Mining Software Repositories to Support Software Evolution

Shafique Ahmed

A Thesis
In
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Software Engineering) at
Concordia University
Montreal, Quebec, Canada.

March, 2009

© Shafigue Ahmed, 2009

Library and Archives Bibliothéque et
Canada Archives Canada
Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre référence
ISBN: 978-0-494-63201-7
Our file Notre référence
ISBN: 978-0-494-63201-7
NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L’auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L’auteur conserve la propriété du droit d’auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thése.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Abstract
Mining Software Repositories to Support Software Evolution
Shafique Ahmed

Software evolution represents a major phase in the development life cycle Qf software
systems. In recent years, software evolution has been recognized as one of the most
important and challenging areas in the field -of software engineering. Studies even show
that 65-80% of the system lifetime will be spent on maintenance and evolution activities.

Sbﬂware repositories, such as versioning and bug tracking systems are essential parts of
various software maintenance activities. Given the often large amounts of information
stored in these repositories, researchers have proposed to mine and analyze ‘these large
knowledge bases in order to study and support various aspects of the evolution of a
software system. In this thesis, we introduce a common ontological representation to
support the mining and analysis of software repositories. In addition to this common
r‘epresentation,' we introduce the SVN-Ontologizer and Bugzilla-Ontologizer tools that
provide automation for both data extraction from remote repositories and ontology
populations. A case study is presented to illustrate the applicability of the present
approach in supporting software maintainers during the analysis and mining of these

software repositories.

it

Acknowledgements
I am most grateful to my supervisor, Dr. Juergen Rilling, for his encouragement, support,
and patience throughout this research. Without his help, advice and positive attitude, my
studies in this area would not have been possible. I have collected many cherished
moments and unique experiences from my supervisor and colleagues at CONCEPT

(Comprehension Of Net-CEntered Programs and Techniques) Concordia University.

I express my deepest gratitude to my beloved wife, Rozina and my children, Haris,
Ammar and Omar, for their enormous support, infinite patience, and unwavering belief
towards me, as always. There is a litany of family members and friends who are not

individually mentioned here, but they certainly made a difference.

I would also like to extend my appreciation and thanks to Mr. Philipp Schugerl and Ali

Asghar Sheikh for their helpful comments and suggestions, they always helped me in

times of great needs and deeds.

v

Table of Contents

LSt OF FIGUIES ...ttt ettt ettt e e n et s e st e st esa e s eas viii
List Of TabIes ..c...oovuiriieciirieee et oo eee e X
1. INEFOAUCHION.c...eoiiioiiiiiiiee ettt sb b e sbee e e et et e s saesomasse st e seesaenanese 1
2. Background..........ccooivimmieiecnecieieiee e et 3
2.1. Software Evolution...‘ .. 3
2.2. Soaﬁware Repositon'es .. 9
2.2.1. Subversion (SVN)........... e, 10
222, BUGZIlla ...ttt s et st e 15

2.3, ONLOLOZIES c.eueenrereeiiieeerrrereeteet et e seee e e e ctee e s ese s este s s asstsseessse e e s naessesseenaesoses 18
2.3. 1. WhY ONEOLOZY? ..ocoeeeeeeeeeiiecieeecieeietetee e ereseseseestaeesvaeseessnesssnesssnessseeseesneas 18
2.3.2. APPICALIONS ..coutiiiniiiiiieeeieeree et eeeee e seee e e s e ee st e s et e s s ne s senentesnnes 22
2.3.3. Web Ontology Language OWL and SPARQL.........cccccceeririiiinninncn 24
2.3.4. Ontology editing tOOIS......ccveieiieeiieeieereetitt et sire e 26
2.3.5. Ontological REASONETScuevveueererieniienceetsittee et eeeee e e sae s oo 27
2.3.6. Ontology ANGNIMENtovueiiiirieeeeeeeetritrte e sss s asssae e 30

3. CONITIDULON 1.eeereereerceeseeereereeeereseeeseseseeess e sesesesess s sesassmaesssases s essessssssesssssas 32
3.1, MOtIVAHOM c.cecniiiieieseererreree et sre e 32
3.2. Specific Contributions (Sub-goals) and Acceptance Criteriacccoceuvvenenen. 34

| 3.3, Acceptance Criteria......cc.coovevueeeirieerenitreneneeieir e srae e e enn e ene e 38

4. Subversion Ontology feserssesteseteesseatoatesraesasantssarermresstosase bt Rt b as b st b L e ae 39

4.1. Subversion OntologY DeSiZNc.coevieriiiriciriiiieert e e seee e 39
4.1.1. SVN Repository Schema................... semerasns e st s b e s s 39
'4.1.2. Initial Mapping SVN Repository Schema to an Ontological Model. 42
4.1.3. Enhanqed SVN ONOIOZY .ccuvieiiecieritetteeie et seeresee e e e seee e esaneessnneenns 45

4.2, SVN-ONOIOZIZETeoreinirrienieeteeteeeeerereestes st e sre e ste st esaesneesaesseessessseasssesans 49
4.2.1.. SVN Profile SEtUP....c..eeeieeiiieeeeee ettt re s 49
42.2. SVN Connection and Data EXtractioncccecceeeeeenneeeienneenncneecnncnnecennns 51
4.2.3. Data Pre-proCessingccceeomerneerteceerteereenseesiensseneneeseessssessessesosessssessacsane 53
4.2.4. Ontology pOPUIAtIONcoceeeveireierecririieirterieeeeetesreeeee et eesesseeesesssasessenane 54

5. BuUgzilla Ontology ... cceeeiiroeriieneeeeeeeeeeeeeet ettt s et e s ee e ee s ssr e b ssaar s 55
5.1. Bugzilla Ontology De31gn ... esaneenaneas 55
5.1.1. Bugzilla Repository Schema.........c..ccoouiiiimmiiniiiineeeeeeecenieccieenne 55
5.1.2. Mapping Bugzilla Repository Schema to an Ontological Model 60
5.1.3. Refining the Bugzilla Ontologycccccceeuevirriireninieeeeeeeeeesecceeseeeneens 63

5.2. Bugzilla-OntoloZizZerccooiieuiiiiiiiiiniiiiiiceentctceecer et 69
'52.1. Connection to Bugzilla and Data Extraction R 69
5.2.2. Data Pre-proCessingovoceeereeiiiiiiiniiienetieceeeetesseeeeessstesesanesssstessssnns 71
5.2.3. Bugzilla-Ontologizer User Interface.............covevvevvemeciincnciiicns, 72

6. Initial Experimental Evaluation and Ontological QUeries..........cccceeeeereecirveiennnne 77

vi

6.1, CASE STUAY...oviieuiieieieieeeeeeereeeerre et crere e e st setess e st e st see e et e an e an s 77

6.2. Ontological queries applied on SVN Ontology.........cooceeveevcrieincenninnernceneennnn 78
6.3. Ontological Queries Applied to Bugzilla Ontologycceevevrveerrnereererennns 82
6.4. Linked SVN and Bugzilla Ontology QUETIES......c..cecuerveerermerreecrercriceneeneenane 86
6.5. DISCUSSION ..evtiiiriierniiriererecireeinteeeeiteseretesseraeesseessesesssnntesasnsesnnesessaresesnsessasens 92
6.5.1. SE-AdViSOr FrameWOTKc.ccccovueriiririiiniienieeeereeneeeenreeeeee et e aeeseeans 92

7. Related Work and LImitationsccceeeeeccererieimirneniiicntensceteteescesenensesessesnesenees 95
7.1, Related WOTK......cooeiiieeeee ettt st et s s es 95
7.2, LIMITAHOMS ..veeirriiieieeniiereirerieenetesteseneseseeessessatasseesseeesssesaeesserasaneessnsessessssses 98

8. Conclusion and Future Work .. 100
References................. e 102
APPENAICES......eiviieirreiriceeteeieete ettt e ettt s s s sae e s sse bbb R e s e b e s ae s sraeseen 110

vii

Figure 2- 1:
Figure 2- 2:
Figure 2- 3:
Figuré 2- 4:
Figure 2- 5:
Figure 2- 6:

Figure 2- 7:

Figure 4- 1:
Figure 4- 2:
Figure 4- 3:
Figure 4- 4:
Figure 4- 5:
Figure 4- 6:
Figure 4- 7:

Figure 4- 8:

Figure 5- 1:
Figure 5- 2:
Figure 5- 3:
Figure 5- 4:

Figure 5- 5:

List of Figures

Cost of the software life cycle [DACO1]ccvevieciiiiiieeeeceeeeeeeere e 4
Common elements of software comprehension models [MPOO03] 6
SVN architecture [SVOA] ..o 11
An example of directory structure in SVN repositoryccceecevveeeeerivennennne 13
Life cycle of abug [BUO3A]coiiioierteeeteeneece e eeessesnne 16
An example of ontology [MARO9].....cccovirieeiiercireeeeeeericeneans erreereeerens 23
Architecture of a Pellet reasoner [PLOYA].........ccocomereeciecirrreceeeeeeeeane 29
SVN relational SChema..........coccoverviieiininie e 40
An initial SVN ontologyccceevceeeeeveercreenne. heercerereesresanmeaescsessassnnaessinesaran 43
Overview of an enhanced SVN ontologyc.ccooeivrcceveennecicnnenennecennne 46
Reasoning services applied to initial SVN ontology model 47
Reasoning services applied to enriched and enhanced SVN ontology 48
SVN-Ontologizer t00] OVEIVIEWcccciiiiiiieeiieinieeceneceerersere e e e 49
SVN-Ontologizer main user interface...........cceeevevrnienceneeersierereeneeesreeeeanns 50
SVN CONNECHION PrOCESS ...c.eveeeeemeriieriaerieriritesssteseetestessesessessessesessesssssonens 51
Bugzilla repository schema......c...ccocviieiiiecniiiiiiceeeereeece e 57
An example of issue dependency................... ettt raes 59
Initial Bugzilla ontology modelcccoiieiiiiiieeeeeee e 61
Réasoning services applied to initial Bugzilla ontologyccceecevenueeeen. 66
Reasoning services applied to enhanced Bugzilla ontologyccccceevecee 66

viil

Figure 6- 1: Results of SPARQL QUETY ...c.coeviiriiniiiieeecetetceeceeeee e 79

Figure 6- 2: Results obtained from extended query........c.cccooceevieiiiriniiininnccenccenenneene 80
Figure 6- 3: Releases and their creation dates e 81
Figure 6- 4: Query results based on a revisioﬁ and committed files........c.oocvrniiininians 82
Figure 6- 5: Query results showing the contribution of a specified person..........c........... 83
Figﬁre 6- 6: Reasoning eXamPIEc.eueveeuereruerenionirserrsesssessesessesesassessessssenessesssssesssnss 84
Figure 6- 7: Knowledge inference based on property DependsOn..........cccccovvecuricccnnnen. 84
Figure 6- 8: Example of inferred transitive lclosure .. 85
Figure 6- 9: Results derived from issue dependency ... 86
Figure 6- 10: Linked Bugzilla and SVN ontologiesc.coecmviiiiiiiiicininiiccenn, 88
Figure 6- 11: Date/time between issue reporting and resolutionc.cceceeeveeeeneerccuennns 89
Figure 6- 12: Bug resolution history in SVN ontology........cccceeeeeieevievienenvencnneneccncenens 90
Figure 6- 13: SPARQL query and results for resolution historycc.cccoeevveneeiinncnnens 91
Figure 6- 14: Transitive relationships.c..cooviriiiiiinniiiinieiececeeceeeeeeeeeae s 91
Figure 6- 15: Query results showing inferred knowledgeccccooccniinciiniinnnnnnnnne. 92
Figure 6- 16: Overview of SE-Advisor frameworkcovevrveureeeeiecnecnecreieecnenennee 94

X

Table 2- 1:

Table 2- 2:

Table 2- 3:

Table 2- 4:

Table 2- 5:

Table 4- 1:

Table 4- 2:

Table 4- 3:

Table 4- 4:

Table 4- 5:

Table 4- 6:

Table 5- 1:

Table 5- 2:

Table 5- 3:

Table 5- 4:

Table 5- 5:

Table 5- 6:

List of Tables

Comparison of some version control systems [VEBO9]c.ccoccrieenne 14
Comparison of some bug tracking systems [WKBO9] 17
Ontologies vs. databases [IANOT7]......cccooirvererceininiieeereececeeees 20
Ontologies vs. datébases [MUGO4]...........T .. 20
Comparison of available reasoners [REAQ9].......cccccoiriiiniinninnnnvnnienieenen. 30
Main classes of initial SVN ontology.......ccccveeriieieriiniennenientrecenececene, 43
Data type properties in SVN ontologyccceeceeeverencirnrcenriienieneeseceeeeeeenee 44
Object properties in initial SVN ontology designccccovverveeeveencenveerueennen. 44
Object properties added to enrich SVN ontologyccceeeeeerieciiicnninnnnn. 45
DL restrictions applied to classes...................7 ... 46
SUbSHtUtion Of INVAlid ChATACELS ...vvvvvveveeeeeeeeeeseeeeeseeeeereseeseseseesseseeseeereesens 54
Bugzilla ontology ClasSescuvveeueeireieneeeereceeetee ettt s 61
Data type properties in the Bugzilla ontologycccccceeceeneinnnnninnncnne 62
Object properties of Bugzilla ontologycoceeeevieiviiiinnieincenecieneene 63
Bugzilla ontology ClasSesccoveevvereeeriininierticteee et 64
Object properties of Bugzilla ontologycocevereeceereineneniisecceeeeeneeens 65
Substitution of invalid characterscooceeeeceeiinrersenreeeeeeeece e 72

1. Introduction

Software evolution represents a major phase of activities involved in the development,
use, and maintenance of software systems. In recent years, software evolution has been
recognized as one of the most important and challenging areas in the field of software
engineering. Studies pointed out that 65-80% [LEHO1] of a system’s lifetime will be
spent on maintenance and evolution activities. The majo-rity of the costs of evolution of a
software system are incurred in software comprehension, rather than in making the
necessary corrections to the system. Available estimates indicate that the percentage of
maintenance time consumed on software comprehension ranges from 50% up to 90%
[COR89, LIV94, and STA84].

Software repositories, such as versioning systems and bug tracking systems are essential
parts of supporting various software maintenance activities. These tools not only support
software maintenance activities, but they also store important information related to
software development and maintenance history. Given the often large amount of
information stored in these repositories, researchers have proposed to mine and analyze
these large knowledge bases in order to study and support \;aﬁous aspects of the
evolution of software systems, such as impact analysis, software architecture,
development process, software reuse, product reliability, and artifact traceability.

One of the key challenges in analyzing these software repositories is that they lack a
common representation. These repository specific data models, often introduced as

information silos, do not allow for a semantic rich integration of these resources and

therefore limit the analysis support across repository boundaries. In order to address these

challenges with respect to information integration and the analysis across repository
boundaries, a common, semantic rich representation is needed to integrate information
from various software repositories.

In this thesis we introduce a common ontological representation to support the mining
and analysis of softwar¢ repositories. In addition to this common representation, we
introduce the SVN-Ontologizer and Bugzilla-Ontologizer tools that provide automation
for both data extraction from remote repositories and antomated ontology population. A
case study is presented to illustrate the applicability of the approach in supporting the
analysis and mining of the repositories in order to provide support to software
maintainers.

The remainder of the thesis is organized as follows: Section 2 introduces a general
background related to software evolution, software repositories, and ontologies. Section 3
_details the motivation and objectives of our approach. Section 4 and 5 introduces the
implementation of SVN and Bugzilla-Onto]ogizer tools respectively. An initial case
study is presented in Section 6, followed by related work in Section 7. Section 8 presents

conclusions and future work.

2. Background

In an attempt to make this thesis self-contained, we review some background relevant to
the presented research. Background on software evolution and software comprehension
proc_:ess is presented in Section 2. 1. Section 2.2 introduces software repositories with a
specific focus on Subversion, a version control system, and Bugzilla, a defect tracking
repository. Section 2.3 provides a brief introduction to ontologies, semantic web

technology, and their use as a modeling approach.

2.1. Software Evolution

Software evolution represents the cycle of activities involved in the development, use,
and maintenance of software systems [WIKI09]. Software evolution includes software
maintenance, which is defined as part of the IEEE Standard 1219[IEEE90] as, “the
modification of a software product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a modified environment”. The
term ‘software evolution’ is now often preferred as a replacement for ‘maintenance’
[KHVO00]. Lehrﬁan [LEH80] concludes the fact that maintenance is evolutionary
development. Organizations have made large investments in their software systems.
These systems become often critical business assets. In order to maintain the value of
these assets to the business, the software must evolve. All software systems are subject to
such an evo]ution, as these systems must evolve over time as new requirements emerge,
or they have to adapt and extend the existing functionalities to meet changed

requirements [LEHO1]. As a result, the majority of software budgets in large

organizations are devoted to evolve existing software in order to maintain the value of
their software assets. Studies pointed out that 65 to 80% [LEHO1] of a system lifetime
will be spent on maintenance and evolution activities. Figure 2-1 shows the software life-

cycle costs.

Software Life-Cycle Costs
2% 5% gy @ Reguiremeants
= ‘ > @ Specifications
7% 0 Design
o Coding
) 8% ® Unit Testing
b7% Integration
8 Maintenance
Ref. Schach 2002 p.12 € 2003-2005 by Digital Aggregates Com. Al ights reserved.

Figure 2- 1: Cost of the software life cycle [DACO1]

It has also been shown [LEHO01] that the majority of the maintenance costs are related to
enhancements of the existing software product, rather than corrections.

One of the major reasons for the overall significant effort and cost involved in software
evolution is the need to comprehend systems that are either not well documented or have
out of date and inconsistent documentation. Whenever a change is made to a piece of
software, it is important that the maintainer gains some understanding of the structure,
behavior and fu;lctionality of the system being modified. As a consequence, maintainers
spend a large amount of their time reading the code and the accompanying
documentation to comprehend its logic, purpose, and strﬁcture [GCMO00]. Available

estimates indicate that the percentage of maintenance time consumed on software

comprehension ranges from 50% up to 90% ([COR89, LIV94, and STA84]). Software
comprehension is necessary because the maintainer is rarely the author of the code (or a
significant period of time has elapsed between development and maintenance) and a
complete, up-to-date documentation is even more rarely available [CAG96].

Burd et al. [BURY8] define software comprehension as “the activity of understanding
existing software systemé”. Muller [MUL94] defines software comprehension as “the
task of building mental models of the underlying software at various abstraction levels,
ranging from models of the code itself, to models of the underlying application domain,
for maintenance, evolution, and reengineering purposes”. The author further states that
software comprehension is “a process whereby a software practitioner understands a
software artifact using both knowledge of the domain and/or semantic and syntactic
knowledge, to build a mental model of its relation to the situation” [MUL94]. Many
software comprehension models (i.e. Mental and Cognitive Models) have been proposed.
~ These models help to better identify what information needs to be provided to
maintenance programmers, and when and how this information should be provided
[LET86]. Software comprehension models norfnally consist of four common elements,
namely, a knowledge base, external representation, assimilation process, and mental

models [MPOO03]. Figure 2-2 shows the common elements of comprehension models.

Programmer

Knowledge Mental °\
Base ‘. Model /

~

Assimilation }i External
Process Representation

Figure 2- 2: Common elements of software comprehension models [MPOO03]

An external representation corresponds to the external views available in assisting the
maintainer comprehending a software system. This external support may be in the form
of system documentation, the source code, expert advice from other maintainers familiar
with problem domain or similar source code from the other system [MPOO03]. A
knowledge base can be defined as the rﬁaintaiher’s accumulated knowledge prior to the
attempt to understand the software system. It may consist of an understanding of the
domain and general information that may be pertinent to that domain, along with
programming standards and practices [MPOO03]. The knowledge base develops and
expands as the level of maintainer understanding the changes [MPOO03]. Rouse et al.
[RWMSS5] defined a mental model as “mechanisms whereby the humans are able to
generate descriptions of system purpose and form, explanations of system functioning
and observed system states, and predictions of future states”. Davis [DSP93] defines an
assimilation process as ‘“the actual strategy, which the programmer employs to
comprehend the source code”. One method of assimilation is where maintainer’s
hypotheses are refined and elaborated during comprehension [BRK83]. Storey mentioned

in [STOO1] that a mental model describes a developer's mental représentation of the

I;rogram'to be understood. A cognitive model describes the cognitive processes and
temporary information structures in the programmer’s mind that are used to form the
mental model. In the past, several cognitive models have been developed to explain how
maintainers comprehend the software system.

Lefovsky [LET87] introduced a cognition model that consists of three main components:
a knowledge base, a mental model, and an assimilation process. The first component
contains the general knowledge that a programmer has about the programming discipline
and the problem domain. It also includes rules of discourse, i.e. conventions in
programming such as algorithm and data structure implementations and coding standards.
The mental model is organized into three different levels of abstraction. First is the
specification level, which describes the program goals. Second, the implementation level
expresses the lowest level of abstraction, and contains the data structures and functions as
entities. The third level of abstraction is the annotation level which links each goal in the
specification level with its realization in the implementation level [CAG99].

Brooks [SOL84] proposed a model based on the top-down approach. The approach starts
from the assumption that in the design phase a designer makes a number of decisions
which will be reflected in the code. Comprehension involves recovering these decisions
and mapping them onto the programming domain through the reconstruction of
intermediate domains. The éonstruction of the mental model happens through a top-down
process that successively formulates and verifies hypotheses. At the top there is the
primary hypothesis that expresses a high level description of the program function. Next,

subsidiary hypotheses are formulated to support the primary hypothesis [CAG99].

Pennington [PEN87] proposed a bottom-up approach that starts by comprehending code
line by line and discovering familiar patterns, called chunks, whose aggregation and next
abstraction can bring to the identification of new patterns a higher level of abstraction.
Pennihgton’s model faces comprehension problems with the development of two
different mental representations: the program model and the situation model. The first is a
low level mental model of the program-and its structure. Indeed, the first model that
maintenance programmers build when dealing with unfamiliar code is typically a control
flow abstraction. New and more abstract program models are then built by chunking code
structures into more abstract structures. The situation model is developed after the
program model. It creates a data flow/functional abstraction and requires knowledge of
the application domain to mentally represent the code in terms of real-world objects
organized as a functional hierarchy [CAG96].

~ Mayrhauser et al. [VMY93] proposed an integrated model that combines the models
previously proposed. They start from the observation that a comprehension process
proceeds either top-down, bottom-up, or a combinatiqn of the two. The integrated model
consists of four main components: program model, situation model, top-down model, and
knowledge base. The first three components are borrowed from the models already
introduced. The integrated model exploits the top-down model when the code is familiar
and the bottom-up model when it is completely new. By proceeding in a top-down way it
can happen that an unfamiliar section of code is met, and a swap to the bottom-up
investigation is required. The knowledge base is necessary for the construction of the
other three components. Each model component consists of an internal representation of

the code and the strategy to build this internal representation. The knowledge base
8

furnishes related information and knowledge which has been previously acquired. During
understanding, new information is developed and stored in the knowledge base for future

usage. [CAG96].

2.2. Software Repositories

Software repositories help the users to manage the progress of software projects. A
repository refers to a central place where data is sfored and rﬁaintainéd within a persistent
storage. Repository distributions can be either shared across a network or locally hosted
on an individual computer. Software repositories such as version control and defect
tracking systems are common examples of repositoriés used as part of modern software
engineering and software development processes. These repositories provide shared
understanding of the development processes of the software product.

Revision control (also known as version control) is the management of multiple revisions
of the same unit of information. Version control systems (VCS) such as CVS [XMB09]
and SVN [SVNO09] are widely used examples of version control systems. These version
control systems keep the development history of software projects in order to avoid
modification conflicts among different revisions. Version control systems play also an
important role during software evolution, since changes performed as part of maintenance
requests can be traced and tracked (e. g. who made what changes and when.).

During the development of a software system certain problems may arise. Such problems
can emerge from one revision to another and are referred to as “bugs. ” Thus, bug
tracking is a necessity in addition to a revision control system. When considering bug

tracking we understand the storage and management of issues related to programmatic or

even systemic instabilities, faults or conflicts during development. These issues are stored
in a dedicated bug or issue tracking system. These systems mainly consist of a database
(open source or proprietary) where the data periinent to a specific issue is stored. The
client and administrator side access layers (usually web based access, like Bugzilla

[BUG09)).

2.2.1. Subversion (SVN)

Subversion (SVN) is a free/open-source version control system; it manages files and
directories. Subversion places these files and directories into a central repository
[SVNO09]. The Subversion repository supports the tracking of changes to files and
directories. SVN furthermore allows for the recovering of older versions of data, or

examining the history how the data changed.

History of Subversion

CollabNet [CLBO09] offers a collaboration software suite called CollabNet Enterprise
Edition (CEE) [CL0O9A] of which one component is version control. Before August 2001,
CEE used CVS (Concurrent Version System) as its initial version control system. CVS's
limitations were obvious from the beginning. In early 2000, CollabNet planned to
develop a new version control system from scratch which would match CVS's features
and preserve the same development model but not duplicate CVS's most obvious flaws. It
did not need to be a drop-in replacement for CVS. It should be similar enough that any
CVS user could make the switch with little effort. After fourteen months of coding, the
Subversion (SVN) became fully functional on August 31, 2001 by replacing CVS

[SVO09B].

PRV

commandline |

dientagp |
h Clientinterface
¥ Y
Working copy &
-+ Client library
fibrary
Yo Gide
Intermet
Apache
' mod_ DAY
] md_w_svul i; I Emem
- Repository interfoce

Figure 2- 3: SVN architecture [SV09A]
Architecture of Subversion
Subversion can access its repository across networks, enabling a collaborative
environment for users where they can modify and manage the same set of data. Figure 2-
3 shows the architecture of SVN repository. Subversion works in two ways. First, it
provides repository that holds all of the versioned data. On the other end it works as a
client program, which manages the local operations of the portions of that versioned data

called working copies. Between these two ends there are multiple routes through various

Repository Access (RA) layers. Some of these routes go across computer networks and

11

through network servers that then access the repository. Others bypass the network

altogether and access the repository directly.

Functions and Features

The basic functionalities provided by SVN are the same as in CVS, including the storage
of file history information about users who checked out a working copy of a file to work
locally on it. Users can easily compare the different versions of the file. In next paragraph

we will discuss features exclusively supported by SVN. -

SVN provides branching, tagging, and release concepts, where tags are common file
metadata that are managed and kept in files or directories. Branches are separate directory
trees made out of current main “trunk” directory. When a branch is made for a file, the
revision enumeration continues on. The only property that changes is the path to the file
or directory that moved from the main trunk to a branch. SVN tracks the changes made to
both the main trunk and the branch as a log of the same file, telling the ﬁser where a
particular change (main trunk or branch) was made and whether a revision corresponds to
the main trunk or the branch. Figure 2-4 shows the example of SVN repository directory
structure.

Releases are sets of revisions without explicit concepts or mechanisms corresponding to
releases. Subversion creates branches and tags by simpiy copying the project, using a

mechanism similar to a hard-link.

12

B] httpe) argeunl tgris . orgfswng argaumd
B3+ branches

[E-{7) tags

B-£3) trunk
A3-{C) documentation
{Eg modules
M- sre
B tools
BHCD) www

Figure 2- 4: An example of directory structure in SVN repository

Subversion supports add, delete, copy, and rename both files and directories. Every
newly added file begins with a fresh and clean history of its own. Subversion provides
consistent data handling by providing differences of the files in binary and human
readable format. Subversion allows atomic commits; it stores complete collections of
modification into repository.

Subversion uses a copy-modify-merge model as an alternative to locking. In this model,
“each user's client contacts the project repository and creates a personal working copy (i.e.
a local reflection of fhe repository files and directones). Users then work simultaneously
and independently to modify their private copies.

Finally, the private copies are merged together into a new, final version. The version
control system provides support for merging, but ultimately, a human being is responsible
for the final merging decisions.

Table 2-1 provides an overview of functionalities of some popular version control

systems (including Subversion).

13

Features Subversion CVS BitKeeper Git
Atomic Commits | Commits are atomic. CVS commits are not | need to verify Commits are
atomic. atomic.
Files / Directories | Supported Not supported. Supported Supported
Moves or Renames
Intelligent Merging | Partially supported. Not supported. Partially supported | Not supported
after Moves or
Renames
File and Directories | Supported also utilized for { Not supported. Supported. Not supported.
Copies branching.
Remote Repository | supported supported supported very intrinsic
Replication feature of Git.
Propagating supported Not supported supported supported
Changes to Parent
Repositories
Repository The WebDAV-based | Limited. "Pre-commit { FILL IN No, but a single
Permissions service supports defining | hook scripts” server can serve
HTTP permissions many repositories.
Change sets | Partial support. There are | Not supported | Supported. Supported
Support implicit change set that are | Changes are file-
generated on each commit. | specific.
Branching and | Sported Not Supported Supported Supported
Merging
Tracking supported supported supported supported
Uncommitted
Changes
Command Set | A CVS-like command set. A simple command | A CVS-like | Command set is
set that includes (cvs { command set very feature-rich,
commit, cvs update and not compatible
and cvs checkout) with CVS.
and several others.
Portability Excellent. Clients and | Good. Client works | Very good. | The client works
Servers work on UNIX, | on UNIX, Windows | Binaries are | on most UNIXes,
Windows and Mac OS X. and Mac OS. Server available for most | but not on native
common UNIX | MS-Windows.
systems and for
Windows 98 and
above.
Web Interface | Supported verity of tools, | Supported Its own built-in | Its own built-in

more than any other version
control system

web tool

web tool. Gitweb

Availability of | There are many available There are many BitKeeper ships | Gitk is included in
Graphical User- | GUIs: RapidSVN (cross- available GUlIs: with several GUIs | distribution. Qgit
Interfaces. platform), TortoiseSVN WinCVS, Cervisia for performing | and Git-gui tools
(Windows Explorer plug- (for KDE), common tasks. are also available.
in), Jsvn (Java), etc. TortoiseCVS -
development. (Windows Explorer
plug-in).

Table 2- 1: Comparison of some version control systems [VEB09]

14

2.2.2. Bugzilla

Bugrzilla [BUG09] is a bug or issue tracking system. Bug tracking systems allow
individuals or groups of developers to keep track of outstanding problems with their

product effectively.

History

Bugzilla was originally developed by Terry Weismann in a programming language called
TCL to replace a rudimentary bug-tracking database used internally by Netscape
Communications. Weismann later ported Bugzilla to Perl from TCL, and it remains in
Perl to this day. Most of the commercial defect‘tracking software vendors at the time
charged enormous licensing fees. Being an open source project, Bugzilla became a
favorite of the open-source crowd (with its genesis in the open-source browser project,
Mozilla) [BUGO3]. Initially, Bugzilla was used to manage issues in the Mozilla
Foundation projects. Now external projects (both open source and proprietary), can
submit their bug reports too. It has become the de-facto standard defect-tracking system

against which all others are measured.

Architecture and Functionality

Bugzilla is a web-based, open-source issue tracking tool. It is the most widely used web
based tool to manage bugs. Bugzilla can also track enhancements, feature requests, and
to-do items. Bugzilla allows individuals or groups of developers to keep track of
outstanding problems with their product effectively.

The architecture of Bugzilla as a tool is rather simple. It requires an installed server and a

database management system (PostgreSQL, MYSQL, etc.) to be operational. Further,
15

Bugzilla requires a suitable release of Perl 5 along with a set of Perl modules for the

installation and a mail transfer agent, such as Sendnote, qmail, Postfix or Exim.
New bug from a
user with canconfirm
or a product without

UNCONFIRMED state (UNCONFIRMED)

Bug confirmed or
receives enough wvobes,

Y Developer takes

Bug is reppened,
vas never confirmed

poesession
NEW
Ovinership
is changed Developer takes Development is
possession finished with bug
ASSIGNED
Development is
5 finished with bug
Developer takes
possessiol o Bug is closed
ssue is -
resolved
QA not satisfied QA verifies
with solution solution worked
i od
[REOPEN Bug i= reopen

Bug is reopened

Bug s closed

Figure 2- 5: Life cycle of a bug [BU03A]
The central concept of the Bugzilla is the issue, all other information within the Bugzilla

database being directly associated with an issue. As a result, issues cannot be merged,

branched, or versioned. One issue can block another issue, which can be in a different

16

state depending on the priority of bugs. Bugzilla is also used to file feature requests and
enhancements.

Bugzilla follows the life cycle of the bug as shown in Figure 2-5. When a bug is
submitted, it enters the state “new” as either confirmed or unconfirmed. Then it is
assigned to a developer. When the developer has resolved the bug, it can either be
verified, if the solution worked out, or it can be reopened if the solution was not
satisfying. If a bug is verified it is closed.

This life cycle is currently hard-coded into Bugzilla. It manages the entire work-flow for
a bug and defines clear states a bug goes through. Further, Bugzilla stores comments
from different users, activities performed on the bug, and files attachments attached by

users for the bug. Table 2-2 compares some popular bug tracking systems, including

Bugzilla.
Bug Tracking Integration with Test Customizable Unicode LDAP
System version control Planning Workflow Suppeort user
integration : Authentic
ation
JIRA ClearCase, AccuRev, | Atlassian Supported Supported | Supported
Perforce, CVS, | Bamboo
Subversion, Visual | (continuous
SourceSafe (beta) integration
& testing,
via plug-in)
eTraxis Supported, Supported | Supported
unlimited # of
workflow
templates
BugTracker. Subversion Supported Supported Supported | Supported
NET
Debbugs VCS Agnostic, DAK | Not Not Supported | Supported | N/A
integration Supported
Bugzilla CVS, Subversion, | Testopia Supported, as | Supported | Supported
Perforce, AccuRev of Bugzilla 3. 2
Mantis Supported, support for | Not Supported Supported | Supported
CVS, Subversion Supported

17

Table 2- 2: Comparison of some bug tracking systems [WKB09]

2.3. Ontologies

Ontology is a speciﬁcatién of a conceptualization. In the context of computer and
information sciences, ontology defines a set of representational primitives with which to
model a domain of knowledge or discourse [GUR93]. The representational primitives are
typically classes (or sets), attributes (or properties), and relationships (or relations among

class members) [GUR93].

2.3.1. Why Ontology?

Ontologies have been widely used to conceptualize and define domains of interest.
Ontologies include machine-interpretable definitions of basic concepts in the domain and
relations among them. Why would someone want to develop an ontology?

Sharing common understanding of information structures among people or software
agents is one of the more common goals in developing ontologies [MUS92, GUR93]. For
example, several different web sités contain medical information or provide medical e-
commerce services. If these web sites share and publish the same underlying ontology of
the terms they all use, then computer agents can extract and aggregate information from
these different sites. The ageﬁts can use this aggregated information to answer user
queries or as input data to other applications.

Enabling reuse of domain knowledge was one of the driving forces behind recent
development in ontology research. For example, models for many different domains need
to represent the notion of time. This representation includes the notions of time intervals,
points in time, relative measures of time, énd SO on. va one group of researchers develops

such ontology in detail, others can simply reuse it for their domains. Additionally, if we

18

need to build a large ontology, we can integrateb several existing ontologies describing
portions of the large domain.

Making explicit domain assumptions underlying an implementation makes it possible to
change these assumptions easily if our knowledge about the domain changes. A hard-
coding assumption about the world in programming-language code makes these
assumptions not only hard to find and understand but also hard to change, in particular
for someone without programming expertise. In addition, explicit specifications of
domain knowledge are useful for new users who must learn what terms in the domain
méan. |

Separating domain knowledge from operational knowledge is another common use of
ontologies. We can describe the task of configuring a product from its components
according to a required specification and implement a program that does this
configuration independent of the produéts and components themselves [MGWO00].
Analyzing domain knowledge is possible once a declarative specification of the terms is
available. Formal analysis of terms is extremely valuable for reusing existing ontologieé
and extending them [MGW98].

Ian [IANO7] illustrates some of the basic differences between ontologies and databases.

Table 2-3 compares ontologies with databases observed by Jan [IANO7].

19

Ontologies

Databases

Open world assumption (OWA)
e Missing information treated as unknown

Closed world assumption (CWA)

e Missing information treated as false

No Unique name assumption (UNA)
e Individuals may have more than one
name

Unique name assumption (UNA)

¢ Each individual has a single, unique name

Ontology axioms behave
(inference rules)

e Entail implicit information

like implications

Schema behaves as constraints on structure of data.

e Define legal database states

Ontology axioms play a powerful and crucial role
e Answer may include implicitly derived

facts

Can answer conceptual as well as

extensional queries i

Query answering amounts to theorem

proving (i.e. logical entailment)

In Database querying, Schema plays no role

o schema

Data must
constraints.
Query answering amounts to model checking
(i.e. a “look-up” against the data).

explicitly satisfy

Table 2- 3: Ontologies vs. databases [IANO7]
Uschold et al., [MUGO04] also discuss some interesting differences between ontologies

and databases. Table 2-4 describes the difference between databases and ontologies

mentioned by [MUGO04].

Ontologies

Databases

Ontologies have a range of purposes including
interoperability, search, and software specification.
One or more parties commit to using the terms from
the ontology with their declared meaning.

The primary use of most DB schema is to
structure a set of instances for querying a
single database. This difference impacts
heavily on the role of constraints.

For ontologies, constraints are called axioms. Their
Main purpose is to express machine-readable
meaning to support accurate automated reasoning.
This reasoning can also be used to ensure integrity
of instances in a knowledge base.

For databases, the primary purpose of
constraints is to ensure the integrity of the data
(i.e. instances). These ‘integrity constraints’
can also be used to optimize queries and help
humans infer the meaning of the terms.

The main role for cardinality constraints in
ontologies is to express meaning, and ensure
consistency (either of the ontology, or of instances).

Cardinality and delete constraints are important
Kinds of integrity constraints which have
highly DBspecific uses those are outside the
scope of most or all ontology systems.

support for taxonomic reasoning: it is fundamental
for nearly all ontology applications

It is not supported by most DBMS.

Reasoning over ontologies normally is done by
general logic-based theorem provers, specific to the
language. The fundamental role of a reasoning
engine is to derive new information via automated
inference. Inference can also be used to ensure the
logical consistency of the ontology itself.

Logical consistency through Reasoner is not
supported by most DBMS.

Table 2- 4: Ontologies vs. databases [MUG04]

20

Robert et al. [RIS99] highlight some of the benefits of using ontologies as an enabling
technology for interpersonal communication and inter-operability. For communication
between people, an unambiguous but informal ontology may be sufficient. Inter-
operability among computer systems can be achieved by translating between the different
modeling methods, paradigms, languages, and software tools. The ontology is used as an

interchange format.

Systems Engineering Benefits

Re-Usability: The ontology is the basis for a formal encoding of the important entities,
attributes, processes and thbeir inter-relationships in the domain of interest. This formal
representation may be (or become through by automatic translation) a re-usable and/or
shared component in a software system.

Search: Ontology may be used as meta-data serving as an index for a repository of
information.

Reliability: A formal representation also makes possible the automation of consistency
checking resulting in more reliable software.

Specification: The ontology can assist the process of identifying requirements and
defining a specification for an IT system (knowledge based or otherwise)..

Maintenance: The.use of ontologies in system development, or as part of an end
application, can render maintenance easier in a number of ways. éystems which are built
using explicit ontologies serve to improve documentation of the software, which in turn

reduces maintenance costs. Maintenance is also an important benefit if ontology is used

2]

as a neutral authoring language with multiple target languages - it only has to be
maintained in one place.
Knowledge Acquisition: Speed and reliability may be increased by using an existing
ontology as the starting point and basis for guiding knowledge acquisition when building
knowledge-based systems.
Reasoning Services: Reasoning refers to the evaluation of ontologies according to their
specifications, including:

e Checking consistency of the ontology

e Checking concept (and role) consistency

e Concept (and role) subsumption

e Instance checking

e Instance retrieval

e Query answering

2.3.2. Applications

Ontologies are part of the W3C standards stack for the Semantic Web, for which they are
used to specify standard conceptual vocabularies to enable exchange of data among
systems. Furthermore, they are the basis for providing services for answering queries,
publishing reusable knowledge bases, and offering services to facilitate interoperability
across multiple, heterogeneous systems and databases. The key role of ontologies with
vrespect to database systems is to specify a data modeling representation at a level of
abstraction above specific database designs (logicall or physical), so that data can be

exported, translated, queried, and unified across independently developed systems and

22

services. Successful applications to date include database interoperability, cross database

searches, and the integration of web services. Figure 2-6 shows an example of ontology.

- "'.“‘> :
Q'; { Tsunami
_ Flood ST

\

'Ww:%;“_w_"m B

' Natural : —

Storm Catastrophes__ Volcano

g Ry '

Avalanches |

\%WVMM’ i
A Landslide
Earthquake o

e RE|GHION € I8 @ »
- Relation « causes »

Figure 2- 6: An example of ontology [MAR09Y]

Robert et al. [RIS99] describe some ontology applications as follows:

Neutral Authoring: An information artifact is authored in a single language and is
converted into a different form for use in multiple target systems. Benefits of this
approach include knowledge reuse, improved maintainability, and long term knowledge
retention.

Ontology as Specification: An ontology of a given domain is created and used as a basis
for specification and development of some software. Benefits of this approach include

documentation, maintenance, reliability, and knowledge re-use.

23

Common Access to Information: A piece of information is required by one or more
persons or computer applications, but is expressed using unfamiliar vocabulary or in an
inaccessible format. The ontology helps render the information intelligible by providing a
shared understanding of the terms or by mapping between sets of terms. Benefits of this
approach include inter-operability and more effective use and reuse of knowledge
resources.

Ontology-Based Search: Ontology can be used for searching an information repository
for desired resources (e. g. documents, web pages, names of experts). The chief benefit of
this approach is faster access to important information resources, which leads to more

effective use and reuse of knowledge resources.

2.3.3. Web Ontology Language OWL and SPARQL
OWL stands for Web Ontology Language. The OWL Web Ontology Language is
designed for use by applications that need to process the content of information instead of
just presenting information to humans [W3C09]. Following are the data formats
supported by Web Ontology language.

e XML provides a surface syntax for structured documents, but imposes no

semantic constraints on the meaning of these documents.

e XML Schema is a language for restricting the structure of XML documents and

also extends XML with data types.

24

o RDF is a data model for objects ("resources") and relations between them. It
provides simple semantics for this data model, and these data models can be

represented in the XML syntax.

e RDF Schema is a vocabulary for describing properties and classes of RDF
resources, with semantics for generalization-hierarchies of such properties and

classes.
OWL is currently available in following three different types.

e OWL Full is the full specification of the language.

e OWL DL is a subset of OWL Full, making some restrictions to allow automated
reasoning.

e OWL Lite is a subset of OWL DL as a simple-to-use, simple-to-implement
version of OWL.

The OWL format has four major concepts to store information and its associations.

o Classes are abstract definitions of a single concept. Classes define possible
associations and properties they can have. A class itself does not store concrete
data. It only acts as a container concept.

e Individuals (also called instances) are the concrete realizations of a class. They
can only have associations and store data in the defined manner of their respective
class.

e Object properties define the asso‘ciatipns between two classes (abstract) or two

individuals (concrete). Object properties are directed associations and always

25

belong to a specific domain (i.e. the starting point of an association) and a range
(i.e. the endpoint). Domain and range can both be a list of multiple Classes.

e Data type properties can be, like object properties, considered as associations.
Unlike object properties, the range is not a list of classes but rather a predefined

data type. Typically the data types of XML Schema [W3C, 2004b] are used.

SPARQL is the W3C standard query language for semantic web OWL/RDF data. In
order to retrieve data using SPARQL, a triple template is defined in the query. The core
idea is to leave the subject or object of a triple blank variable and the query engine will
try to find all the triples matching this template.
It provides facilities to:
e Extract information in the form of URIs, blank nodes, plain and typed literals.
e Extract RDF sub graphs.

e Construct new RDF graphs based on information in the queried graphs.

2.3.4. Ontology editing tools

Protégé release 3.4

Protégé is a free, open-source platform that provides a suite of tools to construct domain
models and knowledge-based applications with ontologies. Protégé implements a rich set
of knowledge-modeling structures and actions that support the creation, visualization, and
manipulation of ontologies in various representation formats. Protégé can be customized
to provide domain-friendly support for creating knowledge models and entering data.

Furthermore, Protégé can be extended by way of plug-in architecture and a Java-based
26

Application Programming Interface (API) for building knowledge-based tools and
applications [PRGO09].

TopBraid Composer (standard edition)

TopBraid Composer is an enterprise-class modeling environment for developing
Semantic Web ontologies and building semantic applications. TopBraid Composer is
implemented as an Eclipse pIug-in. TopBraid Composer is a professional development
environment for W3C's Semantic Web standards RDF Schema, the OWL Web Ontology
Language, the SPARQL Query Language and the Semantic Web Rule Language
(SWRL). Composer can be used to edit RDFS/OWL files in various formats and also
provide scalable database back ends (Jena, AllegroGraph, Oracle 11g and Sesame) as
well as multi-user support.

Composer provides a comprehensive set of features to cover the whole life cycle of
semantic application development. In addition to being a complete ontology editor with
refactoring support, Composer also can be used as a run-time environment to execute
rules, queries, and reasoners. Based on Eclipse, Composer can also be extended with
custom Java plug-ins. This supports the rapid development of semantic applications in a

single platform.

2.3.5. Ontological Reasoners

An ontological reasoner is a piece of software able to infer logical consequences from a
set of asserted facts or axioms. The notion of a semantic reasoner generalizes that of an
inference engine by providing a richer set of mechanisms to work with. The inference

rules are commonly specified by means of an ontology language, and often a description

27

language. Many reasoners use first-order predicate logic to perform reasoning. The
inference commonly proceeds by forward chaining and backward chaining [REA09].
Pellet reasoner

Pellet is an open source reasoner for OWL DL written in Java. It provides reasoning
service fér OWL ontologies. Pellet allows reasoning for semantically-enable&
applications that need to represént and reason about information using OWL [PAL(9].
Pellet is an OWL DL reasoner based on the tableaux algorithms developed for expressive
Description Logics. It supports the full expressivity OWL DL including reasoning about
nominal’s (enumerated classes). The core of the Pellet reasoner is the tableaux reasoner
that checks the consistency of a KB, (i.e. a pair of an ABox and a TBox). The reasoner is
coupled with a data type oracle that can check the consistency of conjunctions of (built-in
or derived) XML Schema simple data types. The OWL ontologies are loaded to the
reasoner after a step of species validation and ontology repair. This step ensures that all
the resources have an appropriate type triple (a requirement for OWL DL but not OWL
Full) and missing type declarations are added using some heuristics. During the loading
phase, axioms about classes (subclass, equivalent class or disjointness axioms) are put
into the TBox component and assertions about individuals (type and property assertions)
are stored in the ABox component. TBox axioms go through the standard preprocessing
of DL reasoners before they are fed to the tableaux reasoner. Figure 2-7 shows the

architecture of a Pellet reasoner.

28

SPAROL Paraer

‘ABox Query |-
1" Engine

RN R R

KnowledgeBase Interface

-~ Tableau nowledg:
Reasoner [o_li | (Reasoner SPY)

Reasoner,

B e

Figure 2- 7: Architecture of a Pellet reasoner [PLO9A]

Jena Semantic Web Framework

Jena [JENO1] is an open-source Semantic Web framework developed in Java language.
Jena framework is used to create and populate RDF models, to persist them to a database,
and to query theses RDF models programmatically using SPARQ query language. Jena’s
reasoning seryice capabilities can be used to infer knowledge about models from
ontology.

Table 2-5 compares some popular reasoners available.

29

Pellet KAON?2 {RacerPro Jena FaCT++ OWLIM
No complete
OWL-DL reasoner included
|[Entailment Yes Yes Yes with standard Yes No
distribution
e e
expressivity for | SROIQ(D) | SHIQ(D) ? pe] SROIQ(D) | R-entailment
reasoning n‘on.tn vial
description logics)
Reasoning - [Resolution
lalgorithm Tableau & Datalog Tableau Rule-based Tableau Rule-based
Consistency o Incomplete for
checking Yes ? Yes OWL DL Yes No
IDIG Support Yes Yes Yes Yes Yes No
Yes
Yes SWRL] . TS5 [(SWRL --
LR (SWRL -- Yes (Own rule Yes (Own
ule Support -- DL Safe not fully § No
DL Safe format) format)
Rules) Rules) support
SWRL)
[Version 2.0RC5 |Unknown| 1.9.2 2.5.4 1.1.8 2.x/3.x
Free/ |Non-Free/
. . Free/ open- Free/ open- | Free/ open-
ILlcensmg closed-]| closed- | Free/ open-source
source & source source
source source

Table 2- 5: Comparison of available reasoners [REA09]

2.3.6. Ontology Alignment

Aligning ontologies means “establishing links between two or more ontologies” and
allowing the aligned ontologies to reuse informatibn from one another [NFNO7].
Aligning ontologies amounts to defining a distance between entities (which can be as
reduced as an equality predicate) and computing the best match between ontologies, (i.e.
the one that minimizes the total distance or maximizes a similarity measure) [JEP04].

Several methods are introduced by researchers to calculate distances between entities in

ontologies [JEP04]:

e Terminological compares the labels of the entities.

30

o String based does the terminological matching through string structure
dissimilarity (e. g., edit distance).
e Internal structure comparison comparing the internal structure of entities (e. g.,
the value range or cardinality of their attributes).
e FExternal structure comparison compares the relations of the entities with other
entities.
e Taxonomical structure compares the position of the entities within taxonomy.
e Extensional comparison compares the known extension of entities, i.e. the set of
other entities that are attached to them (in general instances of classes).
o Semantic comparison compares the interpretations (or more exactly the models)
of the entities.
The process of alignment creates a mapping between two input ohtologies. The mapping
is a set of anchors between the two ontologies (i.e. an edge connecting two elements of

the ontologies).

31

3. Contribution

In this section we will first introduce the general motivation for our approach. We discuss
the need for modeling and analysis of software repositories like bug trackers and version
control systems. Next we will present the research hypothesis and the specific sub-goals

which will be addressed as part of this thesis.

3.1. Motivation

According to Lehman, “a software system must evolve, or it becomes progressively less
useful” [LEH97]. Software evolution involves both the comprehension and modification
of existing software systems. Given the collaborative nature of software development,
various software repositories like versioning systems and bug trackers are used to support
the evolvability of the software system. When the software system evolves, changes
made to source code and other documents are stored in software repositories. Software
repositories contain valuable information about the development history of the software
project. There is a great potential by mining and analyzing such historical information to
support the evolution of software systems.

In recent years there has been a treﬁd to use the information stored in these software
repositories to provide the maintainers with additional support during the evolution of
large software systems [CACO1, DTTO05, GDMO04, DMG04, TQGO02, and HSKO05].

For the detailed references we will discuss some efforts done in past to support software
evolution.

As Antoniol [GIO04] states that, the software repositories like bug repositories and

version control systems represent valuable sources of information to study software
32

evolution. Version control systems can be mined to gain insights about the evolvability of
- a system by analyzing other properties like the size, complexity, and the amount of
changes stored in the repository. Bug reporting systems on the other hand can provide
additional insights on the reliability of a system, as well as the management of defects (e.
g., average defect fixing rate and statistics about défect severity) [GIO04].

[AEHO06] Hassan et al. came in their work to a similar observation, stating that mining
historical information from software repositories can support both developers and
managers in their endeavors to build and maintain complex software systems.

As pointed out in [JIM07], by mining and analyzing software repositories it is possible to
recover traceability links among different repositories to support the evolvability of the
software systems. Some of the potential applications for these traceability links are the
support for impact anélysis, soﬂwére comprehension, and requirements assurance of high
quality systems [JIMO7]. Software repositories have also been analyzed in [BIMO3,

GHH98, DMGO04VARO04, VR04S, ZTT05 and ZTO0S5A] to support the prediction of
software change.

Software repositories (i.e. SVN repository and Bugzilla repository) typically use different
types of persistent storage and schemas, which makes it inherently difficult to share and
link information among these repositories. The information gathered from these software
repositories is not structured. It is not easy to interconnect traces related to the same
artifact in different sources.

Among the challenges faced by researchers, one of the key challenges in mining and

analyzing software repositories is that they lack a common representation. The lack of

33

common representation does not allow for a semantic rich integration of these resources,

and therefore limits the analysis support across the repository boundaries.

In order to address these challenges with respect to information integration and the

~analysis across repository boundaries, a common, semantic rich representation is needed

to integrate the information from various software repositories. In this thesis we introduce
a common ontological representation to support the mining and analysis of software
repositories. The proposed common ontological representation will allow for efficient
mining and analysis of software repositories (i.e. SVN and Bugzilla) to support software

evolution.

Research Hypothesis
A common ontological representation can be established among software repositories to

support the evolution of software systems.

3.2. Specific Contributions (Sub-goals) and Acceptance Criteria

The goal of our research is to provide a common ontological representation for software
repositories for mining and analysis in order to support the evolution of software systems.
We divide the general research goal into some more specific sub-goals to be addressed by

this thesis:

34

Establishing a Common Ontological Representation

Software repositories, like versioning systems and defect tracking systems store valuable
information for the evolution of a software project. The information stored in these
repositories has a different format and representation. A user needs different tools to
extract, integrate, and analyze the information stored in these repositories. For example,
the SVN repository data can be retrieved through different client software available, such
as Tortoise SVN. The Bugzilla repository information can be retrieved by the web
interface tools provided by the Bugzilla installation. The information extracted from these
repositories is in raw format. In order to process and analyze the raw data extracted from
software repositories, as well as to identify the relationships and the dependencies
between them, users require manual efforts and different types of analysis tools.
Nowadays,_ software development is a complex task; many large systems are
interconnected with other systems. These systems produce a huge amount of information
for software repositories. The process of extracting, combining, and analyzing such
software repositories is more complex, time consuming, and requires much manual effort.
In order to deal with the stated problems, we propose a common ontological
representation based on the Web Ontology Language (OWL) in order to integrate the
information from different software repositories.

The Web Ontology Language (OWL) provides a semantic rich and meaningful way to
store the information extracted from the software repositories. Standard OWL processing
tools allow for immediate processing of the information in terms of visualization, editing,

querying, and debugging.

35

By using the OWL standard tools, there is no need to write the code or to use the
complicated command line toois. Compared to other formats and tools, OWL enables
treating of data based on its semantics.

A common representation for the software repositories allows analysis across software
repository boundaries. Additionally, it allows analysis of the relationships and
dependencies among different artifacts-. |
Automated Ontology Population

The process of connection, data extraction, and parsing raw data extracted from the
different soﬁware‘ repositories is a complex and a time consuming job. Since the software
repositories store information in different formats, they need different types of
connectivity profiles, as well as the tools for extraction and parsing the raw data.

We introduce an approach which automates the process of the connection, extraction,
and refinement (i.e. the transformation of raw data) of the ontology population. The
proposed automated approach will save the time consumed in the manual efforts, as well
as provide a safe and error-free way to populate the ontology.

Implementation of an Automated Tool

In addition to a common ontological representation, we introduce the SVN Ontologizer
and Bugzilla Ontologizer tools that provide automation for both data extraction from

remote repositories and automated ontology population.

36

Mining and Analysis across the Repository Boundaries, in order to Support the
Evolution of a Software System

As discussed earlier, software researchers have recognized the benefits of the mining
software repository data. The information stored in software repositories is a valuable
source to support the evolution of a software system. By mining the software
repositories’ information, we can improve the software design/reuse and recover the
traceability links between different artifacts as well. The traceability links between the
different artifacts can help to understand the relationships and dependencies among them.
As discussed in section 2, the one of the key aspects in software evolution is software
comprehension. Our proposed common ontological representation supports bottom-up
software comprehension. The bottom-up software comprehension approach is very useful
for developers and maintainers, who have little or no knowledge of the existing software
systems. The bottom-up approach helps the developers and the maintainers by gathering
information from low level to abstract level. As mentioned in [BOTO3], understanding is
built from the bottom-up approach by reading the code and then mentally chunking or
grouping these lines of code into higher-level abstractions. Analyzing software
repositories across boundaries leads to better software comprehension.

The bottom-up approach to software comprehension primarily addresses situations where
the developer or maintainer is unfamiliar with the domain. Several top-down models of
software comprehension have been proposed to address the alternative situation, where

the developer or maintainer has some previous domain exposure.

37

Analyzing the information stored in the software repositories also provides kﬁowledge
and understanding of:

e Explicit concepts, which are directly implemented in the source code as variables,
executable code snippets, methods and classes.

e [Implicit concepts, which are the assumptions that underlie parts of the code but
are not directly implemented. For example, many applications assume that only
one user is working with them; no specific code can be identified as the
implementation of this single-user concept. If such an application is requested to
support multiple users, programmers would have to change the implicit concept of
the user to the explicit one, which requires substantial effort.

A common ontological representation allows for ease in the mining and analysis of the
software repositories. Effective mining and analysis support the effective evolutiqn of the
software systems. Additionally, common ontologi;:al representation allows re-use of the

information extracted from software repositories.

3.3. Acceptance Criteria
We expect our research hypothesis to hold if the folloWing acceptance criteria can be
validated: |
¢ Establishing common ontological representation among software repositories
e Automated ontology population
e Implementation of SVN and Bugzilla Ontologizer tools
e Mining and analysis across the software repositories (i.e. SVN and Bugzilla
repositories) in order to support the erlution of a software system.

38

4. Subversion Ontology

4.1. Subversion Ontology Design

For the design of the SVN ontology, we applied a three step development process. First,
the existihg schema of the SVN repository was extracted in order to identify and analyze
the major concepts and their relationships modeled in th¢ repository. Next, we applied a
one-to-one mapping between the extracted relational SVN .repository schema and an
initial SVN ontology. In the last design step, we enriched and optimized our SVN
ontology with new constraints and relations in order to be able to take advaﬁtage of

ontology-specific modeling techniques and reasoning services.

4.1.1. SVN Repository Schema

Figure 4-1 provides an overview of the relational data schema extracted for the SVN
repository. In what follows, we describe in more detail the modeled entities and
relationships, since they are also going to be reflected in our ontological representation of

the SVN repository.

39

has_revison

.y~ Revision '

' File

“Revision_number

n,
2,
™,
o,

o

Has_branch

t Made_of

has_modfication info

Modification-}

* Branch

¥*

- -author i Transaction
! -date

“message

- -branch-release

o R

Figure 4- 1: SVN relational schema

The File-Revision Relation

The SVN repository manages both the directories (i.e. SVN branches/trunk) and the files
that are committed to the repository. Within the relational data model, SVN does not
distinguish between individual files or directories containing several files. Consequently,
revisions, with revision number being the main attribute, are automatically associated
through a many-to-one relation with the file entity. A file entity can have multiple

revisions associated, whereby a particular revision belongs to a single file.

40

The Revision-Branch Relation

SVN supports the use of multiple parallel lines of development (branches). When a
developer creates a branch in SVN, a new file is being created, yet the branch file
remains invisible to the developer. Internally, SVN automatically creates a new sub-
directory when a developer creates a branch. As a part of creating a branch, SVN creates
first a transaction tree, then after a commit the transaction tree becomes a revision tree
with the new branch as a sub—foldér or file. The same procedure is applies for all commits

performed.
The Revision-Transaction Relation

SVN defines what corresponds to a transaction as part of the relational schema. A
transaction in SVN is used to distinguish uniquely a set of operations that lead to a new
revision of a file. A transaction in SVN therefore represents a set of operations that apply

to a file before the current revision number is updated.
The F ile—Modiﬁcation-Info Relation

A modification report for a file in SVN can be extracted from the history log, which is
available for each committed file. In SVN, a log corresponds to a listing of different
modifications related to each revision of a file. SVN maintains the file and the
modification information separately. As a result, the modification report log contains
information about the particular action being performed (i.e. modified, added, deleted),

the timestamps, the log message, the author, etc. for each revision.
' 41

4.1.2. Initial Mapping SVN Repository Schema to an Ontological Model

Description logic (DL) allows representing domain knowledge by defining relevant
concepts called classes or TBox [JRL06]. As part of our ontological model for SVN, we
define an initial TBox for our SVN ontology, which corresponds closely to a mapping of
the existing SVN data repository schema. Figure 4-2 shows the resulting initial SVN
ontology model. In order to define an initial TBox, we used Protégé release 3.4 ontology
editor [PRGO09]. The major entities are files, releases, and revisions. With every change
to a file (commit) the revision- numbers increased to mark them as a new version. Older
revisions of these files are still available and can be rolled back to. A revision represents
the history of a specific file. A release combines a specific set of file revisions to a
version that can be identified by its own unique name. For our initial ontological model
we introduced three classes: revision, release, and file. We added a new concept,
FileRevision, to our ontology model. The concept of a FileRevision is introduced to

establish the relationship between File and Revision within a particular release.

42

R elicase g Revision

isRevisionOf
isMadeupOf g{, S o iz A
: i o hasRevision
: isRevisionOf ;
I FileRevision - . hasRevision - 29 Fite
isFileOf
£
hasFile
Figure 4- 2: An initial SVN ontology
Table 4-1 describes the main classes of our initial SVN ontology design.
Class Name Disjoint With Description
File Revision, Release, File from the file system
FileRevision.
Revision File, FileRevision, Revision denotes version of the file
Release.
Release Revision, File, Release. | Tag with multiple Revisions and Files
FileRevision Release, File, Revision. | Combination of File and Revision-number

Table 4- 1: Main classes of initial SVN ontology

Table 4-2 lists the various data properties modeled in the SVN ontology and a description
of these properties. The data type properties allow the definition of the relations between

instances of classes and RDF literals and XML Schema data types.

43

Name Data Type Domain Description

State String File The state describes the status
of File in the Revision,
(Added, Modified and
Deleted)

creationDate dateTime Revision Date when Revision was

‘ created

creationTime dateTime Revision Time when Revision was
created

fullPath String File Full path of the File in SVN
repository.

author String Revision Name of the user who
created this Revision

number String Revision Revision-number

commitMessage String Revision Text message entered at the
time when Revision was
created.

releaseDate dateTime Release Time stamp for Release

Table 4- 2: Data type properties in SVN ontology

An object property is a binary relation between instances of two classes. In order to

restrict the relation of an object property, we specified the domain and range for an object

property. Table 4-3 illustrates the object properties introduced in the SVN ontology.

Name Domain Range Inverse Property
hasFile FileRevision File isFileOf
hasMadeRelease FileRevision Release isMadeupOf
hasRevision File or Release Revision isRevisionOf

Table 4- 3: Object properties in initial SVN ontology design

44

4.1.3. Enhanced SVN Ontology

As part of the ontological modeling approach, we further enriched and optimized our
initial SVN ontology with additional constraints and relations in order to be able to take
advantage of inference services provided by an ontological reasoner. The following
enhancements to our initial SVN ontology were made: additional Object and Inverse
Object Properties weré introduced and we added new DL restrictions to existing concepts
in order to allow us to take advantage of some reasoning services. Also, we added
functional and transitive property types to the object properties and Inverse object

properties.

Table 4-4 illustrates the additional object properties added in SVN ontology in order to

take advantages of ontology reasoning services.

Name Domain Range Inverse Property Functional { Transitive
‘ property Property
hasLatestRevision File Revision | isLatestRevisionOf Yes Yes
hasNextRevision Revision or Revision | hasPreviousRevision Yes Yes
File
hasFRevision FileRevision | Revision | isFRRevisionof Yes
hasPreviousRevision File Revision

Table 4- 4: Object properties added to enrich SVN ontology

Table 4-5 describes the main classes in SVN ontology and DL restriction applied on each
class. The DL restrictions describe the relationships that must hold for members

(individuals) of each class.

45

Class Name | Restrictions Description

File hasLatestRevision some Revision. | Existential restriction on class File necessarily
hasRevision some Revision. hasLatestRevision some Revision and hasRevision
some Revision.

Release isMadeUpOf some FileRevision. | Existential restriction on class Revision necessarily
isMadeupOf some FileRevision.

FileRevision hasFile some File. Existential restriction on class FileRevision
hasFRevision some Revision. necessarily hasFile some File and hasFRevision
some Revision.

Table 4- 5: DL restrictions applied to classes

Figure 4-3 provides an overview of the refined SVN ontology model including classes,

data type properties, object properties, inverse object properties and their relationships.

Figure 4- 3: Overview of an enhanced SVN ontology

46

The DL restrictions on classes, the object and inverse object properties, and their types
(i.e. functional property type and transitive property type) play a key role in reasoning,
since some of the knowledge inference through the reasoner will be based on these object
and inverse object properties. Our initial ontology design was almost one-to-one mapping
with SVN repository schema. When we applied reasoning services to our initial ontology,

the reasoner inferred no additional and /or interesting knowledge as shown in Figure 4-4.

 Subli oo predicate Sl |

®Revisiontedod iRevisionOf @ Fiet%2

@ Revision16601 sRevisionOf o ® rie12

@ Revision16558 | isRevisionOf ® Fie192

@ Revision16117 I isRevisionOf & Fie12

@ Revision1 5981 B isRevisionOf ¥ Fle192

@ Fie12 B Feof @ Revision!591 1Fie12
® Fietq B sfleOf ¥ Revision1591 1Fie14
® Fiet6 B isFleOf - @ Revision15911Flels
@ Fiet7 W osFleof @ Revision!5911Fiet7
¥ Flet9 W isFieOf & Revisioni5911Fle1s

Figure 4- 4: Reasoning services applied to initial SVN ontology model

After enriching and enhancing ontology models with new constraints, the reasoner
inferred very useful knowledge like: links, relationship and dependencies of concepts as
well as transitive relationships of the concepts. Figure 4-5 shows an example of inferred

knowledge after enriching and enhancing initial SVN ontology model.

47

[Subject]

€ svnRevision16539
€ svnRevisionl6520
& svnRevision16539
& svnRevision16540
& synRevision6540
€ svnRevision16540
@ svnRevision1§541
€ simiRevisionl6541
& sun:Revision6541
$ svnRevision16541
$ svnRevision16541
- § svn:Revision16542
& snRevision16542
& sunRevision]6543
€ snRevision!6543
$ svn:Revisionl6544
& svnRevision16544

& somRevisionl65

Predicate

E svn:isiatestﬂevisionO{ o

B svnisRevisionOf

B swnisRevisionOf

B isResolutionOf

& wmislatestRevisionOf
B2 synhasPreviousRevision
8 wnisRevisionOf

B sunhasPreviousRevision
B snhasPreviousRevision
B swnisRevisionOf

B svisRevisionOf

M isResohutionOf

% svnhasPreviousRevision
B svnisRevisionOf

% syhasPreviousRevision
B wisRevisionOf

% svnhasPreviousRevision
% wnisRevisionOf

Object

L N
& snfilagn
& skt
& issuehi2
€ svnFile6s
& sinFilebss
& sinFilebts
€ onfilelds
& sinFilelss
¢ snFileldd
& snFilelss
& issueSsB
$ snfien
& smFilen
& snfileld
$ sl
& snFlels
& anfilells

Figure 4- 5: Reasoning services applied to enriched and enhanced SVN ontology

The SVN ontology also needs to define its own namespace. A distinct namespace is
required in order to be able to uniquely identify the ontology. This mechanism is a main
pillar of the Semantic Web. In order to have multiple ontologies defined within the same

domain, a complete URL is used to specify the namespace. The namespace for our SVN

ontology is http://aseg.cs.concordia.ca/svn

48

http://aseg.cs.concordia.ca/svn

4.2. SVN-Ontologizer
The SVN-Ontologizer tool was developed to support:

(1) The extraction of software version data from remote SVN repositories and

(2) The automated ontology population of the extracted SVN data into a corresponding SVN
ontology.

Figure 4-6 provides a general overview of the SVN-Ontologizer tool and the steps

involved in the SVN extraction and ontology population process.

SVviN

f ‘:;_ Repository

RO Pt

‘Ontoi'ag?: :

Population’.

Figure 4- 6: SVN-Ontologizer tool overview

4.2.1. SVN Profile Setup

In order to establish a connection to a SVN repository, a user first has to set up a profile
for the remote SVN repository (Figure 4-5). The profile includes the following

information:

49

Repository location: The repository location that is specified using one of two
protocols: “svn://, svirtssh://” or “http://, https://”
User credentials: Required login and password information for the remote SVN

repository server

Revision range: A specific range of revisions to be extracted (optional all
revisions)
Version range: A specific range of versions to be extracted (optional all versions)

Ontology directory: The user can also specify ontology name and directory where the

ontology is going to be created

&Con(ept Svn Ontologiser

SUN 1L, ‘ntto:#argournl s, orgisenfargoumiy

UserName. shafique

- Console e e e e e e
Automated SVN Ontologisé Tool

Figure 4- 7: SVN-Ontologizer main user interface

50

http://
https://

4.2.2. SVN Connection and Data Extraction

In the next step, access to the remote SVN repository is established by using the low level
libraries provided by the SVNKit [SVK09]. The SVNKit provides an API to establish
and manage remote access to a SVN repository. The SVN repository data can be
accessed through the SVNKit using two different authentication protocols (shown in
figure 4-8): (1) SVN specific protocols “svn/, svntssh” or (2) the standard “http and

https” protocol [SVO9A].

Managing Versioned |

it

Access 1o remote subversion

hrtps//

‘hrepss/s/

Figure 4- 8: SVN connection process

After a successful connection to the SVN server is established, the data extraction process
for the start revision and end revision ranges specified in the profile is initiated. The raw
data extracted from the SVN revision history consists of the following information:

revision: Denotes a revision number of the committed data

51

http://
https://

author: Name of author or committer, who committed the revision
date: Revision date when it Was committed or created

log message: Comments entered by author at the time of commit
changed paths: Includes information with respect to:

(a) The state of a file in the revision, denoted by the characters A, M
or D, where “A” corresponds to Insertion, “M” to a Modification
and “D” to a Deletion operation performed

(b) The full file path, which could be either a change path within same
branch or copy path from different branch

The following is an example of raw data extracted from the ArgoUML [ARG09] SVN
repository.

revision: 1014

iauthor: shafique

?%date: Wed Aug 03 21:19:55 NOV 2007

log message: upated panel view and input view

%changed paths: |

M /trunk/src/UV/interface. java

M /trunk/src/Ul/input. html

M /trunk/src/main/new/org/Status. java -

A /trunk/src/main/new/org/broad. java

The extracted data is stored in two binary files. The revision file contains information

related to each revision (i.e. revision number, author, date and log message). The path

52

file contains information related to the committed revision and actions performed on the
file (i.e. added, modified and deleted), as well as the full path of the file in SVN

repository.

4.2.3. Data Pre-processing

The extracted SVN data requires some pre-processing in order to support the automated
population of the SVN ontology. The transformations are necessary to ensure that the

extracted data can be represented in the OWL/RDF format.

Serialization

As part of the serialization process the following activities are performed:

e A unique identification is assigned to the paths associated with specific revisions.
e Revision numbers are serialized and duplicate entries of the same paths are
eliminated.
¢ A memory model corresponding to the ontological representation is created to store
serialized information.
Elimination of invalid characters
Some of the SVN data (in particular the SVN log messages) contains characters that are
not supported by the OWL/RDF format; these invalid characters have to be removed. As
part of the clean-up process, we replacing all invalid characters with characters supported
by OWL/RDF format. Table 4-6 illustrates some of the substitutions that are performed

as part of the data clean-up.

53

Non-valid characters | Replaced with

U U '
Y Y
< -
> -

0 18]
p: 2 a
& and
I I
N I

Table 4- 6: Substitution of invalid characters

4.2.4. Ontology population

In the last step the pre-processed and normalized SVN data in the memory will be used to
automatically populate our SVN ontology. In order to populate our SVN ontology, first
we write SVN ontology TBox into the RDF/OWL file. In the second step we write ABox
containing instances (i.e. loaded in memory models) as per TBox specifications in the
fonn of RDF triples.

The RDF triples consist of two pieces of data that are linked by a named relationship. The
RDF triple is a simple statement,about the truth of some proposition. RDF distinguishes
two kinds of elements that can appear in tn'plés, literals and resources. A li_teral is a piece
of data which can be an integer, a string, a floating-point number, or even an XML
structure. A resource in RDF identifies something (or someone) about which we make

semantically meaningful statements.

54

5. Bugzilla Ontology
5.1. Bugzilla Ontology Design

For the design of our Bugzilla ontology, again a 3 step ontology design approach was
applied. First we analyzed the Bugrzilla repository relational data schema in order to
identify the major concepts stored in the repository and the relationships among them.
Secondly we created an initial ontological model for the Bugzilla repository by mapping
existing tables and relations found in the Bugzilla repository to their ontological
equivalents. This mapping resulted in an almost one-to-one mapping between the
relational Bugzilla schema and our initial Bugzilla ontology. In the last step we enriched
the Bugzilla ontology with new constraints and relations in order to be able to take

advantage of the ontological representation and reasoning services.
5.1.1. Bugzilla Repository Schema

Figure 5-1 provides an overview of the relational data schema extracted from the
Bugzilla repository [BUGO3]. In what follows we provide a more detailed description of

the major entities and their relationships in the Bugzilla schema.
Issue - Person (Many-to-Many Relationship)

The issue entity has a relation with three types of persons (i.e. reporter, assignee, and cc
person). The reporter is the person who submits the bug to the bug repository. The
assignee is the person responsible for the submitted bug. It is however possible that an

assignee also submits a bug, which makes him/her a reporter as well. A cc person is the

55

person to whom the bug was forwarded for resolution, review, or comment. The assignee,
reporter and cc person types correspond to roles of the person, and can therefore be added
to the entity person. The multiplicity of the relation between person and issue is many-to-
many, with an issue having potentially multiple persons assigned to it. Likewise, a

person can contribute to more than one issue.
Person - Comment, Attachment and Activity Relation (Many-to-One Relationship)

A person that contributes to a bug is a creator of a comment, attachment or an activity.
The comment entity has a many-to-one relation with the person entity, since a person can
write more than one comment, where as a comment can be written by only one person at

a time. The same holds for the activity and attachment entities.
Issue - Comment (One-to-Many Relationship)

A comment entity contains information such as comment number, a time stamp, and the
comment text. A comment provides additional information that is directly related to an
issue. On the other hand, an issue can have multiple comments associated. The resulting

relationship between issue and comment is therefore one-to- many.

56

shadowio:
id i keyworddefs — -
1s timestamp{14) walch] smalintB) duplicatés dependencies
reflacted tinyint(4) watcher mediymy name VARCHAREB4) dupe_of madiumint{9) blocked mediumint{S;
command mediumtext walched mediumint(S) descriplion mediumiest duge fumis dependson mediumin{S)
versions
value tinytext products
rmilestones - VARCHAR®A) product = program * jereduct w
valye YARCHARZD e N
— product VARCHAR(S) milestoneud tingtext
ponents sonkey _smalint(B) ot oot st
value’ tinytext s - votesperyser smallint®)
pragram VARCHARGA) maxvotesperbug smallinlg)
initialpwner tinytext - - i Hint
initiaiqacontact tinytext produt ' defaultmilestone VARCHAR:
description mediumiext
logincookies
cookie mediumint(3}
userid mediumint(3)
. cryptpassword VARCHAR(®GA) groups
namedqueries hostrame VARCHAR(128) it bigint(20)
usend mediumint@) isstused timestamp(14) name VARCHAR{S5)
name YERCHARDBA) ’ description text
watchfordifis linyint{d} P isbuggroup tinyint{d) ™
linkinfooter tinyin{4} userid = uswid — userregexp tinytext N produst = product
query mediumtext \ N ~ \\ —
e = uza e
-
— N v
€C h -
profiles_activity ') bug_id mediumini(®) \ __ keywords
usend mediumint) l s usend « whg medumini®)) ' bugid - medumini®)
who mediumini(3} E keywordid smalint(B)
profiles_when datetime |
freldid mediumint{d) l
oldvalue tnytext E wtes
newvalue tinytext who . mediumint(%) ! .
i bug_id mediumini(8) bug 4= bag j8 o i » bug i
{ count smallintG) t
Y 4 i longdescs
profiles bug_id mediumini{Z} boas
soaid moma ™ usenid mediunint() S— who medigmmt(?) - g B
login_rame VARCHARQSS) bug_when datetime groupset bigint(20)
password VARCHAR{15} [’_—“ thelext mediumtest igned Sunin(3)
crypipassword . VARCHAR{B4) userid = who bug\'ﬁ!ejac text
Skt = finitid reainame VYARCHAR(RS5)) bug_severity enum
gmuv;;se!’ﬁ) bigint20) bog_status enum
emailnotification snum . - ®-! creation_is datetime
disabledlext nediumtext boast= a s delta_ts timestamp(34)
newemaitech tinyint(d) short_desc mediumtext
mybugstink tspymt(d) attachments op_sYs eRum
blessgroupset bigint(20) ‘aftach_id medrptG]. | priority enum
bug id mediumint) ——W product VARCHAR(G4)
crestion_ts timestamp(14) tap_platorm enum-
) usesd = sbmirter_id description mediumtext g 34 = bog i3 repones mediumini{)
id = whor } mimetype mediumtaxt version. VARCHAR{16)
ispatch tingint{4} component VARCHAR{ES)
Y bugs_activity [i resolution enum
fielddets bug_id mediumnt{D) thedata longblob ‘3'92‘.;";"55‘0"9 V‘\SCH{&_’ZS)O)
—— = who Siumint(S) bmitter ‘id diumi qa_toma mediurmin
';Iif‘%g \%) - bug_when datetime) =) status_whitsboard mediumtext
descriplion mediumtext et = fertid ﬁ'e;gg mediumint{®} ‘Imtes) metj!qmml@)
mathead tinyintid) olifvalug binytext b+ bug 16 Yo ey
sontkey smallini(B) newvalig tinytext L‘i‘?m’f ; :::’9‘:33

Figure 5- 1: Bugzilla repository schema

Issue — Attachment (One-to-Many Relationship)

An attachment (usually in the form of a file) provides additional information related to a
particular issue. The attachment entity contains information such as the type of the

attachment, the date of attachment, and a short description of the attached file. The

57

relation between an issue and attachment is one-to-many, where an issue can have more

than one file attachment associated but an attachment can only be linked to a single issue.
Issue - Activity (One-to-Many Relationship)

Issues in Bugzilla are strictly bound to bug life cycle. As part of the bug life cycle, each
reported issue is required to have an activity associated with it. An activity relates to
changes that modify the status of an issue. The activity provides a detailed record of all
the changes and contributions to an issue including comments added, status changes, etc.
An activity therefore provides relevant information with respect to the history of an issue.
The muitiplicity of the relation between issue and activity is one-to-many. An issue can
have multiple activities associated, whereas an instance of an activity can only be linked

to a single issue.
Issue - Dependency Relation

Some issues can depend on or block one another. The dependency relation is normally
two sided (i.e. “Depends on” and “Blocks”). In order to illustrate such an issue
dependency, we consider three issues (issuel, issue2, and issue3) shown in Figure 5-2. In
this scenario, issuel depends on issue2 and issue3. In other words, the resolution of
issuel depends on the prior resolution of issue2 and issue3. On the other hand, in this

scenario, issue3 blocks issue2 and issuel.

58

DependsOn

Figure 5- 2: An example of issue dependency

Issue- Milestone Relation (One-to-Many Relationship)

Milestones correspond to dates on which a developer plans to have a certain set of issue
fixed. The multiplicity of the relation between issue and milestone is many-to-one, with a
milestone typically involving more than one issue, whereas an issue has to be dealt with

as part of a milestone.
Issue-ComputerSystem Relation (Many-to-Many Relationship)

The ComputerSystem contains hardware- and software-related information associated
with a particular issue. The multiplicity of the relation is many-to-many; an issue can
occur on different computer systems and a computer system can have different issues

associated.

From the above schema description, one can identify that the issue entity plays a key role
in the Bugzilla schema. A new instance of an issue is created each time, when a user
reports a new bug or submits a feature request. The following information is always part

of an issue to describe its details.

59

Issue number: A unique issue identification number.

URL: A location, where additional information about the bug can be found.
Summary: A short description of the issue.
Priority: Used by the assignee to prioritize the issue.

Date opened: Timestamp when the issue was submitted.
Status: Status of an issue in the bug lifecycle.

Resolution: Indicates what happened to particular issue in bug lifecycle.
5.1.2. Mapping Bugzilla Repository Schema to an Ontological Model

As part of our ontological model for the Bugzilla repository, we define an initial TBox by
mapping the Bugzilla repository entities to an initial set of concepts in the Bugzilla
ontology. Figure 5-3 shows the resulting Bugzilla ontology model, which consists of
eight classes: issue, comments, activity, attachment, ComputerSystem, milestone,
component and product. The product refers to a component as disused earlier, and

component refers to a subsection of the product.

60

&% Comment

e
a4 A Y
Ry Y
P LN
hasCommentor @ Attachment k\
e \‘&
f? e w' i % hasComment
&7 ™ %
#hPerson g7 e -
- o hasAttacment %:%
L2
@225 = hasReporter el SN ‘kk BMilestone
) - Py
“= e hasCcPerson “wau . LN 3
i . R TR A A Y
& hasAssignee Wy
s Y &,
] e N, S h Y
@Agtivity # oty B, S 3 =
- - 5 ey %%\" A ¥ .
o \i@ hasMilestone
., sy g
Mmmwm&“mmmmv&m %%& £ -
mmm%mmmm i‘%ﬁ
o
: -
L,
o E
@ Product ¥ Componented” t%ﬁﬁomputerSystem
o ___ N— © ...t hasComponent i

Figure 5- 3: Initial Bugzilla ontology model

Table 5-1 describes the main classes and their usage.

Class Description
Issue An Issue is an entity defining a certain topic concerning the development of a
software system. An issue can be classified or discussed.

Activity Activities form a certain kind of log, tracking the changes occurring to an Issue

Comment A comment on a certain Issue

Attachment Attachments are files sent in together with the Issue's text or a comment

Person Person could be commenter, assignee of an issue, involved person in activity,
cc person of an issue, reporter of an issue, an person attached file to issue

Component A Component of the software system an Issue may refer to

Milestone A Milestone refers to a planned version of a software system

Product A Product is a functionally of a software system

Attachment Attachments are files sent in together with the Issue's text or a comment

ComputerSystem A ComputerSystem is the definition of an execution environment

Table 5- 1: Bugzilla ontology classes

61

Table 5-2 provides a description of data-type properties modeled in the Bugzilla ontology, their

type, and associated domain.

Data Type Property Type Domain Description
what String Activity Element affected in Activity
performed dateTime Activity Date and time when this activity
took place
removed String Activity The part that was removed during
this activity
added String Activity The part that was added during this
activity
fileName String Attachment The filename of the attachment
type String Attachment The file type of this attachment. For
example: gif, txt
text String Comment Text part of comment
date dateTime Comment The date when this comment was
added
platform String ComputerSystem A computer system's platform
0s String ComputerSystem The operating system
status String Issue The state of an issue
priority String Issue The priority of the issues' fixing
dateOpened dateTime Issue Date on which issue was reported
description String Issue A description of the Issue
resolution String Issue There can be different reasons why
a bug is closed and therefore
inactive
number Integer Issue, Comment The number of an Issue an a
comment describes its unique
identifier
version String Product Version of this Product

62

Table 5- 2: Data type properties in the Bugzilla ontology

Table 5-3 describes the object properties modeled as part of the Bugzilla ontology. The

description includes the concept, the supported domain and range.

Object Property Name Domain Range
blocks Issue Issue
hasActivity Issue Activity

hasAssignee Issue Person
hasAttachment Issue Attachment
hasCcPerson Issue Person
hasComment Issue Comment
hasCommentor Comment Person
hasComponent Product Component
hasComputerSystem Issue ComputerSystem
hasCreator Attachment or Person
Comment
hasInvolvedPerson Activity Person
hasMilestone Issue Milestone
hasReporter Issue Person
hasResolution Issue Revision (concept
from Aligned SVN
Ontology)

T able 5- 3: Object properties of Bugzilla ontology

5.1.3. Refining the Bugzilla Ontology

In order to take advantage of the ontological model and reasoning services, the Bugzilla
ontology structure was refined with additional constraints and relations. The following

tables (Table 5-4 to 5-6) list some of the major modifications made to the initial Bugzilla

ontology:

63

(1) An additional Inverse Object Properties were introduced.

(2) New DL restrictions to concepts in our initial design were introduced.

(3) We added a functional property and transitive property type to both the Object

Properties and Inverse Object properties.

Table 5-4 describes the additional constraints added in order to enrich and enhance

Bugzilla Ontology.
Class Disjoints with DL Restrictions Description
Issue None hasAssignee some Person Existential restriction on
hasComment some Comment | class Issue necessarily
hasReporter some Person hasAssignee some Person
and hasComment some
Comment.
Activity Component, Product,
Milestone, None Disjoint classes
ComputerSystem,
Attachment, Resolution,
Comment
Comment Component, Activity, hasCommnetor some Person Existential restriction on
Product, isCommentOf some Issue class Comment necessarily
ComputerSystem, hasCommentor some Person
Milestone, Attachment, and isCommentOf some
Resolution Issue
Attachment Component, hasCreator some Person Existential restriction on
ComputerSystem, isAttachmentOf some Issue class Attachement
Activity, Product, necessarily hasCreator some
Milestone, Resolution, Person and isAttachementOf
Comment some Issue
Component Activity, Product,
Milestone, Attachment, None Disjoint classes
ComputerSystem,
Resolution, Comment
Milestone Component, Activity,
Product, None Disjoint classes
ComputerSystem,
Attachment, Resolution,
Comment
Product Component, Activity, None
Milestone, Attachment, Disjoint classes
Resolution

Table 5- 4: Bugzilla ontology classes

64

Table 5-5 describes the inverse object properties introduced for the object properties and
property types (i.e. functional and transitive property type) as part of the Bugzilla
ontology. The description includes the concept, the supported range, and their inverse
property. The object properties and their types (i.e. functional property type and transitive

property type) play a key role in order to utilize reasoning services.

Object Property Name Property Type Inverse Property Property Type
blocks Transitive Property dependsOn Functional Property
Transitive Property
hasActivity None isActivityOf Inverse Functional
hasAssignee Functional Property isAssigneeOf Inverse Functional
hasAttachment None isAttachmentOf Inverse Functional
hasCcPerson None isCcpersonOf
hasComment Functional Property 1sCommentOf Inverse Functional
hasCommentor Functional Property isCommentorOf Inverse Functional
hasComponent Functional Property isComponentOf Inverse Functional
hasComputerSystem None isComputerSystemOf Inverse Functional
hasCreator Functional Property isCreatorOf Inverse Functional
hasInvolvedPerson Functional Property isInvolvedPerson Inverse Functional
hasMilestone Functional Property isMilestoneOf Inverse Functional
hasReporter Functional Property isReporterOf |- Inverse Functional
hasResolution None » isResolutionOf None
hasIssue Functional Property isIssueOf Inverse Functional
Transitive Property

Table 5- 5: Object properties of Bugzilla ontology

65

Figure 5-4 shows the example of reasoning services applied on initial Bugzilla ontology.

" Domain T Relevent Properties | % SPARQL '@ Imports

@ tnstences | ® Rules |
Subject [Predicate] | Inferred knowledge Object

V @ issue5581 % blocks (showing only ¥ issued?66
’ issueS581 =8 blocks instances asserted at ’ issue5490
- @ 5505581 ™ blocks the time of ontology @ issucdlbs

& inueSsEl 3 blocks population) ® issue5548

Figure 5- 4: Reasoning services applied to initial Bugzilla ontology

Figure 5-5 shows the knowledge inferred by the reasoner after enrichment and

enhancement of an initial Bugzilla ontology design.

Rck;amﬁwpemes ﬁ*&?AﬂQl @bnpwmts

@ Instanées | © Rules (. Domain
i Subject : IPredicate] Objest -
it @ issueSSBl W blocks A —ssued 766
| @ issues581 W locks Inferred knowledge |ssuessan
B AL M plocks inc]uding Inverse |ssuedits
:mu::?;; | Blocks property instances sweﬁi;:
: Fssui 5 W blocks see prsund
& issues8s M blocks and transitive closure 42135400
| W issueS6es | blacks hssued 168
1 4 issueyBBs M blocks ~ i’ 1sues58
i @ issue5685 M blocks ® issuessst
O issunSi90 M blocks & issuellsd
i P ssuesdon W blocks & issued 766
@ issuetTeh m blocks 4 isuedtss
& iscuedBe8 W blocks ® isuedlts
4 sueSa8 W locks & issuet?h
BE JUT B blocks L T]
i1 O issueddn0 W dependsOn * issued6es
5 @ issueddn0 T depentsDn @ issueSssl
|| ® isuadll W dependsOn @ 53ue5n
| @ isucdies M dependsOn € nsucsNs
i @ issuetl6s R dependsOn L T
(O issusdl6s B8 dependsOn @ issueSSal
P issued766 oW dependsOn & isues6as
i O issued 266 B depeadsOn P icsoesae
11 O issusd766 M dependsOn @ issuesSBL
» issueds48 ™ dependsOn & issue63s -

Figure 5- 5: Reasoning services applied to enhanced Bugzilla ontology

Figure 5-6 provides an overview of the refined Bugzilla ontology. In addition to classes,
object and data type properties, the Bugzilla ontology needs to define its own namespace.
A distinct namespace is required in order to be able to uniquely identify the ontology.

66

This mechanism is a main pillar of the Semantic Web. In order to have multiple
ontologies defined in the same domain name, a whole URL can be used to define a
namespace more specifically. Although a URL usually hosts a web page, this is not
necessary for a namespace. The namespace for our Bugzilla ontology is

http://aseg.cs.concordia.ca/bug. As part of the ontology population, we populated the

ABox. In order to populate the Bugzilla ontology, we assert instances of concept and

their roles.

67

http://aseg.cs.concordia.ca/bug

bugisCompansniot Tponent

bugiremoved:
bug:performed:
Bugihat

bug:added

bugios

Figure 5- 6: Enriched Bugzilla ontology

68

5.2. Bugzilla-Ontologizer

In what follows, we discuss the initial Bugzilla-Ontologizer tool implementation in more

detail. The Bugzilla-Ontologizer provides the follow functionalities:

(1) Establishing a remote connection to a Bugzilla repository
(2) Extracting and exporting raw data from a Bugzilla repository
(3) Transforming the raw data and providing for an automated ontology

population

The next sections will describe in more detail implementation details of the Bugzilla-

Ontologizer tool.
5.2.1. Connection to Bugzilla and Data Extraction

Bugzilla provides a Common Gateway Interface (CGI) to access its components. The following

components are accessible through the CGI interface:

o Administration of a Bugzilla Installation can be accessed through editcomponents.cgi,
editgroups.cgi, editkeywords.cgi, editparams.cgi, editproducts.cgi, editusers.cgi,
editversions.cgi, and sanitycheck.cgi. |

e Creating, changing, and viewing bugs features can be accessed through enter bug.cgi,
post_bug.cgi, show_bug.cgi, and process_bug.cgi.

e Query.cgi / Buglist.cgi, searching for the bugs and viewing the bug list (i.e. query.cgi and
buglist.cgi).

¢ Generating reports from the Bugzilla repository. (i.e. reports.cgi and duplicates.cgi.)

69

For the implementation of the Bugzilla-Ontologizer, the API provided by the CGI was
used to establish the remote access to the Bugzilla repository. In particular, the following

CGI components were used for the Bugzilla-Ontologizer tool implementation (Figure 5-

7:

e The urlbase Java utility, which uses as a parameter the fully qualified domain name
of the web server path that hosts the Bugzilla installation. Also, show bug.cgi was
used to search through the HTML file (provided by the Bugzilla remote installation)
to find the bug identification number associated with a bug.

e The buglist.cgi component is used to extract the bug list based on a string matching
query. Component returns an XML file containing the matches.

e Bug details are accessed through the XML.cgi component.

Bugzilla Bugzilla :
i - COntologizer " | _ Repository

Uribase + show_bug.cgi ™

{1}
Bugid's

Uribase + Buglist.cgi + query "\]

% {2}
Bug List

Urlbase + xml.cgi {3}

Bug information in xmi _\I {4}

Il

Figure 5- 7: Bug data extraction

70

5.2.2. Data Pre-processing

In what follows, we describe some pre-processing steps that are necessary in order to

transform the raw data into a format suitable for automated ontology population. Figure

5-8 provides a general overview of the transformation process and the various steps

involved.

Serializing

The first pre-processing steps involve the serialization of the exported Bugzilla raw data.

The processing performed as part of this step includes:

e Assign a unique identification numbers to both, issues and related entities (i.e.
comments, activities and attachments).

e Create an in memory representation of the data which corresponds close to the

ontological model.

Daié i{;@aded
e Linto anerray PU—
Y issue -3, Assignee Alex, priority-1,
P resplution fixe, Comment abud,
. Commenter tony, Actvity, 555, 555, od

\.m»-—mw»-—«-wm--m.w.,,_mVExxra«:tion of
4 bugs

sorting and Eliminating
: non-valid
characters

Figure 5- 8: Overview of pre-processing steps

71

Elimination of invalid characters

In this pre-processing step a clean-up of the data is performed. In many cases the issue,
activity, and text description of comments contain characters that are not supported by the
OWL/RDF format. As part of the clean-up step, we replace invalid characters with
characters supported by the OWL/RDF format. Table 5-6 provides some examples of the

removal of non-valid characters and their replacements with valid ones.

Non-valid characters Replaced with
U U
< R
> -
O 0
A a
& and

Table 5- 6: Substitution of invalid characters

In the last step, the pre-processed and normalized SVN data in the memory will be used
to automatically populate our SVN ontology. In order to populate our SVN ontology,
first we write SVN ontology TBox into the RDF/OWL file. In the second step we write
ABox containing instances (i.e. loaded in memory models) as per TBox specifications in

the form of RDF triples.
5.2.3. Bugzilla-Ontologizer User Interface

Common to most bug tracking systems is the provision of a web-based query interface.
Figure 5-9 provides an example of the web-based query interface associated with the
ArgoUML [ARGO09] Bugzilla issue tracking system. In order to extract bugs from the
underlying Bugzilla repository, users can specify various properties in order to filter and |
~select the scope of the bug information to be extracted from the repository.

72

Click here to access Issu
argoumi and to obtain other Colla

Issue tracking query

\@Join us at Subversion Community Day at the Southern California Linux |

H
H

Query | Reports

Issue type: Component: Subcomponent:

DFEECT o {avaniml BndrnMNA madide -
FAIMANCEMERT fcoade Rusild errinte and fanig R
FEATHRF wieheaite iznge NDianrsm .
TAGK : CadeCaneratinn snd RevsrasFnnine
BaATCH “nliahnrarion Diaarsm
Cantonta -
e mnrinde, ..:}

Resolution: Priority:

Status;

D E-NAans- 22}

FIYEN o3

L IINVALTD 23

B 2, » ; WNINTERTY D4

(g iRYi=2] 1&8TFR By
VFERIFIFD - {RFAATND i

CINSED - INMIPHICATE

Platform: OS:

o ‘Version: - Target milestone:

al al A in in ad faan A
B intey nmni 34 InNI7T -

Marintnch Mar N8 ¥ nit o1 C 110 28 sinhat
Siiy Windnwe YD PEn 11 3 1 PR alnhat
ner Windowe Vit | {011 7 N PR alnhat

He : whinrdawe Q% - nita B 1 2R hatat
Other. . iwfinrinws @8 I3 {n 12 = laa il

Figure 5- 9: ArgoUML bug tracking system query interface
In order to reduce the need of context switching among interfaces, we adopted a similar
GUI as the one implemented in Bugzilla, for our Bugzilla-Ontologizer tool (Figure 5-10).
The user interface is divided into three main parts: query, remote directory, and ontology

destination directory panel.

73

PP T RO = 2

@Concept ISSUEZILLA Ontaologiser
- Query Pannel

; ‘ss“e '{ypg ey COmponem e subco"‘ponem e e e S!atus* R ;”Resukmﬁon o
DEFECT * AndroMDA module ' UNCONFIRMED H :
| ENHANCEMENT -, Build scripts and tools B
: FERTURE . i Class Diagram -
TASK : ;CodeGenetaticm and ReverseEngin s : REOPENED
PATCH AT T | Resowven [T Remmo
~ rOperating System-—

‘Mac OS X
Windows XP
Windows Vista

ihitpflargoumi tigris orgfissues/

- Ontology Destination Directory ‘ -

| naliPath [CAZowl

Ontologise || Close
|_ontologise || clos

H
St

f,:"Console
i automated Bugfissuezilia Ontologizer Tool

Figure 5- 10: Bugzilla-Ontologizer user interface

The query panel allows users to specify constraints in order to restrict the scope of the

queries by filtering specific data. Among the supported filters are:

Issue type: Defines the type of issue the user wants to extract. Supported values

are: DEFECT, ENHHANCMENT, FEATURE, TASK, and PATCH.

Component. Defines the product of a software project. The products are the

broadest category in Bugzilla and tend to represent real-world

74

Subcomponent.

Status:

Resolution:

Priority:

shipping products. For example, if a company makes computer games
it should have one product per game, perhaps a "Common" product
for units of technology used in multiple games, and maybe a few

special products (Website, Administration, etc.).

Defines the subsections of a component (product). For example, a
company designing computer games may have a "UI" subcorﬁponent,
an "API" subcomponent, a "Sound System" subcomponent, and a
"Plug-in" subcomponent, each overseen by a different programmer. It
often makes sense to divide subcomponents in Bugzilla according to

the natural divisions of responsibility within the component.

Defines the status of an issue in the bug lifecycle. Supported values
are: UNCONFIRMED, NEW, STRTED, REOPEND, RESOLVED,

VARIFIED and CLOSED.

Indicates that, what happened to a particular issue in the bug lifecycle.
Supported values are: FIXED, WONTFIX, LATER, INVALID,

REMIND and DUPLICATE.

Describes the importance and order in which a bug should be fixed.
The priority field is used by the developers to prioritize their work.
Supported values are: PI, P2, P3, P4, and P5 where P/ indicates the

most important issue and P5 indicates the least important issue.

75

Platform:

Operating System:

Version:

Target Milestone:

Defines the hardware platform context in which the bug occurred.

Supported values are: All, Macintosh, PC, Sun and HP.

Defines the operating system specific to a particular bug. Supported
values are: All, Linux, Mac OS X, Windows XP, Windows Vista,
Windows 95, Windows 98, Windows ME, Windows 2000, Windows
NT, Mac System 7, Mac System 8.5, Mac System 9.0, BSD, HP-UX,

IRIX, Solaris, SunOS and other.
Defines the release in which an issue or defect was found.

Defines the project designated milestones, this field can also be used
to associate issues with those milestones, such as version and

releases.

Based on user-specified filters, a SQL query will be executed to extract the information

from the remote Bugzilla repository. The remote repository location itself is specified by

the user within the remote directory panel. The query panel allows users to specify the

output directory and name of the Bugzilla ontology.

76

6. Initial Experimental Evaluation and Ontological Queries

6.1. Case Study

We have selected ArgoUML 0.28 release [ARGO09] as a case study. ArgoUML is a
medium size open source UML modeling tool and includes support for all standard UML
1.4 diagrams. It runs on any Java platform and is available in ten languages. ArgoUML
0.26 and 0.26.2 have been downloaded over 80, 000 times and are in use all over the

world. Table 6-1 shows some statistics of ArgoUML 0. 28 release.

Total number of attributes 2460
Total number of classes 18333
Total number of methods 14059
Total number of packages 144
Total number of interfaces 526
Total number of static methods 744
Total number of static attributes ' 1922
Total number of line of code 168516

Table 6- 1: Some statistics about ArgoUML 0.28

Table 6-2 shows some statistics of an ArgoUML project retrieved from SVN ontology.

Total number of concepts 4

’ Total number of Object properties ‘ 12
Total number of Data type properties 9
Total number of Instances 195591
Total number of Instances (reduced version) » 103343
Total number of files used in different revision 56920
Total number of revistons 16793
Total number of Authors (developers /maintainers) 50

Table 6- 2: Statistics of an ArgoUML project from SVN ontology

77

Table 6-3 shows some statistics from an ArgoUML project retrieved from Bugzilla

ontology.
Total number of concepts 9
Total number of Object properties 28
Total number of Data type properties 25
Total number of Instances 871
Extracted releases 8
Total number of Person 27
Total number Issues (as of February 4, 2009)] 71
Total number Activities of related to an Issue 33
Total number of Comments on Issues ‘ 366
Total number of computer systems 10

Table 6- 3: Statistics of an ArgoUML project from Bugzilla ontology

6.2. Ontological queries applied on SVN Ontology.

In this section, we present several SPARQL queries in order to illustrate information
retrieval through the SVN ontology. The following queries discussed in more detail are
applied to an SVN ontology that was populated with the SVN data extracted from the
ArgoUML [ARGO9] project. We will first identify the contribution of a
developer/maintainer to the overall project. Next, we discqss the identification of
releases and their commit dates. Finally, we treat the extraction of revisions and their

associated files’ information.

78

Contribution of a particular developer / maintainer to the overall project

In order to retrieve information about the contribution of a particular
developer/maintainer, we defined the SPARQL query shown in Figure 6-1. The query
identifies the overall contribution of a maintainer towards the project. We retrieve the
number of revisions created by a specific author, in this case “bobtarling.” The SPARQL
query returns the total number of commits performed by “bobtarling.” We can see that

this author has made 2003 commits.

SPARQL
UERY -
Query Edltor !Query Lmra(y" - Q 1 Result: number of commits |-
ELECT count{?Author) ~
HERE {

FILTER (regex(str{zAuthor), "bobtarling™).
frevision :author ?Author }

The name of author

Data type Property

Figure 6- 1: Results of SPARQL query

For the next query, we extend the query as shown in Figure 6-2 in order to provide some
additional insights regarding a developer’s contribution towards each revision. In this
query we have retrieved three pieces of information: the revision numbers of the
revisions created by the specific author, the files associated with each revision, and the
action performed on the file during each revision (i.e. added “A”, modified “M” and
deleted “D”). Figure 6-2 shows the results of this extended query. As a result, the query

establishes a link between an author, revisions, files and actions performed by the author.

79

A Result shows, the revision number, Action
performed in file and file number associated
with particular revision.

Query Editor QueryUbtarﬂ [revision]
'SELECT Zrevision ?Action File . 4 Revision10091 & Filed0655
%””ERE @ Revision1009 & File2036
FILTER {regex{(str{?Author), "bobtarding™)}, @ Revicionll09e — '% L e P LilOlOOR = i
revision :author TAuthor, : * fevision10093 M & Filed0611
revision :isRevisionOf ?File, : evision10093 M & File37631 I
f?revision :state PAction, ’i vision10094 M ’ FiledD655 I
?} : @ Revision10095 M T @ TFieloeds
| @ Revision10095 M & Filed0618
Anb author and state are data : ’ Revision10095 M ’ Filed0454
type properties. The ¢ @ Revision10095 M @ Filed0B12
iskeve';"onof is an object | @ Revision10095 M @ Filed0619
TO] . :
property @ Revision11115 D @ File3ssit
@ Revision11119 M & FiedsTR

Figure 6- 2: Results obtained from extended query

The information retrieved through the SPARQL query is useful to evaluate the
developer’s contribution to a software project.

Releases and their commit dates

Release dates are stored within the SVN repository by creating release tags while
committing a new revision. However, in SVN there is standard way of recording release
information in the SVN repository. For example, releases in the ArgoUML SVN
repository are stored as different branches. The branches are directories with no further
information regarding the commits’ history. During SVN data extraction and pre-
processing, we extracted these release tags from the commit information and stored then
within the SVN ontology. In order to retrieve the releases and their creation date, we
applied the query shown in Figure 6-3. As a result, the query returns releases and their

creation dates as shown in Figure 6-3.

80

TR EYD oy @ VERSION 081 2000-10-13705:29:16

mia ?wem elonse_Dats
WHERE
| PRelease wrelesseDate Reloase, Date,

. @ VERSION_0_9_0
@ VERSION 0.9 1
4 YERSION 0 9 2
@ VERSION 0 9.3

@ VERSION 0.9 4

' 4 VERSION 0_9_6

. 4 VERSION_ O 9_7_F

The releaseDate is an data type
property containing release dates.
The Release is a class of the
SVN ontology.

@ VERSION 0 9 7
9 VERSION_0 9 8 F
@ VERSION 0.9 8
@ VERSION 0.9 9 F

-

@ VERSION 0 3.9

4 VERSION_0_10
§ ®vERSION O 10 F

. @ VERSION D 10 1 F

2000-12-01 T08;10:31
2001-03-02705:13:1%9
2001-34-06707:14:1S
2001-04-19T06:04:48
2001-05-18Y09:86:26
2002-02-20T07:25:56
2002-03-17T06:04:47
2002-03-17707:01:5%
2002.-D4-0FT02: 34:27
2002-04-07T02:34:27
2002-05-08712:16:59
2002-05-05T12:16:59
2002-05-19702:11:11
ZO02-05-19T02:11: 13
2002-G7-07712:40:43

=
=
B
i
=
F
=
C
=
8
@
®
=

Figure 6- 3: Releases and their creation dates

Result
showing
releases
their dates

and

In the following example, we retrieve all files associated with a particular revision. The

query in Figure 6-4 returns the following information:

e A specific revision and its associated files (i.e. the files, which are modified to create
a specific revision)

e The latest revision of each file.

e The links of a file with other revisions, in this case instances of OtherRevision are
inferred by the Pellet reasoner

e Furthermore, the query establishes a link between the revisions and the files.

81

The object properties, isRevisionOf, The results include: the relationships and

hasNextRevision and dependencies among a specific revision and
hasLatestRevision are used to link the files, as well as the links and
specific revision (i.e. 102) to the files. dependences of file with other revisions.

EELECT ’Revrs:onmz M File Revisiont Revision1z4 |
Prevision | @Revison1iz B M | @ Fiessse @ Revisioni47 @ Revisiontot
\;;;:‘e T@revisiontoz Em @ Fle3ss @ Revision147 @ Revisiond3
| testRevision | ®revisontoz E m " Ele57d @ Revsonied . W Revisony
bOtherRevision - | @ Revision102 L @ Fle574 @ Revisionl69 ¢ Revision102
WHERE | @Revisin102 B M @ Fle574 4 Revision169 4 Revision169
’j‘?{revision .umber 7num ’Revrsmnloz_ o @ m " File575 @ Revision147 @ Revision102
FILTER (7num = "102") | ORevisonicz B m @ Fiesrs @ Revisiont47 @ Revision?9
Prevision :isRevisionOF . ' @Revisiontoz Bl M @ Fle3so @ Revison147 4 Revision102
e e e atestRevision | & Revsiontoz E M @ Fiess @ Revisontd7 @ Revison9
Tfile thashiextRevision 7OtherRevision, | ® Revisiont02 & m & Fierss @ Revision190 4 Revision146
i} { ®Revisontoz & m ® Fle795 @ Revision190 € Revisioni73
| @ Revision102 2 M @ Fle7ss @ Revision190 @ Revision101
‘RevnsnonlBZ B wm * File795 L Revision190 L Revision162

Figure 6- 4: Query results based on a revision and committed files

6.3. Ontological Queries Applied to Bugzilla Ontology

In the following examples, we apply SPARQL queries to extract information from the
populated Bugzilla ontology. Among the queries we discuss in more detail are queries
that identify the contribution of a specific programmer towards the Bugzilla repository,
provide some general Bugzilla repository statistics, and illustrate the use of knowledge

inference through reasoning services.

Identifying the Contribution of a Particular Person

In order to retrieve information about the contribution of a particular
developer/maintainer, we defined the query as shown in Figure 6-5. In this query, we
identify the contribution of a particular maintainer within the Bugzﬂla repository. The
query retrieves all the assigned issues and the activities in which a specific person is/was

82

involved. The query results can be used not only to identify the most active project

members but can also analyze who worked on which issue in the past, etc.

Query Editor | Query Library | Person AssigneeOf [Invohved In]
select Person R (4@ Person linus issue3ls9 ® issue305%activityl
;A”’Qw“;f?: i @ Person inus € issued®93 € issue30S9activityl
w;:‘;e { | 4 Person_inus @ issued668 @ issue3059activityl
éﬂlﬂER {regex{str{?Person}, "hinus")). @ Person_linus 9 issue5553 4 issue3058activityl
?Person rdftype :Person. & Pecson_linus € issue3059 € issued058activity?
iper'”“ iisAssigneeOf ?A”*Q’;“Of’ ; @ Person _linus @ issued993 @ issue3059activity2

Where: ‘Q Person_finus"\sued668 @ issuel059activity2

IsAssigneeOf and isInvolvedPerson are the Result of a query:

Object Properties. ; Person name, issue assigned to him /her.

A “linus” is the person name. £ 1 Activities in which he/she involved.

1 . @ Person_finus @ issue5553 @ issue3059activity3

Figure 6- 5: Query results showing the contribution of a specified person

Inference knowledge by reasoning services

In addition to information retrieval through the SPARQL queries, reasoning services
provided by ontological reasoners, such as Pellet in our case, can be used to infer
additional knowledge. In what follows we illustrate the use of inference services to infer
missing knowledge that was not available at the time of ontology population. For
example, at the time of the Bugzilla ontology population, we were only able to assert the
instances of the object property DependsOn but did not populate the inverse property

Blocks.

83

Py JEPpRN, i

-~ - o
’// /‘y/’
Blocks @;‘\ Biocks @f Blocks
1 ..

Issued168 _issuR4TES issuesS490 IssueS5548

DependsCmn

————— A zerted Knowledge

e e Inferred knowledge

Figure 6- 6: Reasoning example

Figure 6-6 illustrates an example of such a SPARQL query that takes advantage of
Pellet’s reasoning services. In this example, we consider four issues: issue4l68,
issued766, issue5490, and issue5548. From the asserted knowledge, one can identify that
issue4168 depends on issue4766, issue4766 depends on issue5490 and an issue5490
depends on issue5548. Through reasoning, we can also infer that, issue5548 is blocking

issue5490, and issue5490 is blocking issue4766 (Figure 6-7).

4 Instances | ® Rules, 8 Domain & Refevant Propeties 3 SPARQL @ Imports

Subject {Predicate] Object

@ issuessal BE blocks @ issuessas
@ issue5548 blocks @ issueSio0
@ issue5490 B blocks @ issued’ss
@ issuesss B blocks : ¥ issuessal
& issusd 766 8 blocks 4 issustiss

Figure 6- 7: Knowledge inference based on property DependsOn

Furthermore, the reasoning services also allow us to resolve the transitive closure
between the issues (Figure 6-8). In this case the reasoner infers that issue4168 depends
also on issue5490 and on issue5548. Furthermore, issue5548 blocks both issue4766 and
issue4168. Figure 6-8 illustrates this example that takes advantage of both asserted and

inferred knowledge. The results are displayed in Figure 6-9.

84

Blocks

P T T T T e e -]

Blocks
by : | 1 L
I | [Bods | £ wocks \ | WB\\ i
BAN <) W LN I

| lssued168 Issued766

|

I | ‘ :
: : f_ I DependsOn i
e T d

..... » inferred Transitiveclosure
,,,,,,,,,,,,,,,,, » Inferred inverse Property
ey Bsserted knowiedge

Figure 6- 8: Example of inferred transitive closure

85

> Instances : ® Rules {8 Domoin | % Relevant Propesties |3 SPARQL | D Imports Y T =
Subject [Predicate] Object ol
@ issueS581 E 0T it @ issued’sh 4
& issuesssl 8 blocks ¥ issueSi90

issuesS8t blocks @ issued16s

& issueS581 | iblecks ¥ issueS5ds

is5ueS685 8 blocks ¢ issued?sb

& issues6s M :blocks @ issueson

@ issue5685 3 blocks @ issuedlss

@ issued685 ks —

®isuesess | Inferred knowledge fis Inferred

& issuesa90 1 ks .. B

@ issue5490 prov1d§d by the ks transitive

& issued?56 reasonimg services. ¥s closure

@ issues548 ks

@ issueS548 t 5

| gt . & issueSi90

b issue5490 WM idependsCn I é‘ issueS685

@ issue5i00 M idependsOn N issueS581

I isued1i8m e = e e = EbeidependsOm + we il @ issuesion

& issuedl168 M idependsOn @ issues5ss

@ issuedl6s . ‘M idependsOn ¢ issues6ss

®hsoates T T T T T T T " dependsOn issueSSal
(@ issued?65 W8 idependsCn % issue5685

A issued 766 M dependsOn issueS548

W@ T T = = "o idependiOR " T " @ issueSssy

@ isiues548 8 idependsOn @ issueS6sS -

- Figure 6- 9: Results derived from issue dependency

6.4. Linked SVN and Bugzilla Ontology Queries

In order to allow for queries to work across ontologies, our SVN and Bugzilla ontologies

have to be linked.
Linking SVN and Bugzilla Ontologies

An interconnection between SVN and Bugzilla ontology is created through the entities
sharing a common concept. The revision committed to an SVN repository may be
referenced by its issue number. On the other hand, an issue reported in Bugzilla

repository may be referenced by a revision number.

We linked our two ontologies through common shared instances with the help of the

isResolutionOf and hasResolution object properties associations. As shown in Figure 6-

86

10, issue and revision concepts are linked through object properties isResolutionOf and
hasResolution. The linking of the ontologies is bi-directional. The object property
hasResolution contain revision numbers corresponding to the issue’s resolution history in
SVN on.tology. The object property isResolutionOf contains an instance issue number,
which refers the particular revision to an issue in the Bugzilla repository. During the SVN
and Bugzilla ontology population phase we extracted revision numbers from issue
comments and issue numbers from revision commit messages and stored them as
instances of isResolutionOf and hasResolution object properties. Figure 6-10 shows the

linked Bugzilla and SVN ontologies.
Evaluation of Links among SVN and Bugzilla Ontologies

In order to validate our approach of linking SVN and Bugzilla ontologies, we applied a
SPARQL query. The query searches for all the issues that have an instance of
hasResolution in the Bugzilla ontology. After retrieving the instances (i.e. the revision
number related to an issue), the query retrieves the information related to the revision
number from the linked SVN ontology (i.e. commit date). Table 6-4 shows the evaluation

of the SVN ontology (i.e. reizision number) links found in the Bugzilla ontology.

Total number of releases in Bugzilla Ontology (including Alpha-X and Beta X) 8

Tot;I number of Bugs | 71
Total Number of linko to SVN repository 37
Total number of invélid links ‘ 2

Table 6- 4: Evaluation of links found in the Bugzilla ontology

87

dateOpened’

isRepo’; isissueef
hasReporter nasAta

nuovv!‘ﬂ"b "‘X
xs(:s !mlesmne ~

"'h';sis:ugl \

lsComputerSvsten fependson Ty 1 S |
* Atachment TPt mber_f ’ isResoiutionOf
HiasMilestone. IsAssigne(Resolution !

.,.mlies{onem iy

s Pmduct

ich?ersonOf FhasRevisic

Figure 6- 10: Linked Bugzilla and SVN ontologies

In what follows, we present several SPARQL queries, which are applied to the linked
SVN and Bugzilla ontology. Among the queries we discuss in more detail are the time
spent to resolve an issue, the resolution history related to a particular issue, and the

analysis of transitive relationships.

Time Required in order to Resolving a Reported Issue

In order to retrieve information related to the time required to resolve a reported issue, we
define the query as shown in Figure 6-11, which retrieves the date and time an issue was

first reported and the date and time of the commit corresponding to the resolution of the

88

same issue. The query retrieves information in two steps. First, the query searches for all
the issues that have an instance of hasResolution in Bugzilla ontology. Then, after
retrieving the instances (i.e. the revision number related to an‘issue), the query retrieves
the related information to the revision number from the linked SVN ontology (i.e.

commit date). Figure 6-11 shows the query and results obtained from this query.

Information from Information from

Bugzilla ontology SVN Ontology

Query Editor fissh x

i @ issueS042 B 2008-0-‘1-29’[06:06:05 b svﬁ:RevisionlSQll

2008-10-08T01:551:16

ISELECT Tissue

igeiiie;.?: | @ issues23s I 2008-07-127T11:22:28 svn:Revision15897 2008-10-07T04:44:59
: écommit date @ issueS256 §F 2008-07-22T01:47:47 svniRevision15814 &8 2008-03-28T03:46:37
WHERE 2008-07-22T11:19:18 svrzRevision15815 2008-09-28703:51:54

{
Tissue shasResolution
‘?Resolved_in. ;
Tissue :dateOpened
Ireported_on.
JResolved_in
‘svricreationDate
Fcommit_date.

}

2008-07-23T01:56:35 svm:Revision15911 2008-10-09701:51:16
2008-11-03706:39:05
2008-11-07T03:48:46
2008-11-06T02:18:49

2008-11-22706:54:51

5

: 3

. 2008-10-29T06:19:46 svrRevision15856
2008-11-02703:01:56 g svn:Revision15972
2008-11-05704:00:56 b svmiRevision1 5969
2008-11-08701:38:30 p svruRevision16135
2008-12-04703:28:42 ﬁ svmRevision16259 2008-12-06701:50:23
2008-12-05705:58:55 svn:Revision16270 2008-12-07708:58:06
2008-12-11T10:05:31 b syn:Revision201 8 2000-03-257T06:47:37
| @ issuessst B 2009-01-03709:5415 g svriRevision16493 5 .2009-01-03702:51:05
| @ issuessos B 2009-01-06T1205:32 svmRevision16541 52 2009-01-08T02:46:08

| @ issues602 B3 2009-01-07T11:26:00 svmRevision16539 BE 2000-01-08702:31:25
]

Figure 6- 11: Date/time between issue reporting and resolution
Resolution history related to an issue
Figure 6-12 illustrates an example of how to mine the linked Bugzilla and SVN
ontologies in order to retrieve information related to the resolution of a reported issue. In
our approach, the resolution history can be retrieved by applying the query across the

linked Bugzilla and SVN ontologies.

89

e fuwiiPath
SVN Ontology File-1 +memmememegp Full pam

Bugzilla ontology

Fuiipgth
T

1 ORI ——- wmmwwmmw

f ull sath

- }iasﬂeso:utfon

[——

3
5

;55“8"2 ,————-—’- REWSIORZ
i ;

QW‘WW% R W”QWWX%%Q 5 o \
]] t AN R
' . J 1
¥ [
' I N
¥ - #
'
s

Files associated with
specific revision

Revisions associated with
an issue

Figure 6- 12: Bug resolution history in SVN ontology

Figure 6-13 illustrates a detailed query and the results obtained from this query. After
retrieving the revision related to a particular issue (through the Has Resolution property)
the following additional revision information can be retrieved: the files modified in
specific revision to resolve and issue, the full path of a specific file in SVN repository,
and a traceability link between the issue and the its related resolution information stored

in the SVN ontology.

90

Results:
An issue, associated
revision number in which

' issue is resolved, the file
1 numbers associated with

Bugzilla SVN Ontology
ontology

y . - T I N revisions and full path of a
QUfEdﬁoerL;m ,,,,, - [?ssgel fevsion : l fﬁg patbw vevees o] file in the SVN repository.
SELECT Tissue Trevision il Tpath 4 issues6Sl € sinRevisiont6T, @ snflei3 B ftrunkiwww/project sch
WHERE Y » | : Aeunklsrciucioml/ Detsid e

! & issueit ¢ onRevisionl6139' € sfiledd B funkisrc/uciumivuiDetaitPane ave
) { | el ¢ s*.‘n:RevisicnlﬁBgl@ senFle000 0 bunkfsic_new/org/argoumbiuirNavigatorConfigDialeg java

Tissue thasResohstion Jrevision, | o , .
ile svnchasRevision Jrevison, | & issueSist € svn:Re»dsimlé?BQ'@ snFletss. B Jhranchesfwork quickerlogging linus/src_new/org/argouml/cognitive:

Hile senfuliPath Zpath, I & isuesttl & svnRevisiont6T0! & snfisls B Hrunk/stcfucyimages/TreeGeneralization.gif
! /\ | @ issoest8l § svnRevisionlfT € snFilesnss? /branches/gsoc2007/b00_1/tags/gsoc200? deadline/sre_new/org/arge
The hasResolution is the object In;RevisimlGBQ & smFlestd B Arunkisrc_newforg/argoumiui/explorer/rules/GoModelToDiagrams s

property of Bugzilla ontology.

Figure 6- 13: SPARQL query and results for resolution history
Transitive relationships between entities
The query example in Figure 6-14 illustrates a case where inferred knowledge from the

reasoner is combined with transitive relationships of entities to mine the two sub-

ontologies.
Transitive relation
between an issue and a Transitive relation among
file. revision and a latest revision.
7 — .
v * is Rewszofzgfv File-7 srwme-
........... e\ gy REVSONIO | -,
1 o e o
! Has Lrest Revision » File-2 ree--
! v . ‘
t o . Revision3 SR
t File-1 L g
: X Rt o
o HaGe. astaneiad Has Next Revision -
H v -1 rewe-
HasResolution v is Revision Of .+ TR File-1

! Revision? [PUURO SRR
. H N
I . 1
O A P S | o

N

H

3s Kext Revision

: .' Revisionl
. : ; L e File-2

AT U Y

i

esolution } RevisionS i
: Revision2 L. : it
:) 4 File3 A H _
i i SPRTROINC | E e BSSETLRE KROW RS
' g .
H ~ -~ o Inferred Transitive Cosure

Transitive relation between an
issue and a latest revision.

e P infarred werse Property

Figure 6- 14: Transitive relationships.
91

We note that revisions associated with a particular issue are identified. Also, files
modified as part of a particular revision are retrieved. In addition, all previous revisions

of a particular file are extracted using inferred knowledge (Figure 6-15).

i i ki |ty
& smiesmisit & nfe § omiewnlsis & smReiontens
§ sopesinist & omferr @ omBewnits & smReisinié
& omiesontSl b ot @ omBekniSRs & smevsonisis
¢ ompesni®lt @ emFidl @ omBeientSS € smRedson!Sis
& smRevsontsolt & snfies? & smpeisoniss & smRevsontSon
C GoonRemonisit S emFell & onRemotBR 4 smReviniSI
& sefevionisttt G oo @ soResont® ¢ smRevsioniSo
4 smRevisionISolt & sorent @ onReviontsit § sRevsiontsi
$ smRevisont531i Sz G smRewenlels & smReviscnténd
& snRevsonts! & smfe2 O smfeisontens $ omevsinlsds
(8 ombeigmisat O omfen @ sResniss @ onRedsimions
st & smReviioniSoN ¢ omied @ smRewodS € snRevsiniSs
Soase 9 soReisnil $ smEen & smpewsonisit & smbeisontsid
@z § smRevisoniSon & smFd $ smReisonisid @ soReonieid
ST U T € anpeisoniez $ smRessniend

Figure 6- 15: Query results showing inferred knowledge
6.5. Discussion
The presented case study and the results obtained through queries illustrate the
applicability of our approach in order to support various aspects of software evolution.
The approach presented here is implemented as a part of the SE-Advisor framework.

Section 6.5.1 introduces SE-Advisor framework functionalities and architecture.

6.5.1. SE-Advisor Framework

A common ontological representation (i.e. SVN and Bugzilla ontologies) and automated
tools (i.e. SVN and Bugzilla Ontologizer tools) are designed and implemented as a part of
SE-Advisor framework. |

SE-Advisor provides a pro-active, ambient, knowledge-based environment that integrates
users, tasks, tools and resources, as well as processes and history-specific information.

92

SE/Process Advisor provides an ambient semantic software maintenance environment. Its
goal is to support developers throughout maintenance tasks by providing a context-
sensitive knowledge base that can be queried either directly by a user or indirectly
fhrough supporting tools. The SE-Advisor framework supports maintainers by managing
‘two knowledge-intensive aspects of the éoﬁware evolution:

1. Collecting and maintaining semantic links, i.e., traceability links, between software
artifacts, in particular those at different abstraction levels like source code and its
associated documentation

2. Maintaining knowledge about available tools, software evolution processes, users,
and their history of solving tasks ‘with the available artifacts, to provide contextual
guidance during complex maintenance tasks

SE-Advisor integrates available knowledge resources such as emails, wikis, bug trackers,
source code, etc. This information is further automatically and/or semi-automatically
analyzed and linked. The process of building knowledge repository ontology is also
called ontologizing. Gathered information is presented to a maintainer in the form of a
context-sensitive advisor tool which provides the ability to look beyond document
boundaries while working on a process. Being aware of the process definition also allows
one to guide users through a process. In a feedback loop, newly gained knowledge
resources are used to constantly enrich the ontology. Figure 6-16 provides an overview of

SE-Advisor framework.

93

Browser (Thin Client) IDE (Rich Client) Process Advisor
(Rich Client)

Client \% Metrics, Consistency Advice 1 / Advice

Server

‘ Context, Concept

Administration Context, Concept

SE Advisor

Presented common
ontological representation

ANy 4
{ ’\A, \

Extetnial Systems® .
! A
| - Bugzifa]
N Subversion
- Wikis P

Ontology Queries

Figure 6- 16: Overview of SE-Advisor framework

94

7. Related Work and Limitations

In this section we will discuss and compare our work with existing approaches introduced
by several researchers, which are closely related to our approach. Later we will discuss

the limitations and challenges of our approach.

7.1. Related Work

The work most related to ours is by Kiefer el al [KAIO7]. It also provided the foundation
for the ontological models we used in this thesis. They introduced the iSPARQL query
engine which is based on the SPARQL query language. They conducted four sets of
experiments. The first was the measurement of code evolution code by visualizing
changes between differeﬁt reléases. Secondly, they conducted refactoring experiments by
the evaluation of the applicability of the iISPARQL framework to detect b-ad code smells.
Their third experiment was a metrics experiment, performed by the evaluation of the
ability to calculate software design metrics. Fourth and finally was their use of
ontological reasoning as part of their software ontology models. However, the main
focus of their work is on the source code modgl. In our approach, we enhanced and
enriched the ontologies introduced by [KAIO7] with two édditional concepts: object and
data type properties. We also applied DL restriction to our concepts to take advantage of
reasoning services. Furthermore, we introduced the SVN and Bugzilla-Ontologizer tools
~ to automate the process of extraction and ontology population.

Happel et al. [HAP06] presented their KOntoR project in which they focus on storing

and querying meta-data about software artifacts to foster software reuse. The software
95

components are stored in a repositdry aﬁd they present various ontologies for providing
background knowledge about the components, such as the programming language and
licensing models. Compared to our approach, their focus was mainly on
* conceptualization of the software domain, rathgr than on the analysis of specific artifacts,
as in our case.

Antoniol et al. [GIA04] proposed a multi-level concept navigation framework that
represents source code entities using the FAMIX meta-model compliant Rigi Standard
Format (RSF). In their approach, the release history information from Release History
and Bug Databases (RHDBs) were extracted using a set of different tools. The extracted
information was stored as RSF files for further processing and analysis. Compared to the
approach by [GIA04], we use an OWL/RDF format in order to provide a uniform and
semantic rich ontological represeﬁtation that aildws us to take advantage of inference
services provided by ontological reasoners. Another approach, presented by D’Ambros et
al. in [IMB06],. introduced a visualization technique to uncover the relationships between
data from a versioning and bug tracking. In their approach they use a version of the
Release History Database.

German [DMGO04] proposed a tool called softChange. The main functioﬁ of softChange
is the extraction, enhancement and visualization of software repositories (i.e. CVS).
SoftChange consist of three different sub tools: (1) the trails ex?ra'ctor, for retrieving the
raw software trails from the CVS repositories. The extracted data is stored within a
relation database. (2) The fact enhancer analyzes the raw data in the datébase in order to
generate the new facts. (3) The visualize tool provides a visual representation of the

extracted facts.

96

Main differences between the approach in [DMGO04] and ours is that it focuses only on
the analysis and visualization of CVS repositories. In our approach we are not limited to
analyzing CVS but also include the bug tracking systems. Furthermore, within our
approach we also promote the integration of various artifacts and cross-artifact analysis.
Rysselberghe [VRO04S] introduced another visualization approach to visualize the
changed frequency of files, using different charts.

Hyland-Wood [HLWO06] introduced an ontology model for software code based on Java
called SEC. SEC allows the recording and tracking of changes made to metadata. Our
approach is similar to [HLWO06] in the sense of an ontological format representation.
However, SEC does not include the information from a versioning or bug tracking
system. Our presented approach allows integration of the information from the versioning
system and the bug tracking system and uses inference services across sub-ontologies.
Other research in mining software repositories (i.e. [AEH06, JIM07, GCLO0S5]) have also
been focused on various types of analysis like impact analysis, traceability links, or
guiding software development process. Our approach not only supports similar types of
analysis, but also promotes the use of a common, semantic-rich ontoiogical

representation which allows for analysis across multiple repositories.

97

7.2. Limitations

During the evaluation phase, we found the following limitations of our presented
approach.

Scalability

In order to evaluate our proposed approach with respect to reasoning services across
multiple ontologies (i.e. SVN and Bugzilla Ontoiogy), we used Protégé 3.4 ontology
editor which provides a plug-in for the Pellet reasoner and SPARQL query editor. During
the reasoning process, we experienced the memory overflow errors due to the size of our
ontology. The initial size of the SVN ontology was 44 megabytes, causing memory
overflow errors. We reduced our initial ontology size to 22 megabytes and were able to
apply reasoning services and to apply SPARQL queries. The reason behind the memory
overflow error was the consumption of memory by both the reasoner (Pellet Reasoner)
and the ontology editor (Protégé 3. 4). Furtherrriore, the Protégé 3.4 and Pellet Reasoner
use Java virtual machine in the background. During the reasoning process, these tools
generate in-memory models too complex and too large to process ontologies in order to
apply reasoning services. Another limitation is of the Java virtual machine, which only

supports memory size up to 1 gigabyte.

- Bug extraction
In order to extract all the bug information, we found the limitation of remote Bugzilla
installation which does not allow for extraction of all the bug information at once. Due to

this limitation we were only able to extract bug information of eight releases. This

98

limitation meant that linking SVN and Bugzilla ontology (i.e. instances of hasResolution
object property) is one-sided, from the Bugzilia ontology to the SVN ontology. In order
to recover links from SVN to Bugzilla (i.e. instances isResolutionOf object property), we
needed all of the issues to be stored in Bugzilla ontology.

Persistent Storage

Currently, our SVN and Bugzilla oﬁtology is stored as plain RDF/XML format which has
size (these are very large ontologies with many instances), performance, and management
issues. In order to deal with size, performance, and management issues, there is a need to
use database technology in order to provide persistence to the knowledge described by
the ontologies, and scalability to the queries and reasoning on this knowledge.
Consistency (i.e. incremental updates)

One of the challenges and potential future work of this project is to manage incremental
updates to software repositories such as SVN and Bugzilla ontology. Currently SVN and
Bugzilla Ontologizer tools do not support incremental updates to SVN and Bugzilla

ontologies.

99

8. Conclusion and Future Work

In this thesis, we discussed the importance of software repositories in supporting the
evolution of software systems. We also discussed some of the challenges associated with
extracting and modeling the information extracted from the software repositories.

In order to model the extracted information, we introduced a common ontological
representation (based on the OWL/RDF format) to store the information extracted from
SVN and Bugrzilla repositories. In order to support the extraction process, we
implemented two tools (SVN and Bugzilla-Ontologizer) to automate the data extraction
and ontology population process. The two tools support the establishment of a connection
between the Eclipse IDE and the software repositories, the extraction of raw data from
the software repositories (namely SVN and Bugzilla), and the transformation and
normalization of the extracted raw data in order to support automated ontology
population. The approach we have presented is implemented as a part of our SE-Advisor
framework. We presented a case study to evaluate our ontological model and its ability to
mine and analyze data from these repositories to support the evolution of a software
system. The case study was performed on ArgoUML [ARGO09]. We used SPARQL
queries to demonstrate how our ontological representation can support software evolution
by mining and analyzing software repositories. The evéluation (case study) also shows
the applicability of our present}ed approach as a part of SE-Advisor framework. SE-
Advisor supports various aspects of the software evolution; our contribution of a common

semantic rich ontological representation fulfils the key requirement of SE-Advisor

100

framework. Furthermore, through the ontological queries, we also were able to illustrate
some of the benefits of using an ontological reasoner.

As part of the future work, the SVN Ontology should be extended to include additional
entities to support the modeling of file content differences (i.e. the difference of the file
contents modified in each revision).

Furthermore, there is a need for additional analysis and evaluation of our approach. Also,
additional data mining techniques can be applied to provide further insights and analysis

of these repositories.

101

[AEHO06]

[ARG09]

[BIMO3]

[BOT03]

[BRKS3]

[BSC09]

[BUG09]

[BUG03]

[BUO3A]

[BUR9S]

[CACO1]

References

Ahmed E. Hassan “Mining Software Repositories to Assist Developers and
Support Managers”, in Proceeding of 22nd IEEE International Conference
on Software Maintenance, 0-7695-2354-4/06, (ICSM'06).

http://argouml.tigris.org/issues/query.cgi/, last visited Jan 9, 2009.

Bieman, J. M., Andrews, A. A., and Yang, H. J. “Understanding Change-
Proneness in OO Software Through Visualization”, in Proceedings of 11th
IEEE International Workshop on Program Comprehension (IWPC'03)
(2003), 44-53.

Michael P. O’Brien., “Software Comprehension — A Review & Research

Direction”, Department of Computer Science & Information Systems
University of Limerick Ireland, Technical Report UL-CSIS-03-3, (2003).

Brooks, R., “Towards a Theory of the Comprehension of Computer
Programs", International Journal of Man-Machine Studies, Vol. 18, pp
543-554, (1983).

http://www.bugzilla.org/docs/2.16/html/dbschema.html, “The Bugzilla
Guide”, 2.16.11 Release, last visited Jan 29, 2009.

http://www.bugzilla.org, last visited Jan 3, 2009.

Matthew P. Bamson, “The Bugzilla Guide”, 2.16.3 Release, the Bugzilla
Team 2003-04-23.

http://www.bugzilla.org/docs/3.2/en/html/lifecycle.html, | The Bugzilla
Guide 3. 2 Release, chapter 5 Using Bugzilla.

Burd, L., Munro, M., Young, P., “Visualizing Software in Virtual Reality”,
in Proceedings of the International Workshop on Program Comprehension,
IEEE Press, 1998.

Chen, A., Chou, E., Wong, J., Yao, A. Y., Zhang, Q., Zhang, S., and
Michail, A., “CVSSearch: Searching through Source Code using CVS

Comments “, in Proceedings of IEEE International Conference on Software
Maintenance (ICSM'01) (2001), 364-373.

102

http://argouml.tigris.org/issues/query.cgi/
http://www.bugzilla.Org/docs/2
http://www.bugzilla.org
http://www.bugzilla.Org/docs/3.2/en/html/lifecycle.html

[CAGY96]

[CAG99]

[CLB09]
" [CLO09A]

[COR89]
[DACO1]
[DGMO04]

[DSP93]

[DTTOS]

[FIS03]

[GCMO00]

[GCLO5]

G. Canfora, L. Mancini, M. Tortorella, “A Workbench for Program
Comprehension during Software Maintenance”, in Proceeding of 4th
International Workshop on Program Comprehension (WPC '96) (1996),
Berlin, 30-39.

Canfora, G., Cimitile, A., “Program Comprehension”, Encyclopedia of
Library and Information Science, volume 66, 1999.

http://www.open.collab.net/, last visited Jan 3, 2009.

http://www.open.collab.net/products/cee/, last visited Jan 4, 2009.

Corbi, T. A., “Program Understanding: Challenge for the 1990s”, IBM
System Journal, Vol. 28, Issue 2, (1989), 294-306.

http://www.diag.com/pictures/Schach 2002/, last visited Jan 8, 2009.

German, D. M., “Mining CVS Repositories, the SoftChange Experience”, in
Proceedings of International Workshop on Mining Software Repositories
(MSR'04) (2004), 17-21.

Davis, S. P.,, “Models and Theories of Programming Strategy”,
International Journal of Man-Machine Studies, Vol. 39, pp. 237-267,
(1993).

Dinh-Trong, T. T. and Bieman, J. M. “The FreeBSD Project: a Replication
Case Study of Open Source Development”, in Proceedings of IEEE
Transactions on Software Engineering, Vol. 31, No. 6. IEEECS Log
Number TSESI-0225-1004, (2005), 481-494.

Fischer, M., Pinzger, M., and Gall H., “Populating a Release History
Database from Version Control and Bug Tracking Systems”, in Proceedings
of the International Conference on Software Maintenance, Amsterdam,
(ICSM’03) (2003), 23-32.

Gerardo Canfora, Aniello Cimitile, “Software Maintenance” University of
Sannio, Faculty of Engineering, Piazza Roma 82100, Benevento Italy, 29
November, 2000. ftp:/cs.pitt.edu/chang/handbook/02.pdf.

Gerardo Canfofa., Luigi Cerulo, “Impact Analysis by Mining Software and

Change Request Repositories”, in Proceeding of the 1Ith IEEE
International Software Metrics Symposium (METRICS’05) (2005), 29.

103

http://www.open.collab.net/
http://www.open.collab.net/products/cee/
http://www.diag.com/pictures/Schach
ftp://cs.pitt.edu/chang/handbook/02.pdf

[GDMO4]

[GHHY8]

[GIA04]

[GIO04]

[GIKO03]

[GUR93]

[HAE04]

[HAPO6]

[HLWO06]

[HSKO5]

German, D. M., “An Empirical Study of Fine-Grained Software
Modifications”, in Proceedings of 20th IEEE International Conference on
Software Maintenance (ICSM'04) (2004), 316-25.

Gall, H., Hajek, K., and Jazayeri, M., “Detection of Logical Coupling based
on Product Release History “, in Proceedings of International Conference
on Software Maintenance (ICSM'98) (1998), 190-199.

Giuliano Antoniol, Massimiliano Di. Penta, Harald Gall, Martin Pinzger,
“Bug Reporting and Source Code Meta-Models”, in Proceedings of the
Workshop on Software Evolution through Transformations: Model-based
vs. Implementation-level Solutions (SETra’04), 87-99.

Giuliano Antoniol, et al, “Towards the Integration of CVS Repositories,
Bug Reporting and Source Code Meta-Models”, in Proceedings of the
Workshop on Software Evolution through Transformations: Model-based
vs. Implementation-level Solutions (SETra 2004), 87-99.

Gall, H., Jazayeri, M., and Krajewski, J., "'CVS Release History Data for
Detecting Logical Couplings", in Proceedings of 6" International Workshop
on Principles of Software Evolution (IWPSE’03)0-7695-1903-2/02. (2003).

Gruber, T. R.,, “A Translation Approach to Portable Ontology
Specification”, Knowledge System Laboratory Stanford University, CA.
Knowledge Acquisitions, (1993), 199-220.

Hassan, A. E. and Holt, R. C., “Predicting Change Propagation in Software
Systems”, in Proceedings of 20" IEEE International Conference on
Software Maintenance (ICSM'04) (2004), 284-93.

Happel, H. -J., Korthaus, A., Seedorf, S., and Tomczyk, P. “KOntoR: An
Ontology-enabled Approach to Software Reuse”, In Proceedings of the 18th
International Conference on Software (SEKE '06) (2006).

Hyland-Wood, D., Carrington, D., and Kapplan, S., “Toward a Software
Maintenance Methodology using Semantic Web Techniques”, in
Proceedings of the 2nd International IEE workshop on Software
Evolvability at IEEE International Conference on Software Maintenance,
(ICSM ’06) (2006), 23-30.

Huang, S. -K. and Liu, K. -m., “Mining Version Histories to Verify the
Learning Process of Legitimate Peripheral Participants™, in Proceedings of
International Workshop on Mining Software Repositories (MSR'05) (2005),
84-78.

104

[IANO7]

[IEEE90]

[IMBO6]

[JENO1]

[JEP04]

[JIMO7]

[JRLO6]

[KAIO7]

[KHV00]

[LEH97]

Ian Horrocks, et al., “Bridging the Gap between OWL and Relational
Databases” in Proceedings of the Sixteenth International World Wide Web

Conference (WWW’07).

IEEE Standard Glossary of Software Engineering Terminology, report IEEE
Std., 610.12-1990, IEEE, 1990.

D’Ambros, M. and Lanza, M., “Software Bugs and Evolution: A Visual
Approach to Uncover Their Relationships “, in proceedings of the 10th
European Conf. on Software Maintenance and Reengzneermg (CSMR °06)
(2006), 227-236. :

http://jena.sourceforge.net/ last visited January 05, 2009.

Jérome Euzenat, et al, “Similarity-based ontology alignment in OWL-Lite”,
in Proceedings of European Conference on Artificial Intellzgence (ECAI'04)
(2004).

Huzefa Kagdi, Jonathan 1. Maletic, Bonita Sharif, “Mining Software
Repositories for Traceability Links”, in Proceedings of 15th IFEEE

International Conference on Publzcatzon Program Comprehension, (ICPC
'07) (2007), 145-154.

Juergen Rilling, et al., “A Unified Ontology-Based Process Model for
Software Maintenance and Comprehension”, Workshops and Symposia at
MoDELS 2006, Genoa, Italy, (2006), LNCS 4364, 2007, Springer, Reports
and Revised Selected Papers, 56-65.

Christophe Kiefer, Abraham Bernstein, Jonas Tappolet, “Mining Software
Repositories with iSPARQL and a Software Evolution Ontology”,
Department of Informatics., University of Zurich, Switzerland, in
Proceedings of Fourth International Workshop on Mining Software
Repositories (MSR'07) (2007).

V. T Rajlich, et al., “Soﬂwére Maintenance and Evolution: a Roadmap”, in
Proceedings of the Conference on The Future of Software Engineering
(2000), 73-87.

Lehman M. M., et al, “Metrics and Laws of Software Evolution - The

Nineties View”, in Proceeding of Metrics 97, Albuquerque, NM, 5-7, (Nov
97), 20-32.

105

http://jena.sourceforge.net/

[LEHO1]
[LEHS0]
[LETS6]

[LET87]

[LIV94]

[MARO09]

[MGW00]

[MGW98]

[MPOO03]

[MUG04]

[MUL94]

Meir M. Lehman, Juan Fernandez-Ramil, and Goel Kahen. “A Paradigm for
the Behavioral Modeling of Software Processes using System Dynamics”,
Technical Report (2001), Imperial College, United Kingdom, 1-11.

Meir M. Lehman. “Programs, Life Cycles, and Laws of Software
Evolution” in Proceedings of IEEE conference (Special Issue on Software
Engineering), (1980), 1060-1076.

S. Letovsky, E. Soloway, “Delocalized Plans and Program
Comprehension”, Software Engineering IEEE Software archive Vol. 3,
Issue 3, (1986), 41-49.

S. Letovsky, “Cognitive Processes in Program Comprehension”, Journal of
Systems and Software, Vol. 7, Issue 4, (December 1987), 325 — 339.

Livadas, P. E., Small, D. T., “Understanding Code Containing Preprocessor
Constructs”, in Proceedings of the 3rd Workshop on Program
Comprehension, IEEE Computer Society Press, Los Alamitos, CA, 1994,
89-97.

http://marinemetadata.org/images/naturalcatastrophe/, last visited Jan 5,
2009.

McGuinness, D. L., Fikes, R., Rice, J. and Wilder, S., “An Environment for
Merging and Testing Large Ontologies”, Principles of Knowledge
Representation and Reasoning, in Proceedings of the Seventh International
Conference (KR2000).

McGuinness, D. L. and Wright, J., “Conceptual Modeling for
Configuration: A Description Logic-based Approach”, Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (1998),
333-344.

Michael P. O’Brien, “Software Comprehension — A Review & Research
Direction”, Technical Report UL-CSIS-03-3, University of Limerick Ireland,
November 2003.

Michael Uschold, Michael Gruninger, “Ontologies and Semantics for
Seamless Connectivity”, (2004), SIGMOD Record, Vol. 33, No. 4.

Muller, H., “Understanding Software Systems Using Reverse Engineering
Technology”, in Proceedings of Colloquium on Object Orientation in

" Databases and Software Engineering; The 62nd Congress of L'Association

Canadienne Francaise pour [l'Avancement des Sciences (ACFA’94),
Montréal.

106

http://marinemetadata.org/images/naturalcatastrophe/

[MUS92]

[NFNO7]

[PAL09]
[PLO9A]

[PEN87]

[PRG09]

[REA09]

[RIS99]

[RWMSS5]

[SOLB4])

[STA84]

[SVK09]
[SVO9A]
[SVN09]

[SV09A]

Musen, M. A, “Dimensions of knowledge sharing and reuse”, computers
and biomedical research, an international journal. (1992), 435-67.
ISSN: 0010-4809.

Natalya Fridman Noy and Mark A. Musen, ‘SMART: Automated Support
for Ontology Merging and Alignment”. Article (2007), Stanford Medical
Informatics, Stanford University Stanford, CA 94305-5479.

http://clarkparsia.com/pellet last visited January 05, 2009.

http://www.mindswap.org/2003/pellet/ last visited January 05, 2009.

N. Pennington, “Comprehension Strategies in Programming, in Empirical
Studies of Programmers”, Second Workshop, Ablex Publisher, Norwood,
NJ, 1987. 100-113.

http://protege.stanford. edu/ last visited February 15, 2009.

http://en.wikipedia.org/wiki/Semantic_reasoner last visited January, 02
2009.

Robert Jasper, Mike Uschold, “A Framework for Understanding and
Classifying Ontology Applications”, in Proceedings of Workshop on
Ontologies and Problem-Solving Methods, Stockholm, (IJCAI’99) (1999).

Rouse, W. B., and Morris, N. M., “on Looking into the black box:
Prospectus and limits in the search for mental models”, (DTIC #AD-

‘A159080)” pp7. Georgia Institute of Technology, (1985).

E. Soloway, K. Ehrlich “Empirical Studies of Programming Knowledge”, in
Proceeding of IEEE Transactions on Software Engineering, SE-10 (1984),
595-609.

Standish, T. A., “An Essay on Software Reuse”, IEEE Transactions on
Software Engineering, SE-10(5) (1984), 494-497.

https://wiki.svnkit.conm/, last visited January 20, 2009.

https://wiki.svnkit.com/SVNKit_Architecture, last visited January 20, 2009.

http://svnbook. red-bean. com/, last visited Jan 2, 2009.

http://svnbook.red-bean.com/, pp. 22, last visited Jan 2, 2009.

107

http://clarkparsia.com/pellet
http://www.mindswap.org/2003/pellet/
http://protege.stanford
http://en.wikipedia.org/wiki/Semantic
https://wiki.svnkit.com/
https://wiki.svnkit.com/SVNKit
http://svnbook
http://svnbook.red-bean.com/

[SV09B]

[TBCO09]

[TDCO5]

[TOMO09]

[TQGO2]

[VARO04]

[VRO4S]

[VEB09]

[VMY93]

[W3C09]
[WIKI09]
[WIK091]

[WKB09]

http://svnbook.red-bean.cony/, pp.20, last visited Jan 2, 2009.

http://www.topquadrant.com/products/TB Composer.html last visited
February 18, 2009.

Todd C. Hughes, Benjamin C. Ashpole, “The Semantics of Ontology

Alignment”, Lockheed Martin Advanced Technology Laboratories Cherry

Hill, NJ. hitp://www.atl.Imco.com/projects/ontology/papers/SOA.pdf.

Natalya F. Noy and Deborah L. McGuinness., “A Guide to Creating Your
First Ontology”, Stanford University, Stanford, CA, 94305. http.//protege.
stanford.edu/publications/ontology development/ontology101-noy-
mcguinness.html/. '

Tu, Q. and Godfrey, M. W., ‘An Integrated Approach for Studying
Architectural Evolution™, in Proceedings of 10™ International Workshop on
Program Comprehension (IWPC'02) (2002), 127-136.

Van Rysselberghe, F., Demeyer, S., “Mining Version Control Systems for
FACs (Frequently Applied Changes)”, in Proceedings of International
Workshop on Mining Software Repositories (MSR'04) (May 25, 2004), 48-
52. ‘

Van Rysselberghe, F. and Demeyer, S, “Studying Software Evolution
Information By Visualizing the Change History” in Proceedings of 20th
IEEE International Conference on Software Maintenance (ICSM’04)
(2004), 328-37.

http://versioncontrolblog.com/comparison/CVS/BitK eeper/Git/Subversion/i
ndex. html/, last visited Jan 10, 2009.

A. von, Mayrhauser, A. M. Vans, “From Program Comprehension to Tool
Requirements for an Industrial Environment”, In Proceedings of IEEE
Workshop on Program Comprehension (1993), 78-86.

http://www.w3.org/TR/owl-features/, last visited Jan 1, 2009.

http://en.wikipedia.org/wif(i/Soﬂwar.e evolution/ , lat visited Jan 7, 2009.

http://en.wikipedia. org/wiki/Software repository/, last visited Jan 12, 2009.

http://en.ywikipedia.org/wiki/Comparison of issue tracking systems , last
visited 13-Jan-2009.

108

http://svnbook.red-bean.com/
http://www.topquadrant.com/products/TB
http://www.atl.lmco.com/proiects/ont61ogy/papers/SOA.pdf
http://protege
http://stanford.edu/publications/ontology
http://versioncontrolblog.eom/comparison/CVS/BitKeeper/Git/Subversion/i
http://http.7/www.w3.org/TR/owl-features/
http://en.wikipedia.org/wiki/Software_evolution/
http://en.wikipedia
http://en.wikipedia.org/wiki/Comparison

[XMB09]

[ZTTO05]

[ZT05A]

http://www.ximbiot.com/cvs/, Last visited Jan 5, 2009.

Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S., “Mining
Version Histories to Guide Software Changes”, in Proceedings of IEEE
Transactions on Software Engineering (TSE’05) (2005), 429- 445.

Zimmermann, T., Zeller, A., Weibgerber, P., and Diehl, S., "Mining

Version Histories to Guide Software Changes", in Proceedings of IEEE
Transactions on Software Engineering, (2005), vol. 31, no. 6, 429-445.

- 109

http://www.ximbiot.com/cvs/

Appendices

Appendix-1

Following Table (AP1) provides the details of the removal of non-valid characters and

their replacements with valid ones in SVN and Bugzilla Ontology.

Non-valid Replacing Non-valid Replacing Non-valid Replacing
character character character character character character
- - « « O 0
! Space ° ° O o
$ - » » O o
% Percent A A O o
(- A A U u
) - A A U u
* - A A U u
< - A A U u
> - C C Y Y
@ -at- E E < -
4 - E E > R
Space E E O o
{ - E E £ a
] - I 1 & and
} - I i < B,
~ Space I 1 Z V4
] Space N N U U
€ - (o] (o] U U
F F O O ‘ Space
" Space [6) [4)
Space O 0
+ + (o] O
b _ X X
Y%e Space 4] %]
S S U U

110

Non-valid Replacing Non-valid Replacing Non-valid Replacing
character character character character character character

¢ Space U u

’ Space Y Y

« Space 8 B

? -Space A A

- Space A A

S S A A

> - A A

VA Z A - A

Y Y A A

j I Y C

¢ Cents E E

£ Sigma E E

¥ Yen E E

i E E

- I I

© Copy-rights I i

I 1

1 1

0 - O

Continued Table (AP1).

111

Appendix-11

Following are the SPARQL quires applied to retrieve results from SVN and Bugzilla

Ontology by simple string matching.

mkm et

{

Peomment stext 7Text,

FILTER REGEX (e, revsion’)

| ¥ seszascoment
& isuesStcomnerts
‘ sueSZsBeommentS

Retrieve a text [
comment of an [

issue containing [avnelts
string [
“revision”.

0 m&mz '
0 smSSS?tmwntz

’ 5sue558kmrmt3
& ssgconments
‘ snueS602comment?
| @ bsussoagcomenty
| @ ssusesronnent2

Qsmsmzwmnus

? Omxesmcmmz: '

Dcomutedmewwlﬁ?iu -

B Comitedrevion 15097 uih the st .
Conmitedrevin 5614 ihthe ptch o, o
Err... this s o part of the solgtion: O Oindex: sﬁwgfagomi{l&wﬁmummsummn
Committed reviion 15315 M OB M COFbed.
umfwmmm,mmmmmwmsmm H ngoiMDa:e,I\mdatedﬂte :

@ D ixedbyfevrsrm 15556 -ex:wtfg}bg@m&thatwcmﬂed_mmﬂlw-m
& Oconmted nrevsin 159 *
(mmwedrmls%gw&hﬁws&mmto&eﬁgfdgaww DIhepmwmenuRantoapdystaf
B Conmited evision 16135 withthe sotion, DRemoved umecessary code i FigCasferBocktiiudes.
B Tis pach obvesth sue, IUC:00Index: sforgferqounfndagramfulFighssocetion favall=ssmsss
Commited revision 16259 withthe patch gven before. OFbced, :
B Dfigby e 16270030t sePofe oo ws emoving the o confgatin andg
1 et this il f 2 -unkested- 1 Clindex: sreforgfargoumanguageconnotation/AtrbutebiotationCpp fav
Cmrﬂtedmm??lmhﬁempmﬁeﬂlmms fednow,
Fived i vevision 16493,

Conmited reviion @lwﬁ\theﬁx DWeneededtodoaw&m&nn—caﬁnﬂwnstmﬁor :
Conntedrevein 16539t the okt s v MR poblem LT ko et potemtha e
erdmemm 16692, '
fmedwithremm 132

cmwrmlsmmmm 4
& Thﬁ rnhlom ie mWTyNQoChM na}thcyM.. n'l"w(lmMmalvo » v‘rhnrhm mel'l\amm:l

112

http://trj.iei.-3

Query Editer @u«y wm:y

SELECT Irevision =Message{
WHERE{ .
revision :commithessage Message.
FILTER REGEX {"Message "bug"} -
4

Retrieve
commit
message of the
revisions
containing
string “bug”.

a

w 14 RmvenZSZl Q Fored 2 bug inthe new UM TedField2 -shen inserting 2 stnng insde the dozument, thecumr worltj jump to the ende

¢ @ Revision020 § Replaced all occurences of Projectbrowser.select with settargel to get 2 single point of entrance to target selectionFired
. & Redision3% I8 Fued bugwhile modelChanged--PR-Obtained from: TobySubmitted by: TobyReviewed by.

[rmsson] Mtssage

& Revision3nts B Remweda ‘smal bug pyeventmg argoumlm start:-

Revision3565 1 Buggfis getChildrentis novw -again- possible to reverse engineer and run crics on theentire ArgoUML with Tess than 28 .
Reision365 B fiedbug% :
Revision3689 & A srial biTg fves. Found with ImportDummy, thanks to Linus

Revision®858 B Fixed a bug Alex pointed out, This bug became apperant because of the latestchanges to the modeleventpump
Revision853 [B Fixed 2 bug Alex pointed out. This bug became apperant because of the latestchanges to the modeleventpump
Revision3875 B Atlast, ff tests work and take into account the presence of a gui except for the TestReRouteEdge but Alex vill fx thatFur
Revision®T8 B Atlast ol tests work and take into account the presence of 2 gui except for the TestReRoutefdge but Alexwiltfor thatf
Revision3% 8 first shotfor AboutBox, and fixed bug 184 -FigText-PRObtained from: TobySubmitted by TobyReviewed by:

SELECK Yrevision Messege i
WHERE{

revision :commitMessage IMessage
FILTER REGEX {IMessage, fixissue’)
L

| @ Revision3881 B Attast, ol tests work and take into account the presence of 2 gui except for the TestReRoutefdge but Alex will fix thatfué
¢ @ Revision3883 B Atfast afftests work and take into account the presence of a gui except for the TestReRouteEdge but Alex villix thatFus’
@ Revision3392 B Fixed 2 small bug in UmiComboBortodelRefoctored the Detailspan in such a way i reacts corvectly to targetfventsg

& Revision3303 1 The TahProps uses targetiistener in a correct way now - Tabprops now responsiblefor maintaining its own targetistenes | g
& Revision399%6 & Projectis 2 Targetlistener now too Fired an -aliready exsting- bug in PropPanelOperation conceming navigateUp

. @ Revision3ld B Fixed bugwith todopane

4 Revision3925 [Fored bug markus reported concesming diagram names

& Revision3s5 § some last fixes, infcuding Curts NavPane, Dependency, and Makefile changes.Also, [found a bug concerning drawing Fi

Revisicn2360 B Fuxed a bugto the load proces. Really have to redesign the damn loading saving one day ' §
¢ Revisicn3%! B Fured a bug tothe load proces. Really | have to redesign the damn toading ssving one day ;
- @ Revisiond300 B Removed setPreferredSize-- calls which caused it to layout really smalt on "Goto" dialog, Removed reference to Metallo »

Pty

| @ Revisiont268 B Adjusted ProjectMember name handfing to fix issue #435 Jssue numben 455

| # Revisionld63
| & Revisiont540 B8 fixissue 777 where the Action “remove from diagram” would actually remove the element and put in Trash when the eleme

1 ®Revisiond? B This modification should fixissue 225. It sets the name of the figure to thename of passed Mintesface node, $0 Y0U €3 36

i

Revision3880 £ Atlast af tests work and take into aceount the presence of 2 gui except for the TestReRoutebdge but Ales willfixth

Fixed 2 small bug in UmiComboBoxdModel2Refactored the Detallspane in such a way it reacts corectly to targetEventsint
. fised placement bug in Classdiagrambayouter refating to uting the placementhint only when it is safe fo do so. Y is safe

o L4

o

@ Revision10910 B Patch tofixissue 4324 as supplied by Andrez.

& Revision13432 B Patch to fixissue 4839, a5 supplied by Christian,

Changes to critics for associations and wizard for aggregation to fix issuehl9,

& Revisionst0 B Move multiplicty out offig group to fixissue 1125, This undoes change infroduced in 113 which was to fixissue 1007, Isue
@ Revisiond24? [Buggfixissue 1993,

@ Revisions35? B Rolback changes to fix issue 701 that caused the higher pnonty issue 2374 This undoes the changes invers 1 Tof thche!ﬁ
@ RevisionS71 B Revert intial values field to use old deprecated classto fixisue 1378
& Revision?464 B first step to fixissue #2063 - model used as namespace in generation

¢ RevisiondsTt B Net attenpt to fix issue 3207: "Edges do not stick to package bounds”, Besides for a Package, also solved for Choice, Mo
@ Revisionds8s B Comected the failing test since my latest commits to the DeteilsPane dlass to fix isue 3254,

113

Guery Edttor Q%wbbmf

T trevision Message

RE{

‘ioncommitMessage JMessage,

R REGEX {Message, " issue number

Retrieve a commit
message of the
revisions
containing string
“Issue numer”.

revision {Messagel *
@ Revision5589 18 tssve numbeg 10T ockargojaris LOPLCVS: v CVS: sy
@ Revision’872 {0 Issue numbes-30820ksained from:Submitted byReviewed bylmplemented critc to detect "circular” association dlasses
@ Revision10193 B Issue numben-31880bsined fromSubmitted by-Reviewed by rename anon 1o unnamediCYS; ---rws-rsssesssenseeneecs

@ Revisiond24 B lssue number: 3384Fived colling the ant.bat script provided with ant 16.2.0VS:
@ Revisiond? B lssue number: 3652First implementation of CodeGenerator(V:
& Revisiont0191 B lssue number: 37730btained from:Submitted by:Reviewed by-expand root node after selecting new perspective inthe -
@ Revisionl0M0 B Jsue number: 4074 - fix tagged values with no xmijd-ficis in last commit - this s just to get the esue number into 3 co
Revisiont0176 B Lssue number: 40970btzined from:Submitted byReviewed by:Don't allow methods on interfaces, Probably not & nice sc -
Revision1d325 B lssue number 4181repair behavior of Navigationbox fink buttonObteined from:Submitted by Reviewed byrCVS: ----e--- _
Revision11035 & Issue number. 42780btained from:Submitted byReviewed by:Added special cases for use cases,(VS: -eeuvmenemenees : _:u
Revision1035 [Issue number, 43510btained from:Submitted bReviewed by:added check to see whetherthe association end s actuall: -
Revision11034 1 Issue number; 44060btained from:Submitted by:Reviewed byadded check that the index cannot go out of bounds whe!
Revisiond27T B lssue number 4510btained from: Jeremy BennetSubmitted by: Thierry LachReviewed by: Luc MaisonobeProblems wit
Revisionl602 %4 lssue number 49)1Submitted by: Thiery LachCorrection for "no media inserted in the drive” as found in sun's java forui—

@ Revisiont0 [lsue number 491Submitted by Thieny LachCorrection for *no media inserted in the drive” as faupdn sua's jaua for
@ Revisiont365 B None of the classes in this package eppear to be used. 1 am deprecating them now and will remove them before some f
- @ Revisiont0278 B Open the perspective configurator dialeg a5 2 second location from the edit menulssue number. 36310btained fromS:
O Reisionsd] B Other generators of public use can also be found in org.argoumluml. this helps to make the cognitive system more ind:
¢ Revision7830 B Remove dependencies to Design and DesignMateriallssue number:Obtained from:Submitted by:Reviewed by:(¥S; -=----
@ Revision124 8 Submitted by: Thiemy Lachadd phuggable menu support for Meny-File--lraportCYS:
@ RevisionssS) [Testcate to check that two wuids are not equal -pretty basic-Issue number0Obtained from:Submitted by Reviewed by:CY
: Updated some features. Added some Issue numbes,

add LD statementsadd a call to targetSet after targetRemoved had been called. This is in sync with the other model ba:

* @ Revision?1? B adding methodto Model Facade implementationslssue numberObtained from Submitted by-Reviewed byCVS: »-ore-ev
© @ revisiond?93 B adding related include reltionships when adding 3 use case suhich had been removed from the diagram was not possib
@ Revision9R B adding source for namespace packageCVS: OV ssue
@ Revision953 8 avoid NPE inremoveChsoleteFeaturesCVS: (VS bsue

114

In what follows, several quires applied to retrieved information from the SVN and

Bugzilla Ontology.

Query Editor !vaymay !
£CT DISTINGT 2Author
RE {
Frevision authot 2Author

Query applied to retrieve
all author names from a
SVN Ontology

115

Query Editor Quayubmy

fissue}

SELECT issue Hrevision Tsvn_ author Tlssue Ass«gnee

WHERE

: Zissue thasResolution Trevision.

‘issue hashssignee Tssue Assignee.

Trevision syn:author Jsvn_suthor.

)

/\

’lssue_‘:ﬂdz
| @ issues23s
L @ issue5256
@ issueS258
" @ issue260
& issueS4T8
| @ issueSis?

an

issue

Query applied to retrieve
number, its
assignee and the name of
author in SVN.

& 55065493
& issuessd?
& issued5a2
& isuessis
@ issueSSs7
& issues58l
@ iscues58

" @ suessiz
| 4 isuesed9
issueS667
{4 issueS670
& issues6sl

| @ isoueS685

Fevision

& omRevisionS911
€ snRevisionl5897
& svnRevision] 5814
$ snRevision] 5815
& svnRevision15811
¢ sunRevision15956
& svnRevision5972
& snRevision] 5069
$ anRevisionl6135
& wnRevision16258
& svnRevision6270
$ wnRevision281
€ sunRevision16493
$ svnRevisionl6541
€ sunRevicionl6539
® sunRevision1660
& sunRevisiont3l
¢ snRevision1 2
& snRevision]6739
$ snRevisionl6763

svn_author

maureliol 234

B mw

B maurelici24
& jrobbins

B mw

Issue Assignee

& Person_maurdicl 2%
& Person_mvw

@ Person_mvw

® Peson_mvw

& Person_maureliol 24
& Person_maureliol 24
@ Person_maureliol 24
& Person_mvw

€ Person_mvw

¢ Person_mvw

Person_maurelicl?%
® Person_mvw

¥ Person_jssuesatargoum
& Person issuesatargoum!
& Person_mvw

& Person_penyaskito

4 Person_thn

¢ Person_thn

& Person mww

+ Person_issuesatargoumt

116

Query Editor iqx{ > [issue] description Resolved.in commit message
§szua T 1 14 iSO Comments with - -Critic-- deﬁn&d inthe... @ mRevnsmnlSQll § Mergmg my code from G5eC 2608 into trunk.This co... :
Zg:z:‘l‘vg“ | @isues3s B UMLLA notation doesn - tparse frezeni., @ svnRevisionts897 B Fixfor issue 5235 UMLLA notation doesn't parse froze...
;’to.mmi! _;;::ssa - ’ ®isuesS6 B diagrams appear in profile configuration.. € svRevision1$814 [Fixforissue 5256, according the given patch.
WHERE | @issues2t B 2 perspective rwies with same name: -Cla.. @ svnRevisionS815 B Fixforissue 5258, 25 given by the attached pateh,
4 | G B wrR Reorganize WFRs ¢ soRedsiontsont Merging my code from GS0C 2008 inte trunk.This co...
i;fg:g;s?f"l“ﬁ"“ & issuehin Critiques 3ren - 1 being genesated $ snRevision1% B fiing issue 5478the iMissingClassName was criticiz.,
%i;sue . des-cri‘pticn & isuesiR Dugphicate critics and critiques ® snfevision!SIN B issue 5462 -implementation details in the issue-
Tdescription, 1 ¥ issuesd93 Apply Stereotypes in diagram popup me.. € snRevisionl5368 B Fixfor issue 5493 Apply Stereotypes in diagram popu..
fissve:dateOpened | @ iguesdd? B Classthat shows sterectype grows onno., @ svn: RevrsvonlﬁlSS g Remove unnecessary code, This fixes issue 497; “Clas...
i;g‘;ﬁ%?: & issues582 Asscciation end label pasition is furt e 5542: Association end Jabel position,
é;vn:comn;itMessage ®issues58 B Can- tsave project referencing user QUFT)’ applied 'to.compgr € [5548Projectmpl setProfileConfiguration w..
2commit message. | #issuesSST [Exception when double cickingonaff 2 1SSUC description with |,
?Reso!ve(?.in | ®issuesstt Bl FiflColor applied to stereotype figs SVN vomit message. 5581: FiliColor appfied to stereotype figs,
i::;:‘a‘?(:;?:& L Oisues8 B assifieRole grows when reloading 5500 tor Classifierfiole -new constructors-..,
}) € o6l B Notation ignores Association to self whemsioi\lém Fecfor issue 5602 Notation ignores Associstion to self..

| @ issues6ig & Activations have ne border & snRevisionl6d B Fixfor bssue 5649: Activations have no border,

1 @ issues66? 8 Java RE not creating figs for Packages $ smRedisionlt B - empty log message —

| @it B Jova source import uses profile but dlass.. € snevision12 B --- empty log message ---

| #bwes68l B Selection indicstion on attribute remains.. € snRevision16730 B Fixfor issue 5681 Remove the selection indication wh.

B eens5585.. B Desasinn s coronacits.date dns st 22k 8 _nmPeirinniS162. 8. B o ioene 5585 1) LY #e.51300. 400000 .

{Subject] Predicate Object

€ snRevisionl6539 Z ovnislatestRevisionOf % anFilel2]
€ snRevision16539 %9 svmisRevisionOf & snFile’
¢ synRevision16539 2 svnisRevisionOf & snFien?
4 sunRevisionl6539 ¥ isResolutionOf & issuessiz
¢ sunRevision16540 Inferred knowledge by |MistatestRevisionOf & wnFileshs
€ svn:Revisionl6540 reasoning services of [vn:hasPreviousRevision & syniFilef65
@ sinRevisionl6540 ontology. vrisRevisionOf & svnFiledhs
4 cunRevisioni6541 vn:hasPreviousRevision & snFilelss
© synRevision16541 L %% svmhasPreviousRevision € wnFilel5s
€ sunRevision16541 B svnisRevisionDf P symFilelss
@ svnRevision16541 B synusRevisionOf € snFilel5s
4 senRevisionl6541 @ isResolutionOf & issues5o8
© svniRevisiond6542 % svrhasPreviousRevision & snFite2l3
@ svnRevisionl6542 B senisRevisionOf @ wnFile?3
@ synRevisionl6543 % svnhasPreviousRevision € wnFilell
$ synRevisionl6543 B svmisRevisionOf & kel
€ svnRevision] 6544 2 svrvhasPreviousRevision € wnFiedls
4 sunRevision16544 # symisRevisionOf ¢ anfile’s

In order to retrieve some statistics of an ArgoUML project from the Bugzilla Ontology,
we applied several queries on the Bugzilla Ontology. As a result, the queries retrieved
following statistics. (1) The total number of persons involved in the Bugzilla Ontology
(i.e. Person in the role of Assignee, Commenter, Creator of an Attachment, and Involved
Person). (2) Total number of the issues reported in the current release. (3) Total number
of activities related to the issues. (4) Total number of Comments. (5) Total number of
computer systems (i.e. combination of an operating system and platform)j Following

table shows some statistics obtained from Bugzilla Ontology.

117

Total number of Person 27
Total number Issues (as of February 4, 2009) 71
Total number Activities of related to an Issue 33
Total number of Comments on Issues 366
Total number of computer systems 10

Some Statistics of Bugzilla Ontology.
In order to retrieve some statistics of an ArgoUML project, we applied several quéries on
the SVN ontology. As a result, the queries retrieved following statistics. (1) Total number
of the files in SVN repository. (2) Total number of revisions. (3) Total number of authors
(i.e. developers / maintainers). (4) Total number of releases tagged in SVN repository.

Following table shows some statistics obtained from SVN ontology.

Total number of files used in different revision 56920
Total number of revisions 16793
Total number of Authors (developers /maintainers) 50

Total number of Releases tagged through revisions (i.e. including tags | 156
“ALPHA 1to ALPHA n”, and “BETA 1to BETA n”.

Some Statistics of SVN Ontology.

118

