NOTE TO USERS

This reproduction is the best copy available.

ON VERIFYING THE USE OF A PATTERN LANGUAGE
IN MODEL DRIVEN DESIGN

BAHMAN ZAMANI

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (COMPUTER SCIENCE)
CONCORDIA UNIVERSITY.

MONTREAL, QUEBEC, CANADA

Jury 2009
© BannaN ZAanANI, 2009

Library and Archives Bibliothéque et
Canada Archives Canada
Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Volre référence
ISBN: 978-0-494-63401-1
Our file Notre référence
ISBN: 978-0-494-63401-1
NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’'s permission.

L’auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par 'internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L’auteur conserve la propriété du droit d’auteur
et des droits moraux qui protége cette theése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thése.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manguant.

Abstract

On Verifying the Use of a Pattern Language
in Model Driven Design

Bahman Zamani, Ph.D.
Concordia University, 2009

This thesis addresses the problem of verifying the application of a Pattern Language in
a design that is built based upon the patterns of the language in a Model-Driven approach.
Exploiting the ideas of compilers, we propose a process named Pattern Language Verifier
(PLV). We argue that building aPLV for a given Pattern Langﬁage, requires the Structural,
Syntactic, and Semantic rules of the language to be precisely defined. We present three
formalisms for defining these three groups of rules. PLV is a profile-driven process and
assumes that a UML Profile is already defined for the underlying Pattern Language.

PLV consists of four phases: Pattern Structural Verifier (PSV), Pattern Language Syn-
tactic Verifier (PTV), Pattern Language Semantic Verifier (PMV), and Pattern Language
Advisor (PLA). PSV verifies the structure of every single pattern used in the design model.
PTV verifies the relationships between the detected patterns. PMV verifics the semantic
aspects of the patterns. PLA reports the problems to the designer and guides him/her in
fixing the errors.

For the case study, a group of enterprise architectural patterns is selected as the Pattern
Language. The Structural, Syntactic, and Semantic rules of the language are defined using
the proposed formalism, and a UML Profile is defined for the language. A PLV is designed
and implemented as an integration into an open source modeling tool. The tool is then
utilized in designing a sample web application: Online Student Registration System. The
usefulness of the tool is represented by walkthrough scenarios that show finding the mistakes

in the model and helping the designer repair the detected problems.

il

Acknowledgments

A thesis like this would never be accomplished without support and encouragement of
others.

I am extremely indebted to my supervisor, Dr. Greg Butler, for his teaching, supervision,
and patience during last five and a half years of my study. I learned a lot from him.

I would like to thank the members of my committee from Concordia University, Dr.
Peter Grogono, Dr. Patrice Chalin, Dr. Juergen Rilling, and Dr. Ferhat Khendek for their
fruitful feedback during my doctoral proposal and my defense.

I am thankful to Dr. Peter Hitchcock, from Dalhousie University, for his time to serve
as external examiner of my. defense, and for his valuable recommendations on the thesis.

I wish to thank the administrative staff of our Department, particularly, the Graduate
Programs Advisor, Halina Monkiewicz, the Laboratory Coordinator, Pauline Dubois, and
the Diploma & Certificate Program Assistant, Edwina Bowen.

I wish to thank all my friends and colleagues, especially, Farzad Kohantorabi and Stuart
Thiel for the discussion about the patterns and their valuable suggestions. I also thank Sahar
‘Kayhani who contributed to parts of the implementations.

I would express my warmest gratitude to my parents for their prayers.

And last but not least, I would like to thank and express my gratitude to my beloved
family, my wife Farzaneh Kazemi, my daughter Sahar, and my son Sajjad, for all their

support and love.

v

Contents

List of Figures

‘ List of Tables

List of Acronyms

1 Introduction

1.1
1.2
1.3
1.4
1.5

The Problem
The Solution o . L e
Case Study o . e
Contributions o .. e e e

Organization of the Thesis e e e e e e e e

2 Background and Related Work

2.1

2.2

2.3

Model-Driven Engineering (MDE)
211 AnMDERoad Map . . o o v o oo
212 Artifactsin MDE o
2.1.3 Transformationsin MDE
214 Modeling Tool e
2.1.5 Quality Controlin MDE Lo L.
2.1.6 Modeling in Traditional Software Engineering
2.1.7 Model Driven Architecture (MDA)
Domain Si)eciﬁc Modeling (DSM) R
221 UMLProfiles
2.2.2 A Systematic Approach for Defining UML Profiles
Pattern Languages (PLs)
2.3.1 Pattern Languages in Architecture e

xiv

Xv

N T T N S

© © oo

2.3.3 Forms of Writing Patterns (Pattern Forms) 25
2.3.4 Pattern Language Definition 27

2.4 Pattern Relationships L. oL o 28
2.4.1 Patterns are not Isolated Islands 28
2.4.2 Pattern Relationships and Quality of Design 29
2.4.3 Gang of Four (GOF) Pattern Relationships 31
2.4.4 James Noble’s Pattern Relationships Scheme 31
2.4.5 Pattern Language Grammars 34
2.4.6 Pattern Relationshipsin POSA-5 37
2.4.7 Pattern Relationshipsat a Glimpse 42

2.5 Pattern Selection/Detection fe e e e e e 44
2.5.1 GOF Design Pattern Detection 44
2.5.2 Pattern Enforcing Compiler (PEC) 45
2.5.3 Systematic Pattern Selection 47

2.6 Patterns of Enterprise Application Architecture (PofEAA)PL. 48
2.6.1 Organization of the Patterns in PofEAA 49
262 PofEAAasaPL 53
2.6.3 PofEAA is in the Solution Domain 55
Pattern Language Verifier (PLV) 56
3.1 The Compilation Process 58
32 ThePLV Process o . ittt il 59
3.3 Rules: Important Requirement for PLV. 00000 . 60
3.31 Structural Rules 60
3.3.2 SyntacticRules L L oo 65
3.33 SemanticRules o 72

34 PLVwvs. Compiler R 74
3.5 The Profile-driven PLV Process 75
3.5.1 Overview e e e e e e e 75
3.5.2 PLV Architecture 79
3.5.3 Pattern Structural Verifier (PSV) 80
3.5.4 Pattern Langnage Syntactic Verifier {PTVY) 81
3.5.5 Pattern Language Semantic Verifier (PMV) L. 82
3.5.6 Pattern Language Advisor (PLA) 83

2.3.2 Pattern Languages in Software, 25

vi

3.6 Discussion o . e e e e e e e e e e e e e 84

3.6.1 Summary e e e e e 84
3.6.2 Possible Extensions to the PLV Modules 85
3.6.3 Pattern Language Issues e e e e e 86
364 ProfilelIssues 87
A Pattern Langunage Verifier (PLV) for PofEAA 88
4.1 PofEAA Selected Patterns e 88
4.2 PofEAARules e e 92
421 Structural Rules 93
422 SyntacticRules 96
423 SemanticRules L oo 100
4.3 PofEAAUMLProfile 102
4.3.1 Defining the PofEAA metamodel 102
4.3.2 Mapping PofEAA metamodel to UML metamodel 103
4.3.3 Stereotypes of the PofEAA Profile 105
4.3.4 Tagged Values of the PofEAA Profile 106
4.3.5 Constraints of the PofEAA Profile 108
4.4 ArgoPLV: APLV for PofEAA 110
441 ArgoUML o . o e 110
4.42 ArgoPLV Architecture o0 112
443 PLPin ArgoPLVo oo 113
444 PSVin-ArgoPLV 115
445 PTVinArgoPLV. o 116
446 PMVin ArgoPLV oo 122
447 PLAinArgoPLVo 122
4.4.8 Using ArgoPLV e 127
4.5 Discussion P 127
4.5.1 Summary Lo 127
452 TIssues Related to BuildingaPLV 128
‘4.5.3 OtherIssues. 129
ArgoPLV in Action 131
5.1 The Applicationo 131
5.2 Using ArgoPLV in Stepwise Design of the Application 134

vil

5.3
5.4

Using ArgoPLV in Checking a Design Model of the Application

Discussion e e e e e e e e e e
541 Summaryo e e e e e e e e P
5.4.2 Observations i e e e e e e e e e

6 Conclusion

6.1 SUmMMAry i e e e e e e e e e e e e e

6.2 Review of the Contributions

6.3 Discussion L e e e e

6.4 Limitations L e

6.5 Comparison to Related Work

6.6 Future Work
Bibliography

A ArgoPLV Artifacts

Al
A2
A3

Ad

AS

A6

Selected Patterns from PofEAA SRR
Advices from the PofEAA Book. N
PofEAARule Set. e
A31 Part I Structural Rules 0.
A.3.2 Part II: Syntactic Rules (Pattern Organizations)

 A.3.3 Part III: Syntactic Rules (Pattern Relationships)

A.3.4 Part IV: Semantic Rules
PofEAA UML Profile
A4l Stereotypes e e e e
A42 Tagged Valueso
A43 Constraints 0 .. L.
Source Code Excerpts
A.5.1 JavaDoc for General Utility Singleton Class (GU java)
A52 AStructural Critic
A.5.3 Three Synfactic Critics e
A5.4 A Semantic Critic L.
AS55 AWizard
Sample Application: Online Student Registration System
A.6.1 Domain Nodel of the System o000

viil

157
157
158
159
161
161
163

164

A.6.2 A Given Design of the System using PofEAA Patterns
A.6.3 The Given Design after Verification by the ArgoPLV
A7 Design Rationale

List of Figures

O 00 N D O e W N

[N R N B R N L N U e e T e e L e T T o T = Sy S
S O R W N = OO0 U RW NN =D

AnMDERoad Map i
Design of Request-Handling Framework with Isolated Patterns
Design of Request-Handling Framework with Interwoven Patterns
Relationships Between GOF Design Patterns
Relationships Between GOF Design Patterns Proposed in [Zim95]
A BNF Grammar for the Request-Handling Pattern Language
Syntax Diagram of the Request-Handling Pattern Language
The Front Controller Pattern
An Annotated Pattern Language Grammar Overview Diagram
A Grammar Equivalent to the Diagram Given in Figure 9
A Template for Design Space Visualization using QOC Approach
A Cheat Sheet for Selecting Patterns
Three Phases of the PLV Process
The Table Data Gateway Pattern {Fow02, p. 144}
Structural Rules for Table Data Gateway Pattern
The Table Data Gateway Pattern [BHS07a, p. 544]
The PLV Architecture
Selected Patterns from PofEAA in a Layered Architecture
The Front Controller Pattern e e

PofEAA Rule Set - Part I: Structural Rules (A Sample) o

PofEAA Rule Set - Part 11: Syntactic Rules (Pattern Organizations)
PofEAA Rule Set - Part III: Syntactic Rules (Pattern Relationships) . . .

PofEAA Rule Set - Part IV: Semantic Rules
Mapping the PofEAA metamodel into the UML metamodel-.
The Packages in the PofEAA UML Profile

ArgoUML’s main windowo o

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44
45

46
47
48
49

50

51
52
53
54
55
56
57
58

60

ArgoPLV Architecture
Defining Stereotypes and Tagged Values of PofEAA Profile in ArgoUML . .
Predicate Method of the CxrFrontController Critic (Part 1)
Predicate Method of the CrFrontController Critic (Part 2)
An Excerpt from the Source Code of class CrLayers
A Method from GU Class which Checks “ServiceLayer” Tagged Value . . .
Predicate Method of the CrDomainModelSyn Critic
Detected Patterns tab is added to Details pane of ArgoUML

Three PofEAA Knowledge Types are added to ArgoUML’s ToDo List

A Record from the “critics.properties” File
An Excerpt from the Front Controller Wizard
Domain Model of the Online Student Registration System
Applying PofEAA UML Profileon the Model
Exploring Stereotypes and Tagged Values of PofEAA UML Profile
Setting the Stereotype and Tagged Values of the Main Package

Reporting Syntactic Problem and Showing Guidelines to the Designer

Automatic Fix of Syntactic Problem by Adding all Missing Layers
Applying the Front Controller Pattern

Automatic Fix of Structural Problems in Applying Front Controller

Automatic Fix of Semantic Problem in Template View Pattern
Reporting the Detected Layers and Patterns of the Design Model
Reporting Syntactic Problem on the Relationship between Patterns
Automatic Fix of Structural Problems in Data Mapper Pattern
Automatic Fix of Structural Problems in Table Data Gateway Pattern . . .

Automatic Fix of the Structural Problems in Record Set pattern

Reporting the Syntactic Problem Regarding Organization of Patterns

Automatic Reorganization of Patterns into the Layers

Applying the Optimistic Offline Lock pattern in the Concurrency Layer

The Design-Model for the Application and the Applied Patterns
The Tagged Values of the Main Package of the Model

A Design Model for Online Student Registration System using PofEAA

Design of Online Student Registration System - Refined by ArgoPLV
Selected Patterns from PofEAA in a Layered Architecture

Structural Rules, Intent, and Sketch of Front Controller Pattern

X}

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
38
89
90
91
92
93
94

Structural Rules, Intent, and Sketch of Page Controller Pattern
Structural Rules, Intent, and Sketch of Template View Pattern
Structural Rules, Intent, and Sketch of Transform View Pattern.
Structural Rules, Intent, and Sketch of Service Layer Pattern
Structural Rules, Intent, and Sketch of Domain Model Pattern
Structural Rules, Intent, and Sketch of Table Module Pattern
Structural Rules, Intent, and Sketch of Transaction Script Pattern
Structural Rules, Intent, and Sketch of Data Mapper Pattern
Structural Rules, Intent, and Sketch of Active Record Pattern
Structural Rules, Intent, and Sketch of Table Data Gateway Pattern
Structural Rules, Intent, and Sketch of Row Data Gateway Pattern
Structural Rules, Intent, and Sketch of Remote Facade Pattern
Structural Rules, Intent, and Sketch of Data Transfer Object Pattern. . . .
Structural Rules of Optimistic Offline Lock Pattern
Structural Rules, Intent, and Sketch of Pessimistic Offline Lock Pattern . .
Structural Rules of Client Session State Pattern
Structural Rules of Server Session State Pattern
Structural Rules of Layer Supertype Pattern
Structural Rules, Intent, and Sketch of Record Set Pattern
Structural Rules, Intent, and Sketch of Money Pattern
Structural Rules, Intent, and Sketch of Gateway Pattern
Structural Rules, Intent, and Sketch of Mapper Pattern
Mapping the PofEAA Meta-model into the UML Meta-model
GU class Javadoc, page 1o o Lo
GU class Javadoc, page 2 L.
GU class Javadoc, page 3 e .
GU class Javadoc, page 4 Lo
GU class Javadoc, page bo
GU class Javadoc, page 6 oo
GU class Javadoc, page 7 Lo
GU class Javadoc, page 8
GU class Javadoc, page 9 o
GU class Javadoc, page 10o
GU class Javadoc, page 11o

xil

95
96
97
98
99

GU class Javadoc, page 12. 209

GU class Javadoc, page 13 e 210
Domain Model of the Online Student Registration System 223
A Design Model for Online Student Registration System using PofEAA . . 224
Design of Online Student Registration System - Refined by ArgoPLV 225

xili

List of Tables

© 00 N s W N -

[\ [N} [\>]] [o ja— [am—y P [SeY p— ot st [
W N = O O 00N DU R W NN = O
¢

Examples of domain-specific languages (adapted from [MHSO05])
Classification of Pattern Relationships
Pattern Relationshipsat a Glimpse
Alternative Patterns for Domain Layer L
Alternative Patternbs for Concurrency Control e
Organization of Patferns in the PofEAA Book, Adapted from [Fow02]
Notations for Representing the Organization of Patterns
Notations for Representing the Relationship Between Patterns
Notations for Representing the Semantic Rulesofa PL
Statistics on Selected and Excluded Patterns from PofEAA
Selected and Excluded Patterns from PofEAA in our Case Study
Advices from the PofEAA Book [Fow02]
Tagged Values for stereotype «PofEAAModel» in PofEAA UML Profile
Statistics about the PofEAA UML Profile
Some Stereotypes of the PofEAA Profile . e
A Record from the Design Rationale File
Records from the Design Rationale File Associated with the Repairs
Advices from the PofEAABook
Advices from the PofEAA Book (Cont’d)
Advices from the PofEAA Book (Cont’d)
Advices from the PofEAA Book (Cont’d)
Tagged Values for stereotype «PofEAAModel» in PofEAA UML Profile

Records from the Design Rationale File Associated with the Repairs

X1v

107
109
109
124
149
177
178
179
180
197
226

List of Acronyms

API
CASE
CFG
DB
DBMS
DSL
DSM
DSML
EOL
EWL
EMF
GEF
GOF
GPL
GUI
IDE
MDA
MDD
MDE
MDSD

MDSE

Application Programming Interface
Computer Aided Software Engineering

Context-Free Grammar

_ Data Base

Data Base Management System
Domain-Specific Language
Domain-Specific Modeling
Domain-Specific Modeling Language
Epsilon Object Language

Epsilon Wizard Language

Eclipse Modeling Framework
Graphical Editing Framework

Gang of Four

General Purpose Language
Graphical User Interface

Integrated Development Environment
Model-Driven Architecture
Model-Driven Development
Model-Driven Engineering
Aodel-Driven Software Development

Model-Driven Software Engineering

Xv

MVC Model View Controller

MOF Meta-Object Facility

OCL Object Constraint Language

OCLE Object Constraint Language Environment
00 Object-Oriented

OMG Object Management Group

PEC Pattern Enforcing Compiler

PIM Platform-Independent Model

PIT Pattern Information Table

PMV Pattern Language Semantic Verifier

PL Pattern Language

PLA Pattern Language Advisor

PLOP Pattern Languages of Program

PLP Pattern Language UML Profile

PLV Pattern Language Verifier

PSV Pattern Structural Verifier

PTV Pattern Language Syntactic Verifier
PofEAA Patterns of Enterprise Application Architecture
POSA Pattern-Oriented Software Architecture
PSM Platform-Specific Model

QOC Questions, Options, and Criteria

UML Unified Modeling Language

WFR Well-Formedness Rule -

XMt XML Metadata Interchange

xUML Executable UML -

XSLT Extensible Stylesheet Language Transformations

Xvi

Chapter 1

Introduction

1.1 The Problem

The emergence of model-driven paradigm for software development has shifted the fo-
cus of software development from code-centric to model-centric. There are several ap-
proaches presented to the software community as model-driven approaches, e.g., Model-
Driven Architecture (MDA) [Obj09b], Model-Driven Development (MDD) [Sel03, Sel06],
Model-Driven Engineering (MDE) [Béz06, Sch06], and Model-Driven Software Development
(MDSD) [SV06]. The ultimate goal in all these approaches is to be “Model-Driven.”
Hence, models are the main artifacts that drive software development in a model-driven
approach [Béz06], and the quality of models has direct impact on the quality of software.
In this thesis, we select MDE as a representative of all the model-driven approaches.
However, our focus is on the models that are used for the design of the software, i.e., design
model. The use of model for designing software is not limited to the model-driven ap-
proaches, even in traditional software development paradigms, models are used extensively.
~ One of the approaches selected by the designers, in the hope of producing quality mod-
els, is to apply best practices that are already identified, documented, and introduced by
the experts as Patterns. For instance, Booch says “All well structured object-oriented ar-
chitectures are full of patterns” [GHJV95, p. xiii], or Larman says “Learning and applying
patterns will accelerate your mastery of analysis and design” [Lar05, p. xxi]. This is be-
cause patterns are the documented knowledge of experts. When an expert finds out that
a problem is occurring regularly, he/she may decide to form the solution as a pattern and
introduce it to the others. In a short definition, “a pattern is a solution to a problem in a

context” [GHJIV95, p. 3].

When a collection of patterns is defined such that a) there is a starting pattern, b) there
is a guidance on how to use one pattern after another, and c¢) the set of all patterns in the
collection are sufficient to provide the design for a whole system, we name the collection
a Pattern Language (PL) [A*77, Ale79]. If the designers decide to design a system based
upon the patterns of a PL, they must have knowledge about how to apply an individual
pattern correctly, how to put several patterns together (weave patterns) to make a correct
combination of patterns, and how to ensure that a pattern combination is semantically
correct.

Despite the ample discussion on the patterns in the software community, and the emer-
gence of many pattern collections or pattern catalogs [HC07], the field of Pattern Languages
is not as developed as the field of patterns. In an study, Booch [Boo09] has identified “a
catalog of 1938 patterns, encompassing 54 pattern languages and 1884 individual patterns.”

Building a design model in MDE based upon a PL is both recommended and widely
accepted in the software community. In ﬁsing a PL, two major issues are “pattern selection”
and “pattern application” [GHJIV95, p. 29]. These issues have direct impact on the quality
of models. That means, selecting a wrong pattern or incorrect usage of a pattern could
result in inconsistent design and therefore low quality software.

Not all the PLs have precisely defined rules governing the structure of individual patterns
(structural rules), the possible relationships amongst patterns (syntactic rules), and the
semantic of a pattern combination (semantic rules). For some PLs, pattern relationships are
embedded into the lengthy texts of pattern descriptions. For instance, Patterns of Enterprise
Application Architecture (PofEAA) [Fow02] consists of 51 patterns with relationships which
are all explained in prose description. Hence, designers in general, and novice designers in
particular, are vulnerable in making mistakes in pattern selection, pattern appliéation, and
pattern Weaving. That means, designing with patterns [BHSO7b, p. 248] is not an easy task,
particularly for a novice designer. '

Ensuring that the constraints of a pattern are respected frees a designer from the exi-
gencies of implementation. Providing support for automatic verification of the models that
have benefited from a PL will expedite the design process and results in better produc-
tivity. The ability to verify the use of a PL in a design model, results in better quality
models (increasing the correctness of the model), faster development process. improved
documentation, and improved consistency.

This thesis addresses the problem of verifying a design model which is built based upon

the patterns of a PL. The problem is that patterns are not isolated islands. In designing

software based upon the patterns of a PL, i.e., in designing with patterns [BHSO07b, p. 248],
the application of the patterns is not arbitrary. The PL may contain dozens of patterns
with a variety of possible relationships between them: uses, alternative, conflict, to name
a few. The designer must adhere to the relationships between patterns. If the designers
do not understand the various interactions between patterns, they might select conflicting
patterns (HAZ07]. Buschmann et al. [BHSO7b, p. 121-134] argue and show by an example
that the relationships between patterns help the designer create pattern-based designs where
their quality is better than the designs built with isolated patterns.

Before presenting our solution, we must clarify that the verification, the correctness, and
the consistency of a design model, are all with respect to the rules that describe the PL. By
“verifying a design model” we mean we check a design model to find problems in applying
the patterns of a PL. The problems are caused by violation of PL rules, structural, syntactic,
or semantic. In other words we check the correctness and the consistency of the model from
the PL point of view. By “obtaining a quality design model” we‘ mean producing a model
with improved quality, i.e., a model which is both correct and consistent. We verify a design
model to find problems, then we fix the detected problems to obtain a quality model.

It should be noted that some researchers [Unh05, p. 14] correspond verification to only
the syntactic correctness of software and models, and believe that dealing with semantic
meanings is validation. However, in this thesis, we consider the checking of all three classes

or rules as verification.

1.2 The Solution

As a solution to the aforementioned problem, we propose a process called Pattern Language
Verifier (PLV). We believe that checking a model which is built using the patterns of a PL
is similar to using.a compiler [ASUS86] for checking a source program which is written in
a programming language. This similarity is the cornerstone of defining the PLV process.
The idea of similarity between PL and a formal grammar is also pointed out by other
researchers [NB02, HAZ07, Zdu07, BHS07a).

PLV is a verification process which exploits the idea of programiming language compilers
to detect the structural, syntactic, and semantic errors in a design model. Furthermore, PLV
includes a module which helps the designer in fixing the problems either automatically or
through guidelines and advices. We also propose a formalism for representing the rules of a

PL. Characterizing the relationships between patterns is an open research problem [NB02].

The PLV process accepts a Unified Modeling Language (UML) design model as input
and reports the structural, syntactic, and semantic errors in the model, considering the
rules of the underlying PL. The PLV process includes four cooperating modules (phases):
Pattern Structural Verifier (PSV), Pattern Language Syntactic Verifier (PTV), Pattern
Language Semantic Verifier (PMV), and Pattern Language Advisor (PLA).

The process starts by PSV, which is responsible for detecting the structural errors that
are found in the application of individual patterns. Then, the PTV detects the syntactic
problems regarding the pattern combinations used in the model. The PMV finds the se-
mantic problems in the design model, i.e., the inconsistencies between the detected patterns
and the context of the design. The PLA reports the errors to the designer, gives guidelines
on how to fix the problem, and, if wizards are available, repairs the problems automatically
subject to the designer’s request. A Design Rationale is also recorded by the PLA to show
the automatic modification applied on the model. The information on the structurally
correct patterns (detected by PSV) are recorded into a table called Pattern Information
Table (PIT) which facilitates the work of the other phases.

As in writing a program in a programming language, where the programmer knows
which keywords he/she wants to use and which language constructs is he/she using, in
designing with patterns we suppose that the designer knows which patterns he/she wants
to apply. This way we eliminate consideration of the task of pattern selection in PLV.
For implementing this idea we utilize the UML profile mechanism [Obj05¢]. This makes
our process a profile-driven process. Both the designer and the process make use of
the profile elements: stereotypes, tagged values, and constraints. Stereotypes are used to
indicate which specific pattern is being applied and which model element is playing a role
in a pattern. Tagged values are used to access the meta-information such as the level of

expertise of the designer or the language used for implementation of the system.

1.3 Case Study

Our case study consists of two parts. The first part aims fo validate the PLV process, i.e.,
to show how we can reach a PLV tool, given é. PL. The second part intends to evaluate the
obtained PLV, i.c., to show how the tool helps the ‘(icsigncr in finding and fixing the design
problems related to applying the patterns of the PL.

In the first part of the case study, as the PL. we select a subset of PofEAA [Fow02]

consisting of 23 patterns. Since this PL lacks a set of precise rules that specify the structural,

syntactic and semantic aspects of the language, we extract these from the PofFAA book.
Then, the extracted information is transformed into formal rules. We define a UML profile
for PofEAA, which makes the definition of a PLV for PofEAA possible. The defined PLV is
then implemented as an extension for the ArgoUML [Tig09] modeling tool. The resulting
tool is called ArgoPLV.

In the second part of the case study, we use the ArgoPLV tool to model a sample web-
based application: online student registration system. We choose two tracks for this part.
The first track reveals how the ArgoPLV tool helps the designer in an interactive session
‘with the tool, where a step-by-step design of the system is undergone. The second track
shows the usefulness of the tool in verifying an existing model of the system and reporting
the errors to the designer. The design before and after verifying with the ArgoPLV is

investigated.

1.4 Contributions

To the best of our knowledge, PLV is the first work which addresses the problem of verifying
a design model from the PL view. Most of the related work cited in Chapter 2 falls into
the category of single pattern detection and those works do not focus on the PL aspects.
There are two works close to PLV: Pattern Enforcing Compiler (PEC) [LSV05] and Zdun’s
work [Zdu07]. The former is an extension to a Java compiler which verifies the application
of Gang of Four (GOF) [GHJV95] design patterns in the code. PEC only investigates
individual patterns. It does not consider PL issues. The latter uses annotated PL grammars
and design space analysis in systematic pattern selection. Zdun’s work addresses both
architectural patterns and GOF design patterns. This work provides a pattern selection
. mechanism; It is not a verifying approach, and it does not address the models directly.

Working on the formalisms for PLs in general, and particularly formalism for repre-
senting the pattern relationships, is an important area of research in software engineering.
The rationale is that lack of formalism for PLs is an obstacle for providing tool support in
pattern selection and application. We should note that patterns are not isolated islands,
and considering patterns independently is not necessarily useful, even it may result in low
quality designs, i.e. designs which are more complex and hard to maintain [SSRBO00, p. 505],
[BHSO07b, p. 117]. [Zdu07].

Addressing the quality in MDE is another important issue. Quality of a model. like

any other quality. is not an absolute concept. Different people consider different quality

attributes for a model. For instance, Selic [Sel03, Sel06] considers Abstraction, Understand-
ability, Accuracy, Predictiveness, and Inerpensiveness as the characteristics of a quality
model. Unhelkar’s [Unh05] argues that a model should be syntactically correct, semanti-
cally meaningful, and aesthetically pleasing. Buschmann et al. [BHSO7b, p. 131-132] see a
model with high pattern density as a good design. After all, the tool assistance for quality
assurance will help designers in finding the problems and checking the quality of the models.

The contributions of our research are as follows.

1. The PLV Process (See Section 3.5). This thesis moves the state-of-the-art in the
Pattern Language Verification to the next level by introducing the PLV Process. The
PLV is an improved version of the previously published ideas in [ZKB08, ZBK09]. For
the first time, the idea of mimicking the tasks of the analysis phases of a compiler in

order to check a design model is presented and organized as a process.

2. A formalism for representing a PL (See Section 3.3). This thesis contributes to the
pattern formalization techniques by addressing all the three aspects of a PL: struc-

tural, syntactic, and semantic.

3. The PofEAA Advices (See Section 4.2). Extracting the advices from the book and
classifying them into three groups, structural, syntactic, and semantic, is a useful

source of knowledge for the designers who want to apply these patterns.

4. The formalized PofEAA rules (See Section 4.2). The advices are formalized using the
formalism proposed in this thesis. These formalized rules pave the way for defining

the constraints of the profile.

5. The PofEAA UML Profile (See Section 4.3). This is the first time that a profile
is defined for a PL. The profile per se can be used by both the designers and the

researchers.

6. The ArgoPLV (See Section 4.4). The ArgoPLV is a PLV for PofEAA, i.e, it is tool
that verifies the application of PofEAA.

7. An exemplar session of ArgoPLV (See Chapter 5). This example shows designing with
patterns of the PofFAA PL for a sample application: Online Student Registration
System.

8. An MDE Road Map (See Section 2.1). The MDE road map presented in this thesis is

an introductory review of NIDE which discusses on the artifacts, the transformations.

the modeling tool, and the issue of “Quality in Modeling.”

1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 2 introduces the background knowledge and the
related work. Chapter 3 describes the PLV process as a proposed solution to the problem.
Chapter 4 shows how a PLV can be defined for a given PL. As a case study, a PLV is
built for a subset of PofEAA. The PLV modules are integrated into ArgoUML [Tig09a]
modeling tool, resulting to a tool named ArgoPLV. Chapter 5 shows the ArgoPLV in action
to confirm that the ArgoPLV is applicable in a real world situation. The final chapter,
Chapter 6, is dedicated to the conclusion, discussion, comparison to the related work, and
future work. Appendix A, titled “ArgoPLV Artifacts,” gathers together a comprehensive
set of the artifacts that are generated during the process of building ArgoPLV tool. The
appendix is a good reference for readers who are interested into applying the PLV process

for a PL.

=1

Chapter 2

Background and Related Work

This chapter introduces the basic background and the related work that help the reader un-
derstand the problem and the solution that are described in this thesis. Section 2.1 discusses
the main idea of model-driven apprbaches, particularly Model-Driven Engineering (MDE),
and addresses the issues regarding the quality control of models. A quick comparison to the
traditional software engineering and Model-Driven Architecture (MDA) ends the section. In
Section 2.2, we discuss Domain-Specific Modeling (DSM) and the related concepts, includ-
ing Domain-Specific Language (DSL) and.the UML Profile, and then a systematic approach
for defining a profile is introduced. Section 2.3 elaborates on the concepts of pattern and
Pattern Language (PL), and presents our accepted definition for the term PL. Section 2.4
illuminates the fact that “patterns are not isolated,” by conveying the pattern relationships
and the formalisms that are introduced by the pattern authors and the researchers. The
work on pattern sélection and/or pattern detection is discussed in Section 2.5. Section 2.6

introduces the Patterns of Enterprise Application Architecture (PofEAA) as a PL.

2.1 - Model-Driven Engineering (MDE)

In most of the engineering disciplines, it is de rigueur to use models when designing a
complex system. Since today’s software systems are becoming more and more complex,
benefiting from using models is inevitable [Sel03]. Despite the processes that are code-
centric, in MDE models are the main artifacts which drive the development. The ultimate
goal of MDE is to automatically generate programs from the corresponding models {Sel03].
Modecls are transformed from higher levels of abstraction to the lower levels such that finally
they will become the deplovable software.

In the software community. there is no clear presentation of the MDE as a process for

o

software development. In this section, we present our literature survey on MDE as follows.
In Section 2.1.1 we gather all the main concepts of MDE under an umbrella: “a road map
for MDE.” Then, in Section 2.1.2 to Section 2.1.4, we study the major parts of the road
map, Artifacts, Transformations, and Modeling Tool respectively. Section 2.1.5 reviews
the issue of quality control in MDE. In Section 2.1.6, we address the role of modeling in

traditional software engineering, and in Section 2.1.7, the MDA is introduced briefly.

2.1.1 An MDE Road Map

Since MDE is not mature enough yet as a software process, there is no consensus on the
life cycle and the artifacts in this process. As Bran Selic [Sel06] says “we are still in the
infancy of this technological wave.” We depict an MDE approach (road map) for software
development as presented in Figure 1, with focus on the major artifacts that matter in
MDE.

Figure 1 aims to highlight three major points about MDE:

e MDE is a model-centric appfoach.

o The software development is indeed a correct application of some transformations.
That means developers transform artifacts from one level of abstraction to another

level, until they obtain a working code.

e For applying MDE, we need a modeling tool to utilize automatic execution of trans-

formations.

Note that this is not a complete MDE process, since it starts from the design, and the
requirements are not considered as part of our MDE road map. This does not mean to
underestimate the importance of the requirements analysis and specification. Instead, we

assume that the designer already has some knowledge of the underlying business system.

2.1.2 Artifacts in MDE

In Figure 1, artifacts are shown by cubes. An artifact is a piece of information or the
result of a transformation. As indicated in Figure 1, there are three main artifacts in MDE:

Domain Knowledge, Model, and Code. which are discussed in the following.

Domain Knowledge The designer should have enough knowledge of the domain and

some familiarity with patterns. Applving patterns is both essential and recommended in

Design Transformation

Higher level of abstraction

Model

uojeuuo)sue) L
18PON-01-13pON

Lower level of abstraction

General Purpose Patterns

Domain Specific Patterns

Domain Knowledge

Domain Knowlege

Legend:

software development using the MDE approach, e.g., Larman says “Learning and applying

Modeling Tool

Transformation Artifact

Modelto-Code Trans!
(Forward Engineering

(Reverse Engineering

Code-to-Model Transformatigs

~~

Code

Immature Code

uonewsojsuel |
8p00-0}-8p00)

Mature Code

Figure 1: An MDE Road Map

patterns will accelerate your mastery of analysis and design” [LérOS, p. xxi].

Patterns can be divided into two groups. General-purpose patterns include patterns and
practices which are well known to the software community and their usage is recommended
in most of the Object-Oriented (OO) software projects, GOF [GHJIV95] design patterns and
Larman’s GRASP [Lar05] patterns, to name a few. Domain-specific patterns are applicable
when the developer wants to work on a problem in a specific domain such as enterprise appli-
cations or telecommnnication applications. As examples of domain-specific patterns, we can

refer to PofEAA [Fow02] and Pattern-Oriented Software Architecture (POSA) [BNMR96].

We will discuss more about the patterns and PL in Section 2.3.

10

Model As it was mentioned earlier, models are the main artifacts in MDE. But what is a
model? A basic definition is: A model is a representation of a system. Selic [Sel06] defines
an engineering model as a representation of a system that hides some of the properties and
highlights the ones that are of interest for the user. This hiding and highlighting means “a
model is an abstraction” [Sel06).

Regarding the technical details of the system under development, models are divided
into two levels of abstraction. Models‘in the high-level of abstraction deal with‘concepts
that are more of interest of the user (customer) of the system and hide the technical details.
Models in the low-level of abstraction contain technical and implementation details that are
more attractive to the developers of the system.

In MDE, we start from a description of a business feature by building models which are
at high level of abstraction. The final goal is to reach to models at lowest level of abstraction,
i.e., an executable system. As we move in this path from start to end, our understanding
of both the business goals and the system under development evolves. Therefore, it éauses
the models to evolve too. That means the models are more mature, accurate, and consis-
tent [BIJO6]. Note that in Figure 1 we have distinguished between models at low-level of
abstraction and the code.

Every model should conform to a metamodel. For instance, a set of books in a library
can be represented as a relational model (a table which has columns such as ISBN, title,
and author). Relational models conform to a relational metamodel which defines a relation
(or table) as a set of attributes (or columns) with distinct names. Therefore, there are two
important relations in MDE: representation and conformance. Simply put, the metamodel
says what model elements we can have in our model and how these elements are arranged and
related. Each element in the metamodel can be considered as a type for the model elements.
Since there are a growing number of metamodels, there is a need for a meta-metamodel to be
defined. A metamodel is said to conform to its meta-metamodel [Béz06]. Eclipse Modeling
Framework (EMF) Ecore [Fou09a] and Object Management Group (OMG) Meta-Object
Facility (MOF) [Obj06a] are two well known meta-metamodels.

There are many modeling languages, tools, and approaches. A modeling language can be
mathematical, textual, or graphical. As an example of a mathematical language, Z [Spi92] is
a forinal specification notation based on the first order predicate logic and sct theory. In the
graphical modeling of OO software systems, Unified Modeling Language (UML) [Obj05b] is

the dominant approach. “UML has become the universally-accepted language for software

11

design blueprints” [Lar05, p. xix]. UML has an important role in the popularity of the ap-
plication of models in software development [SV06, p. 3]. Our focus for high-level modeling
in this research is on UML models. To narrow our previous definition of model, henceforth
we consider the following definition for model: A model is a set of related and consistent
UML diagrams.

To achieve the persistence and interchangeability of models, an interface format called
XML Metadata Interchange (XMI) is provided by OMG [Obj05a). Therefore, models are
serialized in the form of XMI files by the modeling tools.

Code Code is the final artifact in any software development endeavor. In contrast to the
traditional approaches of software development, in MDE the code generation is not merely
the responsibility of the de\zelopers. That means, part of the code (and hopefully, all of
it) might be generated automatically by the tool. The most productive form of MDE is
when the process is fully-automated, i.e., the developers work only with the models and
utilizing action languages, the code is 'automatically generated [Sel06]. This is the ultimate
promise of the Model-Driven Software Engineering (MDSE) approaches that promote full
code generation from the UML models, such as Executable UML (xUML) [MBO02].

The code that is generated by currently available tools, is not mature enough to be
considered as a running version of the software. Therefore, the code needs to be enriched by
the complements added by the designer. The first version of the code which is automatically
generated and mostly consists of code skeletons is named immatﬁre code in Figure 1. This
code when added to by the developers and generates a working system is named mature

code. Section “Model-to-Code transformations” will address this issue in more details.

2.1.3 Transformations in MDE

In Figure 1, Transformations are shown by arrows. Transformations are the distinguishing
factor between the MDE and the traditional methods that use models only as sketches for
the design [BI1J06]. Transformation is a mapping function that accepts an artifact as input
and generates another artifact as output. By considering ‘model’ and ‘code’ as artifacts,
there are four possible transformations: model-to-model, model-to-code, code-to-model,
and code-to-code. which are discussed in the following. Some people consider code as a
model with lower level of abstraction, hence, they define only one form of transformation:
model-to-model transformation.

Transformations can be applied manually or automatically. In manual transformations,

12

it is the developer’s responsibility to investigate the input model and apply the modifications
to it by adding, editing, or removing some model elements. Furthermore, the consistency
of the resulting model is up to the developer. In automatic transformations, some transfor-
mation rules are defined to drive the changes, therefore the consistency of the output model
is guaranteed. Transformation rules may be embedded into the modeling tool or maybe
they are explicitly defined by the developer based on the domain-specific knowledge. As

examples of these rules we can refer to profiles and patterns [B1J06)].

Model-to-Model transformation As it is clear from the name, in model-to-model
transformation, a model is changed to another model. The source model and-the tar-
get model could be instances of the same metamodel or different metamodels. When both
source and target are from the same metamodel, there are two specific cases of model-to-
model transformations: refinement and refactoring. In refinement transformations, a model
is slightly changed to another model that better matches the desired system. Refinements
can b_e done manually or automatically. Applying a pattern on a model is- an example
of automatic refinements, where the modcl elements are rearranged to satisfy the pattern
requirements {BIJO6). In refactoring transformations, the designer tries to reorganize the

model and make it simpler based on some well-defined criteria.

Model-to-Code transformation Model-to-Code transformation is also called “code
generation” or forward engineering. By this transformation, part of the code is generated
automatically from the model. Code generation is one of the features that distinguishes
MDE from the old paradigms of software development. Most of the modern modeling tools
are capable of generating code skeletons for a given model. The ultimate goal of MDE is
to reach the level of 100% automatic code generation. There is evidence [Dog07] that this
dream does not seem to be elusive, considering the advances in the supporting technol-

ogy [Sel06].

Code-to-Model transformation Since this transformation is the reverse of the Model-
to-Code transformation. it is called backward engineering (or reverse engineering). By this
transformation, changes in the code are automatically reflected in the model. If models
are considered as the first class citizens in MDE [Béz06], then model should alwavs be
synchronized with the ('bde. Otherwise, the model will be treated as a backup document
which is deprecated soon after the system is delivered. Not many of the modeling tools are

capable of performing backward engineering.

13

The union of forward engineering and backward engineering is called round-trip engi-
neering. Having this feature, the developers are able to work on the model and the code
concurrently. The idea is to kéep the model synchronized with the code all the time during
the system development [Sel06]. If the changes in the code are not reflected back in the

model, then the maintainers face difficulties in maintaining the system.

Code-to-Code transformation This is not widely considered as a class of transforma-
tions in the MDE community. From our point of view, any change in the code can be called
a Code-to-Code transformation, for instance, the refactorings [Fow99] that are applied into

the code to make it simpler.

Design Similar to many of the software engineering approaéhes, design is a dominating
step in MDE, since it relates to the modeling of solution space. As indicated in Figure 1,
design is the outcome of a transformation, labeled “Design Transformation,” which causes
the existing knowledge of the system to take form and is revealed as a model.

Design can be divided into two levels: architectural design and detailed design. The for-
mer deals with the high-level design of software, such as the layering of sub-systems [Fow02,
p- 2], and the deployment of modules. The latter is about technical design of each module
or sub-system. ‘

Most of the time, the design is based on instantiating well-known patterns, including
general purpose and domain-specific patterns. Each pattern has an abstract template which
contains some formal parameters that can be replaced by actual parameters. By pattern
instantiation, the designer specifies the actual parameters for the parameters of the pattern.
If the modeling tool is enriched with the pattern instantiation feature, like IBM Rational

Software Architect (RSA) [IBM09b], most of the work is performed aut.omatically‘.

2.1.4 Modeling Tool

To show the importance of the role of the modeling tool in MDE, in Figure 1, it is indicated
by a circle that everything in MDE happens around it. In general, modeling tools are used
for many purposes: to visualize, understand, and document existing systems, to ¢reate new
designs, and to generate code for a design [LNHO06].

However, in MDE. the modeling tool is anticipated to play a more prominent role by

supporting tasks such as version control. process management. model driven testing. pattern

14

definition and instantiation, checking the Well-Formedness Rules (WFRs) of models, im-
port/export XMI format (serialization), detection and correction of inconsistencies between
models, supporting UML profiles as an effective way of extending the UML metamodel, map-
ping between models, and both model-to-model and model-to-code transformations [Ken02].

We place emphasize on the role of modeling tools on improving the quality of the model.
The tool assistance in finding and/or repairing the problems in models, fosters the quality

control and quality assurance of the models.

2.1.5 Quality Control in MDE

Since models are the main artifacts which drive software development in MDE, quality
assessment of models is an important issue. While people use models to enhance the quality
of software, they must pay enough attention to the quality of models per se [Unh05]. Poor
models will result in problems such as misunderstanding, wrong product, increase in test,
and low quality system. Furthermore, the tool assistance for quality assurance is inevitable
since merely manual inspection or review of designs is not enough [BCOO05]. '
In the MDE process, the focus of quality checks must be on the models. There is no
consensus on the answer to the question “what is a quality model?” Different people view
\the quality of a model from different aspects. Selic [Sel03, Sel06] considers a model to be a
quality model, if it is “Abstract,” “Understandable,” “Accurate,” “Predictive,” and “Inex-
pensive.” Unhelkar’s [Unh05] looks at the quality of a model from three different aspects:
“Syntax,” “Semantics,” and “Aesthetic.” That means, model should be syntactically cor-
rect considering the modeling language rules, model should be semantically meaningful and
consistent, and model should be aesthetically pleasing. From the patterns point of view,
Buschmann et al. [BHSO7b, p. 131-132] see “high pattern density” as a characteristic of a
good design.
| From the syntactical point of view, in UML documents, e.g., UML 2.0 Infrastruc-
ture [Obj05b], there exist some quality checks that are defined in the form of constraints or
WEFRs. WFR is a term used in the normative UML specification documents to describe a set
of constraints that contributes to the definition of a metamodel element. WFRs are defined
to help validate the abstract syntax and help identify errors in UML models. For instance,
one WFR implies that “circular inheritance is not allowed in UML models.” In addition to
natural language, UML uses Object Constraint Language (OCL) [Obj06b] for expressing
WFRs in a precise manner. However, the semantic and aesthetic checks. if described. are

explained by natural language since they are contingent on the underlying domain of the

model. Here is where Computer Aided Software Engineering (CASE) tools come into play
and help designers in finding the problems and checking the quality of the models.

Checking Model Inconsistencies Egyed [Egy07] argues that some changes that the
designers make in their models may have undesired side effects. That means, some changes
may cause new bugs in the model, or they may make the model inconsistent. There are 34
consistency rules that are checked in the Egyed’s work, e.g., “Rule 1: message name must
match class method.” Egyed has proposed an online, non-intrusive technique for fixing
inconsistencies. It locates all choices for fixing inconsistencies, and identifies dependencies
between inconsistencies. The technique is integrated into IBM Rational Rose [IBM09a),
and is evaluated using 48 case studies.

Fuentes et al. [FQL* 03] have inirestigated the UML metamodel against the rules, con-
straints, and the WFRs defined by the UML standard, and have detected 450 errors. Many
of these errors can be fixed easily, e.g., checking for empty names will solve about 300 errors.

Liu et al. [LEM02] have discussed that providing tool support for designers to find
and repair problems in their designs, will help them improve the quality of the design.
They have developed a production system named “Rule-Based Inconsistency Detection
Engine” (RIDE) which helps the designers detect and resolve the inconsistencies in the
UML models. RIDE is implemented in Java and can be integrated into modeling tools such
as ArgoUML [Tig09a]. RIDE uses JESS {Lab09] to execute production rules. To detect
inconsistencies in a given UML model, both the model and the inconsistencies must be
converted into the production rules. Then the production system s‘tarts working by finding
the inconsistencies and repairing them. In addition to general problems, RIDE can also be

used to detect misuses of design patterns.

2.1.6 Modeling in Traditional Software Engineering

We consider two aspects of using models in traditional software engineering. From the
one hand, there are several purposes for using UML models: making easier communication
between people in a team, documenting the system and making the maintenance easier,
helping in test case generation, to name a few. From the other hand. UML.models ére used
in several phases of software development with different levels of abstraction. This usage
varies from the early state of requirements specification (where use case models and activity
diagrams are useful) to the further phase of architectural design (where package diagrams

and deployment diagrams are used) [Unh05].

16

In traditional software engineering, modeling tools are used for drawing models. The
models per se are considered as second priority artifacts, i.e., they are mostly prepared
for design and documentation of the software. Since models are graphical and there is a
belief that “one picture worth more than 1000 words,” models are used vastly to ease the
communication between developers, and to make maintenance easier. However, the extent
of using mociels is not the same in all software development methodologies.

In lightweight methodologies (aka Agile processes [Coc06]), there is less focus on docu-
mentation (and modeling) than heavyweight methodologies. In Agile processes, modeling,
especially in formal and tool supported format, has less value than working software [B109],
and is done only if it is needed and if it helps in better understanding a design. In agile
approaches, the focus is on making the design as simple as possible. The idea of agility in
modeling has caused the invention of another terms such as “Agile Modeling” and “Agile

Model Driven Development (AMDD)” {Amb02].

Quality Control of Models Several types of errors may exist in a model. First, the
designer is vulnerable in making mistakes and creating wrong or low quality models in the
design. Second, due to the fact that the semantics of UML is not strong enough (Fuentes
et al. [FQL*03] have reported 450 errors in the UML standard), there is possibility of
inconsistencies between different models from different views. Third, the model may be not
synchronized with the working code. This is plausible since models are not considered as
the main artifacts, they are supportive documents that after the code is generated, there
is no usage for them and they are going to be archived until a maintainer needs to refer to
them to better understand the system.

The point is that the quality of model is as important as the quality of code. Even in less
model-centric approaches, the models must be correct and high quality to be useful. The
model should be checked against both the human errors, the inconsistencies that maybe
remained in the model due to UML defects (inconsistencies), and the inconsistency with
the working code.

In addition to the quality metrics in traditional software engiheering, that root back
to the code, e.g., Cyclomatic Complexity (CC) and Lines of Code (LOC), there are sev-
eral OO metrics defined for evaluating the quality of models, e.g., Depth of Inheritance
Tree F(DIT), Number of Children (NOC), and Coupling Between Objects (CBO) [FP97].
However. further research is needed for finding quality models for design models.

Some quality models in traditional software engineering, e.g.. 1SO9126 {Int98]. do not

distinguish between the quality of an implemented software system and the quality of the
description of the system. In code-centric approaches, the source code is per se the imple-
mentation and there is no sensible gap between them, however, in model-centric approaches,
this gap (between the model and the implementation) is huge and therefore these quality
models are not suitable for quality of UML models [Lan06].

There exist other techniques for quality control of a system, including the model and
code, such as walkthroughs, inspections, and technical reviews [FW90]. In a walkthrough,
a group of people gather together (including the producer) in order to give somé comments
about the product to the producer. Inspections are more formal practices in order to
detecting and correcting defects in software artifacts. In a review, the product is examined
by some individuals (other than the producer) in order to catch the defects.

Modeling tools can help in checking the syntax and semantics of the models. There are
measurement tools, e.g., SDMetrics [sdm09], that analyze the design model (or the reverse-

engineered c_ode) using the OO measures and report potential problems to the designer.

2.1.7 Model Driven Architecture (MDA)

MDA is considered as an example of MDE vision. MDA was proposed by OMG in year
2000 [Obj09b], as a solution to the problems that were caused by constant changes in
platforms. The proposal was based on two concepts, Platform-Independent Model (PIM)
and Platform-Specific Model (PSM), and (automatic) generation of PSM from PIM. At first
it was not precisely described how to generate PSMs from PIMs. Then, it was suggested
that the PIM to PSM generation can be done by automatic model transformations {Béz06.

However, after a few years of research and practice in MDA, people are now consider-
ing more problems, other than separating PIM from PSM, that need to be solved. The
separation and combination of concerns are currently major problems in development and
maintenance of systems. PIM to PSM can be considered as a special case of a more general
problem of separation of functional and non-functional requirements [Béz06].

MDA is considered as a perspective style of MDE. That means, models are defined
precise enough adhering to specific semantics. Therefore, it is possible to apply consecutive
transformations (mostly automated) on abstract models and obtain more concrete models.
The final transformation will result in an executable system for a specific platform [B1J06].

MDA has a lot in common with MDE, for instance both aim to move software develop-
nment to a higher level of abstraction, but there are differences too. An important difference

is that MDA is more restricted, due to the focus on UML [SV06. p. 4]. Creating a PIM is

18

a crucial first step in the MDA process. The MDA tools should support the PIM to PSM

generation vision and not just generate code from a class diagram.

2.2 Domain Specific Modeling (DSM)

Domain-Specific Modeling (DSM) can be viewed as a special case for MDE. In addition to
the fact that in DSM models are still the main artifacts, we build a model of the system
using the concepts that belong to a specific domain. That means, instead of working on
low-level concepts, the designer deals with higher level of abstraction, resulting the increase
in productivity. More productivity will be achieved if the domain is more specific [DSMO09,
PKO02].

DSM consolidates several areas including DSL. A DSL is a language that is “tailored to
a specific application domain” [MHS05]. A definition for domain is “An area of knowledge
or activity characterized by a set of concepts and terminology understood by practitioners
in that area” [BRJ99]. In contrast to General Purpose Languages (GPLs) such as Java or
C+#, a DSL may therefore express a limited set of concepts and is snitable for a “specific

class of problems” [Fow05]. Table 1 shows some of the DSLs.

| DSL | Application Domain |
BNF Syntax specification
Excel Spreadsheets
HTML Hypertext web pages
LATEX Typesetting

Make / Ant | Software building

MATLAB Technical computing

SQL Database queries and manipulation
VHDL Hardware design

Table 1: Examples of domain-specific languages (adapted from [MHS05])

The idea behind DSL is that by using a large general purpose language, such as UML
2.0, we can not satisfy all the needs of the designers and users of a system. Especially, DSL
helps non technicals to solve their problems without much help from technicals. A good
example of a successful DSL is Excel which helps people in the domains such as business
and finance [Béz06).

Models and DSLs both have strengths that urge us to use them together. For instance,
Jonanlt and Bézivin [JB06] cinphasize on the strong relation between DSLs and models.

They define a DSL as “a set of coordinated models™ and show how models can be used for

19

defining the syntax and semantics of DSLs. As a proof of concept, the Kernel MetaMeta-
Model (KM3) language is defined as a DSL for metamodel specification. KM3 is a meta-
metamodel similar to MOF [Obj06a] or Ecore (the metamodel of Eclipse EMF [Fou09a]
framework), however much simpler. While MOF has 28 classes and Ecore has 18 classes,
KM3 has only 14 classes. Metamodels that are written based on KM3, can be easily con-
verted to/from other formats such as EMFatic (Ecore format) or XMI (MOF format).

UML is the dominant metamodel in MDE, and OCL is a metamodel dependent language
for writing constraints on UML models. However, the DSL approach encourages to use
several small domain-specific metamodels instead of just using a single large metamodel
such as UML. As a response to this need, Atlas Transformation Language (ATL) is defined
as a metamodel-independent language that can be used for doing any kind of transformation
on models. Especially, ATL can be used for checking models, also known as smell detection
and refactoring [BJ06).

One of the major steps in applying a DSM is to have a Domain-Specific Modeling
Language (DSML) [DSM09]. DSML is a technology required in MDE to be considered as a
promising approach. There are several ways in defining a new DSML [Sel07]. One approach
is to create it from scratch. A cost-effective approach is to select a more general language
and customize (refine) it to the domain by specializing its general constructs. The UML

Profile mechanism supports the refinement approach [Sel07].

2.2.1 UML Profiles

Different projects (and organizations) have different needs and use their own domain con-
cepts [Ken02]. Therefore, it is needed to customize UML for specific domains. Fortunately,
from the first day, UML was designéd to be extendable and customizable [Sel07]. New
modeling extensions can be introduced into UML by defining a UML' Profile [Obj05c].
By defining a profile we can extend the UML metamodel with a set of new modeling el-
ements [ANO4, p. 10]. For doing domain specific modeling with UML, profiles are the
recommended solution. UML profiles are extension mechanisms that allow you to tailor
UML for specific areas such as Telecommunication. The idea of profile has been matured
since its inception. |

The first refinement mechanisms that were proposed in the UML were stereotypes and
tagged values which were not defined very clearly and had not enough precision to be used
for designing useful DSMLs. Then a package called profile is considered for holding all

related stereotypes. In UML 2, the profile mechanism has received a lot of improvements

20

in the rules and the definitions. Some of the improvements are: stereotypes can now have
associations in addition to the associations of their base classes, profiles can be represented
in XMI format, and applying (and un-applying) of a profile to a model is clarified [Sel07].

As one of the first documents introducing the profile idea, UML 1.4 Specification [Obj01,

p- 2-74, 2-75] defines the extension mechanism and the profile concepts as follows.

“The Extension Mechanisms package is the subpackage that specifies how spe-
cific UML model elements are customized and extended with new semantics by
using stereotypes, constraints, tag definitions, and tagged values. A coherent
set of such extensions, defined for specific purposes, constitutes a UML profile
-]

A profile is a stereotyped package that contains model elements that have been
customized for a specific domain or purpose by extending the metamodel using
stereotypes, tagged definitions, and constraints. A profile may specify model
libraries on which it depends and the metamodel subset that it extends.|...]
Profiles are sometimes referred to as the ‘lightweight’ built-in extension mech-
anisms of UML, in contrast with the ‘heavyweight’ extensibility mechanism as

defined by the MOF specification.”

We found the following description of UML profile very brief and useful. It is provided
by OMG in a page titled “Catalog of UML Profile Specifications” [Obj09a).

“A UML profile is a specification that does one or more of the following:
e Identifies a subset of the UML metamodel.

e Specifies “well-formedness rules” beyond those specified by the identified
subset of the UML metamodel. “Well-formedness rule” is a term used in
the normative UML metamodel specification to describe a set of constraints
written in UML’s Object Constraint Language (OCL) that contributes to

the definition of a metamodel clement.

e Specifies “standard elements” beyond those specified by the identified sub-
set of the UML metamodel. *“Standard element” is a term used in the
UML metamodel specification to describe a standard instance of a UML

stereotype, tagged value or constraint.

e Specifies semantics, expressed in natural language, bevond those specified

by the identified subset of the UML metamodel.

21

e Specifies common model elements, expressed in terms of the profile.”

Some examples of the UML profiles listed in the catalog [Obj09a] are: UML Pro-
file for Enterprise Application Integration (EAI), UML Profile for Systems Engineering
(SysML [Sys09]), and UML Testing Profile.

List and Korherr [LK05] have presented “A UML 2 Profile for Business Process Mod-
eling,” which is claimed to be more comprehensive than the previous profiles on business
process modeling. Note that in UML 1.4 Specification {Obj01, p. 4-9] a “UML Profile for
Business Process Modeling” is introduced as an example.

Ziadi et al. [ZHJ03] have introduced an introductory work towards defining a UML
profile for software product lines.

Kobryn [Kob04] has discussed the good, bad and ugly sides of the UML 2.0 and ad-
dressed the future of modeling. He refers to the Systems Modeling Language (SysML [Sys09])
as good sample of extending UML 2.0 towards a modeling language for systems engineering.
He emphasizes on an important point that profiles are not only for extending the UML, but

also they can be used for subtracting features from the language.

2.2.2 A Systematic Approach for Defining UML Profiles

While designing a UML profile does not seem to be a difficult task, it should be done
with care. Mostly, a UML profile is just a set of possible stereotypes and tagged values.
Therefore, a profile is facilitating domain specific modeling. In the course of design, you
can annotate the model elements with the defined stereotypes. However, the importance
of the role of those stereotypes becomes clear when we notice that they are defining a new
language that we can work with as we model our domain [Unh05].

Bran Selic [Sel07] has addressed the issue of low quality profiles. Selic believes that lack
of enough material and guidance for designers, on how to create a good profile, is the cause
of these poor quality profiles. As a solution, Selic has proposed a systematic approach for
defining a profile. In fact Selic’s approach is targeting the design of DSLs using the UML

profile mechanism. Sclic’s approach is scparated into two steps.

1- Defining the domain metamodel At the first step. without considering the UML
metamodel, we define a domain model of the DSL that we are designing. This domain
model is in fact the metamodel of our language. This metamodel consists of all fundamental
concepts from the underlying specific domain, the relationships between those concepts, the

constraints (WFRs) for valid models. the notation of the DSL. and the semantics of the

22

DSL. It is wise to express the abstract syntax of the Ianguagé using MOF and to write the
profile constraints in OCL, since UML metamodel is also defined using MOF, and OCL is
supported by many UML tools.

2- Mapping the domain metamodel to UML metamodel The second step is to map
each of the concepts in the domain model into one of the appropriate base classes in the
UML metamodel. Then for each concept, one stereotype should be defined. It is possible
that some stereotypes need to be considered as the specialization of other abstract ones.
The steps should be done carefully in order fo prohibit inconsistencies or conflicts between
the attributes, associationé, and constraints of the domain concepts with the corresponding

UML meta—class.

2.3 Pattern Languages (PLs)

Despite the ubiquity of the concepts Pattern and Pattern Language (PL) in software engi-
neering, there is no formal definition for them. Due to the fact that the “Pattern Language”
concept plays a key role in this thesis, this section is dedicated to provide a clear definition
for Pattern and PL. We start from the architecture area, where the story started, then we
move to the software area to review the definitions given by the experts in the field and to

give our definition.

2.3.1 Pattern Languages in Architecture

The terms “Pattern” and “Pattern Language” were first coined in late 60’s by Christopher
Alexander [A177, Ale79], an emeritus professor of architecture at the University of Cali-
fornia at Berkeley. Amongst many books written by Alexander, there are two books which
have influenced software community a lot: “A Pattern Language: Towns, Buildings, Con-
struction” [A*77] and “The Timeless Way of Building” {Ale79]. The former is a collection
of 253 inter-related patterns for architectural design elements that, all together or a subset
of them, form a language. The latter shows a systematic way for using these patterns in
- designing part of the environment.

In 2000, Alexander founded the patternlanguage.com company to promote collabo-
rative working between people. builders, and architects to build good buildings. .On the
patternlanguage.com web site the story of how this name is selected for the company is

explained. The following is an excerpt from that story which summarizes the PL concept:

23

http://patternlanguage.com

“Once upon a time, we wrote a book called A Pattern Language and that
is how we got our name. [..] The new idea in the book was to organize im-
plicit knowledge about how people solve recurring problems when they go about
building things. [...] Patterns are easy to remember and set out as if-then
propositions. {...] We were surprised though, when we found out computer pro-
grammers liked it, because it was about building not programming. But the
programmers said, “this is great, it helps think about patterns in programming
and how to write reusable code that we can call upon when we need it.” [...]
Now a patt‘ern language is about patterns being like words. They stay the same
but can be combined in different ways like words in a sentence. They can be
used as in a network where one will call upon another (like a neuron network).
When you build something you can put patterns together to form a language.
So a language for your house might have patterns about transitions, light, ceiling
height, connecting the second floor to the ground. [...] But what we’re working
most hard at is writing sequences. Now a sequence is something that looks very
very simple and is actually very very difficult. It’s more than a pattern; it’s
an algorithm about process. But what is possible is to write sequences so that
they are easy. You follow the steps in a sequence like you follow the steps in a
cooking recipe. [...] A sequence is figuring out which decision has to come first
and getting it right and then moving to a second decision. [...] An architect who
uses such a sequence, can do better and more beautiful work. [...] A lay person
can make a design, at least in a simple form, where previously it was assumed

that only architects and engineers could make designs.”
From the above text, we find the following important facts about the patterns.

e Patterns are tools for organizing the implicit knowledge that people use for solving a

recurring problem.

This solution knowledge is normally organized as if-then rules.

PL is like a network of patterns that one can call upon another.

We need to write sequences of patterns that act as cooking recipes and are easy to

follow for a lay person.

¢ Even an expert may use a sequence and build better designs.

24

2.3.2 Pattern Languages in Software

Alexander in [AT77] says: “Each pattern describes a problem which occurs over and over
again in our‘environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever doing it the
same way twice.” This definition is summarized by software gurus, as the definition of

pattern [NB02]:
“A pattern Is a solution to a recurring problem in a specific domain.”

In the software community, there are a few works which have selected the format used
in “A Pattern Language: Towns, Buildings, Construction” [A*77] for defining a PL. For
instance “A Pattern Language for Writing Patterns” [MD97] is an article which contains
a set of tightly related patterns such that selecting one pattern leads the user to another
pattern. And the set of proposed patterns is a complete list t‘hat enable a person to perform
a pattern writing project.

Patterns have played an important role in software development in general, and in
object-oriented approach in particular. Kent Beck and Ward Cunningham [BC09] are the
first persons who applied patterhs to software [Nob98b]. The idea was then popularized
by the publication of the seminal book on design patterns known as the “Gang of Four”
(GoF) design patterns [GHJV95]. “A growing number of people consider design patterns
to be a promising approach to system development, |...] especially in object-oriented sys- -
tems” [Zim95).

The GOF is used by many software experts and is cited by many researchers, e.g., as
of the day of this writing, its citation count on ACM is 1984 and on Google Scholar is
17100; more than 500,000 copies of the book is sold and it is translated into more than 13
languages, and with 243 reviewers in amazon.com, it ranks 27 in the Software Engineering

Bestsellers category.

2.3.3 Forms of Writing Patterns (Pattern Forms)

Software experts have defined (discovered) hundreds of patterns as solutions to recurring
problems in software design. For describing the structure of the patterns, each pattern
author has his/her own pattern form. There is no consensus on the structure and elements
of a pattern form between different pattern authors. In a survey on pattern collections,
Henninger and Corréa [HCO7] have concluded that “Almost every pattern collection we

surveyed used a different pattern form.” They claim that “Lack of Standard Pattern Forms”

http://amazon.com

is one of the challenges for federating software patterns [HC07]. But, it should be noted
that we can not expect to have only ONE pattern form that fits the needs of every PL.
That meané, there should be several standards for pettern forms.

A pattern form consists of several items. The authors of GOF book stress that, in gen-
eral, a pattern needs four essential elements: the pattern name, the problem, the solution,
and the consequences [GHJV95, p. 3]. The GOF design patterns’ form contains the following
items (sections): Pattern Name and Classification, Intent, Also Known As, Motivation, Ap-
plicability, Structure, Participants, Collaborations, Consequences, Implementation, Sample
Code, Known Uses, and Related Patterns [GHJV95, p. 6-7].

Some software pattern authors have adopted the pattern form introduced by Alexander
in [A*77]. For example, the form used in POSA-4 [BHS07a, p. 48] includes: name, con-
text, main (which includes problem statement, forces, solution instruction, solution sketch,
solution structure and behavior), and solution consequences.

The pattern form used in PofEAA includes eight items as follows [Fow02, p. 11].

1. The name of the pattern: Pattern names are crucial since they they create a vocabu-

lary to be used by designers when they communicate.
2. The intent: The intent is a short description of the pattern.

3. The sketch: The sketch is a graphical representation of the pattern, mostly as a UML

diagram.
4. A motivation problem: A sample problem that the pattérn can solve.

5. How It Works: This is in fact the solution to the problem. It explains the implemen-
tation issues and the variations that can be considered. For some patterns, UML class

diagrams or sequence diagrams are presented as an aid to explain them.

6. When to Use It: This item shows the justifications about why to use this patterns
comparing to others. (In some pattern forms this is called forces. Forces are the

factors such as cost and performance.)

7. The Further Reading: This is a reference to the information that may help the reader

better understand the pattern.

8. The Examples: There are one or more examples on how to implement the pattern in

programming languages Java or C#.

26

One important aspect of a pattern is its name, because by documenting patterns and the
relationship amongst them, in fact the pattern author is defining a language, called Pattern
Language (PL), that could be used by designers in developing new software systems [Ber94].
In other words, pattern names play a crucial role in a PL, because designers can use those
names as a vocabulary that helps them to communicate more effectively [Fow02, p. 11}.

However, a PL is not only a collection of patterns. To emphasize on the dependencies
between patterns, Alexander [A+77] expresses that “the link between the patterns are
almost as much a part of the language as the patterns themselves.” Also, earlier (See
Section 2.3.1) we read about Alexander’s idea on Pattern Language as “patterns [...| can
be combined in different ways like words in a sentence.” As an analogy, we can consider

each pattern as a recipe for a solution, therefore, a PL is a set of recipes for a whole system.

2.3.4 Pattern Language Definition

There is no consensus on the definition of a Pattern Language (PL) in software community.
In the followings we quote viewpoints of several software experts on PLs, then, we adopt
our definition of PL.

“A pattern language defines a collection of patterns and the rules to combine them into
an architectural style. Pattern languages describe software frameworks or families of related
systems” [Hil09b).

“A PL is a set of patterns that guide an architect through a design. Each pattern is a
description of a solution to a problem using other patterns that occur in the system” [Ber94].

“A pattern is a recurring solut.ion‘to a standard problem. When related patterns are

-woven together they form a “language” that provides abprocess for the orderly resolution of
software development problems. Pattern languages are not formal languages, but rather a
collection of interrelated patterns, though they do provide a vocabulary for talking about
a particular problem” [SFJ96].

“A pattern language is a collection of interrelated patterns organized into a coherent
whole, which provides a detailed solution to a large-scale design problem” [Nob88b}.

“One of the key advantages of a pattern language over a standalone pattern is its ability
to guide the reader to the solution of a complex problem by leading them from one pattern to
another. Stand-alone patterns have to work harder to establish their relationships” [MD97].

“The idea behind a pattern language comes again from Alexander. The idea is that you
have a body of patterns with a structure that leads vou from pattern to pattern. You begin

with (usually) some very strategic patterns. each pattern leads you to a point where you

[S]
-]

have to decide to apply other patterns. A pattern language has a flow that connects the
various patterns. [...] I look at pattern languages as a structuring mechanism” [Fow08).
One of the most recent and comprehensive discussions of PLs is presented in POSA-
5 by Buschmann et al. [BHS07b]. They believe that a PL is “A Process and a Thing.”
The ‘process’ part tells the designers how to solve a problem, and the ‘thing’ part tells
about what are the concrete solutions that can be solved by the PL. The ‘thing,’ is a

?

specific kind of software system created by the ‘process.” Missing any of the ‘process’ or
"thing’ parts, causes the PL not to be able to systematically resolve software development
problems [BHS07b, p. 260].

Buschmann et al. [BHSO07b, p. 260] argue that the following definition is both acceptable
for a PL and is in line with the pattern community, however, it should be noted that the

focus of this definition is on the ‘process’ concept.

 “A network of tightly interwoven patterns that defines a process for systemati-
cally resolving a set of related and interdependent software development prob-

lems” [BHSO7b, p. 260].

In this thesis, we select the above definition for a PL.

2.4 Pattern Relationships

2.4.1 Patterns are not Isolated Islands

Patterns are not isolated islands. Considering patterns independently results in low quality
designs, i.e. designs which are more complex and hard to maintain [BHSO7b, p. 117].
Patterns can be used individually, however stand-alone patterns are able to solve only tiny
problems because t.hey do not consider larger contexts. Hence, one should note that using
single patterns does not help building real-world software systems in an efficient manner.
In order to increase the power of patterns, pattern authors should show how the patterns
can connect, complement, and complete each other to make a PL. The resulted PL then
can be used in designing high quality systems [SSRB0O, p. 505-506).

Even in the pattern resources that have not focused on the PL aspects, e.g., in GOF,
we can see indications of considering the dependency between patterns. This indications
varies from a graphical map to a prose description of pattern dependencies in a dedicated

field in the pattern form, e.g., the Related Patterns field in GOF patterns.

[N
x

In addition to the relationship between the patterns of a PL (inter-collection relation),
patterns of different PLs might also be dependent on each other (intra-collection relation).
Considering the importance of inter-collection relationships, the pattern community sees
that ongoing work on patterns is focused more on synthesis and connection than intro-
ducing new patterns. Examples are PofEAA [Fow02] with 51 patterns, POSA-4 [BHS07a)
with 114 patterns (with connections to more than 180 other patterns), and Grady Booch’s
project [Boo09] on defining a “Handbook of Software Architecture” that so far has identified
more than 1800 patterns including 28 PLs [BHSO7b, p. 132]. |

Henninger and Corréa [HCO07] have addressed the problem of growing number of pat-
terns and pattern collections. Based on a survey on available pattern collections, they
promote utilizing Semantic Web technology for formal specification of pattern collections.
In a project named “An Ontology-Based Infrastructure for Creating Software Pattern Lan-
guages,” they set up the Semantic Framework for Patterns (SFP) web site [Uni09b]. As
indicated in the web site, the goal of the project is “to create a repository representing
the many facets of software patterns.” The site is now open to public to add or edit the
information about the existing pattern collections. As of date (20 April 2009) there are 234

pattern collections containing 2935 patterns recorded in the SFP web site.

2.4.2 Pattern Relationships and Quality of Design

In order to see how considering the relationships between patterns during design, affects the
quality of the design, consider the Request-Handling framework example which is borrowed
from [BHS07b]. The problem is “developing an extensible request-handling framework that
helps to transform service requests from clients into concrete method invocations on an
application” [BHSO7b, p. 123].

In the first approach, we do not consider any relationship between patterns and naively
treat them as isolated islands. Our first task is to find a pattern that solves the problem of
“objectifying” the requests of clients. One solution is the COMMAND pattern. Then, the
second task is how to handle the commands by a central component. We find the COM-
MAND PROCESSOR pattern as a solution and integrate it to the existing architecture.
Third, for supporting “undo” or the rollback of the actions, we select the MEMENTO pat-
tern. But we need a separate Caretaker class to relate the command with the Memento.
Forth task is “logging” the requests, for which. the STRATEGY pattern is selected and
is glued to the existing architecture by a LoggingContext object. And the final task is to

support compound commands. The CONMPOSITE pattern addresses this feature. which for

29

gluing it to the existing design, we insert it between the COMMAND PROCESSOR. and
the COMMAND patterns. Figure 2 shows the resulted design consisting of five patterns.
Clearly, this design is not a good design due to complexity, and difficulty in understanding

and maintaining [BHSO7b, p. 123-128].

COMMAND PROCESSOR

Client = g?ocsssot Context Logging
sy S T P 3
S P ——
+ = Component I] togging Loggin
' . ! ‘| Stategy A Slra{agygﬂ
t A | e s e
COMPOSITE — T | T
| Leat Composite || STRATEGY
{ . OO |
| ol Q a1
| Commandy — - — ~ %+ Caretaker
| I
COMMAND | |
i| qoonarate || goonerate 1| Memento MEMENTO
| S— { A ,...{]/ A y £
B P A
t Application

Figure 2: Design of Request-Handling Framework with Isolated Patterns [BHSO7b, p. 128]

In the second approach, we consider the same set of patterns but with bearing in mind
the possibility of interweaving the patterns together. For example, COMMAND and COM-
POSITE patterns can be combined. After several refactorings, we reach to the structure
given in Figure 3 which is much easier to understand and maintain [BHS07b, p. 129-131].

Comparing the above two designs, we see that the second one, which is a better archi-
tecture, has a high density of tightly integrated patterns. Actually, this feature, e.g., high
pattern density, is a characteristic of a good design. In simple terms, the pattern density
is defined as the number of patterns per number of classes. However, compressing many
patterns in as few classes as possible is not equivalent to having better design. That meané,
weaving patterns together must be done accurately and precisely [BHS07b, p. 131-132]. In
connecting patterns, in addition to the roles of their components, we should also consider

the relationships between those components.

30

COMMAND PROCESSOR: command

. MENENTO: originator’ COMMAND: concrate.command COUMAND: concrats comsmand
COMPOSITE: teal . COMPOSHE: composite
MEMENTO: caretaker BAERENTO: caretaker

Figure 3: Design of Request-Handling Framework with Interwoven Patterns [BHS07b,
p. 131]

2.4.3 GOF Pattern Relationships

For GOF design patterns, the “Related Patterns” field of the pattern form briefly talks
about how patterns reference each other. The relationships between all 23 patterns are
shown in Figure 4.

Zimmer [Zim95] has studied the relationships between GOF design patterns, and has
categorized them into three categories: “uses,” “is similar to,” and “can be combined with.”
Based on this classification, a new diagram is proposed for the relationships between the

GOF patterns. This diagram is shown in Figure 5.

Zimmer has concluded two important points {Zim95|:

e “Applying design patterns requires a fair knowledge of both single design patterns

and their relationships.”

e “Tool support is needed to apply design patterns to really large applications.”

2.4.4 James Noble’s Pattern Relationships Scheme

By studying several pattern collections and the way that these collections have documented
the relationships between patterns, James Noble [Nob98a] has found that there is no stan-
dard for describing pattern relationships. He says “Unfortunately, each pattern text book
or catalog describes relationships between patterns using its own idiomatic classification of
these relationships” [Nob98a). To address this problem, Noble has proposed a classifica-
tion scheme for the relationships between patterns. His scheme consists of three primary

relationships and nine secondary relationships as indicated in Table 2.

31

pe sl —

configurs laciory
dynamically

Facads

wsta,

e

sm;{m L

Figure 4: Relationships Between GOF Design Patterns [GHIV95, p. 12

Primary relationships are the ones that are widespread in the patterns literature, act
as the basis for describing other patterns. and their definitions are straightforward. The

secondary relationships are the ones that can be be expressed in terms of the primary

relationships.

Uses relationship shows how a large pattern may be composed of small-scale patterns.

32

Y

Facto

Method)

{ Solita
A

" —ree |}
ife {TEEEIateMeﬂmd) I

1/
, - |/ L _
Observer Glue) { Chain of Resp. Bnidee

G @ |, @y G

3 I s

e N . -~
¢ 1 s
Mediator Strate: State

®——‘>® X uses Y'inits solution

®-— - — = Xissimilarto Y

G- —-—-+F) xcinbe combinedwith"

Figure 5: Relationships Between GOF Design Patterns Proposed in [Zim95]

Table 2: Classification of Pattern Relationships [Nob98a)

Primary Relationships

Uses
Refines
Conflicts

One pattern uses another pattern
A specific pattern refines a general pattern
A pattern addresses the same problem as another pattern

Secondary Relationships

Used by
Refined by
Variant
Variant, Uses
Similar
Combines
Requires
Tiling
Sequence
Elaboration

of

smaller pattern is used by a larger pattern

general pattern is refined by a specific pattern
variant pattern refines a more well-known pattern
variant of one pattern uses another pattern

pattern is similar to another pattern

Two patterns combine to solve a single problem
pattern requires the solution of another pattern
pattern uses itself

sequence of patterns from the simple to the complex

d.

This relationship is mostly documented in the “Related Patterns”™ or “See Also” section
of a pattern form. For instance, in GOF patterns, Observer uses the Mediator pattern for
coordinating multiple objects updates, or Mediator uses Singleton for preventing duplication
of mediators. The uses relationship can be interpreted as the composite relationship in the

00 worl

Refines relationship shows how a pattern is an special case of another one. This rela-

33

tionship is mostly implicit in the description of patterns, i.e.. there is no dedicated field in

the pattern form that shows which pattern is a refinement of the other one. For instance,

in GOF patterns, Factory Method refines Template Method. The refines relationship can
be seen as the inheritance relationship in the OO world.

Conflicts relationship exists between the patterns that are solutions to the same problem,
but they are mutually exclusive. Reviewing the “Related Patterns” or “See Also” section of
a pattern form would help in finding patterns that are conflicting with the current pattern.
For instance, in GOF patterns, Decorator conflicts with Strategy, because both are solution
to the problem of modifying the behavior of other objects. It is a good practice to investigate
all the conflicting patterns while solving a problem, but only select one of them.

In another paper, Noble and Beedle [NB02] have listed some of the open research prob-
lems regarding patterns as follows. How can we differentiate patterns that are structurally
similar (e.g., Strategy and State)? How can we know that one pattern can be a solution
to more than one problem (e.g., Proxy)? How can we know that one pattern can have dis-
tinctly different variant forms (e.g., Adapter)? How can several different patterns have the

same name (e.g., Prototype)? How can we characterize the relationships between patterns?

2.4.5 Pattern Language Grammars

Using the vocabulary metaphor for the patterns of a PL leads to the grammar metaphor
for the rules that dictaté the correct sentences of the language. That means, “each pattern
sequence can be viewed as a properly formed sentence in a pattern language” [BHSO7b,
p. 281}, and “The union of all pattern sequences supported by a pattern language can thus
be understood as its full set of grammatically correct sentence forms” [BHSO07b, p. 282].

But, the sequences only show the results of applying the grammar rules, not the rules
per se. That means, the rules are implicit in the sequences. For making the syntactic
~(grammatical) rules explicit, there exist two approaches. First, to integrate the rules into
the descriptions of constituent patterns. Second, to use a formal notation for describing
the grammar rules. The drawbacks of the first approach are vagueness and ambiguity of
the rules [BHSO7b, p. 282]. The disadvantage of the second approach is that expressing
the grammar of a large PL in a formal notation is difficult [BHS07b, p. 285]. Hence, most
of the PL authors have preferred the first approach, i.e., to present the syntactic rules in
prose, interwoven with the pattern descriptions [BHS07b, p. 284].

Following are alternative formal notations, that can be used for representing the gram-
mar of a PL. along with examples given for the Request-Handling framework introduced in

Section 2.4.2.

34

BNF Notation The BNF [Knu64] notation which is widely used for writing the syntax of
a programming language, can also be tailored for the PLs. In the following, we present‘our
idea of defining a grammar for a PL. This definition is inspired by the seminal works [ASUS86,
Lin06] in the field of formal languages and automata theory.

A grammar for a PL is a quadruple G =< N, T, S, P > such that:

e N is the set of non-terminals of the PL. A non-terminal is a temporary variable which
will finally be replaced by a sequence of patterns. We suppose that non-terminals

(variables) are represented by the words with lower-case letters.

e T is the set of terminals (patterns) of the PL. In other words, T is the alphabet of

the language. Terminals (patterns) are shown with capitalized words.

e S € N is the starting variable of the grammar. If it is not explicitly specified, the

variable that appears first is considered as the starting variable of the grammar.
e P is the set of production rules that dictate how a sequence of patterns can be built.

The production rules of the grammar are in the form 4 — a, where A € N is a variable

¢

and a € (N U T)*. In making «, the operation ‘.’, is a binary operation that shows a
dependency from the left operand to the right operand. The operation ‘*’ means any
number of applying ‘. operation. The alternative operation ‘“—’, is a binary operation and
shows a choice between either of the two operands. Operator ‘.’ has priority over ‘—’ and
parentheses are used for grouping. The terminal A means null or nothing. As an example,

in the following a grammar is given for the Request-Handling PL described in [BHS07b,
p. 283].

start — COMMAND . EXPLICIT INTERFACE . templ |

templ — MEMENTO . temp2 | COMPOSITE . temp3 |

temp2 — COMPOSITE . tempd | X

temp3 — COMMAND PROCESSOR . COLLECTION FOR STATES .
. STRATEGY . NULL OBJECT | A

temp4d —» MEMENTO | A

Figure 6: A BNF Grammar for the Request-Handling Pattern Language, Adopted
from [BHSO7D, p. 283].

POSA-5 Notation A new notation is introduced in POSA-5 [BHS07b, p. 282] inspired by

the BNF. Following is a grammar for the Request-Handling framework using this notation.

© stands for starting state, — shows the mandatory sequence, - denotes the optional
sequence, — is for alternation, and () is used for grouping.
@ % (COMMAND — EXPLICIT INTERFACE 2 (MEMENTO >
COMPOSITE 2> COMMAND PROCESSOR — COLLECTIONS FOR STATES
— STRATEGY — NULL OBJECT) | (COMPOSITE 2 MEMENTO))

Graphical Notation There are several graphical notations that can be adopted for rep-
resenting the grammar of a PL. For example “Feature Modeling” notation {KKL198] can be
used with bearing in mind the differences between patterns and features. Another example
is the “Syntax Graph” that is used to show the syntax of programming languages, e.g.,
Pascal [Wir71]. Figure 7 shows the syntax diagram for the Request-Handling PL [BHSO7b,
p. 282.

o /" Explici
H oF phicit
) o)

< (vemento)

4 \..__._- /A—
< (@%4 ¥
4—'\/\93;;}%I->4—§':Strax§gy)l<—<c°"§$:g? fcw/\ g?x‘g?s%? ;,%

» ;\ét;msite/}é

< (@%}: L4

4
*
4

Figure 7: Syntax Diagram of the Request-Handling Pattern Language [BHS07b, p. 284]

More important than the notation chosen for the grammar, a PL must have clear guid-
ance that shows the meaningful paths and prevents the designers from selecting ill-formed
pattern sequences [BHS07b, p. 284].

The quality of a PL is reliant on both its maturity and its completeness. Maturity relates
to the quality of the constituent patterns and their relationships. Completeness relates to
the coverage of the problem and solution spaces by the language. Also the quality of a PL
is related to the quality and maturity of its vocabulary (patterns) and its grammar (pattern

dependencies) [BHS07b, p. 291].

Another Pattern Relationship Model Emphasizing on the fact that many of the

researchers have ignored the importance of the relationship between patterns, Wo-dong

36

et al. [WdKqY*03] have introduced a model for pattern relationships which is indeed a
formalized and extended version of the “pattern graph” introduced by Alexander [A*77].
In a “pattern graph” there are two types of relationships between patterns: “Root” and
“Leading.” The authors have shown how the proposed model can be used in building
frameworks.

The model has two parts: the pattern relationships, and the translating methods that
convert the relationships into a component model. If Pattern Set (PS) be the set of all
patterns in a PL, then the relationships between patterns is defined by the following defi-
nitions.

ENTRY = {< z >| z € PS A isarchitecturepattern(z)}

LEAD ={< z,y >|z € PS Ay € PS A applied(z) — toapply(y)}
REQUIRE = {< z,y >| z € PS Ny € PS A applied(z) — applied(y)}
EXCLUDE = {< z,y >| z € PS Ay € PS A canapply(z) — — canapply(y)}
ALTERNATE = {<z,y>|z€ PSAyé€ PSA canapply(z) « canapply(y)}

Based on this model, a Pattern Cluster (PC), a set which contains all the related patterns
for a problem context, is defined as follows.
PCCPS
Vz,y € PS:(ENTRY z ANz LEAD y) = y € PC
Ve PCANy€ PS:xz REQUIRE y= y € PC
Vz,y € PC:- (z EXCLUDF y)

Vz,y € PC:z ALTERNATE y = x EXCLUDE y

As it is clear from the above definitions, this method of framework development should
start from an architectural pattern. Then, applying this root pattern leads us to other
patterns that need to be applied. Maybe some of the applied patterns require other patterns
to be applied. This process continues until the PC is completed.. Meanwhile, the PC should
remain consistent, meaning that conflicting patterns are not allowed to be added. The last

two rules check the consistency of the under development PC.

2.4.6 Pattern Relationships in POSA-5

POSA-5 [BHSO7b] is the last book in the Pattern-Oriented Software Architecture series
which wraps up all the experiences and discussions of the previous volumes under the
subtitle “On Patterns and Pattern Languages.” We believe that it is one of the state-of-
the-art references about PL and pattern relationships. However, PL field is still immature

as the POSA-5 authors also emphasize that:

37

“not all the aspects of pattern languages we discuss in this part of the book are
mature or well-established in the pattern community. For example, while funda-
mental aspects and properties of the process introduced by pattern languages,
such as piecemeal growth, are widely accepted and practiced, other aspects and
properties, such as the role of pattern sequences in defining a grammar for pat-
tern languages, are considered as new or even subject to debate.” [BHSO7b,

p. 245]

In this section, we present a brief review of the POSA-5 discussions by considering
four type of relationships that could exist between the patterns: Competition, Completion,

Combination, and Compound. We have also added more examples from different PLs.

Patterns in Competition

This relationship happens when there are more than one pattern to solve the same problem.
The relationship can also be called pattern alternatives.

Following are some examples for patterns in competition. When the problem is “to fix
the steps in an algorithm while allowing the implementation of the steps to vary,” there are
two GOF patterns available as solutions: STRATEGY and TEMPLATE METHOD [BHS07b,
p. 138]. Two patterns of PofEAA, Optimistic Offline Lock [Fow02, p. 416] and Pessimistic
Offline Lock [Fow02, p. 426], are alternatives for the problem of handling concurrency control
issues. In POSA-4 [BHS07a], both OBJECTS FOR STATES and COLLECTIONS FOR
STATES patterns “address the problem that an object’s concrete behavior can depend on
its current modal state” [BHSO7b, p. 138].

When having several alternatives for a problem, the irhportant challenge is “How to
select one of the alternative patterns?” To answer, the key is to investigate “the context,
the forces. and the consequences of competing patterns” [BHSO7b, p. 144]. The context is
one of the fields in the pattern form. The forces are the factors such as cost and performance.
The consequences are the pros and cons of selecting each alternative. In addition to the
above paramcters. sometimes there are other subjective and cultural elements which affect
our decision. Examples of these context information are as follows: programming language,
complexity of the system, and expertise of the designer [BHS07b, p. 154].

While deciding on the competitive patterns during the design, we need to record the
important discussions and investigations about the pros and cons that take place in selecting
one of the alternatives. The resulted artifact is called “Design rationale” and is a useful

document for future designers. and for maintainers of the svstem [PB8§]

38

Patterns in Completion

This relationship exists when one pattern can structurally complement another pattern.
This relationship can also be called patterns in cooperation. It can be considered as a
stronger version of pattern usage or inclusion. For instance, consider the case that the
COMMAND PROCESSOR contains the COMMAND pattern [BHSO7b, p. 156]. Another
example is the TABLE DATA GATEWAY pattern of PofEAA that needs RECORD SET

as the return type of its find operations [Fow02, p. 144].

Patterns in Combination

There are cases that combining both alternative or cooperative patterns together results in
better solution. This happens when we are not forced to apply an “exclusive-or” relationship
between two patterns [BHSO7b, p. 159]. For instance, the CLASS ADAPTER pattern can
be nested within the scope of the OBJECT ADAPTER to obtain a solution that could not
be addressed by either of the individual'patterns.

Many of the PofEAA patterns can be combined together since the author’s recommen-
dations are not strictly forbidding the designer to combine the alternatives. For instance, in
PofEAA Fowler [Fow02, p. 59] says “you can write the code in the style of either Transform

View or Template View or in some interesting mix of the two.”

Pattern Compounds

There exist patterns that one of their elements is also a pattern. Also we can group some
patterns together to make a bigger pattern. Buschmann et al. [BHS07b, p. 166} defined
a pattern compound as “a named, commonly recurring, cohesive combination of other
patterns.” As an example for the former, note that COMMAND pattern can be found inside
the ENUMERATION METHOD, and for an example of the latter, consider combining
COMMAND and COMPOSITE to obtain a COMPOSITE COMMAND pattern [BHSO7b,
p. 166].

In PofEAA, Front Controller [Fow02, p. 344] is an example of a pattern compound which
has GOF Command pattern as its part. Figure 8 shows the structure of this pattern.

By scrutinizing some of the patterns that in the pattern community are known as pattern
elements (atomic patterns), we will see them as pattern compounds. For instance, INTER-

PRETER was introduced first in GOF as a general-purpose pattern element. however, it can

39

A contoller that handles all the requests for a Web site.

Handler Command
doGet() T _> process()
doPost() Zﬁ
ConcreteCommand 1 ConcreteCommand 2
process() process()

Figure 8: The Front Controller Pattern [Fow02, p. 344]

be interpreted as a pattern compound consisting of Command, Context Object, and Com-
posite. Another example is the Model View Controller (MVC) pattern that in many works is
considered as a single pattern, but a closer look at it reveals that it can be decomposed into
either three elements (Model, View, and Controller), or seven elements (OBSERVER, COM-
MAND PROCESSOR, FACTORY METHOD, VIEW HANDLER, COMPOSITE, CHAIN
OF RESPONSIBILITY, and BRIDGE) [BHS07b, p. 177-179].

Pattern Stories and Pattern Sequences

There are several ways for understanding “how a software system is designed” including
investigation of its source code, diagramming its model, or recognizing its patterns. The
results of all these methods are static, i.e., they show the system at a specific time. For
example extracting the patterns used in a system is only a list: it does not show which
pattern is used first [BHS07b, p. 184-185].

Storytelfing is another method for describing the development of a system in a narrative
way. A story tells us which pattern is used first, and what happened after. The story reveals
the decisions made during the development of the system. One way of writing a story is to
build a list of questions and answers. An example of a story is the presentation of the Lexi
document editor in GOF [GHJV95, p. 33] which is used throughout the book to explain
how patterns can be applied in practice [BHS07b. p. 185-189].

Following is a brief version of a story of the Request-Handling framework given in

[BHSO07b. p. 196).

COMMAND is expressed with EXPLICIT INTERFACE. COMMAND PRO-
CESSOR is then introduced, to which COLLECTIONS FOR STATES is added.
COMMAND is then augmented with MEMENTO. COMMAND PROCESSOR
is then refined with STRATEGY, which leads to NULL OBJECT. COMPOS-
ITE COMMAND is then introduced.

In a story there is no guidance on how patterns are connected together. Pattern se-
quences address this flaw by removing the story and talking on the order in applying pat-
terns. It is worth noting that some PLs have not addressed pattern sequences at all; others
made them implicit in the pattern descriptions. However, it is important to have pattern
sequences as particular artifacts in a PL [BHS07b, p. 192-193].

By removing the story side from the above short story example, we reach to a more

formal version as follows [BHSO07b, p. 196].

{COMMAND, EXPLICIT INTERFACE, COMMAND PROCESSOR, COLLEC-
TIONS FOR STATES, MEMENTO, STRATEGY, NULL OBJECT, COMPOS-
ITE COMMAND;,

Also some of the pattern compounds can be viewed as pattern sequences. For instance,
decomposing the INTERPRETER pattern into its constituting patterns gives us the follow-
ing tuple: (COMMAND, CONTEXT OBJECT, COMPOSITE; [BHS07b, p. 201]. There
are several ways for presenting a pattern sequence. Maybe the simplest one is an ordered
list of applied patterns [BHSO07b, p. 193].

Buschmann et al. [BHS07b, p. 194-195] define a pattern sequence as “a successive pro-
gression of design decisions and transformations.” They also emphasize that “a sequence
represents a path through a design space [...] Following a pattern sequence is more like fol-
lowing a recipe than following a plan [...] How we choose between related pattern sequences
will lead us to pattern la.nguages.”'

Final note is that pattern context plays an important role in pattern sequences. It is
the pattern context which tells us how to apply the pattern, as well as where in a sequence

the pattern lies [BHSO7b, p. 203].

Pattern Collections

Due to the fact that “Patterns are gregarious by nature” [BHSO07b. p. 210]. there is a ten-

dency in presenting a set of patterns as a collection. The on-going work of Grady Booch’s

41

Handbook of Software Architecture [Boo09], with about 2000 patterns, is the biggest col-
lection of software patterns, ever. There are several approaches for organizing collections

as described in the following [BHSO7b, p. 211].

¢ Ad hoc organization: When there is no specific theme for organizing patterns. Pattern

Languages of Program Design [MVNO06] books belong to this group.

e Organization by level: When patterns are organized based upon the level of granu-
larity. Three well-known packaging of patterns based on the level are: idioms, design
patterns, and architectural patterns. As a simple definition, idioms are more fine-
grained to be considered as a solution to a problem, i.e., an idiom is just a matter
of convention. People use the term “design pattern” for a pattern which is similar
to the GOF design patterns. Architecture patterns deal with most significant design
decisions that shape a system [BHS07b, p. 213-216).

e Organization by domain: The domain can be divided into two parts: problem (appli-
cation) domain and solution domain. The first deals with patterns that are related
to the real world applications, such as health care or avionics. The second covers the
software-centric concerns, such as architectural styles or programming languages. It
should be noted that these two groups are not exclusive and designers need to consult

patterns in both groups [BHS07b, p. 218].

e Organization by partition: When patterns are organized based on the part of the
architecture in which they are applied [BHS07b, p. 219]. For instance, Fowler in
PofEAA [Fow02] classifies his patterns into layers such as presentation, domain, and

data source.

2.4.7 Pattern Relationships at a Glimpse

Table 3 smmnarizes this scction by presenting the above discussion about the definitions and
the formalisms of the pattern relationships. For each relationship, its name along with the
references which have introduced that relationship are given. Further, another names for
the relationship along with the references, the meaning of the relationship, some examples

from Alexandrian patterns, GOF design patterns, PofEAA, and POSA-5 are presented.

42

Table 3: Pattern Relationships at a Glimpse

Relationship | uses [AT77, Zim95, GHJV95, Nob98a, NB02|

AKA containment [AT77], completion [BHS07b], cooperation [BHSO07b], requires [NB02],
completes [NB02], follows [NB02]

Meaning A uses B means pattern A uses pattern B in its solution, or B structurally complements
A. . v

Alexander Small Public Squares uses Pedestrian Density, Activity Pockets, and Something
Roughly [Nob98a}

GOF Observer uses Mediator, Mediator uses Singleton, MVC uses Observer, Strategy, and
Composite [Nob98a], Interpreter uses Composite [NB02]

PofEAA Front Controller uses Command, Table Data Gateway uses Record Set

POSA Command Processor uses Command [BHS07b]

Relationship | conflicts [GHJV95, Nob98a]

AKA competition [BHSO7b], alternative [BHS07b, NB02], similar [Zim95]

Meaning A conflicts B means patterns A and B are mutual exclusive solutions for the same
problem

Alexander House for a Small Family conflicts House for a Couple conflicts House for a Person

GOF Decorator conflicts Strategy, Prototype conflicts Factory Method [Nob98al, Prototype
conflicts Abstract Factory , Decorator is alternative for Strategy [NB02]

PofEAA Optimistic Offline Lock conflicts Pessimistic Offline Lock

POSA Objects for States conflicts Collections for States [BHS07b]

Relationship | refines [Nob98a)

AKA specialization [NB02]

Meaning A refines B means pattern B is a specialization of pattern A

Alexander Sequence of Sitting Spaces refines Intimacy Gradient [Nob98a]

GOF Factory Method refines Template Method [Nob98a], Factory Method is a special kind
of Hook Method [NB02]

PofEAA Data Mapper refines Mapper

Relationship | combines [Nob98a, BHS07b]

Meaning A combines B means patterns A and B can be used together

Alexander

GOF Composite combines Iterator , Composite combines Visitor

PofEAA Transform View combines Template View

POSA OBJECTS FOR STATES combines COLLECTIONS FOR STATES

Relationship | Compound [BHS07b] Notation: A — B+ C

Meaning 1) Patterns B and C are joined together to make new pattern A 2) Pattern A can be
decomposed into patterns B and C

GOF 1) COMPOSITE COMMAND «— COMPOSITE + COMMAND

POSA 2) MVC « OBSERVER + COMMAND PROCESSOR + FACTORY METHOD +

VIEW HANDLER + COMPOSITE + CHAIN OF RESPONSIBILITY + BRIDGE

43

2.5 Pattern Selection/Detection

2.5.1 GOF Design Pattern Detection

Most of the work on pattern detection is about detecting GOF design patterns. Some works
try to find the patterns in the source code, others investigate models. Not all approaches
are successful in detecting all GOF design patterns. There are patterns in GOF which are
deterministically recognizable by checking the static models, e.g., Composite, and there are
patterns that their structure is identical and their detection needs dynamic models (or even
code) investigations, e.g., State and Strategy.

Tsantalis et al. [TCSHO6] have proposed a design pattern detection which is based on
similarity scoring between graph vertices. The idea is to represent each design pattern in
term of a set of matrices, then, the given UML class diagram is also transformed to a set
of matrices. The detection is performed by a tree search inside the given model to find an
occurrence for a pattern. The approach is successful in detecting 20 of the 23 GOF design
patterns. ,

Bergenti and Poggi [BP02] have developed a system called IDEA (Interactive DEsign
Assistant) which detects design patterns in a UML diagram. The IDEA is integrated
into both ArgoUML [Tig09a] and Rose (IBM09a]. The IDEA investigates both the class
diagram and the collaboration diagram.v The criteria that specify the structure of a pattern
are written as Prolog rules. Eleven GOF design patterns are successfully detected by the
IDEA.

Wuyts {Wuy98|] has used a declarative reasoning approach (using Prolog rules) to de-
scribe the structure of GOF design patterns, and to detect the patterns in Smalltalk pro-
grams. For instance the following rule defines the structure of the Composite design pattern

by using two other sub-rules.

head: compositePattern (?comp,?composite,?msg)
body: compositeStructure (?comp,?composite)

compositeAggregation (?comp,?composite,?msg)

Kampflmeyer and Zschaler [KZ07] have built an ontology containing the Intent (see
Section 2.3.3) of GOF design patterns. Then, they have built a tool that, given a problem,
helps the designer choose the right pattern. All the 23 GOF patterns are covered in their
work.

Blewitt et al. [BBS05] have introduced a prolog-like language named SPINE (see also [Tai07.
chap. VI] and [Ble06]) as a pattern specification language. SPINE is used for defining a

44

pattern in terms of constraints on its Java implementation. The authors have also shown
how a proof engine named HEDGEHOG reads both the SPINE code and a Java code, and
verifies the application of patterns in the Java code. From GOF design patterns, seven
patterns could not be represented by SPINE.

Mak et al. [MCLO04] have reused the idea presented by Guennec et al. [GSJ00] to present
extensions for UML such that the recurrent structure and behavior of design patterns (pat-
tern leitmotifs) can be specified precisely. The authors of both papers [MCL04, GSJ00]
have concluded that current versions of UML (at the time of writing papers, 1.3 for{GSJ00]
and 1.5 for [MCLO04]) are ill-equipped for precise representing of design patterns. The work
presented by the latter paper [MCLO04] was believed to be a premier step in defining the
UML 2.0 profile for the modeling of design patterns.

2.5.2 Pattern Enforcing Compiler (PEC)

Lovatt et al. [LSV05] (see also [Tai07, chap. XV] and [Lov06]) have built a system named
Pattern Enforcing Compiler (PEC) to address the problem that different programmers
implement a pattern in different ways. PEC is similar to a conventional Java compiler, with
the extension of verifying the application of design patterns in the code. The interfaces are
used as markers to inform PEC that a pattern is used. Hence, the patterns are enforced at
‘the class level, not the instance level. The programmer has to use a ‘boiler plate’ code for
the pattern that he/she wants to apply.

The PEC system is written for Java language and uses Javadoc to document pattern
usages. It uses interfaces as markers for showing the déveloper’s desire for applying a
pattern. It is important to note that by selecting the interfaces as markers, the programmer
knows beforehand which pattern he/she intends to use. PEC only shows ‘pass’ or ‘fail’
message to the developer. l.e., there is no advisory system. It uses a naming convention
for easing the detection of class features. PEC generates most of the ‘boiler plate’ code for
some of the patterns. PEC is extensible, .meaning_ that the user can define new patterns
without requiring any new syntax for the Java language. »

Following are the criteria for a correct application of the Singleton pattern as indicated

in the PEC Javadoc. A Singleton class has the following properties:
1. The class must be final.
2. The class must have a single. private, no argument, constructor that throws the ex-

ception I1legalStateException if it is called more than once.

45

3. If the class is serializable then it should have a readResolve method that returns the

‘singleton.’
4. The class cannot be clonable.

5. The class must have a method called instance. This instance method must: always
return the same object, have no arguments, be static, and have either package or

public access.
The following is the ‘boiler plate’ code for the Singleton pattern given in [LSV05].

import pec.compile.singleton.*;
public final class SingletonClass implements Singleton {
private final static SingletonClass instance = new SingletonClass();
private SingletonClass() {
if (instance != null)
throw new IllegalStateException("Attempt to create a second Singleton");
}
public static SingletonClass instance() {
return instance;

}
// other methods

The most important item in the above code is the line that tells the PEC that the
SingletonClass implements the interface Singleton, i.e., this class is meant to be a Sin-
gleton. Then, PEC checks the criteria of the Singleton pattern. This is like the type checking
mechanism of the Java compiler. For each pattern named X, there is a class named XUtility
in the same package as the interface, that checks the structure of that pattern.

In addition to the static checking, PEC is claimed to have two more features: dynamic
checking and code generation. Dynamic checking is used for the patterns such-as Singleton
that can not be detected only by static checking. For Singleton, an attempt is made to
create two Singletons, if it is successful, an error is reported. Dynamic testing is done by
the help of java.lang.reflect Application Programming Interface (API). As reported
in the paper, seven patterns have been implemented in the PEC. However, new patterns
can be added by a user which is familiar with Java, since PEC does not introduce any
new syntax. Finally, the error messages given by the PEC are very simple, e.g., “Singleton

classes must not be clonable.”

46

2.5.3 Systematic Pattern Selection

Zdun [Zdu07] has proposed a systematic pattern selection approach which uses both PL
grammars and design space analysis. An important prerequisite of this approach is to
identify the relevant quality goals of the patterns. Quality goals can be found in the forces
and consequences sections of the pattern form. After quality goals are found, the pattern
relationships are formalized into a pattern language grammar, and the grammar is annotated
with the effects of the selected patterns on the quality goals. A sample annotated pattern
language grammar overview diagram is shown in Figure 9. The scores ‘++,” ‘+,” and ‘—
show the effect of the selected pattern on the specified quality goal. The [variants] mark
should be interpreted as ‘OR.” The diagram in Figure 9 can be converted to a formal
grammar shown in Figure 10, using the notation presented in Section 2.4.5. Note that the

capitalized words are the name of the patterns in the PL.

{option}
quality goal 4 +
Pattern A} !
uality goal 1 + uality goal 3 +4 A
QQuahg'ggC:) al 3 - %uallty goal 4 ++ [required)}
his is a comment}

Pattern A Varlant 1 Patltern B Vartant 2 Pattern C

Figure 9: An Annotated Pattern Language Grammar Overview Diagram [Zdu07]

S — PatternAs PatternA_Options

PatternAs — PatternAs PatternA | PatternA
PatternA — PATTERN A

PatternA — PATTERN A VARIANT1

PatternA — PATTERN A VARIANT?
PatternA_Options — X | PATTERN B PATTERN C

Figure 10: A Grammar Equivalent to the Diagram Given in Figure 9, Revised from [Zdu07]

As an example of a pattern sequence that can be derived from this grammar, consider
the following derivation which results in applying only one pattern “PATTERN A.”
S — PatternAs PatternA_Options — PatternAs — PatternA — PATTERN A

The grammar helps the designer in several ways: in understanding the topology of the
PL. in showing the possible pattern combinations, and in reviewing the effects on quality
goals of the patterns. The grammar suffices for most (simple) design decisions, e.g.. “if

pattern A requires pattern B, the design decision is already clear.” However, for complex

47

design decisions, a design space analysis, using the Questions, Options, and Criteria (QOC)
notation, is performed to reduce the complexity of the pattern selection process. A template

for design space visualization using QOC technique is shown in Figure 11.

Top-Level
Cuestion 1 ~—

-~
m<‘ g
= Force/Consequence 5

Pattem 5 \—-{C I Force/Consequence 8 I

Folhw—m
w
Force'Consequence 7

Figure 11: A Template for Design Space Visualization using QOC Approach [Zdu07]

This approach has been applied for a case study on “Remoting Patterns.” The idea
has also been validated via several academic and industrial projects, e.g., “re-engineering
a document archiving system.” As a track for future work it is claimed that “the pattern
language grammars and design spaces can potentially be used as an input for model-driven

tools” {Zdu07].

2.6 PofEAA PL

In this thesis, our focus is on Martin Fowler’s book titled “Patterns of Enterprise Applica-
tion Architecture” PofEAA [Fow02]. The book consists of a set of patterns for designing the
architecture of a web-based enterprise application. Enterprise systems are more chplex
than other kinds of software considering the complicated business rules and the amount and
complexity of data. These systems usually deal with huge amount of data (e.g., tens of mil-
lions of records) which needs to bé persisted and accessed by many users concurrently, and
to be integrated with other applications. Examples of enterprise applications are financial
systems, reservation systems, and supply chain systems [Fow(2, p. xviii].

While there is no consensus on the definition of the term “Architecture,” most people
agree that it is “the highest-level breakdown of a system into its parts” [Fow02, p. 1]. In
software design, several approaches are introduced for the architectural design of a system,
pipes, filters, and layers to name a few. Layering architecture is selected in PofEAA, that
means, the book is about how to decompose a system into lavers and how these layvers work

together [Fow02, p. 2]. Choosing an appropriate architecture for an enterprise application

48

is hard. Based on the author’s experience with enterprise applications, 51 patterns are
introduced as solutions to the recurring problems that designers encounter while destgning
the architecture of a web-based enterprise application.

It should be noted that enterprise applications are not all the same, hence, there is no
“one size fits all.” That’s why the author of PofEA A emphasizes that “many of the patterns
are about choices and alternatives” [Fow02, p. 6]. Also it is clarified that patterns should
not be used blindly and the designer needs to select a “half-baked” pattern and then modify
it to meet his/her demands [Fow02, p. 10).

As it was mentioned earlier, in defining a pattern, each pattern author selects a pattern
form. The pattern form used in PofEAA includes eight items: The pattern name, The
intent, The sketch, A motivation problem, How it works, When to use it, The further
reading, and The Examples [Fow02, p. 11].

In the following, first we briefly review how the PofFAA patterns are organized, then

we discuss how this set of patterns is qualified to be considered as a PL.

2.6.1 Organization of the Patterns in PofEAA

Based on the idea of three-tiered architecture for object-oriented client-server platforms, the
patterns in PofEAA are decomposed into three main layers [Fow02, p. 19]. Also there are
supporting patterns for the issues such as object to relational conversion and concurrency
management.

In the following, first we introduce the patterns of three main layers, then we see the
supporting patterns. Note that grouping patterns into “main patterns” and “supporting
patterns” is our choice and is not explicitly done in the book. Also note that the pattern

names are in italic.

Main Patterns

Presentation Layer This layer is responsible for the user interface, i.e., displaying infor-
mation and handling user requests. The patterns address the design problem “How does the
systemn communicate with the user?” There are seven patterns in this layer: Model View
Controller, Page Controller, Front Controller. Template View, Transform View, Two-Step

View, and Application Controller.

Domain Layer This layer deals with application and domain logic and business rules,

hence it is often called “business logic laver.” The patterns address the design problem

49

“How the business logic of the system is organized?” There are four patterns in this layer:

Transaction Script, Domain Model, Table Module, and Service Layer.

Data Source Layer This layer is related to communicating with the database, the mes-
saging system, and other external applications. The patterns address the design problem
“How does the system access the data source?” There are four patterns in this layer: Table
Data Gateway, Row Data Gateway, Active Record, and Data Mapper.

A designer can find various answers for the mentioned design questions based upon a
number of conditions, e.g., the platform he/she is working on, knowledge of developers,
complexity of the domain objects, or complexity of business logic for each scenario. As it
was mentioned earlier, the PofEAA does not force a single solution for a problem. Instead,
several choices and alternatives are proposed.

For the Presentation Layer, using Model View Controller (MV(C) is recommended.
The word “Controller” is divided into two types by the author of PofEAA: “Input Con-
troller” and “Application Controller.” The Controller in MVC pattern is actually an Input
Controller, but an Application Controller acts as “a separate layer that mediates between
the presentation and domain Jayers” [Fow02, p. 58]. Only if the screen flow of the system
is controlled by a machine, we need an Application Controller.

Two sets of patterns are introduced in this layer, one for control part and the other
for wiew part. For the control part, two patterns are presented: Front Controller and
Page Controller. Based upon the choice made for the domain layer, the technology we are
using, and the complexity of the user requests, we may choose different patterns for the
Presentation Layer. For example, Front Controller fits best with the Java technology and
object-oriented modeling of domain concepts in Domain Layer (that means using Domain
Model pattern), while Page Controller is simpler and could be used with a simple pattern
for Domain Layer such as Transactions Script.

For the view part, three patterns are introduced: Template View, Transform View, and
Two-Step View. Selecting either of the first two patterns, we have two options, to use it as
a single stage, or a Tweo-Step View.

For the Domain Layer, there are three patterns: Transaction Script. Domain Model,
and Table Module. in addition to an extra pattern. named Service Layer. which (optionally)
can be used over Domain Model and Table Module. Transaction Script is used when the
designer does not want to model this layer with object-oriented technologv. It is just a

bunch of code for each transaction of the system put in a method or a separate class. When

50

developers are not familiar with object-oriented technology, this choice is probably the best
one for the business logic layer. On the other hand, Domain Model is based upon object-
oriented design of domain concepts. This is the most appropriate choice for object-oriented
developers using technologies such as Java and C++. Table Module works best for people
working with .Net or Visual Studio which have facilities for things like Record Set which is
a base pattern. As Fowler says, “These three patterns are not mutually exclusive choices.
Indeed, it’s quite common to select Transaction Script for some of the domain logic and
apply Table Module or Domain Model for the rest” [Fow02, p. 30].

Table 4 summarizes the discussions given in the PofEAA book in terms of advantages
and disadvantages of each pattern from the Domain Layer. According to the table, one
of the most important factors in choosing the right pattern for structuring the domain, is
the complexity of the domain logic. Unfortunately, there is no metric for measuring this
complexity. One solution is to ask an expert to review the requirements and give you a

judgment [Fow02, p. 30].V

Table 4: Alternative Patterns for Domain Layer (Adapted from [Fow02, p. 25-32}).

[Pattern | Advantages | Disadvantages |
Transaction| Easy to use and understand for most | Does not fit with the complex business logics.
Script developers. '

Easy to build atop a relational DB. Duplicate code is inevitable.

A simple procedural models.
Table Works well with moderate business | Does not fit with the complex business logics.
Module logic.

Easy for connecting to relational DB.
Domain Handles complex business logic in a | Hard to use and understand for non-OO peo-
Model well-organized way. ple.

Matches well with OO paradigm. Difficult for connecting to relational DB.

Object/Relational mappings are needed.

In the Data Source Layer, depending on the choice made for Domain Layer and the
complexity of the domain objects, along with the properties of the database, designer will
select the appropriate pattern for talking to the database. Sometimes there is a simple
mapping between the objects and the database tables, but this mapping is not always
- straightforward. There are two patterns named Mapper and Gateway to solve this problem.
Mapper is used when there is a cross table transaction to access the information needed to
construct an object, but Gateway simply packs the queries for one table and is used when
a domain object can tulfill its assigned tasks just by accessing once table.

There are two kinds of Gateways: Table Data Gateway and Row Data Gateway. One
instance of the former handles all the rows in the table which usually contains a mini-

table such as Record Set. but for the latter. there is one instance per each row of a table.

Sometimes a user request can be responded by just one domain object talking to just one
database table. In these cases, the logic in the domain object and the queries in the gateway
can be combined in an object called Active Record which is another pattern of the Data

Source Layer [Fow02, p. 35].

Supporting Patterns

Object-Relational patterns These patterns are applied when the relational database
is used for storing the objects. There are 16 patterns in this group which are divided
into three subgroups named Structural, Behavioral, and Metadata Mapping. The first
deals with the problem of relating objects to tables, the second concerns about loading and
saving objects to the database, and the third is related to the actual task of object-relational
mapping. Single Table Inheritance, and Class Table Inheritance are example patterns in
the first group; Unit of Work and Identity Map are examples in the second group; Metadata
Mapping and Query Object are examples in the third group.

Distribution patterns These patterns address the issues of distributing an application
on different nodes. Due to the pitfalls of distributed architecture, the first recommendation
given by the author of PofFAA encourages the designers not to distribute their objects!
Then to limit the distribution boundaries as much as possible. Finally, there are two simple
patterns named Remote Facade and Data Transfer Object in this group that can help the

designer manage the distribution of objects.

Offline Concurrency patterns These patterns are simple techniques that help the de-
signer deal with concurrency control issues, although they are merely starting points and
there is no guarantee that they can cure all concurrency problems. Concurrency problems
occur when there are multiple prdcesses or threads manipulating the same data. However,
dealing with concurrency is one of the hardest issues in software development.

As a naive solution, it is recommended to do all the data manipulations within a trans-
action. Even with this solution, there still exist some concurrency issues, which in the book
are referred as offfine concurrency, “that is. concurrency control for data that’s manipu-
lated during multiple database transactions” [Fow02, p. 63]. There are four patterns in
this group: Optimistic Offline Lock, Pessimistic Offline Lock, Coarse Grained Lock, and
Implicit Lock. Table 5 shows the pros and cons of the alternative patterns for managing

concurrency in a system.

(<]
b

Table 5: Alternative Patterns for Concurrency Control (Adapted from [Fow02, p. 68,77)).

l Pattern I Advantages Disadvantages

Optimistic Offfine | Easy to implement. Needs to redo the task in case of conflict.
Lock

Better Concurrency Late discovery of fail.
Pessimistic Of- | Early discovery of fail. Hard to implement.
fline Lock

Reduces concurrency.

Coarse-Grained Manages the concurrency of a group of
Lock objects together.
Implicit Lock Saves time of managing locks directly.

Avoids bugs.

Session State patterns The patterns in this group address the issues of having stateless
versus stateful sessions. The first suggestion is to have everything stateless! But for the
cases that you ought to have stateful sessions, there are three patterns presented in this

category: Client Session State, Server Session State, and Database Session State.

Base patterns This group contains 11 patterns which are more general and localized and
will be referred in the discussion of other patterns. Examples are Gateway, Mapper, and
_ Record Set.

2.6.2 PofFAA as a PL

Despite the fact that the author of PofEA A does not force the designers to select one pattern
after another, and says “I’ve tried to make each pattern as self-standing as I can” [Fow02,
p. 10]. However, there exist several prominent features in this set of patterns that enable
us to argue that PofEAA is a PL for the design of web-based enterprise applications. The

facts that support this idea are as follows.

1. Fowler says “the value [of patterns| lies in helping you communicate your idea [...]
The result is that patterns create a vocabulary about design, which is why naming is

such an important issue” [Fow02, p. 11]

2. PofEAA patterns are closely related to each other and can be used to design the -

architecture of a web-based enterprise application.

3. There are several recommendations and great suggestions in PofEAA about how to
decide amongst various alternative patterns for the situations that the designer has to
select one pattern amongst the available choices. For instance. it is said: A simple

Domain Model can use Active Record. whereas a rich Domain Model requires Data

Howdo I structure my domain logic?
The logic is simple — Transaction Script (110)
The logic is complex — Domain Model (116)
The logic is moderate and there are good tools around Record Set (508)
— Table Module (125)
How do I structure a Web presentation?
- Model View Controller (830)
How do I interact with the database?
I'm using Transaction Script (110) — Row Data Gateway (152)
I’'m using the Transaction Script (110) and my platform has good support for
Record Set (508) — Tuable Data Gateway (144)
I have a Domain Model (116) that corresponds closely to my database tables
—+ Active Record (160)
I have a rich Domain Model (116) — Data Mapper (165)
I’m using Table Module (125) — Table Data Gateway (144)

Figure 12: A Cheat Sheet for Selecting Patterns [Fow02, inside back cover]

Mapper” [Fow02, p. 117]. This set of recommendations and suggestions, can be con-
sidered a structuring mechanism that leads a novice designer in selecting appropriate

patterns one after another and hence design a system.

4. The set of patterns in PofEAA is rich enough to describe the design of an application
as a whole. That means we can find the problem along with its solution in PofEAA
for almost any enterprise need and these patterns guide us through the design of each

part of the application and consequently the whole system.

As an informal version of the structuring mechanism, Fowler has augmented the PofEAA
book [Fow02, Inside Back Cover] by a “Cheat Sheet.” In Figure 12, we have selected an
excerpt from the Cheat Sheet that aims to guide the designer in selecting appropriate
patterns for the Domain Layer and the Data Source Layer. '

As a typical road map for building the architecture of a web-based enterprise application,
a developer starts from the Domain Layer and based on the factors such as the complexity
of the domain logic, the difficulty of connecting to a database, and the using tools, selects
one of the three contender patterns.

After the decision about the Domain Layer is made, the developer goes down to the Data
Source Layer and thinks about how to connect the domain objects to the data sources. At
this stage, the decisions are dependent upon the Domain Layer choice along with extra
factors such as the facilities provided by the implementation platform and the complexity

of the domain model.

Final step would be selecting patterns for the Presentation Layer, although the presen-
tation is not tightly dependent upon the choice of the lower layers. There are two main
options for this layer: a rich-client interface or an HTML browser interface. The choices
have to be selected amongst the latter since no pattern is presented for the former. The rec-
ommended pattern is the Model View Controller which leads the designer to decide about
the controller and the view. These two last decisions will be affected by the development
tool.

In the course of designing a system, designer should remember that there is always
possibility of making mistakes or sometimes it is required to improve the design. As Fowler
says “Architectural refactoring is hard [...] but it isn’t impossible,” [Fow02, p. 95] that
means, while the designer should be prudent in designing a system, he/she should not resist

change when it is required.

2.6.3 PofEAA is in the Solution Domain

The word domain in software engineering means “an application area or field for which soft-
ware systems are developed” [Rub90]. When we talk about the problem domain, we mean
the concepts which are related to the corresponding business problem of the application.
However, the solution domain deals with the concepts related to the implementation details
of the system.

It is obvious that PofEAA is a PL for designing web-based enterprise applications and
not a language for the analysis of web applications. Therefore, PofEA A should be considered

as a PL in the solution domain describing the architecture or design of the application.

[z
[

Chapter 3

Pattern Language Verifier (PLV)

In Section 2.3.4, we accepted the following definition for a Pattern Language (PL):

“A petwork of tightly interwoven patterns that defines a process for sys-
tematically resolving a set of related and interdependent software development

problems” [BHS07b, p. 260).

This definition emphasizes that in building software based upon the patterns of a par-
ticular PL, i.e., in designing with patterns, the application of the patterns is not arbitrary,
i.e., the designer must adhere to the relationships between patterns.

Due to the fact that a PL may contain dozens of patterns with a variety of possible
relationships between them, and the relationships are mainly embedded into the lengthy
texts of pattern descriptions, designing with patterns is not an easy task, particularly for a
lay person. For instance, Patterns of Enterprise Application Architecture (PofEAA) [Fow02]
consists of 51 patterns with relationships such as uses, alternative, and conflicts, which are
all explained in prose description.

Following are some of the challenges that the designers face when they want to utilize

the patterns of a PL in designing a model for their software.
1. Pattern Selection: Which pattern is appropriate to solve a particular problem?
2. Pattern Application: How to apply a pattern correctly?
3. Pattern Weaving: Which pattern to choose after a specific pattern?

4. Pattern Semantics: Which pattern matches best with my Data Base Nanagement

System (DBMS) or my implementation language?

In this chapter, we propose a process named Pattern Language Verifier (PLV) to assist
designers in verifying the application of a PL in the design. Because of the nature of PLV,
which is a verifying process, we exclude the “Pattern Selection” challenge from the PLV’s
duties. That means, PLV aims to help a designer when facing the items two, three, and four
of the above list. We suppose that, the designers know which pattern they want to use, and
they show their intention by using the name of the pattern. In Chapter 2, we introduced
works that help designer in pattern selection.

- For every PL, if the PLV is defined, it helps a designer find answers to the questions

such as the following.
1. Is the usage of pattern X in my design correct?
2. Is it correct to use pattern Y as an alternative for pattern X?

3. Is my model consistent considering my implementation tool?

- To the best of our knowledge, PLV is the first work which addresses the problem of
verifying a design model from the PL view. Most of the related work cited in Chapter 2
falls into the category of single pattern detection and those works do not focus on the PL
aspects.

The PLV process is inspired by the compiler idea. Compilers look at the tokens of a
programming language as words, and the programs as sentences. They say a programming
language must have rules that define the legal words, the correct format of the sentences,
and the meaningfulness of the sentences. '

We believe that checking a model which is built using the patterns of a PL is similar to
using a compiler for checking a source program which is written in a programming language.
This similarity is the cornerstone of defining the PLV process. The idea of similarity between
PL and a formal grarﬁmar is also pointed out by other researchers [NB02, HAZ07, Zdu07,
BHS07a.

Buschmann et al. [BHS07a, p. 13| say “While patterns represent a design vocabulary,
pattern languages are somewhat like grammar and style.” Harrison et al. [HAZ07] mention
that as an ongoing research “We propose deriving a pattern language’'s grammar to sys-
tematically describe the pattern relationships and annotating the grammar with effects on
quality goals.” Zdun [Zdu07] uses annotated PL grammars in systematic pattern selection.
Noble and Beedle [NB02] argue that the PL concept proposed by Alexander [A*77, Ale79]
represents “a tree or directed graph of patterns, similar in structure to a formal grammar.”

We have individual patterns. one of them is considered as initial pattern. Then via uses

3]
~J

relationship, like a production rule in a grammar, we reach to other patterns to apply. The
initial pattern is like a grammar’s start symbol, and addresses a large scale problem.

The remainder of this chapter is organized as follows. Section 3.1 reviews the compilation
process. In Section 3.2, we discuss the overview of the PLV process. Section 3.3 elaborates
on the rules as an important prerequisite for PLV. Section 3.4 discusses the similarities and
differences between the PLV process and the compiling process. Section 3.5 shows a version
of PLV as a profile-driven process, and presents the technical details about its modules. In

Section 3.6 we discuss the issues and points of improvement regarding the PLV process.

3.1 The Compilation Process

A compiler checks a program source code and generates the machine code. In compiler
design, it is recommended to break the compiling task into two parts: an analysis part
and a synthesis part [ASU86]. The former part mainly consists of three phases, Lexical
Analysis (aka Scanning), Syntactic Analysis (aka Parsing), and Semantic Analysis. One of
the responsibilities of those phases is to detect the lexical, syntactic, and semantic errors in
a program respectively. The latter part, which is not related to our work and therefore is
not discussed here, deals with the code generation and code optimization.

The Lexical Analyzer accepts the program source code as input and produces a list of
tokens to be used by the next phase. This phase uses the lexical rules of the underlying
language as a reference for detecting tokens. A token is a sequence of consecutive characters
frbm the source code that together makes a meaningful logical unit (or word). The Lexical
Analyzer is concerned only with recognizing tokens, i.e., it does not concern with the order
of tokens. Tokens are typically divided into groups, identifiers, keywords, and operators,
just to name a few.

The Syntactic Analyzer accepts a stream of tokens, generated by the Lexical Analyzer,
and builds an abstract syntax tree (parse tree) based upon the given stream of tokens. This
phase uses the formél specification of the source language which is mainly in the form of a
grammar. A grammar consists of a set of rules that determine whether or not a sequence
of tokens builds a correct sentence of a language.

The duty of Semantic Analyzer is to check whether or not the given parse tree is mean-
ingful. As the reference for detecting semantic errors (i.e., determining the meaningfulness
of a program), the Semantic Anaiyzer uses the semantic rules of the source language. Since

formal specification of the semantics of a programming language is not easy. one alternative

approach which is widely used by compilers is to angment the grammars with semantic
rules. The resulting grammar is called an augmented grammar. The Semantic Analyzer
augments the given parse tree with attributes and generates an annotated parse tree. This
phase checks the semantic features that cannot be specified by the grammar.

The above three phases make use of a Symbol Table as a common source for accessing
the information about variables and identifiers in a program. Also there is a common unit
called Error Handler which is responsible for reporting errors and performing error recovery

tasks [ASUS6).

3.2 The PLV Process

Following the three-phase analysis part of a compiler, we propose three main verification

phases (modules) for the PLV process as indicated in Figure 13.

Pattern Structural
Verifier (PSV)

Pattern Language
Syntactic Verifier " Error
PTV)

Design
Model

Pattern Language
Semantic Verifier
(PMV)

Figure 13: Three Phases of the PLV Process

1. Input to the process is a Design Model. By a Design Model, we mean a set of UML
diagrams WhiCh‘ shows the architecture and/or the detailed design of a system. We
assume that the Design Model is built based upon the patterns of the underlying PL.
The Design Model may contain any of the UML diagrams, but PLV only investigates
the package diagrams and the class diagrams. From now on, we may use the word

“model” to refer to the Design Model.

2. Pattern Structural Verifier (PSV): PSV reads the Design Model, and applies the
structural rules of the PL to verify that all the individual patterns that are used by

the designer, are structurally correct. Our assumption is that the designer explicitly

shows his/her intention in using a pattern by applying the name of the pattern. For

each structural error, PSV gives an error message to the designer.

3. Pattern Language Syntactic Verifier (PTV): PTV accepts the Design Model
and uses the syntactic rules of the PL to verify that the pattern combination detected
in the previous phase isvsyntactically correct. The syntactic checks include verifying
the organization of patterns and the relationships between used patterns. For each

€ITor, an error message is given to the designer.

4. Pattern Language Semantic Verifier (PMV): PMV accepts the Design Model,
and applies the semantic rulesof the PL to-verify that all the patterns detected by

~ the PSV and their relationships are semantically correct. Consistency between the
parameters of methods, consistency between the patterns and their layers, and con-
sistency between the patterns and the context information are considered as semantic

rules in this work. For each error, an error message is given to the designer.

5. Output of the process are Error messages shown to the designer informing him/her

of the problems in the design.

3.3 Rules: Important Requirement for PLV

In the previous section, we have repeatedly mentioned that each PLV module applies cor-
responding rules to check the model. In the heart of PLV there exist three classes of rules:
structural , syntactic, and semantic. But, “what are these rules?” and “how should we
prepare these rules and feed them into PLV?” In the following, we will elaborate on the

nature of these rules and the items in the pattern form that help us recognize them.

3.3.1 Structural Rules

The structural rules are the basis used by the PSV phase in order to verify the structure
of each individual pattern that is applied in the design model. By structural rules of a PL,
we mean sets of rules where each set shows the essence of one pattern in the language. The

structural rules of a pattern must address the following questions [GHJV95, p. 3]:
e What are the constituting elements of the pattern?
¢ How the elements are connected to each other to form the whole pattern?

e What are the responsibilities of the elements?

60

s How do the elements collaborate with each other?

Since patterns act as the words that the sentences of a PL are built based upon, it is
crucial that, every single pattern is precisely defined by structural rules. It is obvious that
having more accurate rules results in a more precise PSV. In compilers, the lexical rules
that define the words of a language, must deterministically decide whether or not a token
belongs to that language. To have determinism in detecting a pattern by PSV, we need

precise structural rules.

Where to find structural rules?

We want to know which items in a pattern form must be investigated to find the structural
rulesof a ;;attern. Recall the classical definition for pattern that says “a pattern is a solution
to a problem in a context” [GHJV95, p. 3]. Hence, the structure of a pattern is shown via
the items of paitern form that represent the “solution” proposed by the pattern. Since there
is not a unique or standard pattern form for writing patterns [Fow03], finding the pattern
form items that show the structure of a pattern is not straightforward. We must start from
the items such as “Structure” or “Solution,” however, if these fields do not suffice, it is
required to investigate other fields of the pattern form to better understand the structure
of a pattern.

For patterns that their structure is represented by class diagrams, e.g., GOF patterns,
the structural rules are the interpretation of these class diagrams. In GOF paitern form
there is a field named “Structure” that shows the structure of the pattern by class dia-
grams. In some cases, e.g., Flyweight pattern, the structure contains an object diagram
too. The class diagramns given in “Structure” fields of GOF patterns are rich enoﬁgh to be
considered as the structural rules of this PL. However, more information about the essence
of the GOF patterns can be gained via field “Participants” which shows the elements of the
pattern, or via field “Implementation” which shows how the pattern can be implemented
in a programming language such as C++.

In PofEAA, for some of the patterns there is a class diagram that shows its structure:
Front Controller, Remote Facade, to name a few. Other patterns, e.g., Layer Supertype, lack
any diagram and are explained via textual description and example. We found the following
fields of the PofEAA pattern form useful in finding the structural rules of a pattern. The

list is sorted on the importance of the items.

1. “Intent.” which is a short text about the pattern:

61

2. “Sketch,” which is a visual representation of the pattern, mostly in terms of a UML

class diagram;
3. “How It Works,” which is a text for describing the solution; and

4. “Examples,” which are Java or C# source code.

Formalism for structural rules

There are some design/architectural PLs, e.g., GOF [GHJV95], that use UML (mostly
class diagram) as a formalism for representing the structure of patterns. Therefore, it is
tempting for us to select UML as the language for representing the structural rules of the
PL. However, investigating the patterns of these languages reveals that, in many cases,
the pattern authors had to augment their UML diagrams by additional prose explanations
to enrich the definition of the patterns or to shed light on the vague points. There are
PLs, e.g., PofEAA [Fow02], that use UML diagrams for some of their patterns (not all of
them). Some PLs, e.g., POSA-4 [BHSO07a), use visualizations other than UML for defining
the patterns, and their focus is on textual description.

Therefore, the formalism that we use for defining the structural rules is a combination of
textural rules that are written in plain English with a UML class diagram. The textual rules,
written as an enumerated list, are the main parts and must be clear and simple enough such
that an intermediate OO programmer can understand them and interpret them in terms of
an OO programming language such as Java. The class diagram is the complementary part
that is optionally added to help understanding of the textual rules.

To facilitate the detection of elements in a model, and hence, to ease the work of PSV,
we utilize a naming convention paradigm. We suppose that, the designers, in their design
models, use the same names that are used by the pattern author in the pattern form for
naming (or building the name of) the pattern elements. From now on, we refer to the name
of the pattern as “Sign” [ZKBO08]. For instance, if the designer intends to use the Table Data
Gateway pattern [Fow02, p. 144] in accessing the Person information, he/she may choose

“PersonTableDataGateway” as the name of the class which corresponds to this pattern.

Examples of structural rules

In order to see how the structural rules for a specific pattern can be extracted, we consider
two different representations (see Figure 14 and Figure 16) for the Table Data Gateway

pattern.

62

Figure 14 shows the “Intent” and the “Sketch” of this pattern in PofEAA [Fow(2, p. 144].
Although, the intent text and the sketch give much information about the structure of the
pattern, however, investigating other fields such as “How It Works” adds more details about

the pattern. For example, we found the following comments very beneficial:

e “A Table Data Gateway has a simple interface, usually consisting of several find meth-
ods to get data from the database and update, insert, and delete methods” [Fow(02,
p. 144].

e “The trickiest thing about a Table Data Gateway is how it returns information from

a query. Even a simple find-by-ID query will return multiple data items” {Fow02,
p. 144].

e “One alternative is to return some simple data structure, such as a map. [...] A better
alternative is to use a Data Transfer Object. [...] To save all this you can return the

Record Set that comes from the SQL query” [Fow(2, p. 144-145).

The first comment reveals that there could be more than one “find” method in this
pattern. The second comment leads us to a rule that checks the return type of all “find”
methods in this pattern. The third comment tells about the alternaﬁve options for the
return type of “find” methods, e.g., to expect a Record Set as their return type. Note that,
if the designer is going to define and use the Record Set as a pattern in his/her design, this
rule will be considered as a syntactic rule (see Section 3.3.2).

An object that acts as a Gateway (466) to a database table.
One instance handles all the rows in the table.

Person Gateway

find(id) : RecordSet

findWithLastName(String) : RecordSet)
update(id,Jastname firstname, numberOfDependents)
insert{lastname, firstname,numberOfDependents)
delete(id)

Figure 14: The Table Data Gateway Pattern [Fow02, p. 144]

Considering the above discussion of the Table Data Gateway pattern, we are now able
to define the structural rules for correct application of this pattern. Figure 15 shows these
rules. Note that, the name “Table Data Gateway™ is the “Sign” of the pattern, e.g., it can
be used as part of the class name. Adding the class diagram in Figure 14 to these rules is

not necessary since the rules are clear enough.

63

1. There is a Table Data Gateway class in the model.

2. There are at least four operations (find, insert, delete, update) in the Table Data Gateway
class.

3. The return type of all £ind operations is Record Set.

Figure 15: Structural Rules for Table Data Gateway Pattern

Figure 16 shows the Table Data Gateway pattern presented in POSA-4 [BHS07a, p. 544].
In the pattern form adapted by this PL, there are several items for presenting the “Solution”
offered by a pattern [BHSO07a, p. 48]. In the figure, you see the “Solution Instruction” and
“Solution Sketch” items for the Table Data Gateway pattern.

Wrap the database access code for a specific database table within
a specialized table data gateway, and provide it with an inter-
face that allows applications to work on d’omainvspeciﬁcv data
collections.

Database Tabie
i ol fokd 2105 T 2

Figure 16: The Table Data Gateway Pattern [BHS07a, p. 544]

As it is clear from the figure, the formalism used for the sketch of the solution is not
UML. Therefore, in addition to the items shown in the figure, other fields of the pattern
form must be investigated to interpret clear structural rules that enable PSV to verify
whether or not part of a design matches the Table Data Gateway pattern.

For instance, the following two sentences give us more information about the structure

of the pattern.

e “A table data gateway has a simple interface consisting of several find methods to
get data from the database, together with corresponding update, insert, and delete

methods” [BHS07a, p. 545).

o “Many alternatives exist for returning the results of queries to clients [...] Some

environments [...] can return a RECORD SET” [BHS07a, p. 545].

By considering this information. we reach the same structural rules that were extracted

from the PofEAA representation of Table Data Gateway pattern (Figure 15).

64

To summarize, the structural rules of a PL are the rules that show the structure of
each single pattern in the language clearly and precisely. These rules must be written in
plain English text, in itemized format, optionally enriched by a class diagram, such that an

intermediate OO programmer is able to understand and code them into the PSV module.

3.3.2 Syntactic Rules

The syntactic rules are used by the PTV phase in order to verify the pattern combination
that is applied in the design model. We believe that syntactic rules must address two
aspects about the pattern combinations that are used in a design model: the organization
of patterns, and the relationship between patterns. These two aspects are discussed in the

following.

I- Syntactic rules regarding the organization of patterns

Patterns are normally organizéd into groups or layers. The syntactic rules of a PL must
enforce the correct organization for the patterns that are applied in a design model.

The concept of pattern grouping is addressed by many pattern authors [A177, GHIV95,
SSRB00, Fow02, KJ04, BHS07a}. For instance, the authors of GOF say, “Design patterns
vary in their granularity and level of abstraction. Because there are many design patterns,
we need a way to organize them” [GHJV95, p. 9]. The GOF patterns are classified into
three groups based upon their purpose: creational, structural, and behavioral [GHJV95,
p. 10].

The concept of pattern layerihg becomes more tangible for architectural patterns, be-
cause, it is common that these patterns are divided into groups based upon the architectural
style selected by the author. For instance, Fowler [Fow02, p. 19] has used the layered ar-
chitecture for PofFAA, by dividing patterns into three primary layers and five supporting
layers (see Section 2.6). The primary layers are in fact the mandatory layers that each
enterprise application must include: Presentation, Domain, and Data Source. The use of
supporting layers depends upon the designer’s choice, the features of application, and the
configuration of the system. Hence, in a design which is built using PofEAA patterns,
missing any of the mandatory layers in a model. or placing a pattern into a wrong layer,

should be considered as a syntactic ervor.

Where to find syntactic rules regarding the organization of patterns?

If the patterns of a PL are organized into groups or layers, this fact should be clearly
distinguishable either from the pattern form or from the method of documentation of the
patterns.

The first means that there is a dedicated field in the pattern form that indicates the cor-
responding group for each pattern. This approach is applied in GOF patterns, where a field
named “Classification” is attached to the “Pattern Name” to make the field “Pattern Name
and Classification” in the pattern form. “Classification” indicates the group that the pat-
tern belongs to. For instance, “Command” is considered as a behavioral pattern [GHJV95,
p. 6-10].

The second means that in documenting the patterns, the author places all the patterns
that are in the same group under one title. This is the approach taken by PofEAA [Fow02]
and POSA-4 [BHS07a]. In PofEAA book, patterns of the same layer are defined in the
same chapter. Table 6 shows the organization of PofEAA patterns into layers albng with
the book chapter that the patterns are described in it. In POSA-4 book, there is a chapter

dedicated to the patterns of each problem area.

Table 6: Organization of Patterns in the PofEAA Book, Adapted from [Fow02]

Layer/ Category | Book| Patterns
Chap.

Domain Logic 9 Transaction Script, Domain Model, Table Module, Service Layer

Data Source 10 Table Data Gateway, Row Data Gateway, Active Record, Data Mapper

Object-Relational 11 Unit of Work, Identity Map, Lazy Load

Behavioral :

Object-Relational 12 Identity Field, Foreign Key Mapping, Association Table Mapping, Depen-

Structural dent Mapping, Embedded Value, Serialized LOB, Single Table Inheritance,
Class Table Inheritance, Concrete Table Inheritance, Inheritance Mappers

Object-Relational 13 Metadata Mapping, Query Object, Repository

Metadata Mapping

Web Presentation 14 Model View Controller, Page Controller, Front Controller, Template View,
Transform View, Two-Step View, Application Controller

Distribution 15 Remote Facade, Data Transfer Object

Offline Concur- | 16 Optimistic Offline Lock, Pessimistic Offline Lock, Goarse Grained Lock,

rency Implicit Lock

Session State 17 Client Session State, Server Session State, Database Session State

Base 18 Gateway, Mapper, Layer Supertype, Separated Interface, Registry, Value
Object, Money, Special Case. Plugin, Service Stub, Record Set

Although indicating the placement of patterns in layers is easy. e.g., by a two-column
“layer/pattern” table similar to Table 6, such a table does not show all the details about
the organization of patterns. For instance. the fact that three of the layers of PofEAA

arc mandatory and five layvers are optional is not reflected in Table 6. Capturing this

66

information needs scrutinizing of the pattern text. For example, the following excerpts
from the PofEAA book, helps us to find out that three of the layers are principal, but, for

example, the Distribution layer is optional.

o “For this book I’'m centering my discussion around an architecture of three primary
layers: presentation, domain, and data source” [Fow02, p. 19]. Fowler clarifies that

these three layers are primary.

e “Hence, we get to my First Law of Distributed Object Design: Don’t distribute your
objects!” [Fow02, p. 89]. Fowler recommends not to distribute the objects, unless you

have to do so.

Formalism for syntactic rules regarding the organization of patterns

How to formalize the organization of patterns of a PL for the PLV process? The formalism
~ should precisely address questions such as the following. What layers exist in the language?
Is there any order or dependency between layers? Which pattern lies in which layer? If
a layer is optional, what are the prerequisites that must be true to have that layer in the
model?

Following context-free grammars, BNF, and set notations, we define a notation in Table 7
for representing the organization of patterns into groups or layers. In terms of UML, since
a “package” is often used to group elements [Lar05, p. 201}, we correspond one layer/group
to one package in the model. Hence, the syntactic rule that checks the membership of a
pattern in a layer/group (I 3 P), should simply check that the main class of the pattern is
placed in the corresponding package.

Note that in grammar terminology, lower case words are non-terminal symbols and are
equivalent to the layers, capitalized words are terminal symbols and are equivalent to the

patterns. The starting non-terminal of the grammar indicates the system as a whole.

Examples of syntactic rules regarding the organization of patterns

Using the organization of the PofEAA book along with the context of patterns that are ex-
plained in prose in the book, we can extract the syntactic rules regarding the organization
of patterns. For instance, to enforce the fact that every design model which is built using
PofEAA requires a root package. and inside that, there must be a “main” package and an op-

tional “auxiliary” package, we write the rule: pofeaa model D main layer . auziliary layer®.

Table 7: Notations for Representing the Organization of Patterns

[Notation | Meaning | In terms of UML
l m | Layer Lowercase letters or first-small words | A layer is represented by a package
show the layers
P Pattern Capital letters or capitalized words | Each pattern is recognized by one class
Q show the patterns which is called “Sign”
> Layer Inclu- | | D m means layer I contains layer m Package ! contains package m
sion
E) Pattern [3 P means layer [contains pattern P | Package [contains class P
Membership
, Group IDm,nmeans{Dmand D n Package [contains both packages m and
Inclusion n
Group 2P, Qmeans I3 Pandl> Q Package | contains both classes P and
Membership : Q
Layer de- | /D> m.n means!D m, n and layer m | Package [contains both packages m and
pendency is dependent on layer n, but layer n is | n, and package m has a dependency to
not dependent on layer m package n, but package n has not a de-
pendency to package m
* Optional {* means layer [is optional Package ! is optional
Layer
?(c) | Conditional 1"'°) means existence of layer [is subject | Existence of package ! is subject to con-
Layer to condition ¢ dition described in ¢
{c} | comment A comment can be attached to the | comment explains the technical consid-
above notations erations

" To enforce that “auxiliary layer” may include a sub-package “base,” and if the designer
decides, there could be sub-packages “distributed,” “concurrency,” and “sessionstate,” we
write the following rule. C1 is a predicate such as “designer wants Distributed Layer.” C2

and C3 represent the corresponding predicates.

?(G2)

?
concurrency” 7(C3)

auziliary layer O base™ | distributed” €V | , sessionstate

To indicate which pattern resides in which layer, we use the pattern membership nota-
tion, for example, the following rule shows the placement of the patterns inside the Domain

Layer. domain 3 Domain Model, Table Module, Transaction Script.

II- Syntactic rules regarding the relationship between patterns

In Section 2.4.1, we discussed that patterns are not isolated. Patterns can be related to
cach other in different ways: uses, conflicts, refines, to name a few. Also we reviewed the
literature and showed that there is no consensus among the pattern authors on the name,
the meaning, the level of formality, and the formalism used for representing the relationships
between the patterns of a PL.

Current PLs are not developed yet in terms of having clear and precise pattern relation-
ships. Therefore, inding the the relationship between patterns in the pattern form js more

" difficult than finding the structural rules.

68

Following the compiler metaphor, the syntactic rules of a PL that show the relationship
between patterns are similar to the grammar rules of a programming language that show
how the tokens can be arranged to make a syntactically correct sentence. That means, the
grammar of a PL must dictate the correct combination of patterns, considering the pattern

relationships, that can be built based upon the patterns of the language.

Where to find syntactic rules regarding the relationship between patterns?

Finding the relationship between patterns in a PL is not a straightforward task. Sometimes
this information is hidden between the lines of the prose text which describes the pattern.
Sometimes, there is a very general and vague graph for representing pattern relationships.
However, this information is not formal enough to be used as the basis for the operation of a
PTV. In this section, we address possible cases that need to be considered in discovering the
pattern relationships. In the next section, we propose a formalism for déﬁn_ing the pattern
relationships.

The GOF authors mention some relationships between patterns:

“Some patterns are often used together. For example Composite is often used
with Iterator or Visitor. Some patterns are alternatives: Prototype is often an

alternative to Abstract Factory” [GHJV95, p. 10].

However, the GOF book does not address the relationship between patterns in more
detail. The “Related Patterns” field of the pattern form briefly talks about how patterns
reference each other. Also, there is a general graph (see Figure 4 on page 32) which depicts
the relationships for all 23 patterns in the language. Having such diagrams that show the
“big-picture” of the language, and the relationship between patterns, is helpful but not
sufficient.

In PofEAA, the relationships between patterns are not explicitly discussed by the author.
The information is scattered in the texts that describe the patterns. More specifically
the fields “Applicability” and “When to use it” discuss the relationship issues. In the
introduction of the book, the author says “many of the patterns are about choices and
alternatives” [Fow02, p. 6]. That means the book does not offer a single solution for an
enterprise system. For every problem, there are many options, and it is the designer’s job
to make the trade off. A “Cheat Sheet” printed inside the back cover of the PofEAA book
can be considered as an informal version of the grammar of PofEAA [Fow02].

In POSA-4, 114 patterns are grouped into 13 problem areas. There is a graph [BHS07a.

p. 40-41] that shows important relationships between those 13 problem areas. Each problem

69

area is described in a template, which contains a diagram that shows how the patterns are
integrated into the PL. One of the problem areas, “From Mud to Structure,” includes
the root patterns of the language. The design process starts by selecting a root pattern,
completing it with other patterns, and continuing until the designer arrives at one of the
“leaf” patterns, i.e., patterns that can not be refined anymore by other patterns in the
language [BHSO07a, p. 40-41]. Despite the graphs for problem areas, and a template that is
designed to show the relationships between patterns, POSA-4 authors use complementary

explanations given in the prose text of the patterns.

Formalism for syntactic rules regarding the relationship between patterns

In Section 2.4.1, we presented several works that have addressed the relationship between
patterns. Among them, we focus on three works which we found more comprehensive
than others: James Noble [Nob98a], Wu-dong et al. [WdKqY*+03], and Buschmann et al.
(POSA-5) [BHSO07b]. By consolidating the idea of these three works, we define a notation

in Table 8 for representing the relationships between patterns of a PL.

Table 8: Notations for Representing the Relationship Between Patterns

[Notation | Meaning [In terms of UML]
P root pattern | P means pattern P is a root pattern | P is a mandatory class in the model, and
of the language, i.e., no other pattern { no other class has dependency” to class P
is using P.
— uses P — @ means pattern P uses pattern | There is dependency” from classes of P to
Q classes of @
o | conditional p @ means pattern P uses pat- | There is dependency” from classes of P to
uses tern @ subject to cond classes of @, subject to cond
alternative P — @] R means pattern P may use | There is dependency” from classes of P to
uses pattern @ or pattern R ‘ either classes of Q or classes of R
— conflicts P — @ means patterns P and Q can | The model can not contain both classes
not coexist in the model P and @
4 conflicts in | P& Q means patterns P and @ can | Package [can not contain both classes P
layer not coexist in the layer [and Q
1 refines P 1 @ means pattern P is a special- | Class @ is a generalization of class P
ized version of pattern @
{c} | comment A comment can be attached to the | comment explains the technical consider-
above notations ations
* Attribute dependency, method dependency, containment, or association.

Note that every pattern combination has to start with one of the root patterns.

A

root pattern is an obligatory pattern and no other pattern is dependent upon it. The uses
relationship is a basic relationship which can be found in most PLs. Three variants of
uses are defined (uses. conditional uses, and alternative uses) to make it more usable. The

conflicts relationship describes the situation where there is more than one solution to a

70

specific problem, and those solutions are mutual exclusive. Two patterns can be conflicting
either in the whole model or in a specific layer of the model. The refines relationship shows
the case when one pattern is a more specialized version of another pattern. Finally, any
comment that makes the relationship more understandable, especially from the technical

and modeling point of view, will be given as a comment.

Examples of syntactic rules regarding the relationship between patterns

For starting a design with the PofEAA, a designer has several options as the initial pattern.
For example, one may start from the domain, view, or controller. We select the last option,
hence, either Front Controller or Page Controller could be the initial pattern. Then we need
patterns for the View part of the system. Again, there are two alternatives, Template View

or Transform View. This discussion, leads us to the following starting rules.

Page Controller — Template View | Transform View

Front Controller — Template View | Transform View

As another example of a syntactic rule in PofFAA, consider the following excerpt from
the “How It Works” section of the Table Data Gateway pattern that reveals the relationship
between this pattern and the Record Set pattern: “The trickiest thing about a Table Data
Gateway is how it returns information from a query |[...] you can return the Record Set that
comes from the SQL query” [Fow02, p. 144].

The above text tells more than simple “usage” of one pattern by another. In fact, the
text indicates “How x uses y?” This is interpreted as straightforward conditions, and is
augmented to the uses rule. This interpretation should be performed by an expert in the
domain of underlying PL. In the above case, since Table Data Gateway returns the data
via its “find()” methods, a comment will be attached to the uses rule as indicated in the
following. An implicit requirement of this rule is that “There should exist a Record Set
pattern in the Base Layer of the model.” |
TableDataGatway — RecordSet {C4} , where C4: “The return type of every find() operation
in the Table Data Gateway pattern is Record Set.”

Another example in PofEAA is that for managing the transactional conflicts of business,
there exist two patterns: Optimistic Offline Lock and Pessimistic Offline Lock. These two
are in conflict if they are used for the same unit of work. The argument that there is a’
choice between these two patterns is made in the book as “The essence of the choice between
optimistic and pessimistic locks is the frequency and severity of conflicts™ [Fow02, p. 68].

This text can be interpreted as the following syntactic rule. The fact that the conflict

71

happens when these two rules are applied on the same unit of work is explained via the
comment line. OptimisticOfftineLock “" <3 Y PessimisticOfftineLock {C5}, where C5:
“The two patterns are applied for the same unit of work.”

As an example of refines, we can consider both patterns Front Controller and Page
Controller as refinements of Controller. (But note that there is no Controller pattern in
PofEAA, and Fowler [Fow02, p. 56] prefers to call the controller part of the Model View
Controller, the input controller.) Therefore, we can define the following syntactic rules:

FrontController 1 Controller and PageController T Controller.

3.3.3 Semantic Rules

The PMV phase uses the semantic rules to verify whether or not a pattern combination
used in the design is semantically correct. To the best of our knowledge, there has been no
discussion on the semantics of a pattern combination in the PL community. Even in compiler
design, the semantic checking is considered an optional phase, such that, some compilers
perform no semantic analysis at all; Other compilers limit it to type checking or code
generation issues [ASU86|. For instance, a syntactically correct “assignment statement”
might be considered as having semantic error if there is type mismatch between the types
of both sides of the assignment.

In this thesis, we consider two categories of semantic problems. The first category are the
conflicts between the applied patterns and the context information. That means, we consider
the context of design as a parameter which affects the semantics of the design. By context
information, we mean any information which is related to the system environment. The
following list shows some examples of the context information: implementation language,
expertise level of the designer, underlying DBMS technology, and possibility of transaction
conflict.

The semantic rules should clearly say which pattern is in conflict with which context
information. For instance, if applying a pattern is not recommended for a novice designer,
or applying a pattern does not match well with the implementation tool or the DBMS,
these facts must be reflected in the semantic rules related to either of those patterns.

The second category of semantic problems are the inconsistencies between the features
of applied patterns. The semantic rules must prevent any conflict between the features
(behavioral or structural) of 1) a single class in a pattern. 2) the constituting classes of a
single pattern. or 3) the classes of different patterns. For instance, requiring getters and

setters for the attributes of a class, consistency between the attributes of two cooperating

72

classes in a pattern, and consistency between the operations of two corresponding patterns
are examples of semantic rules that must be adhered by the designers. Semantic rules must

be precise enough to catch such errors.

Where to find semantic rules?

We were unable to find any PL which has explicitly addressed semantic issues of the lan-
guage. Thus, discovering the semantic rules of a PL is even more difficult than the syntactic
rules, since the information, if any, is again hidden in the prose description of the patterns.
Note that syntactic rules and semantic rules are more PL-oriented than the structural rules.
It would be beneficial if the pattern authors dedicate a particular field in the pattern form

to address the semantic issues.

Formalism for representing semantic rules

We define two general notations in Table 9 for describing the inconsistencies between a
pattern and the context information, or the inconsistencies between the features of a com-
bination of patterns. Note that these two notations are complementary. The criteria that
cause inconsistencies for the pattern must be written clearly and precisely in the condition

part of the rule.

Table 9: Notations for Representing the Semantic Rules of a PL

[Notation | Meaning [In terms of UML]
~ consistent P = {c} means pattern P is consistent | Class P can not exist in the model while
with the condition specified by {c} the condition in {c} is violated
% inconsistent P % {c} means pattern P is inconsis- | Class P can not exist in the model while
tent with the condition specified by {c} | the condition in {c} is hold

Examples of semantic rules
In this section, we present some recommendations given in PofEAA book, and show how

they can be interpreted as semantic rules.

Tool Consistency The following excerpt from the book explains the consistency between

the Table NModule and the development environment (tool).

“If you have an environment like NET or Visual Studio. then that makes a

Table Module much more attractive™ [Fow02. p. 30].

This can be interpreted as a semantic rule of the first category, i.e., consistency between a

pattern and context information: TableModule ~ {Tool = .NET}

Operation Parameter Consistency In the Table Data Gateway pattern, it is claimed

that:

“the parameter list of the insert method must be a subset of the parameter list

of the update method” [Fow02, p. 144].

The semantic rule corresponding to this claim belongs to the second category. This rule
can be written as:

TableDataGateway ~ {insert() parameter list C update() parameter list}

3.4 PLV vs. Compiler

We explained that there is an analogy between the tasks of the PLV process and what a
~ compiler does. As a compiler has phases for checking the lexical, syntactic, and seman-
tic aspects of a programming language, PLV also has phases for verifying the structural,
syntactic, and semantic aspects of a PL. Both processes use three groups of rules as touch-
stones for judging about the lexical, syntactic, and semantic aspects of the language. This
similarity has also been identified by other researchers and pattern pioneers. For instance,
Buschmann et al. in [BHS07b] discuss how a PL needs a grammar for guiding the designer
in building acceptable pattern combinations.

Despite the similarities, there cxist several differences between the PLV process and the

compiling process.

1. It is widely accepted in the programming languages community that the lexical, syn-
tactic, and semantic rules of a new language must be defined precisely and formally,
to enable us to build a compiler for that language. However, in PLs, formality, if
it exists, is used mainly for describing the structure of a pattern, and the rules that
define the pattern relationships and best practices of the language, are mostly writ-
ten in natural language. That means, building a PLV for a PL needs extra steps of
formalizing the rules that govern the PL in order to make them ready for the PLV

modules.

2. In compilers, a source program usually consists of tokens from the source language:

any other thing is reported as an error. In a design model. which is given as input to

74

the PLV process, in addition to the patterns that belong to the underlying PL, there
could be other patterns or model elements which do not belong to the underlying PL.

The PLV process just ignores those elements.

3. In the PLV process, all the modules work on the same model and we cannot say that
each phase changes the model from one representation to another, as it happens in

the phases of a compiler.

4. While a compiler consists of both analysis and synthesis, PLV deals only with the
analysis. That means, we verify the design model and try to fix the design problems,

but, we do not attempt to generate code from the model.

5. Most compilers do not allow a program to compile until all the errors are fixed.
However, PLV is not an intrusive process, i.e., detecting an error does not impede the
designing process. The designer always has the choice to ignore an error éompletely,

or to fix it later.

6. A compiler converts a program from a source (high-level) language to a target (low-
level) language. In PLV, the source and the target are both models in the same level,

only some of the errors in the source model may have been fixed.

3.5 The Profile-driven PLV Process

The PLV process presented in Section 3.2 is a simple three-phase process that verifies a UML
‘design model from the structural, syntactic, and semantic viewpoints of the underlying PL.
In this section, we explore the role of a UML profile for a PL in the PLV process. The
aim is to present a more elaborate PLV architecture and clarify the responsibilities of each
module. In Section 3.5.1, we give an overview of the changes to the simple PLV. The new
architecture of the PLV will be presented in Section 3.5.2. The four main modules of the

new architecture will be explained in Section 3.5.3 to Section 3.5.6 respectively.

3.5.1 Overview

Three new features are added to the PLV process include adding a module for helping the
designer in fixing the problems, bookkeeping the pattern information by the earlier modules
to facilitate the task of next steps, and utilizing a profile to ease the pattern detection and

accessing configuration information. These features are explained in the following sections.

Fostering PLV with Advisory Power

In order to add the advisory power to the PLV, we add a new module called Pattern
Language Advisor (PLA) to its structure. PLA is responsible for reporting the errors to
the designer, displaying guidelines on how to fix the problems, fixing the detected problems
in a systematic manner, and recording the model modifications into a Design Rationale.

Upon detection of an error in the model, PLA is invoked, and having access to all
the structural, syntactic, and semantic rules, gnides the designer in stepwise fixing of the
problems. PLA also gives the designer the opportunity for systematic repair. Therefore,
PLA is the only module which is able to apply modifications to the model. For more details

see Section 3.5.6.

Pattern Information Table (PIT)

Influenced by the idea of symbol table in compiler design, we have a tablé which tracks
information of detected patterns, called the Pattern Information Table (PIT). The
PIT is created by the PSV and contains information about the detected patterns, e.g.,
pattern name, the layer in which the pattern is placed, and the pattern elements. Pattern
elements form a list that shows the actual parameters assigned to the formal parameters of
a pattern. The PTV, PMV, and PLA modules will use this table to know which patterns

are detected in the model and in which layer they are placed.

Using a UML Profile in PLV

We concur with Martin Fowler that “The biggest software patterns community is rooted
in the object-oriented world” [Fow03]. Furthermore, the initiative of PLs in software has
started from the OO discipline (OOPSLA [OOP09] and PLoP [Hil09a] conferences), and
. UML is the dominant modeling language for OO systems [Lan06]. After a designer built a
model based on the patterns of a PL, it is not always clear what patterns are used in the
model, without having some metamodel-level information about the model. For instance,
none of the related work introduced in Chapter 2 are able to detect all GOF patterns. A
profile is an extension mechanism for UML, which allows us to customize UML, for example,
by extensions representing the PL elements.

The above facts encourage us to utilize the UML profile mechanism in making the
PLV process more effective. This will change the simple architecture of the PLV shown in

Figure 13 to a profile-driven process. That means, all the modules utilize a UNL profile that

should already be defined for the underlying PL. We call such profile a Pattern Language
UML Profile (PLP).

A profile is defined by specifying three sets: Stereotypes, Tagged Values, and Con-
straints. Stereotypes are concepts from the domain that are defined to extend one of the
existing UML meta-classes. For each stereotype, tags can be defined to save configuration
information. These tags act as meta-attributes for the corresponding stereotype. Values
can be assigned to tags to make “tagged value” pairs. Constraints are the Well-Formedness
Rules (WFRs) defined for the stereotypes. Applying a stereotype on a model element,
~ causes the WFRs of that stereotype to be verified.

In the following sections, we will elaborate on the information that is captured by each

element of the profile, and how these elements help the PLV modules.

Stereotypes

For the PLV process, stereotypes are the most important elements of the profile, because
they provide a naming convention for each pattern. The designer uses the stereotypes for

the following purposes.

o To indicate the pattern he/she wants to apply: We suppose that for each pattern
there is a unique class stereotype. This stereotype acts as the “Sign” for the pattern

and releases us from the pattern detection endeavor.

e To name the constituent elements of a pattern: Every element of a pattern (class,

attribute, or method) has an appropriate stereotype.

e To indicate the layer containing the pattern: Stereotypes are defined for packages that

show the layers in a layered architecture.

All PLV modules utilize stereotypes. In searching for the constituent elements of a pat-
tern, PSV can directly find the element. The PTV module utilizes stereotypes when looking
for the containing layer of a pattern or in checking the dependencies between patterns. The
PMYV module uses the stereotypes in finding a specific feature (attribute or operation) of a
pattern. PLA should attach the corresponding stereotypes to the elements that are added

to the model.

Tagged values

Tagged values are helpful for capturing configuration/context information of the model,

e.g., the implementation language. Tagged values allow the designer to define values for

lrdr

tags dynamically during the design and the values are persisted with the model. If we do
not utilize tagged values, capturing context information must be done using auxiliary files
or via the Graphical User Interface (GUI) of the modeling tool, however, neither of these
approaches gives information which is synchronized with the model.

Both PSV and PTV use tagged values to access context information that is required
for verifying some of the structural or syntactic rules. PMYV is the main user of the tagged
values, since this module is responsible for checking the inconsistencies between the used

patterns and the context information.

Constraints

Constraints are WEFRs that are defined for each stereotype of a profile. Applying a stereo-
type on a model element, causes the WFRs of that stereotype to be verified. For building a
PLP, we must have three groups of constraints: structural, syntactic, and semantic. These
constraints are the basis for the operation of PSV, PTV, and PMV respectively.

There are two main alternatives for defining the constraints of a profile:

1. Informally by a natural language, in which case, the constraints must be hard coded

by a programmer in order to build the three verifier modules of PLV.

2. Formally by Object Constraint Language (OCL), in which case, the three verifier
modules of PLV are in effect applying the profile on a model and verifying the OCL

constraints.

As we discussed in Section 3.3, the formalisms we proposed for PLV rules contain many
textual comments which makes them far from being easily translated into a formal language
such as OCL. Therefore, our strategy is to select the first alternative and hard code the
rules into the three verifier modules.

It should be noted that the profile constraints are not meant to perform model modi-
fications which are the duties of PLA. Model modifications can be simple, such as adding
a missing operation to a class, or complicated, such as building an instance of a pattern
automatically, which is called “pattern instantiation.”

To summarize, PLV as a profile-driven process: The profile plays an important role in
the PLV modules, since these modules make use of the stereotypes and the tagged values,
howcever. the constraints of the profile need to be hard coded by the programmer who is

building the PLV.

3.5.2 PLV Architecture

The extended architecture for the PLV process is shown in Figure 17 [ZBK09].

Pattern
Language

UML Profile
(PLP)

1]
1
! Pattern Structural
O E
; q Verifier (PSV) fror
)
]
!
: Module
: Pattern
[Information
1 Table (PIT)
i
! Intermediate
: \ 4 Y Table
|
L ______ » Pattern Language | | Pattern Language
: Syntactic Verifier (PTV) Error | Advisor (PLA)
S TEE———
] 17 Information Flow
) x ;
4)
4]
i v /N | —eeaa
| .
! M:a'::;r:;m : De'SIQn Input
: Table (PIT)) Rationale
: '
i '
:) Legend
]
] Pattern Language . 1
[t ™ sSemantic Verifier (PMV) srrer
1
)
)

Figure 17: The PLV Architecture

The process deals with two artifacts: UML Design Model and Design Rationale. The
UML Design Model is the input information to all four modules; This is shown by solid
directed lines that go from the model to the modules. The Design Model is also an output
of the process, due to the modifications that the PLA may apply on it, hence the solid
line from the model to the PLA is directed at both ends. The other artifact is the Design
Rationale which is an output text file recording the changes made to the model by the PLA,
~ thus, a solid directed line goes from PLA to the Design Rationale.

The architecture also reveals that the process is profile-driven. since both the Design
Model and the modules utilize the profile by using the stereotypes and tagged values. This
fact is shown by the directed dashed lines from the PLP to both Design Model and the
modules. The PIT records information about the detected patterns. obtained by PSV. and
forwards this information to the next phases. In the following sections. we describe the

responsibilities of four main modules of the process.

79

3.5.3 Pattern Structural Verifier (PSV)

PSV accepts the Design Model as input and, by verifying the structural rules of the PL,
looks for single patterns that are correctly applied in the model. The designer shows his/her
intention of applying a particular pattern by using the “Sign” stereotype of that pattern
on one of the classes in the model. By detecting the “Sign,” PSV initiates the verification
process to check the structure of the pattern. If the correct usage of the pattern is detected,
the information about that pattern, is recorded into the PIT. If errors are found in the
structure of the pattern, the PLA is invoked to report the errors and help the designer fix
the problems.

PSV applies the “structural match” strategy. That means, it matches the structure
of the pattern given in the Design Model, with the structure of the pattern that is de-
fined by the structural rules. For doing this task, PSV applies ideas introduced by the
Sign/Criteria/Repair (SCR) process, except the repair part [ZB07, ZKB08]. The matching
process starts from the “Sign” of the pattern. When the “Sign” is found, PSV initiates
verifying the “Criteria” of the pattern. “Criteria” contains a set of structural rules (con-
straints) which defines the correct application of the pattern. PSV navigates the associated
model elements and checks for the validity of the constraints in the “Criteria.” Then, it
traverses the associated pattern elements (classes) based on the structural rules. For each
class, the features (attributes and operations) are also checked against the structural rules.
If all the rules are satisfied, the pattern is detected correctly, and is recorded into the PIT.

Leveraging a unique “Sign” for each pattern, we eliminate the possibility of ambiguity in
detecting patterns that have similar structure, or patterns that are part of another pattern.
For instance, consider patterns State [GHJV95, p. 305] and Strategy [GHIV95, p. 315]
from GOF design patterns that are not easily distinguishable since their structure is very
similar [NB02]. Without a naming convention, or a utility such as stereotype, it is impossible
to detect each of these patterns. Note that nohe of the GOF design pattern detection
methods discussed in Chapter 2 are able to detect both of these patterns unambiguously
without considering some context information or dynamic views of the model.

PSV may encounter a variety of structural errors during the verification of patterns.
Following is a list of possible errors with some appropriate examples on the Front Controller
pattern (See Figure 8 on page 40). Note that “pattern element” means any part of the

structure of a pattern including a class, an operation, an attribute, or an association.

o Missing element in a pattern, e.g., missing the “process” operation in the Command

80

class.

Missing part of a pattern, e.g., missing the “Command” part.

¢ Incorrect or missing relationship between two pattern elements, e.g., missing depen-

dency between Handler and Command classes.

Incorrect property of pattern elements, e.g., Command class which is not abstract.

Incorrect cardinality of pattern elements, e.g., having less than one Concrete Com-

mand class.

3.5.4 Pattern Language Syntactic Verifier (PTV)

PTV verifies the model based on the syntactic rules of the PL. This verification includes .
both checking the layering of patterns and checking the relationships between the detected

patterns. Therefore, there are two types of errors that can be caught by PTV. First,

placement of a pattern in a wrong layer or group. Second, a missing relationship between

two patterns.

-During the course of action, PTV uses PIT to find the detected patterns, their layers,
and their constituent elements. PTV updates the layering information of each pattern into
the PIT, and inserts new information about the pattern relationships in this table. In case
of error, PTV invokes PLA to report the error and guide the designer in fixing the problem,
either manually or systematically by PLA.

Some of the syntactic errors are simple and can be easily caught by merely querying the

PIT. Some examples are:

¢ Inconsistency between a pattern and its containing layer or group. When a pattern
is placed in an inappropriate layer, PTV detects it éasily by checking the table. For
instance, in PofEAA, placing a pattern which belongs to the Data Source layer (e.g.,

Table Data Gateway) in the Domain Layer will result a syntax error.

e Conflict between the patterns in a layer or group. When two inconsistent patterns
are placed in a layer, the error can be caught by checking the table. For instance, in
PofEAA, applying both Optimistic Offline Lock and Pessimistic Offline Lock patterns
for resolving concurrency issues for the same unit of work in the design will trigger a

syntax error.

However, more complicated syntactic errors may need model investigation in addition

to accessing the PIT. Some examples are:

81

¢ Incorrect relationship between two patterns, e.g., in PofEAA, having Transaction
Script in the Domain Layer, and then having both Table Data Gateway and Row Data
Gateway in the Data Source Layer contradicts the alternative relationship between

those two and cause an error.

o Missing relationship between two patterns, e.g., in PofEA A, having both Table Module
in the Domain Layer and Table Data Gateway in the Data Source Layer where both
are accessing the same data, and there is no uses relationship between them will result

in a syntax error.

In case of any error or inconsistency, a call to the PLA is made in order to report the
problem to the designer and assist him/her repair the problem. Some of the syntactic errors
can be fixed automatically by the PLA, but most cases need designer’s decision and manual
modifications on the model. As an example of the former case, consider the situation that
the designer has used the Domain Model pattern and, for one of the domain objects, a Data
Mapper is needed in the data source layer. Creating the Data Mapper can be performed
automatically upon the designer’s request by the PLA. As an example of the latter case,
detecting an error due to having both Table Data Gateway and Row Data Gateway for
accessing the same data can not be resolved automatically, since it needs designer’s decision.

In both cases all the changes to the model are applied after the designer’s confirmation.

3.5.5 Pattern Language Semantic Verifier ('PMV)

The PMV module is responsible for verifying that the model adheres to the best practices
of the PL. Specifically, by applying the semantic rules of the PL, PMV verifies that the
model is consistent with the context information of the system. Examples of the context
information are: the implementation language, the designer’s expertise, the designer’s choice
for optional patterns, and the complexity of the system.

If any inconsistency is found in the applied pattern combination, the PLA is invoked to
report the errors and help the designer fix the problems. Many of the problems are easily
fixed by setting the appropriate value for the context information, e.g., selecting another
tool for implementation. These repairs can be done automatically by the PLA, subject to
the designer’s confirmation. Other problems that are solved only be changing the applied
pattern, should be solved manually by the designer.

The following list shows some of the possible errors that PNV can recognize, with

examples from PofEAA.

82

e Discrepancy between the context environment and the choice of patterns. For in-
stance, PofEAA suggests that if a machine is controlling the screen flow of the system,
then we need an Application Controller pattern, otherwise, we do not need it [Fow(02,
p. 58]. Now, if we have such information that the screen flow is not machine-controlled
(such information can be obtained from tagged values), and the Application Controller
pattern is detected in the Presentation Layer of the model, a semantic error is trig-

gered.

e Inconsistency between pattern elements. For example, there is a semantic rule for the
Table Data Gateway pattern which enforces that the parameter list of the “insert”

operation be a subset of the parameter list of the “update” operation.

3.5.6 Pattern Language Advisor (PLA)

PLA is an important module of the PLV process, which is responsible for reporting the
errors, displaying the guidelines, and helping the designer fix the problems. Reporting
the errors and displaying the guidelines are important steps that foster a novice designer’s
knowledge in learning more about the patterns and PL. Fixing the problem might be done
automatically by the PLA, or manually by the designer.

For the cases that PLA is able to perform automatic repair, it gives the suggestions to
the designer, and by the designer’s request, the required modifications are applied to the

model. Following are some of the modifications that are doable automatically by the PLA.

Pattern Instantiation Although this is not meant to be the main responsibility of PLA,
but it can be achieved indirectly. For instantiating a pattern, the designer applies only the
Sign stereotype of the pattern on a class and leaves the completion of other parts to the
PLA. This way, PSV finds the structural errors and invokes the PLA to fix the problems.
Then, PLA will add missing elements and relationships to the model such that the pattern
is applied correctly. Another way of instantiating a pattern, is when one pattern needs
another pattern in a uses relationship, and the PTV catches the error. Then, the latter
pattern can be instantiated automatically by the PLA. A straightforward example is when
the designer has applied the Table Data Gateway pattern, and the return type of the find
operation in that pattern needs to be the Record Set pattern. Hence, the Record Set can
be automatically set as the return type of the find operation, and then the pattern must be

created in the Base Layer of the model.

83

Adding missing elements to a pattern A missing element could be an element of a
single pattern, e.g., a class, an attribute, a method, or a relationship between the constituent
classes of the pattern; These kind of errors are reported by the PSV. Or, a missing element
may belong to the model, e.g., a package, a relationship between patterns. Such errors are
reported by the PTV. In both cases, the PLA can fix the problem automatically, by adding

the missing elements to the model.

Changing the properties of an element For instance, PLA changes a non-abstract
class to abstract in order to correct the application of a pattern, and fix the error which

was caught by the PSV.

Changing the dependency between the elements of a pattern Examples are chang-
ing the cardinality, navigability, or containment of an association between constituting
classes of a pattern. Such errors may have been caught by the PSV.

For problems that are hard to fix automatically or need expertise or designer’s decision,
the guidelines for fixing the problem should be given to the designer, and it is the designer’s
responsibility to modify the model accordingly. However, providing the designer with guid-
ance and supporting comments can expedite the error recovery process. For such cases,
PLA helps the designer by displaying useful guidelines based on the PL which shows the
roots of the error, the rationale behind the error, and the reference to the technical details
on how to fix the problem.

As an important job, PLA records all the modifications that are automatically made
to the model, in a Design Rationale document. The Design Rationale is a document that
shows what issues have been investigated about the model, what alternative solutions have
been considered, which one is selected, the justifications behind the decisions, along with the
modifications that has been made into the model. Design rationale is a fruitful document

for the system maintainers [PB88].

3.6 Discussion

3.6.1 Summary

Inspired by the compilers, a process for verifving the use of a Pattern Language (PL) in
a design model is presented. The process is named Pattern Language Verifier (PLV) and

consists of four modules (phases): three verifier modules (PSV, PTV, and PMV) that verify

84

a design model from the structural, syntactic, and semantic points of view, and an advisor
module (PLA) that helps the designer repair the problems. If possible, the advisor module
repairs the problem automatically. All the automatic modifications are recorded into a
Design Rationale to be used by the designer in understanding the evolution of the design.
A model is structurally correct if all the patterns are applied correctly. Syntactic problems
are related to the layering and relationship of patterns. Semantic issues are mainly the
inconsistencies between the choice of patterns and the context information.

As the touchstone, the verifier modules use the structural, syntactic, and semantic rules
of the underlying PL. It is shown how and where to extract the rules of a PL, then new
formalisms for representing the rules are introduced. The formalism for structural rules is
very simple, just a mixture of class diagrams with clear English sentences. However, the
formalism for syntactic and semantic rules is more precise, and is inspired by the Context-
Free Grammar (CFG) notation. ‘

PLV is a profile-driven process. A prerequisite for the process is to define a UML Profile
for the PL. The profile includes stereotypes, tagged values, and constraints. The stereotypes
play the identifying role for the patterns and their elements. Tagged values are used to save
information about the context of the design. Constraints are indeed the three groups of
structural, syntactic, and semantic rules. The constraints can be translated into Object
Constraint Language (OCL), or kept in the formalism that we proposed. We recommend
the latter case, since OCL is not meant to perform modifications on a model. Hence, the

PLV modules must be hard coded into a tool to be used by a designer.

3.6.2 Possible Extensions to the PLV Modules

Extensions to PSV Our assumption is that all the structural criteria of a pattern shall
be satisfied in order to cause PSV report the correct application of that pattern. However,
there are cases that some of the criteria are not as fundamental as others and they can be
ignored. As an extension to this module, one can add a “severity level” parameter that acts
as a threshold for the sensitivity of detecting a correct pattern. This way the PSV is able to
report “near-misses” for each pattern. A near-miss of a pattern means a structure which is
very close to the structure of a pattern, but it has minor deviations. Reporting near-misses
is quite educational for novice designers.

Another possible and desired extension to the PSV is to investigate also the dynamic
views of the model. e.g., the UML sequence diagrams. As discussed in Section 2.5.2, for

some of the patterns, merely static checking is not enough. e.g., for the Singleton pattern.

Extensions to PTV For checking pattern layering, currently we only check that the
“Sign” of a pattern is in the appropriate layer. It is wise to check that all the elements of
the pattern reside in that layer.

Another extension to the PTV is to check the inter-collection rules. Currently, we only
investigate the intra-collection relationships between patterns. It is true that most of the
problems can be solved by adding more rules to the grammar, however, the cases such as

conflicting pattern names must be handled carefully.

Extensions to PMV Adding linguistic knowledge to PMV enables it to detect errors
such as the violation of advice A21 in Appendix A.2 which recommends that if we use
Domain Model pattern, the name of the domain concepts should be selected among the

nouns in the domain [Fow02, p. 26).

3.6.3 Pattern Lahguage Issues

Current PLs are not mature yet in terms of having clear and precise pattern relationships.
Therefore, finding the relationship between patterns in the pattern form is more difficult

than finding the structural rules. There are several reasons for this problem as follows.

1. Despite the structural rules that deal with one pattern and, most of the time, can
be found within specific fields of the patiern form, the syntactic rules for pattern
relationships are scattered across the engaged patterns and need to be extracted by

investigating those patterns.

2. Most of the PL authors prefer to present the syntactic rules in prose text, interwoven
with the pattern descriptions. The difficulty of extracting syntactic rules depends on

the level of formalism that is used for showing the pattern relationships.

3. The work on formalizing the grammar bf a PL is sparse. Our literature survey (see
Section 2.4.1) showed that such endeavors are in their infancy stages yet. For instance.
in POSA-5 [BHSO07b], as one of the recent works in this area, it is tried to give a
grammar-like formalism for the syntax of a pattern sequence. But, we think POSA-5
is still immature, as the authors also emphasize that “not all the aspects of pattern
languages we discuss in this part of the book are mature or well-established in the
pattern community. [...] aspects and properties, such as the role of pattern sequences
in defining a grammar for pattern languages, are considered as new or even subject

to debate” [BHSO7b, p. 245].

86

3.6.4 Profile Issues

PLV is a profile-driven process, hence, defining a UML profile for the underlying PL is
inevitable. An important issue is to investigate “to what extent does a UML profile suffice
for fulfilling the tasks of the PLV process?”

Utilizing profile (particularly its stereotypes) reveals us from the vexing problem of
pattern detection. That is because designers explicitly announce which patterns are used in
the model by using the “Sign” of the patterns. Without profile, we need to apply one of the
pattern detection strategies reviewed in Chapter 2, which for a sample pattern collection
such as GOF, none of them are 100% capable of detecting all the patterns in that collection.
Remember that there are outwardly similar patterns that distinguishing them only from
their structure is almost impossible.

Furthermore, utilizing tagged values is an easy way to access meta-data such as config-
uration/context information; This information is up-to-date and is orchestrated with the
model since it is acquired during the design. Without tagged values, accessing such data
my need reading offline files or extending tool’s GUI, which is more tedious and is not
synchronized with the design.

We believe that even if the constraints are written in OCL and the three verifying
modules are inherently built, the PLA must be built explicitly, since the duties of PLA are
out of the scope of profile abilities. That is because the profile constraints are not intended
to perform model modifications. Another important issue with using OCL, is the lack of
persistent d&ta between the constraints. Hence, when a structural constraint verifies the
structure of a pattern in the model and ensures that the pattern is applied correctly, the
detected pattern’s information (i.e., the PIT) mﬁst be persisted somewhere that can be
accessed by the PTV. One solution to this issue, is to check all the structural, syntactic
and semantic criteria of each pattern all together in the constraints of that pattern. In
this approach, the syntactic rules do not limit themselves to the correctly applied patterns.
However, one problem to this approach is that for rules like “Pattern A uses Pattern B,”

it is unclear in which pattern this rule must be verified, Pattern A or Pattern B?

Chapter 4

A Pattern Language Verifier (PLV)
for PofFAA

This chapter shows which steps should be taken in order to make a Pattern Language
Verifier (PLV) for a Pattern Language (PL). For our case study, we have selected Patterns
of Enterprise Application Architecture (PofEAA) [Fow02] PL. We became familiar with
PofEAA in Section 2.6. PofEAA consists of 51 patterns, however, we have selected a subset
containing the 23 patterns we need for our case study. As an environment in which we have
hard coded the PLV modules, we have selected the ArgoUML modeling tool. The resulting
tool, which is a “PLV for PofEAA,” is called ArgoPLV.

The remainder of this chapter is organized as follows. In Section 4.1, we introduce the
selected patterns and their relationships. Section 4.2 discusses the advices that form the
structuring mechanism of the PofEAA PL, and shows how these advices are formalized as
the formal rules for the PLV modules. In Section 4.3, we introduce the “PofFAA UML
Profile” as an important component required by the PLV process. Section 4.4 shows how
the “PLV for PofFAA” is built as a plugin for the ArgoUML, which is called ArgoPLV.

Section 4.5 discusses what has been learned from our case study.

4.1 PofEAA Selected Patterns

As we have introduced in Section 2.6, PofEAA consists of 51 patterns categorized into three
main layers and seven supporting layers. For the sake of simplicity and concreteness, we
selected a subset of PofFAA that contains 23 patterns from several lavers. These are the

patterns we need for our case study.

Patterns that are filtered out are mainly “Object-Relational” patterns that deal with
mapping classes to the tables of a relational database. Although they are important patterns
for a practical enterprise application, these patterns are more database-related. From the
PLV perspective, considering them does not add any knowledge to codifying process that we
are going to present in this chapter. There are sixteen patterns in the “Object-Relational”
category that are excluded in this case study. In addition, we have excluded one of the
Session State patterns, which stores session data in the database. Furthermore, we have
excluded six patterns from the Base Layer, two patterns from the Offline Concurrency
Layer, and three patterns from the Presentation Layer. In total, 28 out of 51 patterns are
excluded in this case study.

Table 10 shows the number of patterns that are selected and the number of patterns
that are excluded from PofEAA in the case study. Table 11 shows the name of the patterns
that are selected or excluded from each layer. Note that in PofEAA, “Service Layer” is the
name of a pattern in the “Domain” Layer, however, we dedicate a separate layer for this

pattern. That means, we have a “Service Layer” pattern in the “Service” Layer.

Table 10: Statistics on Selected and Excluded Patterns from PofFAA in our Case Study

| Layer/Category | Patterns | Selected | Excluded |
Presentation 7 4 3
Service 1 1 0
Domain 3 3 0
Data Source: 4 4 0
Object-Relational Behavioral 3 0 3
Object-Relational Structural 10 0 10
Object-Relational Metadata Mapping 3 0 3
Distribution 2 2 0
Offline Concurrency 4 2 2
Session State 3 2 1
Base 11 5 6

[Sum | 51 | 23 [28 |

Figure 18 shows the plaéement of selected patterns in a layered architecture. In addition
to the eleven patterns in the three main layers (presentation, domain, and data source), we
have one service pattern, five base patterns, two concurrency patterns, two session state
patterns, and two distributed patterns in their respected laver. Hence, 23 patterns are
shown in the figure. General descriptions of the layers and the patterns of PofEAA, given
in Section 2.6, are still valid and useful. In this section, we elaborate on the patterns in
Figure 18 and their dependencies.

| For designing the architecture of a web-based enterprise application. the designer may

start from the Presentation Layver of the svstem. Taking the Model View Controller

89

Table 11: Selected and Excluded Patterns from PofFAA in our Case Study
Layer/ Category | Patterns (Bold means Selected) |

Presentation Page Controller, Front Controller, Template View, Transformm View,
Model View Controller, Two-Step View, Application Controller

Service Service Layer

Domain Transaction Script, Domain Model, Table Module

Data Source Table Data Gateway, Row Data Gateway, Active Record, Data Mapper

Base Layer Supertype, Money, Record Set, Gateway, Mapper, Separated In-

terface, Registry, Value Object, Special Case, Plugin, Service Stub
Object-Relational Unit of Work, Identity Map, Lazy Load

Behavioral
Object-Relational Identity Field, Foreign Key Mapping, Association Table Mapping, Dependent
Structural Mapping, Embedded Value, Serialized LOB, Single Table Inheritance, Class Table

Inheritance, Concrete Table Inheritance, Inheritance Mappers
Object-Relational Metadata Mapping, Query Object, Repository
Metadata Mapping

Distribution Remote Facade, Data Transfer Object -)
Offline Concur- | Optimistic Offline Lock, Pessimistic Offline Lock, Coarse Grained Lock,
rency Implicit Lock

Session State Client Session State, Server Session State, Database Session State

paradigm, the designer needs patterns for the Controller part and the View part. There
are two alternative patterns for the Controller part, the Front Controller and the Page
Controller, which their selection depends upon the implementation environment and the
simplicity of the requests. The choice for the View part is the corollary of the Controller
and the tool selection. That means, either the Transform View or the Template View can
be used with either of the Controllers depending upon the tool.

The next step, in designing a web-based enterprise application, is to select patterns
for the Domain Layer. There is no specific dependency between any of the patterns in
the Presentation Layer and the layer beneath. However, if the designer decides to use the
Service Layer pattern as an API for the application, this pattern usually works with a
Domain Model or Table Module.

An important decision is the selection of a pattern for the Domain Layer of the system.
If the designer is looking for an easy and straightforward solution, the Transaction Script
pattern is the choice. However, for complicated systems which have a lot of domain con-
cepts, and when Object-Oriented is able to better describe the structure of the domain, the
Domain Model pattern is an appropriate selection. For intermediate situations, i.e., when
the business logic is not too complex, the use of the Table Module pattern is recommended.

Selecting patterns for the Data Source Layer is more dependent upon the Domain Layer
patterns. If a Domain Model pattern is selected and the domain is rich, i.e.. the structure of
the domain model is complex. then the suggested pattern for the Data Source Layver is Data

Mapper: Otherwise. Active Record is a better choice. Note that according to the PofEAA

90

presentation layer I

controller layer l view layer l

Fomt Controller Page Controller Template View Transform View

Service Layer l

Service Layer

domain layer]

Domain Model Table Module Transaction Script

data source layer

Active Record

Data Mapper Table Data Gateway Row Data Gateway
concurrency layer session state layer
Optimistic Offiline Lock Pessimistic Offline Lock Client Session State | | Server Session State
base layer l distributed layer
Layer Supertype | | RecordSet Money Gateway] Mapper Remote Facade | | Data Transfer Object

Figure 18: Selected Patterns from PofEAA in a Layered Architecture

book, Active Record is in the Data Source Layer, therefore, in Figure 18, we kept Active
Record inside that layer. However, to reflect the fact that it may contain some business
logic, it should be considered on the boundary of the Domain Layer and the Data Source‘
Layer. In case a Transaction Script or Table Module is selected, then there are two options
for the Data Source Layer: Table Data Gateway or Row Data Gateway.

Finally,bthere are optional layers regarding the concurrency, storing session data, or
distributed issues. For handling the conflicts that occur in concurrent sessions, there are
two options in the Concurrency Layer. If the chance of conflict is high, the Pessimistic
Offline Lock pattern is the right choice, otherwise. the Optimistic Offline Lock pattern

suffices. For storing session data, there are two storage options in the Session State Layer:

91

in the client side (Client Session State pattern), or on the server side (Server Session State
pattern). In terms of storing sessions, we can design most web applications from merely
stateless objects, and we can store session states only when we have to do so.

In case there is a force to have some remote objects in the system, there are two simple
solutions offered in the Distributed Layer. The Remote Facade pattern acts as a facade for
fine-grained objects that are placed on remote sites. The Data Transfer Object pattern acts
as a partner for the Remote Facade pattern by bundling all the data that a client needs.
Sometimes the Table Data Gateway pattern can return information from a query in the
form of a Data Transfer Object.

There are patterns that do not belong to any of the above layers and can be considered
as independent patterns. These patterns lie in the Base Layer. The Layer Supertype
pattern acts as a supertype for all the objects in a layer. The Record Set pattern is an
important pattern for representing tabular data as in-memory objects. Although most of
the platforms offer a Record Set, the designers can create their own. The Money pattern
is a very useful pattern when there is a need to work with different currencies and perform
exchange conversions. The Gateway pattern acts as wrapper pattern that wraps the API
code into a class which is similar to a regular object. The Mapper pattern acts as a mapping

layer between two subsystems that need to stay ignorant of each other.

4.2 PofEAA Rules

As explained in Section 3.3, the most important behind-the-scene cornerstone of the PLV
is a set of rules that drives the decision making engine of the main three modules: Pattern
Structural Verifier (PSV), Pattern Language Syntactic Verifier (PTV), and Pattern Lan-
guage Semantic Verifier (PMV). Corresponding to these modules, we need three groups of
rules: Structural, Syntactical, and Semantic.

In Section 3.3, we explained how the rules must be extracted, categorized, and expressed
in a formal way that is clear and precise for a programmer who is responsible to hard code
those rules into the PLV modules. Extracting the rules that govern a PL, and classifying
them into appropriate categorics, is a difficult task, becanse these rules are often hidden
between the lines of the texts that describe the patterns. This rule extraction and rule
classification is a critical prerequisite step in building a PLV for a given PL, therefore,
it should be done with enough care. In this section. we discuss how PofEAA rules are

extracted. classified. and then formalized for the PLV process.

92

Patterns emerge from the experience of the experts [GHIV95, p. 1]. Hence, the PofEAA
book, like many other pattern books, contains the advices for the designers, particularly
for the novice designers. In a PL, the advices act as a structuring mechanism that lead a
novice designer in selecting appropriate patterns one after another. This process continues
until the whole system is designed. These advices are what we finally turn into the rules
that are the basis for the PLV.

Regarding the selected patterns of PofEAA, we have extracted 74 advices from the book
and bracketed them into three classes: Structural, Syntactic, and Semantic. Table 12 is an
excerpt from these advices. The complete set of advices is displayed in Appendix A.2. Note
that selecting the advice number (A#) and the advice classification (type) is our choice,
but the descriptions are from the book. In the following sections, we refer to the advices in
Table 12 by the advice number.

We try to preserve a one-to-one relationship between these advices and the formal rules
that will be defined for the PLV for PofEAA. However, it is possible that one advice is the
root for more than one rule, e.g., advice A47.

It should be noted that the advices extracted from the book reflect the author’s (Mar-
tin Fowler) experience in working on enterprise applications. Some of the advices are not
accurate enough, especially the syntactic and semantic ones. Most of the advices are about
alternatives, and in some cases two advices may contradict each other. In case of any impre-
cision, ambiguity, or contradiction, the issue must be resolved in the course of formalizing
the advice into a rule for the PLV. Resolving the issues is not an easy task, and needs
expertise. Sometimes, one of the conflicting suggestions must be selected, and the others
must be ignored. Sometimes, a vague suggestion needs interpretation. For instance, inter-
preting the word “usually” in advice A18: “The Table Data Gateway is usually stateless”
is a subjective matter. Again, these issues must be resolved during the formalization of the
advices into the rules.

In the following sections, we elaborate on how the advices of PofEAA are formalized
into the rules. For each class of rules, we give some examples from Table 12, and using the
fof‘ma.]isms proposed in Section 3.3, we obtain the corresponding formal rules. These formal

rules will then be used to make the “PLV for PofEAA.”

4.2.1 Structural Rules

Structural rules are those that describe the essence and the structure of an individual

pattern. One important step in specifying the structure of a pattern is to select a “Sign”

93

Table 12: Advices from the PofEAA Book [Fow02]

| A# | Type | Description (PofEAA book page#) |

A04 | Semantic “If you have an environment like .NET or Visual Studio, then that makes a Table
Module much more attractive.” (p. 30)

A13 | Syntactic “A simple Domain Model can use Active Record, whereas a rich Domain Model
requires Data Mapper.” (p. 117)

Al4 | Syntactic “A rich Domain Model is better for more complex logic, but is harder to map to
the database.” (p. 117)

A18 | Structural “A Table Data Gateway has a simple interface, usually consisting of several find

methods to get data from the database and update, insert, and delete meth-
ods...The Table Data Gateway is usually stateless.” (p. 144)

A23 | Syntactic/ “lfor presentation layer] Your tooling may well make your choice for you. If you
Semantic use Visual Studio, the easiest way to go is Page Controller and Template View.
If you use Java, you have a choice of Web frameworks to consider. Popular at
the moment is Struts, which will lead you to a Front Controller and a Template
View.” (p. 99)

A25 | Structural “A Front Controller handles all calls for a Web site, and is usually structured in
two parts: a Web handler and a command hierarchy. The Web handler is the
object that actually receives post or get requests from the Web server.” (p. 344)
“The Web handler is almost always implemented as a class rather than as a server
page [...] The commands are also classes rather than server pages.” (p. 345)
A29 | Syntactic/ “The essence of the choice between optimistic and pessimistic locks is the fre-
Semantic quency and severity of conflicts.” (p. 68) “Whereas Pessimistic Offline Lock
assumes that the chance of session conflict is high and therefore limits the sys-
tem’s concurrency, Optimistic Offline Lock assumes that the chance of conflict is

low.” (p. 417)

A46 | Semantic “The parameter list of the insert method must be a subset of the parameter list
of the update method.” (p. 144)

Ad47 | Syntactic/ “You probably don’t need a Service Layer if your application’s business logic will

Semantic only have one kind of client-say, a user interface-and its use case responses don’t

involve multiple transactional resources” (p. 137)

A49 | Syntactic “For this book I’'m centering my discussion around an architecture of three pri-
mary layers: presentation, domain, and data source.” (p. 19)

A51 | Syntactic “Often you'll find that there isn’t quite a one-to-one relationship between Page
Controllers and views.” (p. 61)

A53 | Syntactic “Since it’s a form of Mapper, Data Mapper itself is even unknown to the domain

layer.” (p. 165)

for each pattern. We select the names of the patterns that are written in bold in Table 11,
as the “Sign” for the selected patterns of PofEAA.

The formalismn that we (inith for the structural rules (sec Section 3.3.1) forces us to have
clear and precise criteria written in English, so that an intermediate Object-Oriented (OO)
programmer can interpret them in terms of programming language constructs. For the
benefit of the programmer, a UML class diagram of the pattern may also be augmented to
the criteria.

Amongst the extracted advices. 23 of them are structural advices. Each of these advices
must be written in our proposed formalism, and if possible, supplemented by a UML class

diagram.

94

For instance, to extract the structural rules for the Front Controller pattern, we inves-
tigate the description of the pattern, especially, “Intent,” “Sketch,” “How It Works,” and
“Examples” fields of the pattern form. The results of this investigation are presented in the

advice A25 of Table 12, and in the “Intent” and the “Sketch” shown in Figure 19.

A contoller that handles all the requests for a Web site.

Handler Command

doGet()
doPost() Zﬁ

ConcreteCommand 1 ConcreteCommand 2

process()

process() process()

Figure 19: The Front Controller Pattern [Fow02, p. 344]

The information in advice A25 and Figure 19 is sufficient to define a set of eight criteria
for the structural rules of this pattern, as shown in Figure 20. The rules are clear enough

that there is no need to augment them with a class diagram.

. There is a Front Controller (=Handler) class in the model.

. There are at least two operations (doGet and doPost) in the Handler class.
. The Handler class has a client dependency to a Command class.

The Command class is abstract.

. The Command class has at least one process operation.

The Command class has at least one Concrete Command child class.

. A Concrete Command class is concrete.

W N DY B W R e

A Concrete Command class has at least one process operation.

Figure 20: PofEAA Rule Set - Part I: Structural Rules (A Sample Rule Showing the Struc-
ture of the Front Controller Pattern)

It is worth mentioning that these rules all together are considered as one structural rule.
The same procedure is performed for all the 23 selected patterns, and the structural rules
of all patterns are extracted. The result is called “PofEAA Rule Set - Part I Structural

Rules” and is shown in Appendix A.3.1.

4.2.2 Syntactic Rules

As it was discussed in Section 3.3.2, syntactic rules of PLV are divided into two groups.
The first group shows the organization of patterns, i.e., which patterns are located in which
layers. The second group, specifies the relationships and dependencies between patterns.
In the following, for each group, first we show how the syntactic advices are extracted from
the PofEAA book, then we discuss how those advices can be ‘written as rules using the
formalism defined in Section 3.3.2, and finally we show how the rules are inserted into the

“PofEAA Rule Set.”

Pattern-Layer Relationships The first group of syntactic rules, are derived from two
sources: 1) The grouping of patterns into chapters in the PofEAA book, and 2) the expla-
nations given in “Part 1” of the book about the optionality of some of the patterns or layers.
We have already seen, in Figure 18, the first attempt in dividing 23 selected patterns into
layers. Note that, there are two minor deviations between the layering of patterns in Fig-
ure 18 and what is proposed in the book. The first deviation is that we have separated the
“Service Layer” pattern from the patterns of Domain Layer. The second deviation is that
we have divided the patterns of the Presentation Layer into two sub-layers: the Controller
Layer and the View Layer.

There are more details that are not represented in Figure 18, for example, the figure
does not provide information about the mandatory or optional layers. Such information is
extracted from “Part 17 of the book and is recorded as syntactic advices in Table 12.

For instance, advice A49 clarifies that there are three mandatory layers in the model.
Also, advice A47 reveals that the “Service Layer” is not a mandatory layer and its existence
depends upon the designer’s choice.

We proposed a formalism for precisely presenting the layering of patterns of a PL (See
Section 3.3.2). The following is the formal representation of the advices A49 and A47,

supposing that all the layers lie in a root model named “pofeaa model.”

?(Designer wants Service Layer)

pofeaa model > presentation . service'' . domain . datasource

In total, there are 16 advices about the organization of patterns. Investigating those
advices along with Figure 18, and converting the advices into the formal rules, we obtained
the “PofEAA Rule Set - Part II: Syntactic Rules (Pattern Organizations).” These rules are
shown both in Figure 21 and Appendix A.3.2.

96

pofeaa model > main layer . auziliary layer®

main layer D presentation . service (€41 | domain . datasource
presentation D controller . view

auziliary layer O base™ , distributed” (42 , ooncurnency?(c‘w) s sessionstate’ (G4
controller 5 Page Controller , Front Controller

view 3 Template View , Transform View

service 3 Service Layer

domain 3 Domain Model, Table Module, Transaction Script

datasource 3 Data Mapper, Active Record, Table Data Gateway, Row Data Gateway

base 3 Record Set, Layer Supertype, Money, Mapper, Gateway
distributed > Remote Facade, Data Transfer Object

concurrency > Optimistic Offline Lock, Pessimistic Offtine Lock
sesstonstate D Client Session State, Server Session State

C41: Designer wants Service Layer

(C42: Designer wants Distributed Layer
C43: Designer wants Concurrency Layer
C44: Designer wants Session State Layer

Figure 21: PofEAA Rule Set - Part II: Syntactic Rules (Pattern Organizations)

Pattern-Pattern Relationships The second group of syntactic rules, that defines the
relationship between patterns, can be extracted by investigating the pattern descriptions
given by the pattern form, especially the fields: “Applicability” and “When to use it.”
Moreover, a “Cheat Sheet” is printed inside the back cover of the PofEAA book, which can
also be considered a useful source for understanding the dependencies between patterns.
This information is extracted and recorded as the advices.

We proposed a formalism for defining the relationships uses, conflicts, and refines, for
precisely presenting the relationships between patterns of a PL (see Section 3.3.2).

As an example of a uses rule, consider advice A51 which says there are two alternative
view patterns that can be used by a Front Controller pattern. Using the alternative uses

formalism, we write the following rule.
Page Controller — Template View | Transform View

"~ As an example of a conditional uses rule, consider advice A23 which tells us how the
selection of the tool will determine which view pattern should be used by a controller. Using

the conditional uses formalism, we write the following rule.

Front Controller Tool=Java Template View

As an example of a conflicts in layer rule, consider advice A29 which says there is a

choice between the Optimistic Offline Lock pattern and the Pessimistic Offline Lock pattern.

97

While it is not mentioned explicitly, we know that it is not possible to have both patterns
for controlling the conflicts for the same unit of work. Hence, the resulted rule is:
Optimistic Offline Lock ONCTEY Pessimistic Offtine Lock {Two patterns are applied
for the same unit of work}
As an example of a refines rule, consider advice A53 which says the Data Mapper pattern

is a special case of the Mapper pattern. The corresponding rule is as follows.
Data Mapper 1 Mapper

There are 27 advices about the relationship between patterns. Using the formalism pro-
posed in Section 3.3.2, we converted them into syntactic rules, and obtained the “PofEAA
Rule Set - Part III: Syntactic Rules (Pattern Relationships).” These rules are shown both
in Figure 22 and in Appendix A.3.3.

98

Page Controller — Template View | Transform View

Front Controller — Template View | Transform View

Tool=.NET
—

Page Controller Template View

Tool=Java

Front Controller =~ — Template View

Template View 4! Service Layer

Transform View 4 Service Layer
Service Layer — Domain Model | Table Module

Template View “% Domain Model | Table Module | Transaction Script

Transform View “S Domain Model | Table Module | Transaction Script
Page Controller ~CH Domain Model | Table Module | Transaction Script
Front Controller "' Domain Model | Table Module | Transaction Script

Domain Model 2_2)1 Active Record
Domain Model % Data Mapper

Table Module — Table Data Gateway | Row Date Gateway
Transaction Script - Table Data Gateway | Row Data Gateway

Table Data Gateway — Record Set {C111}
Table Data Gateway %42 Data Transfer Object

datasource

Data Mapper <~ Active Record
Table Data Gateway 4etn3nTe Row Data Gateway {C112}

COnCuUrTency

Optimistic Offline Lock - Pessimistic Offline Lock {C112}

sessionstate

Client Session State = — Server Session State {C112}

FrontController | Controller
PageController | Controller
Data Mapper T Mapper

Table Data Gateway T Gateway
Row Data Gateway 1 Gateway

C21: Domain Structure is Simple

C22: Domain Structure is Moderate
C23: Domain Structure is Complex

C41: Designer wants Service Layer

C42: Designer wants Distributed Layer
(C43: Designer wants Concurrency Laver
C44: Designer wants Session State Layver

C111: The return type of every find() operation in Table Data Gateway pattern is Record Set
C112: Two patterns are applied for the same unit of work

Figure 22: PofEAA Rule Set - Part III: Syntactic Rules (Pattern Relationships)

99

4.2.3 Semantic Rules

The semantic rules of PLV aim to catch two types of errors: 1) conflicts between the applied
patterns and the context information, and 2) the inconsistencies between the features of
applied patterns. Context information includes information about the environment of the
system. Examples for context information are: the implementation tool, the designer’s
expertise, and the domain complexity.

For extracting semantic advices that govern the PofEAA, the pattern descriptions in
the pattern form must be investigated carefully. The clue is to look for one of the concrete
samples of the context information in the pattern description. Then the advices must be
rewritten as the semantic rules using the formalism proposed in Section 3.3.3.

As an example of a semantic advice that checks the conflicts between the applied patterns
and the context informatioh, consider advice A14 about the effect of the domain complexity
on the pattern used for the Domain Layer. Using the formalism proposed in Section 3.3.3,

this advice is represented as the semantic rule:
Domain Model ~ {Domain structure is complex }

As an example of a semantic advice that deals with the inconsistencies between the
features of applied patterns, consider advice A46 about the correspondence of the parame-
ters of the insert and update methods in the Table Data Gateway pattern. This advice is

converted to the formal rule:
Table Data Gateway ~ {insert() parameter list C update() parameter list}

Amongst the extracted advices, 17 of them are semantic advices. By interpreting those
advices into the formal rules, we obtained the “PofFAA Rule Set - Part IV: Semantic

Rules.” These rules are shown both in Figure 23 and in Appendix A.3.4.

100

Page Controller ~ {C11}

Front Controller = {C12}

Template View ~ {C61}

Transform View = {C62}

Transaction Script = {C11 and C21 and C31}

Table Data Gateway = {insert() parameter list C update() parameter list}
Active Record =~ Template View {C121}

Service Layer ~ {C41}

Remote Facade =~ {C42}

Data Transfer Object = {C42}

Optimistic Offtine Lock = {C43 and C51}
Pessimistic Offline Lock =~ {C43 and C52}
Client Session State =~ {C44}

Server Session State =~ {C44} -

C11: Tool is .Net
C12: Tool is Java

C21: Domain structure is simple
C22: Domain structure is moderate
C23: Domain structure is complex

C31: Designer is novice
C32: Designer is intermediate
C33: Designer is expert

C41: Designer wants Service Layer

C42: Designer wants Distributed Layer
C43: Designer wants Concurrency Layer
C44: Designer wants Session State Layer

C51: Chance of conflict is low
C52: Chance of conflict is high

C61: View is built using HTML
C62: View is built using XSLT

C121: The parameters of the operations of the Active Record pattern must match with the at-
tributes of Template View

Figure 23: PofEAA Rule Set - Part IV: Semantic Rules

101

4.3 PofEAA UML Profile

In Section 3.5, we introduced PLV as a profile-driven process. That means, a prerequisite
for having such a PLV for a PL, is to define a UML profile for the underlying PL. In the
architecture of the PLV given in Figure 17, this profile is called Pattern Language UML
Profile (PLP). This section is dedicated to explain how this profile, which we call it the
“PofEAA UML Profile,” is defined.

For defining a UML profile for PofEAA PL, we follow the profile definition approach
introduced by Bran Selic [Sel07] (see Section 2.2.1). To summarize, Selic’s approach for

deﬁning a UML profile for a language consists of two steps.
1. Define a domain model (metamodel) for the language.
2. Map the domain model onto the UML metamodel.

The next two sub-sections show how these two sfeps are taken for PofEAA. The re-
maining sub-sections elaborate on the stereotypes, the tagged values, and the constraints

of the PofEAA UML Profile.

4.3.1 Defining the PofEFAA metamodel

At the first step of Selic’s approach, we need a domain model for our PL. This domain
model is in fact the metamodel of the language. The metamodel should consist of the
fundamental concepts of the domain, their relationships, the constraints on these concepts,
the notation, and the semantics of the language.

Our work in Section 4.2 makes this step easier. For our selected patterns from PofEAA,
Figure 18 plays the role of the domain model, because it displays the concepts of the domain.
In addition to Figure 18, part I and part II of the “PofEAA Rule Set” (see Figure 20 and
Figure 21) must be taken into consideration, to discover more concepts of the domain. For
the relationships between the concepts, we can utilize part III of the “PofEAA Rule Set”
(see Figure 22). The semantics of the language is what we have seen in part IV of the
“PofEAA Rule Set” (see Figure 23). The constraints on the concepts are the ones that are
mentioned in different parts of the “PofEFAA Rule Set.” For the notation of our language,
we use both UML-ish diagrams (Figure 18 is a UML package diagram) and the formalisms

introduced in Section 3.3.

4.3.2 Mapping PofEAA metamodel to UML metamodel

In the second step of Selic’s approach, we should map each of the concepts of the domain
model of our language into one of the UML metamodel classes. At this step, we investigate
which concepts of the UML metamodel need to be extended to fulfill the requirements of
our language concepts. For those concepts, we define stereotypes. We should be careful not
to have conflicts between our concepts and the base meta-classes in UML.

Before showing how this step can be applied for PofFAA, we need to discuss an extra
step which we think is mandatory when the concepts in the language’s domain model are
compound. By a compound concept, we mean a concept which is constructed from several
single (atomic) concepts. We call this extra step “decomposition.”

In the pattern language world, in which each pattern is considered as one concept,
many of the concepts are compound. In other words, a pattern has a structure (typically
represented by a UML class diagram) and consists of several other concepts (such as classes).
The decomposition step aims to find the atomic concepts that could be matched to the UML
meta-classes clearly.

For instance, the Front Controller pattern, shown in Figure 19, is a concept in the
domain model of PofEAA PL. This concept is a compound concept, consisting of three
atomic concepts (Handler, Command, and ConcreteCommand classes). Note that we use
“Front Controller” as the sign of this pattern, hence, instead of Handler, we make use of
the name FrontController.

In addition to the Front Controller, there are four other compound concepts in the
selected patterns from PofEAA: the Record Set pattern which its decomposition results in
adding concepts Table, Row, and Column; the Row Data Gateway pattern which needs a
Finder class; the Remote Facade pattern which needs a class as the owner of bulk-accessor
methods; and the Money pattern which needs a Currenéy class as the type of its currency
field. o

When the decompositions are done, i.e., each compound concept in the domain model
is replaced by its constituent elements, then performing step two of the Selic’s approach
is possible. Figure 24 represents the result of applying this step for our selected patterns
of PofEAA. 1t shows how the metamodel (domain model) of the PofEAA PL is mapped
into the UML metamodel. The figure indicates that the concepts of our domain model are
mapped as extensions of four UML meta-classes: package. class, operation. and attribute.
Note that, for the sake of simplicity. the operations and attributes of the classes were not

shown in Figure 18.

103

In Figure 24, the gray boxes and their associations are copied from the UML metamodel
[Obj05b] for clarification, i.e., the gray boxes are the UML meta-classes. The white boxes
are the concepts of the domain model of our language (see Figure 18). An arrow (1) from
a language concept (white box) to a UML meta-class (gray box) should be interpreted as
an extension. That means, each stereotype ertends one of the meta-classes of the UML.
Obviously, the white boxes show the stereotypes of the “PofEAA UML Profile.” The next

section explains these stereotypes in more details.

<<profile>>
PoEAA
<<st > J<<st >>
PofEAAModel 1 presentation
<<stereolype>> <<stereotype>> <<stereotype>> |
ConcreteCommand <<stel > <<slereclype>> | controfler [T view
FrontControfler PageController
<<stel o \ereotype>> | <<ste <5 22d | <<sterectype>> |
<<stel >>
— Ct service 1 domain
find 1 insert <<stel >> <<ste)
Temp! TransformView
|<<slereotype>> < >> <<stereotype>>
<<si > < >
Helper dataSource || distributed
delete 11 update <<ste >> | <<stereotype>>
DormainModet ServiceLayer
getter setter <<steregtype>> <<stereotype>> i
TableModule T it ipt
<<stes >> | <<stereotype>> |
base
getBulk 13 setButk <<sly > < >
DataMapper ActiveRecord
<<stereotype>> |
doGet doPost __<<stereolype>> ___
TableD: y RowD
< Finder
tansform process otype>>.
RemoteFacade DataTransferObject
<<stel N
desenialize serialize
<s<stereotype>> ____| ___s<stereotype>>
PessimisticOfflinel ock OptimisticOfflinel otk
<<stere >>
— lock
_ __<<stereotype>>
ClientSessionState i
<<slerectype>>
— version
<<stereolype>>. | <<stereotype>> | <<ster 5>
ionlD Table I
RecordSet LayerSupertype
1 amount <<ster
Row >
dataTable Money
<stereolype>> <<stereolype>> <<slereotype>>
1 currency <<stercolvpez> Gateway Currency
Calumn
>
Mapper

Figure 24: Mapping the PofEAA metamodel into the UML metamodel

104

4.3.3 Stereotypes of the PofEAA Profile

As can be seen in Figure 24, in “PofEAA UML Profile,” we have four groups of stereotypes:
package-based, class-based, operation-based, and attribute-based. The first group, package-
based stereotypes, contains 11 stereotypes. One stereotype named «PofEAAModely is con-
sidered for the whole model. It is supposed that this is the root package of the design, i.e.,
this package includes all other packages. Three stereotypes are defined corresponding to the
three main layers: «presentation», «domainy, and «dataSource». Two stereotypes are de-
fined for the sub-layers of the presentation layer: «controller» and «view». Five stereotypes,
«servicey, «distributed», «concurrency», «sessionState», and «base» are considered for the
supporting layers. Therefore, we have defined 11 stereotypes that extend the meta-class

“Package” of the UML metamodel. Figure 25 shows the packages in our profile.

<<profile>>
PofEAAPTofile
<<sterectype>>
PofEAAModel
<<slgreotype>>
<<stereotype>>
service
presentation
<<stereotype>> <<stereotvpe>>
controfler view
<<stereotype>> <<stereotype>>
domain datasource
<<stereotype>> <<slereatype>> <<stereotype>> <<stereotype>>
base distributed concurrency sessionstate

Figure 25: The Packages in the PofEAA UML Profile

The second group, class-based stereotypes, has 32 elements. There are 23 stereotypes
that are named after the 23 selected patterns of PofEAA. As it was discussed in Chapter 3,
we call these stereotypes the “Signs” of the patterns. For each pattern there is a unique
“Sign” stereotype, which is considered by the PSV, as the starting point for checking the
structure of the pattern. The remaining nine stereotypes are defined for the classes that are
found after decomposition of compound patterns. «Command» and «ConcreteCommand»
are defined for the Front Controller pattern. «Helper» is defined for the Template View

pattern. «Finder» is defined for the Row Data Gateway pattern. «Table», «Row». and

105

«Columny» are defined for the Record Set; «Assembler» is defined for the Data transfer
Object, and «Currency» is defined to specify the type for “currency” field of the Money
pattern.

The third group, operation-based stereotypes, includes 15 stereotypes that extend the
meta-class “Operation” of the UML metamodel. These stereotypes are used when there are
mandatory operations for a pattern. Stereotypes «find», «insert», «delete», and «update»,
are required for patterns that need CRUD (Create, Read, Update, and Delete) operations.
Stereotypes «getter» and «setter», can be used generally to specify the accessor methods of
a class, but particularly these stereotypes along with «getBulk» and «setBulky are defined
for the RemoteFacade pattern. Stereotypes «doGet», «doPosty», and «process» are used
by the Controller patterns. Stereotype «transform» indicates the transformer operation in
the Transform view pattern. Stereotypes «serialize» and «deserialize» are defined for the
Data Transfer Object pattern. Stereotypes «lock» is defined for the Offline Concurrency
patterns.

The fourth group, attribute-based stereotypes, includes 5 stereotypes that extend the
meta-class “Attribute” of the UML metamodel. Stereotype «version» is required when the
Optimistic Offline Lock pattern is applied. Stereotypes «sessionID» is required for keeping
the ID of each session in Session State patterns. Stereotypes «amount» and «currency» are
defined to specify the fields of the Money pattern. The «dataTable» stereotype is used by
the Table Module pattern to indicate the attribute which contains the name of the Data
Base (DB) table.

For instance, pattern Front Controller (see Figure 19) involves three classes and three
operations. Therefore, for detecting this pattern we need six stereotypes: «FrontCon-
troller», «Command», and «ConcreteCommand» as class-based stereotypes, and «doPost»,
«doGety», and «process» as operation-based stereotypes. These stereotypes (particularly
the first one), when applied, show the designer’s intention for using the Front Controller

pattern. Note that the Sign («FrontController») must be applied on the Handler class.

4.3.4 Tagged Values of the PofEAA Profile

Tagged values are used to attach additional meta-attributes to a stereotype in order to
access information about the model, such as the context information or the configuration
management properties. It is worth noting that a tagged value is not the same as an
attribute of a class. In fact. a tagged value is meta-data and its value applies only to the

related element and not to the instance.

106

In PofEAA profile, we have defined nine tagged values, all applicable on stereotype
«PofEAAModel», as slots to capture information about the model, the designer, and the
development environment. The tagged values are introduced in Table 13, which defines the
tag, type of each tag, a multiplicity indicating how many individual values can be assigned
to it, and alternative values for the tag. A lower bound of zero for multiplicity implies that

the tagged value is optional.

Table 13: Tagged Values for stereotype « PofEAAModel» in PofEAA UML Profile

| Tag | Type | Mult. | Values |
ServiceLayer String 0.1 Yes , No
DistributedLayer String 0.1 Yes , No
ConcurrencyLayer String 0.1 Yes , No
SessionStateLayer String 0.1 Yes , No
‘ChanceOfConflict String 0..1 Low , High
ViewBuilt - String 0.1 HTML , XSLT
Tool String 0..1 Java | .Net
Complexity String 0.1 Simple , Moderate, Complex
Expertise - String 0..1 Novice , Intermediate , Expert

The tags “ServiceLayer,” “DistributedLayer,” “ConcurrencyLayer,” and “SessionState-
Layer” indicate whether or not the designer decides to have the corresponding layer in
his/her design. The values are simply “Yes” or “No” strings.

The tag “ChanceOfConflict” determines which one of the concurrency patterns (Opti-
mistic Offline Lock or Pessimistic Offline Lock) is appropriate for the current design. The
value “High” means the possibility of transactional conflict in the system is high, therefore,
the Pcssimistic Offline Lock pattern is preferred. Similarly, the value “Low” mecans the
Optimistic Offline Lock pattern is more appropriate.

The tag “ViewBuilt” specifies how the view of the presentation is built, hence, the value
of this tag discriminates the pattern that is used for the View. The value “HTML” leads
to the Template View pattern, while the value “XSLT” (Extensible Stylesheet Language
Transformations) encourages the usage of the Transform View pattern.

The tag “Tool” is defined for information about the implementation environment. The
alternative values are the name of the platform which is used for developing the system,
e.g., “Java” or “.Net.” This tag is used in constraints that check the compatibility of a
pattern with the development tools. For instance, when the value is “Java,” a stereotype
«TableModule» in the Domain Layer will trigger a semantic error. since the Table Module
pattern is better matched with the “.Net” platforin.

In order to check the complexity of the domain model, and then to verify which pattern

must be applied in the Data Source Laver. we have defined a tag named “Complexity.”

107

There are three possible values for this tag, “Simple,” “Moderate,” or “Complex.” For
instance, when the value is “Simple,” the objects identified by the Domain Model pattern
can be integrated with an Active Record pattern to have access to the data base, however,
when the value is “Complex,” the Domain Model objects must use a Data Mapper pattern.

The tag “Expertise” reflects the level of experience of the designer, and its value af-
fects the choice of patterns in the Domain Layer. The values are one of the three strings:
“Novice,” “Intermediate,” or “Expert.” For example, for novice designers, applying the

Domain Model pattern is discouraged, but for expert designers it is encouraged.

4.3.5 Constraints of the PofEAA Profile

In addition to the stereotypes and tagged values, a UML profile may contain several con-
straints. Constraints are invariants that can be attached to every model element, including
the stereotypes. When a constraint is defined for a stereotype, applying that stereotype on a
model elemént causes the constraint to be checked. There are two approaches for specifying
a constraint: formally using the OCL language, or informally using a natural language. It
is obvious that to have automatic constraint checking, the constraints should be written in
OCL and the tool should have support for profile (and OCL) checking.

In Section 3.5, we discussed the pros and cons of the above two approaches. We justified
our decision of performing a two-step procedure: first, representing the constraints using
the formalism which is defined in Section 3.3, and second, hard coding the constraints into
a modeling tool using a programming language. Our formalism is a grammar-like notation,
in which, rules can be augmented with textual comments or conditions. The first step is
7 already taken, since the “PofEAA Rule Set” that we defined in Section 4.2 is indeed the
constraints of “PofEAA UML Profile.” As the sccond step, to complete the definition of
our profile, these constraints must be hard coded as the modules of a PLV for PofEAA.
This is discussed in the next section.

The equivalence of the “PofEAA Rule Set” and the constraints of “PofEAA Profile,”
requires some clarification. In the former, we divided the rules into three parts: structural,
syntéctia and semantic, while in the latter, the constraints are typically defined for the
stereotypes. Specifying which rules are related to which stereotype is not a difficult task.
As a rule of thumb. we can say that in the “PofEAA Rule Set,” each rule is related to the
name of the pattern or layer which appears on the left-hand side of the rule. For instance,

Tool=Java
—

“Front Controller Template View™ should be considered as a constraint for the

stereotype «FrontControllers.

108

To wrap up the profile discussion, Table 14 shows some statistics about the “PofFAA
UML Profile,” and Table 15 shows some of its stereotypes along with related constraints
and tagged values. For some of the stereotypes, the constraints are given both in natural

language and in OCL.

Table 14: Statistics about the PofEAA UML Profile
| Tagged Values | Constraints |

Class-based, 9 70+

[Stereotypes
63 (11 Package-based, 32

15 Operation-based, 5 Attribute-based)

Table 15: Some Stereotypes of the PofEAA Profile

Name «PofEAAModel»
Base Class Package
Description The root of the model

Tagged Values

ServiceLayer, DistributedLayer, ConcurrencyLayer, SessionStateLayer, Chance-
OfConflict, ViewBuilt, Tool, Complexity, Expertise

Constraints

It should have at least three sub packages corresponding to three main layers
of PofEAA. Tt might have five supplementary packages, subject to designer’s
decision.

Constraints in

OCL

self.ownedElement — includes (pl, p2, p3:Package— pl.stereotype =‘presen-
tation’ and p2stereotype =‘domain’ and p3.stereotype =‘datasource’) and
self.ownedElement — includes (p4:Package — pd.stereotype ='service’ and
self.getValue(*ServiceLayer’) = ‘Yes’)) and ...

Name «presentation»

Base Class Package

Description The presentation layer package.

Constraints It should have controller and view sub-packages.

Constraints in

OCL

self.ownedElement - includes (p:Package— stereotype=‘controller’) and

self.ownedElement — includes (p:Package— stereotype=‘view’)

Name «domain»

Base Class Package

Description The domain layer package.

Tagged Values complexity

Constraints It should have patterns as the domain model of the system which are compatible
with the context information, e.g., complexity of the domain model, the tool, and
the expertise of the developers.

Name «dataSource»

Base Class Package

Description The data source layer package.

Constraints It should have patierns for connecting to the database which are compatible with
the patterns in the domain model.

Name «TableDataGateway »

Base Class Class

Description An object that acts as a Gateway to a database table. One instance handles all
the rows in the table.

Constraints It should have find. insert, delete and update operations. The return type of find

operations should have stereotvpe «recordSet».

Constraints in

OoCL

self. BehavioralFeature — exists (0:Operation — name="find’) and ...

109

4.4 ArgoPLV: A PLV for PofEAA

In this section, we use the UML profile defined for PofEAA in Section 4.3, to show how the
PLP is implemented, and how four modules, PSV, PTV, PMV, and PLA, are hard coded
into a modeling tool to build “A PLV for PofEAA.” As the modeling tool, we have selected
ArgoUML, hence, the resulted tool is called “ArgoPLV.”

4.4.1 ArgoUML

ArgoUML [Tig09a] is an open-source UML modeling tool. The core ideas of ArgoUML are
the result of Jason Robbins’s PhD thesis [Rob99] titled “Cognitive Support Features for
Software Development Tools.” In February 1999, ArgoUML was made into an Open Source
project. “

ArgoUML has always been under development, and a dynamic development community
is working on fixing the reported bugs as well as adding new features. The current version, as
of date (March 1, 2009), is ArgoUML 0.26.2 which is more stable and has many more features
than the original version. ArgoUML is written in Java and is available in three different
formats: Java Web Start, installable, and source code. Current version of ArgoUML is based
upon the NetBeans MDR [Mic09] implementation of UML metamodel which supports UML
1.4. For OCL, ArgoUML uses Dresden OCL toolkit [The09]. ArgoUML uses the Graph
Editing Framework [Tig09b] (GEF, not to be confused with the Eclipse Graphical Editing
Framework (GEF)) to edit UML diagrams. We downloaded the ArgoUML 0.26.2 source
code and built it in Eclipse 3.3 [Fou09b)].

ArgoUML is a UML modeling tool that supports all standard UML 1.4 diagrams: Use
Case, Class, Sequence, Collaboration, State chart, Activity, and Deployment (includes Ob-
ject and Component). There is no immediate plan to support UML 2.0 in ArgoUML.
Besides features such as diagram editor and reverse engineering of compiled Java code, Ar-
goUML is a design critiquing system. As the creator of ArgoUML defines “A design critic
is an intelligent user interface mechanism embedded in a design tool that analyzes a design
in the context of decision-making and provides feedback to help the designer improve the
design” [Rob99).

ArgoUML’s main window has a toolbar. menu bar and four main panes: 1) Explorer,
2) Editing, 3) ToDo, and 4) Details. Figure 26 shows a snapshot of the main window of
ArgoUML with four main panes specified. Explorer pane shows a hierarchical view of the

current project file. Editing pane is an editor for the selected diagram of the model, e.g.,

110

the class diagram. ToDo pane contains the designer’s ToDo List. Details pane shows the

details of the selected object in the diagram or the selected ToDo Item from the ToDo List.

iordes By X

o £ Protls Configuration’

o3 Suénpiodel
Y Crass Diagram 1
: B use case Dragram

S g fori o i Y D T S RN
T ASowce | AConstrainis’ | ASterechype: | A TaggedValies | A Checklist: |
Cheni Cepedsnties; - Aljbites:

pplier Depenencies: Associaton Ens’

" Gingiaizalions: ‘Opsatios:

Spetiizatons: | Owngd Etements:

‘*i %

Figure 26: ArgoUML’s window has four main panes: 1) Explorer, 2) Editing, 3) ToDo, and
4) Details.

ArgoUML’s critiquing system is based upon a conceptual critiquing process called
ADAIR (Activate, Detect, Advise, Improve, Record) [RR98]. Simply put, ArgoUML has
predefined agents, called critics, that are constantly investigating the current model and if
the conditions for triggering a critic hold, the critic will generate a ToDo Item (this item is
called a critique) in the ToDo List. A ToDo Item contains a short description of the prob-
lem, some guidelines about how to solve the problem, and if there exists, a wizard which
helps the designer solve the problem automatically. A ToDo Item generated by a critic will
remain in the ToDo List until the origin of the problem is vanished, either manually by the
designer, or by following the wizards proposed by the tool.

The critics run as asynchronous processes in parallel with the main ArgoUML tool. The
critics are not intrusive, since the user can completely ignore them or disable one or all of
them through the Critique menu. Critics and wizards are not user defined. since they all

are written in Java and are compiled as part of the tool.

111

4.4.2 ArgoPLV Architecture

Figure 27 shows the architecture of ArgoPLV as an extension to ArgoUML. In the core
of ArgoUML, the model is accessed via org.argouml.model.Facade, which is the facade
object for the Model subsystem. In the Model subsystem, a set of Factories and Helpers
are defined to allow the manipulation of the objects of the model. ArgoPLV Plugin is the

result of several extensions to the ArgoUML architecture.

ArgoUML
ArgoPLV Plugin
Critics Wizards Properies
3 PSV PLA
Tabs
PTV
o Profile KnowledgeTypes
PMV .
GenUtils
;
]
1
\Vi
ArgoUML Core
- Model Facade Model Facto Model helper
-
UML meta-model

Figure 27: ArgoPLV Architecture

Three PLV modules (PSV, PTV, and PMV) are packaged into ArgoUML design crit-
ics. Each of the ArgoPLV critics is implemented as a class inherited from the follow-
ing class: org.argouml.uml.cognitive.critics.CrUML. Each critic is registered with the
class org.argouml.cognitive.Agency, then a designer thread is started to check whether
the critic can find a problem in the current model. If a problem is found. a ToDo Item
(critique) will be posted to the ToDo List. The fourth module (PLA). is packaged into the
wizards. Furthermore, this module requires the user interface of ArgoUML to be extended

by adding new Tabs to the Details Pane, and new categories of Knowledge Type to be

112

added to the ToDo List. The technical details on building PLV modules are explained in
the following.

4.4.3 PLP in ArgoPLV

In Section 4.3, we introduced the stereotypes, the tagged values, and the constraints of
the “PofEAA UML Profile”. In this section, we explain how this profile is implemented in
ArgoUML, to play the role of PLP in ArgoPLV.

Defining the stereotypes and tagged values of PLP in the ArgoUML tool is not a difficult
task, however, the support is not straightforward. One approach for defining a profile in.
ArgoUML, is to create a dummy model, then define all the required stereotypes and tagged
values in that model, and finally, export the model to an XMI file. This file can then be
considered as a profile, to be loaded and applied on another model.

The constraints are not codified as part of the PLP due to the following reasons. First,
ArgoUML does not have support for writing constraints at the metamodel level (note that
our constraints are all at the metamodel level). Second, we have already explained (see
Section 4.3.5) that our constraints (rules) are not completely written in OCL, instead,
they are written using our defined formalism, enriched with class diagrams and informal
comments written in English. Therefore, we decided to code the constraints of the PLP in
Java inside the ArgoUML critics.

After the profile (stereotypes and tagged values) is defined, it can be applied on a model.
Applying a profile is recently‘added as a feature to ArgoUML. In the ArgoUML versions
0.25 or higher, a new feature called “Profile Configuration” is added that allows the designer
to load an existing profile (which is serialized in XMI) and apply it to the current model.
By applying the profile, all the stereotypes and tagged values are available for using in the
current model.

Figure 28 shows a snapshot of ArgoUML where the stereotypes and the tagged values of
“PofEAA UML Profile” are defined. In the figure, “PofEAA UML Profile” is the name of
‘the model (profile). The packaging of the stereotypes is only done for the sake of aesthetic
reasons, e.g., the stereotypes «Commandy, «ConcreteCommands, «FrontController», and
«PageController» are placed inside a package named “controller” which is inside a “presen-
tation” package. which is inside a root “PofEAAModel” package. The stereotypes for the
layers of the system are placed inside the root “PofEAAModel” package. The tagged values

are defined for the stereotype «PofEAAModel».

113

ﬁackage:xiemﬁé -

rle Bﬁfype‘,ﬁame.

o

* [Profile Configuration : S : : S

o_a be_aametamodsﬂ L. . - PR e
¢- 33 PofEAA UML Profile : ‘ ’ ' S
i,.

PofEAAMode!

R

controlier
- «» command
- «» ¢ohcreteCommand

- «» pageController
¢ E3 view
- «» templateView
«» fransfarmview
o service
=7 sessionSiate
- «» base
€3 CONSUITency
«» cantrofler
«» dataSource
distributed
«» domain
¢ <> PofEAAModel
™ ChanceQiCondict
T Complexity
™ ConcurrencylLayer
™ Distributediayer
0 Experice
: ™ Serviceelayer
™ SescionSlatelaver
: ™ Tool
«» presentation
€ seice i
«» sezgionSiate

€3 view

¥

<

¥

¥

[t

Ly

"4 Sterectype | A Tagged Values ;| Liwckint |
& Properties A Documentation

4 ToDo Rem

“o [Mediurn
© Oow

Generalizations:

A Y o H
» Slereotype - i Base Class: {Class It
A j 1

-, Bpetializations:
ame’ :

2 Extended Elements:

Figure 28: Defining Stereotvpes and Tagged Values of PofEAA Profile in ArgoUML

114

4.4.4 PSV in ArgoPLV

In ArgoPLV, the PSV is built by hard coding the structural rules of the PofEAA PL into
the critics. In Section 4.2.1 we called these rules “PofEAA Rule Set - Part I: Structural
Rules.” Based on the critiquing idea of ArgoUML, for each kind of problem there should
exist a critic class. Therefore, for each one of the PofEA A patterns, we have one critic which
verifies the structure of that pattern and detects the errors. Each critic is indeed the hard
coding of the structural rules for the corresponding pattern. Hence, PSV is implemented
by 23 critics (one critic per pattern).

To see an example of how the PSV is coded into the critics, consider the structural rules
(Criteria) of the Front Controller pattern, which is shown in Figure 20 as one sample rule
from the “PofEAA Rule Set - Part 1: Structural Rules.” Based on these criteria, PSV starts
by finding the Handler class, a class with stereotype «FrontController». Then it looks for
two operations with stereotypes «doGet» and «doPost» in that class. The Handler class
shall be a client of a Command class, a class with stereotype « Command». The Command
class must be abstract and have an operation with stereotype «process». The Command
class must also have at least one child. All children of the Command class shall be concrete
classes with stereotype «ConcreteCommand». Each ConcreteCommand class in turn shall
have an operation with stereotype «processy.

The critic class which verifies the structure of the Front Controller pattern is class
CrFrontController. An excerpt (the “predicate” method) from this critic is shown in two
parts in Figure 29 and Figure 30. The “predicate” method is the heart of each critic which
checks the conditions to see whether or not the critic must be triggered. The whole code of
this critic is attached in Appendix A.5.2. Each critic is a thread which is running all the
time and investigates every object in the model.

In line 3, by checking the current model element (called “dm”), we make sure that this
critic deals only with the classes. The model elements are accessed via the facade object
“org.argouml.model.ModelFacade.” In line 7, we check the “Sign” of the pattern, and if it
is not «FrontController», the critic returns without reporting any problem. The remaining
lines of the code (in Figure 29 and Figure 30), check the Criteria of the pattern. This code,
as well as other critics, uses the services of a General Utility class (GU) which is a singleton
class for performing tasks such as finding a specific stereotype of an object, or finding a
specific operation in a class. The Javadoc of the GU class is attached in Appendix A.5.1.

In case of any error. i.e., reaching any of the “return PROBLEM_FOUND" statements

in the code. PLA is invoked to give an error message to the designer. and to guide him/her

115

1 public boolean predicate(Object dm, Designer dsgr) {

2 if (dm == null) return NO_PROBLENM;

3 if (! Model.getFacade().isAClass{(dm)) return NO_PROBLEM;

4 0Object aClass = dm;

5 // aClass should have stereotype <<FrontController>>, this is the sign
6 // of pattern that is applied on the Handler class

7 if () GU.objectHasSte(aClass, "FrontController")) /*SIGN*/

8 return NO_PROBLEM;

9 // Both doGet and doPost ops are required
10 if (! GU.classHasSteOp(aClass,"doGet")) return PROBLEM_FOUND;
11 if (! GU.classHasSteOp(aClass,"doPost")) return PROBLEM_FOUND;
12 // Check if there is a client
13 Collection depSet = Model.getFacade() .getClientDependencies(aClass);
14 if (depSet.isEmpty()) return PROBLEM_FOUND;

Figure 29: Predicate Method of the CrFrontController Critic (Part 1)

in fixing the problem. The PLA is introduced in Section 4.4.7.

If all the structural criteria of a pattern hold, a line will be added to the PIT, and the
detected péttern is reported to the designer; While checking the structure of a pattern, the
pattern elements are inserted into a list named “classNames” (see lines 48, 52, and 56 in

Figure 30). This list is indeed the PIT.

4.4.5 PTV in ArgoPLV

PTV in ArgoPLV is built by hard coding the syntactic rules of the PofEAA PL into the

critics. In Section 4.2.2. two groups of syntactic rules were defined for PofEAA:

1. Rules that check the organization of patterns: These rules are named “PofFAA Rule
Set - Part II: Syntactic Rules (Pattern Organization),” and are represented in Fig-

ure 21.

2. Rules that check the relationship between patterns: These rules are named “PofEAA
Rule Set - Part III: Syntactic Rules (Pattern Relationships),” and are represented in

Figure 22.

In the following, we will elaborate how these two groups of rules are hard coded into the

PTV module.

Rules that Verify the Pattern-Layer Relationships For checking the pattern orga-

nizations, two critics are written: CrLayers and CrPatterns. These critics are verified

116

15 // at least one of the suppliers should have the COMMAND structure

16 // An ABSTRACT class with stereotype <<Command>> and one <<process>>
17 // operation as well as at least one child with stereotype

18 // <<ConcreteCommand>> and with one <<process>> operation

19 boolean supplierFound = false;

20 Iterator deps = depSet.iterator();

21 while (deps.hasNext()) {

22 Object dep = deps.next();

23 Collection supplierSet = Model.getFacade().getSuppliers(dep);

24 if (supplierSet.isEmpty()) continue;

25 Iterator suppliers = supplierSet.iterator();

26 while (suppliers.hasNext() && !supplierFound) {

27 // This should be the Command class

28 Object supplier = suppliers.next();

29 if (GU.objectHasSte(supplier, "Command")) {

30 if (Model.getFacade().isAbstract(supplier)) {

31 if (GU.classHasSteOp(supplier,"process")) {

32 // Ve need at least ome child which is concrete

33 // and has process operation
34 Collection children = Model.getFacade().getChildren(supplier);
35 if ((children.isEmpty())) return PROBLEM_FOUND;

36 Iterator child = children.iterator();.

37 while (child.hasNext()) {

38 Object conCommand = child.next();

39 // concrete command must be a class

40 if (! Model.getFacade().isAClass{conCommand)) continue;
41 // concrete command class must be concrete

42 if (Model.getFacade().isAbstract(conCommand)) continue;
43 if (!GU.objectHasSte(conCommand,"ConcreteCommand”))

44 return PROBLEM_FOUND;

45 if (!GU.classHasSteOp(conCommand, "process"))

46 return PROBLEM_FOUND;

47 // Now, report the correct usage of FC pattern

48 classNames.add(Model.getFacade () . getName (conCommand) +"
49 -> Concrete Command");

50 }

51 supplierFound = true; .

52 classNames.add(Model.getFacade() . getName (supplier)+"-> Command") ;
53 }}}1}1}

54 if (! supplierFound) return PROBLEM_FOUND;

55 PATTERN_FOUND = true;

56 classNames.add(Model.getFacade().getName(aClass)+" -> Handler”);
57 patternLayer =

58 Model.getFacade() .getName(Model.getFacade() . getNamespace (aClass)) ;
59 return NO_PROBLEM;
60 }

Figure 30: Predicate Method of the CrFrontControllexr Critic (Paft 2)

against the whole model (the package with stereotype «PofEAAModel»), since they are
more general to be checked for a specific class.
The first critic class. Crlayers, checks the model to see if any of the mandatory or

supplementary layers is missing. Note that the existence of a supplementary layer is subject

117

to the designer’s choice, by setting the corresponding Tagged Value. In terms of the PofEAA
rules, this critic applies the the first four rules of the “PofEAA Rule Set - Part 11,” given
in Figure 21. In case of any error, i.e., finding a missing layer, the PLA is called to report
the error, and to help the designer in adding the missing layer.

The source code of the CrLayers class is attached in Appendix A.5.3. An excerpt from
the code is shown in Figure 31. In line 2, an Iterator is defined to traverse on all the
elements inside the root model. In line 6, we only consider the elements that are packages.
Line 7, using a utility method (hasStr()), looks for the “presentation” layer. Line 11,
looks for the “service” layer. In line 18, we check for errors. The non-existence of the
“presentation” layer, or, the non-existence of the “service” layer while the designer has
indicated that he/she wants this layer (i.e., utility method needsServicelayer() returns
“true”), are considered as errors.

Note that, if the Service Layer is found, but the designer has not requested it (i.e., utility
method needsServiceLayer() returns “false”), this case is not considered as a‘syntactic
error. This is indeed a semantic error which will be caught by the PMV module as it will

be discussed in the next section (see Section 4.4.6).

1 //Lines Deleted. aPackage is the root PofEAA package.

2 Iterator innerElms = Model.getFacade() .getOwnedElements(aPackage).iterator();
3 while (innerElms.hasNext()) {

4 Object elmnt = innerElms.next();

5 if (elmnt '= npull) {

6 if (Model.getFacade() .isAPackage (elmnt)) {

7 if (GU.hasStr(elmnt, "presentation")) {

38 presentationFound = true;

9 prs = Model.getFacade() .getName(elmnt);
10 }

11 else if (GU.hasStr(elmnt, "service")) {

12 serviceFound = true;

13 srv = Model.getFacade() .getName(elmnt);
14 }

15 //Lines Deleted

63} 1} 1}

17 //Lines Deleted

18 if (!presentationFound |l (!serviceFound &% GU.needsServicelLayer())
19 //Lines Deleted
20)

21 return PROBLEM_FOUND;

Figure 31: An Excerpt from the Source Code of class CrLayers

Remember that, the designer decides about having an optional (supplementary) layer by
setting the value of the corresponding tagged value. For instance. if the designer intends to

have a Service Layer in the model, he/she sets {ServiceLayer=Yes} for the root package of

118

the design. To access the tagged values that capture the context information, the CrLayers
class uses the utility methods from the “GU” class. For example, one of these utility
methods (needsServiceLayer()) that determines whether or not the designer wants the
Service Layer in the model, is shown in Figure 32. Note that, in this code, the “pofeaaPkg”
refers to the root package of the design. The value returned by this method depends upon
the value of tag “ServiceLayer.” If the value of the tag is “Yes,” the method returns “true,”

otherwise, it returns “false.”

public static boolean needsServiceLayer() {
boolean found = false;
if (pofeaaPkg != mull) {
String value =
Model .getFacade() .getTaggedValueValue (pofeaaPkg, "ServiceLayer");
if (value.equals("Yes")) found = true;
}
return found;

}

Figure 32: A Method from GU Class which Checks “ServiceLayer” Tagged Value

The second critic class (CrPatterns), verifies the placement of patterns in the layers.
In terms of the PofEAA rules, this class applies the remaining rules (rules 5 to 13) of the
“PofEAA Rule Set - Part I1,” given in Figure 21. To fulfill its tasks, this class calls a utility
method from GU (GU.patternLayerMismatch(aPackage)). In case of any error, ie., if a
pattern is located in a wrong layer, the PLA is called to report a syntactic problem and
help the designer fix the problem (i.e., move the patterns to their corresponding layers).

The source code of the CrPatterns class is attached in Appendix 'A.‘5.3.

Rules that Verify the Pattern-Pattern Relationships For checking the relationship
between patterns, 15 critics are implemented. Some of the critics are at the layer level,
and some are at the pattern level. Note that, there is not é one-to-one correspondence
between the syntactic rules in the “PofEAA Rule Set - Part III,” and the written critics.
That means, some of the rules can be combined together and be checked via a single critic.

As an example of a syntactic critic, consider the following two rules from the “PofEAA

Rule Set - Part III” (see Figure 22):
Domain Model 3" Active Record {C21: Domain Structure is Simple}

Domain Model “% Data Mapper {C23: Domain Structure is Complex}

119

A critic named CrDomainModelSyn is dedicated to implement these syntactic rules. The
critic verifies the conditional uses relationship between the Domain Model and the selected
pattern for the Data Source Layer of the design. To do this, the critic verifies the consistency
of the dependency between the Domain Model either to the Active Record or to the Data
Mapper, subject to the complexity of the model. The critic applies the following criteria.

1. A Domain Model pattern is already detected by PSV, i.e., it is in PIT.
2. The Domain Model pattern is located in the Domain Layer.

3. (a) The Domain Model pattern uses an Active Record pattern.
(b) The Active Record is already detected by PSV.
(c) The Active Record pattern is located in the Data Source Layer.

(d) The model is Simple.

4. (a) The Domain Model pattern uses a Domain Model pattern.
(b) The Domain Model is already detected by PSV.
(c) The Domain Model pattern is located in the Data Source Layer.

(d) The model is Complex.

The criteria are checked sequentially. If any of the conditions in steps 1, 2, 3.a, 3.b,
3.c, 4.a, 4.b, or 4.c is false, the critic ends without triggering any error. These criteria are
checked to prevent multiple error reporting. In fact, by this strategy, we are applying a type
of error prioritizing which is not obvious from the rules per se. For instance, if the Active
Record pattern is not structurally correct (3.b), or if it is not located in the appropriate
layer (3.c), then the CrDomainModelSyn critic returns without detecting any error, because
those errors should be caught by the corresponding structural critic (C;ActiveRecorq) or
the critic that checks the organization of patterns (CrLayers). If either step 3.d or step 4.d
is violated, that means there is a syntactic error in the model and it must be caught by the
PTV.

Figure 33 shows an excerpt from the CrDomainModelSyn class which shows the “predi-
cate” method. The source code of this class is also attached in Appendix A.5.3.

In line 6. by using the patternFound() method of the GU class, we verify that the
Domain Model pattern is already detected and recorded in the PIT. Lines 7 and 8 check

the containing layer of the pattern and make sure that it is the Domain Layer.

120

1 public boolean predicate2(0Object dm, Designer dsgr) {

2 if (dm == null) return NO_PROBLEM;

3 if (! Model.getFacade().isAClass(dm)) return NO_PROBLENM;

4 Object dmCls = dm;

5 if (1GU.hasStr(dmCls, "DomainModel")) return NO_PROBLEM;

6 if (!GU.patternFound("DomainModel")) return NO_PROBLEM;

7 Object dmPkg = Model.getFacade().getNamespace(dmCls);

8 if (1GU.hasStr(dmPkg, "domain")) return NO_PROBLEM;

9 Object actRec = GU.findStrSupplier(dmCls, "ActiveRecord");
10 if (actRec != null) {

11 if (GU.patternFound("ActiveRecord")) {

12 Object dsPkg = Model.getFacade().getNamespace(actRec);
13 if (GU.hasStr(dsPkg, "dataSource"))

14 if (! GU.hasComplexity("Simple"))

15 " return PROBLEM_FOUND;

16)} }

17 Object dataMap = GU.findStrSupplier(dmCls, "DataMapper");
18 if (dataMap != null) {

19 if (GU.patternFound("DataMapper")) {

20 Object dsPkg = Model.getFacade().getNamespace(dataMap);
21 if (GU.hasStr(dsPkg, "dataSource"))

22 if (! GU.hasComplexity("Complex"))

23 return PROBLEM_FOUND;

24 }}

25 return NO_PROBLEM;

26 }

Figure 33: Predicate Method of the CrDomainModelSyn Critic

To check the dependency between two classes (two patterns), there exist two utility
methods in the GU class: findStrSupplier(Object cls, String str) and findStrClient
(Object cls, String str). These methods check whether there exist a supplier (or
client) with stereotype “str” for a given class “cls.” Using the former method, in lines
9 and 17, the dependency from the Domain Model pattern to either the Active Record or
the Data Mapper is checked. '

To access the tagged value “Complexity,” the CrDomainModelSyn class uses the utility
method hasComplexity() from the GU class (see lines 14 and 22). The hasComplexity()
method works similar to the needsServiceLayer () shown in Figure 32. The method checks
the value of tag “Complexity,” and returns “true” if the value of the tag is equal to the
value specified by the parameter “complexity.” If the complexity of the model is not the
same as what is anticipated, the critic triggers a syntactic error in line 15 or 23.

To summarize. PTV is implemented by two general critics which apply the “PofEAA
Rule Set - Part I1.” plus 15 critics which apply the “PofFAA Rule Set - Part II1.”

121

4.4.6 PMYV in ArgoPLV

In ArgoPLV, the PMYV is built by hard coding the semantic rules of the PofEAA PL into the
critics. In Section 4.2.3 we called these rules “PofEAA Rule Set - Part I'V: Semantic Rules,”
represented in Figure 23. Dealing with semantic issues in the critics is almost similar to the
syntactic ones, because most semantic critics need to investigate the tagged values. PMV
is implemented in ArgoPLV by 10 critics.

As an example of a semantic critic, consider the following rule from Figure 23:
Service Layer ~ C41 {C41: Designer wants Service Layer}

This rule implies that there is a Service Layer pattern in the model, if and only if
the designer has shown his/her intention by setting the tagged value {ServiceLayer=Yes}.
Therefore, the critic CrServicelLayerSem which implements this rule, must check both “if”
and “only if” parts of the rule. '

Remember that, in one of the syntactic critics (see line 18 of Figure 31), we also verify
that the existence of the Service Layer is reliant on the value of the tag ServiceLayer.
However, that check was only about the layer “Service Layer,” and it was equivalent to
the “only if” part of the above rule. The CrServiceLayerSem critic checks that if there
exists a correct application of the Service Layer pattern inside a Service Layer package, then
the value of tag ServiceLayer is “Yes,” and vice versa. The same issue happens for all the
supplementary layers.

One of the semantic critics which is more complicated than simply checking the tagged

values, is CrTableDataGatewaySem, which implements the following rule from Figure 23:
Table Data Gateway =~ {insert() parameter list C update() parameter list}

The critic must check that the list of parameters of the insert operation is a subset of
the list of parameters of the update operation in the Table Data Gateway pattern. The

source code of this critic is attached in Appendix A.5.4.

4.4.7 PLA in ArgoPLV

The PLA module of ArgoPLV is built via several extensions to the ArgoUML. First, the
user interface of ArgoUML is extended by adding a new tab named “Detected Patterns”
to the Details Pane of ArgoUML (see Figure 34). This tab is used to report the detected
patterns (and the content of PIT) to the designer. The tab is divided into two columns.

The left column is for displaving the name (Sign) of the pattern. The right column is for

122

displaying the elements of the patterns. In the left column, two categories are defined for
the detected patterns: Patterns of EAA, and Design Patterns. Obviously, detected patterns
from the PofEAA will be placed under the first category. The second category is reserved
for the GOF design patterns, in case there are critics for detecting them. Clicking on a
pattern name, will display the pattern elements, their role, and the containing layer of the

pattern in the right side of the tab.

Détected Pattemns

a4 - [y Patterns.of EAR
i + [} Design Patterns

Figure 34: Detected Patterns tab is added to Details pane of ArgoUML

Second, the user interface of ArgoUML is extended by adding three new Knowledge
Types in the ToDo List. The new types are PofEA A Structure, PofEA A Syntax, and
PofEFAA Semantics, as indicated in Figure 35. These types are created to report the
corresponding three groups of errors. The errors in each group will be inserted as ToDo

Items under the related Knowledge Type.

{ Tonglraas {80 i «4ToDoitem .

Detected Paﬁems

:This branch contains "o do” items that provide POfEAA Structure related knowtedge.

By Knowledge Type {Ti2tems

23 Designers [veaee
Lo [T Comectness

£ Completeness

fam
1. [Semantics

5 PofEAS SIrustire
3 PofEAA Suntax

7 PofEAR Semantics
 Gptirnization

{73 Presentation

3 organizationat

- [J Experiential
I b

critics.CrFrontController-head =
PofEAA: Structural Problem in using Front Controller Pattern
critics.CrFrontController-desc =
Class "<ocl>self</ocl>" seems to be a Front Controller Pattern. Based on
Fowler’s definition, a Front Controller is a handler class for web requests.
Therefore, it should have two operations named doGet and doPost.
There should be a dependency between this class and ancother one named
Command with at least one operation called process. The Command class
should be abstract and have at least one child as Concrete Command.
To address this, select "Next>" to use the wizard, or manually add the
requested elements to the model. Note that the problems in the children
of Command can not be fixed by this wizard.

Figure 36: Head and Description of the Critic Defined for the Front Controller Pattern in
the “critics.properties” File ’

Third, for each error, the error message along with the guidelines on how to fix the
problem are defined in a uniform manner, by extending the “critics.properties” file. This
information is shown to the designer via ToDo Items. The guidelines show useful information
that the designer can use in order to solve the problem. Figure 36 shows an excerpt from
the “critics.properties” file that introduces the Head and the Description fields regarding
the error message that will report a problem in applying the Front Controller Pattern.

Fourth, a Design Rationale named PofEAA rationale.txt is created that keeps track
of each session of the ArgoPLV by recording the actions performed by the wizards. There
are four elements in each record of this text file: the date and the time of the decision,
the name of the wizard class, the issue, and the rationale for solving the issue. The Design
Rationale is very useful for people who want to work on the system in future. Table 16

shows an excerpt from the Design Rationale file. More records are shown in Appendix A.7.

Table 16: A Record from the Design Rationale File

| Date Time | Wizard Class [Issue [Rationale |
2009-01-13 WizTable Data- | PofEAA: Structural | Table Data Gateway pattern needs
15:16:24 Gateway Problem in using Table | CRUD operations. Also the return

Data Gateway Pattern type of the Find operation should be a
Record Set. This wizard has added any
of those missing items to the model.

Fifth, to fulfill the most important responsibility of PLA, the wizard classes are written
to fix the problems automatically. Automatic repair is done in a step-by-step manner which
needs designer’s confirmation at each step. The automatic repairs are available mainly
for the structural errors. For the syntactic or semantic errors which are caused by an

inappropriate value of a tagged value. changing the values of the tagged values can be done

124

automatically, which resolves the problem. For the cases that a wizard is available for
repairing the error, the designer can ask the wizard to be executed by pressing the “Next”
button, after the ToDo item is displayed (see Figure 35).

In total, 50 wizards are written as part of the PLA module for ArgoPLV. 23 wiz-
ards are corresponding to 23 structural critics; Two wizards are related to CrLayers and
CrPatterns; 15 wizards are defined for pattern relationship critics: 10 wizards are related
to the semantic critics. |

As an example, the wizard class WizFrontController, which fixes the structural prob-
lems of the Front Controller pattern, is shown in Appendix A.5.5. In the heart of this wizard,
there is a method named fixFCProblems which is shown in Figure 37. This method gets
the Handler class of the Front Controller pattern, the package including the pattern, and
an integer “n” (line 1). The number “n” is the index of the list “misltems” which in-
cludes the list of missing items in the pattern. Depending on the missing item (the value

of “misItems(n]”), one of the following actions are performed.
e Lines 3-6: If operation “doGet” or “doPost” is missing, it is added to the class.

e Lines 8-23: If the Command class is missing, a Command structure will be added
to the model, including the Command class, its Concrete Command class child, and

their “process” operations.
e Lines 24-25: If the Command class is not “abstract,” it will set as an abstract class.

e Lines 26-29: If the “process” operation of the Command class is missing, it is added

to the class.

e Lines 30-39: If the Command class has no Concrete Command child, a Concrete
Command class along with the “process” operation will be added as a child to the

Command class.

e Lines 40-43: If the “process” operation of the Concrete Command class is missing, it

1s added to the class.

e Lines 44-45: If the Concrete Command class is not specified with the corresponding

stereotype, the stereotype is added to the class.

Creating the whole structure of the Command pattern (Lines 8-23) is an example of
the Pattern Instantiation power of the PLA. The whole Front Controller pattern can

also be instantiated this way, i.e.. having a single class which has the Sign of the pattern

125

1 private void fixFCProblems(Object handCls, Object curPack, int n) {
2 // Ve build doget and dopost ops in the Handler class

3 if (misItems(n).equals("doGet")|lmisItems[n].equals("doPost")) {
4 if (! GU.classHasSteOp(handCls, misItems[n]))

5 GU.buildOpWithSte(handCls, misItems([n]+"Op", misItems(n]);

6 3}

7 // Ve build a Command hierarchy and process operations

8 else if (misItems[n].equals("command")) {

9 if (! missingCommandCreated) {

10 Object newComClass =

11 Model.getCoreFactory() .buildClass("CommandCls", curPack) ;

12 Model.getCoreFactory() .buildDependency (handCls,newComClass) ;
13 GU.addSteToObject (newComClass, "Command");

14 // change Command class to Abstract

15 GU.makeElementAbstract (newComClass) ;

16 Object conComClass = :

17 Model .getCoreFactory() .buildClass("ConcreteCommandCls" ,curPack) ;
18 GU.addSteToObject (conComClass, "concretecommand");

19 Model.getCoreFactory() .buildGeneralization(conComClass ,newComClass) ;
20 GU.buildOpWithSte(newComClass, "processOp","process");

21 GU.buildOpWithSte(conComClass, "processOp","process");
22 missingCommandCreated = true;

23 }1}

24 else if(misItems(n].equals(”commandAbs”)) {

25 GU.makeElementAbstract(comCls); }

26 else if (misItems([n].equals("commandProcess")) {

27 if (! GU.classHasSteOp(comCls, "process")) {

28 GU.buildOpWithSte(comnCls, "processOp","process");

29 }}

. 30 else if (misItems[n].equals(”"commandChildren”)) {

31 if (! missingConCommandCreated) {

32 Object conComClass =
33 Model .getCoreFactory() .buildClass("ConcreteCommand”, curPack) ;
34 GU.addSteToObject(conComClass, "concretecommand”);

35 Model.getCoreFactory() .buildGeneralization(conComClass, comCls);
36 if (! GU.classHasSteOp(conComClass, "process"))

37 GU.buildOpWithSte(conComClass, "processOp","process");
38 missingConCommandCreated = true;

39 13}

40 else if (misItems[n].equals(”conCommandProcess")) {

41 if (! GU.classHasSteOp(conComClass, "process™)) {

42 GU.buildOpWithSte(conComClass, "processOp","process");

43 }} .

44 else if (misItems{n].equals(”conCommandSte”))

45 GU.addSteToObject (conComClass, “"ConcreteCommand");
46 }

Figure 37: An Excerpt from the Front Controller Wizard

(«FrontController») on it, causes all the above repair steps take place and an instance of

the whole pattern is created.

126

4.4.8 Using ArgoPLV

How does the ArgoPLV tool help a designer in applying the PofEAA? ArgoUML, and
hence ArgoPLV, is an interactive modeling tool. By applying the appropriate stereotypes,
the designer shows his/her intention in using a pattern (remember that only one stereotype
is considered as the “sign” for identifying a pattern). Immediately after applying the sign
stereotype, the corresponding critic is activated and verifies the structure of the pattern
(PSV module). If any of the structural criteria fail, the critic is triggered and a ToDo
Item (critiqgue) will be posted in the ToDo List under PofEA A Structure. By selecting a
ToDo Item, its description will be shown in the Details Pane, and upon the user’s request,
the wizard for the critic will be executed and the problems found in the pattern usage
will be fixed (PLA module). The details of the correctly applied patterns (PIT content) is
displayed in the Detected Patterns tab in the Details Pane.

If a syntactic problem is detected in the pattern combinations (by the PTV module),
one of the syntactic critics is triggered and a ToDo Item (critiqgue) will be posted in the
ToDo List under PofEAA Syntax. If any of the semantic criteria fail, e.g., an inconsis-
tency between the design with context information is caught, one of the semantic critics is
triggered (by the PMV module), and a ToDo Item (critiqgue) will be posted in the ToDo
List under PofEA A Semantics. In either of the cases, the wizards might be available to
fix the problem automatically, or the designer is guided to repair the error manually.

In the next chapter, a real application is designed using the ArgoPLV. It is shown how

the tool is able to help a novice designer improve his/her design.

4.5 Discussion

4.5.1 Summary

This chapter aimed to show how to implement a Pattern Language Verifier (PLV), for
an existing Pattern Language (PL), through a case study. To evaluate the idea of PLV
and its applicability and usefulness in current modeling tools, we did experiments with the
ArgoUML modeling tool. Using the idea of the PLV process, we defined a PLV for PofEAA
as an integration into ArgoUML, named ArgoPLV. To make this case study simple and
concrete. we selected 23 out of 51 patterns of PofEAA. We discussed the steps of building
ArgoPLV as a PLV for PofEAA PL. We observed that the PLV process is able to be
integrated in ArgoUNL by writing Java code. However, hard coding the process into the

tool is not a convenient way of tool extension and impedes the scalability of the process.

127

Also when a rule is not accurate, it causes ambiguity in implementation, and hence in
detecting errors in a model.

To suminarize, the main steps in defining a PLV for a PL are:

1. Extract the rules, or even the informal advices, of the PL that govern the structural,

syntactic, and semantic aspects of the language.
2. Build the Rule Set of the PL using the formalisms proposed in Chapter 3.
3. Define a UML profile for the PL.

(a) Build a domain model (metamodel) for the PL. Patterns are the principal con-

cepts in this domain model.
(b) Map that domain model into the UML metamodel.
(c¢) Define the stereotypes; Define the tagged values for each stereotype.

(d) Define the constraints (inspired by the Rule Set obtained in step 2). There are
two alternatives for the constraints: First, to interpret the Rule Set into OCL

constraints; Second, to accept the Rule Set as the constraints.

4. Build the PLV modules. There are two alternatives for building modules depending

on the previbus step.

(a) For OCL constraints: PSV, PTV, énd PMV modules are obtained by hand-
coding the checking of the profile constraints. The PLA module must be imple-

mented separately!

(b) For accepting Rule Set as the constraints: All modules of PLV are implemented

as a modeling tool, or as extension to an existing modeling tool.

4.5.2 Issues Related to Building a PLV

Issues for Step 1 An important issue is to classify the rules into appropriate groups.
Some advices/rules can be considered both syntactic and semantic, e.g., advice A09 from
PofEAA (see Appendix A.2) is: “A domain layer that uses only Transaction Script isn’t

b

complex enough to warrant a separate [Service] layer.” This advice is twofold: it can be
interpreted as a syntactic rule that a uses relationship exists from a Service Layer pattern
to a Transaction Script pattern or it can be interpreted as a semantic rule that existence

of Service Layer is inconsistent with setting { Complexity=Low}.

128

Issues for Step 2 Some advices are semantic rules that need linguistic checks, e.g.,
consider advice A21 (see Appendix A.2): “With a Domain Model we build a model of our
domain which, at least on a first approximation, is organized primarily around the nouns
in the domain.” In order to apply this advice as a semantic rule, we must verify that the

domain objects’ names are the nouns in the domain.

Issues for Step 3 If there is no tree or graph in the language that shows pattern depen-

dencies, then deriving a domain model for it is hard.

Issues for Step 4 For Step 4.a, we experienced using the Object Constraint Language
Environment (OCLE) [CPC™04] for implementing some of the structural rules of the PofEAA
[ZB07]). OCLE [Uni09a] as a UML CASE tool, offers many useful features including OCL
support at both UML metamodel and model level, and a graphical interface for creating
UML diagrams.

In OCLE, Users are able to compile and run the constraints against the models. A
Compile-time error reflects problems concerning OCL syntax. A Runtime error means that
some of the invariants in constraints are violated. In this case, a message is displayed to
the user and it is the user’s responsibility to fix the error.

For Step 4.b, implementation could be a laborious task. For instance, to check the
dependency between a Handler class (as a client) and a Command class (as a supplier) in
the Front Controller pattern (see Appendix A.3.1), we need to check all the dependencies
that may exist from the Handler to other classes, then for each of the dependencies, we
should find the collection of Suppliers, then for each supplier class, we should check the
collection of stereotypes, then if at least one of the stereotypes satisfies the condition (e.g.,
is «Command»), then we make sure that we have found the Command class!

As another environment for verifying the constraints, we have experienced working with
Epsilon Wizard Language (EWL) (EWL is part of Epsilon Object Language (EOL)) for
implementing the PSV [ZB07].

4.5.3 Other Issues

Considering the PLV process. since the three verifying modules perform model independent
tasks and need to be verified against the metamodel, their tasks is done using OCL in meta-
model level constraint files. However, due to the lack of capability for model modifications

by OCL, there is no support for the tasks of PLA. It is up to the user to check every

129

invariant and, for every failed invariant, the user should fix the cause of the problem. The
problem here is how to synchronize the PLA with other modules. Finally, the “PofEAA
UML Profile” will provide the novice designers with great assistance on how to break the
system into layer, how to select appropriate patterns for each layer, how to use the patterns,

and how to maintain a good structure for their design.

130

Chapter 5

ArgoPLV in Action

This chapter shows how the ArgoPLV can be utilized as a modeling tooi in a real situation.
For this purpose, we need to consider a sample application which is going to be designed
based upon the Patterns of Enterprise Application Architecture (PofEAA).

Section 5.1 introduces the application: an Online Student Registration System. In Sec-
tion 5.2, we demonstrate how ArgoPLV is used as a design critiquing tool in a step-by-step
design of the application using the patterns of PofEAA. Section 5.3 shows how the Argo-
PLYV can be used to verify the application of the PofEAA Pattern Language (PL) in a given

design model of the application. Section 5.4 discusses the validation issues.

5.1 The Application

We consider a simple Online Student Registration System as our sample application. The
system consists of students, professors, courses, and departments. Each student studies in
one department. Only the research students (thesis-based) should have one of the professors
as their supervisors. A student can take a course if he/she has already passed its prerequi-
sites. Each course, is offered by one department, is taught by one professor, and may have
many prerequisites. One professor works for one department. A professors’ job is to teach
courses and supervise students. For students and professors, the personal information and
the address is recorded in the system. Figure 38 shows the domain model of this system by
a UML class diagram.

The application is a web-based online registration system that allows persons (both
students and professors) to enter or edit their personal information. Professors can select
courses for teaching. Students can register for comrses by filling in an online registration

form. Only a research student can request a professor to be his/her supervisor. which needs

131

Person Address
firstName streetNo
lastName street
birthDate . city
gender 0.. 1 |postaiCode

dccupants address | Province
country
Student Professor
0.* 1
stiD emplD
GPA supefvisedStudents . superviso
thesisOption
1. 1 Department 1 1.7
student departmen}|, . Pmployer employeei
participanty 1..* 1 [teacher
1
offers
0.*
1.0 Course 1.7
! courses| courseNo courses
Grade credits
grade title 0.*
0. prereggsites

Figure 38: Domain Model of the Online Student Registration System

the professor’s confirmation.

The system must provide a variety of appropriate reports for each user. Students can get
the following reports: list of offered courses and their prerequisites, list of courses taken, up-
to-date transcript and GPA (Grade Point Average). For professors, list of offered courses,
list of registered students, and list of supervised students are important reports.

The system must be secured by providing each user a user-id and password to enter
the system. The users are able to change their passwords at any time. There are different
levels of users who can access the system, e.g., students and professors. Students are
able to modify their personal information only. They can browse the professor and course
information, when they decide to register for the current term. Professors have read access

to all information regarding their students, but they can enter the grades.

The reliability, availability, and consistency of persistent data is a very important re-
quirement of the system. The system transactions must be atomic and consistent. Concur-
rency control should be performed in order to prevent loss or inconsistency of information.
An attempt should be made to make the system available all the time. Such a system needs
a DBMS for file management. Due to the fact that, in our PofEAA selected patterns, we
excluded all the Object-Relational patterns, we ignore about the DB issues in the remaining
parts of this chapter. Considering the above requirements, we select the following features

for this case study, categorized by the user of the feature.
1. Features that are particularly defined for the students:

(a) Browse Courses

(b) Register Course

(c) Browse Professors
(d) View Professor

»(e) Request Supervision

(f) Calculate GPA

2. Features that are particularly defined for the professors:

(a) Select Course

(b) Browse Students

(c) Browse Supervised Students
(d) Browse Supervision Requests
(e) View Supervision Request
(f) Accept Supervision Request
(g) Enter Grades

3. Features that are common for both students and professors:

(a) Login and Logout the System
(b) Edit Personal Information

(c) Browse Courses

(d) View Course

(e) Check Course Prerequisites

(f) Send List of Courses to Other University

133

5.2 Using ArgoPLV in Stepwise Design of the Application

In this section, we show how the ArgoPLV tool helps a designer build a model for the Online
Student Registration System based upon the patterns of the PofEAA PL. We walk through
a scenario and discuss the step-by-step design of the system. For each step, a screen shot
(maybe partial) of the ArgoPLV is shown. Between the steps, there are paragraphs that
discuss the errors caught by the ArgoPLV, the guidelines given to the designer, and the

repairs done to the model.

Step 1: Create Model Designer creates a project named University. Inside the

project, he/she creates a model named UniversityModel.

Step 2: Apply Profile Designer applies the PofEAA UML profile on the model (see
Figure 39).

L\ Project Properties.~ 55

H
?
LV Notations
i | Diagram Appearance |Java - [PoEAAFTolileDEfin '1
i T ” Critics for Good Practic...
; - %Critics for Code Genera... M_f_,___
' iNetaProfile SR
Cee
UL 1.4
{:Unoadt_ 1| Loadprofile from .. |

}i Reset To Defaul g

Figure 39: Applying PofEAA UML Profile on the Model

Step 3: Explore Stereotypes Designer explores the applicable stereotypes and tagged
values of the PofEAA profile in the Explorer Pane (sec Figure 40).

Step 4: Specify PofEA A Model and Context Information The designer indicates
his/her intention of designing a system based upon the patterns of the PofFAA by set-
ting the stereotype «PofEAAModel» on a root package. Then, the designer specifies the
context information, by setting the tagged values for the stereotype «PofEAANModel» (see

Figure 41).

Syntactic Problem Detection Regarding the Organization of Patterns Pattern

Language Syntactic Verifier (PTV) detects syntactic problems in the model. due to the fact

134

Package-centiic’

Qrder By Type, Name

P Profile Configura

¢- £33 PofEAA UML Profile
¢ PofEAAMOde)

- «» RecordSet
- «» LayerSuperype

«» Column

- €% Row

- «3» Currenty

- «» Gateway

- &« Mapper
dataSource

- «» RowDataGateway
- «» TahleDataGateway
;. «» DataMapper

“ «» Finder

-] distributed

- «» RemoteFacade
«» Assembler
.7 «» BulkAccessor
- 3 domain
- «» TableModule
«» DomainModel
«» TransactionScript
¢ 3 operations
«» delete
«» find
<» getter
«» insert
«» cefter
«» ypdate
«» select
«» gelBulk
«® OrOCeSS
<% celBulk
s«» doPost

- «» DataTransferObject

<> doGet
«> serialize
«» deserialize
presentation
=3 contralier
-- «» PageControlier
- «» Command
- «» ConcreteCommand
- «» FrontControfler
view
vvvvv <> TemplateView
- «» TransformView
- «» Helper
sessionState
«» ClientSessionState
«» ServerSessionState
sewice
«> SepviceLayer
concurrency
«» OptimisticOfflinelock
- «» PesgsimisticOfMinelock
3 «» PofEAAMode]

- T Tool

- TD Expertice

- T0 Complexity

T ConcurrencylLayer
- TD ChanceOfConflict
-- TD DislributedLayer
- 7B Senvicelayer

™ SessionStateLayer
: - O ViewBuilt
.- «» presenation
L. «» controfler
«» view

- €3> service
- &> domain
- «» gataSource

«» distributed

«» COncurency
. «» gessionState
- «» base

Figure 40: Exploring Stereotypes and Tagged Values of PofEAA UML Profile

that there are missing layers (both principal and optional) in the design. Pattern Language
Advisor (PLA) reports the problem to the designer, by posting a ToDo Item (critique) in the
“PofEAA Syntax” category of the ToDo List (see the ToDo Pane, lower-left, in Figure 42).

PLA shows the guidelines to the designer (see the Details Pane, lower-right. in Figure 42).

135

¢ (= Profile Configuration
¢ 3 untitiedMode!

o —
By Knowledge Type. | E rCi?:?}sirairgs_- [* a Stereatyp
" Designers Detected Patterns {" aPropert
Correctness arget: Package (Main) T ||
Completeness e L
- CJ Consistency Chahceﬂfcﬁa%itt Low
?- Syntax " Complexity Complex
Semaniics Concurrencylayer '(es
PofEAA Structure Distributediayer les
o 3 PofEAA Syntax Expertise Expert
PofEAA Semantics Semnicelayer No
Optimization SessienStatelayer No
3 Presentation “Toof Java
3 organizational “pViewBuiit ksl
Experiential i

Figure 41: Setting the Stereotype and Tagged Values of the Main Package

NS University2:2argo~ Q:Xas Diagram 12 A :’_
file Edit View Create Arjonge Generation Critigue Tools Help

<<PofEAAMOodel>>

Use Cage Db

21 Main < =PofEasMoelss

| Chscxust 4 ToDoRem
soianemalis | Presootalen | SmEse

T
-4 tems

Package “Main” seems to be the main package of your application

e pari of the spplicalion such as presantation, damain, and data source. if the!
ignet gegides o have optional layers such ac a"Senvice Laysr hehween
enlaticn and gemain, such favers also should existin the design

yntactic Probler - Migsing Layer

Figure 42: Reporting Syntactic Problem and Showing Guidelines to the Designer

136

Syntactic Problem Repair The designer asks help from the PLA (by pressing the
“Next” button of the Details Pane). PLA shows the options (name of missing layers) to
the designer (see the Details Pane in Figure 43), and upon his/her confirmation, adds all
the missing layers (three principal and three supplementary) to the model (see the Explorer
Pane, top-left, in Figure 43). Note that the elements that are added by the PLA to the
model, are shown only in the Explorer Pane, but they are not shown in the Editor Pane
(see the Editor Pane, top-right, in Figure 43). To see these elements in the Editor Pane,
the designer has to drag and drop them into the Editor Pane.

Ciitique Yools . Help

Order By Type, Mame

1 [Ciass Diagram 1

i Use Case Diagram 1

¢ E1[0aih PoEAANDORES

¢ [presentaticnPkg <<presentation>>
¢ {3 conyonePke <<contralier~»
| viewPKg <<viows>-

. [y domainPkg <«domain=»>

- [dataSourcePkg «<dataSources>
P} basicPkg <<basics»
.-) distibutedPig <<dictribuied>>
") concurrencyPhg <<congurrency>>

By Knowledge Type
4 - £ Designers
14 Cerectness
3 completeness
1. £ conuistenty
o 3 syntax
1 Semantics

1 3 PofEaa Siruciure
dg [C1FofErA Syntax

© [BeiEsal Syntachic Problri - Missiig Layerd
(2] PolEAA Semantics
=% optimezaton
3 Presentatien
[Organizationat
=3 Expeniential

f St DN £~
4 £ H

erns B

" Flease sefec: the laver foackace) ta be acded fo the modet:

i Pr ion Layer (i ting C: and View)

{: Domain Layer .
i.; Data Source Layer

.\ Basic Layer

<. Distributed Layer
- Concurrency Layer

8 Al above layers

Figure 43: Automatic Fix of Syntactic Problem by Adding all Missing Layers

Step 5: Design the Presentation Layer (Controller Part) The designer intends to
apply the Front Controller pattern as the controller part of the presentation layer. However,
he/she does not know the structure of this pattern exactly. Hence, he/she creates a class
named “Handler” in the Controller Layver and applies the «FrontController» stereotype on

it, and leaves the pattern instantiation to the ArgoPLV (see the Editing Pane in Figure 44).

Structural Problem Detection Pattern Structural Verifier (PSV) detects the structural
problems (imissing elements) in the application of the Front Controller pattern. PLA reports

the problem to the designer. by posting a critique in the “PofEAA Structure” category of

137

v'§.‘_'e;
] :

!ome[By Type, Mame

<<PGEAAModel>>

¢ 31 Universitymodel
; Class Diagram 3
Use Case Diagram 1

=<presentation>»

¢ B Hain <<PofEAMOdEl>> v presentationPkg
i % B presentationPkg <<preseritation>»
i 3 viewPkg <<views> <<controller>»
controllerPkg

<<FroniControlier>
Handler

acicPkg <<basic>»
distributedPikg <=distiibuted>>
{ yFkg <=<Concurren

owiedge Type. : Tk
;[Designer's Ufwapertes | Documpntaton | Presa
o (53 Coneciness s ICtass “Handler” seerms 1o be an Front Contrailer Pattern.
o~ (T3 Completeness.
Consislency Based on Fowter's definition, a Front Controkier is a handler class for web

-Svmai: requests. Therefore, it should have two operations named doGet and doPost.

Semanlics

N There should Le a cependency hetween thic class and another one named
PofEAA Slruclure
s

'Command with at least one operation called process Tha Command class
ishould be abstract and have atleast one-child as Concrete Command.

POIEAA Syntax __;
FoEAA Semartics Te address this, sefect“Nexts" ic use the wizard, or manually add ihe requested
Oplimization : elements to the modet. Note that the probiems in the <hifdrer: of Command can
inct be fed by this vizaid.

Figure 44: Applying the Front Controller Pattern

the ToDo List (see the ToDo Pane in Figure 44). PLA shows the gnidelines on how to fix
the problem to the designer (see the Details Pane in Figure 44).

Structural Problem Repair After designer asks help from the PLA, it shows the repair
options to the designer (see the Details Pane in Figure 45). By selecting the “All above
options,” the designer gives permission to the PLA to add all the missing parts of the
pattern automatically to the model. PLA adds the missing elements and their relationships
to the Control Layer of the model. To make the added classes visible, the designer drags and

drops them into the Editor Pane (see both Explorer Pane and Editing Pane in Figure 45).

Step 6: Design the Presentation Layer (View Part) The designer selects the Tem-
plate View pattern to format the web pages of the application. Therefore, he/she applies
the «TemplateViews stereotype on a View class in the View Laver of the model. Similarly
to what happened for the Controller part. the PSV detects the structural problems in the
application of the Template View pattern. PLA reports the problem to the designer, and

upon designer’s request. PLA adds a Helper class as a supplier to the View class to fix the

138

‘Main <<FofEAANbdel>>

preser kg =<<p
- viewPkg <<yiew>>
¢~ B contronerPkg <<cdritrdllerss

i . @anamed Generalizatior)

B3 Hancler <<FrontConirolier->
i P @Unhamed Dependency)
: B3 doCetop <=dobeb>
+ B doPostOp <<doPost>>
- B vaid

i 3 processOp «<process»>
+ B3 S
- B3 processOp <<protess>>
- [F3 domainPkg <<domain=»
-[E1 dateSourcePkg <<dalaSource>>

<=controller>>

+-E3 CommandCls <=Command>>| -

carlrolferPkg
<«FroniControiler>» «=Commang>>
Handier CommandaCis
<=doG el>> doGeOp) - void ==
<<doPost>> doPostOp(void <<process>> processOp(: void|

oo 1 _

<<ConcreteCommang>>
CancreteCommandCls

<<process»> processOp) : void]

basicFkg <=basic>>

¢ £ Comectriess
9 Completeness
Consistency

- (3 Byntax

£9 semantics

¢ 3 PofEAA Structure

25 PofEAR Syntax

¥ Rowen |

Pleace select he modiicaibns 1o be spphed on the model,

¢ add doGet opetatton to the Handter class

< Rad doPost aperation to the Handier class :
< Adkid 2 client Comirianid td the Handler class, and also add ConcieteCo..
-8 Ril above options .

. - E PofEAA Semantics

l

i« Back]

Figure 45: Automatic Fix of Structural Problems in Applying Front Controller
structural error automatically (see the Editor Pane inFigure 46).

Semantic Problem Detection Pattern Language Semantic Verifier (PMV) detects a
semantic problem in the design, due to the inconsistency between the context informa-
tion (the tagged value “{ViewBuilt = XSLT}"”) and the application of the Template View
pattern. PLA reports the problem to the designer, by posting a critique in the “PofEAA
Semantics” category of the ToDo List (see the upper ToDo Pane in Figure 46). PLA shows
the guidelines to the designer (see the upper Details Pane in Figure 46).

Semantic Problem Repair After the designer asks help from the PLA, it shows a text
box with a default value “HTML” for the tag “ViewBuilt” to the designer (see the lower
Details Pane in Figure 46). The designer accepts the value by pressing the “Finish” button

which results in disappearing of the semantic error.

Step 7: Review the Detected Patterns The designer wants to know which layers
exist and which patterns are applied in the current model. The lavers that exist in the
current design model, and the patterns that are applied correctlv, are presented under the

“Patterns of EAA™ category in the Detected Patterns tab in the Details Pane.

139

<<PofEAAMOdei>>

> Tamplalevisw
= HelperCls <<Helper»
8 =] View «“TemplateViewn >
(Unnameo Dependency)
B Helpertls <<Helpers
14 5 controflerPkg <<controllers>

- <> F| ron‘Ccntmller

& B Concratec

<<presentation>»

- E CommandCly «bomm.,nd»

: & B Handiér «<FronControfiérss

- O
<evigw> l

viewPkg

«<TemolateViews>
View

<<Helper>>.
HelperCls.

£ Designer's

- 5 Comerimiss
S fpmlemnes‘g, nd hemen the patterns of rre \.new Layer and the \:cmen infoymation.
- (3 Consistency mp!aie View canem neeas "ViewBuiit=HTML" bhut Trahefoim View patiern
- £ Syreax reeds ™ T
? §emanh;: 1o, address this; select"™Next>" to use the wizard for changing the properties of
ofE: ucture your model via Tagged Values of the main paciage, of manualiy change the
- (3 PoEAN Syntax design or thi tagged values,
@ POfEAA Semantics
CoTCTRN ey
% Bamamhe

e

!& Knowledge Type
. -3 Designer's

tation | Source |

Enter a value for the fag ViewBuilt' in the box below. By elicking on th 2

Value: HTML

Figure 46: Automatic Fix of Semantic Problem in Applying Template View Pattern

The detected layers are shown in the upper Details Pane in Figure 47. The detected
patterns are shown in the lower Details Pane in Figure 47. Selecting a pattern from the
list, causes the involved classes and the containing layer of the pattern to be shown in the
right window. In_ Figure 47, the Front Controller pattern is selected and its information is

shown.

Step 8: Design the Domain Layer The designer selects the Domain Model pattern
to structure the domain logic of the application. Therefore. he/she draws a class diagram
corresponding to the domain model of the system in the Domain Layer of the model, and
then applies the « DomainModel» stereotype on all the classes. e.g.. the class Student. Based
on the criteria of this pattern, each class must have at least one attribute and one operation

(see the Editor Pane in Figure 18).

140

<<PofEAAM odel>>

¢ @ Main <<PofEAANGdel>>
B nstionPkg x<p :
Eccmnwm«mml ;
"\ _(‘
{f <> frontContreller
¢- B Handler <<FrontCor
HEE y

<<presentation>>

<«cordroller»»

o= Desmnerc Jetume
- (] Conrectess oived Classes
% B Completiniess. kg -* tation Layer Package
- Conslstency conlrulrelPkg > Controller Layer Package
*@sﬁm viewPky -» Vi View Layer Package
- E3 Semantics domainPkg -> Domain fayer Package-
. 65 POfEAA Structure dataSourcePkg -> Date Source Layer Package
ke it ‘basicPkg-> Basic Layer Package
] POTEAA Syntax. distribulédPkg -> Distributed Package
r»g PofEAA.S__emanﬁcs concurrencyPkg ->» Concurrency Package
Oplimization Main -> POfEAA Model
- @ Piesentatiors elated Layer -
UriversityModel

Brwolved Classes :
ConcreteCommandCis -> Concrete Command
CommandCls -> Command
Handler-> Handler
elated Laver:
controllerPkg

Detected Patterns
¢ () Patterns of EAA

°' @ Comeciness
o~ Completeness

- [E3 Consistency

-E4 Syntax
 Semantics

&3 PofEAA Structure
PofEAA Syntax

i -3 PofEAA Semantics
- E Optimization L
o« £ Presentation

i .- 3 Organizational

{j Template\few
o - (=] Design Patterns

q

Figure 47: Reporting the Detected Layers and Patterns of the Design Model

Step 9: Design the Data Source Layer The designer decides to apply the Active
Record pattern for accessing the Student record in the Data Source Layer. Therefore,
he/she applies the stereotype «ActiveRecord» on a class named “StudentActiveRecord” in
the Data Source Layer which is a supplier class for the “Student” class of the Domain Layer

(see the Editor Pane in Figure 48).

Syntactic Problem Detection Regarding the Relationship Between Patterns A
syntactic error is detected by the PTV due to the problematic relationship between the
Domain Model pattern of the Domain Layer with the Active Record pattern of the Data
Source Layer (see the ToDo Pane in Figure 48). The problem is also affected by the Context
Information which is set by the designer in step 4. Remember that complexity of the domain
was set to “Complex.” The PLA shows the guidelines that suggests using Data Napper

instead of Active Record or changing the choice for complexity (see the Details Pane in

141

Figure 48).

e

¢~ 21 Main <<PoiEARMIgel-> ««DomainModeb»
L B presenatoneig <aresent Suuert
9) aomainPkg <<gomain»»: oip : ir
i~ § unnamed Generalization) GPA foat
: - «» DomainModsl thesisOption: char
- B3 Person <<DomainMiodelr»

registef(couse : Course): void

¢- B3 sdent <<DomainModei»>.
& B3 course
¢ E2) dataSourcePkg <<tataSource>>

i« peiveRetord

+ 3 swdenisctiveRecord <<ActiveRecoid>>
- B2 basicPkg <<basic»>

21 distibutedPkg <<distributed>>
- B contumrercyPip <<concurrencys>
i «> piesentation
i~ € basic

&2 PaFAAMAdRL

t@hSa'w>
dataSourcePtg,))

K1-=~1-F

«hdiveRecoid>>
- StudentActiveRecord -

£

i

Smges

ass*Student seems to be the Domain Mode! pattém. Syntactic Problem found
:petween the Demain Mode! pattern in the Domeln Laver and the patiemns in the Data
1iSouree layer with regards o the “samipleity’ ofyour modet.

=

23 Comectriess
& £3 Completeness
- {78 Consistency

& £ Syntax . L
.. (23 Semantics iiBased on FmMer}.repommen_ﬂaﬁQns; cfv_wr mode! IS _snrnp]e, vou bettsr use Actve
{3 POEAA Biructure ‘Record in the' Data Source Layér. if your model is complex, you befler use Data
i . Bagper.
¥ EJ Poftas oy :
(PR To address, this, ‘select “Nexts~ iG use the wizard for changing the Comptexity

- (Z) POfEAS Semantics Tagued Value, or, manually change fhe tagped vaiue or the paiterns

- [optimization
& {Z3 Presentation
LR N W |

Figure 48: Reporting the Syntactic Problem Regarding the Relationship between the Do-
main Model pattern and the Active Record pattern

Step 10: Syntactic Problem Repair by Changing the Design of Data Source
Layer The designer has two options to fix the detected syntactic problem: either to
change the value of the tag “Complexity” from “Complex” to “Simple,” or to change the
pattern used in the Data Source Layer. He/she decides to change the pattern for accessing
the Student record in the Data Source Layer from Active Record to Data Mapper. Hence,
he/she removes the “StudentActiveRecord” class and adds a “StudentMapper” class with
stereotype «DataMapper». The designer uses the automatic structural repair provided
by the PLA to complete the structure of this pattern, which results in adding operations
for find. inscrt, delete, and update to the “StudentMapper” class, as well as adding a

dependency to a supplier class named “SupplierCls” (see Figure 49).

Step 11: Add Patterns to the Data Source Layer The designer decides to use
the Table Data Gateway pattern as the supplier for the Data Mapper. Therefore. he/she
renames the “SupplierCls” of the Data Source Layer to “StudentTDG” and applies the

stereotype « TableDataGateway» on this class. The designer leaves the details of completing

142

Ortiei By Ty, Hame

oK Student <<Domainkicdel>

i o Person <<DomainModels»
¢ B dataBourcePkg < <dataSourser»
Pore DalaMapper _
+ 3 ideed

I T (Unnamed Dependency)
¢+ 3 frdop <<find>>
i | B inserOp <<msen>>
C ¢ B dereteOp <<deleter>
: B updateop <<updste>»

ePkg

<<dataSource>»

<<DaaManper>

POAEREE AN AP O 7

‘StudentMapper

<<find>> firgOpO : void:
<<insert>> insentOpQ - void
<=deiete>> deleteOpQ ; void

<<ipdate>» updateOp(: vold

SupplierCls

e

-E& suppliescis
- [bagicPlo <
By Knowledge Type

-] Desigrers

&3 Comextness

o (] compleieness
Consistency

o 6 Syntax

i 5% Semartics

¢ (A PofEAs

J PofEAA Syntax

o £ POfERA Semantics
3 Optimization

& (=3 Presentation

;- (23 organtatonal

i [3 Experiental

. 1 Tant

b i

Figure 49: Automatic Fix of Structural Problems in Data Mapper Pattern

the structure of the Table Data Gateway pattern to the ArgoPLV. Upon the designer’s
request, the PLA completes the structure of the “StudentTDG” class by adding find, insert,

delete, and update operations (see Figure 50).

Step 12: Cascaded Problem Repair adds a Pattern to the Base Layer Automatic
instantiation of the Table Data Gateway pattern by the PLA in the previous step causes
a new structural error (see the ToDo Pane in Figure 50). This is because, the PLA has
also applied the syntactic rule that requires the type “Record Set” as the return type of the
find operation in the Table Data Gateway pattern. Therefore, the return type of the added
“find” operation is set to a type named “RecordSet.” This type is added to the model as
a class named “RecordSet” with stereotype «RecordSet» in the Base Layer of the model
by the PLA (see the Explorer Pane in Figure 50), which then triggers a new structural
error regarding the incorrect application of the Record Set pattern (see the ToDo Pane in
Figure 51).

Again, the designer asks the PLA to fix the problems in the Record Set pattern which
causes three classes for Table, Row, and Column to be created in the Basic Layer of the
model. Also. the PLA builds the containment associations between the Record Set, Table,

Row. and Column classes (see Figure 51).

143

Order. By Type, Name:
¢ & stuce <D
: ? (Unnaméd Dependenty)
Ed indOp <<fing>»
B inserOp <<insent>>
B deleteOp <<detetes>
£ updateOp <<upgate>> EE 21 B Y [

<<daaSource>»

dataSourcePkg

<<DataMapper>

StudentMapper «<TableDalaG deway>>

StudentTDG

¢- B SludentTDG <<TakieDataGateway>» <afing>> findOp():: void <<ing>> fndOp0 RecordSet
. fin¢Op <<find>> o <<insert>> inseOR(: void wsingert> hsenépb"vuid
B inseitCp <<insernt>» ; <<delete>> deleteOp() : void <<deleter> deleteOp : void
B deleteGp <xurlete=» t. s<update>> updateOp(: void ! - vo

<<updater> updateOp() : void

updateOp <<updates>
¢ B3 basicPky <<basic>>
- B Recorgset <<RecordSet=»

i T
Iny Knowtedge Type
- E Designers
o (] Correciness .)
& E] Complzteness Please selectihe elements to be sdded to the cliss:
Consistency .
& 3 oyntax 3 T ‘operatioh
emantics -)
POEAA Slructure © msert{) operation
Pt T s < deliteq) bpesation
-y PofEAA: Structural Problem in using Record S8t P » . T
- POfEAA Syntax T update operation
» (3 PuEAL Semanlics ;
. Oplimization
* (£] Fresertation
Organizational
=4, FORPINY
€} < H

Figure 50: Automatic Fix of Structural Problems in Table Data Gateway Pattern

fite Edit iew Creaie Arrange Generation Critique Iools

der By Type, Name <basicrr

B2 vpdsteCp <<apiiate
3 B ctudenttDn <cTableDataGateway>>

N <<RecordSet>>
B3 findOp e<finds» RecordSet «<table>> <t
insenCp <<insert 1 TableCls + 1| RowcE
B veleteOp «<rel - -
8 updetedp <<updates»)
¢ B basicPry <<basics»
~— (Unnarae 17
— {Unramed | 3 ™ ¥
— <<comn>>
B Resor CotumnCis
B TatleCls - <labie=> .
5 Coiumincis =zzclumn>> e
B rove
=) histribttadPhg < ¢
- - -~
By Knowiege Type

Table, Row, antt Colmin classes

Figure 51: Automatic Fix of the Structural Problems in Record Set pattern

144

Step 13: Design the Distributed Layer The designer decides to use the Data Transfer
Object pattern to provide “CourseList” which is a coarse-grained facade for accessing the
list of courses taken by a student. The designer defines a “CourseList” class in the Concur-
rency Layer (instead of Distributed Layer) by mistake, then he/she applies the stereotype
«DataTransferObject» on the “CourseList” class. He/she completes the structure of the
pattern by adding all the required operations (getter, setter, serialize, and deserialize), along

with a corresponding Assembler class (see the Editor Pane in Figure 52).

Syntactic Problem Detection Regarding the Organization of Patterns The PTV
triggers a syntactic error due to the misplacement of the pattern Data Transfer Object (see
the ToDo Pane in Figure 52). The PLA shows the guidelines about the problem, and gives

the designer opfion to fix the problem automatically (see the Details Pane in Figure 52).

ge‘a(A{ranue .

Y

E !package.centiic

O"’e‘ By Type, Name <<conartencvs> <cdistibuted>> Lo]
E T e - concurrencyPkg didributed? kg

‘f {Unnamed Generalization)

¢ < Comainkcdet i <<DataTransterObiect=> .

=& rercon <<DomainMotel>> F CourseLigt

& B Student <<Demainiodel>> -

& course —

¢ [datsSourcePky <<dataSources» 1 h :g:::z:: Z::ﬁ’zg. :;:
e ’.‘Lﬁ"’eRez‘:i“’ <<serislizess seriahzeOp(): void
& B3 StudentactiveRecnrd <<AitiveRecards> <<deseriakze> > deserializeOp(): void

basiePky <<b /N
- B distibutecPrg «=cistriputed>>)

¥ Elxangurrencv?lt_f; scancufterioyss [—‘—‘l“ ombiens
- «» DataTransferObject J

« 3 conrselist =<DataTransferQbject->
o B ClientCis «<Assembler»

o

By Knawledge Type

Designer's

Correciness

o [57 Completenass
3 Consistency

1o (73 Syntax

3 cemantics

i 73 PoEAR Shucture

¢ 23 PofEAA Syniax]]

[PaiERA: Syrtastic Prabitent in oroanidaition gayeri

+ [£3 FOEAR Semantics

i3 optimization

Gocunm

kage of the model.
definttion, aweb-based apphication shoulg be 3
5 layeten a:cratectuie, with patems inthe coirect layer

~Z But somie of the patierns detected in this model are notin the conect
tayer {package)

Toadiress tig, soiect "Next=" to use the wizard, or manually more the
patems 1o the appropnate layer Note that layers should ke alteacy :
fEAR Main paf kage

Figure 52: Reporting the Syntactic Problem Regarding Organization of Patterns

Syntactic Problem Repair Upon designer’s request. the PLA moves the Data Transfer
Object pattern to the Distributed Laver (see the Explorer Pane in Figure 53). However.
note that the graphical view of the model (the Editor Pane) is not automatically refreshed

by the PLA. It is up the designer to syvnchronize the graphical view of the model shown in

145

the Editor Pane with the hierarchical view of the model shown in the Explorer Pane.

* 2L OONOUITENCY>>

ain =<PofEAAIOde]>>
.
3 domainPkg <<domain>>
datzSaurcePkg <«dataScurce>»
B basicPkg <<basic>>

ionPkg <<preseniations»

joconarrencyPkg

<«distribuled»

distributedPkg

FED
<<DataTrangferChiect>>
Courselist

<agetters» getterOp(); void
«xsetier>> seflerOp() : void
<«seriatize>> seriabzeOp(): void

<<deserialize> > deseriglizeOp() . void

¢ &1 distribute¢Pkg «<distribtited> >

d] concurrencyPkg <<concurrency>
i <> DataTransferObject
= ClientCls <<Assemblers=

- «» presentation
<> Basic

1

l <=Assembler-» I

By Knbwiedge Type. { Chsek
@-D.esigner..'s Preséutation 1 Stgreniyoe i
o Corectness Detected Pmem;’ i unfm?{m'sr}g i
& £ Completeness - i
‘Consistenty [Please seiefl the fofiowing item, ifyou wish me Io re-arréngx:
&~ E£] Syntax ;

-2 semantics
POfEAA Struciute
=

@ Orgganize the PolEAA Moget

; > EX) PofEAA Semantics
Optimization
Pl ;

i< Back| et | Finish | | pew |

Figure 53: Automatic Reorganization of Patterns into the Layers

Step 14: Design the Concurrency Layer For preventing any conflict between the
transactions that manipulate the Address class, the designer decides to apply the Op-
timistic Offline Lock pattern. This is an appropriate choice due to the fact that the
possibility of conflicts is presumed to be low: Remember the setting of tagged value
{ChanceOfConflict=Low} in step 4. The designer defines a class named “AddressLock”
with stercotype «OptimisticOflincLock» in the Concnrrency Layer. He/she completes the
structure of the pattern by adding the required “version” attribute to the “AddressLock”

class (see the Editor Pane in Figure 54).

Step 15: Review the Design Model and the Applied Patterns The designer re-
views the current state of the design of the system which has no structural, syntactic, or
semantic errors, from the ArgoPLV point of view (see the Editor Pane in Figure 55). Also,
the designer reviews the list of patterns applied so far in the design (see the Details Pane

in Figure 55).

146

B disiibitedPky <<distibided>
- o B Coursel ist- <<DatalransferOns
+B8 cnemcts «<Agse

s (Unnamed Depenuency)
i tyPkg <<concurtenty=>

N verswn "VE!SIOD»
<> presentation
- «» basic
« PofEAAMode!

<<ConCUency>>
concurencyPkg

:«g!mimisﬁcomhel;ndc» |

AddressLock

<<version»» version: it

- Desrgnsrs
> Conecnsss
Completeness

+ [Consistency

& Syntax

[Sefnantics

- (] PofEAA Struciure
[E3 PofEAA Syntax
- [PofEAA Semantics
.~ 2 Optimization

o [Presentation

- 4 Orgaritzational

r A Sourte

R

| Geheralizations:

| Bpecializations:

Supplier Dependencies:

Association Ends:

Operations..

Owned Elements:

version

Figure 54: Applying the Optimistic Offiine Lock pattern in the Concurrency Layer

Step 16: Review the Design Rationale The designer reviews the modifications that
are made by the PLA by reviewing the Design Rationale file. Table 17 represents some

records extracted from the Design Rationale file regarding this design model.

147

fati .nP’kgs D

ion>>.

ontrollerPkg. <<confrolier>>:

T Wnhamed Generaization)
&~ B Handiér <<FronfControligrs>.
o B ConcreieCommandCls <<Con
o 4 CommandCls <<Command>>
iewPkg <<view>>
View #<TemplateViow>>
.. HelperCis <<He!per>»
dormainPkg <<domain=>
: - § Unhamed Generalizatioh)
i1+ § wanamed Generalization)

i i--=—{Jnnamed Association)
- B3 Student <<Domainkodel>»
¢ E Cowrse <4DomainModer>>
& & Person <<DomainModet>>
¢-E3 professar <<Domaindodels>
‘- B emplD
- B newOp
dataSourcePkg <<dataSource=>
& E-siudentMapper <<DataMapper=>
o E StugentiD6 <<TableDataGateway
¢ 5 basicPky «<<basic=»
¢ 1 — (Unnaméd Association)
— (Unnamed Assotiaticn)
» — (Unnamed Association)
. B} RecordSet <<RecordSete»
¢ B TableCls <<table>>

<<Front Cortrolier: > <<Comamand>>
Handler 5 C SChs
- [<<viewd >
<<doet>$ 45 GRADPQ : vod i 5 v vie 0Pk
<édoPost3> doPost 050 o Process>) process 0pQ: veid
<< TemolateMew > > < <Helper> >/
<<Conaete Mew HelpesQs
*Concrete CommandCls F- -3
P p p{) : void]
! <<domain>> I <<dismibured>>
|¢onainPiq { distibutedPlg
<<Domainkodei << DataTransterObiect>>
<< Domaintiodel>> Person Courselist
Student - frsthame © String
5110 :int fastNarme : Sving <¢getter>> gemerOpQ: woid
GPA. [——{binthDate : Swing <<setter>> seer0p(): veid
jthesis Option gender «<serialize>> serialize0pQ): void
register(course : Course): new OpQ) woid < decerialize>> d/e:ﬁalizenpo:wid
[}
¥ H
<<Domainhtodel>> <<DomainModel>> <<Assemtler?>
Course Professor CliertCis
t n
i emplD <t
new Op() : void new 0pQ) : void
1
: <<daraSoyrce>>] I <<econcumency? >
] - L J——

- B columncis <<colur?r-==

Designers
Correctness

: Completeness

1 - -3 Consistency

1 o (2] Syntax
Semantics
PofEAA Structure
PofEAA Syntax

-} Optimization
4 o 7] Presentation
3 orpanizational

AStereotype | 4 Tagged Values | (!
f] A Documentation

A Properties |

PofEAA Semantics

9 Experiential
; Toot

~ (9 Desi

[Tempiateview

D TahieDataGateway
D Domaintdadel

[Layers

[DataTransferCbiect
D DataMapper

0
[FiontControtter

RecardSet

atteins

Figure 55: The Design Model for the Application and the Applied Patterns

14

8

Table 17: Records from the Design Rationale File Associated with the Repairs

| Date/Time | Wizard Class | Issue | Rationale i
2009-04-08 WizLayers PofEAA: Syntactic Prob- | A design built based upon the PofEAA
11:20:32 lem - Missing Layers in | patterns needs layers such as Pre-

the Model sentation, Domain, and Data Source.
Other Layers such as Service, Basic,
Distributed, Concurrency, and Session
State, depend upon the context infor-
mation set by the tagged values. This
wizard has added any of those missing
items to the model.
2009-04-08 WizFrontControlley PofEAA: Structural | The Front Controller pattern needs a
11:31:45 Problem in using Front | “Handler” class with goGet and doPost
Controller Pattern operations as well as an Abstract Com-
mand class with a Process operation
and at least one concrete child. This
wizard has added any of those missing
items to the model. '
2009-04-08 WizTemplateView | PofEAA: Structural | The Template View pattern needs a
12:12:11 Problem in using Tem- | supplier “Helper” class. This wizard
plate View Pattern has added any of those missing items
to the model.
2009-04-08 WizViewLayerSem| PofEAA: Semantic Prob- | The patterns of the View Layer should
12:39:25 lem regarding the View ! match with the context information, es-
Layer of the model pecially with the value of ViewBuilt tag.
This wizard has changed the tag corre-
spondingly.
2009-04-08 WizDataMapper | PofEAA: Structural | The Data Mapper pattern needs CRUD
16:41:30 Problem in using Data | operations as well as a supplier class.
Mapper Pattern Also the class should be stateless, i.e.,
has no public attribute. This wizard has
added any of those missing items to the
class. But it is up to the designer to
make sure that the class is stateless.
2009-04-08 WizTableData PofEAA: Structural | The Table Data Gateway pattern needs
16:45:28 Gateway Problem in using Table | CRUD operations. Also the return type
Data Gateway Pattern of all the “find” operations should be
Record Set. This wizard has added any
of those missing items to the model.
The Record Set is added if required.
2009-04-08 WizRecordSet PofEAA: Structural | The Record Set pattern needs aggrega-
16:57:53 Problem in using Record | tion association to Table, Row, and Col-
Set Pattern umn classes. This wizard has added any
of those missing items to the model.
2009-04-08 WizPatterns PofEAA: Syntactic Prob- | A design built based upon the PofEAA
18:34:27 lem in organization (lay- | patterns needs to have each pattern in
ering) of patterns its corresponding laver. This wizard has
rearranged model such that each pat-
tern is placed in the appropriate layer.

149

5.3 Using ArgoPLV in Checking a Design Model of the Ap-

plication

In this section, we show how the ArgoPLV tool helps a designer verify a model which is
already built for the Online Student Registration System based upon the patterns of the
PofEAA PL. We suppose that the model is saved in “.zargo” format which is an ArgoUML
recognizable format. If the model is serialized in the XMI format, there is no graphical
view for the model; However, the ArgoPLV is able to verify the model and give the errors
as usual. Also, we suppose that the designer has utilized the stereotypes and the tagged
values of the “PofEAA UML Profile” to specify the patterns that are applied in the model.
Due to lack of space, the given model deals with the requirements of the system which are
of student’s interest. We show the verification process via a sequence of steps taken by the

designer.

Step 1: Load the Model into ArgoPLV After loading the model, the context infor-
mation can be investigated. Figure 56 shows the context information, i.e., the tagged values

of the «PofEAA» main package.

Target: Package (Main)|

Tag . i '] T “Value
ChanceOfConflict Low.
EComplexity Complex

FConcurrencyl.ayer No:
Distributedlayer Yes

Expedise Expert

ServicelLayer Yes
tSessionStateLayer INo-

Too} __ilava
ViewBuiit XSLT

Figure 56: The Tagged Values of the Main Package of the Model

Figure 57 shows the class diagram of the design loaded into ArgoPLV. Note that, we
have shown the diagram as it is appeared in the Editing Pane, hence, the other ArgoUML

Panes are not displayed in the figure.

aPofEAAModet»
Main
spresentation»
presentationPkg
«controllers
controllerPkg
« ey «C
MyWebServetet CommandCls
aprocesss processOp()
[H] [| 1
aConcreteC «ConcreteCommand» «Con and « t 1.3 L« e » a and»
RegisterCourse vision C. A BrowsProfs ViewProf BrowseCourse
p Op() process() aprocess» process{) «process» process() aprocess» process()
—- ————-
H H H H M ! L
T
' H H aviewn H H ' .
viewPkg f ’) '] H '
N Y v W W = v
'
g%@m !ale\ﬁ::;» ﬂ_e;npl_;!e_\?\e;v_l_»_ «TemplateViews aTemplateViewn «TemplateViews : «TemplateViews
egCourse easp CalculateGPATV BrowseProfsTV ViewProfTv ! |BrowseCourseTv
i H T : ‘
AV4 hv4 Y ' hV4 ' V4
]
«Helpers «Helpers aHelpers Y «Helpers ' «Helpers
HelperRC HelperRS HelperGPA v HelpervP § | HelperBC
T T T “ T '
T T T Y T T
)) [e) hd v
v
: : : «domain» ‘ : : :
H)
domainPkg H) 5 M 5 N '
0 D y 0 v .
AV4 p '
' ' " [} ' '
- «DomainModels . ’
: «DomainModels | : Address 5 oo ,
v Person v l‘ : N :
' '
H firstName H s:::Nn \ H : :
1 lastName ' s. v 1 : ’
H bithDate . : hd \ : . !
H ender 0. ! 1_ |postaiCode s , ' H
_____ e > ¢ ! address|{Province 5 ' , '
v ' Person() ' country M i ' '
’) ’))
! ' ' Address() ‘ , H »
i ? --------- P \ b '
! v [T N ’ ' '
' P - , AVAR '
' v 1 [<DomainMadels. ! «DomainModeto H '
H . Student 0.") 1 H 3
) ' — Professor H :
' :] stiD supeyisedStudents S, upervi D » i
' ' |opa K eme) ! !
! + } JthesisOption 1.0) 1 |«DomainMod: 1 0.* H '
' '
. 'y [studenty student Department {mploy ! '
' i . name 1 [teacher ' '
ll L i ' 1
' 0t ’ i '
' L participants] i {Department()) '
fl : 0 ' v 3 N
. N . : 1 . !
) " / offers 0. ' 4
' P b ' '
' N v '
: i ! laDomainModels b - - - m e eceem e e '
' [Grade Course v
' Vo 1.0 y
' '
' v 1 |grade courseNo L ourses '
! vt credits . . '
! ! ' Grade() ! ‘e pré&tequisites) :
' vt N h
N . -a- Course() < ! !
) . N ' .
' f ' » ' '
' s ' y)
T l
' v ' ' ' ' '
l
; : «da!aS.ource» : : «CONCUrfency» . :
dataSourcePrg | . 4 N H concurrencyPkg))
T T v T T ' N
s) N N s
«D » «D: » H «D: » «DataMapper» «DataMapper» aPessn‘r\m thﬂlmek ko «Datagran 'Tomem” «
P A D . ddressiocl ourseList c -
«lockys lockOp(} asetter» getlist()
«find» find() «find» find(} «find» find{) «find» find{) «find» find(} usetters setList()
winsertn insert() | "SSP msert) | ainserta insert() | jeinserts insent(} | | «insertn inser() «OptimisticOffinel ocks | {] «seriatizen toxML()
 [j«deleten delete() l«deleter detete() «deleter delete() «deleter delete() .
dal «deserialize» readXML
«updales update() o update(} P update() d; update{) § | «update» update() Addresstock 0
«version» ver

Figure 57: A Design Model for Online Student Registration System using PofEAA Patterns

151

Step 2: Check the Structural Problems of the Model Several structural errors are
detected by the PSV and reported by the PLA. In the following, we elaborate on the errors

and their causes. See Figure 57 while reviewing the list of errors.

1. Structural problem in using the Front Controller pattern: The causes of this problem

are:
(a) missing the “doGet” and “doPost” operations in the Handler class (“MyWeb-
Servelet”),
(b) having a non-abstract Command class (“CommandCls”), and
(c) missing the “process” operation in one of the Concrete Command classes (“Cal-

culateGPA”).

2. Structural problem in using the Template View pattern: The cause of this problem is

missing the Helper class for one of the Template View classes (“BrowseProfsTV”).

3. Structural problem in using the Domain Model pattern: The cause of this problem is

that one of the Domain Model classes (“Professor”) has no operation.

4. Structural problem in using the Data Mapper pattern: The cause of this problem is

missing the “delete” operation in one of the Data Mapper classes (“PersonMapper’).

Step 3: Fix the Structural Problems The designer asks the PLA to fix the structural
problems automatically. Therefore the following repairs, corresponding to the above errors,

are applied to the model.

1. (a) A “doGetOp” operation and a “doPostOp” operation are added to the “MyWeb-

Servelet” class.
(b) The “Command” class is set as an abstract class.

(c) A “processOp” operation is added to the “CalculateGPA” class.
2. A “HelperCls™ class is created as a supplier for the “BrowseProfsTV" class.
3. A “newOp” operation is added to the “Professor” class.

4. A “deleteOp™ operation is added to the “PersonMapper” class.

Step 4: Check the syntactic Problems of the Model The following list shows the
syntactic errors detected by the PTV and reported by the PLA.

1. Syntactic problem in the layering of the model: The cause of this problem is the
missing Distributed Layer in the model while the designer has shown his/her intention

of having a Distributed Layer via the corresponding tagged value.

2. Syntactic problem in the organization of patterns inside layers: The cause of this
problem is that the Data Transfer Object pattern (“CourseList” class) is not located
in its corresponding package (Distributed Layer).

3. Syntactic problem in the Concurrency Layer: The cause of this problem is that there
exist two conflicting patterns (two “AddressLock” classes) in the Concurrency pack-

age.

Step 5: Fix the Syntax Problems The designer asks for help from PLA. The following
repairs, corresponding to the above errors, are applied to the model, either manually by the

designer or automatically by the PLA.

1. The PLA creates a Distributed Layer (“distributedPkg” package) inside the Main
package.

2. The PLA moves the “CourseList” class into the Distributed Layer (“distributedPkg”
package).

3. The designer removes the “AddressLock” class (the class with stereotype «Pessimisti-

cOfflineLock») from the Concurrency package.

Step 6: Check the Semantic Problems The following list shows the semantic errors

detected by the PMV in the given design.

1. Semantic Problem regarding the View Layer: The cause of this problem is that the
tagged value “ViewBuilt=XSLT” is in contradiction with usage of the Template View

pattern.

2. Semantic Problem regarding the Service Laver: The cause of this problem is that the
designer has shown that he/she wants to have a Service Layer in his/her design by

setting tagged value “ServiceLayer=Yes.” but. there is no such layer in the model.

Step 7: Fix the Semantic Problems

1. The designer sets tagged value “ViewBuilt=HTML” via the text box provided by the
PLA.

2. The designer decides not to have a Service Layer and sets tagged value “Service-

Layer=NQO” via the text box provided by the PLA.

Step 9: Final Design Figure 58 shows the package diagram of the design model after
all the errors caught by the ArgoPLV are fixed as described in the above.

5.4 Discussion

5.4.1 Summary

To show the applicability and usefulness of the ArgoPLV, it is used in building a design
model based upon the patterns of PofEAA for a sample application: Online Student Regis-
tration System. The application is a web-based system, consisting of students, professors,
departments and courses, that handles the requests form both students and professors re-
garding the courses and supervisions. By two different cases, it is shown that the ArgoPLV
is useful in both applying a single pattern and connecting the patterns together. The first
case reveals the usefulness of ArgoPLV as a critiquing system that guides the designer in
step-by-step design of the system based on the patterns of PofEAA. This case also shows
how the PLA can help a novice designer in pattern instantiation, pattern layering, and
pattern weaving. The second case indicates the power of Pattern Language Verifier (PLV)
as an offline verifying process. The designer checks an existing design model, which is saved
in an XMI file, with the ArgoPLV. ArgoPLV informs the designer of all the structural,

syntactic, and semantic errors in the model.

5.4.2 Observations

Since ArgoPLV is a critiquing system. it is more attractive to be used in an interactive
mode (like the first case). However. ArgoPLV is not intrusive, designer can totally ignore
it.

It is easier for the designer to instantiate a pattern by the help of the PLA instead of

referring the text sources to understand the correct structure of a pattern. The designers

154

have to know the “Sign” of the pattern they want to use, before applying it, but not its full
structure. The tool helps him/her in building the correct structure.

Verification of the pattern relationships, and guiding the designer in instantiating a
pattern as a sequel of another pattern, is the structuring mechanism of the PL which is
very helpful, especially for the novice designers. This is an important aspect of ArgoPLV,
because only very expert designers are careful and aware about these relationships.

Semantic correctness of the model, i.e., consistency of the model with the context in-
formation, is another useful service of the ArgoPLV that ensures the designer about the
consistency of the model.

Having a real time critiquing tool is similar to the idea of real time compilation, which

exists in modern Integrated Development Environments (IDEs) such as Eclipse.

aPofEAAModels
Main
apresentations
presentationPkg
«controliers
controllerPkg
al | «Ci
MyWebServelet CommandCls
«doGetr doGetOp() aprocess» processOp{)
«doPosts doPostOp() ?
{ I | 1 []
aConcreteCr aConcreteCommand» «CongcreteCommands «ConcreteC «ConcreteC: «CaoncreteC
RegisterCourse RequestSupervision CaleulateGPA BrowsProfs ViewProf BrowseCourse
«process» processOp() () P p Op()) process() aprocess» process()
: - : : - . : :
. n 3 s T T v
- T
' ! ' aviews ' . ’ 4 '
viewPkg ! ' : ' : ; : ,
i Y/ ' ' ' H o, '
N N A4 AV4 A4 ' AV4 '
«TemplateViewn aTemplateViews N . ' i ,
RegCourseTV ReqSupTV «TemplateViews «TemplateViews «TempisteViews , jaTemplateViewn ,
eqsup CaleulateGPATV BrowseProfsTV ViewProfTv ! BrowseCourse TV]
T T '
' ' T T '
A" V4 Y] V2 \/ ' V2 '
'
aHelper» «Helpers aHelpers. «Helper» s«Helpers 1 «aHelpers :
HelperRC HelperRS HelperGPA HelperCis HelperVP : HelperBC :
T T T T M T v
T — T A v T '
[[[} T v + lJ
0 v T N v O T ' '
* ’ . «domain» . 1 : . '
. v
domainPkg ' H ' \ ' ' ')
: Y, : — : T : ;
; | «DomainModel» |
' |sDomainModeln | : ehomainModei \ Lo : ,
) i Address \ B ’ R !
! Person ' B ' . N N
. ')
' frstName N streetNo '. » v @]
H : street . H ' H H
i lastName 4 ¥ M ' ' ! '
) birthDate H eity \) : H :
' 0. ' 3 ' '
: gender N posl?ICode \ N ! N]
1 ce i 1 v
....... [P . >] \) 4 ' 3
] 1 Person() » country » '))
' . . ' : v '
, : ' Address() . ')
e i-o> P : :
[. l ' :] 1
['
: by : : l v : !
: v+ | «<DomainModet» B '))
' ’ | <DomainMadels. ' '
' ' Student 0.* '
H v = . Professor) ')
1 LI ' »)
} I stiD P S supervisg SP ' ' '
pl
' oo |GPA s ' ' ,
i} ! : thesisOption 1. S 1 |sDomainModet» | 4 newOp(}) ' !
' v
: H : Student(} student + departme| Oepartment ploy employee :) .
i v . name 1 jeacher ' ' '
' ’ ') :
+ . '
. N participants] S TS —>| Department() ' ; :
+ L ,I ' +] '
" L] ’ 1) M v »
1 Voo 4) 1 ') v
v [’) offers 0.* v v i
' v ' - ' ' '
' o ' ']]
J : 1 |«DomainModels ! S . ! .
1 LI] 1] '
1 P Grade 1 ']
' LI . ' t
' 1 |erade , courseNo Fourses) .
N v * credits | ,
: 1| Craded ! titie pré , ,
’ LI . 1 '
'
' -t " ' Course() <—-----”---~—--»----------~->--~--”*’~' ')
t
; , , N ' , ,
v ’ v ' M 1 ! '
» r 1} . ' t '
T T T v t
] + 1 + i i v '
: . dataﬁource» : . rency» " = :
! H «daias ! ! «concurrency «distributed» BN N
dataSourcePkg | 4 ' ') concurrencyPkg Oy i ' '
0 T T T T *9 N ' '
: 1 " . T 0 T
«D: » _«DataMapper»_ || «DataMappers_ . «DataMapper»__|| _ «DataM: »_. «Op! icOfflinel ocky «DataTransferObiecly, ' ,)
PersonMapper D C AddresslLock Coursel ist L W :
aversions ver . Jco A ».'. :
'
«find» find() afind» find() «find> find() «find» find() «find find() wsetter» getlist() ’
3 "
winsert» insert() «insert» insert() «insert» insert(} «inserty insert() ainsert» insert() «wsetters sellist(} 1<
«update» update() ||«delete» delete() «deletes delete() «delelen» delete{) deleter» delete(} useriatize» toXML(}
«deleten deleteOpt) || «updates update() | wupdate» update() || «update» update() | | «updates» update() «deserializen readXML()

Figure 58: Design of Online Student Registration System - Refined by ArgolPLV

156

Chapter 6

Conclusion

6.1 Summary

In model-driven software development approaches, software designers are interested and
are encouraged to apply patterns in their designs in the hope of generating better designs.
A Pattern Language (PL) is a collection of inter-related patterns with a guiding rhythm
that starts from one pattern and helps the designers on how to move from one pattern to
another, such that at the end, the whole system is designed. Designing with patterns of a
PL is not an easy task, especially for the novice designers.

In this thesis, we argued that building a design model based upon the patterns of a
PL can be viewed as writing a program in a programming language. Borrowing the ideas
from the compilers, we introduced a process named Pattern Language Verifier (PLV), and
we elaborated that building a PLV for a given PL, requires the structural, syntactic, and
semantic rules of the PL to be explicitly and precisely defined.

We presented three formalisms for defining these three groups of rules. Since we limited
our work to UML models (class diagrams and package diagrams), we utilized the UML
Profile mechanism to ease the pattern naming and the detection of pattern elements for the
tool, as well as eliminating the problem of Pattern Selection from the scope of the work.
Hence, we emphasized that the PLV is a profile-driven process, and to have a PLV for a
PL, it is required that the profile for that PL be already defined.

As a case study, we selected a subset of Patterns of Enterprise Application Architecture
(PofEAA) as a PL. We defined a UML profile for the sclected PL. We extracted the advices
from the PofEAA book, then we transformed those advices into the formal rules which are

used by the PLV. We hand coded the rules (the profile constraints) into the ArgoUML

modeling tool to obtain a PLV for PofEAA, which we called it the ArgoPLV.

To show how the ArgoPLV may help a designer in designing a system based upon
the PofEAA, we designed a sample application, an online student registration system. We
divided our case study into two parts. In the first part, we showed a step-by-step design
of the application. We discussed how different kinds of errors are caught by the tool, and
then it helps the designer in repairing errors. In the second part, we showed how the tool
can be used in offline mode, like a compiler, to verify an existing model which is built for

the application and to report the errors.

6.2 Review of the Contributions

We have made the following contributions:

1. The PLV process (See Section 3.5). This thesis moves the state-of-the-art in the
Pattern Language Verification to the next level by introducing the PLV process. The
work can be considered as an extension of the well-researched idea of “automatic
pattern detection” to a broader idea called PLV, which focuses more on verifying the
relationship between patterns. The work presented here is an improved version of
our previously published ideas in [ZKB08, ZBK09]. The PLV process is influenced
by the programming language compilers, and this makes it a novel idea. PLV verifies
the use of a PL in a UML design model. In addition to analyzing the model, PLV
is equipped with a module, called Pattern Language Advisor (PLA), for helping the
designer fix the problems. The PLA per se is a step forward to the Model-Driven

Engineering (MDE) promise of automatic code generation.

2. A formalism for representing a PL (See Section 3.3). While there exist attempts on
formalizing the pattern relationships, none of the previous work has addressed all
the structural. syntactic, and semantic aspects of a PL altogether. This thesis moves
the state-of-the-art in pattern formalization techniques, because it addresses all these

three aspects.

3. The ArgoPLV (See Chapter 4). As a proof of concept, a PLV for the PofEAA PL is

built. This work itself has resulted in several useful artifacts and experiences:

(a) The PofEAA Advices (See Section 4.2). Extracting the advices from the book

and classifying them into three groups structural, syntactic, and semantic. is a

158

useful source of knowledge (quick reference) for the designers who want to apply

these patterns.

(b) The formalized PofEAA rules (See Section 4.2). The advices are formalized using
the formalism proposed in this thesis. These formalized rules pave the way for
defining the constraints of the profile. Further, these rules can be used as a

compact and quick view of the PL, useful for more advanced designers.

(c) The PofEAA UML Profile (See Section 4.3). Many profiles have been introduced
to the UML community. However, this is the first time that a profile is defined
for a PL. The profile per se is a contribution of this thesis, since it can be used

by both the designers and the researchers.

4. An exemplar session of ArgoPLV (See Chapter 5). This example shows designing
with patterns for an application: Online Student Registration System. This also can

be viewed as a walkthrough on applying the PofEAA PL in designing a system.

5. An MDE Road Map (See Section 2.1). People have discussed MDE from different
aspect. We give our view of MDE as a road map, followed by a discussion on the arti-

facts, the transformations, the modeling tool, and the issue of “Quality in Modeling.”

6.3 Discussion

The detailed discussion about the PLV, ArgoPLV, and the application of ArgoPLV in
action, are already given at the end of the corresponding chapters, Chapter 3, Chapter 4,
and Chapter 5. In the following we mention more general issues we encountered during this

research.

PofEAA as a PL PL, as defined by Alexander [A*77] and adapted in this thesis, is
not a mature concept in software yet. Most of the existing pattern collections are only a
catalog of patterns. Only a few of these collections fulfill the definition of PL. Indeed, this
is true for the PofEAA, considering the Fowler's confession: “Certainly none of my books
have been pattern languages” [Fow06]. Although PofEAA per se is not a PL, we selected a
subset of its patterns, and extracted a set of coherent advices from PofEFAA such that the

result is very close to onr definition of PL.

Subset of PofEAA PofEAA is full of advices, suggestions. tradeoffs, and even story

tellings in terms of alternative solutions for a problem. Therefore, extracting advices from

the PofEAA book, which is not too close to the standards of a PL, is not straightforward.
An expert must do this task in order not to include inconsistent advices. Translating the
advices into the formal rules also needs expertise, and sometimes, needs interpretations. In
some cases, maybe the expert wants to enforce his/her idea and modify some of the pattern
definitions. This is possible, but care must be taken to announce that the result is maybe

a new PL.

Profile Constraints While hard-coding the profile constraints into a modeling tool (e.g.,
ArgoUML) gives more flexibility to the programmer than what the OCL offers, it is cum-
bersome. Especially, duplicate coding is required in ArgoUML wizards to make sure that

the criteria that have triggered the critic are still valid.

OCL OCL is assumed to be the companion of UML for writing constraints. However,
there are limitations reported for OCL that must be addressed, especially for supporting
the emerging model-driven paradigms [CDGWO06]. For instance, ambiguities in OCL must
be fixed, good support for OCL in Eclipse framework must be provided, and efficiency of
evaluating OCL constraints must be improved [MLC06]. “OCL is hard to understand and,
as a consequence, difficult to use” [CBCO05]. and we believe that working with OCL is still
not comfortable for people. The evidence is the emergence of OCL-like languages such as

EOL [KPP06].

Pattern Relationships Formalizing and characterizing the relationships between pat-
terns is still an open research problem. The reason is that the patterns are not 100% static
elements like keywords in a programming language. A pattern is a compound element
(recall the sections of a pattern form). thercfore, it is not easy to define the relationship

between one pattern to another.

ArgoUML Selecting ArgoUML as the platform for implementing the PLV for PofEAA
has both pros and cons. The pros are: ArgoUML is a design critiquing system. Hence, for
providing interactive support to the designer, ArgoUML is an appropriate tool. ArgoUML
is an open source tool with more than 500000 downloads during last decade. ArgoUML is
under upgrade by a team of experienced developers. The cons are: ArgoUML does not have
powerful support for OCL, particularly. there is no support for writing OCL at meta-model

level. ArgoUNML has no determined plan for supporting UML 2.0 in future.

160

6.4 Limitations

There are some deficiencies in our work, due to the originality of the idea and limited time,

which are summarized as following.

The PLV Process The PLV is a profile-driven process. This will limit the scope of
the applicability of the process, since the designers have to use the profile stereotypes and
tagged values in their designs. Further, the PLV supposes that the designer knows which
pattern he/she decides to apply, hence, does not provide any help in pattern selection. The
PLV does not consider the domain of the underlying PL or the domain of the system under
design. The PLV does not have precise definition of Semantic aspects of the des.ign which
are verified by the Pattern Language Semantic Verifier (PMV) module. Considering the
inconsistencies between the context information with the use of patterns is a naive approach

to look at the semantic issues.

ThebArgoPLV Case Study The case study does not include all the patterns from
PofEAA. Especially eliminating the Object-Relational Mapping patterns makes ArgoPLV
a limited version rather than a tool which is usable in a real application. The extracted
rules investigate only the static view of the design, more specifically, they only consider the
class diagram and the package diagram. This will prevent us from detecting patterns that
are more about the implementation techniques, e.g., the Pessimistic Offfine Lock pattern,
effectively. In designing a system, there are several points to start, while the syntactic rules
defined for ArgoPLV select only one point as the start pattern. This is a limitation for the

designer.

The Application Design Case Study Testing ArgoPLV with a small application (on-
line student registration system) is not sufficient to validate the tool. The system is not
complicated enough to show the problem of selecting a pattern amongst a number of alter-
natives. The test is performed by builder of the ArgoPLV tool, hence, it does not exactly

resemble a case in the real-world.

6.5 Comparison to Related Work

In this section we compare the PLV (and ArgoPLV) with the related work which are intro-

duced in Chapter 2.

161

Pattern Enforcing Compiler (PEC) The most related work to PLV is the PEC [LSV05]
(See Section 2.5.2). PEC uses a naming convention for easing the detection of class features,
and uses interfaces as markers for showing the developer’s desire for applying a pattern.
This is similar to the usage of stereotypes in the PLV. PEC uses Javadoc to document pat-
tern usages, while ArgoPLV creates a Design Rationale. PEC is written for Java language,
while ArgoPLV checks UML design models. PEC investigates only individual patterns; It
does not consider PL issues. PEC shows only “pass” or “fail” message to the developer;
There is no advisory .system. PEC deals only with GOF design patterns, however, it is
extensible, i.e., the user can define new patterns without requiring any new syntax for the

Java language.

Systematic pattern selection using pattern language grammars and design space
analysis This work [Zdu07], is also very close to our work (See Section 2.5.3). Indeed,
we see our work has been recognfzed by Zdun as his future work. In his conclusion, Zdun
says: “We envision further application areas for the approach; for instance, the pattern
language grammars and design spaces can potentially be used as an input for model-driven
tools” [Zdu07]. Zdun’s work deals with architectural patterns as well as GOF design pat-
terns. The main difference between the PLV and Zdun’s work is that his work is not a
verifying approach; it is a pattern selection mechanism. Also Zdun’s work does not ad-
dress the models directly. The overlap of our work with Zdun’s work is that both use the
grammar idea to formalize the relationship between patterns. However, Zdun annotates
the grammar with the design qualities. The advantage of the Zdun’s work is that it ad-
dresses inter-collection issues. That means, the design can be built by applying patterns

from several PLs. Also his work considers the domain-specific design decisions.

Pattern Detection Tools There are several works on detecting a pattern in a design
model or source code (See Section 2.5.1). Our work. differs from these work since they
only focus on individual patterns, and do not address the relationship between patterns.
Also most of these works fall into the category of GOF design pattern detection. Inter-
active DEsign Assistant (IDEA) [BP02] and Design Pattern Detection Using Similarity
Scoring [TCSHO6] are more closer to our work than others. The IDEA is also integrated
into the ArgoUML. However, the IDEA is only capable to detect 11 GOF patterns. The
advantages of IDEA is that it considers both class diagram and collaboration diagram. The
latter work is unable to detect four GOF patterns. However. the methodology is general

and can be applied for any pattern collection.

162

Model Inconsistency Detection Tools Rule-Based Inconsistency Detection Engine
(RIDE) [LEMO02] (See Section 2.1.5) is close to our work from the viewpoint that it aims
to find and repair the inconsistencies in the UML models . The model under investigation
must first be converted to a production system representation. Then, RIDE uses JESS to
execute production rules. The advantage of RIDE is that it is general and extensible; it is

not limited to the pattern misuses.

6.6 Future Work

There are several paths to extend and improve the work presénted in this thesis. Gener-
alizing the idea of PLV and the experiences gained in this work towards a framework for
“Pattern Language Verification” would result in a valuable contribution to patterns and
PLs.

The PLV process can also be enriched with the idea of systematic pattern selection
presented by Zdun [Zdu07]. The PLV idea should be broaden to cover the inter-collection
pattern applications, e.g., verification of the relationship between patterns from different
PLs. Considering dynamic models, e.g., sequence diagram, in addition to the static views
of the design is also of great help in verifying behavioral patterns.

While people are studying (and working on) existing PLs, including pattern catalogs
and pattern collections, working on formalism of patterns and PLs is a real need, especially,
if we look for more help from the CASE tools. Furthermore, consolidating the different
formalisms that are proposed for defining the rules of a PL would be a fruitful research.
Having precise formalisms, we can investigate the possibility of antomatic building of the
PLV modules, similar to the idea of automatic scanner and parser generators (e.g., Lex &
Yacc [LMB92]) in the compiler design. More advanced research would be adding a module
to PLV for optimization (refactoring [Fow99]) of designs.

The PLV process is mimicking the analysis part of a compiler. Investigating the synthesis
(code-generation) part of a compiler, may leads to a research which consolidates the PLV
with the MDSE approaches that promote full code generation from the UML models, such
as xUML [MBO02].

As simpler but more applied track for future work is to apply the PLV process (maybe
modified version) for more PLs. and to build verifier tools that help designers in designing
with patterns. Due to widespread usage of Eclipse, building the PLVs as Eclipse plugins has

better chance of popularity.

163

Bibliography

[A*77]

[Ale79]

[Amb02]

[ANO4]

[ASUS6]

[B+09]

[BBS05]

[BCO9]

[BCOO5)

[Ber94]

Christopher Alexander et al. A Pattern Language: Towns, Buildings, Con-
struction. Oxford University Press, 1977.

Christopher Alexander. The Timeless Way of Building. Oxford University
Press, 1979.

Scott Ambler. Agile Modeling: Effective Practices for eXtreme Programming
and the Unified Process. John Wiley & Sons, first edition, 2002.

Jim Arlow and Ila Neustadt. Enterprise Patterns and MDA: Building Better
Software with Archetype Patterns and UML. Addison-Wesley, 2004.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

Kent Beck et al. Manifesto for agile software development. http://www.

agilemanifesto.org/, {July 1, 2009}.

Alex Blewitt, Alan Bundy, and Ian Stark. Automatic verification of design
patterns in Java. In David F. Redmiles et al., editors, ASE, pages 224-232.
ACM, 2005.

Kent Beck and Ward Cunningham. Using pattern languages for object-
oriented programs. Technical Report No. CR-87-43, Presented at OOP-
SLA’87, Online at http://c2.com/doc/oopsla87.html, [July 1, 2009)].

Ruth Breu and Joanna Chimiak-Opoka. Towards systematic model assess-
ment. In Jacky Akoka et al.. editors, ER (Workshops), volume 3770 of Lecture
Notes in Computer Science, pages 398-409. Springer, 2005.

Steve Berczuk. Finding solutions through pattern languages. Computer.

27(12):75-76. Dec. 1994.

164

http://www
http://agilemanifesto.org/
http://c2.com/doc/oopsla87.html

[Béz06]

[BHS07a)

[BHSO7b]

[BLJ0G]

[BJO6)

[Ble08]

[BMR*96]

[Boo09]

[BP02]

[BRJ99)

Jean Bézivin. Model driven engineering: An emerging technical space. In Ralf
Lammel et al., editors, GTTSE, volume 4143 of Lecture Notes in Computer
Science, pages 36-64. Springer, 2006.

Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-
Oriented Software Architecture: A Pattern Language for Distributed Com-
puting, volume 4. John Wiley & Sons, 2007.

Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-
Oriented Software Architecture: On Patterns and Pattern Languages, vol-

ume 5. John Wiley & Sons, 2007.

Alan W. Brown, Sridhar Iyengar, and Simon Johnston. A Rational approach
to model-driven development. IBM Systems Journal, 45(3):463-480, Jul.
2006.

Jean Bézivin and Frédéric Jouault. Using ATL for checking models. Electr.
Notes Theor. Comput. Sci., 152:69-81, Mar. 2006. Proceedings of the Inter-
national Workshop on Graph and Model Transformation (GraMoT 2005).

Alex Blewitt. HEDGEHOG: Automatic Verification of Design Patterns in
Java. PhD thesis, University of Edinburgh, UK, 2006.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture: A System of Patterns,
volume 1. John Wiley & Sons, 1996.

Grady Booch. Handbook of software architecture. http://wuw.

handbookofsoftwarearchitecture.com/, [July 1, 2009).

Federico Bergenti and Agostino Poggi. Improving UML designs using au-
tomatic design pattern detection. In Shi-Kuo Chang, editor, Handbook of
Software Engineering and Knowledge Engineering, volume 2, pages 771-784.
World Scientific Publishing, 2002.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1999,

165

http://www
http://handbookofsoftwarearchitecture.com/

[CBCO5]

[CDGWO6]

[Coc06]

[CPC+04)

[Dog07]
[DSM09)]
[Bey07)
[Fou09a]
[Fou09b)
[Fow99)]

[Fow02]

Dan Chiorean, Maria Bortes, and Dyan Corutiu. Proposals for a widespread
use of OCL. In Thomas Baar, editor, Proceedings of the MoDELS’05 Con-
ference Workshop on Tool Support for OCL and Related Formalisms - Needs
and Trends, Montego Bay, Jamaica, October 4, 2005, Technical Report LGL-
REPORT-2005-001, pages 68-82. EPFL, 2005.

Dan Chiorean, Birgit Demuth, Martin Gogolla, and Jos Warmer. OCL for
(meta-)models in multiple application domains. In Thomas Kiihne, editor,
MoDELS Workshops, volume 4364 of Lecture Notes in Computer Science,
pages 152-158. Springer, 2006. '

Alistair Cockburn. Agile Software Development: The Cooperative Game.
Addison-Wesley, second edition, 2006.

Dan Chiorean, Mihai Pasca, Adrian Cércu, Cristian Botiza, and Sorin
Moldovan. Ensuring UML models consistency using the OCL environment.
Electr. Notes Theor. Comput. Sci., 102:99 — 110, Nov. 2004. Proceedings of
the Workshop, OCL 2.0 - Indﬁstry Standard or Scientific Playground?

Asif Dogar. Model Driven Development for Enterprise Applications. Master’s

thesis, Concordia University, 2007.

DSMForum. Domain Specific Modeling (DSM). http://www.dsmforum.
org/, [July 1, 2009].

Alexander Egyed. Fixing inconsistencies in UML design models. In ICSE,
pages 292-301. IEEE Computer Society Press, 2007.

Eclipse Foundation. Eclipse Modeling Framework (EMF). http://wuw.
eclipse.org/emf/, [July 1, 2009].

Eclipse Foundation. Eclipse open source community. http://www.eclipse.

org/. [July 1, 2009).

Martin Fowler. Refactoring: ~Improving the Design of Existing Code.
Addison-Wesley, 1999.

Martin Fowler. Patterns of Enterprise Application Architecture. Addison-

Wesley, first edition. 2002.

166

http://www.dsmf
http://www
http://eclipse.org/emf/
http://www.eclipse

[Fow03]

[Fow05]

[Fow06]

[FP97]

[FQL+03]

[FW90]

[GHIV95)

[GSJ00]

[HAZ07]

[HCO7]

[Hil09a]

[HilO9b]

Martin Fowler. Patterns [software patterns]. Software, IEEE, 20(2):56-57,
Mar./Apr. 2003.

Martin Fowler. Language workbenches and model driven architec-
ture. http://www.martinfowler.com/articles/mdalanguageWorkbench.
html, Jun. 2005. [July 1, 2009].

Martin Fowler. Writing software patterns. http://wuw.martinfowler.com/

articles/writingPatterns.html, Aug. 2006. [July 1, 2009].

Norman Fenton and Shari Lawrence Pfleeger. Software metrics: a Rigorous

and Practical Approach. PWS Publishing Co., second edition, 1997.

José M. Fuentes, Victor Quintana, Juan Llorens, Gonzalo Génova, and Rubén

Prieto-Diaz. Errors in the UML metamodel? SIGSOFT Softw. Eng. Notes,

~. 28(6), Nov. 2003.

Daniel P. Freedman and Gerald M. Weinberg. Handbook of Walkthroughs, In-
spections, and Technical Reviews: Evaluating Programs, Projects, and Prod-

ucts. Dorset House Publishing Company, third edition, 1990.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

Alain Le Guennec. Gerson Sunyé, and Jean-Marc Jézéquel. Precise modeling

of design patterns. In Andy Evans et al., editors, UML, volume 1939 of

Lecture Notes in Computer Science, pages 482-496. Springer, 2000.

Neil B. Harrison, Paris Avgeriou, and Uwe Zdun. Using patterns to capture

architectural decisions. IEEFE Software, 24(4):38-45, Jul./Aug. 2007.

Scott Henninger and Victor Corréa. Software pattern communities: Current
practicesvand challenges. In PLoP ’07: Proceedings of the 2007 conference

on Pattern languages of programs, 2007.

Hillside.net. Pattern languages of programs (PLoP) conference official web

site. http://hillside.net/plop/, [July 1. 2009)].

Hillside.net. Patterns web site. http://hillside.net/, [July 1. 2009)].

167

http://www.martinfowler.com/articles/mdaLanguageWorkbench
http://www.martinf
http://Hillside.net
http://hillside.net/plop/
http://Hillside.net
http://hillside.net/

[IBM09a]
[IBMO9b]

[Int98]

[JBO6]

[Ken02]

[KJ04]

[KKL*98)

[Knu64]
[Kob04]

[KPPOG6]

[KZ07]

IBM. Rational Rose. http://www-01.ibm.com/software/awdtools/
developer/rose/, [July 1, 2009].

IBM. Rational Software Architect (RSA). http://www-306.ibm.com/

software/awdtools/architect/swarchitect/, [July 1, 2009].

International Organization for Standardization (ISO). Information technol-
ogy - software product quality. ISO9126, Part i: Quality Model Edition,
1998.

Frédéric Jouault and Jean Bézivin. KM3: A DSL for metamodel specification.
In Roberto Gorrieri and Heike Wehrheim, editors, FMOODS, volume 4037
of Lecture Notes in Computer Science, pages 171-185. Springer, 2006.

Stuart Kent. Model driven engineering. In Michael J. Butler et al., editors,
IFM, volume 2335 of Lecture Notes in Computer Science, pages 286-298.
Springer, 2002.

Michael Kircher and Prashant Jain. Pattern-Oriented Software Architecture:

Patterns for Resource Management, volume 3. John Wiley & Sons, 2004.

Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and
Moonhang Huh. FORM: A feature-oriented reuse method with domain-
specific reference architectures. Annals of Software Engineering, 5(1):143-

168, Jan. 1998.

Donald E. Knuth. Backus normal form vs. Backus Naur form. Commun.

ACM, 7(12):735-736, Dec. 1964.

Cris Kobryn. UML 3.0 and the future of modeling. Software and Systems
Modeling, 3(1):4-8, Feb. 2004.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The Epsilon object
language (EOL). In Arend Rensink and Jos Warmer, editors, ECMDA-FA,
volume 4066 of Lecture Notes in Computer Science, pages 128-142. Springer,
2006.

Holger Kampthueyer and Steffen Zschaler. Finding the pattern you need: The

design pattern intent ontology. In Gregor Engels et al.. editors, MoDELS,

168

http://www-01.ibm.com/software/awdtools/
http://www-306.ibm.com/

[Lab09]

[Lan06]

[Lar05]

[LEMO02

[Lin06)

[LKO5]

[LMB92]

[LNHO6]

[Lov06]

[LSV05]

volume 4735 of Lecture Notes in Computer Science, pages 211-225. Springer,
2007.

Sandia National Laboratories. JESS: the rule engine for the Java platform.

http://wuw. jessrules.com, [July 1, 2009).

Christian F. J. Lange. Improving the quality of UML models in practice.
In ICSE °06: Proceeding of the 28th international conference on Software
engineering, pages 993-996, New York, NY, USA, May 2006. ACM.

Craig Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Prentice Hall, third
edition, 2005. |

WenQian Liu, Steve Easterbrook, and John Mylopoulos. Rule-based detec-
tion of inconsistency in UML models. In Workshop on Consistency Problems
in UML-Based Software Development, pages 106-123, Dresden, Germany,
Oct. 2002.

Peter Linz. An Introduction to Formal Languages and Automata. Jones and

Bartlett, 2006.

Beate List and Birgit Korherr. A UML 2 profile for business process mod-
elling. In Jacky Akoka et al., editors, ER (Workshops), volume 3770 of
Lecture Notes in Computer Science, pages 85-96. Springer, 2005.

John R. Levine, Tony Mason, and Doug Brown. Lex & Yacc. O'Reilly &
Associates, 1992. \

Daniel Leroux, Martin Nally, and Kenneth Hussey. Rational Software Archi-
tect: A tool for domain-specific modeling. IBM Systems-Journal, 45(3):555-
568, 2006. ' '

Howard C. Lovatt. A Pattern Enforcing Compiler (PEC) For Java. PhD
thesis, Macquarie University, Australia, 2006. Online at https://pec.dev.

java.net/nonav/introduction/index.html.

Howard C. Lovatt. Anthonyv M. Sloane, and Dominic R. Verity. A pattern

enforcing compiler (PEC) for Java: Using the compiler. In Sven Hartmann

169

http://www.jessrules.com
https://pec.dev

[MB02]

[MCLO4]

[MD97)

[MHS05]

[Mic09]

[MLCO06]

[MVNO6]

INBO02]

[Nob98a]

and Markus Stumptner, editors, Second Asia-Pacific Conference on Concep-
tual Modelling (APCCM2005), volume 43 of CRPIT, pages 69-78, Newcastle,
Australia, 2005. ACS.

Stephen J. Mellor and Marc J. Balcer. Ezecutable UML: A Foundation for
Model-Driven Architecture. Addison-Wesley, first edition, 2002.

Jeffrey K. H. Mak, Clifford S. T. Choy, and Daniel P. K. Lun. Precise mod-
eling of design patterns in UML. In ICSE ’04: Proceedings of the 26th Inter-
national Conference on Software Engineering, pages 252-261, Washington,

DC, USA, 2004. IEEE Computer Society Press.

Gerard Meszaros and Jim Doble. ‘A pattern language for pattern writing.
In Robert C. Martin, Dirk Riehle, and Frank Buschmann, editors, Patiern
Languages of Program Design, volume 3, pages 529-574. Addisbn—Wesley
(Software Patterns Series), 1997.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Comput. Surv., 37(4):316-344, Dec.
2005.

Sun Microsystems. Metadata Repository (MDR). http://mdr.netbeans.
org/, [July 1, 2009].

Gergely Mezei, Tihamér Levendovszky, and Hassan Charaf. Restrictions for
OCL constraint optimization algorithms. Electronic Communications of the

EASST, 5:1-18, Dec. 2006.

Dragos Manolescu, Markus Volter, and James Noble. Pattern Languages of

Program Design 5. Addison-Wesley, 2006.

James Noble and Robert Biddle. Patterns as signs. In Boris Magnusson,
editor, ECOOP, volume 2374 of Lecture Notes in Computer Science, pages
368-391. Springer, 2002.

James Noble. Classifying relationships between object-oriented design pat-
terns. In Software Engineering Conference, 1998. Proceedings. 1998 Aus-
tralian, pages 98-107. Nov. 1998.

170

http://mdr.netbeans

[Nob98b)

[Ob;j01]

[Ob;05a]
[0bj05b]
[0bj05¢]
[Obj06a)
[Objo6b)

[Obj09a]

[Objo9b)

[0OP0Y]

[PBSS)

[PK02]

James Noble. Towards a pattern language for object oriented design. In Tech-
nology of Object-Oriented Languages, 1998. TOOLS 28. Proceedings, pages
2-13. IEEE Computer Society Press, Nov. 1998.

Object Management Group (OMG). Unified Modeling Language (UML):
Specification, v1.4. OMG document: formal/01-09-67, 2001.

Object Management Group (OMG). MOF 2.0/XMI mapping specification,
v2.1. OMG document: formal/2005-09-01, 2005.

Object Management Group (OMG). Unified Modeling Language (UML):

Infrastructure, v2.0. OMG document: formal/05-07-05, 2005.

Object Management Group (OMG). Unified Modeling Language (UML):
Superstructure, v2.0. OMG document: formal/05-07-04, 2005.

Object Management Group (OMG). Meta Object Facility (MOF): Core
specification, v2.0. OMG document formal/2006-01-01, 2006.

Object Management Group (OMG). Object Constraint Language (OCL):
Specification, v2.0. OMG document: formal/06-05-01, 2006.

Object Management Group (OMG). Catalog of UML profile specifi-
cations. http://www.omg.org/technology/documents/profile_catalog.
htm, {July 1, 2009].

Object Management Group (OMG). Model Driven Architecture (MDA).
http://wuw.omg.org/mda/, [July 1, 2009].

OOPSLA. Object-oriented programming, systems, languages, and appli-
cations (OOPSLA) conference official web site. http://www.oopsla.org/,
[July 1, 2009].

Colin Potts and Glenn Bruns. Recording the reasons for design decisions.
In ICSE ’88: Proceedings of the 10th International Conference on Software
Engineering, pages 418-427, Los Alamitos, CA, USA, Apr. 1988. IEEE Com-

puter Society Press.

Risto Pohjonen and Steven Kelly. Domain-specific modeling: Improving pro-

ductivity and time to market. Dr. Dobb’s Journal. Aug. 2002.

171

http://www.omg.org/technology/documents/profile_catalog
http://www.omg.org/mda/
http://www.oopsla.org/

[Rob99]

[RR9S]

[Rub90]

[Scho6]

[sdm09]

[Sel03]

[Selo6]

[Sel07]

[SFJ96]

[Spi92]

[SSRBOO]

1SV06)

Jason E. Robbins. Cognitive Support Features for Software Development
Tools. PhD thesis, University of California, Irvine, 1999.

Jason E. Robbins and David F. Redmiles. Software architecture critics in
the Argo design environment. Knowledge-Based Systems, 11(1):47 — 60, Sep.
1998.

Rubén Prieto-Diaz. Domain analysis: An introduction. SIGSOFT Softw.
Eng. Notes, 15(2):47-54, Apr. 1990.

Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering.

IEEE Computer, 39(2):25-31, Feb. 2006.

sdinetrics.com. SD-Metrics official web site. http://www.sdmetrics .com/,

[July 1, 2009].

Bran Selic. The pragmatics of model-driven development. [EEE Software,
20(5):19-25, Sep. 2003.

Bran Selic. Model-driven development: Its essence and opportunities. In
Proceedings of the Ninth IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC’06), pages
313-319, Los Alamitos, CA, USA, 2006. IEEE Computer Society Press.

Bran Selic. A systematic approach to domain-specific language design using
UML. In Proceedings of the 10th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing (ISORC’07),
pages 2-9, Los Alamitos, CA, USA, 2007. IEEE Computer Society Press.

Douglas C. Schmidt, Mohamed Fayad, and Ralph E. Johnson. Software
patterns. Commun. ACM, 39(10):37-39, Oct. 1996.

J. Michael Spivey. The Z Notation: A Reference Manual International Series

in Computer Science. Prentice Hall, second edition, 1992.

Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture: Patterns for Concurrent and Net-

worked Objects, volume 2. John Wiley & Sons. 2000.

Tom Stahl and Markus Vélter. Model-Driven Software Development: Tech-
nology. Engineering, Management. John Wiley & Sons, 2006.

172

http://sdmetrics.com
http://www.sdmetrics.com/

[Sys09]

[T2i07)

[TCSHO6]

[The09)]

[Tig09al

[Tig0O9b]

[Unh05]

[Uni09a]

[Uni09b)

[WdKqY+03]

[Wir71]

[Wuy98]

SysML. Systems Modeling Language (SysML). http://www.sysml.org/,
[July 1, 2009].

Toufik Taibi. Design Patterns Formalization Techniques. IGI Publishing,
2007.

Nikolaos Tsantalis, Alexander Chatzigeorgiou, George Stephanides, and Spy-
ros T. Halkidis. Design pattern detection using similarity scoring. IEEE
Trans. Software Eng., 32(11):896-909, Nov. 2006.

‘The Technische Universitit Dresden. Dresden OCL toolkit. http://

dresden-ocl.sourceforge.net/, [July 1, 2009].

Tigris.org. ArgoUML official web site. http://argouml.tigris.org/, [July
1, 2009}.

Tigris.org. Gef official web site. http://gef.tigris.org/, [July 1, 2009].

Bhuvan Unhelkar. Verification and Validation for Quality of UML 2.0 Mod-
els. John Wiley & Sons, 2005.

BABES-BOLYAI University. OCLE official web site. http://lci.cs.
ubbcluj.ro/ocle/, [July 1, 2009).

University of Nebraska Lincoln. Semantic Framework for Patterns (SFP).

http://cse-fergsl.unl.edu/SFP/wiki/Main, [July 1, 2009].

Liu Wu-dong, He Ke-qing, Yingshi, Xu Hui, and Jiang Yi-xing. A pat-
tern language model for framework development. In Computer Software and
Applications Conference, 2003. COMPSAC 2003. Proceedings. 27th Annual
International, pages 669-673, Nov. 2003. »

Niklaus Wirth. The design of a Pascal compiler. Software Practice & Expe-
rience, 1(4):309-333, Jul. 1971.

Roel Wuyts. Declarative reasoning about the structure of object-oriented
systems. In Proceedings of the Technology of Object-Oriented Languages
(TOOLS 26) Conference USA 1998, pages 112-124. IEEE Computer Society
Press. 1998.

173

http://www.sysml.org/
http://
http://dresden-ocl.sourceforge.net/
http://Tigris.org
http://Tigris.org
http://gef.tigris.org/
http://lci.cs
http://ubbcluj.ro/ocle/
http://cse-ferg41.unl.edu/SFP/wiki/Main

[ZB07]

[ZBKO09]

[Zdu07]

[ZHJ03)

(Zim95)

[ZKB08)

Bahman Zamani and Greg Butler. Critiquing the application of pattern lan-
guages on UML models. In Workshop on Quality in Modeling, MODELS2007
Conference, pages 18-35, Nashville, TN, USA, 2007.

Bahman Zamani, Greg Butler, and Sahar Kayhani. Tool support for pattern
selection and use. FElectr. Notes Theor. Comput. Sci., 233:127-142, Mar.
2009. Proceedings of the International Workshop on Software Quality and
Maintainability (SQM 2008).

Uwe Zdun. Systematic pattern selection using pattern language grammars
and design space analysis. Software Practice & Ezperience, 37(9):983-1016,
Jul. 2007.

Tewfik Ziadi, Loic Hélouet, and Jean-Marc Jézéquel. Towards a UML profile
for software product lines. In Frank van der Linden, editor, PFE, volume

3014 of Lecture Notes in Computer Science, pages 129-139. Springer, 2003.

Walter Zimmer. Relationships between design patterns. In Pattern Languages

of Program Design, pages 345-364. Addison-Wesley, 1995.

Bahman Zamani, Sahar Kayhani, and Greg Butler. A pattern language
verifier for web-based enterprise applications. In Krzysztof Czarnecki et al.,
editors, MoDELS, volume 5301 of Lecture Notes in Computer Science, pages
553-567. Springer, 2008.

174

Appendix A

ArgoPLV Artifacts

In this appendix, we will present the artifacts that are produced during the process of

building a Pattern Language Verifier (PLV) for the selected subset of Patterns of Enterprise

Application Architecture (PofEAA) Pattern Language (PL). This appendix is organized

mto six sections:

=1

. Section A.1 shows the selected subset of PofEAA in a layered architecture.

. Section A.2 shows the raw advices that are extracted from the PofEAA book. These

advices are the base for defining the Structural, Syntactic, and Semantic rules of the

PLV process.

Section A.3 shows the result of formalizing the advices into the formal rules using the

formalisms defined in Chapter 3.

Section A.4 shows the different parts (Stereotypes, Tagged Values, and Constraints)
of the PofEAA UML Profile.

Section A.5 shows the source code excerpts that clarify how the critics and wizards are
hard coded in ArgoUML to define the constraints of the profile. Due to the importance

of the class GU, its code is shown completely.

. Section A.6 shows an example systéfn, Online Student Registration System, which is

designed based upon the PofEAA. Two versions of the design, both before and after
verifving by ArgoPLV. are shown.

Section A.7 shows an excerpt of the Design Rationale file which is created during the

verification of the design using ArgoPLV.

A.1 Selected Patterns from PofEAA

Figure 59 shows the subset of PofEAA that we have selected as our case study. This subset

contains 23 patterns from several layers.

presentation layer |

controller layer I view layer l

Fomt Controller Page Controller Template View Transform View

Service Layer l

Service Layer

domain layer

Domain Model Table Module Transaction Script

data source layer

Active Record

Data Mapper Table Data Gateway Row Data Gateway
concurrency layer session state layer I
Optimistic Offiline Lock Pessimistic Offline Lock Client Session State | | Server Session State
base layer distributed layer
Layer Supertype} | RecordSet Money Gateway Mapper Remote Facade | | Data Transfer Object

Figure 59: Selected Patterns from PofEAA in a Layered Architecture

A.2 Advices from the PofEAA Book

We have extracted 73 advices from the PofEAA book, shown in Table 18 to Table 21. Note

that selecting the advice number (A#) and the advice classification (Type) is our choice,

but the descriptions are from the book.

Table 18: Advices from the PofEFAA Book

A#] Type

| Description (PofEAA book page#)

A0l

Syntactic

“Many of the patterns in this book are alternatives; such Page Controller and Front
Controller.” (p. 12)

A02

Syntactic

“A Transaction Script offers several advantages: It works well with a simple data
source layer using Row Data Gateway or Table Data Gateway.” (p. 25)

A03

Syntactic

“A Table Module is designed to work with a Record Set.” (p. 28)

A04

Semantic

“If you-have an environment like .NET or Visual Studio, then that makes a Table
Module much more attractive.” (p. 30)

A05

Semantic

“I don’t see a reason to use Transaction Scripts in a .NET environment.” (p. 30)

A06

Semantic

“However, if there’s no special tooling for Record Sets, I wouldn’t bother with Table
Module.” (p. 30)

A07

Syntactic

“These three patterns are not mutually exclusive choices. Indeed, it’s quite common
to use Transaction Script for some of the domain logic and Table Module or Domain
Model for the rest.” (p. 30)

AD8

Syntactic

“A common approach in handling domain logic is to split the domain layer in two. A
Service Layer is placed over an underlying Domain Model or Table Module [...] The
presentation logic interacts with the domain purely through the Service Layer, which
acts as an API for the application.” (p. 30)

A09

Syntactic

“A domain layer that uses only Transaction Script isn’t complex enough to warrant
a separate [Service] layer.” (p. 31)

Al0

Syntactic

“The fact that Table Data Gateway fits very nicely with Record Set makes it the
obvious choice if you are using Table Module.” (p. 35)

All

Syntactic

“Certainly you can use a Row Data Gateway or a Table Data Gateway with a Domain
Model. For my taste, however, that can be either too much indirection or not enough.”

{p. 35)

Al2

Syntactic

“I don't recommend using a Gateway [Row Data Gateway or Table Data Gateway] as
the primary persistence mechanism for a Domain Model. If the domain logic is simple
and you have a close correspondence between classes and tables, Active Record is the
simple way to go. If you have something more complicated, Daga Mapper is what you
need.” (p. 36) '

A13

Syntactic

“A simple Domain Model can use Active Record, whereas a rich Domain Model re-
quires Data Mapper.” (p. 117)

Al4

Syntactic

“A rich Domain Model is better for more complex logic, but is harder to map to the
database.” (p. 117)

Al5

Svntactic

“If vou have complicated and ever changing business rules involving validation, cal-
culations, and derivations, chances are that you'll want an object model to handle
them. On the other band, if you have simple not-null checks and a couple of sums to
calculate. a Transaction Script is a better bet.” (p. 119)

A16

Syntactic

“If vou’re using Domain Model, my first choice for database interaction is Data Map-
per” (p. 119)

A17

“Syntactic

“Essentially vou have to trade off Domain Model’s ability to handle complex Jogic
against Table Module's easier integration with the underlving table-oriented data
structures{...] If the objects in a Domain Model and the database tables are relatively
similar. it may be better to use a Domain Model that uses Active Record. Table
Module works better than a combination of Domain Model and Active Record when
other parts of the application are based on a common table-oriented data structure.”
{p- 128)

Table 19: Advices from the PofEAA Book (Cont’d)

| Description (PofEAA book page#)

Il

“A Table Data Gateway has a simple interface, usually consisting of several find
methods to get data from the database and update, insert, and delete methods [...]
The Table Data Gateway is usually stateless.” (p. 144)

“The trickiest thing about a Table Data Gateway is how it returns information from
a query [...] you can return the Record Set that comes from the SQL query.” (p. 144)

“you’ll usually only see Class Table Inheritance if there’s a Domain Model in your
design.” (p. 10)

“With a Domain Model we build a model of our domain which, at least on a first
approximation, is organized primarily around the nouns in the domain.” (p. 26)

“With a Domain Model we build a model of our domain which, at least on a first
approximation, is organized primarily around the nouns in the domain.” (p. 26)

“[for presentation layer] Your tooling may well make your choice for you. If you use
Visual Studio, the easiest way to go is Page Controller and Template View. If you
use Java, you have a choice of Web frameworks to consider. Popular at the moment
is Struts, which will lead you to a Front Controller and a Template View.” (p. 99)

“Not all systems need an Application Controller |...] A good test is this: If the machine
is in control of the screen flow, you need an Application Controller; if the user is in
control, you don’t.” (p. 58)

“A Front Controller handles all calls for a Web site, and is usually structured in two
parts: a Web handler and a command hierarchy. The Web handler is the object
that actually receives post or get requests from the Web server.” (p. 344) “The Web
handler is almost always implemented as a class rather than as a server page [...] The
commands are also classes rather than server pages.” (p. 345)

“A related question to consider is using a single Data Transfer Object for a whole
interaction versus different ones for each request [...] I might use one Data Transfer
Object for most of the interaction and use different ones for a couple of requests and
responses.” (p. 402)

“It needs to be serializable to go across the connection. Usually an assembler is used on
the server side to transfer data between the DTO and any domain objects [...] Other
than simple getters and setters, the Data Transfer Object is also usually responsible
for serializing itself into some format that will go over the wire.” (p. 401, 403)

“As optimistic locking is much easier to implement and not prone to the same defects
and runtime errors as a Pessimistic Oflline Lock, consider using it as the delault ap-
proach to business transaction conflict management in any system you build.” (p. 420)

“The essence of the choice between optimistic and pessimistic locks is the frequency
and severity of conflicts.” (p. 68) “Whereas Pessimistic Offline Lock assumes that
the chance of session conflict is high and therefore limits the system’s concurrency,
Optimistic Offline Lock assumes that the chance of conflict is low.” (p. 417)

“The most common implementation [for Optimistic Offline Lock] is to associate a
version number with each record in your system” (p. 421)

“The data structure of the Active Record should exactly match that of the database:
one field in the class for each column in the tabl. [...] The Active Record class typically
has methods that do the following: * Construct an instance of the Active Record from
a SQL result set row * Construct a new instance for later insertion into the table *
Static finder methods to wrap commonly used SQL queries and return Active Record
objects * Update the database and insert into it the data in the Active Record * Get
and set the fields * Implement some pieces of business logic.” (p. 160)

*A Row Data Gateway acts as an object that exactly mimics a single record, such
as one database row. In it each column in the database becomes one field [...] A
Row Data Gateway should contain only database access logic and no domain logic
[.-.] With a Row Data Gateway vou're faced with the questions of where to put the
find operations that generate this pattern.” (p. 152)

A#] Type
A18 | Structural
A19 | Syntactic
A20 | Syntactic
A21 | Semantic
A22 | Syntactic
A23 | Syntactic/
Semantic
A24 | Semantic
A25 | Structural
A26 | Semantic
A27 | Structural
A28 | Semantic
A29 | Syntactic/
Semantic
A30 | Semantic
A31 [Structural
A32 | Structural
A33 | Structural

“A Record Set is usually something that you won’t build yourself, provided by the
vendor of the software platform you're working with. Examples include the data set
of ADO.NET and the row set of JDBC 2.0 [...] Although platforms often give you a
Record Set. you can create one vourself.” (p. 508)

178

http://ADO.NET

Table 20: Advices from the PofEAA Book (Cont’d)

Description (PofEAA book page#)

“Page Controller has one input controller for each logical page of the Web site. |[...]
The basic idea behind a Page Controller is to have one module on the Web server act
as the controller for each page on the Web site.” (p. 333)

“It’s not uncommon to have a site where some requests are dealt with by Page Con-
trollers and others are dealt with by Front Controllers.” (p. 335)

“Add remotability when you need it (if ever) by putting Remote Facades on your
Service Layer.” (p. 135)

“A Transaction Script organizes all this logic primarily as a single procedure, making
calls directly to the database or through a thin database wrapper. Each transaction
will have its own Transaction Script, although common subtasks can be broken into
subprocedures.” (p. 113)

“Usually-you use Table Module with a backing data structure that’s table oriented.
The tabular data is normally the result of a SQL call and is held in a Record Set that
mimics a SQL table. {...] The Table Module may include queries as factory methods.
The alternative is a Table Data Gateway.” (p. 126, 127)

“A Table Module organizes domain logic with one class per table in the database |...]
Each Table Module class has a data member of a data table.” (p. 125)

“A type that acts as the supertype for all types in its layer [...] All you need is a
superclass for all the objects in a layer [...] Use Layer Supertype when you have
common features from all objects in a layer.” (p. 475)

“The Data Mapper |...| separates the in-memory objects from the database [...] The
separation between domain and data source is the main function of a Data Mapper [...]
A simple Data Mapper would just map a database table to an equivalent in-memory
class on a field-to-field basis [...] [for] inserts and updates, the database mapping layer
needs to understand what objects have changed, which new ones have been created,
and which ones have been destroyed [...] We’ll use the simple case here, where the
Person Mapper class also implements the finder and Identity Map.” (p. 165)

“An object model of the domain that incorporates both behavior and data. {...] A
Domain Model mingles data and process, has multivalued attributes and a complex
web of associations, and uses inheritance.” (p. 116)

“The basic idea is to have a Money class with fields [or the numeric amounl and the

| currency [...] Money needs arithmetic operations so that you can use money objects

as easily as you use numbers.” (p. 488)

“Remote Facade contains no domain logic [...] In a simple case, like an address object,
a Remote Facade replaces all the getting and setting methods of the regular address
object with one getter and one setter, often referred to as bulk accessors.” (p. 389)

“The two basic implementation variations [for Service Layer| are the domain facade
approach and the operation script approach. In the domain facade approach a Service
Layer is implemented as a set of thin facades over a Domain Model [...] The thin
facades establish a boundary and set of operations through which client layers interact
with the application, exhibiting the defining characteristics of Service Layer.” (p. 134)

“The parameter list of the insert method must be a subset of the parameter list of
the update method.” (p. 144)

“The easier question to answer is probably when not to use it. You probably don’t need
a Service Layer if your application’s business logic will only have one kind of client-
say, a user interface-and its use case responses don’t involve multiple transactional
resources.” (p. 137)

“Hence, we get to my First Law of Distributed Object Design: Don't distribute vour
objects! 7 (p. 89)

“For this book I'm centering my discussion around an architecture of three primary
layers: presentation, domain. and data source.” (p. 19)

A Type
A34 | Structural
A35| Syntactic
A36 | Syntactic
A37 | Structural
A38 | Syntactic
A39 | Structural
A40 | Structural
Ad41 | Structural
Ad42 | Structural
A43 | Structural
A44 | Structural
A45 | Structural
Ad6 | Semantic
A47 | Syntactic/
Semantic
A48 | Syntactic/
Semantic
A49 | Syntactic
A50 { Syntactic

“There are two patterns for the input controller. The most common is an input
controller object for every page on vour Web site. In the simplest case this Page
Controller can be a server page itself, combining the roles of view and input controller
[...] A server page can handle the request. delegating a separate helper object to
decide what to do with it. Front Controller (344) goes further in this separation by
having only one ohject handling all requests.™ (p. 61)

179

Table 21: Advices from the PofEAA Book (Cont’d)

[A#| Type | Description (PofEAA book page#)

A51 | Syntactic | “Often you'll find that there isn’t quite a one-to-one relationship between Page Con-
trollers and views.” (p. 61)

Ab2 | Semantic | “On the view front the choice between Template View and Transform View depends
on whether your team uses server pages [HTML] or XSLT in programming. You
can write a Transform View in any language; at the moment, however, the dominant
choice is XSLT.” (p. 99, 361)

Ab3 | Syntactic | “Since it’s a form of Mapper, Data Mapper itself is even unknown to the domain
layer.” (p. 165)

A54 | Syntactic | “[Table Data Gateway is] An object that acts as a Gateway to a database table. [...]
I see this pattern {Table Data Gateway| as a particular usage of the more general
Gateway concept.” (p. 144, 146)

A55 | Syntactic | “[The problem here is how to synchronize it with other modules. is] An object that
acts as a Gateway to a single record in a data source.” (p. 152)

A56 | Syntactic | “The most common case of a mapping layer that we run into is in a Data Mapper |...]
Thus, in enterprise applications we mostly find Mapper used for interactions with a
database, as in Data Mapper.” (p. 473, 474)

A57 | Structural | “The best way to work is to compose the dynamic Web page as you do a static page
but put in markers that can be resolved into calls to gather dynamic information.
Since the static part of the page acts as a template for the particular response, I call
this a Template View [...] The key to avoiding scriptlets is to provide a regular object
as a helper to each page.” (p. 350, 352)

A58 | Syntactic | “For implementing the view in Model View Controller the main choice is between
Template View and Transform View.” (p. 354)

A59 | Structural | “A Transform View is organized around separate transforms for each kind of input
element.” (p. 361)

A60 | Semantic | “A Transaction Script offers several advantages: It’s a simple procedural model that
most developers understand.” (p. 25)

A61 | Syntactic | “My preference is thus to have the thinnest Service Layer you can, if you even need
one.” (p. 32)

A62 | Syntactic/| “So everything should be stateless, right? Well, it would be if it could be.” (p. 82)
Semantic

A63 | Syntactic/ | “Concurrency is one of the most tricky aspects of software development. Whenever
Semantic | you have multiple processes or threads manipulating the same data, you run into
concurrency problems.” (p. 63)

A64 | Syntactic | “In organizing domain logic I've separated it into three primary patterns: Transaction
Script, Domain Model, and Table Module.” (p. 25)

A65 | Syntactic | “On the view side there are three patterns to think about: Transform View, Template
View, and Two Step View.” (p. 58)

A66 | Syntactic | “In broad terms there are two forms of concurrency control that we can use: optimistic
and pessimistic.” (p. 67)

A67 | Syntactic | “So, how do you store session state once you know you have to have it? 1 divide

the options into three blurred but basic choices. Client Session State [...] Database
Session State [...] Database Session State.” (p. 84)

A68 | Syntactic | “Hand in hand with Remote Facade is Data Transfer Object.” (p. 92)

A69 | Syntactic | “While most of these patterns are truly for enterprise applications, those in the base
patterns chapter (Chapter 18) are more general and localized.” (p. 11)

A70 | Structural | “Wrap all the special API code into a class whose interface looks like a regular object.
Other objects access the resource through this Gateway, which translates the simple
method calls into the appropriate specialized APL” (p. 166)

A71 | Structural | “the objects that a Mapper separates aren’t even aware of the mapper.” (p. 474)

A72 | Structural | “You almost always have to use Client Session State for session identification [Session

ID].7 (p. 457)

AT3 [Structural { “In the simplest form of this pattern a session object is held in memory on an appli-
cation server.” (p. 458)

A74 | Syntactic [“If you use procedural scripts as your view. vou can write the code in the style of either
Transform View or Template View or in some interesting mix of the two.” (p. 59)

180

A.3 PofEAA Rule Set

The advices shown in the previous section, have been interpreted into formal rules, Struc-
tural, Syntactic, and Semantic, using the formalisms defined in Chapter 3. The obtained
formal rules are shown in the following sections, respectively.

Note that for the Syntactic and Semantic rules, we have used conditions that are specified
in the following. Also, the numbers given at the end of each rule (:Axx) shows the advice(s)

from the Section A.2 that is referenced to define that rule.

e C11: Tool is .Net

e C12: Tool is Java

e (C21: Domain structure is Simple

e (C22: Domain structure is Moderate

e (C23: Domain structure is Complex

e (C31: Designer is Novice

e (32: Designer is Intermediate

e (C33: Designer is Expert

e C41: Designer wants Service Layer

e (42: Designer wants Distributed Layer
e (C43: Designer wants Concurrency Layer
e (44: Designer wants Session State Layer
e (C51: Chance of conflict is Low

e (C52: Chance of conflict is High

e (C61: View is built using HTML

e C62: View is built using XSLT

181

A.3.1 Part I: Structural Rules

The structural rules for 23 selected patterns from PofEAA are shown in the following 23
figures (Figure 60 to Figure 82). Note that, “The Intent and the Sketch,” if present, are
from the PofEAA book. The CRUD is an abbreviation for DB operations Create, Read,
Update, and Delete, but in the following, by CRUD, we mean find, insert, delete, and

update.

Front, Controller

The Command class is abstract.-

A Concrete Command class is concrete.

e T A R o

There is a Front Controller (=Handler) class in the model.
There are at least two operations (doGet and doPost) in the Handler class.

The Handler class has a client dependency to a Command class.

The Command class has at least one process operation.

The Command class has at least one Concrete Command child class.

A Concrete Command class has at least one process operation.

A contoller that handles all the requests for a Web site.

Handler Command
doGet() R process()
doPost()

T

ConcreteCommand 1

process()

ConcreteCommand 2

process()

"Figure 60: Structural Rules, Intent, and Sketch of Front Controller Pattern

Page Controller

1. There is a Page Controller class in the model.

2. There are at least two operations (doGet and doPost) in the Page Controller class.

An object that handles a request for a specific page or action on a Web site.

Model
:- e --domain logic
Page Controller L ,; /:\
-- handle HTTP get and post :
— decide which model and view touse [~ 7~ ™) '
: View
T display HTML

Figure 61: Structural Rules, Intent,vand Sketch of Page Controller Pattern

Template View

1. There is a Template View class in the model.

2. The Template View class has a client dependency to a Helper class.

Renders information into HTML by embedding markers in an HTML page.

<HTML> <P> B
Model I Book Helper <jsp:getProperty name="bookHelper”
Book property="title”/>

Author - - -4 getTitle() < -~ author:
getAuthor() <jsp:getProperty name="bookHelper”
property="author™/></P>
</HTML>

Figure 62: Structural Rules, Intent, and Sketch of Template View Pattern

Transform View

1. There is a Transform View class in the model.

2. There is at least one transform operation in the Transform View class.

A view that processes domain data element by element and transforms it into HTML.

Model Transformer

Album read creates

Artist 00 oo S HTML
transformAlbum()

transformArtist()

Figure 63: Structural Rules. Intent. and Sketch of Transform View Pattern

183

Service Layer

(Note: The Sketch given here is an adapted form of the Sketch given in [Fow02, p. 133])

1. There is a Service Layer class in the model.
2. There is at least one operation in the Service Layer class.

3. All the operations in the Service Layer class must be public.

Defines an application’s boundary with a layer of services that
establishes a set of available operations and coordinates the
application’s response in each operation.

presentation l

1
service I

:
domain l

Figure 64: Structural Rules, Intent, and Sketch of Service Layer Pattern

Domain Model

1. There is a Domain Model class in the model.
2. There is at least one operation in the Domain Model class.

3. There is at least one attribute in the Domain Model class.

An object model of the domain that incorporates both behavior and data,

Contract

recognizedRevenue(date : String)
calculateRecognitions()

h

roduct

calculateRecognitions(contract : Integer)

1

[Recognition Strategy]@—'i Compiete Recognition Stra(egﬂ

Figure 65: Structural Rules, Intent. and Sketch of Domain Model Pattern

184

Table Module

1. There is a Table Module class in the model.
2. There is at least one operation in the Table Module class.

3. There is at least one data table attribute in the Table Module class.

A single instance that handles the business logic for all rows in a database table or view.

Contract

calculateRecognitions(ID : Integer)

Product

getProductType(ID : Integer)

Revenue Recognition

insert(ID : Integer,amount : Integer,date : String)
recognizeRevenue(contactlD : Integer,date : String)

Figure 66: Structural Rules, Intent, and Sketch of Table Module Pattern

Transaction Script

1. There is a Transaction Script class in the model.

2. There is at least one operation in the Transaction Script class.

Organizes business logic by procedures where each procedure handles a single request from the presentation.

Recognition Service

_____ > DB v

recognizeRevenue(contactNumber : long,asOf : Date) : Money
calculateRevenueRecognitions(contractNumber : long) : void

Figure 67: Structural Rules. Intent, and Sketch of Transaction Script Pattern

185

Data

Mapper

1. There is a Data Mapper class in the model.

2. The Data Mapper class is stateless, e.g., has no public attribute.

3. There are CRUD operations in the Data Mapper class.

4. The Data Mapper class has a client dependency to at least one other class.

A layer of Mappers (473) that moves data between objects and a database while keeping them
independent of each other and the mapper itself.

Person

lastname
firstname
numberOfDependents

Person Mapper

getExemption()
isFlaggedForAudit()

getTaxableEarnings()

insert()
update()
delete()

Figure 68: Structural Rules, Intent, and Sketch of Data Mapper Pattern

Active Record

1. There is an Active Record class in the model.

2. There is at least one attribute in the Active Record class.

3. There are CRUD operations in the Active Record class.

An object that wraps a row in a database table or view, encapsulates
the database access, and adds domain logic on that data.

Person

lasthame
firstname
numberOfDependents

update()

insert()

delete()
getExemption()
isFlaggedForAudit()
getTaxableEarnings()

Figure 69: Structural Rules, Intent. and Sketch of Active Record Pattern

186

Table Data Gateway

1. There is a Table Data Gateway class in the model.

2. There are CRUD operations in the Table Data Gateway class.

An object that acts as a Gateway (466) to a database table.
One instance handies all the rows in the table.

Person Gateway

find(id) : RecordSet

findWitht astName(String) : RecordSet
update(id,lastname firstname,numberOfDependents)
insert(fastname,firstname,numberOfDependents)
delete(id)

Figure 70: Structural Rules, Intent, and Sketch of Table Data Gateway Pattern

Row Data Gateway

1. There is a Row Data Gateway class in the model.

2. There are at least three operations: insert, delete and update in the Row Data Gateway
class.

3. There is a Finder class as a client for the Row Data Gateway class.

4. There is at least one £ind operation in the Finder class.

An object that acts as a Gateway (466) to a single record in a data source.
There is one instance per row.

Person Finder

find(id : Integer)
findWithLastName(String : long)

Y
¥
1
'
]

AV4

Person Gateway

lastname
firstname
numberOfDependents

update()
insert()
delete()

Figure 71: Structural Rules, Intent, and Sketch of Row Data Gateway Pattern

Remote Facade

Il

There is a Remote Facade class in the model.

The Remote Facade class is a client of a supplier class.

There are at least two getter and two setter operations in the supplier class.

There are at least two bulk accessor operations {getBulk and setBulk) in the Remote Facade

class.

Provides a coarse-grained facade on fine-grained objects to improve efficiency over a network.

Address
Address Facade
L _ _> getStreet()
getAddressData() getCity()
setAddress(street : String,city : String,zip : String) getZip()
setStreet(arg : String)

setCity(arg : String)
setZip(arg : String)

Figure 72: Structural Rules, Intent, and Sketch of Remote Facade Pattern

Data Transfer Object

Ll e

. There is a Data Transfer Object class in the model.
There is at least one getter and one setter operation in the Data Transfer Object class.
There is one serialize and one deserialize operation in the Data Transfer Object class.

There is an Assembler class a client for the Data Transfer Object class.

Provides a coarse-grained facade on fine-grained objects to improve efficiency over a network.

Album
name : String
AlbumDTO T
gkrl:s; Stsr;:?‘g ST Album Assembler o
toXmiElement() el 1
readXmi() pw

name : String

Figure 73: Structural Rules, Intent, and Sketch of Data Transfer Object Pattern

188

Optimistic Offline Lock

1. There is a Optimistic Offline Lock class in the model.

2. There is at least one version attribute in the Optimistic 0Offline Lock class.

Figure 74: Structural Rules of Optimistic Offline Lock Pattern

Pessimistic Offfine Lock

. There is a Pessimistic Offline Lock class in the model.

-

2. There is at least one lock operation in the Pessimistic Offline Lock class.

Figure 75: Structural Rules, Intent, and Sketch of Pessimistic Offline Lock Pattern

Client Session State

1. There is a Client Session State class in the model.

2. There is at least one Session ID attribute in the Client Session State class.

Figure 76: Structural Rules of Client Session State Pattern

189

Server Session State

1. There is a Server Session State class in the model.
2. There is at least one Session ID attribute in the Server Session State class.

3. There are at least two operations (serialize and deserialize) in the Server Session
State class.

Figure 77: Structural Rules of Server Session State Pattern

Layer Supertype

There is a Layer Supertype class in the model.
There is at least one operation in the Layer Supertype class.

There is at least one child for the Layer Supertype class.

= N

All the children of the Layer Supertype class must be of the same type.

Figure 78: Structural Rules of Layer Supertype Pattern

190

Record_Set

1. There is a Record Set class in the model.

2. The Record Set class must have a navigable one-to-many composite association towards a
Table class.

3. The Table class has a navigable one-to-many composite association towards a Row class.

4. The Table class has a navigable one-to-many composite association towards a Column class

An in-memory representation of tabular data.

1.2
Row
Record Set ‘1% Table
@ Column

Figure 79: Structural Rules, Intent, and Sketch of Record Set Pattern

Money

1. There is a Money class in the model.
2. There are two attributes amount and currency in the Money class.

3. There is at least one operation in the Money class.

Represents a monetary value.

Money
amount
currency
+ -0
allocate()
> < <=, >z :()

Figure 80: Structural Rules, Intent, and Sketch of Money Pattern

191

Gateway

. There is a Gateway class in the model.
. There is at least one operation in the Gateway class.

. There is at least one client class for the Gateway class.

I N

. There is at least one supplier class for the Gateway class.

An object that encapsulates access to an external system or resource.

) A\V4 Pricing Package I

Figure 81: Structural Rules, Intent, and Sketch of Gateway Pattern

Mapper

1. There is a Mapper class in the model.
2. There is at least one operation in the Mapper class.
3. There is at least one supplier class for the Mapper class.

4. There is no client class for the Mapper class.

An object that sets sup a communication between two independent objects.

Pricing Package I

Figure 82: Structural Rules. Intent, and Sketch of NMapper Pattern

192

A.3.2 Part II: Syntactic Rules (Pattern Organizations)

This section uses the formalism introduced in Section 3.3.2 to define syntactic rules that
show the layers of the system and the placement of the patterns inside the layers. The
references given at the end of each rule, in the form of “:Axx,” refers to the advices in
Section A.2.

pofeaa model D main layer . auziliary layer® :A49

main layer O presentation . service”) | domain . datasource :A08, A47, A49

presentation O controller . view :A22

auziliary layer D base® , distributed”(©*? | concurrency’(©*¥ | sessionstate’(C*) A48, A63, A62

controller 5 Page Controller , Front Controller :A50

view 3 Template View , Transform View :A65

service > Service Layer :A61

domain 3 Domain Model, Table Module, Transaction Script :A64

datasource > Data Mapper, Active Record, Table Data Gateway, Row Data Gateway :Al2
base > Record Set, Layer Supertype, Money, Mapper, Gateway :All

distributed > Remote Facade, Data Transfer Object :A68

concurrency > Oplimistic Offline Lock, Pessimistic Offline Lock :A66

sessionstate 3 Client Session State, Server Session State :A67

193

A.3.3 Part IIl: Syntactic Rules (Pattern Relationships)

This section uses the formalism introduced in Section 3.3.2 to define the relationship between
patterns. The references given at the end of each rule, in the form of “:Axx,” refers to the
advices in Section A.2.

Page Controller — Template View | Transform View :A35, A51

Front Controller — Template View | Transform View :A35

Page Controller @ Template View :A23

Front Controller &5 Template View :A23

Template View 4 Service Layer

Transform View 4 Service Layer

Service Layer — Domain Model | Table Module :A08, A09

Template View "% Domain Model | Table Module | Transaction Script :A07
Transform View ey Domain Model | Table Module | Transaction Script :A07
Page Controller "5 Domain Model | Table Module | Transaction Script 777 :A07
Front Controller "' Domain Model | Table Module | Transaction Script 777 :A07
Domain Model %' Active Record :A12, A13

Domain Model S5 Data Mapper :A12, A13

Table Module — Table Data Gateway | Row Data Gateway :A38

Table Module — Table Data Gateway {C113} :Al10

Transaction Script — Table Data Gateway | Row Data Gateway :A2

Table Data Gateway — Record Set {C111} :Al19

Table Data Gateway %% Data Transfer Object :A19

datasource

Active Record :A13

atasource
«—

Data Mapper

Table Data Gateway 4 Row Data Gateway {C112}

concurrency

Optimistic Offtine Lock = & Pessimistic Offline Lock {C112}

sessionstate
“—

Client Session Stale Seﬁzer Sesston State {C112}

FrontController 1 Controller :A50

PageController T Controller A50

Data Mapper 1 Mapper :A53

Table Data Gateway | Gateway :A54

Row Data Galeway | Gateway :A55

C111: Return type of every find() operation in the Table Data Gateway pattern is Record Set

C112: Two patterns are applied for the same unit of work

C113: There is special tooling for Record Sets

194

A.3.4 Part IV: Semantic Rules

This section uses the formalism introduced in Section 3.3.3 to define the semantic rules
governing the application of patterns. The references given at the end of each rule, in the
form of “:Axx,” refers to the advices in Section A.2.

Page Controller ~ {C11} :A23

Front Controller = {C12} :A23

Template View ~ {C61} :A52

Transform View =~ {C62} :A52

Domain Model = {C12 and and C23 C33} :A7?

Transaction Script % {C11} :A05

Transaction Script ~ {C21 and C31} :A60

Table Module ~ {C11} :A04

Table Module % {C122} :A06

Table Data Gateway = {insert() parameter list C update() parameter list} :A467

Active Record = Template View {C121} :A7?7

Service Layer ~ {C41} :A47

Remote Facade =~ {C42} :A48

Data Transfer Object ~ {C42} :A48

Optimistic Offtine Lock ~ {C43 and C51} :A29, A63

" Pessimistic Offline Lock =~ {C43 and C52} :A29, A63

Client Session State =~ {C44} :A62

Server Session State ~ {C44} :A62

C121: The parameters of the operations of the Active Record pattern must match with the attributes
of Template View

C122: There is no special tooling for Record Sets

A4 PofEAA UML Profile
A.4.1 Stereotypes

Stereotypes are shown by the white boxes in Figure 83. The gray boxes are the UML
meta-classes. An arrows from a stereotype to a UML meta class, must be interpreted as an

extension.

<<profile>>
PoEAA

feature

<<stereotype>>. <<stereotype>>
PofEAAModel [—1—"1 presentation
<<stereotype>>
ConcreteCommand <<stel >> | <<stereotype>> controller view
FrontControfler PageController
| <<stereotvpe>> | 633 >
<<stereotype>> <<ste; >>
ester 1 - C service domain
find inserl <<y
TemptateView TransformView
| <<stereotype>> | |<<sterectype>> |
<<stereotype>> | | <<stereotype>> Helper .
delete update pe <<stereotype>> | < >
Domai Servicet ayer
| <<sfterectype>> |<<stereotype>>
concurrency i
getter selter <<stereotype>>
TableModule T i ip!
<<stereotype>>
<<slereotype>> <<stereotype>>
base
getBulk setBulk < < >
DataMapper ActiveRecord
<
doGet doPost <<stereotyne>> __
TableD: RowDataGateway
<<stereotype>>
<<gtere > <<stereotype>> . Finder
transform process - __<<stereotype>>__
RemoteFacade DataTransferObject
< >
- . Assembler
deserialize serialize
PessimisticOfflinel ock OptimisticOfflinel ock
<<slergotype>>_
1 lock
. <<stereclype>> | _..<<stereotype>>
B Cl i
version
<<stereolype>> <<stereotype>>.
T ‘_‘Np""‘ B reotype2. <<slereotype>> <<stereotype>>
sessionlD Table
RecordSet LayerSupertype
<<slereotype>>
amount <<stereotype>>
<<stereotype>> Row stergalypez>
dataTable Money
<<stereclype>> <<stereotype>> | <<stereclype>>
<<stereotype>>
currency Galeway Currency
Column
<<slereotype>>
Mapper

Figure 83: NMapping the PofEAA Meta-model into the UML Meta-model

196

A.4.2 Tagged Values

Tagged Values are represented in Table 22.

Table 22: Tagged Values for stereotype «PofEAAModel» in PofEAA UML Profile

| Tag | Type | Mult. | Values]
ServiceLayer String | [0..1] Yes , No
DistributedLayer String | [0..1] Yes , No
ConcurrencyLayer | String | [0..1] Yes , No
SessionStateLayer | String | [0..1 Yes , No
ChanceOfConflict String | [0..1 Low , High
ViewBuilt String | [0..1] HTML , XSLT
Tool String | {0..1 Java , .Net
Complexity String 0..1 Simple , Moderate, Complex
Expertise String 0..1 Novice , Intermediate , Expert

A.4.3 Constraints

Constraints are written in Java as ArgoUML

these critics are shown in Section A.5.

critic classes. The source code of some of

A.5 Source Code Excerpts

A.5.1 JavaDoc for General Utility Singleton Class (GU.java)

org.argouml.pattem.cognitive. PofEAA. util

Class GU

Object
extended by org.argouml.pattern.cognitive.PofEAA.util.GU

public final class GU
extends Object

This class contains general utilities and check methods usable for all other critique classes or wizard classes. It is a
Singleton.

Author:
Bahman Zamani

Method Summary

Object {addAttrToClass (Object cls, String name, char type)
Adds a new attribute, with the name and type specified, to the given class.

Object |addChildToClass (Object parent, String chdName, String str)
Adds a child with given name and stereotype to the given parent.

Object|addClientToClass (Object supplier, String str)
Adds a client with given stereotype to the given class.

voidiaddRationale (String wizardPath)
Adds the rationale to the Design Rationale file.

void{addSteToObject (Object obj, String st)
Adds a list of stereotypes to a model element.

Object {addSupplierToClass (Object client, String str)
Adds a supplier with given stereotype to the given class.

voidibuildOpWithSte (Object cls, String opName, String str)
Builds an operation with given stereotype and adds it to the given class.

Object |buildSubPackageWithSte (Object pack, String subPack, String str)
Builds a sub-package with given stereotype inside a containing package.

Object]buildTag(String tagName, Object str)
Builds a TagDefinition for a given stereotype in the given namespace.

boolean{classHasAl1CRUDOps (OCbject cls)
Checks whether or not the class has all four CRUD operations (find. insert, delete, update).

bocleaniclassHasAtt (Object cls)
Checks whether or niot the class has at least one attribute.

bocleanlclassHasAtt (Object cls, String att)
Checks whether or not the class has the attribute with given name.

bocleaniclassHasOnlyPublicOp (Object cls)
Checks whether or not all the operations of the class are public.

boolean}classHasOp (Obiect cls)
Checks whether or not the class has any operation.

boolean{classHasRetOp (Object c¢ls, String name, String retType)
Checks whether or not the class has an operation with given name and return type.

bcclean|classHasSteAtt(Object cls, Striné attStr)
Checks whether or not the class has an attribute with the given stereotype.

Figure 84: GU class Javadoc. page 1

198

http://cognitive.PofEAA.util

boolean

classHasSteOp (Object cls, String opSt)
Checks whether or not the class has an operation with the given stereotype.

boolean|classHasSteRetOp (Object cls, String opSt, String retTypeStr)
Checks whether or not the class has an operation with given stereotype and with given stereotype for its
return type.
Object |classHasStrChild (Object cls, String str)
Checks whether or not there is a child for a class with given stereotype.
Object [classHasStrClient (Object cls, String str)
Checks whether or not there is a client to a supplier class with given stereotype.
Object |classHasStrSupplier (Object c¢ls, String str)
Checks whether or not there is a supplier to a client class with given stereotype.
booleanfclassHasSubsetOps (Object cls, String oplStr, String op2Str)
Checks whether or not the parameters of the first operator, of the given class, are subset of the
parameters of the second operator.
boolean{classIsStateless (Object cls)
Checks whether or not the class is stateless; By stateless we mean there is no public attributes in the
class.
void|closeRationale ()
Closes the Design Rationale file, upon Exit from ArgoUML
voidlcreateRationaleFile ()
Creates the Design Rationale for the first time, or for appending.
Object |£indOp (Object cls, String opStr)
Finds an operator with given stereotype in the given class.
Object | findSteSubPack (Object pkg, String pacStr)
Checks whether or not the given package includes the specified stereotyped subpackage.
Object | findStrUniCompositionEnd (Object cls, String str, int mlt)
Returns the class that is connected to given class by a unidirectional aggregation, if the found class has
the requires stereotype and has the specified multiplicity.
Object{generateType (char type)
Builds a type based on given character representative.
Object {getPofeaaPkg ()
returns the object (package) indicating current PofEAA package
booleanjhasComplexity (String complexity)
Returns TRUE if the value of tag "Complexity” is the same as the given parameter.
bocleanthasConflict (String conf)
Returns TRUE if the value of tag "ChanceOfConflict” is the same as the given parameter.
becleanihasExpertise (String expertise)
Returns TRUE if the value of tag "Expertise” is the same as the given parameter.
booleanfhasStr (Object obj, String str)
Checks whether or not the given element has the specified stereotype among its stereotypes.
beolean|hasTool (String tool)
Returns TRUE if the value of tag "Tool” is the same as the given parameter.
beolean{hasViewBuilt (String viewBuilt)
Returns TRUE if the value of tag "ViewBuilt" is the same as the given parameter.
bcelean|isDistributed()
Returns TRUE if the value of tag "DistributedLayer” is "Yes"
veidimakeElementdbstract (Object cbj)
Makes an element Abstracts.
tcoclean|needsConcurrency ()

Returns TRUE iff the value of tag "ConcurrencyLayer” is "Yes”

Figure 85: GU class Javadoc. page 2

199

boolean|needsServiceLayer ()

Returns TRUE if the value of tag "ServiceLayer" is "Yes".

boolean|{needsSessionState ()

Returns TRUE iff the value of tag "SessionStateLayer" is "Yes"

Object |packageIncludes (Object pkg, String classStr)
Checks whether or not the given package includes the class indicated by the given stereotype.

boolean|patternFound(String patName)
Returns true if the given pattern name is found among the UsedPatternList in th emodel.

booleanpatternLayerMismatch (Object pkg)
Investigate all the classes in all the subpackages of the package with stereotype PofE4AAModel and if a
class is not located in a right package then returns TRUE as a mismatch.

String|searchLayerConfigStr (String stereotype)
Returns the name of the layer that must contain the pattern specified by the given stereotype.

Object|setMultiplicity (Object Association, String mull, String mul2)
Sets the multiplicity of an association.

void|setPofEAAPackage (Object pk)
Sets the global variable "pofeaaPkg" as the value given by the parameter.

boolean|subset(java.util.Collection setl, java.util.Collection set2)
Checks whether or not the first set is a subset of the second set.

Methods inherited from class Object

equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Method Detail

addAttrToClass

public static Object addAttrToClass (Object cls,
String name,
char type)

Adds a new attribute, with the name and type specified, to the given class.

Parameters:
cls - The class which will contain the attribute
name - The name of the attribute
type - The type of attribute, currently represented by one character

addChildToClass

public static Object addChildToClass (Object parent,
String chdName,
String str)

Adds a child with given name and stereotype to the given parent.

Parameters:
parent - The parent class
chdlame - The name of the child
str - The stereotype of the child, empty

e

means no stereotype is added!

Figure 86: GU class Javadoc. page 3

200

addClientToClass

public static Object addClientToClass (Object supplier,
String str)

Adds a client with given stereotype to the given class. Note: in A-->B, A is client, B is supplier.

Parameters:
supplier - The supplier class, empty
str - The stereotype of the client

means no stereotype is added!

addRationale
public static void addRationale(String wizardPath)
Adds the rationale to the Design Rationale file.

Parameters:
wizardpath - The given wizard in the form of a string.

addSteToObject

public static void addSteToObject (Object obj,
String st}

Adds a list of stereotypes to a model element.

Parameters:
obj - The model element to which we want to add some stereotypes
st - The COMMA separated string of added stereotypes such as "st1,st2,st3"

addSupplierToClass

public static Object addSupplierToClass (Object client,
String str)

Adds a supplier with given stereotype to the given class. Note: in A-->B, A is client, B is supplier.

Parameters:
client - The client class
str - The stereotype of client, empty "" means no stereotype is added!

buildOpWithSte

public static vcid buildOpWithSte (Object cls,
String opName,
String str)

Builds an operation with given stereotype and adds it to the given class. The return type will be void.

Parameters:
cls - The class in which the operation will be created
cpName - The name of the created operation
str - (Maybe Empty) The COMMA separated string of added stereotypes such as "st1.st2,st3"

Figure 87: GU class Javadoc. page 4

201

http://stl.st2.st3

buildSubPackageWithSte

public static Object buildSubPackageWithSte {Object pack,
String subPack,
String str)

Builds a sub-package with given stereotype inside a containing package.

Parameters:

pack - The name of the containing Package

subPack - The name of the SubPackage to be created

str - The COMMA separated string of added stereotypes such as "st1,st2,st3"
Returns:

The built package

buildTag

public static Object buildTag(String tagName,
Object str)

Builds a TagDefinition for a given stereotype in the given namespace.

Parameters: ‘
tagName - The name of the Tag to be created
str - The stereotype (object) as the owner of this tag
Returns:
The built tag

classHasAIICRUDOps
public static boolean classHasAllCRUDOps (Object cls)
Checks whether or not the class has all four CRUD operations (find, insert, delete, update).

Parameters:

cls - The class we are looking at.
Returns:

False if the class has not all the operations

classHasAtt

public static boclean classHasAtt (Object cls)
Checks whether or not the class has at least one attribute.

Parameters:

cls - The class we are looking at
Returns:

False if the class has not any attribute

classHasAtt

Figure 83: GU class Javadoc, page 5

b
<
[N]

public static boolean classHasAtt (Object cls,
String att)

Checks whether or not the class has the attribute with given name.

Parameters:

cls - The class we are looking at

att - The name of the attribute we are looking for
Returns:

True if the required attribute is found

classHasOnlyPublicOp
public static boolean classHasOnlyPublicOp (Object cls)
Checks whether or not all the operations of the class are public.

Parameters:]
cls - The class we are looking at
Returns:
False if the class has one non-public operation

classHasOp
public static boolean classHasOp(Object cls)
Checks whether or not the class has any operation.

Parameters:

cls - The class we are looking at
Returns:

False if the class has not any operation

classHasRetOp

public static boolean classHasRetOp (Object cls,
String name,
String retType)

Checks whether or not the class has an operation with given name and return type.

Parameters:
cls - The class we are looking at
name - The name of the operation we are looking for
retType - The name of returnType we are looking for
Returns:
True if the specified operation is found

classHasSteAtt

public static bcolean classHasSteAtt (Ckject cls,
String attStr)

Figure 89: GU class Javadoc. page 6

203

Checks whether or not the class has an attribute with the given stereotype.

Parameters:

cls - The class we are looking at

attst - The stereotype for attribute we are looking for.
Returns:

True if the required attribute is found

classHasSteOp

public static boolean classHasSteOp (Object cls,
String opSt)

Checks whether or not the class has an operation with the given stereotype.

Parameters:
opSt - The operation stereotype
cls - The class we are looking at
Returns:
True if the operation is found

classHasSteRetOp

public static boolean classHasSteRetOp (Object cls,
String opSt,
String retTypeStr)

Checks whether or not the class has an operation with given stereotype and with given stereotype for its return
type.

Parameters:
cls - The class we are looking at
opst - The stereotype of the operation we are looking for
retTypestr - The stereotype of the returnType of the operation
Returns:
true or false

classHasStrChild

public static Object classHasStrChild(Object cls,
String str)

Checks whether or not there is a child for a class with given stereotype.

Parameters:

cls - The parent class

str - The stereotype of child, empty (
Returns:

The child object. null if cls has not a child with stereotype str

"

) means no stereotype is required! Only one child is enough.

classHasStrClient

public static Object classHasStrClient {Object cls,

Figure 90: GU class Javadoc, page 7

204

String str)

Checks whether or not there is a client to a supplier class with given stereotype. Note: in A-->B, A is client, B is
supplier

Parameters:

cls - The supplier class

str - The stereotype of client, empty (") means no stereotype is required!
Returns:

The found client object; null if cls has not a client with stereotype str

classHasStrSupplier

public static Object classHasStrSupplier (Object cls,
String str)

Checks whether or not there is a supplier to a client class with given stereotype. Note: In A-->B, A is client, B is
supplier.

Parameters:

cls - The client class

str - The stereotype of supplier, empty (
Returns: '

The found supplier object; null if ¢cls has not a supplier with stereotype str

) means no stereotype is required!

classHasSubsetOps

public static booclean classHasSubsetOps (Object cls,
String oplStr,
String op2Str)

Checks whether or not the parameters of the first operator, of the given class, are subset of the parameters of the
second operator. Operators are specified by their stereotypes.

Parameters:
cls - The class we are looking at
opl1Str - The first operator
op2str - The second operator
Returns:
true if yes

classlsStateless
public static boclean classIsStateless(Okject c¢ls)
Checks whether or not the class is stateless; By stateless we mean there is no public attributes in the class.

Parameters:
cls - The class we are looking at.
Returns:
False if the class has even one public attribute

closeRationale

Figure 91: GU class Javadoc, page 8

205

public static void closeRationale()

Closes the Design Rationale file, upon Exit from ArgoUML

createRationaleFile
public static void createRationaleFile ()

Creates the Design Rationale for the first time, or for appending.

findOp

public static Object findOp (Object cls,
String opStr)

Finds an operator with given stereotype in the given class.

Parameters:

cls - The class we are looking at

opstr - The stereotype of the operation
Returns: .

The found operator object

findSteSubPack

public static Object findSteSubPack (Object pkg,
String pacStr)

Checks whether or not the given package includes the specified stereotyped subpackage.

Parameters:

pkg - The package we are looking at

pacstr - The stereotype for sub package we are looking for
Returns:

The found subpackage

findStrUniCompositionEnd

public static Object findStrUniCompositionEnd{(Object cls,
String str,
int mlt)

Returns the class that is connected to given class by a unidirectional aggregation, if the found class has the requires
stereotype and has the specified multiplicity. eg, suppose A --> B. and --> is an AGGREGATION from A to B.

Parameters:
cls - The class A
str - The stereotype of class B
mlt - The multiplicity of the aggregation in B side. -1 for infinity

generateType

Figure 92: GU class Javadoc. page 9

206

public static Object generateType(char type)
Builds a type based on given character representative.

Parameters:
char - Character representative for the type being created: 'b' for boolean, 'd’ for double, T’ for int, 'f’ for
float, 'v' for void, 'c' for Currency, 'r' for RecordSet

Returns:
An object for given type

getPofeaaPkg

public static Object getPofeaaPkg()

returns the object (package) indicating current PofEAA package

hasComplexity
public static boolean hasComplexity(String complexity)

Retumns TRUE if the value of tag "Complexity"” is the same as the given parameter. Note: The anticipated values
are "Simple", "Moderate", and "Complex". The default is "Simple", ie, if the given parameter is "Simple" and the
tag has no value yet, we return TRUE. :

Parameters:
complexity - The anticipated value for the tag Complexity

hasConflict

public static boolean hasConflict (String conf)

Returns TRUE if the value of tag "ChanceOfConflict” is the same as the given parameter. Note: The anticipated
values are "High" and "Low". The default is "Low", ie, if the given parameter is "Low" and the tag has no value
vet, we return TRUE.

Parameters:
conf - The anticipated value for the tag Expertise

hasExpertise
public static bcclean hasExpertise(String expertise)

Returns TRUE if the value of tag "Expertise” is the same as the given parameter. Note: The anticipated values are
"Novice”, "Intermediate”, and "Expert”. The default is "Novice", ie, if the given parameter is "Novice"” and the tag
has no value yet, we return TRUE.

Parameters:
expertise - The anticipated value for the tag Expertise

hasStr

puklic static koclean hasStr{Object cbi,

Figure 93: GU class Javadoc. page 10

207

String str)
Checks whether or not the given element has the specified stereotype among its stereotypes.

Parameters:
obj - The model element we are looking at
str - The stereotype we are looking for
Returns:
True if the stereotype is found.

hasTool

public static boolean hasTool (String tool)

Returns TRUE if the value of tag "Tool" is the same as the given parameter. Note: default is Java, ie, if the given
parameter is "Java" and the tag has no value yet, we return TRUE.

Parameters:
tool - The anticipated value for the tag Tool

hasViewBuilt

public static boolean hasViewBuilt(String viewBuilt)

Returns TRUE if the value of tag "ViewBuilt" is the same as the given parameter. Note: The anticipated values are
"HTML",and "XSLT". The default is "HTML", ie, if the given parameter is "THTML" and the tag has no value yet,
we return TRUE.

Parameters:
viewBuilt - The anticipated value for the tag Expertise

isDistributed
public static boolean isDistributed()

Returns TRUE if the value of tag "DistributedLayer” is "Yes"

makeElementAbstract
public static void makeElementAbstract (Object cbj)
Makes an element Abstracts.

Parameters:
obj - The model element which we want to make it abstract

needsConcurrency
public static boclean needsConcurrency ()

Returns TRUE iff the value of tag "ConcurrencyLayer™ 1s "Yes"

Figure 94: GU class Javadoc. page 11

208

needsServiceLayer
public static boolean needsServicelayer ()

Returns TRUE if the value of tag "ServiceLayer" is "Yes".

needsSessionState
public static boolean needsSessionState ()

Returns TRUE iff the value of tag "SessionStateLayer" is "Yes"

packagelncludes

public static Object packagelIncludes (Object pkg,
String classStr)

Checks whether or not the given package includes the class indicated by the given stereotype.

Parameters:

pkg - The package we are looking at.

classStr - The stereotype of the class are looking for.
Returns:

The found class.

patternFound
public static boolean patternFound(String patName)
Returns true if the given pattern name is found among the UsedPatternList in th emodel.

Parameters:

patName - The name of the pattern we are looking for Note that this name is the name of the CRITIC

corresponding to the pattern, WITHOUT the "Cr"
Returns:
True if the pattern is found

patternLayerMismatch

public static boolean patternLayerMismatch (Object pkg)

Investigate all the classes in all the subpackages of the package with stereotype PofEAAModel and if a class is not

located in a right package then returns TRUE as a mismatch.

Parameters:

pka - The package we are looking at (it is supposed to be the root PofEAA package)
Returns: :
True if any mis match is found

searchLayerConfigStr

public static String searchLayerConfigStr (String sterectype)

O

Figure 95: GU class Javadoc. page 12

209

Returns the name of the layer that must contain the pattern specified by the given stereotype.

Parameters:

stereotype - The stereotype indicating the pattern
Returns:

Name of the layer that must contain the pattern

setMultiplicity

public static Object setMultiplicity(Object Association,
String mull,
String mul2)

Sets the multiplicity of an association.

Parameters:
mull - The start of the association
mul2 - The end of the association

setPofEAAPackage
public static void setPofEAAPackage (Object pk)
Sets the global variable "pofeaaPkg" as the value given by the parameter.

Parameters:
pk - A first leve] package in the model with stereotype PofEA4AModel

subset

public static boolean subset(java.util.Collection setl,
java.util.Collection set2)

Checks whether or not the first set is a subset of the second set. Note: We compare the names of the objects in set]
and set2.

Parameters:

set1 - The first set

set2 - The second Set
Returns:

true if setl is subset of set2

Figure 96: GU class Javadoc. page 13

210

A.5.2 A Structural Critic

FrontController.java

package org.argouml.pattern.cognitive.PofEAX. critics;

import java.util.Collection;

import java.util.Iterator;

import org.argouml.cognitive.Critic;

import org.argouml.cognitive.Designer;

import org.argouml.cognitive.ToDoltem;

import org.argouml.model.Model;

import org.argouml.pattern.cognitive.PofEAA.util.GUj
import org.argouml.pattern.cognitive.PofEAA.wizards.WizFrontController;
import org.argouml.uml.cognitive.UMLDecision;

import org.argouml.uml.cognitive.critics.CrUML;

/%%

*

This is a critic to find Fowler’s Front Controller pattern.

Following are the requirements for detecting this pattern:

<1i> A class with stereotype handler.

<1li> Handler class must have two operations with stereotypes
doget and dopost.

<1li> Handler class should be a client of a supplier class with stereotypes
command.

<1i> Command class should have operations with stereotype process.

<1i> Command class should have child classes with stereotype concretecommand.

<1i> ConcreteCommand class should have operations with stereotype process.

@see PofEAA book, P. 344 (PLV Rule (advice): A25).

@version Structural

Q@author Bahman Zamani & Sahar Kayhani

L IR IR R B SRR BT JEE NN SN BEE SN JEE 2

*/
public class CrFrontController extends CrUML{
public CrFrontController(){
setupHeadAndDesc () ;
addSupportedDecision(UMLDecision. PATTERNSOFEAA) ;
setKnowledgeTypes(Critic.KT_POFEAASTR) ;
setPriority(ToDoItem.HIGH_PRIORITY);
}
public boolean predicate(Object dm, Designer dsgr) {
if (dm == pull) return NO_PROBLEM;
if (! Model.getFacade() .isAClass(dm)) return NO_PROBLEM;
Object aClass = dm;
// aClass should have stereotype <<fromtController>>, this is the sign
// of pattern that is applied on the Handler class
if (! GU.objectHasSte(aClass, "frontController")) /*SIGN*/
return NO_PROBLEM;
// class should have at least one operation
if (! GU.classHasOp(aClass)) return PROBLEM_FQUND;
// Both doGet and doPost ops are required
boolean getOperationExist = GU.classHasSteOp(aClass,"doget");
if (! getOperationExist). return PROBLEM_FOUND;
boolean postOperationExist = GU.classHasSteOp(aClass,"dopost");
if (! postOperationExist) return PROBLEM_FOUND;
// Check if there is a client
Collection depSet = Model.getFacade().getClientDependencies(aClass);
if (depSet.isEmpty()) return PROBLEM_FOUND;
// at least one of the suppliers should have the COMMAND structure

211

1

// An ABSTRACT class with stereotype <<command>> and one <<process>>
// operation as well as at least one child with stereotype
// <<concreteCommand>> and with one <<process>> operation
boolean supplierFound = false;
Iterator deps = depSet.iterator();
while (deps.hasNext()) {
Object dep = deps.next();)
Collection supplierSet = Model.getFacade().getSuppliers(dep);
if (supplierSet.isEmpty()) continue;
Iterator suppliers = supplierSet.iterator();
while (suppliers.hasNext() && !supplierFound) {
// This should be the Command class
Object supplier = suppliers.next();
if (GU.objectHasSte(supplier, "command")) {
if (Model.getFacade().isAbstract(supplier)) {
if (GU.classHasSteOp(supplier,"process")) {
// We need at least one child which is CONCRETE
// and has PROCESS operation
Collection children = Model.getFacade().getChildren(supplier);
if ((children.isEmpty())) return PROBLEM_FOUND;
Iterator child = children.iterator();
while (child.hasNext()) {
Object conCommand = child.next();
// concrete command must be a class
if (! Model.getFacade().isAClass{conCommand)) continue;
// concrete command class must be concrete
if (Model.getFacade().isAbstract(conCommand)) continue;
if (!GU.objectHasSte(conCommand,"concretecommand"))
return PROBLEM_FQUND;
if (!GU.classHasSteOp(conCommand, "process"))
return PROBLEM_FQUND;
// Now, report the correct usage of FC pattern
classNames.add (Model.getFacade() . getName (conCommand) +"
-> concrete command");
}
supplierFound = true;
classNames.add(Model.getFacade () . getName (supplier)+"->command") ;
}r11r2}
if (! supplierFound) return PRUBLEM_FOUND;
PATTERN_FOUND = true;
classNames.add(Model .getFacade() .getName (aClass)+" -> handler");
patternLayer = Model.getFacade().getName(Model.getFacade() .getNamespace(aClass));
return NO_PROBLEM;

public Class getWizardClass(ToDoItem item) {

}
}

return WizFrontController.class;

A.5.3 Three Syntactic Critics

CrLayers.java

package org.argouml.pattern.cognitive.PoTEAA.critics;

import java.util.Iterator;

import org.argouml.cognitive.Critic;

import org.argouml.cognitive.Designer;

import org.argouml.cognitive.ToDoltem;

import org.argouml.model.Model;

import org.argouml.pattern.cognitive.PofEAA.util.GU;

import org.argouml.pattern.cognitive.PofEAA.wizards.Wizlayers;
import org.argouml.uml.cognitive.UMLDecision;

import org.argouml.uml.cognitive.critics.CrUML;

public class Crlayers extends CrUML {
public CrLayers(){
setupHeadAndDesc () ;
addSupportedDecision(UMLDecision.PATTERNSOFEAA) ;
setKnowledgeTypes (Critic.KT_POFEAASYN);
setPriority(ToDoItem.HIGH_PRIORITY);
}

public boolean predicate2(Cbject dm, Designer dsgr) {
if (dm == null) return NO_PROBLEM;
if (Model.getFacade().isAModel(dm)) return NO_PROBLEM;
if (1(Model.getFacade().isAPackage(dm))) return NO_PROBLEM;
Object aPackage = dm;
if (!GU.hasStr(aPackage, "PofEAAModel")) return NO_PROBLEM;
GU.setPofEAAPackage (aPackage) ; ‘

boolean presentationFound = false; boolean serviceFound = false;
boolean domainFound = false; boolean dataSourceFound = false;
boolean basicFound = false; boolean distributedFound = false;
boolean concurrencyFound = false; boolean sessionStateFound = false;
String prs = ""; String srv = ""; String dom = ""; String ds = "";

String bas = ""; String dis = ""; String conc= ""; String ses = "";

Iterator innerElms = Model.getFacade().getOwnedElements (aPackage) .iterator();
while (innerElms.hasNext()) {
Object elmnt = innerElms.next();
if (elmnt !'= null) {
if (Model.getFacade().isAPackage(elmnt)) {
if (GU.hasStr(elmnt, "presentation")) {
presentationFound = true;
prs = Model.getFacade().getName (elmnt);

}

else if (GU.hasStr(elmnt, "service")) {
serviceFound = true;
srv = Model.getFacade() .getName(elmnt);

}

else if (GU.hasStr(elmnt, "domain")) {
domainFound = true;
dom = Model .getFacade().getName(elmnt);

}

else if (GU.hasStr(elmnt, “"datasource")) {
dataSourceFound = true;
ds = Model.getFacade().getName(elmnt};

}

else if (GU.hasStr(elmnt, "basic")) {

213

basicFound = true;
bas = Model.getFacade().getName (elmnt);
}
else if (GUfhasStr(elmnt, "distributed")) {
distributedFound = true;
dis = Model.getFacade() .getName(elmnt);
}
else if (GU.hasStr(elmnt, "concurrency")) {
concurrencyFound = true;
conc = Model.getFacade() .getName(elmnt);
}
else if (GU.hasStr(elmnt, "sessionstate")) {
sessionStateFound = true;
ses = Model.getFacade().getName(elmnt);

L B

if ((!serviceFound && GU.needsServiceLayer()) I
(!distributedFound && GU.needsDistributedLayer()) ||
(1concurrencyFound && GU.needsConcurrencyLayer()) ||
(tsessionStateFound && GU.needsSessionStateLayer()) ||
!presentationFound || !domainFound || !dataSourceFound || !basicFound) {
return PROBLEM_FOUND;
}

PATTERN_FOUND = true;

classNames.add(prs+" -> Presentation Layer Package");

if (serviceFound) classNames.add(srv+" -> Service Layer Package");
classNames.add(dom+" ~> Domain layer Package");

classNames.add(ds+ " -> Data Source Layer Package”);
classNames.add(bas+" -> Basic Layer Package”);

if (distributedFound) classNames.add(dis+" -> Distributed Package");

if (concurrencyFound) classNames.add(conc+" -> Concurrency Package");
if (sessionStateFound) classNames.add(ses+" -> Session State Package");
classNames.add(Model.getFacade() . getName(aPackage)+" -> PofEAA Model");
patternLayer = Model.getFacade().getName(Model.getFacade().getNamespace(aPackage));
return NO_PROBLEM;

}
public Class getWizardClass(ToDoItem item) {
return WizLlayers.class;

}

CrPatterns.java

package org.argouml.pattern.cognitive .PofEARR.critics;

import org.argouml.cognitive.Critic;)

import org.argouml.cognitive.Designer;

import org.argouml.cognitive.ToDoItem;

import org.argouml.model.Model;

import org.argouml.pattern.cognitive.PofEAA.util.GU;

import org.argouml.pattern.cognitive.PofEAA.wizards.WizPatterns;
import org.argouml.uml.cognitive.UMLDecision;

import org.argouml.uml.cognitive.critics.CrUML;

/*%

* This critic checks whether the patterns are placed in correct layers or not?

214

* In case of any mismatch between the layer that includes the pattern, and the
* anticipated layer, a syntax error is reported.
* @see PofEAA book, http://martinfowler.com/eaaCatalog/
* @version Syntactic
* Qauthor Bahman Zamani (with contributions by Sahar Kayhani)
*/
public class CrPatterns extends CrUML {
public CrLayers2(){
setupHeadAndDesc() ;
addSupportedDecision (UMLDecision.PATTERNSOFEAA) ;
setKnowledgeTypes(Critic.KT_POFEAASYN);
i setPriority(ToDoItem.HIGH_PRIORITY);
}
public boolean predicate2(Object dm, Designer dsgr) {
if (dm == null) return NO_PROBLEM;
// Note that the root model is also a package!
// Do not apply this critic on that!
if (Model.getFacade().isAModel(dm)) return NO_PROBLEM;
if (!(Model.getFacade().isAPackage(dm))) return NO_PROBLEM;
Object aPackage = dm;
// Only look inside the main package which is a package with
// stereotype <<PofEAAModel>>
if (!GU.hasStr(aPackage, "PofEAAModel")) return NO_PROBLEM;
// If any mismatch is found between a pattern and its containing layer,
// then trigger this critic
if (!GU.patternLayerMismatch (aPackage)) return NO_PROBLEM;
return PROBLEM_FOUND; '
} ,
public Class getWizardClass(ToDoIltem item) {
return WizPatterns.class;

}

CrDomainModelSyn.java

package org.argouml.pattern.cognitive.PofEAR.critics;

import org.argouml.cognitive.Critic;

import org.argouml.cognitive;Desigﬁer;

import org.argouml.cognitive.ToDoItem;

import org.argouml.model.Model;

import org.argouml.pattern.cognitive.PofEAA.util.GU;

import org.argouml.pattern.cognitive.PofEAA.wizards.WizDomainModelSyn;
import org.argouml.uml.cognitive.UMLDecision;

import org.argouml.uml.cognitive.critics.CrUML;

VES S

*

This is a critic to find syntactic errors regarding the relationship between the

* Domain Model pattern and the patterns in the Data Source Layer.

* Following are the requirements for detecting such errors.

*

* <1i> A pattern DomainModel is already detected and is in the Domain Layer.
* <1i> Either state A or B happened.

*

* <1i> A: A dependency is found from DomainModel to a pattern

* <1i> ActiveRecord which is already detected and is in the Data Source Layer.
* <1i> The model is not Simple.

*

*

http://martinfowler.com/eaaCatalog/

Q@see PofEAA book, P.36,117 (PLV Rule: R12,R13,R14).
Qversion Syntactic
Qauthor Bahman Zamani, 20 Nov 2008 , 6 Apr 09

* <1i> B: A dependency is found from DomainModel to a pattern

* <1i> DataMapper which is already detected and is in the Data Source Layer.
* <1i> The model is not Complex.

*

*

*

*

*

*/
public class CrDomainModelSyn extends CrUML {

public CrDomainModelSyn(){
setupHeadAndDesc () ;
addSupportedDecision(UMLDecision. PATTERNSOFEAA) ;
setKnowledgeTypes(Critic.KT_POFEAASYN) ;
setPriority(ToDoItem.HIGH_PRIORITY);

}

public boolean predicate2(Dbject dm, Designer dsgr) {
if (dm == null) return NO_PROBLEM;
if (! Model.getFacade().isAClass(dm)) return NO_PROBLEM;
Object dmCls = dm;
if ('GU.hasStr(dmCls, "DomainModel")) return NO_PROBLEM;
// Pattern must be already found
if (1GU.patternFound("DomainModel")) return NO_PROBLEM;
// DomainModel Pattern must be in the correct Layer
Object dmPkg = Model.getFacade().getNamespace(dmCls);
if (!GU.hasStr(dmPkg, "domain")) return NO_PROBLEN;

// If DomainModel uses Active Record
Object actRec = GU.findStrSupplier(dmCls, "ActiveRecord");
if (actRec != null) {
// ActiveRecord Pattern must be already found
if (GU.patternFound("ActiveRecord")) {
// ActiveRecord Pattern must be in the correct Layer
Object dsPkg = Model.getFacade() .getNamespace(actRec);
if (GU.hasStr(dsPkg, "dataSource"))
// If the model is not Simple, it is a sign of an error
if (' GU.basComplexity("Simple")) return PROBLEM_FOUND;

}
// 1f DomainModel uses Data Mapper
Object dataMap = GU.findStrSupplier(dmCls, "DataMapper");
if (dataMap != null) {
// DataMapper Pattern must be already found
if (GU.patternFound("DataMapper")) {
// DataMapper Pattern must be in the correct Layer
Object dsPkg = Model.getFacade() .getNamespace(dataMap);
if (GU.hasStr(dsPkg, "dataSource"))
// If the model is not Complex, it is a sign of an error
if (! GU.hasComplexity("Complex")) return PROBLEM_FOUND;

}
return NO_PROBLEM;

}

public Class getWizardClass(ToDoItem item) {
return WizDomainModelSyn.class;

}

216

A.5.4 A Semantic Critic
CrTableDataGatewaySem.java

package org.argouml.pattern.cognitive.PoIEAA.critics;

import org.argouml.cognitive.Critic;

import org.argouml.cognitive.Designer;

import org.argouml.cognitive.ToDoltem;

import orxrg.argouml.model.Model;

import org.argouml.pattern.cognitive.PofEAA.util.GU;

import org.argouml.pattern.cognitive.PofEAA.wizards.WizTableDataGatewaySem;

import org.argouml.uml.cognitive.UMLDecision;

import org.argouml.uml.cognitive.critics.CrUML;

/%%
* This is a critic to find semantic errors in Fowler’s Table Data Gateway pattern.
* Following are the requirements for detecting the exrror:

*
* <1i> A class with stereotype TableDataGateway
* <1i> pattern is already detected and reported in the PIT
* <1i> The parameter list of insert() should be a subset of parameters of update()
*
*
_* @see PofEAA book, P. 144 (PLV Rule: R46).
* @version Semantic
* Qauthor Bahman Zamani
*/

public class CrTableDataGatewaySem extends CrUML {

public CrTableDataGatewaySem() {
setupHeadAndDesc () ;
addSupportedDecision(UMLDecision.PATTERNSOFEAA) ;
setKnowledgeTypes (Critic.KT_POFEAASEM) ;
setPriority(ToDoItem .HIGH_PRIORITY);

public boolean predicate2(Object dm, Designer dsgr) {
if (dm == null) return NO_PROBLEM;
if (! Model.getFacade().isAClass(dm)) return NO_PROBLEM;
Object aClass = dm;
// aClass should have stereotype <<TableDataGateway>>
if (1GU.hasStr(aClass, "TableDataGateway")) return NO_PROBLEM;
// The TDG pattern should be already detected and recorded in PIT classNames
if (! GU.patternFound("TableDataGateway”)) return NO_PROBLEM;
// update() should contain all parameters of imsert()
// Normally, update needs an ID or Key as extra parameter
if (! GU.classHasSubsetOps(aClass, "insert", "update”)) return PROBLEM_FOUND;
return NO_PROBLENM;
}
public Class getWizardClass(ToDoItem item) {
return WizTableDataGatewaySem.class;
}
}

A.5.5 A Wizard
WizFrontController.java

package org.argouml.pattern.cognitive.PofEAR.wizards;

import java.util.Collection;

import java.util.Iterator;

import java.util.Vector;

import javax.swing.JPanel;

import org.apache.log4j.Logger;

import org.argouml.cognitive.ui.WizStepChoice;
import org.argouml.ii8n.Translator;

import org.argouml.model.Model;

import org.argouml.pattern.cognitive.PofEAA.util.GU;
import org.argouml.uml.cognitive.critics.UMLWizard;

/x*

* Wizard class for CrFrontController critic.

* This wizard helps user to add missing doGet or doPost operations
* to the Handler class.

* Also to add supplier class with stereotype Command to the Handler class.
* Also to add process operation in the Command class.

* Also to make the Command class, abstract.

* Also to add ConcreteCommand children to the Command class.

* Also to add process operation in the Concrete Command class.

*

* Qauthor Bahman Zamani 13 Aug 2008

* (With contributions by Sahar Kayhani)

*/
public class WizFrontController extends UMLWizard {
// Bahman Zamani - 19 Aug 2008
// Ve need to record which class is the Command class and which one is concreteCommmand
// This way in doAction method, it’s easy to add missing items to it
private Object commandClass = null;
private Object conCommandClass = null;
private WizStepChoice steplChoice = null;
private String[] missingItems = new String[5];
private int missItemCounter = 0;
private Object triggerClass = null;
private String instructions = Translator.localize("critics.WizFrontControllert-ins");
private static final Logger LOG = Logger.getLogger (WizFrontController.class);
public WizFrontController () {}
private Object getTriggerClass() {
if ((triggerClass == null) && (getToDoItem() != null))
triggerClass = getModelElement();

}

return triggerClass;
}
private Vector buildOptions() {

Object cls = getTriggerClass();

if (c¢ls == null)

return null;

Vector res = new Vector();

if (!GU.classHasSteOp(cls,"doGet")}) {
res.addElement (Translator.localize("critics.WizFrontController-optioni"));
missingItenms[missItemCounter++] = "doGet";
} .
if (!'GU.classHasSteOp(cls,"doPost")) {

res.addElement (Translator.localize("critics.WizFrontController-option2"));

missingItems[missItemCounter++] = "doPost";

218

}
// We need a <<Command>> supplier class
Collection depSet = Model.getFacade() .getClientDependencies(cls);
if (depSet.isEmpty()){
res.addElement (Translator.localize("critics.WizFrontController-option3"));
nissingItems[missItemCounter++]} = “Command";
}
else {
boolean commandFound = false;
Iterator deps = depSet.iterator();
vhile (deps.hasNext() && !commandFound) {
Object dep = deps.next();
Collection supplierSet = Model.getFacade().getSuppliers(dep);
if (supplierSet.isEmpty()) {
continue;
}
Iterator suppliers = supplierSet.iterator();
while (suppliers.hasNext() && !commandFound) {
commandClass = suppliers.next();
if (GU.hasStr(commandClass, "Command")) {
commandFound = true;
}
}
}
if (! commandFound){
res.addElement (Translator.localize("critics.WizFrontController-option3™"));
missingltems[missItemCounter++} = "Command";
}
else {
// <<Command>> class should be Abstract
if (! Model.getFacade().isAbstract(commandClass)) {
res.addElement (Translator.localize("critics.WizFrontController-optiond"));
missingIltems[missItemCounter++} = "commandAbs”;
}
// <<Command>> class needs <<process>> operation
if (! GU.classHasSteOp(commandClass,"process")) { :
res.addElement (Translator.localize("critics.WizFrontController-option5"));
missingItenms([missItemCounter++] = “"commandProcess”;
}
// <<Command>> class needs at least one child
Collection children = Model.getFacade().getChildren(commandClass);
if (children.isEmpty()) {
res.addElement (Translator.localize("critics.WizFrontController-option6"));
missingItens[missItemCounter++] = "commandChildren";
}
else {
// All children need <<ConcreteCommand>> stereotype
boolean conCommandFound = false;
Iterator child = children.iterator();
while (child.hasNext()) {
conCommandClass = child.next();
if (GU.hasStr(conCommandClass,"ConcreteCommand")) {
conCommandFound = true;
// each child needs <<process>> operation
if (! GU.classHasSteOp(conCommandClass,"process")) {
res.addElement (Translator.localize("critics.WizFrontController-option7"));
missingltenms [missItemCounter++] = "conCommandProcess";

}

219

// missing stereotype, if there is only one child without stereotype,
// this will cause DUPLICATE wizard options but no problem!

else {
res.addElement (Translator.localize("critics.WizFrontController-option8"));
missingItems{missItemCounter++] = "conCommandSte";

}

}

// Not seeing <<concreteCommand>> at all

if (! conCommandFound) {
res.addElement (Translator.localize("critics.WizFrontController-optioné"));
missingItems[missItemCounter++] = "commandChildren";

}

}
3
}
// 1f there is more than one option, give an option for selecting all items
if (missItemCounter>1) ‘
res.addElement (Translator.localize("critics.WizFrontController-option9"));
return res;
}
/**
* Set the initial instruction string for the choice. May be
* called by the creator of the wizard to override the default.<p>
*
* @param s The new instructions.
*/
public void setInstructions(String s) {
instructions = s;
}
public JPanel makePanel(int newStep) {
switch (newStep) {
case 1:
if (stepiChoice == null) {
Vector opts = buildOptions();
if (opts != null) {
stepiChoice = new WizStepChoice(this, instructions, opts);
stepiChoice.setTarget(getToDoItem()); '
}
}
return stepiChoice;
default:
}
return null;
}
// Bahman Zamani - 19 Aug 2008: prevent duplicate creating of model elements
boolean missingCommandCreated = false;
boolean missingConCommandCreated = false;
@Dverride
public void doAction(int oldStep) {
switch (oldStep) {

case 1:

int choice = -1;

if (steplChoice != null) choice = steplChoice.getSelectedIndex();

if (choice == -1) {
LOG.warn("WizFrontController: nothing selected, should not get here");
return;

}

try {

220

Object handlerClass = getTriggerClass(); // It’s the Handler class
Object curPackage = Model.getFacade () .getNamespace(handlerClass);

// if user has selected to create all missing operatiomns
if (choice == missItemCounter) {
for (int i=0; i<choice; i++)
fixFCProblems (handlerClass, curPackage, i);
}
// create operations one by one
else
fixFCProblems (handlexrClass, curPackage, choice);
}
catch(Exception e){
LOG.error ("WizFrontController: could not set operation.”, e);
}
default:
}
}
/*%
* Fixes the problems found in the FrontController pattern
* @param handlerClass The Handler class in FrontController pattern
* Qparam curPackage The current package containing the FrontController pattern
* Qparam n The number in missingItem list '
* Qauthor Bahaman Zamani
*/
private void fixFCProblems(Object handlerClass, Object curPackage, int n) {
// We build doGet and doPost ops in the Handler class
if (missingItems([n].equals("doGet") || missingItems[n].equals("doPost")) {
if (! GU.classHasSteOp(handlerClass, missingItems(n])) {
GU.buildOpWithSte(handlerClass, missingltems[n]+"0Op", missingItems[n]);
}
}
// ¥e build a Command hierarchy and process operations
else if (missingItems(n].equals("Command")) {
if (! missingCommandCreated) {
Object newCommandClass = Model.getCoreFactory().
buildClass("CommandCls", curPackage) ;
Model.getCoreFactory() .buildDependency (handlerClass,newCommandClass) ;
GU.addSteToObject (newCommandClass, "Command");
// change Command class to Abstract
GU.makeElementAbstract (newCommandClass);
Object conCommandClass = Model.getCoreFactory().
buildClass("ConcreteCommandCls" , curPackage) ;
GU.addSteToObject(conCommandClass, "ConcreteCommand") ;
Model.getCoreFactory() .buildGeneralization(conCommandClass,newCommandClass) ;
GU.buildOpWithSte(newCommandClass, "processOp","process");
GU.buildOpWithSte(conCommandClass, "processOp","process");
missingCommandCreated = true;
}
}
else if(missingItems[n).equals("commandibs")) {
GU.makeElementAbstract (commandClass) ;
}
else if (missingltems[n].equals("commandProcess")) {
if (! GU.classHasSteOp(commandClass, "process")) {
GU.buildOpWithSte(commandClass, "processOp","process");
}
}

else if (missingltens([n].equals("commandChildren")) {

221

if (! missingConCommandCreated) {
Object conCommandClass = Model.getCoreFactory().
buildClass("ConcreteCommand”, curPackage) ;
GU.addSteToObject (conCommandClass, "ConcreteCommand");
Model.getCoreFactory() .buildGeneralization(conCommandClass, commandClass)
if (! GU.classHasSteOp(conCommandClass, "process")) {
GU.buildOpWithSte(conCommandClass, "processOp","process");
}
missingConCommandCreated = true;
}
}
else if (missingItems(n].equals("conCommandProcess")) {
if (! GU.classHasSteOp(conCommandClass, "process")) {
GU.buildOpWithSte(conCommandClass, "processOp","process");
}
}
else if (missingItems[n].equals("conCommandSte")) {
GU.addSteToObject (conCommandClass, "ConcreteCommand");
}
}
}

A.6 Sample Application: Online Student Registration Sys-
tem

A.6.1 Domain Model of the System
Figure 97 shows the domain model of the Online Student Registration System.

Person Address
firstName streetNo
lastName street
birthDate city
gender 0. 1 |postalCode

ccupants address|Province
country

T

[

Student Professor
0.* 1
stiD emplD
GPA supegvisedStudents superviso
thesisOption
1.7 1 Department 1 1.7
student departmeng, o pmployer employee
participantg 1..” 1 [teacher
1
offers
o
1.0 Course 1.0
! courses| courseNo courses
Grade credits
grade title 0.*
0. prereggsites

Figure 97: Domain Model of the Online Student Registration System

A.6.2 A Given Design of the System using PofEA A Patterns
Figure 98 shows a design of the Online Student Registration System using the PofEAA patterns.

A.6.3 The Given Design after Verification by the ArgoPLV

Figure 99 shows the given design after it is verified by the ArgoPLV.

223

aPofEAAModel»
Main
spresentation»
presentationPkg
acontrollers
controllerPkg
«FroniC «C
MyWebServelet . CommandCls
p processOp(}
[I | | I 1
«ConcreteC faConcreteCommands |] «ConcreteCommandy «Congr andy «ConcreteCommand» «ConcreteC
RegisterCourse isi C A BrowsProfs ViewProf BrowseCourse
eprocesss processOp() aprocesss process() aprocesss process() p {) P ()
: N H : i ; : :
N 2 " N T : '
Ny '
: . : aviews M ! ' '
viewPkg ! . ’ ' ' ! ! :
I V,)) r T T L}
Templ VV (T Ia::V W N N : - :
(< lemplateViewp | N
'RS ca(e |TV» < eRm s :lw, «TemplateViews aTemplateViews «TemplateViews : |_«TemplateViewn l}
eglourse eqoup CalculateGPATV BrowseProfsTV ViewProfTV : BrowseCourse TV :
v T .
L} 1 ¥ M +
A4 AV A4 N \Va ' \V4)
'
aHelpery aHelpern aHelpery . «Helpery. 1 «Helpers)
'
HelperRC HelperRS HelperGPA \ HelpervP | | HelperBC '
'
T T A " T N T v
T T v I T T '
] 1 [A [; 1 [
: H t adomain» Y ' ' H !
. v
domainPkg ' B H Y K ' ' !
0 V] T 0 g T ')
. 3 Ny . ’ v ‘
: |«Domainodets | ' DomainModels | | Co ' :
. Person s Address ' ' 4 ' '
. 1 [1 . ' 3
' N streetNo) v ' il 1
s '
' ame , street " ' N ' !
' irthDat ' city K : !) .
! pirthDate 0.* ' 1 |postaiCode \ ! : ! !
B gender " N \ v ' ')
. ; address|Province v ' s .)
VTt P Person() ' country Y ') ' :
' ' ' ' '
: Address() Y : ! : :
vor N ' M v i
v : Y [: ')
L | IRV L
f
[, o . ! !
) : Professor) : N
v |stD i supervisg) \)
' empiD)
R (e J h . '
1t [thesisOption 1.0 ! 1 1 [) ' '
' s '
Yo IStudent) student ," departmely Department ploy ploy . N !
oY ’ name 1 |teacher ' t i}
vt ’ ' . E
[’ ' 1 v
' - I i--—- Department('
Vo paticipants| H Py) ' ' !
b A 1 ' ’]
[’ ' 1 : ' '
H S/ , offers 0. ' N '
) 1 - ' v t
1 ' '] +
!} |«DomainModets ! «Domai QAU A ! ,
'
: ! Grade ' courses Course 1. ' '
! v b
Vv |grede i courseNo Lourses) .
v ' credits .) '
v Grade() ! litle X préteuisites ' :
v N ' H N
[R AP R
[) Course(} K= 2 ! !
' '
. ; N . ' ' .
' v ' B ’ ' '
. ' ' ’ ' '
v ' '
’ k3 1) " " ' ll '
T v g T T ' ' '
' ' «dataSourcen ' ' aconCurrency» ' ' N
dataSourcePkg : ; : : : concurtencyPkg : : L
T T v v T ' \V)
L . N L s
NP ' '
DataMapper «DataMappers || «DataMappers DataMapper DataMappers uPessimisticOfflinel. ock» «DataTransferObject» \Assemblers N
M i Addresst ock Courselist o '
P p D Cour Cour: - -
«lockr lockOp() «selters gellistt)
PR -ﬁnn):‘ﬁ@() 0 «find» find() «fxnd;ﬁnd() 0 «ﬁndv:'ﬁnd‘() , asetters setlsi()
j ainsert» insel winserts insert() «inserty insert{ «inserty nserl(N N "y
o wseralizes toXML(
«inserts insert() «deteter delete(} |l «deletes delete() delele» detete() «delete» delete(} «OptimisticOffineLocky | :))(M
«updates update() AddressLotk «deserialize» readXML(}
wupdater updatel) [| «update» update() |}«update» updale(} | | «update» update()
aversiany ver

Figure 98: A Design Model for Online Student Registration System using PofE'4 A Patterns

224

«PofEAAModel»
Main
apresentation»
presentationPkg
acontrollers
controllerPkg
| «ErontControllers | «C
MyWebServelet CommandCls
«doGets doGetOp() «processs processOp()
«doPosty doPostOp(} T
sConcreteC |sConcreteCommands | - | eConcreteCommands | |«ConcreteC d |«ConcreteCommands | |aConcreteC '
RegisterCourse tS vision C: A BrowsProfs ViewProf BrowseCourse
P Opl) () P Op() P 0] p)
; : H H H ‘ H |
. . s n T L '
T T
H . B aviews H) ' ' '
viewPlg : : : : , ' ;
\J S 1] ¥ [l T T ’
e }l\/ Tem; la\l:Vi - ¥ — 2 :
«TemplateViews | « " - - N
- eViews o e «TemplateViewr «TemplateView» aTy i «TemplateView» ’
RegCourseTV ReqSupTV N . '
CalculateGPATV BrowseProfsTV ViewProfTv | BrowseCourseTV +
T '
' 1 v T T
A\ v V2 v W/ V4 ,
«Helper» «Helpers «Helpers «Helpers aHelpers «Helper» H
HelperRC HelperRS HelperGPA HelperCls HelpervP HelperBC '
T T T T r T '
v T v v v s)
0 V v ¥ v T
O 0 0 - v 0 ’ 1
'] 1l adomaine » » '
domainPkg ' ' ! \ ! ' '
[\I/ O v 0 1} Ll
)) . L} [} '
N nModel
1 «DomainModel» | ' «DomainModels. Y v ’ '
H o ! Address \ : .
' Person ' i 3 ' :
. . treetNo ! H) .
' firstName . e \ ') '
N ' street v N H
: lastName ' city . [' !
. + i N ' '
. birthDate . . \) '
0. 1 v
: gender : post?lCode i : : :
....... . ' ‘ ' ' ' '
] v Person() ' country v ' J ' '
' ' [“ ' : 1 .
' ' ' Address() \ ' ') ,
: Rt I 1o) : : .
1 [I ry . 1 :
) o " L t
' Vo N . A4 » '
Dy {
' P | «DomainModel» . . K «DamainModels ! :
! " Student 0., . ! Prof ! ,
! e rofessor ' N
b v o1 |stiD supeyisedStudents * SUpervis D i v
empl
H B (1 ;. ; :
. v+ [thesisOption 1.0 4 1 {(«DomainModel» | 1 0.* |newOp() ' v
) HN - - Department : . ,
! Ut [student) student # p: Pa) ! !
' Vo . name 1 fteacher H ' '
' [/ ! ' '
' v s '
' ' panticipants| / VT ->|Department() 3 ! '
' 1 S ' 1 3 '
' [’ ' M . v
' Vo . . 1 ' ' :
' 1 . ' offers .- ') N
[} L t - ’ » i)
' [r s :) v
’)+ JsDomainModets ! «DomainModels b - _ o oL __L______.___ L. ! J !
. v Grade | courses] Course 1.0 , .
' ' ' '
H ' grade ! | CW‘EEN" kourses ' '
. credits
! K Grade() ' title prétequisites ! !
' ' ' ' '
'
' ' ! Course() (—»--—-—-»--—V»------—--------»—------_-I ! '
'
, N ' . '
' ' » ' ')
) ' ' ' .
s T ’ 1
) ' . y '
v T N s '
') «concurrency» .) v '
* «dist
dataSourcePkg |) , concurrencyPkg edistributed> ' : !
T T b4 N ' 3
. L) 0 v
«D: » D «Datah ern «OptimisticOfflineLock» «DataTransferObiects : : :
P pp [AddressLock Courselist L AV :
) aAssemblers i}
«VErSion» ver '
- {Cour N
«find» find{) «find» find() «findy find() afind» find() «find» find{) «settern getlisk) '
«inserts insert{) winserty insert() «inserty insert() «inserty insert() inserts insen() «settern setlist() <
«updates update() {j«deleter delete() [|«delete» delete() |]«deleter detete() ||«delete» delete() «wseriatizen toXML{()
«deleter defeteOp{() {} «update» update() [|«update» update(} | [«update» update() | | «update» update() «deserialize» readXML()

Figure 99: Design of Online Student Registration System - Refined by ArgoPLV

225

A.7 Design Rationale

Table 23 shows an excerpt of the Design Rationale file which is created during the verification of
the design using ArgoPLV.

Table 23: Records from the Design Rationale File Associated with the Repairs

Date/Time

| Wizard Class

| Issue

| Rationale

2009-04-08
11:20:32

PofEAA: Syntactic Prob-
lem - Missing Layers in
the Model

A design built based upon the PofEAA
patterns needs layers such as Pre-
sentation, Domain, and Data Source.
Other Layers such as Service, Basic,
Distributed, Concurrency, and Session
State, depend upon the context infor-

' mation set by the tagged values. This

wizard has added any of those missing
items to the model.

2009-04-08
11:31:45

PofEAA: Structural
Problem in using Front
Controller Pattern

The Front Controller pattern needs a
“Handler” class with goGet and doPost
operations as well as an Abstract Com-
mand class with a Process operation
and at least one concrete child. This
wizard has added any of those missing
items to the model.

2009-04-08
11:39:25

WizLayers
WizFront Con-
troller
WizViewLayerSem

PofEAA: Semantic Prob-
lem regarding the View
Layer of the model

The patterns of the View Layer should
match with the context information, es-
pecially with the value of ViewBuilt tag.
This wizard has changed the tag corre-
spondingly.

2009-04-08
16:03:25

WizDomain Mod-
elSyn

PofEAA: Syntactic prob-
lem between Domain
Model pattern and Data
Source Layer

The Domain Layer (from syntactic
point of view) should be consistent
considering BOTH the relation be-
tween patterns in this layer and the
Data Source Layer patterns AND and
the context information which is set
through the TAGGED VALUES. This
wizard gives the designer option to
change the tagged values correspond-
ingly.

2009-04-08
18:34:27

WizPatterns

PofEAA: Syntactic Prob-
lem in organization (lay-
ering) of patterns

A design built based upon the PofEAA
patterns needs to have each pattern in
its corresponding layer.This wizard has
rearranged model such that each pat-
tern is placed in the appropriate layer.

226

Index

ArgoPLV, 6, 110
Artifacts, 7
PLA, 122
PMV, 122
PSV, 115
PTV, 116

Artifact, 1, 6, 9, 79

Code-centric, 1, 8

Compilation process, 58

Compiler, 3, 57
Java, 5

Design, 1, 14, 57
Model, 1, 2, 59
Process, 2

Rationale, 76, 84, 146
Transformation, 14

with Patterns, 2

Model, 1

Inconsistency, 16

Verification, 2
Model-centric, 1, 9
Model-Driven

Architecture (MDA), 1, 18
Engineering (MDE), 1

Software Development (MDSD), 1
Development (MDD), 1
Engineering (MDE), 8

Road Map, 9

Pattern, 1
Application, 2
Collection, 41

Combination, 2, 39, 60, 69, 72

Completion, 39
Compounds, 39
Detection, 44
Form, 25, 60
Instantiation, 83
Language, 2, 23
Leitmotifs, 45

Relationship, 28, 42

Selection, 2, 47
Semantics, 56
Sequence. 10
Story. 40
Weaving, 30. 56

Pattern Information Table, see PIT

Pattern Language Advisor, see PLA
Pattern Language Profile, see PLP
Pattern Language Semantic Verifier, see PMV
Pattern Language Syntactic Verifier, see PTV
Pattern Language Verification, 6, 158
Pattern Language Verifier, see PLV
Pattern Structural Verifier, see PSV
PIT, 4, 76
PLA, 4, 76, 83
PLP, 77, 102
PLV, 4, 57, 59, 75

Extensions, 85

Process, 59, 75
PMV, 4, 60, 72, 82
PofEAA, 2, 4, 10, 48, 88

Advices, 6, 93

Profile, 6, 102

Rules, 6, 92
Productivity, 2, 19
PSV, 4, 59, 60, 80
PTV, 4, 60, 65, 81

Quality, 1
Assessment, 15
Control, 15, 17

Metrics, 17
Model, 15, 17
Rules, 60

Semantic, 2, 60, 72, 100
Structural, 2, 59, 60, 93
Syntactic, 2, 60, 65, 96

Software, 1
Development, 1°
Engineering, 5

Traditional Software Engineering, 16

UML, 4, 11, 76
Profile, 5, 15, 76

Verification, 2, 3, 6, 59, 80, 81, 150, 155

