D|«|2 

0 

Up 

0 

0 

-(r-i)«, 

0 

0 

1//7 

0 

-(y-\)u2 

0 

0 

0 

1//7 

-{y-\)u3 

0 N 

0 

0 
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A'' are defines as follow: 
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(3.32) 

(3.33) 

(3.34) 

The Jacobian matrix for the primitive fluxes passing through a surface with the normal vector 

ft = («,, n2, n3) is defined as: 

Ap»n = Apn.+Apn, +Apn, (3.35) 

in the Eqs. (3.32-3.34), it is assumed that n2 + n\ + n\ = 1 and c = 7 ^ 7 " • 

Matrix Ap •« can be diagonalized using its matrix of eigenvectors. Eigenvectors can be obtained by 

solving the eigenvalue problem: 

\A p • ii - AI\ = {u.n - Ay {{u.n - A) - c1) = 0 (3.36) 

The solutions of the Eq. (3.36) are the eigenvalues of matrix Ap • n and A • n . They are as follows: 

/I, = /t> = A} = u.n 

A4 = u.h + c 

A5 = u.n — c 

(3.37) 
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By using every calculated eigenvalue, we can calculate the corresponding left eigenvectors. Those 

eigenvectors can be placed as the rows of a matrix. This matrix will be a diagonalization matrix for 

Ap •h 

0 

P . 

n3 —n 
c 

P -0 
2c 

- £ * 

2c 

c 
P. 

2c 2cz 

0 - — Hi — — «-> — — n , 
2c 2c 2c J 2c1 

(3.38) 

= L(AP.n)L-1 = 

'u.n 

0 

0 

0 

. o 

0 

u.n 
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0 

0 

0 

0 

u.n 

0 

0 

0 

0 

0 

u.n + c 

0 

0 ] 
0 

0 

0 

u.n-c 

(3.39) 

When this matrix is multiplied into the primitive vector, the finite variation of characteristic vector is 

obtained: 

Aw = 

Aw2 

Aw3 

Aw4 

KAw5j 

= LAV 

/7, 0 ^-n3 
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n2 — — «3 0 
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2c 
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2c 

2cl 2c 
P 1 
2c 3 2 c 2 ; 

A«! 
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Ap 

(3.40) 

Avv = 

Aw2 

Aw3 

Aw4 

v A w 5 y 

n]Ap + — (n3At(2 — n2Au3)—^n\Ap 
c c2 

n2Ap + — (/?|AM3 -« 3 A«,) jn2Ap 
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n?jAp + — (n2Auj - « | A « 2 ) — T ' h ^ P 
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2 c- c 

(3.41) 
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It can be shown that information inside the flow is transferred by five independent characteristic waves 

at every location. Every wave travels along its corresponding eigenvector and transfers the characteristic 

variable with a speed equal to the corresponding eigenvalue. This hyperbolic nature of the flow equations is 

very important and it is used to define different boundary conditions. 

3.4.1 Subsonic Inlet Boundary Condition 

At subsonic inlet boundary condition, only the first four characteristic waves are entering into the 

computational domain while the fifth wave is moving in the opposite direction of the flow and therefore it 

is traveling from inside toward the exterior of the domain. In this case, the density and the velocity vector 

are fixed while the pressure is interpolated from the inside of the domain. According to the characteristic 

method it will be more accurate if the variables are set in such a way that the first four finite variation of the 

characteristic variables become zero (Eq. (3.41)). Nevertheless it has been shown in the literature that 

fixing the characteristic variables is satisfactory and will generate acceptable results. 

In LES when the level of turbulence intensity at inlet is known or can be reasonably estimated, a 

fluctuating term is superimposed over the average profile: 

U(x,t) = U0(x) + U'(x,t) (3.42) 

In our research however, as it will be shown in the next chapters, no artificial turbulence forcing at the inlet 

boundary conditions is used. 

3.4.2 Noslip Adiabatic Boundary Condition 

For this type of boundary condition, all the velocity components are set to zero but the pressure is 

extrapolated from inside the domain. Considering that in this case, three of the characteristic values are 

zero and therefore just one characteristic wave is entering from the boundary inside the domain, only one 

variable is needed to be set at the boundary. The value of that parameter is set by the adiabatic condition: 

V7\/?=0 (3.43) 
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3.4.3 Free Slip Boundary Condition 

When this boundary condition is applied on a surface from the boundary, the velocity normal to the surface 

is set to zero while the components parallel to the surface are not adjusted. Therefore the convective flux 

normal to the boundary will reduce only to: 

pu.h 

pu.nUf + p/7j 

pu.nu2 + pn2 

puu.nu3 + pn3 

u.h(pe + p) 

• = • 

0 

P"\ 
pn2 

pn3 

0 

(3.44) 

No control volume exists outside the boundary of the domain; therefore the fluxes at the boundary have 

to be evaluated using the variables of corresponding boundary nodes. 

3.4.4 Nonreflective Boundary Condition 

As it is shown in Fig. 3.5, the convective flux at a boundary node has two components: the first one is the 

contribution of the node located on the boundary (Fcom (q,) • n) and the second one is the contribution of 

an imaginary (virtual) node outside of the computational domain {FLOm{qj)»n). 

>n = F (qj)*n + F (qj)»n (3.45) 

In the case of nonreflective boundary condition, the characteristic waves constituting these components 

are modified in order to provide the desirable non reflective characteristic. During the calculation of the 

flux coming from the domain, all the characteristics waves that are towards the interior domain are 

removed. On the contrary, when the virtual node's contribution is calculated, only the characteristic waves 

that move towards the domain are considered and the ones which move away from the boundary are not 

considered. This procedure will prohibit the reflection of flow's characteristics as it is leaving the 

computational domain and doesn't permit the shock waves to reflect back inside the domain to contaminate 

the solution. 
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Fig. 3.5 Flux calculation for the nonreflective boundary condition. 

3.4.5 Pressure Output Boundary Condition 

This boundary condition is imposed based on the same principal as the nonreflective boundary condition. 

The only difference is that in order to calculate the flux contributed by the virtual nodes (flux from node J 

as it is shown in Fig. 3.5) a predetermined pressure distribution is considered. 

3.4.6 Periodic Boundary Condition 

For this boundary condition, we assume that the certain nodes located on the boundaries at different sides 

of the computational domain are attached (nodes I and J in Fig. 3.6). As a result all the edges connected to 

one periodic node (for instance the edge connecting the node K to I) makes the necessary contribution to 

the balance of fluxes of the other node (in this case J) which is presumably attached to it according to the 

periodic boundary condition. The necessary contribution includes both the viscous and convective fluxes. 
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Fig. 3.6 Nodes I and J attached according to the periodic boundary condition. 
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Chapter 4 

Numerical Verifications 

I N this chapter at first, a channel flow simulation is carried out to test the stability of the applied 

numerical method, explained in chapter 3, against strong gradients and fluctuations in the flow and to 

measure its ability to adjust itself under such circumstances and converge. Then, decaying isotropic 

turbulence is simulated and the influence of the self-adaptive upwinding scheme over the total kinetic 

energy and the energy spectrum is studied. Its interaction with the Smagorinsky SGS is also investigated. 

These test cases serve as validation and calibration steps for the scheme's development. 

4.1 Channel Flow Stability Simulation 

In the Channel flow test, the stability characteristics of the numerical method against strong gradients and 

fluctuations, artificially generated by a noise term in the flow initialization, are investigated. It is expected 

that the computed velocities result in a bounded total kinetic energy. If the scheme fails to satisfy this 

condition, it can be concluded with certainty that the numerical method is not suited to model turbulent 

flows. On the other hand, if it fulfills this condition, it does not mean automatically that it is a good model. 

In this test, the flow through a channel presented in Fig. 4.1 is simulated. A similar test has been 

presented for an incompressible fluid simulation in Ref. 94, using hexahedral and tetrahedral elements. In 

the simulation presented here only tetrahedral elements are used. The discretized domain contains 2302 

tetrahedrons, 9658 nodes and 2532 boundary faces. A rather coarse mesh is used in this simulation to 

reflect the typical situation in the LES of turbulent flows in which there are too few degrees of freedom 

available for the simulated Reynolds number. The time step (At) of the simulation is set to 0.01 as it is the 
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case in Ref. 94. At each time step, the residual is decreased 6 degrees in order to provide good accuracy. 

The inflow boundary condition is defined as: 

U(t,0,y,z) = 

(4y(l-y> 
0 
0 

Inflow 

Noslip Wall 

Outflow 

(4.1) 

Fig. 4.1 Channel flow's grid and boundary conditions. 

On the lateral walls, the noslip boundary condition is imposed and on the top and bottom walls, the free slip 

boundary condition is applied (Fig. 4.1). The flow leaves the channel at the outflow boundary condition 

where pressure is fixed over that face. The initial velocity is given by: 

t/(0,X) = 

'4y(\ - y)N 

0 

J 0 
+ c„ 

/-4^sin(4^y)A 

-3^s in(3^) 

3;rcos(3;ct) j 

(4.2) 

Without presence of any noise in the initial condition (C„oise = 0.0) 

U(t,x,y,z) 
'4.y(l-y)N 

0 

0 , 

(4.3) 
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P(t, x,y,z) = -Sv(x-10)+ P0 (4.4) 

is a solution of the Navier-Stokes equations. Inside the channel, the flow's total kinetic energy (steady 

condition) is estimated to be 2.666. This is done by integrating the velocity distribution given by Eq. (4.3) 

over the entire nondimensionalized domain. The nondimensional molecular viscosity is assumed to be 

v = 10~5 and the Reynolds number of the flow, based on the average inflow and height of the channel (L) 

is: 

111 7 
Re = — = - 1 0 5 = 66667 (4.5) 

v 3 

In this simulation the Mach number is set to the value of 0.01 in order to keep the flow regime close to 

incompressible. The computational domain's total kinetic energy is computed by: 

E(t) = I 
n=l 

NT 3 u f (n) 

\ 

( I - L ^ - 1 ) x V o l ( C n ) (4.6) 
i=l 2 

where N is defined as total number of nodes inside the domain and Vol(Cn) is the volume of cell 

C„,which belongs to node n. 

In the channel flow simulation, y is assumed to be chosen within an interval of which the limits are set 

separately and fixed for every simulation falling within [0,1]. This makes it possible to adjust the average 

effect of upwinding in every test case. To test the stability of the self-adaptive scheme, the permitted 

intensity of the local wiggles (0) is set to zero, in order to completely damp the local wiggles. Considering 

that the grid resolution is very low and 9 has been set to zero, we expect a laminar solution (Eqs. 

(4.3,4.4)), even though the Reynolds number is relatively high. 

The different computations, as summarized in Table 4.1, are performed in order to evaluate the stability 

of the scheme against the strong fluctuations that might be present in every typical LES. When full 

upwinding (case 1) is considered, the total kinetic energy of the system is somewhat lower that the 

expected value of 2.666. Recall that the flow is not well resolved by the mesh and therefore Eq. (4.6) is an 

approximation for the integration operation used to calculate the estimated total kinetic energy of the 

numerical domain. 
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Table 4.1 Explanation of different cases for the channel flow simulation. 

Case# 

1 
2 

3 
4 
5 
6 

Upwinding Parameters 
Upper value of y 

1.0 

1.0 
1.0 

1.0 
1.0 

1.0 

Lower value of y 

1.0 
0.43 
0.1 

0.0 
0.43 

0.43 

e 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 

r • 
^ noise 

0.0 
0.0 
0.0 
0.0 
0.01 

0.1 

Cs -

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

E(t) 

t = 0 

2.6617 
2.6617 
2.6617 
2.6617 

2.73813 

10.2229 

t= 10 

2.3296 
2.6508 
2.9446 
3.0023 
2.6510 
2.6738 

In cases 2, 3, and 4, the upwinding parameter's lower limit is decreased (Table 4.1) and it reduces the 

average upwinding coefficient respectively. By decreasing ythe flux calculation scheme becomes more 

central which makes the simulation more unstable and therefore the wiggles gradually start to appear inside 

the domain. The self-adaptive scheme tries to locally adjust yin order to damp those wiggles and as a 

result the simulation remains stable. However, as it is illustrated in Fig. 4.2, a gradual increase in the total 

kinetic energy is observed. In case 4 the effects of those random wiggles appear even further and the total 

kinetic energy is showing chaotic fluctuations. That is an indication of a fairly unstable flow regime inside 

the channel even though the total kinetic energy has still remained bounded. In case 2, the total kinetic 

energy becomes very close to 2.666 and for the next part of this test, the lower limit of upwinding term is 

kept equal to 0.43. 
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Fig. 4.2 Channel flow simulation (Cases 1,2,3,4). 
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Fig. 4.3 Channel flow simulation (Cases 2,5,6). 
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Fig. 4.4 Non-dim. y-velocity (Case 4 ). 

In Fig. 4.3 the effect of noise is investigated using cases 2,5 and 6. As it is seen in this graph, the self-

adaptive upwinding method is showing a very good stability characteristic despite the fact that the value of 

0.1 for noise coefficient is ten times higher than the value used in Ref. 94. 
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4.2 Decaying Isotropic Turbulence 

The simplest kind of turbulence is isotropic and therefore isotropic turbulence forms a natural starting point 

for the study and simulation of turbulence. This flow has been considered in many earlier and recent 

fiD 7*7 "78 8 0 OS Qft 

investigations. ' ' ' ' ' The experiment for the decay of isotropic turbulence by Comte-Bellot and 

97 

Corrsin (CBC in 1971) is used to validate our simulation. In that experiment, turbulence was generated 

using a biplane, square rod grid with mesh size M = 5.08c/n which was placed inside a flow with a 

uniform upstream velocity ofV0 =10/n/*(Fig. 4.5). The upstream, hot-wire probe was placed at 

U0tCBC IM =42 ±2 downstream of the grid and approximately on the centerline of the wind tunnel. The 

downstream probe was mounted on a sliding carriage for large motions in the stream direction. The 

Reynolds number based on the grid spacing is ReM = U0M Iv = 34000. 

Grid Mesh 
V 

! 18M 
U=10m/s | ^ 

?» i x 

/~ 

" \ ^ 
\ U=12.7m/s 

A ** 

___/" 

Fig. 4.5 Comte-Bellot and Corrsin's experimental setup. 

Different quantities, including the energy spectrum at three consecutive stations (U0tCBC IM =42, 98 

and 171) were measured. The dimensional time in the experiment (tCBC) is defined as: 

'CBC 

x dx 

It^U) 
(4.7) 

in which x is the downstream distance from the grid and U(x) is the mean velocity. Because the same flow 

passes through all the stations we can use the measured data to verify the validity of the numerical results at 

three different computational times. 
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The simulation is carried out inside a box with a size larger than the integral length scale and much 

smaller than the wind tunnel's cross section. 32768 nodes and 178746 tetrahedrons are used in this model. 

Each edge of the box has been divided by 32 nodes into segments of equal size and then all elements are 

distributed uniformly inside the domain. Periodic boundary condition is imposed on all sides of the box. 

In Ref. 97 one-dimensional energy spectrum En at U0tCBC/M =42 is reported which can be 

approximated by a logarithmic polynomial as bellow: ' 5 

log, Ell(k) = A0 + A, log, k + A2(\oge k)2 + A3Qoge k)3 + A4Qoge k)4 (4.8) 

In the isotropic turbulence, the energy spectrum E(k) can be obtained from Eu(k) by: 

W'^hT^r) (4-9) 

2 dk k dk 

This yields to: 

E(k) = Eu{^[Ai+2A2\ogek + 3A3(logek)2+4A4(\ogek)3]2 

+ A2-A]+(3A3-2A2)\ogek + (6A4-3A3)(]ogek)2-4A4(logek)3) 

in which coefficients are reported in Table 4.2. 

The initial velocity field for the simulation is created by superimposing Fourier modes having 

prescribed energy spectrum as Eq. (4.10) but random phases. The method has been completely described in 

Ref. 64 and 95 and it is briefly described here. 

Table 4.2 Coefficients used to define energy spectrum at U0tCBC IM = 42 . 

Coefficient 

A. 
A 
A2 

^ 
A, 

Value 

4.7935398 

-1.3284141 

-0.2146974 

-0.0314604 

-0.0169870 
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A zero-mean, dimensionless, periodic and random velocity field, which was initially achieved by 

filtering the LES results of another simulation is considered. This distribution can be expressed by a 

discrete Fourier series as follows: 

«(*) = I I Z«(/,m,ny*-5 (4.11) 
-N,, + \-Ny+l-N. + l 

where the triple sum is over 1, m and n, respectively, and 

k=klJ + kmj+knk 

x = xi + yj + zk 

The dimensionless wave numbers are defined as: 

(4.12) 

(4.13) 

*/ 

km 

k„ 

= 1 

= m 

= n 

(4.14) 

(4.15) 

(4.16) 

and 

Nx=Ny=Nz=NI2 (4.17) 

where N=32 in accordance with the applied grid. This initial velocity distribution has the following 

definition in the physical space: 

u(x) = u(x)l+ v(x)~j+ w(x)k (4.18) 

and in Fourier space it is defined as: 

u(l,m,n) = u(l,m,n)i +v(l,m,n)j + w(l,m,n)k (4.19) 

The mentioned Fourier transform of the initial velocity field is modified to achieve zero divergence by the 

following replacement: 
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u(l,m,n)*-u(l,m,ri) -̂A (4.20) 

v(l,m,n)<^v(l,m,n)-^fA (4.21) 

w(hm,n)<r-w(l,m,n)—^A (4.22) 

where 

k2=kf+k2
m+k2

n (4.23) 

A = kJi(l,m,n) (4.24) 

The Fourier coefficients need to be further modified in order to agree with the initial energy spectrum of 

CBC. The local dimensionless turbulence kinetic energy can be written as: 

1 IxlltlK J 

(2x) o o o 2 
Ekin = 7^—J \ \ \ ^ ufrdxdydz (4.25) 

By applying the Parseval's relation we obtain: 

Nx-l Ny-\ N.-l I 

Ekin= S Z 2 j-(uu*+vv*+ww*) (4.26) -•kin — — — o 
-Wr+1-AL+1-AT,+1 2 

whereu(l,m,n)* is the complex conjugate of u(l,m,n). The initial turbulent kinetic energy can also be 

derived from the energy spectra E{k): 

Ekin=\;E{k)dk (4.27) 

where E(k) has been non-dimensionalized by U^L^, and k by LZ . The filtered turbulence kinetic energy 

is 

E^\fillered=lkCE(k)dk (4.28) 
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where the range of the integral is divided into Nk equal increments. kQ and kN represent the smallest and 

largest wave numbers in the simulation, 

* „ = ! (4-29) 

ft 
kN~{N-2) (4.30) 

2 

From Eq. (4.26) and Eq. (4.28) 

W,.-l JVV-1 N.-l 1 

fk
N*E(k)dk = S i t -(uu*+vv*+ww*) (4.31) 
0 -Ns+\-Ny+i-Nz+l2 

and using the trapezoidal rule 

Nt 1 Nx-l N,-\ N.-l 1 

£-[£(*,. ) + £(&,_! )]A(t = I S Z -(MM*+VV*+H'W*) (4.32) 
i=l 2 -yv^+l -AT +1 -Afj+1 2 

where 

^/V,. * 0 
A * = ^ 1 (4.33) 

Nk 

Equation (4.32) is satisfied if: 

Ak 1 
— [E(ki) + E(ki_l)]= I -(uu*+vv*+ww*) (4.34) 
2 ;,m,n 2 

for i = ],...,Nk. The summation is over all modes (l,m,n) in such a way that the affiliated wave number is 

within a shell which is defined as: 

] + (i-\)Ak<k<l + iAk (4.35) 
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where the dimensionless wave number isk=-\ll+m+n . This is accomplished by rescaling the Fourier 

coefficients according to 

u(l,m,n) <—*F •u(l,m,n) (4.36) 

v(/,m,n)<-»P»v(/,m)«) (4.37) 

u</,m,/0 <-¥•&(/,»!,«) (4.38) 

xy =
 lE{kj} + E[k^}M (4.39) 
i *Z,[uu *+vv *+ww*] 

The discrete Fourier series given by Eq. (4.11) in which u,v and w have to be calculated from Eqs. (4.36-

4.38) will construct the required initial velocity distribution. In addition, the initial pressure distribution is 

obtained from the incompressible Poisson equation using the initial velocity field. The result is shown in 

Fig. 4.6'. 

A slight difference exists between E(k) reported by CBC data (Ref. 97) and the applied initialization 

for E(k). It is necessary to mention that during the CBC experiment, one-dimensional energy spectrums 

(£,](&)) were measured at three different locations and then the affiliated energy spectrums (£(&)) were 

calculated using "graphical differentiation of faired curves". It seems that using polynomial curve fitting, 

which is implemented here, is more accurate than CBC method. That is however the case only 

forU0tCBC IM = 42 . Our attempts to use the polynomial procedure to extract E{k)fromEu(k)for 

U0tCBC IM = 98 and U0tCBC IM =171 did not achieve any better result in comparison to CBC. Therefore, 

we decided to initialize the simulation using E(k) from Eq. (4.10) whereas for comparing the simulated 

energy spectrum at U0tCBC IM = 98 and 171 with experiment, the curves provided by CBC are used. 

As mentioned earlier, the decaying turbulence is simulated by considering the fluid to be inside a cube. 

Each side of this cube has the length ofL c which is assumed to be equal to 43.787cm. This length 

represents the zero-intercept of E(k) in Eq. (4.10). 
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Fig. 4.6 Energy spectrum at U0tCBC IM = 42 . 

The length scale Lm = 6.96889cm and Um = 3420cm/s are chosen for nondimensionalization of the 

governing Eqs. (2.17-2.20) therefore the dimensionless length of cube's edges becomes equal to In.95 The 

dimensionless time of the simulation (t) is related to tcgc by: 

M U0 Lx 
(4.40) 

and thus 

t = 2 . 4 9 3 ( ^ ^ 4 2 ) 
M 

(4.41) 

The flow in the experimental is essentially incompressible. The turbulence Mach number (M,) of the 

initialization is equal to 0.98959541xl0"3 where 

M i =4u,Ujlaa (4.42) 

and a„ = 3420cm/* . Isosurfaces of dimensionless vorticity are shown in Fig. 4.7. 
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Fig. 4.7 Non-dimensional vorticity at non-dimensional times t=0.0 and t=0.1266. 

In earlier works, spectral methods have been mainly used for simulation of decaying 

turbulence.62'64-77-80-98 For example, in Ref. 77 a fully spectral method with 2nd order Rung-Kutta time 

discretization has been implemented. The results are very good especially at higher modes. In Ref. 62 a 

method using pseudo-spectral Fourier collocation has been used which also has shown a very good 

prediction for higher modes. In that reference, the same resolution as this paper has been considered. The 

numerical dissipation was relatively negligible and therefore the SGS model has been mainly the factor to 

determine the overall dissipation of the simulation. 

Other numerical methods, however, usually are not as accurate as spectral methods. Therefore an 

important numerical consideration, when evaluating a LES scheme, is the need to use an analysis, which 

will exhibit interactions between subgrid model (SGS) and the numerical error. These two terms may be 

even of the same order of magnitude. 

It is not possible only to use the overall judgment to estimate the relative importance of each of these 

parameters. For example, in Ref. 78 an explicit streamline-upwind finite element method with the second-

order accuracy both in time and space has been applied. According to their results, the applied numerical 

method has no extra dissipation (considering the case with no explicit SGS (NMU case)) and they have 

even reported an unphysical energy accumulation in the highest modes which is considered as a form of 

error. On the contrary to the previous example, however there have been cases, reported in the literature, in 

which numerical dissipation of the method was found to be significant. For example, in Ref. 79 

compressible isotropic turbulence at zero molecular viscosity with a wide set of schemes, such as: the 
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Jameson scheme, TVD-MUSCL scheme (3rd order) and three schemes within the ENO family (ENO, 

WENO, MENO) have been studied. They concluded that numerical dissipation affects not only the small 

scales but also the large ones. MUSCL also has been found to be too dissipative at 64 . Another example 

would be Ref. 12, in which numerical method is based on a finite-volume discretization using MUSCL 

solver. A "self-adaptive" method has been implemented to remedy the over dissipative nature of MUSCL 

method and has given acceptable results for 32 . They also reported that the original scheme was over 

dissipative and for 32 grid, the numerical dissipation was in general dominant over the sub-grid scale 

component. 

Table 4.3 Explanation of different cases for decaying turbulence simulation. 

Upwinding Parameters 
Upper value of y Lower value of y $ s 

1 1.0 1.0 - 0.01 

2 1.0 0.0 0.0 0.01 

3 1.0 0.0 -0.00001 0.01 

4 1.0 0.0 -0.0001 0.01 

5 1.0 0.0 -0.0001 0.1 

6 1.0 0.0 -0.0001 1.0 

Considering the discussion above, one of the main concerns in this research is to study the effects of 

numerical dissipation of Roe-MUSCL scheme and introduce a method (self-adaptive upwinding) in order 

to control its undesirable influence. 

To study the effects of the self-adaptive upwinding, test cases described in Table 4.3 are considered. 

Case 1 shows the set of conditions representing full upwinding. The numerical dissipation is found to be 

very high (Fig. 4.8) and therefore it is necessary to significantly decrease the upwinding effect. 

In cases 2, 3 and 4 the effect of self-adaptive upwinding is demonstrated. In case 2, self-adaptive 

upwinding flag is activated and therefore the graph is significantly closer to CBC data points (Fig. 4.8). In 

this case #is set to 0.0 which means that the self-adaptive scheme tries to dissipate the wiggles in low 

length scales (Fig. 4.9). This of course contradicts somehow in principle with the idea of LES in which 

energy stored at higher modes is expected to play a role in the simulation. Therefore in the next test cases, 

e is decreased, hoping that it will improve the energy distribution in the highest modes. 
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In case 3, gis decreased to -0.00001 and therefore total kinetic energy becomes a very good match of 

the experimental data. Results of Case 4, however show that the E{t) graph can even elevate further 

upward by decreasing the e further. In this case the slope of the energy spectrum is a better match for the 

CBC data even though the total kinetic energy is clearly higher than the experimental predictions. 

As it is seen in Figs. (4.9,4.10) the energy is cascaded from lower modes toward higher modes. The 

energy spectrum is showing a dissipative nature at higher modes while it is not enough dissipative in 

relatively low modes and an undesired overshoot is present. By decreasing #, not only the energy in higher 

modes is increase, but also some energy in lower modes is accumulated therefore it is difficult to achieve a 

complete match between numerical and experimental data as it was seen in the case of spectral methods. 

In case4, 5 and 6 the effect of explicit SGS is studied (Figs. 4.11-4.13). By increasing the Smagorinsky 

constant the energy in the domain is more dissipated and that results in different levels of E(t) as seen in 

Fig. 4.11.We conclude that the self-adaptive upwinding scheme has significantly improved the results as it 

was explained above. It was also found that the overall dissipative nature of simulation is affected by both 

SGS model and the numerical method. 

4.2.1 Interaction of the Limiter Function and the Upwinding Term 

The main idea in CFD is to use a high order method (2nd order here) when the solution is relatively smooth 

but to apply a low order scheme and increase the amount of numerical dissipation in the neighborhood of 

discontinuities. Limiter functions are usually providing this switch in the numerical method especially for 

supersonic flows. The upwinding term, on the other hand, contributes directly to the numerical dissipation 

and the interaction between scheme's upwinding and implemented limiter function can affect the accuracy 

and performance of the numerical method. 

In our simulations, the Van Leer-Van Albada limiter (Eq. 3.6) is implemented. It controls the spatial 

approximation's accuracy for the primitive variables and therefore it affects the numerical dissipation. As it 

is shown in Eq. (3.6), this limiter function shifts the numerical method locally toward a Is' order scheme 

whenever g(A<pc,A<p^-)shifts toward 0. On the other hand, when g(A(pc,A(p?)becomes close toA^v? 
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then the approximation becomes closer to second order. As it was mentioned before, <p = [p,u, v,w,p], 

A<pc = q>j - ft and A ?̂j? e (Ap-, Apjj) are based on the connectivity of an edge. 

In order to study the effect of the limiter function, a limiter coefficient is defined for a typical node, j 

as bellow: 

n g(ApC,Ap£) 
U \ J11 )xdAk) 

Limiter coef.((p)j = ^ (4.43) 
idAk 

k=\ 

in which n is the total number of edges connected to node j and dAk is the area affiliated to edge k . Edge 

k is among the edges that are connected to node j . 

The limiter function's average effect over the entire domain is estimated by the average limiter 

coefficient: 

X Limiter coef '.(<p) • 

m 
Limiter coef.(<p) = (4.44) 

mis the total number of nodes inside the domain. Similar approach is used to define upwinding coefficient 

and average upwinding coefficient: 

U7jXdAk) 
Upwinding coef.(j) = — (4.45) 

idAk 

"^Upwinding coef.{j) 
Upwinding coef. = (4.46) 

The average limiter coefficient for cases 1 and 3 (Table 4.3) of the isotropic decaying turbulence 

simulation is shown in Figs. 4.14 and 4.16. In case 1, the full-upwinding scheme is applied and therefore 

the average value of upwinding coefficient inside the domain is equal to 1. As it is shown in Fig. 4.14, the 

initial turbulence velocity distribution has activated the limiter function but at least for velocities the 

applied spatial approximation is still close to second order. 
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The average limiter coefficient for density, velocities and pressure is 30%, 80% and 40% respectively. 

It is also shown in this figure that the velocity graphs for different axial directions (M, V, W) are overlapping. 

This is an indication of their isotropic distribution. 

As it is shown in Fig. 4.15, when the self-adaptive scheme is applied the average upwinding coefficient 

decreases from 1 to 0.0025 which is resulting in a significant decrease in the introduced numerical 

dissipation. This also decreases the average limiter coefficient inside the domain. This activation of the 

limiter function is explained by the existence of more eddies in the simulated flow since they are not 

diffused when the self-adaptive upwinding method is applied and therefore fluctuations are more preserved 

by the numerical scheme. The average limiter coefficient for density, velocities and pressure decrease to 

10%, 40% and 5% respectively which is in fact showing a shift toward using a more first order 

approximation and consequently introducing more numerical diffusion. This increase of introduced 

diffusion is however less than the amount which was removed as a result of decreasing the upwinding's 

coefficient and therefore the overall amount of numerical dissipation decreases. 
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Chapter 5 

LES of a Round Compressible 

Turbulent Free Jet 

I N chapter 4, the performance of self-adaptive upwinding scheme was evaluated and the significant 

improvement resulted from its implementation was demonstrated. In this chapter, the developed 

numerical method is applied in order to simulate a compressible turbulent free jet (ReD =0.66xl06 and 

Maj = 0.95 ). Panda et al. (1999-2004), "~103 have done a series of experiments in order to measure the 

average and fluctuating density, velocity, pressure, their spectrums, generated noise levels and also 

< p- p> and < pu2 — p'> correlations. They implemented a very reliable experimental procedure and 

have very well documented their results. Therefore their data is used to verify the accuracy and validity of 

our LES in this chapter. 

5.1 Experimental Setup and Measurements 

During the experiments done by Panda et al. (1999-2004),"~103 flow characteristics of unheated-

compressible-turbulent free jets in different Mach and Reynolds numbers have been measured. As it has 

been reported in the literature when the traditional hot-wire technique is used for measuring compressible 

free turbulent jets, the applied wire shows an undesirable tendency to breakage, especially for high 

Reynolds numbers. As an alternative approach, Laser Doppler Velocimetry (LDV) or Particle Image 

Velocimetry(PIV) methods which use particle based optical technique appear to be more suitable to 

provide the time-averaged measurements. Experimental study and measurement of the compressible 
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turbulent flows have some technical difficulties and as a result there are not many well docuun 

experiments available in the literature for such jet flows. 

Jff«g 

m Hi 

*w 

Fig. 5.1 First configuration of jet facility (Refs. 101,102). 
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Fig. 5.2 Second configuration of jet facility (Refs. 99,100). 

Experiments used for our validation were performed at NASA Glenn Research Center using convergent 

(for subsonic flow) and convergent-divergent (for supersonic flow) nozzles. These nozzles have been 

designed according to the method of characteristics and the exit diameter for both nozzles is equal to 25.4 

mm. At first, air is compressed and is sent inside a reservoir by a compressor and then it is directed toward 
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the plenum of pressure and the nozzle. Two different experimental configurations used to do the 

measurements are shown in Figs. 5.1 and 5.2. 

The acoustic absorbent material was mounted around the nozzle, inside the ceiling and the walls of the 

test room to prohibit any probable sound reflections. A 8" diameter low speed (= 20m/.s)coflow was 

maintained around the primary jet using a source of filtered air in order to avoid particles through the 

entrained air. In these experiments, measurements were done based on the Rayleigh scattering method. In 

this method, a laser beam is passed through the gaseous medium of jet and molecules in the gas scattere the 

beam. The scattered light then is collected and spectrally resolved using a Fabry-Perot interferometer (Fig. 

5.2). 

Rayleigh Spectrum 

Frequency relative to laser line 

Fig. 5.3 Principle of Rayleigh scattering technique (Ref. 101). 

The spectrum of the scattered light has a wider bandwidth (Fig. 5.3). This width is a function of the 

molecules' motion and is used as an indicator of the temperature. Since the average nonzero velocity of the 

molecules is superimposed on the random velocity of the molecules, a separation between the peak of the 

incident laser beam and the scatted Rayleigh spectrum appears. This separation provides a measure of the 

bulk velocity of the flow. Density is measure by calculating the integral of the Rayleigh scattered spectrum. 

In order to carry out that calculation, a photo-multiplier tube (PMT1) is used (Fig. 5.4). Since the intensity 

of the scattered portion is measured based on the number of photoelectrons (TV) counted over a given time 

interval (At) , the following relationship holds: 

a At 
(5.1) 
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in the above equations, a and b are constants which were determined through a calibration process. 

Auto-alignment 
setup^_ 
>i video 

PMTl 

PMT2 

Iffl*ge 
Dissector 

Fig. 5.4 Schematic of optical setup in a quiet, adjoining room to analyze the collected light, L, to 

L5 are lenses; BS\ is beam-spliter and FPIy is the Fabry-Perot interferometer (first configuration, Ref. 101). 

When the distorted portion of the beam passes through the interferometer, it forms an image at the 

fringe-forming lens (Figs. 5.4,5.5). This image is then dissected into two parts by a concentric, tilted mirror 

and is measured by PMT2 and PMT2 units. 

Frequency 
(t>) 

Fig. 5.5 Principles of velocity measurement by Rayleigh scattering technique (Ref. 101). 

For small velocity fluctuations (<150m/s) the light intensity in either part of the dissected image is 

directly proportional to velocity. If N2 and N3 are the count rate from the inner and outer PMT2 and PMT2 

then: 

N-, = c, + c-,U I T L 2 ^ r (5.2) 
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N3=c3+c4Ur 

U = 
N, 

N, 

N7 

(5.3) 

(5.4) 

-c2-c4 

C],c2,c3,c4are the calibration coefficients and Ur\s the radial velocity. The time-averaged measured 

quantities were reported to be quite accurate and therefore the absolute density numbers were found to be 

repeatable within ±1 % of quoted values. The uncertainty of all reported quantities have been reported to be 

within ±5% considering the same nondimensionalization as it has been applied in the next section to 

present the numerical results. 

Fig. 5.6 The applied coordinate system and the location of microphones (Ref. 99). 

In order to measure the spectrum of the pressure fluctuations, two microphones each with the diameter 

of 14 in, were used. As it is shown in Fig. 5.6, the traversing system allows for measurements in the 

horizontal xy-plan while the microphones were located in the vertical xz-plan to minimize the effect of 

reflection from the large optical lenses and beam traps. 

5.2 Numerical Setup 

The simulation is carried out inside a cylindrical domain with a diameter equal to 60D and a length of 60D 

(D is the diameter of the inlet jet). 1,155,147 nodes and 6,859,200 tetrahedrons are used in this model (Fig. 

5.7). Given that the computational time required for this simulation is very long, application of more 

refined grids is not possible. 
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Fig. 5.7 Grid for the free jet simulation: (a) entire computational domain, (b) jet's inlet. 

Nodes are separated from each other in the tangential direction by 6° and the grid sizes in the 

axial (hx), radial(hr) and tangential (he) directions were carefully chosen so that generated elements close 

to the inlet are not very skewed. Elements aspect ratio inside the shear layer at the inlet is equal to 52 

Qislhr~lbuthff/hr ~ 52). Its value gradually increases towards the downstream and it finally reaches to 

2000 (hx I hr <= 2000) at the end of the computational domain. This very high aspect ratio at the end of the 

computational domain creates a sponge zone with very high damping characteristics which removes all the 

flow's fluctuations and prohibits the outgoing flow to negatively affect the solution at the upstream. 

Applied boundary conditions are shown in Fig. 5.8. As it was recommended by Bogey and Bailly 

(2006), mean profiles of density, velocities and pressure are imposed at the inlet boundary (main jet and 

co-flow) while the non-reflective boundary condition are imposed over the other side boundaries. The shear 

layer between the main jet and the co-flow is modeled using a linear profile: 

u =u(r) = 

UJ r/D<\/2-b0/D 

"co-flow + 
(D/2 + b0-r) 

2b0 

U 

•(Uj-Uco_j,m.) l/2-b0/D<r/D<\/2 + b0/D (5.5) 

co-flow 
\/2 + b0/D<r/D<lQ0/25.4 
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r/D<l/2-b0/D 

H2-b0IB<rlB<\l2 + bQIB (5.6) 

l/2 + & 0 /D<r /D<100/25 .4 

in which b0 is the thickness of the shear layer and its value was estimated to be b0/B = 0.0031 by the 

experiment. 

Inlet's pressure is set to the ambient value while the radial and tangential velocities are set to zero. The 

thickness of the shear layer is very small at the jet's inlet and only 4 nodes fall within that layer. As a result, 

application of more precise profiles for the variables at the inlet seems to be unnecessary. 

It has been shown in Ref. 44 that existence of co-flow stabilizes the flow field and therefore delays the 

transition and results in a longer potential core. In our jet simulation, Uco_flow IU • = 0.06 and therefore the 

transition is not expected to take place close to the inlet. This conclusion has been also confirmed by the 

experiment therefore considering an extra entrainment zone doesn't seem to be necessary. All the 

numerical parameters applied in the simulation have been reported in Table 5.1. 

Fig. 5.8 Boundary conditions for compressible turbulent free jet. 
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In our simulation only the measurements for Mach number of 0.95 are considered and the 

corresponding operating conditions are given in Table 5.2. 

Table 5.1 Comparison of used parameters in different numerical simulation. 

Numerical tool 

Number of nodes 

Number of elements 

No. of CPUs 

Maximum CFL 

Elapsed time of every CPU 

Cs 

Upwinding Parameters 

Upper value of y 

Lower value of y 

0 

Compressible, 
Code 

1,155,147 

6,859,200 

128 

10 

144hours 

0.1 

1.0 

0.0 

-0.0001 

Table 5.2 Operating conditions for the experimental measurements. 

Nozzle Type Convergent 

ReD 0.66xl06 

Maj 0.95 

D 25.4 mm 
Dco-flow 200 mm 

Jet Velocity, U Amis) 3jg 

Co-flow Velocity, Uco_flow(mls) 20 

Jet Density, Pj(kg/m ) 136 

Estimated Eddy Convection Speed 

Uc(m/s) = 0.6Uj-0.S9Uj 190-282 

Jet Static Temperature, Tj;( K) 215 A 

Ma a 0.91 
Ambient Speed of Sound Ca(m/s) 347 

Ambient Density pa(kg/m3) 1.16 

Ambient Temperature, Ta (° K) 300 
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The distribution of instantaneous 

Fig. 5.9 that the simulation has 

in 

ity and Mach number are shown in Figs. (5.9-5.10). It is shown in 

successful in capturing the Kelvin-Helmholtz instabilities as it was 

up phenomenon initiates inside the shear layer; it intensifies as the flow 

moves further downstream and it finally destructs the potential core. 
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In Fig. 5.10, some local supersonic waves are 

simulation is 0.95 and therefore the flow is very close 

relatively weak shocks do not significantly affect the 

5.11 shows the dirnensionless vorticity distribution, 

generates large scale eddies. These large scale motions wi 

travels downstream. 

That is mainly because Mach number of 

: sonic state. As it will be shown later, 

ige distribution of variables (Fig 5.15). Fi 

ing up phenomena is clearly taking place 

break into smaller eddies and scales as the 

Xtt?\*DIUj 

W: 
.5.11 Instantaneous distribution of vorticity (0 < IVdrft'ci/yl xD/Vj < 46). 

m* 

B _q 
—' 
— 
— 
— 
—; 
I 

1 09 
1 06222 
1 03444 
t 00667 
0 978889 
0951111 
0 923333 
0.895556 
0.867778 
0B4 

' • ' : • : • • ' • Y 

r\_—x 
a_H«™ A 

\ 

« • • • : " . , • : • ' : . . : ' '#'• : ' : ' 

• : *>•' 

Fag. 5.12 Emsi : pressrare 

77 



Pressure fluctuations generated by roll-ups are also shown in Fig. 5.12. As flow travels further 

downstream, the Kelvin-Helmholtz instabilities grow stronger and generate instantaneous fluctuations in 

the pressure field. 

In this simulation, maximum CFL is equal to 10 and time step is set equal to At = 2xl0~7s. In order to 

calculate the statistical properties of density, velocity; the data acquisition is performed once every 50 

iterations. For every location inside the domain 5130 data samples are stored which is equivalent to 0.0513s 

in the simulation. 

The average axial velocity profile at X/D = 0.1 is shown in Fig. 5.13. As it was mentioned before, a co-

flow (Uco_jjon, /Uj = 0.06) has been considered in this simulation. The effect of this co-flow is present in 

the mean profile but the reason for its absence in the experimental data is not clear. In Fig. 5.14, the 

average axial velocity profile at X/D = 1.0 is shown. The measured profile demonstrates existence of a 

higher level of dissipation in the flow in comparison to the simulation. Despite the fact that the 

Smagorinsky subgrid model's constant, chosen for this simulation is 10 times more than the value found in 

chapter 4 and also recommended in the literature for the isotropic decaying turbulence there is still a need 

for higher values. 

Similar behavior has been reported by DeBonis (2004),28 even though our applied numerical method is 

different from that reference. His obtained numerical results showed a strong dependence on the strength of 

the subgrid model. This phenomenon further demonstrates the need for development and application of 

reliable subgrid models which are more suitable for LES of highly anisotropic compressible flows. The 

dashed lines in Figs. 5.13 and 5.14 or the sold lines in Figs. 5.17 and 5.18 represent a curve fitting done in 

Refs. (99-103). 

In Fig. 5.15, the average density profile along the jet's axis is shown. The length of the potential core is 

under-predicted which further emphasizes on the need for a stronger subgrid contribution at the early stages 

of the jet's development. Root-mean-square of density fluctuation along the jet's axis is also shown in Fig. 

5.16. The fluctuation of density over-predicts the experimental profile. This behavior however has been 

observed in Ref. 105 and has also been reported in Ref 46. They have detected about 12-15% overshoot in 

the velocity fluctuation distribution (about 20% in the peak value). Their predicted density fluctuation has 
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been almost twice the measured data. The results of our simulation seem to be relatively better than those 

references. The uncertainty of measurements for A/a • = 0.95 has been reported to be approximately 5%. 
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Fig. 5.15 Mean density distribution along the jet's axis. 
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In Fig 5.17 and Fig. 5.18, the distribution of mean density at X/D = 0.1 and X/D = 1.0 are shown 

respectively. The simulation's profiles match very well with experimental data. The farfield density is 

p a I Pj = 0.853 but its effect has not been reflected into the experimental profiles and therefore the 

simulation results seem to be more realistic than the measurements. 

The radial profiles of mean and fluctuating density at different axial locations are shown in Fig. 5.19 

and Fig. 5.20. A transient region exists at 5 < XID<\2 wherein a very strong mixing takes place. The 

simulation over-predicts the fluctuation profiles, especially inside this region and that results in stronger 

mixing and therefore shorter transient region. In our simulation, the length of the potential core was 

underpredicted. Similar results also have been reported in Refs. 20 and 21 and many other references which 

were mentioned in the literature review chapter of this dissertation (chapter 1). 

In our simulation no artificial turbulent velocity forcing has been introduced at the inlet and therefore 

the numerical simulation has been expected to predict correctly the Kelvin-Helmholtz instabilities inside 

the shear layer based on the velocity difference between the jet stream, co-flow and the stagnant 

environment. In Refs. 7 and 34, the intensity of forced fluctuations has been deliberately adjusted in order 

to improve the results. 

The applied numerical method seems to be able to reasonably predict Kelvin-Helmholtz instabilities 

and therefore result in acceptable velocity and density variation. The accuracy of the results decreases as 

the flow travels further downstream which could be because of insufficient grid resolution, especially at 
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regions far from the inlet. In our simulation, a very strong dependence of the results on the subgrid model 

has been observed. A considerably higher value of Smagorinsky subgrid model was required in our 

simulation and a similar conclusion has also been recently reported in Ref. 28. 

B 

xlD = 2 j 4 
Sim. 

M = 0 . 9 5 

0 0.5 1.0 1.5 
Mean density. (p -p.)/(pj-pa) 

Fig. 5.19. Mean density distribution at different axial locations. 
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Fig. 5.20 rms of density fluctuation at different axial locations. 
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Chapter 6 

LES of a Hydrogen Jet Releasing from 

a High Pressure Reservoir (100 atm) 

I
N this chapter the self-adaptive upwinding method is applied to simulate the hydrogen release from a 

high pressure reservoir. This simulation evaluates the performance of the self-adaptive scheme for a 

transient compressible turbulent supersonic flow in which the interaction between the shock waves and the 

large scale eddies is a fundamental factor in determining the flow regime. Results are compared with a 

RANS simulation which is carried out by the Roe-MUSCL full upwinding scheme. 

6.1 Numerical Setup 

The computational domain is composed of two main parts. The first part is the high pressure reservoir 

which is a 60 cut of a converging channel with an external diameter of 40D. The diameter of this 

converging channel reduces to D = 0.005m before its connection to the second part which is the external 

environment. The external environment is a cylinder of a diameter equal to 20D and is extended to 30D in 

the Z direction (Figs. 6.1 and 6.2). The computational grid contains 12,186,565 elements and 1,901,072 

nodes. It has been generated in such way that it has very fine elements at the region where two main parts 

of the domain connect. The elements however become more skewed and coarser in downstream. The 

computational fluid in this simulation is hydrogen and it is assumed to be an ideal gas. The flow is initially 

at rest and its velocity is equal to zero everywhere inside the domain. The pressure inside the high pressure 

section is set to lOOatm while the rest of domain has the atmospheric pressure. The initial temperature is 
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300 K everywhere inside the computational domain. All the computational conditions are given in Table. 

6.1. 

A slip boundary condition is applied over the walls of the high pressure reservoir. Pressure is also kept 

constant at the outlet of the external environment. The computational time step is set toAr = 2xl0~ s. 

Given that in LES the fluid equations are presumably not filtered in time and also considering that in this 

simulation the hydrogen jet is predicted to be supersonic, a rather small time step is chosen. 
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Fig. 6.1 Boundary conditions for the hydrogen release jet. 

Fig. 6.2 3D grid and subdomains for the hydrogen release jet. 
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Table 6.1 Operating conditions for the hydrogen release simulation. 

Nozzle Type Convergent 

D 0.005 m 

Number of Nodes 1,901,072 

Number of Elements 12,186,565 

No. of CPUs 64 

Initial Pressure of Hydrogen Inside the Reservoir, Pjn(atm) ioo 

Initial Pressure of Hydrogen Outside the Reservoir, Pout (atm) \ 

Initial Density of Hydrogen Inside the Reservoir, pm{kglm ) 8.108275 

Initial Density of Hydrogen Outside the Reservoir, pom (kg/m3) 0.08189 

Initial Static Temperature (Inside and Outside the Reservoir), T( K) 300 

In order to preserve the stability of simulations against strong fluctuations, a 1st order-full upwinding 

flux calculation scheme is locally applied inside a small region where the two main parts of the domain 

connect (-0.1 < Z/D < 0.1 and diameter of D). Similar method is also applied whenever the ratio of Mach 

numbers along an edge becomes more than 1.5. The numerical scheme remains 2nd order in the rest of the 

computational domain. Given that all the elements attached to the centerline of the nozzle are adjacent to 

two symmetry faces, the self-adaptive scheme is not going to be able to perform accurately. Therefore the 

upwinding parameter for the edges, belonging to the first few rows of elements which are very close to the 

center line, is manually set to 1. The convergence of solution is also ensured through decreasing the 

residual by 6 degrees at every time step by the GMRES solver. 

6.2 Numerical Results 

In order to better demonstrate the performance of the self-adaptive scheme, two different test cases are 

considered (Table 6.2). In Case 1, the full Roe-MUSCL scheme is used without any subgrid model as in a 

RANS simulation. In Case 2, the self-adaptive upwinding is activated. The value of e is set to -0.0001 and 

Smagorinsky subgrid model's constant (cs) is chosen to be equal to 0.01. The contour graphs for density, 

Mach number and also temperature distribution of these test cases at different computational times are 

shown in Figs. (6.3-6.35). 
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Table 6.2 Explanation of different cases for hydrogen release jet. 

Case# 

1 

2 

Upwinding Parameters 

Upper value of y Lower value of y 

1.0 1.0 

1.0 0.0 

0 

-0.0001 

Cs 

0.0 

0.01 

The development of both jets seems to be quite similar at the early stages of the simulations (for 

t = 5.01//5 and t = I0.03fis ) but a gradual difference in the density, Mach and temperature distributions is 

observed as the simulation proceeds. The self-adaptive method seems to be more accurate than RANS 

simulation. As it is shown in Figs. (6.21-6.35), the main features of the jet such as jet boundary, Mach disk, 

barrel shock, 2nd vortices, slip line, reflected shock, 1st vortex and 1st shock are very well developed in Case 

2 (these features have been detailed in Figs. 1.3 and 1.4). As it is shown, the self-adaptive upwinding 

scheme (Case 2) is much better in preserving the turbulent features of the flow in comparison to the full 

upwinding (Case 1), while the convergence and stability of the simulation is still provided. This 

demonstrates the high fidelity of the proposed scheme in a supersonic regime and further encourages us to 

apply the developed numerical tool for LES of supersonic flows. 

In Figs. (6.36-6*.38) flow density, Mach number and temperature at Z/D = 10 and for t =\5\.96/JS are 

shown. As it is demonstrated for both test cases, flow evolution is not completely symmetric and therefore 

a full-360 degree numerical model is expected to produce more accurate results. Given the limitations in 

the available computational resources, generating a complete model has not been possible in this research. 

Distributions of Mach number along the centerline for different computational times for both test cases 

are shown in Figs. (6.39-6.42). As it is shown in those figures, Mach number variations along the centerline 

for both test cases are very similar. At some of the computational times, there is often an overshoot right 

before the shock disk which is suspected to be the result of insufficient grid resolution and applying a low 

order numerical scheme. As it is seen in Figs. (3.39,6.41), the Mach disk moves towards downstream until 

it slightly passes Z/D = 6.7.Then it returns back and stays fixed in that location. All of this happens in less 

than a 0.0002s and that justifies choosing a time step in the order of 10 8s. 
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Fig. 6.9 Density contours for 0.0 < p < 1 (t = 15.09/s). 

y 

*Vi •in.' . - •at ... 1 . rlZf J"< 

1 

_J 

« • 
* 

• • • V * * - ~ . ' - : i V " . .* j& 

, , , , 

C.ise l 

| Ma 

J - 70 
6 0 ' 

y 5 0 : 
!; TO 
' , - 2 0 

; i 1 0 ' 

f - oo 

I 
n m 

r 

* 
i 

: *""{: 
* * * 

^ * * * 

Si" - * 

I 
Ca,e 2 [ j 

i i s : 
- 8 0 ; 

' ' / 0 
6 0 ; 

J - 1 0 

. • <•: s . * . - 3 0 . 

.1 zo 

• j 10 ' 

"si . i* i 

* * BJ'S. * 

n 
i * 

1 0 
Fig. 6.10 Mach contours (/ = 15.09/s). 

Case 1 i 
n-K) 
400.0 
350.0 
300.0 
250.0 
200.0 
150.0 
100.0 
50.0 
0.0 

Case 2 p 
7TA-) 

400.0 
3500 
300.0 
250.0 
200.0 
150.0 
100.0 
50.0 

0.0 

n 
CL in & 10 

Fig. 6.11 Temperature contours (t = 15.09/e ). 

89 



23
 

o
 

M
 

E
 D

 
H

 
re

 

a;
 

n ©
 3.
 

©
 c ©
 b
 

"5
 L-

&
, 

n 

|! O
 

O
 •1 o o 

•1
 

100 o 

I 150 o 

| 200 o 

| 250 o 

| 300 o 

350 o 

o o o 

a 5 

o
 

0.0 

il
l 100.0 

500 

I 150.0 

I 200.0 

I 250.0 

I 300.0 

* 3500 

i 400.0 

M
 5 

5 O
N

 

B9
 

n =r
 

o ©
 s ©
 s II O
 b
 

V
©

 

D
 

3 D
 

D
 

i i«
 

-.
 

i 
_

. 
n
 

***
 

"?
f\

 
S

^p
 

-
€ 

I*
 •*

 

i i 

ife
, 

• 
' 

- -

1-
 

1
 .

. 
h 

* 
o
 o

 o
 o

 o
 
o
 

*-»
, 

V I _ 
_
 

) 

j
— 

O
" 

J 
C

O
 2

3
 

o 
o
 o

 t
t-

V
 

-
T

 

w
 .

 
»

 • 
—

 

1 

- 
I 

%
 J

*
* 

1 

1 
-*

*
! 

; 
-

[
•

"
- 

—
 

1 
"*

 ' 
o

o
o

o
o

o 
m

 M
 c

o 
S

 r
 

• 
o
 b

 b
 »

 [
 **

 

3 er
a' 

N
o

* o
 

S
 ! ©
 

©
 b
 

IA
 

IA
 I 

W
1

X
 

o
o

o
o

o
o

o
-

^
-

s
; 

o
o

o
o

o
o

o
-

*
-

4
|

: 



mm ; .>v-m^ 
Case 

7.0 
1.0 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0.0 

n a in 
Fig. 6.15 Density contours for 0.0 < p < 1 (t = 25.15/js ). 

•$m<. 

, • " , ' ~ 

., ^ 3t* \ 

• ^43 Case 2 

«° « g L r mm 

\n JJX n in 
Fig. 6.16 Mach contours (t = 25.15/zs). 

Case 1 

/•(A") 

wm 4UU.U 

350.0 
300.0 
250.0 
200.0 
150 0 
100.0 

m 5°° 

Case 2 

j j 

r(A-) 
400.0 
3500 
300.0 
2500 
200.0 
150.0 
100.0 

50.0 
0 0 

n m a m 
Fig. 6.17 Temperature contours (t = 25.15/fl ). 

91 



J
li

r
-

^
T

^
c

jo
o

o
o

o
" 

m
 

k-
 v

 ^
 

^ 
o

o
«

j
m

<
*

n
(

N
'i

'0
 

II
 

6 
i 

« 

fP
t 

V
i 

©
 

V
I 

V
I 

.9
 I 0>
 

Q
 

(̂
 
O

 
O

 
(_

 
C

 
~ 

W
 1

- 
U

 U
T

 

_L
 .

 t 
- 

• 
1
 

•_) ' 
i 

O
 

i 

L—
,J

 
* 

h
 r. 

1 I 

c 
r 

- 
c
 

1 
' 

'**
 

4 

i 

* 
* 

T
 *

 * 
^ 

'-
J 

-

| 
CD

 C
 

O
 

O
 

O
 

^*
 

o&
 I

--
 (

O
 
u
 

1 
' 

J 
_
l_

 

Or ' * 
* 

» 
1 

* 
»

J
 

O
 

O
 

O
 

©
 

O
 

* 
T
 

n
 

r 
i 

T
- 

o
 

i
l

l
-

' 
1 I

 '
 

. 
- K

O
J

'-
* 

• 
- 

>
' 

-

t 

* 
t 

- 
.\

- 
^

 
1 

1*
 

c
 

c
 

c
 

c
 c ©

 u as
 

si
 

400.0 |i 

350.0 

l|
 

300.0 
250.0 
200.0 
150.0 | 

100.0 I 

50.0 « 

0.0 n 

II 

H
d

 

400.0 
350.0 
300.0 . 

250.0 J 

200.0 I 

150.0 j 

100.0 I 

50.0 1 

0.0 II 

d
 u 3

 
9
 s o
 

?J
 

a.
i u s £^
 a,
 

S H
 

cs
 

en
 

K
 

U
 



BO
" 

w
 

H
 

re
 

3 a)
 o s 3 o e 3 

D
 

3 D
 

3 

i 
1 

- —
 

- —
 

- - —
 

-

; 
J 

h 

•
•

' 
"

^ 
" 

-<
 

n
 

65
 

ft
 

m
\ i

i 
i 

m
 

o
o

o
o

o
o

o
o

o
-

^ 
b

b
b

o
b

o
i

D
i

o
o 

1 

si
 

1 
r 

. 
• *T

 
"*

 

*l
 

Case 2 

»
.i

 
I 

I 
M

 h
d

 
u

io
w

o
u

io
o

io
 

>:
 

O
O

O
O

O
O

O
O

O
w

 
b

b
b

b
b

b
b

b
b 

O
S 

O
 s O
 c 3 in
 

•£
"?

• 

.;
f 

;^
' 

. 
' 

J
' 

. 
us

-';
 

I"
 •"

 

i*
t!

 

O
 i

 
» 

. 

™
 

§
S

S
g

g
S

S
S

§
5 

jC
C

* 
iS

S
^r

 iH
i 

"I
 

••
1 

T
T

 
Ji

 

j 
0

0
0

0
0

0
0

0
0

" 

3 T
O

* 

0
\ k>
 

I—
' 

O
 

re
 

s I 1 o -J
 

©
 

©
 

IA
 

IA
 

in
 

o o 

* o _
A

 

II o K
J 

| o C
O

 
o *>

 1 o en
 

| o C
I 

1 -
h o 

4 *
-j

 

o 

I » 3}
 



V
I 

V
i 

.9
 i e O
 

V©
 

M
 

,
p

p
p

p
p

p
q

p
p 

11
11

 I 
I 
I 

iH
 

0
,

0
0

0
0

0
0

0
0 

-

ii
s

ir
 

•W
 

. 
Ii

?
-'

rt
 

..-
••

• 

I 1 in
 S 

o
o

o
o

o
o

o
o

o 
i

<
o

m
o

i
f

)
o

m
o

m
 

•S
I-

C
O

C
O

C
N

IC
N

I-
T

-

T
H

 
as

 
U

 

>-
 ,

 
:-

^
M

 

400.0 1 

350.0 f 

300.0 | 

250.0 | 

200.0 1 

150.0 | 

100.0 I: 

50.0 o 6 'I-

u 

1
« ©
 u
 

ft
! 

ve
 



Y 

i 1 

• 

r i o • 
i , ' ° ( 0 8 , 

1 0.5 > 
0.4 

! 0.3 
0.2 I 
0 i ' 
0 0 

1 , . , . 1 , . , , 1 
0 
z 

10 21 

Y 

r >' 

i 

»•»*» t H i%* 

* 

' * * J , 
I 

1 lis-- i 
(P^Sj Ml') 
r*-i 7.0 

. . 1 ' 1.0 
I 0.6 -

0.5 '. 
0.4 • 
0.3 

— 0.2 
O i 
0 0 

_i . . . . 1 . . . . 1 
0 
z 

10 2i 

Fig. 6.27 Density contours for 0.0 < p < 1 (t = 94.98/ts ). 

Fig. 6.28 Mach contours (t = 94.98/e ). 

Fig. 6.29 Temperature contours (t = 94.98/zs). 
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Fig. 6.36 Density contours for 0.0 < p £ 1 and Z/D = 10 (t = 151.96/fi ). 

Fig. 6.37 Mach contours at Z/D = 10 (t = 151.96/B ). 

Fig. 6.38 Temperature contours at Z/D = 10 (t = 151.96//$). 

98 



I 

*= 189.96/* 

t = 1 5 1 . 9 6 / * 

1 = 115.96/* 

Fig. 6.39 Mach distribution along the centerline (Case 1). 
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Fig. 6.40 Density distribution along the centerline (Case 1). 
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Fig. 6.41 Mach distribution along the center line(Case 2). 
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Crist et al. (1966),l6 have done a series of experiments about the underexpanded sonic jets for Nitrogen, 

Argon, Helium, co2 and Freon 22. It was found that Mach disk location is insensitive to the ratio of 

specific heat, condensation, solid boundary geometry and the nozzle tip and absolute pressure level. In their 

experiment, two different nozzle lip geometries were used with no resultant change in the Mach disk 

location. According to their results, the Mach disk's location for the pressure ratio equal to 100 is 

approximately 7 which is very close to our numerical result and the relative error is about 4%. 

The distribution of density along the centerline for different computational times is shown in Figs. 

(6.40,6.42). As it is shown in these figures, a local bump exists in front of the Mach disk which moves 

downstream. The Mach disk gradually decelerates and stops at Z/D = 6.7 but the bump continues its 

motion. According to Fig. 1.4, this bump represents the 2nd shock wave even though it is not appearing as a 

real shock in Figs. (6.39,6.41). 

Based on the obtained results we can conclude that development of hydrogen underexpanded jet at the 

region behind the Mach disk is less sensitive than the free jet to the subgrid model or the numerical 

upwinding. These parameters, however, become very influential after the Mask disk and directly affect the 

formation of the 2nd vortices. 

6.2.1 Interaction of the Limiter Function and the Upwinding Term 

In Figs. 6.43 to 6.47, the behavior of limiter coefficients for different primitive variables in cases 1 and 2 

are shown. When the limiter coefficient of a primitive variable is locally close to zero, first order spatial 

approximation is used. This is the case at shocks or turbulent regions. On the other hand, when the limiter 

coefficient is close to one, a second order approximation is applied. It takes place mostly away from major 

discontinuities (shocks) or regions with high turbulence. 

The limiter coefficient for case 1 appears to be higher than for case 2 as a result of full upwinding's 

smoothing effects. Lowering the scheme's upwinding in case 2 by applying the self-adaptive upwinding 

method results in more fluctuations in the flow field which further activates the limiter function. The effect 

of the limiter function's excessive activation on the numerical diffusion is compensated by the decrease in 

the scheme's upwinding. Therefore in case 2 the numerical scheme is less dissipative and large scale eddies 

are better captured (Figs. 6.43-6.47). 
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Fig. 6.44 Limiter coefficient for velocity in the x-direction (t = 55.34/zs). 
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Fig. 6.47 Limiter coefficient for pressure (t = 55.34JJS ). 

Fig. 6.48 Upwinding parameter (t = 55.34/zs). 
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It is also shown that in case 2, the limiter function provides a 1st order spatial approximation scheme at 

regions far from the jet's inlet. This is because the upwinding coefficient at those regions has been 

significantly decreased by the self-adaptive upwinding method. 

In case 2 there is a thin layer attached to the domain's boundaries where the full-upwinding scheme is 

applied (Fig. 6.48). There is also a region at the jet's inlet (Figs. 6.43-6.47) where the first order 

approximation and the full upwinding scheme are imposed to provide the necessary stability and prohibit 

undesirable fluctuations. 
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Chapter 7 

Conclusions and Future Works 

A
self-adaptive upwinding method for unstructured finite-volume flow solver was introduced and 

validated. The scheme tries to regulate the numerical dissipation by adjusting the upwinding term 

through a sensor that locally detects the intensity of wiggles in the flow variables. It was firstly used in a 

channel flow simulation to test its stability. It showed very good stability characteristic even when the noise 

coefficient was very high. Secondly isotropic turbulence was considered. The original scheme appeared to 

be over-dissipative, preventing SGS model from producing a proper LES solution. The self-adaptive 

upwinding method, however, improved the decaying behavior of total kinetic energy in time and also slope 

of the energy spectrum. The wiggle detector made it possible to adjust the amount of energy in the highest 

modes and therefore improved the results. That adjustment, however, influenced the energy distribution on 

the entire spectrum and showed some undesirable effects in the lower modes. 

The developed numerical tool was then used to simulate a compressible turbulent free jet at 

ReD = 0.66x 106 and Ma • = 0.95 . The overall physics of the flow such as formation of the potential core, 

development of the annular mixing layer, gradual generation of Kelvin-Helmholtz instabilities, formation 

of the transient region with rapid mixing characteristics and also the fully-developed region after the 

potential region were successfully captured. There were however some discrepancies between the measured 

data and the results of the simulation, especially at the density fluctuating profile along the jet's axis. In 

overall the results were acceptable and very promising and it encourages us to implement the method for 

more complicated flows. It was observed that the length of the potential core predicted by the computation 
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was slightly less than the value that was measured experimentally. It indicates a rapid development of the 

annular mixing layer which also results in a fast decay of the mean velocity. 

The simulation showed a great dependence on the strength of the applied subgrid model which could be 

a result of applying a low order numerical method or lack of having the required fine grid resolution. It 

could also emphasize on the need for applying a more suitable subgrid model considering our special 

configuration. The values recommended for the coefficient of Smagorinsky subgrid model in the literature 

have been mainly devised based on the analysis of isotropic decaying turbulence. The flow of a free jet 

however is highly anisotropic and also under-developed at the regions close to jet's inlet therefore a more 

suitable subgrid model is necessary. 

Finally a hydrogen jet releasing from a high pressure reservoir at 100 atm into a stagnant hydrogen 

medium at atmospheric pressure was simulated. This simulation was carried out to study the formation of 

complex shocks generated in different forms at the early stages of the gas release from the reservoir. The 

self-adaptive method was found to give a much more realistic emulation of the flow and encouraged us to 

further apply it for supersonic flows. Based on my simulations, the following conclusions are made: 

• Decaying isotropic turbulence tests showed that the overall dissipation of the simulation is 

affected by the contribution of both the subgrid model and the upwinding term; 

• Validation tests demonstrated that the upwinding term contributes to the overall dissipation of 

the scheme to such extent that it makes the original scheme over-dissipative and prevents the 

SGS model from producing a proper LES solution; 

• It was shown in the channel flow stability test that the self-adaptive upwinding scheme is a 

robust scheme and is able to stabilize the simulation at the presence of strong gradients; 

• Effective adjustment of the numerical dissipation is achievable by using the adaptive 

upwinding method and it can positively affect the energy spectrum's slope; 

• The proposed method was successfully able to predict many different features of compressible 

turbulent free jet (potential core, annular mixing layer, and etc.); 
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• There was no need for artificial forcing turbulent fluctuations at the inlet in order to initiate the 

necessary instabilities inside the shear layer. It could be a result of applying an unstructured 

grid in our simulation; 

• In general, density has been predicted more accurately than velocity by the simulation. One of 

the reasons for discrepancies in the velocity profiles could the strong effect of co-flow in our 

simulation. That influence however is not noticeable in the experimental results; 

• The length of the potential core was slightly under-predicted; 

• Application of a too coarse grid could be the cause of shorter potential core. The annular 

mixing has not been represented correctly which results in rapid thickening of the shear layer 

and consequently sooner destruction of the potential core; 

• The value required for the Smagorinsky subgrid model's coefficient in the free jet simulation 

was higher than the isotropic decaying turbulence simulation. This could show the need for 

development and application of subgrid models which are suitable for anisotropic flows; 

• The self-adaptive scheme was more successful than the full upwinding method in simulating 

the highly under-expanded hydrogen jet releasing from a high pressure reservoir at 100 atrri. It 

could very well generate different features of this flow such as jet boundary, Mach disk, barrel 

shock, 2nd vortices, slip line, reflected shock, Is' vortex, lsl shock and 2nd shock; 

• It also accurately predicted the location of the Mach disk. 

The proposed scheme has also been used to simulate the flow separation phenomenon over a 

NACA0025 profile at angles of attack equal to 0 and 5 degrees. The results of that simulation were not 

included in this dissertation but were reported in Ref. 106. The original flux calculation scheme appeared to 

be over dissipative, preventing the flow to separate over the airfoil. The self-adaptive upwinding method 

reduced the artificial diffusion to the level of flow instability and made it possible for the separation to 

occur. The proposed scheme produced results which were comparable to experimental data and also more 

accurate and reliable than results obtained by FLUENT. It was despite the fact that the grid used for 

FLUENT was much finer than the one applied for the in-house code. In that simulation separation took 

place only when the subgrid model had a relatively small contribution. 
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As for the future works, application of more accurate turbulence models seems to be very essential 

specially when the flow field is highly anisotropic as it the case for free jets. Given that in the LES for 

engineering applications, the required computational resources are always an issue of concern, application 

of adaptive grid schemes or hybrid grid generation methods could appreciably improve the accuracy and 

therefore decrease the required computational resources. This issue is more dominant when there are solid 

walls included into the computational domain. The turbulent structures near the solid walls have very small 

dimensions and therefore capturing a reasonable portion of these structures in the LES would require 

relatively refined mesh which is still out of reach for the current supercomputers. This fact further signifies 

the need for developing more accurate numerical schemes and also applying hybrid grid generation or grid 

adaptation methods. 
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A.l Theoretical Analysis of Free Jets 

From the theoretical point of view, the laminar, incompressible round jets that are flowing into an open 

medium which is in rest is the simplest case to be analyzed. These flows are usually studied using the 

similarity solutions which will be presented bellow. Further details can be found in Ref. 107. 

The Newton's second law of motion for a system can be written as follows (Ref. 108): 

D_ 
Dt 

\PVdv^F„ (A.1) 

in which 

— ]pVdv = j-\pVdv + \pV{V.n)ds (A.2) 

and 

ZF„,=ZF. Corresponding Control Volume 
(A.3) 

Assuming that the system has no motion and the flow conditions are not changing at the exit of the jet, we 

can assume that — } pVdv = 0 and therefore 
at rv 

— \pVdv = ]pV(y.n)ds = J 
LSI SVS CS 

(A.4) 

Svsteui Control Surface 

Control Volume 

Fig. A.l Definition of a typical system, control volume and its control surface within a free jet. 
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Flow is supposed to be 2D, steady and incompressible. Pressure gradients are neglected in the domain 

therefore the momentum equation along the jet (x-axis) will be: 

, . dUx „ dUx (\ d , dUx. 
dr dx [r dr dr 

(A.5) 

Potential function can be defined as: 

r or 
Ur 

r dx 
(A.6) 

By substituting the above definitions into Eq. (A.5), we will have: 

1 d*¥ d2x¥ 1 3 * d*¥ 1 d'V d2V ( ' 3 2 , , / ' 3 , , J ' 3 3 

r2 dx dr2 r3 dx dr r2 dr drdx 

i dzy I 3*p I 3J>y 

r2 9r2 r3 3r 7 3r3 
(A.7) 

It is assumed that >p = vxA f(rj =—). then all the required derivatives of ¥ are calculated: 

dj] _-BTJ 
(A.8) 

^ = v(AxA-1f(ij)-BTPcA-1fXTj)) 
dx 

(A.9) 

a ^ .>,-« 
dr 

= vxA-Bf'{rj) (A. 10) 

dr1 

A-2B r",„\ 
= vx f (77) 

( A . l l ) 

9r3 = VX f (7J) (A. 12) 

| ^ B S V ( A - B ) ^ - B - , / ' ( 7 ) + « / | - V ' 0 7 ) Z ^ orav r 

32¥ 
3r3x 

= v(A -B)xA-B-]f(rf) - vBrpA-B-x f'{ri) 

(A. 13) 

Now all the computed terms are substituted in Eq. (A.7): 
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T ? ^ = -4(^""V(7)-57^-7'(7)^A-2V'(/7))=-4(^2(""SH/('7)/>)-B^2<""SH/^)/>)) d* dr 

r dx dr r r 

±^^=MvxA~Bf'whA-B)xA-B-,fXT,)-VBT>xA-B-in^ 
r or orox r r 

, 3^+^W + l ^ = _^x,.M ^^_. v l ^ . , ^ (A]4) 
rl r r r2 dr2 r3 dr ' r dr3 

i a * d2yv j _ d ^ a»p 1 a»p a 2 * 
r2 dx 9r2 r3 3* 3r r2 3r drdx 

( ..2 

7 

( J_3^P J_j^. 1 ^ 
r2 8r2 + r3 3r + r 3r3 

4((^-fi)x2(-4-B)-7'(7)2-B7^2M-BH/'(7)/'(7)) -4-^"2S/'(7) + 4^"B/'(7) + - ^ M V » 
r2 r3 r 

= 0 

i a^a2^ i dvdv i a^a2* f i a2*p I a^ i a 3 ^ 
r2 dx dr2 r3 dx dr r2 dr drdx 

— v .2 a .2 _3 dr r 3 r 3 r 2 3r2 

fcn)f\v) 
( 2 N 

V r J 

('2 

+ f(rj)f(rj) 
( 2 \ 

V-Ax2A~B-[ 

Kr J 

+ / W ( 7 ) 

( ..2 

•Brjx1 -Br]xl 

+f(vr -^BTjX
2A-B-l

+^r(A-B)x2<A-B)-^ 

V 

( 4 ^ - 2 v » + 4 xA~Bfw+- ^ - 3 s / » 
v r2 r 3 r , 

= 0 

And finally the momentum equation is simplified into the following form: 

f(rj)f'(r?)(- 4 Ax2(A-B)-1) + f(Tj)f(rj{-^ Ax 

+ f'(Tj)2(--^B7]X 

2A-B-\ 

2A-B-'+\(A-B)x2iA-B)-' 
r 

- 4 xA-2Bnn)+4 *A-*m+- ^" 3 B / » I=o 

(A.15) 

On the other hand, the potential function can also be substituted into Eq. (A.4) which will result: 
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\pVdv = \pV(V.n)ds=\pU2
xds=\ p\ 

L**- sys cs cs 0 

« " ^ f'(rj) iTtrdr = +f p{vxA-B f'(Tj)f ^-
o 7 (A.16) 

\pV(yn)ds = 27tpv2 \ x2A-2Bf\Tj)2^- = J 
cs 0 JJ 

J has to remain bounded and constant for different values of x, therefore B has to be equal to A. 

/ ( ? ) / » [ - -^Ax~l)+ fWfXni-^ A**'1 ] + f'blA- ^j A rjxA-x 

X-An71) + -jf'(71) + -X-2Af"(jj)\ = 0 

Assuming that all the terms in Eq. (A. 17) have the same dimension, A has to be equal to 1: 

r r r J 

By multiplying r3 into the Eq. (A. 18), the following equation is obtained: 

-Tf(n)f"(rj) + / W W ~ # » 2 - (- rfXtfl + f'(rj) + 7 2 / » ) = 0 

with the following boundary conditions: 

(A. 17) 

(A. 18) 

d | _ / M + / ' W | (A. 19) 

Ux=—r- = -f(Jl) 
r Or r (A.20) 

1 9T i' 
Ur=—— =—if (rj)-rjf'(?])) 

r ox r 

l im r^„ Ux = lim^^^ f\rj) = 0 

lim r_ )0y r=lim7_>0/(»7) = / (0) = 0 (A.21) 

l-^o ^ = l i m ^ ( ^ ^ M ) = hm 0̂ /'(„) = 0 
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Schlichting (1933),109 has proposed the following closed form solution which has also mentioned in Ref. 

110): 

/ ( 7 ) = =-2 — 
\6xpv2/3J+T]2/4 

(A.22) 

U=-
37 

%7tpVX 
1 + 

3J7J 2 \ -2 

^ 64^/TV J 
(A.23) 

U„„=-
37 

8;rpv;c 
(A.24) 

If 

U„ 64xpv* 

2 Y 
(A.25) 

Equation (A.23) has been used in Ref. 32 to validate their numerical results. 

If we assume that one side of the control volume goes vertically through the nozzles and also if we 

neglect the flow coming from behind the nozzle then an approximation for the parameter 7 is calculated as 

follows: 

J=\pV(V.n)ds _ ^PP) (A.26) 
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