
NOTE TO USERS 

This reproduction is the best copy available. 

® 

UMI 





ON VERIFYING THE USE OF A PATTERN LANGUAGE 

IN MODEL DRIVEN DESIGN 

BAHMAN ZAMANI 

A THESIS 

IN 

T H E DEPARTMENT 

OF 

COMPUTER SCIENCE AND SOFTWARE ENGINEERING 

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

F O R THE DEGREE OF DOCTOR OF PHILOSOPHY (COMPUTER SCIENCE) 

CONCORDIA UNIVERSITY 

MONTREAL, QUEBEC, CANADA 

JULY 2009 

© BAHMAN ZAMANI, 2009 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-63401-1 
Our file Notre r§f6rence 
ISBN: 978-0-494-63401-1 

NOTICE: AVIS: 

The author has granted a non­
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduce, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lntemet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

• • I 

Canada 



Abstract 

On Verifying the Use of a Pattern Language 

in Model Driven Design 

Bahman Zamani, Ph.D. 

Concordia University, 2009 

This thesis addresses the problem of verifying the application of a Pattern Language in 

a design that is built based upon the patterns of the language in a Model-Driven approach. 

Exploiting the ideas of compilers, we propose a process named Pattern Language Verifier 

(PLV). We argue that building a PLV for a given Pattern Language, requires the Structural, 

Syntactic, and Semantic rules of the language to be precisely denned. We present three 

formalisms for defining these three groups of rules. PLV is a profile-driven process and 

assumes that a UML Profile is already defined for the underlying Pattern Language. 

PLV consists of four phases: Pattern Structural Verifier (PSV), Pattern Language Syn­

tactic Verifier (PTV), Pattern Language Semantic Verifier (PMV), and Pattern Language 

Advisor (PLA). PSV verifies the structure of every single pattern used in the design model. 

PTV verifies the relationships between the detected patterns. PMV verifies the semantic 

aspects of the patterns. PLA reports the problems to the designer and guides him/her in 

fixing the errors. 

For the case study, a group of enterprise architectural patterns is selected as the Pattern 

Language. The Structural, Syntactic, and Semantic rules of the language are defined using 

the proposed formalism, and a UML Profile is defined for the language. A PLV is designed 

and implemented as an integration into an open source modeling tool. The tool is then 

utilized in designing a sample web application: Online Student Registration System. The 

usefulness of the tool is represented by walkthrough scenarios that show finding the mistakes 

in the model and helping the designer repair the detected problems. 

ni 



Acknowledgments 

A thesis like this would never be accomplished without support and encouragement of 

others. 

I am extremely indebted to my supervisor, Dr. Greg Butler, for his teaching, supervision, 

and patience during last five and a half years of my study. I learned a lot from him. 

I would like to thank the members of my committee from Concordia University, Dr. 

Peter Grogono, Dr. Patrice Chalin, Dr. Juergen Rilling, and Dr. Ferhat Khendek for their 

fruitful feedback during my doctoral proposal and my defense. 

I am thankful to Dr. Peter Hitchcock, from Dalhousie University, for his time to serve 

as external examiner of my defense, and for his valuable recommendations on the thesis. 

I wish to thank the administrative staff of our Department, particularly, the Graduate 

Programs Advisor, Halina Monkiewicz, the Laboratory Coordinator, Pauline Dubois, and 

the Diploma & Certificate Program Assistant, Edwina Bowen. 

I wish to thank all my friends and colleagues, especially, Farzad Kohantorabi and Stuart 

Thiel for the discussion about the patterns and their valuable suggestions. I also thank Sahar 

Kayhani who contributed to parts of the implementations. 

I would express my warmest gratitude to my parents for their prayers. 

And last but not least, I would like to thank and express my gratitude to my beloved 

family, my wife Farzaneh Kazemi, my daughter Sahar, and my son Sajjad, for all their 

support and love. 



Contents 

List of Figures x 

List of Tables xiv 

List of Acronyms xv 

1 Introduction 1 

1.1 The Problem 1 

1.2 The Solution 3 

1.3 Case Study 4 

1.4 Contributions 5 

1.5 Organization of the Thesis 7 

2 Background and Related Work 8 

2.1 Model-Driven Engineering (MDE) 8 

2.1.1 An MDE Road Map 9 

2.1.2 Artifacts in MDE 9 

2.1.3 Transformations in MDE 12 

2.1.4 Modeling Tool , 14 

2.1.5 Quality Control in MDE 15 

2.1.6 Modeling in Traditional Software Engineering 16 

2.1.7 Model Driven Architecture (MDA) 18 

2.2 Domain Specific Modeling (DSM) 19 

2.2.1 UML Profiles 20 

2.2.2 A Systematic Approach for Defining UML Profiles 22 

2.3 Pattern Languages (PLs) 23 

2.3.1 Pattern Languages in Architecture 23 

v 



2.3.2 Pattern Languages in Software 25 

2.3.3 Forms of Writing Patterns (Pattern Forms) 25 

2.3.4 Pattern Language Definition 27 

2.4 Pattern Relationships 28 

2.4.1 Patterns are not Isolated Islands 28 

2.4.2 Pattern Relationships and Quality of Design 29 

2.4.3 Gang of Four (GOF) Pattern Relationships 31 

2.4.4 James Noble's Pattern Relationships Scheme 31 

2.4.5 Pattern Language Grammars 34 

2.4.6 Pattern Relationships in POSA-5 37 

2.4.7 Pattern Relationships at a Glimpse 42 

2.5 Pattern Selection/Detection ' 44 

2.5.1 GOF Design Pattern Detection 44 

2.5.2 Pattern Enforcing Compiler (PEC) 45 

2.5.3 Systematic Pattern Selection 47 

2.6 Patterns of Enterprise Application Architecture (PofEAA) PL 48 

2.6.1 Organization of the Patterns in PofEAA 49 

2.6.2 PofEAA as a PL 53 

2.6.3 PofEAA is in the Solution Domain 55 

3 P a t t e r n Language Verifier (PLV) 56 

3.1 The Compilation Process 58 

3.2 The PLV Process 59 

3.3 Rules: Important Requirement for PLV 60 

3.3.1 Structural Rules 60 

3.3.2 Syntactic Rules 65 

3.3.3 Semantic Rules 72 

3.4 PLV vs. Compiler 74 

3.5 The Profile-driven PLV Process 75 

3.5.1 Overview 75 

3.5.2 PLV Architecture 79 

3.5.3 Pattern Structural Verifier (PSV) 80 

3.5.4 Pattern Language Syntactic Verifier (PTV) 81 

3.5.5 Pattern Language Semantic Verifier (PMV) 82 

3.5.6 Pattern Language Advisor (PLA) 83 

VI 



3.6 Discussion 84 

3.6.1 Summary 84 

3.6.2 Possible Extensions to the PLV Modules 85 

3.6.3 Pattern Language Issues 86 

3.6.4 Profile Issues 87 

4 A Pattern Language Verifier (PLV) for PofEAA 88 

4.1 PofEAA Selected Patterns 88 

4.2 PofEAA Rules 92 

4.2.1 Structural Rules 93 

4.2.2 Syntactic Rules 96 

4.2.3 Semantic Rules 100 

4.3 PofEAA UML Profile 102 

4.3.1 Defining the PofEAA metamodel 102 

4.3.2 Mapping PofEAA metamodel to UML metamodel 103 

4.3.3 Stereotypes of the PofEAA Profile 105 

4.3.4 Tagged Values of the PofEAA Profile 106 

4.3.5 Constraints of the PofEAA Profile 108 

4.4 ArgoPLV: A PLV for PofEAA 110 

4.4.1 ArgoUML 110 

4.4.2 ArgoPLV Architecture 112 

4.4.3 PLP in ArgoPLV 113 

4.4.4 PSV in ArgoPLV 115 

4.4.5 PTV in ArgoPLV 116 

4.4.6 PMV in ArgoPLV 122 

4.4.7 PLA in ArgoPLV 122 

4.4.8 Using ArgoPLV 127 

4.5 Discussion 127 

4.5.1 Summary 127 

4.5.2 Issues Related to Building a PLV 128 

4.5.3 Other Issues 129 

5 ArgoPLV in Action 131 

5.1 The Application 131 

5.2 Using ArgoPLV in Stepwise Design of the Application 134 

vii 



5.3 Using ArgoPLV in Checking a Design Model of the Application 150 

5.4 Discussion 154 

5.4.1 Summary , . . . 154 

5.4.2 Observations 154 

6 Conclusion 157 

6.1 Summary 157 

6.2 Review of the Contributions 158 

6.3 Discussion 159 

6.4 Limitations 161 

6.5 Comparison to Related Work 161 

6.6 Future Work 163 

Bibliography 164 

A ArgoPLV Artifacts 175 

A.l Selected Patterns from PofEAA 176 

A.2 Advices from the PofEAA Book . '. 177 

A.3 PofEAA Rule Set 181 

A.3.1 Part I: Structural Rules 182 

A.3.2 Part II: Syntactic Rules (Pattern Organizations) 193 

A.3.3 Part III: Syntactic Rules (Pattern Relationships) 194 

A.3.4 Part IV: Semantic Rules 195 

A.4 PofEAA UML Profile 196 

A.4.1 Stereotypes 196 

A.4.2 Tagged Values 197 

A.4.3 Constraints 197 

A.5 Source Code Excerpts 198 

A.5.1 JavaDoc for General Utility Singleton Class (GU.java) 198 

A.5.2 A Structural Critic 211 

A.5.3 Three Syntactic Critics 213 

A.5.4 A Semantic Critic 217 

A.5.5 A Wizard 218 

A.6 Sample Application: Online Student Registration System 223 

A.6.1 Domain Model of the System 223 

viii 



A.6.2 A Given Design of the System using PofEAA Patterns 223 

A.6.3 The Given Design after Verification by the ArgoPLV 223 

A.7 Design Rationale 226 

IX 



List of Figures 

1 An MDE Road Map 10 

2 Design of Request-Handling Framework with Isolated Patterns 30 

3 Design of Request-Handling Framework with Interwoven Patterns 31 

4 Relationships Between GOF Design Patterns 32 

5 Relationships Between GOF Design Patterns Proposed in [Zim95] 33 

6 A BNF Grammar for the Request-Handling Pattern Language 35 

7 Syntax Diagram of the Request-Handling Pattern Language 36 

8 The Front Controller Pattern 40 

9 An Annotated Pattern Language Grammar Overview Diagram 47 

10 A Grammar Equivalent to the Diagram Given in Figure 9 47 

11 A Template for Design Space Visualization using QOC Approach , 48 

12 A Cheat Sheet for Selecting Patterns 54 

13 Three Phases of the PLV Process 59 

14 The Table Data Gateway Pattern [Fow02, p. 144] 63 

15 Structural Rules for Table Data Gateway Pattern 64 

16 The Table Data Gateway Pattern [BHS07a, p. 544] 64 

17 The PLV Architecture 79 

. 18 Selected Patterns from PofEAA in a Layered Architecture 91 

19 The Front Controller Pattern 95 

20 PofEAA Rule Set - Part. I: Structural Rules (A Sample) . 95 

21 PofEAA Rule Set - Part II: Syntactic Rules (Pattern Organizations) . . . . 97 

22 PofEAA Rule Set - Part III: Syntactic Rules (Pattern Relationships) . . . . 99 

23 PofEAA Rule Set - Part IV: Semantic Rules 101 

24 Mapping the PofEAA metamodel into the UML metamodel 104 

25 The Packages in the PofEAA UML Profile 105 

26 ArgoUML's main window I l l 

x 



27 ArgoPLV Architecture 112 

28 Defining Stereotypes and Tagged Values of PofEAA Profile in ArgoUML . . 114 

29 Predicate Method of the CrFrontController Critic (Part 1) 116 

30 Predicate Method of the CrFrontController Critic (Part 2) 117 

31 An Excerpt from the Source Code of class CrLayers 118 

32 A Method from GU Class which Checks "ServiceLayer" Tagged Value . . . 119 

33 Predicate Method of the CrDomainModelSyn Critic 121 

34 Detected Patterns tab is added to Details pane of ArgoUML 123 

35 Three PofEAA Knowledge Types are added to ArgoUML's ToDo List . . . 123 

36 A Record from the "critics.properties" File 124 

37 An Excerpt from the Front Controller Wizard 126 

38 Domain Model of the Online Student Registration System 132 

39 Applying PofEAA UML Profile on the Model 134 

40 Exploring Stereotypes and Tagged Values of PofEAA UML Profile 135 

41 Setting the Stereotype and Tagged Values of the Main Package 136 

42 Reporting Syntactic Problem and Showing Guidelines to the Designer . . . 136 

43 Automatic Fix of Syntactic Problem by Adding all Missing Layers 137 

44 Applying the Front Controller Pattern 138 

45 Automatic Fix of Structural Problems in Applying Front Controller . . . . 139 

46 Automatic Fix of Semantic Problem in Template View Pattern 140 

47 Reporting the Detected Layers and Patterns of the Design Model 141 

48 Reporting Syntactic Problem on the Relationship between Patterns 142 

49 Automatic Fix of Structural Problems in Data Mapper Pattern 143 

50 Automatic Fix of Structural Problems in Table Data Gateway Pattern . . . 144 

51 Automatic Fix of the Structural Problems in Record Set pattern 144 

52 Reporting the Syntactic Problem Regarding Organization of Patterns . . . 145 

53 Automatic Reorganization of Patterns into the Layers 146 

54 Applying the Optimistic Offline Lock pattern in the Concurrency Layer . . 147 

55 The Design Model for the Application and the Applied Patterns 148 

56 The Tagged Values of the Main Package of the Model 150 

57 A Design Model for Online Student Registration System using PofEAA . . 151 

58 Design of Online Student, Registration System - Refined by ArgoPLV . . . . 156 

59 Selected Patterns from PofEAA in a Layered Architecture 176 

60 Structural Rules, Intent, and Sketch of Front Controller Pattern 182 

xi 



61 Structural Rules, Intent, and Sketch of Page Controller Pattern 183 

62 Structural Rules, Intent, and Sketch of Template View Pattern 183 

63 Structural Rules, Intent, and Sketch of Transform View Pattern 183 

64 Structural Rules, Intent, and Sketch of Service Layer Pattern 184 

65 Structural Rules, Intent, and Sketch of Domain Model Pattern 184 

66 Structural Rules, Intent, and Sketch of Table Module Pattern 185 

67 Structural Rules, Intent, and Sketch of Transaction Script Pattern 185 

68 Structural Rules, Intent, and Sketch of Data Mapper Pattern 186 

69 Structural Rules, Intent, and Sketch of Active Record Pattern 186 

70 Structural Rules, Intent, and Sketch of Table Data Gateway Pattern . . . . 187 

71 Structural Rules, Intent, and Sketch of Row Data Gateway Pattern 187 

72 Structural Rules, Intent, and Sketch of Remote Facade Pattern 188 

73 Structural Rules, Intent, and Sketch of Data Transfer Object Pattern . . . . 188 

74 Structural Rules of Optimistic Offline Lock Pattern 189 

75 Structural Rules, Intent, and Sketch of Pessimistic Offline Lock Pattern . . 189 

76 Structural Rules of Client Session State Pattern 189 

77 Structural Rules of Server Session State Pattern 190 

78 Structural Rules of Layer Supertype Pattern 190 

79 Structural Rules, Intent, and Sketch of Record Set Pattern 191 

80 Structural Rules, Intent, and Sketch of Money Pattern 191 

81 Structural Rules, Intent, and Sketch of Gateway Pattern 192 

82 Structural Rules, Intent, and Sketch of Mapper Pattern 192 

83 Mapping the PofEAA Meta-model into the UML Meta-model 196 

84 GU class Javadoc, page 1 198 

85 GU class Javadoc, page 2 199 

86 GU class Javadoc, page 3 200 

87 GU class Javadoc, page 4 201 

88 GU class Javadoc, page 5 202 

89 GU class Javadoc, page 6 203 

90 GU class Javadoc, page 7 204 

91 GU class Javadoc, page 8 205 

92 GU class Javadoc, page 9 206 

93 GU class Javadoc, page 10 207 

94 GU class Javadoc, page 11 208 

xii 



95 GU class Javadoc, page 12 209 

96 GU class Javadoc, page 13 210 

97 Domain Model of the Online Student Registration System 223 

98 A Design Model for Online Student Registration System using PofEAA . . 224 

99 Design of Online Student Registration System - Refined by ArgoPLV . . . . 225 

xm 



List of Tables 

1 Examples of domain-specific languages (adapted from [MHS05]) 19 

2 Classification of Pattern Relationships 33 

3 Pattern Relationships at a Glimpse 43 

4 Alternative Patterns for Domain Layer 51 

5 Alternative Patterns for Concurrency Control 53 

6 Organization of Patterns in the PofEAA Book, Adapted from [Fow02] . . . 66 

7 Notations for Representing the Organization of Patterns 68 

8 Notations for Representing the Relationship Between Patterns 70 

9 Notations for Representing the Semantic Rules of a PL 73 

10 Statistics on Selected and Excluded Patterns from PofEAA 89 

11 Selected and Excluded Patterns from PofEAA in our Case Study 90 

12 Advices from the PofEAA Book [Fow02] 94 

13 Tagged Values for stereotype «PofEAAModel» in PofEAA UML Profile . . 107 

14 Statistics about the PofEAA UML Profile 109 

15 Some Stereotypes of the PofEAA Profile 109 

16 A Record from the Design Rationale File . 124 

17 Records from the Design Rationale File Associated with the Repairs . . . . 149 

18; Advices from the PofEAA Book 177 

19 Advices from the PofEAA Book (Cont'd) 178 

20 Advices from the PofEAA Book (Cont'd) 179 

21 Advices from the PofEAA Book (Cont'd) 180 

22 Tagged Values for stereotype «PofEAAModel» in PofEAA UML Profile . . 197 

23 Records from the Design Rationale File Associated with the Repairs . . . . 226 

xiv 



List of Acronyms 

API 

CASE 

GFG 

DB 

DBMS 

DSL 

DSM 

DSML 

EOL 

EWL 

EMF 

GEF 

GOF 

GPL 

GUI 

IDE 

MDA 

MDD 

MDE 

MDSD 

MDSE 

Application Programming Interface 

Computer Aided Software Engineering 

Context-Free Grammar 

Data Base 

Data Base Management System 

Domain-Specific Language 

Domain-Specific Modeling 

Domain-Specific Modeling Language 

Epsilon Object Language 

Epsilon Wizard Language 

Eclipse Modeling Framework 

Graphical Editing Framework 

Gang of Four 

General Purpose Language 

Graphical User Interface 

Integrated Development Environment 

Model-Driven Architecture 

Model-Driven Development 

Model-Driven Engineering 

Model-Driven Software Development 

Model-Driven Software Engineering 

XV 



MVC Model View Controller 

MOF Meta-Object Facility 

OCL Object Constraint Language 

OCLE Object Constraint Language Environment 

0 0 Object-Oriented 

OMG Object Management Group 

PEC Pattern Enforcing Compiler 

PIM Platform-Independent Model 

PIT Pattern Information Table 

PMV Pattern Language Semantic Verifier 

PL Pattern Language 

PLA Pattern Language Advisor 

PLOP Pattern Languages of Program 

PLP Pattern Language UML Profile 

PLV Pattern Language Verifier 

PSV Pattern Structural Verifier 

PTV Pattern Language Syntactic Verifier 

PofEAA Patterns of Enterprise Application Architecture 

POSA Pattern-Oriented Software Architecture 

PSM Platform-Specific Model 

QOC Questions, Options, and Criteria 

UML Unified Modeling Language 

WFR Well-Formedness Rule 

XMI XML Metadata Interchange 

xUML Executable UML 

XSLT Extensible Stylesheet Language Transformations 

xvi 



Chapter 1 

Introduction 

1.1 The Problem 

The emergence of model-driven paradigm for software development has shifted the fo­

cus of software development from code-centric to model-centric. There are several ap­

proaches presented to the software community as model-driven approaches, e.g., Model-

Driven Architecture (MDA) [Obj09b], Model-Driven Development (MDD) [Sel03, Sel06], 

Model-Driven Engineering (MDE) [Bez06, Sch06], and Model-Driven Software Development 

(MDSD) [SV06]. The ultimate goal in all these approaches is to be "Model-Driven." 

Hence, models are the main artifacts that drive software development in a model-driven 

approach [Bez06], and the quality of models has direct impact on the quality of software. 

In this thesis, we select MDE as a representative of all the model-driven approaches. 

However, our focus is on the models that are used for the design of the software, i.e., design 

model. The use of model for designing software is not limited to the model-driven ap­

proaches, even in traditional software development paradigms, models are used extensively. 

One of the approaches selected by the designers, in the hope of producing quality mod­

els, is to apply best practices that are already identified, documented, and introduced by 

the experts as Patterns. For instance, Booch says "All well structured object-oriented ar­

chitectures are full of patterns" [GHJV95, p. xiii], or Larman says "Learning and applying 

patterns will accelerate your mastery of analysis and design" [Lar05. p. xxi]. This is be­

cause patterns are the documented knowledge of experts. When an expert finds out that 

a problem is occurring regularly, he /she may decide to form the solution as a pat tern and 

introduce it to the others. In a short definition, "a pattern is a solution to a problem in a 

context" [GHJV95, p. 3]. 

1 



When a collection of patterns is defined such that a) there is a starting pattern, b) there 

is a guidance on how to use one pattern after another, and c) the set of all patterns in the 

collection are sufficient to provide the design for a whole system, we name the collection 

a Pattern Language (PL) [A+77, Ale79]. If the designers decide to design a system based 

upon the patterns of a PL, they must have knowledge about how to apply an individual 

pattern correctly, how to put several patterns together (weave patterns) to make a correct 

combination of patterns, and how to ensure that a pattern combination is semantically 

correct. 

Despite the ample discussion on the patterns in the software community, and the emer­

gence of many pattern collections or pattern catalogs [HC07], the field of Pattern Languages 

is not as developed as the field of patterns. In an study, Booch [Boo09] has identified "a 

catalog of 1938 patterns, encompassing 54 pattern languages and 1884 individual patterns." 

Building a design model in MDE based upon a PL is both recommended and widely 

accepted in the software community. In using a PL, two major issues are "pattern selection" 

and "pattern application" [GHJV95, p. 29]. These issues have direct impact on the quality 

of models. That means, selecting a wrong pattern or incorrect usage of a pattern could 

result in inconsistent design and therefore low quality software. 

Not all the PLs have precisely defined rules governing the structure of individual patterns 

(structural rules), the possible relationships amongst patterns (syntactic rules), and the 

semantic of a pattern combination (semantic rules). For some PLs, pattern relationships are 

embedded into the lengthy texts of pattern descriptions. For instance, Patterns of Enterprise 

Application Architecture (PofEAA) [Fow02] consists of 51 patterns with relationships which 

are all explained in prose description. Hence, designers in general, and novice designers in 

particular, are vulnerable in making mistakes in pattern selection, pattern application, and 

pattern weaving. That means, designing with patterns [BHS07b, p. 248] is not an easy task, 

particularly for a novice designer. 

Ensuring that the constraints of a pattern are respected frees a designer from the exi­

gencies of implementation. Providing support for automatic verification of the models that 

have benefited from a PL will expedite the design process and results in better produc­

tivity. The ability to verify the use of a PL in a design model, results in better quality 

models (increasing the correctness of the model), faster development process, improved 

documentation, and improved consistency. 

This thesis addresses the problem of verifying a design model which is built based upon 

the patterns of a PL. The problem is that patterns are not isolated islands. In designing 

2 



software based upon the patterns of a PL, i.e., in designing with patterns [BHS07b, p. 248], 

the application of the patterns is not arbitrary. The PL may contain dozens of patterns 

with a variety of possible relationships between them: uses, alternative, conflict, to name 

a few. The designer must adhere to the relationships between patterns. If the designers 

do not understand the various interactions between patterns, they might select conflicting 

patterns [HAZ07]. Buschmann et al. [BHS07b, p. 121-134] argue and show by an example 

that the relationships between patterns help the designer create pattern-based designs where 

their quality is better than the designs built with isolated patterns. 

Before presenting our solution, we must clarify that the verification, the correctness, and 

the consistency of a design model, are all with respect to the rules that describe the PL. By 

"verifying a design model" we mean we check a design model to find problems in applying 

the patterns of a PL. The problems are caused by violation of PL rules, structural, syntactic, 

or semantic. In other words we check the correctness and the consistency of the model from 

the PL point of view. By "obtaining a quality design model" we mean producing a model 

with improved quality, i.e., a model which is both correct and consistent. We verify a design 

model to find problems, then we fix the detected problems to obtain a quality model. 

It should be noted that some researchers [Unh05, p. 14] correspond verification to only 

the syntactic correctness of software and models, and believe that dealing with semantic 

meanings is validation. However, in this thesis, we consider the checking of all three classes 

or rules as verification. 

1.2 The Solution 

As a solution to the aforementioned problem, we propose a process called Pattern Language 

Verifier (PLV). We believe that checking a model which is built using the patterns of a PL 

is similar to using, a compiler [ASU86] for checking a source program which is written in 

a programming language. This similarity is the cornerstone of defining the PLV process. 

The idea of similarity between PL and a formal grammar is also pointed out by other 

researchers [NB02, HAZ07, Zdu07, BHS07a]. 

PLV is a verification process which exploits the idea of programming language compilers 

to detect the structural, syntactic, and semantic errors in a design model. Furthermore, PLV 

includes a module which helps the designer in fixing the problems either automatically or 

through guidelines and advices. We also propose a formalism for representing the rules of a 

PL. Characterizing the relationships between patterns is an open research problem [NB02]. 

3 



The PLV process accepts a Unified Modeling Language (UML) design model as input 

and reports the structural, syntactic, and semantic errors in the model, considering the 

rules of the underlying PL. The PLV process includes four cooperating modules (phases): 

Pattern Structural Verifier (PSV), Pattern Language Syntactic Verifier (PTV), Pattern 

Language Semantic Verifier (PMV), and Pattern Language Advisor (PLA). 

The process starts by PSV, which is responsible for detecting the structural errors that 

are found in the application of individual patterns. Then, the PTV detects the syntactic 

problems regarding the pattern combinations used in the model. The PMV finds the se­

mantic problems in the design model, i.e., the inconsistencies between the detected patterns 

and the context of the design. The PLA reports the errors to the designer, gives guidelines 

on how to fix the problem, and, if wizards are available, repairs the problems automatically 

subject to the designer's request. A Design Rationale is also recorded by the PLA to show 

the automatic modification applied on the model. The information on the structurally 

correct patterns (detected by PSV) are recorded into a table called Pattern Information 

Table (PIT) which facilitates the work of the other phases. 

As in writing a program in a programming language, where the programmer knows 

which keywords he/she wants to use and which language constructs is he/she using, in 

designing with patterns we suppose that the designer knows which patterns he/she wants 

to apply. This way we eliminate consideration of the task of pattern selection in PLV. 

For implementing this idea we utilize the UML profile mechanism [Obj05c]. This makes 

our process a profile-driven process. Both the designer and the process make use of 

the profile elements: stereotypes, tagged values, and constraints. Stereotypes are used to 

indicate which specific pattern is being applied and which model element is playing a role 

in a pattern. Tagged values are used to access the meta-information such as the level of 

expertise of the designer or the language used for implementation of the system. 

1.3 Case Study 

Our case study consists of two parts. The first part aims to validate the PLV process, i.e., 

to show how we can reach a PLV tool, given a PL. The second part intends to evaluate the 

obtained PLV, i.e., to show how the tool helps the'designer in finding and fixing the design 

problems related to applying the patterns of the PL. 

In the first part of the case study, as the PL. we select a subset of PofEAA [Fow02] 

consisting of 23 patterns. Since this PL lacks a set of precise rules that specify the structural. 

1 



syntactic and semantic aspects of the language, we extract these from the PofEAA book. 

Then, the extracted information is transformed into formal rules. We define a UML profile 

for PofEAA, which makes the definition of a PLV for PofEAA possible. The defined PLV is 

then implemented as an extension for the ArgoUML [Tig09a] modeling tool. The resulting 

tool is called ArgoPLV. 

In the second part of the case study, we use the ArgoPLV tool to model a sample web-

based application: online student registration system. We choose two tracks for this part. 

The first track reveals how the ArgoPLV tool helps the designer in an interactive session 

with the tool, where a step-by-step design of the system is undergone. The second track 

shows the usefulness of the tool in verifying an existing model of the system and reporting 

the errors to the designer. The design before and after verifying with the ArgoPLV is 

investigated. 

1.4 Contributions 

To the best of our knowledge, PLV is the first work which addresses the problem of verifying 

a design model from the PL view. Most of the related work cited in Chapter 2 falls into 

the category of single pattern detection and those works do not focus on the PL aspects. 

There are two works close to PLV: Pattern Enforcing Compiler (PEC) [LSV05] and Zdun's 

work [Zdu07]. The former is an extension to a Java compiler which verifies the application 

of Gang of Four (GOF) [GHJV95] design patterns in the code. PEC only investigates 

individual patterns. It does not consider PL issues. The latter uses annotated PL grammars 

and design space analysis in systematic pattern selection. Zdun's work addresses both 

architectural patterns and GOF design patterns. This work provides a pattern selection 

mechanism; It is not a verifying approach, and it does not address the models directly. 

Working on the formalisms for PLs in general, and particularly formalism for repre­

senting the pattern relationships, is an important area of research in software engineering. 

The rationale is that lack of formalism for PLs is an obstacle for providing tool support in 

pattern selection and application. We should note that patterns are not isolated islands, 

and considering patterns independently is not necessarily useful, even it may result in low 

quality designs, i.e. designs which are more complex and hard to maintain [SSRBOO. p. 505], 

[BHS07b, p. 117]. [Zdu07]. 

Addressing the quality in MDE is another important issue. Quality of a model, like 

any other quality, is not an absolute concept. Different people consider different quality 

5 



attributes for a model. For instance, Selic [Sel03, Sel06] considers Abstraction, Understand-

ability, Accuracy, Predictiveness, and Inexpensiveness as the characteristics of a quality 

model. Unhelkar's [Unh05] argues that a model should be syntactically correct, semanti-

cally meaningful, and aesthetically pleasing. Buschmann et al. [BHS07b, p. 131-132] see a 

model with high pattern density as a good design. After all, the tool assistance for quality 

assurance will help designers in finding the problems and checking the quality of the models. 

The contributions of our research are as follows. 

1. The PLV Process (See Section 3.5). This thesis moves the state-of-the-art in the 

Pattern Language Verification to the next level by introducing the PLV Process. The 

PLV is an improved version of the previously published ideas in [ZKB08, ZBK09]. For 

the first time, the idea of mimicking the tasks of the analysis phases of a compiler in 

order to check a design model is presented and organized as a process. 

2. A formalism for representing a PL (See Section 3.3). This thesis contributes to the 

pattern formalization techniques by addressing all the three aspects of a PL: struc­

tural, syntactic, and semantic. 

3. The PofEAA Advices (See Section 4.2). Extracting the advices from the book and 

classifying them into three groups, structural, syntactic, and semantic, is a useful 

source of knowledge for the designers who want to apply these patterns. 

4. The formalized PofEAA rules (See Section 4.2). The advices are formalized using the 

formalism proposed in this thesis. These formalized rules pave the way for defining 

the constraints of the profile. 

5. The PofEAA UML Profile (See Section 4.3). This is the first time that a profile 

is defined for a PL. The profile per se can be used by both the designers and the 

researchers. 

6. The ArgoPLV (See Section 4.4). The ArgoPLV is a PLV for PofEAA, i.e, it is tool 

that verifies the application of PofEAA. 

7. An exemplar session of ArgoPLV (See Chapter 5). This example shows designing with 

patterns of the PofEAA PL for a sample application: Online Student Registration 

System. 

8. An MDE Road Map (See Section 2.1). The MDE road map presented in this thesis is 

an introductory review of MDE which discusses on the artifacts, the transformations. 

6 



the modeling tool, and the issue of "Quality in Modeling." 

1.5 Organization of the Thesis 

This thesis is organized as follows. Chapter 2 introduces the background knowledge and the 

related work. Chapter 3 describes the PLV process as a proposed solution to the problem. 

Chapter 4 shows how a PLV can be defined for a given PL. As a case study, a PLV is 

built for a subset of PofEAA. The PLV modules are integrated into ArgoUML [Tig09a] 

modeling tool, resulting to a tool named ArgoPLV. Chapter 5 shows the ArgoPLV in action 

to confirm that the ArgoPLV is applicable in a real world situation. The final chapter, 

Chapter 6, is dedicated to the conclusion, discussion, comparison to the related work, and 

future work. Appendix A, titled "ArgoPLV Artifacts," gathers together a comprehensive 

set of the artifacts that are generated during the process of building ArgoPLV tool. The 

appendix is a good reference for readers who are interested into applying the PLV process 

for a PL. 

i 



Chapter 2 

Background and Related Work 

This chapter introduces the basic background and the related work that help the reader un­

derstand the problem and the solution that are described in this thesis. Section 2.1 discusses 

the main idea of model-driven approaches, particularly Model-Driven Engineering (MDE), 

and addresses the issues regarding the quality control of models. A quick comparison to the 

traditional software engineering and Model-Driven Architecture (MDA) ends the section. In 

Section 2.2, we discuss Domain-Specific Modeling (DSM) and the related concepts, includ­

ing Domain-Specific Language (DSL) and the UML Profile, and then a systematic approach 

for defining a profile is introduced. Section 2.3 elaborates on the concepts of pattern and 

Pattern Language (PL), and presents our accepted definition for the term PL. Section 2.4 

illuminates the fact that "patterns are not isolated," by conveying the pattern relationships 

and the formalisms that are introduced by the pattern authors and the researchers. The 

work on pattern selection and/or pattern detection is discussed in Section 2.5. Section 2.6 

introduces the Patterns of Enterprise Application Architecture (PofEAA) as a PL. 

2.1 Model-Driven Engineering (MDE) 

In most of the engineering disciplines, it is de rigueur to use models when designing a 

complex system. Since today's software systems are becoming more and more complex, 

benefiting from using models is inevitable [Sel03]. Despite the processes that are code-

centric, in MDE models are the main artifacts which drive the development. The ultimate 

goal of MDE is to automatically generate programs from the corresponding models [Sel03]. 

Models are transformed from higher levels of abstraction to the lower levels such that finally 

they will become the deployable software. 

In the software community, there is no clear presentation of the MDE as a process for 

8 



software development. In this section, we present our literature survey on MDE as follows. 

In Section 2.1.1 we gather all the main concepts of MDE under an umbrella: "a road map 

for MDE." Then, in Section 2.1.2 to Section 2.1.4, we study the major parts of the road 

map, Artifacts, Transformations, and Modeling Tool respectively. Section 2.1.5 reviews 

the issue of quality control in MDE. In Section 2.1.6, we address the role of modeling in 

traditional software engineering, and in Section 2.1.7, the MDA is introduced briefly. 

2.1.1 An M D E Road Map 

Since MDE is not mature enough yet as a software process, there is no consensus on the 

life cycle and the artifacts in this process. As Bran Selic [Sel06] says "we are still in the 

infancy of this technological wave." We depict an MDE approach (road map) for software 

development as presented in Figure 1, with focus on the major artifacts that matter in 

MDE. 

Figure 1 aims to highlight three major points about MDE: 

• MDE is a model-centric approach. 

• The software development is indeed a correct application of some transformations. 

That means developers transform artifacts from one level of abstraction to another 

level, until they obtain a working code. 

• For applying MDE, we need a modeling tool to utilize automatic execution of trans­

formations. 

Note that this is not a complete MDE process, since it starts from the design, and the 

requirements are not considered as part of our MDE road map. This does not mean to 

underestimate the importance of the requirements analysis and specification. Instead, we 

assume that the designer already has some knowledge of the underlying business system. 

2.1.2 Artifacts in M D E 

In Figure 1, artifacts are shown by cubes. An artifact is a piece of information or the 

result of a transformation. As indicated in Figure 1, there are three main artifacts in MDE: 

Domain Knowledge, Model, and Code, which are discussed in the following. 

Domain Knowledge The designer should have enough knowledge of the domain and 

some familiarity with patterns. Applying patterns is both essential and recommended in 

9 



Model 

Higher level of abstraction 

\ 

M
odel-to-M

odel 
\ 

Transform
ation 

/ 

S. 

k 

Lower level of abstraction 

k 

s. 

k 

I 
1 
o 

General Purpose Patterns 

*v \ 

Domain Specific Patterns 

k k 
Domain Knowlege 

v k 

Code 

Immature Code 

k 

C
ode-to-C

ode 
\ 

Transform
ation 

/ 

S. 

k 

Mature Code 

k 

\ 

k 

Legend: Transformation 1 ( Tool J 

Figure 1: An MDE Road Map 

software development using the MDE approach, e.g., Larman says "Learning and applying 

patterns will accelerate your mastery of analysis and design" [Lar05, p. xxi]. 

Patterns can be divided into two groups. General-purpose patterns include patterns and 

practices which are well known to the software community and their usage is recommended 

in most of the Object-Oriented ( 0 0 ) software projects, GOF [GHJV95] design patterns and 

Larman's GRASP [Lar05] patterns, to name a few. Domain-specific patterns are applicable 

when the developer wants to work on a problem in a specific domain such as enterprise appli­

cations or telcconnnimication applications. As examples of domain-specific patterns, we can 

refer to PofEAA [Fow02] and Pattern-Oriented Software Architecture (POSA) [BMR+96]. 

We will discuss more about the patterns and PL in Section 2.3. 

10 



M o d e l As it was mentioned earlier, models are the main artifacts in MDE. But what is a 

model? A basic definition is: A model is a representation of a system. Selic [Sel06] defines 

an engineering model as a representation of a system that hides some of the properties and 

highlights the ones that are of interest for the user. This hiding and highlighting means "a 

model is an abstraction" [Sel06]. 

Regarding the technical details of the system under development, models are divided 

into two levels of abstraction. Models in the high-level of abstraction deal with concepts 

that are more of interest of the user (customer) of the system and hide the technical details. 

Models in the low-level of abstraction contain technical and implementation details that are 

more attractive to the developers of the system. 

In MDE, we star t from a description of a business feature by building models which are 

at high level of abstraction. The final goal is to reach to models at lowest level of abstraction, 

i.e., an executable system. As we move in this pa th from start to end, our understanding 

of both the business goals and the system under development evolves. Therefore, it causes 

the models to evolve too. Tha t means the models are more mature, accurate, and consis­

tent [BIJ06]. Note that in Figure 1 we have distinguished between models at low-level of 

abstraction and the code. 

Every model should conform to a metamodel. For instance, a set of books in a library 

can be represented as a relational model (a table which has columns such as ISBN, title, 

and author). Relational models conform to a relational metamodel which defines a relation 

(or table) as a set of attributes (or columns) with distinct names. Therefore, there are two 

important relations in MDE: representation and conformance. Simply put , the metamodel 

says what model elements we can have in our model and how these elements are arranged and 

related. Each element in the metamodel can be considered as a type for the model elements. 

Since there are a growing number of metamodels, there is a need for a meta-metamodel to be 

defined. A metamodel is said to conform to its meta-metamodel [Bez06]. Eclipse Modeling 

Framework (EMF) Ecore [Fou09a] and Object Management Group (OMG) Meta-Object 

Facility (MOF) [Obj06a] are two well known meta-metamodels. 

There are many modeling languages, tools, and approaches. A modeling language can be 

mathematical, textual, or graphical. As an example of a mathematical language, Z [Spi92] is 

a formal specification notation based on the first order predicate logic and set theory. In the 

graphical modeling of 0 0 software systems, Unified Modeling Language (UML) [Obj05b] is 

the dominant approach. "UML has become the universally-accepted language for software 

11 



design blueprints" [Lar05, p. xix]. UML has an important role in the popularity of the ap­

plication of models in software development [SV06, p. 3]. Our focus for high-level modeling 

in this research is on UML models. To narrow our previous definition of model, henceforth 

we consider the following definition for model: A model is a set of related and consistent 

UML diagrams. 

To achieve the persistence and interchangeability of models, an interface format called 

XML Metadata Interchange (XMI) is provided by OMG [Obj05a]. Therefore, models are 

serialized in the form of XMI files by the modeling tools. 

Code Code is the final artifact in any software development endeavor. In contrast to the 

traditional approaches of software development, in MDE the code generation is not merely 

the responsibility of the developers. That means, part of the code (and hopefully, all of 

it) might be generated automatically by the tool. The most productive form of MDE is 

when the process is fully-automated, i.e., the developers work only with the models and 

utilizing action languages, the code is automatically generated [Sel06]. This is the ultimate 

promise of the Model-Driven Software Engineering (MDSE) approaches that promote full 

code generation from the UML models, such as Executable UML (xUML) [MB02]. 

The code that is generated by currently available tools, is not mature enough to be 

considered as a running version of the software. Therefore, the code needs to be enriched by 

the complements added by the designer. The first version of the code which is automatically 

generated and mostly consists of code skeletons is named immature code in Figure 1. This 

code when added to by the developers and generates a working system is named mature 

code. Section "Model-to-Code transformations" will address this issue in more details. 

2.1.3 Transformations in MDE 

In Figure 1, Transformations are shown by arrows. Transformations are the distinguishing 

factor between the MDE and the traditional methods that use models only as sketches for 

the design [BIJ06]. Transformation is a mapping function that accepts an artifact as input 

and generates another artifact as output. By considering 'model' and 'code' as artifacts, 

there are four possible transformations: model-to-model, model-to-code, code-to-model, 

and code-to-code, which are discussed in the following. Some people consider code as a 

model with lower level of abstraction, hence, they define only one form of transformation: 

model-to-model transformation. 

Transformations can be applied manually or automatically. In manual transformations. 

12 



it is the developer's responsibility to investigate the input model and apply the modifications 

to it by adding, editing, or removing some model elements. Furthermore, the consistency 

of the resulting model is up to the developer. In automatic transformations, some transfor­

mation rules are defined to drive the changes, therefore the consistency of the output model 

is guaranteed. Transformation rules may be embedded into the modeling tool or maybe 

they are explicitly defined by the developer based on the domain-specific knowledge. As 

examples of these rules we can refer to profiles and patterns [BIJ06]. 

Model-to-Model transformation As it is clear from the name, in model-to-model 

transformation, a model is changed to another model. The source model and the tar­

get model could be instances of the same metamodel or different metamodels. When both 

source and target are from the same metamodel, there are two specific cases of model-to-

model transformations: refinement and refactoring. In refinement transformations, a model 

is slightly changed to another model that better matches the desired system. Refinements 

can be done manually or automatically. Applying a pattern on a model is an example 

of automatic refinements, where the model elements are rearranged to satisfy the pattern 

requirements [BIJ06]. In refactoring transformations, the designer tries to reorganize the 

model and make it simpler based on some well-defined criteria. 

Model-to-Code transformation Model-to-Code transformation is also called "code 

generation" or forward engineering. By this transformation, part of the code is generated 

automatically from the model. Code generation is one of the features that distinguishes 

MDE from the old paradigms of software development. Most of the modern modeling tools 

are capable of generating code skeletons for a given model. The ultimate goal of MDE is 

to reach the level of 100% automatic code generation. There is evidence [Dog07] that this 

dream does not seem to be elusive, considering the advances in the supporting technol-

ogy [Sel06]. 

Code-to-Model t ransformation Since this transformation is the reverse of the Model-

to-Code transformation, it is called backward engineering (or reverse engineering). By this 

transformation, changes in the code are automatically reflected in the model. If models 

are considered as the first class citizens in MDE [Bez06], then model should always be 

synchronized with the code. Otherwise, the model will be treated as a backup document 

which is deprecated soon after the system is delivered. Not many of the modeling tools are 

capable of performing backward engineering. 

13 



The union of forward engineering and backward engineering is called round-trip engi­

neering. Having this feature, the developers are able to work on the model and the code 

concurrently. The idea is to keep the model synchronized with the code all the time during 

the system development [Sel06]. If the changes in the code are not reflected back in the 

model, then the maintainers face difficulties in maintaining the system. 

Code-to-Code transformation This is not widely considered as a class of transforma­

tions in the MDE community. From our point of view, any change in the code can be called 

a Code-to-Code transformation, for instance, the refactorings [Fow99] that are applied into 

the code to make it simpler. 

Design Similar to many of the software engineering approaches, design is a dominating 

step in MDE, since it relates to the modeling of solution space. As indicated in Figure 1, 

design is the outcome of a transformation, labeled "Design Transformation," which causes 

the existing knowledge of the system to take form and is revealed as a model. 

Design can be divided into two levels: architectural design and detailed design. The for­

mer deals with the high-level design of software, such as the layering of sub-systems [Fow02, 

p. 2], and the deployment of modules. The latter is about technical design of each module 

or sub-system. 

Most of the time, the design is based on instantiating well-known patterns, including 

general purpose and domain-specific patterns. Each pattern has an abstract template which 

contains some formal parameters that can be replaced by actual parameters. By pattern 

instantiation, the designer specifies the actual parameters for the parameters of the pattern. 

If the modeling tool is enriched with the pattern instantiation feature, like IBM Rational 

Software Architect (RSA) [IBM09b], most of the work is performed automatically. 

2.1.4 Modeling Tool 

To show the importance of the role of the modeling tool in MDE, in Figure 1, it is indicated 

by a circle that everything in MDE happens around it. In general, modeling tools are used 

for many purposes: to visualize, understand, and document existing systems, to create new 

designs, and to generate code for a design [LNH06]. 

However, in MDE, the modeling tool is anticipated to play a more prominent role by 

supporting tasks such as version control, process management, model driven testing, pattern 

14 



definition and instantiation, checking the Well-Formedness Rules (WFRs) of models, im­

port /export XMI format (serialization), detection and correction of inconsistencies between 

models, supporting UML profiles as an effective way of extending the UML metamodel, map­

ping between models, and both model-to-model and model-to-code transformations [Ken02]. 

We place emphasize on the role of modeling tools on improving the quality of the model. 

The tool assistance in finding and/or repairing the problems in models, fosters the quality 

control and quality assurance of the models. 

2.1.5 Quality Control in M D E 

Since models are the main artifacts which drive software development in MDE, quality 

assessment of models is an important issue. While people use models to enhance the quality 

of software, they must pay enough attention to the quality of models per se [Unh05]. Poor 

models will result in problems such as misunderstanding, wrong product, increase in test, 

and low quality system. Furthermore, the tool assistance for quality assurance is inevitable 

since merely manual inspection or review of designs is not enough [BCO05]. 

In the MDE process, the focus of quality checks must be on the models. There is no 

consensus on the answer to the question "what is a quality model?" Different people view 

the quality of a model from different aspects. Selic [Sel03, Sel06] considers a model to be a 

quality model, if it is "Abstract," "Understandable," "Accurate," "Predictive," and "Inex­

pensive." Unhelkar's [Unh05] looks at the quality of a model from three different aspects: 

"Syntax," "Semantics," and "Aesthetic." That means, model should be syntactically cor­

rect considering the modeling language rules, model should be semantically meaningful and 

consistent, and model should be aesthetically pleasing. From the patterns point of view, 

Buschmann et al. [BHS07b, p. 131-132] see "high pat tern density" as a characteristic of a 

good design. 

From the syntactical point of view, in UML documents, e.g., UML 2.0 Infrastruc­

ture [Obj05b], there exist some quality checks that are defined in the form of constraints or 

WFRs . WFR is a term used in the normative UML specification documents to describe a set 

of constraints that contributes to the definition of a metamodel element. W F R s are defined 

to help validate the abstract syntax and help identify errors in UML models. For instance, 

one WFR implies that "circular inheritance is not allowed in UML models." In addition to 

natural language. UML uses Object Constraint Language (OCL) [Obj06b] for expressing 

W F R s in a precise manner. However, the semantic and aesthetic checks, if described, are 

explained by natural language since they are contingent on the underlying domain of the 

15 



model. Here is where Computer Aided Software Engineering (CASE) tools come into play 

and help designers in finding the problems and checking the quality of the models. 

Checking Model Inconsistencies Egyed [Egy07] argues that some changes that the 

designers make in their models may have undesired side effects. That means, some changes 

may cause new bugs in the model, or they may make the model inconsistent. There are 34 

consistency rules that are checked in the Egyed's work, e.g., "Rule 1: message name must 

match class method." Egyed has proposed an online, non-intrusive technique for fixing 

inconsistencies. It locates all choices for fixing inconsistencies, and identifies dependencies 

between inconsistencies. The technique is integrated into IBM Rational Rose [IBM09a], 

and is evaluated using 48 case studies. 

Fuentes et al. [FQL+03] have investigated the UML metamodel against the rules, con­

straints, and the WFRs defined by the UML standard, and have detected 450 errors. Many 

of these errors can be fixed easily, e.g., checking for empty names will solve about 300 errors. 

Liu et al. [LEM02] have discussed that providing tool support for designers to find 

and repair problems in their designs, will help them improve the quality of the design. 

They have developed a production system named "Rule-Based Inconsistency Detection 

Engine" (RIDE) which helps the designers detect and resolve the inconsistencies in the 

UML models. RIDE is implemented in Java and can be integrated into modeling tools such 

as ArgoUML [Tig09a]. RIDE uses JESS [Lab09] to execute production rules. To detect 

inconsistencies in a given UML model, both the model and the inconsistencies must be 

converted into the production rules. Then the production system starts working by finding 

the inconsistencies and repairing them. In addition to general problems, RIDE can also be 

used to detect misuses of design patterns. 

2.1.6 Modeling in Traditional Software Engineering 

We consider two aspects of using models in traditional software engineering. From the 

one hand, there are several purposes for using UML models: making easier communication 

between people in a team, documenting the system and making the maintenance easier, 

helping in test case generation, to name a few. From the other hand. UML models are used 

in several phases of software development with different levels of abstraction. This usage 

varies from the early state of requirements specification (where use case models and activity 

diagrams are useful) to the further phase of architectural design (where package diagrams 

and deployment diagrams are used) [Unh05]. 

16 



In traditional software engineering, modeling tools are used for drawing models. The 

models per se are considered as second priority artifacts, i.e., they are mostly prepared 

for design and documentation of the software. Since models are graphical and there is a 

belief that "one picture worth more than 1000 words," models are used vastly to ease the 

communication between developers, and to make maintenance easier. However, the extent 

of using models is not the same in all software development methodologies. 

In lightweight methodologies (aka Agile processes [Coc06]), there is less focus on docu­

mentation (and modeling) than heavyweight methodologies. In Agile processes, modeling, 

especially in formal and tool supported format, has less value than working software [B+09], 

and is done only if it is needed and if it helps in better understanding a design. In agile 

approaches, the focus is on making the design as simple as possible. The idea of agility in 

modeling has caused the invention of another terms such as "Agile Modeling" and "Agile 

Model Driven Development (AMDD)" [Amb02]. 

Quality Control of Models Several types of errors may exist in a model. First, the 

designer is vulnerable in making mistakes and creating wrong or low quality models in the 

design. Second, due to the fact that the semantics of UML is not strong enough (Fuentes 

et al. [FQL+03] have reported 450 errors in the UML standard), there is possibility of 

inconsistencies between different models from different views. Third, the model may be not 

synchronized with the working code. This is plausible since models are not considered as 

the main artifacts, they are supportive documents that after the code is generated, there 

is no usage for them and they are going to be archived until a maintainer needs to refer to 

them to better understand the system. 

The point is that the quality of model is as important as the quality of code. Even in less 

model-centric approaches, the models must be correct and high quality to be useful. The 

model should be checked against both the human errors, the inconsistencies that maybe 

remained in the model due to UML defects (inconsistencies), and the inconsistency with 

the working code. 

In addition to the quality metrics in traditional software engineering, that root back 

to the code, e.g., Cyclomatic Complexity (CC) and Lines of Code (LOC). there are sev­

eral 0 0 metrics defined for evaluating the quality of models, e.g.. Depth of Inheritance 

Tree (DIT), Number of Children (NOC), and Coupling Between Objects (CBO) [FP97]. 

However, further research is needed for finding quality models for design models. 

Some quality models in traditional software engineering, e.g.. IS09126 [Int98], do not 

17 



distinguish between the quality of an implemented software system and the quality of the 

description of the system. In code-centric approaches, the source code is per se the imple­

mentation and there is no sensible gap between them, however, in model-centric approaches, 

this gap (between the model and the implementation) is huge and therefore these quality 

models are not suitable for quality of UML models [Lan06]. 

There exist other techniques for quality control of a system, including the model and 

code, such as walkthroughs, inspections, and technical reviews [FW90]. In a walkthrough, 

a group of people gather together (including the producer) in order to give some comments 

about the product to the producer. Inspections are more formal practices in order to 

detecting and correcting defects in software artifacts. In a review, the product is examined 

by some individuals (other than the producer) in order to catch the defects. 

Modeling tools can help in checking the syntax and semantics of the models. There are 

measurement tools, e.g., SDMetrics [sdm09], that analyze the design model (or the reverse-

engineered code) using the 0 0 measures and report potential problems to the designer. 

2.1.7 Model Driven Architecture (MDA) 

MDA is considered as an example of MDE vision. MDA was proposed by OMG in year 

2000 [Obj09b], as a solution to the problems that were caused by constant changes in 

platforms. The proposal was based on two concepts, Platform-Independent Model (PIM) 

and Platform-Specific Model (PSM), and (automatic) generation of PSM from PIM. At first 

it was not precisely described how to generate PSMs from PIMs. Then, it was suggested 

that the PIM to PSM generation can be done by automatic model transformations [Bez06]. 

However, after a few years of research and practice in MDA, people are now consider­

ing more problems, other than separating PIM from PSM, that need to be solved. The 

separation and combination of concerns are currently major problems in development and 

maintenance of systems. PIM to PSM can be considered as a special case of a more general 

problem of separation of functional and non-functional requirements [Bez06]. 

MDA is considered as a perspective style of MDE. That means, models are denned 

precise enough adhering to specific semantics. Therefore, it is possible to apply consecutive 

transformations (mostly automated) on abstract models and obtain more concrete models. 

The final transformation will result in an executable system for a specific platform [BIJ06]. 

MDA has a lot in common with MDE, for instance both aim to move software develop­

ment to a higher level of abstraction, but there are differences too. An important difference 

is that MDA is more restricted, due to the focus on UML [SV06. p. 4]. Creating a PIM is 

18 



a crucial first step in the MDA process. The MDA tools should support the PIM to PSM 

generation vision and not just generate code from a class diagram. 

2.2 Domain Specific Modeling (DSM) 

Domain-Specific Modeling (DSM) can be viewed as a special case for MDE. In addition to 

the fact that in DSM models are still the main artifacts, we build a model of the system 

using the concepts that belong to a specific domain. That means, instead of working on 

low-level concepts, the designer deals with higher level of abstraction, resulting the increase 

in productivity. More productivity will be achieved if the domain is more specific [DSM09, 

PK02]. 

DSM consolidates several areas including DSL. A DSL is a language that is "tailored to 

a specific application domain" [MHS05]. A definition for domain is "An area of knowledge 

or activity characterized by a set of concepts and terminology understood by practitioners 

in that area" [BRJ99]. In contrast to General Purpose Languages (GPLs) such as Java or 

C # , a DSL may therefore express a limited set of concepts and is suitable for a "specific 

class of problems" [Fow05]. Table 1 shows some of the DSLs. 

DSL 
BNF 
Excel 
HTML 
LATEX 
Make / Ant 
MATLAB 
SQL 
VHDL 

Application Domain 

Syntax specification 
Spreadsheets 
Hypertext web pages 
Typesetting 
Software building 
Technical computing 
Database queries and manipulation 
Hardware design 

Table 1: Examples of domain-specific languages (adapted from [MHS05]) 

The idea behind DSL is that by using a large general purpose language, such as UML 

2.0, we can not satisfy all the needs of the designers and users of a system. Especially, DSL 

helps non technicals to solve their problems without much help from technicals. A good 

example of a successful DSL is Excel which helps people in the domains such as business 

and finance [Bez06]. 

Models and DSLs both have strengths that urge us to use them together. For instance, 

•louault and Bczivin [JB06] emphasize on the strong relation between DSLs and models. 

They define a DSL as "a set of coordinated models" and show how models can be used for 

19 



defining the syntax and semantics of DSLs. As a proof of concept, the Kernel MetaMeta-

Model (KM3) language is defined as a DSL for metamodel specification. KM3 is a meta-

metamodel similar to MOF [Obj06a] or Ecore (the metamodel of Eclipse EMF [Fou09a] 

framework), however much simpler. While M O F has 28 classes and Ecore has 18 classes, 

KM3 has only 14 classes. Metamodels that are written based on KM3, can be easily con­

verted to/from other formats such as EMFatic (Ecore format) or XMI (MOF format). 

UML is the dominant metamodel in MDE, and OCL is a metamodel dependent language 

for writing constraints on UML models. However, the DSL approach encourages to use 

several small domain-specific metamodels instead of just using a single large metamodel 

such as UML. As a response to this need, Atlas Transformation Language (ATL) is defined 

as a metamodel-independent language that can be used for doing any kind of transformation 

on models. Especially, ATL can be used for checking models, also known as smell detection 

and refactoring [BJ06]. 

One of the major steps in applying a DSM is to have a Domain-Specific Modeling 

Language (DSML) [DSM09]. DSML is a technology required in MDE to be considered as a 

promising approach. There are several ways in defining a new DSML [Sel07]. One approach 

is to create it from scratch. A cost-effective approach is to select a more general language 

and customize (refine) it to the domain by specializing its general constructs. The UML 

Profile mechanism supports the refinement approach [Sel07]. 

2.2.1 UML Profiles 

Different projects (and organizations) have different needs and use their own domain con­

cepts [Ken02]. Therefore, it is needed to customize UML for specific domains. Fortunately, 

from the first day, UML was designed to be extendable and customizable [Sel07]. New 

modeling extensions can be introduced into UML by defining a UML Profile [Obj05c]. 

By defining a profile we can extend the UML metamodel with a set of new modeling el­

ements [AN04, p. 10]. For doing domain specific modeling with UML, profiles are the 

recommended solution. UML profiles are extension mechanisms that allow you to tailor 

UML for specific areas such as Telecommunication. The idea of profile has been matured 

since its inception. 

The first refinement mechanisms that were proposed in the UML were stereotypes and 

tagged values which were not defined very clearly and had not enough precision to be used 

for designing useful DSMLs. Then a package called profile is considered for holding all 

related stereotypes. In UML 2, the profile mechanism has received a lot of improvements 

20 



in the rules and the definitions. Some of the improvements are: stereotypes can now have 

associations in addition to the associations of their base classes, profiles can be represented 

in XMI format, and applying (and un-applying) of a profile to a model is clarified [Sel07]. 

As one of the first documents introducing the profile idea, UML 1.4 Specification [ObjOl, 

p . 2-74, 2-75] defines the extension mechanism and the profile concepts as follows. 

"The Extension Mechanisms package is the subpackage that specifies how spe­

cific UML model elements are customized and extended with new semantics by 

using stereotypes, constraints, tag definitions, and tagged values. A coherent 

set of such extensions, defined for specific purposes, constitutes a UML profile 

A profile is a stereotyped package tha t contains model elements that have been 

customized for a specific domain or purpose by extending the metamodel using 

stereotypes, tagged definitions, and constraints. A profile may specify model 

libraries on which it depends and the metamodel subset that it extends.[...] 

Profiles are sometimes referred to as the 'lightweight' built-in extension mech­

anisms of UML, in contrast with the 'heavyweight' extensibility mechanism as 

defined by the MOF specification." 

We found the following description of UML profile very brief and useful. It is provided 

by OMG in a page titled "Catalog of UML Profile Specifications" [Obj09a]. 

"A UML profile is a specification that does one or more of the following: 

• Identifies a subset of the UML metamodel. 

• Specifies "well-formedness rules" beyond those specified by the identified 

subset of the UML metamodel. "Well-formedness rule" is a term used in 

the normative UML metamodel specification to describe a set of constraints 

written in UML's Object Constraint Language (OCL) tha t contributes to 

the definition of a metamodel clement. 

• Specifies "standard elements" beyond those specified by the identified sub­

set of the UML metamodel. "Standard element" is a term used in the 

UML metamodel specification to describe a standard instance of a UML 

stereotype, tagged value or constraint. 

• Specifies semantics, expressed in natural language, beyond those specified 

bv the identified subset of the UML metamodel. 

21 



• Specifies common model elements, expressed in terms of the profile." 

Some examples of the UML profiles listed in the catalog [Obj09a] are: UML Pro­

file for Enterprise Application Integration (EAI), UML Profile for Systems Engineering 

(SysML [Sys09]), and UML Testing Profile. 

List and Korherr [LK05] have presented "A UML 2 Profile for Business Process Mod­

eling," which is claimed to be more comprehensive than the previous profiles on business 

process modeling. Note that in UML 1.4 Specification [ObjOl, p. 4-9] a "UML Profile for 

Business Process Modeling" is introduced as an example. 

Ziadi et al. [ZHJ03] have introduced an introductory work towards defining a UML 

profile for software product lines. 

Kobryn [Kob04] has discussed the good, bad and ugly sides of the UML 2.0 and ad­

dressed the future of modeling. He refers to the Systems Modeling Language (SysML [Sys09]) 

as good sample of extending UML 2.0 towards a modeling language for systems engineering. 

He emphasizes on an important point that profiles are not only for extending the UML, but 

also they can be used for subtracting features from the language. 

2.2.2 A Systematic Approach for Defining UML Profiles 

While designing a UML profile does not seem to be a difficult task, it should be done 

with care. Mostly, a UML profile is just a set of possible stereotypes and tagged values. 

Therefore, a profile is facilitating domain specific modeling. In the course of design, you 

can annotate the model elements with the defined stereotypes. However, the importance 

of the role of those stereotypes becomes clear when we notice that they are defining a new 

language that we can work with as we model our domain [Unh05]. 

Bran Selic [Sel07] has addressed the issue of low quality profiles. Selic believes that lack 

of enough material and guidance for designers, on how to create a good profile, is the cause 

of these poor quality profiles. As a solution, Selic has proposed a. systematic approach for 

defining a profile. In fact Selic's approach is targeting the design of DSLs using the UML 

profile mechanism. Selic's approach is separated into two steps. 

1- Defining the domain metamodel At the first step, without considering the UML 

metamodel, we define a domain model of the DSL that we are designing. This domain 

model is in fact the metamodel of our language. This metamodel consists of all fundamental 

concepts from the underlying specific domain, the relationships between those concepts, the 

constraints (WFRs) for valid models, the notation of the DSL. and the semantics of the 

22 



DSL. It is wise to express the abstract syntax of the language using MOF and to write the 

profile constraints in OCL, since UML metamodel is also defined using MOF, and OCL is 

supported by many UML tools. 

2- Mapping the domain metamodel to UML metamodel The second step is to map 

each of the concepts in the domain model into one of the appropriate base classes in the 

UML metamodel. Then for each concept, one stereotype should be defined. It is possible 

that some stereotypes need to be considered as the specialization of other abstract ones. 

The steps should be done carefully in order to prohibit inconsistencies or conflicts between 

the attributes, associations, and constraints of the domain concepts with the corresponding 

UML meta-class. 

2.3 Pat tern Languages (PLs) 

Despite the ubiquity of the concepts Pattern and Pattern Language (PL) in software engi­

neering, there is no formal definition for them. Due to the fact that the "Pattern Language" 

concept plays a key role in this thesis, this section is dedicated to provide a clear definition 

for Pattern and PL. We start from the architecture area, where the story started, then we 

move to the software area to review the definitions given by the experts in the field and to 

give our definition. 

2.3.1 Pattern Languages in Architecture 

The terms "Pattern" and "Pattern Language" were first coined in late 60 ;s by Christopher 

Alexander [A+77, Ale79], an emeritus professor of architecture at the University of Cali­

fornia at Berkeley. Amongst many books written by Alexander, there are two books which 

have influenced software community a lot: "A Pattern Language: Towns. Buildings. Con­

struction" [A+77] and "The Timeless Way of Building" [Ale79]. The former is a collection 

of 253 inter-related patterns for architectural design elements that, all together or a subset 

of them, form a language. The latter shows a systematic way for using these patterns in 

designing part of the environment. 

In 2000, Alexander founded the pat ternlanguage. com company to promote collabo­

rative working between people, builders, and architects to build good buildings. On the 

patternlanguage.com web site the story of how this name is selected for the company is 

explained. The following is an excerpt from that story which summarizes the PL concept: 

23 

http://patternlanguage.com


"Once upon a time, we wrote a book called A Pattern Language and that 

is how we got our name. [...] The new idea in the book was to organize im­

plicit knowledge about how people solve recurring problems when they go about 

building things. [...] Patterns are easy to remember and set out as if-then 

propositions. [...] We were surprised though, when we found out computer pro­

grammers liked it, because it was about building not programming. But the 

programmers said, "this is great, it helps think about patterns in programming 

and how to write reusable code that we can call upon when we need it." [...] 

Now a pattern language is about patterns being like words. They stay the same 

but can be combined in different ways like words in a sentence. They can be 

used as in a network where one will call upon another (like a neuron network). 

When you build something you can put patterns together to form a language. 

So a language for your house might have patterns about transitions, light, ceiling 

height, connecting the second floor to the ground. [...] But what we're working 

most hard at is writing sequences. Now a sequence is something that looks very 

very simple and is actually very very difficult. It's more than a pattern; it's 

an algorithm about process. But what is possible is to write sequences so that 

they are easy. You follow the steps in a sequence like you follow the steps in a 

cooking recipe. [...] A sequence is figuring out which decision has to come first 

and getting it right and then moving to a second decision. [...] An architect who 

uses such a sequence, can do better and more beautiful work. [...] A lay person 

can make a design, at least in a simple form, where previously it was assumed 

that only architects and engineers could make designs." 

From the above text, we find the following important facts about the patterns. 

• Patterns are tools for organizing the implicit knowledge that people use for solving a 

recurring problem. 

• This solution knowledge is normally organized as if-then rules. 

• PL is like a network of patterns that one can call upon another. 

• We need to write sequences of patterns that act as cooking recipes and are easy to 

follow for a lay person. 

• Even an expert may use a sequence and build better designs. 

24 



2.3.2 Pa t t e rn Languages in Software 

Alexander in [A+77] says: "Each pattern describes a problem which occurs over and over 

again in our environment, and then describes the core of the solution to that problem, in 

such a way that you can use this solution a million times over, without ever doing it the 

same way twice." This definition is summarized by software gurus, as the definition of 

pattern [NB02]: 

"A pattern is a solution to a recurring problem in a specific domain." 

In the software community, there are a few works which have selected the format used 

in "A Pattern Language: Towns, Buildings, Construction" [A+77] for defining a PL. For 

instance "A Pattern Language for Writing Patterns" [MD97] is an article which contains 

a set of tightly related patterns such that selecting one pattern leads the user to another 

pattern. And the set of proposed patterns is a complete list that enable a person to perform 

a pattern writing project. 

Patterns have played an important role in software development in general, and in 

object-oriented approach in particular. Kent Beck and Ward Cunningham [BC09] are the 

first persons who applied patterns to software [Nob98b]. The idea was then popularized 

by the publication of the seminal book on design patterns known as the "Gang of Four" 

(GoF) design patterns [GHJV95]. "A growing number of people consider design patterns 

to be a promising approach to system development, [...] especially in object-oriented sys­

tems" [Zim95]. 

The GOF is used by many software experts and is cited by many researchers, e.g., as 

of the day of this writing, its citation count on ACM is 1984 and on Google Scholar is 

17100; more than 500,000 copies of the book is sold and it is translated into more than 13 

languages, and with 243 reviewers in amazon.com, it ranks 2nd in the Software Engineering 

Bestsellers category. 

2.3.3 Forms of Writing Patterns (Pattern Forms) 

Software experts have defined (discovered) hundreds of patterns as solutions to recurring 

problems in software design. For describing the structure of the patterns, each pattern 

author has his/her own pattern form. There is no consensus on the structure and elements 

of a pattern form between different pattern authors. In a survey on pattern collections, 

Henninger and Correa [HC07] have concluded that ''Almost every pattern collection we 

surveyed used a different pattern form." They claim that 'Tack of Standard Pattern Forms" 

25 

http://amazon.com


is one of the challenges for federating software patterns [HC07]. But, it should be noted 

that we can not expect to have only ONE pattern form that fits the needs of every PL. 

That means, there should be several standards for pattern forms. 

A pattern form consists of several items. The authors of GOF book stress that, in gen­

eral, a pattern needs four essential elements: the pattern name, the problem, the solution, 

and the consequences [GHJV95, p. 3]. The GOF design patterns' form contains the following 

items (sections): Pattern Name and Classification, Intent, Also Known As, Motivation, Ap­

plicability, Structure, Participants, Collaborations, Consequences, Implementation, Sample 

Code, Known Uses, and Related Patterns [GHJV95, p. 6-7]. 

Some software pattern authors have adopted the pattern form introduced by Alexander 

in [A+77]. For example, the form used in POSA-4 [BHS07a, p. 48] includes: name, con­

text, main (which includes problem statement, forces, solution instruction, solution sketch, 

solution structure and behavior), and solution consequences. 

The pattern form used in PofEAA includes eight items as follows [Fow02, p. 11]. 

1. The name of the pattern: Pattern names are crucial since they they create a vocabu­

lary to be used by designers when they communicate. 

2. The intent: The intent is a short description of the pattern. 

3. The sketch: The sketch is a graphical representation of the pattern, mostly as a UML 

diagram. 

4. A motivation problem: A sample problem that the pattern can solve. 

5. How It Works: This is in fact the solution to the problem. It explains the implemen­

tation issues and the variations that can be considered. For some patterns, UML class 

diagrams or sequence diagrams are presented as an aid to explain them. 

6. When to Use It: This item shows the justifications about why to use this patterns 

comparing to others. (In some pattern forms this is called forces. Forces are the 

factors such as cost and performance.) 

7. The Further Reading: This is a reference to the information that may help the reader 

better understand the pattern. 

8. The Examples: There are one or more examples on how to implement the pattern in 

programming languages Java or C#. 

26 



One important aspect of a pattern is its name, because by documenting patterns and the 

relationship amongst them, in fact the pattern author is denning a language, called Pattern 

Language (PL), that could be used by designers in developing new software systems [Ber94]. 

In other words, pattern names play a crucial role in a PL, because designers can use those 

names as a vocabulary that helps them to communicate more effectively [Fow02, p. 11]. 

However, a PL is not only a collection of patterns. To emphasize on the dependencies 

between patterns, Alexander [A+77] expresses that "the link between the patterns are 

almost as much a part of the language as the patterns themselves." Also, earlier (See 

Section 2.3.1) we read about Alexander's idea on Pattern Language as "patterns [...] can 

be combined in different ways like words in a sentence." As an analogy, we can consider 

each pattern as a recipe for a solution, therefore, a PL is a set of recipes for a whole system. 

2.3.4 Pattern Language Definition 

There is no consensus on the definition of a Pattern Language (PL) in software community. 

In the followings we quote viewpoints of several software experts on PLs, then, we adopt 

our definition of PL. 

"A pattern language defines a collection of patterns and the rules to combine them into 

an architectural style. Pattern languages describe software frameworks or families of related 

systems" [Hil09b]. 

"A PL is a set of patterns that guide an architect through a design. Each pattern is a 

description of a solution to a problem using other patterns that occur in the system" [Ber94]. 

"A pattern is a recurring solution to a standard problem. When related patterns are 

woven together they form a "language" that provides a process for the orderly resolution of 

software development problems. Pattern languages are not formal languages, but rather a 

collection of interrelated patterns, though they do provide a vocabulary for talking about 

a particular problem" [SFJ96]. 

"A pattern language is a collection of interrelated patterns organized into a coherent 

whole, which provides a detailed solution to a large-scale design problem" [Nob98b]. 

"One of the key advantages of a pattern language over a standalone pattern is its ability 

to guide the reader to the solution of a complex problem by leading them from one pattern to 

another. Stand-alone patterns have to work harder to establish their relationships" [MD97]. 

"The idea behind a pattern language comes again from Alexander. The idea is that you 

have a body of patterns with a structure that leads you from pattern to pattern. You begin 

with (usually) some very strategic patterns, each pattern leads you to a point where you 

27 



have to decide to apply other patterns. A pattern language has a flow that connects the 

various patterns. [...] I look at pattern languages as a structuring mechanism" [Fow06]. 

One of the most recent and comprehensive discussions of PLs is presented in POSA-

5 by Buschmann et al. [BHS07b]. They believe that a PL is "A Process and a Thing." 

The 'process' part tells the designers how to solve a problem, and the 'thing' part tells 

about what are the concrete solutions that can be solved by the PL. The 'thing,' is a 

specific kind of software system created by the 'process.' Missing any of the 'process' or 

'thing' parts, causes the PL not to be able to systematically resolve software development 

problems [BHS07b, p. 260]. 

Buschmann et al. [BHS07b, p. 260] argue that the following definition is both acceptable 

for a PL and is in line with the pattern community, however, it should be noted that the 

focus of this definition is on the 'process' concept. 

"A network of tightly interwoven patterns that defines a process for systemati­

cally resolving a set of related and interdependent software development prob­

lems" [BHS07b, p. 260]. 

In this thesis, we select the above definition for a PL. 

2.4 Pat tern Relationships 

2.4.1 Patterns are not Isolated Islands 

Patterns are not isolated islands. Considering patterns independently results in low quality 

designs, i.e. designs which are more complex and hard to maintain [BHS07b, p. 117]. 

Patterns can be used individually, however stand-alone patterns are able to solve only tiny 

problems because they do not consider larger contexts. Hence, one should note that using 

single patterns does not help building real-world software systems in an efficient manner. 

In order to increase the power of patterns, pattern authors should show how the patterns 

can connect, complement, and complete each other to make a PL. The resulted PL then 

can be used in designing high quality systems [SSRB00, p. 505-506]. 

Even in the pattern resources that have not focused on the PL aspects, e.g., in GOF, 

we can see indications of considering the dependency between patterns. This indications 

varies from a graphical map to a prose description of pattern dependencies in a dedicated 

field in the pattern form-, e.g., the Related Patterns field in GOF patterns. 

28 



In addition to the relationship between the patterns of a PL (inter-collection relation), 

patterns of different PLs might also be dependent on each other (intra-collection relation). 

Considering the importance of inter-collection relationships, the pattern community sees 

that ongoing work on patterns is focused more on synthesis and connection than intro­

ducing new patterns. Examples are PofEAA [Fow02] with 51 patterns, POSA-4 [BHS07a] 

with 114 patterns (with connections to more than 180 other patterns), and Grady Booch's 

project [Boo09] on defining a "Handbook of Software Architecture" that so far has identified 

more than 1800 patterns including 28 PLs [BHS07b, p. 132]. 

Henninger and Correa [HC07] have addressed the problem of growing number of pat­

terns and pattern collections. Based on a survey on available pattern collections, they 

promote utilizing Semantic Web technology for formal specification of pattern collections. 

In a project named "An Ontology-Based Infrastructure for Creating Software Pattern Lan­

guages," they set up the Semantic Framework for Patterns (SFP) web site [Uni09b]. As 

indicated in the web site, the goal of the project is "to create a repository representing 

the many facets of software patterns." The site is now open to public to add or edit the 

information about the existing pattern collections. As of date (20 April 2009) there are 234 

pattern collections containing 2935 patterns recorded in the SFP web site. 

2.4.2 Pattern Relationships and Quality of Design 

In order to see how considering the relationships between patterns during design, affects the 

quality of the design, consider the Request-Handling framework example which is borrowed 

from [BHS07b]. The problem is "developing an extensible request-handling framework that 

helps to transform service requests from clients into concrete method invocations on an 

application" [BHS07b, p. 123]. 

In the first approach, we do not consider any relationship between patterns and naively 

treat them as isolated islands. Our first task is to find a pattern that, solves the problem of 

"objectifying" the requests of clients. One solution is the COMMAND pattern. Then, the 

second task is how to handle the commands by a central component. We find the COM­

MAND PROCESSOR pattern as a solution and integrate it to the existing architecture. 

Third, for supporting "undo" or the rollback of the actions, we select the MEMENTO pat­

tern. But we need a separate Caretaker class to relate the command with the Memento. 

Forth task is "logging" the requests, for which, the STRATEGY pattern is selected and 

is glued to the existing architecture by a LoggingContext object. And the final task is to 

support compound commands. The COMPOSITE pattern addresses this feature, which for 

29 



gluing it to the existing design, we insert it between the COMMAND PROCESSOR and 

the COMMAND patterns. Figure 2 shows the resulted design consisting of five patterns. 

Clearly, this design is not a good design due to complexity, and difficulty in understanding 

and maintaining [BHS07b, p. 123-128]. 

COMMAND PROCESSOR 

Client 
Command 
Processor Context 

log&ng 

* - S 

COMPOSITE 

Component 
Concrete 
Losing 

Strategy A 

J_ 
Composes 

T 

i 
tagging 

SlraisjyB 

STRATEGY 

Command] Caretaker 

COMMAND 

Concrete 
Command A 

Concrete 
Command B Memento 

y j , ' • ¥ - -

MEMENTO 

• 
Application 

Figure 2: Design of Request-Handling Framework with Isolated Patterns [BHS07b, p. 128] 

In the second approach, we consider the same set of patterns but with bearing in mind 

the possibility of interweaving the patterns together. For example, COMMAND and COM­

POSITE patterns can be combined. After several refactorings, we reach to the structure 

given in Figure 3 which is much easier to understand and maintain [BHS07b, p. 129-131]. 

Comparing the above two designs, we see that the second one, which is a better archi­

tecture, has a high density of tightly integrated patterns. Actually, this feature, e.g., high 

pattern density, is a characteristic of a good design. In simple terms, the pattern density 

is defined as the number of patterns per number of classes. However, compressing many 

patterns in as few classes as possible is not equivalent to having better design. That means, 

weaving patterns together must be done accurately and precisely [BHS07b, p. 131-132]. In 

connecting patterns, in addition to the roles of their components, we should also consider 

the relationships between those components. 

30 



COiiUJUfl) PROCESSCWC command processor 
STRATEGT: context 

COHHANO PROCESSOR: command 

CCHUAH&, command 

COMPOSITE: compon«nt 

Command 
Processor 

STRATEGY: strategy I 

—3—J 

31 

MEM£m"0: memento! i^-J- Concrete 
Command A 

Legging Logging 

Generate 
Command B 

AppSca&m 
n 

Composite 
Command 

MEMBJro: originator 

STOATCGy: concrete strategy 

COffiUNO: concrete command 
COHPOSTTE: teat 
MEHEXTO: caretaker 

COJfliJUO: concrete eommand 
COKPOart: composite 
MEKKTO: caretaker 

Figure 3: Design of Request-Handling Framework with Interwoven Patterns [BHS07b, 
p. 131] 

2.4.3 GOF Pat tern Relationships 

For GOF design patterns, the "Related Patterns" field of the pattern form briefly talks 

about how patterns reference each other. The relationships between all 23 patterns are 

shown in Figure 4. 

Zimmer [Zim95] has studied the relationships between GOF design patterns, and has 

categorized them into three categories: "uses," "is similar to," and "can be combined with." 

Based on this classification, a new diagram is proposed for the relationships between the 

GOF patterns. This diagram is shown in Figure 5. 

Zimmer has concluded two important points [Zim95]: 

• "Applying design patterns requires a fair knowledge of both single design patterns 

and their relationships." 

• "Tool support is needed to apply design patterns to really large applications." 

2.4.4 James Noble's Pat tern Relationships Scheme 

By studying several pattern collections and the way that these collections have documented 

the relationships between patterns, James Noble [Nob98a] has found that there is no stan­

dard for describing pattern relationships. He says "Unfortunately, each pattern text book 

or catalog describes relationships between patterns using its own idiomatic classification of 

these relationships" [Nob98a]. To address this problem, Noble has proposed a classifica­

tion scheme for the relationships between patterns. His scheme consists of three primary 

relationships and nine secondary relationships as indicated in Table 2. 

31 



Atfapter 

fi&*jt; 

aeSkmg 

stops' 
T»i»$>?flt» Method «IMmr'uM)S. 

Prototyps 

conSgura facfofy 
tfynamicaSfy 

A 

Factory Method 
OT?«ff»ftfi*S«rtS 

Abstract Factory 

z instance 

FWwf* 

Slngteton 

Figure 4: Relationships Between GOF Design Patterns [GHJV95, p. 12] 

Primary relationships are the ones tha t are widespread in the patterns literature, act 

as the basis for describing other patterns, and their definitions are straightforward. The 

secondary relationships are the ones that, can be be expressed in terms of the primary 

relationships. 

Uses relationship shows how a large pat tern may be composed of small-scale pat terns. 

32 



€ Observer 3 C Glue ) 

I 
C Mediator"") C Strategy >• 

' C Visitor~l- -—• --< Iterator") { Command lCC3iain of Resp. 3 ( Bridge 

C Memento) ' ^ 

CD- ~*̂ " C Y.3 X uses Y in its solution C x J — - —C Y j X can be combined with" 

C x j ( T ^ X is similar to Y 

Figure 5: Relationships Between GOF Design Pat terns Proposed in [Zim95] 

Table 2: Classification of Pattern Relationships [Nob98a] 
P r i m a r y Relat ionships 
Uses 
Refines 
Conflicts 
Secondary Re 
Used by 
Refined by 
Variant 
Variant Uses 
Similar 
Combines 
Requires 
Tiling 
Sequence of 
Elaboration 

One pattern uses another pattern 
A specific pattern refines a general pattern 
A pattern addresses the same problem as another pattern 

lat ionships 
smaller pattern is used by a larger pattern 
general pattern is refined \>y a specific pattern 
variant pattern refines a more well-known pattern 
variant of one pattern uses another pattern 
pattern is similar to another pattern 
Two patterns combine to solve a single problem 
pattern requires the solution of another pattern 
pattern uses itself 
sequence of patterns from the simple to the complex 

This relationship is mostly documented in the "Related Patterns" or "See Also" section 

of a pattern form. For instance, in GOF patterns, Observer uses the Mediator pat tern for 

coordinating multiple objects updates, or Mediator uses Singleton for preventing duplication 

of mediators. The uses relationship can be interpreted as the composite relationship in the 

0 0 world. 

Refines relationship shows how a pattern is an special case of another one. This rela­

tionship is mostly implicit in the description of patterns, i.e.. there is no dedicated field in 

the pattern form that shows which pattern is a refinement of the other one. For instance. 

33 



in GOF patterns, Factory Method refines Template Method. The refines relationship can 

be seen as the inheritance relationship in the 0 0 world. 

Conflicts relationship exists between the patterns that are solutions to the same problem, 

but they are mutually exclusive. Reviewing the "Related Patterns" or "See Also" section of 

a pattern form would help in finding patterns that are conflicting with the current pattern. 

For instance, in GOF patterns, Decorator conflicts with Strategy, because both are solution 

to the problem of modifying the behavior of other objects. It is a good practice to investigate 

all the conflicting patterns while solving a problem, but only select one of them. 

In another paper, Noble and Beedle [NB02] have listed some of the open research prob­

lems regarding patterns as follows. How can we differentiate patterns that are structurally 

similar (e.g., Strategy and State)? How can we know that one pattern can be a solution 

to more than one problem (e.g., Proxy)? How can we know that one pattern can have dis­

tinctly different variant forms (e.g., Adapter)? How can several different patterns have the 

same name (e.g., Prototype)? How can we characterize the relationships between patterns? 

2.4.5 Pattern Language Grammars 

Using the vocabulary metaphor for the patterns of a PL leads to the grammar metaphor 

for the rules that dictate the correct sentences of the language. That means, "each pattern 

sequence can be viewed as a properly formed sentence in a pattern language" [BHS07b, 

p. 281], and "The union of all pattern sequences supported by a pattern language can thus 

be understood as its full set of grammatically correct sentence forms" [BHS07b, p. 282]. 

But, the sequences only show the results of applying the grammar rules, not the rules 

per se. That means, the rules are implicit in the sequences. For making the syntactic 

(grammatical) rules explicit, there exist two approaches. First, to integrate the rules into 

the descriptions of constituent patterns. Second, to use a formal notation for describing 

the grammar rules. The drawbacks of the first, approach are vagueness and ambiguity of 

the rules [BHS07b, p. 282]. The disadvantage of the second approach is that expressing 

the grammar of a large PL in a formal notation is difficult [BHS07b, p. 285]. Hence, most 

of the PL authors have preferred the first approach, i.e., to present the syntactic rules in 

prose, interwoven with the pattern descriptions [BHS07b, p. 284]. 

Following are alternative formal notations, that can be used for representing the gram­

mar of a PL. along with examples given for the Request-Handling framework introduced in 

Section 2.4.2. 

34 



B N F Notat ion The BNF [Knu64] notation which is widely used for writing the syntax of 

a programming language, can also be tailored for the PLs. In the following, we present our 

idea of defining a grammar for a PL. This definition is inspired by the seminalworks [ASU86, 

Lin06] in the field of formal languages and automata theory. 

A grammar for a PL is a quadruple G =< N, T,S,P > such that: 

• N is the set of non-terminals of the PL. A non-terminal is a temporary variable which 

will finally be replaced by a sequence of patterns. We suppose that non-terminals 

(variables) are represented by the words with lower-case letters. 

• T is the set of terminals (patterns) of the PL. In other words, T is the alphabet of 

the language. Terminals (patterns) are shown with capitalized words. 

• S € N is the starting variable of the grammar. If it is not explicitly specified, the 

variable that appears first is considered as the starting variable of the grammar. 

• P is the set of production rules that dictate how a sequence of patterns can be built. 

The production rules of the grammar are in the form A —> a, where A € N is a variable 

and a € (N U T)*. In making a, the operation '.', is a binary operation that shows a 

dependency from the left operand to the right operand. The operation '*' means any 

number of applying '.' operation. The alternative operation '—', is a binary operation and 

shows a choice between either of the two operands. Operator '.' has priority over '—' and 

parentheses are used for grouping. The terminal A means null or nothing. As an example, 

in the following a grammar is given for the Request-Handling PL described in [BHS07b, 

p. 283]. 

start -» COMMAND . EXPLICIT INTERFACE . tempi | A 
tempi -» MEMENTO . tempi \ COMPOSITE . tempS | A 
temp2 -> COMPOSITE . temp4 | A 
temP3 -> COMMAND PROCESSOR . COLLECTION FOR STATES . 
STRATEGY . NULL OBJECT | A 

tempA -» MEMENTO \ A 

Figure 6: A BNF Grammar for the Request-Handling Pattern Language, Adopted 
from [BHS07b, p. 283]. 

POSA-5 Notation A new notation is introduced in POSA-5 [BHS07b, p. 282] inspired by 

the BNF. Following is a grammar for the Request-Handling framework using this notation. 

35 



0 stands for starting state, —> shows the mandatory sequence, —> denotes the optional 

sequence, — is for alternation, and () is used for grouping. 

0 A {COMMAND -> EXPLICIT INTERFACE A {MEMENTO A 

COMPOSITE A COMMAND PROCESSOR -> COLLECTIONS FOR STATES 

-» STRATEGY -»JV£/LL OBJECT) | {COMPOSITE A MEMENTO)) 

Graphical Notation There are several graphical notations that can be adopted for rep­

resenting the grammar of a PL. For example "Feature Modeling" notation [KKL+98] can be 

used with bearing in mind the differences between patterns and features. Another example 

is the "Syntax Graph" that is used to show the syntax of programming languages, e.g., 

Pascal [Wir71]. Figure 7 shows the syntax diagram for the Request-Handling PL [BHS07b, 

p. 282]. 

•*(Command^ • f j f ? d 1 

\ J VJnterface > 

-(Composite ?4-

{ Memento 

/ " Mull " X / q , r a Z r \ « - - r Collections for V / " Command""'' "N j 
VjObject / * \ Strategy J ^ \ states J * \ ^ Processor / * ^ 

/" "\ 
-> Composite i-4-

V J 
' "dement. , { Memento j < -

J 

Figure 7: Syntax Diagram of the Request-Handling Pattern Language [BHS07b, p. 284] 

More important than the notation chosen for the grammar, a PL must have clear guid­

ance that shows the meaningful paths and prevents the designers from selecting ill-formed 

pattern sequences [BHS07b, p. 284]. 

The quality of a PL is reliant on both its maturity and its completeness. Maturity relates 

to the quality of the constituent patterns and their relationships. Completeness relates to 

the coverage of the problem and solution spaces by the language. Also the quality of a PL 

is related to the quality and maturity of its vocabulary (patterns) and its grammar (pattern 

dependencies) [BHS07b. p. 291]. 

Another P a t t e r n Relationship Model Emphasizing on the fact that many of the 

researchers have ignored the importance of the relationship between patterns, Wo-dong 

36 



et al. [WdKqY+03] have introduced a model for pattern relationships which is indeed a 

formalized and extended version of the "pattern graph" introduced by Alexander [A+77]. 

In a "pattern graph" there are two types of relationships between patterns: "Root" and 

"Leading." The authors have shown how the proposed model can be used in building 

frameworks. 

The model has two parts: the pattern relationships, and the translating methods that 

convert the relationships into a component model. If Pattern Set (PS) be the set of all 

patterns in a PL, then the relationships between patterns is defined by the following defi­

nitions. 

ENTRY = {< x > | x € PS A isarchitecturepattern(x)} 

LEAD = {< x, y > | x G PS A y G PS A applied(x) —> toapply(y)} 

REQUIRE = {< x, y >| x G PS A y G PS A applied{x) -> applied(y)} 

EXCLUDE — {< x, y >| x G PS A y G PS A canapply(x) —> -> canapply(y)} 

ALTERNATE = {< x, y > | x € PS A y € PS A canapply(x) <-* canapply(y)} 

Based on this model, a Pattern Cluster (PC), a set which contains all the related patterns 

for a problem context, is defined as follows. 

PCC PS 

Vx,y e PS : {ENTRY x Ax LEAD y) =» y G PC 

VxePCAy(EPS:x REQUIRE y => y G PC 

Vx,y &PC :^{x EXCLUDE y) 

Vx,yePC:x ALTERNATE y => x EXCLUDE y 

As it is clear from the above definitions, this method of framework development should 

start from an architectural pattern. Then, applying this root pattern leads us to other 

patterns that need to be applied. Maybe some of the applied patterns require other patterns 

to be applied. This process continues until the PC is completed. Meanwhile, the PC should 

remain consistent, meaning that conflicting patterns are not allowed to be added. The last 

two rules check the consistency of the under development PC. 

2.4.6 Pattern Relationships in POSA-5 

POSA-5 [BHS07b] is the last book in the Pat tern-Oriented Software Architecture series 

which wraps up all the experiences and discussions of the previous volumes under the 

subtitle "On Patterns and Pattern Languages." We believe that it is one of the state-of-

the-art references about PL and pattern relationships. However, PL field is still immature 

as the POSA-5 authors also emphasize that: 

37 



"not all the aspects of pattern languages we discuss in this part of the book are 

mature or well-established in the pattern community. For example, while funda­

mental aspects and properties of the process introduced by pattern languages, 

such as piecemeal growth, are widely accepted and practiced, other aspects and 

properties, such as the role of pattern sequences in defining a grammar for pat­

tern languages, are considered as new or even subject to debate." [BHS07b, 

p. 245] 

In this section, we present a brief review of the POSA-5 discussions by considering 

four type of relationships that could exist between the patterns: Competition, Completion, 

Combination, and Compound. We have also added more examples from different PLs. 

Patterns in Competition 

This relationship happens when there are more than one pattern to solve the same problem. 

The relationship can also be called pattern alternatives. 

Following are some examples for patterns in competition. When the problem is "to fix 

the steps in an algorithm while allowing the implementation of the steps to vary," there are 

two GOF patterns available as solutions: STRATEGY and TEMPLATE METHOD [BHS07b, 

p. 138]. Two patterns of PofEAA, Optimistic Offline Lock [Fow02, p. 416] and Pessimistic 

Offline Lock [Fow02, p. 426], are alternatives for the problem of handling concurrency control 

issues. In POSA-4 [BHS07a], both OBJECTS FOR STATES and COLLECTIONS FOR 

STATES patterns "address the problem that an object's concrete behavior can depend on 

its current modal state" [BHS07b, p. 138]. 

When having several alternatives for a problem, the important challenge is "How to 

select one of the alternative patterns?" To answer, the key is to investigate "the context, 

the forces, and the consequences of competing patterns" [BHS07b, p. 144]. The context is 

one of the fields in the pattern form. The forces are the factors such as cost and performance. 

The consequences are the pros and cons of selecting each alternative. In addition to the 

above parameters, sometimes there are other subjective and cultural elements which affect 

our decision. Examples of these context information are as follows: programming language, 

complexity of the system, and expertise of the designer [BHS07b, p. 154]. 

While deciding on the competitive patterns during the design, we need to record the 

important discussions and investigations about the pros and cons that take place in selecting 

one of the alternatives. The resulted artifact is called "Design rationale" and is a useful 

document for future designers, and for maintainers of the system [PB88] 

38 



Patterns in Completion 

This relationship exists when one pattern can structurally complement another pattern. 

This relationship can also be called patterns in cooperation. It can be considered as a 

stronger version of pattern usage or inclusion. For instance, consider the case that the 

COMMAND PROCESSOR contains the COMMAND pattern [BHS07b, p. 156]. Another 

example is the TABLE DATA GATEWAY pattern of PofEAA that needs RECORD SET 

as the return type of its find operations [Fow02, p. 144]. 

Patterns in Combination 

There are cases that combining both alternative or cooperative patterns together results in 

better solution. This happens when we are not forced to apply an "exclusive-or" relationship 

between two patterns [BHS07b, p. 159]. For instance, the CLASS ADAPTER pattern can 

be nested within the scope of the OBJECT ADAPTER to obtain a solution that could not 

be addressed by either of the individual patterns. 

Many of the PofEAA patterns can be combined together since the author's recommen­

dations are not strictly forbidding the designer to combine the alternatives. For instance, in 

PofEAA Fowler [Fow02, p. 59] says "you can write the code in the style of either Transform 

View or Template View or in some interesting mix of the two." 

Pattern Compounds 

There exist patterns that one of their elements is also a pattern. Also we can group some 

patterns together to make a bigger pattern. Buschmann et al. [BHS07b, p. 166] defined 

a pattern compound as "a named, commonly recurring, cohesive combination of other 

patterns." As an example for the former, note that COMMAND pattern can be found inside 

the ENUMERATION METHOD, and for an example of the latter, consider combining 

COMMAND and COMPOSITE to obtain a COMPOSITE COMMAND pattern [BHSOTb, 

p. 166]. 

In PofEAA, Front Controller [Fow02, p. 344] is an example of a pattern compound which 

has GOF Command pattern as its part. Figure 8 shows the structure of this pattern. 

By scrutinizing some of the patterns that in the pattern community are known as pattern 

elements (atomic patterns), we will see them as pattern compounds. For instance, INTER­

PRETER was introduced first in GOF as a general-purpose pattern element, however, it can 

39 



A contoller that handles all the requests for a Web site. 

Handler 

doGet() 
doPost() 

- > 

Command 

process() 

I 
ConcreteCommand 1 

process() 

ConcreteCommand 2 

process() 

Figure 8: The Front Controller Pattern [Fow02, p. 344] 

be interpreted as a pattern compound consisting of Command, Context Object, and Com­

posite. Another example is the Model View Controller (MVC) pattern that in many works is 

considered as a single pattern, but a closer look at it reveals that it can be decomposed into 

either three elements (Model, View, and Controller), or seven elements (OBSERVER, COM­

MAND PROCESSOR, FACTORY METHOD, VIEW HANDLER, COMPOSITE, CHAIN 

OF RESPONSIBILITY, and BRIDGE) [BHS07b, p. 177-179]. 

Pattern Stories and Pattern Sequences 

There are several ways for understanding "how a software system is designed" including 

investigation of its source code, diagramming its model, or recognizing its patterns. The 

results of all these methods are static, i.e., they show the system at a specific time. For 

example extracting the patterns used in a system is only a list; it does not show which 

pattern is used first [BHS07b, p. 184-185]. 

Storytelling is another method for describing the development of a system in a narrative 

way. A story tells us which pattern is used first, and what happened after. The story reveals 

the decisions made during the development of the system. One way of writing a story is to 

build a list of questions and answers. An example of a story is the presentation of the Lexi 

document editor in GOF [GHJV95, p. 33] which is used throughout the book to explain 

how patterns can be applied in practice [BHS07b. p. 185-189]. 

Following is a brief version of a story of the Request-Handling framework given in 

[BHS07b, p. 196]. 

40 



COMMAND is expressed with EXPLICIT INTERFACE. COMMAND PRO­

CESSOR is then introduced, to which COLLECTIONS FOR STATES is added. 

COMMAND is then augmented with MEMENTO. COMMAND PROCESSOR 

is then refined with STRATEGY, which leads to NULL OBJECT. COMPOS­

ITE COMMAND is then introduced. 

In a story there is no guidance on how patterns are connected together. Pattern se­

quences address this flaw by removing the story and talking on the order in applying pat­

terns. It is worth noting that some PLs have not addressed pattern sequences at all; others 

made them implicit in the pattern descriptions. However, it is important to have pattern 

sequences as particular artifacts in a PL [BHS07b, p. 192-193]. 

By removing the story side from the above short story example, we reach to a more 

formal version as follows [BHS07b, p. 196]. 

[COMMAND, EXPLICIT INTERFACE, COMMAND PROCESSOR, COLLEC­

TIONS FOR STATES, MEMENTO, STRATEGY, NULL OBJECT, COMPOS­

ITE COMMAND;, 

Also some of the pattern compounds can be viewed as pattern sequences. For instance, 

decomposing the INTERPRETER pattern into its constituting patterns gives us the follow­

ing tuple: (COMMAND, CONTEXT OBJECT, COMPOSITE^ [BHS07b, p. 201]. There 

are several ways for presenting a pattern sequence. Maybe the simplest one is an ordered 

list of applied patterns [BHS07b, p. 193]. 

Buschmann et al. [BHS07b, p. 194-195] define a pattern sequence as "a successive pro­

gression of design decisions and transformations." They also emphasize that "a sequence 

represents a path through a design space [...] Following a pattern sequence is more like fol­

lowing a recipe than following a plan [...] How we choose between related pattern sequences 

will lead us to pattern languages." 

Final note is that pattern context plays an important role in pattern sequences. It is 

the pattern context which tells us how to apply the pattern, as well as where in a sequence 

the pattern lies [BHS07b, p. 203]. 

P a t t e r n Collections 

Due to the fact that "Patterns are gregarious by nature" [BHS07b. p. 210]. there is a ten­

dency in presenting a set of patterns as a collection. The on-going work of Grady Booch's 

-11 



Handbook of Software Architecture [Boo09], with about 2000 patterns, is the biggest col­

lection of software patterns, ever. There are several approaches for organizing collections 

as described in the following [BHS07b, p. 211]. 

• Ad hoc organization: When there is no specific theme for organizing patterns. Pattern 

Languages of Program Design [MVN06] books belong to this group. 

• Organization by level: When patterns are organized based upon the level of granu­

larity. Three well-known packaging of patterns based on the level are: idioms, design 

patterns, and architectural patterns. As a simple definition, idioms are more fine­

grained to be considered as a solution to a problem, i.e., an idiom is just a matter 

of convention. People use the term "design pattern" for a pattern which is similar 

to the GOF design patterns. Architecture patterns deal with most significant design 

decisions that shape a system [BHS07b, p. 213-216]. 

• Organization by domain: The domain can be divided into two parts: problem (appli­

cation) domain and solution domain. The first deals with patterns that are related 

to the real world applications, such as health care or avionics. The second covers the 

software-centric concerns, such as architectural styles or programming languages. It 

should be noted that these two groups are not exclusive and designers need to consult 

patterns in both groups [BHS07b, p. 218]. 

• Organization by partition: When patterns are organized based on the part of the 

architecture in which they are applied [BHS07b, p. 219]. For instance, Fowler in 

PofEAA [Fow02] classifies his patterns into layers such as presentation, domain, and 

data source. 

2.4.7 P a t t e r n Re la t ionsh ips a t a G l impse 

Table 3 summarizes this section by presenting the above discussion about the definitions and 

the formalisms of the pattern relationships. For each relationship, its name along with the 

references which have introduced that relationship are given. Further, another names for 

the relationship along with the references, the meaning of the relationship, some examples 

from Alexandrian patterns, GOF design patterns, PofEAA, and POSA-5 are presented. 

42 



Table 3: Pattern Relationships at a Glimpse 
Relationship 
AKA 

Meaning 

Alexander 

GOF 

PofEAA 
POSA 

Relationship 
AKA 
Meaning 

Alexander 
GOF 

PofEAA 
POSA 

Relationship 
A K A 
Meaning 
Alexander 
GOF 

PofEAA 

Relationship 
Meaning 
Alexander 
GOF 
PofEAA 
POSA 

Relationship 
Meaning 

G O F 
P O S A 

uses [A+77, Zim95, GHJV95, Nob98a, NB02] 
containment [A+77], completion [BHS07b], cooperation [BHS07b], requires [NB02], 
completes [NB02], follows [NB02] 
A uses B means pattern A uses pattern B in its solution, or B structurally complements 
A. 
Small Public Squares uses Pedestrian Density, Activity Pockets, and Something 
Roughly [Nob98a] 
Observer uses Mediator, Mediator uses Singleton, MVC uses Observer, Strategy, and 
Composite [Nob98a], Interpreter uses Composite [NB02] 
Front Controller uses Command, Table Data Gateway uses Record Set 
Command Processor uses Command [BHS07b] 

conflicts [GHJV95, Nob98a] 
competition [BHS07b], alternative [BHS07b, NB02], similar [Zim95] 
A conflicts B means patterns A and B are mutual exclusive solutions for the same 
problem 
House for a Small Family conflicts House for a Couple conflicts House for a Person 
Decorator conflicts Strategy, Prototype conflicts Factory Method [Nob98a], Prototype 
conflicts Abstract Factory , Decorator is alternative for Strategy [NB02] 
Optimistic Offline Lock conflicts Pessimistic Offline Lock 
Objects for States conflicts Collections for States [BHS07bJ 

refines [Nob98a] 
specialization [NB02] 
A refines B means pattern B is a specialization of pattern A 
Sequence of Sitting Spaces refines Intimacy Gradient [Nob98a] 
Factory Method refines Template Method [Nob98a], Factory Method is a special kind 
of Hook Method [NB02] 
Data Mapper refines Mapper 

combines [Nob98a, BHS07b] 
A combines B means patterns A and B can be used together 

Composite combines Iterator , Composite combines Visitor 
Transform View combines Template View 
OBJECTS FOR STATES combines COLLECTIONS FOR STATES 

Compound [BHS07b] Notation: A <- B + C 
1) Patterns B and C are joined together to make new pattern A 2) Pattern A can be 
decomposed into patterns B and C 
1) COMPOSITE COMMAND — COMPOSITE + COMMAND 
2) MVC - OBSERVER + COMMAND PROCESSOR + FACTORY METHOD + 
VIEW HANDLER + COMPOSITE + CHAIN OF RESPONSIBILITY + BRIDGE 

43 



2.5 Pattern Selection/Detection 

2.5.1 GOF Design Pattern Detection 

Most of the work on pattern detection is about detecting GOF design patterns. Some works 

try to find the patterns in the source code, others investigate models. Not all approaches 

are successful in detecting all GOF design patterns. There are patterns in GOF which are 

deterministically recognizable by checking the static models, e.g., Composite, and there are 

patterns that their structure is identical and their detection needs dynamic models (or even 

code) investigations, e.g., State and Strategy. 

Tsantalis et al. [TCSH06] have proposed a design pattern detection which is based on 

similarity scoring between graph vertices. The idea is to represent each design pattern in 

term of a set of matrices, then, the given UML class diagram is also transformed to a set 

of matrices. The detection is performed by a tree search inside the given model to find an 

occurrence for a pattern. The approach is successful in detecting 20 of the 23 GOF design 

patterns. 

Bergenti and Poggi [BP02] have developed a system called IDEA (Interactive DEsign 

Assistant) which detects design patterns in a UML diagram. The IDEA is integrated 

into both ArgoUML [Tig09a] and Rose [IBM09a]. The IDEA investigates both the class 

diagram and the collaboration diagram. The criteria that specify the structure of a pattern 

are written as Prolog rules. Eleven GOF design patterns are successfully detected by the 

IDEA. 

Wuyts [Wuy98] has used a declarative reasoning approach (using Prolog rules) to de­

scribe the structure of GOF design patterns, and to detect the patterns in Smalltalk pro­

grams. For instance the following rule defines the structure of the Composite design pattern 

by using two other sub-rules. 

head: compositePattern (?comp,?composite,?msg) 

body: compositeStructure (?comp,?composite) 

compositeAggregation (?comp,?composite,?msg) 

Kampffmeyer and Zschaler [KZ07] have built an ontology containing the Intent (see 

Section 2.3.3) of GOF design patterns. Then, they have built a tool that, given a problem, 

helps the designer choose the right pattern. All the 23 GOF patterns are covered in their 

work. 

Blewitt et al. [BBS05] have introduced a prolog-like language named SPINE (see also [TaiOT. 

chap. VI] and [Ble06]) as a pattern specification language. SPINE is used for defining a 

44 



pattern in terms of constraints on its Java implementation. The authors have also shown 

how a proof engine named HEDGEHOG reads both the SPINE code and a Java code, and 

verifies the application of patterns in the Java code. From GOF design patterns, seven 

patterns could not be represented by SPINE. 

Mak et al. [MCL04] have reused the idea presented by Guennec et al. [GSJOO] to present 

extensions for UML such that the recurrent structure and behavior of design patterns (pat­

tern leitmotifs) can be specified precisely. The authors of both papers [MCL04, GSJOO] 

have concluded that current versions of UML (at the time of writing papers, 1.3 for[GSJ00] 

and 1.5 for [MCL04]) are ill-equipped for precise representing of design patterns. The work 

presented by the latter paper [MCL04] was believed to be a premier step in defining the 

UML 2.0 profile for the modeling of design patterns. 

2.5.2 Pat tern Enforcing Compiler (P EC) 

Lovatt et al. [LSV05] (see also [Tai07, chap. XV] and [Lov06]) have built a system named 

Pattern Enforcing Compiler (PEC) to address the problem that different programmers 

implement a pattern in different ways. PEC is similar to a conventional Java compiler, with 

the extension of verifying the application of design patterns in the code. The interfaces are 

used as markers to inform PEC that a pattern is used. Hence, the patterns are enforced at 

the class level, not the instance level. The programmer has to use a 'boiler plate' code for 

the pattern that he/she wants to apply. 

The PEC system is written for Java language and uses Javadoc to document pattern 

usages. It uses interfaces as markers for showing the developer's desire for applying a 

pattern. It is important to note that by selecting the interfaces as markers, the programmer 

knows beforehand which pattern he/she intends to use. PEC only shows 'pass' or 'fail' 

message to the developer. I.e., there is no advisory system. It uses a naming convention 

for easing the detection of class features. PEC generates most of the 'boiler plate' code for 

some of the patterns. PEC is extensible, meaning that the user can define new patterns 

without requiring any new syntax for the Java language. 

Following are the criteria for a correct application of the Singleton pattern as indicated 

in the PEC Javadoc. A Singleton class has the following properties: 

1. The class must be final. 

2. The class must have a. single, private, no argument, constructor that throws the ex­

ception I l legalStateExcept ion if it is called more than once. 

45 



3. If the class is serializable then it should have a readResolve method that returns the 

'singleton.' 

4. The class cannot be clonable. 

5. The class must have a method called instance. This instance method must: always 

return the same object, have no arguments, be static, and have either package or 

public access. 

The following is the 'boiler plate' code for the Singleton pattern given in [LSV05]. 

import pec.compile.singleton.*; 

public final class SingletonClass implements Singleton { 

private final static SingletonClass instance = new SingletonClass(); 

private SingletonClass() { 

if ( instance != null ) 

throw new IllegalStateExceptionC'Attempt to create a second Singleton" ); 

} 

public static SingletonClass instanceO { 

return instance; 

} 

// other methods 

} 

The most important item in the above code is the line that tells the PEC that the 

SingletonClass implements the interface Singleton, i.e., this class is meant to be a Sin­

gleton. Then, PEC checks the criteria of the Singleton pattern. This is like the type checking 

mechanism of the Java compiler. For each pattern named X, there is a class named XUtility 

in the same package as the interface, that checks the structure of that pattern. 

In addition to the static checking, PEC is claimed to have two more features: dynamic 

checking and code generation. Dynamic checking is used for the patterns such as Singleton 

that can not be detected only by static checking. For Singleton, an attempt is made to 

create two Singletons, if it is successful, an error is reported. Dynamic testing is done by 

the help of j a v a . l a n g . r e f l e c t Application Programming Interface (API). As reported 

in the paper, seven patterns have been implemented in the PEC. However, new patterns 

can be added by a user which is familiar with Java, since PEC does not introduce any 

new syntax. Finally, the error messages given by the PEC are very simple, e.g., "Singleton 

classes must not be clonable." 

46 



2.5.3 Systematic Pattern Selection 

Zdun [Zdu07] has proposed a systematic pattern selection approach which uses both PL 

grammars and design space analysis. An important prerequisite of this approach is to 

identify the relevant quality goals of the patterns. Quality goals can be found in the forces 

and consequences sections of the pattern form. After quality goals are found, the pattern 

relationships are formalized into a pattern language grammar, and the grammar is annotated 

with the effects of the selected patterns on the quality goals. A sample annotated pattern 

language grammar overview diagram is shown in Figure 9. The scores '++ , ' '+ , ' and '—' 

show the effect of the selected pattern on the specified quality goal. The [variants] mark 

should be interpreted as 'OR.' The diagram in Figure 9 can be converted to a formal 

grammar shown in Figure 10, using the notation presented in Section 2.4.5. Note that the 

capitalized words are the name of the patterns in the PL. 

{option] 
quality goal 4 + 

( Pattern A V 

[variantsj 

quality goal 1 + 
quality goal 3 -

quality goal 3 ++ 
quality goal 4 ++ 
{this is a comment} 

C Pattern B J 

[required] 

Pattern A Variant 1 Pattern 8 Variant 2 ( Pattern C J 

Figure 9: An Annotated Pattern Language Grammar Overview Diagram [Zdu07] 

S —» PatlernAs Pattern A^Options 
PattemAs —» PatternAs PatternA \ Pattern A 
PatternA -* PATTERN A 
PatternA — PATTERN A VARIANT! 
PatternA -> PATTERN A VARIANT2 
Pattern Adoptions -> A | PATTERN B PATTERN C 

Figure 10: A Grammar Equivalent to the Diagram Given in Figure 9. Revised from [Zdu07] 

As an example of a pattern sequence that can be derived from this grammar, consider 

the following derivation which results in applying only one pattern "PATTERN A.n 

S -» PatternAs PatternA.Options -> PatternAs -> PatternA -> PATTERN A 

The grammar helps the designer in several ways: in understanding the topology of the 

PL, in showing the possible pattern combinations, and in reviewing the effects on quality 

goals of the patterns. The grammar suffices for most (simple) design decisions, e.g.. "if 

pattern A requires pattern B, the design decision is already clear." However, for complex 

47 



design decisions, a design space analysis, using the Questions, Options, and Criteria (QOC) 

notation, is performed to reduce the complexity of the pattern selection process. A template 

for design space visualization using QOC technique is shown in Figure 11. 

Q Top-level 
Question 2 

X 

c FoicaConsequence 1 

c FotcoConsequence 2 

c 

c 

FoicefConsequence 3 

ForctfConsequence 4 

c FoicvCcmsequence 5 

o Patterns 

o Pattern 6 

V 
\ 

c 

c 

Force/Consequence 6 

Fotce/Consequence 7 

Figure 11: A Template for Design Space Visualization using QOC Approach [Zdu07] 

This approach has been applied for a case study on "Remoting Patterns." The idea 

has also been validated via several academic and industrial projects, e.g., "re-engineering 

a document archiving system." As a track for future work it is claimed that "the pattern 

language grammars and design spaces can potentially be used as an input for model-driven 

tools" [Zdu07]. 

2.6 PofEAA PL 

In this thesis, our focus is on Martin Fowler's book titled "Patterns of Enterprise Applica­

tion Architecture" PofEAA [Fow02]. The book consists of a set of patterns for designing the 

architecture of a web-based enterprise application. Enterprise systems are more complex 

than other kinds of software considering the complicated business rules and the amount and 

complexity of data. These systems usually deal with huge amount of data (e.g., tens of mil­

lions of records) which needs to be persisted and accessed by many users concurrently, and 

to be integrated with other applications. Examples of enterprise applications are financial 

systems, reservation systems, and supply chain systems [Fow02, p. xviii]. 

While there is no consensus on the definition of the term "Architecture," most people 

agree that it is "the highest-level breakdown of a system into its parts" [Fow02, p. 1]. In 

software design, several approaches are introduced for the architectural design of a system, 

pipes, filters, and layers to name a few. Layering architecture is selected in PofEAA, that 

means, the book is about how to decompose a system into layers and how these layers work 

together [Fow02, p. 2]. Choosing an appropriate architecture for an enterprise application 

48 



is hard. Based on the author's experience with enterprise applications, 51 patterns are 

introduced as solutions to the recurring problems that designers encounter while designing 

the architecture of a web-based enterprise application. 

It should be noted that enterprise applications are not all the same, hence, there is no 

"one size fits all." That's why the author of PofEAA emphasizes that "many of the patterns 

are about choices and alternatives" [Fow02, p. 6]. Also it is clarified that patterns should 

not be used blindly and the designer needs to select a "half-baked" pattern and then modify 

it to meet his/her demands [Fow02, p. 10]. 

As it was mentioned earlier, in defining a pattern, each pattern author selects a pattern 

form. The pattern form used in PofEAA includes eight items: The pattern name, The 

intent, The sketch, A motivation problem, How it works, When to use it, The further 

reading, and The Examples [Fow02, p. 11]. 

In the following, first we briefly review how the PofEAA patterns are organized, then 

we discuss how this set of patterns is qualified to be considered as a PL. 

2.6.1 Organization of the Patterns in PofEAA 

Based on the idea of three-tiered architecture for object-oriented client-server platforms, the 

patterns in PofEAA are decomposed into three main layers [Fow02, p. 19]. Also there are 

supporting patterns for the issues such as object to relational conversion and concurrency 

management. 

In the following, first we introduce the patterns of three main layers, then we see the 

supporting patterns. Note that grouping patterns into "main patterns" and "supporting 

patterns" is our choice and is not explicitly done in the book. Also note that the pattern 

names are in italic. 

Main P a t t e r n s 

Presentat ion Layer This layer is responsible for the user interface, i.e., displaying infor­

mation and handling user requests. The patterns address the design problem "How does the 

system communicate with the user?" There are seven patterns in this layer: Model View 

Controller. Page Controller. Front Controller. Template View. Transform View. Two-Step 

View, and Application Controller. 

Domain Layer This layer deals with application and domain logic and business rules, 

hence it is often called "business logic layer.7" The patterns address the design problem 

49 



"How the business logic of the system is organized?" There are four patterns in this layer: 

Transaction Script, Domain Model, Table Module, and Service Layer. 

D a t a Source Layer This layer is related to communicating with the database, the mes­

saging system, and other external applications. The patterns address the design problem 

"How does the system access the data source?" There are four patterns in this layer: Table 

Data Gateway, Row Data Gateway, Active Record, and Data Mapper. 

A designer can find various answers for the mentioned design questions based upon a 

number of conditions, e.g., the platform he/she is working on, knowledge of developers, 

complexity of the domain objects, or complexity of business logic for each scenario. As it 

was mentioned earlier, t he PofEAA does not force a single solution for a problem. Instead, 

several choices and alternatives are proposed. 

For the P r e s e n t a t i o n Layer, using Model View Controller (MVC) is recommended. 

The word "Controller" is divided into two types by the author of PofEAA: "Input Con­

troller" and "Application Controller." The Controller in MVC pattern is actually an Input 

Controller, but an Application Controller acts as "a separate layer that mediates between 

the presentation and domain layers" [Fow02, p . 58]. Only if the screen flow of the system 

is controlled by a machine, we need an Application Controller. 

Two sets of patterns are introduced in this layer, one for control part and the other 

for view part . For the control part, two patterns are presented: Front Controller and 

Page Controller. Based upon the choice made for the domain layer, the technology we are 

using, and the complexity of the user requests, we may choose different pat terns for the 

Presentation Layer. For example, Front Controller fits best with the Java technology and 

object-oriented modeling of domain concepts in Domain Layer ( that means using Domain 

Model pat tern), while Page Controller is simpler and could be used with a simple pat tern 

for Domain Layer such as Transactions Script. 

For the view part, three patterns are introduced: Template View, Transform View, and 

Two-Step View. Selecting either of the first two patterns, we have two options, to use it as 

a single stage, or a Two-Step View. 

For the D o m a i n Laye r , there are three patterns: Transaction Script. Domain Model, 

and Table Module, in addition to an extra pattern, named Service Layer, which (optionally) 

can be used over Domain Model and Table Module. Transaction Script is used when the 

designer does not want to model this layer with object-oriented technology. It is just a 

bunch of code for each transaction of the system put in a method or a separate class. When 

50 



developers are not familiar with object-oriented technology, this choice is probably the best 

one for the business logic layer. On the other hand, Domain Model is based upon object-

oriented design of domain concepts. This is the most appropriate choice for object-oriented 

developers using technologies such as Java and C++. Table Module works best for people 

working with .Net or Visual Studio which have facilities for things like Record Set which is 

a base pattern. As Fowler says, "These three patterns are not mutually exclusive choices. 

Indeed, it's quite common to select Transaction Script for some of the domain logic and 

apply Table Module or Domain Model for the rest" [Fow02, p. 30]. 

Table 4 summarizes the discussions given in the PofEAA book in terms of advantages 

and disadvantages of each pattern from the Domain Layer. According to the table, one 

of the most important factors in choosing the right pattern for structuring the domain, is 

the complexity of the domain logic. Unfortunately, there is no metric for measuring this 

complexity. One solution is to ask an expert to review the requirements and give you a 

judgment [Fow02, p. 30]. 

Table 4: Alternative Patterns for Domain Layer (Adapted from [Fow02, p. 25-32]). 
Pattern 

Transaction 
Script 

Table 
Module 

Domain 
Model 

Advantages 

Easy to use and understand for most 
developers. 
Easy to build atop a relational DB. 
A simple procedural models. 
Works well with moderate business 
logic. 
Easy for connecting to relational DB. 
Handles complex business logic in a 
well-organized way. 
Matches well with OO paradigm. 

Disadvantages 

Does not fit with the complex business logics. 

Duplicate code is inevitable. 

Does not fit with the complex business logics. 

Hard to use and understand for n o n - 0 0 peo­
ple. 
Difficult for connecting to relational DB. 
Object/Relational mappings are needed. 

In the D a t a Source Layer, depending on the choice made for Domain Layer and the 

complexity of the domain objects, along with the properties of the database, designer will 

select the appropriate pattern for talking to the database. Sometimes there is a simple 

mapping between the objects and the database tables, but this mapping is not always 

straightforward. There are two patterns named Mapper and Gateway to solve this problem. 

Mapper is used when there is a cross table transaction to access the information needed to 

construct an object, but Gateway simply packs the queries for one table and is used when 

a domain object can fulfil] its assigned tasks just by accessing one table. 

There are two kinds of Gateways: Table Data Gateway and Row Data Gateway. One 

instance of the former handles all the rows in the table which usually contains a mini-

table such as Record Set. but for the latter, there is one instance per each row of a table. 

51 



Sometimes a user request can be responded by just one domain object talking to just one 

database table. In these cases, the logic in the domain object and the queries in the gateway 

can be combined in an object called Active Record which is another pat tern of the Da ta 

Source Layer [Fow02, p. 35]. 

Support ing Pat terns 

Object -Relat ional pa t t erns These pat terns are applied when the relational database 

is used for storing the objects. There are 16 pat terns in this group which are divided 

into three subgroups named Structural, Behavioral, and Metadata Mapping. The first 

deals with the problem of relating objects to tables, the second concerns about loading and 

saving objects to the database, and the third is related to the actual task of object-relational 

mapping. Single Table Inheritance, and Class Table Inheritance are example pat terns in 

the first group; Unit of Work and Identity Map are examples in the second group; Metadata 

Mapping and Query Object are examples in the third group. 

Distr ibut ion pat terns These patterns address the issues of distributing an application 

on different nodes. D\ie to the pitfalls of distributed architecture, the first recommendation 

given by the author of PofEAA encourages the designers not to distribute their objects! 

Then to limit the distribution boundaries as much as possible. Finally, there are two simple 

patterns named Remote Facade and Data Transfer Object in this group that can help the 

designer manage the distribution of objects. 

Offline Concurrency pat terns These patterns are simple techniques tha t help the de­

signer deal with concurrency control issues, although they are merely start ing points and 

there is no guarantee tha t they can cure all concurrency problems. Concurrency problems 

occur when there are multiple processes or threads manipulating the same data. However, 

dealing with concurrency is one of the hardest issues in software development. 

As a naive solution, it is recommended to do all the data manipulations within a trans­

action. Even with this solution, there still exist some concurrency issues, which in the book 

are referred as offline concurrency, "that is. concurrency control for da ta tha t ' s manipu­

lated during multiple database transactions" [Fow02, p. 63]. There are four pat terns in 

this group: Optimistic Offline Lock, Pessimistic Offline Lock, Coarse Grained Lock, and 

Implicit Lock. Table 5 shows the pros and cons of the alternative patterns for managing 

concurrency in a system. 

52 



Table 5: Alternative Patterns for Concurrency Control (Adapted from [Fow02, p. 68,77]). 
Pattern 

Optimistic Offline 
Lock 

Pessimistic Of­
fline Lock 

Coarse-Grained 
Lock 
Implicit Lock 

Advantages 

Easy to implement. 

Better Concurrency 
Early discovery of fail. 

Manages the concurrency of a group of 
objects together. 
Saves time of managing locks directly. 
Avoids bugs. 

Disadvantages 

Needs to redo the task in case of conflict. 

Late discovery of fail. 
Hard to implement. 

Reduces concurrency. 

Session State patterns The patterns in this group address the issues of having stateless 

versus stateful sessions. The first suggestion is to have everything stateless! But for the 

cases that you ought to have stateful sessions, there are three patterns presented in this 

category: Client Session State, Server Session State, and Database Session State. 

Base patterns This group contains 11 patterns which are more general and localized and 

will be referred in the discussion of other patterns. Examples are Gateway, Mapper, and 

Record Set. 

2.6.2 PofEAA as a PL 

Despite the fact that the author of PofEAA does not force the designers to select one pattern 

after another, and says "I've tried to make each pattern as self-standing as I can" [Fow02, 

p. 10]. However, there exist several prominent features in this set of patterns that enable 

us to argue that PofEAA is a PL for the design of web-based enterprise applications. The 

facts that support this idea are as follows. 

1. Fowler says "the value [of patterns] lies in helping you communicate your idea [...] 

The result is that patterns create a vocabulary about design, which is why naming is 

such an important issue" [Fow02, p. 11] 

2. PofEAA patterns are closely related to each other and can be used to design the 

architecture of a web-based enterprise application. 

3. There are several recommendations and great suggestions in PofEAA about how to 

decide amongst various alternative patterns for the situations that the designer has to 

select one pattern amongst the available choices. For instance, it is said: "A simple 

Domain Model can use Active Record, whereas a rich Domain Model requires Data 

53 



Howdo I structure my domain logic? 
The logic is simple —• Transaction Script (110) 
The logic is complex —» Domain Model (116) 
The logic is moderate and there are good tools around Record Set (508) 
-> Table Module (125) 

How do I structure a Web presentation? 
- • Model View Controller (330) 

How do I interact with the da t abase? 
I'm using Transaction Script (110) —» Row Data Gateway (152) 
I'm using the Transaction Script (110) and my platform has good support for 
Record Set (508) -> Table Data Gateway (144) 
I have a Domain Model (116) that corresponds closely to my database tables 
—> Active Record (160) 
I have a rich Domain Model (116) —» Data Mapper (165) 
I'm using Table Module (125) -> Table Data Gateway (144) 

Figure 12: A Cheat Sheet for Selecting Patterns [Fow02, inside back cover] 

Mapper" [Fow02, p. 117]. This set of recommendations and suggestions, can be con­

sidered a structuring mechanism that leads a novice designer in selecting appropriate 

patterns one after another and hence design a system. 

4. The set of patterns in PofEAA is rich enough to describe the design of an application 

as a whole. That means we can find the problem along with its solution in PofEAA 

for almost any enterprise need and these patterns guide us through the design of each 

part of the application and consequently the whole system. 

As an informal version of the structuring mechanism, Fowler has augmented the PofEAA 

book [Fow02, Inside Back Cover] by a "Cheat Sheet." In Figure 12, we have selected an 

excerpt from the Cheat Sheet that aims to guide the designer in selecting appropriate 

patterns for the Domain Layer and the Data Source Layer. 

As a typical road map for building the architecture of a web-based enterprise application, 

a developer starts from the Domain Layer and based on the factors such as the complexity 

of the domain logic, the difficulty of connecting to a database, and the using tools, selects 

one of the three contender patterns. 

After the decision about the Domain Layer is made, the developer goes down to the Data 

Source Layer and thinks about how to connect the domain objects to the data sources. At 

this stage, the decisions are dependent upon the Domain Layer choice along with extra 

factors such as the facilities provided by the implementation platform and the complexity 

of the domain model. 

54 



Final step would be selecting patterns for the Presentation Layer, although the presen­

tation is not tightly dependent upon the choice of the lower layers. There are two main 

options for this layer: a rich-client interface or an HTML browser interface. The choices 

have to be selected amongst the latter since no pattern is presented for the former. The rec­

ommended pattern is the Model View Controller which leads the designer to decide about 

the controller and the view. These two last decisions will be affected by the development 

tool. 

In the course of designing a system, designer should remember that there is always 

possibility of making mistakes or sometimes it is required to improve the design. As Fowler 

says "Architectural refactoring is hard [...] but it isn't impossible," [Fow02, p. 95] that 

means, while the designer should be prudent in designing a system, he/she should not resist 

change when it is required. 

2.6.3 PofEAA is in the Solution Domain 

The word domain in software engineering means "an application area or field for which soft­

ware systems are developed" [Rub90]. When we talk about the problem domain, we mean 

the concepts which are related to the corresponding business problem of the application. 

However, the solution domain deals with the concepts related to the implementation details 

of the system. 

It is obvious that PofEAA is a PL for designing web-based enterprise applications and 

not a language for the analysis of web applications. Therefore, PofEAA should be considered 

as a PL in the solution domain describing the architecture or design of the application. 

55 



Chapter 3 

Pat te rn Language Verifier (PLV) 

In Section 2.3.4, we accepted the following definition for a Pattern Language (PL): 

"A network of tightly interwoven patterns that defines a process for sys­

tematically resolving a set of related and interdependent software development 

problems" [BHS07b, p. 260]. 

This definition emphasizes that in building software based upon the patterns of a par­

ticular PL, i.e., in designing with patterns, the application of the patterns is not arbitrary, 

i.e., the designer must adhere to the relationships between patterns. 

Due to the fact that a PL may contain dozens of patterns with a variety of possible 

relationships between them, and the relationships are mainly embedded into the lengthy 

texts of pattern descriptions, designing with patterns is not an easy task, particularly for a 

lay person. For instance, Patterns of Enterprise Application Architecture (PofEAA) [Fow02] 

consists of 51 patterns with relationships such as uses, alternative, and conflicts, which are 

all explained in prose description. 

Following are some of the challenges that the designers face when they want to utilize 

the patterns of a PL in designing a model for their software. 

1. Pattern Selection: Which pattern is appropriate to solve a particular problem? 

2. Pattern Application: How to apply a pattern correctly? 

3. Pattern Weaving: Which pattern to choose after a specific pattern? 

4. Pattern Semantics: Which pattern matches best with my Data Base Management 

System (DBMS) or my implementation language? 

56 



In this chapter, we propose a process named Pattern Language Verifier (PLV) to assist 

designers in verifying the application of a PL in the design. Because of the nature of PLV, 

which is a verifying process, we exclude the "Pattern Selection" challenge from the PLV's 

duties. That means, PLV aims to help a designer when facing the items two, three, and four 

of the above list. We suppose that, the designers know which pattern they want to use, and 

they show their intention by using the name of the pattern. In Chapter 2, we introduced 

works that help designer in pattern selection. 

For every PL, if the PLV is defined, it helps a designer find answers to the questions 

such as the following. 

1. Is the usage of pattern X in my design correct? 

2. Is it correct to use pattern Y as an alternative for pattern X? 

3. Is my model consistent considering my implementation tool? 

To the best of our knowledge, PLV is the first work which addresses the problem of 

verifying a design model from the PL view. Most of the related work cited in Chapter 2 

falls into the category of single pattern detection and those works do not focus on the PL 

aspects. 

The PLV process is inspired by the compiler idea. Compilers look at the tokens of a 

programming language as words, and the programs as sentences. They say a programming 

language must have rules that define the legal words, the correct format of the sentences, 

and the meaningfulness of the sentences. 

We believe that checking a model which is built using the patterns of a PL is similar to 

using a compiler for checking a source program which is written in a programming language. 

This similarity is the cornerstone of defining the PLV process. The idea of similarity between 

PL and a formal grammar is also pointed out by other researchers [NB02, HAZ07, Zdu07, 

BHS07a]. 

Buschmann et al. [BHS07a, p. 13] say "While patterns represent a design vocabulary, 

pattern languages are somewhat like grammar and style." Harrison et al. [HAZ07] mention 

that as an ongoing research "We propose deriving a pattern language's grammar to sys­

tematically describe the pattern relationships and annotating the grammar with effects on 

quality goals." Zdun [Zdu07] uses annotated PL grammars in systematic pattern selection. 

Noble and Beedle [NB02] argue that the PL concept proposed by Alexander [A+77, Ale79] 

represents "a tree or directed graph of patterns, similar in structure to a formal grammar." 

We have individual patterns, one of them is considered as initial pattern. Then via uses 

57 



relationship, like a production rule in a grammar, we reach to other patterns to apply. The 

initial pattern is like a grammar's start symbol, and addresses a large scale problem. 

The remainder of this chapter is organized as follows. Section 3.1 reviews the compilation 

process. In Section 3.2, we discuss the overview of the PLV process. Section 3.3 elaborates 

on the rules as an important prerequisite for PLV. Section 3.4 discusses the similarities and 

differences between the PLV process and the compiling process. Section 3.5 shows a version 

of PLV as a profile-driven process, and presents the technical details about its modules. In 

Section 3.6 we discuss the issues and points of improvement regarding the PLV process. 

3.1 The Compilation Process 

A compiler checks a program source code and generates the machine code. In compiler 

design, it is recommended to break the compiling task into two parts: an analysis part 

and a synthesis part [ASU86]. The former part mainly consists of three phases, Lexical 

Analysis (aka Scanning), Syntactic Analysis (aka Parsing), and Semantic Analysis. One of 

the responsibilities of those phases is to detect the lexical, syntactic, and semantic errors in 

a program respectively. The latter part, which is not related to our work and therefore is 

not discussed here, deals with the code generation and code optimization. 

The Lexical Analyzer accepts the program source code as input and produces a list of 

tokens to be used by the next phase. This phase uses the lexical rules of the underlying 

language as a reference for detecting tokens. A token is a sequence of consecutive characters 

from the source code that together makes a meaningful logical unit (or word). The Lexical 

Analyzer is concerned only with recognizing tokens, i.e., it does not concern with the order 

of tokens. Tokens are typically divided into groups, identifiers, keywords, and operators, 

just to name a few. 

The Syntactic Analyzer accepts a stream of tokens, generated by the Lexical Analyzer, 

and builds an abstract syntax tree (parse tree) based upon the given stream of tokens. This 

phase uses the formal specification of the source language which is mainly in the form of a 

grammar. A grammar consists of a set of rules that determine whether or not a sequence 

of tokens builds a correct sentence of a language. 

The duty of Semantic Analyzer is to check whether or not the given parse tree is mean­

ingful. As the reference for detecting semantic errors (i.e., determining the meaningfulness 

of a program), the Semantic Analyzer uses the semantic rules of the source language. Since 

formal specification of the semantics of a programming language is not easy, one alternative 

58 



approach which is widely used by compilers is to augment the grammars with semantic 

rules. The resulting grammar is called an augmented grammar. The Semantic Analyzer 

augments the given parse tree with attributes and generates an annotated parse tree. This 

phase checks the semantic features that cannot be specified by the grammar. 

The above three phases make use of a Symbol Table as a common source for accessing 

the information about variables and identifiers in a program. Also there is a common unit 

called Error Handler which is responsible for reporting errors and performing error recovery 

tasks [ASU86]. 

3.2 The PLV Process 

Following the three-phase analysis part of a compiler, we propose three main verification 

phases (modules) for the PLV process as indicated in Figure 13. 

Pattern Structural 
Verifier (PSV) 

'Desigrn 
Model 

Pattern Language 
Syntactic Verifier 

(PTV) 

Pattern Language 
Semantic Verifier 

(PMV) 

Figure 13: Three Phases of the PLV Process 

1. Input to the process is a Design Model. By a Design Model, we mean a set of UML 

diagrams which shows the architecture and/or the detailed design of a system. We 

assume that the Design Model is built based upon the patterns of the underlying PL. 

The Design Model may contain any of the UML diagrams, but PLV only investigates 

the package diagrams and the class diagrams. From now on, we may use the word 

"model" to refer to the Design Model. 

2. Pa t t e rn St ructura l Verifier (PSV): PSV reads the Design Model, and applies the 

structural rules of the PL to verify that all the individual patterns that are used by 

the designer, are structurally correct. Our assumption is that the designer explicitly 

59 



shows his/her intention in using a pattern by applying the name of the pattern. For 

each structural error, PSV gives an error message to the designer. 

3. Pattern Language Syntactic Verifier (PTV): PTV accepts the Design Model 

and uses the syntactic rules of the PL to verify that the pattern combination detected 

in the previous phase is syntactically correct. The syntactic checks include verifying 

the organization of patterns and the relationships between used patterns. For each 

error, an error message is given to the designer. 

4. Pattern Language Semantic Verifier (PMV): PMV accepts the Design Model, 

and applies the semantic rulesof the PL to verify that all the patterns detected by 

the PSV and their relationships are semantically correct. Consistency between the 

parameters of methods, consistency between the patterns and their layers, and con­

sistency between the patterns and the context information are considered as semantic 

rules in this work. For each error, an error message is given to the designer. 

5. Output of the process are Error messages shown to the designer informing him/her 

of the problems in the design. 

3.3 Rules: Important Requirement for PLV 

In the previous section, we have repeatedly mentioned that each PLV module applies cor­

responding rules to check the model. In the heart of PLV there exist three classes of rules: 

structural , syntactic, and semantic. But, "what are these rules?" and "how should we 

prepare these rules and feed them into PLV?" In the following, we will elaborate on the 

nature of these rules and the items in the pattern form that help us recognize them. 

3.3.1 Structural Rules 

The structural rules are the basis used by the PSV phase in order to verify the structure 

of each individual pattern that is applied in the design model. By structural rules of a PL, 

we mean sets of rules where each set shows the essence of one pattern in the language. The 

structural rules of a pattern must address the following questions [GHJV95, p. 3]: 

• What are the constituting elements of the pattern? 

• How the elements are connected to each other to form the whole pattern? 

• What are the responsibilities of the elements? 

60 



• How do the elements collaborate with each other? 

Since patterns act as the words tha t the sentences of a PL are built based upon, it is 

crucial that , every single pat tern is precisely defined by structural rules. It is obvious that 

having more accurate rules results in a more precise PSV. In compilers, the lexical rules 

that define the words of a language, must deterministically decide whether or not a token 

belongs to that language. To have determinism in detecting a pattern by PSV, we need 

precise structural rules. 

W h e r e to find structural rules? 

We want to know which items in a pattern form must be investigated to find the structural 

rules of a pattern. Recall the classical definition for pattern that says "a pattern is a solution 

to a problem in a context" [GHJV95, p . 3]. Hence, the structure of a pat tern is shown via 

the items of pattern form tha t represent the "solution" proposed by the pattern. Since there 

is not a unique or standard pattern form for writing patterns [Fow03], finding the pattern 

form items that show the structure of a pattern is not straightforward. We must s tar t from 

the items such as "Structure" or "Solution," however, if these fields do not suffice, it is 

required to investigate other fields of the pattern form to better understand the structure 

of a pattern. 

For patterns that their structure is represented by class diagrams, e.g., GOF patterns, 

the structural rules are the interpretation of these class diagrams. In GOF pattern form 

there is a field named "Structure" that shows the structure of the pat tern by class dia­

grams. In some cases, e.g., Flyweight pattern, the structure contains an object diagram 

too. The class diagrams given in "Structure" fields of GOF patterns are rich enough to be 

considered as the structural rules of this PL. However, more information about the essence 

of the GOF patterns can be gained via field "Participants" which shows the elements of the 

pattern, or via field "Implementation" which shows how the pattern can be implemented 

in a programming language such as C + + . 

In PofEAA, for some of the patterns there is a class diagram that shows its structure: 

Front Controller, Remote Facade, to name a few. Other patterns, e.g., Layer Supertype, lack 

any diagram and are explained via textual description and example. We found the following 

fields of the PofEAA pattern form useful in finding the structural rules of a pat tern. The 

list is sorted on the importance of the items. 

1. "Intent." which is a short text about the pattern: 

61 



2. "Sketch," which is a visual representation of the pattern, mostly in terms of a UML 

class diagram; 

3. "How It Works," which is a text for describing the solution; and 

4. "Examples," which are Java or C # source code. 

Formalism for structural rules 

There are some design/architectural PLs, e.g., GOF [GHJV95], that use UML (mostly 

class diagram) as a formalism for representing the structure of patterns. Therefore, it is 

tempting for us to select UML as the language for representing the structural rules of the 

PL. However, investigating the patterns of these languages reveals that, in many cases, 

the pattern authors had to augment their UML diagrams by additional prose explanations 

to enrich the definition of the patterns or to shed light on the vague points. There are 

PLs, e.g., PofEAA [Fow02], that use UML diagrams for some of their patterns (not all of 

them). Some PLs, e.g., POSA-4 [BHS07a], use visualizations other than UML for defining 

the patterns, and their focus is on textual description. 

Therefore, the formalism that we use for defining the structural rules is a combination of 

textural rules that are written in plain English with a UML class diagram. The textual rules, 

written as an enumerated list, are the main parts and must be clear and simple enough such 

that an intermediate OO programmer can understand them and interpret them in terms of 

an OO programming language such as Java. The class diagram is the complementary part 

that is optionally added to help understanding of the textual rules. 

To facilitate the detection of elements in a model, and hence, to ease the work of PSV, 

we utilize a naming convention paradigm. We suppose that, the designers, in their design 

models, use the same names that are used by the pattern author in the pattern form for 

naming (or building the name of) the pattern elements. From now on, we refer to the name 

of the pattern as "Sign" [ZKB08]. For instance, if the designer intends to use the Table Data 

Gateway pattern [Fow02, p. 144] in accessing the Person information, he/she may choose 

"PersonTableDataGateway" as the name of the class which corresponds to this pattern. 

Examples of s t ruc tura l rules 

In order to see how the structural rules for a specific pattern can be extracted, we consider 

two different representations (see Figure 14 and Figure 16) for the Table Data Gateway 

pattern. 

62 



Figure 14 shows the "Intent" and the "Sketch" of this pattern in PofEAA [Fow02, p. 144]. 

Although, the intent text and the sketch give much information about the structure of the 

pattern, however, investigating other fields such as "How It Works" adds more details about 

the pattern. For example, we found the following comments very beneficial: 

• "A Table Data Gateway has a simple interface, usually consisting of several find meth­

ods to get data from the database and update, insert, and delete methods" [Fow02, 

p. 144]. 

• "The trickiest thing about a Table Data Gateway is how it returns information from 

a query. Even a simple find-by-ID query will return multiple data items" [Fow02, 

p. 144]. 

• "One alternative is to return some simple data structure, such as a map. [...] Abetter 

alternative is to use a Data Transfer Object. [...] To save all this you can return the 

Record Set that comes from the SQL query" [Fow02, p. 144-145]. 

The first comment reveals that there could be more than one "find" method in this 

pattern. The second comment leads us to a rule that checks the return type of all "find" 

methods in this pattern. The third comment tells about the alternative options for the 

return type of "find" methods, e.g., to expect a Record Set as their return type. Note that, 

if the designer is going to define and use the Record Set as a pattern in his/her design, this 

rule will be considered as a syntactic rule (see Section 3.3.2). 

An object that acts as a Gateway (466) to a database table. 
One instance handles all the rows in the table. 

Person Gateway 

find(id): RecordSet 
findWithLastName(String): RecordSet 
update(id,lastname,firstname,numberOfDependents) 
insert(lastname,firstname,numberOfDependents) 
delete(id) 

Figure 14: The Table Data Gateway Pattern [Fow02, p. 144] 

Considering the above discussion of the Table Data Gateway pattern, we are now able 

to define the structural rules for correct application of this pattern. Figure 15 shows these 

rules. Note that, the name "Table Data Gateway" is the "Sign" of the pattern, e.g., it can 

be used as part of the class name. Adding the class diagram in Figure 14 to these rules is 

not necessary since the rules are clear enough. 

63 



1. There is a Table Data Gateway class in the model. 
2. There are at least four operations ( find, inser t , delete, update) in the Table Data Gateway 

class. 

3. The return type of all find operations is Record Set. 

Figure 15: Structural Rules for Table Da ta Gateway Pat tern 

Figure 16 shows the Table Data Gateway pat tern presented in POSA-4 [BHS07a, p. 544]. 

In the pattern form adapted by this PL, there are several items for presenting the "Solution" 

offered by a pat tern [BHS07a, p. 48]. In the figure, you see the "Solution Instruction" and 

"Solution Sketch" items for the Table Data Gateway pattern. 

Wrap the database access code for a specific database table within 
a specialized table data gateway, and provide It with an inter­
face that allows applications to work on domain-specific data 
collections. 

Obje£*0dented 
Application 

Table Date Gateway 

^ fin 1 
pS " 

— J 'ns~ 1 t 

° — - = * 

~-^> 

1 
I ipdcl'L 

1 . . 

del i '«• [ 

-s s-

object l 
object 2 
objects 
object* 

Database Table 
data fisid ) data field 2 data field 3 

Figure 16: The Table Data Gateway Pat tern [BHS07a, p. 544] 

As it is clear from the figure, the formalism used for the sketch of the solution is not 

UML. Therefore, in addition to the items shown in the figure, other fields of the pattern 

form must be investigated to interpret clear structural rules tha t enable PSV to verify 

whether or not part of a design matches the Table Data Gateway pat tern. 

For instance, the following two sentences give us more information about the s tructure 

of the pattern. 

• "A table data gateway has a simple interface consisting of several find methods to 

get da ta from the database, together with corresponding update , insert, and delete 

methods" [BHS07a, p . 545]. 

"Many alternatives exist for returning the results of queries to clients 

environments [...] can return a RECORD SET" [BHS07a, p . 545]. 

Some 

By considering this information, we reach the same structural rules that were extracted 

from the PofEAA representation of Table Data Gateway pattern (Figure 15). 

64 



To summarize, the structural rules of a PL are the rules that show the structure of 

each single pattern in the language clearly and precisely. These rules must be written in 

plain English text, in itemized format, optionally enriched by a class diagram, such that an 

intermediate 0 0 programmer is able to understand and code them into the PSV module. 

3.3.2 Syntact ic Rules 

The syntactic rules are used by the PTV phase in order to verify the pattern combination 

that is applied in the design model. We believe that syntactic rules must address two 

aspects about the pattern combinations that are used in a design model: the organization 

of patterns, and the relationship between patterns. These two aspects are discussed in the 

following. 

I- Syntactic rules regarding the organization of patterns 

Patterns are normally organized into groups or layers. The syntactic rules of a PL must 

enforce the correct organization for the patterns that are applied in a design model. 

The concept of pattern grouping is addressed by many pattern authors [A+77, GHJV95, 

SSRBOO, Fow02, KJ04, BHS07a]. For instance, the authors of GOF say, "Design patterns 

vary in their granularity and level of abstraction. Because there are many design patterns, 

we need a way to organize them" [GHJV95, p. 9]. The GOF patterns are classified into 

three groups based upon their purpose: creational, structural, and behavioral [GHJV95, 

p. 10]. 

The concept of pattern layering becomes more tangible for architectural patterns, be­

cause, it is common that these patterns are divided into groups based upon the architectural 

style selected by the author. For instance, Fowler [Fow02, p. 19] has used the layered ar­

chitecture for PofEAA, by dividing patterns into three primary layers and five supporting 

layers (see Section 2.6). The primary layers are in fact the mandatory layers that each 

enterprise application must include: Presentation, Domain, and Data Source. The use of 

supporting layers depends upon the designer's choice, the features of application, and the 

configuration of the system. Hence, in a design which is built using PofEAA patterns, 

missing any of the mandatory layers in a model, or placing a pattern into a wrong layer, 

should be considered as a syntactic error. 

65 



Where to find syntactic rules regarding the organization of pa t te rns? 

If the patterns of a PL are organized into groups or layers, this fact should be clearly 

distinguishable either from the pattern form or from the method of documentation of the 

patterns. 

The first means that there is a dedicated field in the pattern form that indicates the cor­

responding group for each pattern. This approach is applied in GOF patterns, where a field 

named "Classification" is attached to the "Pattern Name" to make the field "Pattern Name 

and Classification" in the pattern form. "Classification" indicates the group that the pat­

tern belongs to. For instance, "Command" is considered as a behavioral pattern [GHJV95, 

p. 6-10]. 

The second means that in documenting the patterns, the author places all the patterns 

that are in the same group under one title. This is the approach taken by PofEAA [Fow02] 

and POSA-4 [BHS07a]. In PofEAA book, patterns of the same layer are defined in the 

same chapter. Table 6 shows the organization of PofEAA patterns into layers along with 

the book chapter that the patterns are described in it. In POSA-4 book, there is a chapter 

dedicated to the patterns of each problem area. 

Table 6: Organization of Patterns in the PofEAA Book, Adapted from [Fow02] 
Layer/ Category 

Domain Logic 
Data Source 
Object-Relational 
Behavioral 
Object-Relational 
Structural 

Object-Relational 
Metadata Mapping 
Web Presentation 

Distribution 
Offline Concur­
rency 
Session State 
Base 

Book 
Chap. 

9 
10 
11 

12 

13 

14 

15 
16 

17 
18 

Patterns 

Transaction Script, Domain Model, Table Module, Service Layer 
Table Data Gateway, Row Data Gateway, Active Record, Data Mapper 
Unit of Work, Identity Map, Lazy Load 

Identity Field, Foreign Key Mapping, Association Table Mapping, Depen­
dent Mapping, Embedded Value, Serialized LOB, Single Table Inheritance, 
Class Table Inheritance, Concrete Table Inheritance, Inheritance Mappers 
Metadata Mapping, Query Object, Repository 

Model View Controller, Page Controller, Front Controller, Template View, 
Transform View, Two-Step View, Application Controller 
Remote Facade, Data Transfer Object 
Optimistic Offline Lock, Pessimistic Offline Lock. Coarse Grained Lock, 
Implicit Lock 
Client Session State, Server Session State, Database Session State 
Gateway, Mapper, Layer Supertype, Separated Interface, Registry, Value 
Object, Money, Special Case. Plugin, Service Stub, Record Set 

Although indicating the placement, of patterns in layers is easy, e.g., by a two-column 

"layer/pattern" table similar to Table 6, such a table does not. show all the details about 

the organization of patterns. For instance, the fact that three of the layers of PofEAA 

are mandatory and five layers are optional is not. reflected in Table C. Capturing this 

66 



information needs scrutinizing of the pattern text. For example, the following excerpts 

from the PofEAA book, helps us to find out that three of the layers are principal, but, for 

example, the Distribution layer is optional. 

• "For this book I'm centering my discussion around an architecture of three primary 

layers: presentation, domain, and data source" [Fow02, p. 19]. Fowler clarifies that 

these three layers are primary. 

• "Hence, we get to my First Law of Distributed Object Design: Don't distribute your 

objects!" [Fow02, p. 89]. Fowler recommends not to distribute the objects, unless you 

have to do so. 

Formalism for syntactic rules regarding the organization of patterns 

How to formalize the organization of patterns of a PL for the PLV process? The formalism 

should precisely address questions such as the following. What layers exist in the language? 

Is there any order or dependency between layers? Which pattern lies in which layer? If 

a layer is optional, what are the prerequisites that must be true to have that layer in the 

model? 

Following context-free grammars, BNF, and set notations, we define a notation in Table 7 

for representing the organization of patterns into groups or layers. In terms of UML, since 

a "package" is often used to group elements [Lar05, p. 201], we correspond one layer/group 

to one package in the model. Hence, the syntactic rule that checks the membership of a 

pattern in a layer/group (I 3 P), should simply check that the main class of the pattern is 

placed in the corresponding package. 

Note that in grammar terminology, lower case words are non-terminal symbols and are 

equivalent to the layers, capitalized words are terminal symbols and are equivalent to the 

patterns. The starting non-terminal of the grammar indicates the system as a whole. 

Examples of syntact ic rules regarding the organization of pa t t e rns 

Using the organization of the PofEAA book along with the context of patterns that are ex­

plained in prose in the book, we can extract the syntactic rules regarding the organization 

of patterns. For instance, to enforce the fact that every design model which is built using 

PofEAA requires a root package, and inside that, there must be a "main" package and an op­

tional "auxiliary" package, we write the rule: pofeaa model D main layer . auxiliary layer*. 

67 



Table 7: Notations for Representing the Organization of Patterns 
Nota t ion 

/ TO 

P 

Q 
D 

3 

J 

* 

1(c) 

{c} 

Layer 

Pattern 

Layer Inclu­
sion 
Pattern 
Membership 
Group 
Inclusion 
Group 
Membership 
Layer de­
pendency 

Optional 
Layer 
Conditional 
Layer 
comment 

M e a n i n g 

Lowercase letters or first-small words 
show the layers 
Capital letters or capitalized words 
show the patterns 
/ D TO means layer I contains layer m 

I 3 P means layer / contains pattern P 

I D m , n means ID rn and / D n 

I 3 P , Q means I 3 P and I 3 Q 

I D m . n means I D m , n and layer TO 
is dependent on layer n, but layer n is 
not dependent on layer TO 

/* means layer I is optional 

Z'(c' means existence of layer / is subject 
to condition c 
A comment can be attached to the 
above notations 

In t e rms of U M L 

A layer is represented by a package 

Each pattern is recognized by one class 
which is called "Sign" 
Package / contains package m 

Package I contains class P 

Package I contains both packages TO and 
n 
Package I contains both classes P and 
Q 
Package I contains both packages m and 
n, and package m has a dependency to 
package n, but package n has not a de­
pendency to package m 
Package I is optional 

Existence of package I is subject to con­
dition described in c 
comment explains the technical consid­
erations 

To enforce that "auxiliary layer" may include a sub-package "base," and if the designer 

decides, there could be sub-packages "distributed," "concurrency," and "sessionstate," we 

write the following rule. C l is a predicate such as "designer wants Distributed Layer." C2 

and C3 represent the corresponding predicates. 

auxiliary layer D base* , distributed'^ ' , concurrency^ ' , sessionstate'^ ' 

To indicate which pat tern resides in which layer, we use the pat tern membership nota­

tion, for example, the following rule shows the placement of the patterns inside the Domain 

Layer, domain 3 Domain Model, Table Module, Transaction Script. 

II- Syntact ic rules regarding the re lat ionship be tween pat terns 

In Section 2.4.1, we discussed that patterns are not isolated. Pat terns can be related to 

each other in different ways: uses, conflicts, refines, to name a few. Also we reviewed the 

literature and showed that there is no consensus among the pattern authors on the name, 

the meaning, the level of formality, and the formalism used for representing the relationships 

between the patterns of a PL. 

Current PLs are not developed yet in terms of having clear and precise pattern relation­

ships. Therefore, finding the the relationship between patterns in the pattern form is more 

difficult than finding the structural rules. 

68 



Following the compiler metaphor, the syntactic rules of a PL that show the relationship 

between patterns are similar to the grammar rules of a programming language that show 

how the tokens can be arranged to make a syntactically correct sentence. That means, the 

grammar of a PL must dictate the correct combination of patterns, considering the pattern 

relationships, that can be built based upon the patterns of the language. 

Where to find syntactic rules regarding the relationship between pa t t e rns? 

Finding the relationship between patterns in a PL is not a straightforward task. Sometimes 

this information is hidden between the lines of the prose text which describes the pattern. 

Sometimes, there is a very general and vague graph for representing pattern relationships. 

However, this information is not formal enough to be used as the basis for the operation of a 

PTV. In this section, we address possible cases that need to be considered in discovering the 

pattern relationships. In the next section, we propose a formalism for defining the pattern 

relationships. 

The GOF authors mention some relationships between patterns: 

"Some patterns are often used together. For example Composite is often used 

with Iterator or Visitor. Some patterns are alternatives: Prototype is often an 

alternative to Abstract Factory" [GHJV95, p. 10]. 

However, the GOF book does not address the relationship between patterns in more 

detail. The "Related Patterns" field of the pattern form briefly talks about how patterns 

reference each other. Also, there is a general graph (see Figure 4 on page 32) which depicts 

the relationships for all 23 patterns in the language. Having such diagrams that show the 

"big-picture" of the language, and the relationship between patterns, is helpful but not 

sufficient. 

In PofEAA, the relationships between patterns are not explicitly discussed by the author. 

The information is scattered in the texts that describe the patterns. More specifically 

the fields "Applicability" and "When to use it" discuss the relationship issues. In the 

introduction of the book, the author says "many of the patterns are about choices and 

alternatives" [Fow02, p. 6]. That means the book does not offer a single solution for an 

enterprise system. For every problem, there are many options, and it is the designer's job 

to make the trade off. A "Cheat Sheet" printed inside the back cover of the PofEAA book 

can be considered as an informal version of the grammar of PofEAA [Fow02]. 

In POSA-4, 114 patterns are grouped into 13 problem areas. There is a graph [BHSOTa. 

p. 40-41] that shows important relationships between those 13 problem areas. Each problem 

69 



area is described in a template, which contains a diagram that shows how the patterns are 

integrated into the PL. One of the problem areas, "From Mud to Structure," includes 

the root patterns of the language. The design process starts by selecting a root pattern, 

completing it with other patterns, and continuing until the designer arrives at one of the 

"leaf" patterns, i.e., patterns that can not be refined anymore by other patterns in the 

language [BHS07a, p. 40-41]. Despite the graphs for problem areas, and a template that is 

designed to show the relationships between patterns, POSA-4 authors use complementary 

explanations given in the prose text of the patterns. 

Formalism for syntactic rules regarding the relationship between patterns 

In Section 2.4.1, we presented several works that have addressed the relationship between 

patterns. Among them, we focus on three works which we found more comprehensive 

than others: James Noble [Nob98a], Wu-dong et al. [WdKqY+03], and Buschmann et al. 

(POSA-5) [BHS07b]. By consolidating the idea of these three works, we define a notation 

in Table 8 for representing the relationships between patterns of a PL. 

Table 8: 
Notation 

P 

~> 

cond 

1 

i—+ 

/ 

T 

{c} 

root pattern 

uses 

conditional 
uses 
alternative 
uses 
conflicts 

conflicts in 
layer 
refines 

comment 

dotations for Representing the Re 
Meaning 

P means pattern P is a root pattern 
of the language, i.e., no other pattern 
is using P. 
P —> Q means pattern P uses pattern 

Q 
P —* Q means pattern P uses pat­
tern Q subject to cond 
P —• Q \ R means pattern P may use 
pattern Q or pattern R 
P <-» Q means patterns P and Q can 
not coexist in the model 

P «-» Q means patterns P and Q can 
not coexist in the layer I 
P 1 Q means pattern P is a special­
ized version of pattern Q 
A comment can be attached to the 
above notations 

ationship Between Patterns 
In terms of UML 

P is a mandatory class in the model, and 
no other class has dependency* to class P 

There is dependency* from classes of P to 
classes of Q 

There is dependency* from classes of P to 
classes of Q, subject to cond 
There is dependency* from classes of P to 
either classes of Q or classes of R 
The model can not contain both classes 
P a n d Q 

Package / can not contain both classes P 
and Q 
Class Q is a generalization of class P 

comment explains the technical consider­
ations 

* Attribute dependency, method dependency, containment, or association. 

Note that every pattern combination has to start with one of the root patterns. A 

root pattern is an obligatory pattern and no other pattern is dependent upon it. The uses 

relationship is a basic relationship which can be found in most PLs. Three variants of 

uses are defined (uses, conditional uses, and alternative uses) to make it more usable. The 

conflicts relationship describes the situation where there is more than one solution to a 

70 



specific problem, and those solutions are mutual exclusive. Two patterns can be conflicting 

either in the whole model or in a specific layer of the model. The refines relationship shows 

the case when one pa t te rn is a more specialized version of another pattern. Finally, any 

comment that makes the relationship more understandable, especially from the technical 

and modeling point of view, will be given as a comment. 

E x a m p l e s of syntact ic rules regarding t h e relationship b e t w e e n pa t t erns 

For starting a design with the PofEAA, a designer has several options as the initial pat tern . 

For example, one may s tar t from the domain, view, or controller. We select the last option, 

hence, either Front Controller or Page Controller could be the initial pattern. Then we need 

pat terns for the View par t of the system. Again, there are two alternatives, Template View 

or Transform View. This discussion, leads us to the following start ing rules. 

Page Controller —> Template View \ Transform View 

Front Controller —> Template View \ Transform View 

As another example of a syntactic rule in PofEAA, consider the following excerpt from 

the "How It Works" section of the Table Data Gateway pattern tha t reveals the relationship 

between this pattern and the Record Set pat tern: "The trickiest thing about a Table D a t a 

Gateway is how it returns information from a query [...] you can re turn the Record Set t h a t 

comes from the SQL query" [Fow02, p. 144]. 

The above text tells more than simple "usage" of one pattern by another. In fact, the 

text indicates "How x uses y?" This is interpreted as straightforward conditions, and is 

augmented to the uses rule. This interpretation should be performed by an expert in the 

domain of underlying PL. In the above case, since Table Data Gateway returns the d a t a 

via its "find()" methods, a comment will be attached to the uses rule as indicated in the 

following. An implicit requirement of this rule is that "There should exist a Record Set 

pat tern in the Base Layer of the model." 

TableDataGatway —> RecordSet {C4} , where C4: "The return type of every find() operation 

in the Table Data Gateway pattern is Record Set." 

Another example in PofEAA is that for managing the transactional conflicts of business, 

there exist two patterns: Optimistic Offline Lock and Pessimistic Offline Lock. These two 

are in conflict if they are used for the same unit of work. The argument that there is a 

choice between these two patterns is made in the book as "The essence of the choice between 

optimistic and pessimistic locks is the frequency and severity of conflicts" [Fow()2, p. 08]. 

This text can be interpreted as the following syntactic rule. The fact that the conflict, 

71 



happens when these two rules are applied on the same unit of work is explained via the 

comment line. OptimisticOfflineLock <-> PessimisticOfflineLock {C5}, where C5: 

"The two patterns are applied for the same unit of work." 

As an example of refines, we can consider both patterns Front Controller and Page 

Controller as refinements of Controller. (But note tha t there is no Controller pa t te rn in 

PofEAA, and Fowler [Fow02, p. 56] prefers to call the controller part of the Model View 

Controller, the input controller.) Therefore, we can define the following syntactic rules: 

FrontController j Controller and PageController j Controller. 

3.3.3 Semantic Rules 

The PMV phase uses the semantic rules to verify whether or not a pat tern combination 

used in the design is semantically correct. To the best of our knowledge, there has been no 

discussion on the semantics of a pat tern combination in the PL community. Even in compiler 

design, the semantic checking is considered an optional phase, such tha t , some compilers 

perform no semantic analysis at all; Other compilers limit it to type checking or code 

generation issues [ASU86]. For instance, a syntactically correct "assignment s tatement" 

might be considered as having semantic error if there is type mismatch between the types 

of both sides of the assignment. 

In this thesis, we consider two categories of semantic problems. The first category are the 

conflicts between the applied patterns and the context information. Tha t means, we consider 

the context of design as a parameter which affects the semantics of the design. By context 

information, we mean any information which is related to the system environment. The 

following list shows some examples of the context information: implementation language, 

expertise level of the designer, underlying DBMS technology, and possibility of transaction 

conflict. 

The semantic rules should clearly say which pattern is in conflict with which context 

information. For instance, if applying a pattern is not recommended for a novice designer, 

or applying a pattern does not match well with the implementation tool or the DBMS, 

these facts must be reflected in the semantic rules related to either of those pat terns . 

The second category of semantic problems are the inconsistencies between the features 

of applied patterns. The semantic rules must prevent any conflict between the features 

(behavioral or structural) of 1) a single class in a pattern. 2) the constituting classes of a 

single pattern, or 3) the classes of different patterns. For instance, requiring getters and 

setters for the attributes of a class, consistency between the attributes of two cooperating 

72 



classes in a pattern, and consistency between the operations of two corresponding patterns 

are examples of semantic rules that must be adhered by the designers. Semantic rules must 

be precise enough to catch such errors. 

Where to find semantic rules? 

We were unable to find any PL which has explicitly addressed semantic issues of the lan­

guage. Thus, discovering the semantic rules of a PL is even more difficult than the syntactic 

rules, since the information, if any, is again hidden in the prose description of the patterns. 

Note that syntactic rules and semantic rules are more PL-oriented than the structural rules. 

It would be beneficial if the pattern authors dedicate a particular field in the pattern form 

to address the semantic issues. 

Formalism for representing semantic rules 

We define two general notations in Table 9 for describing the inconsistencies between a 

pattern and the context information, or the inconsistencies between the features of a com­

bination of patterns. Note that these two notations are complementary. The criteria that 

cause inconsistencies for the pattern must be written clearly and precisely in the condition 

part of the rule. 

Table 9: Notations for Representing the Semantic Rules of a PL 
Notation 

« 

¥> 

consistent 

inconsistent 

Meaning 

P w {c} means pattern P is consistent 
with the condition specified by {c} 
P 7̂  {c} means pattern P is inconsis­
tent with the condition specified by {c} 

In terms of U M L 

Class P can not exist in the model while 
the condition in {c} is violated 
Class P can not exist in the model while 
the condition in {c} is hold 

Examples of semantic rules 

In this section, we present some recommendations given in PofEAA book, and show how 

they can be interpreted as semantic rules. 

Tool Consistency The following excerpt from the book explains the consistency between 

the Table Module and the development environment (tool). 

"If you have an environment like .NET or Visual Studio, then that makes a 

Table Module much more attractive" [Fow02. p. 30]. 

73 



This can be interpreted as a semantic rule of the first category, i.e., consistency between a 

pattern and context information: TableModule ss {Tool = .NET} 

Operation Parameter Consistency In the Table Data Gateway pattern, it is claimed 

that: 

"the parameter list of the insert method must be a subset of the parameter list 

of the update method" [Fow02, p. 144]. 

The semantic rule corresponding to this claim belongs to the second category. This rule 

can be written as: 

TableDataGateway « {insert() parameter list C updateQ parameter list} 

3.4 PLV vs. Compiler 

We explained that there is an analogy between the tasks of the PLV process and what a 

compiler does. As a compiler has phases for checking the lexical, syntactic, and seman­

tic aspects of a programming language, PLV also has phases for verifying the structural, 

syntactic, and semantic aspects of a PL. Both processes use three groups of rules as touch­

stones for judging about the lexical, syntactic, and semantic aspects of the language. This 

similarity has also been identified by other researchers and pattern pioneers. For instance, 

Buschmann et al. in [BHS07b] discuss how a PL needs a grammar for guiding the designer 

in building acceptable pattern combinations. 

Despite the similarities, there exist several differences between the PLV process and the 

compiling process. 

1. It is widely accepted in the programming languages community that the lexical, syn­

tactic, and semantic rules of a new language must be defined precisely and formally, 

to enable us to build a compiler for that language. However, in PLs, formality, if 

it exists, is used mainly for describing the structure of a pattern, and the rules that 

define the pattern relationships and best, practices of the language, are mostly writ­

ten in natural language. That means, building a PLV for a PL needs extra steps of 

formalizing the rules that govern the PL in order to make them ready for the PLV 

modules. 

2. In compilers, a source program usually consists of tokens from the source language: 

any other thing is reported as an error. In a design model, which is given as input to 

74 



the PLV process, in addition to the patterns that belong to the underlying PL, there 

could be other patterns or model elements which do not belong to the underlying PL. 

The PLV process just ignores those elements. 

3. In the PLV process, all the modules work on the same model and we cannot say that 

each phase changes the model from one representation to another, as it happens in 

the phases of a compiler. 

4. While a compiler consists of both analysis and synthesis, PLV deals only with the 

analysis. That means, we verify the design model and try to fix the design problems, 

but, we do not attempt to generate code from the model. 

5. Most compilers do not allow a program to compile until all the errors are fixed. 

However, PLV is not an intrusive process, i.e., detecting an error does not impede the 

designing process. The designer always has the choice to ignore an error completely, 

or to fix it later. 

6. A compiler converts a program from a source (high-level) language to a target (low-

level) language. In PLV, the source and the target are both models in the same level, 

only some of the errors in the source model may have been fixed. 

3.5 The Profile-driven PLV Process 

The PLV process presented in Section 3.2 is a simple three-phase process that verifies a UML 

design model from the structural, syntactic, and semantic viewpoints of the underlying PL. 

In this section, we explore the role of a UML profile for a PL in the PLV process. The 

aim is to present a more elaborate PLV architecture and clarify the responsibilities of each 

module. In Section 3.5.1, we give an overview of the changes to the simple PLV. The new 

architecture of the PLV will be presented in Section 3.5.2. The four main modules of the 

new architecture will be explained in Section 3.5.3 to Section 3.5.6 respectively. 

3.5.1 Overv iew 

Three new features are added to the PLV process include adding a module for helping the 

designer in fixing the problems, bookkeeping the pattern information by the earlier modules 

to facilitate the task of next steps, and utilizing a profile to ease the pattern detection and 

accessing configuration information. These features are explained in the following sections. 

75 



Fostering PLV w i t h Adv i sory Power 

In order to add the advisory power to the PLV, we add a new module called P a t t e r n 

Language Advisor ( P L A ) to its structure. PLA is responsible for reporting the errors to 

the designer, displaying guidelines on how to fix the problems, fixing the detected problems 

in a systematic manner, and recording the model modifications into a D e s i g n Rat iona le . 

Upon detection of an error in the model, PLA is invoked, and having access to all 

the structural, syntactic, and semantic rules, guides the designer in stepwise fixing of the 

problems. PLA also gives the designer the opportunity for systematic repair. Therefore, 

PLA is the only module which is able to apply modifications to the model. For more details 

see Section 3.5.6. 

P a t t e r n Information Table ( P I T ) 

Influenced by the idea of symbol table in compiler design, we have a table which tracks 

information of detected patterns, called the P a t t e r n Information Table ( P I T ) . The 

PIT is created by the PSV and contains information about the detected pat terns, e.g., 

pat tern name, the layer in which the pattern is placed, and the pat tern elements. Pa t te rn 

elements form a list tha t shows the actual parameters assigned to the formal parameters of 

a pattern. The PTV, PMV, and PLA modules will use this table to know which pat terns 

are detected in the model and in which layer they are placed. 

Using a U M L Profile in PLV 

We concur with Martin Fowler that "The biggest software patterns community is rooted 

in the object-oriented world" [Fow03]. Furthermore, the initiative of PLs in software has 

started from the 0 0 discipline (OOPSLA [OOP09] and PLoP [Hil09a] conferences), and 

UML is the dominant modeling language for 0 0 systems [Lan06]. After a designer built a 

model based on the patterns of a PL. it is not always clear what pat terns are used in the 

model, without having some metamodel-level information about the model. For instance, 

none of the related work introduced in Chapter 2 are able to detect all G O F patterns. A 

profile is an extension mechanism for UML, which allows us to customize UML, for example, 

by extensions representing the PL elements. 

The above facts encourage us to utilize the UML profile mechanism in making the 

PLV process more effective. This will change the simple architecture of the PLV shown in 

Figure 13 to a profile-driven process. That means, all the modules utilize a UML profile that 

76 



should already be defined for the underlying PL. We call such profile a P a t t e r n Language 

U M 1 Profile ( P L P ) . 

A profile is defined by specifying three sets: Stereotypes, Tagged Values, and Con­

straints. Stereotypes are concepts from the domain tha t are defined to extend one of the 

existing UML meta-classes. For each stereotype, tags can be defined to save configuration 

information. These tags act as meta-attributes for the corresponding stereotype. Values 

can be assigned to tags to make "tagged value" pairs. Constraints are the Well-Formedness 

Rules (WFRs) defined for the stereotypes. Applying a stereotype on a model element, 

causes the WFRs of that stereotype to be verified. 

In the following sections, we will elaborate on the information that is captured by each 

element of the profile, and how these elements help the PLV modules. 

Stereotypes 

For the PLV process, stereotypes are the most important elements of the profile, because 

they provide a naming convention for each pattern. The designer uses the stereotypes for 

the following purposes. 

• To indicate the pattern he/she wants to apply: We suppose that for each pat tern 

there is a unique class stereotype. This stereotype acts as the "Sign" for the pat tern 

and releases us from the pat tern detection endeavor. 

• To name the constituent elements of a pat tern: Every element of a pat tern (class, 

attribute, or method) has an appropriate stereotype. 

• To indicate the layer containing the pattern: Stereotypes are defined for packages that 

show the layers in a layered architecture. 

All PLV modules utilize stereotypes. In searching for the constituent elements of a pat­

tern, PSV can directly find the element. The P T V module utilizes stereotypes when looking 

for the containing layer of a pattern or in checking the dependencies between pat terns . The 

PMV module uses the stereotypes in finding a specific feature (attribute or operation) of a 

pattern. PLA should attach the corresponding stereotypes to the elements tha t are added 

to the model. 

Tagged va lues 

Tagged values are helpful for capturing configuration/context information of the model, 

e.g., the implementation language. Tagged values allow the designer to define values for 

/' / 



tags dynamically during the design and the values are persisted with the model. If we do 

not utilize tagged values, capturing context information must be done using auxiliary files 

or via the Graphical User Interface (GUI) of the modeling tool, however, neither of these 

approaches gives information which is synchronized with the model. 

Both PSV and PTV use tagged values to access context information that is required 

for verifying some of the structural or syntactic rules. PMV is the main user of the tagged 

values, since this module is responsible for checking the inconsistencies between the used 

patterns and the context information. 

Constraints 

Constraints are WFRs that are defined for each stereotype of a profile. Applying a stereo­

type on a model element, causes the WFRs of that stereotype to be verified. For building a 

PLP, we must have three groups of constraints: structural, syntactic, and semantic. These 

constraints are the basis for the operation of PSV, PTV, and PMV respectively. 

There are two main alternatives for defining the constraints of a profile: 

1. Informally by a natural language, in which case, the constraints must be hard coded 

by a programmer in order to build the three verifier modules of PLV. 

2. Formally by Object Constraint Language (OCL), in which case, the three verifier 

modules of PLV are in effect applying the profile on a model and verifying the OCL 

constraints. 

As we discussed in Section 3.3, the formalisms we proposed for PLV rules contain many 

textual comments which makes them far from being easily translated into a formal language 

such as OCL. Therefore, our strategy is to select the first alternative and hard code the 

rules into the three verifier modules. 

It should be noted that the profile constraints are not meant to perform model modi­

fications which are the duties of PLA. Model modifications can be simple, such as adding 

a missing operation to a class, or complicated, such as building an instance of a pattern 

automatically, which is called "pattern instantiation." 

To summarize, PLV as a profile-driven process: The profile plays an important role in 

the PLV modules, since these modules make use of the stereotypes and the tagged values, 

however, the constraints of the profile need to be hard coded by the programmer who is 

building the PLV. 

78 



3.5.2 PLV Architecture 

The extended architecture for the PLV process is shown in Figure 17 [ZBK09]. 

UML 
Design |^-
Model 

Pattern Structural 
Verifier (PSV) 

Pattern 
Information 
Table (PIT) 

Pattern Language 
Syntactic Verifier (PTV) 

Pattern 
Information 
Table (PIT) 

Pattern Language 
Semantic Verifier (PMV) 

lError 

Error 

Pattern Language 
Advisor (PLA) 

Error 

Artifact) 

Module 

\ \ 

Intermediate 
Table 

Infc >rmation F 

Input 

Legend 

ovy 

Figure 17: The PLV Architecture 

The process deals with two artifacts: UML Design Model and Design Rationale. The 

UML Design Model is the input information to all four modules; This is shown by solid 

directed lines that go from the model to the modules. The Design Model is also an output 

of the process, due to the modifications that the PLA may apply on it, hence the solid 

line from the model to the PLA is directed at both ends. The other artifact is the Design 

Rationale which is an output text file recording the changes made to the model by the PLA, 

thus, a solid directed line goes from PLA to the Design Rationale. 

The architecture also reveals that the process is profile-driven, since both the Design 

Model and the modules utilize the profile by using the stereotypes and tagged values. This 

fact is shown by the directed dashed lines from the PLP to both Design Model and the 

modules. The PIT records information about the detected patterns, obtained by PSV. and 

forwards this information to the next phases. In the following sections, we describe the 

responsibilities of four main modules of the process. 

79 



3.5.3 Pattern Structural Verifier (PSV) 

PSV accepts the Design Model as input and, by verifying the structural rules of the PL, 

looks for single patterns that are correctly applied in the model. The designer shows his/her 

intention of applying a particular pattern by using the "Sign" stereotype of that pattern 

on one of the classes in the model. By detecting the "Sign," PSV initiates the verification 

process to check the structure of the pattern. If the correct usage of the pattern is detected, 

the information about that pattern, is recorded into the PIT. If errors are found in the 

structure of the pattern, the PLA is invoked to report the errors and help the designer fix 

the problems. 

PSV applies the "structural match" strategy. That means, it matches the structure 

of the pattern given in the Design Model, with the structure of the pattern that is de­

fined by the structural rules. For doing this task, PSV applies ideas introduced by the 

Sign/Criteria/Repair (SCR) process, except the repair part [ZB07, ZKB08]. The matching 

process starts from the "Sign" of the pattern. When the "Sign" is found, PSV initiates 

verifying the "Criteria" of the pattern. "Criteria" contains a set of structural rules (con­

straints) which defines the correct application of the pattern. PSV navigates the associated 

model elements and checks for the validity of the constraints in the "Criteria." Then, it 

traverses the associated pattern elements (classes) based on the structural rules. For each 

class, the features (attributes and operations) are also checked against the structural rules. 

If all the rules are satisfied, the pattern is detected correctly, and is recorded into the PIT. 

Leveraging a unique "Sign" for each pattern, we eliminate the possibility of ambiguity in 

detecting patterns that have similar structure, or patterns that are part of another pattern. 

For instance, consider patterns State [GHJV95, p. 305] and Strategy [GHJV95, p. 315] 

from GOF design patterns that are not easily distinguishable since their structure is very 

similar [NB02]. Without a naming convention, or a utility such as stereotype, it is impossible 

to detect each of these patterns. Note that none of the GOF design pattern detection 

methods discussed in Chapter 2 are able to detect both of these patterns unambiguously 

without considering some context information or dynamic views of the model. 

PSV may encounter a variety of structural errors during the verification of patterns. 

Following is a list of possible errors with some appropriate examples on the Front Controller 

pattern (See Figure 8 on page 40). Note that "pattern element" means any part of the 

structure of a pattern including a class, an operation, an attribute, or an association. 

• Missing element in a pattern, e.g., missing the "process" operation in the Command 

80 



class. 

• Missing part of a pattern, e.g., missing the "Command" part. 

• Incorrect or missing relationship between two pattern elements, e.g., missing depen­

dency between Handler and Command classes. 

• Incorrect property of pattern elements, e.g., Command class which is not abstract. 

• Incorrect cardinality of pattern elements, e.g., having less than one Concrete Com­

mand class. 

3.5.4 Pat tern Language Syntactic Verifier ( P T V ) 

PTV verifies the model based on the syntactic rules of the PL. This verification includes 

both checking the layering of patterns and checking the relationships between the detected 

patterns. Therefore, there are two types of errors that can be caught by PTV. First, 

placement of a pattern in a wrong layer or group. Second, a missing relationship between 

two patterns. 

During the course of action, PTV uses PIT to find the detected patterns, their layers, 

and their constituent elements. PTV updates the layering information of each pattern into 

the PIT, and inserts new information about the pattern relationships in this table. In case 

of error, PTV invokes PLA to report the error and guide the designer in fixing the problem, 

either manually or systematically by PLA. 

Some of the syntactic errors are simple and can be easily caught by merely querying the 

PIT. Some examples are: 

• Inconsistency between a pattern and its containing layer or group. When a pattern 

is placed in an inappropriate layer, PTV detects it easily by checking the table. For 

instance, in PofEAA, placing a pattern which belongs to the Data Source layer (e.g., 

Table Data Gateway) in the Domain Layer will result a syntax error. 

• Conflict between the patterns in a layer or group. When two inconsistent patterns 

are placed in a layer, the error can be caught by checking the table. For instance, in 

PofEAA, applying both Optimistic Offline Lock and Pessimistic Offline Lock patterns 

for resolving concurrency issues for the same unit of work in the design will trigger a 

syntax error. 

However, more complicated syntactic errors may need model investigation in addition 

to accessing the PIT. Some examples are: 

81 



• Incorrect relationship between two patterns, e.g., in PofEAA, having Transaction 

Script in the Domain Layer, and then having both Table Data Gateway and Row Data 

Gateway in the Data Source Layer contradicts the alternative relationship between 

those two and cause an error. 

• Missing relationship between two patterns, e.g., in PofEAA, having both Table Module 

in the Domain Layer and Table Data Gateway in the Data Source Layer where both 

are accessing the same data, and there is no uses relationship between them will result 

in a syntax error. 

In case of any error or inconsistency, a call to the PLA is made in order to report the 

problem to the designer and assist him/her repair the problem. Some of the syntactic errors 

can be fixed automatically by the PLA, but most cases need designer's decision and manual 

modifications on the model. As an example of the former case, consider the situation that 

the designer has used the Domain Model pattern and, for one of the domain objects, a Data 

Mapper is needed in the data source layer. Creating the Data Mapper can be performed 

automatically upon the designer's request by the PLA. As an example of the latter case, 

detecting an error due to having both Table Data Gateway and Row Data Gateway for 

accessing the same data can not be resolved automatically, since it needs designer's decision. 

In both cases all the changes to the model are applied after the designer's confirmation. 

3.5.5 Pat te rn Language Semantic Verifier (PMV) 

The PMV module is responsible for verifying that the model adheres to the best practices 

of the PL. Specifically, by applying the semantic rules of the PL, PMV verifies that the 

model is consistent with the context information of the system. Examples of the context 

information are: the implementation language, the designer's expertise, the designer's choice 

for optional patterns, and the complexity of the system. 

If any inconsistency is found in the applied pattern combination, the PLA is invoked to 

report the errors and help the designer fix the problems. Many of the problems are easily 

fixed by setting the appropriate value for the context information, e.g., selecting another 

tool for implementation. These repairs can be done automatically by the PLA, subject to 

the designer's confirmation. Other problems that are solved only be changing the applied 

pattern, should be solved manually by the designer. 

The following list shows some of the possible errors that PMV can recognize, with 

examples from PofEAA. 

82 



• Discrepancy between the context environment and the choice of patterns. For in­

stance, PofEAA suggests that if a machine is controlling the screen flow of the system, 

then we need an Application Controller pattern, otherwise, we do not need it [Fow02, 

p. 58]. Now, if we have such information that the screen flow is not machine-controlled 

(such information can be obtained from tagged values), and the Application Controller 

pattern is detected in the Presentation Layer of the model, a semantic error is trig­

gered. 

• Inconsistency between pattern elements. For example, there is a semantic rule for the 

Table Data Gateway pattern which enforces that the parameter list of the "insert" 

operation be a subset of the parameter list of the "update" operation. 

3.5.6 Pattern Language Advisor (PLA) 

PLA is an important module of the PLV process, which is responsible for reporting the 

errors, displaying the guidelines, and helping the designer fix the problems. Reporting 

the errors and displaying the guidelines are important steps that foster a novice designer's 

knowledge in learning more about the patterns and PL. Fixing the problem might be done 

automatically by the PLA, or manually by the designer. 

For the cases that PLA is able to perform automatic repair, it gives the suggestions to 

the designer, and by the designer's request, the required modifications are applied to the 

model. Following are some of the modifications that are doable automatically by the PLA. 

Pattern Instantiation Although this is not meant to be the main responsibility of PLA, 

but it can be achieved indirectly. For instantiating a pattern, the designer applies only the 

Sign stereotype of the pattern on a class and leaves the completion of other parts to the 

PLA. This way, PSV finds the structural errors and invokes the PLA to fix the problems. 

Then, PLA will add missing elements and relationships to the model such that the pattern 

is applied correctly. Another way of instantiating a pattern, is when one pattern needs 

another pattern in a uses relationship, and the PTV catches the error. Then, the latter 

pattern can be instantiated automatically by the PLA. A straightforward example is when 

the designer has applied the Table Data Gateway pattern, and the return type of the find 

operation in that pattern needs to be the Record Set pattern. Hence, the Record Set can 

be automatically set as the return type of the find operation, and then the pattern must be 

created in the Base Laver of the model. 

83 



Adding missing elements to a pattern A missing element could be an element of a 

single pattern, e.g., a class, an attribute, a method, or a relationship between the constituent 

classes of the pattern; These kind of errors are reported by the PSV. Or, a missing element 

may belong to the model, e.g., a package, a relationship between patterns. Such errors are 

reported by the PTV. In both cases, the PLA can fix the problem automatically, by adding 

the missing elements to the model. 

Changing the properties of an element For instance, PLA changes a non-abstract 

class to abstract in order to correct the application of a pattern, and fix the error which 

was caught by the PSV. 

Changing the dependency between the elements of a pattern Examples are chang­

ing the cardinality, navigability, or containment of an association between constituting 

classes of a pattern. Such errors may have been caught by the PSV. 

For problems that are hard to fix automatically or need expertise or designer's decision, 

the guidelines for fixing the problem should be given to the designer, and it is the designer's 

responsibility to modify the model accordingly. However, providing the designer with guid­

ance and supporting comments can expedite the error recovery process. For such cases, 

PLA helps the designer by displaying useful guidelines based on the PL which shows the 

roots of the error, the rationale behind the error, and the reference to the technical details 

on how to fix the problem. 

As an important job, PLA records all the modifications that are automatically made 

to the model, in a Design Rationale document. The Design Rationale is a document that 

shows what issues have been investigated about the model, what alternative solutions have 

been considered, which one is selected, the justifications behind the decisions, along with the 

modifications that has been made into the model. Design rationale is a fruitful document 

for the system maintainers [PB88]. 

3.6 Discussion 

3.6.1 Summary 

Inspired by the compilers, a process for verifying the use of a Pattern Language (PL) in 

a design model is presented. The process is named Pattern Language Verifier (PLV) and 

consists of four modules (phases): three verifier modules (PSV, PTV, and PMV) that verify 

84 



a design model from the structural, syntactic, and semantic points of view, and an advisor 

module (PLA) that helps the designer repair the problems. If possible, the advisor module 

repairs the problem automatically. All the automatic modifications are recorded into a 

Design Rationale to be used by the designer in understanding the evolution of the design. 

A model is structurally correct if all the patterns are applied correctly. Syntactic problems 

are related to the layering and relationship of patterns. Semantic issues are mainly the 

inconsistencies between the choice of patterns and the context information. 

As the touchstone, the verifier modules vise the structural, syntactic, and semantic rules 

of the underlying PL. It is shown how and where to extract the rules of a PL, then new 

formalisms for representing the rules are introduced. The formalism for structural rules is 

very simple, just a mixture of class diagrams with clear English sentences. However, the 

formalism for syntactic and semantic rules is more precise, and is inspired by the Context-

Free Grammar (CFG) notation. 

PLV is a profile-driven process. A prerequisite for the process is to define a UML Profile 

for the PL. The profile includes stereotypes, tagged values, and constraints. The stereotypes 

play the identifying role for the patterns and their elements. Tagged values are used to save 

information about the context of the design. Constraints are indeed the three groups of 

structural, syntactic, and semantic rules. The constraints can be translated into Object 

Constraint Language (OCL), or kept in the formalism that we proposed. We recommend 

the latter case, since OCL is not meant to perform modifications on a model. Hence, the 

PLV modules must be hard coded into a tool to be used by a designer. 

3.6.2 Possible Extensions to the PLV Modules 

Extensions to P S V Our assumption is that all the structural criteria of a pattern shall 

be satisfied in order to cause PSV report the correct application of that pattern. However, 

there are cases that some of the criteria are not as fundamental as others and they can be 

ignored. As an extension to this module, one can add a "severity level" parameter that acts 

as a threshold for the sensitivity of detecting a correct pattern. This way the PSV is able to 

report, "near-misses'' for each pattern. A near-miss of a pattern means a structure which is 

very close to the structure of a pattern, but it has minor deviations. Reporting near-misses 

is quite educational for novice designers. 

Another possible and desired extension to the PSV is to investigate also the dynamic 

views of the model, e.g., the UML sequence diagrams. As discussed in Section 2.5.2, for 

some of the patterns, merely static checking is not enough, e.g., for the Singleton pattern. 

85 



E x t e n s i o n s t o P T V For checking pattern layering, currently we only check that the 

"Sign" of a pattern is in the appropriate layer. It is wise to check tha t all the elements of 

the pat tern reside in that layer. 

Another extension to the PTV is to check the inter-collection rules. Currently, we only 

investigate the intra-collection relationships between patterns. It is t rue that most of the 

problems can be solved by adding more rules to the grammar, however, the cases such as 

conflicting pattern names must be handled carefully. 

Extens ions t o P M V Adding linguistic knowledge to PMV enables it to detect errors 

such as the violation of advice A21 in Appendix A.2 which recommends t ha t if we use 

Domain Model pattern, the name of the domain concepts should be selected among the 

nouns in the domain [Fow02, p . 26]. 

3.6.3 Pattern Language Issues 

Current PLs are not mature yet in terms of having clear and precise pat tern relationships. 

Therefore, finding the relationship between pat terns in the pattern form is more difficult 

than finding the structural rules. There are several reasons for this problem as follows. 

1. Despite the structural rules tha t deal with one pattern and, most of the time, can 

be found within specific fields of the pattern form, the syntactic rules for pat tern 

relationships are scattered across the engaged patterns and need to be extracted by 

investigating those patterns. 

2. Most of the PL authors prefer to present the syntactic rules in prose text, interwoven 

with the pattern descriptions. The difficulty of extracting syntactic rules depends on 

the level of formalism that is used for showing the pattern relationships. 

3. The work on formalizing the grammar of a PL is sparse. Our literature survey (see 

Section 2.4.1) showed that such endeavors are in their infancy stages yet. For instance, 

in POSA-5 [BHS07b], as one of the recent works in this area, it is tried to give a 

grammar-like formalism for the syntax of a pattern sequence. But , we think POSA-5 

is still immature, as the authors also emphasize that "not all the aspects of pattern 

languages we discuss in this part of the book are mature or. well-established in the 

pattern community. [...] aspects and properties, such as the role of pattern sequences 

in defining a grammar for pattern languages, are considered as new or even subject 

to debate" [BHS07b, p. 245]. 

86 



3.6.4 Profile Issues 

PLV is a profile-driven process, hence, defining a UML profile for the underlying PL is 

inevitable. An important issue is to investigate "to what extent does a UML profile suffice 

for fulfilling the tasks of the PLV process?" 

Utilizing profile (particularly its stereotypes) reveals us from the vexing problem of 

pattern detection. That is because designers explicitly announce which patterns are used in 

the model by using the "Sign" of the patterns. Without profile, we need to apply one of the 

pattern detection strategies reviewed in Chapter 2, which for a sample pattern collection 

such as GOF, none of them are 100% capable of detecting all the patterns in that collection. 

Remember that there are outwardly similar patterns that distinguishing them only from 

their structure is almost impossible. 

Furthermore, utilizing tagged values is an easy way to access meta-data such as config­

uration/context information; This information is up-to-date and is orchestrated with the 

model since it is acquired during the design. Without tagged values, accessing such data 

my need reading offline files or extending tool's GUI, which is more tedious and is not 

synchronized with the design. 

We believe that even if the constraints are written in OCL and the three verifying 

modules are inherently built, the PLA must be built explicitly, since the duties of PLA are 

out of the scope of profile abilities. That is because the profile constraints are not intended 

to perform model modifications. Another important issue with using OCL, is the lack of 

persistent data between the constraints. Hence, when a structural constraint verifies the 

structure of a pattern in the model and ensures that the pattern is applied correctly, the 

detected pattern's information (i.e., the PIT) must be persisted somewhere that can be 

accessed by the PTV. One solution to this issue, is to check all the structural, syntactic 

and semantic criteria of each pattern all together in the constraints of that pattern. In 

this approach, the syntactic rules do not limit themselves to the correctly applied patterns. 

However, one problem to this approach is that for rules like "Pattern A uses Pattern B," 

it is unclear in which pattern this rule must be verified, Pattern A or Pattern B? 

87 



Chapter 4 

A Pattern Language Verifier (PLV) 

for PofEAA 

This chapter shows which steps should be taken in order to make a Pattern Language 

Verifier (PLV) for a Pattern Language (PL). For our case study, we have selected Patterns 

of Enterprise Application Architecture (PofEAA) [Fow02] PL. We became familiar with 

PofEAA in Section 2.6. PofEAA consists of 51 patterns, however, we have selected a subset 

containing the 23 patterns we need for our case study. As an environment in which we have 

hard coded the PLV modules, we have selected the ArgoUML modeling tool. The resulting 

tool, which is a "PLV for PofEAA;' is called ArgoPLV. 

The remainder of this chapter is organized as follows. In Section 4.1, we introduce the 

selected patterns and their relationships. Section 4.2 discusses the advices that form the 

structuring mechanism of the PofEAA PL, and shows how these advices are formalized as 

the formal rules for the PLV modules. In Section 4.3, we introduce the uPofEAA UML 

Profile" as an important component required by the PLV process. Section 4.4 shows how 

the "PLV for PofEAA" is built as a plugin for the ArgoUML, which is called ArgoPLV. 

Section 4.5 discusses what has been learned from our case study. 

4.1 PofEAA Selected Patterns 

As we have introduced in Section 2.6, PofEAA consists of 51 patterns categorized into three 

main layers and seven supporting layers. For the sake of simplicity and concreteness, we 

selected a subset of PofEAA that contains 23 patterns from several layers. These are the 

patterns we need for our case study. 

88 



Patterns that are filtered out are mainly "Object-Relational" patterns that deal with 

mapping classes to the tables of a relational database. Although they are important patterns 

for a practical enterprise application, these patterns are more database-related. From the 

PLV perspective, considering them does not add any knowledge to codifying process that we 

are going to present in this chapter. There are sixteen patterns in the "Object-Relational" 

category that are excluded in this case study. In addition, we have excluded one of the 

Session State patterns, which stores session data in the database. Furthermore, we have 

excluded six patterns from the Base Layer, two patterns from the Offline Concurrency 

Layer, and three patterns from the Presentation Layer. In total, 28 out of 51 patterns are 

excluded in this case study. 

Table 10 shows the number of patterns that are selected and the number of patterns 

that are excluded from PofEAA in the case study. Table 11 shows the name of the patterns 

that are selected or excluded from each layer. Note that in PofEAA, "Service Layer" is the 

name of a pattern in the "Domain" Layer, however, we dedicate a separate layer for this 

pattern. That means, we have a "Service Layer" pattern in the "Service" Layer. 

Table 10: Statistics on Selected and Excluded Patterns from PofEAA in our Case Study 
Layer/Category 

Presentation 
Service 
Domain 
Data Source 
Object-Relational Behavioral 
Object-Relational Structural 
Object-Relational Metadata Mapping 
Distribution 
Offline Concurrency 
Session State 
Base 

Sum 

Patterns 

7 
1 
3 
4 
3 
10 
3 
2 
4 
3 
11 

51 

Selected 
4 
1 
3 
4 
0 
0 
0 
2 
2 
2 
5 

23 

Excluded 

3 
0 
0 
0 
3 
10 
3 
0 
2 
1 
6 

28 

Figure 18 shows the placement of selected patterns in a layered architecture. In addition 

to the eleven patterns in the three main layers (presentation, domain, and data source), we 

have one service pattern, five base patterns, two concurrency patterns, two session state 

patterns, and two distributed patterns in their respected layer. Hence, 23 patterns are 

shown in the figure. General descriptions of the layers and the patterns of PofEAA, given 

in Section 2.6, are still valid and useful. In this section, we elaborate on the patterns in 

Figure 18 and their dependencies. 

For designing the architecture of a web-based enterprise application, the designer may 

start from the Presentation Layer of the system. Taking the Model View Controller 

89 



Table 11: Selected and Excluded Patterns from PofEAA in our Case Study 
Layer/ Category 

Presentation 

Service 
Domain 
Data Source 
Base 

Object-Relational 
Behavioral 
Object-Relational 
Structural 

Object-Relational 
Metadata Mapping 
Distribution 
Offline Concur­
rency 
Session State 

Patterns (Bold means Selected) 

Page Controller, Front Controller, Template View, Transform View, 
Model View Controller, Two-Step View, Application Controller 
Service Layer 
Transaction Script, Domain Model , Table Module 
Table Data Gateway, Row Data Gateway, Active Record, Data Mapper 
Layer Supertype, Money, Record Set, Gateway, Mapper, Separated In­
terface, Registry, Value Object, Special Case, Plugin, Service Stub 
Unit of Work, Identity Map, Lazy Load 

Identity Field, Foreign Key Mapping, Association Table Mapping, Dependent 
Mapping, Embedded Value, Serialized LOB, Single Table Inheritance, Class Table 
Inheritance, Concrete Table Inheritance, Inheritance Mappers 
Metadata Mapping, Query Object, Repository 

Remote Facade, Data Transfer Object 
Optimistic Offline Lock, Pessimistic Offline Lock, Coarse Grained Lock, 
Implicit Lock 
Client Session S ta te , Server Session S ta te , Database Session State 

paradigm, the designer needs patterns for the Controller part and the View part. There 

are two alternative patterns for the Controller part, the Front Controller and the Page 

Controller, which their selection depends upon the implementation environment and the 

simplicity of the requests. The choice for the View part is the corollary of the Controller 

and the tool selection. That means, either the Transform View or the Template View can 

be used with either of the Controllers depending upon the tool. 

The next step, in designing a web-based enterprise application, is to select patterns 

for the Domain Layer. There is no specific dependency between any of the patterns in 

the Presentation Layer and the layer beneath. However, if the designer decides to use the 

Service Layer pattern as an API for the application, this pattern usually works with a 

Domain Model or Table Module. 

An important decision is the selection of a pattern for the Domain Layer of the system. 

If the designer is looking for an easy and straightforward solution, the Transaction Script 

pattern is the choice. However, for complicated systems which have a lot of domain con­

cepts, and when Object-Oriented is able to better describe the structure of the domain, the 

Domain Model pattern is an appropriate selection. For intermediate situations, i.e., when 

the business logic is not too complex, the use of the Table Module pattern is recommended. 

Selecting patterns for the Data Source Layer is more dependent upon the Domain Layer 

patterns. If a Domain Model pattern is selected and the domain is rich, i.e.. the structure of 

the domain model is complex, then the suggested pattern for the Data Source Layer is Data 

Mapper: Otherwise. Active Record is a better choice. Note that according to the PofEAA 

90 



presentation layer 

controller layer 

Fomt Controller Page Controller 

view layer 

Template View Transform View 

Service Layer 

Service Layer 

domain layer 

Domain Model Table Module Transaction Script 

data source layer 

Data Mapper 

Active Record 

Table Data Gateway Row Data Gateway 

concurrency layer 

Optimistic Offiline Lock Pessimistic Offline Lock 

session state layer 

Client Session State Server Session State 

base layer 

Layer Supertype RecordSet Money Gateway Mapper 

distributed layer 

Remote Facade Data Transfer Object 

Figure 18: Selected Pat te rns from PofEAA in a Layered Architecture 

book, Active Record is in the Da ta Source Layer, therefore, in Figure 18, we kept Active 

Record inside that layer. However, to reflect the fact that it may contain some business 

logic, it should be considered on the boundary of the Domain Layer and the D a t a Source 

Layer. In case a Transaction Script or Table Module is selected, then there are two options 

for the Data Source Layer: Table Da ta Gateway or Row Data Gateway. 

Finally, there are optional layers regarding the concurrency, storing session data, or 

distributed issues. For handling the conflicts that occur in concurrent sessions, there are 

two options in the Concurrency Layer. If the chance of conflict is high, the Pessimistic 

Offline Lock pattern is the right choice, otherwise, the Optimistic Offline Lock pattern 

suffices. For storing session data, there are two storage options in the Session State Layer: 

91 



in the client side (Client Session State pattern), or on the server side (Server Session State 

pattern). In terms of storing sessions, we can design most web applications from merely 

stateless objects, and we can store session states only when we have to do so. 

In case there is a force to have some remote objects in the system, there are two simple 

solutions offered in the Distributed Layer. The Remote Facade pattern acts as a facade for 

fine-grained objects that are placed on remote sites. The Data Transfer Object pattern acts 

as a partner for the Remote Facade pattern by bundling all the data that a client needs. 

Sometimes the Table Data Gateway pattern can return information from a query in the 

form of a Data Transfer Object. 

There are patterns that do not belong to any of the above layers and can be considered 

as independent patterns. These patterns lie in the Base Layer. The Layer Supertype 

pattern acts as a supertype for all the objects in a layer. The Record Set pattern is an 

important pattern for representing tabular data as in-memory objects. Although most of 

the platforms offer a Record Set, the designers can create their own. The Money pattern 

is a very useful pattern when there is a need to work with different currencies and perform 

exchange conversions. The Gateway pattern acts as wrapper pattern that wraps the API 

code into a class which is similar to a regular object. The Mapper pattern acts as a mapping 

layer between two subsystems that need to stay ignorant of each other. 

4.2 PofEAA Rules 

As explained in Section 3.3, the most important behind-the-scene cornerstone of the PLV 

is a set of rules that drives the decision making engine of the main three modules: Pattern 

Structural Verifier (PSV), Pattern Language Syntactic Verifier (PTV), and Pattern Lan­

guage Semantic Verifier (PMV). Corresponding to these modules, we need three groups of 

rules: Structural, Syntactical, and Semantic. 

In Section 3.3, we explained how the rules must be extracted, categorized, and expressed 

in a formal way that is clear and precise for a programmer who is responsible to hard code 

those rules into the PLV modules. Extracting the rules that govern a PL, and classifying 

them into appropriate categories, is a difficult task, because these rules are often hidden 

between the lines of the texts that describe the patterns. This rule extraction and rule 

classification is a critical prerequisite step in building a PLV for a given PL, therefore, 

it should be done with enough care. In this section, we discuss how PofEAA rules are 

extracted, classified, and then formalized for the PLV process. 

92 



Patterns emerge from the experience of the experts [GHJV95, p. 1]. Hence, the PofEAA 

book, like many other pattern books, contains the advices for the designers, particularly 

for the novice designers. In a PL, the advices act as a structuring mechanism that lead a 

novice designer in selecting appropriate patterns one after another. This process continues 

until the whole system is designed. These advices are what we finally turn into the rules 

that are the basis for the PLV. 

Regarding the selected patterns of PofEAA, we have extracted 74 advices from the book 

and bracketed them into three classes: Structural, Syntactic, and Semantic. Table 12 is an 

excerpt from these advices. The complete set of advices is displayed in Appendix A.2. Note 

that selecting the advice number (A#) and the advice classification (type) is our choice, 

but the descriptions are from the book. In the following sections, we refer to the advices in 

Table 12 by the advice number. 

We try to preserve a one-to-one relationship between these advices and the formal rules 

that will be defined for the PLV for PofEAA. However, it is possible that one advice is the 

root for more than one rule, e.g., advice A47. 

It should be noted that the advices extracted from the book reflect the author's (Mar­

tin Fowler) experience in working on enterprise applications. Some of the advices are not 

accurate enough, especially the syntactic and semantic ones. Most of the advices are about 

alternatives, and in some cases two advices may contradict each other. In case of any impre­

cision, ambiguity, or contradiction, the issue must be resolved in the course of formalizing 

the advice into a rule for the PLV. Resolving the issues is not an easy task, and needs 

expertise. Sometimes, one of the conflicting suggestions must be selected, and the others 

must be ignored. Sometimes, a vague suggestion needs interpretation. For instance, inter­

preting the word "usually" in advice A18: "The Table Data Gateway is usually stateless" 

is a subjective matter. Again, these issues must be resolved during the formalization of the 

advices into the rules. 

In the following sections, we elaborate on how the advices of PofEAA are formalized 

into the rules. For each class of rules, we give some examples from Table 12, and using the 

formalisms proposed in Section 3.3, we obtain the corresponding formal rules. These formal 

rules will then be used to make the "PLV for PofEAA." 

4.2.1 S t r u c t u r a l Ru le s 

Structural rules are those that describe the essence and the structure of an individual 

pattern. One important step in specifying the structure of a pattern is to select a "Sign" 

93 



Table 12: Advices from the PofEAA Book [Fow02] 
A # 
A04 

A13 

A14 

A18 

A23 

A25 

A29 

A46 

A47 

A49 

A51 

A53 

Type 

Semantic 

Syntactic 

Syntactic 

Structural 

Syntactic/ 
Semantic 

Structural 

Syntactic/ 
Semantic 

Semantic 

Syntactic/ 
Semantic 

Syntactic 

Syntactic 

Syntactic 

Description (PofEAA book p a g e # ) 

"If you have an environment like .NET or Visual Studio, then that makes a Table 
Module much more attractive." (p. 30) 
"A simple Domain Model can use Active Record, whereas a rich Domain Model 
requires Data Mapper." (p. 117) 
"A rich Domain Model is better for more complex logic, but is harder to map to 
the database." (p. 117) 
"A Table Data Gateway has a simple interface, usually consisting of several find 
methods to get data from the database and update, insert, and delete meth­
ods...The Table Data Gateway is usually stateless." (p. 144) 
"[for presentation layer] Your tooling may well make your choice for you. If you 
use Visual Studio, the easiest way to go is Page Controller and Template View. 
If you use Java, you have a choice of Web frameworks to consider. Popular at 
the moment is Struts, which will lead you to a Front Controller and a Template 
View." (p. 99) 
"A Front Controller handles all calls for a Web site, and is usually structured in 
two parts: a Web handler and a command hierarchy. The Web handler is the 
object that actually receives post or get requests from the Web server." (p. 344) 
"The Web handler is almost always implemented as a class rather than as a server 
page [...] The commands are also classes rather than server pages." (p. 345) 
"The essence of the choice between optimistic and pessimistic locks is the fre­
quency and severity of conflicts." (p. 68) "Whereas Pessimistic Offline Lock 
assumes that the chance of session conflict is high and therefore limits the sys­
tem's concurrency, Optimistic Offline Lock assumes that the chance of conflict is 
low." (p. 417) 
"The parameter list of the insert method must be a subset of the parameter list 
of the update method." (p. 144) 
"You probably don't need a Service Layer if your application's business logic will 
only have one kind of client-say, a user interface-and its use case responses don't 
involve multiple transactional resources" (p. 137) 
"For this book I'm centering my discussion around an architecture of three pri­
mary layers: presentation, domain, and data source." (p. 19) 
"Often you'll find that there isn't quite a one-to-one relationship between Page 
Controllers and views." (p. 61) 
"Since it's a form of Mapper, Data Mapper itself is even unknown to the domain 
layer." (p. 165) 

for each pattern. We select the names of the patterns that are written in bold in Table 11, 

as the "Sign" for the selected patterns of PofEAA. 

The formalism that we defined for the structural rules (sec Section 3.3.1) forces us to have 

clear and precise criteria written in English, so that an intermediate Object-Oriented (OO) 

programmer can interpret them in terms of programming language constructs. For the 

benefit of the programmer, a UML class diagram of the pattern may also be augmented to 

the criteria. 

Amongst the extracted advices. 23 of them are structural advices. Each of these advices 

must be written in our proposed formalism, and if possible, supplemented by a UML class 

diagram. 

94 



For instance, to extract the structural rules for the Front Controller pattern, we inves­

tigate the description of the pattern, especially, "Intent," "Sketch," "How It Works," and 

"Examples" fields of the pattern form. The results of this investigation are presented in the 

advice A25 of Table 12, and in the "Intent" and the "Sketch" shown in Figure 19. 

A contoller that handles all the requests for a Web site. 

Handler 

doGet() 
doPost() 

"> 

Command 

process() 

J 
ConcreteCommand 1 

process() 

ConcreteCommand 2 

process() 

Figure 19: The Front Controller Pattern [Fow02, p. 344] 

The information in advice A25 and Figure 19 is sufficient to define a set of eight criteria 

for the structural rules of this pattern, as shown in Figure 20. The rules are clear enough 

that there is no need to augment them with a class diagram. 

1. There is a Front Control ler (=Handler) class in the model. 

2. There are at least two operations (doGet and doPost) in the Handler class. 

3. The Handler class has a client dependency to a Command class. 

4. The Command class is abstract. 

5. The Command class has at least one process operation. 

6. The Command class has at least one Concrete Command child class. 

7. A Concrete Command class is concrete. 

8. A Concrete Command class has at least one process operation. 

Figure 20: PofEAA Rule Set - Part I: Structural Rules (A Sample Rule Showing the Struc­
ture of the Front Controller Pattern) 

It is worth mentioning that these rules all together are considered as one structural rule. 

The same procedure is performed for all the 23 selected patterns, and the structural rules 

of all patterns are extracted. The result is called "PofEAA Rule Set - Part I: Structural 

Rules" and is shown in Appendix A.3.1. 

95 



4.2.2 Syntactic Rules 

As it was discussed in Section 3.3.2, syntactic rules of PLV are divided into two groups. 

The first group shows the organization of patterns, i.e., which patterns are located in which 

layers. The second group, specifies the relationships and dependencies between patterns. 

In the following, for each group, first we show how the syntactic advices are extracted from 

the PofEAA book, then we discuss how those advices can be written as rules using the 

formalism defined in Section 3.3.2, and finally Ave show how the rules are inserted into the 

"PofEAA Rule Set." 

Pattern-Layer Relationships The first group of syntactic rules, are derived from two 

sources: 1) The grouping of patterns into chapters in the PofEAA book, and 2) the expla­

nations given in "Part 1" of the book about the optionality of some of the patterns or layers. 

We have already seen, in Figure 18, the first attempt in dividing 23 selected patterns into 

layers. Note that, there are two minor deviations between the layering of patterns in Fig­

ure 18 and what is proposed in the book. The first deviation is that we have separated the 

"Service Layer" pattern from the patterns of Domain Layer. The second deviation is that 

we have divided the patterns of the Presentation Layer into two sub-layers: the Controller 

Layer and the View Layer. 

There are more details that are not represented in Figure 18, for example, the figure 

does not provide information about the mandatory or optional layers. Such information is 

extracted from "Part 1" of the book and is recorded as syntactic advices in Table 12. 

For instance, advice A49 clarifies that there are three mandatory layers in the model. 

Also, advice A47 reveals that the "Service Layer" is not a mandatory layer and its existence 

depends upon the designer's choice. 

We proposed a formalism for precisely presenting the layering of patterns of a PL (See 

Section 3.3.2). The following is the formal representation of the advices A49 and A47, 

supposing that all the layers lie in a root model named "pofeaa model." 

pofeaa model D presentation . service!(-De^gner w a n t s Serv,ce Layfir) . domain . datasource 

In total, there are 16 advices about the organization of patterns. Investigating those 

advices along with Figure 18, and converting the advices into the formal rules, we obtained 

the 'PofEAA Rule Set - Part II: Syntactic Rules (Pattern Organizations)." These rules are 

shown both in Figure 21 and Appendix A.3.2. 

96 



pofeaa model D main layer . auxiliary layer* 
main layer D presentation . service'' 1 ' . domain . datasource 
presentation D controller . view 
auxiliary layer 3 base* , distributed • ' , concurrency ^3' , sessionstate'^ ' 

controller B Page Controller , Front Controller 
view B Template View , Transform View 
service B Service Layer 
domain B Domain Model, Table Module, Transaction Script 
datasource B Data Mapper, Active Record, Table Data Gateway, Row Data Gateway 

base B Record Set, Layer Supertype, Money, Mapper, Gateway 
distributed B Remote Facade, Data Transfer Object 
concurrency 3 Optimistic Offline Lock, Pessimistic Offline Lock 
sessionstate B Client Session State, Server Session State 

C41: Designer wants Service Layer 
C42: Designer wants Distributed Layer 
C43: Designer wants Concurrency Layer 
C44: Designer wants Session State Layer 

Figure 21: PofEAA Rule Set - Part II: Syntactic Rules (Pattern Organizations) 

Pa t t e rn -Pa t t e rn Relationships The second group of syntactic rules, that defines the 

relationship between patterns, can be extracted by investigating the pattern descriptions 

given by the pattern form, especially the fields: "Applicability" and "When to use it." 

Moreover, a "Cheat Sheet" is printed inside the back cover of the PofEAA book, which can 

also be considered a useful source for understanding the dependencies between patterns. 

This information is extracted and recorded as the advices. 

We proposed a formalism for defining the relationships uses, conflicts, and refines, for 

precisely presenting the relationships between patterns of a PL (see Section 3.3.2). 

As an example of a uses rule, consider advice A51 which says there are two alternative 

view patterns that can be used by a Front Controller pattern. Using the alternative uses 

formalism, we write the following rule. 

Page Controller —> Template View | Transform View 

As an example of a conditional uses rule, consider advice A23 which tells us how the 

selection of the tool will determine which view pattern should be used by a controller. Using 

the conditional uses formalism, we write the following rule. 

Front Controller -^ % Template View 

As an example of a conflicts m layer rule, consider advice A29 which says there is a 

choice between the Optimistic Offline Lock pattern and the Pessimistic Offline Lock pattern. 

97 



While it is not mentioned explicitly, we know that it is not possible to have both patterns 

for controlling the conflicts for the same unit of work. Hence, the resulted rule is: 

Optimistic Offline Lock Y^ncy Pessimistic Offline Lock {Two patterns are applied 

for the same unit of work} 

As an example of a refines rule, consider advice A53 which says the Data Mapper pattern 

is a special case of the Mapper pattern. The corresponding rule is as follows. 

Data Mapper | Mapper 

There are 27 advices about the relationship between patterns. Using the formalism pro­

posed in Section 3.3.2, we converted them into syntactic rules, and obtained the "PofEAA 

Rule Set - Part III: Syntactic Rules (Pattern Relationships)." These rules are shown both 

in Figure 22 and in Appendix A.3.3. 

98 



Page Controller —• Template View | Transform View 
Front Controller —» Template View \ Transform View 

Tool=.NET 
Page Controller —• Template View 

Front Controller —> Template View 

Template View —» Service Layer 

Transform View —» Service Layer 
Service Layer —> Domain Model \ Table Module 

Template View ""—» Domain Model | Ta6/e Module | Transaction Script 

Transform View ""—» Domain Model | To6Ze Module | Transaction Script 

Page Controller "-* Domain Model | Ta&Ze Module | Transaction Script 

Front Controller ""—> Domain Model | Ta6/e Module | Transaction Script 

C21 
Domain Model —> Active Record 

C23 
Domain Model —> £>aia Mapper 

Table Module —• To6/e Z)a<a Gateway | 7?ow Z)a<a Gateway 
Transaction Script —> Tat/e £>aia Gateway | i?oiu .Data Gateway 

Table Data Gateway —* Record Set { C l l l } 
C42 

TaMe .Data Gateway —» Z)a£a Transfer Object 

Data Mapper <-> Active Record 

Table Data Gateway <-> i?ou> Data Gateway {C112} 

Optimistic Offline Lock *-*' Pessimistic Offline Lock {CI 12} 

Client Session State <-> Server Session State {C112} 

FrontControiler \ Controller 
PageController | Controller 
Data Mapper | Mapper 
Table Data Gateway f Gateway 
Row Data Gateway | Gateway 

C21: Domain Structure is Simple 
C22: Domain Structure is Moderate 
C23: Domain Structure is Complex 
C41: Designer wants Service Layer 
C42: Designer wants Distributed Layer 
C43: Designer wants Concurrency Layer 
C44: Designer wants Session State Layer 

C l l l : The return type of every f indO operation in Table Data Gateway pattern is Record Set 
CI 12: Two patterns are applied for the same unit of work 

Figure 22: PofEAA Rule Set - Part III: Syntactic Rules (Pattern Relationships) 

99 



4.2.3 Semantic Rules 

The semantic rules of PLV aim to catch two types of errors: 1) conflicts between the applied 

patterns and the context information, and 2) the inconsistencies between the features of 

applied patterns. Context information includes information about the environment of the 

system. Examples for context information are: the implementation tool, the designer's 

expertise, and the domain complexity. 

For extracting semantic advices that govern the PofEAA, the pattern descriptions in 

the pattern form must be investigated carefully. The clue is to look for one of the concrete 

samples of the context information in the pattern description. Then the advices must be 

rewritten as the semantic rules using the formalism proposed in Section 3.3.3. 

As an example of a semantic advice that checks the conflicts between the applied patterns 

and the context information, consider advice A14 about the effect of the domain complexity 

on the pattern used for the Domain Layer. Using the formalism proposed in Section 3.3.3, 

this advice is represented as the semantic rule: 

Domain Model f« {Domain structure is complex } 

As an example of a semantic advice that deals with the inconsistencies between the 

features of applied patterns, consider advice A46 about the correspondence of the parame­

ters of the insert and update methods in the Table Data Gateway pattern. This advice is 

converted to the formal rule: 

Table Data Gateway sa {insert() parameter list C update() parameter list} 

Amongst the extracted advices, 17 of them are semantic advices. By interpreting those 

advices into the formal rules, we obtained the "Pof-EAA Rule Set - Part IV: Semantic 

Rules." These rules are shown both in Figure 23 and in Appendix A.3.4. 

100 



Page Controller as {Cll} 
Front Controller « {C12} 
Template View « {C61} 
Transform View « {C62} 
Transaction Script ss {Cl l and C21 and C31} 
TaMe Data Gateway a; {insertQ parameter list C updateQ parameter list} 
Active Record w Template View {CI21} 

Service Layer ss {C41} 
Remote Facade « {C42} 
Data Transfer Object « {C42} 
Optimistic Offline Lock ss {C43 and C51} 
Pessimistic Offline Lock « {C43 and C52} 
Client Session State « {C44} 
Server Session State « {C44} 

C l l : Tool is .Net 
C12: Tool is Java 

C21: Domain structure is simple 
C22: Domain structure is moderate 
C23: Domain structure is complex 

C31: Designer is novice 
C32: Designer is intermediate 
C33: Designer is expert 

C41: Designer wants Service Layer 
C42: Designer wants Distributed Layer 
C43: Designer wants Concurrency Layer 
C44: Designer wants Session State Layer 

C51: Chance of conflict is low 
C52: Chance of conflict is high 

C61: View is built using HTML 
C62: View is built using XSLT 

C121: The parameters of the operations of the Active Record pattern must match with the at­
tributes of Template View 

Figure 23: PofEAA Rule Set - Part IV: Semantic Rules 

101 



4.3 PofEAA UML Profile 

In Section 3.5, we introduced PLV as a profile-driven process. That means, a prerequisite 

for having such a PLV for a PL, is to define a UML profile for the underlying PL. In the 

architecture of the PLV given in Figure 17, this profile is called Pattern Language UML 

Profile (PLP). This section is dedicated to explain how this profile, which we call it the 

"PofEAA UML Profile," is defined. 

For defining a UML profile for PofEAA PL, we follow the profile definition approach 

introduced by Bran Selic [Sel07] (see Section 2.2.1). To summarize, Selic's approach for 

defining a UML profile for a language consists of two steps. 

1. Define a domain model (metamodel) for the language. 

2. Map the domain model onto the UML metamodel. 

The next two sub-sections show how these two steps are taken for PofEAA. The re­

maining sub-sections elaborate on the stereotypes, the tagged values, and the constraints 

of the PofEAA UML Profile. 

4.3.1 Defining the PofEAA metamodel 

At the first step of Selic's approach, we need a domain model for our PL. This domain 

model is in fact the metamodel of the language. The metamodel should consist of the 

fundamental concepts of the domain, their relationships, the constraints on these concepts, 

the notation, and the semantics of the language. 

Our work in Section 4.2 makes this step easier. For our selected patterns from PofEAA, 

Figure 18 plays the role of the domain model, because it displays the concepts of the domain. 

In addition to Figure 18, part I and part II of the "PofEAA Rule Set" (see Figure 20 and 

Figure 21) must be taken into consideration, to discover more concepts of the domain. For 

the relationships between the concepts, we can utilize part III of the "PofEAA Rule Set" 

(see Figure 22). The semantics of the language is what we have seen in part IV of the 

"PofEAA Rule Set" (see Figure 23). The constraints on the concepts are the ones that are 

mentioned in different parts of the "PofEAA Rule Set." For the notation of our language, 

we use both UML-ish diagrams (Figure 18 is a UML package diagram) and the formalisms 

introduced in Section 3.3. 

102 



4.3.2 Mapping PofEAA metamodel to UML metamodel 

In the second step of Selic's approach, we should map each of the concepts of the domain 

model of our language into one of the UML metamodel classes. At this step, we investigate 

which concepts of the UML metamodel need to be extended to fulfill the requirements of 

our language concepts. For those concepts, we define stereotypes. We should be careful not 

to have conflicts between our concepts and the base meta-classes in UML. 

Before showing how this step can be applied for PofEAA, we need to discuss an extra 

step which we think is mandatory when the concepts in the language's domain model are 

compound. By a compound concept, we mean a concept which is constructed from several 

single (atomic) concepts. We call this extra step "decomposition." 

In the pattern language world, in which each pattern is considered as one concept, 

many of the concepts are compound. In other words, a pattern has a structure (typically 

represented by a UML class diagram) and consists of several other concepts (such as classes). 

The decomposition step aims to find the atomic concepts that could be matched to the UML 

meta-classes clearly. 

For instance, the Front Controller pattern, shown in Figure 19, is a concept in the 

domain model of PofEAA PL. This concept is a compound concept, consisting of three 

atomic concepts (Handler, Command, and ConcreteCommand classes). Note that we use 

"Front Controller" as the sign of this pattern, hence, instead of Handler, we make use of 

the name FrontController. 

In addition to the Front Controller, there are four other compound concepts in the 

selected patterns from PofEAA: the Record Set pattern which its decomposition results in 

adding concepts Table, Row, and Column; the Row Data Gateway pattern which needs a 

Finder class; the Remote Facade pattern which needs a class as the owner of bulk-accessor 

methods; and the Money pattern which needs a Currency class as the type of its currency 

field. 

When the decompositions are done, i.e., each compound concept in the domain model 

is replaced by its constituent elements, then performing step two of the Selic's approach 

is possible. Figure 24 represents the result of applying this step for our selected patterns 

of PofEAA. It shows how the metamodel (domain model) of the PofEAA PL is mapped 

into the UML metamodel. The figure indicates that the concepts of our domain model are 

mapped as extensions of four UML meta-classes: package, class, operation, and attribute. 

Note that, for the sake of simplicity, the operations and attributes of the classes were not 

shown in Figure 18. 

103 



In Figure 24, the gray boxes and their associations are copied from the UML metamodel 

[Obj05b] for clarification, i.e., the gray boxes are the UML meta-classes. The white boxes 

are the concepts of the domain model of our language (see Figure 18). An arrow (|) from 

a language concept (white box) to a UML meta-class (gray box) should be interpreted as 

an extension. That means, each stereotype extends one of the meta-classes of the UML. 

Obviously, the white boxes show the stereotypes of the "PofEAA UML Profile." The next 

section explains these stereotypes in more details. 

«prof f le» 

CTere&z-ij. Eemenl 

<nw.jc!a;s>£. 
Feature 

«mnf t id«w». , J 
StruduraifeabJte 

2E 
Gendv ora Fejluro 

"•nWut-flKX* 
AllnbJte 

£ 
OpefaLcn 

c<stereotype» 

«stereotvpe» 

c<stereorype» 
transform 

=<stereotype» 

«stereotvpe» 

«stereotvpe» 

«stereotype» 

^^stereqtype?: 
amount 

5<stereptyBs>> 
sessionID 

^stereotype?? 

currency 

«stereotvpe» 

1 
CElMlfiCf 

FjSpnefctElBS5>>. j 
Patfnge 

/T 

C-t*s> 

ConereteCommand 

"/N~ 

«stereotvpe» 

Front Controller 

«stereorvpe» 

«stereotvpe» 

TableDataGateWay 

«stereotyrje» 
RemoteFacade 

«stereotvpe» 
PessimislicOfflineLock 

ClientSessionState 

«stereotype» | 

«stereotype» 
Row 

n 
«stereotype» 

5sleteplYpe>> 

Gateway 

PageController 

«stereotype» 
TransfonnView 

«5tereotvpe» 
ServiceLayer 

Transaction Script 

«stereotvpe» 
ActiveRecord 

«stereotype» „ . 
RowDataGaleway 

<<steregjy.pe>> 
DataTransferObject 

.^stereotype?? 
OptimisBcOfftineLock 

<<stereptyee>> 
ServerSessionState 

«stereotype» 
Layer Supertype 

«stereotvpe» 

i«stereotvpe» 

presentation 

«stereotvoe» | 

view 

«stereotvpe» 

«stereo type» 

55stereptype» 
Currency 

Figure 24: Mapping the PofEAA metamodel into the UML metamodel 

104 



4.3.3 Stereotypes of the PofEAA Profile 

As can be seen in Figure 24, in "PofEAA UML Profile," we have four groups of stereotypes: 

package-based, class-based, operation-based, and attribute-based. The first group, package-

based stereotypes, contains 11 stereotypes. One stereotype named «PofEAAModel» is con­

sidered for the whole model. It is supposed that this is the root package of the design, i.e., 

this package includes all other packages. Three stereotypes are defined corresponding to the 

three main layers: «presentation», «domain», and «dataSource». Two stereotypes are de­

fined for the sub-layers of the presentation layer: «controller» and «view». Five stereotypes, 

«service», «distributed», «concurrency», «sessionState», and «base» are considered for the 

supporting layers. Therefore, we have defined 11 stereotypes that extend the meta-class 

"Package" of the UML metamodel. Figure 25 shows the packages in our profile. 

PofEAAProfile 

PofEAAModel 

«stereotvpe» 

presentation 

« stereotype» 

controller 
«stereotvpe» 

view 

«stereotvpe» 

base 
«slereotvoe» 

distributed 

«slereotvpe» 

service 

«stereotype» 

domain 

«stereotype» 

concurrency 

«stereotvpe» 

datasource 

«stereotvpe» 

sessionstate 

Figure 25: The Packages in the PofEAA UML Profile 

The second group, class-based stereotypes, has 32 elements. There are 23 stereotypes 

that are named after the 23 selected patterns of PofEAA. As it was discussed in Chapter 3, 

we call these stereotypes the "Signs" of the patterns. For each pattern there is a unique 

"Sign" stereotype, which is considered by the PSV, as the starting point for checking the 

structure of the pattern. The remaining nine stereotypes are defined for the classes that are 

found after decomposition of compound patterns. «Command» and «ConcreteCommand» 

are defined for the Front Controller pattern. «Helper» is defined for the Template View 

pattern. «Finder» is defined for the Row Data Gateway pattern. «Table», «Row». and 

105 



«Column» are defined for the Record Set; «Assembler» is defined for the Data transfer 

Object, and «Currency» is defined to specify the type for "currency" field of the Money 

pattern. 

The third group, operation-based stereotypes, includes 15 stereotypes that extend the 

meta-class "Operation" of the UML metamodel. These stereotypes are used when there are 

mandatory operations for a pattern. Stereotypes «find», «insert», «delete», and «update», 

are required for patterns that need CRUD (Create, Read, Update, and Delete) operations. 

Stereotypes «getter» and «setter», can be used generally to specify the accessor methods of 

a class, but particularly these stereotypes along with «getBulk» and «setBulk» are defined 

for the RemoteFacade pattern. Stereotypes «doGet», «doPost», and «process» are used 

by the Controller patterns. Stereotype «transform» indicates the transformer operation in 

the Transform view pattern. Stereotypes «serialize» and «deserialize» are defined for the 

Data Transfer Object pattern. Stereotypes «lock» is defined for the Offline Concurrency 

patterns. 

The fourth group, attribute-based stereotypes, includes 5 stereotypes that extend the 

meta-class "Attribute" of the UML metamodel. Stereotype «version» is required when the 

Optimistic Offline Lock pattern is applied. Stereotypes «sessionID» is required for keeping 

the ID of each session in Session State patterns. Stereotypes «amount» and «currency» are 

defined to specify the fields of the Money pattern. The «dataTable» stereotype is used by 

the Table Module pattern to indicate the attribute which contains the name of the Data 

Base (DB) table. 

For instance, pattern Front Controller (see Figure 19) involves three classes and three 

operations. Therefore, for detecting this pattern we need six stereotypes: «FrontCon-

troller», «Command», and «ConcreteCommand» as class-based stereotypes, and «doPost», 

«doGet», and «process» as operation-based stereotypes. These stereotypes (particularly 

the first one), when applied, show the designer's intention for using the Front Controller 

pattern. Note that the Sign («FrontController») must be applied on the Handler class. 

4 .3.4 Tagged Values of t h e PofEAA Profi le 

Tagged values are used to attach additional meta-attributes to a stereotype in order to 

access information about the model, such as the context information or the configuration 

management properties. It is worth noting that a tagged value is not the same as an 

attribute of a class. In fact, a tagged value is meta-data and its value applies only to the 

related element and not to the instance. 

106 



In PofEAA profile, we have defined nine tagged values, all applicable on stereotype 

«PofEAAModel», as slots to capture information about the model, the designer, and the 

development environment. The tagged values are introduced in Table 13, which defines the 

tag, type of each tag, a multiplicity indicating how many individual values can be assigned 

to it, and alternative values for the tag. A lower bound of zero for multiplicity implies tha t 

the tagged value is optional. 

Table 13: Tagged Values for stereotype «PofEAAModel» in PofEAA UML Profile 
Tag 

ServiceLayer 
DistributedLayer 
Concurrency Layer 
SessionStateLayer 
ChanceOfConflict 
ViewBuilt 
Tool 
Complexity 
Expertise 

T y p e 

String 
String 
String 
String 
String 
String 
String 
String 
String 

Mult . 

[0 
[0 
[0 
[0 
[0 
[0 
[0 
[0 
[0 

•1] 
•1] 
•1] 
•1] 
•1] 

1—
1 

•1] 
•1] 
•1] 

Values 

Yes , No 
Yes , No 
Yes , No 
Yes , No 
Low , High 
HTML , XSLT 
Java , .Net 
Simple , Moderate, Complex 
Novice , Intermediate , Expert 

The tags "ServiceLayer," "DistributedLayer," "ConcurrencyLayer," and "SessionState­

Layer" indicate whether or not the designer decides to have the corresponding layer in 

his/her design. The values are simply "Yes" or "No" strings. 

The tag "ChanceOfConflict" determines which one of the concurrency pat terns (Opti­

mistic Offline Lock or Pessimistic Offline Lock) is appropriate for the current design. The 

value "High" means the possibility of transactional conflict in the system is high, therefore, 

the Pessimistic Offline Lock pattern is preferred. Similarly, the value "Low" means the 

Optimistic Offline Lock pat tern is more appropriate. 

The tag "ViewBuilt" specifies how the view of the presentation is built, hence, the value 

of this tag discriminates the pattern tha t is used for the View. The value "HTML" leads 

to the Template View pat tern , while the value "XSLT" (Extensible Stylesheet Language 

Transformations) encourages the usage of the Transform View pattern. 

The tag "Tool" is defined for information about the implementation environment. The 

alternative values are the name of the platform which is used for developing the system, 

e.g., "Java" or ".Net." This tag is used in constraints that check the compatibility of a 

pattern with the development tools. For instance, when the value is "Java," a stereotype 

«TableModule» in the Domain Layer will trigger a semantic error, since the Table Module 

pattern is better matched with the ".Net" platform. 

In order to check the complexity of the domain model, and then to verify which pattern 

must be applied in the Data Source Layer, we have defined a tag named "Complexity." 

107 



There are three possible values for this tag, "Simple," "Moderate," or "Complex." For 

instance, when the value is "Simple," the objects identified by the Domain Model pa t te rn 

can be integrated with an Active Record pat tern to have access to the da ta base, however, 

when the value is "Complex," the Domain Model objects must use a Data Mapper pat tern . 

The tag "Expertise" reflects the level of experience of the designer, and its value af­

fects the choice of pat terns in the Domain Layer. The values are one of the three strings: 

"Novice," "Intermediate," or "Expert." For example, for novice designers, applying the 

Domain Model pat tern is discouraged, but for expert designers it is encouraged. 

4.3.5 Constraints of the PofEAA Profile 

In addition to the stereotypes and tagged values, a UML profile may contain several con­

straints. Constraints are invariants that can be attached to every model element, including 

the stereotypes. When a constraint is defined for a stereotype, applying that stereotype on a 

model element causes the constraint to be checked. There are two approaches for specifying 

a constraint: formally using the OCL language, or informally using a natural language. It 

is obvious tha t to have automatic constraint checking, the constraints should be written in 

OCL and the tool should have support for profile (and OCL) checking. 

In Section 3.5, we discussed the pros and cons of the above two approaches. We justified 

our decision of performing a two-step procedure: first, representing the constraints using 

the formalism which is defined in Section 3.3, and second, hard coding the constraints into 

a modeling tool using a programming language. Our formalism is a grammar-like notation, 

in which, rules can be augmented with textual comments or conditions. The first step is 

already taken, since the "PofEAA Rule Set" that we defined in Section 4.2 is indeed the 

constraints of "PofEAA UML Profile." As the second step, to complete the definition of 

our profile, these constraints must be hard coded as the modules of a PLV for PofEAA. 

This is discussed in the next section. 

The equivalence of the "PofEAA Rule Set" and the constraints of "PofEAA Profile," 

requires some clarification. In the former, we divided the rules into three parts: structural , 

syntactic, and semantic, while in the latter, the constraints are typically defined for the 

stereotypes. Specifying which rules are related to which stereotype is not a difficult task. 

As a rule of thumb, we can say tha t in the "PofEAA Rule Set," each rule is related to the 

name of the pattern or layer which appears on the left-hand side of the rule. For instance, 

"Front Controller 0^> d% Template View" should be considered as a constraint for the 

stereotype « Front Controller*. 

108 



To wrap up the profile discussion, Table 14 shows some statistics about the "PofEAA 

UML Profile," and Table 15 shows some of its stereotypes along with related constraints 

and tagged values. For some of the stereotypes, the constraints are given both in natural 

language and in OCL. 

Table 14: Statistics about the PofEAA UML Profile 
Stereotypes 

63 (11 Package-based, 32 Class-based, 
15 Operation-based, 5 Attribute-based) 

Tagged Values 

9 

Cons t ra in t s 

70+ 

Table 15: Some Stereotypes of the PofEAA Profile 
Name 
Base Class 
Description 
Tagged Values 

Constraints 

Constraints in 
OCL 

Name 
Base Class 
Descript ion 
Cons t ra in ts 
Cons t ra in ts in 
OCL 

N a m e 
Base Class 
Descript ion 
Tagged Values 
Cons t ra in ts 

N a m e 
Base Class 
Description 
Const ra in ts 

N a m e 
Base Class 
Description 

Const ra in ts 

Cons t ra in ts in 
OCL 

« PofEAA Model» 
Package 
The root of the model 
ServiceLayer, DistributedLayer, ConcurrencyLayer, SessionStateLayer, Chance-
OfConflict, ViewBuilt, Tool, Complexity, Expertise 
It should have at least three sub packages corresponding to three main layers 
of PofEAA. It might have five supplementary packages, subject to designer's 
decision. 
self.ownedElement —» includes (pi , p2, p3:Package— pi .stereotype ^presen­
tation' and p2.stereotype ='domain' and p3.stereotype ='datasource') and 
self.ownedElement —> includes (p4:Package — p4.stereotype ='service' and 
self.getValue('ServiceLayer') = 'Yes')) and ... 

« presentation » 
Package 
The presentation layer package. 
It should have controller and view sub-packages. 
self.ownedElement —> includes (p:Package— stereotype='controller') and 
self.ownedElement —> includes (p:Package— stereotype='view') 

« domain* 
Package 
The domain layer package. 
complexity-
It should have patterns as the domain model of the system which are compatible 
with the context information, e.g., complexity of the domain model, the tool, and 
the expertise of the developers. 

«dataSource» 
Package 
The data source layer package. 
It should have patterns for connecting to the database which are compatible with 
the patterns in the domain model. 

«TableDataGateway» 
Class 
An object that acts as a Gateway to a database table. One instance handles all 
the rows in the table. 
It should have find, insert, delete and update operations. The return type of find 
operations should have stereotype <<recordSet». 
self.BehavioralFeatnre —> exists (o:Operat.ion — name='find') and ... 

109 



4.4 ArgoPLV: A PLV for PofEAA 

In this section, we use the UML profile defined for PofEAA in Section 4.3, to show how the 

PLP is implemented, and how four modules, PSV, PTV, PMV, and PLA, are hard coded 

into a modeling tool to build "A PLV for PofEAA." As the modeling tool, we have selected 

ArgoUML, hence, the resulted tool is called "ArgoPLV." 

4.4.1 A r g o U M L 

ArgoUML [Tig09a] is an open-source UML modeling tool. The core ideas of ArgoUML are 

the result of Jason Robbins's PhD thesis [Rob99] titled "Cognitive Support Features for 

Software Development Tools." In February 1999, ArgoUML was made into an Open Source 

project. 

ArgoUML has always been under development, and a dynamic development community 

is working on fixing the reported bugs as well as adding new features. The current version, as 

of date (March 1, 2009), is ArgoUML 0.26.2 which is more stable and has many more features 

than the original version. ArgoUML is written in Java and is available in three different 

formats: Java Web Start, installable, and source code. Current version of ArgoUML is based 

upon the NetBeans MDR [Mic09] implementation of UML metamodel which supports UML 

1.4. For OCL, ArgoUML uses Dresden OCL toolkit [The09]. ArgoUML uses the Graph 

Editing Framework [Tig09b] (GEF, not to be confused with the Eclipse Graphical Editing 

Framework (GEF)) to edit UML diagrams. We downloaded the ArgoUML 0.26.2 source 

code and built it in Eclipse 3.3 [Fou09b]. 

ArgoUML is a UML modeling tool that supports all standard UML 1.4 diagrams: Use 

Case, Class, Sequence, Collaboration, State chart, Activity, and Deployment (includes Ob­

ject and Component). There is no immediate plan to support UML 2.0 in ArgoUML. 

Besides features such as diagram editor and reverse engineering of compiled Java code, Ar­

goUML is a design critiquing system. As the creator of ArgoUML defines "A design critic 

is an intelligent user interface mechanism embedded in a design tool that analyzes a design 

in the context of decision-making and provides feedback to help the designer improve the 

design" [Rob99]. 

ArgoUML's main window has a toolbar, menu bar and four main panes: 1) Explorer, 

2) Editing, 3) ToDo, and 4) Details. Figure 26 shows a snapshot of the main window of 

ArgoUML with four main panes specified. Explorer pane shows a hierarchical view of the 

current project file. Editing pane is an editor for the selected diagram of the model, e.g., 

110 



the class diagram. ToDo pane contains the designer's ToDo List. Details pane shows the 

details of the selected object in the diagram or the selected ToDo Item from the ToDo List. 

1 ^leijui 
EBe. E « View £reae aitongfe geraaioa Ciitiqitt loote Help 

i f t | « l Ni^ I^Jgfglifc, ?»K^l, jBi» BfBlBsBJjjj 

Tifciig*:!-HSU ggj F3r -g^B? i . ^ T l t H ^ M ^ ;afg[g:;;. 
OrdefEyIyps,«EiT>* 

o-E3 Profite'ecr^gui^on 
? E*i StudentModef 

^ Class Diagram 1 
O Usa Case Diagram f 

— W w 
§ Course 

© 

Student 1 . takes 1 # 

rttclpante coiffses 

Course 

t ^ 5 J t o r t s ^4TqpoReHi | ApEgpWJjeV f ADooroetfaaron f'xPrcsCTtaiion * A Source ] ACrosfeaints f A S t e m f l ^ y ~ A Tagged Vafttes"} ACnechttst 

$ £3 Medium 
i^PtfVise Package Narru M a m 6 & e n t 

C i Add Irstance Variable! 
Q Add Operarjtms tq Stut 
Q A$d instance Variable: 
O Add Operations to Coil 

—CZ33 

A. @ j B V ; | [ g , o f cltentCBfi<sril)6tties 

•^T;; Namespace [gjstudertMOTlef 
_, J . 2^^— J SupplierDepertdenciesJ 
Jjflfldmert - • ..:..,• • •.'..•. . i 

L^abs C<eaf Ejroot Oderf* Qacfew 

Visibility 

^ publtt O packs C protect O pftvase 
OenerafealioRs: 

© SpecSilizatians: 

Asspf ia^ftn €nds: j^oartit lpants IStudentModetlafcjl 

Operations? 

Owned: Elements: 

:1Wtotefil*JCifl^iUiieMs%2piiid1K!tferifini^a1im^ . iSsftraefoWSM total 

Figure 26: ArgoUML's window has four main panes: 1) Explorer, 2) Editing, 3) ToDo, and 
4) Details. 

ArgoUML's critiquing system is based upon a conceptual critiquing process called 

ADAIR (Activate, Detect, Advise, Improve, Record) [RR98]. Simply put, ArgoUML has 

predefined agents, called critics, that are constantly investigating the current model and if 

the conditions for triggering a critic hold, the critic will generate a ToDo Item (this item is 

called a critique) in the ToDo List. A ToDo Item contains a short description of the prob­

lem, some guidelines about how to solve the problem, and if there exists, a wizard which 

helps the designer solve the problem automatically. A ToDo Item generated by a critic will 

remain in the ToDo List until the origin of the problem is vanished, either manually by the 

designer, or by following the wizards proposed by the tool. 

The critics run as asynchronous processes in parallel with the main ArgoUML tool. The 

critics are not intrusive, since the user can completely ignore them or disable one or all of 

them through the Critique menu. Critics and wizards are not, user defined, since they all 

are written in Java and are compiled as part of the tool. 

I l l 



4.4.2 ArgoPLV Architecture 

Figure 27 shows the architecture of ArgoPLV as an extension to ArgoUML. In the core 

of ArgoUML, the model is accessed via org.argouml.model.Facade, which is the facade 

object for the Model subsystem. In the Model subsystem, a set of Factories and Helpers 

are denned to allow the manipulation of the objects of the model. ArgoPLV Plugin is the 

result of several extensions to the ArgoUML architecture. 

ArgoUML 

ArgoPLV Plugin 

a 

o 

Critics 

PSV 

PTV 

PMV 

Wizards 

PLA 

Profile 

GenUtils 

Properies 

Tabs 

KnowledaeTvpes 

_&_ 
ArgoUML Core 

a Model Facade Model Factory Model helper 

o 
UML meta-model 

Figure 27: ArgoPLV Architecture 

Three PLV modules (PSV, PTV, and PMV) are packaged into ArgoUML design crit­

ics. Each of the ArgoPLV critics is implemented as a class inherited from the follow­

ing class: org.argouml.uml.cognitive.critics.CrUML. Each critic is registered with the 

class org.argouml.cognitive.Agency, then a designer thread is started to check whether 

the critic can find a problem in the current model. If a problem is found, a ToDo Item 

(critique) will be posted to the ToDo List. The fourth module (PLA), is packaged into the 

wizards. Furthermore, this module requires the user interface of ArgoUML to be extended 

by adding new Tabs to the Details Pane, and new categories of Knowledge Type to be 

112 



added to the ToDo List. The technical details on building PLV modules are explained in 

the following. 

4.4.3 P L P in A r g o P L V 

In Section 4.3, we introduced the stereotypes, the tagged values, and the constraints of 

the "PofEAA UML Profile". In this section, we explain how this profile is implemented in 

ArgoUML, to play the role of PLP in ArgoPLV. 

Defining the stereotypes and tagged values of PLP in the ArgoUML tool is not a difficult 

task, however, the support is not straightforward. One approach for defining a profile in 

ArgoUML, is to create a dummy model, then define all the required stereotypes and tagged 

values in that model, and finally, export the model to an XMI file. This file can then be 

considered as a profile, to be loaded and applied on another model. 

The constraints are not codified as part of the PLP due to the following reasons. First, 

ArgoUML does not have support for writing constraints at the metamodel level (note that 

our constraints are all at the metamodel level). Second, we have already explained (see 

Section 4.3.5) that our constraints (rules) are not completely written in OCL, instead, 

they are written using our defined formalism, enriched with class diagrams and informal 

comments written in English. Therefore, we decided to code the constraints of the PLP in 

Java inside the ArgoUML critics. 

After the profile (stereotypes and tagged values) is defined, it can be applied on a model. 

Applying a profile is recently added as a feature to ArgoUML. In the ArgoUML versions 

0.25 or higher, a new feature called "Profile Configuration" is added that allows the designer 

to load an existing profile (which is serialized in XMI) and apply it to the current model. 

By applying the profile, all the stereotypes and tagged values are available for using in the 

current model. 

Figure 28 shows a snapshot of ArgoUML where the stereotypes and the tagged values of 

"PofEAA UML Profile" are defined. In the figure, "PofEAA UML Profile" is the name of 

the model (profile). The packaging of the stereotypes is only done for the sake of aesthetic 

reasons, e.g., the stereotypes «Command», «ConcreteCommand», «FrontController», and 

«PageController» are placed inside a package named "controller" which is inside a "presen­

tation" package, which is inside a root "PofEAAModel" package. The stereotypes for the 

layers of the system are placed inside the root "PofEAAModel" package. The tagged values 

are defined for the stereotype «PofEAAModel». 

113 



^3PbEAAProfile4ArgoUML25.xmi.jJiiio Cl.issDjm.jm? ArijolJMi " 

[ H^Ef f l jT . i ^Wr Q.pate arrange Generation• C|ilii|i«! Ipols Help 

.AQ}*1 

'•&'. l a i a ,<v~ m m, 
jjPackage-ceirtrfc 

Or«fet B? type,feme 

f- G3 Profile Configuration 
t~ B l peaametamodel 
f - Q PofEAA UML Profile 

f E ] PofEMModel 
3 b- E ] base 
| *- S concurrency 
! e-Ul.dataSolirce 

e - E j distributed 
?- E i domain 

i o-Ei" operations 
! ? S3 presentation 

? E l controller 
r «» command 
!•• «» cohcreteCommand 

• «» pageController 

?•• E l view 
; «»templateView 

«» transforroView 
®- E ) service 
°~ E l sessionState 
«> base 
•« consurrency 
«» controller 
«» dataSource 
«» distributed 
«» domain 
«» PofEAWodel 

TD ChanceOfConflict 
TD Complexity 

TD ConcurrencyLayer 
TD DistributedLayer 
TD Expertise 
TD ServiceeLayer 
TD SessionStaleLayer 
TD Tool 

«» presentation 
«» service 
«» sessionState 
-«> view 

* ' H [r§]Hj nmn • • "S7 | K ; f j j i j j l .....J 

IBrv Pri JTi5l tems 

C3High 
• L"5 Medium 
C3 Los 

•« ToDo Item 

|«» Stereotype : ^ 

;Name' 

: TD 

ifrontController 

A Stereotype i A Tagged Values j Cljsi-.hissi | 

A Properties A Documentation 

Generalizations: I 

, Specializations: j 

PreStfMatiosi 

Base Class: Tcii 

I Extended Elements: 

Figure 28: Defining Stereotypes and Tagged Values of PofEAA Profile in ArgoUML 

114 



4.4.4 PSV in ArgoPLV 

In ArgoPLV, the PSV is built by hard coding the structural rules of the PofEAA PL into 

the critics. In Section 4.2.1 we called these rules "PofEAA Rule Set - Part I: Structural 

Rules." Based on the critiquing idea of ArgoUML, for each kind of problem there should 

exist a critic class. Therefore, for each one of the PofEAA patterns, we have one critic which 

verifies the structure of that pattern and detects the errors. Each critic is indeed the hard 

coding of the structural rules for the corresponding pattern. Hence, PSV is implemented 

by 23 critics (one critic per pattern). 

To see an example of how the PSV is coded into the critics, consider the structural rules 

(Criteria) of the Front Controller pattern, which is shown in Figure 20 as one sample rule 

from the "PofEAA Rule Set - Part I: Structural Rules." Based on these criteria, PSV starts 

by finding the Handler class, a class with stereotype «FrontController». Then it looks for 

two operations with stereotypes «doGet» and «doPost» in that class. The Handler class 

shall be a client of a Command class, a class with stereotype «Command». The Command 

class must be abstract and have an operation with stereotype «process». The Command 

class must also have at least one child. All children of the Command class shall be concrete 

classes with stereotype «ConcreteCommand». Each ConcreteCommand class in turn shall 

have an operation with stereotype «process». 

The critic class which verifies the structure of the Front Controller pattern is class 

CrFrontController. An excerpt (the "predicate" method) from this critic is shown in two 

parts in Figure 29 and Figure 30. The "predicate" method is the heart of each critic which 

checks the conditions to see whether or not the critic must be triggered. The whole code of 

this critic is attached in Appendix A.5.2. Each critic is a thread which is running all the 

time and investigates every object in the model. 

In line 3, by checking the current model element (called "dm"), we make sure that this 

critic deals only with the classes. The model elements are accessed via the facade object 

"org.argouml.model.ModelFacade." In line 7, we check the "Sign" of the pattern, and if it 

is not «Front-Controller», the critic returns without reporting any problem. The remaining 

lines of the code (in Figure 29 and Figure 30), check the Criteria of the pattern. This code, 

as well as other critics, uses the services of a General Utility class (GU) which is a singleton 

class for performing tasks such as finding a specific stereotype of an object, or finding a 

specific operation in a class. The Javadoc of the GU class is attached in Appendix A.5.1. 

In case of any error, i.e., reaching any of the "return PROBLEM_FOUND" statements 

in the code. PLA is invoked to give an error message to the designer, and to guide him/her 

115 



1 public boolean predicate(Object dm, Designer dsgr) { 

2 if (dm == null) return NO.PROBLEM; 

3 if (! Model.getFacadeO .isAClass(dm)) return NO_PROBLEM; 

4 Object aClass = dm; 

5 // aClass should have stereotype «FrontController», this is the sign 

6 // of pattern that is applied on the Handler class 

7 if (! GU.objectHasSte(aClass, "FrontController")) /+SIGN*/ 

8 return NO.PROBLEM; 

9 // Both doGet and doPost ops are required 

10 if (! GU.classHasSteOp(aClass,"doGet" ) ) return PROBLEM.FOUND; 

11 if (! GU.classHasSteOp(aClass,"doPost") ) return PR0BLEM_F0UND; 

12 // Check if there is a client 

13 Collection depSet = Model.getFacadeO.getClientDependencies(aClass); 

14 if ( depSet.isEmptyO ) return PR0BLEM_F0UND; 

Figure 29: Predicate Method of the CrFrontController Critic (Part 1) 

in fixing the problem. The PLA is introduced in Section 4.4.7. 

If all the structural criteria of a pattern hold, a line will be added to the PIT, and the 

detected pattern is reported to the designer. While checking the structure of a pattern, the 

pattern elements are inserted into a list named "classNames" (see lines 48, 52, and 56 in 

Figure 30). This list is indeed the PIT. 

4.4.5 P T V in ArgoPLV 

PTV in ArgoPLV is built by hard coding the syntactic rules of the PofEAA PL into the 

critics. In Section 4.2.2. two groups of syntactic rules were defined for PofEAA: 

1. Rules that check the organization of patterns: These rules are named "PofEAA Rule 

Set - Part II: Syntactic Rules (Pattern Organization)," and are represented in Fig­

ure 21. 

2. Rules that check the relationship between patterns: These rules are named "PofEAA 

Rule Set - Part III: Syntactic Rules (Pattern Relationships)," and are represented in 

Figure 22. 

In the following, we will elaborate how these two groups of rules are hard coded into the 

PTV module. 

Rules tha t Verify the Pa t te rn-Layer Relat ionships For checking the pattern orga­

nizations, two critics are written: CrLayers and CrPatterns. These critics are verified 

116 



15 // at least one of the suppliers should have the COMMAND structure 

16 // An ABSTRACT class with stereotype «Command» and one «process» 

17 // operation as well as at least one child with stereotype 

18 // «ConcreteCommand» and with one «process» operation 

19 boolean supplierFound = false; 

20 Iterator deps = depSet.iterator(); 

21 while ( deps.hasNextO ) { 

22 Object dep = deps.next(); 

23 Collection supplierSet = Model.getFacade().getSuppliers(dep) ; 

24 if ( supplierSet.isEmptyO ) continue; 

25 Iterator suppliers = supplierSet.iterator(); 

26 while ( suppliers.hasNextO && !supplierFound) { 

27 // This should be the Command class 

28 Object supplier = suppliers.next(); 

29 if ( GU.objectHasSte(supplier, "Command") ) { 

30 if (Model.getFacade().isAbstract(supplier)) { 

31 if (GU.classHasSteOp(supplier,"process")) •[ 

32 // We need at least one child which is concrete 

33 // and has process operation 

34 Collection children = Model.getFacadeO.getChildren(supplier); 

35 if ((children.isEmptyO)) return PROBLEM.FOUND; 

36 Iterator child = children.iterator0; 

37 while (child.hasNextO) { 

38 Object conCommand = child.next () ; 

39 // concrete command must be a class 

40 if (! Model.getFacadeO .isAClass(conCommand)) continue; 

41 // concrete command class must be concrete 

42 if (Model.getFacadeO .isAbstract(conCommand)) continue; 

43 if (!GU.objectHasSte(conCommand,"ConcreteCommand")) 

44 return PR0BLEM_F0UND; 

45 if (!GU.classHasSte0p(conCommand,"process")) 

46 return PROBLEM.FOUND; 

47 // Now, report the correct usage of FC pattern 

48 classNames.add(Model.getFacadeO .getName(conCommand)+ " 

49 -> Concrete Command"); 

50 > 

51 supplierFound = true; 

52 classNames. add (Model. getFacadeO .getName(supplier) + "-> Command") ; 

53 > } } } } 
54 if ( ! supplierFound ) return PR0BLEM_F0UND; 

55 PATTERN_F0UND = true; 

56 classNames.add(Model.getFacadeO .getName(aClass) + " -> Handler"); 

57 patternLayer = 

58 Model.getFacadeO .getName(Model.getFacadeO .getNamespace(aClass)) ; 

59 return N0_PR0BLEM; 

60 } 

Figure 30: Predicate Method of the C r F r o n t C o n t r o l l e r Critic (Par t 2) 

against the whole model (the package with stereotype «PofEAAModel»), since they are 

more general to be checked for a specific class. 

The first critic class, CrLayers, checks the model to see if any of the mandatory or 

supplementary layers is missing. Note that the existence of a supplementary layer is subject 

117 



to the designer's choice, by setting the corresponding Tagged Value. In terms of the PofEAA 

rules, this critic applies the the first four rules of the "PofEAA Rule Set - Part II," given 

in Figure 21. In case of any error, i.e., finding a missing layer, the PLA is called to report 

the error, and to help the designer in adding the missing layer. 

The source code of the CrLayers class is attached in Appendix A.5.3. An excerpt from 

the code is shown in Figure 31. In line 2, an Iterator is defined to traverse on all the 

elements inside the root model. In line 6, we only consider the elements that are packages. 

Line 7, using a utility method (hasStrO), looks for the "presentation" layer. Line 11, 

looks for the "service" layer. In line 18, we check for errors. The non-existence of the 

"presentation" layer, or, the non-existence of the "service" layer while the designer has 

indicated that he/she wants this layer (i.e., utility method needsServiceLayerO returns 

"true"), are considered as errors. 

Note that, if the Service Layer is found, but the designer has not requested it (i.e., utility 

method needsServiceLayerO returns "false"), this case is not considered as a syntactic 

error. This is indeed a semantic error which will be caught by the PMV module as it will 

be discussed in the next section (see Section 4.4.6). 

1 //Lines Deleted. aPackage is the root PofEAA package. 
2 Iterator innerElms = Model.getFacadeO .getOwnedElements(aPackage) .iteratorO ; 
3 while (innerElms.hasNextO) { 
4 Object elmnt = innerElms.next(); 
5 if ( elmnt != null ) { 
6 if (Model.getFacade() .isAPackage(elmnt)) -C 
7 if (GU.hasStr(elmnt, "presentation")) { 
8 presentationFound = true; 
9 prs = Model.getFacade().getName(elmnt); 
10 } 
11 else if (GU.hasStr(elmnt, "service")) { 
12 serviceFound = true; 
13 srv = Model.getFacade().getName(elmnt); 
14 } 
15 //Lines Deleted 
16 } } } 
17 //Lines Deleted 
18 if ( !presentationFound II (!serviceFound && GU.needsServiceLayerO) 
19 //Lines Deleted 
20 ) 
21 return PROBLEM,FOUND; 

Figure 31: An Excerpt from the Source Code of class CrLayers 

Remember that, the designer decides about having an optional (supplementary) layer by 

setting the value of the corresponding tagged value. For instance, if the designer intends to 

have a Service Layer in the model, he/she sets {ServiceLayer=Yes} for the root package of 

118 



the design. To access the tagged values that capture the context information, the CrLayers 

class uses the utility methods from the "GU" class. For example, one of these utility 

methods (needsServiceLayerO) that determines whether or not the designer wants the 

Service Layer in the model, is shown in Figure 32. Note that, in this code, the "pofeaaPkg" 

refers to the root package of the design. The value returned by this method depends upon 

the value of tag "ServiceLayer." If the value of the tag is "Yes," the method returns "true," 

otherwise, it returns "false." 

public s t a t i c boolean needsServiceLayerO { 
boolean found = f a l s e ; 
if (pofeaaPkg != nul l ) { 

Str ing value = 
Model .getFacadeO . getTaggedValue Value (pofeaaPkg, "ServiceLayer") ; 

i f (value.equals("Yes")) found = t r u e ; 
> 
r e tu rn found; 

} 

Figure 32: A Method from GU Class which Checks "ServiceLayer" Tagged Value 

The second critic class (CrPatterns), verifies the placement of patterns in the layers. 

In terms of the PofEAA rules, this class applies the remaining rules (rules 5 to 13) of the 

"PofEAA Rule Set - Part II," given in Figure 21. To fulfill its tasks, this class calls a utility 

method from GU (GU.patternLayerMismatch(aPackage)). In case of any error, i.e., if a 

pattern is located in a wrong layer, the PLA is called to report a syntactic problem and 

help the designer fix the problem (i.e., move the patterns to their corresponding layers). 

The source code of the CrPatterns class is attached in Appendix A.5.3. 

Rules tha t Verify the Pa t t e rn -Pa t t e rn Relat ionships For checking the relationship 

between patterns, 15 critics are implemented. Some of the critics are at the layer level, 

and some are at the pattern level. Note that, there is not a one-to-one correspondence 

between the syntactic rules in the "PofEAA Rule Set - Part III," and the written critics. 

That means, some of the rules can be combined together and be checked via a single critic. 

As an example of a syntactic critic, consider the following two rules from the "PofEAA 

Rule Set - Part III" (see Figure 22): 

Domain Model —> Active Record {C21 : Domain Structure is Simple} 

Domain Model —> Data Mapper {C23 : Domain Structure is Complex} 

119 



A critic named CrDomainModelSyn is dedicated to implement these syntactic rules. The 

critic verifies the conditional uses relationship between the Domain Model and the selected 

pattern for the Data Source Layer of the design. To do this, the critic verifies the consistency 

of the dependency between the Domain Model either to the Active Record or to the Data 

Mapper, subject to the complexity of the model. The critic applies the following criteria. 

1. A Domain Model pattern is already detected by PSV, i.e., it is in PIT. 

2. The Domain Model pattern is located in the Domain Layer. 

3. (a) The Domain Model pattern uses an Active Record pattern. 

(b) The Active Record is already detected by PSV. 

(c) The Active Record pattern is located in the Data Source Layer. 

(d) The model is Simple. 

4. (a) The Domain Model pattern uses a Domain Model pattern. 

(b) The Domain Model is already detected by PSV. 

(c) The Domain Model pattern is located in the Data Source Layer. 

(d) The model is Complex. 

The criteria are checked sequentially. If any of the conditions in steps 1, 2, 3.a, 3.b, 

3.c, 4.a, 4.b, or 4.c is false, the critic ends without triggering any error. These criteria are 

checked to prevent multiple error reporting. In fact, by this strategy, we are applying a type 

of error prioritizing which is not obvious from the rules per se. For instance, if the Active 

Record pattern is not structurally correct (3.b), or if it is not located in the appropriate 

layer (3.c), then the CrDomainModelSyn critic returns without detecting any error, because 

those errors should be caught by the corresponding structural critic (CrActiveRecord) or 

the critic that checks the organization of patterns (CrLayers). If either step 3.d or step 4.d 

is violated, that means there is a syntactic error in the model and it must be caught by the 

PTV. 

Figure 33 shows an excerpt from the CrDomainModelSyn class which shows the "predi­

cate" method. The source code of this class is also attached in Appendix A.5.3. 

In line 6. by using the patternFoundO method of the GU class, we verify that the 

Domain Model pattern is already detected and recorded in the PIT. Lines 7 and 8 check 

the containing layer of the pattern and make sure that it is the Domain Layer. 

120 



1 public boolean predicate2(Object dm, Designer dsgr) { 
2 if (dm == null) return N0_PR0BLEM; 
3 if (! Model.getFacadeO .isAClass(dm)) return N0_PR0BLEM; 
4 Object dmCls = dm; 
5 if (!GU.hasStr(dmCls, "DomainModel")) return N0_PR0BLEM; 
6 if (IGU.patternFoundO'DomainModel")) return NO.PROBLEM; 
7 Object dmPkg = Model.getFacadeO .getNamespace(dmCls) ; 
8 if (!GU.hasStr(dmPkg, "domain")) return N0_PR0BLEM; 
9 Object actRec = GU.findStrSupplier(dmCls, "ActiveRecord"); 
10 if ( actRec != null ) { 
11 if ( GU.patternFoundC'ActiveRecord")) { 
12 Object dsPkg = Model.getFacade().getNamespace(actRec); 
13 if ( GU.hasStr(dsPkg, "dataSource") ) 
14 if ( ! GU.hasComplexityC'Simple") ) 
15 return PROBLEM.FOUND; 
16 } } 
17 Object dataMap = GU.findStrSupplier(dmCls, "DataMapper"); 
18 if ( dataMap != null ) { 
19 if ( GU.patternFoundC'DataMapper")) { 
20 Object dsPkg = Model.getFacadeO .getNamespace(dataMap) ; 
21 if (GU.hasStr(dsPkg, "dataSource")) 
22 if ( ! GU.hasComplexityO'Complex") ) 
23 return PR0BLEM_F0UND; 
24 } } 
25 return N0.PR0BLEM; 
26 > 

Figure 33: Predicate Method of the CrDomainModelSyn Critic 

To check the dependency between two classes (two patterns), there exist two utility 

methods in the GU class: f indStrSupplier(Object e l s , S t r ing s t r ) and f indSt rCl ien t 

(Object e l s , S t r ing s t r ) . These methods check whether there exist a supplier (or 

client) with stereotype "str" for a given class "els." Using the former method, in lines 

9 and 17, the dependency from the Domain Model pattern to either the Active Record or 

the Data Mapper is checked. 

To access the tagged value "Complexity," the CrDomainModelSyn class uses the utility 

method hasComplexityO from the GU class (see lines 14 and 22). The hasComplexityO 

method works similar to the needsServiceLayerO shown in Figure 32. The method checks 

the value of tag "Complexity," and returns "true" if the value of the tag is equal to the 

value specified by the parameter "complexity." If the complexity of the model is not the 

same as what is anticipated, the critic triggers a syntactic error in line 15 or 23. 

To summarize. PTV is implemented by two general critics which apply the "PofEAA 

Rule Set - Part II." plus 15 critics which apply the "PofEAA Rule Set - Part III." 

121 



4.4.6 PMV in ArgoPLV 

In ArgoPLV, the PMV is built by hard coding the semantic rules of the PofEAA PL into the 

critics. In Section 4.2.3 we called these rules "PofEAA Rule Set - Part IV: Semantic Rules," 

represented in Figure 23. Dealing with semantic issues in the critics is almost similar to the 

syntactic ones, because most semantic critics need to investigate the tagged values. PMV 

is implemented in ArgoPLV by 10 critics. 

As an example of a semantic critic, consider the following rule from Figure 23: 

Service Layer « C41 {C41 : Designer wants Service Layer} 

This rule implies that there is a Service Layer pattern in the model, if and only if 

the designer has shown his/her intention by setting the tagged value {ServiceLayer=Yes}. 

Therefore, the critic CrServiceLayerSem which implements this rule, must check both "if" 

and "only if" parts of the rule. 

Remember that, in one of the syntactic critics (see line 18 of Figure 31), we also verify 

that the existence of the Service Layer is reliant on the value of the tag ServiceLayer. 

However, that check was only about the layer "Service Layer," and it was equivalent to 

the "only if" part of the above rule. The CrServiceLayerSem critic checks that if there 

exists a correct application of the Service Layer pattern inside a Service Layer package, then 

the value of tag ServiceLayer is "Yes," and vice versa. The same issue happens for all the 

supplementary layers. 

One of the semantic critics which is more complicated than simply checking the tagged 

values, is CrTableDataGatewaySem, which implements the following rule from Figure 23: 

Table Data Gateway K {insertQ parameter list C update() parameter list} 

The critic must check that the list of parameters of the insert operation is a subset of 

the list of parameters of the update operation in the Table Data Gateway pattern. The 

source code of this critic is attached in Appendix A.5.4. 

4.4.7 PLA in ArgoPLV 

The PLA module of ArgoPLV is built via several extensions to the ArgoUML. First, the 

user interface of ArgoUML is extended by adding a new tab named "Detected Pa t t e rn s " 

to the Details Pane of ArgoUML (see Figure 34). This tab is used to report the detected 

patterns (and the content of PIT) to the designer. The tab is divided into two columns. 

The left column is for displaying the name (Sign) of the pattern. The right column is for 

122 



displaying the elements of the patterns. In the left column, two categories are defined for 

the detected patterns: Patterns of EAA, and Design Patterns. Obviously, detected patterns 

from the PofEAA will be placed under the first category. The second category is reserved 

for the GOF design patterns, in case there are critics for detecting them. Clicking on a 

pattern name, will display the pattern elements, their role, and the containing layer of the 

pattern in the right side of the tab. 

A j Constraints""! Stereotype ~f lagged Vaities ~\ f ties kisit"'' A TODO Item 

S3 Detected Patterns 

Q PatternsofEM 

Q Design Patterns 

Detected Patterns Piopeitfes f Oouirnwitetten PreientMron Stores 

Figure 34: Detected Patterns tab is added to Details pane of ArgoUML 

Second, the user interface of ArgoUML is extended by adding three new Knowledge 

Types in the ToDo List. The new types are PofEAA S t ructure , PofEAA Syntax, and 

PofEAA Semantics, as indicated in Figure 35. These types are created to report the 

corresponding three groups of errors. The errors in each group will be inserted as ToDo 

Items under the related Knowledge Type. 

{By Knowledge Type IT ! 2 Items 

j ! i i Designer's 
% *- E3 Correctness 
j £3 Completeness 

E3 Consistency 
|« - E3 Syntax 
1 . G3 Semantics 
] SpofEASSlrudure 
:j C~3 PofEAA syntax 
j L 3 PofEAA Semantics 
i C3 Optimization 
'i [ 3 Presentation 

C3 Organizational 
; t~3 Experiential 
I C3Tooi 

I • i •< •* ToDo Item 

Detected Patterns _ _ -•__ * _ ' ' i!L 

j r s Ths tiai i l l unt-iii <- to .k item that|. c <1e PofEnASIru'-tire iwlatei' kn<- » elyp 

Figure 35: Three PofEAA Knowledge Types are added to ArgoUML's ToDo List 

123 



critics. CrFrontCcmtroller-head = 

PofEAA: Structural Problem in using Front Controller Pattern 

critics.CrFrontController-desc = 

Class "<ocl>self</ocl>" seems to be a Front Controller Pattern. Based on 

Fowler's definition, a Front Controller is a handler class for web requests. 

Therefore, it should have two operations named doGet and doPost. 

There should be a dependency between this class and another one named 

Command with at least one operation called process. The Command class 

should be abstract and have at least one child as Concrete Command. 

To address this, select "Next>" to use the wizard, or manually add the 

requested elements to the model. Note that the problems in the children 

of Command can not be fixed by this wizard. 

Figure 36: Head and Description of the Critic Defined for the Front Controller Pa t te rn in 
the "critics.properties" File 

Third, for each error, the error message along with the guidelines on how to fix the 

problem are defined in a uniform manner, by extending the "critics.properties" file. This 

information is shown to the designer via ToDo Items. The guidelines show useful information 

tha t the designer can use in order to solve the problem. Figure 36 shows an excerpt from 

the "critics.properties" file that introduces the Head and the Description fields regarding 

the error message that will report a problem in applying the Front Controller Pa t te rn . 

Fourth, a Design Rationale named PofEAA_ra t iona le . tx t is created tha t keeps track 

of each session of the ArgoPLV by recording the actions performed by the wizards. There 

are four elements in each record of this text file: the date and the time of the decision, 

the name of the wizard class, the issue, and the rationale for solving the issue. The Design 

Rationale is very useful for people who want to work on the system in future. Table 16 

shows an excerpt from the Design Rationale file. More records are shown in Appendix A.7. 

Table 16: A Record from the Design Rationale File 
Date Time 

2009-01-13 
15:16:24 

Wizard Class 

WizTable Data-
Gateway 

Issue 

PofEAA: Structural 
Problem in using Table 
Data Gateway Pattern 

Rationale 

Table Data Gateway pattern needs 
CRUD operations. Also the return 
type of the Find operation should be a 
Record Set. This wizard has added any 
of those missing items to the model. 

Fifth, to fulfill the most, important, responsibility of PLA, the wizard classes are written 

to fix the problems automatically. Automatic repair is done in a step-by-step manner which 

needs designer's confirmation at each step. The automatic repairs are available mainly 

for the structural errors. For the syntactic or semantic errors which are caused by an 

inappropriate value of a tagged value, changing the values of the tagged values can be done 

124 



automatically, which resolves the problem. For the cases that a wizard is available for 

repairing the error, the designer can ask the wizard to be executed by pressing the "Next" 

button, after the ToDo item is displayed (see Figure 35). 

In total, 50 wizards are written as part of the PLA module for ArgoPLV. 23 wiz­

ards are corresponding to 23 structural critics; Two wizards are related to CrLayers and 

CrPatterns; 15 wizards are denned for pattern relationship critics: 10 wizards are related 

to the semantic critics. 

As an example, the wizard class WizFrontController, which fixes the structural prob­

lems of the Front Controller pattern, is shown in Appendix A.5.5. In the heart of this wizard, 

there is a method named f ixFCProblems which is shown in Figure 37. This method gets 

the Handler class of the Front Controller pattern, the package including the pattern, and 

an integer "n" (line 1). The number "n" is the index of the list "misltems" which in­

cludes the list of missing items in the pattern. Depending on the missing item (the value 

of "misltems[n]"), one of the following actions are performed. 

• Lines 3-6: If operation "doGet" or "doPost" is missing, it is added to the class. 

• Lines 8-23: If the Command class is missing, a Command structure will be added 

to the model, including the Command class, its Concrete Command class child, and 

their "process" operations. 

• Lines 24-25: If the Command class is not "abstract," it will set as an abstract class. 

• Lines 26-29: If the "process" operation of the Command class is missing, it is added 

to the class. 

• Lines 30-39: If the Command class has no Concrete Command child, a Concrete 

Command class along with the "process" operation will be added as a child to the 

Command class. 

• Lines 40-43: If the "process" operation of the Concrete Command class is missing, it 

is added to the class. 

• Lines 44-45: If the Concrete Command class is not specified with the corresponding 

stereotype, the stereotype is added to the class. 

Creating the whole structure of the Command pattern (Lines 8-23) is an example of 

the Pattern Instantiation power of the PLA. The whole Front Controller pattern can 

also be instantiated this way. i.e.. having a single class which has the Sign of the pattern 

125 



1 private void fixFCProblems(Object handCls, Object curPack, int n) { 
2 // We build doget and dopost ops in the Handler class 
3 if (misltems[n].equals("doGet")IImisItemsCn].equals("doPost")) { 
4 if ( ! GU.classHasSteOp(handCls, misltems[n])) 
5 GU.buildOpWithSte(handCls, misltems[n]+"0p", misltems[n]) ; 
6 } 
7 // We build a Command hierarchy and process operations 
8 else if ( misltems[n].equals("command") ) { 
9 if ( ! missingCommandCreated ) {. 
10 Object newComClass = 
11 Model.getCoreFactoryO .buildClass("CommandCls",curPack) ; 
12 Model.getCoreFactoryO .buildDependency(handCls.newComClass) ; 
13 GU.addSteToObject(newComClass, "Command"); 
14 // change Command class to Abstract 
15 GU.makeElementAbstract(newCbmClass); 
16 Object conComClass = 
17 Model.getCoreFactory().buildClass("ConcreteCommandCls",curPack); 
18 GU.addSteToObject(conComClass, "concretecommand"); 
19 Model.getCoreFactoryO .buildGeneralization(conComClass,newComClass) ; 
20 GU.buildOpWithSte(newComClass, "processOp","process"); 
21 GU.buildOpWithSte(conComClass, "processOp","process"); 
22 missingCommandCreated = true; 
23 } } 
24 else if( misltems[n].equals("commandAbs") ) { 
25 GU.makeElementAbstract(comCls); } 
26 else if ( misltems[n].equals("commandProcess") ) { 
27 if ( ! GU.classHasSteOp(comCls, "process")) { 
28 GU.buildOpWithSte(comCls, "processOp","process"); 
29 } } 
30 else if ( misltems[n] .equalsO'commandChildren") ) { 
31 if ( ! missingConCommandCreated ) { 
32 Object conComClass = 
33 Model .getCoreFactoryO .buildClass ("ConcreteCommand", curPack) ; 
34 GU.addSteToObject(conComClass, "concretecommand"); 
35 Model.getCoreFactoryO.buildGeneralization(conComClass,comCls) ; 
36 if ( ! GU.classHasSteOp(conComClass, "process")) 
37 GU.buildOpWithSte(conComClass, "processOp","process"); 
38 missingConCommandCreated = true; 
39 } } 
40 else if ( misltems[n] .equalsC'conCommandProcess") ) { 
41 if ( ! GU.classHasSteOp(conComClass, "process")) { 
42 GU.buildOpWithSte(conComClass, "processOp","process"); 
43 } } 
44 else if ( misltems[n] .equalsC'conCommandSte") ) 
45 GU.addSteToObject(conComClass, "ConcreteCommand"); 
46 } 

Figure 37: An Excerpt from the Front Controller Wizard 

(«FrontController») on it, causes all the above repair steps take place and an instance of 

the whole pattern is created. 

126 



4.4.8 Using ArgoPLV 

How does the ArgoPLV tool help a designer in applying the PofEAA? ArgoUML, and 

hence ArgoPLV, is an interactive modeling tool. By applying the appropriate stereotypes, 

the designer shows his/her intention in using a pattern (remember that only one stereotype 

is considered as the "sign" for identifying a pattern). Immediately after applying the sign 

stereotype, the corresponding critic is activated and verifies the structure of the pattern 

(PSV module). If any of the structural criteria fail, the critic is triggered and a ToDo 

Item (critique) will be posted in the ToDo List under PofEAA Structure. By selecting a 

ToDo Item, its description will be shown in the Details Pane, and upon the user's request, 

the wizard for the critic will be executed and the problems found in the pattern usage 

will be fixed (PLA module). The details of the correctly applied patterns (PIT content) is 

displayed in the Detected Patterns tab in the Details Pane. 

If a syntactic problem is detected in the pattern combinations (by the PTV module), 

one of the syntactic critics is triggered and a ToDo Item (critique) will be posted in the 

ToDo List under PofEAA Syntax. If any of the semantic criteria fail, e.g., an inconsis­

tency between the design with context information is caught, one of the semantic critics is 

triggered (by the PMV module), and a ToDo Item (critique) will be posted in the ToDo 

List under PofEAA Semantics. In either of the cases, the wizards might be available to 

fix the problem automatically, or the designer is guided to repair the error manually. 

In the next chapter, a real application is designed using the ArgoPLV. It is shown how 

the tool is able to help a novice designer improve his/her design. 

4.5 Discussion 

4.5.1 Summary 

This chapter aimed to show how to implement a Pattern Language Verifier (PLV), for 

an existing Pattern Language (PL), through a case study. To evaluate the idea of PLV 

and its applicability and usefulness in current modeling tools, we did experiments with the 

ArgoUML modeling tool. Using the idea of the PLV process, we defined a PLV for PofEAA 

as an integration into ArgoUML, named ArgoPLV. To make this case study simple and 

concrete, we selected 23 out of 51 patterns of PofEAA. We discussed the steps of building 

ArgoPLV as a PLV for PofEAA PL. We observed that the PLV process is able to be 

integrated in ArgoUML by writing Java code. However, hard coding the process into the 

tool is not a convenient way of tool extension and impedes the scalability of the process. 

127 



Also when a rule is not accurate, it causes ambiguity in implementation, and hence in 

detecting errors in a model. 

To summarize, the main steps in defining a PLV for a PL are: 

1. Extract the rules, or even the informal advices, of the PL that govern the structural, 

syntactic, and semantic aspects of the language. 

2. Build the Rule Set of the PL using the formalisms proposed in Chapter 3. 

3. Define a UML profile for the PL. 

(a) Build a domain model (metamodel) for the PL. Patterns are the principal con­

cepts in this domain model. 

(b) Map that domain model into the UML metamodel. 

(c) Define the stereotypes; Define the tagged values for each stereotype. 

(d) Define the constraints (inspired by the Rule Set obtained in step 2). There are 

two alternatives for the constraints: First, to interpret the Rule Set into OCL 

constraints; Second, to accept the Rule Set as the constraints. 

4. Build the PLV modules. There are two alternatives for building modules depending 

on the previous step. 

(a) For OCL constraints: PSV, PTV, and PMV modules are obtained by hand-

coding the checking of the profile constraints. The PLA module must be imple­

mented separately! 

(b) For accepting Rule Set as the constraints: All modules of PLV are implemented 

as a modeling tool, or as extension to an existing modeling tool. 

4.5.2 Issues R e l a t e d t o Bu i ld ing a PLV 

Issues for Step 1 An important issue is to classify the rules into appropriate groups. 

Some advices/rules can be considered both syntactic and semantic, e.g., advice A09 from 

PofEAA (see Appendix A.2) is: "A domain layer that uses only Transaction Script isn't 

complex enough to warrant a separate [Service] layer." This advice is twofold: it can be 

interpreted as a syntactic rule that a uses relationship exists from a Service Layer pattern 

to a Transaction Script pattern or it can be interpreted as a semantic rule that existence 

of Service Layer is inconsistent with setting {Complexity=Low}. 

128 



Issues for Step 2 Some advices are semantic rules that need linguistic checks, e.g., 

consider advice A21 (see Appendix A.2): "With a Domain Model we build a model of our 

domain which, at least on a first approximation, is organized primarily around the nouns 

in the domain." In order to apply this advice as a semantic rule, we must verify that the 

domain objects' names are the nouns in the domain. 

Issues for Step 3 If there is no tree or graph in the language that shows pattern depen­

dencies, then deriving a domain model for it is hard. 

Issues for Step 4 For Step 4.a, we experienced using the Object Constraint Language 

Environment (OCLE) [CPC+04] for implementing some of the structural rules of the PofEAA 

[ZB07]. OCLE [Uni09a] as a UML CASE tool, offers many useful features including OCL 

support at both UML metamodel and model level, and a graphical interface for creating 

UML diagrams. 

In OCLE, Users are able to compile and run the constraints against the models. A 

Compile-time error reflects problems concerning OCL syntax. A Runtime error means that 

some of the invariants in constraints are violated. In this case, a message is displayed to 

the user and it is the user's responsibility to fix the error. 

For Step 4.b, implementation could be a laborious task. For instance, to check the 

dependency between a Handler class (as a client) and a Command class (as a supplier) in 

the Front Controller pattern (see Appendix A.3.1), we need to check all the dependencies 

that may exist from the Handler to other classes, then for each of the dependencies, we 

should find the collection of Suppliers, then for each supplier class, we should check the 

collection of stereotypes, then if at least one of the stereotypes satisfies the condition (e.g., 

is «Command»), then we make sure that we have found the Command class! 

As another environment for verifying the constraints, we have experienced working with 

Epsilon Wizard Language (EWL) (EWL is part of Epsilon Object Language (EOL)) for 

implementing the PSV [ZB07]. 

4 .5 .3 O t h e r I ssues 

Considering the PLV process, since the three verifying modules perform model independent 

tasks and need to be verified against the metamodel, their tasks is done using OCL in meta­

model level constraint files. However, due to the lack of capability for model modifications 

by OCL, there is no support for the tasks of PL A. It is up to the user to check every 

129 



invariant and, for every failed invariant, the user should fix the cause of the problem. The 

problem here is how to synchronize the PLA with other modules. Finally, the "PofEAA 

UML Profile" will provide the novice designers with great assistance on how to break the 

system into layer, how to select appropriate patterns for each layer, how to use the patterns, 

and how to maintain a good structure for their design. 

130 



Chapter 5 

ArgoPLV in Action 

This chapter shows how the ArgoPLV can be utilized as a modeling tool in a real situation. 

For this purpose, we need to consider a sample application which is going to be designed 

based upon the Patterns of Enterprise Application Architecture (PofEAA). 

Section 5.1 introduces the application: an Online Student Registration System. In Sec­

tion 5.2, we demonstrate how ArgoPLV is used as a design critiquing tool in a step-by-step 

design of the application using the patterns of PofEAA. Section 5.3 shows how the Argo­

PLV can be used to verify the application of the PofEAA Pattern Language (PL) in a given 

design model of the application. Section 5.4 discusses the validation issues. 

5.1 The Application 

We consider a simple Online Student Registration System, as our sample application. The 

system consists of students, professors, courses, and departments. Each student studies in 

one department. Only the research students (thesis-based) should have one of the professors 

as their supervisors. A student can take a course if he/she has already passed its prerequi­

sites. Each course, is offered by one department, is taught by one professor, and may have 

many prerequisites. One professor works for one department. A professors' job is to teach 

courses and supervise students. For students and professors, the personal information and 

the address is recorded in the system. Figure 38 shows the domain model of this system by 

a UML class diagram. 

The application is a web-based online registration system that allows persons (both 

students and professors) to enter or edit their personal information. Professors can select 

courses for teaching. Students can register for courses by filling in an online registration 

form. Only a research student can request a professor to be his/her supervisor, which needs 

131 



Person 

firstName 
lastName 
birthDate 
gender 

J. 

0..* 1 

occupants address 

Address 

streetNo 
street 
city 
postalCode 
province 
country 

Student 

stID 
GPA 
thesisOption 

supejvisedStudents 

participant! 1-

0..* 

1 

student department 

Department 

1..* 

Grade 

grade 

1 

imployer 

1 

offers 

0..* 

Course 

courseNo 
credits 
title 

1..* 

0..* 

0..* prereqbites 

superviso 

1..* 

employed 

[teacher 

Figure 38: Domain Model of the Online Student Registration System 

the professor's confirmation. 

The system must provide a variety of appropriate reports for each user. Students can get 

the following reports: list of offered courses and their prerequisites, list of courses taken, up-

to-date transcript and GPA (Grade Point Average). For professors, list of offered courses, 

list of registered students, and list of supervised students are important reports. 

The system must be secured by providing each user a user-id and password to enter 

the system. The users are able to change their passwords at any time. There are different 

levels of users who can access the system, e.g., students and professors. Students are 

able to modify their personal information only. They can browse the professor and course 

information, when they decide to register for the current term. Professors have read access 

to all information regarding their students, but they can enter the grades. 

132 



The reliability, availability, and consistency of persistent data is a very important re­

quirement of the system. The system transactions must be atomic and consistent. Concur­

rency control should be performed in order to prevent loss or inconsistency of information. 

An attempt should be made to make the system available all the time. Such a system needs 

a DBMS for file management. Due to the fact that, in our PofEAA selected patterns, we 

excluded all the Object-Relational patterns, we ignore about the DB issues in the remaining 

parts of this chapter. Considering the above requirements, we select the following features 

for this case study, categorized by the user of the feature. 

1. Features that are particularly defined for the students: 

(a) Browse Courses 

(b) Register Course 

(c) Browse Professors 

(d) View Professor 

(e) Request Supervision 

(f) Calculate GPA 

2. Features that are particularly defined for the professors: 

(a) Select Course 

(b) Browse Students 

(c) Browse Supervised Students 

(d) Browse Supervision Requests 

(e) View Supervision Request 

(f) Accept Supervision Request 

(g) Enter Grades 

3. Features that are common for both students and professors: 

(a) Login and Logout the System 

(b) Edit Personal Information 

(c) Browse Courses 

(d) View Course 

(e) Check Course Prerequisites 

(f) Send List of Courses to Other University 

133 



5.2 Using ArgoPLV in Stepwise Design of the Application 

In this section, we show how the ArgoPLV tool helps a designer build a model for the Online 

Student Registration System based upon the patterns of the PofEAA PL. We walk through 

a scenario and discuss the step-by-step design of the system. For each step, a screen shot 

(maybe partial) of the ArgoPLV is shown. Between the steps, there are paragraphs that 

discuss the errors caught by the ArgoPLV, the guidelines given to the designer, and the 

repairs done to the model. 

Step 1: Create Model Designer creates a project named University. Inside the 

project, he/she creates a model named UniversityModel. 

Step 2: Apply Profile Designer applies the PofEAA UML profile on the model (see 

Figure 39). 

^Project Properties - * 
User 

ProfBes 
Stereotype Visualization: Textual 

Notations Available Profiles: 

Diagram Appearance 

Active Profiles: 

Java 
Critics for Good Practic.- j 
Critics for Code Genera— | 
MetaProfile ii 

C« t 
UML 1.4 

leDefiiiMon^ 

itlnload .{ L Load profile from file... 

L g . j £ancel | j |ppfjr JI Reset To Default 

Figure 39: Applying PofEAA UML Profile on the Model 

Step 3: Explore Stereotypes Designer explores the applicable stereotypes and tagged 

values of the PofEAA profile in the Explorer Pane (see Figure 40). 

Step 4: Specify PofEAA Model and Context Information The designer indicates 

his/her intention of designing a system based upon the patterns of the PofEAA by set­

ting the stereotype «PofEAAModel» on a root package. Then, the designer specifies the 

context information, by setting the tagged values for the stereotype «PofEAAModel» (see 

Figure 41). 

Syntactic Problem Detection Regarding the Organization of Patterns Pattern 

Language Syntactic Verifier (PTV) detects syntactic problems in the model, due to the fact 

134 



WS University2.zargo- Class Diagram 1 - Argi 

File Edit View Create, Afra»^.Geaieri 

SM. 
* » 

ra Package-centric 

Order By Type, Name 

j ?-• G3 Profile Configuration 

M ? E3 MIMl iS l l iWoB 
«- Q peaametamodel 

f Q PofEAA U¥L Profile 

f E l PofEMModel 

f E l base 

«» RecordSet 

«» LayerSupertype 

«» Money 

«» Table 

«» Column 

«» Row 

«» Currency 

«» Gateway 

«» Mapper 

t E l dataSource 

«» RowDataGateway 

«» TableDataGateway 

«» DataMapper 

«» Finder 

t E l distributed 

!•• «» DataTransferObject 

•• «» RernoteFacade 

«» Assembler 
1 «» BulkAccessor 

f- E l domain 

: • «» TableModule 

«» DomainModel 

«» TransactionScript 

f E l operations 

«» delete 

; «» find 

: • «» getter 

«> insert 

«> setter 

«» update 

«» select 

«> getBulk 

«» process 

«» setBtilk 

«» doPost 

v j University2.zargo - Class Diagram 1 - Argolft 

File £dit View Create Arrange Generator 

ll_E. 

-?- ss " S S j @M [%-7i\ 

[Package-centric 

Order By Type, Name 

? «» 

— «» doGet 
~ «> serialize 
'• «» deserialize 

S presentation 
f i l controller 

i «» PageController 
I- «» Command 
h «» ConcreteCommand 
' «> FrontController 

t B view 
I «» TemplateView 
( « TransfbrmView 
; «» Helper 

B sessionState 
(- «» ClierrtSessionState 
i - <» ServerSessionState 

H i service 
! « ServiceLayer 

S i concurrency 
I «» OptimisticOfflineLock 
: «» PessimisticOfflineLock 

PofEMModel 
TO Tool 
TO Expertise 
TO Complexity 
TO ConcurrencyLayer 
TO ChanceOfConflici 
TO DislributedLayer 
TO ServiceLayer 
TO SessionStateLayer 
TO ViewBuilt 
presentation 
controller 
view 
service 
domain 
dataSource 
distributed 
concurrency 
sessionState 
base 

Figure 40: Exploring Stereotypes and Tagged Values of PofEAA UML Profile 

that there are missing layers (both principal and optional) in the design. Pattern Language 

Advisor (PLA) reports the problem to the designer, by posting a T0D0 Item (critique) in the 

"PofEAA Syntax" category of the T0D0 List (see the T0D0 Pane, lower-left, in Figure 42). 

PLA shows the guidelines to the designer (see the Details Pane, lower-right, in Figure 42). 

135 



^ UniyersityZ^argo - Use Case Diagram 3 

File Edit View Create Arrange Generation Critique Jools Help 

afggllaijaia! 
Package centric d 

i Order By Type. Name 
En. * § : 

f- C3 Profile Configuration 
? Q untitledModel 

1 3 r lass Diagram 1 
P?[ Use Case Diagram 1 
Q Msio,«PofEAAModet>» 

'1 

<=PofEMMode» 
Main 

[ As D.auraiss 

By Knowledge Type 1 »• 

[ 3 Designer's 
» -£3 Correctness 
! fs3 Completeness 
! E3 Consistency 
«- E3 Syntax 

E3 Semantics 
H3 PofEM Structure 

»-Gl3PofEM Syntax 
E3 PofEAA Semantics 
£ 3 Optimization 
C3 Presentation 
f*3 Organizational 
f£3 Experiential 

j 4 Hems" | Constraints f A Stereotype [" ATagged Values' f Oiectitest r-tToDoBem j 

Detected Patterns J A Properties y A Documentation * PresiewWotT j 'saur ia - ;^ 

ITaf get: Package (Main)) "TO | a j 

[Complexity 

Tag 
iChariceOfConflict :Low 

;Complei_ 
IConcurre.ncyLayer 
[bistributedLayer 

!Yes 
iYes 

Expertise JExpert 
ServiceLayer 
SessJonSlateLayer iNo 

iViewBuii! 
[Java 

"ksLTl 

Figure 41: Setting the Stereotype and Tagged Values of the Main Package 

\S Univ««ty2.zat-go - Class Diagram 1 - Argot^-fl, 
File fciiit View* Create Arrange Generation Critique Tools Hetp 

': * «V - ID H H * Q Q © X 9 F ': 
f" PacKacje-ccntrrc 

: Outer By Type, Name 

- C J Profile Configuration 
Q UnivsisiryModel 

[|D Class Diagram 1 
ffl Use Case Diagram 1 
Q Main **PofErVtfrfpdel>* 

[By Knowledge Tyj«? 

^^M>y 

£ 0 = 

Q S i t I-left"! 

<"PofEAAMoctel>;> 

< _ J 

| C3 Designer s 
|^C3Coristtnes< 
! C3 Completeness 
j O Consistency 
j - Q Syntax 
( C3 Semantics 
j C3Pe!TiMStruc!u!e 
|? QPeiEMSynta* 
j Q'PcfEAA: Syntactic Problem.-
\ d Pt:F.A<\ Semarrtki 

C3 Oplimiration 
: L J Presentation 
I C3 Orgs national 

*• r i p s 1 < s* j -« ToDfj Sent 
Detected Pattprns * t *• <j V «- * t ** -> "-

>, Pac 33P Mdr &eerr tc be thp n<»n package of /" rapflicaton 

^ ; : R^sed on Feeler's definition, a wet-based application should consist of ai 
'dd^i 3 layers whit h represent a layered architecture, where each layer handles 

~z rre part of the application such as presentation, domain, and data source, if the! 
Ht« ctnei decide: to have optional layers such as a "Service Layer' between 
pr mentation and domain, s-uch layers also should exisiin the design 

]TP addiess slus. select "Ne.*l* 
•missing layers to th? model. 

to use the wizard, fir manually create the 

Help 

Figure 42: Reporting Syntactic Problem and Showing Guidelines to the Designer 

136 



Syntactic Problem Repair The designer asks help from the PLA (by pressing the 

"Next" button of the Details Pane). PLA shows the options (name of missing layers) to 

the designer (see the Details Pane in Figure 43), and upon his/her confirmation, adds all 

the missing layers (three principal and three supplementary) to the model (see the Explorer 

Pane, top-left, in Figure 43). Note that the elements that are added by the PLA to the 

model, are shown only in the Explorer Pane, but they are not shown in the Editor Pane 

(see the Editor Pane, top-right, in Figure 43). To see these elements in the Editor Pane, 

the designer has to drag and drop them into the Editor Pane. 

' £Re Edit View Create Arrange Generation Critique loots Kelp 
S i 

'Package-centric " i . 

yOrder By Type, Name 

h l f l Class Diagram i 

!••• ^ Use Case piagrarn 1 

k B presentaticnPkg <<presentations 

; S controtierPkg<<ccntroiier>> 
: S viewPKg « v t e w » -

; EJj domainPkg " d o m a i n * * 

P i dataSoureePkg «<daiaSource>» 

: Q basicPkg <*basie'»» 

: • E ] distrtbutedPkg <«dis-tributed>> 

K1 - i ; D i B i t i i s l 
«PofEAAModel» 

By Knowledge Type 

:•••• £ 3 Designer's 
*-- M?T Correctness 

E3 Completeness 

. E3 Consistency j 

«- £ 3 Syntax ) 

: C3 Semantics 

L^PofEAA Structure 

1 E^FofEAA Syntax 

: G3PoTTiAA Semantics 

C J Optimization 

E3 Presentation 

£ j Organizational 

E3 Experiential 

• |lflttpms f IJ- f 

"™"* * Delected Patterns 

Aaa*ttVi*Kw. f.ChecWfc* f^fctftfMww* 
f DslCWnftf*tA|t8SI- ; PsOSfijrfgiMtt'. f SO*»«*-

f1 IP ^ P eiect the laver fdackacei to be added to the models 

^ Presentation Layer (including Controller and View) 

G Domain Layer 

G Data Source Layer 

G Baste Layer 

G Distributed Layer 

:G ConcurrencyLayer 

•; All above layers 

egacKf isrti | H e l p ! 

Figure 43: Automatic Fix of Syntactic Problem by Adding all Missing Layers 

Step 5: Design the Presentation Layer (Controller Part) The designer intends to 

apply the Front Controller pattern as the controller part of the presentation layer. However, 

he/she does not know the structure of this pattern exactly. Hence, he/she creates a class 

named "Handler"' in the Controller Layer and applies the «FrontController» stereotype on 

it, and leaves the pattern instantiation to the ArgoPLV (see the Editing Pane in Figure 44). 

Structural Problem Detection Pattern Structural Verifier (PSV) detects the structural 

problems (missing elements) in the application of the Front Controller pattern. PLA reports 

the problem to the designer, by posting a critique in the "PofEAA Structure" category of 

137 



te Edit View Create Arrange Generation Clique Tools Help 

Package-centric -«r !j Kj_-t i | a i e | _ , _ ? B t j ? t » , 

Order By Type. Name 

f B UnberstfyModei 

i f j i l Class Diagram* 

| HJUse Case Diagram 1 

f- B Main «PofEAAModel» 

fr B presentationPkg <<preseht3tion>5> 

I I ; B ViewPkg «view» 

t B rcntrolletPKq «cortrol'er>» 

§ Handier ««fron^oBtfotler>» 

j - B dcmamPkg «domain» 

[ - B daiaSourcePkg <<dataSource» 

; • B bssicPkg «basic>> 

; B distnbuted.Pkg «(tistributed>s 
: B concurrencyPkg «« con currency* > 

*!< 

««presentati on»> 

presentationPkg 

«corrtroller>> 

controllerPkg 

O^OCr <FrontCont^o!ler»• 
Handler 

By Knowledge Type: "»;j 23 items 

i H 3 Designer's 

f -H3Cor re t biess 

f - 0 3 Completeness 

I OS Consistency 

?- fJ3 Syntax 

C3 Semantics 

f CSPo fEM Structure • 

(^FcEftA. ^ru^oraiPre^emjnUsu^frohjd 

[ 3 PofEAA Syrtsx I 

. £ 3 FGfEAA Semantics 
; f j3 Optimization j 

** G3 Presentation !„ 

; £ 3 Organizational j . 

• IdO^mer iea l ia l I 

«r.,„j 
. ^ K H J l at*- | 

Co r«tr i s, -» fs 

Detected .Patterns 

! 1 

1 |P 

I H) I U 6-. | 1 

" ?> U. t* M 
! « 

P >. 

)> 

.« ToDo Item 

* * i » j 

3 Class Hat dler* eeen c l o o e anF crt Controller F cittern 

r ^ i Based on Fowler's definition, a Front Controller is a handier class for web 
!=™; requests. Therefore, it should have two operations named doGet and doPosi. 

There should be a dependency between this class and another one named 
Command with at least one operation called proc ess Tha Command class 
should De abstract and have at leas! one child as Concrete Command. 

To address this, select "Next>" to use the wizard, or manuajly add the requested! 
elements to the rnodef. Note thai the problems in the children of Command can 
n.ol be fixed by this wizard. 

Laau 

Figure 44: Applying the Front Controller Pat tern 

the ToDo List (see the ToDo Pane in Figure 44). PLA shows the guidelines on how to fix 

the problem to the designer (see the Details Pane in Figure 44). 

Structural P r o b l e m Repa ir After designer asks help from the PLA, it shows the repair 

options to the designer (see the Details Pane in Figure 45). By selecting the "All above 

options," the designer gives permission to the PLA to add all the missing parts of the 

pat te rn automatically to the model. PLA adds the missing elements and their relationships 

to the Control Layer of the model. To make the added classes visible, the designer drags and 

drops them into the Editor Pane (see both Explorer Pane and Editing Pane in Figure 45). 

S t e p 6: Des ign t h e Presenta t ion Layer ( V i e w Part ) The designer selects the Tem­

plate View pat tern to format the web pages of the application. Therefore, he/she applies 

the «Template View» stereotype on a View class in the View Layer of the model. Similarly 

to what happened for the Controller part, the PSV detects the structural problems in the 

application of the Template View pattern. PLA reports the problem to the designer, and 

upon designer's request. PLA adds a Helper class as a supplier to the View class to fix the 

138 



isilyZ.zargo -Class Diagram!;t-Ar.g6l*r*fcrt 

B e i ^ ^ X J e w Create g range Generation Critique Toote Help 
1B1 

{.Bj^iBficIa^ '$ a , ^ - !aiH B'QB^Blia* 

'(fctter By Type^ Name: 

jAj i jejs _ - * ^ * ' ^ ' , ^ ^ iM^tJIf i ' .sief j 

fr- D Main «FofEAAMbdef» 
1"- E l presenlationPkd, «<presentation>* 

j- -Eaj vlewPkg <<yi8W»'» 
^ ~ © cohtroilerPkg «coritroller>J» 

;- ^.(Unnamed Generalization) 
f - . § Handler *<FrontController» 

:•••• •'f" (Unnamed Dependency 

• § dbGetOp *.*do©et>> 

• § doPostOp «doPcst*= 

? § CommandCls <>Commana»| 
S processOp "process** 1 I • 

S processOp «p rocess» I 
B dorrainPkg «d/omain» | 

Q dataSourcePkg «dataSource» 

S basicFkg g*bastc» ,•!<£ 

cortroIterPkg 

"FrohtCpntrolter**1 

Handler 

«doG et*» doGetOpO:. void 
« t foPost» doPostOpQ; void 

-M 

<<Comman*B» 

CommarxfCts 

<process*> processOpO :void 

£Oh- i: 
«Conc releCommand» 
C cntreteCommahdCIs 

«process»> processOpQ •.void! 

AJ. 

3 

UE-. :a '..;•: T 
By Knowledge Type ; 25 Hems * ' f «n*£r<fl*s*i I ^PU (fy; 

^ Designer's Jt 
*- C3 Correctness f 
«"fs3 Completeness ! > • 

£ 3 Cons'stency 5*? 

« - G 3 Syntax j j , 
JE3 Semantics ' 

* ^Po fEA f i Structure H s 

€3Po€MSyntax » ' : 

f~*1 PofEAA Semantics *•] 

Detected Patterns P <verftpfe fts:< m rrf/* 

Please select the modifications to be scpljeti on the model 

•4 ToDo Item 
Ptpseitt^itrt K inf.? 

(„' Add doGet operation to the Handler class 

Q Add doPost operation to the Handier class 

Q Add a client Command to the Handler class, and also add ConcreteCo... 

•:• All above options 

<Backh \Fetish ; 

Figure 45: Automatic Fix of Structural Problems in Applying Front Controller 

structural error automatically (see the Editor Pane inFigure 46). 

Semant ic Prob lem D e t e c t i o n Pat tern Language Semantic Verifier (PMV) detects a 

semantic problem in the design, due to the inconsistency between the context informa­

tion (the tagged value "{ViewBuilt = XSLT}") and the application of the Template View 

pattern. PLA reports the problem to the designer, by posting a critique in the "PofEAA 

Semantics" category of the ToDo List (see the upper ToDo Pane in Figure 46). PLA shows 

the guidelines to the designer (see the upper Details Pane in Figure 46). 

Semant ic Prob lem Repa ir After the designer asks help from the PLA, it shows a text 

box with a default value "HTML" for the tag "ViewBuilt'" to the designer (see the lower 

Details Pane in Figure 46). The designer accepts the value by pressing the "Finish" bu t ton 

which results in disappearing of the semantic error. 

S t e p 7: R e v i e w t h e D e t e c t e d P a t t e r n s The designer wants to know which layers 

exist and which pat terns are applied in the current model. The layers that exist in the 

current design model, and the patterns tha t are applied correctly, are presented under the 

"Patterns of EAA" category in the D e t e c t e d P a t t e r n s tab in the Details Pane. 

139 



tfta, ^ t Ype* £regte Srrange- Gen^atioft Ctihque loots Help 

E'GLLJBIS Q n n . i i r l i 1 B'?_Llr 3 
Order By Type, Name 

"sTEb Main «Ptr*EAAModet» 
? Q presBfitatipriPkg <<preser(tation>> 

taipMisiBwea' 
- *» TemplaleViBW 
@ HeiperCIs ^Helper** 

? § VieW *«TemptateViBw»>-
L 'J* (Unnamed bepentiencjfli 

H i HeiperCIs «Heipar>.sj 
f D corrtroilerPkg '^controllers 

- ^ (Unriamed^enerafEaiicn). 
«» FrontControiier 

s- § CommandCls «Cornmand>» 
»* S CcncreteCorranandCIs <<Concreti 
*- @ Handier «Fron»Coritroller» 

t *. . . J H 

J I «PolEAAMOttel» 

«nresentation>» 

— f s = 
viewPko 

<TemDJateView» 
View 

«HelDer». 
HeJperCts. 

pOTX 
I JWB8 | I»4 

ByKnbwfeflgetype 

•--Esl Designer's 
$• ̂ .Correctness 
*• 0§ Completeness 
j~ (^Consistency 
4-i^.8yreax 
i Ei3 Semantics 
i fMJ PotEAft Structure 
i OH PotEM SyntaK 
t C3 Po*EAA Semantics 

< l » 

TTP5*9' * ' 

! ; 
[ * 

*«' 

(ffi&S'®. 
' • 

. 
H 

( f^?nto^t f f?s"T^repyBe lagperf Vai«*?s T - ^ ^ % ^ - ' I L ^ J ^ ^ ^ J 
f Detected Patterns f Pra*p»i'&s- F" Oos: mentation Ki^sir j i i i^ ipf i ; Sf&ro-j 

p v Pacrage "Main" seems to be the main layer ofyour design. Discrepancies haw 
—=- found between the patterns cf the View Layer and the context information. 
Q [ "'Template view pattern neeas "VsevtBuiltHTML" but Transform View pattern 
- ^eeds-ViewBun!=XSLr. 

" jTo.address Bits; select "Next*-* to use the wizard for changing tne properties of 
Irani model via Tagged Values cf the main package, or manual? change the 
Idesign or the tagged values. 

ro 

By Knowledge Type •^j 55 Hems 

; 1 1 Designer's j y 

6- ) ^ Correctness 

* - § l l Completeness 

r B Consistency 

* - g i Syntax 

i i H Semantics 

!•••• i f ! PofEAA Structure 
: C3 PofEAA Syntax 

f C3 PofEAA Semantics 

l&S PofEAA Semantic Probtem "regarding the View 

« (,„„...„„,.. .. .. , ,£:,.,.,,,.„. ; J ! • 

-: 
.; 
; • 

7 

—' 

; 

•^ISSBems4 Constraints I Steiwrivpe j'iggrjed Vaiues f Cliscklssl T-<ToDoltem I 

X i ^ Delected Patterns X Propestr&s [^Documentation MiPserrt^&Dn Source 

Enter a value for the tag ViewBuilf in the box below. By clicking on thr 

!<BacK|!i \ Finish Help 

Figure 46: Automatic Fix of Semantic Problem in Applying Template View Pattern 

The detected layers are shown in the upper Details Pane in Figure 47. The detected 

patterns are shown in the lower Details Pane in Figure 47. Selecting a pattern from the 

list, causes the involved classes and the containing layer of the pattern to be shown in the 

right window. In Figure 47, the Front Controller pattern is selected and its information is 

shown. 

Step 8: Design the Domain Layer The designer selects the Domain Model pattern 

to structure the domain logic of the application. Therefore, he/she draws a class diagram 

corresponding to the domain model of the system in the Domain Layer of the model, and 

then applies the «DomainModel» stereotype on all the classes, e.g.. the class Student. Based 

on the criteria of this pattern, each class must have at least one attribute and one operation 

(see the Editor Pane in Figure 48). 

140 



j Fite Et» View (Jeate Arrange generator* Crittqiie Joote Herp 

jp gPackage-certrfc 

'̂Dicto By Type, Name 

Ilk*. 

f - i a Main «PoEAAMcdel» --
f &} presentatipnPfcg ""present ^ 

£ Q controtleiFkB^conlroil 
f (Utinamed Gerterait 

— «» FrorrtContreller 
$~ § Handler'«FrontCor 

7" (Unnamed Dept 
S doGetOp,<<doG 

! 1 1 L>I. 

LUU ;OS«I 
^ 

Main 

— » • = * - -r • - T !-.t !s-t;itj.'.-»tj 
n 
«Pofl£AAModet» 

presentatronPKg 

cortroIlerPkg 
<«contro!ler>* 

<*present3tion» 

. . . . . . - - _ . . --.., 1 :i> & ,i „ , , 

viewPk 

•'• 

r-HS 

JL 

Ast&jgf-sm 

[By Knowledge. Type | » i 47 Items 

!•§ Designers 
^Correctness 

$* 13 Completeness 
1'Consistency 
|| Syntax 

i-t^j Semantics 
{ iiPoCAA Structure 
fr^PofEAA Syntax 
h-di PofEMSemanrics 
I " l l Optimization 
f- £U Presentation 
f- i l l Organizational 

' Detected patteffifr f W^rtig£"~]' OgfUBttBitta&i« "^IVaseBtaftan * VK«^P 
Oonstraaftt ' Stereotsfpel fa&^Valupv f Offi^Sst 4ToDottem 

E~3 Detected Patterns 
f - ( 3 Patterns of EAA 

i D FrontControllef 
1 •- Q femplateVtew 

I *- g3 Design Patterns. 

Invoked Classes 
| presentationPkg •» Presentation Layer Package 

i f controllerPkg -> Controller Layer Package 
|.j vlewPkg-* View Layer Package 
:; domainPkg •> Domain layer Package 

j-4 tiataSourcePkg-> Data Source Layer Package 
h5 fcasicPkg •> Bas'tc LayerPackage 
| i ; distnbutedPkg -> Distributed Fackage 
\%> concurrencvPkg-* Concurrency Package 
\-i: Main -> PofEM Model 
[Related Layer: 
11 UrtversitsrModel 

' • • • • . . ' . « • " " • • • • ' . J 

By Knowledge Type h j . 

i E3 Designer's 

* • fil Correctness 

?~ S i Completeness 

i f i Consistency 

f - S Syntax 
f S s e m a n l i c s 

! i lPo fEAA Structure 

f @PofEAA Syntax 

1 6 l PofEAA Semantics 

f 133 Optimization 

*- E l Presentation 

;•• E l Organizational 

47 Hems 

A . 

:.i 

i;i 
"r 

~~ 

- r 

jr 47 Hems * ^Constraints f Stereotype j* Taaaed Values {"checklist f -« ToDo Hem I 

^T J Detected Patterns J Prctjerties ~f DogimenitaUoti f Presentation T Source 

Detected Patterns 

? E 3 Patterns of EAA 

D Layers _ 

D TemplateView 

*• E3 Design Patterns 

i;]nvotved Classes: 
ConcreteCommandCIs -> Concrete Command 
CommandCIs -» Command 
Handler-* Handler 

{Related Layer: 
controllerPkg 

Figure 47: Reporting the Detected Layers and Patterns of the Design Model 

Step 9: Design the Data Source Layer The designer decides to apply the Active 

Record pattern for accessing the Student record in the Data Source Layer. Therefore, 

he/she applies the stereotype «ActiveRecord» on a class named "StudentActiveRecord" in 

the Data Source Layer which is a supplier class for the "Student" class of the Domain Layer 

(see the Editor Pane in Figure 48). 

Syntactic Problem Detection Regarding the Relationship Between Patterns A 

syntactic error is detected by the PTV due to the problematic relationship between the 

Domain Model pattern of the Domain Layer with the Active Record pattern of the Data 

Source Layer (see the ToDo Pane in Figure 48). The problem is also affected by the Context 

Information which is set by the designer in step 4. Remember that complexity of the domain 

was set to "Complex." The PLA shows the guidelines that suggests using Data Mapper 

instead of Active Record or changing the choice for complexity (see the Details Pane in 

141 



Figure 48). 

Fas gtd Wew £reata ftnange- generation- CdU^ua loote ifelp 

^ f .Package centric laft.^lillB'B; IS! 
Order Bj/Type^ Kane 

| f S Maift««PdEA«fto(lef*> 
I e- Q pre8eMatK)nPkg<^p>eser.tationy> 

t B acm3inPkg«?dbmafn>>.-
f (Unnamed Generalization) 
•«» OomainModel 

- @ Person «*DbmainModel»> 
- O Student <«Doma]nMoaef>> 
- @ Course 

f Wl dataSourtePkg «da1a3ource» 
!• «» AtfiveRecord 
*- § StudehtActiveRecord ««AettePecordJ>> 

h E l basicPtfg ««l)ask»> 
! S distrtbuledPk§.««(lisbibiiied» 
|- © conturrericyPk8<^concoirenc^?> 
I- •> presentation 
:- «> basic 
jkja_EiiEAASJQdel_, . . .. 

fif ««Ocmfflt*)odeb*» 
Student 

dID: ird 
GPAtfcat 
the îsOptipn: char 

legist eKcouse: Course): wid 

<DqmainModel*> 
Person 

JirstNameiSJring 
- {> testNeme •:SWng 
- birthOste-: String 

Sender 

nev̂ OpQ i void 

1 i l 
|dgtaSouroePfcg. 

««AdiVeRecGrd>> 
; Studert/cttveReconf 

ff 
By Knowledge Type 

: - E 3 Cosigner's 
**(^Cerrectriess 
<** £23 Completeness 
; £ 3 Consistency 
^-!E3 Syntax 
; - ( ^ Semantics 
: E3 PolEM Structure 
f H3 PotEAft Syntax 

n 

IH9 PolEM Semantics 
£3 Optimization 

- £ 3 Presentation 

~'~™" " " ™ ' " " ^ * 

Constraints v S ^ ^ o ^ e " ] Tayijed Waya«t T ChpcKtsst '-^tBDOttem 

DetectedPatterns *^Pi&&#tm Toecgmgnt^ i i ^ *^Tpsr^sf ra f t ' s o m e J 

Q 

tlfl 

plass'Studehf seems to be the Domain Mode! pattern: Syntactic Problem found 
between the; Domain Model pattern in the Domain Lever and the patterns in the Data 
jsourceTayerwlth regards to the "corripleriy of your mode!. 

Based on Fowler's.recommendations; ifyourmode! is simple, vou better use Active 
JReccrd.in the Data.Source Layer. It your model Is complex, you better .use Data 
Rapper. 

To address.this. select"Next»" to use the VKizard tor changing the Complexity 
(Tagged Value, or. manually change the tagged value or the patterns 

K.B8£N||jexjl>j IffiEMM He&M 

Figure 48: Reporting the Syntactic Problem Regarding the Relationship between the Do­
main Model pattern and the Active Record pattern 

Step 10: Syntactic Problem Repair by Changing the Design of Data Source 

Layer The designer has two options to fix the detected syntactic problem: either to 

change the value of the tag "Complexity" from "Complex" to "Simple," or to change the 

pattern used in the Data Source Layer. He/she decides to change the pattern for accessing 

the Student record in the Data Source Layer from Active Record to Data Mapper. Hence, 

he/she removes the "StudentActiveRecord" class and adds a "StudentMapper" class with 

stereotype «DataMapper». The designer uses the automatic structural repair provided 

by the PLA to complete the structure of this pattern, which results in adding operations 

for find, insert, delete, and update to the "StudentMapper" class, as well as adding a 

dependency to a supplier class named "SupplierCls" (see Figure 49). 

Step 11: Add Patterns to the Data Source Layer The designer decides to use 

the Table Data Gateway pattern as the supplier for the Data Mapper. Therefore, he/she 

renames the "SupplierCls" of the Data Source Layer to "StudentTDG" and applies the 

stereotype «TableDataGateway» on this class. The designer leaves the details of completing 

142 



£De Edi View Create g r a n g e Generation Critique Toote tJetp 

aRie> a] i& tXa>?r.\.i&,,q,~ ^mm&mmmm 
f Vachage-csilrlc MB (MS EZEEE3EB H E ] B 

Order By lype^ Mama 

• ^§=fstudent <*DomaifiMddel>'» 
p- @ Course 

* - • § ! Person «Domaintoodel1'* 
^ Eb dataSourc^Pkg «*dataSource» 

j •«» DalaMapper 

|- i (UnnamedDependency) 
r § findOp « r i n d » 
; @ insertOp « m s e r t » 
i § defcteOo •^delete» 

§ updateOp «upds te» 
§Supp!ierCts 

; ^ basicPkq«<ba:s=c>» 

«dataSburce»» 
dataSourcePkg 

sPG= 
«DalaMaDD8f» 
StudeniMapper 

;finD>» fihdOpO: voW-. 
i'hseii» fiisertOpO: void 

«<deiete» deleteOpO v«J 
«update>> updateOpO-Vofd 

--H 
SupplterCb 

u_ 
|E^ Knowledge Type 

| j ^ Designer's 
! * - £ 3 Correctness 
| c- £ ^ CorTipteteness 

| i- (£5 Consistency 

^ E 3 Syntax 
C3 Semarbcs 

* ¥ G§ PoffAA Structure 

3& ̂ BEAft. SfettfuMl P utotem 
» Gi£)PofEM Syntax 

| o- E3 PclEAA Semantics 
I ! E3 OptimBaHon 

i *- (Z3 Presentation 
J ; - E3 Organisational 
f : E3 Experiential 
1 i f^Tr. f t t 
^ i ^ . , , ^ ^ . ^ , : , ^ , . . , ! . , , , . . . ^ ^ 

^r 53 Items. 

i 

j 

1 

\ 
m>isifts0afj3 WappeffH 

5 

I 

e= 

" • J 

53 Items ̂ ^Cansrinis "} siSeoiwa fTa88eifB5s"j'"cfi"ecKisst "1 <toboltem * 

8 i 

1 1 
1 

Please se eel the elements tote added to the class 

OftrtUQ operation 

Q tnsertO operation 

C delete&eperatkm 

OupdateQ operation 

0 supplier etosS 

* Al<*in»aetrtS 

[<;gapR}ji&xl^ JhhUj | j * U 

Figure 49: Automatic Fix of Structural Problems in Data Mapper Pattern 

the structure of the Table Data Gateway pattern to the ArgoPLV. Upon the designer's 

request, the PLA completes the structure of the "StudentTDG" class by adding find, insert, 

delete, and update operations (see Figure 50). 

Step 12: Cascaded Problem Repair adds a Pattern to the Base Layer Automatic 

instantiation of the Table Data Gateway pattern by the PLA in the previous step causes 

a new structural error (see the ToDo Pane in Figure 50). This is because, the PLA has 

also applied the syntactic rule that requires the type "Record Set" as the return type of the 

find operation in the Table Data Gateway pattern. Therefore, the return type of the added 

"find" operation is set to a type named "RecordSet." This type is added to the model as 

a class named "RecordSet" with stereotype «RecordSet» in the Base Layer of the model 

by the PLA (see the Explorer Pane in Figure 50), which then triggers a new structural 

error regarding the incorrect application of the Record Set pattern (see the ToDo Pane in 

Figure 51). 

Again, the designer asks the PLA to fix the problems in the Record Set pattern which 

causes three classes for Table, Row, and Column to be created in the Basic Layer of the 

model. Also, the PLA builds the containment associations between the Record Set, Table, 

Row, and Column classes (see Figure 51). 

143 



nie Edit View Create Arrange Generation COtique lools JJê p 

, c; «a o i«r a 3> a r 3:' » ^ - [U BJB EBiB^S G3 
^ Package-centric 

Older By Type Name 

t H i S!iifierrtMapper<'=Dat3Mar)!jer» 
f (Unnamed Dependency^ 
§ find6p«find» 

• S inseriOp«insert»> 
@ deleteOp «detete»> 
§ updateOp « t ;p f i3 te» 

? § StucentTDG ««Tabli?Dai3G3teW3y>' 
S findOp «efirid>> 
§ inseitCp =<insen>> 
§ deleteOp =*dp!ete=> 
S updateOp ««upci3te>'> 

? B bastcFkg «basic— 

§ RecordSet «Record3et=» 

\ H D s j7 '? t j - ' , - ?" W i i d Z 9 

<«find» findOpO-; void 
« inser t» insertOpO: void 
«de)ete» deletebpQ: void 
«update» updateOpO: void 

| T A^i^t^n s 

Gy Knowledge Type 

E3 Designees 
* -G3 Correctness 
*~ E3 Completeness 

fc?l Consistency 
** £3 Syntax 

C3 Semantics 
9 C3pQ*EMSlructuffc 

JSsI PaflrM. Stwctgra* P-obtem m usmg TWtie Dai* £a-
Q j Po*EM St'uct jral Problem in i r ing Record Set Pa! 

E3 PofEAA Syn'sx j 
*- E9 PoiEAA Semantics ? 
• 0 3 Optimization j 
»- (S3 Ptesentation f" 

£3 Organizational '?-

J » 56 Items *" o»?fresits , Uierefi^jte^j^Tsggad ¥s1u«s-: | OtecMst" ]%!Togo Bern' jj 

—< _. , "piaect'ed'patterfts ' Preppies f 06e«msg{t<f «m j foeg jmt^ io t t f s ^ f - g ' ; 

£3l 
a; 
Q: 

Jt Please select the elements to be added to the class: 

^ p C tndO operation 

J | f C- msertQ operation 

H J f p l * detete0j3peration 

G updateO operation 

* J U I above items 

!<Bacfcf?:*!?-iR5' 1 [fjT»Sg.j [iw£i 

; 

i 

1 

Figure 50: Automatic Fix of Structural Problems in Table Data Gateway Pattern 

Hie Edit View Create Arrange Generation Critique loots Help 

f i Package-centric 

.jOrder By type, Name 

) H < cdsteCp " p l* 

•? § StudentTDO^TsbteDstaGsteway" 
9 findOp " f i n d " 
§ tnsertCp "Insert** 

; § celateOs-^deiet*^ 

§ updateOp "update** 
? Q b a s i r P K g « ' b a ? i c " 

• — (Unnamed Assoristicrt) 

— (Unnamed Association) 

* -

1 

-> 
- . • : 

@ TabiaCis " t a b i c - " 
@ Cdiumn.Cls-:<c.G!ijmn>* 

l=J Rowe 1 s -<-tovv-> 

- D distributsdPkg «. = d:?ifibuied»» 

:8y Knowledge Type • * ! 61 Re 

f7!} L-esiGner's 

ms 

\-> C3Coneitries& 

; > C j Completeness 

C3 Copflsttrnry 

L J Semantics 
; v C3Po(EAAis)[:jv;ute 

H i Pi^fEAfV.Siiuctu-srPiobJim in using-Recbr J -»HtF* 

CT^Pt'iTiftftSriita' 
> C^Pc-fEA^Sen-.ontts 

C J Opt=rr.i/3tion 

' *! ~"; ' : -

•» H Q g _ T ^ - « _ T > _ < f Q * ^ - L
w 

"6aqc»» 
tdSirPKg | 

«RecordSet» 
RecordSet 

. , 

' ' -', 
^ 

«<tabie» 
TabteCb 

1 1 . * 

~ \ i 

- „ 

«tow» 
RowCte 

CotumnCIs 

.̂ _v̂ _̂ -_. 

; • 

"I 

•* v c *• » Kfjst r^tooonem 
Detecteti Patterns •- i ' •» " f J * 

—* 
Jg ^ Please select the elements io be added to the mecel. 

~ z %$& •'Tatrte, Row, ami Column classes 

i 
^ ^ 
» 

Bai:h j ; : ; Finish : I t a P j 

Figure 51: Automatic Fix of the Structural Problems in Record Set pattern 

144 



Step 13: Design the Distributed Layer The designer decides to use the Data Transfer 

Object pattern to provide "CourseList" which is a coarse-grained facade for accessing the 

list of courses taken by a student. The designer defines a "CourseList" class in the Concur­

rency Layer (instead of Distributed Layer) by mistake, then he/she applies the stereotype 

«DataTransferObject» on the "CourseList" class. He/she completes the structure of the 

pattern by adding all the required operations (getter, setter, serialize, and deserialize), along 

with a corresponding Assembler class (see the Editor Pane in Figure 52). 

Syntactic Problem Detection Regarding the Organization of Patterns The PTV 

triggers a syntactic error due to the misplacement of the pattern Data Transfer Object (see 

the ToDo Pane in Figure 52). The PL A shows the guidelines about the problem, and gives 

the designer option to fix the problem automatically (see the Details Pane in Figure 52). 

File £dit View Create Arrange Generation Crjtinue Toots Help 

El' a " 13 2: a ^ S F '.: tk <\ ~ jEimfBftalwutui 

: [Order By Type, Name 

*f (Unnamed Generalization) 
!• <» DomainMecfei 
s- H Person e*DomainMcdel>* 
f~ @ Student "DomairiMode!^ 
G~ g Course 

? Qd3teSourcePkg<<dstaSourc9>> 
r «» Active Ret ore! 
&- & StudentActiveRecord «Atti*'eRecord> 

B dislnhutecFrg c,&triDiitEd-'=-
* QcomurreneyPFg^concurrericY'* 

«> DatsTf3ns!erObject 
«~ § CourseList ^DataTransferObjec!-* 
«~ EJ§ ClientCls «.<AssembSei*> 

By Knowledge Type 

E5 Designer's :.' 
* - i 3 Correctness 
«* LJ3 Completeness 

G3 Consistency 
»• E3 Syntax 

J~3 Semantics P 
£3 Po'EM Structure 

? C3 PofEAA Syria? 
C3 .g$0fr\§ft&^'P rotii em i norganiisiiiortOayerir 

»~ 03 PofEAA Semantics 
C3 Optimization 
(Z3 Presentation 

A H I !B!@! I'tiiBl 
«<conoFrencv» 

concurrencyPkg 

«<DataTransferObiect» 
CourseList 

<<getter» gerlerOpO- void 
<<setter>» setterOpO: vad 
<<=ser'talize» seriafizeOpO: void 
"deser ial izer deserialiieOpO: void 

A 

<<Assembler>> j 

«dtstributed» 
distributedPkg 

z. 

a 

! 
:3 

Delected Patterns Doc^mom* 

r-v„i{Pack3pe"iVairi" seem* to tie the PotEAfl.main package of the model. 
""*;• Based on Fowlet's definition, aweb-based application should be a 
Q^ havered a;Cfi!tec!ure. with partem? in the correct layer 

Czi But son-re of The patterns detected in this model are not in the conect 
layer (package?. 

'Tosctdfess this, ".elett"Nie>t-" to use the wizard, or manuals move the 
pattern?, to the appropriate layer Note that layers should be already 
exist in the PofEAA, main package 

i Next >; Finish l Heti) 

Figure 52: Reporting the Syntactic Problem Regarding Organization of Patterns 

Syntactic P rob lem Repai r Upon designer's request, the PLA moves the Data Transfer 

Object pattern to the Distributed Layer (see the Explorer Pane in Figure 53). However, 

note that the graphical view of the model (the Editor Pane) is not automatically refreshed 

by the PLA. It is up the designer to synchronize the graphical view of the model shown in 

145 



the Editor Pane with the hierarchical view of the model shown in the Explorer Pane. 

, E£e &BL yrew Create Arrange Generation Critique loot* |tefe 

F 1 
t\r. !*..<*- I E L ^ . B si @jS ©I 

Package-centric ii'Hi ° ^ t Bl f 
Order By Type, Name 

°" E3 Profile Configuration 
*f GjUnsversityModel 
* 19 Class Diagram 2 
* t Q Mam «<PofEflAruiode!» 
1 o* Q presented on Pkg ^presentation** 

*• B doma.nPkg «domain>>-
a - Q datsSourcePkg <«dataSGurce» 

Q bas.cPkg «'bas'C» 
f H*3 dtstributetiPkg «<distriou1etl>> 

^ S concurrencypkg ^concurrency^ 
: «> OataTransferObject 

• *• § Clientele «Assembler>> 
|- «» piesentatton 
I «» basic 

-h 

• «;< concurrence* 
jccncurrencyPkg 

f W -
«DataTrans ferObfect»> 

CourseUst 

«ge t te r» getterOpQ-" void 
<setier» setterOpO: w>fd 

««seriaHze» seriaBzeOpO" y«d 
«deserialize>» deseriaiizeOpO: void 

TIT 

|«<Assembler>» I 

«distribuled» 

distributed Pfcg 

="3 •-l-a&Bisai'gm-

|ByKnoviteil8eTvpe i rHBI tems '. f laweiivaitiss ^ChscMia fi^iTripibileni | 

Detected Patterns \ pMnwrties T 
^ v r presejristicm 

Please select the following item, if you wish rr.e to re-arrangi 

:•} Organize the PofEAA Model 

Help 

i .••• §U Designer's 
% ^(^Correctness 
I *• E^ Completeness 
a ; E 3 Consistency 
| 0- £3 Syntax 
| -(^Semantics 
: C3PO!E<W Structure ' 

? C3 Pof£A» Syntax ' 
B J PofePfc %niaetit Proetem In otganizaiJon <laye,-ff 

°- E3 PorEAA Semantics 
.̂  £3 Optimization i— 

i « ! ... i i . , • . . . , . . ' i n 

Figure 53: Automatic Reorganization of Patterns into the Layers 

Step 14: Design the Concurrency Layer For preventing any conflict between the 

transactions that manipulate the Address class, the designer decides to apply the Op­

timistic Offline Lock pattern. This is an appropriate choice due to the fact that the 

possibility of conflicts is presumed to be low: Remember the setting of tagged value 

{ChanceOfConfiict=Low} in step 4. The designer defines a class named "AddrcssLock" 

with stereotype «OptimisticOfflincLock» in the Concurrency Layer. He/she completes the 

structure of the pattern by adding the required "version" attribute to the "AddressLock" 

class (see the Editor Pane in Figure 54). 

Step 15: Review the Design Model and the Applied Patterns The designer re­

views the current state of the design of the system which has no structural, syntactic, or 

semantic errors, from the ArgoPLV point of view (see the Editor Pane in Figure 55). Also, 

the designer reviews the list of patterns applied so far in the design (see the Details Pane 

in Figure 55). 

1-16 



, FQB Etfct Wew Create Arrange Generation Crjthjue loots Help 

:f» * i * |®iB B'ffliB'B-Bl 
Package-centre 

Oidei By Type>»3me 

RowCIs <<imt»* 
irjbuledPkg "distributed** 

SCourseUsl^DataTransferObji 
ClientCts *<Msefhb(e'r>> 
' t ; (Unnamed.Dependeh.ci() 
T' (Unnamed.Depentiejicy) 

conturrehcvPRg «concurrency» 

- @ version ««veisiofi>' 
presentation 
basic 
PotEAAMpdel 
jrnntqillftt. 

if T-7", j _ 

VH' mm IL*HQ£JI JELL LL£1 1'MO 

In 

-m 

^concurrency** 
concurrencyPkg 

raj ipTBTiisttc Offlffiebock*; 
AddressLotk 

«verston>? version: irrt 

r 
DyKnOwtedgeTyiw r | & M 

1 £3 Designer's 
l ^ C S Correctness 
j •• C3 Completeness 
J E3 Consistency 
i*-C3 Syntax 
3 C3 Semantics 
? E3 PofEAA Structure 
| E3PolEM Syntax 
! C3 PofEM Semantics 

£3 Optimization 
I »* i*ji Presentation 
i - {21 Organizational 

AConstraints ~j A Stereotype v A TaggedVaJues ' A Checklist ) ^ToDoHem 
Detected Patterns [ iPiopotrcs j ' A PoLumcntdtion A Prestation T A Sourfce 

I {Name 

" i j i j », Client Dependencies 

AddressLock 
Namespace j ^ V o ( j e ) »<VI 4 < Supplier Dependencies: 

Modifiers 

G - C CI n *~1 Generalizations: 

Visibility 

$p... Qp... Qp... Op..-. : Specializations: 

i , : :L-

I Association Ends: i 

Operations: 

Owned Elements:-

Figure 54: Applying the Optimistic Offline Lock pattern in the Concurrency Layer 

S t e p 16: R e v i e w the D e s i g n Rat ionale The designer reviews the modifications t ha t 

are made by the PL A by reviewing the Design Rationale file. Table 17 represents some 

records extracted from the Design Rationale file regarding this design model. 

147 



^.University ,2'argo - Class Diagrarn 2W ArgdU^lK* 

j £ile Edit View Create Arrange Generation Critique tools Hel 
- • - - - - - - - • - ' - = - - - ' - • : - . . - > . . , -

"^Vl ^2*^ j S j i l l 

- Evrg-ata: at * * a'BIB S i B i 
F ^Package centric 

[Order By Type, rtame 3= 
f Q presentationPkg«<presentation>-

t Q controllerPkg "contro l ler" 
*f (Unnamed Generalization) 

6- § Handier "FrontCbntroiiep'* 
? -@ ConcreteCornmandCis «Con 

i l l * * El.CommandCIs «Command» =J 
^ B viewPkg <=yi.ew>> 

^ H View «TetnpiaieView>> 
; §M HelperCis «He!per>> 

f ©SomainPkg"doma in " 
I- f (Unnamed Generalization) 

j \- X (Unnamed Generalization) 
i — - (Unnamed Association) 

; <•- @ Student «DomainModel» 
! f- £1 Course «<DDmamModel» 

* • § Person«DornainModet» 
f § Professor"OomainModel" 

!••- H empip 
1 H newOp 

t E l dataSourcePkg <<dataSOurce» 
°~ EH'StudentMapper «OataMapper;r> 
o- @ StudentTDG "TableDataGateway 

? E l basicPkg « b a s i c " 
I —(Unnamed Association) 
; —(Unnamed Association) 
j- — (Unnamed Association) 
; § RecordSet <<Record3et*> 
I {UTableCIs " t a b l e " 

- _ » L_B..£oiuninas-^jioJumi;>> 
t r k M O , . . , v l ; , a . : ..-• f.V. 1 _ > 

<By Knowledge Type I -»• 164 Items 

£3 Designees 
*- (^.Correctness 
*=- £15 Completeness 

23 Consistency 
*• 03 Syntax 

f l l Semantics 
13 PofEAA Structure 
E3 PofEAA Syntax 
E9 PofEAA Semantics 
(23 Optimization 

«•- £3 Presentation 
(23 Organizational 
E3 Experiential 
ESTOOI 

KU am H - t ' B 
presentation Pl<g\ 

<<Dreaent3ton>> 

1 :<<cowroBef>>:. 
cofflroitertcg 

<<FpwrtCwaroBer>> 
J-fartdtef 

<<(toGet»> doGaCpQ : voM 
- - • 5 

<<Cgm>nand>> 

ComnvrxiCIs 

<<prooess>> process OpO- void 

? 
< ".Concrete ComiTOnd> > 

Co rwrete Command Cl i 

«process>> process OpQ:>xxc 

| 
veioPkg 

<<Temoj3te'v)e«>> 
Meo 

-> 

<<Helper>> 
HelperOs 

<<ctomain>-* 
domain R<g 

<<Dom3TnMtKjeJ>> 

Student -

stlDrint 
GPA 
theas Option 

regretettjcourse : Course): 

1 

I 

<<OomainModel>> 
Course 

new OpO : roM 

* 

<<DorreinModei>> 
Peison 

fotNsme '..Siring 
last Name: arintj 
birth Date: String 
flender 

newOpOrwoid 

3—| 

<<OoiTBtnMo(Jel>> 
Professor 

empID :irrt 

new OpQ: void 

«d isr r ibu ie4» 
distributed Pl«g 

« D3taTransfer0biect> > 

Course l i f t 

<<getrer>> getrerOpO-void 
«setter>> seBerOpO-void 
<<»riafee>> seriafeeOpO: void 
«deseriaJi;e>J de-xriafceOpO-void 

A 

<< Assembled > 

ClientCts 

:<coneurrenctf>> 

**»rt[#| am 

DtJSt*. 

Detected Patterns 

A Stereotype j A Tagged Values [ C'wcktrsi | ^ToOoflem I 
A Properties A Documentation A Presentation 

t 3 Detected Pattens 

• f C3 Patterns or EAA, 

D Optmistic ~>1ft reLutk 

i [ j TemplateVitw 

Q TabieDataGateway 
: Q DcmainModei 

Q Layers 

[ j DataTransferObiect 

Q DataMapper 

Q RecordSet 

Q FiontControlier 
- C3 Design Patterns 

Figure 55: The Design Model for the Application and the Applied Patterns 

148 



Table 17: Records from the Design Rationale File Associated with the Repairs 
D a t e / T i m e 

2009-04-08 
11:20:32 

2009-04-08 
11:31:45 

2009-04-08 
12:12:11 

2009-04-08 
12:39:25 

2009-04-08 
16:41:30 

2009-04-08 
16:45:28 

2009-04-08 
16:57:53 

2009-04-08 
18:34:27 

Wizard Class 

WizLayers 

WizProntControllei 

WizTemplateView 

WizViewLayerSem 

WizDataMapper 

WizTableData 
Gateway 

WizRecordSet 

WizPatterns 

Issue 

PofEAA: Syntactic Prob­
lem - Missing Layers in 
the Model 

PofEAA: Structural 
Problem in using Front 
Controller Pattern 

PofEAA: Structural 
Problem in using Tem­
plate View Pattern 

PofEAA: Semantic Prob­
lem regarding the View 
Layer of the model 

PofEAA: Structural 
Problem in using Data 
Mapper Pattern 

PofEAA: Structural 
Problem in using Table 
Data Gateway Pattern 

PofEAA: Structural 
Problem in using Record 
Set Pattern 

PofEAA: Syntactic Prob­
lem in organization (lay­
ering) of patterns 

Rationale 

A design built based upon the PofEAA 
patterns needs layers such as Pre­
sentation, Domain, and Data Source. 
Other Layers such as Service, Basic, 
Distributed, Concurrency, and Session 
State, depend upon the context infor­
mation set by the tagged values. This 
wizard has added any of those missing 
items to the model. 

The Front Controller pattern needs a 
"Handler" class with goGet and doPost 
operations as well as an Abstract Com­
mand class with a Process operation 
and at least one concrete child. This 
wizard has added any of those missing 
items to the model. 
The Template View pattern needs a 
supplier "Helper" class. This wizard 
has added any of those missing items 
to the model. 
The patterns of the View Layer should 
match with the context information, es­
pecially with the value of ViewBuilt tag. 
This wizard has changed the tag corre­
spondingly. 
The Data Mapper pattern needs CRUD 
operations as well as a supplier class. 
Also the class should be stateless, i.e., 
has no public attribute. This wizard has 
added any of those missing items to the 
class. But it is up to the designer to 
make sure that the class is stateless. 
The Table Data Gateway pattern needs 
CRUD operations. Also the return type 
of all the "find" operations should be 
Record Set. This wizard has added any 
of those missing items to the model. 
The Record Set is added if required. 
The Record Set, pattern needs aggrega­
tion association to Table. Row, and Col­
umn classes. This wizard has added any 
of those missing items to the model. 
A design built based upon the PofEAA 
patterns needs to have each pattern in 
its corresponding layer.This wizard has 
rearranged model such that each pat­
tern is placed in the appropriate layer. 

149 



5.3 Using ArgoPLV in Checking a Design Model of the Ap­

plication 

In this section, we show how the ArgoPLV tool helps a designer verify a model which is 

already built for the Online Student Registration System based upon the patterns of the 

PofEAA PL. We suppose that the model is saved in ".zargo" format which is an ArgoUML 

recognizable format. If the model is serialized in the XMI format, there is no graphical 

view for the model; However, the ArgoPLV is able to verify the model and give the errors 

as usual. Also, we suppose that the designer has utilized the stereotypes and the tagged 

values of the "PofEAA UML Profile" to specify the patterns that are applied in the model. 

Due to lack of space, the given model deals with the requirements of the system which are 

of student's interest. We show the verification process via a sequence of steps taken by the 

designer. 

Step 1: Load the Model into ArgoPLV After loading the model, the context infor­

mation can be investigated. Figure 56 shows the context information, i.e., the tagged values 

of the «PofEAA» main package. 

Target: Package {Main); TO ;; 9 

<j Taq 
iChanceOfConfltct 
iComplexity 
iConcurrencyLayer 
iDlstributeclLayer 
iExpertise 
IserviceLayer 
[SessionStateLayer 
iToo! 
jViewBuilt 

Value 
Low 
Complex' 
1Mb 
Yes 
Expert 
Yes 
No 
Java 
[XSLT 

Figure 56: The Tagged Values of the Main Package of the Model 

Figure 57 shows the class diagram of the design loaded into ArgoPLV. Note that, we 

have shown the diagram as it is appeared in the Editing Pane, hence, the other ArgoUML 

Panes are not displayed in the figure. 

150 



«PofEAAModel» 

(•presentation* 
presentabonPkg 

controllerPkg 

ftFrontControllerp 
MyWebServelet 

aprocess* processOpQ 

I 
aConcreteCommand » 

RegisterCourse 

•process!) processOp() 

a ConcreteCommand* 
Request Supervision 

aprocessa process() 

iConcreteCommandg 
CalculaleGPA 

LConCTeteCommand» 
BrowsProfe 

iprocess» processO 

tConcreteCommand* 

«process» process() 

«ConcreteCommand» 
BrowseCourse 

J process* prooess() 

viewPkg 

JlL. _^_ 
aTemplateVtew* 

ReqSupTV 

_y_ 
aTemplateViewp 
CalculateGPATV 

aTemptateViewB 

BrowseProfsTV 

« Template Viewp 

BrowseCourseTV 

_^_ 
nHetoer* 

X-
« Helper* 

dalaSourcePkg 

- ^ 
'DomainModelg 

Person 

firstName 
tastName 
birthDate 
gender 

Person() 

<find» find!) 
iinseft» inserl() 
iupdale» update!) 

£ ->t 

Address 

streetNo 
street 
city 
postalCode 
province 
country 

Address!) 

<DomainMQdei» 
Student 

stID 
GPA 
thesisOption 

supewsedStudents 

<DomainModel» 

Grade() 

"A" 

^ 

«DomainModel» 
Department 

-^>JDepartment() 

supervisqr 

0..* 

<DomainModet» 

courseNo 
credits 
title 

- ->JCourseO 

pourses 
prerequisites 

AddressMapper 

*fmd» fmd{) 
insert* insert!) 
<delete» delete(> 
<update« update(} 

«DataMapper» 
GradeMapper 

afmd» findO 
•insert* insert!) 
(deletes delete!) 
iupdates updatef) 

.fmd» find() 
•inserts insert!) 
<delete» delete!) 
iupdates update() 

«find» find() 
«insert» insert() 
«deiete» delete!) 
«updates update!) 

« con currency » 
concurrencyPkg 

« PessimisticOfflineLock* 
AddressLock 

«locko lockOp() 

«ODtimislicOHIineLock» 
AddressLock 

aversions ver 

aDataTransferObiects 
CourseLrsI 

«settera getList() 
« setter* setListj) 
«serializen toXML() 
«deserialize» readXMLQ 

- £ , 
«A5semb.ler».. 

CourseAssembler 

Figure 57: A Design Model for Online Student Registration System using PofEAA Patterns 

151 



Step 2: Check the Structural Problems of the Model Several structural errors are 

detected by the PSV and reported by the PLA. In the following, we elaborate on the errors 

and their causes. See Figure 57 while reviewing the list of errors. 

1. Structural problem in using the Front Controller pattern: The causes of this problem 

are: 

(a) missing the "doGet" and "doPost" operations in the Handler class ("MyWeb-

Servelet"), 

(b) having a non-abstract Command class ("CommandCls"), and 

(c) missing the "process" operation in one of the Concrete Command classes ("Cal-

culateGPA"). 

2. Structural problem in using the Template View pattern: The cause of this problem is 

missing the Helper class for one of the Template View classes ("BrowseProfsTV"). 

3. Structural problem in using the Domain Model pattern: The cause of this problem is 

that one of the Domain Model classes ("Professor") has no operation. 

4. Structural problem in using the Data Mapper pattern: The cause of this problem is 

missing the "delete" operation in one of the Data Mapper classes ("PersonMapper'). 

S tep 3: Fix the S t ruc tura l Problems The designer asks the PLA to fix the structural 

problems automatically. Therefore the following repairs, corresponding to the above errors, 

are applied to the model. 

1. (a) A "doGetOp" operation and a "doPostOp" operation are added to the "MyWeb-

Servelet" class. 

(b) The "Command" class is set as an abstract class. 

(c) A "processOp" operation is added to the "CalculateGPA" class. 

2. A "HelperCls" class is created as a supplier for the "BrowseProfsTV" class. 

3. A "newOp" operation is added to the "Professor" class. 

4. A "deleteOp" operation is added to the "PersonMapper" class. 

152 



Step 4: Check the syntactic Problems of the Model The following list shows the 

syntactic errors detected by the PTV and reported by the PLA. 

1. Syntactic problem in the layering of the model: The cause of this problem is the 

missing Distributed Layer in the model while the designer has shown his/her intention 

of having a Distributed Layer via the corresponding tagged value. 

2. Syntactic problem in the organization of patterns inside layers: The cause of this 

problem is that the Data Transfer Object pattern ("CourseList" class) is not located 

in its corresponding package (Distributed Layer). 

3. Syntactic problem in the Concurrency Layer: The cause of this problem is that there 

exist two conflicting patterns (two "AddressLock" classes) in the Concurrency pack­

age. 

Step 5: Fix the Syntax Problems The designer asks for help from PLA. The following 

repairs, corresponding to the above errors, are applied to the model, either manually by the 

designer or automatically by the PLA. 

1. The PLA creates a Distributed Layer ("distributedPkg" package) inside the Main 

package. 

2. The PLA moves the "CourseList" class into the Distributed Layer ("distributedPkg" 

package). 

3. The designer removes the "AddressLock" class (the class with stereotype «Pessimisti-

cOfflineLock») from the Concurrency package. 

S tep 6: Check t h e Semantic Problems The following list shows the semantic errors 

detected by the PMV in the given design. 

1. Semantic Problem regarding the View Layer: The cause of this problem is that the 

tagged value "ViewBuilt=XSLT" is in contradiction with usage of the Template View 

pattern. 

2. Semantic Problem regarding the Service Layer: The cause of this problem is that the 

designer has shown that he/she wants to have a Service Layer in his/her design by 

setting tagged value "ServiceLayer=Yes." but. there is no such layer in the model. 

153 



Step 7: Fix the Semantic Problems 

1. The designer sets tagged value "ViewBuilt=HTML" via the text box provided by the 

PLA. 

2. The designer decides not to have a Service Layer and sets tagged value "Service-

Layer=NO" via the text box provided by the PLA. 

Step 9: Final Design Figure 58 shows the package diagram of the design model after 

all the errors caught by the ArgoPLV are fixed as described in the above. 

5.4 Discussion 

5.4.1 Summary 

To show the applicability and usefulness of the ArgoPLV, it is used in building a design 

model based upon the patterns of PofEAA for a sample application: Online Student Regis­

tration System. The application is a web-based system, consisting of students, professors, 

departments and courses, that handles the requests form both students and professors re­

garding the courses and supervisions. By two different cases, it is shown that the ArgoPLV 

is useful in both applying a single pattern and connecting the patterns together. The first 

case reveals the usefulness of ArgoPLV as a critiquing system that guides the designer in 

step-by-step design of the system based on the patterns of PofEAA. This case also shows 

how the PLA can help a novice designer in pattern instantiation, pattern layering, and 

pattern weaving. The second case indicates the power of Pattern Language Verifier (PLV) 

as an offline verifying process. The designer checks an existing design model, which is saved 

in an XMI file, with the ArgoPLV. ArgoPLV informs the designer of all the structural, 

syntactic, and semantic errors in the model. 

5.4.2 Observations 

Since ArgoPLV is a critiquing system, it is more attractive to be used in an interactive 

mode (like the first case). However. ArgoPLV is not intrusive, designer can totally ignore 

it. 

It is easier for the designer to instantiate a pattern by the help of the PLA instead of 

referring the text sources to understand the correct structure of a pattern. The designers 

154 



have to know the "Sign" of the pattern they want to use, before applying it, but not its full 

structure. The tool helps him/her in building the correct structure. 

Verification of the pattern relationships, and guiding the designer in instantiating a 

pattern as a sequel of another pattern, is the structuring mechanism of the PL which is 

very helpful, especially for the novice designers. This is an important aspect of ArgoPLV, 

because only very expert designers are careful and aware about these relationships. 

Semantic correctness of the model, i.e., consistency of the model with the context in­

formation, is another useful service of the ArgoPLV that ensures the designer about the 

consistency of the model. 

Having a real time critiquing tool is similar to the idea of real time compilation, which 

exists in modern Integrated Development Environments (IDEs) such as Eclipse. 

155 



«PofEAAModel» 

presents t ionPkg 

control lerPKg 

«FrorrtControl ler» 

MyWebServe le t 

«doGet» doGetOp() 

«doPost» doPoslOp() 

flprocess* p rocessOp() 

T 
aConcre leCommandp 

RegisterCourse 

• p r o c e s s * processOp(> 

iConcre teCommands 

RequestSuperv is ion 

i p rocess* process() 

«Concre teCommand» 

CalcutateGPA 

opFDcesss processOp() 

<Concre teCommand» 

aprocess» process() 

< ConcreteCommartdD 

(process© processO 

t Cor tcre teCommanda 

BrowseCourse 

«process» process( ) 

v i ewPkg 

(Templa leViewp 

RegCourseTV 

_^ 
«Temp1ateViewB 

ReqSupTV 

_y_ 
«TemplateView» 

Calcu la leGPATV BrowsePro feTV 

Jltf_ 
i Templa te Viewy 

VtewPro fTV BrowseCourseTV 

HelperRC He lpe rRS 

J ^ _ X-
HelperVP 

Y-
HelperBC I 

I d a t a S o u r c e P k g 

-^ 
«DomainMode l» 

f i rs tName 

tastName 

bir thDate 

gender 

Person() 

PersonMapper 

«find» f ind{) 

ft inserts insert() 

« update » update f ) 

udelele» de le teOp() 

I 

«DomainMode l» 

Add ress 

streetNo 

street 

city 

pos ia lCode 

province 

country 

Address() 

(DomainModeto 

Student 

supeJ isedStudents 

<BornainMode!» 

Grade 

n data Soui 

.«.Data.Mapper».. 

AddressMapper 

•finds f ind() 

(insert» insert() 

(deletes detete{) 

<update» updateQ 

I- «PgtaMapper»_ 

Grade Mapper 

<find» f ind() 

(inserts inser1() 

• deletes de le te( ) 

•updates update t } 

-^>j Department{) 

^PJHa inMode lo 

Professor 

empID 

(DomainModei» 

Course 

courseNo 

credits 

title 

Course)) 

ourses 

__p_rfte*quisites 

n Da laMappen ; . 

DeptMappetr 

(finds f ind{) 

(inserts insertf) 

(deletes dele lef ) 

•updates updatef ) 

_ «QataMaoper» _ 

CourseMapper 

«find» f ind() 

^ inserts insert() 

<ideiete» de le te ! ) 

«update» update ! ) 

H concurrency » 

concurrency Pkg 

«Ppti.misticOff l ineLock» 

AddressLock 

ivers iono ver 

d is l r ibutedPkg 

« D ata T ra n sf e rO b i ec I». 

CourseLis t 

• setters getList() 

•setters setList() 

• serial izes toXML( ) 

• deserial izen readXMLl ) 

((Assemblers 

CourseAssemble r ! 

-K-' 

Fi gure l>c Design of Online Student Registration System - Refined by ArgoPLV 

156 



Chapter 6 

Conclusion 

6.1 Summary 

In model-driven software development approaches, software designers are interested and 

are encouraged to apply patterns in their designs in the hope of generating bet ter designs. 

A Pat tern Language (PL) is a collection of inter-related pat terns with a guiding rhythm 

tha t starts from one pa t te rn and helps the designers on how to move from one pa t te rn to 

another, such that at the end, the whole system is designed. Designing with patterns of a 

PL is not an easy task, especially for the novice designers. 

In this thesis, we argued that building a design model based upon the pat terns of a 

PL can be viewed as writing a program in a programming language. Borrowing the ideas 

from the compilers, we introduced a process named Pattern Language Verifier (PLV), and 

we elaborated that building a PLV for a given PL, requires the structural, syntactic, and 

semantic rules of the PL to be explicitly and precisely defined. 

We presented three formalisms for defining these three groups of rules. Since we limited 

our work to UML models (class diagrams and package diagrams), we utilized the UML 

Profile mechanism to ease the pattern naming and the detection of pattern elements for the 

tool, as well as eliminating the problem of Pat tern Selection from the scope of the work. 

Hence, we emphasized tha t the PLV is a profile-driven process, and to have a PLV for a 

PL, it is required that the profile for tha t PL be already defined. 

As a case stud}', we selected a subset of Pat terns of Enterprise Application Architecture 

{PofEAA) as a PL. We defined a UML profile for the selected PL. We extracted the advices 

from the PofEAA book, then we transformed those advices into the formal rules which are 

used by the PLV. We hand coded the rules (the profile constraints) into the ArgoUML 

157 



modeling tool to obtain a PLV for PofEAA, which we called it the ArgoPLV. 

To show how the ArgoPLV may help a designer in designing a system based upon 

the PofEAA, we designed a sample application, an online student registration system. We 

divided our case study into two parts. In the first part, we showed a step-by-step design 

of the application. We discussed how different kinds of errors are caught by the tool, and 

then it helps the designer in repairing errors. In the second part, we showed how the tool 

can be used in offline mode, like a compiler, to verify an existing model which is built for 

the application and to report the errors. 

6.2 Review of the Contributions 

We have made the following contributions: 

1. The PLV process (See Section 3.5). This thesis moves the state-of-the-art in the 

Pattern Language Verification to the next level by introducing the PLV process. The 

work can be considered as an extension of the well-researched idea of "automatic 

pattern detection" to a broader idea called PLV, which focuses more on verifying the 

relationship between patterns. The work presented here is an improved version of 

our previously published ideas in [ZKB08, ZBK09]. The PLV process is influenced 

by the programming language compilers, and this makes it a novel idea. PLV verifies 

the use of a PL in a UML design model. In addition to analyzing the model, PLV 

is equipped with a module, called Pattern Language Advisor (PLA), for helping the 

designer fix the problems. The PLA per se is a step forward to the Model-Driven 

Engineering (MDE) promise of automatic code generation. 

2. A formalism for representing a PL (See Section 3.3). While there exist attempts on 

formalizing the pattern relationships, none of the previous work has addressed all 

the structural, syntactic, and semantic aspects of a PL altogether. This thesis moves 

the state-of-the-art in pattern formalization techniques, because it addresses all these 

three aspects. 

3. The ArgoPLV (See Chapter 4). As a proof of concept, a PLV for the PofEAA PL is 

built. This work itself has resulted in several useful artifacts and experiences: 

(a) The PofEAA Advices (See Section 4.2). Extracting the advices from the book 

and classifying them into three groups structural, syntactic, and semantic, is a 

158 



useful source of knowledge (quick reference) for the designers who want to apply 

these patterns. 

(b) The formalized PofEAA rules (See Section 4.2). The advices are formalized using 

the formalism proposed in this thesis. These formalized rules pave the way for 

denning the constraints of the profile. Further, these rules can be used as a 

compact and quick view of the PL, useful for more advanced designers. 

(c) The PofEAA UML Profile (See Section 4.3). Many profiles have been introduced 

to the UML community. However, this is the first time that a profile is defined 

for a PL. The profile per se is a contribution of this thesis, since it can be used 

by both the designers and the researchers. 

4. An exemplar session of ArgoPLV (See Chapter 5). This example shows designing 

with patterns for an application: Online Student Registration System. This also can 

be viewed as a walkthrough on applying the PofEAA PL in designing a system. 

5. An MDE Road Map (See Section 2.1). People have discussed MDE from different 

aspect. We give our view of MDE as a road map, followed by a discussion on the arti­

facts, the transformations, the modeling tool, and the issue of "Quality in Modeling." 

6.3 Discussion 

The detailed discussion about the PLV, ArgoPLV, and the application of ArgoPLV in 

action, are already given at the end of the corresponding chapters, Chapter 3, Chapter 4, 

and Chapter 5. In the following we mention more general issues we encountered during this 

research. 

PofEAA as a PL PL, as defined by Alexander [A+77] and adapted in this thesis, is 

not a mature concept in software yet. Most of the existing pattern collections are only a 

catalog of patterns. Only a few of these collections fulfill the definition of PL. Indeed, this 

is true for the PofEAA, considering the Fowler's confession: "Certainly none of my books 

have been pattern languages" [Fow06]. Although PofEAA per se is not a PL, we selected a 

subset of its patterns, and extracted a set of coherent advices from PofEAA such that the 

result is very close to our definition of PL. 

Subset of PofEAA PofEAA is full of advices, suggestions, tradeoffs, and even story 

tellings in terms of alternative solutions for a problem. Therefore, extracting advices from 

159 



the PofEAA book, which is not too close to the standards of a PL, is not straightforward. 

An expert must do this task in order not to include inconsistent advices. Translating the 

advices into the formal rules also needs expertise, and sometimes, needs interpretations. In 

some cases, maybe the expert wants to enforce his/her idea and modify some of the pattern 

definitions. This is possible, but care must be taken to announce that the result is maybe 

a new PL. 

Profile Constraints While hard-coding the profile constraints into a modeling tool (e.g., 

ArgoUML) gives more flexibility to the programmer than what the OCL offers, it is cum­

bersome. Especially, duplicate coding is required in ArgoUML wizards to make sure that 

the criteria that have triggered the critic are still valid. 

OCL OCL is assumed to be the companion of UML for writing constraints. However, 

there are limitations reported for OCL that must be addressed, especially for supporting 

the emerging model-driven paradigms [CDGW06]. For instance, ambiguities in OCL must 

be fixed, good support for OCL in Eclipse framework must be provided, and efficiency of 

evaluating OCL constraints must be improved [MLC06]. "OCL is hard to understand and, 

as a consequence, difficult to use" [CBC05], and we believe that working with OCL is still 

not comfortable for people. The evidence is the emergence of OCL-like languages such as 

EOL [KPP06]. 

Pattern Relationships Formalizing and characterizing the relationships between pat­

terns is still an open research problem. The reason is that the patterns are not 100% static 

elements like keywords in a programming language. A pattern is a compound element 

(recall the sections of a pattern form), therefore, it is not easy to define the relationship 

between one pattern to another. 

ArgoUML Selecting ArgoUML as the platform for implementing the PLV for PofEAA 

has both pros and cons. The pros are: ArgoUML is a design critiquing system. Hence, for 

providing interactive support to the designer. ArgoUML is an appropriate tool. ArgoUML 

is an open source tool with more than 500000 downloads during last decade. ArgoUML is 

under upgrade by a team of experienced developers. The cons are: ArgoUML does not have 

powerful support for OCL, particularly, there is no support for writing OCL at meta-model 

level. ArgoUML has no determined plan for supporting UML 2.0 in future. 

160 



6.4 Limitations 

There are some deficiencies in our work, due to the originality of the idea and limited time, 

which are summarized as following. 

The PLV Process The PLV is a profile-driven process. This will limit the scope of 

the applicability of the process, since the designers have to use the profile stereotypes and 

tagged values in their designs. Further, the PLV supposes that the designer knows which 

pattern he/she decides to apply, hence, does not provide any help in pattern selection. The 

PLV does not consider the domain of the underlying PL or the domain of the system under 

design. The PLV does not have precise definition of Semantic aspects of the design which 

are verified by the Pattern Language Semantic Verifier (PMV) module. Considering the 

inconsistencies between the context information with the use of patterns is a naive approach 

to look at the semantic issues. 

The ArgoPLV Case Study The case study does not include all the patterns from 

PofEAA. Especially eliminating the Object-Relational Mapping patterns makes ArgoPLV 

a limited version rather than a tool which is usable in a real application. The extracted 

rules investigate only the static view of the design, more specifically, they only consider the 

class diagram and the package diagram. This will prevent us from detecting patterns that 

are more about the implementation techniques, e.g., the Pessimistic Offline Lock pattern, 

effectively. In designing a system, there are several points to start, while the syntactic rules 

defined for ArgoPLV select only one point as the start pattern. This is a limitation for the 

designer. 

The Application Design Case Study Testing ArgoPLV with a small application (on­

line student registration system) is not. sufficient to validate the tool. The system is not 

complicated enough to show the problem of selecting a pattern amongst a number of alter­

natives. The test is performed by builder of the ArgoPLV tool, hence, it does not exactly 

resemble a case in the real-world. 

6.5 Comparison to Related Work 

In this section we compare the PLV (and ArgoPLV) with the related work which are intro­

duced in Chapter 2. 

161 



Pattern Enforcing Compiler (PEC) The most related work to PLV is the PEC [LSV05] 

(See Section 2.5.2). PEC uses a naming convention for easing the detection of class features, 

and uses interfaces as markers for showing the developer's desire for applying a pattern. 

This is similar to the usage of stereotypes in the PLV. PEC uses Javadoc to document pat­

tern usages, while ArgoPLV creates a Design Rationale. PEC is written for Java language, 

while ArgoPLV checks UML design models. PEC investigates only individual patterns; It 

does not consider PL issues. PEC shows only "pass" or "fail" message to the developer; 

There is no advisory system. PEC deals only with GOF design patterns, however, it is 

extensible, i.e., the user can define new patterns without requiring any new syntax for the 

Java language. 

Systematic pattern selection using pattern language grammars and design space 

analysis This work [Zdu07], is also very close to our work (See Section 2.5.3). Indeed, 

we see our work has been recognized by Zdun as his future work. In his conclusion, Zdun 

says: "We envision further application areas for the approach; for instance, the pattern 

language grammars and design spaces can potentially be used as an input for model-driven 

tools" [Zdu07]. Zdun's work deals with architectural patterns as well as GOF design pat­

terns. The main difference between the PLV and Zdun's work is that his work is not, a 

verifying approach; it is a pattern selection mechanism. Also Zdun's work does not ad­

dress the models directly. The overlap of our work with Zdun's work is that both use the 

grammar idea to formalize the relationship between patterns. However, Zdun annotates 

the grammar with the design qualities. The advantage of the Zdun's work is that it ad­

dresses inter-collection issues. That means, the design can be built by applying patterns 

from several PLs. Also his work considers the domain-specific design decisions. 

Pattern Detection Tools There are several works on detecting a pattern in a design 

model or source code (See Section 2.5.1). Our work differs from these work since they 

only focus on individual patterns, and do not address the relationship between patterns. 

Also most of these works fall into the category of GOF design pattern detection. Inter­

active DEsign Assistant (IDEA) [BP02] and Design Pattern Detection Using Similarity 

Scoring [TCSH06] are more closer to our work than others. The IDEA is also integrated 

into the ArgoUML. However, the IDEA is only capable to detect 11 GOF patterns. The 

advantages of IDEA is that it considers both class diagram and collaboration diagram. The 

latter work is unable to detect four GOF patterns. However, the methodology is general 

and can be applied for any pattern collection. 

162 



Model Inconsistency Detection Tools Rule-Based Inconsistency Detection Engine 

(RIDE) [LEM02] (See Section 2.1.5) is close to our work from the viewpoint that it aims 

to find and repair the inconsistencies in the UML models . The model under investigation 

must first be converted to a production system representation. Then, RIDE uses JESS to 

execute production rules. The advantage of RIDE is that it is general and extensible; it is 

not limited to the pattern misuses. 

6.6 Future Work 

There are several paths to extend and improve the work presented in this thesis. Gener­

alizing the idea of PLV and the experiences gained in this work towards a framework for 

"Pattern Language Verification" would result in a valuable contribution to patterns and 

PLs. 

The PLV process can also be enriched with the idea of systematic pattern selection 

presented by Zdun [Zdu07]. The PLV idea should be broaden to cover the inter-collection 

pattern applications, e.g., verification of the relationship between patterns from different 

PLs. Considering dynamic models, e.g., sequence diagram, in addition to the static views 

of the design is also of great help in verifying behavioral patterns. 

While people are studying (and working on) existing PLs, including pattern catalogs 

and pattern collections, working on formalism of patterns and PLs is a real need, especially, 

if we look for more help from the CASE tools. Furthermore, consolidating the different 

formalisms that are proposed for defining the rules of a PL would be a fruitful research. 

Having precise formalisms, we can investigate the possibility of automatic building of the 

PLV modules, similar to the idea of automatic scanner and parser generators (e.g., Lex & 

Yacc [LMB92]) in the compiler design. More advanced research would be adding a module 

to PLV for optimization (refactoring [Fow99]) of designs. 

The PLV process is mimicking the analysis part of a compiler. Investigating the synthesis 

(code-generation) part of a compiler, may leads to a research which consolidates the PLV 

with the MDSE approaches that promote full code generation from the UML models, such 

as xUML [MB02]. 

As simpler but more applied track for future work is to apply the PLV process (maybe 

modified version) for more PLs. and to build verifier tools that help designers in designing 

with patterns. Due to widespread usage of Eclipse, building the PLVs as Eclipse plugins has 

better chance of popularity. 

163 



Bibliography 

[A+77] Christopher Alexander et al. A Pattern Language: Towns, Buildings, Con­

struction. Oxford University Press, 1977. 

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford University 

Press, 1979. 

[Amb02] Scott Ambler. Agile Modeling: Effective Practices for eXtreme Programming 

and the Unified Process. John Wiley & Sons, first edition, 2002. 

[AN04] Jim Arlow and Ila Neustadt. Enterprise Patterns and MDA: Building Better 

Software with Archetype Patterns and UML. Addison-Wesley, 2004. 

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, 

Techniques, and Tools. Addison-Wesley, 1986. 

[B+09] Kent Beck et al. Manifesto for agile software development. http://www. 

agi lemanifes to .org/ , [July 1, 2009]. 

[BBS05] Alex Blewitt, Alan Bundy, and Ian Stark. Automatic verification of design 

patterns in Java. In David F. Redmiles et al., editors, ASE, pages 224-232. 

ACM, 2005. 

[BC09] Kent Beck and Ward Cunningham. Using pattern languages for object-

oriented programs. Technical Report No. CR-87-43, Presented at OOP-

SLA!87, Online at ht tp: / /c2.com/doc/oopsla87.html, [July 1, 2009]. 

[BCO05] Ruth Breu and Joanna Chimiak-Opoka. Towards systematic model assess­

ment. In Jacky Akoka et al.. editors, ER (Workshops), volume 3770 of Lecture 

Notes in Computer Science, pages 398-409. Springer, 2005. 

[Ber94] Steve Berczuk. Finding solutions through pattern languages. Computer. 

27(12):75-76. Dec. 1994. 

164 

http://www
http://agilemanifesto.org/
http://c2.com/doc/oopsla87.html


[Bez06] Jean Bezivin. Model driven engineering: An emerging technical space. In Ralf 

Lammel et al., editors, GTTSE, volume 4143 of Lecture Notes in Computer 

Science, pages 36-64. Springer, 2006. 

[BHS07a] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-

Oriented Software Architecture: A Pattern Language for Distributed Com­

puting, volume 4. John Wiley &; Sons, 2007. 

[BHS07b] Prank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-

Oriented Software Architecture: On Patterns and Pattern Languages, vol­

ume 5. John Wiley & Sons, 2007. 

[BIJ06] Alan W. Brown, Sridhar Iyengar, and Simon Johnston. A Rational approach 

to model-driven development. IBM Systems Journal, 45(3):463-480, Jul. 

2006. 

[BJ06] Jean Bezivin and Frederic Jouault. Using ATL for checking models. Electr. 

Notes Theor. Comput. Sci., 152:69-81, Mar. 2006. Proceedings of the Inter­

national Workshop on Graph and Model Transformation (GraMoT 2005). 

[Ble06] Alex Blewitt. HEDGEHOG: Automatic Verification of Design Patterns in 

Java. PhD thesis, University of Edinburgh, UK, 2006. 

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and 

Michael Stal. Pattern-Oriented Software Architecture: A System of Patterns, 

volume 1. John Wiley & Sons, 1996. 

[Boo09] Grady Booch. Handbook of software architecture. http://www. 

handbookofsoftwarearchitecture.com/, [July 1, 2009]. 

[BP02] Federico Bergenti and Agostino Poggi. Improving UML designs using au­

tomatic design pattern detection. In Shi-Kuo Chang, editor, Handbook of 

Software Engineering and Knowledge Engineering, volume 2, pages 771-784. 

World Scientific Publishing, 2002. 

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling 

Language User Guide. Addison-Wesley, 1999. 

165 

http://www
http://handbookofsoftwarearchitecture.com/


[CBC05] Dan Chiorean, Maria Bortes, and Dyan Corutiu. Proposals for a widespread 

use of OCL. In Thomas Baar, editor, Proceedings of the MoDELS'05 Con­

ference Workshop on Tool Support for OCL and Related Formalisms - Needs 

and Trends, Montego Bay, Jamaica, October 4, 2005, Technical Report LGL-

REPORT-2005-001, pages 68-82. EPFL, 2005. 

[CDGW06] Dan Chiorean, Birgit Demuth, Martin Gogolla, and Jos Warmer. OCL for 

(meta-)models in multiple application domains. In Thomas Kuhne, editor, 

MoDELS Workshops, volume 4364 of Lecture Notes in Computer Science, 

pages 152-158. Springer, 2006. 

[Coc06] Alistair Cockburn. Agile Software Development: The Cooperative Game. 

Addison-Wesley, second edition, 2006. 

[CPC+04] Dan Chiorean, Mihai Pasca, Adrian Carcu, Cristian Botiza, and Sorin 

Moldovan. Ensuring UML models consistency using the OCL environment. 

Electr. Notes Theor. Comput. Sci., 102:99 - 110, Nov. 2004. Proceedings of 

the Workshop, OCL 2.0 - Industry Standard or Scientific Playground? 

[Dog07] Asif Dogar. Model Driven Development for Enterprise Applications. Master's 

thesis, Concordia University, 2007. 

[DSM09] DSMForum. Domain Specific Modeling (DSM). http://www.dsmforum. 

org/ , [July 1, 2009]. 

[Egy07] Alexander Egyed. Fixing inconsistencies in UML design models. In ICSE, 

pages 292-301. IEEE Computer Society Press, 2007. 

[Fou09a] Eclipse Foundation. Eclipse Modeling Framework (EMF). http://www. 

eclipse.org/emf/. [July 1, 2009]. 

[Fou09b] Eclipse Foundation. Eclipse open source community, h t tp : / /www.ecl ipse , 

org/ , [July 1, 2009]. 

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. 

Addison-Wesley, 1999. 

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-

Wesley, first edition, 2002. 

166 

http://www.dsmf
http://www
http://eclipse.org/emf/
http://www.eclipse


[Fow03] Mart in Fowler. Patterns [software patterns]. Software, IEEE, 20(2):56-57, 

Mar. /Apr. 2003. 

[Fow05] Martin Fowler. Language workbenches and model driven architec­

ture. h t tp : / /www.mar t in fowle r . com/ar t i c l e s /mdaLanguageWorkbench . 

h tml , Jun. 2005. [July 1, 2009]. 

[Fow06] Martin Fowler. Writing software patterns, h t t p : / /www.martinf owle r . com/ 

a r t i c l e s / w r i t i n g P a t t e m s . h t m l , Aug. 2006. [July 1, 2009]. 

[FP97] Norman Fenton and Shari Lawrence Pfleeger. Software metrics: a Rigorous 

and Practical Approach. PWS Publishing Co., second edition, 1997. 

[FQL+03] Jose M. Fuentes, Victor Quintana, Juan Llorens, Gonzalo Genova, and Ruben 

Prieto-Dfaz. Errors in the UML metamodel? SIGSOFT Softw. Eng. Notes, 

28(6), Nov. 2003. 

[FW90] Daniel P. Freedman and Gerald M. Weinberg. Handbook of Walkthroughs, In­

spections, and Technical Reviews: Evaluating Programs, Projects, and Prod­

ucts. Dorset House Publishing Company, third edition, 1990. 

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design 

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 

1995. 

[GSJ00] Alain Le Guennec. Gerson Sunye, and Jean-Marc Jezequel. Precise modeling 

of design patterns. In Andy Evans et al., editors, UML, volume 1939 of 

Lecture Notes in Computer Science, pages 482-496. Springer, 2000. 

[HAZ07] Neil B. Harrison. Paris Avgeriou, and Uwe Zdun. Using pat terns to capture 

architectural decisions. IEEE Software. 24(4):38-45, Jul . /Aug. 2007. 

[HC07] Scott Henninger and Victor Correa. Software pattern communities: Current 

practices and challenges. In PLoP '01: Proceedings of the 2001 conference 

on Pattern languages of programs, 2007. 

[Hil09a] Hillside.net. Pat tern languages of programs (PLoP) conference official web 

site, h t t p : / / h i l l s i d e . n e t / p l o p / . [July 1. 2009]. 

[Hil09b] Hillside.net. Pat terns web site, h t t p : / / h i l l s i d e . n e t / , [July 1. 2009]. 

167 

http://www.martinfowler.com/articles/mdaLanguageWorkbench
http://www.martinf
http://Hillside.net
http://hillside.net/plop/
http://Hillside.net
http://hillside.net/


[IBM09a] IBM. Rational Rose. http://www-01.ibm.com/software/awdtools/ 

developer/rose/, [July 1, 2009]. 

[IBM09b] IBM. Rational Software Architect (RSA). http://www-306.ibm.com/ 

sof tware /awdtools /a rch i tec t / swarchi tec t / , [July 1, 2009]. 

[Int98] International Organization for Standardization (ISO). Information technol­

ogy - software product quality. IS09126, Part i: Quality Model Edition, 

1998. 

[JB06] Frederic Jouault and Jean Bezivin. KM3: A DSL for metamodel specification. 

In Roberto Gorrieri and Heike Wehrheim, editors, FMOODS, volume 4037 

of Lecture Notes in Computer Science, pages 171-185. Springer, 2006. 

[Ken02] Stuart Kent. Model driven engineering. In Michael J. Butler et al., editors, 

IFM, volume 2335 of Lecture Notes in Computer Science, pages 286-298. 

Springer, 2002. 

[KJ04] Michael Kircher and Prashant Jain. Pattern-Oriented Software Architecture: 

Patterns for Resource Management, volume 3. John Wiley & Sons, 2004. 

[KKL+98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and 

Moonhang Huh. FORM: A feature-oriented reuse method with domain-

specific reference architectures. Annals of Software Engineering, 5(1):143-

168, Jan. 1998. 

[Knu64] Donald E. Knuth. Backus normal form vs. Backus Naur form. Commun. 

ACM, 7(12):735-736, Dec. 1964. 

[Kob04] Cris Kobryn. UML 3.0 and the future of modeling. Software and Systems 

Modeling, 3(l):4-8, Feb. 2004. 

[KPP06] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The Epsilon object 

language (EOL). In Arend Rensink and Jos Warmer, editors, ECMDA-FA, 

volume 4066 of Lecture Notes in Computer Science, pages 128-142. Springer, 

2006. 

[KZ07] Holger Ka-inpffmcycr and Steticn Zschalcr. Finding the pattern you need: The 

design pattern intent, ontology. In Gregor Engels et al.. editors, MoDELS, 

168 

http://www-01.ibm.com/software/awdtools/
http://www-306.ibm.com/


volume 4735 of Lecture Notes in Computer Science, pages 211-225. Springer, 

2007. 

[Lab09] Sandia National Laboratories. JESS: the rule engine for the Java platform. 

http:/ /www.jessrules.com, [July 1, 2009]. 

[Lan06] Christian F. J. Lange. Improving the quality of UML models in practice. 

In ICSE '06: Proceeding of the 28th international conference on Software 

engineering, pages 993-996, New York, NY, USA, May 2006. ACM. 

[Lar05] Craig Larman. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Process. Prentice Hall, third 

edition, 2005. 

[LEM02] WenQian Liu, Steve Easterbrook, and John Mylopoulos. Rule-based detec­

tion of inconsistency in UML models. In Workshop on Consistency Problems 

in UML-Based Software Development, pages 106-123, Dresden, Germany, 

Oct. 2002. 

[Lin06] Peter Linz. An Introduction to Formal Languages and Automata. Jones and 

Bartlett, 2006. 

[LK05] Beate List and Birgit Korherr. A UML 2 profile for business process mod­

elling. In Jacky Akoka et al., editors, ER (Workshops), volume 3770 of 

Lecture Notes in Computer Science, pages 85-96. Springer, 2005. 

[LMB92] John R. Levine, Tony Mason, and Doug Brown. Lex & Yacc. O'Reilly & 

Associates, 1992. 

[LNH06] Daniel Leroux, Martin Nally, and Kenneth Hussey. Rational Software Archi­

tect: A tool for domain-specific: modeling. IBM Systems Journal. 45(3):555-

568, 2006. 

[Lov06] Howard C. Lovatt. A Pattern Enforcing Compiler (PEC) For Java. PhD 

thesis, Macquarie University, Australia, 2006. Online at h t t p s : / / p e c . d e v . 

j ava.net /nonav/ int roduct ion/ index.html . 

[LSV05] Howard C. Lovatt. Anthony M. Sloane, and Dominic R. Verity. A pattern 

enforcing compiler (PEC) for Jciva: Using the compiler. In Sven Hartmann 

169 

http://www.jessrules.com
https://pec.dev


and Markus Stumptner, editors, Second Asia-Pacific Conference on Concep­

tual Modelling (APCCM2005), volume 43 of CRPIT, pages 69-78, Newcastle, 

Australia, 2005. ACS. 

[MB02] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for 

Model-Driven Architecture. Addison-Wesley, first edition, 2002. 

[MCL04] Jeffrey K. H. Mak, Clifford S. T. Choy, and Daniel P. K. Lun. Precise mod­

eling of design patterns in UML. In ICSE '04: Proceedings of the 26th Inter­

national Conference on Software Engineering, pages 252-261, Washington, 

DC, USA, 2004. IEEE Computer Society Press. 

[MD97] Gerard Meszaros and Jim Doble. A pattern language for pattern writing. 

In Robert C. Martin, Dirk Riehle, and Frank Buschmann, editors, Pattern 

Languages of Program Design, volume 3, pages 529-574. Addison-Wesley 

(Software Patterns Series), 1997. 

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to 

develop domain-specific languages. ACM Comput. Surv., 37(4):316-344, Dec. 

2005. 

[Mic09] Sun Microsystems. Metadata Repository (MDR). h t tp : / /mdr .ne tbeans . 

org/ , [July 1, 2009]. 

[MLC06] Gergely Mezei, Tihamer Levendovszky, and Hassan Charaf. Restrictions for 

OCL constraint optimization algorithms. Electronic Communications of the 

EASST, 5:1-18, Dec. 2006. 

[MVN06] Dragos Manolescu, Markus Volter, and James Noble. Pattern Languages of 

Program Design 5. Addison-Wesley, 2006. 

[NB02] James Noble and Robert Biddle. Patterns as signs. In Boris Magnusson, 

editor, ECOOP. volume 2374 of Lecture Notes in Computer Science, pages 

368-391. Springer, 2002. 

[Nob98a] James Noble. Classifying relationships between object-oriented design pat­

terns. In Software Engineering Conference, 1998. Proceedings. 1998 Aus­

tralian, pages 98-107. Nov. 1998. 

170 

http://mdr.netbeans


ob98b] James Noble. Towards a pattern language for object oriented design. In Tech­

nology of Object-Oriented Languages, 1998. TOOLS 28. Proceedings, pages 

2-13. IEEE Computer Society Press, Nov. 1998. 

[ObjOl] Object Management Group (OMG). Unified Modeling Language (UML): 

Specification, vl .4. OMG document: formal/01-09-67, 2001. 

[Obj05a] Object Management Group (OMG). MOF 2.0/XMI mapping specification, 

v2.1. OMG document: formal/2005-09-01, 2005. 

[Obj05b] Object Management Group (OMG). Unified Modeling Language (UML): 

Infrastructure, v2.0. OMG document: formal/05-07-05, 2005. 

[Obj05c] Object Management Group (OMG). Unified Modeling Language (UML): 

Superstructure, v2.0. OMG document: formal/05-07-04, 2005. 

[Obj06a] Object Management Group (OMG). Meta Object Facility (MOF): Core 

specification, v2.0. OMG document formal/2006-01-01, 2006. 

[Obj06b] Object Management Group (OMG). Object Constraint Language (OCL): 

Specification, v2.0. OMG document: formal/06-05-01, 2006. 

[Obj09a] Object Management Group (OMG). Catalog of UML profile specifi­

cations, h t t p : / / w w w . o m g . o r g / t e c h n o l o g y / d o c u m e n t s / p r o f i l e _ c a t a l o g . 

htm, [July 1, 2009]. 

[Obj09b] Object Management Group (OMG). Model Driven Architecture (MDA). 

h t tp : / /www.omg.org/mda/ , [July 1, 2009]. 

[OOP09] OOPSLA. Object-oriented programming, systems, languages, and appli­

cations (OOPSLA) conference official web site, h t t p : / / w w w . o o p s l a . o r g / , 

[July 1, 2009]. 

[PB88] Colin Potts and Glenn Bruns. Recording the reasons for design decisions. 

In ICSE '88: Proceedings of the 10th International Conference on Software 

Engineering, pages 418-427, Los Alamitos, CA, USA, Apr. 1988. IEEE Com­

puter Society Press. 

[PK02] Risto Pohjonen and Steven Kelly. Domain-specific modeling: Improving pro­

ductivity and time to market. Dr. Dobb's Journal. Aug. 2002. 

171 

http://www.omg.org/technology/documents/profile_catalog
http://www.omg.org/mda/
http://www.oopsla.org/


[Rob99] Jason E. Robbins. Cognitive Support Features for Software Development 

Tools. PhD thesis, University of California, Irvine, 1999. 

[RR98] Jason E. Robbins and David F. Redmiles. Software architecture critics in 

the Argo design environment. Knowledge-Based Systems, 11(1):47 - 60, Sep. 

1998. 

[Rub90] Ruben Prietc-Dfaz. Domain analysis: An introduction. SIGSOFT Softw. 

Eng. Notes, 15(2):47-54, Apr. 1990. 

[Sch06] Douglas C Schmidt. Guest editor's introduction: Model-driven engineering. 

IEEE Computer, 39(2):25-31, Feb. 2006. 

[sdm09] sdmetrics.com. SD-Metrics official web site, http://www.sdmetrics.com/, 

[July 1, 2009]. 

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE Software, 

20(5): 19-25, Sep. 2003. 

[Sel06] Bran Selic. Model-driven development: Its essence and opportunities. In 

Proceedings of the Ninth IEEE International Symposium on Object and 

Component-Oriented Real-Time Distributed Computing (ISORC'06), pages 

313-319, Los Alamitos, CA, USA, 2006. IEEE Computer Society Press. 

[Sel07] Bran Selic. A systematic approach to domain-specific language design using 

UML. In Proceedings of the 10th IEEE International Symposium on Object 

and Component-Oriented Real-Time Distributed Computing (ISORC'07), 

pages 2-9, Los Alamitos, CA, USA, 2007. IEEE Computer Society Press. 

[SFJ96] Douglas C. Schmidt, Mohamed Fayad, and Ralph E. Johnson. Software 

patterns. Commun. ACM, 39(10):37-39, Oct. 1996. 

[Spi92] J. Michael Spivey. The Z Notation: A Reference Manual. International Series 

in Computer Science. Prentice Hall, second edition, 1992. 

[SSRB00] Douglas C. Schmidt, Michael Stal. Hans Rohnert, and Frank Buschmann. 

Pattern-Oriented Software Architecture: Patterns for Concurrent and Net­

worked Objects, volume 2. John Wiley & Sons. 2000. 

[SV06] Tom Stahl and Markus Volter. Model-Driven Software Development: Tech­

nology. Engineering. Management. John Wiley & Sons, 2006. 

172 

http://sdmetrics.com
http://www.sdmetrics.com/


[Sys09] SysML. Systems Modeling Language (SysML). ht tp: / /www.sysml.org/ , 

[July 1, 2009]. 

[Tai07] Toufik Taibi. Design Patterns Formalization Techniques. IGI Publishing, 

2007. 

[TCSH06] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spy-

ros T. Halkidis. Design pattern detection using similarity scoring. IEEE 

Trans. Software Eng., 32(ll):896-909, Nov. 2006. 

[The09] The Technische Universitat Dresden. Dresden OCL toolkit, h t t p : / / 

dresden-ocl .sourceforge.net / , [July 1, 2009]. 

[Tig09a] Tigris.org. ArgoUML official web site, h t t p : / /argouml. t i g r i s . org/ , [July 

1, 2009]. 

[Tig09b] Tigris.org. Gef official web site, h t t p : / / g e f . t i g r i s . o r g / , [July 1, 2009]. 

[Unh05] Bhuvan Unhelkar. Verification and Validation for Quality of UML 2.0 Mod­

els. John Wiley & Sons, 2005. 

[Uni09a] BABES-BOLYAI University. OCLE official web site, h t t p : / / l c i . c s . 

ubbclu j . ro /oc le / , [July 1, 2009]. 

[Uni09b] University of Nebraska Lincoln. Semantic Framework for Patterns (SFP). 

ht tp: / /cse-ferg41.unl .edu/SFP/wiki/Main, [July 1, 2009]. 

[WdKqY+03] Liu Wu-dong, He Ke-qing, Yingshi, Xu Hui, and Jiang Yi-xing. A pat­

tern language model for framework development. In Computer Software and 

Applications Conference, 2003. COMPSAC 2003. Proceedings. 27th Annual 

International pages 669-673, Nov. 2003. 

[Wir71] Niklaus Wirth. The design of a Pascal compiler. Software Practice & Expe­

rience, l(4):309-333, Jul. 1971. 

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of object-oriented 

systems. In Proceedings of the Technology of Object-Oriented Languages 

(TOOLS 26) Conference USA 1998, pages 112-124. IEEE Computer Society 

Press. 1998. 

173 

http://www.sysml.org/
http://
http://dresden-ocl.sourceforge.net/
http://Tigris.org
http://Tigris.org
http://gef.tigris.org/
http://lci.cs
http://ubbcluj.ro/ocle/
http://cse-ferg41.unl.edu/SFP/wiki/Main


[ZB07] Bahman Zamani and Greg Butler. Critiquing the application of pattern lan­

guages on UML models. In Workshop on Quality in Modeling, MODELS2007 

Conference, pages 18-35, Nashville, TN, USA, 2007. 

[ZBK09] Bahman Zamani, Greg Butler, and Sahar Kayhani. Tool support for pattern 

selection and use. Electr. Notes Theor. Comput. Sci., 233:127-142, Mar. 

2009. Proceedings of the International Workshop on Software Quality and 

Maintainability (SQM 2008). 

[Zdu07] Uwe Zdun. Systematic pattern selection using pattern language grammars 

and design space analysis. Software Practice & Experience, 37(9):983-1016, 

Jul. 2007. 

[ZHJ03] Tewfik Ziadi, Loic Helouet, and Jean-Marc Jezequel. Towards a UML profile 

for software product lines. In Frank van der Linden, editor, PFE, volume 

3014 of Lecture Notes in Computer Science, pages 129-139. Springer, 2003. 

[Zim95] Walter Zimmer. Relationships between design patterns. In Pattern Languages 

of Program Design, pages 345-364. Addison-Wesley, 1995. 

[ZKB08] Bahman Zamani, Sahar Kayhani, and Greg Butler. A pattern language 

verifier for web-based enterprise applications. In Krzysztof Czarnecki et al., 

editors, MoDELS, volume 5301 of Lecture Notes in Computer Science, pages 

553-567. Springer, 2008. 

174 



Appendix A 

ArgoPLV Artifacts 

In this appendix, we will present the artifacts that are produced during the process of 

building a Pat tern Language Verifier (PLV) for the selected subset of Pat terns of Enterprise 

Application Architecture (PofEAA) Pattern Language (PL). This appendix is organized 

into six sections: 

1. Section A.l shows the selected subset of PofEAA in a layered architecture. 

2. Section A.2 shows the raw advices that are extracted from the PofEAA book. These 

advices are the base for defining the Structural, Syntactic, and Semantic rules of the 

PLV process. 

3. Section A.3 shows the result of formalizing the advices into the formal rules using the 

formalisms defined in Chapter 3. 

4. Section A.4 shows the different parts (Stereotypes, Tagged Values, and Constraints) 

of the PofEAA UML Profile. 

5. Section A.5 shows the source code excerpts that clarify how the critics and wizards are 

hard coded in ArgoUML to define the constraints of the profile. Due to the importance 

of the class GU, its code is shown completely. 

6. Section A.6 shows an example system, Online Student Registration System, which is 

designed based upon the PofEAA. Two versions of the design, both before and after 

verifying by ArgoPLV, are shown. 

7. Section A.7 shows an excerpt of the Design Rationale file which is created during the 

verification of the design using ArgoPLV. 

175 



A.l Selected Patterns from PofEAA 

Figure 59 shows the subset of PofEAA that we have selected as our case study. This subset 

contains 23 patterns from several layers. 

presentation layer 

controller layer 

Fornt Controller Page Controller 

view layer 

Template View Transform View 

Service Layer 

Service Layer 

domain layer 

Domain Model Table Module Transaction Script 

data source layer 

Data Mapper 

Active Record 

Table Data Gateway Row Data Gateway 

concurrency layer 

Optimistic Offiline Lock Pessimistic Offline Lock 

session state layer 

Client Session State Server Session State 

base layer 

Layer Supertype RecordSet Money Gateway Mapper 

distributed layer 

Remote Facade Data Transfer Object 

Figure 59: Selected Patterns from PofEAA in a Layered Architecture 

176 



A.2 Advices from the PofEAA Book 

We have extracted 73 advices from the PofEAA book, shown in Table 18 to Table 21. Note 

that selecting the advice number (A#) and the advice classification (Type) is our choice, 

but the descriptions are from the book. 

Table 18: Advices from the PofEAA Book 
A # 

A01 

A02 

A03 
A04 

A05 
A06 

A07 

A08 

A09 

A10 

Al l 

A12 

A13 

A14 

A15 

A16 

A17 

T y p e 

Syntactic 

Syntactic 

Syntactic 
Semantic 

Semantic 
Semantic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 

Descr ip t ion (PofEAA book p a g e # ) 

"Many of the patterns in this book are alternatives; such Page Controller and Front 
Controller." (p. 12) 
"A Transaction Script offers several advantages: It works well with a simple data 
source layer using Row Data Gateway or Table Data Gateway." (p. 25) 
"A Table Module is designed to work with a Record Set." (p. 28) 
"If you have an environment like .NET or Visual Studio, then that makes a Table 
Module much more attractive." (p. 30) 
"I don't see a reason to use Transaction Scripts in a .NET environment." (p. 30) 
"However, if there's no special tooling for Record Sets, I wouldn't bother with Table 
Module." (p. 30) 
"These three patterns are not mutually exclusive choices. Indeed, it's quite common 
to use Transaction Script for some of the domain logic and Table Module or Domain 
Model for the rest." (p. 30) 
"A common approach in handling domain logic is to split the domain layer in two. A 
Service Layer is placed over an underlying Domain Model or Table Module [...] The 
presentation logic interacts with the domain purely through the Service Layer, which 
acts as an API for the application." (p. 30) 
"A domain layer that uses only Transaction Script isn't complex enough to warrant 
a separate [Service] layer." (p. 31) 
"The fact that Table Data Gateway fits very nicely with Record Set makes it the 
obvious choice if you are using Table Module." (p. 35) 
"Certainly you can use a Row Data Gateway or a Table Data Gateway with a Domain 
Model. For my taste, however, that can be either too much indirection or not enough." 
(p. 35) 
"I don't recommend using a Gateway [Row Data Gateway or Table Data Gateway] as 
the primary persistence mechanism for a Domain Model. If the domain logic is simple 
and you have a close correspondence between classes and tables, Active Record is the 
simple way to go. If you have something more complicated, Dajta Mapper is what you 
need." (p. 36) 
"A simple Domain Model can use Active Record, whereas a rich Domain Model re­
quires Data Mapper." (p. 117) 
"A rich Domain Model is better for more complex logic, but is harder to map to the 
database." (p. 117) 
"If you have complicated and ever changing business rules involving validation, cal­
culations, and derivations, chances are that you'll want an object model to handle 
them. On the other hand, if you have simple not-null checks and a couple of sums to 
calculate, a Transaction Script is a better bet." (p. 119) 
"If you're using Domain Model, my first choice for database interaction is Data Map­
per" (p. 119) 
"Essentially you have to trade off Domain Model's ability to handle complex logic 
against Table Module's easier integration with the underlying table-oriented data 
structures]...] If the objects in a Domain Model and the database tables are relatively 
similar, it may be better to use a Domain Model that uses Active Record. Table 
Module works better than a combination of Domain Model and Active Record when 
other parts of the application are based on a common table-oriented data structure." 
(p. 128) 

177 



Table 19: Advices from the PofEAA Book (Cont'd) 
A # Type 

A18 

A19 

A20 

A21 

A22 

A23 

A24 

A25 

A26 

A27 

A 28 

A29 

A 30 

A31 

A32 

A 33 

Structural 

Syntactic 

Syntactic 

Semantic 

Syntactic 

Syntactic/ 
Semantic 

Semantic 

Structural 

Semantic 

Structural 

Semantic 

Syntactic/ 
Semantic 

Semantic 

Structural 

Structural 

Structural 

Description (PofEAA book p a g e # ) 

"A Table Data Gateway has a simple interface, usually consisting of several find 
methods to get data from the database and update, insert, and delete methods [...] 
The Table Data Gateway is usually stateless." (p. 144) 
"The trickiest thing about a Table Data Gateway is how it returns information from 
a query [...] you can return the Record Set that comes from the SQL query." (p. 144) 
"you'll usually only see Class Table Inheritance if there's a Domain Model in your 
design." (p. 10) 
"With a Domain Model we build a model of our domain which, at least on a first 
approximation, is organized primarily around the nouns in the domain." (p. 26) 
"With a Domain Model we build a model of our domain which, at least on a first 
approximation, is organized primarily around the nouns in the domain." (p. 26) 
"[for presentation layer] Your tooling may well make your choice for you. If you use 
Visual Studio, the easiest way to go is Page Controller and Template View. If you 
use Java, you have a choice of Web frameworks to consider. Popular at the moment 
is Struts, which will lead you to a Front Controller and a Template View." (p. 99) 
"Not all systems need an Application Controller [...] A good test is this: If the machine 
is in control of the screen flow, you need an Application Controller; if the user is in 
control, you don't." (p. 58) 
"A Front Controller handles all calls for a Web site, and is usually structured in two 
parts: a Web handler and a command hierarchy. The Web handler is the object 
that actually receives post or get requests from the Web server." (p. 344) "The Web 
handler is almost always implemented as a class rather than as a server page [...] The 
commands are also classes rather than server pages." (p. 345) 
"A related question to consider is using a single Data Transfer Object for a whole 
interaction versus different ones for each request [...] I might use one Data Transfer 
Object for most of the interaction and use different ones for a couple of requests and 
responses." (p. 402) 
"It needs to be serializable to go across the connection. Usually an assembler is used on 
the server side to transfer data between the DTO and any domain objects [...] Other 
than simple getters and setters, the Data Transfer Object is also usually responsible 
for serializing itself into some format that will go over the wire." (p. 401, 403) 
"As optimistic locking is much easier to implement and not prone to the same defects 
and runtime errors as a Pessimistic Offline Lock, consider using it as the default ap­
proach to business transaction conflict management in any system you build." (p. 420) 
"The essence of the choice between optimistic and pessimistic locks is the frequency 
and severity of conflicts." (p. 68) "Whereas Pessimistic Offline Lock assumes that 
the chance of session conflict is high and therefore limits the system's concurrency, 
Optimistic Offline Lock assumes that the chance of conflict is low." (p. 417) 
"The most common implementation [for Optimistic Offline Lock] is to associate a 
version number with each record in your system" (p. 421) 
"The data structure of the Active Record should exactly match that of the database: 
one field in the class for each column in the tabl. [...] The Active Record class typically 
has methods that do the following: * Construct an instance of the Active Record from 
a SQL result set row * Construct a new instance for later insertion into the table * 
Static finder methods to wrap commonly used SQL queries and return Active Record 
objects * Update the database and insert into it the data in the Active Record * Get 
and set the fields * Implement some pieces of business logic." (p. 160) 
"A Row Data Gateway acts as an object that exactly mimics a single record, such 
as one database row. In it each column in the database becomes one field [...] A 
Row Data Gateway should contain only database access logic and no domain logic 
[...] With a Row Data Gateway you're faced with the questions of where to put the 
find operations that generate this pattern.'' (p. 152) 
"A Record Set is usually something that you won't build yourself, provided by the 
vendor of the software platform you're working with. Examples include the data set 
of ADO.NET and the row set of JDBC 2.0 [...] Although platforms often give you a 
Record Set. you can create one yourself." (p. 508) 

178 

http://ADO.NET


Table 20: Advices from the PofEAA Book (Cont'd) 
A # 
A34 

A35 

A36 

A37 

A38 

A39 

A40 

A41 

A42 

A43 

A44 

A45 

A46 

A47 

A48 

A49 

A 50 

Type 

Structural 

Syntactic 

Syntactic 

Structural 

Syntactic 

Structural 

Structural 

Structural 

Structural 

Structural 

Structural 

Structural 

Semantic 

Syntactic/ 
Semantic 

Syntactic/ 
Semantic 
Syntactic 

Syntactic 

Description (PofEAA book p a g e # ) 

"Page Controller has one input controller for each logical page of the Web site. [...] 
The basic idea behind a Page Controller is to have one module on the Web server act 
as the controller for each page on the Web site." (p. 333) 
"It's not uncommon to have a site where some requests are dealt with by Page Con­
trollers and others are dealt with by Front Controllers." (p. 335) 
"Add remotability when you need it (if ever) by putting Remote Facades on your 
Service Layer." (p. 135) 
"A Transaction Script organizes all this logic primarily as a single procedure, making 
calls directly to the database or through a thin database wrapper. Each transaction 
will have its own Transaction Script, although common subtasks can be broken into 
subprocedures." (p. 113) 
"Usually you use Table Module with a backing data structure that's table oriented. 
The tabular data is normally the result of a SQL call and is held in a Record Set that 
mimics a SQL table. (...) The Table Module may include queries as factory methods. 
The alternative is a Table Data Gateway." (p. 126, 127) 
"A Table Module organizes domain logic with one class per table in the database [...] 
Each Table Module class has a data member of a data table." (p. 125) 
"A type that acts as the supertype for all types in its layer [...] All you need is a 
superclass for all the objects in a layer [...] Use Layer Supertype when you have 
common features from all objects in a layer." (p. 475) 
"The Data Mapper (...) separates the in-memory objects from the database (...) The 
separation between domain and data source is the main function of a Data Mapper (...) 
A simple Data Mapper would just map a database table to an equivalent in-memory 
class on a field-to-field basis (...) [for] inserts and updates, the database mapping layer 
needs to understand what objects have changed, which new ones have been created, 
and which ones have been destroyed (...) We'll use the simple case here, where the 
Person Mapper class also implements the finder and Identity Map." (p. 165) 
"An object model of the domain that incorporates both behavior and data. (...) A 
Domain Model mingles data and process, has multivalued attributes and a complex 
web of associations, and uses inheritance." (p. 116) 
"The basic idea is to have a Money class with fields for the numeric amount and the 
currency (...) Money needs arithmetic operations so that you can use money objects 
as easily as you use numbers." (p. 488) 
"Remote Facade contains no domain logic (...) In a simple case, like an address object, 
a Remote Facade replaces all the getting and setting methods of the regular address 
object with one getter and one setter, often referred to as bulk accessors." (p. 389) 
"The two basic implementation variations [for Service Layer] are the domain facade 
approach and the operation script approach. In the domain facade approach a Service 
Layer is implemented as a set of thin facades over a Domain Model (...) The thin 
facades establish a boundary and set of operations through which client layers interact 
with the application, exhibiting the defining characteristics of Service Layer." (p. 134) 
"The parameter list of the insert method must be a subset of the parameter list of 
the update method." (p. 144) 
"The easier question to answer is probably when not to use it. You probably don't need 
a Service Layer if your application's business logic will only have one kind of client-
say, a user interface-and its use case responses don't involve multiple transactional 
resources." (p. 137) 
"Hence, we get to my First Law of Distributed Object Design: Don't distribute your 
objects! " (p. 89) 
"For this book I'm centering my discussion around an architecture of three primary 
layers: presentation, domain, and data source.'' (p. 19) 
"There are two patterns for the input controller. The most common is an input 
controller object for every page on your Web site. In the simplest case this Page 
Controller can be a server page itself, combining the roles of view and input, controller 
(...) A server page can handle the request, delegating a separate helper object to 
decide what to do with it. Front Controller (344) goes further in this separation by 
having only one object handling all requests." (p. 61) 

179 



Table 21: Advices from the PofEAA Book (Cont'd) 
A # 

A51 

A52 

A53 

A54 

A55 

A56 

A57 

A58 

A59 

A60 

A61 

A62 

A63 

A64 

A65 

A66 

A67 

A 68 
A69 

A70 

A71 
A 72 

A 73 

A 74 

Type 

Syntactic 

Semantic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 

Structural 

Syntactic 

Structural 

Semantic 

Syntactic 

Syntactic/ 
Semantic 
Syntactic/ 
Semantic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 

Syntactic 
Syntactic 

Structural 

Structural 
Structural 

Structural 

Syntactic 

Description (PofEAA book p a g e # ) 

"Often you'll find that there isn't quite a one-to-one relationship between Page Con­
trollers and views." (p. 61) 
"On the view front the choice between Template View and Transform View depends 
on whether your team uses server pages [HTML] or XSLT in programming. You 
can write a Transform View in any language; at the moment, however, the dominant 
choice is XSLT." (p. 99, 361) 
"Since it's a form of Mapper, Data Mapper itself is even unknown to the domain 
layer." (p. 165) 
"[Table Data Gateway is] An object that acts as a Gateway to a database table. [...] 
I see this pattern [Table Data Gateway] as a particular usage of the more general 
Gateway concept." (p. 144, 146) 
"[The problem here is how to synchronize it with other modules, is] An object that 
acts as a Gateway to a single record in a data source." (p. 152) 
"The most common case of a mapping layer that we run into is in a Data Mapper [...] 
Thus, in enterprise applications we mostly find Mapper used for interactions with a 
database, as in Data Mapper." (p. 473, 474) 
"The best way to work is to compose the dynamic Web page as you do a static page 
but put in markers that can be resolved into calls to gather dynamic information. 
Since the static part of the page acts as a template for the particular response, I call 
this a Template View [...] The key to avoiding scriptlets is to provide a regular object 
as a helper to each page." (p. 350, 352) 
"For implementing the view in Model View Controller the main choice is between 
Template View and Transform View." (p. 354) 
"A Transform View is organized around separate transforms for each kind of input 
element." (p. 361) 
"A Transaction Script offers several advantages: It's a simple procedural model that 
most developers understand." (p. 25) 
"My preference is thus to have the thinnest Service Layer you can, if you even need 
one." (p. 32) 
"So everything should be stateless, right? Well, it would be if it could be." (p. 82) 

"Concurrency is one of the most tricky aspects of software development. Whenever 
you have multiple processes or threads manipulating the same data, you run into 
concurrency problems." (p. 63) 
"In organizing domain logic I've separated it into three primary patterns: Transaction 
Script, Domain Model, and Table Module." (p. 25) 
"On the view side there are three patterns to think about: Transform View. Template 
View, and Two Step View." (p. 58) 
"In broad terms there are two forms of concurrency control that we can use: optimistic 
and pessimistic." (p. 67) 
"So, how do you store session state once you know you have to have it? I divide 
the options into three blurred but basic choices. Client Session State [...] Database 
Session State [...] Database Session State." (p. 84) 
"Hand in hand with Remote Facade is Data Transfer Object." (p. 92) 
"While most of these patterns are truly for enterprise applications, those in the base 
patterns chapter (Chapter 18) are more general and localized." (p. 11) 
"Wrap all the special API code into a class whose interface looks like a regular object. 
Other objects access the resource through this Gateway, which translates the simple 
method calls into the appropriate specialized API." (p. 466) 
"the objects that a Mapper separates aren't even aware of the mapper." (p. 474) 
"You almost alwavs have to use Client Session State for session identification [Session 
ID]." (p. 457) 
"In the simplest form of this pattern a session object is held in memory on an appli­
cation server." (p. 458) 
"If you use procedural scripts as your view, you can write the code in the style of either 
Transform View or Template View or in some interesting mix of the two." (p. 59) 

180 



A.3 PofEAA Rule Set 

The advices shown in the previous section, have been interpreted into formal rules, Struc­

tural, Syntactic, and Semantic, using the formalisms defined in Chapter 3. The obtained 

formal rules are shown in the following sections, respectively. 

Note that for the Syntactic and Semantic rules, we have used conditions that are specified 

in the following. Also, the numbers given at the end of each rule (:Axx) shows the advice(s) 

from the Section A.2 that is referenced to define that rule. 

C l l : Tool is .Net 

C12: Tool is Java 

C21: Domain structure is Simple 

C22: Domain structure is Moderate 

C23: Domain structure is Complex 

C31: Designer is Novice 

C32: Designer is Intermediate 

C33: Designer is Expert 

C41: Designer wants Service Layer 

C42: Designer wants Distributed Layer 

C43: Designer wants Concurrency Layer 

C44: Designer wants Session State Layer 

C51: Chance of conflict is Low 

C52: Chance of conflict is High 

C61: View is built using HTML 

C62: View is built using XSLT 

181 



A.3.1 Part I: Structural Rules 

The structural rules for 23 selected patterns from PofEAA are shown in the following 23 

figures (Figure 60 to Figure 82). Note that, "The Intent and the Sketch," if present, are 

from the PofEAA book. The CRUD is an abbreviation for DB operations Create, Read, 

Update, and Delete, but in the following, by CRUD, we mean f ind , i n s e r t , de le te , and 

update. 

Front Controller 

1. There is a Front Contro l ler (=Handler) class in the model. 

2. There are at least two operations (doGet and doPost) in the Handler class. 

3. The Handler class has a client dependency to a Command class. 

4. The Command class is abstract.-

5. The Command class has at least one process operation. 

6. The Command class has at least one Concrete Command child class. 

7. A Concrete Command class is concrete. 

8. A Concrete Command class has at least one process operation. 

A contoller that handles all the requests for a Web site. 

Handler 

doGet() 
doPost() 

V 

x-

ConcreteCommand 1 

process() 

Figure 60: Structural Rules, Intent, and Sketch of Front Controller Pat tern 

Command 

process() 

"T" 
ConcreteCommand 2 

process() 

182 



Page Controller 
1. There is a Page Control ler class in the model. 

2. There are at least two operations (doGet and doPost) in the Page Control ler class. 

An object that handles a request for a specific page or action on a Web site. 

Page Controller 

- handle HTTP get and post 

- decide which model and view to use 

Model 

-domain logic 

7^ 

View 

- display HTML 

Figure 61: Structural Rules, Intent, and Sketch of Page Controller Pa t t e rn 

T e m p l a t e V i e w 

1. There is a Template View class in the model. 

2. The Template View class has a client dependency to a Helper class. 

Renders information into HTML by embedding markers in an HTML page. 

Model 

Book 

Author < - - -

Book Helper 

getTitle() 
getAuthor() 

<----

<HTML> <P> <B> n 
<jsp:getProperty name="bookHelper" 

property="title7></B> 
<BR/> 
Author: 
<jsp:getProperty name="bookHelper" 

property="author7></P> 
</HTML> 

Figure 62: Structural Rules, Intent, and Sketch of Template View Pa t te rn 

T r a n s f o r m V i e w 

1. There is a Transform View class in the model. 

2. There is at least one transform operation in the Transform View class. 

A view that processes domain data element by element and transforms it into HTML. 

Model 

Album 

Artist 

read 

\ 

Transformer 

transformAlbum() 

transformArtistO 

creates 

\ 
/ 

HTML 

Figure 63: Structural Rules. Intent, and Sketch of Transform View Pat te rn 

183 



Service Layer 

(Note: The Sketch given here is an adapted form of the Sketch given in [Fow02, p. 133]) 

1. There is a Service Layer class in the model. 

2. There is at least one operation in the Service Layer class. 

3. All the operations in the Service Layer class must be public. 

Defines an application's boundary with a layer of services that 
establishes a set of available operations and coordinates the 
application's response in each operation. 

presentation 

\y 
service 

Service Layer 

V 
domain 

Figure 64: Structural Rules, Intent, and Sketch of Service Layer Pa t te rn 

D o m a i n M o d e l 

1. There is a Domain Model class in the model. 

2. There is at least one operation in the Domain Model class. 

3. There is at least one attribute in the Domain Model class. 

An object model of the domain that incorporates both behavior and data. 

recognizedRevenue(date: String) 
calculateRecognitions() 

• - > 

JJ6. 
--^ 

calculateRecognilions(contract: Integer) 

k̂_ 
Recognit ion Strategy k} " Complete Recogni t ion Strategy 

Figure 65: Structural Rules, Intent, and Sketch of Domain Model Pat tern 

184 



Table Module 
1. There is a Table Module class in the model. 

2. There is at least one operation in the Table Module class. 

3. There is at least one data tab le attribute in the Table Module class. 

A single instance that handles the business logic for all rows in a database table or view. 

Contract 

calculateRecognitions(ID: Integer) 

Product 

getProductType(ID: Integer) 

DB 

Revenue Recognition 

insert(ID : Integer.amount: Integer.date : String) 
recognizeRevenue(contactlD : Integer.date : String) 

Figure 66: Structural Rules, Intent, and Sketch of Table Module Pat tern 

Transaction Script 
1. There is a Transaction Script class in the model. 

2. There is at least one operation in the Transaction Script class. 

Organizes business logic by procedures where each procedure handles a single request from the presentation. 

Recognition Service 

recognizeRevenue(contactNumber: long.asOf: Date): Money 
calculateRevenueRecognitions(contractNumber: long): void 

DB 

Figure 67: Structural Rules. Intent, and Sketch of Transaction Script Pa t te rn 

185 



Data Mapper 
1. There is a Data Mapper class in the model. 

2. The Data Mapper class is stateless, e.g., has no public attribute. 

3. There are CRUD operations in the Data Mapper class. 

4. The Data Mapper class has a client dependency to at least one other class. 

A layer of Mappers (473) that moves data between objects and a database while keeping them 
independent of each other and the mapper itself. 

Person 

lastname 
firstname 
numberOfDepend ents 

getExemption() 
isFlaggedForAudit() 
getTaxableEamings() 

<Z 
•s. 

Person Mapper 

III 
"-- - -> i" DBN 

Figure 68: Structural Rules, Intent, and Sketch of Data Mapper Pa t te rn 

Active Record 
1. There is an Active Record class in the model. 

2. There is at least one attribute in the Active Record class. 

3. There are CRUD operations in the Active Record class. 

An object that wraps a row in a database table or view, encapsulates 
the database access, and adds domain logic on that data. 

Person 

lastname 
firstname 
numberOfDependents 

update() 
insert() 
delete() 
getExemption() 
isFlaggedForAudit() 
getTaxableEarnings() 

- > i 
V 

DB 

Figure 69: Structural Rules, Intent, and Sketch of Active Record Pat tern 

186 



Table Data Gateway 

1. There is a Table Data Gateway class in the model. 

2. There are CRUD operations in the Table Data Gateway class. 

An object that acts as a Gateway (466) to a database table. 
One instance handles all the rows in the table. 

Person Gateway 

find(id): RecordSet 
findWithLastName(String): RecordSet 
update(id,lastname,firstname,numberOfDependents) 
insert(lastname,firstname,numberOfDependents) 
delete(id) 

Figure 70: Structural Rules, Intent, and Sketch of Table Data Gateway Pattern 

Row Data Gateway 

1. There is a Row Data Gateway class in the model. 

2. There are at least three operations: i n s e r t , de le te and update in the Row Data Gateway 
class. 

3. There is a Finder class as a client for the Row Data Gateway class. 

4. There is at least one f ind operation in the Finder class. 

An object that acts as a Gateway (466) to a single record in a data source. 
There is one instance per row. 

Person Finder 

find(id: Integer) 
findWithLastName(String: long) 

_^_ 
Person Gateway 

lastname 
firstname 
numberOfDependents 

updatef) 
insert)) 
delete() 

Figure 71: Structural Rules, Intent, and Sketch of Row Data Gateway Pat tern 

187 



R e m o t e F a c a d e 

1. There is a Remote Facade class in the model. 

2. The Remote Facade class is a client of a supplier class. 

3. There are at least two g e t t e r and two s e t t e r operations in the supplier class. 

4. There are at least two bulk accessor operations (getBulk and setBulk) in the Remote Facade 
class. 

Provides a coarse-grained facade on fine-grained objects to improve efficiency over a network. 

Address Facade 

getAddressData() 
setAddress(street: String.city: String,zip: String) 

Address 

getStreet() 
getCity() 
getZip() 
setStreet(arg: String) 
setCity(arg: String) 
setZip(arg: String) 

Figure 72: Structural Rules, Intent, and Sketch of Remote Facade Pa t te rn 

D a t a Transfer O b j e c t 

1. There is a Data Transfer Object class in the model. 

2. There is at least one g e t t e r and one s e t t e r operation in the Data Transfer Object class. 

3. There is one s e r i a l i z e and one de se r i a l i z e operation in the Data Transfer Object class. 

4. There is an Assembler class a client for the Data Transfer Object class. 

Provides a coarse-grained facade on fine-grained objects to improve efficiency over a network. 

AlbumDTO 

title : String 
artist: String 

toXmlElement() 
readXml() 

/ . 
\ 

Album Assembler 

_ „ , - - > 

Album 

name : String 

" " " " - - - - > \ 

0..* 

1 
/ 

Artist 

name : String 

Figure 73: Structural Rules, Intent, and Sketch of Data Transfer Object Pat tern 

188 



Optimistic Offline Lock 

1. There is a Optimistic Offline Lock class in the model. 

2. There is at least one version attribute in the Optimistic Offline Lock class. 

Figure 74: Structural Rules of Optimistic Offline Lock Pat tern 

P e s s i m i s t i c Offl ine Lock 

1. There is a Pess imis t ic Offline Lock class in the model. 

2. There is at least one lock operation in the Pess imis t ic Offline Lock class. 

Figure 75: Structural Rules, Intent, and Sketch of Pessimistic Offline Lock Pat tern 

Client Session State 
1. There is a Cl ient Session Sta te class in the model. 

2. There is at least one Session ID attribute in the Client Session S ta te class. 

Figure 76: Structural Rules of Client Session State Pat tern 

189 



Server Session State 

1. There is a Server Session Sta te class in the model. 

2. There is at least one Session ID attribute in the Server Session State class. 

3. There are at least two operations ( ser ia l i ze and deserial ize) in the Server Session 
Sta te class. 

Figure 77: Structural Rules of Server Session State Pattern 

Layer S u p e r t y p e 

1. There is a Layer Supertype class in the model. 

2. There is at least, one operation in the Layer Supertype class. 

3. There is at least, one child for the Layer Supertype class. 

4. All the children of the Layer Supertype class must be of the same type. 

Figure 78: Structural Rules of Layer Supertype Pat tern 

190 



Record Set 
1. There is a Record Set class in the model. 

2. The Record Set class must have a navigable one-tomany composite association towards a 
Table class. 

3. The Table class has a navigable one-to-many composite association towards a Row class. 

4. The Table class has a navigable one-to-many composite association towards a Column class 

An in-memory representation of tabular data. 

Record Set 
i 

yi Table 

I 

1..: 
^ Row 

1 - \ J Column 

Figure 79: Structural Rules, Intent, and Sketch of Record Set Pat tern 

Money 

1. There is a Money class in the model. 

2. There are two attributes amount and currency in the Money class. 

3. There is at least one operation in the Money class. 

Represents a monetary value. 

Money 

amount 
currency 

+. -• * ( ) 

allocateQ 

=0 

Figure 80: Structural Rules, Intent, and Sketch of Money Pat tern 

191 



Gateway 
1. There is a Gateway class in the model. 

2. There is at least one operation in the Gateway class. 

3. There is at least one client class for the Gateway class. 

4. There is at least one supplier class for the Gateway class. 

An object that encapsulates access to an external system or resource. 

Customer 

-
Lease 

Asset 

i 

> 

V 
Pricing Gateway 

A 
1 

i 

-> 

Pricing Package 

Figure 81: Structural Rules, Intent, and Sketch of Gateway Pa t te rn 

Mapper 
1. There is a Mapper class in the model. 

2. There is at least one operation in the Mapper class. 

3. There is at least one supplier class for the Mapper class. 

4. There is no client class for the Mapper class. 

An object that sets sup a communication between two independent objects. 

Customer K-

Lease K 

Asset k-

Pricing Mapper 

~> 

Pricing Package 

Figure 82: Structural Rules. Intent, and Sketch of Mapper Pat tern 

192 



A.3.2 Part II: Syntactic Rules (Pattern Organizations) 

This section uses the formalism introduced in Section 3.3.2 to define syntactic rules that 

show the layers of the system and the placement of the patterns inside the layers. The 

references given at the end of each rule, in the form of ":Axx," refers to the advices in 

Section A.2. 

pofeaa model D main layer . auxiliary layer' :A49 

main layer D presentation . service''(C41> . domain . datasource :A08, A47, A49 

presentation D controller . view :A22 

auxiliary layers base* , distributed/'<C42> t concurrency''(C43' , sessionstate^ 44' :A48, A63, A62 

controller 3 Page Controller , Front Controller :A50 

view 3 Template View , Transform View :A65 

service 3 Service Layer :A61 

domain 3 Domain Model, Table Module, Transaction Script :A64 

datasource 3 Data Mapper, Active Record, Table Data Gateway, Row Data Gateway :A12 

base 3 Record Set, Layer Supertype, Money, Mapper, Gateway :A11 

distributed 3 Remote Facade, Data Transfer Object :A68 

concurrency 3 Optimistic Offline Lock, Pessimistic Offline Lock :A66 

sessionstate 3 Client Session State, Server Session State :A67 

193 



A.3.3 Part III : Syntactic Rules (Pattern Relationships) 

This section uses the formalism introduced in Section 3.3.2 to define the relationship between 

patterns. The references given at the end of each rule, in the form of ":Axx," refers to the 

advices in Section A.2. 

Page Controller —• Template View \ Transform View :A35, A51 

Front Controller —> Template View \ Transform View :A35 

Page Controller —> Template View :A23 

• C 1 2 
Front Controller —» Template View :A23 

Template View —» Service Layer 

Transform View —> Service Layer 

Service Layer —> Domain Model \ Table Module :A08, A09 

Template View —̂> Domain Model \ Table Module \ Transaction Script :A07 

Transform View ""—+ Domain Model \ Table Module | Transaction Script :A07 

Page Controller ~~—> Domain Model | Table Module ] Transaction Script ??? :A07 

Front Controller ""—> Domain Model | Table Module | Transaction Script ??? :A07 

C21 
Domain Model —> Active Record :A12, A13 

C23 

Domain Model —> Data Mapper :A12, A13 

Table Module —> Table Data Gateway | Row Data Gateway :A38 

Table Module -* Table Data Gateway {CI 13} :A10 

Transaction Script —» Table Data Gateway \ Row Data Gateway :A2 

Table Data Gateway —> Record Set { C l l l } :A19 

Table Data Gateway —» Data Transfer Object :A19 

Data Mapper •-> " Active Record :A13 

Table Data Gateway A* ' Row Data Gateway {CI 12} 

Optimistic Offline Lock "<-> ' Pessimistic Offline Lock {CI 12} 

Client Session State ""*<->" Server Session State {CI 12} 

FrontController j Controller :A50 

PageController j Controller :A50 

£>a/.a Mapper ] Mapper :A53 

TaWe Z?ata Gateway ] Gateway :A54 

flora £>oia Gateway } Gateway :A55 

C l l l : Return type of every find() operation in the Table Data Gateway pattern is Record Set 

C112: Two patterns are applied for the same unit of work 

CI 13: There is special tooling for Record Sets 

194 



A.3.4 Part IV: Semantic Rules 

This section uses the formalism introduced in Section 3.3.3 to define the semantic rules 

governing the application of patterns. The references given at the end of each rule, in the 

form of ":Axx," refers to the advices in Section A.2. 

Page Controller ss {Cl l} :A23 

Front Controller as {C12} :A23 

Template View w {C61} :A52 

Transform View w {C62} :A52 

Domain Model w {C12 and and C23 C33} :A?? 

Transaction Script ^ {C l l} :A05 

Transaction Script « {C21 and C31} :A60 

Table Module « {Cll} :A04 

Table Module 56 {C122} :A06 

Table Data Gateway RS {insertQ parameter list C updateQ parameter list} :A46? 

Active Record w Template View {C121} :A?? 

Service Layer as {C41} :A47 

Remote Facade « {C42} :A48 

Data Transfer Object « {C42} :A48 

Optimistic Offline Lock « {C43 and C51} :A29, A63 

Pessimistic Offline Lock « {C43 and C52} :A29, A63 

Client Session State « {C44} :A62 

Server Session State SB {C44} :A62 

C121: The parameters of the operations of the Active Record pattern must match with the attributes 

of Template View 

CI22: There is no special tooling for Record Sets 

195 



A.4 PofEAA UML Profile 

A.4.1 S t e r e o t y p e s 

Stereotypes are shown by the white boxes in Figure 83. The gray boxes are the UML 

meta-classes. An arrows from a stereotype to a UML meta class, must be interpreted as an 

extension. 

«prof i le» 

PoEAA 

fai lure 

* & 4<metac!ass» 

^Cfener^zableEfemeot 

\ 
0 - i 

owner 

1 

Structure Feature 

- ©asstfier " 

1 

Behavio 

A A 

-^Package 

T 
1 

TT ^ 

Attribute 

V 

<*rnvtac!!K. » 1 
Opcrafcn j 

^ 
«slereotvoe» 

find 

«stereotvoe» 
delete 

«s!ereotvDe» 
getter 

«stereotvDe» 
getBulk 

«slereotvoe» 
doGel 

<<stereptype> 

«s[ereotvoe» 
deserialize 

«stereotvoe» 
^oncreteCommand 

<<slereo"tvDe>> 
version 

<<stereotype>> 
amount 

<<stereotype>> 

currency 

«stereotvDe» 
insert 

«stereotvDe» 
update 

«stereotvoe» 
setter 

«stereotvDe» 
setBulk 

<<stereoiype» 
doPost 

«stereotype» 
process 

<<stereorvDe» 

serialize 

<<stereotype>> 

lock 

«stereotv[>e» 
Command 

«stereotvDe» 
Helper 

«stereotvDe» 
FrontController 

Class 

«stereotvDe» 
TemptateView 

«stereotvoe» 
OomainModet 

TableModule 

«stereotvoe» 
DataMapper 

«stereotvDe» 
TableDataGateWay 

<<sterep_type>>. 

sessionID 

«stereorype=>> 

dataTable 

<<ste_reptype>>_ 

Table 

*<stereorype>> 
Row 

<<stereotvoe» 
Column 

«stereotvDe» 

«stereotype» 

Client SessionState 

1 
«stereotvDe» 

RecordSet 

<<stereptype>> 

Gateway 

«stereotvDe» 
PofEAAModel 

«stereotvDe» 
PageControlfer 

«stereotvDe» 
controlle 

«stereotvoe» 
TransformView 

«stereotvDe» 
Servicelayer 

«stereotvDe» 
service 

«stereotvDe» 
dataSourc 

«stereotvDe» 
TransactionScript 

«stereotvoe» 
ActiveRecord 

concurrenc 

«stereotvDe» 
presentation 

«stereotvDe» 
view 

«stereotvDe» 

domain 

«stereotvpe» 

distributed 

<<stereotvDe» 
sessionState 

55_stereqtYRe>> 
base 

«stereotype» 
RowDataGateway 

<<stereotvoe» 
Finder 

«stereotype» 
OptimisticOfflineLock 

«stereotype» 

ServerSessionState 

«stereotvDe» 
LayerSupertype 

<<Sjereotype>> 

Money 

<<stereorvpe» 
Mapper 

<<stereotvDe» 
Assembler 

< <s te repty p e » 

Currency 

Figure 83: Mapping the PofEAA Meta-model into the UML Meta-model 

196 



A.4.2 Tagged Values 

Tagged Values are represented in Table 22. 

Table 22: Tagged Values for stereotype «PofEAAModel» in PofEAA UML Profile 
Tag 

ServiceLayer 
DistributedLayer 
ConcurrencyLayer 
SessionStateLayer 
ChanceOfConflict 
ViewBuilt 
Tool 
Complexity 
Expertise 

Type 
String 
String 
String 
String 
String 
String 
String 
String 
String 

Mult. 

[0..1] 
[0..1] 

[0-1] 
[0..1] 
[0..1] 
[0..1] 
[0..1] 
[0..1] 

[o..i] 

Values 

Yes , No 
Yes , No 
Yes , No 
Yes , No 
Low , High 
HTML , XSLT 
Java , .Net 
Simple , Moderate, Complex 
Novice , Intermediate , Expert 

A.4.3 Constraints 

Constraints are written in Java as ArgoUML critic classes. The source code of some of 

these critics are shown in Section A.5. 

197 



A.5 Source Code Excerpts 

A.5.1 JavaDoc for General Utility Singleton Class (GU.java) 

org.argonmL pattern. cognitive.PofEAA.util 

Class GU 

Object 
extended by org.argouml.pattern.cognitive.PofEAA.util .GU 

publ ic f inal c l a s s GU 
extends Object 

This class contains general utilities and check methods usable for all other critique classes or wizard classes. It is a 
Singleton. 

Author: 
Bahman Zamani 

Method Summary 
Object addAttrToClass(Object els, String name, char type) 

Adds a new attribute, with the name and type specified, to the given class. 

Object addChildToClass(Object parent . Str ing chdName, Str ing s t r ) 
Adds a child with given name and stereotype to the given parent. 

Object addClientToClass(Object suppl ier . Str ing s t r ) 
Adds a client with given stereotype to the given class. 

addRationale(String wizardPath) 
Adds the rationale to the Design Rationale file. 

addsteToObject(Object obj, String st) 

Adds a list of stereotypes to a model element. 

Object addSupplierToClass(Object c l i en t , Str ing s t r ) 
Adds a supplier with given stereotype to the given class. 

buildOpWithSte(Object els, String opName, String str) 

Builds an operation with given stereotype and adds it to the given class. 

Object buildSubPackageWithSte(Object pack, Str ing subPack, Str ing s t r ) 
Builds a sub-package with given stereotype inside a containing package. 

Object buildTag(String tagName, Object s t r ) 
Builds a TagDefinition for a given stereotype in the given namespace. 

classHasAllCRUDOps(Object els) 
Checks whether or not the class has all four CRUD operations (find, insert, delete, update). 

classHasAtt(Object e ls ) 
Checks whether or not the class has at least one attribute. 

classHasAtt(Object els. String att) 

Checks whether or not the class has the attribute with given name. 

classHasOnlyPublicOp (Object els) 
Checks whether or not all the operations of the class are public. 

classHasOp(Object e ls ) 
Checks whether or not the class has any operation. 

classHasRetOp(Object els, String name, String retType) 

Checks whether or not the class has an operation with given name and return type. 

classHasSteAtt(Object e l s , String a t t S t r ) 
Checks whether or not the class has an attribute with the given stereotype. 

Figure 84: GU class Javadoc. page 1 

198 

http://cognitive.PofEAA.util


boolean classHasSteOp (Object e l s . S tr ing opSt ) 
Checks whether or not the class has an operation with the given stereotype. 

boolean classHasSteRetOp(Object els. String opSt, String retTypeStr) 

Checks whether or not the class has an operation with given stereotype and with given stereotype for its 
return type. 

Object c lassHasStrChi ld (Objec t e l s , S t r i n g s t r ) 
Checks whether or not there is a child for a class with given stereotype. 

Object classHasStrClient(Object els, String str) 

Checks whether or not there is a client to a supplier class with given stereotype. 

Object c lassHasStrSuppl ier (Objec t e l s , S t r i n g s t r ) 
Checks whether or not there is a supplier to a client class with given stereotype. 

boolean classHasSubsetOps(Object els. String oplStr, String op2Str) 

Checks whether or not the parameters of the first operator, of the given class, are subset of the 
parameters of the second operator. 

boolean c l a s s I s S t a t e l e s s ( O b j e c t e l s ) 
Checks whether or not the class is stateless; By stateless we mean there is no public attributes in the 

class. 

void c l o s e R a t i o n a l e ( ) 
Closes the Design Rationale file, upon Exit from ArgoUML 

void c r e a t e R a t i o n a l e F i l e ( ) 
Creates the Design Rationale for the first time, or for appending. 

Object findOp(Object els. String opStr) 
Finds an operator with given stereotype in the given class. 

Object f indSteSubPack(Object pkg, S t r i n g p a c S t r ) 
Checks whether or not the given package includes the specified stereotyped subpackage. 

Object f indstrUniCompositionEnd(Object e l s , S t r i n g s t r , i n t rait) 
Returns the class that is connected to given class by a unidirectional aggregation, if the found class has 

the requires stereotype and has the specified multiplicity. 

Object generateType (char type) 
Builds a type based on given character representative. 

Object getPofeaaPkg() 
returns the object (package) indicating current PofEAA package 

hasComplexity(String complexity) 

Returns TRUE if the value of tag "Complexity" is the same as the given parameter. 

h a s C o n f l i c t ( S t r i n g conf) 
Returns TRUE if the value of tag "ChanceOfConflict" is the same as the given parameter. 

h a s E x p e r t i s e ( S t r i n g e x p e r t i s e ) 
Returns TRUE if the value of tag "Expertise" is the same as the given parameter. 

hasStr (Ob jec t o b j . S t r i n g s t r ) 
Checks whether or not the given element has the specified stereotype among its stereotypes. 

boolean h a s T o o l ( S t r i n g t o o l ) 
Returns TRUE if the value of tag "Tool" is the same as the given parameter. 

boolean hasViewBuilt(String viewBuilt) 
Returns TRUE if the value of tag "ViewBuilt" is the same as the given parameter. 

boolean i s D i s t r i b u t e d ( ) 
Returns TRUE if the value of tag "DistributedLayer" is "Yes" 

makeElementAbstxact(Object cbj ) 
Makes an element Abstracts. 

needsConcurrency (} 
Returns TRUE iff the value of tag "Concurrenc\ Layer" is "Yes" 

Figure 85: GU class Javadoc. page 2 

199 



boolean needsServiceLayer ( ) 
Returns TRUE if the value of tag "ServiceLayer" is "Yes". 

boolean needsSes s ionSta te ( ) 
Returns TRUE iff the value of tag "SessionStateLayer" is "Yes" 

Object packagelncludes(Object pkg. String classStr) 

Checks whether or not the given package includes the class indicated by the given stereotype. 

boolean patternFound (S t r ing patName) 
Returns true if the given pattern name is found among the UsedPatternList in th emodel. 

boolean patternLayerMismatch(Object pkg) 

Investigate all the classes in all the subpackages of the package with stereotype PofEAAModel and if a 
class is not located in a right package then returns TRUE as a mismatch. 

Str ing searchLayerConf igStr (S t r ing s t e r e o t y p e ) 
Returns the name of the layer that must contain the pattern specified by the given stereotype. 

Object setMultiplicity(Object Association, String mull. String mul2) 

Sets the multiplicity of an association. 

setPofEAAPackage(Object pk) 
Sets the global variable "pofeaaPkg" as the value given by the parameter. 

subset)Java.util.Collection setl, Java.util.Collection set2) 

Checks whether or not the first set is a subset of the second set. 

Methods inherited from class Object 

e q u a l s , g e t C l a s s , hashCode, n o t i f y , n o t i f y A l l , t o S t r i n g , w a i t , w a i t , wa i t 

Method Detail 

addAttrToCIass 

p u b l i c s t a t i c Object addAttrToCIass(Object e l s . 
S t r i n g name, 
c h a r type) 

Adds a new attribute, with the name and type specified, to the given class. 

Parameters: 
els - The class which will contain the attribute 
name - The name of the attribute 
type - The type of attribute, currently represented by one character 

addChildToCIass 

p u b l i c s t a t i c Object addChildToCIass(Object p a r e n t . 
S t r i n g chdName, 
S t r i n g s t r ) 

Adds a child with given name and stereotype to the given parent. 

Parameters: 
parent - The parent class 
chdName - The name of the child 
s t r - The stereotype of the child, empty "" means no stereotype is added! 

F i g u r e 86: G U class J a v a d o c . page 3 

200 



addClientToClass 

public static Object addClientToClass(Object supplier. 
String str) 

Adds a client with given stereotype to the given class. Note: in A~>B, A is client, B is supplier. 

Parameters: 
supplier - The supplier class, empty "" means no stereotype is added! 
s t r - The stereotype of the client 

addRationale 

publ ic s t a t i c void addRationale(String wizardPath) 

Adds the rationale to the Design Rationale file. 

Parameters: 
wizardPath - The given wizard in the form of a string. 

addSteToObject 

publ ic s t a t i c void addSteToObject(Object obj . 

String s t ) 

Adds a list of stereotypes to a model element. 

Parameters: 
obj - The model element to which we want to add some stereotypes 
s t - The COMMA separated string of added stereotypes such as "stl,st2,st3" 

addSuppIierToClass 

public s t a t i c Object addSuppIierToClass(Object c l i en t . 

Str ing s t r ) 

Adds a supplier with given stereotype to the given class. Note: in A~>B, A is client, B is supplier. 

Parameters: 
c l i en t - The client class 
s t r - The stereotype of client, empty "" means no stereotype is added! 

buildOpWithSte 

public static void buildOpWithSte(Object els. 
String opName, 
String str) 

Builds an operation with given stereotype and adds it to the given class. The return type will be void. 

Parameters: 
e l s - The class in which the operation will be created 
cpName - The name of the created operation 
s t r - (Maybe Empty) The COMMA separated string of added stereotypes such as "stl.st2.st3" 

Figure 87: GU class Javadoc. page 4 

201 

http://stl.st2.st3


buildSubPackageWithSte 

public s t a t i c Object buildSubPackageWithSte{Object pack, 
String subPack, 
String s t r ) 

Builds a sub-package with given stereotype inside a containing package. 

Parameters: 
pack - The name of the containing Package 
subPack - The name of the SubPackage to be created 
s t r - The COMMA separated string of added stereotypes such as "stl,st2,st3" 

Returns: 
The built package 

buildTag 

public s t a t i c Object buildTag (String tagName, 
Object s t r ) 

Builds a TagDefinition for a given stereotype in the given namespace. 

Parameters: 
tagName - The name of the Tag to be created 
s t r - The stereotype (object) as the owner of this tag 

Returns: 
The built tag 

classHasAHCRUDOps 

public static boolean classHasAHCRUDOps (Object els) 

Checks whether or not the class has all four CRUD operations (find, insert, delete, update). 

Parameters: 
els - The class we are looking at. 

Returns: 
False if the class has not all the operations 

classHasAtt 

public s t a t i c boolean classHasAtt(Object els) 

Checks whether or not the class has at least one attribute. 

Parameters: 
e ls - The class we are looking at 

Returns: 
False if the class has not anv attribute 

classHasAtt 

F i g u r e 88: G U class J a v a d o c , page 5 



publ ic s t a t i c boolean classHasAtt(Object e l s . 
St r ing a t t ) 

Checks whether or not the class has the attribute with given name. 

Parameters: 
e l s - The class we are looking at 
a t t - The name of the attribute we are looking for 

Returns: 
True if the required attribute is found 

classHasOnlyPublicOp 

publ ic s t a t i c boolean classHasOnlyPublicOp(Object els) 

Checks whether or not all the operations of the class are public. 

Parameters: 
e ls - The class we are looking at 

Returns: 
False if the class has one non-public operation 

elassHasOp 

publ ic s t a t i c boolean elassHasOp(Object els) 

Checks whether or not the class has any operation. 

Parameters: 
e ls - The class we are looking at 

Returns: 
False if the class has not any operation 

classHasRetOp 

publ ic s t a t i c boolean classHasRetOp (Object e l s , 
String name, 
String retType) 

Checks whether or not the class has an operation with given name and return type. 

Parameters: 
e ls - The class we are looking at 
name - The name of the operation we are looking for 
retType - The name of returnType we are looking for 

Returns: 
True if the specified operation is found 

classHasSteAtt 

public s t a t i c boolean classHasSteAtt(Object e l s , 
String a t t s t r ) 

Figure 89: GU class Javadoc. page 6 

203 



Checks whether or not the class has an attribute with the given stereotype. 

Parameters: 
e ls - The class we are looking at 
a t t s t - The stereotype for attribute we are looking for. 

Returns: 
True if the required attribute is found 

classHasSteOp 

public static boolean classHasSteOp(Object els, 
String opSt) 

Checks whether or not the class has an operation with the given stereotype. 

Parameters: 
opSt - The operation stereotype 
e l s - The class we are looking at 

Returns: 
True if the operation is found 

classHasSteRetOp 

public s t a t i c boolean classHasSteRetOp(Object e l s . 
Str ing opSt, 
Str ing retTypeStr) 

Checks whether or not the class has an operation with given stereotype and with given stereotype for its return 

type-

Parameters: 
els - The class we are looking at 
opSt - The stereotype of the operation we are looking for 
retTypeStr - The stereotype of the returnType of the operation 

Returns: 
true or false 

classHasStrChild 

public static Object classHasStrChild(Object els. 
String str) 

Checks whether or not there is a child for a class with given stereotype. 

Parameters: 
els - The parent class 
s t r - The stereotype of child, empty ("") means no stereotype is required! Only one child is enough. 

Returns: 
The child object, null if els has not a child with stereotype str 

classHasStrClient 

public static Object classHasStrClient(Object els, 

Figure 90: GU class Javadoc, page 7 

204 



Str ing s t r ) 

Checks whether or not there is a client to a supplier class with given stereotype. Note: in A~>B, A is client, B is 
supplier 

Parameters: 
e l s - The supplier class 
s t r - The stereotype of client, empty ("") means no stereotype is required! 

Returns: 
The found client object; null if els has not a client with stereotype str 

classHasStrSuppIier 

public static Object classHasStrSuppIier(Object els, 
String str) 

Checks whether or not there is a supplier to a client class with given stereotype. Note: In A~>B, A is client, B is 
supplier. 

Parameters: 
e l s - The client class 
s t r - The stereotype of supplier, empty ("") means no stereotype is required! 

Returns: 
The found supplier object; null if els has not a supplier with stereotype str 

classHasSu bsetOps 

public static boolean classHasSubsetOps(Object els, 
String cplStr, 
String op2Str) 

Checks whether or not the parameters of the first operator, of the given class, are subset of the parameters of the 
second operator. Operators are specified by their stereotypes. 

Parameters: 
e l s - The class we are looking at 
opi st r - The first operator 
op2str - The second operator 

Returns: 
true if yes 

classIsStateless 

public static boolean classIsStateless(Object els) 

Checks whether or not the class is stateless; By stateless we mean there is no public attributes in the class. 

Parameters: 
e l s - The class we are looking at. 

Returns: 
False if the class has even one public attribute 

closeRationale 

Figure 91: GU class Javadoc. page 8 

205 



public static void oloseRationale() 

Closes the Design Rationale file, upon Exit from ArgoUML 

createRationaleFile 

public s t a t i c void createRationaleFile() 

Creates the Design Rationale for the first time, or for appending. 

findOp 

public static Object findOp(Object els. 
String opStr) 

Finds an operator with given stereotype in the given class. 

Parameters: 
els - The class we are looking at 
opStr - The stereotype of the operation 

Returns: 
The found operator object 

findSteSubPack 

public s t a t i c Object findsteSubPack(Object pkg. 
S t r ing pacStr) 

Checks whether or not the given package includes the specified stereotyped subpackage. 

Parameters: 
pkg - The package we are looking at 
pacStr - The stereotype for sub package we are looking for 

Returns: 
The found subpackage 

f lndStrUniComposit ionEnd 

public static Object findStrUniCompositionEnd(Object els, 
String str, 
int mlt) 

Returns the class that is connected to given class by a unidirectional aggregation, if the found class has the requires 
stereotype and has the specified multiplicity, eg, suppose A --> B. and —> is an AGGREGATION from A to B. 

Parameters: 
els - The class A 
s t r - The stereotype of class B 
mlt - The multiplicity of the aggregation in B side. -1 for infinity 

generateType 

Figure 92: GU class Javadoc. page 9 

206 



public s tat ic Object generateType(char type) 

Builds a type based on given character representative. 

Parameters: 
char - Character representative for the type being created: 'b' for boolean, 'd' for double, 'i' for int, 'f for 
float, V for void, 'c' for Currency, V for RecordSet 

Returns: 
An object for given type 

getPofeaaPkg 

public static Object getPofeaaPkg() 

returns the object (package) indicating current PofEAA package 

hasComplexity 

public s tat ic boolean hasComplexity(String complexity) 

Returns TRUE if the value of tag "Complexity" is the same as the given parameter. Note: The anticipated values 
are "Simple", "Moderate", and "Complex". The default is "Simple", ie, if the given parameter is "Simple" and the 
tag has no value yet, we return TRUE. 

Parameters: 
complexity - The anticipated value for the tag Complexity 

hasConflict 

public static boolean hasConflict(String conf) 

Returns TRUE if the value of tag "ChanceOfConflict" is the same as the given parameter. Note: The anticipated 
values are "High" and "Low". The default is "Low", ie, if the given parameter is "Low" and the tag has no value 
yet, we return TRUE. 

Parameters: 
conf - The anticipated value for the tag Expertise 

hasExpertise 

public static boolean hasExpertise(String expertise) 

Returns TRUE if the value of tag "Expertise" is the same as the given parameter. Note: The anticipated values are 
"Novice", "Intermediate", and "Expert". The default is "Novice", ie. if the given parameter is "Novice" and the tag 
has no value yet, we return TRUE. 

Parameters: 
expert ise - The anticipated value for the tag Expertise 

hasStr 

public s t a t i c boolean hasStr(Object obi, 

Figure 93: GU class Javadoc. page 10 

207 



String s t r ) 

Checks whether or not the given element has the specified stereotype among its stereotypes. 

Parameters: 
ob j - The model element we are looking at 
s t r - The stereotype we are looking for 

Returns: 
True if the stereotype is found. 

hasTool 

public static boolean hasTool(String tool) 

Returns TRUE if the value of tag "Tool" is the same as the given parameter. Note: default is Java, ie, if the given 
parameter is "Java" and the tag has no value yet, we return TRUE. 

Parameters: 
tool - The anticipated value for the tag Tool 

hasViewBuilt 

public s t a t i c boolean hasViewBuilt(String viewBuilt) 

Returns TRUE if the value of tag "ViewBuilt" is the same as the given parameter. Note: The anticipated values are 
"HTML",and "XSLT". The default is "HTML", ie, if the given parameter is "HTML" and the tag has no value yet, 
we return TRUE. 

Parameters: 
viewBuilt - The anticipated value for the tag Expertise 

isDistributed 

public s t a t i c boolean i sDis t r ibuted!) 

Returns TRUE if the value of tag "DistributedLayer" is "Yes" 

makeElementAbstract 

public static void makeElementAbstract(Object obj) 

Makes an element Abstracts. 

Parameters: 
obj - The model element which we want to make it abstract 

needsConcur rency 

public static boolean needsConcurrency() 

Returns TRUE iff the value of tag "ConcurrencyLayer" is "Yes" 

F igu re 94: G U class J a v a d o c . page 11 

208 



needsServiceLayer 

public s t a t i c boolean needsServiceLayer () 

Returns TRUE if the value of tag "ServiceLayer" is "Yes". 

needsSessionState 

public s t a t i c boolean needsSessionState() 

Returns TRUE iff the value of tag "SessionStateLayer" is "Yes" 

packagelncludes 

public s t a t i c Object packagelncludes(Object pkg, 
S t r ing c lassSt r ) 

Checks whether or not the given package includes the class indicated by the given stereotype. 

Parameters: 
pkg - The package we are looking at. 
c lassSt r - The stereotype of the class are looking for. 

Returns: 
The found class. 

pattern Found 

public s t a t i c boolean patternFound(String patNarae) 

Returns true if the given pattern name is found among the UsedPatternList in th emodel. 

Parameters: 
patNarae - The name of the pattern we are looking for Note that this name is the name of the CRITIC 
corresponding to the pattern, WITHOUT the "Cr" 

Returns: 
True if the pattern is found 

patternLayerMismatch 

public static boolean patternLayerMismatch(Object pkg) 

Investigate all the classes in all the subpackages of the package with stereotype PofEAAModel and if a class is not 
located in a right package then returns TRUE as a mismatch. 

Parameters: 
pkg - The package we are looking at (it is supposed to be the root PofEAA package) 

Returns: 
True if any mis match is found 

searchLayerConfigStr 

public static String searchLayerConfigStr(St ring stereotype) 

Figure 95: GU class Javadoc. page 12 

209 



Returns the name of the layer that must contain the partem specified by the given stereotype. 

Parameters: 
stereotype - The stereotype indicating the pattern 

Returns: 
Name of the layer that must contain the pattern 

setMultipIicity 

public static Object setMultipIicity(Object Association, 
String mull. 
String mul2) 

Sets the multiplicity of an association. 

Parameters: 
mull - The start of the association 
mul2 - The end of the association 

setPofEAAPackage 

public static void setPofEAAPackage (Object pk) 

Sets the global variable "pofeaaPkg" as the value given by the parameter. 

Parameters: 
pk - A first level package in the model with stereotype PofEAAModel 

subset 

public s t a t i c boolean subset ( Java .u t i l .Col lec t ion s e t l , 
J ava .u t i l .Co l l ec t ion set2) 

Checks whether or not the first set is a subset of the second set. Note: We compare the names of the objects in setl 
and set2. 

Parameters: 
set l - The first set 
set2 - The second Set 

Returns: 
true if setl is subset of set2 

Figure 96: GU class Javadoc. page 13 

210 



A.5.2 A Structural Critic 

ProntController.java 
package org. argoumi.pattern. cognitive.Pol fcAA. critics; 

import Java.util.Collection; 

import Java.util.Iterator; 

import org.argoumi.cognitive.Critic; 

import org.argoumi.cognitive.Designer; 

import org.argoumi.cognitive.ToDoItem; 

import org.argoumi.model.Model; 

import org.argoumi.pattern.cognitive.PofEAA.util.GU; 

import org.argoumi.pattern.cognitive.PofEAA.wizards.WizFrontController; 

import org.argoumi.uml.cognitive.UMLDecision; 

import org.argoumi.uml.cognitive.critics.CrUML; 

/** 

* This is a critic to find Fowler's Front Controller pattern. 

* Following are the requirements for detecting this pattern: 

* <ul> 

* <li> A class with stereotype <em>handler</em>. 

* <li> Handler class must have two operations with stereotypes 

* <em>doget</em> and <em>dopost</em>. 

* <li> Handler class should be a client of a supplier class with stereotypes 

* <em>command</em>. 

* <li> Command class should have operations with stereotype <em>process</em>. 

* <li> Command class should have child classes with stereotype <em>concretecommand</em>. 

* <li> ConcreteCommand class should have operations with stereotype <em>process</em>. 

* </ul> 

* ©see PofEAA book, P. 344 (PLV Rule (advice): A25). 

* (Sversion Structural 

* ©author Bahman Zamani & Sahar Kayhani 

*/ 

public class CrFrontController extends CrUML-C 

public CrFrontController()-[ 

setupHeadAndDesc(); 

addSupportedDecision(UMLDecision.PATTERNSOFEAA) ; 

setKnowledgeTypes(Critic.KT_POFEAASTR); 

setPriority(ToDoItem.HIGH_PRIORITY); 

} 

public boolean predicate(Object dm, Designer dsgr) { 

if (dm == null) return N0_PR0BLEM; 

if (! Model.getFacadeO .isAClass(dm)) return NCLPROBLEM; 

Object aClass = dm; 

// aClass should have stereotype «frontController», this is the sign 

// of pattern that is applied on the Handler class 

if 0 GU.objectHasSte(aClass, "frontController")) /+SIGN*/ 

return N0_PR0BLEM; 

// class should have at least one operation 

if (! GU.classHasOp(aClass) ) return PROBLEM_FOUND; 

// Both doGet and doPost ops are required 

boolean getOperationExist = GU.classHasSteOp(aClass,"doget"); 

if (! getOperationExist ) return PROBLEM_F0UND; 

boolean postOperationExist = GU.classHasSteOp(aClass,"dopost"); 

if (! postOperationExist ) return PROBLEM,FOUND; 

// Check if there is a client 

Collection depSet = Model .getFacadeO .getClientDependencies(aClass) ; 

if ( depSet.isEmptyO ) return PROBLEM.FOUND; 

// at least one of the suppliers should have the COMMAND structure 

211 



// An ABSTRACT class with stereotype «conunand» and one «process» 
// operation as well as at least one child with stereotype 
// «concreteCommand» and with one «process» operation 
boolean supplierFound = false; 
Iterator deps = depSet.iterator(); 
while ( deps.hasNextO ) { 
Object dep = deps.next(); 
Collection supplierSet = Model.getFacadeO.getSuppliers(dep); 
if ( supplierSet.isEmptyO ) continue; 
Iterator suppliers = supplierSet.iterator0; 
while ( suppliers.hasNextO && !supplierFound) { 
// This should be the Command class 
Object supplier = suppliers.next(); 
if ( GU.objectHasSte(supplier, "command") ) { 
if (Model.getFacadeO .isAbstract(supplier)) { 
if (GU.classHasSteOp(supplier,"process")) { 

// We need at least one child which is CONCRETE 
// and has PROCESS operation 
Collection children = Model.getFacade().getChildren(supplier); 
if ((children.isEmptyO)) return PROBLEM_FOUND; 
Iterator child = children.iterator(); 
while (child.hasNextO) { 
Object conCommand = child.next(); 
// concrete command must be a class 
if (! Model.getFacade().isAClass(conCommand)) continue; 
// concrete command class must be concrete 
if (Model.getFacadeO .isAbstract(conCommand)) continue; 
if (IGU.objectHasSte(conCommand,"concretecommand")) 
return PR0BLEM_F0UND; 

if (!GU.classHasSteOp(conCommand,"process")) 
return PR0BLEM_F0UND; 

// Now, report the correct usage of FC pattern 
classNames. add (Model. getFacadeO . getName (conCommand)+" 
-> concrete command"); 

} 
supplierFound = true; 
classNames. add (Model. getFacadeO .getName (supplier) + "->command") ; 

} } } } } 
if ( ! supplierFound ) return PR0BLEM_F0UND; 
PATTERN_FOUND = true; 
classNames. add(Model. getFacadeO .getName(aClass) + " -> handler"); 
patternLayer = Model .getFacadeO .getName(Model.getFacadeO .getNamespace(aClass)) ; 

return N0_PR0BLEM; 
} 
public Class getWizardClass(ToDoItem item) •[ 
return WizFrontController.class; 

} 
} 

212 



A.5.3 Three Syntactic Critics 
CrLayers.java 
package org.argouml.pattern.cognitive.hoitAA.critics; 

import java.util.Iterator; 

import org.argouml.cognitive.Critic; 

import org.argouml.cognitive.Designer; 

import org.argouml.cognitive.ToDoItem; 

import org.argouml.model.Model; 

import org.argouml.pattera.cognitive.PofEAA.util.GU; 

import org. argouml.pattern.cognit ive.PofEAA.wizards.WizLayers; 

import org.argouml.uml.cognit ive.UMLDecision; 

import org.argouml.uml.cognit ive.critics.CrUML; 

public class CrLayers extends CrUML { 

public CrLayers(){ 

setupHeadAndDesc (); 

addSupportedDecision(UMLDecision.PATTERNSOFEAA); 

setKnouledgeTypes(Critic.KT_POFEAASYN); 

setPriority(ToDoItem.HIGH_PRIORITY); 

} 

public boolean predicate2(Object dm, Designer dsgr) { 

if (dm == null) return NCLPROBLEM; 

if (Model.getFacadeO.isAModel(dm)) return NCLPROBLEM; 

if (((Model. getFacadeO. is APackage (dm))) return N0_PR0BLEM; 

Object aPackage = dm; 

if (!GU.hasStr(aPackage, "PofEAAModel")) return NO.PROBLEM; 

GU.setPofEAAPackage(aPackage); 

boolean presentationFound = false; boolean serviceFound = false; 

boolean domainFound = false; boolean dataSourceFound = false; 

boolean basicFound = false; boolean distributedFound = false; 

boolean concurrencyFound = false; boolean sessionStateFound = false; 

String prs = ""; String srv = ""; String dom = ""; String ds = ""; 

String bas = ""; String dis = ""; String conc= ""; String ses = ""; 

Iterator innerElms = Model.getFacadeO .getOwnedElements(aPackage) . iterator 0 ; 

while (innerElms .hasNextO) { 

Object elmnt = innerElms.next(); 

if ( elmnt != null ) { 

if (Model.getFacade().isAPackage(elmnt)) { 

if (GU.hasStr(elmnt, "presentation")) { 

presentationFound = true; 

prs = Model.getFacadeO .getName(elmnt) ; 

} 
else if (GU.hasStr(elmnt, "service")) { 

serviceFound = true; 

srv = Model .getFacadeO .getName(elmnt) ; 

} 
else if (GU.hasStr(elmnt, "domain")) { 

domainFound = true; 

dom = Model .getFacadeO .getName(elmnt) ; 

} 

else if (GU.hasStr(elmnt, "datasource")) { 

dataSourceFound = true; 

ds = Model .getFacadeO .getName(elmnt) ; 

} 

else if (GU.hasStr(elmnt, "basic")) { 

213 



basicFound = true; 

bas = Model.getFacade() .getName(elmiit) ; 

} 

else if (GU.hasStr(elmnt, "distributed")) { 

distributedFound = true; 

dis = Model.getFacade().getName(elmnt); 

} 

else if (GU.hasStr(elmnt, "concurrency")) { 

concurrencyFound = true; 

cone = Model.getFacadeO .getName(elmnt) ; 

} 

else if (GU.hasStrCelmnt, "sessionstate")) { 

sessionStateFound = true; 

ses = Model.getFacade ().getName(elmnt); 

} 

} } } 

if ( (IserviceFound && GU.needsServiceLayerO) II 

(!distributedFound && GU.needsDistributedLayerO ) II 

(!concurrencyFound && GU.needsConcurrencyLayerO ) II 

(!sessionStateFound kk GU.needsSessionStateLayerO) II 

IpresentationFound I I !domainFound I I ! dataSourceFound I I !basicFound ) -C 

return PR0BLEM_F0UND; 

} 

PATTERN_FOUND = true; 

classNames.add(prs+" -> Presentation Layer Package"); 

if (serviceFound) classNames.add(srv+" -> Service Layer Package"); 

classNames.add(dom+" -> Domain layer Package"); 

classNames.add(ds+ " -> Data Source Layer Package"); 

classNames.add(bas+" -> Basic Layer Package"); 

if (distributedFound) classNames.add(dis+" -> Distributed Package"); 

if (concurrencyFound) classNames.add(conc+" -> Concurrency Package"); 

if (sessionStateFound) classNames.add(ses+" -> Session State Package"); 

classNames.add(Model.getFacadeO.getName(aPackage) + " -> PofEAA Model"); 

patternLayer = Model .getFacadeO .getName (Model. getFacadeO .getNamespace(aPackage)) ; 

return NO_PROBLEM; 

} 
public Class getWizardClass(ToDoItem item) { 

return WizLayers.class; 

} 

} 

CrPatterns.java 
package org.argoumi.pattern.cognitive.PoiEAA.critics; 

import org.argoumi.cognitive.Critic; 

import org.argoumi.cognitive.Designer; 

import org.argoumi.cognitive.ToDoItem; 

import org.argoumi.model.Model; 

import org.argoumi.pattern.cognitive.PofEAA.util.GU; 

import org.argoumi.pattern.cognitive.PofEAA.wizards.WizPatterns; 

import org.argoumi.uml.cognitive.UMLDecision; 

import org.argoumi.uml.cognitive.critics.CrUML; 

/** 
* This critic checks whether the patterns are placed in correct layers or not? 

214 



* In case of any mismatch between the layer that includes the pattern, and the 

* anticipated layer, a syntax error is reported. 

* @see PofEAA book, http://martinfowler.com/eaaCatalog/ 

* aversion Syntactic 

* Qauthor Bahman Zamani (with contributions by Sahar Kayhani) 

*/ 

public class CrPatterns extends CrUML { 

public CrLayers2(){ 

setupHeadAndDescO ; 

addSupportedDecision(UMLDecision.PATTERNSOFEAA); 

setKnowledgeTypes(Critic.KT_POFEAASYN); 

setPriority(ToDoItem.HIGH_PRIORITY); 

> 

public boolean predicate2(Object dm, Designer dsgr) { 

if (dm == null) return NCLPROBLEM; 

// Note that the root model is also a package! 

// Do not apply this critic on that! 

if (Model.getFacade0.isAModel(dm)) return NCLPROBLEM; 

if (!(Model.getFacade().isAPackage(dm))) return NO_PROBLEM; 

Object aPackage = dm; 

// Only look inside the main package which is a package with 

// stereotype «PofEAAModel» 

if (!GU.hasStr(aPackage, "PofEAAModel")) return NO_PROBLEM; 

// If any mismatch is found between a pattern and its containing layer, 

// then trigger this critic 

if (!GU.patternLayerMismatch (aPackage)) return NO_PROBLEM; 

return PROBLEM_FOUND; 

} 

public Class getWizardClass(ToDoItem item) { 

return WizPatterns.class; 

} 

CrDomainModelSyn.java 
package org.argouml.pattern.cognitive.PofEAA.critics; 

import org.argouml.cognitive.Critic; 

import org.argouml.cognitive.Designer; 

import org.argouml.cognitive.ToDoItem; 

import org.argouml.model.Model; 

import org.argouml.pattern.cognit ive.PofEAA.util.GU; 

import org.argouml.pattern.cognitive.PofEAA.wizards.WizDomainModelSyn; 

import org.argouml.uml.cognitive.UMLDecision; 

import org.argouml.uml.cognitive.critics.CrUML; 

/** 
* This is a critic to find syntactic errors regarding the relationship between the 

* Domain Model pattern and the patterns in the Data Source Layer. 

* Following are the requirements for detecting such errors. 

* <ul> 

* <li> A pattern <em>DomainModel</em> is already detected and is in the Domain Layer. 

* <li> Either state A or B happened. 

* <ul> 

* <li> A: A dependency is found from <em>DomainModel</em> to a pattern 

* <li> <em>ActiveRecord</em> which is already detected and is in the Data Source Layer. 

* <li> The model is not Simple. 

* </ul> 

* <ul> 

215 

http://martinfowler.com/eaaCatalog/


* <li> B: A dependency is found from <em>DomainModel</em> to a pattern 

* <li> <em>DataMapper</em> which is already detected and is in the Data Source Layer. 

* <li> The model is not Complex. 

* <ul> 

* </ul> 

* Qsee PofEAA book, P.36,117 (PLV Rule: R12.R13.R14). 
* aversion Syntactic 
* Oauthor Bahman Zamani, 20 Nov 2008 , 6 Apr 09 

*/ 
public class CrDomainModelSyn extends CrUML { 

public CrDomainModelSyn(){ 

setupHeadAndDesc(); 

addSupportedDecision(UMLDecision.PATTERNSOFEAA); 

setKnowledgeTypes(Critic.KT_P0FEAASYN); 

setPriority(ToDoItem.HIGH_PRI0RITY); 

> 

public boolean predicate2(Object dm, Designer dsgr) { 

if (dm == null) return N0_PR0BLEM; 

if (! Model.getFacadeO .isAClass(dm)) return N0_PR0BLEM; 

Object dmCls = dm; 

if (!GU.hasStr(dmCls, "DomainModel")) return N0_PR0BLEM; 

// Pattern must be already found 

if (!GU.patternFound("DomainModel")) return N0_PR0BLEM; 

// DomainModel Pattern must be in the correct Layer 

Object dmPkg = Model.getFacadeO .getNamespace(dmCls) ; 

if ( !GU.hasStr(dmPkg, "domain") ) return N0_PR0BLEM; 

// If DomainModel uses Active Record 

Object actRec = GU.findStrSupplier(dmCls, "ActiveRecord"); 

if ( actRec != null ) { 

// ActiveRecord Pattern must be already found 

if ( GU.patternFoundC'ActiveRecord")) { 

// ActiveRecord Pattern must be in the correct Layer 

Object dsPkg = Model.getFacade().getNamespace(actRec); 

if ( GU.hasStr(dsPkg, "dataSource") ) 

// If the model is not Simple, it is a sign of an error 

if ( ! GU.hasComplexityC'Simple") ) return PR0BLEM_F0UND; 

} 

} 

// If DomainModel uses Data Mapper 

Object dataMap = GU.findStrSupplier(dmCls, "DataMapper"); 

if ( dataMap != null ) { 

// DataMapper Pattern must be already found 

if ( GU.patternFoundC'DataMapper")) { 

// DataMapper Pattern must be in the correct Layer 

Object dsPkg = Model .getFacadeO .getNamespace(dataMap) ; 

if (GU.hasStr(dsPkg, "dataSource")) 

// If the model is not Complex, it is a sign of an error 

if ( ! GU.hasComplexity("Complex") ) return PR0BLEM_F0UND; 

} 

} 

return N0_PR0BLEM; 

} 

public Class getWizardClass(ToDoItem item) { 

return WizDomainModelSyn.class; 

} 

216 



A.5.4 A Semantic Critic 

CrTableDataGatewaySem.java 
package org.argouml.pattern.cognitive.PoiKAA.critics; 

import org.argouml.cognitive.Critic; 

import org.argouml. cognitive.Designer; 

import org.argouml. cognitive.ToDoItem; 

import org.argouml.model.Model; 

import org.argouml.pattern.cognitive.PofEAA.util.GU; 

import org.argouml.pattern.cognitive.PofEAA.wizards.WizTableDataGatewaySem; 

import org.argouml.uml.cognitive.UMLDecision; 

import org.argouml.uml.cognitive.critics.CrUML; 

A* 
* This is a critic to find semantic errors in Fowler's Table Data Gateway pattern. 

* Following are the requirements for detecting the error: 

* <ul> 

* <li> A class with stereotype <em>TableDataGateway</em> 

* <li> pattern is already detected and reported in the PIT 
* <li> The parameter list of insert() should be a subset of parameters of update() 
* </ul> 
* 

* Osee PofEAA book, P. 144 (PLV Rule: R46). 

* Qversion Semantic 

* ©author Bahman Zamani 

*/ 
public class CrTableDataGatewaySem extends CrUML { 

public CrTableDataGatewaySem() { 

setupHeadAndDescO ; 

addSupportedDecision(UMLDecision.PATTERNSOFEAA); 

setKnowledgeTypes(Critic.KT_POFEAASEM); 

setPriority(ToDoItem.HIGH_PRIORITY); 

} 

public boolean predicate2(0bject dm, Designer dsgr) { 

if (dm == null) return NO_PROBLEM; 

if (• Model.getFacadeO.isAClass(dm)) return N0_PR0BLEM; 

Object aClass = dm; 

// aClass should have stereotype «TableDataGateway» 

if (!GU.hasStr(aClass, "TableDataGateway")) return NO_PROBLEM; 

// The TDG pattern should be already detected and recorded in PIT classNames 

if (! GU.patternFoundC'TableDataGateway")) return N0_PR0BLEM; 

// updateO should contain all parameters of insertO 

// Normally, update needs an ID or Key as extra parameter 

if (! GU.classHasSubsetOps(aClass, "insert", "update")) return PR0BLEM_F0UND; 

return N0_PR0BLEM; 

} 

public Class getWizardClass(ToDoItem item) { 

return WizTableDataGatewaySem.class; 

} 

} 

217 



A.5.5 A Wizard 

WizProntController.java 
package org.argouml.pattern.cognitive.PolhAA.wizards; 

import Java.util.Collection; 

import java.util.Iterator; 

import java.util.Vector; 

import javax.swing.JPanel; 

import org.apache.log4j.Logger; 

import org.argouml.cognitive.ui.WizStepChoice; 

import org.argouml.il8n.Translator; 

import org.argouml.model.Model; 

import org.argouml.pattern.cognitive.PofEAA.uti1.GU; 

import org.argouml.uml.cognitive.critics.UMLWizard; 

/** 

* Wizard class for CrFrontController critic. 

* This wizard helps user to add missing <em>doGet</em> or <em>doPost</em> operations 

* to the Handler class. 

* Also to add supplier class with stereotype <em>Command</em> to the Handler class. 

* Also to add <em>process</em> operation in the Command class. 

* Also to make the Command class, abstract. 

* Also to add <em>ConcreteCommand</em> children to the Command class. 

* Also to add <em>process</em> operation in the Concrete Command class. 
* 

* ©author Bahman Zamani 13 Aug 2008 

* (With contributions by Sahar Kayhani) 

*/ 

public class WizFrontController extends UMLWizard { 

// Bahman Zamani - 19 Aug 2008 

// We need to record which class is the Command class and which one is concreteCommmand 

// This way in doAction method, it's easy to add missing items to it 

private Object commandClass = null; 

private Object conCommandClass = null; 

private WizStepChoice steplChoice = null; 

private String [] missingltems = new String[5] ; 

private int missItemCounter = 0; 

private Object triggerClass = null; 

private String instructions = Translator.localizeC'critics.WizFrontControllert-ins") ; 

private static final Logger LOG = Logger.getLogger(WizFrontController.class); 

public WizFrontController () -Q 

private Object getTriggerClassO {• 

if ((triggerClass == null) && (getToDoItemO != null)) { 

triggerClass = getModelElementO ; 

} 

return triggerClass; 

} 
private Vector buildOptionsO { 

Object els = getTriggerClassO; 

if (els == null) 

return null; 

Vector res = new Vector(); 

if (!GU.classHasSteOp(cls,"doGet")) { 

res.addElement(Translator.localizeC'critics.WizFrontController-optionl")) ; 

missingltems [missItemCounter++] = "doGet"; 

} 

if (!GU.classHasSteOp(cls,"doPost")) { 

res.addElement(Translator.localize("critics.WizFrontController-option2")); 

missingltems[missItemCounter++] = "doPost"; 

218 



} 
// We need a «Command» supplier class 

Collection depSet = Model.getFacadeO .getClientDependencies(els) ; 

if( depSet. isEmptyOM 

res.addElement(Translator.localize("critics.WizFrontController-option3")) ; 

missingItems[missItemCounter++] = "Command"; 

} 

else { 

boolean commandFound = false; 

Iterator deps = depSet.iterator(); 

while ( deps.hasNextO && !commandFound) { 

Object dep = deps.nextO; 

Collection supplierSet = Model.getFacade().getSuppliers(dep); 

if ( supplierSet .isEmptyO ) •£ 

continue; 

} 

Iterator suppliers = supplierSet.iterator(); 

while ( suppliers.hasNextO && !commandFound) { 

commandClass = suppliers.next(); 

if ( GU.hasStr(commandClass, "Command") ) { 

commandFound = true; 

} 

> 

} 

if ( ! commandFound ){ 

res.addElement(Translator.localize("critics.WizFrontController-option3")) ; 

missingItems[missItemCounter++] = "Command"; 

} 

else { 

// «Command» class should be Abstract 

if (! Model.getFacadeO .isAbstract(commandClass)) •£ 

res. addElement(Translator.localize("critics.WizFrontController-option4")); 

missingItems[missItemCounter++] = "commandAbs"; 

> 
// «Command» class needs «process» operation 

if (! GU.classHasSteOp(commandClass,"process")) { 

res.addElement(Translator.localize("critics.WizFrontController-option5")); 

missingItems[missItemCounter++] = "commandProcess"; 

} 

// «Command» class needs at least one child 

Collection children = Model.getFacadeO.getChildren(commandClass); 

if ( children.isEmptyO) { 

res.addElement(Translator.localize("critics.WizFrontController-option6")) ; 

missingItems[missItemCounter++] = "commandChildren"; 

} 

else { 

// All children need «ConcreteCommand>> stereotype 

boolean conCommandFound = false; 

Iterator child = children.iterator(); 

while (child.hasNextO) { 

conCommandClass = child.next() ; 

if ( GU.hasStr(conCommandClass,"ConcreteCommand")) { 

conCommandFound = true; 

// each child needs <<process» operation 

if (! GU.classHasSteOp(conCommandClass,"process")) { 

res.addElement(Translator.localize("critics.WizFroutControiler-option7")); 

missingltems[missItemCounter++] = "conCommandProcess"; 

} 

} 

219 



// missing stereotype, if there is only one child without stereotype, 

// this will cause DUPLICATE wizard options but no problem! 

else { 

res.addElement(Translator.localize("critics.WizFrontController-option8")); 

missingItems[missItemCounter++] = "conCommandSte"; 

} 

} 

// Not seeing «concreteCommand» at all 

if ( ! conCommandFound ) { 

res.addElement(Translator.localize("critics.WizFrontController-option6")); 

missingItems[missItemCounter++] = "commandChildren"; 

} 

} 

> 

} 

// If there is more than one option, give an option for selecting all items 

if (missItemCounter>l) 

res.addElement ( Translator.localize("critics.WizFrontController-option9")); 

return res; 

} 

/** 

* Set the initial instruction string for the choice. May be 

* called by the creator of the wizard to override the default.<p> 
* 

* Sparam s The new instructions. 

*/ 

public void setlnstructions(String s) { 

instructions = s; 

} 

public JPanel makePaneKint newStep) { 

switch (newStep) { 

case 1: 

if (steplChoice == null) { 

Vector opts = buildOptionsO ; 

if (opts != null) { 

steplChoice = new WizStepChoice(this, instructions, opts); 

steplChoice.setTarget(getToDoItem ()); 

} 

} 

return steplChoice; 

default: 

} 

return null; 

} 

// Bahman Zamani - 19 Aug 2008: prevent duplicate creating of model elements 

boolean missingCommandCreated = false; 

boolean missingConCommandCreated = false; 

©Override 

public void doAction(int oldStep) { 

switch (oldStep) { 

case 1: 

int choice = -1; 

if (steplChoice != null) choice = steplChoice.getSelectedlndexO ; 

if (choice == -1) { 

LOG.warn("WizFrontController: nothing selected, should not get here"); 

return; 

} 

try { 

220 



Object handlerClass = getTriggerClassO; // It's the Handler class 

Object curPackage = Model.getFacade().getNamespace(handlerClass); 

// if user has selected to create all missing operations 

if (choice == missItemCounter) { 

for (int i=0; i<choice; i++) 

fixFCProblems (handlerClass, curPackage, i); 

> 

// create operations one by one 

else 

fixFCProblems(handlerClass, curPackage, choice); 

} 

catch (Exception e){ 

LOG.error("WizFrontController: could not set operation.", e); 

} 

default: 

} 

} 

/** 

* Fixes the problems found in the FrontController pattern 

* Qparam handlerClass The Handler class in FrontController pattern 

* Qparam curPackage The current package containing the FrontController pattern 

* ©param n The number in missingltem list 

* ©author Bahaman Zamani 

*/ 

private void fixFCProblems(Object handlerClass, Object curPackage, int n) { 

// We build doGet and doPost ops in the Handler class 

if ( missingltems[n].equals("doGet") II missingltems[n].equals("doPost") ) { 
if ( ! GU.classHasSteOp(handlerClass, missingltems[n])) { 
GU.buildOpWithSte(handlerClass, missingltems[n]+"0p", missingltems[n]); 

} 

} 

// We build a Command hierarchy and process operations 

else if ( missingltems[n].equals("Command") ) { 

if ( ! missingCommandCreated ) { 

Object newCommandClass = Model.getCoreFactoryO . 

buildClassC'CommandCls" .curPackage) ; 

Model. getCoreFactoryO .buildDependency (handlerClass ,newCommandClass) ; 

GU.addSteToObject(newCommandClass, "Command"); 

// change Command class to Abstract 

GU.makeElementAbstract(newCommandClass); 

Object conCommandClass = Model.getCoreFactoryO . 

buildClassC'ConcreteCommandCls" .curPackage) ; 

GU.addSteToObject(conCommandClass, "ConcreteCommand"); 

Model .getCoreFactoryO ,buildGeneralization(conCommandClass .newCommandClass) ; 

GU.buildOpWithSte(newCommandClass, "processOp","process"); 

GU.buildOpWithSte(conCommandClass, "processOp","process"); 

missingCommandCreated = true; 

} 

} 

else if( missingltems[n].equals("commandAbs") ) { 

GU.makeElementAbstract(commandClass); 

} 
else if ( missingltems[n].equals("commandProcess") ) { 

if ( ! GU.classHasSteOp(commandClass, "process")) { 

GU.buildOpWithSte(commandClass, "processOp","process"); 

} 

} 

else if ( missingltems[n].equals("commandChildren") ) { 

221 



if ( ! missingConCommandCreated ) -[ 

Object conCommandClass = Model.getCoreFactory(). 

buildClass("ConcreteCommand",curPackage); 

GU. addSteToObject (conCommandClass, "ConcreteCommand") ; 

Model.getCoreFactory().buildGeneralization(conCommandClass,commandClass); 

if ( ! GU.classHasSteOp(conCommandClass, "process")) { 

GU.buildOpWithSte(conCommandClass, "processOp","process"); 

} 

missingConCommandCreated = true; 

} 

> 

else if ( missingltems[n] .equalsC'conCommandProcess") ) { 

if ( ! GU.classHasSteOp(conCommandClass, "process")) { 

GU.buildOpWithSte(conCommandClass, "processOp","process"); 

} 

} 

else if ( missingltems[n].equals("conCommandSte") ) { 

GU.addSteToObject(conCommandClass, "ConcreteCommand"); 

> 

} 

} 

222 



A.6 Sample Application: Online Student Registration Sys­
tem 

A.6.1 Domain Model of t h e System 

Figure 97 shows the domain model of the Online Student Registration System. 

Person 

firstName 
laslName 
birthDate 
gender 

T 

0..* 

occupants address 

Address 

streetNo 
street 
city 
postalCode 
province 
country 

supeJvisedStudents 

student department 

participant! 1 

Department 

supervise-

1..' 

mployer employee 

teacher 

1 

offers 

0..* 

Grade 

grade 

Course 

courseNo 
credits 
title 0..* 

0..* prereqjsites 

Figure 97: Domain Model of the Online Student Registration System 

A.6.2 A Given Design of the System using PofEAA Pa t t e rns 

Figure 98 shows a design of the Online Student Registration System using the PofEAA patterns. 

A.6.3 The Given Design after Verification by the ArgoPLV 

Figure 99 shows the given design after it is verified by the ArgoPLV. 

223 



ApofEAAModel* 

^presentations 
presentationPkg 

controllerpkg 

•FrontControltent 

- * « process* processOp() 

I 
« ConcreteCommandp 

RegisterCourse 

•process* processOpO 

iConcreteCommand* 
RequestSupervision 

(process* processf) 

iCpncreteCommandft 
CalcutateGPA 

«ConcreteCommand» 

<process» process!) 

I aConcr eteCommanda 

Viewprof 

iprocessB process^ 

iConcreteCommands 
BrowseCourse 

«process» processf) 

JUL. 
gJemplateViewp 

RegCourseTV 

_^_ 
aTemplateVJewn 

ReqSupTV 

Js*L 
aTemplateViewn 
CatcuIateGPATV 

J ^ 

BrowseProfsTV 

- > * -
iTemplaleVJewn 

ViewProfTV 

_NZ 
aTemplateViewp 
BrowseCourseTV 

HelperRS HelperGPA 

X-
<i Hetpen> 
HelperVP 

Y-

domainPkg 

dataSourcePkg 

-^ 
<DomairtModel» 

firstName 
jlastName 

gender 

Person(J 

«DataMapoef» 
PersonMapper 

• finds find() 
• inserts inserl() 
'updates update)) 

£ 

ffDomainModeb 

Address 

streetNo 
street 
city 
postafCode 
province 
country 

Address{) 

Student 

stIO su 
GPA 
thesisOption 

Student!) 

Grade() 

«DataMapper» 
AddressMapper 

»find» find() 
• inserts insert!) 
< deletes deleteO 
.updates updatel) 

«DalaMapper» 
Grade Mapper 

*find» find() 
•inserts insert!) 
<delete» delete!) 
•updates update() 

iDomainModel» 
Department 

>=4 Department!) 

supervise" 

0..* 

-iZ. 

'rJomair)Mode!». t < 

courseNo 
credits 

Course() 

*Z 

pourses 
pr&e'quisites 

«DataMapper» 

<find» find!) 
»insert» insert!) 
(deletes delete!) 
(updates update!) 

CourseMapper 

.(finds fmd() 
«insert» mserl() 
odeleles delete!) 
«update» update^} 

« concurrency » 
concurrencyPkg 

oPessimisticOfflinel ock» 
AddressLock 

«lock» lockOp() 

«ODtimisticOfftinet.ockn 
AddressLock 

«version» ver 

«DataTransferObiect» 
CourseList 

osettera gelListl) 
osetters selList!) 
«serta1ize» toXML() 
«deserialize» readXMLI) 

CourseAssembler |^\ 

Figure 98: A Design Model for Online Student Registration System using PofEAA Patterns 

224 



*PofEAAModel» 

oontrolterPkg 

«FrontController» 
MyWebServeiet 

tdoGeb doGetOp() 
doPostOp() 

-3* aprocessu processOpQ 

I 
•ConcreteComrnand* 

RegisterCourse 

«process» processOpt) 

«ConcreteCommand» 
RequestSupervision 

i process* process<) 

aConcreteComrnanda 

[process* processOp() 

<• ConcreteCommand» 

aprocess» process() 

tConcreleCommand* 

ViewProf 

iprocess» process() 

iConcreleCommanda 
BrowseCourse 

«process» process() 

viewPkg 

1 •Template View» 
RegCourseTV 

iTemplaleViewa 
ReqSupTV 

_V_ 
aTemplateViewB 
CalculateGPATV 

_y_ 
«TemplateView» 
BrowseProfsTV 

tTemoiate Views 
ViewProfTV 

K.TemplaleView» 
BrowseCourseTV 

HelperRS 

_y_ X- X-

domainPkg 

j dataSourcePkg 

firstName 
lastName 
birthOate 
gender 

Person() 

«frnd» find{) 
«insert» insert{) 
« updates update() 
" delete* deleteOp() 

J: 

Address 

streetNo 
street 
city 
postalCode 
province 
country 

Address() 

<DomainModel» 
Student 

stID 
GPA 
thesisOption 

supeuisedStudents 

Student() 

iDomainModel» 
Grade 

grade 

Grade() 

"A" 

«data$ource» 

-"DataMappera 
AddressMapper 

(finds find() 
•inserts insert() 
•deletes delete() 
< updaten update() 

_«Data_Happeri>_ 
GradeMapper 

.finds find() 
(inserts insert() 
(deletes delete() 
<updates update{) 

employer 

-̂ >l Department() 

<DomainModel» 

newOp() 

5.Dom_ainMp_delB 

Course 

ainModels L<. 

courseNo 
credits 
title 

•^Course!) 

-*c 

:ourses 
prerequisites" 

«DataMaoper» 
DeptMappelr 

.fmd» find() 
(inserts insertf) 
<delete» de!ete() 
(updates update() 

«DataMapper» 
CourseMapper 

..finds findfj 

..inserts insert() 

..deletes deleteO 
(.updates updatef) 

((concurrencys 
concurrency Pkg 

«ODtimisticOffltneLocks 
AddressLock 

(versions ver 

<. DataTransterObjects 
CourseList 

(settets getList() 
.setters setList() 
.seriali2eu toXMH) 
•deserializes readXMLi) 

..Assembler 
jurseAssembler 

J<-

Figure 99: Design of Online Student Registration System - Refined by ArgoPLV 

225 



A.7 Design Rationale 
Table 23 shows an excerpt of the Design Rationale file which is created during the verification of 
the design using ArgoPLV. 

Table 23: Records from the Design Rationale File Associated with the Repairs 
Date /Time 

2009-04-08 
11:20:32 

2009-04-08 
11:31:45 

2009-04-08 
11:39:25 

2009-04-08 
16:03:25 

2009-04-08 
18:34:27 

Wizard Class 

WizLayers 

WizPront Con­
troller 

WizViewLayerSem 

WizDomain Mod-
elSyn 

WizPatterns 

Issue 

PofEAA: Syntactic Prob­
lem - Missing Layers in 
the Model 

PofEAA: Structural 
Problem in using Front 
Controller Pattern 

PofEAA: Semantic Prob­
lem regarding the View 
Layer of the model 

PofEAA: Syntactic prob­
lem between Domain 
Model pattern and Data 
Source Layer 

PofEAA: Syntactic Prob­
lem in organization (lay­
ering) of patterns 

Rationale 

A design built based upon the PofEAA 
patterns needs layers such as Pre­
sentation, Domain, and Data Source. 
Other Layers such as Service, Basic, 
Distributed, Concurrency, and Session 
State, depend upon the context infor­
mation set by the tagged values. This 
wizard has added any of those missing 
items to the model. 

The Front Controller pattern needs a 
"Handler" class with goGet and doPost 
operations as well as an Abstract Com­
mand class with a Process operation 
and at least one concrete child. This 
wizard has added any of those missing 
items to the model. 
The patterns of the View Layer should 
match with the context information, es­
pecially with the value of ViewBuilt tag. 
This wizard has changed the tag corre­
spondingly. 
The Domain Layer (from syntactic 
point of view) should be consistent 
considering BOTH the relation be­
tween patterns in this layer and the 
Data Source Layer patterns AND and 
the context information which is set 
through the TAGGED VALUES. This 
wizard gives the designer option to 
change the tagged values correspond­
ingly. 
A design built based upon the PofEAA 
patterns needs to have each pattern in 
its corresponding layer.This wizard has 
rearranged model such that each pat­
tern is placed in the appropriate layer. 

226 



Index 

ArgoPLV, 6, 110 
Artifacts, 7 
PLA, 122 
PMV, 122 
PSV, 115 
PTV, 116 

Artifact, 1, 6, 9, 79 

Code-centric, 1, 8 
Compilation process, 58 
Compiler, 3, 57 

Java, 5 

Design, 1, 14, 57 
Model, 1, 2, 59 
Process, 2 
Rationale, 76, 84, 146 
Transformation, 14 
with Patterns, 2 

Model, 1 
Inconsistency, 16 
Verification, 2 

Model-centric, 1, 9 
Model-Driven 

Architecture (MDA), 1, 18 
Engineering (MDE), 1 
Software Development (MDSD), 1 
Development (MDD), 1 
Engineering (MDE), 8 

Road Map, 9 

Pattern, 1 
Application, 2 
Collection, 41 
Combination, 2, 39, 60, 69, 72 
Completion, 39 
Compounds, 39 
Detection, 44 
Form, 25, 60 
Instantiation, 83 
Language, 2. 23 
Leitmotifs, 45 
Relationship, 28, 42 
Selection, 2, 47 
Semantics, 56 
Sequence. 40 
Story, 40 
Weaving, 30. 56 

Pattern Information Table, see PIT 

Pattern Language Advisor, see PLA 
Pattern Language Profile, see PLP 
Pattern Language Semantic Verifier, see PMV 
Pattern Language Syntactic Verifier, see PTV 
Pattern Language Verification, 6, 158 
Pattern Language Verifier, see PLV 
Pattern Structural Verifier, see PSV 
PIT, 4, 76 
PLA, 4, 76, 83 
PLP, 77, 102 
PLV, 4, 57, 59, 75 

Extensions, 85 
Process, 59, 75 

PMV, 4, 60, 72, 82 
PofEAA, 2, 4, 10, 48, 88 

Advices, 6, 93 
Profile, 6, 102 
Rules, 6, 92 

Productivity, 2, 19 
PSV, 4, 59, 60, 80 
PTV, 4, 60, 65, 81 

Quality, 1 
Assessment, 15 
Control, 15, 17 
Metrics, 17 
Model, 15, 17 

Rules, 60 
Semantic, 2, 60, 72, 100 
Structural, 2, 59, 60, 93 
Syntactic, 2, 60, 65, 96 

Software, 1 
Development, 1 
Engineering, 5 

Traditional Software Engineering, 16 

UML, 4, 11, 76 
Profile, 5, 15, 76 

Verification, 2, 3, 6, 59, 80, 81, 150, 155 

227 


