
Mining Software Repositories to Support Software Evolution

Shafique Ahmed

A Thesis

In

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Software Engineering) at

Concordia University
Montreal, Quebec, Canada.

March, 2009

© Shafique Ahmed. 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63201-7
Our file Notre reference
ISBN: 978-0-494-63201-7

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

Abstract

Mining Software Repositories to Support Software Evolution

Shafique Ahmed

Software evolution represents a major phase in the development life cycle of software

systems. In recent years, software evolution has been recognized as one of the most

important and challenging areas in the field of software engineering. Studies even show

that 65-80% of the system lifetime will be spent on maintenance and evolution activities.

Software repositories, such as versioning and bug tracking systems are essential parts of

various software maintenance activities. Given the often large amounts of information

stored in these repositories, researchers have proposed to mine and analyze these large

knowledge bases in order to study and support various aspects of the evolution of a

software system. In this thesis, we introduce a common ontological representation to

support the mining and analysis of software repositories. In addition to this common

representation, we introduce the SVN-Ontologizer and Bugzilla-Ontologizer tools that

provide automation for both data extraction from remote repositories and ontology

populations. A case study is presented to illustrate the applicability of the present

approach in supporting software maintainers during the analysis and mining of these

software repositories.

in

Acknowledgements

I am most grateful to my supervisor, Dr. Juergen Rilling, for his encouragement, support,

and patience throughout this research. Without his help, advice and positive attitude, my

studies in this area would not have been possible. I have collected many cherished

moments and unique experiences from my supervisor and colleagues at CONCEPT

(Comprehension Of Net-CEntered Programs and Techniques) Concordia University.

I express my deepest gratitude to my beloved wife, Rozina and my children, Haris,

Ammar and Omar, for their enormous support, infinite patience, and unwavering belief

towards me, as always. There is a litany of family members and friends who are not

individually mentioned here, but they certainly made a difference.

I would also like to extend my appreciation and thanks to Mr. Philipp Schugerl and AH

Asghar Sheikh for their helpful comments and suggestions, they always helped me in

times of great needs and deeds.

IV

Table of Contents

List of Figures viii

List of Tables x

1. Introduction 1

2. Background 3

2.1. Software Evolution 3

2.2. Software Repositories 9

2.2.1. Subversion (SVN) 10

2.2.2. Bugzilla 15

2.3. Ontologies 18

2.3.1. Why Ontology? 18

2.3.2. Applications 22

2.3.3. Web Ontology Language OWL and SPARQL 24

2.3.4. Ontology editing tools 26

2.3.5. Ontological Reasoners 27

2.3.6. Ontology Alignment 30

3. Contribution 32

3.1. Motivation 32

3.2. Specific Contributions (Sub-goals) and Acceptance Criteria 34

3.3. Acceptance Criteria 38

v

4. Subversion Ontology 39

4.1. Subversion Ontology Design 39

4.1.1. SVN Repository Schema 39

4.1.2. Initial Mapping SVN Repository Schema to an Ontological Model 42

4.1.3. Enhanced SVN Ontology 45

4.2. SVN-Ontologizer 49

4.2.1. SVN Profile Setup 49

4.2.2. SVN Connection and Data Extraction 51

4.2.3. Data Pre-processing 53

4.2.4. Ontology population 54

5. Bugzilla Ontology 55

5.1. Bugzilla Ontology Design 55

5.1.1. Bugzilla Repository Schema 55

5.1.2. Mapping Bugzilla Repository Schema to an Ontological Model 60

5.1.3. Refining the Bugzilla Ontology 63

5.2. Bugzilla-Ontologizer 69

5.2.1. Connection to Bugzilla and Data Extraction 69

5.2.2. Data Pre-processing 71

5.2.3. Bugzilla-Ontologizer User Interface 72

6. Initial Experimental Evaluation and Ontological Queries 77

vi

6.1. Case Study 77

6.2. Ontological queries applied on SVN Ontology 78

6.3. Ontological Queries Applied to Bugzilla Ontology 82

6.4. Linked SVN and Bugzilla Ontology Queries 86

6.5. Discussion 92

6.5.1. SE-Advisor Framework 92

7. Related Work and Limitations 95

7.1. Related Work 95

7.2. Limitations 98

8. Conclusion and Future Work 100

References 102

Appendices 110

vn

List of Figures

Figure 2- 1: Cost of the software life cycle [DAC01] 4

Figure 2- 2: Common elements of software comprehension models [MPO03] 6

Figure 2- 3: SVN architecture [SV09A] 11

Figure 2- 4: An example of directory structure in SVN repository 13

Figure 2- 5: Life cycle of a bug [BU03A] 16

Figure 2- 6: An example of ontology [MAR09] 23

Figure 2- 7: Architecture of a Pellet reasoner [PL09A] 29

Figure 4- 1: SVN relational schema 40

Figure 4- 2: An initial SVN ontology 43

Figure 4- 3: Overview of an enhanced SVN ontology 46

Figure 4- 4: Reasoning services applied to initial SVN ontology model 47

Figure 4- 5: Reasoning services applied to enriched and enhanced SVN ontology 48

Figure 4- 6: SVN-Ontologizer tool overview 49

Figure 4- 7: SVN-Ontologizer main user interface 50

Figure 4- 8: SVN connection process 51

Figure 5-1: Bugzilla repository schema 57

Figure 5- 2: An example of issue dependency 59

Figure 5- 3: Initial Bugzilla ontology model 61

Figure 5- 4: Reasoning services applied to initial Bugzilla ontology 66

Figure 5- 5: Reasoning services applied to enhanced Bugzilla ontology 66

viii

Figure 6- 1: Results of SPARQL query 79

Figure 6- 2: Results obtained from extended query 80

Figure 6- 3: Releases and their creation dates 81

Figure 6- 4: Query results based on a revision and committed files 82

Figure 6- 5: Query results showing the contribution of a specified person 83

Figure 6- 6: Reasoning example 84

Figure 6- 7: Knowledge inference based on property DependsOn 84

Figure 6- 8: Example of inferred transitive closure 85

Figure 6- 9: Results derived from issue dependency 86

Figure 6-10: Linked Bugzilla and SVN ontologies 88

Figure 6-11: Date/time between issue reporting and resolution 89

Figure 6-12: Bug resolution history in SVN ontology 90

Figure 6- 13: SPARQL query and results for resolution history 91

Figure 6- 14: Transitive relationships 91

Figure 6- 15: Query results showing inferred knowledge 92

Figure 6- 16: Overview of SE-Advisor framework 94

ix

List of Tables

Table 2- 1: Comparison of some version control systems [VEB09] 14

Table 2- 2: Comparison of some bug tracking systems [WKB09] 17

Table 2- 3: Ontologies vs. databases [IAN07] 20

Table 2- 4: Ontologies vs. databases [MUG04] 20

Table 2- 5: Comparison of available reasoners [REA09] 30

Table 4- 1: Main classes of initial SVN ontology 43

Table 4- 2: Data type properties in SVN ontology 44

Table 4- 3: Object properties in initial SVN ontology design 44

Table 4- 4: Object properties added to enrich SVN ontology 45

Table 4- 5: DL restrictions applied to classes 46

Table 4- 6: Substitution of invalid characters 54

Table 5- 1: Bugzilla ontology classes 61

Table 5- 2: Data type properties in the Bugzilla ontology 62

Table 5- 3: Object properties of Bugzilla ontology 63

Table 5- 4: Bugzilla ontology classes 64

Table 5- 5: Object properties of Bugzilla ontology 65

Table 5- 6: Substitution of invalid characters 72

x

1. Introduction

Software evolution represents a major phase of activities involved in the development,

use, and maintenance of software systems. In recent years, software evolution has been

recognized as one of the most important and challenging areas in the field of software

engineering. Studies pointed out that 65-80% [LEH01] of a system's lifetime will be

spent on maintenance and evolution activities. The majority of the costs of evolution of a

software system are incurred in software comprehension, rather than in making the

necessary corrections to the system. Available estimates indicate that the percentage of

maintenance time consumed on software comprehension ranges from 50% up to 90%

[COR89, LIV94, and STA84].

Software repositories, such as versioning systems and bug tracking systems are essential

parts of supporting various software maintenance activities. These tools not only support

software maintenance activities, but they also store important information related to

software development and maintenance history. Given the often large amount of

information stored in these repositories, researchers have proposed to mine and analyze

these large knowledge bases in order to study and support various aspects of the

evolution of software systems, such as impact analysis, software architecture,

development process, software reuse, product reliability, and artifact traceability.

One of the key challenges in analyzing these software repositories is that they lack a

common representation. These repository specific data models, often introduced as

information silos, do not allow for a semantic rich integration of these resources and

therefore limit the analysis support across repository boundaries. In order to address these

1

challenges with respect to information integration and the analysis across repository

boundaries, a common, semantic rich representation is needed to integrate information

from various software repositories.

In this thesis we introduce a common ontological representation to support the mining

and analysis of software repositories. In addition to this common representation, we

introduce the SVN-Ontologizer and Bugzilla-Ontologizer tools that provide automation

for both data extraction from remote repositories and automated ontology population. A

case study is presented to illustrate the applicability of the approach in supporting the

analysis and mining of the repositories in order to provide support to software

maintainers.

The remainder of the thesis is organized as follows: Section 2 introduces a general

background related to software evolution, software repositories, and ontologies. Section 3

details the motivation and objectives of our approach. Section 4 and 5 introduces the

implementation of SVN and Bugzilla-Ontologizer tools respectively. An initial case

study is presented in Section 6, followed by related work in Section 7. Section 8 presents

conclusions and future work.

2

2. Background

In an attempt to make this thesis self-contained, we review some background relevant to

the presented research. Background on software evolution and software comprehension

process is presented in Section 2. 1. Section 2.2 introduces software repositories with a

specific focus on Subversion, a version control system, and Bugzilla, a defect tracking

repository. Section 2.3 provides a brief introduction to ontologies, semantic web

technology, and their use as a modeling approach.

2.1. Software Evolution

Software evolution represents the cycle of activities involved in the development, use,

and maintenance of software systems [WIKI09]. Software evolution includes software

maintenance, which is defined as part of the IEEE Standard 1219[IEEE90] as, "the

modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modified environment". The

term 'software evolution' is now often preferred as a replacement for 'maintenance'

[KHVOO]. Lehman [LEH80] concludes the fact that maintenance is evolutionary

development. Organizations have made large investments in their software systems.

These systems become often critical business assets. In order to maintain the value of

these assets to the business, the software must evolve. All software systems are subject to

such an evolution, as these systems must evolve over time as new requirements emerge,

or they have to adapt and extend the existing functionalities to meet changed

requirements [LEH01]. As a result, the majority of software budgets in large

3

organizations are devoted to evolve existing software in order to maintain the value of

their software assets. Studies pointed out that 65 to 80% [LEH01] of a system lifetime

will be spent on maintenance and evolution activities. Figure 2-1 shows the software life-

cycle costs.

Software Life-Cycle Costs

a Requirements

a Specifications

a Design

a Coding

• Unit Testing

a Integration

a Maintenance

Ref: Schach 2002 p. 12 © 2003-2005 by Digital Aggregates Corp. AM rights ms*m»d.

Figure 2- 1: Cost of the software life cycle [DAC01]

It has also been shown [LEH01] that the majority of the maintenance costs are related to

enhancements of the existing software product, rather than corrections.

One of the major reasons for the overall significant effort and cost involved in software

evolution is the need to comprehend systems that are either not well documented or have

out of date and inconsistent documentation. Whenever a change is made to a piece of

software, it is important that the maintainer gains some understanding of the structure,

behavior and functionality of the system being modified. As a consequence, maintainers

spend a large amount of their time reading the code and the accompanying

documentation to comprehend its logic, purpose, and structure [GCM00]. Available

estimates indicate that the percentage of maintenance time consumed on software

4

comprehension ranges from 50% up to 90% ([COR89, LIV94, and STA84]). Software

comprehension is necessary because the maintainer is rarely the author of the code (or a

significant period of time has elapsed between development and maintenance) and a

complete, up-to-date documentation is even more rarely available [CAG96].

Burd et al. [BUR98] define software comprehension as "the activity of understanding

existing software systems". Muller [MUL94] defines software comprehension as "the

task of building mental models of the underlying software at various abstraction levels,

ranging from models of the code itself, to models of the underlying application domain,

for maintenance, evolution, and reengineering purposes". The author further states that

software comprehension is "a process whereby a software practitioner understands a

software artifact using both knowledge of the domain and/or semantic and syntactic

knowledge, to build a mental model of its relation to the situation" [MUL94]. Many

software comprehension models (i.e. Mental and Cognitive Models) have been proposed.

These models help to better identify what information needs to be provided to

maintenance programmers, and when and how this information should be provided

[LET86]. Software comprehension models normally consist of four common elements,

namely, a knowledge base, external representation, assimilation process, and mental

models [MPO03]. Figure 2-2 shows the common elements of comprehension models.

5

Programmer

Figure 2- 2: Common elements of software comprehension models [MPO03]

An external representation corresponds to the external views available in assisting the

maintainer comprehending a software system. This external support may be in the form

of system documentation, the source code, expert advice from other maintainers familiar

with problem domain or similar source code from the other system [MPO03]. A

knowledge base can be defined as the maintainer's accumulated knowledge prior to the

attempt to understand the software system. It may consist of an understanding of the

domain and general information that may be pertinent to that domain, along with

programming standards and practices [MPO03]. The knowledge base develops and

expands as the level of maintainer understanding the changes [MPO03]. Rouse et al.

[RWM85] defined a mental model as "mechanisms whereby the humans are able to

generate descriptions of system purpose and form, explanations of system functioning

and observed system states, and predictions of future states". Davis [DSP93] defines an

assimilation process as "the actual strategy, which the programmer employs to

comprehend the source code". One method of assimilation is where maintainer's

hypotheses are refined and elaborated during comprehension [BRK83]. Storey mentioned

in [STO01] that a mental model describes a developer's mental representation of the

6

program to be understood. A cognitive model describes the cognitive processes and

temporary information structures in the programmer's mind that are used to form the

mental model. In the past, several cognitive models have been developed to explain how

maintainers comprehend the software system.

Letovsky [LET87] introduced a cognition model that consists of three main components:

a knowledge base, a mental model, and an assimilation process. The first component

contains the general knowledge that a programmer has about the programming discipline

and the problem domain. It also includes rules of discourse, i.e. conventions in

programming such as algorithm and data structure implementations and coding standards.

The mental model is organized into three different levels of abstraction. First is the

specification level, which describes the program goals. Second, the implementation level

expresses the lowest level of abstraction, and contains the data structures and functions as

entities. The third level of abstraction is the annotation level which links each goal in the

specification level with its realization in the implementation level [CAG99].

Brooks [SOL84] proposed a model based on the top-down approach. The approach starts

from the assumption that in the design phase a designer makes a number of decisions

which will be reflected in the code. Comprehension involves recovering these decisions

and mapping them onto the programming domain through the reconstruction of

intermediate domains. The construction of the mental model happens through a top-down

process that successively formulates and verifies hypotheses. At the top there is the

primary hypothesis that expresses a high level description of the program function. Next,

subsidiary hypotheses are formulated to support the primary hypothesis [CAG99].

7

Pennington [PEN87] proposed a bottom-up approach that starts by comprehending code

line by line and discovering familiar patterns, called chunks, whose aggregation and next

abstraction can bring to the identification of new patterns a higher level of abstraction.

Pennington's model faces comprehension problems with the development of two

different mental representations: the program model and the situation model. The first is a

low level mental model of the program and its structure. Indeed, the first model that

maintenance programmers build when dealing with unfamiliar code is typically a control

flow abstraction. New and more abstract program models are then built by chunking code

structures into more abstract structures. The situation model is developed after the

program model. It creates a data flow/functional abstraction and requires knowledge of

the application domain to mentally represent the code in terms of real-world objects

organized as a functional hierarchy [CAG96].

Mayrhauser et al. [VMY93] proposed an integrated model that combines the models

previously proposed. They start from the observation that a comprehension process

proceeds either top-down, bottom-up, or a combination of the two. The integrated model

consists of four main components: program model, situation model, top-down model, and

knowledge base. The first three components are borrowed from the models already

introduced. The integrated model exploits the top-down model when the code is familiar

and the bottom-up model when it is completely new. By proceeding in a top-down way it

can happen that an unfamiliar section of code is met, and a swap to the bottom-up

investigation is required. The knowledge base is necessary for the construction of the

other three components. Each model component consists of an internal representation of

the code and the strategy to build this internal representation. The knowledge base

8

furnishes related information and knowledge which has been previously acquired. During

understanding, new information is developed and stored in the knowledge base for future

usage. [CAG96].

2.2. Software Repositories

Software repositories help the users to manage the progress of software projects. A

repository refers to a central place where data is stored and maintained within a persistent

storage. Repository distributions can be either shared across a network or locally hosted

on an individual computer. Software repositories such as version control and defect

tracking systems are common examples of repositories used as part of modern software

engineering and software development processes. These repositories provide shared

understanding of the development processes of the software product.

Revision control (also known as version control) is the management of multiple revisions

of the same unit of information. Version control systems (VCS) such as CVS [XMB09]

and SVN [SVN09] are widely used examples of version control systems. These version

control systems keep the development history of software projects in order to avoid

modification conflicts among different revisions. Version control systems play also an

important role during software evolution, since changes performed as part of maintenance

requests can be traced and tracked (e. g. who made what changes and when.).

During the development of a software system certain problems may arise. Such problems

can emerge from one revision to another and are referred to as "bugs. " Thus, bug

tracking is a necessity in addition to a revision control system. When considering bug

tracking we understand the storage and management of issues related to programmatic or

9

even systemic instabilities, faults or conflicts during development. These issues are stored

in a dedicated bug or issue tracking system. These systems mainly consist of a database

(open source or proprietary) where the data pertinent to a specific issue is stored. The

client and administrator side access layers (usually web based access, like Bugzilla

[BUG09]).

2.2.1. Subversion (SVN)

Subversion (SVN) is a free/open-source version control system; it manages files and

directories. Subversion places these files and directories into a central repository

[SVN09]. The Subversion repository supports the tracking of changes to files and

directories. SVN furthermore allows for the recovering of older versions of data, or

examining the history how the data changed.

History of Subversion

CollabNet [CLB09] offers a collaboration software suite called CollabNet Enterprise

Edition (CEE) [CL09A] of which one component is version control. Before August 2001,

CEE used CVS (Concurrent Version System) as its initial version control system. CVS's

limitations were obvious from the beginning. In early 2000, CollabNet planned to

develop a new version control system from scratch which would match CVS's features

and preserve the same development model but not duplicate CVS's most obvious flaws. It

did not need to be a drop-in replacement for CVS. It should be similar enough that any

CVS user could make the switch with little effort. After fourteen months of coding, the

Subversion (SVN) became fully functional on August 31, 2001 by replacing CVS

[SV09B].

Ajache

imxi,OAV

mijmjsm f

f. ,,,...,,,,:...: ..,. <£,.<, i . ^ . , . ^ , . .

^^rrzr™^^^

w
iebm^aK

Okntinterfm

Repository interface

Figure 2- 3: SVN architecture [SV09A]

Architecture of Subversion

Subversion can access its repository across networks, enabling a collaborative

environment for users where they can modify and manage the same set of data. Figure 2-

3 shows the architecture of SVN repository. Subversion works in two ways. First, it

provides repository that holds all of the versioned data. On the other end it works as a

client program, which manages the local operations of the portions of that versioned data

called working copies. Between these two ends there are multiple routes through various

Repository Access (RA) layers. Some of these routes go across computer networks and

11

through network servers that then access the repository. Others bypass the network

altogether and access the repository directly.

Functions and Features

The basic functionalities provided by SVN are the same as in CVS, including the storage

of file history information about users who checked out a working copy of a file to work

locally on it. Users can easily compare the different versions of the file. In next paragraph

we will discuss features exclusively supported by SVN.

SVN provides branching, tagging, and release concepts, where tags are common file

metadata that are managed and kept in files or directories. Branches are separate directory

trees made out of current main "trunk" directory. When a branch is made for a file, the

revision enumeration continues on. The only property that changes is the path to the file

or directory that moved from the main trunk to a branch. SVN tracks the changes made to

both the main trunk and the branch as a log of the same file, telling the user where a

particular change (main trunk or branch) was made and whether a revision corresponds to

the main trunk or the branch. Figure 2-4 shows the example of SVN repository directory

structure.

Releases are sets of revisions without explicit concepts or mechanisms corresponding to

releases. Subversion creates branches and tags by simply copying the project, using a

mechanism similar to a hard-link.

12

S'C3 branches
5"£3l releases
S'£3 ^95
& t ^ trunk

EJ"Gs documentation
B"€3i modules
$ • £ 3 src

B " G t oo 's

Si-f~2> www

Figure 2- 4: An example of directory structure in SVN repository

Subversion supports add, delete, copy, and rename both files and directories. Every

newly added file begins with a fresh and clean history of its own. Subversion provides

consistent data handling by providing differences of the files in binary and human

readable format. Subversion allows atomic commits; it stores complete collections of

modification into repository.

Subversion uses a copy-modify-merge model as an alternative to locking. In this model,

each user's client contacts the project repository and creates a personal working copy (I.e.

a local reflection of the repository files and directories). Users then work simultaneously

and independently to modify their private copies.

Finally, the private copies are merged together into a new, final version. The version

control system provides support for merging, but ultimately, a human being is responsible

for the final merging decisions.

Table 2-1 provides an overview of functionalities of some popular version control

systems (including Subversion).

13

Features
Atomic Commits

Files / Directories
Moves or Renames

Intelligent Merging
after Moves or
Renames
File and Directories
Copies
Remote Repository
Replication
Propagating
Changes to Parent
Repositories
Repository
Permissions

Change sets
Support

Branching and
Merging
Tracking
Uncommitted
Changes
Command Set

Portability

Web Interface

Availability of
Graphical User-
Interfaces.

Tal

Subversion
Commits are atomic.

Supported

Partially supported.

Supported also utilized for
branching.
supported

supported

The WebDAV-based
service supports defining
HTTP permissions
Partial support. There are
implicit change set that are
generated on each commit.
Sported

supported

A CVS-like command set.

Excellent. Clients and
Servers work on UNIX,
Windows and Mac OS X.

Supported verity of tools,
more than any other version
control system
There are many available
GUIs: RapidSVN (cross-
platform), TortoiseSVN
(Windows Explorer plug-
in), Jsvn (Java), etc.
development.

ble 2- 1: Comparison oj

CVS
CVS commits are not
atomic.
Not supported.

Not supported.

Not supported.

supported

Not supported

Limited. "Pre-commit
hook scripts"

Not supported
Changes are file-
specific.
Not Supported

supported

A simple command
set that includes (cvs
commit, cvs update
and cvs checkout)
and several others.
Good. Client works

on UNIX, Windows
and Mac OS. Server

Supported

There are many
available GUIs:

WinCVS, Cervisia
(for KDE),

TortoiseCVS
(Windows Explorer

plug-in).
csome version cont

BitKeeper
need to verify

Supported

Partially supported

Supported.

supported

supported

FILL IN

Supported.

Supported

supported

A CVS-like
command set

Very good.
Binaries are
available for most
common UNIX
systems and for
Windows 98 and
above.
Its own built-in
web tool

BitKeeper ships
with several GUIs
for performing
common tasks.

rol systems [VEL

Git
Commits are
atomic.
Supported

Not supported

Not supported.

very intrinsic
feature of Git.
supported

No, but a single
server can serve
many repositories.
Supported

Supported

supported

Command set is
very feature-rich,
and not compatible
with CVS.

The client works
on most UNIXes,
but not on native
MS-Windows.

Its own built-in
web tool. Gitweb

Gitk is included in
distribution. Qgit
and Git-gui tools
are also available.

-

W9J

14

2.2.2. Bugzilla

Bugzilla [BUG09] is a bug or issue tracking system. Bug tracking systems allow

individuals or groups of developers to keep track of outstanding problems with their

product effectively.

History

Bugzilla was originally developed by Terry Weismann in a programming language called

TCL to replace a rudimentary bug-tracking database used internally by Netscape

Communications. Weismann later ported Bugzilla to Perl from TCL, and it remains in

Perl to this day. Most of the commercial defect tracking software vendors at the time

charged enormous licensing fees. Being an open source project, Bugzilla became a

favorite of the open-source crowd (with its genesis in the open-source browser project,

Mozilla) [BUG03]. Initially, Bugzilla was used to manage issues in the Mozilla

Foundation projects. Now external projects (both open source and proprietary), can

submit their bug reports too. It has become the de-facto standard defect-tracking system

against which all others are measured.

Architecture and Functionality

Bugzilla is a web-based, open-source issue tracking tool. It is the most widely used web

based tool to manage bugs. Bugzilla can also track enhancements, feature requests, and

to-do items. Bugzilla allows individuals or groups of developers to keep track of

outstanding problems with their product effectively.

The architecture of Bugzilla as a tool is rather simple. It requires an installed server and a

database management system (PostgreSQL, MYSQL, etc.) to be operational. Further,
15

Bugzilla requires a suitable release of Perl 5 along with a set of Perl modules for the

installation and a mail transfer agent, such as Sendnote, qmail, Postfix or Exim.

New bug from a

user w i th canconf i rm

or a product wi thout

UNCONFIRMED state

L
UNCONFIRMED

Bug confirmed or
receives enoug h vo te /

Bug is reopened,
was never confirmed

Ownership
is changed

Possible resolutions
FIXED
DUPLICATE
WONTFIX
WOPKSFORME
INVALID

Developer takes t

possession

Figure 2- 5: Life cycle of a bug [BU03AJ

The central concept of the Bugzilla is the issue, all other information within the Bugzilla

database being directly associated with an issue. As a result, issues cannot be merged,

branched, or versioned. One issue can block another issue, which can be in a different

16

state depending on the priority of bugs. Bugzilla is also used to file feature requests and

enhancements.

Bugzilla follows the life cycle of the bug as shown in Figure 2-5. When a bug is

submitted, it enters the state "new" as either confirmed or unconfirmed. Then it is

assigned to a developer. When the developer has resolved the bug, it can either be

verified, if the solution worked out, or it can be reopened if the solution was not

satisfying. If a bug is verified it is closed.

This life cycle is currently hard-coded into Bugzilla. It manages the entire work-flow for

a bug and defines clear states a bug goes through. Further, Bugzilla stores comments

from different users, activities performed on the bug, and files attachments attached by

users for the bug. Table 2-2 compares some popular bug tracking systems, including

Bugzilla.

Bug Tracking
System

JIRA

eTraxis

BugTracker.
NET

Debbugs

Bugzilla

Mantis

Integration with
version control

ClearCase, AccuRev,
Perforce, CVS,
Subversion, Visual
SourceSafe (beta)

Subversion

VCS Agnostic, DAK
integration
CVS, Subversion,
Perforce, AccuRev
Supported, support for
CVS, Subversion

Test
Planning

integration

Atlassian
Bamboo
(continuous
integration
& testing,
via plug-in)

Supported

Not
Supported
Testopia

Not
Supported

Customizable
Workflow

Supported

Supported,
unlimited # of
workflow
templates
Supported

Not Supported

Supported, as
of Bugzilla 3. 2
Supported

Unicode
Support

Supported

Supported

Supported

Supported

Supported

Supported

LDAP
user

Authentic
ation

Supported

Supported

Supported

N/A

Supported

Supported

Table 2- 2: Comparison of some bug tracking systems [WKB09]

17

2.3. Ontologies

Ontology is a specification of a conceptualization. In the context of computer and

information sciences, ontology defines a set of representational primitives with which to

model a domain of knowledge or discourse [GUR93]. The representational primitives are

typically classes (or sets), attributes (or properties), and relationships (or relations among

class members) [GUR93].

2.3.1. Why Ontology?

Ontologies have been widely used to conceptualize and define domains of interest.

Ontologies include machine-interpretable definitions of basic concepts in the domain and

relations among them. Why would someone want to develop an ontology?

Sharing common understanding of information structures among people or software

agents is one of the more common goals in developing ontologies [MUS92, GUR93]. For

example, several different web sites contain medical information or provide medical e-

commerce services. If these web sites share and publish the same underlying ontology of

the terms they all use, then computer agents can extract and aggregate information from

these different sites. The agents can use this aggregated information to answer user

queries or as input data to other applications.

Enabling reuse of domain knowledge was one of the driving forces behind recent

development in ontology research. For example, models for many different domains need

to represent the notion of time. This representation includes the notions of time intervals,

points in time, relative measures of time, and so on. If one group of researchers develops

such ontology in detail, others can simply reuse it for their domains. Additionally, if we

18

need to build a large ontology, we can integrate several existing ontologies describing

portions of the large domain.

Making explicit domain assumptions underlying an implementation makes it possible to

change these assumptions easily if our knowledge about the domain changes. A hard-

coding assumption about the world in programming-language code makes these

assumptions not only hard to find and understand but also hard to change, in particular

for someone without programming expertise. In addition, explicit specifications of

domain knowledge are useful for new users who must learn what terms in the domain

mean.

Separating domain knowledge from operational knowledge is another common use of

ontologies. We can describe the task of configuring a product from its components

according to a required specification and implement a program that does this

configuration independent of the products and components themselves [MGWOO].

Analyzing domain knowledge is possible once a declarative specification of the terms is

available. Formal analysis of terms is extremely valuable for reusing existing ontologies

and extending them [MGW98].

Ian [IAN07] illustrates some of the basic differences between ontologies and databases.

Table 2-3 compares ontologies with databases observed by Ian [IAN07].

19

Ontologies
Open world assumption (OWA)

• Missing information treated as unknown
No Unique name assumption (UNA)

• Individuals may have more than one
name

Ontology axioms behave like implications
(inference rules)

• Entail implicit information
Ontology axioms play a powerful and crucial role

• Answer may include implicitly derived
facts

• Can answer conceptual as well as
extensional queries

• Query answering amounts to theorem
proving (i.e. logical entailment)

Databases
Closed world assumption (CWA)

• Missing information treated as false
Unique name assumption (UNA)

• Each individual has a single, unique name

Schema behaves as constraints on structure of data.
• Define legal database states

In Database querying, Schema plays no role
• Data must explicitly satisfy schema

constraints.
• Query answering amounts to model checking

(i.e. a "look-up" against the data).

Table 2- 3: Ontologies vs. databases [IAN07J
Uschold et al., [MUG04] also discuss some interesting differences between ontologies

and databases. Table 2-4 describes the difference between databases and ontologies

mentioned by [MUG04].

Ontologies

Ontologies have a range of purposes including
interoperability, search, and software specification.
One or more parties commit to using the terms from
the ontology with their declared meaning.
For ontologies, constraints are called axioms. Their
Main purpose is to express machine-readable
meaning to support accurate automated reasoning.
This reasoning can also be used to ensure integrity
of instances in a knowledge base.
The main role for cardinality constraints in
ontologies is to express meaning, and ensure
consistency (either of the ontology, or of instances).

support for taxonomic reasoning: it is fundamental
for nearly all ontology applications

Reasoning over ontologies normally is done by
general logic-based theorem provers, specific to the
language. The fundamental role of a reasoning
engine is to derive new information via automated
inference. Inference can also be used to ensure the
logical consistency of the ontology itself.

Databases

The primary use of most DB schema is to
structure a set of instances for querying a
single database. This difference impacts
heavily on the role of constraints.
For databases, the primary purpose of
constraints is to ensure the integrity of die data
{i.e. instances). These 'integrity constraints'
can also be used to optimize queries and help
humans infer the meaning of the terms.
Cardinality and delete constraints are important
Kinds of integrity constraints which have
highly DBspecific uses diose are outside the
scope of most or all ontology systems.
It is not supported by most DBMS.

Logical consistency tiirough Reasoner is not
supported by most DBMS.

Table 2- 4: Ontologies vs. databases [MUG04]

20

Robert et al. [RJS99] highlight some of the benefits of using ontologies as an enabling

technology for interpersonal communication and inter-operability. For communication

between people, an unambiguous but informal ontology may be sufficient. Inter­

operability among computer systems can be achieved by translating between the different

modeling methods, paradigms, languages, and software tools. The ontology is used as an

interchange format.

Systems Engineering Benefits

Re-Usability: The ontology is the basis for a formal encoding of the important entities,

attributes, processes and their inter-relationships in the domain of interest. This formal

representation may be (or become through by automatic translation) a re-usable and/or

shared component in a software system.

Search: Ontology may be used as meta-data serving as an index for a repository of

information.

Reliability: A formal representation also makes possible the automation of consistency

checking resulting in more reliable software.

Specification: The ontology can assist the process of identifying requirements and

defining a specification for an IT system (knowledge based or otherwise).

Maintenance: The use of ontologies in system development, or as part of an end

application, can render maintenance easier in a number of ways. Systems which are built

using explicit ontologies serve to improve documentation of the software, which in turn

reduces maintenance costs. Maintenance is also an important benefit if ontology is used

21

as a neutral authoring language with multiple target languages - it only has to be

maintained in one place.

Knowledge Acquisition: Speed and reliability may be increased by using an existing

ontology as the starting point and basis for guiding knowledge acquisition when building

knowledge-based systems.

Reasoning Services: Reasoning refers to the evaluation of ontologies according to their

specifications, including:

• Checking consistency of the ontology

• Checking concept (and role) consistency

• Concept (and role) subsumption

• Instance checking

• Instance retrieval

• Query answering

2.3.2. Applications

Ontologies are part of the W3C standards stack for the Semantic Web, for which they are

used to specify standard conceptual vocabularies to enable exchange of data among

systems. Furthermore, they are the basis for providing services for answering queries,

publishing reusable knowledge bases, and offering services to facilitate interoperability

across multiple, heterogeneous systems and databases. The key role of ontologies with

respect to database systems is to specify a data modeling representation at a level of

abstraction above specific database designs (logical or physical), so that data can be

exported, translated, queried, and unified across independently developed systems and

22

services. Successful applications to date include database interoperability, cross database

searches, and the integration of web services. Figure 2-6 shows an example of ontology.

• Relation « is a »
» Relation « causes »

Figure 2- 6: An example of ontology [MAR.09]

Robert et al. [RJS99] describe some ontology applications as follows:

Neutral Authoring: An information artifact is authored in a single language and is

converted into a different form for use in multiple target systems. Benefits of this

approach include knowledge reuse, improved maintainability, and long term knowledge

retention.

Ontology as Specification: An ontology of a given domain is created and used as a basis

for specification and development of some software. Benefits of this approach include

documentation, maintenance, reliability, and knowledge re-use.

23

Common Access to Information: A piece of information is required by one or more

persons or computer applications, but is expressed using unfamiliar vocabulary or in an

inaccessible format. The ontology helps render the information intelligible by providing a

shared understanding of the terms or by mapping between sets of terms. Benefits of this

approach include inter-operability and more effective use and reuse of knowledge

resources.

Ontology-Based Search: Ontology can be used for searching an information repository

for desired resources (e. g. documents, web pages, names of experts). The chief benefit of

this approach is faster access to important information resources, which leads to more

effective use and reuse of knowledge resources.

2.3.3. Web Ontology Language OWL and SPARQL

OWL stands for Web Ontology Language. The OWL Web Ontology Language is

designed for use by applications that need to process the content of information instead of

just presenting information to humans [W3C09]. Following are the data formats

supported by Web Ontology language.

• XML provides a surface syntax for structured documents, but imposes no

semantic constraints on the meaning of these documents.

• XML Schema is a language for restricting the structure of XML documents and

also extends XML with data types.

24

• RDF is a data model for objects ("resources") and relations between them. It

provides simple semantics for this data model, and these data models can be

represented in the XML syntax.

• RDF Schema is a vocabulary for describing properties and classes of RDF

resources, with semantics for generalization-hierarchies of such properties and

classes.

OWL is currently available in following three different types.

• OWL Full is the full specification of the language.

• OWL DL is a subset of OWL Full, making some restrictions to allow automated

reasoning.

• OWL Lite is a subset of OWL DL as a simple-to-use, simple-to-implement

version of OWL.

The OWL format has four major concepts to store information and its associations.

• Classes are abstract definitions of a single concept. Classes define possible

associations and properties they can have. A class itself does not store concrete

data. It only acts as a container concept.

• Individuals (also called instances) are the concrete realizations of a class. They

can only have associations and store data in the defined manner of their respective

class.

• Object properties define the associations between two classes (abstract) or two

individuals (concrete). Object properties are directed associations and always

25

belong to a specific domain (i.e. the starting point of an association) and a range

(i.e. the endpoint). Domain and range can both be a list of multiple Classes.

• Data type properties can be, like object properties, considered as associations.

Unlike object properties, the range is not a list of classes but rather a predefined

data type. Typically the data types of XML Schema [W3C, 2004b] are used.

SPARQL is the W3C standard query language for semantic web OWL/RDF data. In

order to retrieve data using SPARQL, a triple template is defined in the query. The core

idea is to leave the subject or object of a triple blank variable and the query engine will

try to find all the triples matching this template.

It provides facilities to:

• Extract information in the form of URIs, blank nodes, plain and typed literals.

• Extract RDF sub graphs.

• Construct new RDF graphs based on information in the queried graphs.

2.3.4. Ontology editing tools

Protege release 3.4

Protege is a free, open-source platform that provides a suite of tools to construct domain

- models and knowledge-based applications with ontologies. Protege implements a rich set

of knowledge-modeling structures and actions that support the creation, visualization, and

manipulation of ontologies in various representation formats. Protege can be customized

to provide domain-friendly support for creating knowledge models and entering data.

Furthermore, Protege can be extended by way of plug-in architecture and a Java-based

26

Application Programming Interface (API) for building knowledge-based tools and

applications [PRG09].

TopBraid Composer (standard edition)

TopBraid Composer is an enterprise-class modeling environment for developing

Semantic Web ontologies and building Semantic applications. TopBraid Composer is

implemented as an Eclipse plug-in. TopBraid Composer is a professional development

environment for W3C's Semantic Web standards RDF Schema, the OWL Web Ontology

Language, the SPARQL Query Language and the Semantic Web Rule Language

(SWRL). Composer can be used to edit RDFS/OWL files in various formats and also

provide scalable database back ends (Jena, AllegroGraph, Oracle l lg and Sesame) as

well as multi-user support.

Composer provides a comprehensive set of features to cover the whole life cycle of

semantic application development. In addition to being a complete ontology editor with

refactoring support, Composer also can be used as a run-time environment to execute

rules, queries, and reasoners. Based on Eclipse, Composer can also be extended with

custom Java plug-ins. This supports the rapid development of semantic applications in a

single platform.

2.3.5. Ontological Reasoners

An ontological reasoner is a piece of software able to infer logical consequences from a

set of asserted facts or axioms. The notion of a semantic reasoner generalizes that of an

inference engine by providing a richer set of mechanisms to work with. The inference

rules are commonly specified by means of an ontology language, and often a description

27

language. Many reasoners use first-order predicate logic to perform reasoning. The

inference commonly proceeds by forward chaining and backward chaining [REA09].

Pellet reasoner

Pellet is an open source reasoner for OWL DL written in Java. It provides reasoning

service for OWL ontologies. Pellet allows reasoning for semantically-enabled

applications that need to represent and reason about information using OWL [PAL09].

Pellet is an OWL DL reasoner based on the tableaux algorithms developed for expressive

Description Logics. It supports the full expressivity OWL DL including reasoning about

nominal's (enumerated classes). The core of the Pellet reasoner is the tableaux reasoner

that checks the consistency of a KB, (i.e. a pair of an ABox and a TBox). The reasoner is

coupled with a data type oracle that can check the consistency of conjunctions of (built-in

or derived) XML Schema simple data types. The OWL ontologies are loaded to the

reasoner after a step of species validation and ontology repair. This step ensures that all

the resources have an appropriate type triple (a requirement for OWL DL but not OWL

Full) and missing type declarations are added using some heuristics. During the loading

phase, axioms about classes (subclass, equivalent class or disjointness axioms) are put

into the TBox component and assertions about individuals (type and property assertions)

are stored in the ABox component. TBox axioms go through the standard preprocessing

of DL reasoners before they are fed to the tableaux reasoner. Figure 2-7 shows the

architecture of a Pellet reasoner.

28

o n o v y i Da»ar

1
Species Validation St

Ontology Repair

T B o x x ^ ^ N ^ A B o x
S"'

TBox
Absorption

v ''
lnt©fnaf'?atifin

T« ,
Tableau
Reasoner

XSD
Reasoner

i

-

SPARQL Parser

J
ABox Query

Engine *

' - B -

KnowledgeBase Interface
(Reasoner SPD

• • • • • ' • • - • •

D
IG

O

W
L

 A
P

I
Je

n
a

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e

'

—

K

L
i

Jena
Application

OWL API
Application

DIG
Application

•?.

Figure 2- 7: Architecture of a Pellet reasoner [PL09A]

Jena Semantic Web Framework

Jena [JEN01] is an open-source Semantic Web framework developed in Java language.

Jena framework is used to create and populate RDF models, to persist them to a database,

and to query theses RDF models programmatically using SPARQ query language. Jena's

reasoning service capabilities can be used to infer knowledge about models from

ontology.

Table 2-5 compares some popular reasoners available.

29

OWL-DL
Entailment

Supported
expressivity for
reasoning

Reasoning
algorithm
Consistency
checking
DIG Support

Rule Support

Version

Licensing

Pellet

Yes

SROIQ(D)

Tableau

Yes

Yes

Yes (SWRL
- DL Safe

Rules)

2. 0 RC5

Free/ open-
source &

KAON2

Yes

SHIQ(D)

Resolution
& Datalog

?

Yes

Yes
(SWRL--
DL Safe
Rules)

Unknown

Free/
closed-
source

RacerPro

Yes

?

Tableau

Yes

Yes

Yes
(SWRL -
not fully
support
SWRL)

1.9.2

Non-Free/
closed-
source

Jena
No complete

reasoner included
with standard
distribution

varies by reasoner
(incomplete for

nontrivial
description logics)

Rule-based

Incomplete for
OWLDL

Yes

Yes (Own rule
format)

2 .5.4

Free/ open-source

FaCT++

Yes

SROIQ(D)

Tableau

Yes

Yes

No

1. 1.8

Free/ open-
source

OWLIM

No

R-entailment

Rule-based

No

No

Yes (Own
format)

2. x/3. x

Free/ open-
source

Table 2- 5: Comparison of available reasoners [REA09]

2.3.6. Ontology Alignment

Aligning ontologies means "establishing links between two or more ontologies" and

allowing the aligned ontologies to reuse information from one another [NFN07].

Aligning ontologies amounts to defining a distance between entities (which can be as

reduced as an equality predicate) and computing the best match between ontologies, (i.e.

the one that minimizes the total distance or maximizes a similarity measure) [JEP04].

Several methods are introduced by researchers to calculate distances between entities in

ontologies [JEP04]:

• Terminological compares the labels of the entities.

30

• String based does the terminological matching through string structure

dissimilarity (e. g., edit distance).

• Internal structure comparison comparing the internal structure of entities (e. g.,

the value range or cardinality of their attributes).

• External structure comparison compares the relations of the entities with other

entities.

• Taxonomical structure compares the position of the entities within taxonomy.

• Extensional comparison compares the known extension of entities, i.e. the set of

other entities that are attached to them (in general instances of classes).

• Semantic comparison compares the interpretations (or more exactly the models)

of the entities.

The process of alignment creates a mapping between two input ontologies. The mapping

is a set of anchors between the two ontologies (i.e. an edge connecting two elements of

the ontologies).

31

3. Contribution

In this section we will first introduce the general motivation for our approach. We discuss

the need for modeling and analysis of software repositories like bug trackers and version

control systems. Next we will present the research hypothesis and the specific sub-goals

which will be addressed as part of this thesis.

3.1. Motivation

According to Lehman, "a software system must evolve, or it becomes progressively less

useful" [LEH97]. Software evolution involves both the comprehension and modification

of existing software systems. Given the collaborative nature of software development,

various software repositories like versioning systems and bug trackers are used to support

the evolvability of the software system. When the software system evolves, changes

made to source code and other documents are stored in software repositories. Software

repositories contain valuable information about the development history of the software

project. There is a great potential by mining and analyzing such historical information to

support the evolution of software systems.

In recent years there has been a trend to use the information stored in these software

repositories to provide the maintainers with additional support during the evolution of

large software systems [CAC01, DTT05, GDM04, DMG04, TQG02, and HSK05].

For the detailed references we will discuss some efforts done in past to support software

evolution.

As Antoniol [GIO04] states that, the software repositories like bug repositories and

version control systems represent valuable sources of information to study software

32

evolution. Version control systems can be mined to gain insights about the evolvability of

a system by analyzing other properties like the size, complexity, and the amount of

changes stored in the repository. Bug reporting systems on the other hand can provide

additional insights on the reliability of a system, as well as the management of defects (e.

g., average defect fixing rate and statistics about defect severity) [GIO04].

[AEH06] Hassan et al. came in their work to a similar observation, stating that mining

historical information from software repositories can support both developers and

managers in their endeavors to build and maintain complex software systems.

As pointed out in [JIM07], by mining and analyzing software repositories it is possible to

recover traceability links among different repositories to support the evolvability of the

software systems. Some of the potential applications for these traceability links are the

support for impact analysis, software comprehension, and requirements assurance of high

quality systems [JIM07]. Software repositories have also been analyzed in [BJM03,

GHH98, DMG04VAR04, VR04S, ZTT05 and ZT05A] to support the prediction of

software change.

Software repositories (i.e. SVN repository and Bugzilla repository) typically use different

types of persistent storage and schemas, which makes it inherently difficult to share and

link information among these repositories. The information gathered from these software

repositories is not structured. It is not easy to interconnect traces related to the same

artifact in different sources.

Among the challenges faced by researchers, one of the key challenges in mining and

analyzing software repositories is that they lack a common representation. The lack of

33

common representation does not allow for a semantic rich integration of these resources,

and therefore limits the analysis support across the repository boundaries.

In order to address these challenges with respect to information integration and the

analysis across repository boundaries, a common, semantic rich representation is needed

to integrate the information from various software repositories. In this thesis we introduce

a common ontological representation to support the mining and analysis of software

repositories. The proposed common ontological representation will allow for efficient

mining and analysis of software repositories (i.e. SVN and Bugzilla) to support software

evolution.

Research Hypothesis

A common ontological representation can be established among software repositories to

support the evolution of software systems.

3.2. Specific Contributions (Sub-goals) and Acceptance Criteria

The goal of our research is to provide a common ontological representation for software

repositories for mining and analysis in order to support the evolution of software systems.

We divide the general research goal into some more specific sub-goals to be addressed by

this thesis:

34

Establishing a Common Ontological Representation

Software repositories, like versioning systems and defect tracking systems store valuable

information for the evolution of a software project. The information stored in these

repositories has a different format and representation. A user needs different tools to

extract, integrate, and analyze the information stored in these repositories. For example,

the SVN repository data can be retrieved through different client software available, such

as Tortoise SVN. The Bugzilla repository information can be retrieved by the web

interface tools provided by the Bugzilla installation. The information extracted from these

repositories is in raw format. In order to process and analyze the raw data extracted from

software repositories, as well as to identify the relationships and the dependencies

between them, users require manual efforts and different types of analysis tools.

Nowadays, software development is a complex task; many large systems are

interconnected with other systems. These systems produce a huge amount of information

for software repositories. The process of extracting, combining, and analyzing such

software repositories is more complex, time consuming, and requires much manual effort.

In order to deal with the stated problems, we propose a common ontological

representation based on the Web Ontology Language (OWL) in order to integrate the

information from different software repositories.

The Web Ontology Language (OWL) provides a semantic rich and meaningful way to

store the information extracted from the software repositories. Standard OWL processing

tools allow for immediate processing of the information in terms of visualization, editing,

querying, and debugging.

35

By using the OWL standard tools, there is no need to write the code or to use the

complicated command line tools. Compared to other formats and tools, OWL enables

treating of data based on its semantics.

A common representation for the software repositories allows analysis across software

repository boundaries. Additionally, it allows analysis of the relationships and

dependencies among different artifacts.

Automated Ontology Population

The process of connection, data extraction, and parsing raw data extracted from the

different software repositories is a complex and a time consuming job. Since the software

repositories store information in different formats, they need different types of

connectivity profiles, as well as the tools for extraction and parsing the raw data.

We introduce an approach which automates the process of the connection, extraction,

and refinement (i.e. the transformation of raw data) of the ontology population. The

proposed automated approach will save the time consumed in the manual efforts, as well

as provide a safe and error-free way to populate the ontology.

Implementation of an Automated Tool

In addition to a common ontological representation, we introduce the SVN Ontologizer

and Bugzilla Ontologizer tools that provide automation for both data extraction from

remote repositories and automated ontology population.

36

Mining and Analysis across the Repository Boundaries, in order to Support the

Evolution of a Software System

As discussed earlier, software researchers have recognized the benefits of the mining

software repository data. The information stored in software repositories is a valuable

source to support the evolution of a software system. By mining the software

repositories' information, we can improve the software design/reuse and recover the

traceability links between different artifacts as well. The traceability links between the

different artifacts can help to understand the relationships and dependencies among them.

As discussed in section 2, the one of the key aspects in software evolution is software

comprehension. Our proposed common ontological representation supports bottom-up

software comprehension. The bottom-up software comprehension approach is very useful

for developers and maintainers, who have little or no knowledge of the existing software

systems. The bottom-up approach helps the developers and the maintainers by gathering

information from low level to abstract level. As mentioned in [BOT03], understanding is

built from the bottom-up approach by reading the code and then mentally chunking or

grouping these lines of code into higher-level abstractions. Analyzing software

repositories across boundaries leads to better software comprehension.

The bottom-up approach to software comprehension primarily addresses situations where

the developer or maintainer is unfamiliar with the domain. Several top-down models of

software comprehension have been proposed to address the alternative situation, where

the developer or maintainer has some previous domain exposure.

37

Analyzing the information stored in the software repositories also provides knowledge

and understanding of:

• Explicit concepts, which are directly implemented in the source code as variables,

executable code snippets, methods and classes.

• Implicit concepts, which are the assumptions that underlie parts of the code but

are not directly implemented. For example, many applications assume that only

one user is working with them; no specific code can be identified as the

implementation of this single-user concept. If such an application is requested to

support multiple users, programmers would have to change the implicit concept of

the user to the explicit one, which requires substantial effort.

A common ontological representation allows for ease in the mining and analysis of the

software repositories. Effective mining and analysis support the effective evolution of the

software systems. Additionally, common ontological representation allows re-use of the

information extracted from software repositories.

3.3. Acceptance Criteria

We expect our research hypothesis to hold if the following acceptance criteria can be

validated:

• Establishing common ontological representation among software repositories

• Automated ontology population

• Implementation of SVN and Bugzilla Ontologizer tools

• Mining and analysis across the software repositories (i.e. SVN and Bugzilla

repositories) in order to support the evolution of a software system.

38

4. Subversion Ontology

4.1. Subversion Ontology Design

For the design of the S VN ontology, we applied a three step development process. First,

the existing schema of the SVN repository was extracted in order to identify and analyze

the major concepts and their relationships modeled in the repository. Next, we applied a

one-to-one mapping between the extracted relational SVN repository schema and an

initial SVN ontology. In the last design step, we enriched and optimized our SVN

ontology with new constraints and relations in order to be able to take advantage of

ontology-specific modeling techniques and reasoning services.

4.1.1. SVN Repository Schema

Figure 4-1 provides an overview of the relational data schema extracted for the SVN

repository. In what follows, we describe in more detail the modeled entities and

relationships, since they are also going to be reflected in our ontological representation of

the SVN repository.

39

has revison

File
Revision

Revision number

1

hasjno 4ficalionjn&

Modification

-author

-date

-message

-action
-path

-Info

I

Made_of

*

Transaction

-file

-Commit
«.„.... _•.„„..„,.. .*.«.._*

Has_braixh

-«••

N'̂

Branch

-branch-release

Figure 4- 1: SVN relational schema

The File-Revision Relation

The SVN repository manages both the directories (i.e. SVN branches/trunk) and the files

that are committed to the repository. Within the relational data model, SVN does not

distinguish between individual files or directories containing several files. Consequently,

revisions, with revision number being the main attribute, are automatically associated

through a many-to-one relation with the file entity. A file entity can have multiple

revisions associated, whereby a particular revision belongs to a single file.

40

The Revision-Branch Relation

SVN supports the use of multiple parallel lines of development (branches). When a

developer creates a branch in SVN, a new file is being created, yet the branch file

remains invisible to the developer. Internally, SVN automatically creates a new sub­

directory when a developer creates a branch. As a part of creating a branch, SVN creates

first a transaction tree, then after a commit the transaction tree becomes a revision tree

with the new branch as a sub-folder or file. The same procedure is applies for all commits

performed.

The Revision-Transaction Relation

SVN defines what corresponds to a transaction as part of the relational schema. A

transaction in SVN is used to distinguish uniquely a set of operations that lead to a new

revision of a file. A transaction in SVN therefore represents a set of operations that apply

to a file before the current revision number is updated.

The File-Modification-Info Relation

A modification report for a file in SVN can be extracted from the history log, which is

available for each committed file. In SVN, a log corresponds to a listing of different

modifications related to each revision of a file. SVN maintains the file and the

modification information separately. As a result, the modification report log contains

information about the particular action being performed (i.e. modified, added, deleted),

the timestamps, the log message, the author, etc. for each revision.

41

4.1.2. Initial Mapping SVN Repository Schema to an Ontological Model

Description logic (DL) allows representing domain knowledge by defining relevant

concepts called classes or TBox [JRL06]. As part of our ontological model for SVN, we

define an initial TBox for our SVN ontology, which corresponds closely to a mapping of

the existing SVN data repository schema. Figure 4-2 shows the resulting initial SVN

ontology model. In order to define an initial TBox, we used Protege release 3.4 ontology

editor [PRG09]. The major entities ate files, releases, and revisions. With every change

to a file (commit) the revision- numbers increased to mark them as a new version. Older

revisions of these files are still available and can be rolled back to. A revision represents

the history of a specific file. A release combines a specific set of file revisions to a

version that can be identified by its own unique name. For our initial ontological model

we introduced three classes: revision, release, and file. We added a new concept,

FileRevision, to our ontology model. The concept of a FileRevision is introduced to

establish the relationship between File and Revision within a particular release.

42

© R e l e a s e

isMadeupOf

8 ^ F i l e R e v i s i o n

^ R e v i s i o n

Ix A

isRevisionOf

v A,

isRevisionOf
hasRevision OfrFite

hasRevision

isFileOf

hasFile

Figure 4- 2: An initial SVN ontology

Table 4-1 describes the main classes of our initial SVN ontology design.

Class Name

File

Revision

Release

FileRevision

Disjoint With

Revision, Release,
FileRevision.

File, FileRevision,
Release.

Revision, File, Release.

Release, File, Revision.

Description

File from the file system

Revision denotes version of the file

Tag with multiple Revisions and Files

Combination of File and Revision-number

Table 4-1: Main classes of initial SVN ontology

Table 4-2 lists the various data properties modeled in the SVN ontology and a description

of these properties. The data type properties allow the definition of the relations between

instances of classes and RDF literals and XML Schema data types.

43

Name
State

creationDate

creationTime

fullPath

author

number
commitMessage

releaseDate

Data Type
String

dateTime

dateTime

String

String

String
String

dateTime

Domain
File

Revision

Revision

File

Revision

Revision
Revision

Release

Description
The state describes the status
of File in the Revision,
(Added, Modified and
Deleted)
Date when Revision was
created
Time when Revision was
created

Full path of the File in SVN
repository.
Name of the user who
created this Revision
Revision-number
Text message entered at the
time when Revision was
created.
Time stamp for Release

Table 4- 2: Data type properties in SVN ontology

An object property is a binary relation between instances of two classes. In order to

restrict the relation of an object property, we specified the domain and range for an object

property. Table 4-3 illustrates the object properties introduced in the SVN ontology.

Name

hasFile

hasMadeRelease

hasRevision

Domain

FileRevision

FileRevision

File or Release

Range

File

Release

Revision

Inverse Property

isFileOf

isMadeupOf

isRevisionOf

Table 4- 3: Object properties in initial SVN ontology design

44

4.1.3. Enhanced SVN Ontology

As part of the ontological modeling approach, we further enriched and optimized our

initial SVN ontology with additional constraints and relations in order to be able to take

advantage of inference services provided by an ontological reasoner. The following

enhancements to our initial SVN ontology were made: additional Object and Inverse

Object Properties were introduced and we added new DL restrictions to existing concepts

in order to allow us to take advantage of some reasoning services. Also, we added

functional and transitive property types to the object properties and Inverse object

properties.

Table 4-4 illustrates the additional object properties added in SVN ontology in order to

take advantages of ontology reasoning services.

Name

hasLatestRevision

hasNextRevision

hasFRevision

hasPreviousRevision

Domain

File

Revision or
File
FileRevision

File

Range

Revision

Revision

Revision

Revision

Inverse Property

isLatestRevisionOf

hasPreviousRevision

isFRRevisionof

Functional
property

Yes

Yes

Yes

Transitive
Property

Yes

Yes

Table 4-4: Object properties added to enrich SVN ontology

Table 4-5 describes the main classes in SVN ontology and DL restriction applied on each

class. The DL restrictions describe the relationships that must hold for members

(individuals) of each class.

45

Class Name

File

Release

FileRevision

Restrictions

hasLatestRevision some Revision.
hasRevision some Revision.

isMadeUpOf some FileRevision.

hasFile some File.
hasFRevision some Revision.

Description

Existential restriction on class File necessarily
hasLatestRevision some Revision and hasRevision
some Revision.

Existential restriction on class Revision necessarily
isMadeupOf some FileRevision.

Existential restriction on class FileRevision
necessarily hasFile some File and hasFRevision
some Revision.

Table 4- 5: DL restrictions applied to classes

Figure 4-3 provides an overview of the refined SVN ontology model including classes,

data type properties, object properties, inverse object properties and their relationships.

creatte&Time " « » N r

creationDate

MKHPiiWi

U M i M

nrftase&ate

hasAladeRelease

isMadeUpOf

WW!

Figure 4- 3: Overview of an enhanced SVN ontology

46

The DL restrictions on classes, the object and inverse object properties, and their types

(i.e. functional property type and transitive property type) play a key role in reasoning,

since some of the knowledge inference through the reasoner will be based on these object

and inverse object properties. Our initial ontology design was almost one-to-one mapping

with SVN repository schema. When we applied reasoning services to our initial ontology,

the reasoner inferred no additional and /or interesting knowledge as shown in Figure 4-4.

Subject PreAate
• Revisioni6400
• Revistonl6601
• Revisionl6558
• Revisionl6H7
• Revisionl5981

• fitel2
• «eH
• Ftel6
• Ftel7
• Ftel9

• isRevisionOf
Wk isRevisionOf
• isRevisionOf
• isRevisionOf
• isRevisionOf

• f isFileOf
M isfiteOf
m isFileOf
• isFSeOf
• isRIeOf

• Ffel92
• Ftel92
• Ffel92
• Ffel92
• Ffel92
• RevistonlS911Ffel2
• Revistonl5911F(el4
• Revisionl5911FJel6
• Revisionl59nFtel7
• Revisionl59ilFtel9

Figure 4- 4: Reasoning services applied to initial SVN ontology model

After enriching and enhancing ontology models with new constraints, the reasoner

inferred very useful knowledge like: links, relationship and dependencies of concepts as

well as transitive relationships of the concepts. Figure 4-5 shows an example of inferred

knowledge after enriching and enhancing initial SVN ontology model.

47

I [Subject)

• svn:

• svn;

• svn;

• svn:

• svn:

• svn;

• svn:

• svn:

• svn;

• svn:

• svn;

• svn:

• svn:

• svn;

#wn:

• svn:

• svn:

• svn:

Revisicnl6539

Revisionl6539

;Revisionl6539

:Revisionl6539

Refl5ionl6540

ionl6540

ionl6540

Revisi

Revisi

;Revisi

Revisi

Revisi

Revisi

Revi$ionl65*

Revisicml65C

Revisionl654:

Rewsionl654:

Ransicnl654;

Revisionism

ord654;

onl654;

onl6543

onl6544

Revisionl6544

Predicate

I svn:i$UtestRevisi<mOf

• svnMevisionOf

• svrcisRevisionOf

• isResolutionOf

• swuislitestRewsionOf

• wmhasPfeviousRevision

• svn:isReyisionOf

• svrchasPreviousRevision

smhasPreviousRevision

svn:isRevisionOf

H svmisRevisionOf

M isResolutionOf

II svrchasPreviousRevision

! • wn:isRevisionOf

• mhasPreviousReviskm

8 svreisfevisionOf

l i svnihasPreviousRevision

sv'rcisRevisionOf

Object

• svn:File727

• svn:File728

• svn:Fi!e727

• issue5602

• svr«Rle66S

• $yrcfile665

• wrefileKS

• svn:Filel84

• svn:Filel55

• svn:Filel84

• svn;Filel55

• issue5598

• svn:File273

• svn:File273

• svn;Fiie274

• svn:File274

• svn:File275

• svn;File275

Figure 4- 5: Reasoning services applied to enriched and enhanced SVN ontology

The SVN ontology also needs to define its own namespace. A distinct namespace is

required in order to be able to uniquely identify the ontology. This mechanism is a main

pillar of the Semantic Web. In order to have multiple ontologies defined within the same

domain, a complete URL is used to specify the namespace. The namespace for our SVN

ontology is http://aseg.cs.concordia.ca/svn

48

http://aseg.cs.concordia.ca/svn

4.2. SVN-Ontologizer

The SVN-Ontologizer tool was developed to support:

(1) The extraction of software version data from remote SVN repositories and

(2) The automated ontology population of the extracted SVN data into a corresponding SVN
ontology.

Figure 4-6 provides a general overview of the SVN-Ontologizer tool and the steps

involved in the SVN extraction and ontology population process.

S V N ; -•/•.

• Repository

SVN
MNTOLOGIZER .. SVN Ontology

Profile :. J

„._„._..,.»—^ " Data Parsing/ ' Ontology j
Data ' ™|' Transformation '-j Population

.JEMwtion
"/• Transformation ' - /

Figure 4- 6: SVN-Ontologizer tool overview

4.2.1. SVN Profile Setup

In order to establish a connection to a SVN repository, a user first has to set up a profile

for the remote SVN repository (Figure 4-5). The profile includes the following

information:

49

Repository location: The repository location that is specified using one of two

protocols: "svn://, svn+ssh://" or "http://, https://"

Required login and password information for the remote SVN

repository server

A specific range of revisions to be extracted (optional all

revisions)

A specific range of versions to be extracted (optional all versions)

The user can also specify ontology name and directory where the

ontology is going to be created

User credentials:

Revision range:

Version range:

Ontology directory:

ip toncept ; Svn Ontolotfiser

SVNUiL ihttpj/atgournl.tigMS.orgfeyrtfargouml^

j j i ^ l j t j

User Name.. jshafique

Password.

Revision

%j Range from j _ j To j _

; Version

! # A I I

VW*

Ontology Destination Dif ecf ory

full Path ICJSvrt.owl

Oirtologise I [Close

; Console

'. Automated SW4 QntologiseTooi

Figure 4- 7: SVN-Ontologizer main user interface

50

http://
https://

4.2.2. SVN Connection and Data Extraction

In the next step, access to the remote SVN repository is established by using the low level

libraries provided by the SVNKit [SVK09]. The SVNKit provides an API to establish

and manage remote access to a SVN repository. The SVN repository data can be

accessed through the SVNKit using two different authentication protocols (shown in

figure 4-8): (1) SVN specific protocols "svn/, svn+ssh" or (2) the standard "http and

https" protocol [SV09A].

Managing Versioned ,
Data

• _ . „ , _ ! ' - ' — '

Access to remote subverston.
U:l S I

OR

W-
h t t p : / /
h t t p s : / /

£

Subversion Repository

Figure 4- 8: SVN connection process

After a successful connection to the SVN server is established, the data extraction process

for the start revision and end revision ranges specified in the profile is initiated. The raw

data extracted from the SVN revision history consists of the following information:

revision: Denotes a revision number of the committed data

51

http://
https://

author: Name of author or committer, who committed the revision

date: Revision date when it was committed or created

log message: Comments entered by author at the time of commit

changed paths: Includes information with respect to:

(a) The state of a file in the revision, denoted by the characters A, M

or D, where "A" corresponds to Insertion, "M" to a Modification

and "D" to a Deletion operation performed

(b) The full file path, which could be either a change path within same

branch or copy path from different branch

The following is an example of raw data extracted from the ArgoUML [ARG09] SVN

repository.

Irevision: 1014

(author: shafique

|date: Wed Aug 03 21:19:55 NOV 2007

jlog message: upated panel view and input view

[changed paths:

iM/trunk/src/UI/interface. java

|M /trunk/src/UI/input. html

jM /trunk/src/main/new/org/Status. java

\ A /trunk/src/main/new/org/broad. j ava

The extracted data is stored in two binary files. The revision file contains information

related to each revision (i.e. revision number, author, date and log message). The path

52

file contains information related to the committed revision and actions performed on the

file (i.e. added, modified and deleted), as well as the full path of the file in SVN

repository.

4.2.3. Data Pre-processing

The extracted SVN data requires some pre-processing in order to support the automated

population of the SVN ontology. The transformations are necessary to ensure that the

extracted data can be represented in the OWL/RDF format.

Serialization

As part of the serialization process the following activities are performed:

• A unique identification is assigned to the paths associated with specific revisions.

• Revision numbers are serialized and duplicate entries of the same paths are

eliminated.

• A memory model corresponding to the ontological representation is created to store

serialized information.

Elimination of invalid characters

Some of the SVN data (in particular the SVN log messages) contains characters that are

not supported by the OWL/RDF format; these invalid characters have to be removed. As

part of the clean-up process, we replacing all invalid characters with characters supported

by OWL/RDF format. Table 4-6 illustrates some of the substitutions that are performed

as part of the data clean-up.

53

Non-valid characters
U
Y

<
>

O
JE

&

I

N

Replaced with
U
Y

-
-

0
a

and

I

I

Table 4- 6: Substitution of invalid characters

4.2.4. Ontology population

In the last step the pre-processed and normalized SVN data in the memory will be used to

automatically populate our SVN ontology. In order to populate our SVN ontology, first

we write SVN ontology TBox into the RDF/OWL file. In the second step we write ABox

containing instances (i.e. loaded in memory models) as per TBox specifications in the

form of RDF triples.

The RDF triples consist of two pieces of data that are linked by a named relationship. The

RDF triple is a simple statement about the truth of some proposition. RDF distinguishes

two kinds of elements that can appear in triples, literals and resources. A literal is a piece

of data which can be an integer, a string, a floating-point number, or even an XML

structure. A resource in RDF identifies something (or someone) about which we make

semantically meaningful statements.

54

5. Bugzilla Ontology

5.1. Bugzilla Ontology Design

For the design of our Bugzilla ontology, again a 3 step ontology design approach was

applied. First we analyzed the Bugzilla repository relational data schema in order to

identify the major concepts stored in the repository and the relationships among them.

Secondly we created an initial ontological model for the Bugzilla repository by mapping

existing tables and relations found in the Bugzilla repository to their ontological

equivalents. This mapping resulted in an almost one-to-one mapping between the

relational Bugzilla schema and our initial Bugzilla ontology. In the last step we enriched

the Bugzilla ontology with new constraints and relations in order to be able to take

advantage of the ontological representation and reasoning services.

5.1.1. Bugzilla Repository Schema

Figure 5-1 provides an overview of the relational data schema extracted from the

Bugzilla repository [BUG03]. In what follows we provide a more detailed description of

the major entities and their relationships in the Bugzilla schema.

Issue - Person (Many-to-Many Relationship)

The issue entity has a relation with three types of persons (i.e. reporter, assignee, and cc

person). The reporter is the person who submits the bug to the bug repository. The

assignee is the person responsible for the submitted bug. It is however possible that an

assignee also submits a bug, which makes him/her a reporter as well. A cc person is the

55

person to whom the bug was forwarded for resolution, review, or comment. The assignee,

reporter and cc person types correspond to roles of the person, and can therefore be added

to the entity person. The multiplicity of the relation between person and issue is many-to-

many, with an issue having potentially multiple persons assigned to it. Likewise, a

person can contribute to more than one issue.

Person - Comment, Attachment and Activity Relation (Many-to-One Relationship)

A person that contributes to a bug is a creator of a comment, attachment or an activity.

The comment entity has a many-to-one relation with the person entity, since a person can

write more than one comment, where as a comment can be written by only one person at

a time. The same holds for the activity and attachment entities.

Issue - Comment (One-to-Many Relationship)

A comment entity contains information such as comment number, a time stamp, and the

comment text. A comment provides additional information that is directly related to an

issue. On the other hand, an issue can have multiple comments associated. The resulting

relationship between issue and comment is therefore one-to- many.

56

shadowlog
id. m t f i n
ts timestamp(14)
reflected tmytnt{4)
command mediumiext

watcher reediumtnffi?)
WtfCbBd mediumintg)

keyworddefs
smaliintrt?)

name VARCHAR<64)
description mediumle*t

duplicates

dupe_of mediumintp)
m$& mediuminlf&

dependencies

blocked mediumtnt(9)
dependson mediumint(9)

components
value tinytext
program VARCHARJ64)
initiaiowner tinytext
inittaiqaconiact tinyiext
description mediumlext

milestones

Obl£ VARCHARaOi
product VARCHARJ64)
sortkey smaflintffi)

value tinytext
program VARCHAR$4)

product« pnxiusi

products

product
description
mtfestoneurl
disaffownew
votesperuser
maxvotesperbug
votestoconfirm
defauHmilestone

VARCHARfi*)
rnediumtexl
tinytext
ttnyint(4)

smaltintflo)
srytallintjJ5)
VARCHARgO)

namedqueries

name
watchfordiffs
iinkinfooter
Query

rngdiijrointQ)
VARCHAR^?
tinyint(4)
finyint(4)
mediumtext

groups
bit
name
description
ssbuggroup
userregexp

bigint(20)
VARCHAR{255)
text
tmymt(4)
tinytext

profiles activity

userid
who
profiles when
fieldid
oidvalue
newvalue

mediumintf?)
mediumint(9)
datettme
mediummt(9)
Imytexi
tinytext

ftrtfid - tiehSd

\

bug 'd mediumintf9>
whp mediuroint{9)

\

profiles

usena
togin_name
password
crypipassword .
reafname
groupset
emailnotificatton
disabled! ext
newematHech
mybugslink
blessgroupset

med)umint(9)
VARCHAR(256V
VARCHAR{16)
VARCHARfP4)
VARCHAR(256)
bigmt(2G)
enum
mediumtext
tmytni(4)
tinyirit(4)
faiginl(2g)

T

r~
uscnd « oshe

bug_id mediumint(9)
who mediumint(9)
bug_when datettme
thelext mediumtext

usend * st&tiu/rjt

f'eldid m^^iurnintg)
name VARCHAR(54)
description mediumtexl
mailhead
sortkey

tinyin!{4)
smallint|)5)

nana = fsrtw

bugs^activity
bug jd
who
bug_wrien
fieldid
oidvalue
newraiue

medtumlnt(9)
medtumint(9)
datetime
mediumint(9)
tinytexi
tinytext

attach id
bug jd
creation_ts
description
mimetype
ispatch
filename
thedata
submitter id

mediumipl(9j
medtumtnt(9)
timestamp(14)
mediumtext
mediumtext
tinyint(4)
mediumtext
longblob
mediumintgj)

keywords
b u g j d naftdjuminifi?)
kevwordid smaiiintiS)

bugs

bugjd,
groupset
assignedjo
bug j i le joc
bug_severity
bug_status
creation J s
de l ta js
short_desc
op_sys
priority
product
rep__platform
reporter
version.
component
resolution
targetjntlestone
qa_eontact
status_whiteboard
votes
keywords
lastdiffed
evercanfirmed

rnediumintS*
bigint(20)
mediumint(9)
text
enum
enum
datetime
timestamp(14)
mediumtext
enum
enum
VARCHAR$54)
enum
mediumint(9)
VARCKAR(16)
VARCHAR(5Q)
enum
VARCHARC20)
med)umtrit(9)
mediumtext
medium»nt(9)
mediumtext
datetime
linyinl(4)

Figure 5- J: Bugzilla repository schema

Issue —Attachment (One-to-Many Relationship)

An attachment (usually in the form of a file) provides additional information related to a

particular issue. The attachment entity contains information such as the type of the

attachment, the date of attachment, and a short description of the attached file. The

57

relation between an issue and attachment is one-to-many, where an issue can have more

than one file attachment associated but an attachment can only be linked to a single issue.

Issue - Activity (One-to-Many Relationship)

Issues in Bugzilla are strictly bound to bug life cycle. As part of the bug life cycle, each

reported issue is required to have an activity associated with it. An activity relates to

changes that modify the status of an issue. The activity provides a detailed record of all

the changes and contributions to an issue including comments added, status changes, etc.

An activity therefore provides relevant information with respect to the history of an issue.

The multiplicity of the relation between issue and activity is one-to-many. An issue can

have multiple activities associated, whereas an instance of an activity can only be linked

to a single issue.

Issue - Dependency Relation

Some issues can depend on or block one another. The dependency relation is normally

two sided (i.e. "Depends on" and "Blocks"). In order to illustrate such an issue

dependency, we consider three issues (issuel, issue2, and issue3) shown in Figure 5-2. In

this scenario, issuel depends on issue2 and issue3. In other words, the resolution of

issuel depends on the prior resolution of issue2 and issue3. On the other hand, in this

scenario, issue3 blocks issue2 and issuel.

58

Figure 5- 2: An example of issue dependency

Issue- Milestone Relation (One-to-Many Relationship)

Milestones correspond to dates on which a developer plans to have a certain set of issue

fixed. The multiplicity of the relation between issue and milestone is many-to-one, with a

milestone typically involving more than one issue, whereas an issue has to be dealt with

as part of a milestone.

Issue-ComputerSystem Relation (Many-to-Many Relationship)

The ComputerSystem contains hardware- and software-related information associated

with a particular issue. The multiplicity of the relation is many-to-many; an issue can

occur on different computer systems and a computer system can have different issues

associated.

From the above schema description, one can identify that the issue entity plays a key role

in the Bugzilla schema. A new instance of an issue is created each time, when a user

reports a new bug or submits a feature request. The following information is always part

of an issue to describe its details.

59

Issue number: A unique issue identification number.

URL: A location, where additional information about the bug can be found.

Summary: A short description of the issue.

Priority: Used by the assignee to prioritize the issue.

Date opened: Timestamp when the issue was submitted.

Status: Status of an issue in the bug lifecycle.

Resolution: Indicates what happened to particular issue in bug lifecycle.

5.1.2. Mapping Bugzilla Repository Schema to an Ontological Model

As part of our ontological model for the Bugzilla repository, we define an initial TBox by

mapping the Bugzilla repository entities to an initial set of concepts in the Bugzilla

ontology. Figure 5-3 shows the resulting Bugzilla ontology model, which consists of

eight classes: issue, comments, activity, attachment, ComputerSystem, milestone,

component and product. The product refers to a component as disused earlier, and

component refers to a subsection of the product.

60

©Comment

\ hasComment
%

hasAttacment f i

•^gtas—at hasReporter
*"****, hasCcPerson

hasAssignee

v*/$

I Activity _

hasMilestone

85 *sscs? fccaj, &

i C omp o ne r\\^ ""IfcComputerSystem

hasComponent

Figure 5- 3: Initial Bugzilla ontology model

Table 5-1 describes the main classes and their usage.

Class

Issue

Activity
Comment
Attachment
Person

Component
Milestone
Product
Attachment
ComputerSystem

Description

An Issue is an entity defining a certain topic concerning the development of a
software system. An issue can be classified or discussed.

Activities form a certain kind of log, tracking the changes occurring to an Issue
A comment on a certain Issue

Attachments are files sent in together with the Issue's text or a comment
Person could be commenter, assignee of an issue, involved person in activity,

cc person of an issue, reporter of an issue, an person attached file to issue
A Component of the software system an Issue may refer to

A Milestone refers to a planned version of a software system
A Product is a functionally of a software system

Attachments are files sent in together with the Issue's text or a comment
A ComputerSystem is the definition of an execution environment

Table 5- 1: Bugzilla ontology classes

61

Table 5-2 provides a description of data-type properties modeled in the Bugzilla ontology, their

type, and associated domain.

Data Type Property

what

performed

removed

added

fileName

type

text

date

platform

OS

status

priority

dateOpened

description

resolution

number

version

Type

String

dateTime

String

String

String

String

String

dateTime

String

String

String

String

dateTime

String

String

Integer

String

Domain

Activity

Activity

Activity

Activity

Attachment

Attachment

Comment

Comment

Compu terSystem

ComputerSystem

Issue

Issue

Issue

Issue

Issue

Issue, Comment

Product

Description

Element affected in Activity

Date and time when this activity
took place

The part that was removed during
this activity

The part that was added during this
activity

The filename of die attachment

The file type of this attachment. For
example: gif, txt

Text part of comment

The date when this comment was
added

A computer system's platform

The operating system

The state of an issue

The priority of the issues' fixing

Date on which issue was reported

A description of the Issue

There can be different reasons why
a bug is closed and therefore

inactive

The number of an Issue an a
comment describes its unique

identifier

Version of this Product

Table 5- 2: Data type properties in the Bugzilla ontology

62

Table 5-3 describes the object properties modeled as part of the Bugzilla ontology. The

description includes the concept, the supported domain and range.

Object Property Name
blocks

hasActivity

hasAssignee

hasAttachment

hasCcPerson

hasComment

hasCommentor

hasComponent

hasComputerSystem

hasCreator

hasInvolvedPerson

hasMilestone

hasReporter

hasResolution

Domain
Issue

Issue

Issue

Issue

Issue

Issue

Comment

Product

Issue

Attachment or
Comment

Activity

Issue

Issue

Issue

Range
Issue

Activity

Person

Attachment

Person

Comment

Person

Component

ComputerSystem

Person

Person

Milestone

Person

Revision (concept
from Aligned SVN

Ontology)

Table 5- 3: Object properties of Bugzilla ontology

5.1.3. Refining the Bugzilla Ontology

In order to take advantage of the ontological model and reasoning services, the Bugzilla

ontology structure was refined with additional constraints and relations. The following

tables (Table 5-4 to 5-6) list some of the major modifications made to the initial Bugzilla

ontology:

63

(1) An additional Inverse Object Properties were introduced.

(2) New DL restrictions to concepts in our initial design were introduced.

(3) We added a functional property and transitive property type to both the Object

Properties and Inverse Object properties.

Table 5-4 describes the additional constraints added in order to enrich and enhance

Bugzilla Ontology.

Class

Issue

Activity

Comment

Attachment

Component

Milestone

Product

Disjoints with

None

Component, Product,
Milestone,

ComputerSystem,
Attachment, Resolution,

Comment
Component, Activity,

Product,
ComputerSystem,

Milestone, Attachment,
Resolution

Component,
ComputerSystem,
Activity, Product,

Milestone, Resolution,
Comment

Activity, Product,
Milestone, Attachment,

ComputerSystem,
Resolution, Comment
Component, Activity,

Product,
ComputerSystem,

Attachment, Resolution,
Comment

Component, Activity,
Milestone, Attachment,

Resolution

DL Restrictions

hasAssignee some Person
hasComment some Comment

hasReporter some Person

None

hasCommnetor some Person
isCommentOf some Issue

hasCreator some Person
isAttachmentOf some Issue

None

None

None

Description

Existential restriction on
class Issue necessarily
hasAssignee some Person
and hasComment some
Comment.

Disjoint classes

Existential restriction on
class Comment necessarily

hasCommentor some Person
and isCommentOf some

Issue
Existential restriction on

class Attachement
necessarily hasCreator some
Person and isAttachementOf

some Issue

Disjoint classes

Disjoint classes

Disjoint classes

Table 5- 4: Bugzilla ontology classes

64

Table 5-5 describes the inverse object properties introduced for the object properties and

property types (i.e. functional and transitive property type) as part of the Bugzilla

ontology. The description includes the concept, the supported range, and their inverse

property. The object properties and their types (i.e. functional property type and transitive

property type) play a key role in order to utilize reasoning services.

Object Property Name

blocks

hasActivity

hasAssignee

hasAttachment

hasCcPerson

hasComment

hasCommentor

hasComponent

hasComputerSystem

hasCreator

hasInvolvedPerson

hasMilestone

hasReporter

hasResolution

haslssue

Property Type

Transitive Property

None

Functional Property

None

None

Functional Property

Functional Property

Functional Property

None

Functional Property

Functional Property

Functional Property

Functional Property

None

Functional Property

Transitive Property

Inverse Property

dependsOn

isActivityOf

isAssigneeOf

isAttachmentOf

isCcpersonOf

isCommentOf

isCommentorOf

isComponentOf

isComputerSystemOf

isCreatorOf

isInvolvedPerson

isMilestoneOf

isReporterOf

isResolutionOf

isIssueOf

Property Type

Functional Property

Transitive Property

Inverse Functional

Inverse Functional

Inverse Functional

Inverse Functional

Inverse Functional

Inverse Functional

Inverse Functional

Inverse Functional

Inverse Functional

Inverse Functional

Inverse Functional

None

Inverse Functional

Table 5- 5: Object properties of Bugzilla ontology

65

Figure 5-4 shows the example of reasoning services applied on initial Bugzilla ontology.

• IftsiwKcs f » Rwies f • § Domain • S* Relevant Properties j If- SPARQl J * ^ Imports ^Inferences <&;

{Predicate} Subject

• »s$ue558i
• «5SUft5581

• »ss«e5S8J
• **Hie558X

9 1 blocks
isa blocks
M blocks
an blocks

Inferred knowledge

(showing only

instances asserted at

the time of ontology

population)

Object

• «sue4766

• issw«5490
• isswe416S
• itsueSStt

Figure 5- 4: Reasoning services applied to initial Bugzilla ontology

Figure 5-5 shows the knowledge inferred by the reasoner after enrichment and

enhancement of an initial Bugzilla ontology design.

• Jmtencts \ » M e t j S i Domain

Subjtct

• issu«5581

• nnitSm
• fewtSHi
• mutSm
• tetutHSS
• isMieS68S

• isiut5685

• i s s u e d

• t5*i«5685

• >»ue5490

• ts$ueW96

• >stu««766

• »?s»«55*S

• i$*u*5S48

• IS5U«5S48

• issM«S496

• »su«S490

• tSHM*lG$

• b»et t6®

• RfttelWS

• i**we«168

• tssue>tW6

• ksu«iH6

• »sueff66

• tswcSMS

m fUlwentPrepertiet • '#• S?ARQjJ '# Import)

{Piedicattl

• •
a

a

a
a
a
a
a
a
a
a
•
•
m
m
m
m
a
a

CISCKS

blocks

blockt

Mocks

blocks

blacks

Weeks

blocks

blocks

Weeks

blocks

blocks

btecks

blacks

blocks

dtpcndsOn

ctependiQn

dtpendsOn

deptndsOn

depemteOn

dep«nd«On

sfcpendsOn

an &![>w»(teG«
a
a

dtpendsOn

<J«pendsOn

Inferred
including

^»krfjst«as** ^

Object

.*. —
knowledge

Inverse
property instances

and transitive closure

^\T#
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

HUM'SO
S5«e5499

u u e t l t t

»ue5$48

45u*4T66

»«e$490

ssu«4l68

uw£S48

wue558t

sswe4!68

»ssu«4?66

«s««4168

is$u«s<16g

$su«t766

HUeS49D

>s»yt5685

«s«e55$l

!5S««5*»

«sue5M$

ii»Me68

ttueS&H

«JO«S68S

st t *3M8

S5uc5581

j»*e5685

<H ,;* ° a

Figure 5- 5: Reasoning services applied to enhanced Bugzilla ontology

Figure 5-6 provides an overview of the refined Bugzilla ontology. In addition to classes,

object and data type properties, the Bugzilla ontology needs to define its own namespace.

A distinct namespace is required in order to be able to uniquely identify the ontology.

66

This mechanism is a main pillar of the Semantic Web. In order to have multiple

ontologies defined in the same domain name, a whole URL can be used to define a

namespace more specifically. Although a URL usually hosts a web page, this is not

necessary for a namespace. The namespace for our Bugzilla ontology is

http://aseg.cs.concordia.ca/bug. As part of the ontology population, we populated the

ABox. In order to populate the Bugzilla ontology, we assert instances of concept and

their roles.

67

http://aseg.cs.concordia.ca/bug

bug:i$ComponentOf'nP<men}

bug;target
j:resolutton

buj-isBlockedBy

*Jly|:ff|$§S$

bug:performed

bu§:iwhai
bug:A«>tMty

b»»^a|3|ill

„ , bug:tosu*CW r * „ „
/ \ # — * , I b«g:n
' " bug:hasMilestof"» '
biig&ompenetn / \ bug:«jitt0p*hs4

big:Product i j f \ \ J. ..- . , ,
bug:Mil*sto,,Jv \ \ \ J /

VH" \ \ \ / / t09:W6*te

bM:R8«si^» - J - bug:hasRe$o!«dlssu6 \ \ / /to>g;bugURL

Ml
ciiviby

bug:os

I f l , bug;habug:isCcP*»onOf \ \ \

b u g : b ^ o U « C s ^ m 7 / / ^ • ^ • * t e
bupUmmlvidftmnut y | ^ M g : ^ N t : h a s C c P * 1 / \

I \/ybug:isC©mpufer%stemGf ' 9 J bugAasAftachment

bu|:Commsnt

tfesMiption

tat*** j ^ toCreator

bug:h3sCfc*meSK»
bug:isCieatorOf

»
bug^tleNai««

bugidate
t)ug;t6xi

Figure 5- 6: Enriched Bugzilla ontology

68

5.2. Bugzilla-Ontologizer

In what follows, we discuss the initial Bugzilla-Ontologizer tool implementation in more

detail. The Bugzilla-Ontologizer provides the follow functionalities:

(1) Establishing a remote connection to a Bugzilla repository

(2) Extracting and exporting raw data from a Bugzilla repository

(3) Transforming the raw data and providing for an automated ontology

population

The next sections will describe in more detail implementation details of the Bugzilla-

Ontologizer tool.

5.2.1. Connection to Bugzilla and Data Extraction

Bugzilla provides a Common Gateway Interface (CGI) to access its components. The following

components are accessible through the CGI interface:

• Administration of a Bugzilla Installation can be accessed through editcomponents.cgi,

editgroups.cgi, editkeywords.cgi, editparams.cgi, editproducts.cgi, editusers.cgi,

editversions.cgi, and sanitycheck.cgi.

• Creating, changing, and viewing bugs features can be accessed through enterbug.cgi,

postbug.cgi, showbug.cgi, and process_bug.cgi.

• Query.cgi / Buglist.cgi, searching for the bugs and viewing the bug list (i.e. query.cgi and

buglist.cgi).

• Generating reports from the Bugzilla repository, (i.e. reports.cgi and duplicates.cgi.)

69

For the implementation of the Bugzilla-Ontologizer, the API provided by the CGI was

used to establish the remote access to the Bugzilla repository. In particular, the following

CGI components were used for the Bugzilla-Ontologizer tool implementation (Figure 5-

7):

• The urlbase Java utility, which uses as a parameter the fully qualified domain name

of the web server path that hosts the Bugzilla installation. Also, showbug.cgi was

used to search through the HTML file (provided by the Bugzilla remote installation)

to find the bug identification number associated with a bug.

• The buglist.cgi component is used to extract the bug list based on a string matching

query. Component returns an XML file containing the matches.

• Bug details are accessed through the XML.cgi component.

Bugzilla
Ontotegszer

Bugzilia
Reposi tory

Urlbsse -*• show_bug.cgi

(1)

Bug id's

UHbase + SogHst.cgt •+ query

(2)

Bug List

Urlbase + xrol .cgi (3)

3ug i n fo rmat ion in xml w „

Figure 5- 7: Bug data extraction

70

5.2.2. Data Pre-processing

In what follows, we describe some pre-processing steps that are necessary in order to

transform the raw data into a format suitable for automated ontology population. Figure

5-8 provides a general overview of the transformation process and the various steps

involved.

Serializing

The first pre-processing steps involve the serialization of the exported Bugzilla raw data.

The processing performed as part of this step includes:

• Assign a unique identification numbers to both, issues and related entities (i.e.

comments, activities and attachments).

• Create an in memory representation of the data which corresponds close to the

ontological model.

Bugziiia
Repository.,

Extraction of
buss

Data Soadect
into an array

Issue - 1 , Assignee A&ex, priority-1,
resolution fixes}. Comment sbetS,
Com m enter torsy, Activity, sss,.sss,sSd
Irwolvea Perora jtton, comment «*<j!*dl.
commersterSimors, attachment s.txt,
creator, Simtm, op-sysEem Urarx.
tssue-2. Assignee Slmefs, comment,
j i i j u , commewcer. Ale*,

Sorting and
Seriaiizins

Eiirmoatirsg
rK?rs-valid

characters

Comroersti- /
fssuei
Comment 2-
tssuea.

Act3V*tyl~:

Issuel,
Activtty2~
Issue2 •'

r, mr -m-~af
*L*QF'-:,?£2JL.

Figure 5- 8: Overview of pre-processing steps

71

Elimination of invalid characters

In this pre-processing step a clean-up of the data is performed. In many cases the issue,

activity, and text description of comments contain characters that are not supported by the

OWL/RDF format. As part of the clean-up step, we replace invalid characters with

characters supported by the OWL/RDF format. Table 5-6 provides some examples of the

removal of non-valid characters and their replacements with valid ones.

Non-valid characters
U
<
>
O
JE
&

Replaced with
U
-
-
0
a
and

Table 5- 6: Substitution of invalid characters

In the last step, the pre-processed and normalized SVN data in the memory will be used

to automatically populate our SVN ontology. In order to populate our SVN ontology,

first we write SVN ontology TBox into the RDF/OWL file. In the second step we write

ABox containing instances (i.e. loaded in memory models) as per TBox specifications in

the form of RDF triples.

5.2.3. Bugzilla-Ontologizer User Interface

Common to most bug tracking systems is the provision of a web-based query interface.

Figure 5-9 provides an example of the web-based query interface associated with the

ArgoUML [ARG09] Bugzilla issue tracking system. In order to extract bugs from the

underlying Bugzilla repository, users can specify various properties in order to filter and

select the scope of the bug information to be extracted from the repository.

72

argoum!
Click here to access Issu

and to obtain other CoDa

Issue tracking query

jCQJoirs us at Subversion Community Day at the Southern California Linux

Query | Reports

Issu^t^pe;* Component: Subcomponent: Submit qwery i

nppprr
P N M f l N r P M P M 7
PP&THRP
TAC.K

oarrH

arnof im l
CO*»HK

wphc» t»
3 : I P t t i H e r r i n g ^»nrf frrmSq

I rnn.mr iHnSp. JSJ

Statiife; ^R^ritatfeps Priority:

PIYPn
JNV/AI i n
W r W T P t Y
1 ATFR
RPMtMn
Dl IPI I C & T P M

0 1
p ?
p ^
D 4
OK

pi^otmt'bsi Version: Tarjgjeit milestone:

IDT

jnpr
JHP
ifsrt»r. . . I all

! ini tv

Mar n<! Y

Winrfnwe; YD

MWnHnws OR .

Figure 5- 9: ArgoUML hug tracking system query interface

In order to reduce the need of context switching among interfaces, we adopted a similar

GUI as the one implemented in Bugzilla, for our Bugzilla-Ontologizer tool (Figure 5-10).

The user interface is divided into three main parts: query, remote directory, and ontology

destination directory panel.

I B Concept ISSUEZILIA Ontoiogiser

Query Paimel

mam.

issue Type

DEFECT

ENHANCEMENT

FEATURE

JTASK

I PATCH

Component

argouml

sandbox

website

Subcomponent

AndroMDA module

Build scripts and tools

Class Diagram

CodeCeneration and Revei seEngin

Status

i UNCONFIRMED l^j

NEW

(STARTED

{REOPENED

; RESOLVED

rResuloution-

! FIXED

[INVALID

jWONTFOC

[LATER

[REMIND

Priority-

PI

P2

P3

P4

P5

[-Platform—

(All

|PC

I Macintosh

Sim

DEC

All

Linux

Mac OS X

Windows XP

Windows Vista

—; fVersiom-

H| 10.10
3 0.10.1

; 0.11.1

j 0.11.2

10.11.3

n Target Milestone

j 0.26.alpha4

;0.2€.beta1

0.26.beta2

J | 0.2?.1

Ontology

lull Path

Destinatio

|c:/'IZ.owl

IssuezillaUrl

) Jhttp^/argoumi.tigris

i Directory

org/i:

- " " ' " • • — ' - - ' • • • - •<

ssues/ J i

-~~ - — — ~- - -

"• " """ "i Change

Ontologise j | dose

Console —- — —

: Automated Bug/lssuezilla OntoiogizerTool

Figure 5- 10: Bugzilla-Ontologizer user interface

The query panel allows users to specify constraints in order to restrict the scope of the

queries by filtering specific data. Among the supported filters are:

Issue type: Defines the type of issue the user wants to extract. Supported values

are: DEFECT, ENHHANCMENT, FEATURE, TASK, and PATCH.

Component: Defines the product of a software project. The products are the

broadest category in Bugzilla and tend to represent real-world

74

shipping products. For example, if a company makes computer games

it should have one product per game, perhaps a "Common" product

for units of technology used in multiple games, and maybe a few

special products (Website, Administration, etc.).

Subcomponent: Defines the subsections of a component (product). For example, a

company designing computer games may have a "UI" subcomponent,

an "API" subcomponent, a "Sound System" subcomponent, and a

"Plug-in" subcomponent, each overseen by a different programmer. It

often makes sense to divide subcomponents in Bugzilla according to

the natural divisions of responsibility within the component.

Status: Defines the status of an issue in the bug lifecycle. Supported values

are: UNCONFIRMED, NEW, STRTED, REOPEND, RESOLVED,

VARIFIED and CLOSED.

Resolution: Indicates that, what happened to a particular issue in the bug lifecycle.

Supported values are: FIXED, WONTFIX, LATER, INVALID,

REMIND and DUPLICATE.

Priority: Describes the importance and order in which a bug should be fixed.

The priority field is used by the developers to prioritize their work.

Supported values are: PI, P2, PS, P4, and P5 where PI indicates the

most important issue and P5 indicates the least important issue.

75

Platform: Defines the hardware platform context in which the bug occurred.

Supported values are: All, Macintosh, PC, Sun and HP.

Operating System: Defines the operating system specific to a particular bug. Supported

values are: All, Linux, Mac OS X, Windows XP, Windows Vista,

Windows 95, Windows 98, Windows ME, Windows 2000, Windows

NT, Mac System 7, Mac System 8.5, Mac System 9.0, BSD, HP-UX,

IRIX, Solaris, SunOS and other.

Version: Defines the release in which an issue or defect was found.

Target Milestone: Defines the project designated milestones, this field can also be used

to associate issues with those milestones, such as version and

releases.

Based on user-specified filters, a SQL query will be executed to extract the information

from the remote Bugzilla repository. The remote repository location itself is specified by

the user within the remote directory panel. The query panel allows users to specify the

output directory and name of the Bugzilla ontology.

76

6. Initial Experimental Evaluation and Ontological Queries

6.1. Case Study

We have selected ArgoUML 0.28 release [ARG09] as a case study. ArgoUML is a

medium size open source UML modeling tool and includes support for all standard UML

1.4 diagrams. It runs on any Java platform and is available in ten languages. ArgoUML

0.26 and 0.26.2 have been downloaded over 80, 000 times and are in use all over the

world. Table 6-1 shows some statistics of ArgoUML 0. 28 release.

Total number of attributes

Total number of classes

Total number of methods

Total number of packages

Total number of interfaces

Total number of static methods

Total number of static attributes

Total number of line of code

2460

18333

14059

144

526

744

1922

168516

Table 6- 1: Some statistics about ArgoUML 0.28

Table 6-2 shows some statistics of an ArgoUML project retrieved from SVN ontology.

Total number of concepts

Total number of Object properties

Total number of Data type properties

Total number of Instances

Total number of Instances (reduced version)

Total number of files used in different revision

Total number of revisions

Total number of Authors (developers /maintainers)

4

12

9

195591

103343

56920

16793

50

Table 6- 2: Statistics of an ArgoUML project from SVN ontology

11

Table 6-3 shows some statistics from an ArgoUML project retrieved from Bugzilla

ontology.

Total number of concepts

Total number of Object properties

Total number of Data type properties

Total number of Instances

Extracted releases

Total number of Person

Total number Issues (as of February 4, 2009)

Total number Activities of related to an Issue

Total number of Comments on Issues

Total number of computer systems

9

28

25

871

8

27

71

33

366

10

Table 6- 3: Statistics of an ArgoUML project from Bugzilla ontology

6.2. Ontological queries applied on SVN Ontology.

In this section, we present several SPARQL queries in order to illustrate information

retrieval through the SVN ontology. The following queries discussed in more detail are

applied to an SVN ontology that was populated with the SVN data extracted from the

ArgoUML [ARG09] project. We will first identify the contribution of a

developer/maintainer to the overall project. Next, we discuss the identification of

releases and their commit dates. Finally, we treat the extraction of revisions and their

associated files' information.

78

Contribution of a particular developer / maintainer to the overall project

In order to retrieve information about the contribution of a particular

developer/maintainer, we defined the SPARQL query shown in Figure 6-1. The query

identifies the overall contribution of a maintainer towards the project. We retrieve the

number of revisions created by a specific author, in this case "bobtarling." The SPARQL

query returns the total number of commits performed by "bobtarling." We can see that

this author has made 2003 commits.

SPARQL

Query Editor | Query Libraryf: y^ y u t K Y

5ELECT count(?Author) ^
WHERE {
FILTER (regex(str(?Author), "bobtarling"))
Prevision : author ?Author} "*

/ \
Data type Property

I

Result: number of commits

The name of author

r\
••mmm

H2003:

Figure 6- J: Results of SPARQL query

For the next query, we extend the query as shown in Figure 6-2 in order to provide some

additional insights regarding a developer's contribution towards each revision. In this

query we have retrieved three pieces of information: the revision numbers of the

revisions created by the specific author, the files associated with each revision, and the

action performed on the file during each revision (i.e. added "A", modified "M" and

deleted "D"). Figure 6-2 shows the results of this extended query. As a result, the query

establishes a link between an author, revisions, files and actions performed by the author.

79

Query Editor Query Library [(revisionl

SELECT ?revision ?Action ?File
WHERE

{
FILTER (regex(str[?Auth©f), "bobtarling"}), |
;?reviston :author ?Author.

A Result shows, the revision number, Action
performed in file and file number associated
with

• Revisionl0091 /
• RevisionlOC©^

• |evisionl0093
;?revi$ion nsRevisionOf ?Fite. :; • 8evisior»10093
•'revision :state ?Action. | ^ . | e v ; s jo n i0094

<* / \ ; • Revistonl0095

/ \
An author and state are data
type properties. The
isRevisionOf is an object
property.

• Revisionl0095

• Revi$ionl0095
• Revisionl0095
• Revisionl0095

• RevisionllllS
• Revisionllll9

particular revision.

/^r
' " a M
— MM

m M
a M
m M
i " M
m M
g M

M
M

„™ D

m M

0/f--

—

•
•

Fiie40655
Fi!e2936

• Frie40611

•
•
*

•
•
•
•
•
•

File37631
File40655

File40636
File40618

File40454

File40612
File40619

Rle35511
File35722

1
1

Figure 6- 2: Results obtained from extended query

The information retrieved through the SPARQL query is useful to evaluate the

developer's contribution to a software project.

Releases and their commit dates

Release dates are stored within the SVN repository by creating release tags while

committing a new revision. However, in SVN there is standard way of recording release

information in the SVN repository. For example, releases in the ArgoUML SVN

repository are stored as different branches. The branches are directories with no further

information regarding the commits' history. During SVN data extraction and pre­

processing, we extracted these release tags from the commit information and stored then

within the SVN ontology. In order to retrieve the releases and their creation date, we

applied the query shown in Figure 6-3. As a result, the query returns releases and their

creation dates as shown in Figure 6-3.

80

QuejyE<Rar §-Query t&rary |

5H.ECT Tftetease ?Retease Date
WHERE {

The releaseDate is an data type
property containing release dates.
The Release is a class of the
SVN ontology.

•|VER5!ON_0jS_!
• VERSIOW_0_9_0
• vERSICW_0_f_!
• VERSION_0_9_2
' • VERS!<»i_Q_9„3
• VBttSON_0j»_4

' • WRSIONJ0JL6

• VERSON JDJLTJ8

• VERSICW_0_9_?
• VCRS!ON_0_9_8_F
•<• VERSION_0_9_8

• VERS!ON_0_9_9

• VERSI0N_OJO
• VERSION_0„S0_F
• VERSION 0.10 I F

.Qj*j»);
200TMO-13T05:29
2000-12-01 T08;IO
2O01-O3-02TO5:13:
2001*04-06107:14
2O01~O4-19TO$:O4
2OOl-06-i8TO4:S6:
2002-G2-20T07:25
2002-03-17T0$:04
2002-03-17T07:0I
2002-<M-07T02:34
2002-04-07T02:34
2002-OS-OST12:!6
2OO2-GS-0ST12:!6
2002-05-19T02:11
2002-CS-I9T02:U
2O02-O7-07T 12:40

^
Result
showing
releases and
their dates

Figure 6- 3: Releases and their creation dates

In the following example, we retrieve all files associated with a particular revision. The

query in Figure 6-4 returns the following information:

• A specific revision and its associated files (i.e. the files, which are modified to create

a specific revision)

• The latest revision of each file.

• The links of a file with other revisions, in this case instances of OtherRevision are

inferred by the Pellet reasoner

• Furthermore, the query establishes a link between the revisions and the files.

81

The object properties, isRevisionOf,
hasNextRevision and
hasLatestRevision are used to link
specific revision (i.e. 102) to the files.

The results include: the relationships and
dependencies among a specific revision and
the files, as well as the links and
dependences of file with other revisions.

SELECT
Prevision
Pstate
?fite
PLatestRevision
POtherRevision
WHERE

Prevision inumber ?num
FILTER (?num = "102")
?revision '.isRevstonOf ?fte.
Prevision: state ?state.
?f ite :hasLatestRevision TLatestRevision
Pf9e :hasNextRevtsion ?OtherReVision.
)

•jRevistonlOZ

• RevisionlOZ
• Revisionl02
• Revisionl02

• Revisionl02
• Revisionl02
• Revisionl02
• Revisionl02
• RevisionlJK

• Revisionl02
• RevisionlOZ
• Revisionl02

• Revisbnl02
• Revisionl02

«

i M
• M
• M
m n
• M
• M
• M
• M
B M

ff*

•

•
•
•
•
•
4
•
•
•
•

'TSw*
File396
File396
F3e574

FiieS74
Fte574
FiteSTS

Ffe57S
File380
File380

F8e?95
Fte795
File795
Fte795

: :. latestRevteibnV1

• RevisionH7

•
•

•
•
•
•
•
•
•
•
•
•

Revisionl47

Res'isionH?

Revisionl69
Revisionl69
Revisionl69
RevisionH7
Reyisionl47

Revisionl47

Revisionl47
Revisionl90
Revistonl90
Revisionl90
Revision 190

_jot

•

•gReyisjono'f
Revisionl241

RevisionlOl *
• Revision43 I

• ^ Revision79

•
•
•
•
•
•
•
•
•
•

Revisionl02
Revisionl69
Revisionl02

Revisiori79
Revisionl02
Revision??
Revisionl46

Revision 173
RevisionlOl
Revisionl62

Figure 6- 4: Query results based on a revision and committed files

6.3. Ontological Queries Applied to Bugzilla Ontology

In the following examples, we apply SPARQL queries to extract information from the

populated Bugzilla ontology. Among the queries we discuss in more detail are queries

that identify the contribution of a specific programmer towards the Bugzilla repository,

provide some general Bugzilla repository statistics, and illustrate the use of knowledge

inference through reasoning services.

Identifying the Contribution of a Particular Person

In order to retrieve information about the contribution of a particular

developer/maintainer, we defined the query as shown in Figure 6-5. In this query, we

identify the contribution of a particular maintainer within the Bugzilla repository. The

query retrieves all the assigned issues and the activities in which a specific person is/was

82

involved. The query results can be used not only to identify the most active project

members but can also analyze who worked on which issue in the past, etc.

Query Editor [Q u « y Ubrwyj

select TPerson
?As5tgneeOf
7Involved_In
where {
FlLTtR (regex(str(?Person5, "linus*)).
IPerson rdf:type :Person.
?Person :isAssigneeO?' ?Ass»gneeGf,

Where:
IsAssigneeOf and islnvolvedPerson are the
Object Properties.
A "linus" is the person name.

Person

• Person,

• Person.

• Person.

• Person.

• Person.

• Person

AssigneeOf

nys_^r _ issue3059

nus • issue4993

nus • issue4668

nus • is$ue5553

nus • issue3059

inus • issue4993

fm&-"^"'\$ue4668

|lnvo(ved_!n)

_ • »5jje30S>activit^i_

• tsstie3Q59attivrtyl

• issueSOSSactivttyl

• rssue3059aeiivityl

• issue30598Ctivity2

• issue3059a<tivity2

• i$sue3059activity2

Result of a query:
Person name, issue assigned to him /her.
Activities in which he/she involved.

• Personjinus • issue5553 issue3059activity3

Figure 6- 5: Query results showing the contribution of a specified person

Inference knowledge by reasoning services

In addition to information retrieval through the SPARQL queries, reasoning services

provided by ontological reasoners, such as Pellet in our case, can be used to infer

additional knowledge. In what follows we illustrate the use of inference services to infer

missing knowledge that was not available at the time of ontology population. For

example, at the time of the Bugzilla ontology population, we were only able to assert the

instances of the object property DependsOn but did not populate the inverse property

Blocks.

83

Figure 6- 6: Reasoning example

Figure 6-6 illustrates an example of such a SPARQL query that takes advantage of

Pellet's reasoning services. In this example, we consider four issues: issue4168,

issue4766, issue5490, and issue5548. From the asserted knowledge, one can identify that

issue4168 depends on issue4766, issue4766 depends on issue5490 and an issue5490

depends on issue5548. Through reasoning, we can also infer that, issue5548 is blocking

issue5490, and issue5490 is blocking issue4766 (Figure 6-7).

• Instances! » Rules • Domain: E Relevant Properties l | SMRQl Tii Imports A Jnfi;ten«(s S|

Subject [Predicate]

• issue55Si m blocks

;4issue5548 « blocks

• t55ue5490 • blocks

• issue5685 m blocks

• tssue4766 m blocks

Object

• issue5548

• is$ue549Q

• issue4766

• issue5581

• i5sue4168

Figure 6- 7: Knowledge inference based on property DependsOn

Furthermore, the reasoning services also allow us to resolve the transitive closure

between the issues (Figure 6-8). In this case the reasoner infers that issue4168 depends

also on issue5490 and on issue5548. Furthermore, issue5548 blocks both issue4766 and

issue4168. Figure 6-8 illustrates this example that takes advantage of both asserted and

inferred knowledge. The results are displayed in Figure 6-9.

84

BtocJs

. DepenrtsGn i *

i u iT!?L - - - „! DepentfsQn I

- • InferredTranstivetlcsure

• > Inferred invent Property

-> Asserted knowledge

Figure 6- 8: Example of inferred transitive closure

85

• Instances'. » Rules i • Domain [S Relevant Properties f Jfr SPARQI] ̂ imports {

Subject

• issue5581

• issue5581

• issue5581

• issue5581

• issue5685

• issue5685

• tssue5^5
• issue5oS5

• issue5685

• issuc5490

• issue5490

• tssue4766

• issue5548

• i ssue5548

•"BStfeSSW"

" • tssue5490

j > issueMM

«•» i»su«41S8«

I • issue4168

[• >5sue4168

1 ^ issueU'68-

! § • issue4766

! - • issue4?66

j ^ resu^TcS"

t • isiue5548

[Predicate!

•Mucks'•

jblccks

jbtocte

[blocks

[blocks

iblocks

iblocks

Inferred knowledge
provided by the
reasoning services.

Its

ks

Its

ks

Its

Iblocks

• —ai JBfoas- • -
3 1 jdepcndsOn

9 idependsOn

— ^hjdepeMdsOi*-

S idependsOn

S idependsOn

B idependsOn

Wk idependsOn

WBt idependsOn

"a^jdependsCTr

SB IdependsOn

Object

•
•
•
•
•
•
•

:ssue4766

ssue5490

:ssue4168

ssue5548

;ssue4756

ssue5490

ssue4168

Inferred
transitive
closure

Figure 6- 9: Results derived from issue dependency

6.4. Linked SVN and Bugzilla Ontology Queries

In order to allow for queries to work across ontologies, our SVN and Bugzilla ontologies

have to be linked.

Linking SVN and Bugzilla Ontologies

An interconnection between SVN and Bugzilla ontology is created through the entities

sharing a common concept. The revision committed to an SVN repository may be

referenced by its issue number. On the other hand, an issue reported in Bugzilla

repository may be referenced by a revision number.

We linked our two ontologies through common shared instances with the help of the

isResolutionOf and hasResolution object properties associations. As shown in Figure 6-

86

10, issue and revision concepts are linked through object properties isResolutionOf and

hasResolution. The linking of the ontologies is bi-directional. The object property

hasResolution contain revision numbers corresponding to the issue's resolution history in

SVN ontology. The object property isResolutionOf contains an instance issue number,

which refers the particular revision to an issue in the Bugzilla repository. During the SVN

and Bugzilla ontology population phase we extracted revision numbers from issue

comments and issue numbers from revision commit messages and stored them as

instances of isResolutionOf and hasResolution object properties. Figure 6-10 shows the

linked Bugzilla and SVN ontologies.

Evaluation of Links among SVN and Bugzilla Ontologies

In order to validate our approach of linking SVN and Bugzilla ontologies, we applied a

SPARQL query. The query searches for all the issues that have an instance of

hasResolution in the Bugzilla ontology. After retrieving the instances (i.e. the revision

number related to an issue), the query retrieves the information related to the revision

number from the linked SVN ontology (i.e. commit date). Table 6-4 shows the evaluation

of the SVN ontology (i.e. revision number) links found in the Bugzilla ontology.

Total number of releases in Bugzilla Ontology (including Alpha-X and Beta X)

Total number of Bugs

Total Number of links to SVN repository

Total number of invalid links

8

71

37

2

Table 6- 4: Evaluation of links found in the Bugzilla ontology

87

riateOpeneiJS'

Component ^ ^ J
hasActivrty , , , J ,

~- H ' 4 t string

iAttachmentOf

hasReporter \nas**Lcl>asAss!gnee..

tsCl Milestone fc^.
*•».".«; seventy . .

:stHnt^---'-'-rSystem ™BG".""'» h a s C o m w e n G ^ ^ S i s s W

fiasMitestone^ 'fAssigneeO> r e r s o n > X h as^soMof ,
,-rfiflestoneOn priory ^ / \ ' x /

isCcPersonOf V WiPs?*-- 3:hasRevislc
""" OFiteRevtsion,.. „ , £

i ecDD^^JX . h a s F R f e v i s t 0 , L h 3 S
isFRRewsionors. x v --*.
\ \ \ restate 3:hasL
hasNextRevisioffl M „
. \ t numbef

oreattonTime •> sWi9 \ \ sX
Tie. swig \ \ N \

3:h3sNtextRevtsion . .
3'hasPreviousRevision tiatsTtme

Figure 6- 10: Linked Bugzilla and SVN ontologies

In what follows, we present several SPARQL queries, which are applied to the linked

SVN and Bugzilla ontology. Among the queries we discuss in more detail are the time

spent to resolve an issue, the resolution history related to a particular issue, and the

analysis of transitive relationships.

Time Required in order to Resolving a Reported Issue

In order to retrieve information related to the time required to resolve a reported issue, we

define the query as shown in Figure 6-11, which retrieves the date and time an issue was

first reported and the date and time of the commit corresponding to the resolution of the

88

same issue. The query retrieves information in two steps. First, the query searches for all

the issues that have an instance of hasResolution in Bugzilla ontology. Then, after

retrieving the instances (i.e. the revision number related to an issue), the query retrieves

the related information to the revision number from the linked SVN ontology (i.e.

commit date). Figure 6-11 shows the query and results obtained from this query.

Query Editor

SELECT ?i55ue

QL'A*,

?repcrted_on
?Resotved_in
;?commit date
WHERE "
\
?issue ihesResolution
?Re$olved_in.

: ?issue ."dateOpened
,?reported_ort.
?Resolved_in
svn:creation0ate
?commit„date.

i<5

Information from
Bugzilla ontology

** -*S

su£^ •—T£ponea_on
• issue5042 •

• issue5235 H

• issue5256 S

• issue5258 B

• issue5260 H

• issue5478 &

• issueMW U

• issue5493 S

• i55ue5497 %'i

• issue5542 Ci

• issue5548 gj

• issue5557 gg

• i$sue5531 S

• is«te5598 B

• issue56Q2 H

2008-04-29T06:06:05

2008-07-12111:22:28

2008-07-22T01:47:47

2008-07-22TlldM8

2008-07-23101:56:35

2008-10-29106:19:46

2008-11-02103:01:56

2008-11-05104:00:56

2008-11-08101:39:30

2008-12-04103:28:42

2008-12-05105:54:55

2008-12-imfc0&31
2009-01-03709:54:15

2009-01-06112:05:32

2009-01-07111:26:00

1

lRe

h

w t
V

f
k
h
t

solved

Information from
SVN

J^£—
svn:Revi5ionl5911

svn;Revisionl5897

svrcRevisionlSSW

svn:Revisionl5815

syreRevisionlSSll

svn: Revisionl 5956

wn:Revisionl5972

svn:Revi$ionl5969

svn:Revrsionl6135

svr>:Revi5ionl6259

svn;Revisionl6270

svn:Revtsion291

svn;Reyisionl6493

$vn:Revisionl6541

svrt:Revisiortl6539

Ontc

til

s •
s

•
•
•
•
•
•
a
• 8

•

>logy

^ Mrlrtrl^daie
2008-10-09101:51:16

2008-10-07T04:44:59

2008-09-28X03:46:37

2008-09-28103:51:54

2008-10-09T01:51:16

2008-11-03106:39:05

2008-11-07103:48:46

2008-11 -06T02:18:49

2O08-il-22T06;54:51

2008-12-06101:59:23

2008-12-07108:59:06

2000-03-25X06:47:37

.2009-01-03102:51:05

2009-01-08X02:46:03

2009-01-08102:31:25

Figure 6-11: Date/time between issue reporting and resolution

Resolution history related to an issue

Figure 6-12 illustrates an example of how to mine the linked Bugzilla and SVN

ontologies in order to retrieve information related to the resolution of a reported issue. In

our approach, the resolution history can be retrieved by applying the query across the

linked Bugzilla and SVN ontologies.

89

Bugzilla ontology

\.JHasResolvtibn

.lss.ue-1. , i -
mM&MmeMmgfM

SVN Ontology

fufiPath

HIe-1 _^.; Fufipath

k Revision Of^

Rewsionl

! lssue-2

HosResotutkon

+~ Revuior*2

„ . „ s fuliPorh ",',.
Fi!e-2 L_ • M ! path

I

Rle3

t

Revisions associated with
an issue

Files associated with
specific revision

Figure 6- 12: Bug resolution history in SVN ontology

Figure 6-13 illustrates a detailed query and the results obtained from this query. After

retrieving the revision related to a particular issue (through the Has Resolution property)

the following additional revision information can be retrieved: the files modified in

specific revision to resolve and issue, the full path of a specific file in SVN repository,

and a traceability link between the issue and the its related resolution information stored

in the SVN ontology.

90

Bugz i l l a
o n t o l o g y

QuayEditor [§ M ^ y y b ^ _

SELECT Tissue r̂evision Wit ?patti
WHERE

Tissue ihasReoluticn limm
?file $vn;hasRensien tevison.
Me&TrfullPpthJpath.

^ £
issue) revision

issue5681# wn!Revis»nl67S'

issy^Sl • svn:Re?i5iortl67S

i$sue5681 • svnfei5ionl6739!

issue5681 • 5¥n:Revisionl6739:

issue5681 • svreRevisionlHB

issued • svmRevisi

The hasResolution is the object pwsiortl6?39 • 5vn:File30513
property of Bugzilla ontology.

SVN Ontology

ionl678

file

• svn:File6213

• mFM24

• smFkttD

• smfMK

• svn:Fiis608

• mFi l»

Results:
An issue, associated
revision number in which
issue is resolved, the file
numbers associated with
revisions and full path of a
file in the SVN repository.

path

1 /ttunk/vwiSf/prcject.schK

1 /trunk/src/uci/umi/uL/DetatisPanejava

1 /ttunk/src.nre/ofg/argoumi/ui/'NavigstcfConfigDaiog.javj

S /branche5./work_quKkerlogging.linus/$rc.nw/org/argouml.'cognitive'

I /tnink/src/uci/lmages/TreeGenerafation.gif

I /bfanche^gsoc2W?/bfB_l/tags/gsoc^)07_deadIir«/src_new/'org/3tgo

1 /trunk/srcje«/org./argouml/ui/exploref/fuIe5/GoModelToDiagr3m5.J3

Figure 6- 13: SPARQL query and results for resolution history

Transitive relationships between entities

The query example in Figure 6-14 illustrates a case where inferred knowledge from the

reasoner is combined with transitive relationships of entities to mine the two sub-

ontologies.

i5Revj5;onOf F i ie~7

"*• File-2

' * File-1

-»• AssertetS Knowlet^e

. >. Inferred Transitive Closure

• InferreS Inverse Property

Figure 6- 14: Transitive relationships.

91

We note that revisions associated with a particular issue are identified. Also, files

modified as part of a particular revision are retrieved. In addition, all previous revisions

of a particular file are extracted using inferred knowledge (Figure 6-15).

Q«*rE*«|oi»yltoirsf|

affI?i5Sue?re«9onfte
?F*erta Res West Rev

mmi
I
feue;hasResoW»i?revi9ori,
Issue ihssAssignee 'person,
i fe svrcteteasari ?revsors.
Previou5_Rev svnihasPrevwisRevison ?ffc,
latest RevswisUtestftoisionOf ?ffe.
•

..few]
• ssueSHS

• issue5042

• issue5M2

• issue5042

• issue5042

• issue5W2

• issue5042

• issue5042

• isajeS)42

• issue$042

• issue5042

• issue5042

• issue5042

• isse$042

: •(ssueSM2

1 revision

• svn;RevisBnl59tl

. # svnSeviswiiSU

4 svn:ReviswiI$9U

• svn;Reviscnl591l

• svn;Revisionl5911

• svn:Revisiwil59U

• svn:Revsonl59tl

• 5vn:Revisicinl59U

• swi;Rev«on!59ll

• 5m:Revisont5911

• smRewtoi|59U

4 svri:RevHDnl5911

• svn:Re¥Bioni5911

• sweRevtsionlSnt

• swcSevisSonlSSli

1*
A
f svn

• svn

• svn

• svn

• svn

• svn

<# svn

. • svn

• svn

svn

f svn

• svn

• svn

4 svn

• svn

Ffe27

* * *
Ffe41

Fie6?

ftfll

Re29

Ffe7l

Ffe22

F&22

FSe22

FW9
Ffe33

Ffc63

FM3

f {"revimsjiwf, ;

• svrcRewwnlSa

• s»:Revisi«\l&439

sw;Reviswil5925

. • svn:RevtalS925

• sroRevi$M5972

• svn:Rrflsail5972

• svn:Revis8nl5924

• • sw:Reviswil5924

svn;Revis«nl6276

4 svn«eviaai!6394

• svn:Reviswit5924

• $vn:Revisteii5924

• svn;Revisionl5924

• syn;Reviswi!5920

• svn:RevisMl6262

•jwaQtar.-

• swuHewtatlHS

• S¥n:RevBWi!6439

4 5vn:Rewionl592$

• svreRe*wil5925

• Svn:Revi5Wit5972

• sw.Revis»ni5972

• svn:ftewonl5924

• Jvr,:RevisteilS924

• svn:Revisionl&428

• svn:RewtoilM28

svn:Revisml642S

4 svn:Revisi«il5924

4 svT.:Revisi»l$924

4 svnSe*wil6744

• svfKRevisiont6744

• . *

J

Figure 6- 15: Query results showing inferred knowledge

6.5. Discussion

The presented case study and the results obtained through queries illustrate the

applicability of our approach in order to support various aspects of software evolution.

The approach presented here is implemented as a part of the SE-Advisor framework.

Section 6.5.1 introduces SE-Advisor framework functionalities and architecture.

6.5.1. SE-Advisor Framework

A common ontological representation (i.e. SVN and Bugzilla ontologies) and automated

tools (i.e. SVN and Bugzilla Ontologizer tools) are designed and implemented as a part of

SE-Advisor framework.

SE-Advisor provides a pro-active, ambient, knowledge-based environment that integrates

users, tasks, tools and resources, as well as processes and history-specific information.

92

SE/Process Advisor provides an ambient semantic software maintenance environment. Its

goal is to support developers throughout maintenance tasks by providing a context-

sensitive knowledge base that can be queried either directly by a user or indirectly

through supporting tools. The SE-Advisor framework supports maintainers by managing

two knowledge-intensive aspects of the software evolution:

1. Collecting and maintaining semantic links, i.e., traceability links, between software

artifacts, in particular those at different abstraction levels like source code and its

associated documentation

2. Maintaining knowledge about available tools, software evolution processes, users,

and their history of solving tasks with the available artifacts, to provide contextual

guidance during complex maintenance tasks

SE-Advisor integrates available knowledge resources such as emails, wikis, bug trackers,

source code, etc. This information is further automatically and/or semi-automatically

analyzed and linked. The process of building knowledge repository ontology is also

called ontologizing. Gathered information is presented to a maintainer in the form of a

context-sensitive advisor tool which provides the ability to look beyond document

boundaries while working on a process. Being aware of the process definition also allows

one to guide users through a process. In a feedback loop, newly gained knowledge

resources are used to constantly enrich the ontology. Figure 6-16 provides an overview of

SE-Advisor framework.

93

Browser (Thin Client)

User Context

Client

IDE (Rich Client)

C/serConfexf
Process Cortex?
Source Code Cortetf

Process Advisor
(Rich Client)

Ccmepts/Knowl&Qe

User Context
Process Corttetf

Wiki, Metrics, Consistency Advice

Sewer f Context, Concept

Context, Concept

Presented common
ontological representation

Updates

Queries

; = Responsibility

^ 6
External System^.
/ \
j -Bugzilla)
• -Subversion
^'Wikis

Figure 6- 16: Overview of SE-Advisor framework

94

7. Related Work and Limitations

In this section we will discuss and compare our work with existing approaches introduced

by several researchers, which are closely related to our approach. Later we will discuss

the limitations and challenges of our approach.

7.1. Related Work

The work most related to ours is by Kiefer el al [KAI07]. It also provided the foundation

for the ontological models we used in this thesis. They introduced the iSPARQL query

engine which is based on the SPARQL query language. They conducted four sets of

experiments. The first was the measurement of code evolution code by visualizing

changes between different releases. Secondly, they conducted refactoring experiments by

the evaluation of the applicability of the iSPARQL framework to detect bad code smells.

Their third experiment was a metrics experiment, performed by the evaluation of the

ability to calculate software design metrics. Fourth and finally was their use of

ontological reasoning as part of their software ontology models. However, the main

focus of their work is on the source code model. In our approach, we enhanced and

enriched the ontologies introduced by [KAI07] with two additional concepts: object and

data type properties. We also applied DL restriction to our concepts to take advantage of

reasoning services. Furthermore, we introduced the SVN and Bugzilla-Ontologizer tools

to automate the process of extraction and ontology population.

Happel et al. [HAP06] presented their KOntoR project in which they focus on storing

and querying meta-data about software artifacts to foster software reuse. The software

95

components are stored in a repository and they present various ontologies for providing

background knowledge about the components, such as the programming language and

licensing models. Compared to our approach, their focus was mainly on

conceptualization of the software domain, rather than on the analysis of specific artifacts,

as in our case.

Antoniol et al. [GIA04] proposed a multi-level concept navigation framework that

represents source code entities using the FAMIX meta-model compliant Rigi Standard

Format (RSF). In their approach, the release history information from Release History

and Bug Databases (RHDBs) were extracted using a set of different tools. The extracted

information was stored as RSF files for further processing and analysis. Compared to the

approach by [GIA04], we use an OWL/RDF format in order to provide a uniform and

semantic rich ontological representation that allows us to take advantage of inference

services provided by ontological reasoners. Another approach, presented by D'Ambros et

al. in [IMB06], introduced a visualization technique to uncover the relationships between

data from a versioning and bug tracking. In their approach they use a version of the

Release History Database.

German [DMG04] proposed a tool called softChange. The main function of softChange

is the extraction, enhancement and visualization of software repositories (i.e. CVS).

SoftChange consist of three different sub tools: (1) the trails extractor, for retrieving the

raw software trails from the CVS repositories. The extracted data is stored within a

relation database. (2) The fact enhancer analyzes the raw data in the database in order to

generate the new facts. (3) The visualize tool provides a visual representation of the

extracted facts.

96

Main differences between the approach in [DMG04] and ours is that it focuses only on

the analysis and visualization of CVS repositories. In our approach we are not limited to

analyzing CVS but also include the bug tracking systems. Furthermore, within our

approach we also promote the integration of various artifacts and cross-artifact analysis.

Rysselberghe [VR04S] introduced another visualization approach to visualize the

changed frequency of files, using different charts.

Hyland- Wood [HLW06] introduced an ontology model for software code based on Java

called SEC. SEC allows the recording and tracking of changes made to metadata. Our

approach is similar to [HLW06] in the sense of an ontological format representation.

However, SEC does not include the information from a versioning or bug tracking

system. Our presented approach allows integration of the information from the versioning

system and the bug tracking system and uses inference services across sub-ontologies.

Other research in mining software repositories (i.e. [AEH06, JIM07, GCL05]) have also

been focused on various types of analysis like impact analysis, traceability links, or

guiding software development process. Our approach not only supports similar types of

analysis, but also promotes the use of a common, semantic-rich ontological

representation which allows for analysis across multiple repositories.

97

7.2. Limitations

During the evaluation phase, we found the following limitations of our presented

approach.

Scalability

In order to evaluate our proposed approach with respect to reasoning services across

multiple ontologies (i.e. SVN and Bugzilla Ontology), we used Protege 3.4 ontology

editor which provides a plug-in for the Pellet reasoner and SPARQL query editor. During

the reasoning process, we experienced the memory overflow errors due to the size of our

ontology. The initial size of the SVN ontology was 44 megabytes, causing memory

overflow errors. We reduced our initial ontology size to 22 megabytes and were able to

apply reasoning services and to apply SPARQL queries. The reason behind the memory

overflow error was the consumption of memory by both the reasoner (Pellet Reasoner)

and the ontology editor (Protege 3. 4). Furthermore, the Protege 3.4 and Pellet Reasoner

use Java virtual machine in the background. During the reasoning process, these tools

generate in-memory models too complex and too large to process ontologies in order to

apply reasoning services. Another limitation is of the Java virtual machine, which only

supports memory size up to 1 gigabyte.

Bug extraction

In order to extract all the bug information, we found the limitation of remote Bugzilla

installation which does not allow for extraction of all the bug information at once. Due to

this limitation we were only able to extract bug information of eight releases. This

98

limitation meant that linking SVN and Bugzilla ontology (i.e. instances of hasResolution

object property) is one-sided, from the Bugzilla ontology to the SVN ontology. In order

to recover links from SVN to Bugzilla (i.e. instances isResolutionOf object property), we

needed all of the issues to be stored in Bugzilla ontology.

Persistent Storage

Currently, our SVN and Bugzilla ontology is stored as plain RDF/XML format which has

size (these are very large ontologies with many instances), performance, and management

issues. In order to deal with size, performance, and management issues, there is a need to

use database technology in order to provide persistence to the knowledge described by

the ontologies, and scalability to the queries and reasoning on this knowledge.

Consistency (Le. incremental updates)

One of the challenges and potential future work of this project is to manage incremental

updates to software repositories such as SVN and Bugzilla ontology. Currently SVN and

Bugzilla Ontologizer tools do not support incremental updates to SVN and Bugzilla

ontologies.

99

8. Conclusion and Future Work

In this thesis, we discussed the importance of software repositories in supporting the

evolution of software systems. We also discussed some of the challenges associated with

extracting and modeling the information extracted from the software repositories.

In order to model the extracted information, we introduced a common ontological

representation (based on the OWL/RDF format) to store the information extracted from

SVN and Bugzilla repositories. In order to support the extraction process, we

implemented two tools (SVN and Bugzilla-Ontologizer) to automate the data extraction

and ontology population process. The two tools support the establishment of a connection

between the Eclipse IDE and the software repositories, the extraction of raw data from

the software repositories (namely SVN and Bugzilla), and the transformation and

normalization of the extracted raw data in order to support automated ontology

population. The approach we have presented is implemented as a part of our SE-Advisor

framework. We presented a case study to evaluate our ontological model and its ability to

mine and analyze data from these repositories to support the evolution of a software

system. The case study was performed on ArgoUML [ARG09]. We used SPARQL

queries to demonstrate how our ontological representation can support software evolution

by mining and analyzing software repositories. The evaluation (case study) also shows

the applicability of our presented approach as a part of SE-Advisor framework. SE-

Advisor supports various aspects of the software evolution; our contribution of a common

semantic rich ontological representation fulfils the key requirement of SE-Advisor

100

framework. Furthermore, through the ontological queries, we also were able to illustrate

some of the benefits of using an ontological reasoner.

As part of the future work, the SVN Ontology should be extended to include additional

entities to support the modeling of file content differences (i.e. the difference of the file

contents modified in each revision).

Furthermore, there is a need for additional analysis and evaluation of our approach. Also,

additional data mining techniques can be applied to provide further insights and analysis

of these repositories.

101

References

[AEH06] Ahmed E. Hassan "Mining Software Repositories to Assist Developers and
Support Managers", in Proceeding of 22nd IEEE International Conference
on Software Maintenance, 0-7695-2354-4/06, (ICSM'06).

[ARG09] http://argouml.tigris.org/issues/query.cgi/, last visited Jan 9, 2009.

[BJM03] Bieman, J. M., Andrews, A. A., and Yang, H. J. "Understanding Change-
Proneness in OO Software Through Visualization", in Proceedings of 11th
IEEE International Workshop on Program Comprehension (IWPC'03)
(2003), 44-53.

[BOT03] Michael P. O'Brien., "Software Comprehension - A Review & Research
Direction", Department of Computer Science & Information Systems
University of Limerick Ireland, Technical Report UL-CSIS-03-3, (2003).

[BRK83] Brooks, R., "Towards a Theory of the Comprehension of Computer
Programs", International Journal of Man-Machine Studies, Vol. 18, pp
543-554, (1983).

[BSC09] http://www.bugzilla.Org/docs/2.16/html/dbschema.html. "The Bugzilla
Guide", 2.16.11 Release, last visited Jan 29, 2009.

[BUG09] http://www.bugzilla.org, last visited Jan 3,2009.

[BUG03] Matthew P. Barnson, "The Bugzilla Guide", 2.16.3 Release, the Bugzilla
Team 2003-04-23.

[BU03A] http://www.bugzilla.Org/docs/3.2/en/html/lifecycle.html. The Bugzilla
Guide 3. 2 Release, chapter 5 Using Bugzilla.

[BUR98] Burd, L., Munro, M., Young, P., "Visualizing Software in Virtual Reality",
in Proceedings of the International Workshop on Program Comprehension,
IEEE Press, 1998.

[CAC01] Chen, A., Chou, E., Wong, J., Yao, A. Y., Zhang, Q., Zhang, S., and
Michail, A., "CVSSearch: Searching through Source Code using CVS
Comments ", in Proceedings of IEEE International Conference on Software
Maintenance (ICSM'01) (2001), 364-373.

102

http://argouml.tigris.org/issues/query.cgi/
http://www.bugzilla.Org/docs/2
http://www.bugzilla.org
http://www.bugzilla.Org/docs/3.2/en/html/lifecycle.html

[CAG96] G. Canfora, L. Mancini, M. Tortorella, "A Workbench for Program
Comprehension during Software Maintenance", in Proceeding of 4th
International Workshop on Program Comprehension (WPC '96) (1996),
Berlin, 30-39.

[CAG99] Canfora, G., Cimitile, A., "Program Comprehension", Encyclopedia of
Library and Information Science, volume 66, 1999.

[CLB09] http://www.open.collab.net/, last visited Jan 3, 2009.

[CL09A] http://www.open.collab.net/products/cee/, last visited Jan 4, 2009.

[COR89] Corbi, T. A., "Program Understanding: Challenge for the 1990s", IBM
System Journal, Vol. 28, Issue 2, (1989), 294-306.

[DAC01] http://www.diag.com/pictures/Schach 2002/, last visited Jan 8, 2009.

[DGM04] German, D. M., "Mining CVS Repositories, the SoftChange Experience", in
Proceedings of International Workshop on Mining Software Repositories
(MSR'04) (2004), 17-21.

[DSP93] Davis, S. P., "Models and Theories of Programming Strategy",
International Journal of Man-Machine Studies, Vol. 39, pp. 237-267,
(1993).

[DTT05] Dinh-Trong, T. T. and Bieman, J. M. "The FreeBSD Project: a Replication
Case Study of Open Source Development", in Proceedings of IEEE
Transactions on Software Engineering, Vol. 31, No. 6. IEEECS Log
Number TSESI-0225-1004, (2005), 481-494.

[FIS03] Fischer, M., Pinzger, M., and Gall H., "Populating a Release History
Database from Version Control and Bug Tracking Systems", in Proceedings
of the International Conference on Software Maintenance, Amsterdam,
(ICSM'03) (2003), 23-32.

[GCMOO] Gerardo Canfora, Aniello Cimitile, "Software Maintenance" University of
Sannio, Faculty of Engineering, Piazza Roma 82100, Benevento Italy, 29
November, 2000. ftp://cs.pitt.edu/chang/handbook/02.pdf.

[GCL05] Gerardo Canfora., Luigi Cerulo, "Impact Analysis by Mining Software and
Change Request Repositories", in Proceeding of the 11th IEEE
International Software Metrics Symposium (METRICS'05) (2005), 29.

103

http://www.open.collab.net/
http://www.open.collab.net/products/cee/
http://www.diag.com/pictures/Schach
ftp://cs.pitt.edu/chang/handbook/02.pdf

[GDM04] German, D. M., "An Empirical Study of Fine-Grained Software
Modifications", in Proceedings of 20th IEEE International Conference on
Software Maintenance (ICSM'04) (2004), 316-25.

[GHH98] Gall, H., Hajek, K., and Jazayeri, M., "Detection of Logical Coupling based
on Product Release History ", in Proceedings of International Conference
on Software Maintenance (ICSM'98) (1998), 190-199.

[GIA04] Giuliano Antoniol, Massimiliano Di. Penta, Harald Gall, Martin Pinzger,
"Bug Reporting and Source Code Meta-Models", in Proceedings of the
Workshop on Software Evolution through Transformations: Model-based
vs. Implementation-level Solutions (SETra '04), 87-99.

[GIO04] Giuliano Antoniol, et al, "Towards the Integration of CVS Repositories,
Bug Reporting and Source Code Meta-Models", in Proceedings of the
Workshop on Software Evolution through Transformations: Model-based
vs. Implementation-level Solutions (SETra 2004), 87-99.

[GJK03] Gall, H., Jazayeri, M., and Krajewski, J., "CVS Release History Data for
Detecting Logical Couplings", in Proceedings of 6th International Workshop
on Principles of Software Evolution (IWPSE'03)0-7695-1903-2/02. (2003).

[GUR93] Gruber, T. R., "A Translation Approach to Portable Ontology
Specification", Knowledge System Laboratory Stanford University, CA.
Knowledge Acquisitions, (1993), 199-220.

[HAE04] Hassan, A. E. and Holt, R. C , "Predicting Change Propagation in Software
Systems", in Proceedings of 20' IEEE International Conference on
Software Maintenance (ICSM'04) (2004), 284-93.

[HAP06] Happel, H. -J., Korthaus, A., Seedorf, S., and Tomczyk, P. "KOntoR: An
Ontology-enabled Approach to Software Reuse", In Proceedings of the 18th
International Conference on Software (SEKE '06) (2006).

[HLW06] Hyland-Wood, D., Carrington, D., and Kapplan, S., "Toward a Software
Maintenance Methodology using Semantic Web Techniques", in
Proceedings of the 2nd International IEE workshop on Software
Evolvability at IEEE International Conference on Software Maintenance,
(ICSM '06) (2006), 23-30.

[HSK05] Huang, S. -K. and Liu, K. -m., "Mining Version Histories to Verify the
Learning Process of Legitimate Peripheral Participants", in Proceedings of
International Workshop on Mining Software Repositories (MSR'05) f2005),
84-78.

104

[IAN07] Ian Horrocks, et al., "Bridging the Gap between OWL and Relational
Databases" in Proceedings of the Sixteenth International World Wide Web
Conference (WWW'07).

[IEEE90] IEEE Standard Glossary of Software Engineering Terminology, report IEEE
Std., 610.12-1990, IEEE, 1990.

[IMB06] D'Ambros, M. and Lanza, M., "Software Bugs and Evolution: A Visual
Approach to Uncover Their Relationships ", in proceedings of the 10th
European Conf on Software Maintenance and Reengineering (CSMR '06)
(2006), 227-236.

[JEN01] http://jena.sourceforge.net/ last visited January 05, 2009.

[JEP04] Jerome Euzenat, et al, "Similarity-based ontology alignment in OWL-Lite",
in Proceedings of European Conference on Artificial Intelligence (ECAI'04)
(2004).

[JIM07] Huzefa Kagdi, Jonathan I. Malefic, Bonita Sharif, "Mining Software
Repositories for Traceability Links", in Proceedings of 15th IEEE
International Conference on Publication, Program Comprehension, (ICPC
'07) (2007), 145-154.

[JRL06] Juergen Rilling, et al., "A Unified Ontology-Based Process Model for
Software Maintenance and Comprehension", Workshops and Symposia at
MoDELS 2006, Genoa, Italy, (2006), LNCS 4364, 2007, Springer, Reports
and Revised Selected Papers, 56-65.

[KAI07] Christophe Kiefer, Abraham Bernstein, Jonas Tappolet, "Mining Software
Repositories with iSPARQL and a Software Evolution Ontology",
Department of Informatics., University of Zurich, Switzerland, i»
Proceedings of Fourth International Workshop on Mining Software
Repositories (MSR'07) (2007).

[KHV00] V. T Rajlich, et al, "Software Maintenance and Evolution: a Roadmap", in
Proceedings of the Conference on The Future of Software Engineering
(2000), 73-87.

[LEH97] Lehman M. M., et al, "Metrics and Laws of Software Evolution - The
Nineties View", in Proceeding of Metrics 97, Albuquerque, NM, 5-7, (Nov
97), 20-32.

105

http://jena.sourceforge.net/

[LEH01] Meir M. Lehman, Juan Fernandez-Ramil, and Goel Kahen. "A Paradigm for
the Behavioral Modeling of Software Processes using System Dynamics",
Technical Report (2001), Imperial College, United Kingdom, 1-11.

[LEH80] Meir M. Lehman. "Programs, Life Cycles, and Laws of Software
Evolution" in Proceedings of IEEE conference (Special Issue on Software
Engineering), (1980), 1060-1076.

[LET86] S. Letovsky, E. Soloway, "Delocalized Plans and Program
Comprehension", Software Engineering IEEE Software archive Vol. 3,
Issue 3, (1986), 41-49.

[LET87] S. Letovsky, "Cognitive Processes in Program Comprehension", Journal of
Systems and Software, Vol. 7, Issue 4, (December 1987), 325 — 339.

[LIV94] Livadas, P. E., Small, D. T., "Understanding Code Containing Preprocessor
Constructs", in Proceedings of the 3rd Workshop on Program
Comprehension, IEEE Computer Society Press, Los Alamitos, CA, 1994,
89-97.

[MAR09] http://marinemetadata.org/images/naturalcatastrophe/, last visited Jan 5,
2009.

[MGWOO] McGuinness, D. L., Fikes, R., Rice, J. and Wilder, S., "An Environment for
Merging and Testing Large Ontologies", Principles of Knowledge
Representation and Reasoning, in Proceedings of the Seventh International
Conference (KR2000).

[MGW98] McGuinness, D. L. and Wright, J., "Conceptual Modeling for
Configuration: A Description Logic-based Approach", Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (1998),
333-344.

[MPO03] Michael P. O'Brien, "Software Comprehension - A Review & Research
Direction", Technical Report UL-CSIS-03-3, University of Limerick Ireland,
November 2003.

[MUG04] Michael Uschold, Michael Gruninger, "Ontologies and Semantics for
Seamless Connectivity", (2004), SIGMOD Record, Vol. 33, No. 4.

[MUL94] Muller, H., "Understanding Software Systems Using Reverse Engineering
Technology", in Proceedings of Colloquium on Object Orientation in
Databases and Software Engineering; The 62nd Congress of L'Association
Canadienne Francaise pour VAvancement des Sciences (ACFA '94),
Montreal.

106

http://marinemetadata.org/images/naturalcatastrophe/

[MUS92] Musen, M. A., "Dimensions of knowledge sharing and reuse", computers
and biomedical research, an international journal. (1992), 435-67.
ISSN: 0010-4809.

[NFN07] Natalya Fridman Noy and Mark A. Musen, 'SMART: Automated Support
for Ontology Merging and Alignment". Article (2007), Stanford Medical
Informatics, Stanford University Stanford, CA 94305-5419.

[PAL09] http://clarkparsia.com/pellet last visited January 05, 2009.

[PL09A] http://www.mindswap.org/2003/pellet/ last visited January 05, 2009.

[PEN87] N. Pennington, "Comprehension Strategies in Programming, in Empirical
Studies of Programmers", Second Workshop, Ablex Publisher, Norwood,
NJ, 1987. 100-113.

[PRG09] http://protege.stanford. edu/ last visited February 15, 2009.

[REA09] http://en.wikipedia.org/wiki/Semantic reasoner last visited January, 02
2009.

[RJS99] Robert Jasper, Mike Uschold, "A Framework for Understanding and
Classifying Ontology Applications", in Proceedings of Workshop on
Ontologies and Problem-Solving Methods, Stockholm, (IJCAI'99) (1999).

[RWM85] Rouse, W. B., and Morris, N. M., "on Looking into the black box:
Prospectus and limits in the search for mental models", (DTIC #AD-
Al59080) " pp7. Georgia Institute of Technology, (1985).

[SOL84] E. Soloway, K. Ehrlich "Empirical Studies of Programming Knowledge", in
Proceeding of IEEE Transactions on Software Engineering, SE-10 (1984),
595-609.

[STA84] Standish, T. A., "An Essay on Software Reuse", IEEE Transactions on
Software Engineering, SE-10(5) (1984), 494-497.

[SVK09] https://wiki.svnkit.com/, last visited January 20, 2009.

[SV09A] https://wiki.svnkit.com/SVNKit Architecture, last visited January 20, 2009.

[SVN09] http://svnbook. red-bean, com/, last visited Jan 2, 2009.

[SV09A] http://svnbook.red-bean.com/. pp. 22, last visited Jan 2, 2009.

107

http://clarkparsia.com/pellet
http://www.mindswap.org/2003/pellet/
http://protege.stanford
http://en.wikipedia.org/wiki/Semantic
https://wiki.svnkit.com/
https://wiki.svnkit.com/SVNKit
http://svnbook
http://svnbook.red-bean.com/

[SV09B] http://svnbook.red-bean.com/. pp.20, last visited Jan 2, 2009.

[TBC09] http://www.topquadrant.com/products/TB Composer.html last visited
February 18, 2009.

[TDC05] Todd C. Hughes, Benjamin C. Ashpole, "The Semantics of Ontology
Alignment", Lockheed Martin Advanced Technology Laboratories Cherry
Hill, NJ. http://www.atl.lmco.com/proiects/ont61ogy/papers/SOA.pdf.

[TOM09] Natalya F. Noy and Deborah L. McGuinness., "A Guide to Creating Your
First Ontology", Stanford University, Stanford, CA, 94305. http://protege.
stanford.edu/publications/ontology development/ontologylOl -noy-
mcguinness.html/.

[TQG02] Tu, Q. and Godfrey, M. W., 'An Integrated Approach for Studying
Architectural Evolution", in Proceedings of 10th International Workshop on
Program Comprehension (IWPC'02) (2002), 127-136.

[VAR04] Van Rysselberghe, F., Demeyer, S., "Mining Version Control Systems for
FACs (Frequently Applied Changes)", in Proceedings of International
Workshop on Mining Software Repositories (MSR'04) (May 25, 2004), 48-
52.

[VR04S] Van Rysselberghe, F. and Demeyer, S, "Studying Software Evolution
Information By Visualizing the Change History" in Proceedings of 20th
IEEE International Conference on Software Maintenance (ICSM'04)
(2004), 328-37.

[VEB09] http://versioncontrolblog.eom/comparison/CVS/BitKeeper/Git/Subversion/i
ndex. html/, last visited Jan 10, 2009.

[VMY93] A. von, Mayrhauser, A. M. Vans, "From Program Comprehension to Tool
Requirements for an Industrial Environment", In Proceedings of IEEE
Workshop on Program Comprehension (1993), 78-86.

[W3C09] http.7/www.w3.org/TR/owl-features/. last visited Jan 1, 2009.

[WIKI09] http://en.wikipedia.org/wiki/Software_evolution/. lat visited Jan 7, 2009.

[WIK09I] http://en.wikipedia. org/wiki/Software repository/, last visited Jan 12, 2009.

[WKB09] http://en.wikipedia.org/wiki/Comparison of issue tracking systems , last
visited 13-Jan-2009.

108

http://svnbook.red-bean.com/
http://www.topquadrant.com/products/TB
http://www.atl.lmco.com/proiects/ont61ogy/papers/SOA.pdf
http://protege
http://stanford.edu/publications/ontology
http://versioncontrolblog.eom/comparison/CVS/BitKeeper/Git/Subversion/i
http://http.7/www.w3.org/TR/owl-features/
http://en.wikipedia.org/wiki/Software_evolution/
http://en.wikipedia
http://en.wikipedia.org/wiki/Comparison

[XMB09] http://www.ximbiot.com/cvs/. Last visited Jan 5, 2009.

[ZTT05] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S., "Mining
Version Histories to Guide Software Changes", in Proceedings of IEEE
Transactions on Software Engineering (TSE'05) (2005), 429- 445.

[ZT05A] Zimmermann, T., Zeller, A., Weibgerber, P., and Diehl, S., "Mining
Version Histories to Guide Software Changes", in Proceedings of IEEE
Transactions on Software Engineering, (2005), vol. 31, no. 6, 429-445.

109

http://www.ximbiot.com/cvs/

Appendices

Appendix-I

Following Table (API) provides the details of the removal of non-valid characters and

their replacements with valid ones in SVN and Bugzilla Ontology.

Non-valid
character

—

!

$

%

(

)

*

<

>

@
A

{

i

}

~

D

€

F

»

t

%0

s

Replacing
character

-

Space

-

Percent

-

-

-

-

-

-at-

-
Space

-

Non-vaiid
character

«
0

»

A

A

A

A

A

c
E

E

E

E

1

1
Space

Space

-

1

N

O

F | O

Space

Space

+

-

Space

6

o

o
X

0

S I U

Replacing
character

«
o

»

A

A

A

A

A

C

E

E

E

E

I

I

I

N

o

o

o

o

o
X

0

u

Non-valid
character

O

O

O

O

U

V

u

u
Y

<

>

o
JE

&

<

Z

u

u

Replacing
character

0

o

0

o

u

u

u

u

Y

-

-

O

a

and

-

Z

u

u
Space

110

Non-valid
character

S

>

z
Y

i

ft

£

¥

1

©

Replacing
character

Space

Space

Space

Space

Space

S

-

z
Y

I

Cents

Sigma

Yen

"-

Copy-rights

Non-valid
character

U

Y

B

A

A

A

A

A

A

c
E

E

E

E

I

I

I

1

O

Replacing J Non-valid
character | character

^ 1
Y

B

A

A

A

A

A

A

c
E

E

E

E

I

I

I

1

- O

Replacing
character

Continued Table (API).

I l l

Appendix-II

Following are the SPARQL quires applied to retrieve results from SVN and Bugzilla

Ontology by simple string matching.

QueryEtebjefyiiraryj . fag* l \W-

iREO'comment (Text

'comment ;text'Text,
FttTERREPpText/rswm")

• i$5ue5W2commentl3

• i$sue5235cor»ent3

•issie5256coiiwient5

•i$sue5258comitent5

• issue5258c«nt6

•is$ue526ucofiwient2

Retrieve a text
. c ssue54?8commentl2

comment or an
. • • >sue5482cc«ent5 issue containing , . ssue5493torrment3 stnng

u • • „ 5918549?C«!Sflt5

revision .
>sue5542cBnment2

•i$sue554tarnrrierit2

• issue5557coi»ent2

•ssue5557comfflent5

•issue5581cor«erit3

:^B5ue5598co»ent3

;4i$sue5602cc«rit2

;4issue5649cor»ent2

•i$sue5667coiwnt2

•i$sue56?!)toiwit2

•issue568taiiment2

Ocoraitedinrevison 15911- .

Cc«tedrewU5897i ih t tesdWcft . .

Ccwrfted revision 15814 with the patdiDFixed, \
Err^ . tHssa lsopar t t f lheso l teOQWex;^^

Ccwrfted revision 15815 i lAltBpSthKDFtml. \

DJust for documentation, the cure* implemented WFRs for 1M1.4.2 hArgWOae,Iupdated the class;

Dfoed by revision 15956 -exfflst foj trj.iei.-3: that was crated in re#snD15957-

Ocoraied in revision 15973- •

Crawrifttrf rev&n 15%9 with tf» s<Wm to fte R^c^eWm^itenB*. DTte TO-up msm Sen to a ^y stm*

Commited revision 16135 wih the stteiORemoved unnecessary code in f^CksifierBoxWiWIj&tes.

Tte patch solves the issue, DUCO DWex: src|»g/agouiifiral|!Sao;am/ui/Rc^ssociato,ja'I'al>K====

CcsniTittsJ revrai 16259 wth the patch f ^ i tefore. DFIxed. :

Qhsng by r e ™ i6270DDProjectlM.5etWfeCorlpatai m remowig the oH conrpabon andDad>;

I bet this d fe it -untested-iDDfodex: sr^orc^a'gamfl^^|qp/fi(A^^Arirt^eM^krnCr^.javaO;:

Ccra*edrww«291ii8«tf^n^ye.DIconsKlarthisfixsincw,

I FKedh revision 16493.

1 Ccw^reviscci 16541 rthtlienxDWer^

I Comfr*ted re%^n 1^39 w(Wi ttm stto»i,DTNs was a f>0^ pr^em.aOTte ^ o f k ^ the frcrtten ttwt the

1 Fteedin revision 16692.

1 fixed in revision 131

1 faedt#revisionl32 •;

I Ccarted revision 16739**the solution. :.:,

112

http://trj.iei.-3

j Query Editor Quayl j i r j ry

j SELECT ?revision rMessagej
j WHERE!.
I ?revision ;commitM«sage 'MessageJ
IniTERREGEXPMessage/bug") i

Retrieve a
commit
message of the
revisions
containing
string "bug".

[revision]

Revisicnlfil I ! Fixed a bug in the new UMLTextFieltE -when inserting a string inside the document the cursor won't jump to the end e

Revision2905 II Fixed a bug in UmlModelEventPump that caused too many listeners to registerThis was a bug in connection with UmiPI.

Revisicn2949 1 Fixed numerous classes. The tests are working now so I can finally see if classeswork ok. Removed some try/catch block;

Revision2956 1 Fixed bug in cleanup of UmlModelEventPump

Revision3014 S F«ed bug concerning not automatic updating of Prcppanelassociation rf an associationend was chagned

RevistonMlS . 1 Removed a'small'bug preventing argouml to start ;-

Rewsiort302Q B Replaced all occurences of Projectbrowser.select with settarget to get a single point of entrance to target selectionFked

Revision33f> I F«ed bug while modelChanged--PR:Obtained from; TobySubmitted by. TobyReviewed by:

Revision3565 B Buggfix getCWIdren j t is now -again- possible to reverse engineer and run critics on theentire ArgoUML with less than 2 •

Revision365 1 fixedbug96

Rewsion388 8 & small bug f r 3 . Found with ImportDummy. thanks to linus

Revision3SS§ B fixed a bug Alex pointed out, This bug became apperani because of the iatestchanges to the modeleventpump

Revision3859 1 Fixed a bug A la pointed out This bug became apperan! because of the Iatestchanges to the modeleventpump = f-

Revisicn3875 B At last all tests work and take into account the presence of a gui except for the TestReRouteEdge but Ale will fix thatfur

Revisions© i At last all tests work and take into account the presence of a gui except for the TestReRouteEdge but Alex will f« thatfur

Revision^ § first shot for AboutBoit, and foted bug 184 -FigText-PFiObtainecf f rorreTobySubmrtted by.TobyRenewed kry. 5

Revisionist 1 At last all tests work and take into account the presence of a gui except for the TestReRouteEdge but Alex will fix thatfur

RevisionSBl B At last, all tests work and take into account the presence of a gui except for the TestReRouteEdge but Alex will fa thatfur

Rev is ion^ II At last, all tests work and take into account the presence of a gui except for the TestReRouteEdge but A la will fix thatf ui

RtvisierfflSi 3 Fixed a small bug in UmlComboBoxModeBRefactored the Detailspane in such a way it reacts correctly to targetEventsint

Revisiori3893 I Fixed a small bug in UmlComboBoxModeBRefactored the Detailspane in such a way it reacts correctly to targetEventsM

Revision389S 1 fixed placement bug in Oassdiagramlayouter relating to using the piacementbint only when it is safe to do so. S is safe

ReAion3903 B The TabProps uses targetfciener in a correct way now -Tabprops now responsible^ maintaining its own targetfetener I

Revision3996 B Project is a Targetlistener now too.f ixed an -ailready existing- bug in PropPanelOperation concerning navigateUp

Revisicn3914 1 Fixed bug withtodopane

Revi$ion3S25 1 Fixed bug marttus reported concerning diagram names

Revision395 I seme last fixes, inlcuding Curts NavPane, Dependency, and Makefile changesAlso, I found a bug concerning drawing Fi

Revisien3!8) 1 Fixed a bug to the load preces. Really Shave to redesign the damn loading saving one day

RevisienM 1 Fixed a bug to the load proces. Really Shave to redesign the damn loading saving one day

Revision43M 8 Rerrscwd setPreferredSae— cate which caused it to layout rea%- smsll on "Goto* dialog. Removed refe«nceto MttalLo "

!SEtEfJ Trevision ?Message

; (revision :comrwtMessage fMessage:
fllT£RRE6EXPessage,% issue"]'

P.e«sionl0910 I

Revisioni269 1

Revis ion lM I

R e v i s i o n ^ •

Revisiorii5i9 •

RewsionSlO I

Revision4247 1

Rcvision53S2 I

RevisienSm I

Revision?464 1

RevisionS02 I

Revision8574 I

Patch to f « issue 4324 as supplied by Andrea.

Adjusted ProjectMember name handling to fix issue *455 Jssue number; 455

Patch to fix issue 4839, as supplied by Christian.

Changes to critics for associations and wizard for aggregation to fa issue619,

fix issue 777 where the Action "remove from diagram" would actually remove the element and put in Trash when the elemi

Move multiplicty out of fig group to fix issue 1125. This undoes change introduced in 113 which was to fix issue 1007. Issue

Buggfix issue 1993.

Rollback changes to fit issue 701 that caused the higher priority issue 2374Th"rs undoes the changes in vers 1,79 of FigNodef

Revert initial values field to use old deprecated class to fa issue 1378

first step to fix issue *2963 - model used as namespace in generation

This modification should fix issue 225. it sets the name of the figure to thename of a passed Mlnterface node, so you can ac

Ned attempt to fe issue 3207: "Edges do not stick to package bounds*. Besides for a Package, ate solved for Choice, MNoi

Corrected the failing test since my latest commits to the DetailsPane class to fix issue 3254,

113

Quay Editor] Quesy L t o w 1

T ?r evisbn 'Message

m
ion ;commitMessjge 'Message,
R REGEX (Message, 'issuenumber*

Retrieve a commit
message of the
revisions
containing string
"Issue numer".

revision [Message! '

• Revisions® 1 bsuenumbaJHod^rgo.jarislGPLCVS: CV&issi

• Revision7872 1 Issue nu»be*-3t)820btair*d frorrsSubmrKed byiReviewed byJmplemenied critic to detect "circular* association classes

• Revisionl0193 1 Issue numbar-ftWObteied frorruSubmitted byiRevitwed bwename anon' to 'unnamed'C¥&

• RevisionffiM 1 kuenumben 3584frxed calling the antbat script provided with ant 1,620/S;

• Revision9259 i Issue number; 3652first implementation of CodeGeiwrator.CVi

• Revisionl0191 B Issue number; 37?3Qbtained frorreSubmitted byReviewed byrestpand root node after selecting a new perspective in the r .

• RevisionlSWO fi Issue number: 4074 - fix tagged values with no xmi,id-fbs is in last commit - this is just to get the issue number into a c o l :

(Revisionl01?6 i Issue number: WlOWained frora:Submitted i^Rsviewed byDont allow methods on interfaces. Probsbi/not a nicest)

Revisionl0325 8 Issue number: ilOlrepsir behaviof srf Navtgatienbox irnk buttonObtsined frorreSubtnitted byRsvifived byiCVS:]

Revisionll036 1 Issuenumber. 42?80btainedfrorreSubmitted by-Reviewed bv?Added special cases for use cases.OS; - -js

• Revisionll035 i Issuenumber, 4351Qbtainedfrom:Submiedby.Revi»edbysdded check to see whether the association end is actuall)

• Revisionll034 i issuenumber. 4406Qbtainedfrom:Submi«td by-Reviewed byadded check that the index cannot go out of bounds wbel

• Revisionl277 H Issuenumber. 4510btainedfrom;JeremyBennetSubmittedby: ThierrylachReviewedby: LucMaisonobeProblemswii

• Revisionism B Issue number. 491Submitted by, Thierry LachCorrection for °RO media inserted in the drive* as found in sun's Java forui"

• RevisionloDO 1 Issue number; 431Submrtted by: Thierry LachCorrection for "no media inserted in the drive* as fousdjasuai j jsa Jomi

• Revisionl365 1 Noneeftheclassesinthispackageappeartobeused. lam deprecating them nowandwiflremoyethtmbeforejomef

• Rtvisionl02?81 Open the perspective configurator dialog as a second location from the edit menuissue number: MObtained frorwSi

• RevisionTiM? 8 Other generators of public use can also be found in org,argouml.urnl. this helps to make the cognitive system more ind<

• RevTsionTSSO § Remove dependencies to Design and DsignMateriabsue numbenObtained from;Submitted byieviewtd byCVS; •

• Revisionl254 1 Submtttedbv; ThierryUchAddpluggablemaiusupportforMenu--Rie-lmportCVS'

• RevisionSSSO 1 Testcase to check that two uuids are not equal -pretty basic-Issue numbenObtained frorreSwbmitted by.Reviewed byKV

• Revision8!23 i Updated some features. Added some issue numbers.

• Revisiorffl25 i add LOG statementsadd a call to targetSet after targetRemoved had been called. This is in sync with the other model bat

• Revision6185 i added a number of methodsissue numbenObtained from;Submitted byiReviewed by:C¥S:

• Revision8853 1 added ilSnierals for the ActionSetPathlssue number 34220bt»inedfrom;Submr8edby;R«iewedby-.0?S;

• Revrsion7834 B added some package documentattonlssue numbenObtained fromSubmstted byfciewed bŷ CVS;

• Revisions?!? 1 adding metbodto Model Facade implementationskue numbenObtained from;Subrrited by-Reviewed byXVi

4 Revhion8793 B adding related include relationships when adding a use case which had been removed from the diagram was not possib

• Revisions® S adding source for namespace psckageCVS -CV& four

• Revision5953 8 avoid WE in removeObsoletefeaturesCVS: -- CVS: issue'

114

In what follows, several quires applied to retrieved information from the SVN and

Bugzilla Ontology.

Query Editor (Query lijraryj

5RCCT DISTINCT ?Author
mmn
Revision : author ?Author
r

pMhor] ••,:;.".:.",'|; - ; ; ' ^w.;v
llzearin \
• toby
B*n "\
H thterryiach
I I tfmorris

8 root
Itrastaman
Bpsager
H penyasteo

3mm

H maureSolZM
iimarcus
• tnu52
ShU5 •
H lepeW-iirB
Ekunte
S t a r
Bkrtaka

§5 jrobbre
Agones
l!jhraign«c
^ ! jeremybennett
l7hudsorib
i'eututs
fleugenio
l£esp
Kepdv

Query applied to retrieve
all author names from a
SVN Ontology

^/_—-"~

•1

—

115

QuayEditor {.QuayUbmyl

•SEtECT Tissue ?revi$ion ?svn_author Tissue.Assignee

WHERE

{
; ?i$sue:hasResolution Irevision.
Tissue :hasAssignee lIssue.Assignee.
:?revisionsvn:autr>of?svn author.

! A : / \
Query applied to retrieve

an issue number, its

assignee and the name o f

author in S V N .

t i

•i
: i
: .;
'

[issue]

• issue5042

• issue5235

• issue5256

• issue5258

• issue526Q

• i$sue5478

• issue5482

• issue5493

• issue549?

• issue5542

• issue5548

• issue5557

• issue5581

• issue5598

• issue5602

• issue5649

• issue5667

• issue5670

• issue5681

• issueSKS

revision

• syn:Revisionl5911

• svn;Revisionl589?

• s¥«Re/isionl58I4

• svn:Revisionl5815

• wruRevisionlSSll

• svrt:Revi$ionl5956

• svn:Revi$ionl5972

• 5¥ticRevisicnl5969

• svrcRevisionl6135

• svrcRevisionl6259

• svn;Re«5ionl6270

• svrcRevisioaSl

• svn:Revisionl6493

4 swRevisionl6541

• svn:Revisionl6539

• s¥n:Reyi5ioril6692

• svn:Revisionl31

• svreRevisionl32

• 5vreRevisionl6739

• svn:Revisionl6763

svn.author

R maureliol234

5 mvw

B mvw

3 mvw

0 maureliol234

11 maureliol234

0 maureliol234

1 mvw

fl mvw

B mvw

S maureliol234

B jrobbins

B mvw

ifci mvw

m mvw

H penysskito

H jrobbins

31 jrobbins

H mvw

I mvw

fcsue.Assignee

• Person_maureliol234

• Person.mvw

• Personjnvw

• Person.mvw

• Person_maureliol234

• Person_maureliol234

• Person maureliol234

• Person.mvw

• Person.mvw

• Person.mvw

• Person_maureliol234

• Perecn.mvw

• Person.issuesatargouml

• Person jssuesatafgouml

• Person.mvw

• Personjsenyaskito

• Person.thn

• Person.thn

• Person.mvw

• Personjssuesatargouml

Query Editor \q • •

SElECflissue
?description
Resolvedjn

?commit message
WHERE

(
issue :hasResoiuticn

Resolvedjn.
issue description

description,
'issue :dateOpened
'reported.on.
'Resolvedjn
svrccommitMessage
?commit.me$sage.
?Resolved_in
svmcreationDate
commit date

[issue]

'flssueSMJ"

• issue5235

• issue5256

• issue5258

• i$sue526Q

• issue54?8

• issue5482

• i$sueS493

•issue5497

• issue5542

• issueS548

• issue5557

• issueSSSi

• rss«e5598

• issue5602

• issue564S

• issue5667

• issue5670

• issue5681

description Resolved.in commit.message

M Comments wiS--Critic--defined in the... • sm-RevisionlsSl Merging my code from GSoC 2008 into trunklhis co.„

UM11.4 notation doesn-t parse teen i... • svn:Revisioril589?

diagrams appear in profile configuration.- • svn:P.evisionl5814

2 perspective rules with same name: -Oa,.. • svn;Revisionl5iS15

prVFRsiReorganiieWFRs • svn:Revisionl5911

Critiques aren-t being generated • svn;Rewionl5956

Duplicate critics and critiques • svn:Revisionl5972

Apply Stereotypes in diagram popup me... • svn:Revi$ionl5969

Class that shows stereotype grows on no,,. • svrcRevisionlSBS

Association end label position is furtr:

Fa for issue 5235: UMLL4 notation doesn't parse froze...

Fix for issue 5256, according the given patch.

Fix for issue 5258, as given by the attached patch.

Merging my code from GSoC 2MB into bunkJhis co-

fixing issue 5478the CrfvfesingOassN ame was crrSciii...

issue 5482 -implementation details in the issue-

Fix for issue 5493; Appry Stereotypes in diagram popu...

Remove unnecessary code. This fifes issue 5497: "Clas...

Can -1 save project referencing user i

Exception when double clicking on at

FillColor applied to stereotype figs

ClassrfierRole grows when reloading

A „,.,D»,:,U.IC-ICI • e:„t>,

Query applied to compare
a issue description with
SVN vomit message.

5542: Association end label position.

5548ProjecBfflpl.setProfileConfiguration w,.

in

5581: FillColor applied to stereotype figs,

5500 for GassifierRole-new constructors-..,

I Notation ignores Association to self whe^Vwi;Revi5ioril6539 S Fix for issue 5602; Notation ignores Association to sett.,,

I Activations have no border # svn:Revisionl6692 R Fix for issue 5649: Activations have no border,

1 Java RE not creating figs for Packages # svrcRevisoriUl 1 — empty log message —

I Java source import uses profile, but class,,, • svn:Revisionl32 R —empty log message —

1 Selection indication on attribute remains... • svn:Revisionl6739 R F« for issue 5681: Remove the selection indication wh.„

116

[Subject]

• svn:Revi$ionl6539

• $vreRevisioril6539

• svn:Re5risionl6539

• svn:Rerisionl6539

• svn:Rewsionl6540

• svn;Rewsionl6540

• svn:R«iaonl6540

ionl654

ionl654:

ionl654

ionl654:

iord654

• svrcRevisi

• wn:Revi$

• svrcRevts

• svniRevisi

^svrcRevis

• svn;Revisicnl6542

• svreRevisionl6542

• wrt;Rewsionl6543

• svn:Revisionl6543

• $vn;Re¥i$ionl6544

• svn:Revfisionl6544

Predicate

• • wniislatestRevisionOf

11 svnnsRevisionOf

I I wn:isRevisionOf

• isResoIutionOf

Inferred knowledge by h*Uo«emionOf
reasoning services of vmhasPreviousRevision

ontology. wisRevistonOf

mhasPrevioifiRevision

'M svrehasPreviousRevision

1§ svniisRevisionOf

S wrcisRevisiortOf

• isResoIutionOf

M svrchasPreviousRevision

M swvisRevisionOf

M svrchssPreviousRevisicn

: • svrcisRevisionOf

II wrchssPrevieusRevision

M svrwsRevisionQf

Object

•

•

•

•

•

svn:File727

wn;File728

5vn:Rle727

issue56Q2

svr*:Fiie665

svn:File665

svn:FiSe665

5vn:Filel84

svn:Filel55

5vn:Filel84

wn:FM55

issueSXS

wn;Fiie273

svn:File273

svn;File274

• 5wFile274

• svn;File275

• wn:File275

In order to retrieve some statistics of an ArgoUML project from the Bugzilla Ontology,

we applied several queries on the Bugzilla Ontology. As a result, the queries retrieved

following statistics. (1) The total number of persons involved in the Bugzilla Ontology

(i.e. Person in the role of Assignee, Commenter, Creator of an Attachment, and Involved

Person). (2) Total number of the issues reported in the current release. (3) Total number

of activities related to the issues. (4) Total number of Comments. (5) Total number of

computer systems (i.e. combination of an operating system and platform). Following

table shows some statistics obtained from Bugzilla Ontology.

117

Total number of Person
Total number Issues (as of February 4, 2009)
Total number Activities of related to an Issue
Total number of Comments on Issues
Total number of computer systems

27
71
33
366
10

Some Statistics of Bugzilla Ontology.

In order to retrieve some statistics of an ArgoUML project, we applied several queries on

the SVN ontology. As a result, the queries retrieved following statistics. (1) Total number

of the files in SVN repository. (2) Total number of revisions. (3) Total number of authors

(i.e. developers / maintainers). (4) Total number of releases tagged in SVN repository.

Following table shows some statistics obtained from SVN ontology.

Total number of files used in different revision
Total number of revisions
Total number of Authors (developers /maintainers)
Total number of Releases tagged through revisions (i.e. including tags
"ALPHA 1 to ALPHA n", and "BETA 1 to BETA n".

56920
16793
50
156

Some Statistics of SVN Ontology.

118

