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Abstract 
Study of the coadjoint orbits of the Poincare group in 2 + 1 dimensions and their 

coherent states 

Valerie Hudon, Ph.D. 

Concordia University, 2009 

The first main objective of this thesis is to study the orbit structure of the 

(2 + l)-Poincare group M2,1 xi SO(2,1) by obtaining an explicit expression for the 

coadjoint action. From there, we compute and classify the coadjoint orbits. We 

obtain a degenerate orbit, the upper and lower sheet of the two-sheet hyperboloid, 

the upper and lower cone and the one-sheet hyperboloid. They appear as two-

dimensional coadjoint orbits and, with their cotangent planes, as four-dimensional 

coadjoint orbits. We also confirm a link between the four-dimensional coadjoint 

orbits and the orbits of the action of >50(2,1) on the dual of K2,1. 

The second main objective of this thesis is to use the information obtained about 

the structure to induce a representation and build the coherent states on two of the 

coadjoint orbits. We obtain coherent states on the hyperboloid for the principal 

section. The Galilean and the affine sections only allow us to get frames. On the 

cone, we obtain a family of coherent states for a generalized principal section and 

a frame for the basic section. 
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Introduction 

In this thesis, we study the Poincare group in 2 + 1 dimensions through its 

coadjoint orbits structure. We first compute the coadjoint action and classify the 

coadjoint orbits. We then use the insight gained to build coherent states on two of 

those orbits, namely the upper sheet of the two-sheet hyperboloid and the upper 

cone. 

Context 

The Poincare group is widely used in mathematical physics since it is the sym-

metry group of relativity. Its 3 + 1-dimensional version is described and studied 

in great details by Kim and Noz [19], it is the most common in physics since our 

world is 3 + 1-dimensional. The 2 + 1-dimensional Poincare group is studied by 

Gitman and Shelepin [16], they construct a UIR and obtain the orbits of the action 

of SO(2,1) on K2:1 from work on wave equations. 

Other people have studied the orbit structure of the Poincare group. Those 

studies by Barut and Raczka [9] and also by Kim and Noz [19] were based on the 

momentum vector and performed in 3 + 1 dimensions. Almorox and Prieto [6] have 

studied the action of SO(2,1) on M2,1 by an analysis using the moment map. Here, 

we work with a matrix representation of the group and obtain directly those orbits 

by the action of the 50(2 ,1) group matrices on some chosen vectors. 

One of the main ingredients of our study is the coadjoint orbit structure of 
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the group which is closely related to representations. This relation is outlined 

by Kirillov [20, 21, 22] who also stresses that the coadjoint orbits are symplectic 

objects. This is a useful property to define coordinates and an invariant measure 

on them. 

In this thesis, since we base the study on a matrix representation of the group, we 

express the coadjoint action explicitly in this framework. This allows us to compute 

the coadjoint orbits along with the orbits coming from the action of 50(2 ,1) on 

E2 '1. We also link the two sets of orbits. 

One of the tools needed to continue our research is the induced representa-

tion first introduced by Mackey [25] and developed by Kirillov [21] and others. 

The inducing technique allows us to obtain the representation of a group from the 

known representation of one of its subgroups. Thus, it is a good way to build new 

representations. 

The representation of the Lorentz group (a subgroup of the Poincare group) has 

been known for a long time from Wigner [30]. The representation of the Poincare 

group is also well-known, we have already cited Kim and Noz [19] in 3+1 dimensions 

and Gitman and Shelepin [16] in 2 + 1 dimensions. 

In this thesis, the representation is obtained from the work on the coadjoint 

orbits. We are using the representation of the stabilizer as a starting point in the 

inducing technique. 

Another important component of this thesis is the coherent states which were 

first developed in the context of quantum optics. Coherent states have been rapidly 

adopted and extended in other fields such as quantum mechanics and group theory. 

Perelomov [28] gives a mathematical development of coherent states for different 

groups and Klauder and Skagerstam [23] present a complete survey of the appli-

cations. In the group context, coherent states are obtained by the action of the 

unitary representation on an arbitrary set of vectors. This technique is used for 
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example by Antoine and Mahara in [7], where they compute the orbits and coher-

ent states of the affine Galilei group. The interest in coherent states lies in their 

applications, for example in signal and image processing [1, 8]. 

A lot of work has been done on the coherent states for the Poincare group in 

1 + 1 and 3+1 dimensions (see [1] and references therein). Here, we will focus on the 

2 + 1 dimensions case which is less covered in the literature. Gitman and Shelepin 

[16] obtain the coherent states for SU( 1,1) (which is isomorphic to 50(2 ,1) ) in 

the framework of harmonic analysis. Some work is also done by de Bievre [12] to 

get coherent states of semidirect product groups through orbits obtained by the 

moment map. Also, Bohnke [10] has constructed a tight frame on the forward cone 

using the n + 1-dimensional Poincare group with a dilation. In this work, we focus 

on our specific group and dimensions to perform the full computation in an explicit 

way and obtain the coherent states on two of the coadjoint orbits. 

To summarize, the motivation of this work lies first in getting a very explicit 

approach to the orbits based on a matrix representation of the group, and in classi-

fying the coadjoint orbits for the Poincare group in 2 + 1 dimensions. It also consists 

in using the information obtained about the structure to induce a representation 

and build coherent states on two of those orbits. 

The ultimate aim of this work would be to use the resulting coherent states 

in the wavelets framework. This is beyond the scope of this work, but we could 

apply our results to signal analysis following the principles presented in the books 

[11, 1, 8]. Quantization is another possible avenue. More details are given in the 

conclusion along with other possible openings. 

•3 



Results 

We first obtain a formula for the coadjoint action of the Poincare group G = 

R2,1 >150(2,1) given in a concrete matrix representation. We then compute explic-

itly the orbits of 50(2 ,1) on R2,1 and the coadjoint orbits. We obtain a degenerate 

orbit, the upper and lower sheet of a two-sheet hyperboloid, the upper and lower 

cone and the one-sheet hyperboloid. The hyperboloids and the cones appear both 

as the first orbits and as two-dimensional coadjoint orbits. They also appear to-

gether with their cotangent space as four-dimensional coadjoint orbits. The orbits 

of 50(2,1) on R2'1 were known in the literature, but we obtain them differently 

here. Moreover, we are able to link them to the four-dimensional coadjoint orbits. 

The study of the coadjoint orbits allows us to get a deeper understanding of 

the geometry of the upper sheet of the two-sheet hyperboloid and the upper cone. 

We choose those two orbits because they are isomorphic to the plane. From the 

information obtained by computing the orbits, we are able to get a set of coordi-

nates, an invariant measure and the induced representation of the hyperboloid and 

the cone. We finally compute the coherent states using this information. For the 

hyperboloid, we obtain nice coherent states for the principal section and frames 

for both the Galilean and the affine sections. For the cone, we obtain a family 

of coherent states for the generalized principal section and a frame for the basic 

section. 

Organization of the thesis 

Here is how the thesis is organized. 

In Chapter 1, we describe the Poincare group, its algebra and group matrix 

representation and we recall the Iwasawa decomposition. We also define the adjoint 

and coadjoint actions and then get the explicit formula to compute them in the 
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Poincare case. We finally define the different orbits we are going to compute. 

In Chapter 2, we use the actions defined in Chapter 1 to explicitly compute 

the orbit of 50(2,1) on R2 '1 and the coadjoint orbits arising from different initial 

vectors. 

In Chapter 3, we give a definition of the coherent states and explain the tech-

nique that we will use to obtain them in the two next chapters. 

In Chapter 4, we define coordinates and compute the invariant measure on the 

upper sheet of the two-sheet hyperboloid. We then get the induced representation 

and use it to compute the coherent states on the hyperboloid. 

In Chapter 5, we go through the same process as in the previous chapter, but 

with the upper cone. 

We finish with concluding remarks and possible openings. 

Appendix A collects some basic definitions about group theory and induced rep-

resentation. The other appendices contain the details of the computations needed 

to obtain the results. 

Main contributions 

The main contribution of this thesis is twofold. It first stands in the explicit 

computation of the coadjoint action formula for the Poincare group. This formula is 

then used to compute the coadjoint orbits described in Chapter 2. Those coadjoint 

orbits are linked to the orbits of 50(2,1) on R2 '1 also computed explicitly. This 

explicit approach to coadjoint action based on a matrix representation of the group 

is new to our knowledge. 

The second part of original work is the computation of the coherent states on 

the hyperboloid (Chapter 4) and the cone (Chapter 5) in this particular framework. 

The coadjoint orbits computed provide a set of coordinates and insight for the 
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induced representation. This representation is then used to build the coherent 

states following a well-known technique given in [1]. 
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Chapter 1 

The (2 + l)-Poincare group 

In this chapter, we give an extended description of the Poincare group in 2 + 1 

dimensions, using its matrix representation. This will involve, among other things, 

studying the Lie algebra spanned by its generators, their commutation relations 

and the Iwasawa decomposition of the group. 

We also define and compute the adjoint and coadjoint actions of the group, 

which will be used in Chapter 2 to compute its orbits under this action. 

We finish by discussing the concept of orbits, giving the definition, the formula 

to compute the orbit from the group action, an isomorphism relating different 

orbits and the ones usually discussed in the literature (when constructing induced 

representations of the group). 

In Appendix A.l we collect together some basic definitions and notions from 

group theory. 

1.1 Definition of the Poincare group 

The Poincare group is the symmetry group of special relativity. Here, we are 

working in 2-space and 1-time dimensions, for which the (2 + l)-Poincare group is 

the group of all space-time symmetries. 
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In the present section, we describe the structure of the group, derive its Lie 

algebra and give the specific matrix representations of group elements and the basis 

of the algebra which will be used in the computation of the group actions. We also 

present the Iwasawa decomposition, which happens to be useful while dealing with 

the conical orbit (Section 2.3). 

1.1.1 Description 

Since we are working in a space-time of 2+1 dimensions, we write the coordinates 

of a point in this space-time as: ( t ,x ,y) . The Poincare group of interest is the 

semidirect product, G — R2'1 x 50(2,1) , an element of which can be written as: 

(1.1) 

where v € R2'1 and A 6 50(2,1), that is A is a 3 x 3 matrix such that A^A* = 77, 

77 being the metric, diag(+l, —1, —1). The product is given, using matrix multipli-

cation, by: 

&1&2 
A]A2 AIV2 + vi 

0 1 
(1 .2) 

The inverse of an element is thus: 

(1.3) 

1.1.2 Matrix representation 

The one-parameter subgroups of 50(2,1) may be taken to be: 

( 1 0 

A.;,, = 
0 

0 cos a — sin a: 

\0 sin a cos a J 

= 

I cosh P 0 sinh .8̂  

0 1 0 

^ sinh 8 0 cosh (ij 

I cosh 7 sinh 7 
,A,„ - sinh 7 cosh 7 0 

0 0 1/ 

(1.4) 
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Their inverses are: 

o o N 

A — 0 cos a sin a 

— sin a cos a f 

cosh (3 0 - sinh 0 

0 1 0 

sinh/3 0 cosh/3 y 

cosh 7 sinh 7 0 

sinh 7 cosh 7 0 

V 0 0 V 

The six generators of the Poincare algebra are given by: 

Jo = 

A) 0 0 ^ 

0 0 - 1 

v° 1 ° y 

,Jl = 

A) 0 
0 0 0 

VI 0 oy 

, J2 

^0 1 0 ^ 

1 0 0 

\o o oy 

M (0) (0\ 
Po = 0 ,P1 = 1 ,P2 = 0 

w w V1/ 

(1.5) 

The J 's are the so(2,1) generators, obtained by taking the derivative of A j at the 

identity. It is possible to write the J ' s and P 's as 4 x 4 matrices following (1.1). 

This allows to compute the commutation relations among them: 

[J0, Ji] = — J2, [Jo, J2] = J2} — Jo, 

[Jo, Pi] = Pi, [Jo, P2] = -Pi, [Ju Po] = P2, 

[Jl,P2] = Po, [J2,Po] = Pu \J2,Pl] = Po, (1.6) 

all other commutators being zero. 

R e m a r k 1.1.1 Note that our choice of J\ and J2 is "unorthodox": they have been 

interchanged, from the way they are usually presented in the literature. This change 

will be helpful in the computation of the adjoint action, since it will allow us to use 

the standard scalar product notation. 

We also define J+ — J0 + J\ and J_ = J0 — Ji- They exponentiate to the 
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following: 

1 ^ 2 
u2 

2 u \ 1 T 2 
- V 2 

2 - v \ 

AJ+ = 
u 2 

2 
l _ u i 
1 2 —u , A j _ = 

u 2 

2 
L 2 —v 

V u U 
1J \ V 

(1.7) 

They are both translations. The commutation relations are: 

[J+,J0} = J2, [J+,Ji] = —J2, [J+,J2] = J+, 

[ J _ , J 0 ] = - J 2 , [ J - , J i ] = - J 2 , [J^J2] = - J - , 

[J+,J_] = 2J2. 

These matrices will be used for obtaining the conical orbit in Section 2.3. 

1.1.3 (a,/?) basis for the Lie algebra 
Any element of the Lie algebra can be written as a matrix: 

a1-J p 

(1.8) 

X (1.9) 
0 0 

where a and [3 are three-column vectors, J is the vector (J0, J\,J2)1 and the product 

• is just the linear combination: al J = Qo To compute the action of 

the group on the Lie algebra, it will be easier to work in terms of the six parameters 

a and (3. We rewrite the element X as a column vector: X = 

Elements in the dual of the Lie algebra will then be written as row vectors: 

(1.10) X = 

where a* and /3* are themselves three-dimensional row vectors. The dual pairing 

in this notation is simply the scalar product, there is no need for using the trace 

and we choose not to use the metric in this setting. 
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1.1.4 Iwasawa decomposition 

We present the Iwasawa decomposition of the 50(2,1) group which will also be 

used in the case of the conical orbit (Section 2.3). 

We write an element of 50(2,1) as the product of three elements: g = kan, 

where A; is a rotation which corresponds to Aj0, a is a boost (or dilation) which 

corresponds to A j2 and n is a translation which corresponds to Aj± depending on 

the case. Instead of being J0, J\ and J2 , the generators of the algebra are now 

taken to be J0, J2 and J0±Ji- This basis still generates a three-parameter group. 

1.2 Group actions 

We define and compute the adjoint action of the Poincare group on its algebra 

as well as the coadjoint action. 

1.2.1 Definition of the adjoint and coadjoint actions 

The adjoint action is the action of a group G on its Lie algebra. For a matrix 

group, the adjoint action is defined by: 

where g 6 G and X € 0. The coadjoint action is the action of the group on the dual 

0* of its Lie algebra, when the latter is considered as a vector space. Generally, the 

coadjoint action (denoted Ad*) is defined as in: 

Ad{g)X = gXg-\ (1.11) 

< Ad*(g)XlX2 > = < XlAd{g'l)X2 >, (1.12) 

where X{ £ 0*. 
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1.2.2 Adjoint action 

Using the definition (1.11) and the algebra element in the (a, /?) basis (1.9), the 

adjoint action of the group G on its algebra is given by: 

Ad(g)X = gXg'1 

W • J A'1 - A a4 • JA~lv + A/?N 

0 0 

V - J 

o o 
(1.13) 

We compute the part Aal • J A _ 1 for a generic element of the group A = Aj0Ajj AJ2 

in order to extract the action as a linear combination of the J's. After a few 

manipulations, we get: 

Ac/ • JA"1 = (mfA- ' j 'mt t ) ' - J, (1.14) 

where the matrix m is: 

/ l 0 0 \ 

m = (1.15) 0 1 0 

\ 0 0 - 1 / 

The details of this manipulation are given in Appendix B.l. Note it is because of 

this computation that the unorthodox definition of J] and J2 is needed (see Remark 

1.1.1). For convenience, we set the following notation: m(A~1)tm = A - 1 and, then, 

A = mAtm. This is an inner automorphism of the group. 

Remark 1.2.1 By computing A = mA'm for the three one-parameter subgroups, 

we get the following: 

A7u = mAljm = AJo, KJ} = m\\m - AH = mA^rn = Aj.2. (1.16) 
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We can also work out the following by direct computation: 

— Aal • JA~1v = —(J • v)k~la, (1.17) 

where J v is the matrix (J0v, J\V, J2v), recalling that v is three-column vector. We 

write it down explicitly here for later use: 

( n \ 0 v2 Vi 

J-v = -v2 0 v0 

\vx v0 0 / 

The details of the computation are presented in Appendix B.2. 

We have thus obtained the transformation of the parameters a and (3: 

(1.18) 

a'-J = 

P' = 

Aa • J A"1 

K~ la • J, 

-Aa • JK~lv + A/3 

= A/3 - (J -v)A'1 a. 

We can rewrite the transformation as a 6 x 6 matrix M(g): 

a 
M(g) (1.19) 

a \ _ I A"1 0 a 

j ) ~ \ - ( J - ^ ) A " 1 A j 

The adjoint action of g = (A, v) on X = (cv, /?)' is then written in a matrix form: 

Ad(g)X = M(g)X. 

1.2.3 Coadjoint action 

We now define and compute the coadjoint action in the six-parameter space of 

a* and (3*. In this notation, equation (1.12) reads: 

< X*uAd{g~l)X2 >= X*M{g~1)X2 =< Ad*{g)X;,X2 >, (1.20) 
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where M(g) is defined in (1.19). The coadjoint action is then: 

Ad*(g)X*=(a* p^Mig-1). (1.21) 

The matrix M(g~1) is easily obtained from M(g) using g'1 = (A - 1 , — A_1u) as in 

(1.3): 

MOT1) = ( A , ° | . (1-22) 
J J - (A- 1 u) )A A"1 

We also compute the inverse of the matrix M(g): 

M(g)-1 =\ A ° | • (1-23) 
\A~l{J-v) A'1 J 

By direct computation for the different one-parameter subgroups A j 0 , Ajl and A j2 

(which is sufficient since SO(2,1) is a three-parameter group), we get that: 

( J • (A_1v))A = A - 1 ( J - v). (1.24) 

Then, M(g~1) and M(g)~J are the same as expected. We will use M ( g t o define 

the coadjoint action. This gives: 

Ad*{g)X* = (a*A + (3*A'1 {J • v) ^A"1) , (1.25) 

where A and v are fixed by the choice of g, an element of the group. The choice of 

X* varies for the different cases. 

1.3 Orbits 

We define here the two types of orbits studied in the following. We give the 

explicit formula to obtain one of them for the Poincare group. We also give an 

isomorphism relating these two types of orbits. We finish by presenting the orbits 

already known in the literature. 
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1.3.1 Definitions of the orbits 

The theoretical basis and fundamental definitions regarding orbits are given in 

Appendix A. 1.2. We define and describe here the two particular types of orbits 

studied in this thesis. 

The first type is the orbit obtained from the action of 50(2 ,1) on R(2,1)*. Gen-

erally, in the semidirect product group setting where G = V x 5 , it would be the 

orbit coming from the action of 5 on the dual of V. Those orbits are used to 

obtain representations in the induced representation method. We thus call them 

representation generating orbits in the following. 

The second kind of orbit is obtained from the action of G on the dual of its 

algebra (5*), that is under the coadjoint action. It is then called the coadjoint orbit. 

Coadjoint orbits are always even dimensional and have the structure of symplectic 

manifolds. In this sense, they model classical phase spaces, a characteristic which 

is useful also for defining coordinates. 

1.3.2 Formula for the representation generating orbit 

We have just defined the representation generating orbit. Here is how we will 

compute it for the Poincare group. 

To get the action of the 50(2,1) part of the group on the dual of M2'1, we just 

multiply the row-vector X* = ^ by the subgroup matrices. Here is the 

result: 

(1.26) 

7o sinh 7 + 71 cosh 7 

The vector X* will be specified for different cases in the next chapter. 
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1.3.3 Isomorphism 

In the case of a semidirect product group, there is an isomorphism relating some 

coadjoint orbits and the orbits of the action of S on V* which is given in [1]. It is 

based on the following definitions: 

• the group G — V x S, V a vector space, S C GL(V)\ 

• H0 stabilizer of (fc0,0) € 0* under coadjoint action, k0 € V*\ 

• 0(fco,o) orbit of (ho, 0) E 0* under the coadjoint action of G; 

• T*0* cotangent bundle of the orbit of k0 in V* under S. 

The equation 10.49 in [1] gives the following sequence of isomorphisms: 

r = G/Ho ^ O(0M) - T*°*• (L27) 

In Chapter 2, we will explicitly check this isomorphism for some particular vectors 

k0. We will see that O(0,k0) a r e the four-dimensional orbits. 

1.3.4 Orbits studied in the literature 

One last thing we would like to mention about the Poincare group is that the 

representation generating orbits are well-known in 3 + 1 dimensions. In Barut and 

Raczka [9] and also in Kim and Noz [19], they obtain the orbits for the action of 

5(9(3,1) on R3,1 from the momentum vector p2 = —m2 = —PQ +p\ + p\ +p\- This 

gives: 

• a one-sheet hyperboloid for m2 < 0; 

• a cone for m2 = 0, upper and lower for p0 > 0, p0 < 0; 

• the origin (degenerate orbit) for m2 = 0, p0 = 0; 
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• a two-sheet hyperboloid for m2 > 0, upper and lower for p0 > 0, po < 0. 

Note that they are three-dimensional objects in this case. 

Almorox and Prieto [6] have obtained similar two-dimensional orbits for the 

action of SO(2,1) on R2 '1 from an analysis using the moment map. 

In the next chapter, we will perform those computations using a different, very 

explicit, approach. Moreover, we will compute the coadjoint orbits and link them 

to those representation generating orbits. 

We have now every tool needed to work out the orbits. That is a precise defini-

tion of the group and a useful way of writing the adjoint and coadjoint actions for 

the computations. 
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Chapter 2 

Computation of the different orbits 

In this chapter, we compute explicitly the representation generating orbit and 

coadjoint orbits. We use different three-vectors k0 as initial vectors of M21 for the 

orbits under the action of SO(2,1) and both ^o A;0) a n d (k0 o) six-vectors for 

the coadjoint action. We will see that those orbits are linked to each other. We 

also provide a graphical representation of the orbits. 

We use the formula obtained in (1.25) for the coadjoint action and the bijection 

between the orbit of a point and the quotient of the group G by the stabilizer of this 

point described in Appendix A.1.2 to obtain the coadjoint orbits. We also check 

that the isomorphism (1-.27) is actually verified in each of our cases. 

Note that the details of the computations are presented in Appendix C. We 

present here the results and the discussion. 

2.1 Degenerate orbit 

The first case is simple. We start with the initial vector k0 = 0 o) • Since 

the vectors ( o A:0) and (k0 0 ) are the same, we only have one coadjoint orbit. 
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2.1.1 Representation generating orbit 

Using the set of equations (1.26) with X* = k0 = (o 0 o), we simply obtain 

the origin, that is a degenerate orbit. 

2.1.2 Coadjoint orbit 

As mentioned above, the fixed vector is the same for the cases koj a n d 

(&0 o) , that is: (p) = (o o) = (o 0 0 0 0 o) • The orbit we obtain 

is again degenerate; it is only the point at the origin. In this case, the stabilizer is 

the whole group G. 

2.1.3 Isomorphism 

We study here the isomorphism (1.27) for the case k0 = (o 0 o)- W e have 

the following objects: 

• the stabilizer H0 is G; 

• the quotient G/H 0 is the origin; 

• the representation generating orbit O* is the origin; 

• its cotangent bundle T*0* is trivial. 

We can see that the coadjoint orbit T = G/H0 is isomorphic to the cotangent 

bundle of the representation generating orbit, they are both the origin. 

This case is not very interesting, but it is still part of the complete classification. 

We now move to non-trivial situations. 
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2.2 Two-sheet hyperboloid orbit 

We study now the orbits emerging from the initial vector kQ = 0 > 

where m > 0 is the mass. 

2.2.1 Representation generating orbit 

We plug in the vector X* = k0 = 0 o) in the equation (1.26) for 

the representation generating orbit. The details of the computation are shown in 

Appendix C.l. 

For k0 = (rn 0 o) , w e get the upper sheet of the two-sheet hyperboloid with 

its vertex at q0 = m. For k0 = m 0 o) > we get the lower sheet of the two-sheet 

hyperboloid with its vertex at q0 = -m. They are presented in Figure 2.1. 

2.2.2 Four-dimensional coadjoint orbit 

We now compute the coadjoint orbit from the coadjoint action given by (1.25). 

We fix the vector /3*) = (o = (o 0 0 ± m 0 o)- T h e explicit 

computation appears in Appendix C.l. 

The stabilizer H0 is the rotation and the time translation. The quotient of the 

group by the stabilizer leaves the two boosts and the two space translations to 

generate the coadjoint orbit. We thus have the upper or lower sheet of the two-

sheet hyperboloid (depending on the sign in ±m) with the space plane, that is a 

four-dimensional coadjoint orbit. 

The equation of the hyperboloid is — q\ — — m2. It is the same hyperboloid 

as the orbit shown in Figure 2.1. The hvperboloids have their vertex at ± m and 

for any mass they have the same cone as an asymptote. 
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Figure 2.1: Two-sheet hyperboloid with m = 1 

2.2.3 Two-dimensional coadjoint orbit 

We compute again the coadjoint orbit from the coadjoint action given by (1.25), 

but we use the fixed vector: f3*j = (k0 o j = ( ± m 0 0 0 0 o) instead. 

The details are in Appendix C.l. 

The stabilizer is made of the rotation and the three translations. We are left 

only with the two boosts to generate the coadjoint orbit. We thus get the upper 

and lower sheet of a two-sheet hyperboloid with m and —m respectively. This is 

different than the previous case since we are left with a two-dimensional structure 

instead of a four-dimensional one. 

2.2.4 Isomorphism 

We try to link the representation generating orbit and the four-dimensional 

coadjoint orbit through the isomorphim (1.27). 

• The stabilizer H0 is Aj0, v0; 
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• the quotient G/H 0 gives one sheet of the two-sheet hyperboloid with the 

zy-plane; 

• the representation generating orbit O* is one sheet of the two-sheet hyper-

boloid; 

• its cotangent bundle T*(D* is then a sheet of hyperboloid with a cotangent 

plane. 

Since we can easily map a plane to another plane, we can see that the four-

dimensional coadjoint orbit is isomorphic to the cotangent bundle of the repre-

sentation generating orbit. 

In this section, we study the orbits arising from the initial vector ko — ( ±1 1 0 

Once again, we use equation (1.26) with the vector X* = k,0 = l Oj this 

time. The computation is given explicitly in Appendix C.2. 

We obtain the upper cone for the vector k0 = ^l 1 Oj and the lower cone for 

A,0 = ( — 1 1 o)- They appear in Figure 2.2. 

We now compute the coadjoint orbit for the vector lQ* jj* 

(o 0 0 ±1 1 o) • The computations are in Appendix C.2 and make use of the 

Iwasawa decomposition of 50(2. 1) presented in Section 1.1.4. This decomposition 

is a more natural basis for this particular vector. 

2.3 Cone orbit 

2.3.1 Representation generating orbit 

2.3.2 Four-dimensional coadjoint orbit 
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Figure 2.2: Cone 

The stabilizer H0 is made of a translation A j ± (or n in the Iwasawa decomposi-

tion) and the vector x = The orbit is then generated by a rotation and a boost 

which gives the cone with the plane generated by the y-axis and the axis x = ±.t. 

This is a four-dimensional orbit. 

The cone equation is — q\ — gf = 0. It is the upper cone for go > 0 and the 

lower one for q0 < 0. It is the same as the cone shown in Figure 2.2. This cone is 

actually the limiting cone of the two-sheet hyperboloid in the massless limit. 

2.3.3 Two-dimensional coadjoint orbit 

If we start with the vector ^a* {3*) = (k0 o) = ( ± 1 1 0 0 0 o) instead, 

we get a two-dimensional orbit. The details are in Appendix C.2. 

The initial vector in this case is stabilized by the n translation of 50(2 ,1) and 

also by all of the M2,1 translations. The quotient thus leaves a rotation and a boost 

to generate the orbit, a two-dimensional cone. 

•23 



2.3.4 Isomorphism 

We again have a look at the isomorphism (1.27). 

• The stabilizer H0 is the translation n and the vector x = ^t; 

• the quotient G/H0 is the cone and the plane generated by the y-axis and the 

axis x = ± i ; 

• the representation generating orbit O* is the cone; 

• its cotangent bundle T*0* is the cone with a cotangent plane. 

Here also, we can map planes to each other to show that our four-dimensional coad-

joint orbit is isomorphic to the cotangent bundle of the representation generating 

orbit. 

2.4 One-sheet hyperboloid orbit 

We now present the study of the orbits originating from the initial vector k0 = 

(o m o)-

2.4.1 Representation generating orbit 

We use the equation (1.26) with the vector X* = k,0 = (o m o) to obtain the 

representation generating orbit. The detailed computation is in Appendix C.3. 

We obtain the one-sheet hyperboloid cutting the space plane at the circle of 

radius rn. It is shown in Figure 2.3. 

2.4.2 Four-dimensional coadjoint orbit 

Using the fixed vector = (o fc0) = (o 0 0 0 m o), we compute 

the coadjoint orbit in Appendix C.3 
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Figure 2.3: One-sheet hyperboloid with m = 1 

The stabilizer is the boost in the ^-direction (Aj l) and the ^-translation (t>i). 

The orbit is then generated by the rotation and the y-boost to which we add the 

t- and y-translations. Geometrically, this is the one-sheet hyperboloid with the 

iy-plane. 

The equation of the one-sheet hyperboloid is — q2 — q2 = —m2. It is the same 

as the one in Figure 2.3. 

We remark that the orbit generators are the same as for the cone, but they are 

not acting on the same vector, thus giving a different orbit. 

2.4.3 Two-dimensional coadjoint orbit 

We now use the fixed vector X0* = = (k0 o) = (o m 0 0 0 o) 

to get a coadjoint orbit. The details are in Appendix C.3. 

The stabilizer for this vector is the boost in the x-direction and the three R2 '1 

translations. We thus obtain the rotation and the y-boost, as the orbit generators. 

Geometrically, we can see it as the one-sheet hyperboloid. This is a two-dimensional 
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structure. 

2.4.4 Isomorphism 

We check the isomorphism (1.27) for the vector k0 = m o) • 

• The stabilizer Hq is the boost Aj t and the translation 

• the quotient G/H0 is the rotation Aj0 and the boost Aj2 with the translations 

• the representation generating orbit O* is the one-sheet hyperboloid; 

• its cotangent bundle T*0* is the one-sheet hyperboloid with its cotangent 

The isomorphism between our four-dimensional coadjoint orbit and the cotangent 

bundle of the representation generating orbit is again verified. 

We present a summary of the coadjoint orbits obtained in Table 2.1. It is 

interesting to remark that both the one-sheet and two-sheet hyperboloid have the 

cone orbit as an asymptote. 

The initial vectors k0 that we have used cover all the cases; that is a purely 

time, a purely space and a mixed time-space initial vector. We retrieve the same 

orbits presented in the literature and given in Section 1.3.4. 

Now let us examine the isomorphism (1.27) studied in details in Sections 2.1.3, 

2.2.4, 2.3.4 and 2.4.4: 

Vq and t>2; 

plane. 

2.5 Summary 

r = 
2 
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Fixed vector Stabilizer Orbit generators Geometry 

(o, o) whole G nothing origin (degenerate) 

(ko, o) Aj0 A 7 ,, AJ2 2-sheet hyp. 

fco = (±m 0 o) Vo, Vi, v2 [upper (+) and lower (-)] 

(o, A;0) Ajo AJ15 AJ2 2-sheet hyp. + xy-plane 

h = (±m 0 o) Vo [upper (+) and lower (-)] 

(ko, o) Aj0, A j2 cone 

ko = ( ± 1 1 o) Vo, Vi, v2 [upper (+) and lower (-)] 

(o, ko) A j0, Aj2 cone + plane 

ko = ( ± 1 1 o) x = X = [upper (+) and lower (-)] 

(ko, o) Aj, A A j2 1-sheet hyp. 

fco = (o m o) Vo, *>], v2 

(0, fc0) A* A j0, Aj2 1-sheet hyp. + fy-plane 

ko = (o m o) t'O, t'2 

Table 2.1: Coadjoint orbits of the group G = M2'1 xi 50(2,1) 
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The first isomorphism (1) has been used to compute the coadjoint orbit. The 

other isomorphism (2) links the four-dimensional coadjoint orbit and the cotangent 

bundle of the representation generating orbit. We have seen that we can connect 

planes together to confirm that this isomorphism is verified. 

This ends the first big segment and main contribution of this thesis. We have 

obtained different coadjoint orbits for the Poincare group and linked them with the 

representation generating orbit. 
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Chapter 3 

Coherent states: definition and 

method 

Besides the orbits, the coherent states are the important objects in this thesis. 

We give here a short introduction before explaining the technique that will be used 

to obtain them in Sections 4.4 and 5.4. 

3.1 Introduction and background definitions 

A good introductory book about coherent states and their applications is by 

Klauder and Skagerstam [23], Perelomov [28] also gives a good mathematical intro-

duction to the topic. 

Coherent states are basically continuously labeled quantum states. They form 

an overcomplete family of vectors in the Hilbert space, such that an arbitrary vector 

can be written as a (possibly infinite) sum of coherent states. 

The notion of coherent states was introduced to study the link between classical 

and quantum mechanics. They have been named in the context of quantum optics, 

but quickly spread to other fields such as condensed matter physics, atomic physics, 

nuclear physics and mathematical physics (for example in harmonic analysis and 
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quantization theory). 

The canonical coherent states have some specific properties. For example, they 

obey the minimal uncertainty property, that is they saturate Heisenberg's inequal-

ity: < AQ >< AP > = § instead of < AQ >< AP > > f . 

Another fundamental property of canonical coherent states 77 is that they satisfy 

the resolution of the identity: 

This is the property that we will check for the states created in Chapters 4 and 5. 

It is possible to obtain generalizations of the canonical coherent states. 

Definition 3.1.1 We start from a separable Hilbert space f), a locally compact space 

X and a measure on X. dv. We define the vectors \x >G I). We assume the 

following properties: 

• The mapping x \x > is weakly continuous (for each \(f> >€ f}, < x\4> > is 

continuous in the topology of X). 

• The resolution of the identity: Jx\x >< x\du(x) = holds in the weak sense. 

That is, for any \(f> >, | i f ) >G I), we have: 

/ < 4>\x >< x\-0 > dv(x) =< <f>\i) > . 

The vectors \x > satisfying these properties form a family of generalized coherent 

states. If is replaced by a bounded operator with a bounded inverse, we obtain a 

frame. 

One way of building canonical coherent states is by acting on a fixed vector 

with the unitary square-integrable representation of a locally compact group |g > = 

U{g)\>i> >• A generalization of this technique involve working on a homogeneous 

space of the group. This is how we are going to define our coherent states in the 

(3.1) 
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next chapters. This technique is widely used in the literature, see [1, 3, 7] for 

example. It is explained in details in Section 3.2. 

The interest of coherent states for mathematical physicists lies in their numerous 

applications. For example, they are used in signal and image processing through 

the wavelet framework, see [1, 8]. They are also used in quantization, see [2, 4, 15]. 

3.2 Getting coherent states for a semidirect product 

group 

We present here the method that will be used in Chapters 4 and 5 to obtain 

the coherent states. We actually follow the technique described in [1], §10.3. This 

technique is used to build coherent states on homogeneous spaces Y = G/H. This 

is our case, since coadjoint orbits have been defined as a quotient (Ox = G/H0). 

This method of building coherent states actually generalizes the one described by 

Perelomov [28]. 

We need a Hilbert space and suitable coordinates on our structure, as well 

as an invariant measure; it is 7i = C <g> L2(0*,dv). We first get a UIR from 

the little group representation using the induced representation method, this is 

described in Appendix A.2. We check if this representation is square-integrable. If 

it is not (which will be the case), we write the coset decomposition of the group 

and take a quotient. Here, the coadjoint orbit structure will be helpful to write 

the decomposition. In order to undo this quotient, we define a suitable section: 

a : Ox G. This is a key step and this choice can lead to coherent states, frames 

or no coherent states at all. 

Once we have all these ingredients, we take a set of vectors t] in the Hilbert space 

and act with the UIR on it. From this new set of vectors , we define a formal 

operator Aa = fv [qa >< 'ija\dfi. We then integrate the formal operator in order 
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to check the resolution of the identity. The integral is written = < <j)\Aatp >, 

where <f>, tp G H. If we have the resolution of the identity, that is = < 0 > , 

then we define the coherent states as this set of vectors transformed by the UIR rja 

and, possibly, normalized. 

If the section chosen does not allow us to achieve the resolution of the identity, 

we can still find some bounds on the operator Aa and get frames. Instead of: 

J < <p\r] >< T)\i) > = < 0|*0 >, 

we would have: 

0 < A < 0|'0 >< J < (p\rj >< T?|'0 > < B < 0|-0 > < oo. 

That means that the operator and its inverse are bounded. If A = B, that is the 

resolution of the identity is satisfied, then we have a tight frame. 

We now have all the necessary definitions and an efficient method to compute 

the coherent states in the next two chapters. 
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Chapter 4 

Coherent states on the upper sheet 

of the two-sheet hyperboloid 

In this chapter, we first define a set of coordinates and an invariant measure 

on the upper sheet of the two-sheet hyperboloid. We then compute the induced 

representation and describe a set of sections that are used to finally compute the 

coherent states as described in Section 3.2. 

We obtain the coherent states for the principal section in 4.4. For the Galilean 

section in 4.5, we can get bounds using a special form of 77, we thus have a frame. 

The affine section in 4.6 also leads to a frame if we have a special 9 in the section 

and some restrictions on 77. 

From now on, we call hyperboloid the upper sheet of the two-sheet hyperboloid 

as obtained in Section 2.2. 

4.1 Coordinates and measure 

We first define a set of coordinates using the svmplectic structure of the four-

dimensional orbit. The hyperboloid is seen as the coordinate space and its cotangent 

plane is the momentum space. We then compute the invariant measure under the 
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coadjoint action. 

4.1.1 Coordinates 

We set the following space coordinates on the hyperboloid: q = k0Awhere 

kQ — (m, 0,0) and A is the 50(2 ,1) part of the group element g used in the 

coadjoint action which generates the orbit. We can check that — q\ — q2 = m2 

is verified. We also define the momentum coordinates on the cotangent plane: 

p = q(J • v) = (—qiv2 + qiV\,qov2 + q2v0,q0vi + qiVo). The normal to the plane 

is np = (go, qi, —q2). This gives the following constraint equation for the plane: 

qoPo + Q\P\ ~ Q2P2 = 0. 

Using the coadjoint action equation (1.25), we compute the prime coordinates: 

(?V) = (g,p)M(g)'1 = (qA + pA _ 1 (J - ?;),pA_1). (4.1) 

We remark from the definition that p depends on the point q to which it is 

attached. We thus need to transform the p coordinate in order to compute the 

invariants. We postulate the following: 

P = pAqA, (4.2) 

where Aq is a pure boost. The general form for those boosts is: 

rri 

U Qi 

rri Qi m+ ql m+q O 
9192 

M + 9 0 

CO
 

\ < 7 2 
9192 

rn+qo 
, 92 m H — / m+qo / 

obtained from [5]. 
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We then rewrite the following: 

jf = pA'1 

= pAq/iA'1 

= pA^A^A-^Ag 

= pRAq (4.4) 

= P'Ag, 

where we have defined R = A(]AA~1A~1. We can check that R is actually a rotation 

by applying it to the vertex of the hyperboloid: 

(m,0,0)R = (m, 0, 0)A9AA_1A~1 

= gAA~1A~1 

= 3A-1 

- (m, 0,0). (4.5) 

We see that the vertex of the hyperboloid is stabilized by the matrix R which is 

thus a rotation. It is possible to characterize the angle of this rotation. It is called 

the Wigner angle and is worked out in [26] using the isomorphim of SO(2,1) with 

SL{ 2,R). 

4.1.2 Invariant measure 

We want to compute the invariant measure on the hyperboloid in our set of 

coordinates. From (4.1), we write dq[ and dq'2 replacing q'0 using the constraint 

<7Q — q\ — q\ = rri2. We get that: 

dq[ A dq'2 = dqt A dq2 ^ ^ 
l'o Qo 

is invariant. We denote this measure du. We remark that the measure does not 

depend on the mass. Since all the hyperboloids have the same shape (except for 
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the position of the vertex on the time axis), it is normal that the measure be the 

same on each of them. 

In (4.4), we have defined p' = pR, R being a rotation, then: 

dp\ A dp2 = dpi A dp2 (4.7) 

is easily seen to be invariant. 
Finally, the invariant measure on the whole orbit is: 

dp - hdP2 A dqx A dq2 ^ 
Qo 

There is another way to obtain coordinates and an invariant measure, the coset 

decomposition. It is presented in Appendix D. 

The measure obtained from the right coset decomposition is the same measure 

as the one obtained from the coadjoint orbit structure. 

4.2 Induced representation 

We describe here how the induced representation is obtained for the hyperboloid. 

This follows the method explained in Appendix A.2. 

4.2.1 Tools 

We recall here the different objects we will use in the following: 

• S0 = A j0 (the rotation) is the stabilizer of V* 3 /c0 = (m, 0, 0); 

• O* the orbit of k0 in R(2,1)* under SO{2,1) is the hyperboloid (q% - q \ - q 2
2 = 

m2)-, 

• du(q) is the invariant measure on O*, the hyperboloid, du = ^aiMai a s pre-

sented in Section 4.1.2; 
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• H0 is the stabilizer of (0, k0) G g* under the coadjoint action, it is the rotation 

and time translation; 

• ®(o,k0) is the orbit of (0, k0) G 0* under the coadjoint action of G, it is the 

hyperboloid and the space plane here; 

• T*0* is the cotangent bundle of the orbit O*, here it is the hyperboloid with 

its cotangent plane; 

• r = G/H0 is the hyperboloid and the space plane; 

• dfi{q,p) is the invariant measure on T, that is du = dp"lArf^d<?lAd?2, where ql,pl 

are the natural coordinates and p = pAq\. 

We now have everything we need to obtain the induced representation. 

4.2.2 Representation 

We follow the procedure described in Appendix A.2 in order to obtain the 

induced representation. 

The unitary irreducible representation (UIR) xL of V x S0 carried by an Hilbert 

space t is: 

{xL){v,s) = exp[-i < k0]v >]L(s). 

In our case, So being only the rotation, we need a one-dimensional representation. 

It is written as ein9, where n G Z. The Hilbert space is thus f = C, because we get 

a complex phase. 

Now, we want to induce a representation of the Poincare group from xL- We 

start from the coset decomposition: (v, s) = (0, Ak)(A^v, s0), where A^ is a pure 

boost and s0 = AJo is a rotation. We then act on the left part (which represents 

O*): 

(v, s)(Q, Ap) = (0,A s p)(A s>, A;p
lsAp). (4.9) 
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We obtain the following cocycles: 

h : G x O* -> V xi So, h{{x,s),p) = {A^x,ho{s,p))\ 

ho:SxO*-^So, h0{s,p) = A^sAp. (4.10) 

We need to compute the cocycles for the inverse group element, we get: 

h{(v,s)-\p) = (4-n) 

where h0{s~r,p) = A7-ips-1Ap is a rotation (see Appendix E.l). This gives the 

UIR: 

(XL)(h((v,s)-\p))=exp[-i < fcoJ-Aj-V"1* >]L(h0(s-\p)). (4.12) 

We now have to rewrite the argument < k0; —A~}lks~lv >. First, we recall the 

action of Ak in both E 2 1 and its dual. 

Definition 4.2.1 If v, vQ € K2'1 are 3-column vectors, k, k0 6 E(2a)% 3-row 

vectors, then the 3x3 boost matrix A acts in the following way: 

• k0 Afc = k, k0 = kA^1, k0A^ = k, k0 = kAk; 

• Avv0 = v, v0 = A~^v, A~lVo = y, v0 = Avv; 

where k = (k0, — k). 

We also need to recall the dual action in the pairing writing, it was originally: 

< Ad*(g)Xl,X2 >=< Xf,Ad(g~1)X2 >• In the case of interest here, we rewrite 

this as: < kiAks', v2 > = < ki\A~}lkv2 >. On the LHS, k is in the dual, while on the 

RHS, k in the original vector space. We take the transpose of the argument of A 

and the inverse of both group elements A and s. 

We can then rewrite the argument as follows: 

< k0\ -A^s-H' > = - < koA^s-^v > 

= -<ks;s~lv> 

= -fcss _ 1 t ' = -kv = - < fc; v> . (4.13) 
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The UIR is finally written this way: 

(xLU{v, s)<j>) (k) = exp[i < fc; v >]L{ho(s~l, k))'1 (^{s"1 k). (4.14) 

The UIR we will be using in the following is: 

(xLU{v, s)(t)) {k) = exp[i < k- v >] e x p [ - i n Q ( k , s^s^k), (4.15) 

where A; is a point on the hyperboloid, n G Z and 9 is the rotation parameter. 

4.2.3 Square-integrability 

We now check if this representation is square-integrable over the full group G. 

First of all, here is the definition of square-integrability: 

Definition 4.2.2 A representation is said to be square-integrable if 3 r] G H, rj 0 

such that: 

I I < U{g)r)\(f> > 1 2 d m ( g ) <00, V0 G H, (4.16) 
JG 

where dm(g) is the measure on G. 

The integration on the full group is the integration on the parameters of the three 

translations, the rotation and the two boosts. 

We can write the following to start: 

< U{g)r)\4> > = < eix ve~in0r]\<p > 

= [ rf{s-lx)einee-ixv4>{x) — ., (4.17) 
Jv+ 

<U{g)r)\<p>* = <<P\U{g)r]> 

= f (fi* (y)eiyv e~in6' i)(s~1y) — , (4.18) 
Vo 

where V^ is the hyperboloid. We also need the integral definition of the 8 function 

in two dimensions (from the Fourier transform): 

S(x - y) = - J - r e^-^dv. (4.19) 
W J-OC 
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The detailed computation of the integral is given in Appendix E.2. 

We obtain that the UIR is not square-integrable on the whole group. We will 

then need to work on the quotient. 

4.3 Quotient to phase-space and choice of sections 

We describe here the quotient that we take in order to have a square-integrable 

representation as well as a few sections we will use to undo this quotient. 

4.3.1 Quotient 

In order to have a square-integrable representation, we take the quotient to the 

phase-space. We follow the left quotient decomposition presented in Appendix D.2: 

We redefine q = Rq = (q0,q1cost — q2sint,qisint -f q2cost). We work with 

(Ag, (0,p1,p2)t) which represents the hyperboloid and the space plane orbit. 

Even if we take the quotient, we will use the natural coordinates and the in-

variant measure associated to it (given in Section 4.2.1) instead of the measure 

obtained from the left quotient decomposition. 

4.3.2 Sections 

There are several possible sections we can choose to undo the quotient, that is 

to go from the orbit to the group. Here are the ones we will use. 

The most simple is the Galilean section: 

(A,v)= (ARq,(0,Pl,P2y) {R,(a,0,0Y). (4.20) 

Co : r —> G , a o (q ,p) = ((0,p) :A9). (4.21) 

It can be used to obtain a generic section: 

a : r - G , a(q: p) = a0(q, p)((/(q, p), 0), R(q, p)): (4.22) 
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where / is a scalar function and R is a rotation. From there, we can choose / to 

be able to solve the integral. 

A particular class of such sections are the affine sections for which / (q, p) = 

0(q) + p-0(q) and R(q,p) = R(q). Moreover, here we can choose 0 = 0. Actually, 

this affine section appears as a constraint on / in the computation for the generic 

section. 

We also define the principal section: 

av:T^G, aP(q,p) = (Aqp,Aq). (4.23) 

Here is the list of the sections we will be using in the following: 

• the principal section: o-p{q,p) = (Aqp,Ag) in 4.4; 

• the Galilean section: cr0(q, p) = ((0, p)(, Ag) in 4.5; 

• the generic section: cr(q,p) = cr0(q, p)((/(q, p), 0), /?(q, p)), which will be-

come the affine section: a a f f = ((p • 0(q), 0)A9 + (0, p), A,i?(q)) in 4.6. 

The principal section leads to a nice result. We obtain coherent states for a general 

set of vectors. For the Galilean and affine sections, we obtain frames, that is we are 

able to get bounds on the integral, provided a special form of r/. 

4.4 Coherent states for the principal section 

We perform the computations to obtain coherent states on the hyperboloid. We 

follow the method outlined in Section 3.2. Here, we are using the principal section. 

4.4.1 Definition of the set of vectors 

We recall the definition of the principal section (4.23): o-p(q.p) = (Aqp, Aq). We 

choose a set of vectors (vector-valued functions) ry in the Hilbert space H = C g 
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L2(V+, Those vectors are transformed by the UIR (4.15) in the following 

way: 

07<r„(«o)(*0 = (UMq,p))v){k) 

= (UiA^A^k) 

= eik'pe~in9T}{A~xk), (4.24) 

where p = Aqp and k is an arbitrary point on the hyperboloid. 

The formal operator is as follows: 

= I \VaP(q,p) >< VaPUl,p)\—d(idP: (4'25) 
Jt Qo 

where T is the four-dimensional orbit, that is the hyperboloid and the space plane. 

The change of coordinate p —> p — Aqp gives a complicated Jacobian which is 

hard to work with. Instead, we try the change of coordinate k X(k) by rewriting 

the dot product in the exponential: 

k-p = k • (A qp) 

= kj)Aqp 

= kA~lrjp 

= {kA-').p 

= X(k)-p, (4.26) 

where r/ = diag(l, - 1 , - 1 ) is the metric governing the dot product here. We also 

use the fact that rjAq = A~lrj and define X(k) = kA~*. 

We compute the Jacobian for the change of coordinate k —> X(k): 

\j\ = -^-(goko - qih - q2k2) = - \ q • k. (4.27) mk.Q rnk.0 

This is the change of coordinate we will use. We then write e'fc? = e l X ^ ' p in the 

integral. 
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4.4.2 Integration of the formal operator 

We want to see under what conditions the formal operator Aav satisfies the 

resolution of the identity. We thus compute the integral: 

= < M o r i * > - (4-28) 

The details are in Appendix E.3. 

We obtain that: 

f dk 
IM = / <t>*{k)Aav(k)iP{k)-, (4.29) 

where 

Aav{k) = (2nf [ I ^ A ^ J f c ) ! ^ ^ . (4-30) 
J v+ Q ' K Qo 

4.4.3 Rewriting of the vector argument 

We need to rewrite ^(A"1^)!2 as a function of q in order to perform the integral 

and evaluate Aap(k). 

We have the following by definition or simple computation: 

• Akk0 = k, ko — A fc1*:, A^ko = k, k0 = A kk; 

• AkAqk0 = RAqAkk0, where R is a rotation; 

• A,-1 = A,-; 

• A^q — A kq. 

Remark 4.4.1 The second item expresses the fact that AkAq applied to k0 and 

AqAk applied to k0 differ only by a rotation. Note that this is not true if applied to 

some other vector. 
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We can thus rewrite: 

to(V*)la = k V A t K o . o f j f 

= \r](RAkAg(m, 0,0)f))|2 

= \v{A-k<i)\2 

= W ) \ 2 , (4.31) 

where we define q' = Akq. We have also set that \r)\2 is invariant under rotation, that 

is \ri(Rq)\2 = \v(l)\2- This means that it is a function of the 0th (time) component 

only. 

We thus compute the 0th component of the argument q' = Akq: 

q'0 = (Akq)0 = -k-q, (4.32) 
m 

where k • q = k0q0 — k\qi — k2q2. 

4.4.4 Evaluation of the integral 

We return to the evaluation of the integral (4.30) for A„v(k). We use the fact 

that q'0 — ̂ q • k and that ^ = (since this is an invariant measure) to write: 

Aav(k) = (27T)2/ (4.33) 
Jv+ % % 

We recall that rj is square-integrable and that q'0 > m > 0. We can then see that 

Aav{k) is actually a constant with respect to k (it only depends on q'). Then, 

IM = Affv <4>h/> > • (4.34) 

4.4.5 Resulting coherent states 

The resulting coherent states are the vectors: 

(VavU,Pm = eik'AqPe~in9r](A~1k). (4.35) 

•44 



They have to be normalized by \ J A a v in (4.33) in order to have the resolution of 

the identity. 

4.5 Coherent states for the Galilean section 

We perform once again the computations to obtain coherent states on the hy-

perboloid following the method outlined in Section 3.2. Here, we are using the 

Galilean section. 

We will not obtain coherent states, but we will get a frame for a restricted type 

of rj. 

4.5.1 Definition of the set of vectors 

The Galilean section (4.21) is written 0o(q,p) = ((0, P)S A,). We take a set of 

vectors (vector-valued functions) ry in the Hilbert space TL = C <B> I>2(V+, d g i^9 2)-

We transform it by the UIR (4.15): 

( V a o ( q , p ) ) ( k ) = (C/(cr0(q, p ) ) i 7 ) ( f e ) 

= ( l / ( ( 0 , p ) , A g ) t j ) ( k ) 

= eik'(0'p^ e~in6 ^(Aq1 k), (4.36) 

where k is an arbitrary point on the hyperboloid. 

The formal operator is written: 

(4.37) 

where T is the four-dimensional orbit. 
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4.5.2 Integration of the formal operator 

We want to see if, and under what conditions, the formal operator Aav satisfies 

the resolution of the identity. We thus compute the following integral: 

IM = < <f)\Aaoi) > . (4.38) 

All the details of the computation are given in Appendix E.4. 

Assuming again that \r)\2 is rotation-invariant, we get the following: 

f dk 
/ nk)Ao0{k)rl>{k) — , (4.39) 

Jv+ K o 

where 

ACo(k) = (2TT)2/ \t](Akq)\2-^ — . (4.40) 
Jv+ ko <7o 

4.5.3 Estimation of the integral 

We would like to obtain that Aao is independant of k. Actually, there is no 

solution. A simple guess rj = yfko would give Aau independant of k, but 77 would 

then not be square-integrable. 

We can try to find some function f(k,q) such that 77 = f{k,q)\/k^ would be 

square-integrable and ACo would be independant of k. Unfortunately, it is not 

possible because then we would need f = f{q) and 77 would not be square-integrable 

anymore. 

We can also try to bound Aao(k) to get a frame. As a bound for any 77, we only 

have the condition 0 < r- < —. The inverse of the operator is not bounded. KQ — m 1 

We thus need to find a suitable 77 to obtain a bound on the operator. We can 

write 77 = f(k,q)y/k^ where / is such that both 77 and / are square-integrable. 

Moreover, suppose f(k, q) is such that we have bounds on the operator: 0 < a < 

Aao(k) < b < 00. We would thus have a frame for the Galilean section under these 

conditions. 
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4.5.4 Resulting frames 

As described in Definition 3.1.1, the set of vectors: 

= R„(q,p)l(q»p) e M4} c w (4.41) 

constitutes a frame for a suitable function / as described above. 

4.6 Coherent states for the affine section 

We now start from the generic section to obtain coherent states on the hyper-

boloid following the method outlined in Section 3.2. We will be lead to the affine 

section during the integration process. 

We will again get a frame for a particular affine section and a restricted type of 

V-

4.6.1 Definition of the set of vectors 

We start from a generic section: 

a (q ,p) = (Ag(/(q, p), 0)' + (0, p)£, AqR(q. p)), (4.42) 

where / is a scalar function and R is a rotation. 

We take a set of vectors (vector-valued functions) r; in the Hilbert space H = 

C ® L2{V+, ^ 2 2 ) . We transform it by the UIR (4.15): 

(»M«i.p))(fc) = (U(a(q,p))V)(k) 

= (U(p,AqR(q,p))r,)(k) 

= e i k f ,e- l 9v{R'1{q)Aq
1k), (4.43) 

where p — A 9 ( / (q : p), 0)J + (0, p) ' . Since we know the matrix form of Aq, we can 

rewrite p = £/(q, p)q + (0, p) ( . 
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We will use this as a change of coordinate p —» p. We compute the Jacobian: 

|J| = l + i 9 l | I + I ? 2 | I (4.44) 
m dpi m op2 

We want to choose / such that the Jacobian is independant of p to be able to 

perform directly the integral giving a 5 function. This leads to the affine section: 

/(q,p) = p-0(q) + <*(q), (4-45) 

where 0 is a two-vector function and <p is a scalar function. The resulting Jacobian 

is: 

| J | = 1 + —q • 9. (4.46) 
m 

We define the formal operator: 

Aa= f |»fc(q,p) > < V a ( d . ( 4 . 4 7 ) 
J r Qo 

4.6.2 Integration of the formal operator 

We want to integrate the formal operator in order to see if it satisfies the res-

olution of the identity. The details of the integration are given in Appendix E.5. 

Note that we restrain R(q.p) = R(q). 

We obtain: 

r dV 
= I r(k)Aa(k,qHik) — .. (4.48) 

'v, + k0 

where 

Jv+ " ko m + q • 9 qo 

and Aq = Aq/?(q). 
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4.6.3 Rewriting of the vector argument 

We need to rewrite the argument of 77 as in 4.4.3. The process is exactly the 

same except that we have a supplementary rotation R(q) which disappears under 

the assumption that |?7|2 is rotation-invariant. 

The integral (4.49) is then rewritten: 

Aa{k,q) = ( 2 T T ) 2 f (4.50) 
Jv+ k0 m + q • 6 q0 

where q'0 = • q. 

4.6.4 Estimation of the integral and resulting frames 

In order to obtain a result, we need to choose a particular value for the 9 

function. If we set 6 — ( i ± ) , the integral (4.50) reads: 

Jv+ k0 m + 2 q0 

Recalling that ^ is the invariant measure, we are in the same situation as for the 

Galilean section. Then, we can write 77 = f(k, q)y/ko with / such that both 77 and 

/ are square-integrable. Moreover, we suppose that f(k,q) is such that we have 

bounds on the operator: 0 < a < Aa(k) < b < 00. We would thus have a frame for 

the affine section with a particular 0 under these conditions. 

We have built a set of coherent states on the hyperboloid using the principal 

section. We have obtained a frame for the very simple Galilean section under certain 

conditions on the initial vector set. W ê have also obtained a frame for a particular 

form of the affine section under restrictions on 77. 
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Chapter 5 

Coherent states on the upper cone 

In this chapter, we compute the coherent states on the upper cone (denoted 

by cone only in the following). We use the same method as in Chapter 4 for the 

hyperboloid. 

We define a set of natural coordinates and an invariant measure on the cone. 

We also present another set of coordinates which happens to be useful for the 

computations. We compute the induced representation and describe a set of sections 

that is used to finally compute the coherent states as described in Section 3.2. 

In 5.4, we work with a generalized principal section, we obtain coherent states. 

In 5.5, we use the basic section to obtain a frame under some conditions on the 

initial vector. 

5.1 Coordinates and measure 

We start by defining a set of coordinates on the cone and its cotangent plane. 

We compute the invariant measure on this structure. We also present another set 

of coordinates related to the projection of the cone which will be useful in the 

computations for the coherent states. 
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5.1.1 Natural coordinates 

We use the natural coordinate q = (q0, q 1, 92) on the cone embedded in a three-

dimensional space. It satisfies — q\ — q\ = 0. 

The p coordinate is on a cotangent plane to the cone. Here, we will use p = 

(po; Poi P2) as the coordinate on the plane obtained in Section 2.3. 

Once again, the cotangent plane, hence the p coordinate, is attached to the cone 

at a point q. In the hyperboloid case, p was changed to p by a pure boost. We 

need an equivalent transformation here. Therefore, we define p = pAq^, where Aq 

is such that (1,1,0)A9 = q. We then have qA~1 = (1,1,0). It is possible to obtain a 

matrix representation of Aq. The computation is presented in Appendix F. l . The 

result is: 

/ l + 9 o + 9 o ~ 9 i 9 o 9 i ~ l - 9 o + 9i <72(1 + <7o) ^ 

= - 1 - ?o + 1 + q\ + qo-qi -92(1-91) (5-1) 

\ 92(1 + 90) - 9 2 ( 1 - 9 1 ) 90 + 91 + 92/ 

9 qo + qi 

5.1.2 Invariant measure 

From the natural coordinates, we compute q' — qA (note that q' = qA+pA~1( J-

v ), but we study the measure only on the cone, that is without translations v). The 

invariant measure is dqiAd'12 when there are no translations. 
90 

We also have: 

p' = pA-1 

= pAq A A"1 

= pAg^A^Ag 

= pRAq 

= p'K, 

where we have set R = AqAA 1A 1 and p' = pR. 
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We check that R is a rotation on the cone. It should keep the value of q0 

constant. We cannot use the condition (1 ,0 ,0)R = (1,0,0) because (1,0,0) is 

not a point on the cone. We thus check the condition (1,1,0)/2 = (1. a, 6), where 

a2 + fc2 = 1. 

(1,1,0) J? = (1, 1,0)A9AA_1A~1 

= tfAA-'A-1 

= 

= ( 1 , 1 , 0 ) . 

This means that R is a rotation. We have p1 = pR, then dpi A dp2 is invariant. 

Finally, the invariant measure on the cone is: 

d = dgi A dq2 A dpx A dp2 ^ ^ 
Qo 

5.1.3 Projection coordinates 

We present here another representation of the cone coadjoint orbit. This is 

based on the projection of the cone on a plane. 

We represent an element of the cone orbit with its cotangent plane by g — 

A (Re, A; b), where Re is from (1.4) Aj0 = I I, A is the dilation factor (actually 
\0 Re) 

A = cosh 7 + sinh 7 from Aj2 in (1.4)) and b is a two-vector characterizing the 

cotangent plane. The product of two elements is: 

gg' = (Re, A; b)(/^: A'; b') = (Rg+e>, AA'; b + A ^ b ' ) . (5.3) 

It is obtained from the matrix product of two elements of a semidirect product 

group and a direct computation for the rotation and the boost. 

We will use the angle 9 and the dilation parameter A = cosh 7 + sinh 7 as the 

coordinates on the cone. In this setting, the coordinates on the plane are bi and b2 

from b. 
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We then have another representation of Ag, the action on the cone. Besides the 

matrix given in (5.1), we can use Aq = ARg. It will act on the two-vector (1,0) to 

take it to the projection of q on a plane, that is ( 9 1 , 9 2 ) -

5.2 Induced representation 

We now describe how the induced representation of the Poincare group is ob-

tained. This follows the method given in Appendix A.2. 

5.2.1 Tools 

We list here the different objects we will use in the following: 

• So = n (a translation) is the stabilizer of V* 3 k0 = (1,1, 0); 

• O* the orbit of k0 in R (2 under SO{2,1) is the cone (q$ -q\-q2
2 = 0); 

• du(q) is the invariant measure on O*, the cone, hence dv = a s presented 

in Section 5.1.2; 

• Ho is the stabilizer of (0, k0) G g* under the coadjoint action, where k0 = 

(1,1,0), hence it is the translation n and the translation v — (t, — i,0); 

• fc0) is the orbit of (0, k0) € 0* under the coadjoint action of G, here it is 

the cone and the plane {po,Po*P2)', 

• T*0* is the cotangent bundle of the orbit O*, here the cone and its cotangent 

plane; 

• r = G/H0 from (1.27), it is then the cone and the plane (^0,^0,^2); 

• dn{q,p) is the invariant measure on T, dp'lA#2
q
A

u
d<?lArf<?2, where qi)Pi are the 

natural coordinates and p = f>Aq\. 
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We now have everything we need to obtain the induced representation. 

5.2.2 Representation 

We follow the procedure described in Appendix A.2 in order to obtain the 

induced representation. 

We associate a unitary character x to V = K2,1 in the same way as before: 

X(x) = exp(—z < k0; x > ) , (5.4) 

where k0 = (1,1,0). 

Let s t-> L(s) be a UIR of So carried by a Hilbert space t. Here, S0 is the 

translation (n in the Iwasawa decomposition). Then, L(s) is a one-dimensional 

unitary representation: ezlp, where t G K and p is the translation parameter. The 

UIR xL of V >o S0 carried by 6 is: 

{XL){x, s) = exp[—i < k0; x >}eitp. (5.5) 

The Hilbert space is t = C. 

Now, we want to induce a representation of the Poincare group G = K2'1 ><3 

S"0(2,1) from xL• From the coset decomposition, (x, s) = (0, Afc)(A^1x, 50) (where 

Afc is the transformation on the cone and s0 = n) w e act on (0, Ak) which represents 

the cone O*: 

(X,8)(0,Ap) = (0, A5p)(Ajf)
1x. Ajp'sAp). (5.6) 

We obtain the following cocvcles: 

h : G x O* V x S0, h((x, s),p) = (AjpX, h0{s,p)): 

h0:SxO* So, h0(s,p) = A;p
]sAp. (5.7) 

They look the same as for the hyperboloid due to the notation, actually A and So 

are different matrices. 
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The UIR is again written this way: 

{xLU{x, s)<j>) (k) = exp[i < k,x >]L(hQ(s~\ k))~^{s^k). (5.8) 

The writing is the same as in the hyperboloid case except that the objects are 

geometrically different. 

Finally, the UIR we will be using is written: 

{xLU{v, s)(f>){k) = exp[z <k\v >}e-itp{k<s)<t>[s-lk). (5.9) 

It is similar to the UIR obtained for the hyperboloid in (4.15), but here A; is a point 

on the cone, t G R and p is a translation parameter. 

5.2.3 Square-integrability 

We now check if this representation is square-integrable over the full group G. 

We have defined square-integrability in Definition 4.2.2. 

We write the following: 

< U{g)r]\(j) > = < eix ve~in(>*ri> 
f Htc 

= / Tf(s- lx)e ine*e~ ix-v<t>{x) — , (5.10) 

<U{g)r)\^>>* = <<k\U{g)r1> 

= f ^yyy-e-^vis-'y)^-. (5.11) 
Jv+ Vo 

We will need the integral definition of the delta function (4.19). 

The detailed computation is given in Appendix F.2. We obtain that the UIR 

is not square-integrable on the whole group. We therefore need to work on the 

quotient. 

5.3 Quotient to phase-space and choice of sections 

Since the UIR is not square-integrable, we need to take a quotient and work 

only on the four-dimensional orbit. We also need to define some suitable sections 
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in order to go back to the full group. 

5.3.1 Quotient 

We take the quotient to the phase-space to have a square-integrable represen-

tation. We follow the left quotient decomposition: 

( A . « ) - ( a * , (n , ( t . - t .O) ' ) . (5.12) 

Note that in the Iwasawa decomposition Ak is ka a product of a rotation and a 

boost and n is the translation. 

Since getting the left quotient decomposition measure is pretty hard in this case 

(because the cone coordinates are angles), we will use the natural coordinates and 

the invariant measure associated to it listed in Section 5.2.1. 

5.3.2 Sections 

Later, we will need to fix a section in order to be able to undo the quotient 

taken above. We describe here the different possible choices. 

By analogy with the hyperboloid case, we define a basic section: 

„ „ ( , , „ ) _ ^ ( E l + f l . a i + f l ^ y , A , - ' ) , (5.13) 

where Aq is ka product of a rotation and a boost, its matrix form is given in (5.1). 

Then, we can get a generic section a : T —> G from there: 

ff(q,p) = <Tote,;>)((/,-/, 0 ) ' ,N) 

= (5 14) 

where / = f{q,p) is a scalar function and N = N(q,p) is a translation. 

There is also the generalized principal section which is defined paralleling the 

principal section for the hyperboloid: 

a-p:T->G, av(q,p) = (A°,A?p). (5-15) 
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We have added some freedom with the a and /? exponents. We will get some 

constraint on those exponents when computing the coherent states. 

In 5.4, we will work with the generalized principal section which leads to a nice 

result. We obtain a family of coherent states for a general set of vectors. With 

the basic section, presented in 5.5, we are only able to obtain a frame under some 

restrictions. 

5.4 Coherent states for the generalized principal 

section 

We now move to the computation of the Coherent states. We start with the 

generalized principal section. We follow the method described in Section 3.2. 

5.4.1 Definition of the set of vectors 

We recall the definition of the generalized principal section: 

We start with a set of square-integrable vectors 77 in the Hilbert space Ti. = C <8 

L2(V+, We transform them using the UIR given in (5.9): 

aAQ,p) = (AJ.Ajp). (5.16) 

(Vav)(k) = ei<k*>e^V(A^k), ,i<k;p> -Up, (5.17) 

where p = Aand k is an arbitrary point on the cone. 

The formal operator is defined as follows: 

(5.18) 
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5.4.2 Integration of the formal operator 

The integral of the formal operator = < > is given in Appendix 

F.3. 

We work out the Jacobian of the change of coordinate p —> p = A0 p. To do this, 

we need to use the projection coordinates defined in Section 5.1.3. We thus rewrite: 

p = A = X^Rpop, where p is the projection of p on the punctured plane. Then, 

we have that: px = X0 cos (3Qp\ — X13 sin /39p2 and p2 = X0 sin j36p\ + A13 cos f39p2 

which gives the Jacobian | J\ = A2/J. 

When rewriting the integral with this Jacobian (see the details in Appendix 

F.3), we obtain: 

/*,* = / (5.19) 

where 

= w f j ^ w ^ f (5.20) 

5.4.3 Rewriting of the vector argument 

In order to rewrite the argument of 77, we use the projection setting and the 

isomorphism of the cone with the punctured plane. 

We redefine the point k to be the initial point (1,0)' on which the rotation R^ 

and the dilation r act, that is k —* k = 1, 0)'. We also have that k0 = r , the 

time component only depends on the dilation. We can also obtain this from = 

k\ + k% = r 2 cos2 <p + r2 sin2 tp. Similarly, we write Aq as ARg, then A~° = A~aR^ag. 

With all this information, we are able to write: 

HA~ak)\2 = \rj(X~a R-QgT R<p(l .Of)]2 

= | t7(A-V/Vq*(1,0)<)|2 

= |77(A-qT(1,0)()|2: (5.21) 
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where we have considered that \q\2 is rotation-invariant. 

We rewrite the integral (5.20): 

Aav(k) = \V(X-ar(l, O W T ^ - (5-22) 
7v+ a H T qo 

We can see that \q\2 depends only on the length of the vector X'ar, we thus change 

the variable to q'0 = q[ = \~aT (and q'2 = 0). 

5.4.4 Evaluation of the integral 

We recall that the measure ^ is invariant. Also, provided 2/3 = —a, we have 

rA2/3 = q'0 too, then we get the resolution of the identity because the operator is 

now written: 

A . = (2tr)2 f W q ) \ 2 Y 4 (5-23) 
Jv+ % % 

and does not depend on k. Also, recalling that 77 is square-integrable and q'0 > 0, 

for an initial vector 7/ in the domain of the unbounded operator, multiplication by 

4-, we have: 

r JU 
U.9 = A,v / <s>*(k)V(k)— 

Jv+ ^o 
= Aav < > . (5.24) 

5.4.5 Resulting coherent states 

The vectors are coherent states for the section: 

= (5-25) 

that is: 

(7 h v ) {k ) = ei<k'A^>e-ltp
V(Afk) (5.26) 

are a family of coherent states for /x G Z and a suitable // with the normalization 

by yjAov given in (5.23). This is a promising new result. 
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5.5 Coherent states for the basic section 

We now try to work with the basic section (5.13). We again follow the method 

described in Section 3.2. We will obtain a frame under some conditions on rj. 

5.5.1 Definition of the set of vectors 

We recall the definition of the basic section: 

(5-27) 

where Aq is the matrix acting on the cone. 

We start with a set of square-integrable vectors rj in the Hilbert space H = 

C <g> L2(V+, ^aiMaz). We transform them using the UIR given in (5.9): 

(ifoo )(*) = ,*), (5.28) 

where k is an arbitrary point on the cone. 

The formal operator is defined as follows: 

A . 0 = [ K 0 > < V O 0 \ — - (5.29) 
J r Qo 

5.5.2 Integration of the formal operator and rewriting of the 

vector argument 

The integral of the formal operator % = < > is given in Appendix 

F.4. We obtain: 

r rfi-
h * = / —, (5-30) 

Jv+ 

where 

AO0{k) = {2*f f |r?(A9£)|2r- (5-31) 
,/v+ Ko 1o 
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We again need to rewrite the argument of 77 using the projection coordinates as 

in Section 5.4.3. This gives: 

|T7(A,A;)|2 = M X R o T R ^ O f ) ] 2 

= |T?(A r i W M ) ' ) ! 2 

= |t?(AT(1, 0) j)|2, (5.32) 

where we have considered that |?;|2 is rotation-invariant. 

Hence, the integral (5.31) can be written: 

A ^ k ) = (2tt)2 [ |77(Ar( l ,0) t) j 2-^ . (5.33) 
Jv+ T Qo 

5.5.3 Estimation of the integral and resulting frame 

We can set that t](X,t) = f{X,T)y/r where / is such that both 77 and / are 

square-integrable. Moreover, if we suppose that /(A, r ) is such that we have bounds 

on the operator: 0 < a < ACo(k) <b< 00, we have a frame for the basic section. 

Under these particular conditions, the integral (5.31) is bounded and the vectors 

(5.28) form a frame. 

We have built a family of coherent states on the cone using a generalized prin-

cipal section. We have also obtained a frame under certain conditions for the basic 

section. 
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Conclusion 

Summary of the results 

The main results of this thesis are divided in two parts. 

We have first studied the orbit structure of the Poincare group in 2 -f 1 dimen-

sions. From a matrix representation of the group, we have computed a formula for 

the adjoint and coadjoint action. This has allowed us to obtain and classify the 

coadjoint orbits of the group. We have also directly calculated the representation 

generating orbits. We have obtained a degenerate orbit, the two-sheet hyperboloid, 

the upper and lower cones and the one-sheet hyperboloid; they all also appear as 

two-dimensional coadjoint orbits. Moreover, the hyperboloids and the cones appear 

with their cotangent plane as four-dimensional coadjoint orbits. Finally, the repre-

sentation generating orbits and the four-dimensional coadjoint orbits were linked. 

Despite the fact that those representation generating orbits were known, they 

have been obtained here in a different way. The explicit computation of the coad-

joint orbits also represents new work. 

The other part of the thesis concerns coherent states. Using the information 

obtained from the coadjoint orbit structure of the upper sheet of the two-sheet 

hyperboloid and of the upper cone, we have defined coordinates and an invariant 

measure on them. We have also induced a representation and computed the coher-

ent states on each of them. For the hyperboloid, we have obtained coherent states 
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for the principal section and a frame for the Galilean and the affine sections. For 

the cone, we have obtained a family of coherent states for a generalized principal 

section and a frame for the basic section. 

The way the coherent states are obtained also represent an original contribution 

for our particular group especially in the matrix representation. Indeed, even if the 

1 + 1 and 3 + 1-dimensional cases have been studied in details, the 2 + 1-dimensional 

case was neglected. 

Further work 

Here are some possible continuation and new directions of the work done in this 

thesis. 

It would be interesting to study quantization from those coherent states follow-

ing the ideas in [27, 14, 24] and using [2], 

We could also work out the induced representation and the coherent states for 

the one-sheet hyperboloid which is isomorphic to the cylinder. 

The complexification of the hyperboloid using the method developed by Hall 

and Mitchell [17] for the complexified sphere would also be something to explore. 

We can define coherent states from there and compare them to the ones obtained 

in Chapter 4. 

One of the most promising applications is in the wavelets scheme. We can apply 

our results to signal and image analysis using the books [11, 1, 8]. 

It is possible to apply the process to other semidirect product groups like the 

Jacobi group (5'L(2.K) K H(R), H being the Heisenberg group). We could again 

compute the coadjoint action and classify the coadjoint orbits from a matrix rep-

resentation of this group. 

Further research could also be about obtaining a general framework for coadjoint 
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orbits of semidirect product groups. 

There are two more possible generalizations: 

• Extend the procedure to a superstructure (G becoming a supergroup), that is 

apply the orbit method and get the symplectic structure for a supergroup. El 

Gradechi [13] has extended the geometric quantization to a supersymplectic 

supermanifold. 

• Generalize the orbit method for infinite-dimensional structure using diffeo-

morphism group, Iglesias (in a joint work with Donato) has explanations on 

his website [18]. 
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Appendix A 

Theoretical background 

In this appendix, we present some background knowledge regarding group theory 

and the induced representation method. 

A.l Group theory 

We introduce the generic definitions for Lie groups and Lie algebras as well 

as the dual algebra and the semidirect product group structure. We also present 

concepts related to orbits and some basic notions about differential and symplectic 

geometry. 

A. 1.1 A few definitions 

A Lie group G has a structure of differentiate manifold. The multiplication 

and the inverse are smooth maps. Here, we use a matrix representation. 

The differentiation at identity of each one-parameter subgroup gives the Lie 

algebra generators. We can see the algebra g as the tangent space at the identity. 

The multiplication law of the algebra is called Lie bracket (or commutator) and 

satisfies: 
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• bilinearity: [aX + pY, Z] = a[X, Z] + (3[Y, Z] and [X, aY + PZ) = a[X, Y] + 

p[X, Z], V X, Y, Z e g and V a, p e K, here K = R; 

• antisymmetry: [X, Y] = ~[Y,X], V X, Y e g; 

• Jacobi identity: [X, [7, Z]] + [Y, [Z, X)) + [Z, [X, 7]] = 0, V X, Y, Z £ g. 

The dual algebra is denoted q*. The dual pairing is a bilinear form such that: 

< ;> : g* x g —> R. In a particular basis, we have < X*;Xj >= 5ij. For matrix 

groups, we have that < A\B >= tr(AB). When we are working with vectors, this 

is simply the scalar product (with or without the metric of the group). 

We are working with a semidirect product group, the Poincare group, which 

is described in details in Chapter 1. The general structure of such a group is: 

G = V » S, where V is a real vector space and S is a subgroup of GL(V). 

One last useful definition is the definition of a Hilbert space. A Hilbert space 

is a generalization of a Euclidean space, it is a complex linear vector space with a 

scalar product < - , - > . In this thesis, we mainly use L2(X,d,^i), that is the space 

of square-integrable functions on X with respect to an invariant measure d/x. 

A.1.2 Orbits 

We have a group space X. The group G acts on the space by the bijective map 

x gx. The orbit of a fixed point x of the set X under the action of the group 

G is the set Gx = {(?x € X\g € G). The stabilizer (also named little group) of a 

point x is the set Hx = {h 6 G\hx = x). 

The group G acts faithfully on X if f \ . ex Hx = e. 

The group G acts freely on X if Hx = e, Vx € H. 

If \/x,y e X there 3g 6 G such that y = gx, G is said to act transitively on X. 

There is a bijection between the orbit of a point x and the quotient of the group 

G by the stabilizer of this point: Gx ~ G/Hx. We are using this bijection to obtain 



our coadjoint orbits in Chapter 2. 

A. 1.3 Differential and symplectic geometry 

We describe the coadjoint orbits in Section 1.3.1. Since those orbits actually 

have a natural symplectic structure, we introduce some notions of symplectic ge-

ometry here. We also present some notions of differential geometry. 

A symplectic vector space is a real vector space V with a bilinear, antisymmetric 

and nondegenerate form Q. 

A symplectic manifold is an even dimensional manifold with a closed antisym-

metric two-form. The tangent space at any point of the manifold is a symplectic 

vector space. The coadjoint orbits are even dimensional and some of them have the 

structure of a symplectic manifold. 

The cotangent bundle, denoted T*0*, of a smooth manifold O* is the vector 

bundle of all the cotangent spaces at every point on the manifold. It may be 

described also as the dual bundle to the tangent bundle (TO*). 

We can put coordinates on a cotangent bundle structure. Usually, coordinates 

on the manifold are qi and coordinates on the cotangent space are pr The invariant 

measure can be computed using these coordinates. 

The projection map (w), as the name tells, is a map from a manifold to a 

submanifold. The quotient of a group by one of its subgroups (for example the 

little group) can be seen as a kind of projection. That is to say that we restrict 

ourselves to some subgroup. 

The section (a) allows us to go back to the original manifold (or group). It is a 

way to undo the projection or the quotient. Precisely, we have that ir(a(U)) = U, 

where U is an open set of the manifold. There is a choice involved there which 

may change the issue of the computation. We need to choose sections for the 

computation of the coherent states in 4.3.2 and 5.3.2. 
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A.2 Induced representation method 

The induced representation method is a canonical method to construct a repre-

sentation of a group. It has been introduced by Mackey [25]. The idea is to obtain 

the representation of a group from the already known representation of one of its 

subgroups. We briefly discuss general facts about representation theory and then 

present the method as it is used in Sections 4.2 and 5.2. 

A linear representation is basically a map T from a locally compact group G to 

the set of bounded linear functions on a separable Hilbert space I). It satisfies: 

T(gig2) = T(gi)T(g2) Vg1:g2 G G, T(e) = I, 

where e is the identity element of G and I is the identity in the Hilbert space. 

A unitary representation is such that T is a unitary operator. That is T obeys 

T* = T _ 1 . An irreducible representation has no nontrivial invariant subspaces. A 

unitary irreducible representation has both of those properties and is denoted UIR. 

As stated earlier, the principle underlying the theory of induced representations 

is that you can induce the representation of a group from an already known rep-

resentation of one of its subgroups. Namely, this subgroup is the little group or 

stabilizer. 

The method that is used to get representations for the computation of the 

coherent states in Chapters 4 and 5 follows [I], §10.2.4. 

We have that du is the invariant measure on the orbit T and the Hilbert space 

is /C = £ 2(I \ du). 

We first associate a unitary character x to V = R2'1 in this way: 

X{v) = exp(-z < k0-,v >), (A.l) 

where v € K2 1 and k0 is the initial vector which determines the case. 

Let L(s) be a UIR of 50 , the little group, carried by a Hilbert space fC. 



The UIR xL of V x S0 carried by K, is then: 

{XL){v,s) = exp[-t < k0-,v>]L{s). (A.2) 

Now, we want to induce a representation of G = V >1 S from Prom the 

coset decomposition: (v, s) = (0, Ak){A^ lv, s0) (A* is the action on the hyperboloid 

or the cone), we act on the left part (which represents O*, the hyperboloid or the 

cone): 

( M ( 0 , A p ) = (0,ASP)(A"V A;>AP) , (A.3) 

where p e O*. We obtain the following cocycles: 

h. : G x O* V >4 So-, h((v,s),p) = (A^v, h0(s,p))-

h0:SxO*^ So, h0(s,p) = A^sAp. (A.4) 

The UIR is then written this way: 

(xLU(v, s)4>) {k) = exp[z < k- v >)L{ho(s~\k))~ (A.5) 

The orbit method is a natural continuation of the induced representation method, 

it has been built by Kirillov [20]. We do not treat it here. 
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Appendix B 

Detailed computations for the 

definition of the adjoint and 

coadjoint actions 

In this appendix, we give the details of the manipulations done in order to obtain 

the actions in Section 1.2. 

B. l Rewriting of equation (1.14) 

We show here how the equality (1.14) ( A a f • J A " 1 = ( m ( A _ 1 ) ' m a ) ' • J ) is 

obtained in the computation of the adjoint action. 

We want to write AQ' • J A - 1 = a ' ' • J , where a ' • J = A0 Jo + Ji + g2J2- We 

perform the computation for each element of the linear combination Jj. We first 

assume AJjA - 1 = ^ a^J j , then we compute the part AJ^A-1 for a generic element 

of the group A = A j 0 A ^ Aj2 in order to extract this linear combination. We have 

used Maple to perform the matrix multiplications. 
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We obtain the following (using the definition of given in (1.5)): 

A J 0 A - 1 = Ago1 Jo + A q i J i - Aq2 J 2 , 

A J 1 A " 1 = Aw J0 + A^Ji - A^J2, 

AJ2A_1 = -A2q J0 - AJi1 J\ + A^1 J2-

If we collect those results in a matrix, we can see that: 

A J A'1 

( A " 1 A - 1 Aoo yvoi 

An1 Arc1 

- a - A 02 

V-A -1 
20 -A - 1 A - 1 

21 •'*io 22 / 

( A 

j 0 

Ji W 

(B.l) 

This is where we need to introduce the matrix m in order to fix the signs: 

^ 1 0 0 ^ 

m = 0 1 0 

\0 0 -IJ 

We reintroduce a and write this result as: 

A a1 • ,/A"1 = (aim,A~1m) • J. 

(B.2) 

(B.3) 

The last step is to rewrite atmA~1m as something times a in order to be able to 

write the coadjoint action in a matrix form. We explicitly compute the expression 

and get that o 'mA _ 1 m = m(A~1)lmn. 

We thus have rewritten: 

Aal • J A'1 = (m(A~1)tma)t • J. (B.4) 

B.2 Rewriting of equation (1.17) 

We now show how the equality (1.17) (-Ac**-JA_1t' = -(J-•t')A_1a;) is obtained 

in the computation of the adjoint action. 
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We already have obtained that A a 1 • J A - 1 = (m( A ^ ' H ' • J = (A 1 a) t • J , 

then: 

- Ac/ • JA^v = -{{A^af • J)v. (B.5) 

We first rename the vector -A - 1** ~W = (W0, WXl W2). We then expand the 

dot product with J. We recall that the vector J = (J0, Ji, J2) is made of matrices. 

This gives (W0J0 + W1J1 + W2J2). We apply this linear combination to the vector 

v using the explicit expression of J ' s given in (1.5). This gives: 

t Wxv2 + W2vx \ 

(B.6) -W0v2 + W2vQ 

\ Wqvx + WxVo ) 

We compare this result to —(J • v)A~1a1 that is the matrix J • v given in (1.18) 

applied to the vector W. We obtain: 

/ V2Wj + V! W2 ^ 

(B.7) -v2W0 + v0W2 

\ vi W0 + v0Wi J 

We see that the two ways of writing this give the same vector. We have thus: 

Aal • JA~1v = —(J • v)A~1a. (B.8) 
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Appendix C 

Computations for the orbits 

We give here the detailed computations regarding the different orbits presented 

in Chapter 2. 

C.l Computations for the two-sheet hyperboloid 

orbit 

In Section 2.2, we have set k0 = 0 o) • We compute the representation 

generating orbit and the two coadjoint orbits for this case. 

Representation generating orbit 

To get the action of 50(2,1) on the dual of M2'1, we just multiply the row-vector 
= ( 

7o 7i 72) b y t h e subgroup matrices. Here is the result for X* = k0 = 

(C.la) 

(C.lb) 

(C.lc) X*AJ2 = ±m cosh 7 ±rn sinh 7 0 



We have that the two boosts are acting. The vectors (C.lb) and (C.lc) are two 

hyperbolas. This gives the upper sheet of the two-sheet hyperboloid for + m and 

the lower sheet of the two-sheet hyperboloid for —m. 

Coadjoint orbits 

From the coadjoint action definition: 

Ad*{g)X* = (a*A + p*A-1{J-v) p*A~l) 

with the vector p*) = (o k0) = (o 0 0 ±m 0 o) , we get that: 

Ad*(g)X*0 = ((±m, o, 0)A'1{J • v) (±m, 0,0)A"1) • (C.2) 

The second part (±m, 0,0)A_1 is very similar to the representation generating orbit 

computation. It is again generated by the two boosts, this represents the two-sheet 

hyperboloid. 

For the first part, the simplest way to see the geometry is to use the bijection 

with the quotient by the stabilizer. The matrix J • v is defined in (1.18). We want 

to solve: 

(±m, 0,0)A_ 1(J -1>) = 0, (±m, 0, 0)A_1 = (±m, 0,0). (C.3) 

Using the second one, the first equation becomes: (±m, 0, 0)(J • v) = 0, which is 

rewritten, using (1.18): 

± m(0, i'i) = 0. (C.4) 

So, the time translation u0 is the stabilizer. The quotient leaves the two space 

translations to generate the orbit, that is the space plane. We remark that solving 

(±m, 0, 0)A_1 — (±m, 0, 0) gives the rotation Ajn as the stabilizer and, thus, the 

two boosts as the orbit generators. 
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We thus have a four-dimensional orbit composed of the two-sheet hyperboloid 

and the space plane. 

Now, if we use /?*) = (fc0 o ) = ( ± m 0 0 0 0 o ) instead, we get 

that the coadjoint action is: 

Ad*(g)X* = ( (±m,0,0)A o ) • (C.5) 

From the expression of A for the one-parameter subgroups given in (1.16), we can 

see that we have again something similar to the representation generating orbit, 

that is an orbit generated by the two boosts which is the two-sheet hyperboloid, a 

two-dimensional orbit. 

C.2 Computations for the cone orbit 

For Section 2.3, we have k0 = ( ± 1 1 oj- We compute the representation 

generating orbit and the two coadjoint orbits for this case. 

Representation generating orbit 

To get the action of SO(2,1) on the dual of 1R2'1, we just multiply the row-vector 

X* = ^ ) by the subgroup matrices. Here is the result for X* = ko — 

(±1 1 0 > 

X*A Jo = coscv — sine*): (C.6a) 

X*\j, = (±cosh/? 1 ±s inh /? ) , (C.6b) 

X*Aj2 = cosh 7 + sinh 7 ± sinh 7 + cosh 7 0) • (C.6c) 

From (C.6a), we see that if we cut the orbit at t — ±1, we have a circle. From 

(C.6b), we see that if we cut the orbit at x = 1, we have an hyperbola. From 

(C.6c), we see that if we cut the orbit at y = 0, we have a straight line. Moreover, 
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in all cases, we have that t2 — x2 — y2 = 0. This thus gives the upper and lower 

cone depending on the sign for the time component. 

Coadjoint orbits 

From the definition of the coadjoint action: 

Ad*{g)X* = {a*k + p*A~\J -v) 

with the vector f3*) = { 0 = ( o 0 0 ±1 1 o ) , we get: 

Ad*{g)X* = ( ( ± 1 , 1 , 0 ) A - \ J - v ) (±1,1,0)A"1)- (C.7) 

We want to compute the stabilizer of this action in order to compute the quotient 

G/H0 which is isomorphic to the coadjoint orbit. We must then solve the following: 

(±1,1,0)A-X = (±1,1,0), (±1,1, 0)(J • v) = (0, 0, 0). (C.8) 

The second equation gives, using (1.18), (—v2, ±v2, + fo) = 0. It is solved by 

the vector v = (t, t, 0). 

For the first equation, we get that (1,1,0) is stabilized by Aj^ and ( — 1,1,0) is 

stabilized by Aj 1 , the A's are defined in (1.7). They are both translations (n in the 

Iwasawa decomposition as described in 1.1.4). 

The coadjoint orbit is given by the quotient of the group by the stabilizer just 

obtained. That is: 

• 50 (2 ,1 ) /n is ka in the Iwasawa decomposition, that is a rotation (Aj0) and 

a boost (Aj2) acting on the vector (±1,1, 0); 

• M2 '1/^, Tt-. 0) = (0, 0, v2) x (t, ±t, 0) which is the plane generated by the y-axis 

and the axis x = ±£. 
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The first part is simply given by: 

(±1, l ,0)Ajo = m ( ± l , c o s a , - s i n a ) , 

(±1,1,0)A j2 = m(± cosh 7 +s inh 7, cosh 7 ± sinh 7 ,0) . (C.9) 

This is a circle above (below) the xy-plane and a half-line, they generate the cone. 

We thus have a four-dimensional orbit made of the cone and the plane generated 

by the y-axis and the axis x = dct. 

We now compute the stabilizer of the vector ft*) = (k0 o) = ( ± 1 1 0 0 0 0 

in order to compute the quotient G/H0 which is isomorphic to another coadjoint 

orbit: 

Ad*(g)X* = ((±1,1,0)A o ) . (C.10) 

We need to solve (±1,1,0)A = (±1,1,0) . It is again stabilized by the n translation 

(Aj_ for (1,1,0) and A J+ for ( -1 ,1 ,0) ) . All the 1R2'1 translations also stabilize 

the vector. The quotient leaves the rotation and the boost to generate the cone, a 

two-dimensional orbit. 

C.3 Computations for the one-sheet hyperboloid 

orbit 

For Section 2.4, the initial vector is k0 = (o rn o)- We compute the repre-

sentation generating orbit and the two coadjoint orbits for this case. 

Representation generating orbit 

To get the action of 50(2 ,1) on the dual of M21, we just multiply the row-vector 

X* = (-)<0 -yj -y2j by the subgroup matrices. Here is the result for X* = k0 = 
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(o m o): 

X*AJo = m c o s a —msina j , (C.lla) 

X*Aj, = ( o m o ) , (C.llb) 

X*Aj2 = (ms inh7 mcosh7 OJ • (C.llc) 

We have the rotation and one boost acting. The vector (C.lla) is a circle and the 

vector (C.llc) is a hyperbola. This gives the one-sheet hyperboloid. 

Coadjoint orbits 

From the definition: 

Ad*(g)X* = («*A + P*A~\J -v) P* A " 1 ) , 

using the vector p*) = ( o fc„) = (o 0 0 0 m o ) , we get the coadjoint 

action: 

Ad*{g)X* = ( (0 ,m,0 )A - 1 ( J • v) (0 ,m,0)A" 1 ) . (C.12) 

We want to get the stabilizer by solving: 

(0. m, 0)A - 1 = (0, m,0), (0, m, 0)( J • v) = 0. (C.13) 

The boost in the x-direction (AjJ solves the first part. The second part is (—v2,0, v0) = 

0, which means that the x-translation (fx) is in the stabilizer. 

The quotient tells us that the coadjoint orbit is generated by the rotation and 

the y boost to which we add the time and y translations. This is a four-dimensional 

orbit composed of the one-sheet hyperboloid and the ty-plane. 

Now, if we use X* = (a* 0*) = (k0 o) = (o m 0 0 0 o ) , we get: 

Ad*(g)X* = ((0, in. 0)A o ) . (C.14) 
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The stabilizer here is simply A.h with all the R2A translations. The orbit is then gen-

erated by the rotation and the boost acting on (0, m, 0), this is the two-dimensional 

one-sheet hyperboloid. 
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Appendix D 

Coset decomposition measures for 

the hyperboloid 

We use the coset decomposition to get another set of coordinates and invariant 

measure on the hyperboloid. We first present the decomposition and then the 

coordinates and measure for both the right and left decomposition. 

We know that the stabilizer leading to the hyperboloid is the rotation and the 

time-translation (see Section 2.2.2). We wish to decompose the group in its time 

and spatial parts to take the quotient. The spatial part will give the coordinates of 

the coadjoint orbit. 

First, we recall the group product: 

We also need the decomposition of a Lorentz transformation in a rotation and a 

pure boost. This is given in [29]: 

(D.l) 

A = RAq or A = AR qR : Rq (D.2) 
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where R is a rotation: 

(10 0 \ 
R = 0 cos t — sin t (D.3) 

^0 sin t cos t 

and Ag is a pure boost, see (4.3): 

Q 
1+90 

(D.4) 

Qfy am. 
\ q 2 1 + 9 0 

Here, we consider the case m = 1 only. We now work out both the left and right 

invariant measure. 

D.l Right coset decomposition 

We have the following equality: 

We compute the product on the left-hand side using (D.l) and we solve to get the 

value of a, pi and p2. We obtain the following: a = t>0, p\ = i>i cos t + sin t, 

p2 = v2 cos t — v\ sin t. 

The coordinates are simply qi and q2 appearing in A9 for the hyperboloid 

and pi and p2 given above for the cotangent plane. 

To get the right invariant measure, we act by a generic element g ^ on the 

quotient G/HR = (Ag, (0 ,pi,p2y) to get the double prime coordinates p" and q". 

We then compute dp", dq" and the right invariant measure. 

We need to rewrite A(0^ in the polar decomposition. We use (D.3) and (D.4) to 

obtain A(0' = The double prime coordinates are extracted from: 

(R, (a, 0, 0)t)(A<?, (0 ,pi,p2)1) = (A, v) = (RAq, (v0, (D.5) 

(A'\v") = (AqAO,PuP2Y)(R{0)A^Kv^). (D.6) 
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From there, we compute the invariant measure: 

dpi A dp'2 = dpi A dp2 + some dq terms, 

dq" A dq'2 dqi A dq2 

Qo ~~ 9o 

dq" A dq'2 A dp" A dp2 dqi A dq2 A dp\ A dp2 ^ ^ 
Qo Qo 

D.2 Left coset decomposition 

We now use the other decomposition A = AR qR. We write: 

(A«g,(0,p1,p2) t)(/?,(a,0,0) t) = (A,t>) = (ARqR.,(v0,v1,v2)t). (D.8) 

We redefine q = Rq — (q0, q1 cos t-q2 sin t, qi sin t + q2 cos t). From (D.8), we obtain 

that a = J , P l = _ p2 = t,2 -

We again rewrite A(0) in the polar decomposition A(0) = A ô)i?(0), where = 

R^qW. 

We act on the left quotient by the left to get the prime coordinates: 

(A'y) = (AWy°>)(A q,(V,Pi,P2)1). (D.9) 

The decomposition of A' is A -,R', where q' — R'q'. We extract q' and p' from (A', v') 

and compute the dq' and dp' to obtain the left invariant measure: 

%dp\ A dp'2 = qodpi A dp2 + some dq te rms, 

dq[ A dq'2 dq\ A dq'2 dqi A dq2 dqi A dq2 

<7o q'0 qo qo 

dq\ A dq'2 A dp\ A dp'2 — dqi A dq2 A dpi A dp2- (D.10) 

This decomposition also leads to an invariant two-form. Using q-i and q2 as 

coordinates, we have computed: 

dp\ A dq\ + dp'2 A dq'2 = dpi A dqi + dp2 A dq2. (D-ll) 
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Appendix E 

Computations for the coherent 

states on the hyperboloid 

We give here the detailed computations regarding the, induced representation 

and the coherent states on the hyperboloid given in Chapter 4. 

E.l Rotation in the cocycle 

In the computation of the cocycle for the inverse element (4.11), we need to 

study the following combination Aj.1, s - 1 A g . We check here that it is a rotation by 

applying it to the vertex of the hyperboloid. We recall that Ag(m, 0, 0)' = q. 

A-1
1 , a-1A,(m,0,0) t = 

= (m. 0,0)'. (E.l) 

So, AjJi s _ 1 A, is actually a rotation. The angle 9 of this rotation is the Wigner an-

gle. It is possible to characterize it using the group isomorphism between 50(2 ,1) 

and SL(2, R). The angle depends on a point on the hyperboloid (q) and the gen-

erator of the transformation ( s - 1 , an element of 50(2,1)) . 
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E.2 Checking square-integrability of the UIR 

Here is the detailed computation of the integral outlined in Section 4.2.3. 

We write fG as Jy fs. Since, x and y are on the hyperboloid, the integration of 

the exponential is only in two dimensions. 

/ | < U{g)ri\4> > 12dm(g) 
Jg 

M [ rfis^x^^e-^MxU^yy^e-^^is-'y) — — dvds 
- xoyo 

= (27r) 2 / [ [ [ r 7 *( 5 - 1 x) e ^- 0 'V(x) r (y ) r ? ( s - 1 2/ )5 (y -x) — ^dsdv0 
Jm Js JV+ x0 VO 

= (2tt)2 [ f [ (r}*(s-lx)<f>(x))(<f>*(x)r1(s-1x))-—dsdv0 
JM. JS Jv£ xO xO 

= (27r)2 fdvof [ I r , * ( s - 1 x)< j> (x ) \ 2 -—ds 
JK Js JV+ x0 x0 

We then have the integral of a positive quantity on the translation vq which is 

infinite. Then, the UIR is not square-integrable. 
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E.3 Computation of the integral for the principal 

section 

In Section 4.4, we need to compute the integral (4.28). We give the details of 

the integration. 

= < 4\Aavi> > 

= f f f ^(A;)eiX(fc)pe-in%(A-1A;)77*(A:1A;')ein(?'e-iX(fc')p x 
J r Jv+ 7v+ 

, .,.. dk dk' dqdp 
k0 k'0 q0 

= (2ir)2 f f [ ^(fc)e-^(A-1fc)r?*(A-1fc')ein9>(fc')x 
Jv+ Jv+ 

X f i x w - x m i ^ ^ fro fc 0 <?0 
= (2tt)2 f f [ ^(fc)e- l"e7?(A-1fc)^(A-1A;')e

i"0V(/c') x 
Jv+ Jv+ Jv+ 

ko q • k qo 
m dkdq = (2tt)2 f [ J>*(k)\ri(A^k)\2m 

JvX Jv+ q- k kQ qo 

We have used the fact that if X(k) = X(k'), then k = k' and also 9 = 9'. 
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E.3 Computation of the integral for the principal 

section 

In Section 4.5, we need to compute the integral (4.38). We give the details of 

the integration. 

hrt = < <f>\Affotl> > 

= [ f f (j)*(k)ei^km+k2P2^e~in0ri(A~1k)r]*(A~1k')eine' x 
J r Jv+ Jv+ 

k0 k0 qo 

= (2tt)2/ [ f P W e - ^ v i ^ k m ^ k r i e ^ W x 
Jv+ Jv+ Jv+ 

^ " - ^ T T - f &0 «o 
1 dkdq 

= (2nf [ [ M k M t f k W i A ^ Q m r T 
7v+ Kq 

= f PWA^ikWk)^, 
Jvt k0 

Qo 

where 

Aao(k) = ( 2 t t ) 2 / I ^ A - 1 ^ ) ! 2 ! 
1 dq 

9o 

= (2nf [ \v(Akq)\2^. (E .2) 

In the second line of (E.2), we have used the work done in Section 4.4.3 (for the 

principal section) to rewrite the argument of r/. 

We have also again used the fact that if X(k) = X(k'), then k = k! and also 

9 = ff. 
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E.3 Computation of the integral for the principal 

section 

In Section 4.6, we need to compute the integral of the formal operator. We give 

the details of the integration here. 

hd = < QlAoip > 

= [ f f ^*(*:)cik^e-fa'»|(A-1(g,p)Ar)i?*(A-1(g,p)V)c4"<K x 

JV Jv+ Jv+ 

% «o 9o 

J r ./*+ 7 v+ -ik'-p // i / \ m dkdk 1 xe ; />T~T7 m + q • 6 k0 k'0 q0 

= ( 2 7 r ) 2 / / / •0*(fc)e- iB f l77(A-1(g,p)fcV(A-1(9,p)fc')e in f l'x 
./v+ 

= (27r) 2 / f 
iv+ m + q • 0 fco 

We have that A(q,p) = AqR(q) and, for p —* p in the affine section, | J | = 1 + ^ q -
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Appendix F 

Computations for the coherent 

states on the cone 

We give here the detailed computations regarding the representation of the cone 

and its coherent states as presented in Chapter 5. 

F.l Matrix representation of Aq for the cone 

We would like to get an explicit matrix representation of A, in terms of q. 

Since Aq is the matrix which brings the initial vector (1,1, 0) to the point q on 

the cone (that is ql — q2 — <?f = 0), it has the following properties: 

1. A9(l, 1,0)' = q and (1,1.0)A, = 9; 

2. det Aq = 1; 

3. AqfjAq = 77, where 77 is the metric of signature (1, —1, —1). 

The last two properties reflect the fact that Aq G 50(2,1). 

Here is how we proceed. Using the first property, we write a matrix with some 

unknowns. We then compute the third property and get a system of equations to 
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solve. Once they are solved, we plug in the values and check that the determinant 

is 1. 

The starting point is: 

Hqo~qi) + B I(go + 9l)-B (1 -c)q2 + C 

/ 

(F.l) 

(F.2) 

f(9o + 9 i ) - # \{~qQ + qi) + B cq2-C 

\ (1 - d)q2 + D dq2-D A 

While solving, we can rewrite C' = C - cq2 and D' = D — dq2. This gives: 

{\{q*-qi) + B l(qo + qi)-B q2 + CA 

A9= l(q0 + qi)-B l(-qo + qi) + B -C' 

K q2 + D' - j y A ) 

After solving for the third property, we get that: 

• A = q0 - 9i + 1; 

= ^ ( i + f + f + 9 0 - 9 1 ) ; 

This way the determinant is 1 and the matrix satisfies Aq7]Af
q = rj. Moreover, we 

remark that it is symmetric. 

We can rearrange things to write: 

^ H - g o + 0 0 - g i 9o9i ~ l - 9 o + 9i 92 ( l+9o )^ 

9 o 9 i - l - 9 o + 0i 1 + 9i + 9o — 9i - 9 2 ( 1 - 9 1 ) 

V 92(l+9o) - 9 2 ( l - 9 i ) 9o + 9 i + 0 | / 

The inverse of this matrix is: 

/ 1 + 9o + 9o - 9i ~9o9i + l + 9 o - 9 i -92(1 + 9o) 

~9o9i + l + 9 o - 9 i 1 + q\ + 9o - 9i -92(1 - 9i) 

\ -92(l + 9o) - 9 2 ( l - 9 i ) 90 + 91 + 92/ 

a 9 = 
1 

9o + 9i 
(F.3) 

v 9o + 9i 

A 
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It acts on k0 = (1,1,0) in a strange way, but it acts on k0 = (1, —1,0) as follows: 

A " 1 ^ , —1,0)f = q, (1 , -1 ,0)A- 1 = ^ , (F.4) 

which means that the inverse matrix acts on the image of k0 under parity to give 

the image of q under parity. 

F.2 Checking square-integrability of the UIR 

We check that the UIR defined in (5.9) is not square-integrable. 

The integration on the full group is the integration on the parameters of the 

three translations, the rotation and the two boosts. We write JG as fv Js and 

since x and y are on the cone, the integration of the exponential is only in two 

dimensions. 

/ | < V(g)v\4> > 12dm(g) 
JG 

-+ Jv+ ^o yo 

= (2tt)2 [ I [ (ri*(s~1x)(f)(x))(4)*(x)r](s~1x)) ——dsdvo 
JR JS Jv+ x0 x0 

= (27r)2 [ dvo f f \71*(s~1x)(p(x)\2-—ds 
JR Js Jv+ x0 

We have the integral of a positive quantity on the translation t»0 which is infinite. 

Then, the UIR is not square-integrable. 

•94 



E.3 Computation of the integral for the principal 

section 

We compute in details the integral for the coherent states on the cone with the 

principal section as in 5.4. 

JV Jv+ Jv+ 
dk dk' da 

xVjr—dP Ko Kq qo 

= f [ [ $*(k)e i kh- i t pr1{h-< xk)r)*{h-ak ,)e i i p 'e- l k ' H{k') x 
JT JV+ JV+ 

dk dk' dq dp 

= (2TT)2 f f [ <P*(k)e-itprj{A-ak)r}*(A-ak')eitp'y(k') x 
Jv+ Jv+ Jv+ 

7 / Jv+ Jv+ 

dkdk dq 1 
k0 k'0 q0 A2/J 

kQ k0 qo A2'3 - (2tr)2 / / 

We recall that p depends on the group element (q,p) and on the point where we 

are acting k (or k'). 
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E.3 Computation of the integral for the principal 

section 

We compute in details the integral for the coherent states on the cone with the 

basic section as in Section 5.5. 

= < 4\Aoail> > 

dqdp 
Qo 

= J < < f > \ V a Q > < v M > 

= \ [ / ^(A;)eitP0('^0~fcl)/2+Pl(fc0-fcl)/2+^,2'^2le-i^p7/(AgA;)77*(A(Jfc,) x 
J r Jv+ Jv+ 

xe-itpre-i\po{k(t-k'1)/2+p1 (k'0-k[)/2+P2k'2}^k^ dk dqdp 

ko k'0 qo 

= (27T)2/ / / 
Jv+ Jv+ Jv+ Ko Ko Qo 

= (27T)2/ / r ( k M A q k ) \ 2 m r r -
JV+ JV+ K0 n-0 Qo 
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