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ABSTRACT 

Synthesis of Communicating Decentralized Supervisors for Discrete-Event Sys­

tems with Application to Communication Protocol Synthesis 

Amin Mannani, Ph.D. 

Concordia Unviersity, 2009 

A Discrete-Event Systems (DES) may be viewed as a dynamic system 

with a discrete state space and a discrete state-transition structure with an 

event-driven nature, which makes it different from the systems described by 

differential or difference equations. Given the desired behavior of a DES as 

a specification, decentralized supervisory control theory seeks to design for a 

(distributed) DES, consisting of a number of (geographically distant) sites, a 

set of supervisors, one for each site, such that the behavior of the DES always 

remains within the specification. If the specification is not coobservable, these 

supervisors need to communicate amongst each other. 

This thesis proposes a mathematical framework to formally model and 

synthesize such communicating decentralized supervisors. The framework pro­

vides a decentralized representation of the DES's centralized supervisor and 

captures its observational and control-related information as mappings, which 

are called updating and guard functions, respectively. This leads to a polyno­

mial dynamical system, which serves to model the required communication and 

synthesize its rules. The systematic synthesis, obtained through this approach, 

characterizes the class of distributed control problems which are solvable only 

with communication, comes up with a finer partition of it, and addresses prac­

tical issues. The thesis ends with the application of the theoretical results to 

the modeling and synthesis of a communication protocol. 
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Chapter 1 

Introduction 

1.1 Discrete-event systems and supervisory con­

trol theory 

Consider the daily operation of an airport with aircraft, vehicles, and other 

logistics providing different services for passengers and luggage. As the second 

example, in an automated manufacturing plant there are plenty of jobs, each 

bearing the notion of an event, done by robotic manipulators on some input 

lines and using some common plant resources. Similarly, in a software program 

the resources of a computer are used by each module of the software to perform 

various operations or provide services to environmental agents again. A no less 

important example is the functioning of many worldwide telecommunication 

or computer networks making possible easy phone calls and online access to 

various economic, health, and other data within a short time. All these "jobs" 

require different kinds of "services," each being distinguished by a sequence of 

events done by a number of plants (agents), utilizing a multitude of "resources" 

that interact with each other continuously and dynamically. These are among 

the endless numbers of "Discrete-Event Systems" (DESs). 
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DESs may be considered as discrete-time dynamic systems with (often 

discrete) state spaces and discrete state-transition structures. Their evolution 

is event-driven (or asynchronous) by means of events (sometimes including tick 

of a clock) in a nondeterministic fashion, i.e. the system may choose among 

its different available transitions using an internal mechanism or one which is 

not modeled by the system analyst. Being primarily modeled by rules of logic, 

DESs are inherently different from time-driven systems which are modeled and 

described by differential or difference equations [3]. 

Such multidisciplinary systems are interesting to researchers in control 

and industrial engineering, computer and communication sciences and oper­

ation research. They can happen in a variety of application domains such 

as manufacturing and software systems and communication networks. Other 

applications include the abstract (logical) models of physical systems. 

For a long time, the informaticians and computer scientists have been 

investigating the "analysis" of DESs, which they call "verification", and their 

attempts have resulted in industrial size verification tools especially for hard­

ware [4]. The synthesis problem, which is usually called "control" by control 

community, on the other hand, has not been inspected much perhaps due to 

the inherent complexity and lack of suitable mathematical tools [5]. 

To deal with "synthesis" problems, P.J. Ramadge and W.M. Wonham 

introduced an abstract model of controlled DES in 1982, which is referred to 

as RW framework. Their model, which is automaton- or (dually) language-

based [6], represents a DES as the generator of a formal language, some of 

whose events (or transitions) can be prevented by an external agent. The 

generator, its corresponding formal language, and the events that can be pre­

vented are called "plant," the "behavior" of the system, and the "controllable 

events," respectively. This model captures the basic control-theoretic notions 
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such as controllability and observability and provides an approach to the con­

trol problem of DES, known as supervisory control theory (SCT). The approach 

is optimal in the sense that it synthesizes another DES, called the "controller" 

or "supervisor,"1 which "minimally restricts" the behavior of the plant by 

disabling some of its transitions, which are labeled by controllable events, at 

different states of the plant's automaton. This is done in such a way that the 

language generated by the synchronous operations of the plant and the con­

troller respects a "given specification, " which might itself be stated as desired 

safety or liveness properties on the alphabet of the plant. In other words, the 

behavior of the synchronous product of the plant and the controller, which 

is called the "closed-loop language," is a subset of the specification language. 

Therefore the closed-loop system is correct by construction, eliminating the 

need for after-design verification. Accordingly, a string is legal if it is entirely 

within the legal behavior. A transition that takes a string from legal to illegal 

behavior is referred to as (one step) illegal move. Thus a controller essentially 

prohibits the illegal behavior through avoiding the illegal moves. 

The events of a system might be observable by a controller or not, i.e. a 

controller can or cannot disambiguate for itself if a particular event has hap­

pened. By supervisory control theory, in the case that all events are observable, 

a controller guaranteeing the satisfaction of a given specification, always ex­

ists if and only if the specification is controllable with respect to the plant2 [6]. 

In simple terms, controllability requires that no one-step continuation of the 

1 These two terms are used interchangeably in this thesis. 
2To guarantee that the closed-loop behavior is deadlock-free (or nonblocking), another 

condition, called L-closure with L being the plant's language, is also necessary and sufficient. 
This condition requires that all the prefix-closed strings in the given specification, which are 
marked by the plant, are marked in the specification, too. This issue is not directly related 
to the supervisor's observation and communication, which are the central topics of the 
discussion here and, this is not emphasized in this chapter. To justify this neglect, it can 
be safely assumed, for now, that the given specifications are prefix-closed. This assumption 
guarantees that L-closure is automatically satisfied (see [3]). In later chapters, the issue of 
nonblocking is addressed, too. 
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plant's legal behavior by uncontrollable events violate the specification. It has 

been shown that this property can be verified efficiently. Controllability is 

closed under the union operation [6], therefore, for a given specification one 

can always efficiently compute the supremal controllable sublanguage of the 

specification language (or supervisor) [6]. When some events are unobservable, 

a controller enforcing the specification exists if and only if the specification is 

controllable with respect to plant and observable with respect to the plant and 

the corresponding observational map (modeled as natural projection) [7], [8]. 

Observability necessitates that any two lookalike legal strings have the same 

one-step continuation by any event, in the sense that both lead to either legal 

or illegal behavior with respect to the specification. Checking observability 

can also be done in polynomial time [9]. It is only closed under intersection 

but not under union [8], therefore, for a general (controllable) specification, 

only its infimal observable sublanguage is guaranteed to exist, and in general 

there may be incomparable maximal closed-loop languages. 

1.2 Distributed discrete-event systems 

Since the introduction of supervisory control theory in the 80's, continuous 

research has been done to extend the basic theory to various "realistic" cases 

such as decentralized, hierarchical, and timed structures, and to improve its 

associated computational efficiency [3]. In particular, the decentralized su­

pervisory control, which deals with the controller synthesis for "distributed" 

systems, has been the focus of attention since the beginning of the 1990's. 

A distributed DES may consist of several, say3 n £ N, "component 

plants" or "agents", each associated with part of the tasks to be performed 

3N is the set of natural numbers. 
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by the system. The language generated by the overall system is the synchro­

nous product of the languages of component plants. Such an architecture is 

sometimes referred to as a "multi-agent" architecture in the literature. 

For such a distributed system if a specification is given for each compo­

nent, the control problem is reduced to n separate control problems, one for 

each component plant and its corresponding "local" specification. However, 

to apply this approach, which is usually called modular supervisory control, 

one has to be aware of the fact that these local specifications might be con­

flicting, i.e. their corresponding separately designed controllers might result 

in a blocking behavior or deadlock [10]. 

In general, specifications of a distributed DES determine the legal be­

havior of the whole system. These so called "global specifications" determine 

the tasks of each component and the interactions among them. If such a global 

specification can be decomposed into "local" specifications for different agents, 

the problem again is reduced to the modular supervisory control problem ex­

plained above [11]. However if no such decomposition can be envisaged, the 

control problem is called decentralized supervisory control in which a set of 

controllers, one for each component plant, should be designed such that the 

closed-loop behavior of the overall system, consisting of the component plants 

and their controllers, meet the specification [12]. 

The decentralized supervisory control problem usually arises in cases 

where the component plants are geographically far from each other. Apart 

from the lack of possibility of decomposing the global specification into local 

ones, the more important characteristics of a decentralized supervisory control 

is the agents' partial observation of each others' behaviors. While in modular 

supervisory control it is assumed that each component plant can observe other 

components' events, in decentralized supervisory control each component has 
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only a limited observation over the whole system's behavior and can only see 

part of the events. This imposes further complications on decision making for 

a decentralized controller, as it might observe lookalike strings whose one-step 

continuations by an event lead to violation of the specification for some and 

remains inside the legal behavior for others. Following Cieslak et aVs initial 

work in [13], Rudie and Wonham showed in [12] that there exists a set of decen­

tralized supervisors, whose induced closed-loop language satisfies the language 

of the specification if and only if the specification is controllable with respect 

to the plant and coobservable with respect to the plant and the controllers' 

observational maps. In simple words coobservability means that for any two 

strings whose one-step continuations lead to conflicting behaviors, one legal 

and the other one illegal, there exists one supervisor which can distinguish 

them and exercise control over the event in question. Unfortunately coobserv­

ability is only closed under intersection and not union, therefore for a general 

global (controllable) specification there might be different sets of controllers 

each yielding incomparable maximal closed-loop languages. It was then shown 

that coobservability can be verified in polynomial time [14]. 

Another aspect of the decentralized supervisory control is how to "fuse" 

different decisions, made by distinct controllers about disabling (or enabling) 

a common event at a state of the system. Coobservability was originally for­

mulated under the "conjunctive" fusion rule in [12] in the sense that each 

supervisor locally disables an event only if it is sure that the possible exe­

cution of that event, after all observationally equivalent strings, leads to a 

violation of the specification; otherwise it just "passes the buck" [12] to the 

other controllers. Following this, all such "local" decisions of the controllers 

are conjuncted with each other to decide about the disablement of that event. 

6 



Extensions of this work to other fusion rules was later started with introduc­

ing the notion of D$z A-coobserv ability, comparing to the original notion, which 

was renamed ChP-coobserv ability in [15], with the hope of enlarging the class 

of problems solvable by employing other fusion rules. As shown in [16], the 

classes of solvable problems holding these two notions of coobservability are not 

comparable with each other. The largest class of solvable problems is shown to 

be ChP\' DhA-coobservable specifications, which enjoy both notions of coob­

servability with respect to two associated disjoint sets of events. Obviously 

the classes of solvable problems holding any such coobervability properties are 

always subsets of the class of problems solvable by a centralized supervisor, 

i.e. the one whose observable set of events is the union of all events which can 

be observed by at least one agent. 

So far there are two fundamental properties which a specification must 

hold in order to be enforceable by a set of decentralized supervisors, i.e. con­

trollability and (co)observability. While the former captures the idea of how 

far a supervisor can prohibit the plant's illegal move to limit its behavior within 

the given specification, the latter explores the limit of available information 

for the supervisor. These two correspond to "control" and "estimation" in 

system theory [17]. There is yet a third element which can alter a controller's 

estimation (or observation) of the plant and that is communication, by which 

the controllers may share their information, i.e. observations, with each other. 

In this way, one may expect to enlarge the class of solvable problems in decen­

tralized supervisory control by disambiguating for supervisors the suspicious 

lookalike strings. 
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1.3 Communicating supervisors 

In the absence of coobservability, the local supervisors need to communicate 

to meet a global specification. The problem of Synthesis of Communicating 

Decentralized Supervisors (SCDS) seeks to design a set of supervisors, one for 

each component plant (or agent), and a set of communication rules, which pre­

scribe the procedure for controllers to share their information (or observation) 

among each other, in order to meet given global specifications. This problem 

has been the focus of attention for the past few years. 

Before proceeding more, a note about the terminology is in order. In 

control community, the term "distributed control" is used for the case where 

controllers communicate amongst them all their information, and "decentral­

ized control" usually refers to the case where no information is exchanged 

among controllers. Accordingly, the term "semi-decentralized" might be a bet­

ter choice to name "communicating supervisors," which is the subject of this 

work to emphasize on the exchange of part of the controllers' information and 

distinguish it from the two extreme cases of distributed control and decentral­

ized control. In DES community, "decentralized control" was first used in [13] 

and formally defined in its current meaning in [12] and was proved to exist if 

and only if the given specification is coobservable. On the other hand, "fully 

decentralized control" was later coined in [18] to refer to a more special case 

of the decentralized control. On the other hand, the part of DES community, 

including control theorists, who work on communication between supervisors, 

has not adopted a fixed and distinct term. They often use "decentralized con­

trol" and assume that adding communication to decentralized control should 

be understood from the context. In other words, there is not a general agree­

ment between the researchers in this regard. This thesis chooses the term 

"communicating decentralized supervisors," which is essentially meant to be 
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equivalent to the term "semi-decentralized," as explained above and usually 

used by control community. Furthermore, it has the advantage of being un­

derstood by the DES community. 

Decentralized supervisory control with communicating supervisors is mo­

tivated by the control of networks such as communication or traffic networks 

[19]. In [20] Wong and Van Schuppen, for the case of two controllers, formu­

lated a necessary and sufficient solvability condition as a refinement relation 

between observation and control maps. This relation was proved to hold for 

alternating bit protocol (ABP), a prototype protocol which was used for com­

munication networks. The authors then show that under certain conditions, 

if the problem can be solved by two communication policies each sharing the 

observation of a set of events, there exists another solution whose correspond­

ing communicated event set is the intersection of those two event sets, hence 

establishing a first result on "minimality of the content of communication." 

Teneketzis [21] views the problem in the framework of nonsequential 

systems for which the control actions cannot be ordered, a priori, independent 

of the set of control laws that determines these actions. He considers the 

following issues fundamental to the study of these systems (paraphrased from 

[21]): 

1. "Who should know what and when? 

2. Who should communicate with whom and when? 

3. Given that communication must be limited, either because channels have 

limited capacity or because stations have limited memory to store data 

and limited processing capability, what information must be exchanged 

in real time among stations so that they can improve the quality of their 

actions? 
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4. What information should be available to each control station so that the 

system is deadlock-free? 

5. Given that the design of highly concurrent systems is desirable, but 

concurrency can only increase by increasing the complexity of the sys­

tem's information gathering sources, what are the fundamental tradeoffs 

between system concurrency and the complexity of the system's infor­

mation gathering sources? 

6. How does one optimize the performance of nonsequential stochastic con­

trolled systems?" 

The above issues take a key role in the direction of this research as well as 

many other works on SCDS. 

Van Schuppen define a decentralized supervisory control with information 

structure as a supervisory control in which controllers' decisions depend only 

on the language of the information structure [22]. In this general framework 

he considers three information structures based on subsets of controllers, sub­

sets of observable events, and subsets of observable strings, respectively, and 

formulates for each case the conditions under which a decentralized control 

with an information structure can implement a centralized controller, hence 

enforcing a global controllable specification. Whereas this work touches the 

subject in an abstract algebraic level, the idea of how control, observation, and 

communication are fundamentally limited to the available information struc­

tures, seems to address many relevant issues when it is implemented using 

detailed algebraic structures. 

Barrett and Lafortune suggest a more detailed model for communication 

among the supervisors [1]. Assuming a two-way broadcast, the supervisor who 

observes the execution of an event sends the set of states it might be possibly 
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in, i.e. state estimates, to the other supervisor(s). The minimality of commu­

nication among supervisors is formulated in this work based on the rule that 

nothing should be communicated until it is absolutely necessary, i.e. at the 

latest safe point. Accordingly, using their model they first distinguish the con­

flict states, i.e. the states reached by lookalike strings with conflicting legality 

status upon the occurrence of some controllable event. Then, starting from the 

states which are one-step before the conflicting states, they iteratively verify 

if communication at preceding states can resolve the ambiguity or not. They 

introduce anticipatory controllers, which use full communication among them 

and hence can solve the problems which are solvable by centralized controllers, 

and show that regardless of what is communicated, state estimates or observed 

events, the control solution would be the same. However, their model is inher­

ently complicated mainly due to the fact that it is a fully state-based model 

and besides that, it uses a tree structure to find the state estimates, which 

is not a convenient way to handle loops. Moreover, the "latest-safe-point" 

policy in communication is not robust to communication delays and it is not 

necessarily optimal in terms of the volume of the exchanged information, i.e. 

the number of bits that actually have to be communicated. 

Ricker and Rudie choose the knowledge framework of [23] to explore the 

information in a DES [24]. This framework has a simple syntax to represent the 

decentralized information in the system as shown by the authors in reformu­

lating the coobservability as Kripke-coobservability [25]. Kripke-cobservability, 

which is later called know-coobservability in [26], requires that at all states of a 

specification, for each (controllable) event either it is the case that it does not 

happen or it is legal otherwise or there is an agent which has control over that 

event and knows that it is illegal. The authors show that know-coobservability 
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is a necessary and sufficient condition for solving a decentralized control prob­

lem [25]. In [24] the supervisor which observes the execution of an event starts 

communicating its state estimates, called possible worlds, to the supervisor 

which needs this information. The authors divide the communication into two 

parts; "communication for control," which is done to widen the observabil­

ity of the supervisors, and "communication for consistency," which is done at 

the states which are (from the viewpoint of the communicating supervisor) 

indistinguishable from the states at which communication for control is neces­

sary. However, the communication policy is as early as possible in this work. 

Accordingly, first a maximal-P pair is defined as two strings which are indis­

tinguishable to a centralized controller. Communication takes place at the first 

distinguishable state (to the communicating supervisor) following such a pair. 

It is shown that the observability of the specification from the viewpoint of the 

centralized controller guarantees the existence of such communication states. 

The authors suggest a greedy algorithm to find the communication rules with 

no proof. Again, this algorithm uses a tree-like structure whose extension to 

general automata with loops is not convenient. 

In [27], Rudie et al suggest an algorithm which communicates the ob­

served events, i.e. transitions, and prove that it yields a minimal commu­

nication among two supervisors in the sense that the cardinality of the set 

of communicated events is minimal. Their algorithm satisfies their proposed 

characterization of the solutions of a communication problem, which is formal­

ized in terms of three properties of validity, feasibility, and implementability. 

Validity requires that a supervisor identify which state it is in and feasibility 

necessitates that the communication policy of the communicating supervisor(s) 

be consistent for any two lookalike strings. Implementability, however, limits 

the communication policy to the given state structure of the supervisors. The 
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algorithm starts by picking up the two smallest required sets of transitions for 

communication associated with the two supervisors. Next, it adds or subtracts 

iteratively other transitions to satisfy feasibility and ends up with a minimal 

set, in the sense stated above. 

It is reasonably argued in [27] that the inherent difficulty of the prob­

lem of "decentralized supervisory control with communication" stems from 

the chain-wise dependence of control, estimation, and communication on each 

other. While implementation of any control is limited by how much infor­

mation the controller can estimate (i.e. observe) about the plant's behavior, 

estimation of the plant's behavior is changed by the controller, once part of 

this behavior is prohibited. Needless to say, estimation also depends directly 

on communication, whereas the amount and the time of communication vary 

as the controller chooses a different policy. Therefore, in general to deal with 

this coupled problem, we may seek a suboptimal solution, i.e. one in which a 

fixed strategy is taken for one element, thereby reducing the complexity of the 

whole problem and solving for the two other unknowns subject to the prede­

termined third element. As an example we may assume a fixed observation 

(i.e. no communication) and derive solutions to the decentralized supervisory 

control under the (fixed) partial observation. 

On the other hand, one may forget about control for the moment (for 

example by assuming a fixed control strategy), and focus on the observa­

tional properties. Taking this viewpoint, Tripakis introduces the notion of 

joint observability [28] for investigating the observational properties of a given 

global specification, regardless of control. A specification is called jointly ob­

servable with respect to the plant's language and a tuple of subalphabets, 

associated with a number of component plants, if for every two strings, one 
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legal and the other one illegal, there exists at least one supervisor, not nec­

essarily being able to exercise control over the event in question, which can 

tell them apart. Joint observability is stronger than observability, incompa­

rable to C&P-coobservability, and closed under the union and intersection of 

languages [28]. This notion, which was later called unbounded-memory joint 

observability in [29], essentially reveals the (maximum) amount of information 

available to the component plants (or agents) which may be represented as 

(possibly infinite state) automata. 

Tripakis' work has roots in Trace Theory [30], which provides mathe­

matical means to characterize traces. By Trace Theory a language is called 

trace-closed if for every sequence of events within it, it includes all permu­

tations of the events from disjoint alphabets forming the sequence. Tripakis 

shows that for disjoint subalphabets, each belonging to a component plant, 

finite-memory and infinite-memory joint observability are equivalent to each 

other if the plant language is trace-closed [29]. Moreover, he shows that if the 

plant language is trace-closed, a specification is jointly observable if and only 

if it is observable and trace-closed. Along the same viewpoint, he calls a spec­

ification locally observable with respect to the plant language, components' 

subalphabets, and a Boolean function if the Boolean function, acting as a log­

ical operator to fuse the local observations, disambiguates any two conflicting 

strings, one legal and the other one illegal, in plant's behavior [31]. Local ob­

servability implies joint observability and moreover, its finite-memory version 

is equivalent to infinite-memory version under the conjunctive or disjunctive 

fusion rules. Although Tripakis' main focus is on decidability issues, which are 

associated with decentralized observation, his approach seems promising for 

formal investigation of observation, and in particular, communication. This is 

mainly due to the fact that it provides a characterization of the problem in 

14 



the absence of any coobservability. 

Minimality of communication has been studied using abstract frame­

works in some recent papers, too. In [32] "Essential transitions" are intro­

duced as transitions which "constitute the initial required communications," 

subject to which an algorithm can find the minimal communication between 

two supervisors. The authors in [33] extend the model of [27] to any finite 

number of supervisors, a more general communication structure, and a more 

efficient algorithm. However, these improvements are gained by assuming no 

cycles (other than selfloops) in the supervisor's structure. It is worth mention­

ing that our proposed distributed framework can handle every arbitrary state 

structure, while addressing issues such as minimality of communication. 

1.3.1 The issue of time in communication 

There have been some efforts to consider the communication in a timed frame­

work. This is mainly motivated by the fact that in real-life systems, communi­

cation might be unreliable or erroneous due to delays or losses in communica­

tion channels. Therefore, it is important to find out how late the information 

needed by controllers can be delivered to them. However, this issue has been 

investigated only in few works. Ricker and Van Schuppen proposes a model 

based on an event-recording automaton to investigate the communication de­

lays in decentralized control [34]. They use this model to show that to diag­

nose failures using decentralized observers and to find out the temporal order 

of events, local clock values should be communicated, too. Another treatment 

of communication delay appears in Tripakis' work [29] in which he assumes 

as the unit of time, the execution of an event, and measures the delay using 

this unit. He also assumes a lossless network and takes the very simple com­

munication policy of "send everything you observe." These assumptions lead 
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to a characterization of communication networks into an infinite hierarchy of 

monotonically decreasing class of problems based on the communication delay, 

by which the class of solvable problems enlarges as the communication delay 

reduces. The issue of communication in the presence of network delays also 

has been considered in [35], [36], and [37] for the case of centralized and decen­

tralized supervisors. These consider the delay which exists in receiving sensor 

observations or applying actuators' commands, and come up with the notion 

of "delay observability." Since the issue of time is not explicitly studied in this 

work, it is not discussed here anymore. However, it is worth mentioning that 

the logical notion of time, i.e. the time interval between the execution of two 

events, which is implicitly used in this work, can address issues related to the 

order of communication and logical delays which affect that. 

1.4 Inferencing supervisors 

As quoted from [26], "knowledge is a terrible thing to waste." Accordingly, an 

important question is how much a supervisor can use the information gath­

ered from its direct observation or the part received from other supervisors to 

make a control decision. The answer is determined by the limit of the supervi­

sor's inference which can be made on the grounds of the available information. 

Inferencing uses some information from other supervisors in a distributed sys­

tem, hence entailing communication among supervisors. It may also affect the 

amount and the content of the communication because making an inference-

based decision might eliminate the naive exchange of information among the 

controllers. These observations have motivated some researchers to employ 

inference in decision making. The first work in this area perhaps goes back 

to [38] in which a supervisor makes its decision based on other supervisors' 
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previous decisions. 

The idea of using more sophisticated and inference-oriented control fu­

sion rules was proposed in [39]. Yoo and Lafortune then suggest a more gen­

eral architecture for decision making for control of DES in [15]. Following 

this architecture the authors consider a conditional architecture which allows 

"disable," "enable," and "conditional" control actions [40]. Their conditional 

decision making consists of actions of the form of "enable (globally) if nobody 

disables (locally)" or "disable (globally) if nobody enables (locally)." This ar­

chitecture partitions the controllable event set into two "disable by default" 

and "enable by default" event sets a priori, where the "default" control ac­

tion is applied when no decision is made by a controller for an event. The 

authors present a necessary and sufficient condition for the existence of de­

centralized supervisors when the specification is controllable and conditionally 

coobservable. The latter condition requires that the specification be condi­

tionally C&P-coobservable with respect to a subset of controllable events and 

conditionally D&A-coobservable with respect to the other disjoint subset of 

controllable events so that these subsets form a partition of the controllable 

event set. As an example, conditional C&P-coobservability implies that if a 

controllable event is an illegal continuation, there exists a local controller that 

can infer that the event can be disabled conditionally when it cannot be dis­

abled unconditionally. The authors show that the class of problems solvable in 

the conditional structure is wider than those solvable using the conventional 

"unconditional" coobservability. They also present a method for the realiza­

tion of the conditional decision making based on constructing deterministic 

observers which track the violations of coobservability [41]. The authors then 

employ the suggested architecture for fault diagnosis of DES [42]. Implied by 

this conditional structure is the need for a coordinator, who is a global entity 
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making the global decision about the fusion rule. This makes this architecture 

more centralized than decentralized. 

Ricker and Rudie base their work in "inferencing supervisors" on the 

knowledge framework of [23]. They define distributed observability in [25], 

which necessitates that a group of controllers, including the ones having con­

trol over a particular event, after combining all the knowledge of the group, 

i.e. intersecting all possible worlds, give a clear idea of disabling or enabling an 

event to the controller of that event. They show that if a specification is observ­

able but not know-observable, it has necessarily distributed observability [43]. 

Along the same line in [26] and [44], they investigate the inferencing power 

of supervisors. Motivated by the conditional structure of [40], the authors 

reformulate the same results in the knowledge framework. They introduce the 

notion of inference observability, which serves as a necessary and sufficient con­

dition for the existence of a joint knowledge-based protocol4. This is a tuple 

of knowledge-based protocols, each mapping a supervisor's knowledge of an 

event, at its local state, to a "disable" or "enable" control decision. In simple 

words a specification is inference observable if at its every state and for every 

controllable event either the event cannot be generated by plant, or it is legal 

otherwise, or there exists a supervisor which can exercise control over that 

event which knows that the event is illegal or if it observes its happening it 

is certain that there is another such supervisor who is aware of the legality of 

that event5. One advantage of the knowledge framework is that its syntax can 

easily represent the complicated cases of information sharing. Thus it is rela­

tively simple to express different levels of the availability of information to the 

controllers. However, as commented by the authors of the paper, employing 
4This notion of protocol is not necessarily equal to a communication protocol. 
5An advantage of the knowledge framework is its simple syntax for stating such long 

English statements in an efficient and clear manner. Unfortunately, such a syntax cannot 
be used in this introductory chapter. 
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the conditional architecture invokes the use of a coordinator, which makes the 

architecture more centralized, and an a priori partitioning of the controllable 

events, which is based on the decision making applied to them by default. 

Qiu et al [45] use Prioritized Synchronous Composition (PSC) and Pri­

oritized Composition with exclusion (PCX) to extend the conditional architec­

ture of [40] by partitioning the controllable event set into 4 (respectively 8) sets 

which account for the different priorities and exclusivities of the control and the 

default actions. They show that the classes of achievable languages under PSC 

and PCX architectures are the same as Ck.PVD&,A. However, in [46] Kumar 

and Takai argue that all such conditional architectures and their inspired in-

ferencing schemes need an a priori partitioning of the controllable events into 

the so called "permissive" and "anti-permissive" sets. This observation, and 

the fact that such schemes may not easily yield a classification of supervisors' 

ambiguities, lead the authors to suggest a framework for decentralized deci­

sion making which does not require an a priori partitioning of the controllable 

events, while supporting the inferencing at different levels of ambiguity [46]. A 

control decision with "level-zero ambiguity" is taken for an event when a super­

visor, based on its own observation alone, clearly knows that the one-step con­

tinuation of all the observationally equivalent strings by that event, which are 

feasible in plant's behavior, are exclusively either legal or illegal. However, if 

this local supervisor thinks that some of the strings might lead to illegal behav­

ior and therefore tends to disable the event, yet it knows that there is another 

local supervisor which can issue an "enable" decision with level-zero ambiguity, 

the former supervisor issues a "disable" decision with "level-one ambiguity." 

This process may be applied iteratively to any level of ambiguity and the "win­

ning" global decision would be the one with the minimum level of ambiguity, 

thereby it eliminates the need to compute the conjunction or disjunction of the 
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local decisions at global level. The authors claim that this makes the approach 

more decentralized comparing to those in [40] and [26]. Correspondingly they 

call a specification language N-inference-observable if the ambiguity level of a 

"winning" control decision is at most N and show that this condition together 

with controllability and Lm(G)-closure are necessary and sufficient for the ex­

istence of a set of non-blocking, so called, iV-inferring decentralized supervisor. 

They further show that O-inference-observability and 1-inference-observability 

are equivalent to C&PVD&A-coobservability and conditional C&.PVD&A-

coobservability of [40], respectively. 

1.5 The perspective of this research on SCDS 

As stated in [27], the main difficulty of the SCDS problem stems from the 

dependency of control, observation, and communication on each other. On top 

of this point, the fact that there does not exist necessarily a (unique) optimal 

solution and the associated complexity of finding any maximal solution,in the 

sense of the largest behavior, are good motivations for employing more specific 

methods and formalisms which take full advantage of the structure of every 

problem. 

The language-based formalism, and its dual entity, automata-theory, 

study problems at an abstract level. These approaches are very useful at 

formalizing the general properties common to a large class of problems and 

their solutions. This has been the mainstream in research so far and has led 

to interesting results. However, when it comes to more specific properties of 

a system, which is captured in its dynamic structure, one needs to choose a 

more structure-preserving and structure-reflecting formalism. 

In the author's viewpoint, studying the communication, as a part of the 
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communicating decentralized supervisor design, would be more fruitful if the 

algebraic structure of the supervisors are explored and utilized in more detail. 

To this end, each state of the corresponding centralized supervisor is encoded 

in a distributed way and, in a "divide and conquer" approach, the supervi­

sor's observation and control tasks are represented as dynamic and algebraic 

equations. Thereby, the dynamics-related information of the transition graph 

of the centralized supervisor would be amenable to characterizations based on 

concrete algebraic structures, such as groups and fields. This makes the study 

of complex systems, and specifically design and computation of the communi­

cation, systematic and simplified. Furthermore, this approach leads to a finer 

partitioning of the communication and establishes insightful correspondences 

to the centralized supervisor's behavioral properties, as will be explained in 

later chapters. Moreover, since in practice a supervisor is implemented through 

encoding its system-related information, employing a (distributed) encoding 

scheme as an integral part of the (decentralized) supervisor design, can ad­

dress implementation issues, too. As an example, it is important to reduce 

the communication content since it might be exchanged millions of times a 

day as part of a communication protocol (see Chapter 6). Since in practice 

the content is measured in bits rather than "events" or "state estimates," this 

issue may be addressed properly in a framework in which design is performed 

with an insight into quantitative measures for implementation. 

Inspired by such considerations, the author first proposed the distrib­

uted Extended Finite-State Machine (EFSM) framework to study the commu­

nication among supervisors [47]. An EFSM models a closed-loop system by 

employing a state labeling map and computing guards and actions, defined 

on Boolean variables, as means to observe and control the plant's behavior, 
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respectively [48], [49]. In [50] Agent-wise Labeling Maps (ALMs) were intro­

duced as efficiently-computable replacements for natural projections, based on 

which the control-related information of a centralized supervisor is represented 

by a network of distributed EFSMs. It was then observed that introducing 

Boolean variables at an early stage hinders further development of a theory 

for communicating supervisors by making the notations and computations un­

necessarily cumbersome. Furthermore, working with an integer variable, as a 

meaningful representation of a state, inherits both the qualitative and the 

quantitative viewpoints to analysis and synthesis. This led the authors to 

propose a flexibly abstract mathematical framework for decentralized control 

synthesis, which, while taking an abstract qualitative-like vantage point to sys­

tem representation, can readily lend itself to the concrete implementation of 

decentralized supervisors by (Boolean) variables at a later stage. This research 

presents the above two approaches in a chronological order. 

The second approach assumes that a centralized supervisor is already de­

signed using SCT and introduces an ALM to label its states with disjoint sets 

of integer vectors whose component i encode the ith decentralized supervisor's 

observation of the states. For each event, updating functions are denned to 

specify how vectors should be updated by its occurrence, and guard functions 

are defined to identify the vectors at which it should be enabled. A DES, which 

is thus equipped with guard and updating maps, is referred to as a Supervised 

DES (SDES). An SDES inherits the centralized supervisor's properties such as 

optimality and nonblocking. The SDES framework, which encompasses EFSM 

framework as its special case, serves to provide a polynomial dynamical system 

(PDS) representation of the centralized supervisor (and closed-loop system), 

upon formulating its guard and updating functions as polynomial equations 
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over finite fields. Therefore, the information structure of the centralized su­

pervisor, which consists of the observation- and control-related information 

associated with its state structure, is captured in a compact and standard 

manner, and this in turn paves the way for further analysis and synthesis 

purposes. The resulting state space formulation is very much similar to what 

control theorists have at hand for studying physical systems and complements 

the behavioral viewpoint and analysis tools for DESs. 

For a distributed SDES (DSDES), communication naturally appears to 

inform a supervisor of the labels assigned by other supervisors, which it uses 

to reevaluate its guard and updating functions. Within DSDES framework, 

SCDS is reduced to the synthesis of communication among supervisors, which 

is realized by designing "communication events" to help the decentralized su­

pervisors, through sharing (part of) their private information, enforce the given 

specification. Once a DSDES is represented as a PDS, communication is char­

acterized and solved based on the interconnections between polynomial equa­

tions defined over algebraic structures and the properties of such structures, 

leading to a general, systematic, and computationally efficient synthesis pro­

cedure for communicating decentralized supervisors. The proposed approach 

can accommodate the formalization of the communication of states and events, 

while providing an implementation-oriented encoding for the final field appli­

cations. 

In the following, EFSM and SDES frameworks are explained in more 

detail. 
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1.6 EFSM and SDES frameworks 

In the literature, the term "extended state machine" usually refers to a state 

machine whose state structure is augmented with variables and functions of 

states and variables. Different types of extended machines have been proposed 

in areas such as verification, Application Specific Integrated Circuit (ASIC) 

design and real-time implementation of DES [51], [52], [53]. In [54] the ex­

tended state machines use "data" and "activity" variables to model control 

and numerical information, respectively, and with their enhanced expressive 

power, they can address problems such as state explosion, fairness, and timing 

of the events in real-time DES. In the area of supervisory control, by equip­

ping finite-state machines (FSMs) with resource and time constraints and em­

ploying inequalities and integer variables as "guard formulas," Chen and Lin 

increase the expressive power of DES models and efficiently represent systems 

that cannot normally be represented by regular FSMs without arbitrarily large 

state spaces [55]. 

The formalism of Extended Finite State Machines (EFSMs), whose dis­

tributed version is used in this work, was originally developed in [49] for imple­

menting the solution of SCT to centralized control problems. In this formalism, 

controllers' information is encoded as (Binary) variables and therefore bits of 

control information necessary in the process of decision-making, rather than 

events or state estimates, are communicated from one supervisor to another. 

While it uses supervisory control theory in [6] to design a supervisor, it ex­

tends a plant's automaton with Boolean variables, guard formulas, and updat­

ing functions to implement the centralized supervisor. The resulting EFSM, 

which has the same expressive power a regular FSM, implements supervisory 

control by employing Boolean variables to encode the supervisors states, a set 
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of Boolean functions to observe events, and Boolean formulas to control tran­

sitions [49], [48]. As it was originally motivated, the resulting EFSM offers 

an economical representation of the closed-loop system, thus bridging the gap 

between supervisory control theory and the traditional designs of DESs, in 

which the closed-loop system is designed in an ad hoc manner. 

Although the EFSM formalism proposed in [49] has an equal expressive 

power to an FSM, this approach makes clearer the relevance of supervisory 

control theory to many computer-control problems and specifically problems 

in software system synthesis. Moreover, it is more suitable to represent input-

output behavior of the DES thanks to encoding a controller "command" by a 

guard formula and a plant "response" by a set of updating functions. Thus, 

for example, EFSM models can be readily translated to PLC implementations 

where Boolean variables are used to encode supervisor states and events. It 

may also be regarded as a symbolic representation of the set of supervisor 

states in which an event is enabled (see the next section). 

At an initial step of my research, I extended EFSM framework to the 

distributed case by equipping the original framework with the notion of Agent-

wise Labeling Maps (ALMs) (see Chapter 3). An ALM essentially provides a 

distributed representation, i.e. a representation from the viewpoint of more 

than one agent of the state structure of a centralized supervisor, as imposed 

by the observational windows of the associated component plants. This rep­

resentation is obtained without going through computationally expensive and 

structurally destructive natural projections, and models the component plants' 

observational windows, in an efficient way such that the state structure of the 

centralized supervisor is respected. It was shown that for every centralized 
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supervisor an ALM exists. Next, using the ALM-assigned labels to the super­

visor's states, a set of private Boolean variables is considered for each "compo­

nent EFSM," associated with each component plant, to represent the private 

information at local sites. The decision as to whether to enable or disable a 

local event may in general depends on the values of supervisor's own private 

variables, and the local copies of variables owned by other supervisors. These 

copies are updated by communication among local supervisors. The distrib­

uted EFSMs thus developed enabled the author to model and synthesize ABP, 

a prototype protocol, in a completely automatic way for the first time and gain 

insight into partitioning of the class of solutions to the communication problem 

(see Chapter 3). 

The EFSM formalism, on top of the language and automata theories, 

based on which supervisory control theory is formalized, may be used to model 

distributed DESs and their real-life applications and has the following advan­

tages among others. 

1. It can explore the structure of distributed dynamic systems using its 

symbolic and compact representation. This structure reveals the inter-

dependencies of the components and reveals the information available 

to each controller, while reflecting the state structure of the centralized 

supervisor. 

2. The resulting form of the dynamics of the centralized controller would 

be more similar to the current state-space representation in systems and 

control theory. This facilitates the establishment of familiar notions and 

tools of control theory in this context. 

3. As it is usual in formal verification of hardware and software systems 

(see for instance [4]), symbolic representation is a tool to tackle the 
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computational complexity and state-explosion. 

4. The bit-wise approach together with the functional syntax used by an 

EFSM may find more satisfying answers to some key questions in decen­

tralized control of DES such as the minimality of communication. 

Comparing the EFSM-based approach to the estimator structure of [1] 

and possible worlds of [24], which are two pioneering works on SCDS, the 

following observations can be made. 

• While an ALM can be found for any deterministic automaton of a cen­

tralized supervisor, the other two approaches have been applied to reach­

ability trees only, and their applicability to general automata containing 

loops is not claimed nor does it seem obvious. 

• An ALM adopts an agent-wise viewpoint in labeling the states of a cen­

tralized supervisor, while the other two approaches rely on a global la­

beling for the states and then gathering the lookalike state labels for each 

agent as a set of state estimates [1] or possible worlds [24], Since in de­

centralized control, decentralized supervisors view the plant's behavior 

subject to their partial observations, the ALM labeling provides a nat­

ural formulation for the distribution of information within the network. 

Moreover, the ALM approach views the labels as an integral part of the 

implementation of the centralized supervisor's commands, while in the 

other two approaches labeling is an auxiliary tool and the viewpoint is 

quite abstract. 

• The final rules for communication in the other two approaches are al­

ways translated in terms of communicating the state estimates or possible 

worlds, while in EFSM framework, which is equipped with ALMs, every­

thing is expressed with respect to bits of information used by each local 
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supervisor to encode the states of a centralized supervisor. Observe that 

the latter serves to define a practical measure, especially when issues 

such as minimality of communication are studied. 

• Another advantage of the EFSM formalism is its compact representation 

of the supervisors' commands and observations using Boolean formulas 

and functions, while the other two approaches make use of the supervi­

sors' automata. 

• The works in [1] and [24] adopt "the latest safe point" and "as early as 

possible" communication policies, respectively, to deal with the issue of 

"when" to communicate. Although this issue is not explicitly addressed 

in our work, where the focus is on the logical aspects of communication 

design, it is implicit that communication takes place whenever necessary, 

in other words, within a time interval when guards or updating functions 

need to be reevaluated. 

Despite the above merits, introduction of Boolean variables at an early 

stage of modeling hinders further development of the theory and makes the 

proofs unnecessarily cumbersome. Moreover, a Boolean variable seldom bears 

a (state-related) meaning singly but an integer variable can represent a state. 

Furthermore, analysis and synthesis of a symbolically represented system is 

in general more straightforward in an integer space thanks to the easier rep­

resentation. Such considerations led the author to employ integer variables 

for extending the automaton of a centralized supervisor and introduce SDES 

framework. In this framework, guard and updating functions, defined on inte­

gers, are the counterparts of guards and actions of EFSM framework. These 

functions can next be put into polynomial forms over a finite field, leading 

to a number of algebraic and dynamic equations, totally called a polynomial 
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dynamical system. Being denned on Boolean field, EFSM framework may be 

regarded as a special case of SDES framework (see Chapter 4). As a result, 

the advantages listed above for EFSM framework over the frameworks based 

on "possible worlds" and "state estimates" are shared by the DSDES frame­

work, too. Therefore, a blend of DSDES and EFSM frameworks enjoys the 

complementary merits of both. 

1.7 Symbolic systems and PDSs 

As mentioned in the previous two sections, SDES and EFSM frameworks pro­

vide symbolic representations of a centralized supervisor in the form of a poly­

nomial dynamical system (PDS). For a distributed SDES or EFSM, this PDS 

provides a distributed symbolic form of the information structure of the cen­

tralized supervisor. 

Symbolic systems and PDSs have been of interest since the early days of 

SCT. In [56] PDSs are introduced as formulations for control problems of DESs 

whose solutions can be computed using tools in computational algebra. In [57] 

control theories for a large class of systems are formulated based on PDSs. The 

author of [58] develops a modeling framework to transform a DES's dynamical 

equations into relations over finite domains and represent them using binary 

decision diagrams (BDDs), integer decision diagrams (IDDs), and polynomials. 

BDDs were also proposed in [59] to reduce the complexity of the SCT designs 

and are employed by a recently developed software tool for handling industrial-

size problems in [60]. Zhang and Wonham introduce a software tool which 

gains its efficiency through embodiment of the modular composition of the 

plant and the specification in Integer Decision Diagrams (IDDs) [61]. By 

employing state-tree structures to reduce complexity, a symbolic algorithm 
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has been proposed in [62] to synthesize nonblocking supervisors for large plants 

yielding physically meaningful representations of a controller. 

In all of the aforementioned works, symbolic representations and PDSs 

have been used to model, verify, and design centralized controllers or to re­

duce the computational complexity of such designs. In this research, however, 

PDSs are used to model, synthesize, and analyze communicating decentralized 

supervisors and specifically to design the communication. It is assumed that a 

centralized supervisor is already designed for a (distributed) DES and its global 

specification, i.e. no effort is put to design nor to simplify this supervisor nor 

to compute it more efficiently through employing symbolic representations. In 

other words, the proposed synthesis procedure of this thesis starts right after 

such a centralized supervisor is provided by SCT. More specifically, PDSs are 

derived using the DSDES model of a centralized supervisor, which inherits 

its SCT-based properties such as optimality and nonblockingness. The PDS 

represents the observation- and control-related information structure of the 

centralized supervisor in a distributed, i.e. agent-wise, manner. These two 

kinds of information are formulated, respectively, as polynomial dynamical 

and algebraic equations over integer variables whose values are taken from a 

finite field. The properties of these polynomials and the underlying filed is 

then used in a systematic and computationally efficient way to study the syn­

thesis problem and formulate and address relevant issues such as content and 

minimality of the communication. 

In summary, the PDS representation is used in this research as a compact 

and structured way of representing a centralized supervisor. This representa­

tion is amenable to characterizations based on more elaborate mathematical 

structures such as groups and fields, compared to set theory which is the pre­

vailing tools of behavioral study of DESs. Notice that while improving the 
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computational complexity of the synthesis, through using structured and well-

developed tools of computational algebra, could be one of the merits of the 

proposed approach of this research, it is not its main objective and therefore, 

details of solution techniques and optimization of the solutions are not within 

the scope of this research. It is worth emphasizing that whereas this thesis 

does not employ PDS representations to compute the centralized supervisor, 

it seems more promising if both symbolic tools, one for the centralized design 

and the other used here for the decentralized design can be integrated into 

a complete design process to improve the complexity and optimize the whole 

modeling and synthesis processes in this way. Such a procedure deserves a 

separate work and, in the author's belief, is one of the natural continuations 

of this research. 

1.8 Other formalisms to study decentralized 

control 

The previously-mentioned works, including SDES and EFSM frameworks, all 

are originally based on automata theory and languages. However, there have 

been extensive research on distributed systems and their verification in areas 

such as computer science, software and hardware verification, and economy 

since long time ago. Some of these works have adopted other formalisms to 

study their problems of interest. 

Game Theory is among the most related formalisms. In [63] Overkamp 

and Van Schuppen characterize the maximal solutions6 of decentralized su­

pervisory control as a variation of Nash equilibria of strategic games. The 

authors also suggest an algorithm which can find some of these solutions7. 
6Maximal solutions are solutions which yield the maximal closed-loop language. 
7The author has extended this work in [64] to the case of "disjunctive" fusion rules. 
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Apart from the insight gained from this characterization, the complexity of 

computing such solutions can be measured by employing the available results 

in algorithmic game theory. 

Another interesting work is [65] in which the minimal amount of informa­

tion needed to be communicated by the agents in a computer network is called 

"communication complexity." The authors link communication complexity to 

Shannon's information theory and employ different models of communication 

such as "Yao's two-party model," "variable partition models," and "commu­

nication complexity of relations" to study the problem. As mentioned by the 

authors, while the subject of "information theory" is a certain communication 

which needs to take place, the subject of "communication complexity" is a 

problem to be solved, say addition of two numbers by a computer [65]. The 

ideas formalized in this work might be employed in the RW framework and 

specifically in SDES and EFSM formalisms in a later work. 

Another viewpoint is to look at the network topologies which form the in­

terconnection of different components. A main objective in this area is to have 

inexpensive network structures which are yet efficient. These requirements 

might be formalized in graph theory in terms of "minimum time broadcast 

graphs" (see for example [66]). The ideas here might be insightful specifically 

in investigating communication over unreliable channels. 

1.9 Problem statement and basic assumptions 

Given a (distributed) DES and its specification(s), this thesis studies the prob­

lem of "synthesis of communicating decentralized supervisors." This problem, 

However, this work is not directly related to the mainstream of this thesis and is not included 
in it. 
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through introduction and development of distributed SDES and EFSM frame­

works, is reduced to the synthesis of (rules of) communication among supervi­

sors. The two distributed frameworks are both built upon a central tool, called 

an agent-wise labeling map (ALM), which reveals the information structure of 

an already-designed centralized supervisor. This has been synthesized using 

SCT for the (distributed) DES and its specification(s), in a distributed manner, 

i.e. as reflected by the observable subalphabet associated with each component 

DES. Finally, synthesis of (the rules of) communication is in turn formulated 

and solved using polynomial system representations (PDSs) of the centralized 

supervisor. Each such PDS consists of a number of dynamical equations, asso­

ciated with the centralized supervisor's observation, and a number of algebraic 

equations, associated with the centralized supervisor's control map. The asso­

ciated polynomials are defined on (integer or Boolean) variables whose values 

are taken from an underlying finite field. These variables reflect the local 

information owned by each component DES. 

As stated above, a basic assumption in the proposed synthesis proce­

dure is the availability of a centralized supervisor, designed using SCT for the 

(distributed) DES in question and its specification(s). In the first place, this 

assumption requires that the DES and its specification(s) should be express­

ible using regular languages and finite automata. On the other hand, it is 

assumed that such a supervisor can be computed using SCT, which in turn 

implies that it should be within the computational power of SCT associated 

software tools. More specifically, if such a supervisor should be designed for 

a distributed plant, the complexity of synthesis increases. However, this is­

sue, though being an important feasibility issue, is inevitable when dealing 

with complex multi-component systems in the sense that every procedure for 

synthesis of decentralized supervisors will face it at some level of design. 
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An implication of using the centralized supervisor as the starting point 

of SCDS, is that the properties of the supervisor, including its state structure, 

optimality, and nonblockingness are all inherited by its SDES model and PDS 

representation. On the positive side, this means that the given state structure 

is respected by the synthesis procedure, a fact which is neglected by all proce­

dures which employ natural projections8. However, one should be warned that 

the size of the state structure and some of its selfloop transitions9 may affect 

the size of the ALM and, in turn, the complexity of the final PDS represen­

tation. Again, this "burden of complexity," though imposing computational 

limitations, is due to the very nature of complex distributed plants and cannot 

be fully remedied in other synthesis procedures, either. 

The main subject of this research is the synthesis of "communicating" 

decentralized supervisors. Since communication is not required in the presence 

of coobservable specifications, it is assumed that the given specifications are 

not coobservable in any sense, i.e. they are neither ClkP, nor D&zA, nor any 

other types. This assumption holds for many practical problems, as coobserv-

ability is a strong property for many networks and cannot be fulfilled. 

In practical communication channels, data is received with delay or lost 

(i.e. received with infinite delay). In fact, one of the main goals of communi­

cation protocols is to guarantee the correct exchange of information within a 

network with such channels. A first assumption in this regard is that the com­

munication channels for control signals and those for data are not assumed 

the same. This assumption, which could be justified in practice due to the 

importance of control signals, lets one limit the model of the communication 
8A state, when designated for any reason, bears its own significance and should not 

be merged into other states. Natural projection merges some states which are related by 
unobservable transitions. 

9 Some selflopp transitions should be unfolded in the proposed procedure (see Re­
mark 3.1). 
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channels to the part which is related to SCDS problem. A second assumption 

is that, whereas the issue of "delay" is an important and interesting subject, it 

is not studied in this thesis, except in Chapter 4, where a sufficient condition 

is provided. Accordingly, it is assumed in general that channels are delay-free. 

This assumption could be fulfilled in the networks where communication delay 

is negligible, though it is quite uncommon. However, the main reason for such 

an assumption is that, as shown in Chapter 5, the rules of communication 

can in general be divided into two classes, leading to two levels of communi­

cation design. The first set consists of the rules which "logically" prescribe 

the exchange of information to help the network satisfy its specifications (even 

in the presence of delay-free channels). In other words, only informational 

dependencies are important and physical (environmental) constraints are ne­

glected. Such dependencies hold regardless of channels' characteristics. The 

second group of the rules are those which make the implementation of the first 

group feasible in the presence of delays or in the absence of some communica­

tion channels. Being formalized in Chapter 5, this classification gives rise to 

the notion of "information policy" and "routing policy," respectively, with the 

second one left for future work. 

The above were the most fundamental assumptions of this work. In 

the following chapters, wherever necessary, the above assumptions are stated 

explicitly. 

1.10 Research achievements 

The advantages of using SDES and EFSM frameworks over some previously 

developed frameworks for SCDS were listed in Section 1.6. The major theo­

retical achievements of this research are as follows. 
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1. Introduction of a general framework for modeling, analysis, and syn­

thesis of (communicating) decentralized supervisors for DESs: SDES 

framework, built on ALMs, provide a compact, symbolic, structured, 

and computationally efficient way for modeling a centralized supervisor 

in a distributed way. This framework is general in the sense that it can 

be applied to all state representations of an already-designed centralized 

supervisor, thanks to the fact that an ALM can always be found for a 

given supervisor in an efficient way. 

2. Introduction and development of a general systematic procedure for solv­

ing SCDS: The procedure starts by labeling the states of a centralized 

supervisor, already designed using TCT, in a distributed way using an 

ALM. This is followed by computing updating and guard functions, 

which capture the observation- and control-related information of the 

supervisor, respectively. Next, these functions are represented by poly­

nomial functions, defined over a finite field. The (rules of) communica­

tion among supervisors is then synthesized using the properties of the 

polynomials and the underlying field. 

3. Formal modeling and synthesis of a number of information policies: A 

communication policy, which is formally defined in Chapter 5, can be 

simply defined as the rules for exchanging decentralized supervisors' pri­

vate information among each other. In this work, a communication pol­

icy is divided into an information policy and a routing policy. As solu­

tions to SCDS, a number of information policies are derived and formally 

proved to insure the satisfaction of the given specification(s), under the 

assumption of delay-free communication channels. Some of these poli­

cies prescribe the exchange of supervisors' information on the "observed 

states" and some prescribe the exchange of information on the "observed 
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events." In other word, both types of communication contents, i.e. states 

and events, can be accommodated in the proposed synthesis procedure. 

4. Providing an implementation-oriented solution to SCDS: As will be for­

mally shown in Chapter 5, the two types of communication contents, 

i.e. states and events, which are prescribed by the synthesis procedure 

within SDES framework, are finally encoded using Boolean variables, 

with the help of EFSM framework and event-encoding schemes, respec­

tively. Such a bit-wise implementation of the communication rules not 

only suits minimality analysis of the communication but also is ready 

to use by field engineers, who encode every pieces of information using 

Booelan variables to run on digital processors or store in digital memo­

ries. It is an advantage of having an encoding scheme as an integral part 

of the proposed modeling frameworks to envisage implementation issues 

in theoretical studies, compared to non-optimally adding such a scheme 

at the last stages of implementation. 

5. Finding a finer partitioning of the class of solutions to SCDS problem: 

Within SDES framework the structural information of a centralized su­

pervisor is divided into observation- and control-related pieces, as cap­

tured by updating and guard functions, respectively. This division is re­

flected by the PDS representation of the supervisor, where polynomials 

may depend or not on other supervisor's private variables. Dependence 

on others' variables, as shown in Chapter 5, may call for a communication 

from the owner of the variable to the supervisor in question. This fact, 

on top of the properties of the polynomials and their underlying field, 

helps one distinguish different classes of solutions of SCDS depending on 

the variable dependency and the graph of the function. Such a classifi­

cation, which has an impact on the recovery of the closed-loop system 
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from communication faults, has not been reported in the literature. 

The next section discusses the application-oriented contribution of the 

thesis. 

1.11 Synthesis of communication protocols 

On the application side, this research was motivated by "automatic synthesis 

of communication protocols," examples of which are Alternating Bit Protocol 

(ABP) and Transmission Control Protocol-Internet Protocol (TCP-IP). In a 

communication network, which is a common example of a distributed DES, 

processes exchange among themselves data messages under an ordering spec­

ified by a set of rules, known as a communication protocol [67]. Although 

extensive research has been done in this area from the viewpoints of commu­

nication, software engineering, and computer science, there is no rigorous and 

general control theory behind the synthesis. In fact the current trend is to first 

formalize the specification, then "guess" a good solution by experts and finally 

verify the closed-loop behavior of the system against the given specifications. 

Needless to say, automation results in more reliability and safety, as well as 

less time and expenses of maintenance and design. Moreover, dependence on 

experts leads to non-optimal solutions and limits the flexibility and easy ex­

tensions needed for large-scale future problems which are not easy to handle 

manually anymore. 

While the use of formal methods has significantly contributed to spec­

ifying the desired behavior of systems and validation techniques for commu­

nication protocols [68], the control community, in turn, has considered the 

automation of the synthesis problem such that given the model of the net­

work and the desired behaviors, the protocol is generated mechanically (i.e. 
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automatically and without human interference). In [13] the example of ABP 

was first introduced as a solution to a decentralized supervisory control prob­

lem. However, since both plant components (i.e. sender and receiver) and 

the specification models "spelled out" the solution [69], the synthesis was ad 

hoc. In a later formulation in [69], the specification does not contain the solu­

tion and requires only a linear ordering among some events. It is shown that 

inclusion of ABP in the sender model makes the specification coobservable 

with respect to the plant and thus there exists a set of non-communicating 

decentralized supervisors which yield ABP. Conversely, in the absence of this 

inclusion coobservability does not hold and such a set does not exist. 

When coobservability fails it may still be possible to design decentralized 

supervisors by allowing communication among them. In fact, the findings of 

this research support the idea that such problems yield protocols which require 

communication of some control- or observation-related information among the 

supervisors. In the proposed formulation of the problem in Chapter 3, assum­

ing ideal communication channels, the protocol design for a special class of 

non-coobservable specifications, including ABP, is reduced to SCDS. 

The proposed synthesis approach of this thesis requires neither the plant 

components nor the specification to "spell out" the protocol (i.e. part or all of 

the protocol need not be designed and included in the transition structures of 

plant components or specification beforehand). For ABP, which is a practical 

benchmark and an illustrative example, it is shown that the protocol arises 

naturally as a solution to the corresponding control problem with no a priori 

inclusion of the solution in the plant model or the specification language. 
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1.11.1 The application-oriented contribution of the the­

sis 

In the following, first I briefly comment on two existing approaches to protocol 

synthesis by presenting their big pictures. Next, the proposed methodology 

of this thesis and its features will be explained. For the purpose of a simple 

illustration of the ideas, we limit ourselves to a network of 3 supervisors. We 

assume a "state representation of the specification, E," and a "state model 

of the communication system, G," are the two available pieces of information 

that all three approaches start from. Here, by state representation we mean a 

representation using a finite automaton. Two points are in order. First, mod­

eling capability is limited to the expressive power of finite automata, though 

the limitation of using "state representation" is intrinsic to the proposed ap­

proach and its possible extensions to more expressive computational models. 

Second, it is possible that either plant or specification or both consist of more 

than one automaton. In that case, if a modular design is possible the synthesis 

can be broken into separate simpler designs, one for each plant and its own 

specification. However, if this leads to "blocking," synchronous product of 

plants with each other, and specifications with each other, would reduce them 

to a monolithic plant and specification. 

Traditional Approach: Figure 1.1 illustrates the traditional approach. The 

synthesis mainly relies on a good "guess," say using human expertise, of the 

communication rules in the form of events and transitions considered in the 

system model. Such rules are then embedded into the system model, which 

is then verified for correctness. Passing this stage, the rules are output as the 

desired "protocol." Despite the efforts that have been made to formalize the 

whole process, the design is neither automated, nor systematic, nor correct 

by construction, because it lacks a "control" perspective. Moreover, changes 
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State representation of 
the specification E (spec)) I cation system G (plant) 

State model of the communi-

Can we "guess" a set of communication rules 
(try adding new events, transitions, and states to models) 

among agents to guarantee satisfaction of E ? 

No! 
1 Yes! 

Verify if the agents using the rules satisfy E 

Yes! 

No! 

Output the rules as protocol STOP! 
Design Fails! 

How good is this design? No answer! 

Figure 1.1: Traditional approach to protocol synthesis. 

to the existing protocol cannot easily be made in general, and there is no 

guarantee on how this design is optimal in the sense that it minimally restricts 

the original behavior of the communication system. Needless to say, such a 

design is largely prone to human errors. 

Coobservabi l i ty-based Approach: Figure 1.2 depicts the second approach, 

which was suggested in [69]. Here the design is based on supervisory control 

theory, which makes it systematic and automated (up to the given plant and 

specification), and optimal in the sense that it restricts the plant's behavior 

minimally to the desired specification. However, if the specification fails to 

be controllable, a polynomially verifiable property, only its "supremally con­

trollable" part, denoted by SupC(spec) may replace E. The next important 

property is "observability" which can be verified efficiently, too. Unfortunately, 

in the absence of this property what can be guaranteed to achieve is the "in-

fimally observable" part of the specification, which may not be satisfactory 

anymore (see [12]), in which case the model of the problem should be modified 

or there would be no solution, as the infimally observable specification does not 
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meet any desired objectives. It is so far clear that SCT can help the designer 

detect the nonexistence of a protocol (and provide solvability suggestions) at 

an early stage in case controllability and/or observability fail, an advantage of 

using a systematic design approach. 

The specification being controllable and observable, the main part of 

the algorithm starts by performing an efficient verification for coobservability. 

This property ensures the existence of decentralized supervisors, one for each 

agent, such that under the supervision of all, the specification is satisfied. More 

precisely, decentralized supervisors can satisfy the specification with no com­

munication amongst them, hence no protocol is required. For this reason, this 

approach suits the verification purposes. The synthesis, however, starts from 

the point that coobservability fails because of some ambiguity in distinguish­

ing legal-illegal strings. In that case, some "creative work" is used to remodel 

the system by adding new events and transitions to resolve the problem. Once 

coobservability is achieved, the added parts are formulated as communication 

events, which are governed by some rules that are called protocol. 

In short, this approach, though truly employing SCT as its synthesis 

tool, is based on human remodeling of the plant and specification to arrive 

at coobservability. This results in an inefficient and nonautomatic synthesis 

which may become very complicated in practice. However, it would certainly 

serve to verify the correctness of a designed protocol, through not to study its 

optimality. 

Proposed Approach: In the author's viewpoint, implementing the observa­

tion and control functions of a centralized supervisor in a decentralized manner 

is a more natural approach to "decentralized controller synthesis" than verify­

ing coobservability, which implies decentralization with no communication at 

all, and holds only for a small group of specifications. Towards this end, similar 
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r State representation of 
the specification E (spec) 

State model of the communi­
cation system G (plant) 

spec cannot be implemented! 
Use SupC(spec) instead 

(New) spec controllable 
wrt (new) plants 

Formulate the added events 
to G as communication 
protocol and output it. 

Design decentralized supervisors 
using SCT 

Use creative work to 
modify plant and spec 
by adding new transiti-
tions/events to make the 
new spec coobservable 
wrt to the new plant 

Figure 1.2: A first attempt at protocol synthesis using supervisory control 
theory based on coobservability. 
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to the previous case, the proposed approach verifies the two basic properties 

of controllability and observability to make sure that an (optimal) centralized 

supervisor exists, and if so, computes it. So far the procedure is the same 

as that of the previous case. Next, this supervisor is implemented in a de­

centralized manner in DSDES framework through which updating and guard 

functions are computed, recast as polynomial equations, analyzed to derive a 

communication policy, and then implemented using binary variables in EFSM 

framework, to communicate observed states, or using event-encoding Boolean 

variables, to communicate observed events. The last step is to derive the rules 

of Boolean variable exchange and output them as protocol. 

The proposed approach is automatic and there is no "creative work" 

involved in the design process, except for simplifying the PDS representation 

(see Chapter 5). Computationally, checking controllability and observability 

can be done efficiently. Centralized supervisor can be synthesized in polyno­

mial time in the number of states of plant and specification. An ALM, the 

DSDES model of the supervisor and PDS representations are all computed in 

polynomial time. 

1.12 Outline of the thesis 

The thesis is organized as follows. Chapter 2 provides the necessary mathemat­

ical background for this thesis including elements of decentralized supervisory 

control theory and EFSM formalism. Chapter 3 presents the author's first at­

tempt in solving SCDS by extending EFSM framework to the distributed case 

and providing the solution to ABP. This chapter has been published as [50] 

and is repeated here as it is. As a result some of its notations are a bit different 

from the notations used in other chapters. Chapter 4 introduces the SDES 
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State representation of 
the specification E (spec) 

State model of the communi­
cation system G (plant) 

spec cannot be implemented! 
Use SupC(spec) instead 

Yes! 

Design a centralized sup­
ervisor S using SCT 

(New) spec observable wrt G ? 

Implement S in a (semi-) 
decentralized manner using 
DSDES framework 

Inf (spec) good? 

Use Inf(spec) 

Remodel the system 
and start again 

^p>"""xi>>" " 
Implement labels and updating and gurad functions in the 

EFSM framework or encode events 

Output the rules to reevaluate updating functions and guards 
as protocol 

Figure 1.3: The proposed approach based on supervisory control theory and 
DSDES framework. Dotted lines indicate a possibly required communication 
between two supervisors. 
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framework, its distributed version, DSDES framework, and PDS representa­

tions of a (distributed) SDES. Chapter 5 employs the PDS representation of a 

DSDES to formally model the synthesis of communication among supervisors 

and derives solutions to it in the form of information policies. A partition­

ing of the class of solutions to SCDS is also introduced in this chapter with 

some preliminary results on communication-based state representations of a 

centralized supervisor. In Chapter 6, the theoretical results of Chapter 5 is 

applied to synthesize two information policies for a tree-like network used for 

asymmetric multicast data transport. Conclusions are drawn and suggestions 

for future are made in Chapter 7. Proofs of the claims in Chapter 4 and in 

Chapter 5, which are missing from the text, can be found in Appendices A 

and B, respectively. Also, details of computations for Chapter 6 are brought 

in Appendix C. 

1.12.1 Some conventions used in mathematical proofs 

The following points about proofs are in order. When the proof of a claim is 

missing, it can be found in Appendix A or Appendix B. In the mathematical 

proofs, whenever necessary, the justification of an implication is brought in 

"[]" right after the implication. When the steps of a proof follow continuously, 

each following step is shown after a symbol " =^> ," i.e. each inference starts 

at a new line. When a step of a proof is referred to as the justification of 

another step, the former is assigned a symbol, which is put in "()" in the 

same way as an equation number. Some steps of a proof consist of multiple 

conjuncts, in which case the justification for each conjunct is shown in front 

of it. To improve the readability of the mathematics, the following signs are 

used as the end of the mathematical environments. 
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• The end of a definition, assumption, remark, notation, or problem defi­

nition is denoted by " • " , 

• The end of a theorem, proposition, corollary, or lemma is denoted by 

• The end of an example is denoted by "0" • 
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Chapter 2 

Background 

2.1 Introduction 

This chapter provides the basic materials of Ramadge-Wonham supervisory 

control theory of DESs, as reported in [3], and its decentralized extension 

in [12]. It also reviews the framework of extended finite-state machines, as 

appeared in [70], [47], and [48]. The common notation, used in all chapters, is 

also introduced and fixed here. This notation remains valid for the following 

chapters, unless otherwise superseded later. 

2.2 Model of a discrete-event system 

Consider1 a finite alphabet of events E and define £* := {e} U E + , where e 

denotes the zero-length string and E + is the set of all finite symbol sequences 

s over E. The power set of E is denoted by Pwr(E) A language K is defined 

as a subset of E* and its prefix closure is represented by K. The synchronous 

product of two languages K\ and K2 is shown by i^iHA^. The catenation of a 

'We follow the notations, definitions, and results in chapters 2, 3, and 6 in [3] which 
originated in [6] and [71]. 
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language K by the events in a set Ea C E is denoted as KT,a and is a language 

whose strings are all possible one-step continuations of the strings in K by all 

the events in Ea. A language may be represented^ as a generator^ and the 

operations such as synchronous product on generators are defined in the usual 

way [72]. 

A discrete-event system is modeled as a generator G = (Q, E, £, q0, Qm) 

where Q is the finite set of states, E is the finite set of events, £ is the transi­

tion (partial) function, q0 is the initial state, and Qm is the finite set of marker 

states. Whenever G is represented as G = (Q, E,£,go), it is assumed that 

all states are marker states, i.e. Qm = Q. The event set is assumed to be 

the union of the two disjoint controllable and uncontrollable event sets Ec and 

Euc, respectively, such that E = ECUEUC. Consider another partitioning of the 

event set into two disjoint sets, observable subalphabet E0, and unobservable 

subalphabet, Euo, such that E = E0UEU0. Associated with this second parti­

tioning, define a natural projection P : E* —> E*. This mapping simply erases 

from a string in E* the events which belong to Euo, thereby modeling the 

window through which the plant's behavior can be observed (by a controller). 

We assume that G is trim, i.e. it is reachable and coreachable4, and 

denote its marked and closed languages by Lm(G) (or simply G) and L(G) (or 

simply G), respectively. G is called nonblocking if L(G) = Lm(G). A safety 

specification is specified as a language E whose corresponding generator5 is E, 

i.e. Lm(E) = E and L(E) = E. 

2As a convention, languages and scalers are denoted by plain fonts and generator and 
vectors are bolded. 

3 A generator is the same as a finite-state automaton [72] except that its transition 
function can be partial. Since it can be a recognizer for a language, these two expressions 
are used interchangeably. 

4In simple words, G is reachable if its closed language allows for reaching each of its 
states from the initial state. It is coreachable if the closed language allows for going from 
every state to at least one marker state. 

5As a convention the representation of a language is denoted by the same name, but 
bolded. 
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Definition 2.1 ( [3], Section 3.4) A specification language E C Lm(G) is 

called controllable with respect to L(G) if and only if ET,UC n £(G) C .E. D 

Definition 2.2 ( [3], Section 3.4) Let E C L C E*. £ is called L-closed if 

E = E~HL. n 

By a supervisor we mean another generator S, designed using supervisory 

control theory [3], whose synchronous product with G, called the closed-loop 

system, yields a language (or behavior) inside L(E). 

Definition 2.3 ( [3], Section 3.4) Let r = {7 e Pwr{E)\ 7 D Eu c}. A 

supervisory control for G is any map W : L(G) —> T. The closed behavior of 

W/G is a language6 L(W/G) C L(G) such that e G L{W/G) and 

s e L(W/G) Aae W(s) Aso-E L(G) ^ s u G L(W/G). 

We say that W is nonlocking for G if Lm(W/G) = L(W/G). D 

Theorem 2.1 ( [3], Theorem 3.4.1) Let E C Lm(G) and £ ^ 0. There 

exists a nonblocking supervisory control W for G such that Lm(W/G) = £ 

(and L(W/G) = i?) if and only if E is controllable with respect to G and 

Lm(G)-closed. • 

Proposition 2.2 ( [3], Section 3.6) Let S be any nonblocking DES over E 

such that 

(a) Lm(S) is controllable with respect to L(G), 

( b ) L m ( S ) f l i m ( G ) ^ 0 , 

(c)Lm(S)nim(G) = TJs)nL(G). 

Let 0 7̂  E := Lm(S) fl Lm(G) and let W b e a nonblocking supervisory con­

trol such that Lm(W/G) = E. Then S implements W and in particular 

Lm{W/G) = Lm{G) n Lm(S) and L(W/G) = L(G) n L(S). • 

6W/G reads "G under the supervision of W". 
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Definition 2.4 ( [3], Section 3.6) S is called a proper supervisor for G if 

(a) S is trim, 

(b) S is controllable with respect to G, and 

(c) L m ( S ) n L m ( G ) = L(S) n L(G). 

With an abuse of notation, we denote the close-loop behavior enforced 

by any such supervisor by L(S/G). 

Definition 2.5 ( [3], Section 6.2) A specification E C Lm(G) is observable 

with respect to (G, P) if: 

a) Vs, s' eE, Va G£c. saeE A sVeL(G) A P{s) = P(s') = > sVeL(G), and 

b) Vs, s' G Lm(G). s G £ A P(s) = P(s') => s' EE. D 

Definition 2.6 ( [3], Section 6.3) A feasible supervisory control for G is any 

map W : L(G) -» T such that ker(P|L(G)) < ker(V^)7, where P|L(G) denotes 

the restriction of P to L(G). • 

Theorem 2.3 ( [3], Theorem 6.3.1) Let 0 ^ E C Lm(G). There exists a 

nonblocking feasible supervisory control W for G such that Lm(W/G) = E if 

and only if .E is (i) controllable with respect to G, (ii) observable with respect 

to (G,P) , and (iii) Lm(G)-closed. • 

We assume that all specifications are subsets of Lm(G), controllable, 

observable, and Lm(G)-closed. Following the above theorem and proposi­

tion, these assumptions guarantee the existence of a proper supervisor S = 

(R, £,£, ro, Rm)8 for G, such that when running in parallel with the plant, 

the language of the composition is equal to the specification language E, i.e. 

Lm(G)nLm(S) = E. 

7ker(.) denotes the equivalence kernel of its argument. For two equivalence kernels, < 
denotes that the left-side kernel is finer than the right-side kernel (see Chapter 1 in [3]). 

8The description of 5-tuple is the same as what explained for G. 
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2.3 Extended finite-state machines 

2.3.1 Preliminaries 

In an EFSM9 a transition is equipped with a guard formula (or simply guard), 

and when it is taken, it triggers a number of actions. A set X of Boolean 

variables is introduced. A transition in the EFSM is enabled if and only if 

its guard formula, which is a predicate defined as a Boolean formula over X, 

evaluates to true (1). When a transition is taken, \X\ actions may follow. An 

action is a Boolean function that assigns a new value to a variable based on 

the old values of all variables. In the following definition, let k = \X\, Q denote 

the set of all Boolean formulas over X, and A denote the set of all Boolean 

functions b : Bfc - • B. 

Definition 2.7 [49] An EFSM Lx is defined as an 8-tuple Lx = (Q, E, f, qQ, 

Qm, X, g, a), where Q is a finite, nonempty, set of states; E is a finite alphabet; 

£ : Q x E —>Qisa partial transition function; q0 is the initial state; Qm is the 

set of marker states; X is a finite set of Boolean variables; g : E —> Q assigns 

to each event a guard formula] a : X x T, ^ A assigns to each pair of event 

and variable an action. D 

Assume that all variables are initialized to false (0). We extend £ to 

Q x E* in the usual way. For a G E, the guard formula g(a) is a Boolean 

formula with which all transitions labeled with a are guarded. For a G E 

and x G X, the action a(x,a) : Mk —• B is a Boolean function. When a is 

taken, it results in the assignment x := a(a,x)(v), where the vector v is the 

current values of variables in X. Let V : E* —* Bfc be a map that assigns to 

a string s G E* a tuple of Boolean values obtained from recursively applying 

9The basics of EFSMs are explained below. The reader is referred to [48] and [47] for 
more details. 
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the actions of events in s to 010, that is: 

V(s) = (v(s,x))xex (2.1) 

where for s G E*, a G E and i e X , the function i; : E* x X —* B is recursively 

defined as follows: 

v(e,x) : = 0 A v(sa,x) := <(V(s)) . (2.2) 

The closed language of Lx , denoted by Lx, contains a string generated 

by Lx if guard formulas are respected at all its prefixes, i.e. e G Lx and 

s G Lx A f (9o, sa)\ A 0ff(V(s)) = 1 & sa G Lx. (2.3) 

By virtue of having a control mechanism embedded in their structure, 

EFSMs can be used to model closed-loop systems. The synchronous product of 

EFSMs exists if they are consistent, that is, the actions of a common variable 

triggered by a common event are syntactically equal [49]. 

2.3.2 Implementation of supervisory control map by an 

EFSM 

Given the automaton of a proper supervisor S = (Y, E, £, yo, Ym) over a plant 

G = (Q, E, 5, qo, Qm), we implement the supervisory control map by extending 

G to an EFSM Gx = (Q, E, 8, q0, Qm, X, g, A). EFSM G x can be regarded as 

the closed-loop system satisfying the control objectives. 

Let M.k be the set of all minterms11 over k Boolean variables. For 
100 denotes the zero vector whose dimension is clear from the context. 
11 Over a set of Boolean variables, a minterm is the product in which every Boolean 

variable appears in normal or complemented form (see [73]). 
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convenience we define two injective maps: state-label map £ and label-minterm 

map m. A state-label map t : Y —> Mk assigns unique labels to states in Y. 

A label-minterm map m : Bfc —> Aik associates each label with the unique 

minterm that is true at that label. Note that for the state-label map to be 

injective it is necessary that \Y\ < 2k. 

The first five components of G x are identical to those of G, while X, g 

and A are derived from S as follows: 

- X = {x1,x2)...,xk}, where k = [log2 |y |] . 

- For a G S, 

{ 1 , a G £«c 

(2.4) 

where Lg^ = {£(y) \ y G Y A £(y,cr)\}. The set Lg(CT) consists of the 

labels of all supervisor states where a is enabled. 

- For IT G E, A,, = {ac)x&x w n e r e for a: G X, 

<:= £ m(l) (2.5) 

and Z/a(o-,z) — {^(y) | 2/ G F A [i a; i]̂ (j/,<r) = !}• For y G Y, the expression 

[i x \}y denotes the value of Boolean variable x in state y. The set La(a^ 

consists of the labels of all supervisor states from which x becomes 1 

after the occurrence of a. • 

The supervisory control map enforced by S is thus encoded in EFSM 

Gx. 

Theorem 2.4 [49] For EFSM G x designed as above we have L(GX) = 

L(S/G). In addition, Lm(Gx) = Lm(S/G) if Lm(S) is Lm(G)-closed. • 
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The above formalism may be also used to implement the modular su­

pervisory control in which, for a distributed plant, control decisions are made 

globally (as reflected by the fact that the variables in X are global) [49]. The 

rest of this chapter focuses on the decentralized control, where for a distributed 

plant, control decisions are made locally. 

2.4 Decentralized embedded supervisory con­

trol 

In distributed systems where plant components are geographically widely sep­

arated, a centralized supervisor satisfying the global control objectives cannot 

be implemented; rather we need a decentralized solution, i.e., a set of local, 

embedded supervisors, each designed to monitor and control a plant compo­

nent. A supervisor acting on all controllable events in the entire event set 

is called a global supervisor; in contrast, a supervisor that can only monitor 

and control subsets of events pertaining to a component is said to be local. A 

decentralized solution prescribes the control action that each local supervisor 

must take. 

2.4.1 Plant model and problem definition 

Let12 G; denote a local plant component over E, C E, where i E I = 

{ 1 , . . . ,n}, and G denote the overall plant, which is the synchronous prod­

uct of local components and defined over E = | J i € / E j . Let Ec,j C Ej and 

S0,i C Ej denote the local controllable and observable event sets for supervisor 

Sj, respectively and define Ec = \JieI^c,i and E0 = Uie/^°.*- We selfloop 

all events in E \ Ej at every state of G; to obtain Gj. Consider the natural 

12For the decentralized control, we follow the notation in [12]. 
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projection Poi : E* —> E*{. Define the local supervisor S; by its control map 

Wi : P0<i[L(G)] -> 2E* such that Wi[P0ii(s)] D E j \ ECii for all s G L(G). Let 

S; be the global copy of Si, i.e. it inherits from S; the control decisions and 

transitions on events in E c i and in E0ii, respectively, and on top of this, it en­

ables all events in E\ECii and does not change its states upon the occurrence 

of the events in E\E0)j, hence it is computed by adding E\Ej selfloops to every 

state of Si. Defined over E, G[x implements the closed loop system Si/G;. 

Prom now on, we assume that the global specification E, 0 ^ E C Lm(G) is 

controllable with respect to G. 

The main decentralized control problem we study is called Global Prob­

lem with Zero Tolerance (GPZT) [12]. This problem was defined originally 

using the conjunctive fusion rule, under which an event is disabled globally 

if at least one supervisor, who observes it and can exercise control over it, 

disables it. As a result the behavior of the system would be limited by all 

supervisors, i.e. [3] 

L ( S i A . . . A S „ / G ) = L (S i /G)n . . .DL(S„ /G) . (2.6) 

Problem 2.1 [12] (GPZT) Given a plant G over E, and ECjl, Ec,2, E0jl, 

S0]2 Q S, is there any n-tuple of local supervisors ( S i , . . . , S n ) such that 

Lm(Sx A . . . A S n /G) = E1 U 

Variants of this problem might be easily defined under other fusion rules 

[16]. Motivated by the work in [12], the Embedded GPZT (EGPZT) may be 

defined as follows: 

Problem 2.2 (EGPZT) Given component plants G; over Ej for i G / , a 

language E C Lm(Gi || . . . || Gn) , and sets Ec>; and E0;i, is there any n-

tuple of extended systems (EFSMs) ( G i x , . . . , Gn x) such that L m (Gi x || . . . || 

Gn x) = E7 D 
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Notice that while the two problems are fundamentally equivalent, the 

definition of Problem 2.2 in terms of a set of component plants emphasizes the 

distributed nature of the system. 

2.4.2 Solution: coobservable specifications 

We consider the conditions for the existence of solutions to the above-mentioned 

problems. The solvability of GPZT is related to coobservability of E [12]13. 

For simplicity we choose n = 2, although the results can be generalized to any 

finite number of supervisors. 

Proposi t ion 2.5 A specification E C Lm(G) is coobservable with respect to 

(G, P0ii, P0$) if and only if the following holds14. 

a) [1] V s 6 £ , f f G Ec. 

scr(£E~Asae L(G) ==> [3i e / . ( ? ^ P 0 | i ( s ) ) f f n l = 0 A a e SCli], 

b) [12] For i in part a, 

Vs,s' e L(G). P0,i(s) = P0,*(s') =>[s> eEAse £ n L m ( G ) => sa € £^].B 

In plain words, a language i? is coobservable with respect to (G, P 0 j , P0^) 

if (a) at least one supervisor can detect and prevent violations of E and (b) 

the decision as to whether or not to mark a string can be made by at least one 

of the supervisors. 

Theorem 2.6 [12] There exist supervisors (Si,S2) that solve GPZT if and 

only if E is controllable with respect to G and coobservable with respect to 

(G, P0>i, P0,2l- ' 

Once GPZT is solved, the decentralized control might be embedded as a 

set of EFSMs, too. In [12] Si is constructed as an automaton with a feedback 

13This property is called C&P coobservability in [15]. 
14This definition of coobservability is a blend of its original definition in [12] and a more 

compact equivalent form of it in [1]. 
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map provided that E is coobservable. Below we employ that approach to 

embed the control of Si. 

Construction of S;: Let E = (Y,T,,£,y0,Ym) be a recognizer for a control­

lable and coobservable specification language E. For i = 1, 2, let Yi be the set 

of nonempty subsets of Y. Since Y is finite, Y{ is guaranteed to be finite. The 

supervisor S; = (Yu £,&,2/w, Y*mi) is given by: 

VaeE0>i,yieYi : 

&(yi,°) = { 

{£(y, s)\s£E*,yeyi, P0ti(s) = a} 

if this is nonempty 

undefined otherwise 

VCT e (£i\£0>i),2/j e Y{: 

&(yi,°) = 
Vi 

undefined 

if 3y eyu€(yf<r)\ 

otherwise 

V<7 e (£ \ Ei),yi e Yi : 6(i/i,ff) = yu 

Voi •= {£ (l/o, s) I s G £*, P0>i(s) = e} 

Ymi := {yi e Yi | (3y e ^ ) y e Y"m} 

Next, we extend G; to G;x to enforce the supervision of Sj/Gj. Since S; is 

constructed over E, G;x is defined over E. The following result states that 

Gix||G2x implements E by enforcing the supervision of Si and S2
15. 

Lemma 2.1 Lm(G l x || G2x) = Lm(Si A S2 /G). • 

Theorem 2.7 The marked language of the overall controlled system is equal 

to E, i.e., L m ( G l x || G2x) = E. • 

15Note that an event unobservable to Gi does not update any of its Boolean variables as 
it can only appear as a selfloop in some states of Gi. 
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We conclude this subsection by a simple example to show the above 

scheme works when a controllable specification is coobservable, and how it 

fails when it is not. 

Example 2.1 Local plants Gi and G2 defined respectively over Ej = {a, 7} 

and E2 = {/3,7}, and the specification E are shown in Fig. 2.1(a), where 

^o,i = {«}, E0;2 = {/?} and EC)i = Ec>2 = {7}. The overall plant G is the 

synchronous product of Gi and G2 , and is shown in Fig. 2.1(b) together 

with Gi and G2 . It can be verified that E is coobservable with respect to 

(G, P 0 j , P0a)- Therefore we can design Si and S2 supervising the local plant 

components to ensure that the language E is marked by the closed-loop system. 

7 7 

7 7 

a 

a 

(a) 

7,/3 1,0 

-8^8 
(b) 

Figure 2.1: (a) Decentralized embedded supervisory control with a coobserv­
able specification: component plants and specification, (b) Plants G, Gx and 
G2 . 

Using the procedure of this section a suitable pair of supervisors Si and 
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S2 are designed as shown in Fig. 2.2(a). Next the supervision of S, on G; is 

embedded in Gjx , shown also in Fig. 2.2(a). The overall controlled system is 

shown in Fig. 2.2(b), which satisfies Lm(Gix || G2x) = E. 

0 1,0 /3,xi —> 7 0,xi —• i 

7, a 

^ — Q j L ^ Q - G'JL-Q <*/*>:=*, 
Q, X2 —* 7 

-8-
(a) 

I l l 2 —> 7 

^ i - ^ - N a / i i := i i 

G l x || G 2 x : 

XlX2 —> 1 

PL 

CM /xi ;= xi 

X1X2 —• 7 

(b) 

-8-

Figure 2.2: (a) Supervisors Si and S2, and embedded controllers G l x and 
G2x . (b) Overall controlled system G i x || G2x . 

A decentralized solution does not exist when the legal language16 is not 

coobservable. For instance, for the language of E' in Fig. 2.1 neither of the 

local supervisors can distinguish between s = aft and s' = Pa, which is crucial 

in deciding whether to disable 7. Thus E' cannot be implemented unless local 

supervisors "talk" to each other. 0 

16 In this thesis, "legal" language is meant "specification." 
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Figure 2.3: A specification that is not coobservable. 

2.5 Conclusion 

This chapter introduces the main notation used throughout the thesis, EFSM 

framework as developed in [48] and [49], and its extension to the decentralized 

case as done in [47]. As can be seen, the original idea behind EFSM framework 

is to "embed" the centralized or decentralized supervisory control of "already 

designed" supervisors in guard formulas and actions, which are defined over 

Boolean variables. Whereas this was to "bridge the gap" [49] between tradi­

tional ad hoc designs of DESs and those based on supervisory control theory, 

the concept of capturing a supervisor's observation and control tasks in func­

tions is used for the synthesis of decentralized (communicating) supervisors in 

later chapters. 
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Chapter 3 

Decentralized Supervisory 

Control of Discrete-Event 

Systems over Communication 

Networks 

3.1 Introduction 

A common example of a distributed DES is a communication network in which 

processes exchange among themselves data messages under an ordering speci­

fied by a set of rules, known as a communication protocol [67]. While the use 

of formal methods has significantly contributed to specifying the desired be­

havior of systems and validation techniques for communication protocols [68], 

the control, in turn, community has considered the automation of the synthesis 

problem. In [13] the example of Alternating Bit Protocol (ABP) was first intro­

duced as a solution to a decentralized supervisory control problem. However, 

since both plant components (i.e. sender and receiver) and the specification 
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models "spelled out" the solution, the synthesis was ad hoc. In a later formu­

lation in [69], the specification does not contain the solution and requires only 

a linear ordering among some events. It is shown that inclusion of ABP in the 

sender model makes the specification coobservable with respect to the plant 

and thus there exists a set of non-communicating decentralized supervisors 

which yield ABP. Conversely, in the absence of this inclusion coobservability 

does not hold and such a set does not exist. 

When coobservability fails it may still be possible to design decentralized 

supervisors by allowing communication among them. In fact, the findings of 

this research support the idea that such problems yield protocols which require 

communication of some control- or observation-related information among the 

supervisors. In the proposed formulation of the problem in this chapter, as­

suming ideal communication channels, the protocol design for a special class 

of non-coobservable specifications, including ABP, is reduced to the Synthesis 

of Communicating Decentralized Supervisors (SCDS). 

The initial perspective of this research to study SCDS relied on the for­

malism of Extended Finite State Machines (EFSMs) in which bits of control 

information necessary in the process of decision-making, rather than events 

or state estimates, are communicated from one supervisor to another. An 

EFSM implements supervisory control [6] by employing Boolean variables to 

encode the supervisor's states, a set of Boolean functions to observe events, 

and Boolean formulas to control transitions [49]. This formalism was extended 

in [47] to the decentralized case by assigning a set of private variables to each 

component EFSM to make decision-making possible at local sites. The de­

cision as to whether enable or disable a local event may in general depend 

on the values of supervisor's own private variables, and the local copies of 

63 



variables owned by other supervisors. These copies are updated by commu­

nication among local supervisors. It is shown that the dependence of actions 

on copy variables is related to a modified version of "joint observability" [31]. 

Solutions are developed for a special class of problems where the sole purpose 

of communication is control [47]. 

This chapter1 introduces a distributed extension of EFSM framework 

and applies it to protocol design for non-coobservable specifications. This ap­

proach requires neither the plant components nor the specification to "spell 

out" the protocol (i.e. part or all of the protocol need not be designed and 

included in the transition structures of plant components or specification be­

forehand). In the first part of this chapter, we define Discrete-Event Control 

over Communication Networks (DECCN) problem and present its partial solu­

tion under the assumption of ideal channels. Thereby it completes the previous 

works on ABP, a practical benchmark and an illustrative example, by showing 

that the protocol arises naturally as a solution to the corresponding control 

problem with no a priori inclusion of the solution in the plant model or the 

specification language. This result is then extended to other special classes 

of protocol design problems for ideal channels. Moreover, the difficulties of 

tackling unreliable channels is discussed briefly and some positive results are 

presented. 

The rest of this chapter is organized as follows: After a brief review 

of EFSM formalism in Section 3.2, Section 3.3 states the general problem. 

Section 3.4 then formulates the ABP problem in EFSM framework and syn­

thesizes ABP as a solution to this problem under the assumption of ideal 

channels. Section 3.5 discusses ways in which the problem can be general­

ized for ideal channels and the case of unreliable communication channels are 

lrThis chapter has been published as [50]. 

64 



discussed in Section 3.6. 

3.2 Extended finite-state machines 

Notation: In this chapter we assume that all state machines are deterministic. 

We denote a state machine and its generated (closed) language by bold and 

regular capital letters, respectively. 

In an EFSM2 a transition is equipped with a guard formula, and when 

it is taken it triggers a number of actions. A set X of Boolean variables 

is introduced. A transition in the EFSM is enabled if and only if its guard 

formula, which is a predicate defined as a Boolean formula over X, evaluates 

to true (1). When a transition is taken, \X\ actions may follow. An action 

is a Boolean function that assigns a new value to a variable based on the old 

values of all variables. Given the set X, in the following definition let A; = \X\, 

Q denote the set of all Boolean formulas over X, and A denote the set of all 

Boolean functions b : Mk —» B. 

Definition 3.1 [49] An EFSM Lx is defined as a 7-tuple Lx = (Q, E, f, q0,X, g, a), 

where L = (Q, E, £, q0)
3 is an FSM in which Q is a finite set of states; E is 

a finite alphabet; ^ : Q x S - * Q i s a partial transition function; q0 € Q is 

an initial state; X is a finite set of Boolean variables; g : E —> Q assigns to 

each event a guard formula; and a : X x T, —^ A assigns to each pair of event 

and variable an action. When L is understood from the context, Lx is simply 

written as Lx = ( — ,X,g, a). • 

Assume that all variables are initialized to false (0). We extend £ to 

Q x E* in the usual way. For a € E, the guard formula g(a) is a Boolean 
2The main part of this section is copied from Subsection 2.3.1 to improve the readability 

of the text. 
3Whenever L is represented as a quadruple L = (Q, E, f, qo), it is assumed that all states 

are marker states, i.e. Qm = Q. 
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formula with which all transitions labeled with a are guarded. For a G E and 

x £ X, the action a(x,a) : Bfc —> B is a Boolean function. When a is taken, 

it results in the assignment x := a(x, a)(v), where the vector v represents the 

current values of variables in X. 

Let V : E* —> Bfc be a map that assigns to every string s G E* a tuple 

of Boolean values obtained from recursively applying the actions of events in 

s to 0, that is: 

V(s) = {v(s,x))xex (3.1) 

where for s G E*, a G E and x G X, the function n : E* x X —»• B is 

recursively defined as v(e,x) := 0 and w(s<r,x) := a(x, a)((y(s, x)) x). Let 

the expression £(qo,s)\ denote the fact that the string s G E* belongs to the 

closed language of L. The closed language of Lx, denoted by Lx, contains a 

string generated by Lx if guard formulas are respected at all its prefixes, i.e.: 

e G Lx and, s G Lx A £(q0, sa)\ A g(a)(V(s)) = 1 <=> sa e Lx. (3.2) 

By virtue of having a control mechanism embedded in their structures, 

EFSMs can be used to model closed-loop systems. It is shown in [49] and [74] 

that when the control action of a centralized supervisor is encoded by plant 

components' EFSMs, the language of the synchronous product of the EFSMs 

is equal to the language of the system under supervision. 

3.3 Problem statement 

Fix an index set / = { 1 , . . . ,n} and consider a system N consisting of n 

communicating parallel processes P i x , • • •, Pnx which are connected through 

a strongly connected network of potentially unreliable channels in which data 
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may be lost or delayed. Accordingly, an ideal channel is denned to be one in 

which data is instantly transmitted without any losses. We refer to the set 

of rules governing the exchange of data among these processes as a commu­

nication protocol or in short protocol [67]. For brevity we write Pj x —> P j x 

when there is a potentially unreliable channel from P;x to P j x . Fig. 3.1 shows 

the network topology for the case when n = 4. Each process Pj x is modeled 

by an EFSM, to which we assign sets E0ji, £UOij, and ECii C E0)i U £UO)i of 

respectively observable, unobservable, and controllable events by the process. 

Each Pij label, i,j£l,i^ j , represents a set of communication-related events 

between two processes P;x and P j x , each of which can be exclusively observed 

by the two processes (see the following subsection). 

3.3.1 Processes 

Each process P;x is modeled by an EFSM P;x = (Qi, £;, &, q0i, Xi, <&, a*), where 

( « € / ) 

- Ei = E0,i U ^uoMPtjl Pix - Pjx} U { ^ , ^ | P j x -^ P i x } ; 

- Xi = Xa U Xci where Xa is the set of private variables of process i whose kth 

Figure 3.1: A network of n communicating parallel processes (n = 4). Each 
process P,x has a number of observable, unobservable and communication-
related events. A process may be connected to others through ideal (bold 
arrows) or potentially unreliable (regular arrows) channels. 
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(k G N) element is denoted by x\{ (k is removed when Xa is a singleton), 

and Xci = Uj€i j-£iXij, where X^ stores copies of process Pjx 's private 

variables, j £ I, j =£ i. A copy of the kth private variable of process 

j , j ^ i, which is stored in Xij, is denoted by x^. All sets are finite; 

- Guards and actions are to be designed from the centralized supervisor, except 

for the following "updates" which are fixed a priori: 

• When P j x -> P i x , ai(Xik,Pji) = Xjk, k G I, k ^ i, which is 

an abbreviation for VZ G N. a,i(xl
ik, 0^) = xljk. Similarly, write 

Xik := Xjk when VZ G N. a;jfc := xl
jlc. 

The alphabet of process Pix includes its observable and unobservable 

events in £0j; and £UOii, communication events /??• for each process P j x to which 

process P;x sends communication through a potentially unreliable channel, and 

two events 0^ and 0^ for each process P j x from which process P;x receives 

erroneous and error-free communication, respectively, through an unreliable 

channel. The set Xi consists of variables in the set Xa which are private 

to P}x, and sets of variables X^, j ^ i, which are used to store copies of 

private variables of processes P j x (i.e. Xjj). When a communication from 

Pj x is received error-free (event 0^) all local copies in Xci are updated with 

the values of the corresponding variables in P j x , that is, VA; ^ i. Xik := Xjk. 

This guarantees that process P;x is updated with the values of the private 

variables of P j x , i.e. VZ. x\j :— x1^. Moreover, by updating other local copies 

in Xik, k ^ j , with the corresponding values of the variables in P j x , one can 

insure that local copies are updated even when no direct connection between a 

pair of processes exists. For instance, if process P3X communicates to process 

P l x only through process P 2 x , then variables in Xi3 are updated with the 

values of variables in X33 after communication events 0\2 and 0\\ occur in 
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sequence: [532 results in the assignment X23 := X33, and subsequently Q\\ 

updates XX3 := X23(= X33). 

We impose no restriction on the structure of Pj x except that when an 

event in £Cji is disabled by a protocol none of the communication events /??•, 

/3jt or /3Jj are affected. This restriction insures that the assumption that the 

network is strongly connected always remains valid. 

Notat ion: In what follows we let E = (J i e / *̂> ^ = Uie/ (^o,i U EUO)j), E0 = 

| J i e / E0ij, Euo = E \ E0, and /o(c) = {? E / | cr G E0i i}. Define the natural 

projections TT : S* —• E* to erase the communication-related (0) events, 

7r0 : E* —> E* to erase unobservable events, and Wi : E* —> £*j to specify 

the observation window of process i. Also let L and £? be respectively the 

plant and specification languages such that L C S* and E1 C 7r(L) C E*. 

3.3.2 Channels 

A process Pix may communicate to process P j x through a communication 

channel C -̂ whenever it exists. Channels may be ideal or unreliable. In our di­

agrams, unreliable and ideal channels are denoted by regular and bold arrows, 

respectively. 

Unreliable channels 

In practice channels can be potentially unreliable: data could get lost or cor­

rupted, and communication delay cannot be ignored. When P;x —> Pj x , the 

unreliable channel C^ is modeled as depicted in Fig. 3.2. 

When event /?/• occurs in P;x the values of all variables in Xi are trans­

mitted to the channel C^. Eventually the message is delivered to Pj x . We 

assume that each process has perfect error-detection facilities. If the message 
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Q for all k / j 

' ' J 

Pjx 

Figure 3.2: An unreliable channel. 

delivered by the channel is erroneous (event fifj), communication has failed 

and process P j x might just change state. If the communication is successful 

(event /?[•), then P j x updates all but its own private variables with the values 

of Pix's variables received from the channel. 

Ideal channels 

A channel is ideal when it is free from any communication loss or delay. While 

the assumption of ideality lets one focus on the "logical" aspects of the con­

trol problem, it is also valid in communication networks where communication 

delay is negligible compared to the processing time at each site. In an ideal 

network, each process has instant access to all variables of all other processes 

which it needs for reevaluating its guard and actions. Focusing on ideal chan­

nels enables us to find out what needs to be communicated in order to achieve 

the control objective, without worrying about the logistics of such communi­

cation, which will be dealt with in Section 3.6. 

3.3.3 Control problem 

Assumption 3.1 We assume that the desired behavior of the network is 

specified by a prefix-closed language E which is controllable with respect to 

7r(L) and observable with respect to 7r(L) and n0. Therefore, there always 

exists a centralized supervisor, say S = (R, S, 77, r0), which enforces E, i.e. 
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TT(S\\L) = E [7]. Note that events in Euo may appear only as selfloops in S 

and are left out from our transition diagrams. 

The control objective is then to design a controller for each process such 

that the natural projection of the language Pi^HP^H • • • \\Pnx onto S equals 

E. Notice that since the control map is embedded in each process model, 

implementing the centralized control map reduces to finding suitable guard 

formulas and actions for each process. 

Definition 3.2 Discrete-Event Control over Communication Networks 

(DECCN) : Let A/" be a system consisting of n communicating parallel processes 

Pix> • • •, Pnx) each modeled by an EFSM as in Subsection 3.3.1, which are con­

nected through a strongly connected network of potentially unreliable chan­

nels, and let E and S be respectively the languages of specification and its 

enforcing centralized supervisor as described in Assumption 3.1. Design guard 

formulas and actions for each process such that Pix||P2x|| • • • \\Pnx = S\\L. • 

In the next two sections we focus on the logics of control implementation 

by assuming that channels are ideal, while in Section 3.6 we study the problem 

when channels are unreliable. 

3.4 DECCN solution—special case 

In this section we present a solution to a subclass of DECCN problems under 

the assumptions that a) communication channels are ideal, b) for each i £ 

/ , E0ij = SC)j = {cti} are singletons and £UOii = 0, where oti is called the 

"significant" event of process i, and c) occurrence of each significant event is 

counted modulo 2. 

Note that under assumption a) variables in Xci are identical to the pri­

vate variables of other processes, which justifies using xk^ instead of x^ when 
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needed (j ^ i). The controllability and observability of significant events make 

E controllable and observable, and thus E may be used as a centralized super­

visor in this section. Following the simplifying assumptions b) and c) we use 

Alternating Bit Protocol (ABP) as a running example, and partially design 

the protocol as the solution to the corresponding DECCN problem. This sim­

plification leads us to a key observation of the solution approach for general 

DECCN problems in the next section. The protocol design will be complete 

in Section 3.6 after the assumption of ideal channels is lifted. 

Since the significant event of process i, denoted by ctj, needs to be counted 

modulo 2, Xu reduces to a singleton, whose only variable Xa is toggled each 

time a, occurs: 

a^xn^i) = xu (3.3) 

With the actions fixed, a solution to DECCN consists of finding guard 

formulas gi(ai), for each i e I. 

3.4.1 ABP: Problem formulation in EFSM framework 

Alternating Bit Protocol (ABP) [75], [76] is used for reliable transmission of 

files over half-duplex channels. As shown in Fig. 3.3, two processes P i and 

P2 communicate over a channel ch. Process P i fetches a message and sends 

it to the channel. Then process P2 receives the message from the channel, 

and accepts it if it is error-free. The control objective requires that every 

message fetched by P i be accepted by P2 exactly once. When a transmission 

error occurs, P i should resend its message until it is received error-free and is 

accepted by P2. 

A schematic of the plant is shown in Fig. 3.4, where a transmission error 

is denoted by a broken arrow. The system events are defined in Table 3.1. 
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Table 3.1: System events. 
Event 

a\ 

Pi* 
012 
012 
« 2 

0l! 
02ri 
0|l 

Description 

data fetched by P i 
data sent by P i 
data received by P 2 

data received by P 2 erroneous 
data accepted by P 2 

acknowledgement sent by P 2 

acknowledgement received by P i 
acknowledgement received by P i erroneous 

Figure 3.5 shows FSM models for sender P i , receiver P 2 and channel ch as 

well as the specification E of the desired behavior defined as an ordering of 

events in {«!, ct2}- The following is a short description of each FSM in Fig. 3.5. 

1. Sender Pi . At the initial state, sender P i nondeterministically does 

one of the following: 

(a) It sends a data message to the channel (message could be empty if 

nothing is yet fetched). 

(b) It fetches a data message and sends it to the channel. 

After receiving acknowledgement from the channel (possibly erroneous), 

flPi Channel ch 

Fetch Send Receive Accept 

Figure 3.3: Two processes P i and P 2 communicating over a channel. 

73 



Q l 
•> 

Pi 
# 2 . 

, & l 
^ 

ch 
l3'12t\ 

-« 

« 2 

#21 P21 

Figure 3.4: Schematic of the plant. 

P21 ' P2: 21 

Sender P i 

#21 > A21 

Channel ch 

^ fe\| A e
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Receiver P 2 

a 

« i 

E 

Figure 3.5: Plant FSMs and the requirement specification. 
{au(3{2)I3

e
2l,(3

r
2l) a n d E 2 = {a2, (32l, (3e

l2, f3[2} • 

Si = 

sender P i returns to its initial state. 

2. Channel ch. Any type of message received by the channel from one 

party (data (3{2 or acknowledgement (521) will be delivered to the other 

party (@[2 or (32l, respectively), or it will get lost or corrupted ((3f2
 o r 

/?fi, respectively). Note that ch is the composition of C\2 and C21, as 

defined in the previous section. 

3. Receiver P2 . After receiving a data message from the channel (possibly 

erroneous), receiver P 2 nondeterministically does one of the following: 

(a) It sends an acknowledgement to the channel. 
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(b) It accepts the message, and sends an acknowledgement to the chan­

nel. 

To make our models simpler we allow slightly more permissive behavior 

than that of an actual data transmission system. For example, we allow an 

empty message to be transmitted indefinitely. 

It turns out that the plant in Fig. 3.5 violates the specification in two 

fundamental ways. The following two strings are accepted by the plant but 

not by the specification: 

" i ; 0i2; 0i2; a2; 02i; 02i; /3?2; P[2;
 a2 and 

(3-4) 
al'i 012' 012' 021' 021' a l 

The well-known ABP [75], [76] provides a standard solution to this con­

trol problem. To find a solution in our framework we extend the two processes 

to P i x = (-,Xi,gi,ai), i = 1,2, where X{ = { a ^ z y } , j = 1,2, j =£ ^ a n d 

actions are identity except di(xn, cti) = xYi- Note that the assumption of ideal 

channels allows us to use Xjj instead of x^. The control problem is to find 

guard formulas g\ and gi such that the projection of P i ^ l ^ i onto {ai,ct2} 

equals E. 

3.4.2 Solution 

In supervisory control theory of DES [6], if a given specification is controllable 

and observable with respect to the plant, there always exists a centralized su­

pervisor which enforces the legal language. In case of distributed DES where 

each agent has partial observation of the plant behavior, such a controllable 

global specification is enforceable if and only if it is coobservable with respect 

to the plant and agents' corresponding observational natural projections [12]. 
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In simple words, coobservability requires that for every two observationally 

equivalent plant strings, and every event which extends one to a legal string 

while the other to an illegal string, there exists at least one agent which can 

disambiguate the strings and inhibit the illegal behavior. The set of decen­

tralized supervisors synthesized in this case need not communicate amongst 

themselves. 

Therefore, if the controllable global specification were coobservable, the 

solution to DECCN would simply be obtained by separately implementing the 

supervisory control maps [49] of the computed decentralized supervisors using 

only their private variables [47]. This case has been discussed in [69] using 

the FSMs of the plant components for the ABP example where the authors 

have shown that if the sender model is enriched by incorporating two events 

associated with the 0/1 status of the ABP's attached bit, the specification will 

become coobservable with respect to the plant. The same can be said about 

other defined notions of coobservability with other fusion rules [16]. Thus, in 

this case no control information need to be communicated over the network to 

implement the rules of data exchange (i.e. the protocol). 

Unfortunately, the specification E in DECCN is not in general coobserv­

able. For example, in ABP, E — (aia2)*(e + a\) is not coobservable. To see 

why, let s = ai(3{2(3\2 and s' = 0i2f3[2. Note that a2 is eligible to occur at 

both s and s', sa2 is legal while s'a2 is illegal, and finally 7r2(7r(s)) = ir2(^{s')). 

Since process 2 is the only process that can disable a2, E is not coobservable. 

In the rest of this chapter we will show how a controllable and observable but 

non-coobservable specification may be satisfied by communicating information 

among local processes. 

To begin with, we note that under the assumption of ideal channels, 

one can work with the variable set X = {xn,x22,... ,xnn}. The function 
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V : £* -» Bn of Section 3.2 is V(s) = (v(s, x))xeX, where for alii G I we have: 

{ 1 ; v(s,xu) = 0 

0 ; v(s,xa) = l 

It turns out that a solution can be found only for a restricted class 

of problems. To this end, let E = (R, E, 77,7*0) be the centralized supervisor's 

FSM, and £ denote the set of all labeling maps I : R —> pwr(Mn). For 1 < i < n 

we write a member of Bn as v = (vi,V-i), where fj is the zth element of the 

n-tuple v, and v-i denotes the (n— l)-tuple formed by the remaining elements 

of v. Define a partial ordering ^ on £ as follows: 

V/1,/2 EC. h -< l2 4=» Vr G i?. Zi(r) C /2(r) (3.5) 

It can be verified that (£, ^ ) is a complete lattice. Let £ be the smallest 

labeling map satisfying the following properties: 

1) 0 G £(r„), 

2) Vr,r' e R, on G S, v G Bn . 

v G £(r) Ar' = v{r, on) = • (W, «-<) e £(r'). (3.6) 

The labeling map I is chosen so that a transition labeled with aj toggles 

the 2th element of each vector in the state's label. We show by induction that 

the label of a state reached by s includes the vector of values V(s). 

Lemma 3.1 We have Vs G E,r G R. r = r)(r0, s) = > V(s) G £(r). 

Proof: We prove this lemma by induction on the length of s. 

• Base: Let s = e. Then r0 = rj{ro, s), and by definition V(s) = 0 6 £{ro). 
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• Inductive step: For s G E* and ctj G E let sctj G £ . Denote r := 

77(7*0, s) and r' := 77(r0,sa;j). It follows from the induction assumption 

that V{s) G £{r). Let V(s) := {vuv^). We have: 

V(soLi) = {Wi, v-J G £{r') (by definition of £) • 

Under certain conditions the labeling map £ can in effect encode the 

states of E: knowing the current value v £ Bn of Boolean variables, it is 

possible to know which state r the centralized supervisor is in by checking 

whether v G £(r), as long as v does not appear in the label of any other state. 

This idea is formalized in the following definition. 

Definition 3.3 Let E = (R, E, 77, r0) be a centralized supervisor and £ : R —> 

pwr(Mn) be as defined above. Then E is said to be state-independent with 

respect to £ if 

Vr, r' eR.r^r' =*• £{r) n £{r') = 0. • 

In other words, in a state-independent centralized supervisor the labels 

of a pair of distinct states are disjoint. When a centralized supervisor is state-

independent, it is possible to uniquely determine its state by knowing the 

values assumed by the Boolean variables after a legal string; in other words, 

the inverse of the implication in Lemma 3.1 is true as well. 

Lemma 3.2 When E is state-independent with respect to £ we have: 

Vs G E,r G R. r = r}(r0, s) <=> V(s) G £(r). 

Proof (<^=): By contradiction assume for s G E* and r G R that V(s) G £(r) 

but rj(r0,s) = r' for some r' ^ r in R. It follows from Lemma 3.1 that 

V(s) G £(r'), contradicting the fact that E is state-independent. • 

The following result states that a solution to the control problem exists 

when the centralized supervisor is state-independent. 
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Theorem 3.1 Under the assumption that channels are ideal, DECCN has a 

solution if E is state-independent with respect to L 

Proof: Let £; = UreHAnfra,)' ^(r) anc* 9i(ai) ^ e a Boolean formula that is true 

for v G B" if and only if v G £j. By induction we show that for all s G S* we 

have s G 7r(Pix||P2X|| • • • \\Pnx) if a n d only if s G E. 

Base is trivial since E and all P j x are nonempty. For the inductive step 

let sat G 7r(Pix||F2a;|| • • • UPm)- Since all languages are prefix-closed it follows 

that s G 7r(Pia;||P2a;|t • * • \\Pnx) and hence by the induction assumption s G E. 

Let r := 77(7*0,5). We have: 

sal£7T(Plx\\P2x\\---\\Pnx) « = • gi(ai)(V{s)) = l 

^=» y(s) G Li <=> r}(r,ai)\ (Lem. 3.2) 

i.e. scti E E. • 

The next 2 examples illustrate the idea. 

Example 3.1 Shown in Fig. 3.6 are two centralized supervisors Ei and E 2 

where n = 3 and E o i = ECii = {aj}, i = 1, 2, 3. A state r is labeled with all 

values in the set £(r). For example, in Ei , we have t{r\) =• {(1, 0, 0), (0,1,1)} 

(for brevity a triple (i,j, k) is written as ijk). 

The centralized supervisor Ei is state-independent as for any pair of 

distinct states (r, r') we have £(r)C\£(r') = 0. On the other hand, E 2 is clearly 

not state-independent: we have £{r\) Pi £(7*2) = £{T\) = (̂7*2). 0 

Example 3.2 As shown in Fig. 3.7, the specification (centralized supervisor) 

E of our running ABP example is state-independent. We have: C\ = {00,11} 

and £ 2 = {01,10}. Thus 

01 (ai) =xn ©Z22, 02(^2) = an ©2*22- 0 
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Figure 3.6: The centralized supervisor Ex is state-independent while E 2 is not. 

E 00 
11 

OL\ 01 
10 

r0 a2 r1 

Figure 3.7: The centralized supervisor E of the ABP is state-independent. 

Note that if channels were unreliable then, say, the private variable £22 

in the guard formula <7i(ai) must be replaced with its local copy x^. The 

mechanism by which x12 is updated with x22 is discussed in Section 3.6. 
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3.5 Towards the general problem in the pres­

ence of ideal channels 

In Section 3.4 we used tuples of Booleans to label the states of a centralized 

supervisor S = (R, E, 77, r0), and used a fixed updating mechanism in which 

the occurrence of a significant event aij toggles the value of the variable Xu, 

1 < i < n. In general, the class of state-independent centralized supervisors, 

which can be implemented by communicating decentralized supervisors when 

channels are ideal, will be widened if one dedicates more bits to count the 

significant events of processes. The next example illustrates the point. 

Example 3.3 As shown in Fig. 3.8-a the centralized supervisor S is not state-

independent with respect to £ when events are counted modulo 2 as £{TQ) D 

£(^2) ¥" 0- Now, let us use two binary variables x\x and x\x to count a\ as 

in part (b). The first two occurrences of ot\ increment Xn^n by one, while 

its next two occurrences decrement xji^n by one back to 00, i.e. the actions 

count OL\ modulo 3 (as opposed to modulo 2 counting of the previous section). 

With the new labeling map £' : R —* pwr({0,1, 2} xB), we have Vr, r' € R. r ^ 

r' => £'(r)D£'(r') = 0, i.e. the centralized supervisor is state-independent with 

respect to £'. 0 

Thus, in general, more elegant coding schemes are required to insure that 

labels are unique, and that each event changes only the value(s) of the process's 

own private variable(s). With such coding schemes, which may use more than 

one private variable, there is no reason to limit to one "significant" event per 

process, and this assumption can be relaxed, too. The following definition 

characterizes the labeling maps that have the above desired properties. 
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r0 n r2 

(a) a2 

r0 n r2 

H2lj 1 111 ~HJ31 

(b) OL2 

Figure 3.8: The centralized supervisor S, with E0)i = ECij = {a,}, EUOij = 0, 
i = 1, 2, is not state-independent when one Boolean variable is used to count 
ai , while it becomes state-independent when two Boolean variables are used 
to count OL\. 

Remark 3.1 Such coding schemes rely on the observation and encoding of 

state changes in an automaton S = (R, E, 77, r0) (of the centralized supervisor). 

Since no state change is observed for events which participate solely in self-

loops, i.e. events in E;oop = Euo U {a 6 E0 | Vr, r' G R. r' = r)(r, a) => r = r'}, 

these events might be safely ignored as long as such coding schemes are con­

cerned. However, if an event, say a^ which is selflooped in one state, say r\, 

causes a state change in another state, say r2, then some provisions should be 

made to help the coding scheme observe all a^-labeled transitions, including 

the selfloops. As a remedy, in this case a state f\ is added to S which inherits 

all the outgoing non-selfloop transitions of r\, while all selfloop transitions in 

ri, which are not labeled by events in E(oop, are replaced with transitions with 

the same labels from r\ to f\ and vice versa. By following this procedure, all 

selfloops in a state that cause state changes in other states are made observable 

to the coding scheme. Note that in the worst case, the state size of the new 

automaton (which is still deterministic) would be twice as large as the origi­

nal. In what follows, the coding schemes are always assumed to be applied to 

automata with possible selfloops labeled by events in E/oop only. Moreover, we 
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assume, without loss of generality, that in the next examples Euo = 0. • 

Definition 3.4 Let S = (R, E, 77, r"o) be a centralized supervisor modified if 

necessary as in Remark 3.1. An Agent-wise Labeling Map (ALM) is a map 

£ : R —> pwr(Nn) with the following properties: 

L O G e{r0y, 

2. Vr, r' £ R. r ^ r' =$• £(r) D £(r') = 0 (labels are pairwise disjoint); 

3. Vr,r' eR,r=£ r', VCT G S0, Vv G Nn. 

7; G £(r) Ar ' = r/(r, a) => 3 v' £ Nn. V e £(r') 

A [Vz G /0(a). ^ ^ ^] A [Vj G / \ I0(a). Vj = v'3]. 

We call an ALM finite if its image is a finite set. • 

Remark 3.2 By the second property S is state-independent with respect to 

an ALM. • 

Remark 3.3 The last property implies that an ALM neither limits the num­

ber of events participating from each process in S, nor makes any distinction 

among them. • 

To show the existence of a finite ALM, we need the following definitions. 

Definition 3.5 Consider a centralized supervisor S = (R,T,,r],r0) and an 

index set / . Two distinct states r,r' G R are called I-connected if for all z G / 

there exists a a G S0]i such that r' = 77(r, a). The automaton S is /-connected 

if every pair of distinct states in S are /-connected. • 

Figure 3.9 illustrates an example of an /-connected automaton S. 
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Definition 3.6 Let v, v' e Nn be labels and i e I. We say v is an i-sibling 

of v' if Vi 7̂  î  and t>_i = ?/_j. D 

Theorem 3.2 There exists an efficiently computable4 finite ALM for every 

centralized supervisor S = (R, E, 77, To), where S is modified if necessary as in 

Remark 3.1. 

Proof: The proof is done by establishing a bijection between constructing 

an ALM for S and another problem described below. Assume that R = 

{ro, 7"i,..., rm_i} and define J = {0 , . . . , m — 1}. Notice that since all events 

in E0 are observable, each transition's event in S belongs to at least one E0jj, 

iel. 

We make two assumptions which are relaxed later in the proof: (i) that 

E0ij's are mutually disjoint and (ii) that S is /-connected. By Definition 3.4, 

constructing an ALM for S is equivalent to finding m mutually disjoint sets 

Lj = £(rj), j £ J, each consisting of labels v G Nn satisfying Items 1 and 3. 

Item 1 implies that 0 € L0. Under assumptions (i) and (ii) mentioned above, 

since for each i there is a transition from every state r\- to every other state, 

Item 3 of this definition requires that each tuple v 6 i j have an i-sibling in 

every other state, for a total of m — 1 distinct z-siblings (since label sets must 

4The construction can be done in polynomial time, as shown in the proof. 

S0,i = {c*i,/3i,7i}> £0,2 = {a2,(32}, S0)3 = {03,^3,73} 

Figure 3.9: An example of an /-connected automaton. 
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be disjoint by Item 2 of Definition 3.4). 

Graphically, each n-tuple label v may be identified with a point in Nn. 

For the ease of representation, a point v G N" is marked by one of m distinct 

objects, each corresponding to a state of S, to indicate the membership of v to 

the label of a state. For instance, in Fig. 3.10, the label (0, 2, 0) is marked by a 

square, indicating its membership to the label set of state r^- Note that for any 

v E Nn, all z-siblings of v must be located on a straight line parallel to i E I 

axis. As argued before, to have i-siblings of v in all other states, along every 

dimension i E I there must exist exactly one copy of each object, for a total 

of m distinct objects. Accordingly, one arrangement would be to construct an 

m by m hypercube in Nn, one corner of which is located at the origin, and 

in its every dimension i E I there exists exactly one copy of each of the m 

distinct objects, i.e. m i-sibling labels, each belonging to one Lj, j E J. Such 

an arrangement is called a Latin hypercube of side m, and can be efficiently 

computed [77,78]; a simple example is shown in Fig. 3.10. 

O The object corresponding to state TQ 
• The object corresponding to state r\ 
a The object corresponding to state r^ 

Figure 3.10: A Latin cube with n = 3 (the number of axes) and m = 3 (the 
number of objects): There exists exactly one copy of each object in every 
direction. 

The above argument reveals that there exists a finite ALM for a given 

S under the assumptions (i) and (ii). Assumption (ii) creates a worst-case 

scenario; an ALM for S is also an ALM for S' which is identical to S with 

85 



some transitions removed (thus (ii) may no longer hold). 

Let us now assume that assumption (i) is relaxed, i.e. there is an event a 

for which |/0(cr)| > 1. Item 3 of Definition 3.4 thus requires that the occurrence 

of a move the current point in the Latin hypercube to a point whose every 

coordinates in I0{cr) changes, while others in I\I0(a) remain unchanged. Such 

a point always exists since there is exactly one copy of each of the m distinct 

objects in each dimension of the Latin hypercube, and therefore, there always 

exists a path which starts from the current point, each time moves along one 

of the dimensions specified by /0(a) in some specific order, and ends up in 

the required point in the hypercube. Hence the proof remains valid if all the 

assumptions are lifted. • 

Remark 3.4 It is interesting to note that, in general, the hypercube of mn 

labels, with exactly m copies of each object along each dimension, provides an 

upper bound for the number of labels required by an ALM, in the sense that 

it is possible to find an ALM with a smaller image size if assumption (ii) is 

relaxed. On the other hand, it provides the minimum number of the required 

labels in the worst-case scenario where for every pair of automaton's states 

and for each i, some events in E0ji trigger a move from one state of the pair to 

the other. • 

The next example illustrates the procedure mentioned in the above proof 

and Remark 3.1. 

Example 3.4 Consider the centralized supervisor S in Fig. 3.4-a and the sub-

alphabets ECii = E0>i = {a, ai, Pi} and ECi2 = E0)2 = {a, «2,/32}. Following 

Remark 3.1, we examine selfloop transitions in S and notice that Pi causes no 

state change and can thus be safely ignored. On the other hand, oti and a2 

cause state change from r0 to r lf and therefore they are replaced by transitions 

86 



ft 
ai'/T 

A (a) 

02 Pi 

a\,a2 

0 1 

Ostate ro 
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nstate fi 

Figure 3.11: (a) A centralized supervisor and (b) its unfolded version, (c) 
Graphical representation of a finite ALM. (d) The encoded supervisor. 

between r\ and the new state f1; which inherits its outgoing transitions from 

r\. For the new automaton S in part (b), which has 3 states ro, n , and fi, 

by the proof of Theorem 3.2 a finite ALM may be found using a Latin square 

of side 3. Such an arrangement is shown in Fig. 3.4-c simply by associating 

the horizontal and vertical axes with agents 1 and 2, respectively, and placing 

three objects, each representative of one state, in the first row, and shifting 

this row one unit to the left each time to create the other rows. By Item 

1 of Definition 3.4, point (0,0) is assigned to r0. We notice that there are 

transitions from the state ro to r\ which are labeled with events a\ G S o l , 

c*2 £ S0i2, and the common event a. Thus, corresponding to each vector of 

values in £(r0) (e.g. (0,0)), there are a 1-sibling (e.g. (1,0)), a 2-sibling (e.g. 

(0,1)), and a vector differing in both coordinates (e.g. (2, 2)) in £(r{). Similar 

observations can be made for the other states and their labels. 0 
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Definition 3.7 Let an ALM be employed for labeling the states of a central­

ized supervisor S = (R, S, 77, ro) and denote by V* the set of numbers used by 

each agent for labeling; that is, 

Vi e / . Vi := {Vi e N\ 3r € 7 ? , ^ G N""1. ( ^ , ^ ) € ^(r)} (3.7) 

The set of private Boolean variables with which each agent needs to 

implement its labels is denoted by Xu = {x^t\k € { 1 , . . . , [/o^lVil]}}. • 

In general the guard formula of an event a* is a function of all of agent 

z's variables, i.e. gi(a.i) = hi(Xa,XCi). Also, the action associated with the 

private variable x\ of process i and an arbitrary event of the process, say 

at, is not a priori fixed and is a function of all private and copy variables of 

process i, i.e. a^x^, a*) = fi,k{Xu, Xci). The function fitk must be designed to 

implement the desired labeling map as part of the solution to the decentralized 

control implementation problem. The next example illustrates this point. 

Example 3.5 For the centralized supervisor in Fig. 3.8-b assume that all 

channels are ideal. Then using two (one) private variables for process 1 (2) to 

encode the states as (^11^11,̂ 22)5 the non-identity actions can be calculated 

as: ai(x\1,ai) = x2
nx\2, a i ( i n , a i ) = x\x and a2(x\2,a.2) = x\2- The guard 

formulas g-\.{a.\) — x\x © x\2 + x\x and #2(^2) 

that 

a.\ is enabled only in r0 and r\, while a2 is enabled only in r2. (Calculation of 

guards and actions are detailed in [49].) 0 

As is evident from the above example, in general, both guards and ac­

tions depend on the values of (copies of) private variables of other processes. 

When gi(a.i) = h^Xa.Xd), communication is needed to update the copies in 

Xci to insure that the right control decision is made ("communication for con­

trol"). When a^x^cti) = fi,k(Xa,Xci), communication is needed to update 
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the copies in Xci to insure that the variables in Xu are properly updated; in 

other words, to update an agent's estimate of the centralized supervisor's state 

("communication for observation"). Thus, given a controllable, observable, 

but non-coobservable specification and its enforcing centralized supervisor, in 

a network with ideal channels where local copies of agents' private variables 

can be updated instantaneously, the communication protocol is specified by 

the following entities; The control decision of each agent, i.e. guards, and the 

communications for control and/or observation amongst agents. In this sense, 

the protocol design is equivalent to SCDS where each decentralized supervisor 

makes control decisions based on its own observation of the plant behavior and 

the received communications from other supervisors. Note that in the EFSM 

formalism supervisors do not exist as separate entities; they are implemented 

by guards and actions of the processes' EFSMs. As such, communication takes 

place between the processes themselves. 

While in general finding answers to questions regarding ordering and 

minimality of communication might be a difficult challenge, in what follows 

we restrict EFSM models so that they do not need "communication for obser­

vation," and identify a class of centralized supervisors that can be implemented 

by such EFSMs. 

Definition 3.8 [47] We say we have independent actions when 

Mi G / , VA; e N, V 4 £ Xu, Va{ <= S0ii. 

a.i(xu,ai) = fi,k(Xu). D 

The following Lemma identifies ALMs that yield independent actions. 

Lemma 3.3 The actions associated with an ALM for the centralized super­

visor S are independent if and only if the ALM assigns the same component 

labels to the states of S which are reached by strings that are observationally 

equivalent for that component. 
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Proof: Please refer to [79]. • 

It turns out that EFSMs with independent actions can implement a 

centralized supervisor only if its language satisfies a weak version of "joint 

observability" property [31]. We show this point next. 

Definition 3.9 [31] S is jointly observable with respect to 7r(L) and (£ 0 , i , . . . , E0,n) 

if and only if 

Vp e S, Vp' e n(L) \S, Bie I. ^(p) ^ ^{p1). • 

In words, joint observability requires that for every two lookalike legal-

illegal sequences in the plant's behavior, there exists at least one supervisor 

which can tell them apart. However, in control problems one always cares 

about the first instance at which the legal behavior is violated, and any subse­

quent evolution of illegal behavior is of no interest (as it is to be prevented by 

a controller). From this viewpoint joint observability is too strong a property 

for control applications, and therefore below we introduce a weaker notion 

which requires the existence of a supervisor which can distinguish two legal 

strings when an event extends one to a legal string while extends the other to 

an illegal string. 

Definition 3.10 [47] S is weakly jointly observable with respect to n(L) and 

(E0 i l , . . . ,E0 > n) if and only if 

Vs, s' eS, We E. 

so- E SAs'a E7r(L)\S => lie I. IT^S) ^ n^s'). • 

Lemma 3.4 [47] Joint observability implies weak joint observability. 

Proof: Choose any s, s' € E, and a £ E such that sa € E A s'a G L\ E. 

Take p = sa and p' = s'a. By joint observability we know that there exists 
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i G { 1 , . . . , n) such that 

MP) ^TTJ(P') 

=> -Ki(sa) =£ 7Ti(s'cr) 

=> 7Ti(s)7ri(a) ^ 7ri(s')TTi(a) 

=> 7Tj(s) ^ TTi{s'). 

• 

Lemma 3.5 [47] A language 5 is weakly jointly observable with respect to 

7r(L) and (£0 ,i>... , £0,n) if there exists an ALM for S such that the associated 

actions are independent. 

Proof: Assume that there exist independent actions and let s,s' G E and a G 

£ be such that sa G E and s'a G L \ E. Write the states reached by s 

and s1 as r and r', respectively, so that there exist v ,v ' G Nn such that 

v = (vi,v_i) G £(r) and v' = (v'^v'^) G £(r') as in Definition 3.4. If E is not 

weakly joint observable, then: 

Vi G { l , . . . , n } . TVi(s) = iri(s') 

=» Mi G { 1 , . . . , n}. Vi = v\ (Item 3, Defn. 3.4) 

=> v = v' 

=> r = r' (Only if part of Lemma 3.3) 

which is a contradiction. • 

The above result states a structural property for the language of the 

centralized supervisor without which no independent actions may be derived 

regardless of the choice of ALM. However, for an action to be independent 

of other agents' variables, it is necessary that for each agent the component 

labels assigned by an ALM be such that any changes in their values depend 

solely on the current values of the component labels. In simple words, the 
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choice of the ALM should be such that updating the labels of every agent is a 

function of its own label values. The next example illustrates these points. 

Example 3.6 It can be verified that S' in Fig. 3.12-a is not weakly jointly 

observable. As a counterexample, let s — axa2, s' = a2ax and the dashed 

arrow represent the plant's illegal move. Then while sax is legal and s'ax is 

illegal, we have 7Tj(s) = 7Tj(s') = a, for i = 1,2. Therefore, by the previous 

lemma a set of independent actions cannot be found to implement S' regardless 

of the choice of ALM. 

For the weakly jointly observable S in Fig. 3.8-b, the labeling map f 

used in Example 3.5 does not yield independent actions: for agent 1, the 

component label 1 in state rx is mapped sometimes to 2 and sometimes to 

0, depending on the label assigned by agent 2, so that its action cannot be 

expressed as a function on its set of labels {0,1,2}, but as a function on the 

cartesian product of both agents' labels, i.e. {0,1,2} x {0,1}, which makes 

the actions dependent (recall the expression for ax(x\x,ax) in Example 3.5). 

Now, let us apply the ALM £" of Fig. 3.12-b to the same specification; note 

that the specification remains state-independent with respect to £". Observe 

that under the new labeling every component label in the set {0,1,2,3} for 

agent 1 is uniquely mapped to an element in the same set. In this case the set 

of Boolean variables and the last two actions remain as in Example 3.5, while 

the first action becomes ax(x\x, ax) = x\x @x\x, hence independent actions are 

achieved. 0 

When actions are independent, as in the ABP example, the solution of 

SCDS enjoys the following property. We first need to define "minimality" of 

Boolean functions. 
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Figure 3.12: E0)i = Ec,, = {ttj}, z = 1,2. (a) A language that is not weakly 
jointly observable, (b) A state-independent centralized supervisor yielding 
independent actions. 

Definition 3.11 We say a Boolean formula is in a reduced form if it con­

tains a minimal number of Boolean variables after possibly utilizing don't care 

conditions [73] . • 

Remark 3.5 Notice that when computing reduced forms for guards and ac­

tions, one should take into account the fact that in the end it is desired to 

have minimal exchange of information among the supervisors. As a result, 

whenever there is more than one reduced form for a Boolean formula or func­

tion, the one(s) which share more common variables with other formulas and 

functions are selected. This issue is outside the scope of the present work. • 

Lemma 3.6 Let E be a global controllable, observable, but non-coobservable 

specification and S be the centralized supervisor enforcing E, whose associated 

actions are independent. Then E can be implemented over a network of ideal 

channels if a number of bits are communicated in order to reevaluate guards, 

while no communication is needed for reevaluating the actions. Moreover, this 

number may be chosen minimally, in the sense of Definition 3.11, up to the 

ALM used to label the states of S. 

Proof: Similar to the proof of Theorem 3.1, by the state-independency of S 

with respect to the ALM (Item 3, Definition 3.4), the formulas representing 

the guards can be computed as functions of the private and copy variables, 
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i.e.: 

Vz G / , Va, e £*. gi(ai) = ^(X w , Xci). (3.8) 

Thus, to apply control over its corresponding event ati, agent i needs to receive 

only the updated values of the copy variables in X^ (i.e. communication for 

control). Following the fact that the image of the ALM is finite, only a finite 

number \Xci\ of bits must be received (instantaneously, under the assumption 

of ideal channels) in order to make the right control decisions. On the other 

hand, the independency of actions implies that every such agent updates its 

private variables in Xa based on its own observation of the plant behavior 

(Lemma 3.3), and therefore no communication for observation is required. 

Upon computing one of the (possibly several) reduced forms of the guard 

formulas (see Definition 3.11), a minimal number of copy variables in Xci are 

needed for communication. We notice that there might exist more than one 

ALM to label the states of S, each using \Xa\ private variables for agent i. As 

a result, the minimality is up to the ALM used in labeling the states of S. • 

In conclusion, when channels are ideal and actions are independent, a 

protocol for a non-coobservable specification simply requires the communica­

tion of a (minimal) number of bits for agents' control purpose of reevaluating 

their guard formulas. 

Example 3.7 For S in Fig. 3.12-b, we have /?i(cni) — x\^ © x\2 

and g2(a2) = 

x\x ®x\2. Therefore, the protocol requires process 1 (2) to attach to each data 

message it sends the value of x\x (x\2) respectively). Notice that value of x\x 

need not be communicated. 0 

Remark 3.6 It is worth comparing our ALM-based approach to the estimator 

structure of [1] and possible worlds of [24]. The following observations can be 

made about our approach versus those of [1] and [24]. 
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• While an ALM can be found for any deterministic automaton of a cen­

tralized supervisor (after a possible modification as explained in Re­

mark 3.1), the other two approaches have been applied to reachability 

trees only, and their applicability to general automata containing loops 

is not claimed nor does it seem obvious. 

• An ALM adopts an agent-wise viewpoint in labeling the states of a cen­

tralized supervisor, while the other two approaches rely on a global la­

beling for the states and then gathering the lookalike state labels for 

each agent as a set of state estimates [1] or possible worlds [24]. Since in 

decentralized control the supervisors view the plant's behavior subject 

to their partial observations, the ALM labeling provides a natural formu­

lation for the distribution of information within the network. Moreover, 

the ALM approach views the labels as an integral part of the imple­

mentation of supervisor's commands, while in the other two approaches 

labeling is an auxiliary tool and the viewpoint is quite abstract. 

• The final rules for communication in the other two approaches are al­

ways translated in terms of communicating the state estimates or pos­

sible worlds, while in the ALM approach (more specifically, in EFSM 

framework) everything is expressed with respect to bits of information5 

used by each local supervisor to encode the states of a global supervisor. 

Observe that the latter serves to define a practical measure, especially 

when issues such as minimality of communication are studied. 

• Another advantage of the EFSM formalism is its compact representation 

of the supervisors' commands and observations using Boolean formulas 

5When talking about "bits of information," we mean "binary digits," not bits in the 
sense of information theory. 
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and functions, while the other two approaches make use of the supervi­

sors' automata. 

• The works in [1] and [24] adopt "the latest safe point" and "as early as 

possible" communication policies, respectively, to deal with the issue of 

"when" to communicate. Although this issue is not explicitly addressed 

in our work and the focus is on the logical aspects of protocol design 

to reveal the informational dependencies among every two supervisors 

(of two distinct processes), it is implicit that communication takes place 

whenever necessary, in other words, when guards or actions need to be 

reevaluated. 

• Moreover, the case of unreliable channels, which is the subject of the last 

section, is not studied in the aforementioned papers. 

Noting the similarities between [1] and [24], where either state estimates or 

possible worlds are communicated, through the following example, taken from 

[1], we illustrate our formulation and solution and that of [1] for a simple 

problem. • 

Example 3.8 Consider the centralized supervisor S in Fig. 3.13-a where E0>i = 

{ai,/3i,7i}, E0)2 = {a2} and event 71 is controllable by the first supervisor. 

Part (b) shows the labels assigned to the states by an ALM. Representing 

the component labels {0,1,2,3} and {0,1,2} of, respectively, the first and 

the second supervisors, using binary variables x\xx\x and x\2x\2) ^n e guard 

associated with 71 would be 51(71) = x\2 and the actions may be com­

puted as aifal^ai) = 0, ax{x2
n,ai) = 1, ax(xl

u,(3i) = 1, ax{x\l,p{) = 0, 

ai(z}i,7i) = 1. ai(zii>7i) = 1, a2(xl2,a2) = z?i, and a2(x|2 ,a2) = x2
n. 

Therefore, by the time supervisor 1 wants to make its control decision for 71 
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at states 6 or 7, it should have received the updated value of x%2 from supervi­

sor 2 (i.e. communication ^or control). However, the last time x\2 is updated 

is upon the occurrence of a2, for which supervisor 2 needs to receive the most 

recent value of x\x (i.e. communication for observation). This latter variable 

is updated solely based on the local observation of supervisor 1, so no more 

communication is required. As a result, our solution requires that a) whenever 

a2 occurs, supervisor 2 receive 1 bit to reevaluate its action(s) and b) before 

making a decision on disabling 7J, supervisor 1 receive 1 bit to reevaluate its 

guard. 

The solution in [1] relies on first a global labeling of states of S as in 

part (a) of the figure, and second on the estimator structure in part (c). Every 

state of the estimator structure consists of a quadruple whose top and bottom 

elements correspond to the event occurred and the state reached in S, respec­

tively. The second and third elements are, respectively, the state estimates 

made by supervisors 1 and 2 after the occurrence of events. Computing the 

latest safe point as state 5, the authors in [1] come up with the communica­

tion policy which prescribes that supervisor 2 communicate its state estimate 

{2, 5} at the latest safe point, and as supervisor 2 cannot tell apart state 5 

from state 2, it does the same communication at state 2 as well. 

Accordingly, the following observations can be made: a) The content 

of communication consists of 2 bits in our formulation and 2 states (or their 

labels) in the formulation in [1], which, in general, consists of more than two 

bits (especially since labels are global), b) Also, our formulation provides 

a more detailed treatment of the (qualitative) time of each communication. 

However, we would like to point out that this example is not an exhaustive 

comparison between the two methods. 

Notice that while our approach is capable of handling any arbitrary finite 
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automaton S with equal ease, this simple example serves to illustrate how 

naturally the purpose of communication (observation v. control) manifests 

itself in the designed protocol. 0 
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Figure 3.13: (a) A centralized supervisor and (b) its labels assigned by an 
ALM. (c) The estimator structure (without communication) for part (a) 
(reprinted from Fig. 3 in [1]). 

3.6 DECCN solution—unreliable channels 

This section studies the effects of unreliable channels on implementation of a 

centralized supervisor. To simplify the study of such effects, we keep assump­

tions b) and c) of Section 3.4. However, the results can be generalized to the 

case of Section 3.5 in an appropriate manner. 
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When process P, x is connected to process P j x through an unreliable 

channel, we assume that process P j x sends the values of its variables to the 

channel infinitely often (event /??•). Although the transmission could fail sev­

eral times (event (3fj), we assume that the channel is weakly fair, in the sense 

that the control information is received error-free by process P j x (event /?[•) 

infinitely often. Thus, the copies of variables in P j x are updated with the corre­

sponding values in P j x infinitely often, but as a result of possible transmission 

errors the eventual update of copies in P j x may experience unbounded delay. 

Unfortunately delay in a communication network makes it nearly impossible 

to locally implement any centralized supervisor which offers nondeterministic6 

choice among events of several processes. To see this, suppose at a state of a 

centralized supervisor both a^ and otj are enabled, and the occurrence of one 

entails disabling the other. Then, say, if oti occurs first, ctj remains enabled 

until process P j x is informed that a; has occurred in P;x (in our proposed 

framework, this means that Xji is updated with the value of Xa). Until then, 

aj may occur, contradicting the behavior of the centralized supervisor. The 

following example further illustrates the problem. 

Example 3.9 Assume that we would like to implement the centralized super­

visor shown in Figure 3.14, where E0)j = ECjj = {&i}, i £ I = {1,2,3}. When 

channels are ideal this could be achieved by introducing Boolean variables xu, 

i £ I, where x%i is toggled upon the occurrence of aiy i.e. a^xa,^) = x~U, 

while guard formulas are found to be g\{oi\) = xn © x22 ©£33 and g2(a2) — 

#3(^3) = xn ®x22®x33. 

In the presence of unreliable channels, process i keeps local copies of 

private variables of processes j and k, denoted respectively by Xij and Xik, 
6Here "nondeterminism" refers to the existence of two or more paths between two 

processes. This is clearly different from the notion of "nondeterminism" in automata theory. 
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which are updated with the values of private variables Xjj and Xkk whenever an 

error-free communication from the corresponding process is received (i,j, k E 

I, i 7̂  j , i ^ k, j ^ k). Thus, X{ = {xii,Xij,xik}. Accordingly, the guard 

formulas are evaluated "locally," i.e.: #1(01) = xn © ar12 © £13, 92(0(2) — £21 © 

£22 © £23 a n d #3(03) = £31 © ^32 © ^33. 

Initially, all variables are zero; thus a.\ is enabled (since gi(oti) = 1) 

while Q.2 and a-3 are disabled (since ^2(^2) = #3(03) = 0), as required at 

the initial state of the centralized supervisor. Assume that <y.\ is taken, and 

the values of x21
 a n d £31 are updated with the new value of Xn(= 1). At 

this point, #2(0:2) = #3(0:3) = 1 while gi(a\) = 0, as required at state '6' of 

the centralized supervisor. Next, assume that a2 is taken and thus the value 

of £22 is toggled to 1. As a result, #2(02) = 0, as required at state 'a' of 

the centralized supervisor. However, 0:3 remains enabled (i.e. #3(0:3) = 1) 

until the value of x32 is updated with the new value of £22 by a successful 

communication from process P 2 x to process P3X. Until then, a3 may be taken, 

and thus our attempt to implement the centralized supervisor fails. Intuitively, 

for decentralized supervisory control to work, processes P 2 x and P 3 x must be 

immediately notified of the occurrence of the other process's significant event. 

0 

The problem is further complicated when the network itself is nonde-

terministic, i.e. there are two or more paths from one process to another. 

Suppose, for instance, that the centralized supervisor requires <x, to happen 

a2 

Figure 3.14: The centralized supervisor of Example 3.9. 
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after a,, and that there are two paths pa and pt> from Pix to P j x . Assume that 

P j x enables ctj after it is informed through pa that at has occurred. After OLJ is 

taken it should be disabled by P j x until the next time a* occurs. Now assume 

that process P j x is informed through pb that cti occurred 0 times modulo 2 

(note that counting is performed modulo N = 2; more elaborate examples 

can be devised for arbitrary finite N). Then P j x does not know for certain 

what to make of the information just received: if a* occurred 0 times, then the 

information is outdated (i.e. the communication was initiated by P;x before 

oti was taken) and must be ignored. In this case, a,- should remain disabled. 

On the other hand, process P j x needs to re-enable otj if it is informed that c^ 

has occurred for the second time (note that 2 = 0 mod 2). 

We conclude that the class of specifications satisfiable over unreliable 

communication channels is severely restricted. One can hope for a solution to 

DECCN when the network is deterministic in the sense defined above, and the 

centralized supervisor enables a single event in its every state. In particular, 

the following result offers a solution when the specification requires a linear 

ordering among significant events. First we define a deterministic network. 

Definition 3.12 Let J\f be a, system consisting of n communicating parallel 

processes which are connected through a strongly connected network of poten­

tially unreliable channels. N is deterministic if for every i and j , i ^ j , there 

is a unique path from Pj to Pj . • 

Theorem 3.3 Let (k\, ki, • • •, kn) be a permutation of {1 ,2 , . . . , n}. If N is 

deterministic, the controllable specification E = (a^a^ •.. ctfc„)*, with £0)j = 

£c,i = {aj}) c a n be satisfied by guarding a^ with g^a^), where: 

I %k\ki © xk\kn ; i = l 
9ki{aki)= < 

[ Xkiki ©Zfcifct-i i 2 < z < n 
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Proof. Since E is controllable and is denned over an observable alphabet, E 

can be used as a centralized supervisor enforcing E. Without loss of generality 

assume that ki = i. We name the states of E from T\ to rn, so that on is enabled 

in state rt. We show by an inductive argument that in state r; of E we have 

\/j. gj(ccj) = 0, until <7i(ai) = 1 and \/j / i, gj{otj) = 0, at which point aij can 

be taken and thus E is satisfied. 

• i = 1. Since all variables are initialized to 0 we have gi(cxi) = 1 and 

Vj ^ 1. g3(a3) = 0. 

• i = k, 1 < k < n (the argument for i = n is similar). In state r^ of E let 

gk{ak) = 1 A Vj T̂  k. gj{oij) = 0, i.e. a^ is the only event enabled in rv 

When afc is taken, it sets x^k : = xkk and moves E to state Tk+\- Since 

9k{oik) = Xkk © f̂c,/c-i was previously 1, after the assignment x^k '•= 'xkk 

the guard formula gk{o-k) evaluates to 0. Thus, temporarily we have 

Vj.gj(aj)=0. 

Observe that when the value of the private variable of Pk is changed, 

communication eventually updates all copies Xjk, j ^ k, with x^,k- Since 

gj(aj) is only a function of Xjj and XJJ-I> the only guard formula that 

will be affected by such communications is gk+i(ak+i) = Xk+i,k+i®Xk+i,k, 

which evaluates to 1 after Xk+i,k is updated with the value of Xkk- Thus, 

we have established that in state rfc+1 eventually gk+i(ock+i) = 1 and 

Vj 7̂  k + 1. gj(aj) = 0. The proof is complete. • 

Remark 3.7 The restriction on the network can be relaxed if there is a dedi­

cated communication channel between each pair of processes, that is, we have 

Vi, j - Pix —> Pjx- In this case, the copy of the private variable of P;x in P j x 

is updated only when a direct communication from P;x to P j x is received 

error-free: cij(xji, (%j) = xii: while for k £ {i,j} we have a,j(xjk,ffij) = Xjk- • 
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In the next examples Theorem 3.3 is used to design decentralized com­

municating supervisors. 

Example 3.10 Consider a system consisting of 4 processes in Fig. 3.15. The 

dynamics of each process is unimportant and is thus abstracted by self-loops. 

Shown in the same figure is a centralized supervisor S enforcing an ordering 

between events, which we would like to implement by decentralized supervisors 

embedded in each process. Note that conditions of Theorem 3.3 are satisfied. 

The complete design is shown in Fig. 3.16. 0 

Figure 3.15: Four processes in a deterministic network and the centralized 
supervisor S. 

Example 3.11 The complete model of ABP in EFSM framework is shown in 

Fig. 3.17. 0 

3.7 Conclusion 

Our formulation of the class of protocol synthesis problems (including ABP) 

makes it plausible to think that over ideal channels the problem of "protocol 
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& 
xn © xu —> ai/xn := xn 

Pli/xik :=xAkyk ^ 1 

^ = 
^22 © ^21 —» a2/^22 : = #22 

^ M f c :=x3k,\/k^2 

a 
£33 © £32 -> a 3 / x 3 3 : = x 3 3 

^°J/^3 
/?r3/^3fc ••= xlk,\/k ^ 3 

H. 
X44 © £ 4 3 —> 0:4/3:44 : = X44 

Figure 3.16: The complete design for the system of Fig. 3.15. 
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t 3:22 = 2:22 

Figure 3.17: ABP design in EFSM framework. 

design" for communication processes with non-coobservable specifications can 

be reduced to the synthesis of communicating decentralized supervisors. So­

lutions to a special class of problems are presented where the processes need 

to communicate amongst themselves only for control, and a positive result is 

stated when channels are unreliable. 

One of the important contributions of this chapter is that the crucial role 

the communication network plays in solvability of the decentralized control 

problem is investigated. With the exception of [29], most works in this area 

leave one with the impression that generalization from the case where n = 2 

to arbitrary n > 2 is straightforward. Interestingly enough, when n = 2 the 

network is always deterministic. As discussed in this chapter, for n > 2, one 

has to require that the network be deterministic, or that every process be 
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connected to every other process through dedicated channels. 
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Chapter 4 

The Framework of Supervised 

Discrete-Event Systems 

4.1 Introduction 

In the authors' viewpoint, studying the communication, as a part of the de­

centralized supervisor design, would be more fruitful if the algebraic structure 

of the supervisors were explored and utilized in more detail. To this end, the 

states of the corresponding centralized supervisor are encoded in a distributed 

way and, in a "divide and conquer" approach, the supervisor's observation and 

control tasks are represented as dynamic and algebraic equations. Thereby, 

the dynamics-related information of the transition graph of the centralized su­

pervisor would be amenable to characterizations based on concrete algebraic 

structures, such as groups and fields. This makes the study of complex systems, 

and specifically computation of the communication, systematic and simplified. 

Furthermore, this approach leads to a finer partitioning of the communication 

and establishes insightful correspondences to the supervisor's behavioral prop­

erties [50]. Moreover, since in practice a supervisor is implemented through 
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encoding its system-related information, employing a (distributed) encoding 

scheme as an integral part of the (decentralized) supervisor design can address 

implementation issues, too. As an example, it is important to reduce the com­

munication content as it might be exchanged millions of times a day as part 

of a communication protocol. Since in practice the content is measured in 

bits1 rather than "events" or "state estimates," this issue may be addressed 

properly in a framework in which design is performed with an insight into 

quantitative measures for implementation. 

Inspired by such considerations, the author first proposed the distrib­

uted EFSM framework to study the communication among supervisors [47]. 

An EFSM models a closed-loop system by employing a state labeling map 

and computing guards and actions, defined on Boolean variables, as means 

to observe and control the plant's behavior, respectively [48], [49]. In [50] 

Agent-wise Labeing Maps (ALMs) were introduced as efficiently-computable 

replacements for natural projections, based on which the control-related infor­

mation of a centralized supervisor is represented by a network of distributed 

EFSMs. It was then observed that introducing Boolean variables at an early 

stage hinders further development of a theory for communicating supervisors 

by making the notations and computations unnecessarily cumbersome. Fur­

thermore, working with an integer variable, as a meaningful representation 

of a state, inherits both the qualitative and the quantitative2 viewpoints to 

analysis and synthesis. This led the authors to propose a flexibly abstract 

mathematical framework for decentralized control synthesis, which, while tak­

ing an abstract qualitative-like vantage point to system representation, can 

1When talking about "bits of information," we mean binary digits, not bits in the sense 
of information theory. 

2 "Qualitative" in the sense of representing a state and thus bearing an abstract meaning, 
and "quantitative" in the sense of being readily implementable using Boolean variables and 
serving to define quantitative measures such as those used for minimality analysis. 
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readily lend itself to the concrete implementation3 of decentralized supervi­

sors by (Boolean) variables at a later stage. 

This chapter assumes that a centralized supervisor is already designed 

using SCT and introduces an ALM to label its states with disjoint sets of 

integer vectors whose component i encode the ith. decentralized supervisor's 

observation of the states. For each event updating functions are defined to 

specify how vectors should be updated by its occurrence, and guard functions 

are defined to identify the vectors at which it should be enabled. We refer to a 

DES equipped with guard and updating maps as a Supervised DES (SDES). 

An SDES inherits the centralized supervisor's properties such as optimality 

and nonblockingness. SDES framework, which encompasses EFSM framework 

as its special case, is first developed for centralized supervisory control, and 

then is extended to the decentralized case. Guard and updating functions are 

then formulated as polynomial equations over finite fields, thereby representing 

an SDES as a polynomial dynamical system (PDS). 

This chapter is organized as follows. Section 4.2 introduces SDES frame­

work and employs it to implement centralized supervisors. Sections 4.3 ex­

tends the ideas developed in Section 4.2 to the decentralized case through the 

employment of ALMs. Section 4.4 introduces a polynomial dynamical repre­

sentation for a DSDES. The chapter ends with a comment on computational 

complexity of computing a DSDES and its PDS representation in Section 4.5. 

3Whereas the implementation of state machines is well understood, the advantage of the 
proposed approach is to envisage such implementation from the early stages of the theoretical 
study and integrate it in theoretical formulations. This is justified by the fact that it is more 
near-to-optimal to consider simultaneously both theoretical and implementation issues as 
much as possible to address their common aspects and avoid redundant modeling, analysis, 
and computations. Whereas this optimality is desirable, often it is computationally more 
difficult to do, leading researchers to divide the whole design process into theoretical and 
practical phases. 
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4.2 Supervised DESs 

Notation 4.1 Let a given alphabet E be partitioned into controllable Ec and 

uncontrollable Euc subalphabets, i.e. E = ECUEUC. Also assume a second 

partitioning into observable E0 and unobservable Euo subalphabets is given, 

i.e. E = E0UEuo. Let P : E* —> S* be a natural projection which simply 

erases from s G E* all events in Euo. Assume that a language L C E* is given 

and denote its prefix-closure by L. Define N = {0,1, • • • }. • 

4.2.1 The formalism of supervised DESs 

Definition 4.1 A Supervised DES (SDES) V is denoted by a quadruple V = 

(E, L, A, Q) where 

- E is a finite set of events (alphabet); 

- L is a (regular) language defined over E; 

- A : E x N —> N is called an updating function; 

- Q : E —• pwr(N) is a guard function. • 

Map A is extended to A : E* x N -» N according to: for v G N, 

A{e,v) = v, and for s e E* and <r € E, A(sa,v) = A(a,A{s,v)). An SDES is 

thus a language equipped with two mappings. 

Definition 4.2 The closed and marked languages of an SDES V = (E, L, A, Q) 

are denoted by L{T>) and Lm(V), respectively, and are defined recursively as 

follows: e e I/(P) and 

Vs e S*, a € E. sa 6 L(X>) ^=> [s G L(2?) A sa e I A ̂ (5,0) G 0(CT)], 

and 

Lm(P) - L(P) n L. D 
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The semantics of V is as follows: to each string s G E* a label A(s, 0) 

is attached. Thus, starting recursively from e, if s is in the behavior of V and 

a G E is eligible in L after s (i.e. sa G L), then a is "enabled" if the label of 

s is in the image of a under the guard function, i.e. A(s,0) G G{o~). When 

a is taken, the label of so is computed according to A(sa, 0) = A(o~, A(s, 0)). 

Prom Definition 4.2, the behavior of V is a subset of L. An SDES is obtained 

by guarding events, i.e. limiting their occurrence, based on the observation 

of event sequences of the guarded language. Thereby, an SDES is equipped 

with means to control and observe a given behavior L; in other words, an 

SDES may be used to implement the control decisions of an already designed 

supervisor for L, and correspondingly it is suitable to model a closed-loop 

DES. Example 4.1 of the next subsection shows an SDES. 

4.2.2 SDESs and centralized supervision 

Assume that a plant is modeled by an automaton G = (Q, E, 5, q0, Qm), where 

Q is the finite set of states, <?o is the initial state, Qm is the set of marked states, 

and 5 : Q x E —> Q is the partial transition function. Let E C Lm(G) = L be 

a given specification language. Denote by T = {7 G Ptur(E) | 7 ~D Euc} the 

set of all control patterns. A map W : L(G) —> T such that ker(P \ L(G)) < 

ker{W) is called a feasible supervisory control for G. 

Theorem 4.1 ( [7], [3] Thm 6.3.1) Let 0 ^ E C Lm(G). There exists a 

nonblocking feasible supervisory control W for G such that Lm(W/G) = E if 

and only if E is (i) controllable with respect to G, (ii) observable with respect 

to (G, P), and (iii) Lm(G)-closed. • 

Therefore, if a specification E satisfies the three conditions in Theo­

rem 4.1, there exists a proper supervisor ( [3], Chapter 3) S = (R, E, £, r0, Rm) 
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for G such that Lm(G) D Lm(S) = E. The interaction between S and G can 

be formulated using SDESs in the following way. 

Problem 4.1 Control Problem for SDESs: Let G be a plant, E be a spec­

ification satisfying the conditions of Theorem 4.1, and S = (R, E,£, To, Rm) 

be an already designed admissible, feasible and proper supervisor for G such 

that Lm(S) n Lm(G) = E. Design updating and guard functions A and Q for 

SDES V = (E, Lm(G),A, Q) such that L(V) = £ and Lm(V) = E. D 

In other words, we seek to design mappings A and Q which implement 

a given supervisor. Towards this end, first, a labeling map is introduced to 

encode the states of S. 

Definition 4.3 A map £ : R -+ N is a Global Labeling Map (GLM) for S = 

(i?,E,£, r o , ^ ) if 

1. £(r0) = 0, and 

2. Vr,r'eR, £(r) = £(r') => r = r'. • 

Note that a GLM yields a finite image when applied to a finite automaton. 

When a GLM is employed to encode the states of a finite determin­

istic automaton, its transition structure may be equivalently represented by 

updating functions, as suggested by Lemma 4.1. 

Lemma 4.1 Let S be a centralized supervisor whose closed language is de­

noted by L(S) and £(.) be a GLM labeling the states of S. Define A according 

to 

Vr,r '6i?,VffG E. f(r, a) = r' => A{a,£(r)) = £{r') (4.1) 

Then V s e L ( S ) , V r e i ? . r = £(r0, s) <=> £{r) = A{s, 0). 4 • 

4When not mentioned, proofs can be found in the appendix. 
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Proposition 4.2 A solution to Problem 4-1: Let G and S be as before, and £ 

be a GLM. Define V = (Lm(G), E, A, Q), where A is denned as in Lemma 4.f 

and Q is defined as: 

VCT e E, Q{a) = {£(r) \reR A £(r, a)\} (4.2) 

Then L{V) = ~E and Lm(D) = E. • 

By Proposition 4.2 the maximal permissiveness of the supervisor S, guar­

anteed by SCT, is inherited by its implementing SDES, too. Since by SCT no 

uncontrollable event may be disabled by a supervisor, the image of such an 

event under guard function may always be taken to be equal to UrG^£(r), i.e. it 

is always enabled. It is then the plant whose behavior may limit the occurrence 

of any such event. From now on we implicitly assume that Q{a) — Ur€R£(r) 

for every uncontrollable event a, and specify G(c) for controllable events only. 

Similarly, a supervisor designed by SCT makes no state change upon the oc­

currence of an unobservable event. Hence we always assume that A(a, •) = id® 

for an unobservable event a, where id^ : N —>• N : n i—> n denotes the identity 

function, and specify A(o~, •) for observable events only. 

Example 4.1 Figure 4.1-a shows plant G which is defined over E = {a, ft, 7}, 

where E0 = {a} and Ec = {7}. It can be verified that the specification E in 

Part (b) is Lm(G)-closed, controllable and observable. Computed using SCT, 

S in Part (c) is a minimally restrictive supervisor which enforces Lm(E). The 

states of S are encoded as 0 and 1, based on which the guard and updating 

functions (for controllable and observable events, respectively) are computed 
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as follows: 

{ 1; if m = 0, 

arbitrary] i / m / 0 . 

Note that a cannot happen at m = 1 because it is ineligible in G. Since values 

of m > 1 can never be reached, for m / 0 , A(a, m) can be defined arbitrarily, 

say A(a,m) = 1, in order to simplify its functional form (see Section 4.4). 

Thus we end up with an SDES V = (E,L,A,G) where L = Lm(G), and A 

(and Q) are defined for observable (and controllable) events as specified above 

and for the other events as explained in the paragraph preceding this example. 

The languages of V are Lm{V) = Lm(G) PI Lm(S) and L(V) = Lm(V). 0 

Figure 4.1: (a) Plant G, (b) specification E, and (c) supervisor S with labeled 
states. 

4.3 Distributed SDESs and decentralized su­

pervisors 

This section extends SDES formalism to the case of decentralized supervisors 

for controlling a (distributed) plant. Consider a network consisting of distrib­

uted sensors and actuators as means to observe and control, respectively, the 

plant's behavior L C E* by n supervisors. 
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Notation 4.2 Fix / = {1,2,... ,n} and associated with the ith supervisor, 

Sj, in the network (i £ I), define observable and controllable event subsets S o i 

and ECit, respectively, where E0ii,ECii C E, and let E* = EC)i U E0ij. Thereby 

Sj observes the plant's behavior through its observational window, modeled 

by the natural projection Pj : E* —> E0i;*, and exercises control on events in 

ECii. Thus, from Sj's viewpoint we have EUOii = E \ E0ji and EUCjj = E \ EC)i. 

Associated with each event a £ E denote by /0(<r) the set of all supervisors 

which can observe a, i.e. I0{a) = {i £ I \ a £ T,0^}. We define a centralized 

supervisor, denoted by S, to be one which has access to all sensors' observations 

and can exercise control over all controllable events. For this supervisor we 

define Lc = (Jie^EC)j, E0 = (J i g /L0 i j , Euo = L \ E0, Luc = E \ Lc, and 

P : E* —• E0*. Denote by v = (vi,..., vn) £ Nn a vector of n natural numbers 

and let 0 be a vector of n zeros. We sometimes write v as (vi, V-i) to emphasize 

on its zth component, Vi, where v^i £ N n _ 1 is obtained by removing Vi from 

v. Consider a map 7Tj : Nn —* N such that 7Tj(v) = Vi which picks the zth 

component of v, and extend 7T; to a map pwr(Nn) —»• pwr(N). For v, v' e Nn, 

we say v is an i-sibling of v' if Vi ̂  v[ and f_j = v'_{. D 

4.3.1 Distributed SDESs and synthesis of decentralized 

supervisors 

Definition 4.4 Distributed SDES: A Distributed SDES (DSDES) is denoted 

by D = {D;}iG/, where each quadruple T>i = (E, L, At, Gi) is defined as follows. 

- E is a finite set of events (alphabet); 

- L is a (regular) language defined over E; 

- Ai : Ej x N" —* N is an updating function; 

- Gi '• E, —> pwr(Nn) is a guard function. • 
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For convenience we extend the domain of A% and Qi to the alphabet of 

all events. Define A\ : E x N" —> N and ^ : E —> pu>r(N") according to: for 

a G E and v G Nn, 

A(cr,v) = 
A(o",v) ; a G E, 

7Ti(v) ; a i E, 
&(*) = < 

Qi{a) ; a G Ej 

Nn ; o- £ Sj 
(4.3) 

With a slight abuse of notation, we shall use .4; and Qi to denote .4, and Qi, 

respectively. Define a map A : E* x N" —• N" recursively as 

Vv G Nn, Vs G E*, Va G E. .4(e, v) - v; A(sa, v) = f At(a, A(s, v))) . 

(4.4) 

Definition 4.5 The closed and marked languages of P^ are denoted by L(Di) 

and Lm(T>i), respectively, and are defined as follows: e G L(T>i) and 

Vs G E*, a G E. sa G L(A) «=> [s G L(X>f) A sa G I A *4(s, 0) G £(a)] , 

and 

Lm(Pi) = L ( A ) n L . 

The closed and marked languages of a DSDES V = {X>j}je/ are denoted by 

L(T>) and Lm(2?), respectively, and are defined as L(V) — f)iejL(Vi) and 

imp) = nieILm(Pi). a 

Associated with each index i G / , a DSDES is equipped with guard and 

updating functions to capture control and observation, respectively. Control 

for each T>i is based upon n dimensional vectors of natural numbers; component 

i of a vector is updated with «4j. 

P rob lem 4.2 Control problem for DSDESs: Let the plant be modeled by an 

automaton G = (Q, E, 6, qo, Qm) and E be a specification satisfying the condi­

tions of Theorem 4.1, enforced by a proper, feasible and admissible centralized 
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supervisor S = (R, E, £, r0, Rm)- Design guard and updating functions for each 

V{ = (E, Lm(G), A, Qi) such that L(V) = ~E and Lm{V) = E. • 

4.3.2 Agent-wise labeling maps and design of updating 

and guard functions 

In what follows we investigate a solution to Problem 4.2. To begin with, note 

that if E is decomposable [12] into n component specifications, each defined 

over the subalphabet Ej, then the problem would be reduced to n independent 

monolithic designs, which can be done using the method of Subsection 4.2.2. 

Also, if the specification is coobservable, there exist n decentralized supervisors 

S;, i <E I, each partially observing the plant's behavior directly through Pi and 

exercising control over events in EC)i, such that their concurrent operation 

enforces the specification. In this case, separate application of the method 

of Subsection 4.2.2 to each S; would result in guard and updating functions 

which depend only on the labels associated with the states of S;. It can 

be shown that this set of independent guard and updating functions would 

solve the problem, too. Since the focus of the present work is to develop 

SDES framework to model communication among decentralized supervisors, 

we assume that specification E is neither decomposable nor coobservable with 

respect to (G, Pi, • • • , Pn) [12]. 

We start by introducing a labeling map5 which encodes the states of the 

centralized supervisor, S. In accordance with the distributed nature of the 

system, such a labeling scheme should reflect the observations of the plant's 

behavior from the viewpoint of n "component supervisors." To define such 

5The material on agent-wise labeling maps originates in Chapter 3 and is repeated briefly 
here for the sake of notational convenience and clarity. 
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labeling schemes, the selfloops of S should be modified such that if an (observ­

able) event makes a state change at some state, it results in a state change at 

every state where it makes a transition (see Remark 3.1). The desired labeling 

maps are characterized below. 

Definition 4.6 ( [50], Defn. 4 and Chapter 3, Defn. 3.4) Let S = (R, E, f, r0, Rm) 

be a centralized supervisor. An Agent-wise Labeling Map (ALM) for S is a 

map £ : R —» pwr(Nn) with the following properties: 

i. o E e(r0y, 

2. Vr, r' £ R. r ^ r' => £(r) n £{r') = 0 (labels are disjoint); 

3. Vr,r' e R,r^ r', Va G E0, Vv G Nn. v G £(r) A r' = «e(r,a) 

= > [3!v' e Nn. v' G £(r') A (Vi G J0(a). ^ ^ u|) A (Vj G 

I\I0(a).vj = v'j)]. D 

For every S, Theorem 4 in [50] (also Chapter 3, Theorem 3.2) provides 

a constructive proof for the existence of an efficiently computable finite ALM, 

i.e. one with a finite image, based on the structure of a Latin hypercube [77] of 

dimension n and side of the size of R. Employing the structural information 

of S, such as symmetries of states and transitions, might help reduce the side 

of the Latin hypercube. This issue, whose one instance is in Example 4.2, is 

currently under investigation. 

The existence of a finite ALM paves the way for defining the updating 

functions associated with a DSDES {T>i}iej. The key point is the existence of 

a unique i-sibling in £(r') of a v G £(r) whenever there is a a G E0j, such that 

r' = £(r,a). This is formalized in the following lemma whose proof directly 

follows from Definition 4.6. 
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Lemma 4.2 Let £ : R -+ pwr(Nn) be a finite ALM for S = (R, E, f, r0, /?m). 

Then there exists a map // : E x Nn —• Nn that is consistent with the labeling 

of £, i.e. 

Vr, r' G R, Va G E, Vv G N". 

v € f ( r ) A r ' = ( ( r , ( 7 ) ^ [^(a, v) G £(r') 

A (Vi G I0(a). TTii^a, v)) ^ 7ri(v))A (Vj G / \ / 0 ( a ) . 7r,(/i(a, v)) = ^ ( v ) ) ] . 

• 

Now, the updating functions can be defined using the map /i so that 

each supervisor only updates the label components it can observe: 

Vr, r' eR,Va£ E, Vv G Nn. r' = £(r, a) Ave £(r) => Ai(a, v) = ^(//(a, v)). 

(4.5) 

This formula relates A in (4.4) to the transition structure of S as shown next. 

Lemma 4.3 Let S and £ be as in Lemma 4.2. We have: 

VsG L(S),Vr Gi?. A{s, 0) G £{r) <=> r = f(r0, s). • 

Proposition 4.3 4̂ solution to Problem \.2: Let G, E, S, and X>; = (Lm(G), 

E, Gi, Ai) be as in Problem 4.2 and £ and // be as in Lemma 4.2. For all i G / , 

let Ai be as in (4.5), and Qi be as follows. 

VCT G E. &((T) = <( . (4.6) 
UreR£(r); i f a G E U C i i . 

Then L{V) = E and Lm(V) = E. • 

The following result can be easily proved using the definitions of \i and Ai-

Corollary 4.1 Following (4.5), the updating function corresponding to every 

unobservable event is an identity function, i.e. we have 

Vz el^ve N", Va G EUOii. A{a, v) = v{. • 
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Example 4.2 (Construction of the DSDES for a network of 3 su­

pervisors): Figure 4.2-a shows the model of a distributed network con­

sisting of three plant components and four events a.\, 0:2,^3 and P, where 

Ec,i = £0,i = {®i,/3}, Sc,2 = E0,2 = {a2,0}, and Ec,3 = E0j3 = {a3}. The 

specification S is shown in part (b) of the same figure and all its states are 

marked. Since E = E0 = Ec and S is Lm(G)-closed, the specification meets 

the conditions of Theorem 4.1 and thus S is a proper centralized supervisor, 

too. 

Following the explanations provided in Subsection 4.3.2, to define an ALM for 

S we unfold the selfloop at state r2 since its event, a2, causes a state change 

at T\ and r3. This results in the new finite deterministic automaton S shown 

in part (c). 

V2^ -

1 
1 

ro 

-

n 
To 

fa. .0 __-_ ±yi 
r\J r,i r2 r3 

P/ ?3 r4 r2 

Oil 
\T2 r3 r 4 

7 (d) 

Figure 4.2: (a) The plant's model, (b) The specification, (c) The modi­
fied centralized supervisor, (d) The ALM-assigned labels; a point v € N3 

is labeled with r G R if and only if v € £(r); thus, for example, £(r4) = 
{(201), (111),(021)}. 

While the proof of Theorem 3.2 suggests to look up the labels within a 

Latin hypercube of side 5 and dimension 3, we notice that, in the transition 

structure of S, event 0:3 merely takes the system from a state in the set A = 

{r0 ,ri} to a state in the set B = {r2,r3,r4}; this can be represented by a 
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function / : A —> B where /(Vo) = r2 and f(r\) = r3. Moreover, within each 

set the state transitions are labeled with events in E0ji U E0)2 such that for 

r,r' E A, r e B and a e £0,i U E0)2, if f = / ( r ) , r' = £(r, a) and £(r, a)\, then 

£,(f,a) = f(r'). This symmetry between the two sets of states allows us to 

choose the required labels from two Latin squares of side 3 whose elements are 

3-siblings. This arrangement is shown in part (d), based on which the states' 

labels are as follows (A point (a, b, c) G N3 is denoted by 'abc'). 

£(r0) = {000,210,120}, ^(n) = {100,010, 220}, £(r2) = {001, 211,121}, 

£{r3) = {101, 011, 221}, £(u) = {201, 021, 111}. 

Correspondingly, guard functions are computed as follows: 

GiM = e(rQ) U £(r2) U e(n), Q2(a2) = £{rx) U £(r2) U £(r3) U £(r4), 

QM = G2(P) = £(n)ue(r3), G3{a3) = £(r0)u£(n). 

The updating functions are listed in Table 4.1. Arbitrary cases are denoted 

by "—" and are chosen later to simplify the guard and updating functions in 

the DSDES and EFSM frameworks. 0 

4.4 Guard and updating functions as polyno­

mials over a finite field 

Proposition 4.3 insures that the choice of updating and guard functions in 

(4.5) and (4.6) would indeed implement the centralized supervisory control in 
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Table 4.1: Updating functions (a, 6 G {0,1,2}, c e {0,1}) for the DSDES in 
Example 4.2 

V 

A(auv) 
V 

•A(a2,v) 

V 

.*(/?, v) 

V 

V4(Q3,V) 

00c 
10c 
01c 
00c 
10c 
21c 
abO 
abl 

21c 
01c 
10c 
12c 
01c 
12c 
else 

— 

12c 
22c 
22c 
21c 
22c 
00c 

201 
101 
021 
001 
else 
— 

Ill 
Oil 
111 
121 

021 
221 
201 
211 

else 

— 

001 
021 

121 
111 

211 
201 

else 
— 

a decentralized way. Although these two kinds of functions provide a com­

pact way to present observation- and control-related information using a finite 

number of integer (vector) labels, it should be clear that the ALM does not 

rely on the absolute positions of these labels. In fact, it is the relative position 

of them which reflects the dynamic information structure, which, as in the 

case of (state-space) dynamical systems in control theory, could serve more 

control purposes if put in a symbolic form. To this end, once the labels of the 

states of S are represented by vectors of integer variables, the observation- and 

control-related information may be captured by (polynomial) functions over 

the underlying finite field from which the label values are selected. Accord­

ingly, one may compute for the guard and updating functions associated with 

an event a their characteristic equation and transition function, respectively. 

Thereby, system information can be accessed and studied in a unified man­

ner using the algebraic structure of the finite fields and their well developed 

software tools. 
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4.4.1 Finite field representation of a DSDES 

In the following we derive a polynomial representation of a DSDES over a 

finite field using a simple, yet general method called interpolation polynomials 

in the Lagrange form [80]. 

Notation 4.3 Let p > 2 be a natural number, Fp = {0,1, • • • ,p — 1} be a 

finite field of p integers with addition and multiplication defined modulo p, X{ 

(i G I) be a variable taking values from Fp, x = (x\, • • • ,xn), and Fp[x] be 

the ring of polynomials in the variables £i, • • • ,xn and coefficients taken from 

Fp [81]. For a function or formula / , by writing / (x) we mean that / can 

in general depend on some or all of the elements of x. The set of variables 

on which / precisely depends is denoted by either arg(/) or explicit listing 

of such variables. Let x^ be Sj's private variable, with respect to which all 

Xj S, J G I \{i}, are referred to as external variables. For an event a G S, 

the polynomials corresponding to At (<r,.) and Gi(o~) are denoted by of (x) and 

gf (x), respectively. • 

As an example, let F3 = {0,1, 2}, n = 2, and x = (x\, X2) and of (x) = 

x\ + 1 replace ^2(^5 •) to update x2 upon the observation of a G So 2 . Here 

arg(a?) = Oil-

Given the graph of a function / : F£ —* ¥p as a set U = {(u, y) G F^ xF p | 

y = / (u )} , the method of "interpolation polynomials in the Lagrange form" 

computes a polynomial q G Fp[x] such that q(u) = / (u ) . The computation is 

based on the following fraction [82] 

l{ ' i(i-i)---(i-(i-i))(i-(i + i))---(i-P + iy {• } 
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which is 1 at x = i and 0 otherwise. Let u € F™ and define 

Lu(x) = LUlU2...Un(x) = LUl(xi)---LUn(xn), (4.8) 

where we assume that the subscripts of L correspond to its arguments in the 

order they appear. Observe that Lu(x) is 1 at x = u and 0 otherwise. The 

required polynomial would be as follows. 

g(x) = Yl £u(x)/(u) (4.9) 
ueF£ 

Algorithm 4.1 Computation of polynomial functions associated with guard 

and updating functions: Given a DSDES with S and £ as in Proposition 4.3 and 

updating and guard functions as in (4.5) and (4.6), and using the interpolation 

polynomials in the Lagrange form, do the following. 

1. For each i £ I compute V* = 7i"i(Ur€fi^(r)) an<^ Pi = max«eV; v. Deter­

mine p = inf{p' £ N | [Wi e I. v' > Pi] A Fp, is a field}. Choose F£ 

as the smallest common underlying finite field which accommodates the 

whole range of the label values assigned by I. 

2. For each Sj and associated with each event a, define gf as the character­

istic polynomial associated with Qi(a) in (4.6), and assign the polynomial 

arbitrarily elsewhere, i.e. 

Vz 6 /, Vff G S. { 

Bf (v) = 1; VvG £(<r) 

tf(v) = 0; V v G l W ( r ) \ £ ( < r ) (4.10) 

Ql (v) = arbitrary; V v G F ; \ UreR£(r) 

3. For each Sj and associated with each event a, define a^ as the restriction 

of the Ai(a, v) in (4.5) to N" —>• N, where cr-labeled transitions is eligible 
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and arbitrary elsewhere, i.e. 

Vz e /, Vcr e E. <( (4.11) 
af (v) = arbitrary; V v G F ; \ £(CT) 

D 

By the ordering of N, p in Step 1 always exists. Notice that Vi C 

{0,1, • • • ,p— 1} holds for every i E I. The following definition specifies which 

polynomials serve to represent a DSDES. 

Definition 4.7 Let G, E, S, £, be as in Proposition 4.3 and Fp and x be 

as in Notation 4.3. For each Sj and each a G E let polynomial equations 

X{ := af (x) and 0^(x) = 1 over F^ replace the updating function Ai(a,.) in 

(4.5) and guard function Qi(a) in (4.6), respectively. The polynomials are said 

to represent the DSDES if they result in L(V) = ~E and Lm(V) = E. U 

Algorithm 4.1 computes the required polynomials as shown below. 

Proposition 4.4 Let G, E, S, £, be as in Proposition 4.3. The polynomial 

equations which are obtained by computation of of and gf using Algorithm 4.1 

represent the DSDES. • 

Remark 4.1 Following Corollary 4.1, Algorithm 4.1 computes identity func­

tion for every updating function which is associated with a non-observable 

event. Similarly, based on (4.6), the algorithm computes unity function for 

every guard function associated with an uncontrollable event. Therefore these 

polynomials are not mentioned explicitly. • 

Remark 4.2 (Computation of simplified polynomials): As we will see 

in Section 5.2, to reduce the communication among supervisors, it is often 
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required that updating or guard polynomials depend on fewer external vari­

ables. In DES models transition relations are usually partial functions and 

this results in the existence of a number of unassigned points in the domain 

of the updating functions, generally called arbitrary or don't care cases [73]. 

Polynomial expressions for updating functions can be simplified by assigning 

to arbitrary cases the points in the codomain which make the transition struc­

ture symmetric, thus eliminating the dependency on some (external) variables. 

To simplify, using a symmetric structure, the expression for the guard func­

tion associated with an event a, one may assume that a is enabled at states 

which are not reachable (i.e. there is no a E S, s E L(S), i E I, such that 

A{a, A(s, 0)) = v A A(s, 0) E Qi(cr)) or at states at which a is disabled by the 

plant. When a symmetry is available, the identities 

p—l p—l 

5^L i (x ) = l, J^Lk(x)Lj(x') = Lk(x), (kE¥p) (4.12) 
i=0 j=0 

which can be easily verifies, can be used to simplify polynomials. • 

The next example illustrates the application of Algorithm 4.1 and the above 

simplifications. 

Example 4.3 (Computation of updating and guard polynomials for 

Example 4.2): Table 4.2 shows the polynomials which represent the updating 

and guard functions in Example 4.2. Here x = [x\, X2, £3], V\ = V2 = {1, 2, 3}, 

V3 = {1, 2}, pi = p2 = 3, and p3 = 2. Step 1 of Algorithm 4.1 then determines 

p = 3, i.e. F3 would be the required underlying finite field. Examples of 

computations are as follows. 

• The table of updating functions can be simplified by proper use of arbi­

trary cases. We show this for the case of a"1 (x) here. Based on only the 

specified cases in Table 4.1 we have 
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a f (x ) = lx[L000(x) + Looi(x)] + 2x[L120(x) + L121(x)] + lx[L2oi(x)] + 

2x[L02i(x)]. 

Following (4.12), to eliminate £3 in the final polynomial expression, it 

should hold that if Lmni(x) be in a"1 (x), then for every t' <E F3, Lmnt/(x) 

should appear in it, too. Observe in Fig. 4.2 that none of the points 

in plane x3 = 2, nor the points (200), (110), and (020) are reachable 

from any other points within the two Latin squares. Therefore these 

points can be mapped arbitrarily to points in F3 whose values of X\ 

meet the above requirement (2nd and 3rd elements of the images are 

still arbitrary). Accordingly we add L002, 2xLi22, £200 and L202, and 

2x[L02o + -̂ 022] to the 4 brackets in (^ (x) , respectively, i.e. 

of (x) = lx[Looo(x) + Looi(x) + Loo2(x)]+2x[Li2o(x)+L121(x)+L122(x)] + 

lx[L20i (x) + L200 (x) +1/202 (x)] + 2x[L02i (x) + L020 (x) + L022 (x)]. 

= Lm(xi,x2) + 2Ll2(xux2) + L20(x1,x2) + 2L02(xl,x2) 

= [L00(xux2) + L20(xu x2)} + 2[L12(xi, x2) + L02(xu x2)] 

Hence the above expression does not depend on X3. The last grouping 

of the terms suggests that if Li0(xx, x2) and 2L22(^i, x2) could be added 

respectively to the two brackets, x\ can be eliminated, too. Although 

x\ is not an external variable, its elimination may reduce online com­

putational time or save some memory space. To this end, notice that 

since the occurrence of OL\ is prohibited by Q\{OL\) at states r\ and r3, the 

labels of these states can be arbitrarily mapped to points whose values 

of x\, based on (4.12), allows for such elimination. To this end, we first 

add new terms to get Li0(xi, x2) and 2L22(xi,x2) and then omit x\. 

a^(x) = [L00(xux2) + L20(xux2) + (Ll00(x) + Lwi(x.) + Li02(x))] + 

2[L12(x1, x2) + L02(xi, x2) + (L22o(x) + L221(x.) + L222M)] 

= [I/oo(xi,x2) + L2Q(x1,x2) + Lw(xi,x2)} + 
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Table 4.2: Computed polynomials for updating and guard functions the DS-
DES in Example 4.2 

xi :=a? 1(x) = 2(x2 + 2) 

x\ := of (x) = x\ + 1 
x2 := o"2(x) = xi(xi + 1) + (x2 + 2)(2xi + x2 + 1) 
X2 := (^(x) = X2 + 1 
x 3 : = a ^ ( x ) = 2 ( x 2 + 2) 

0^(x) = 2(xi + 2)2(x2 + 2) + 2x2x2(x2 + 1) + 2(xi + l)2x2(x2 + 2) 

0£2(x) = 2xf (x2, + 2) + 2(xi + l)2x2(x2 + 1) + 2(xi + 2)2x2(x2 + 2) 
+2x3(x3 + l)[xix2 + 2xf + 2x| + 1] 

0? 2( x) = x i ( x i + l)(xl + 2) + (x2 + 2)x2(x2 + 1) + xi (xi + 2)x2(x2 + 2) 

fl°'(x) = 2(sg + 2) 

2{L12{xi,x2) + L02(x1,x2) + L22{xi,x2)} 

= L0(x2) + 2L2(x2) = 2(x2 + 2). 

• Originally the polynomial expression for g"1 (x) would be as follows: 

flf (x) = [L0oo(x) + Looi(x)] + [L111(x)] + [L2oi(x)] + [Lo2i(x)] + [L2io(x) + 

^211 ( x ) ] + [L i2o (x ) + LUi ( x ) ] 

To eliminate x$, one requires to add to the six brackets in the above 

expression, respectively L0o2(x), Zaio(x) + £ m ( x ) , £20o(x) + L202{x), 

LQ2Q{X) + Lo2i(x), Z/2i2(x), and L1 2 2(x). None of the states associated 

with these terms are reachable from any other states in S and therefore 

we can safely add them to g"1 to eliminate the dependency on x3, i.e. 

g"1 (x) = L00(xi,x2)+Ln(xux2)+L20{xi,x2)+L02(xi,x2)+L21(xi,X2)+ 

Lw{xux2). 0 

It is worth mentioning that neither the above resulting polynomials are 

claimed to be the most simplified ones nor the computations are necessarily 

efficient. Such issues can be well studied using ideals and varieties [83] which 

are beyond the scope of this work. Notice that the above computations can 

127 



be used for centralized supervisors in Subsection 4.2.2, too. 

DSDESs as polynomial dynamical systems: The above "symbolic" for­

mulation may be viewed as a polynomial dynamical system (PDS) [56] in which 

equations associated with updating and guard functions represent the dynam­

ics of the DES and its algebraic constraints, respectively. 

Definition 4.8 [56] Let x = (xi, • • • , xn) and y = (y\, • • • , ym) be the vectors 

of states and events, respectively. Define P(.) = (pi(.)> • • • , Pu{-)) and Q(-) = 

(qi(.),-•• ,qu>(-)) as finite dimensional vectors of polynomials over Fp[x,y]. 

The set of polynomial equations 

x:=P(x,y) 
(4.13) 

Q(x,y) = 0 

are said to be a polynomial dynamical system (PDS) in state explicit form, 

where := denotes the assignment of new values to its left vector, x, and the 

first and second equations are referred to as state transition equation and 

constraints equation, respectively. • 

Theorem 4.5 Every DSDES can be represented as a PDS in state explicit 

form. 

Proof: The construction using interpolation polynomials in the Lagrange 

form, as explained in Algorithm 4.1, yields the following set of equations. 

Vie I. < 
Xi:=af(x) ;VaeS 0 > i 

(4.14) 
0 f ( x ) - l = O ;VffGECiI 

Notice that by Remark 4.1, the Sj's polynomials associated with unobservable 

events and uncontrollable events are trivial equations and are not mentioned 

explicitly. Observe that the equations (4.14) are formally represented in the 
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same form as (4.13) except that in (4.14) we have a separate equation asso­

ciated with each event, i.e. a system input. This is due to the fact that the 

DSDES framework does not assume any encoding schemes for events. • 

Example 4.4 (A PDS perspective of the polynomials in Example 4.3): 

As Table 4.2 reads, the PDS representation of the DSDES in Example 4.2 con­

sists of 5 dynamic and 4 algebraic equations. In the dynamics part, each event 

can only affect the variable(s) owned by the supervisor(s) which can observe 

the occurrence of that event. Also the algebraic constraint associated with 

an event designates where in (here 3-dimensional) integer space that event is 

enabled. 0 

In [56] PDSs are used to represent uncontrolled plants and their associ­

ated given specifications for the purpose of centralized control design. However, 

the objective of this work is decentralized control design with an emphasis 

on communication among supervisors. To this end, we employ an ALM to 

compute a distributed representation for an already designed centralized su­

pervisor, in which updating functions reflect the limited observational window 

for each decentralized supervisor and guard functions capture the control it 

exercises over the plant. The PDS representation of the system reveals more 

detailed algebraic structures and hence it suits further analysis and design pur­

poses and more specifically, communication design, as explained in Section 5.2. 

4.4.2 EFSM implementation of a DSDES 

EFSM framework, which was introduced in [49] and [50], offers a bit-wise 

representation of supervisors' information which suits practical purposes (see 

[50]). The system information, which is captured by XjS, i G i", in the DSDES 

framework, can be implemented in EFSM framework using Boolean variables. 
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This can be done by either direct encoding of the centralized supervisor or 

using the polynomials of the PDS representation of the DSDES. In the first 

approach [50], first the number of Boolean variables necessary for encoding the 

labels associated with each Sj is determined and then observation and control 

are captured by actions and guards on Boolean variables, respectively. Here, 

we use the second approach, which is introduced next. 

Definition 4.9 ( [50]-Definition 1 and Subsection III.A) The EFSM formal­

ism: Let B = {0,1}, h = \log2(p)~\, J = {1,2,-•• , ft,}, and i,j £ I, j ^ i. 

Denote by Xu = {xu \ k G J} the set of S*'s private Boolean variables which 

encodes x{ such that x, = (xti • • • xj{). Denote by xk
{]- a copy of xk

3]- g X33 stored 

by St and let X{j = {xk
l3 \ xk

3 G X33), XCI = [Jjer\{i}Xv> X* = x» ^ x<*, 

and X = \J{ j Xi. Let Gj denote the set of all Boolean formulas over Xi and 

Aj denote the set of all Boolean functions b : Bn/l —> B. Associated with 

each i E I, Mj = (S,Xj,pj,aj) is an EFSM. Here gi : E —> G assigns to 

each a 6 S the guard (formula), ^(ct)!^, which is evaluated using the binary 

values of the variables in Xi and guards all the transitions labeled with a. 

Also a* : Xa x E —> A assigns to each pair of a G E and x G Xu an action 

a,i(x, a) : Mnh —> B, which is a Boolean function and, upon the occurrence of a, 

results in the assignment x:= ai{x, a)(Xi). It is assumed that for the network 

of EFSMs, (Mj) i e/, X is initialized to zero. • 

Remark 4.3 Following [50], for every a G EUCii, a' G EUOi;, and x G Xi, gi(cr) 

is an always-true formula and ai(x,a') is an identity function. Hence these 

cases are not mentioned explicitly. • 

Definition 4.10 Let PDS (4.14) be defined on the finite field F£ and h, J, 

and for all i G / , Xif Mj, and xt — [x% • • -xjj) be as in Definition 4.9. The 

network of EFSMs, (Mi) i e/ , implements the PDS if for every i,j G I,i ^ j , 
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k G J, x G F£ and a G E it holds that 

A [x< := of(x) ^ V f c G J . x* := a, ( 4 , a ) ^ ) ] 

A[gf(x)=^ i(a)U i]. • 

Proposition 4.6 Let G, E, S, £, be as in Proposition 4.3 and the PDS (4.14), 

computed using Algorithm 4.1, replaces (4.5) and (4.6). If the network of 

EFSMs, (Mi) i e/ , implements the PDS (4.14), it holds that L{V) = ~E and 

Lm(V) = E. M 

Algorithm 4.2 Computation of guards and actions in EFSM framework from 

guard and updating functions of the DSDES framework: Given the PDS (4.14) 

and p from Algorithm 4.1, 

1. Determine h using Definition 4.9. 

2. For each i & I, define X\, and encode each x\ using (x\ • • • x\^) as in 

Definition 4.9. 

3. For each guard polynomial g? (i G / , a G £c,i)> compute gt(a) as a 

function of the Boolean variables in Y = {x^x^- \ k G J,j G /, x., G 

arg(af)} such that for every Xj G Fp it holds that gf(x) = gi(a)\Y- For 

i, j G / , take all encodings (xj-, • • • , x^) of numbers p, • • • , 2h as "don't 

care" cases, if there exists any. 

4- For each updating polynomial of (i G / , c G £0,j)> compute a^xj^c) as 

a function of the Boolean variables in Z — {x^,x^ | k G J, j G / , x-,- G 

arg(of)} such that for every XjGFp, it holds that xf.= o^(x) if and only 

if V/cG J. 2^:= a^(x^, o~)(Z). For z, j G / , take all encodings (x*-, • • • ,x^) 

of numbers p, • • • , 2h as "don't care" cases, if there exists any. 
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5. For every i E I and a G SUOij, set aj(x,cr) equal to identity function 

(x G X,j), and for every i G 7 and cr G £„c,n set ^i(a) = 1, i.e. an 

always-true formula (see Remark 4.3). • 

Proposition 4.6 insures that under a correct update of copy variables, 

the actions and guards computed by Algorithm 4.2 implement PDS (4.14), as 

summarized in the following result. 

Corollary 4.2 If for every i,j £ I,i =£ j , it holds that x^ = x^-, then the 

actions and the guards computed by Algorithm 4.2 implement PDS (4.14). • 

The EFSM implementation of PDS (4.14) may be regarded as a PDS 

over Boolean field. 

Corollary 4.3 Following Definition 4.9 and Algorithm 4.2, PDS (4.14) can 

be represented as the following PDS in state explicit form over Boolean field. 

VieiyxeXit. { y A ; ' (4.15) 
9i(a)-l = 0 ;VaGSC i i 

Proof: Follows directly from Definition 4.8. • 

Since the PDS polynomials are computed based on a common finite field, 

there is a chance of initially introducing "extra" Boolean variables for some 

SjS. Such variables will evaluate to constants, i.e. always 0 or 1, and can be 

removed from the final implementation (see Example 4.5). 

DSDESs versus EFSMs: Corollary 4.3 states that EFSM framework may 

be regarded as a special case of the DSDES framework. As a result, the 

advantages listed in [50] for EFSM framework over the frameworks based on 

"possible worlds" and "state estimates" are shared by the DSDES framework, 

too. In general EFSM framework is the one which is implemented in practice 
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and offers a bit-wise approach to communication rules and content. It is then 

worth clarifying why one may require to use the DSDES framework. 

1. Comparing to Boolean variables, integer variables offer a more compact 

representation6 of the information which improves the rigor of proofs and 

readability of the manipulations in the same way that decimal numbers 

may be advantageous over binary numbers. 

2. Whereas a Boolean variable seldom bears a physical meaning singly, 

an integer variable is a label representing a (copy of a) state of the 

centralized supervisor. This fact improves the tractability of analysis 

and design (and possibly their computational efficiency [83]). 

3. Communication-oriented simplifications can be done far more easily and 

insightfully when computing PDS (4.14) than its EFSM counterpart 

(4.15) directly from the centralized supervisor, as in [50]. An exam­

ple of such "high-level" simplifications is to use structural symmetries 

to eliminate some external variables from the polynomials (see Exam­

ple 4.3 and Definitions 5.3 and 5.4), which is easier to do in a larger 

(than Boolean) finite field. 

4. It is often easier to study the system's evolution in an n-dimensional 

integer space (than in an nfc-dimensional Boolean space) and to relate it 

with the algebraic and geometric properties of the associated polynomials 

and codes in larger (than Boolean) finite fields. 

Therefore, a blend of the DSDES and EFSM frameworks enjoy their comple­

mentary merits. 

6Often each integer variable is encoded using more than one Boolean variable. 
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Example 4.5 (Implementation of the updating and guard functions 

of Example 4.4 in EFSM framework): Corollary 4.2 lets us employ Algo­

rithm 4.2 to compute the EFSM implementation of the PDS in Example 4.4. 

Observe that p = 3, thus, Si, S2, and S3 each would require h = \log2(3)~\=2 

Boolean variables to implement their labels. Following Definition 4.9, for iEl 

we have Xa = {xfi,xli}. Two variables in general can represent four integers. 

However there are only three labels in F3, i.e. 0, 1, and 2. The unused label, 3, 

may be used arbitrarily to simplify the expressions (see "don't care" conditions 

in [73]). Actions and guards are listed in Table 4.3, where the complement of 

of a variable x is denoted by x. Examples of computations follow. 

• Consider the computation of ai(x\1, a.\) and ai(x^, o>i). From Table 4.2 

we know that a^(x) = 2(x2 + 2), i.e. a ^ x ^ , a\) and a ^ x ^ , a\) do not 

depend on x}1( x\x, x|3, nor xf3. Whereas ax(x2) has been defined for 

x2 = 0, £2 = 1) and x2 = 2, i.e on F3, to simplify the functional forms 

we arbitrarily map x2 = 3 to (x^x^) = (10) which yields ai{x2
n,a.i) = 

xYlx\2 ~^~ XY1^V1 = x\2 a n d a,i{Xn, Oil) = xl2^\2-

• As a second example, consider the computation of g\{(3). From Ta­

ble 4.2 we know that x3 ^ arg(gf2), hence g\{0) do not depend on 

x}3 and x\z. On the other hand 0i2(x) has been defined for neither 

{x\xx\x,x\2x\2) = (11, ) nor (x^x^ , x\2x\2) = ( — ,11), where " - " 

can take any Boolean values. To simplify the functional form of g\{j3) we 

arbitrarily set the guard formula equal to 1 at (00,11), (11, 00), (11,10), 

(11,11), and (10,11) and set it to 0 at the rest of the unspecified points. 

This results in the following. 

9l\P) = L a : ' l l a ' l l 'C12 a :-12 "^ 2 ' l l a ' l l ' r 12* J : -12 j ^ L : r l l a ' l l : 2 : ' 12 a ' 12 "+~ * c l l a ; l l a ; 1 2 : c 1 2 . M 

[ rp£ rpl. rp^ rp ^ I rp £• rp *- fy* ~rp ± I rp *- ~rp~ *• rp^ rp *• j rp*- ~rp *- rp^ ~rp J- _|_ 

x l l x l l x 1 2 x 1 2 ' x l l x l l x 1 2 x 1 2 ^ x l l x l l x 1 2 x 1 2 ' x l l x l l x 1 2 x 1 2 ' J 
9 1 1 1 9 1 9 0 

O" i-y rp -1 I rp -1 n™ rp *• I rp^ T1 

— J-iiJ-11^12 ' xllx12x12 ^ xllx12 
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Table 4.3: Actions and guards in EFSM framework 
ai(z?i, 
ax(x\x 

ax(x2
n 

«i(^h 
0.2\X22 

a2{X22 
a2\x22 
a2(x22 

03(^33 
a3{x\3 

9i(<*i) 

9i(P) -
£2(0:2) 

92(P) -
93 ( " 3 ) 

Oil) = 

<Xl) = 

P) = 
P) = 
U2) = 

012) = 

P) = 
P) = 
Oi-i) = 

0:3) = 

— xn 

_ T 2 
- x 12 
- x12x12 

x l l 
x l l x l l 

= x22p21x22 + x21j 
- x 2 2 x 2 1 -\- d,22d,2i 

x22 
~iy£ 77^1 
x 2 2 x 2 2 
= 0 

0 1 1 
- x 3 3 x 3 3 — x 33 
x i 2 ^ x n x i 2 ^ x n 

= X2\ x 22 ~r x 2 1 x 2 2 ' x 21 

- X2 i^22 J /22 1 x 2 1 x 2 1 x 2 2 
= X3Z •^33 —" -^33 

x12 

+ 1 
r'2 
x 22 
+ a 

+ 
2 
11' 

+ 
2 
21* 

x l l 
r 1 2 
X 21 

r 2 2 

X\\ 

x22 

X\2 

+ X33 

• Since x§3 = 0, this variable is not really required to represent the system's 

evolution. 

4.5 A note on computational complexity 

It is worth mentioning some computational facts about the DSDES and EFSM 

frameworks. Let \R\ = m and |E| = m!. Thus the centralized supervisor may 

have at most m'm2 state transitions. Observe that the computation of an 

ALM as a Latin hypercube is linear time, i.e. 0(m) [50]. Also for an event a, 

computations of Q{p) and A(u,.) are linear searches in the number of states 

and transitions, i.e. they are 0(m) and 0(m'm2), respectively. Moreover, 

computation of polynomials for updating and guard functions using (4.11) and 

(4.10), and for actions and guards using Algorithm 4.2, is polynomial in time. 

Thus obtaining the PDS representation of a DSDES is polynomial in time. 
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However, simplifying polynomials and ALMs are in general computationally 

expensive though it can be systematically performed using computational-

algebraic tools [83]. 

To study space complexity, assume that a finite-state machine (FSM) 

representation for a typical decentralized supervisor i is computed using nat­

ural projection of the centralized supervisor. Accordingly, this representation 

may have up to 2m states and (m'(2m)2 = m'4m) distinct transitions. Us­

ing Boolean variables to encode each transition would require [2m + log2 m'] 

memory units to store the source and target states and the label of each tran­

sition7. Thus, in the worst case iVi = nm'4m[2m + log2 m'] units of memory 

are required to store all n supervisors' information. To do the same analysis 

for an EFSM obtained from a DSDES, let us use the CNF standard form to 

write Boolean formulas or functions8. Observe that nlog2 m Boolean variables 

are required to encode the states of the centralized supervisor9. These vari­

ables give rise to (2nlog2m = rnn) minterms, each having a length of10 nlog2 m. 

There are at most 2n l o g 2 m = mn such minterms forming each formula with 

(2n l o g 2 m — 1) = mn — 1 disjunction operators between every two neighbor­

ing minterms11. As a result, each formula (or function) would take up to 

\nmn log2 m + mn — 1] memory units. There are m' formulas associated with 

guards and (at most) m'nlog2m functions corresponding to actions. Thus, 

the EFSM consumes up to Â 2 = \m! + m'nlog2m] [nmnlog2m + mn — 1] 

units of memory to store the control-related information of the closed-loop 

7Here the comparison is made with this graph encoding which is not necessarily the most 
efficient one. For other encoding schemes a separate analysis should be done along the same 
lines mentioned here. 

8Guards and actions are formally computed using minterms [49]. CNF stands for "con­
junctive normal form." For definitions of CNF and minterm see [73], for example. 

9In fact, m should be replaced with p here, but this does not change the asymptotic 
analysis. 

10Each minterm lists all variables in the simple or negated forms. 
11 Conjunctive operators need not be stored since the CNF form assigns a priori fixed 

places to them. 
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system. Considering the asymptotic behavior of the two numbers we have 

Ni = 0(nm4m) and N2 = O (n2mn log2 m). Therefore, for a large m, the 

EFSM shows an improvement in the number of memory cells to store the 

supervisor's information. Finally, notice that comparing to a graph-based rep­

resentation, which is common to FSMs, the formula-based representation of 

a system's dynamical evolution makes it more structured to both observe the 

system's behavior and search for associated control decisions. This fact, on 

top of the above space reduction, may improve online computational issues, 

which are not studied here. 

4.6 Conclusion 

This chapter introduces the (distributed) SDES framework for the synthesis 

of communicating decentralized supervisors out of a given centralized super­

visor, and to study communication among them. The DSDES framework 

encompasses EFSM framework as its special implementation-oriented case. 

The design in DSDES framework is more tractable and insightful and the two 

frameworks enjoy their complementary facets. The central tools employed by 

a DSDES are its ALM and its updating and guard functions which represent 

the control-related structure of the centralized supervisor in a distributed way. 

When recast as a polynomial dynamical system over a field, a DSDES be­

comes amenable to standard mathematical analysis tools. Two algorithms are 

introduced to compute such a polynomial representation and its EFSM im­

plementation. The chapter ends with a complexity analysis of the associated 

computations. 

137 



Chapter 5 

Modeling and Synthesis of 

Communicat ion within SDES 

Framework 

5.1 Introduction 

For a distributed SDES (DSDES) communication naturally appears to in­

form a supervisor of the labels assigned by other supervisors, which it uses 

to reevaluate its guard and updating functions. The communication prob­

lem is defined as designing "communication events" to help the decentralized 

supervisors have enough "control-related" information to enforce the given 

specification optimally. Once a DSDES is represented as a PDS, commu­

nication is characterized and solved based on the interconnections between 

polynomial equations defined over algebraic structures. This chapter employs 

the PDS representations of Chapter 4 to derive what is formally defined as 

"communication policy," which is simply the collection of rules for communi­

cation among supervisors. The communication policy is itself divided into an 
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"information policy" and a "routing policy," corresponding to "logical infor­

mational dependency of supervisors on each other" and "rules to physically 

exchange this required information in the presence of unreliable communica­

tion channels and network topology," respectively. Solutions in the form of 

information policies are derived for communication of state information and 

observed events. Design of routing policies is left for future work. 

Section 5.2 formalizes communication among supervisors through the 

introduction of communication events, defining the notion of a communication 

policy, and deriving five communication policies. Section 5.3 comes up with 

a partitioning of the class of solutions to the communication problem. In 

Section 5.4 some relations between behavioral properties of a DSDES and its 

associated state representation are established and a few preliminary results 

on communication-oriented state realizations are given. 

5.2 Communication as reevaluation of guard 

and updating functions 

In DSDES framework, communication among decentralized supervisors is re­

quired for reevaluation of their guard and updating functions. For example 

assume that the vector of values after a string s is observed is v := A(s,0). 

Then a <E Ej is enabled at s if and only if v € Qi(cr). To determine if this is 

the case, Sj may need to receive the value Vj, for some j ^ i, from Sj. When 

a is taken, Sj updates fj with the value Ai(cr, v). Again, to correctly evaluate 

Ai(a,v), Sj may need to receive the value Vj, for some j ^ i, from Sj. 

Once a DSDES is formulated as a PDS, Sj's informational dependencies 

appear in the functional forms of its updating and guard polynomials and on 
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their dependencies on external variables. Thus, computation of the communi­

cation, either to correctly evaluate the effect of the occurrence of an event on 

its observing supervisor's variable update, or to correctly determine where an 

event is enabled, depends on the properties of the polynomials (for updating 

and guard functions, respectively) and their arguments. In the following we 

formalize the communication problem and propose six solutions to it inspired 

by a study of polynomial forms. Advanced characterizations of the problem 

based on finite-field tools is left for future work. 

Throughout this section, let the n supervisors be connected through a 

network of "ideal" control channels, i.e. data is instantly transmitted without 

any losses. To ensure the connectedness of the network, we assume that dis­

abling a controllable event affects none of communication-related events, which 

are defined next. We assume a DSDES is given in the PDS form (4.14), that 

its current state is x, and that the observation and control tasks of each su­

pervisor are represented as polynomials over a finite field F™ and implemented 

in EFSM framework as in (4.15). 

5.2.1 Communication-related events 

Denote a communication-related event which is sent from Sj to Sj by the 

subscript indices ji and assume that it is observable by both supervisors and 

controllable by Sj. Although £0)j, SCJ-, and £0]j should be enlarged by these 

new events, to keep the notations simpler we avoid introducing new sets and 

assume that this fact is clear from the context. 

A first observation is that the event-driven nature of DESs limits the 

release of the system-related information to the occurrence of observable events 

such that only the supervisors, who can observe them, gain information about 

the system's evolution. Therefore, it is plausible to rely communication, as an 
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information-providing mean, on the observation of the occurrence of events, i.e. 

issuing a communication event would follow the occurrence of an observable 

event. Accordingly, the semantics of every communication event is denned by 

a mapping, whose domain is a subset of observable events and whose codomain 

is an information-containing set. The communication problem then reduces to 

designing these maps exactly, as defined later. 

Since the system-related information is captured by Boolean variables 

in X, the content transferred by a communication event, i.e. the elements of 

its image set, is taken either from these variables or from constant messages, 

whose definition follows. 

Definition 5.1 Let H be a finite set of Boolean variables such that H C\X = 

0. A constant message is a finite-length word which is encoded by Boolean 

variables in H, may be sent by Sj to Sj, and whose semantics is known to Sj 

and Sj, where i, j € R, i ^ j . • 

The semantics of a constant message might be interpreted in different ways 

such as a handshaking between the two supervisors, a request for issuing a 

communication event, an update in a fixed form such as toggling the values of 

variables, etc. 

To model the communication, we distinguish two types of communica­

tion events which are referred to as y and & events. Correspondingly, this 

classification divides the communication design into two levels of information 

exchange and routing, which, respectively address what information needs to 

be exchanged mutually among supervisors and how these exchanges can be 

performed using the available communication channels. These events are in­

troduced next. 

J? events: An event J?^ transfers the private information of Sj or constant 

messages to Sj. For j G / , let E y j C (£OJ- U \Jker,k^j i^i I ̂ i i s defined}) 
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denote the set of observable events by Sj, after which Sj issues an J? event. 

Correspondingly, for i,j€l,i^ j , define J2^ : E y j —• pwr(Xjj U H) as a 

function which associates to an event in Ejyj, a piece of information stored by 

Boolean variables in Xjj or H according to a rule which will become specified 

upon the design of the communication. Whereas the definition of E ^ j allows 

the firing of an J' event after another J? event, circular definitions should be 

avoided. Since / is finite, there is a finite number of distinct J? events and 

this, together with the finiteness of X and H, guarantee that the information 

is exchanged in a finite number of communication steps. Once received by S*, 

J^,j(.) provides it with the updated copies of the variables in its image set, i.e. 

Vx G F£, Wi,j el,ij^ j , Vk e J, VrrJ,- e X^a G E^- . 

x% £ Sjiia) =» 4 := 4 - (5.1) 

The way constant messages affect the receiver or its information depend on 

their semantics, which is specified by the communication design. 

To implement the exchange of information, as prescribed by J? events, 

network constraints and channel characteristics should be considered, too. If 

the network is strongly connected, J? events, on their own, can implement 

the exchange of information. However, it may be the case that some pairs 

of supervisors do not have direct communication links between them, or a 

supervisor S^ may have the updated copies of S/s variables and these copies 

can be sent to Sj from Sfc, rather than Sj, in a possibly more reliable or 

economic way. To account for such "indirect" data transfers, 8% events can be 

introduced to replace some <# events. 

^ events: For j E I let 

E<s?jC(E0ij U Ujfce/.fĉ - i^j\ ^kj is defined} U Ufcewj (^y I ^U i s defined}) 
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denote the set of observable events by Sj, after which Sj issues an Si event. 

Correspondingly, for i,j e I,i ^ j , define Mji : E^ j —> pwr(XCj UH) as a 

function which associates to an event in E ^ j , a piece of information stored 

by Boolean variables in XCj or a constant message in H according to a rule 

which will become specified upon the design of communication. Similar to J? 

events, the number of M events is finite and their circular definitions should 

be avoided. Upon its receipt by Sj, 8%ji provides the updated values such that 

at every state we have 

VXGF;, \/i,j,lel,i^j,l^j,t, VfceJ, VaeE^,,,v4eXci. 

4 e % ( a ) ^ 4 : = 4 (5.2) 

Constant messages affect the receiver based on their semantics, which is spec­

ified by the communication design. 

Inherently, the definitions for each of the events J?ji(a), and &ji(&) de­

termine who (i.e. Sj) sends what (a subset of H, Xjj, or XCj) to whom (i.e. 

Sj). Implicitly, their dependency on an event as their argument, bears a no­

tion of "logical" time which roughly specifies the soonest moment at which the 

communication can start. This might be useful in the study of time-related 

issues. Also notice that whereas the dependency on observed events makes 

the communication event-triggered, its content, which is a (Boolean)-variable 

representation of the history of the system's behavior, is state-based. 

Although in practice J2^ and fflji can be implemented using one commu­

nication event from Sj to Sj, the distinction between them is a theoretically in­

sightful divide-and-conquer approach to design communication. Accordingly, 

J? events take an abstract viewpoint to reflect which parts of private infor­

mation should be exchanged and ffl events may be required to implement this 
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exchange based on routing considerations, channel restrictions, and network 

structure. Moreover, addition of constant messages, as means of conveying 

system-related information which do not explicitly depend on the states of 

the system, on top of state-dependent information captured by Boolean vari­

ables, can model all kinds of information which may be exchanged among 

the supervisors. Furthermore, since £% events can transfer the communication 

load of some channels to others, they may be potentially used to optimize the 

communication in some specified sense. 

5.2.2 Communication policies 

We can now formalize the "communication problem" within the DSDES frame­

work. This is conceptually motivated by the design of the two types of events. 

Definition 5.2 Let PDS (4.14) and its implementation (4.15) be given. A 

handshaking policy, an information policy, and a routing policy for (4.14) 

and (4.15) are respectively equivalent to designing (H, constant messages), 

(Sjrj, J^j(.)), and ( E ^ J , ^ J J ( . ) ) for every i,j G / . Design of a communica­

tion policy is equivalent to the design of all three policies. • 

Problem 5.1 Communication Problem in the DSDES framework: Associated 

with Problem 4.2 and Proposition 4.3, let the PDS (4.14) represent the DSDES 

and the network of EFSMs (4.15) implement the PDS. Find a communication 

policy such that L(V) = ~E and Lm(V) = E. D 

Measuring the communication content: Under a communication policy, 

it is possible to measure the size of the communication for quantitative pur­

poses. 

Lemma 5.1 For a G E and i,j G I,j ^ i, let ^[cr] and &j[cr] denote respec­

tively the set of all J2^ and &jt events which happen after the observation of 
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a and before the occurrence of any other event in E, under a given commu­

nication policy. Denote the size of the image set of a communication event 

0 by \6\. Then along a trajectory s E £*, where Pj(s) = a\- • • az and z is a 

finite natural number, the amount of communication initiated by Sj would be 

as follows. 

-̂(*) = E( E w+ E W (5-3) 

Proof: Follows simply by measuring the sizes of the image sets of communi­

cation events. • 

Communication is the third means, on top of observation and control, by 

which decentralized supervisors confine a plant's behavior within given speci­

fications. By presenting the system information of the centralized supervisor 

in a distributed way and putting it into polynomial equations, the DSDES 

framework provides a general, flexible, and systematic framework for analysis 

and synthesis of decentralized supervisors. Within this framework, supervi­

sors' private variables form the largest set of system information, owned by a 

given state representation of the centralized supervisor's behavior. Communi­

cation then appears naturally to help each supervisor reevaluate its guard and 

updating functions by providing the values of the external variables on which 

they depend. Computation of communication, as a solution to Problem 5.1, 

deserves a separate work of its own, which is based on the study of algebraic 

structures such as finite fields. However, to illustrate the applicability of the 

proposed approach, in the next subsection we take the first steps by proposing 

two communication policies and verifying their correctness. 
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5.2.3 Two simple communication policies 

This subsection studies two simple communication policies, which are intu­

itively proposed by the structured way of representing the system informa­

tion in the DSDES framework. We justify this fact through explaining the 

motivation behind the communication policies and presenting their informal 

descriptions which are then followed by their formal definitions and verifica­

tions. As a first study we focus only on the information policies and assume 

that the routing policies are void, i.e. ^ ; = 0, (i,j G I). As mentioned in 

Subsection 5.2.1, if the network is strongly connected, the information policy 

itself can be reasonably implemented in practice. Whereas the second policy 

prescribes the exchange of fewer bits, neither policy is claimed to be content-

wise minimal in the sense of (5.3). They are mainly derived to illustrate how 

the DSDES framework can found the basis for systematic modeling and com­

putation of communication among supervisors. Advanced solution techniques 

are left for future. 

The motivation behind the communication policies and their de­

scription: When S is represented as PDS (4.14), a supervisor Sj depends 

on Sj's private information if and only if Xj appears as the argument of one 

of Sj's guard or updating functions. Therefore it seems plausible that if S, 

receives the last updated value of such x/s, it can reevaluate its guard and 

updating functions correctly. With this intuition, a communication policy may 

be synthesized as follows: When the system starts its evolution, upon the oc­

currence of an event, first all supervisors Sj, which observe it, update their 

Xj's. Next, every such Sj, whose Xj is one of the arguments of a polynomial 

of an Sj (i ^ j) sends the value of Xj to such an Sj. Back to the EFSM im­

plementation, every variable x £ Xjj whose copy appear in Xij should be sent 

upon update, a policy which is referred to as policy 1. However, intuitively it 
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suffices that Sj send Sj the subset of these variables which have changed upon 

the update. This second policy is referred to as policy 2. In any case, Sj then 

utilizes the received bits to reevaluate either its Boolean variables y G Xu, 

which implement Xj, or its guards. These policies, which assume no constant 

messages, can be formally defined in the following. 

Definition 5.3 For the PDS (4.14) and its EFSM implementation (4.15), 

communication policy 1 is defined as follows: For every i,j£l,i^ j , we have 

#ji = 0 A S ^ , = 0 A S^j=S 0 J -

A [Vae£0J, jrjl(a) = {x*jeXjj | x^a^a)^) 

A [3a'G Zu3x' G Xit. xk
3je a r g ^ O r V ) ) V x%e arg(^(or'))]}]- • 

Definition 5.4 For the PDS (4.14) and its EFSM implementation (4.15), 

communication policy 2 is defined as follows: For every i , j G / , J ^ j , we have 

#ji = 0 A E ^ , = 0 A Sjrj=SOJ-

A [VaeSoj. ^• i(a) = {xJiGXJ-j | x ^ a ^ , a)(Xj) 

A 4 ^ 4 A[3a'G E i ;3x' G X«. x^G arg(ai(x',Cr')) Vx^G arg(^(a'))]}] • • 

Proposition 5.1 A solution to Problem 5.1: Associated with Problem 5.1, 

if the network of supervisors is strongly connected with lossless channels and 

if communication is instantaneous, each of communication policies 1 and 2 

insures that L(T>) = E and Lm(V) = E. • 

Remark 5.1 Definitions 5.3 and 5.4 imply that the communication content 

may be reduced by eliminating from polynomials as many external variables 

as possible (see Remark 4.2). • 

Example 5.1 (Using communication policies 1 and 2 to compute 

communication for Example 4.5): For the system in Example 4.2 with 

guards and actions in Table 4.3, two sets of communication events are derived 
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Table 5.1: Communication amongst supervisors based on policy 1 

^i2(a1) = ^i2(/3) = {x i 1 ,ST 
^i3(ai) = AM = 0 
S21M = S2i(0) = {xl

22,xl2} 
J*Mi) = AM = 0 
SziM = 0 
^32 (Q 3 ) = { ^33} 

using communication policies 1 and 2 (Definitions 5.3 and 5.4) and listed in 

Tables 5.1 and 5.2, respectively. Examples of the computations are as follows. 

• In Table 4.3, observe that x\2,x\2 G arg(ai(x}1, a.\j). As a result, com­

munication policy 1 requires that S2 send these two variables to Si when 

they get updated. On the other hand, the two variables are updated 

when either a2 or [3 happens. Thus, as shown in Table 5.1, we have 

>2i(a2) = Ai (P) = {x\2,x
2
22}. 

• Following the previous observation, communication policy 2 requires that 

each of x\2 and x\2 be sent only when its value changes. As for a2 observe 

that a2{x\2)a2) = x\2x\x +x\2x21, i.e. once a2 happens, x\2 changes if 

eixner x22
 :==- u and x22x2-i ~\~x22x2\

 z=- 1 or x22 ^ 1 and x22x2-i ~T~x22x2-t —= u. 

This can be shortly denoted by the exclusive-or function of two Boolean 

variables y and z which is defined as y © z = yz + yz. Therefore if 

(0:22 © \x\ix\\ + ^22x2iD is logically true, £22 € Aii^-v)- Similarly if 

(̂ 22 © (^22[^li^22 + x2i])) is true, X22 £ ^21 (o^)- The two conditions 

result in 4 different possibilities in Table 5.2. 

• To see how the network of 3 communicating supervisors evolves, let us 

consider the execution of a sample string s = a\j3 e £*. Since X is 
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Table 5.2: Communication amongst supervisors based on policy 2 
j {xn,xlx\ 

[i 
I { ^ l l ' ^ l l l i 

l 0 ; 

; 11 {xxx © [^12^12]) A ( ^ n © •ri2) 

; i f ( x l 1 © [ ^ l 2 ] ) A - . ( x ? 1 0 a ; ? 2 ) 
; if - i ( i n © l ^ ^ J ) A (^n © xi2) 
; if ^(x\x © [x?2x}2]) A --(x^ © x22) 

if (xli©[xf1x{1])A(a;=|1©a;l1) 
if(xi1ffi[x?1xl1])A-n(x?1©o:l1) 
if-(^1ffi[x21xi1])A(x?1©x}1) 
if-.(a;l1©[x?1xl1])A-(x?1©xl1) 

^ i 3 (a i ) = <Su(P) = 0 

> 2 i ( a 2 ) = < 

l 2 ; 22 ' X22i 

l X 22J 

\X22i 

0 

J \X22iX22J i 

l 0 ; 

; 11 (X 2 2 © [^223'21 "I- "C22a-r2lJ) 

; A(X 2 2 © [^22l'r21a:'22 ~f~ ^ l ) ] ) 

; 11 ( x 2 2 © [^22-c2i "1" ^22^21]) 

; A-i(x22 © [x22(x21x22 + x21)j) 
; 11 _ , ( X 2 2 © p22 a ;21 + a ;22a: '2lj) 

i A ( x 2 2 © F22(a;21a: '22 + x 2 l ) J ) 

; 11 - ' ( ^22 © L:r22a:;21 + x22X2l\) 

; A ~ i ( x 2 2 © [^22(.2'21X22 + • r2l)J) 

it (X 2 2 © p22 a '22j) ^ l 3 ^ © ^22/ 

it (X 2 2 © p22 : r 22j ) A _ , ( ^22 © ^22/ 

if _ l ( 2 ; 2 2 © P22- r22j) ^ (X22 © X22) 

if ^\X22 © F22X22j) A _ l ( x 2 2 © ^22) 

^23(£*l) = «^23(/3) = 0 

^ 3 i ( a 3 ) = 0 

^ 3 2 ( ^ 3 ) = {^33} (^33 © ^ 3 3 i s a l w a y s t r u e ) 

initialized to zero, from Table 4.3 we have <?i(ai) = 1, therefore ax can 

happen. Upon its execution, {x\xx\x) is updated to (01), leading the 

PDS to state (1,0,0) £ £(rx). By communication policy 1, J ^ c n i ) = 

{xj^xfj} and following (5.1), it results in (x|jX21) = (01). Also, since 

only the value of x\x has changed, the conditions of policy 2 in Table 5.2 

require that ^nip-x) = {^n}' u P o n which x\x = 1. This, together 

with the fact that x\x has not changed (and so x\x = x\x = 0), again 

yields [x\xx\x) = (01). The new values lead to g\(ff) = 92{P) — !• 

Once (3 happens, both Si and S2 update their private variables so that 
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( ^ I I ^ I I ) = (10) a n d (x22x22) = (01)> leading the PDS to state (2,1,0) e 

(,{TQ). By communication policy 1 we have J^n(P) = { ^ n ^ n } a n d 

•̂ 21 (0) = {^22,^22} resulting in {x2
2lx

l
2l) = (10) and {x\2x\2) = (01). By 

policy 2 we have y^iP) = {x\i, ^11} and J^2i(/3) = {^22} which, together 

with the fact that x22 has not changed (and so x\2 = £22), again result 

in (x2
2lx

l
21) = (10) and {x\2x\2) = (01). 

• As an application of (5.3), for s = cti/3 we have Pi{s) = axp, ^2(5) = 

/?, and P3(s) = 0. For both policies JV[OLX\ = {Jl2{ai)}, Jx[{3\ = 

{Sl2(P)}, and J 2̂[/3] - {^21 (/?)}• Policy 1 yields |«^i2(«i)| = |^i2(/5)| = 

|j?-21(/3)| = 2, resulting in Ai = 2 + 2 = 4 and A2 = 2. For policy 

2 we have |J^i2(«i)| = |«^2i(/5)| = 1 and \J^\2{P)\ = 2, resulting in 

Ai = 1 + 2 = 3 and A2 = 1. Hence, policy 2 reduces the communication 

content by 2 bits. 0 

5.2.4 Communication policies which prescribe less com­

munication 

Comparing to communication policy 1, communication policy 2 reduces the 

communication content by communicating only those private variables whose 

values change upon update. However, not every change in the variables of 

a function would change the value of that function. As a result, it is only 

required to communicate only those changed variables whose new value would 

change the value of the guard or updating function (or guards and actions) 

which depend on these variables. The next example illustrates this point. 

Example 5.2 Let / = {1,2}, E0>1 = Ec>1 = {ax}, E0)2 = EC)2 = {a2}, 

and E = Si U E2. Parts (a) and (b) of Fig. 5.1 shows a plant G and a 

specification S, which is also a centralized supervisor. Shown in part (c) is the 
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graphical representation of an ALM for S where £{ra) = {00}, £{r{) = {10}, 

£{r2) = {20}, £(r3) = {30}, and £(r4) = {31}. Updating functions are listed 

in Table 5.3 and guard functions are as follows. 

& M = t(r0) U £(n) U £{r2) U £(r3) = {00,10, 20, 30}, 

g2(a2)=£(r3)U£(r4) = {30,31} 

Using Algorithm 4.1 we have x = (xi, x2), p = 5. To come up with sim­

plified polynomials, we extend arbitrarily Ai(ai,v) to map (xi,x2) = (0, j) to 

(1,j), {xux2) = (1, j ) to (2, j ) , (xi,x2) = (2,j) to (3, j ) , where j e {1,2,3,4}. 

Similarly, we extend A2(a2,v) to map (xi,x2) = (j, 0) to (j, 1), where j G 

{0,1,2,4}. Also, we assume that a.\ is enabled at {x\,x2) = (4,0) and a2 is 

enabled at (xi,x2) € {(3,2), (3,3), (3,4)} : . Accordingly, guard and updating 

functions on F | are as in Table 5.4. Observe that neither a"1 nor a2
2 depends 

on external variables, i.e. communication is required only to help Si and S2 

reevaluate their guard functions, correctly. 

An inspection of g^2 reveals that it is only a function of X\ and its value 

is 1 at X\ = 3 and 0 elsewhere. This implies that unless x\ changes between the 

two sets {3} and {0,1, 2,4}, its new value does not change the value of g^2 a n d 

thus need not be sent by Si to S2. Knowing the fact that g°2 depends solely 

on x\, this would reduce the number of times ^12(ai) should be issued. Such 

an observation can be made for g"1, too, though since x2 just toggles between 

0 and 1 and this changes the value of g"1, the number of times ^21(^2) should 

be issued is not decreased. 0 

All arbitrary points of updating and guard functions are non-reachable. 
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^1 

Figure 5.1: (a) Plant G, (b) specification and centralized supervisor S, and 
(c) a graphical representation of the ALM for S. 

Table 5.3: Updating functions for the DSDES in Example 5.2 
V 

A(auv) 
V 

A(a2,v) 

00 
10 

30 
31 

10 
20 

31 
30 

20 
30 

else 
— 

30 
00 

else 
— 

In the following we formalize the above argument which leads to a re­

duction in the number of occurrence of some of J? events. 

Notation 5.1 For m E N, an ra-set is a set of m objects taken from the 

universe of discourse. The power set of a set Z is denoted by 3?(Z) or 2Z and 

is the set of all subsets of Z. Let Z and Z' be two finite sets and / : Z —>• 

Z' : z i—» z'. Denote by Im(f) the image of Z under / , i.e. Im(f) = {z' E 

Z' | 3z E Z. f(z) = z'}. Let £(Z) denote the set of equivalence relations 

on Z. For every Z\)z2 E Z and E E £ let z\ =& z2 denote the fact that z\ 

and z2 belong to the same equivalence class. Write the equivalence class of 

z E Z as [Z]E and the number of cosets of E as \E|. For Ei, E2 E £ denote 

by Ei A E2 the meet of Ei and E2, i.e. for every Zi,z2 E Z. zi =ElAE2 z2 

if and only if zi =EX Z2 and zi =E2 Z2. By Ei < E2 we mean that Ei is 

finer than E2, i.e. \Ei\ < \E2\. When this inequality is strict, we use < 

instead of <. Denote by ker(/) E £ the equivalence kernel of / , i.e. for every 

Zi,Z2 E Z. Zi =ker( / ) Z2 <^=> f(zi) = f(z2). 

Let i,j E I, j 7̂  i, and A C / be a nonempty subset of / . Following 

152 



Table 5.4: Computed polynomials for updating and guard functions of the 
DSDES in Example 5,2 

xx := of (x) = 4(xi + l)(xi + 2)(x? + 2) 
x2 := o£2(x) = 4(x2 + l)(x2 + 2)(x2 + 3)(x2 + 4) 
g f (x) = 4(x2 + l)(x2 + 2)(x2 + 3)(x2 + 4) 
g f (x) = 4xi(xi + l)(xi + 3)(xi + 4) 

Notation 4.3, for a function / (x) , denned over F™, and for f G Fp, by writing 

f(x)\Xi=v or / ( f ,x_i) we mean / (x i , - - - ,Xi-i,v, xi+u • • • ,xn), i.e. the value 

of / when xt = v and XjS (j £ I \ {i}) are left arbitrary. Also for v G FJ, , by 

writing / (x) |XA=v or / (v , X_A) we mean the value of /(x) when for all j G I\A, 

Xj is arbitrary and for all A; G A, x^ is assigned a value which is provided by 

the corresponding component of v. Recalling Definition 4.9, let X^j = Xi\ 

{xfj, • • • ,x]j} and v have a binary representation (vh, • • • ,vl). For a function 

(or formula) f(Xi), which is defined over Mnh, by writing f{{vh, • • • , v1), X^j) 

we mean f(Xi) when (x^-, • • • ,x]j) = (vh, • • • ,vl) and all other variables in 

Xi can take arbitrary values in B. Let id^p : ¥p —* Fp : n i—» n be the identity 

function on Fp. D 

Definition 5.5 Let / : F™ —» Fp : x i—> / (x) and i E I. Define binary relation 

=fti on Fp as follows. 

Vv,v' G Fp. v =fii v' <=» [Vj G / \ {z},Vx, G Fp. /(x)|Xi=„ = f(x)\Xi=v>] D 

It can be verified that =fti is reflexive, symmetric, and transitive, proving the 

following. 

Lemma 5.2 Let / be as in Definition 5.5 and i E I. Then =fti is an equiva­

lence relation. • 

As a result, for each i G / , under =fti the set Fp, from which Xi takes its value, 

is partitioned into equivalence classes, whose number is finite because of the 
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finiteness of Fp. For each v G Fp, denote its equivalence class by [v]/^ and let 

the quotient set thus obtained be written as F p / =fti-

Example 5.3 Consider function / (x i , x2) = 2xi[xi + 1 + 2(xt + 2)(x2 + l)2], 

which is defined on F2 and its image is Im(f) = {0,1}. Figure 5.2 shows 

a graphical representation of / by labeling each point in its domain with its 

image. It can be seen that /(0, 0) ^ / ( l ,0 ) , / (0 ,0) ^ /(2, 0) and / ( l , 1) ^ 

/(2,1). These imply that [0]/,! ^ [l]/,i, [0]/,i ^ [2]/,i, and [1]/,! ^ [2];>1. On 

the other hand / (2, 0) ^ /(2,1) and /(2,2) ^ /(2,1), but for every xx G F3 

we have f(xu0) = f(xu2), implying that [0]/j2 = [2]/>2 and [0]/)2 ^ [l]/,2-

Following Definition 5.5 and this observation we may distinguish the following 

quotient sets on F3 induced by =^1 and =/,2-

F3/=/,i={[0] / , i>[l] / li ,[2] / ,1}, [0]f,i = {0}, [l]/,i = {l}, [2]/,i = {2}, 

Fs/ =/,2= {[0]/,2, [l]/,2}, [0]/)2 = [2]/i2 = {0, 2}, [l] / i2 = {1} 

Equivalent classes are shown in the figure. Observe that when x2 changes 

between 0 to 2, the value of / does not vary. Hence, if assume x\ and x2 are 

owned by two supervisors Si and S2 and / is one of Si's guard functions, Si 

does not require to get informed of a change between [0]/,2 and [2]/^ for x2, 

thereby reducing the number of occurrences of communication event J^i- 0 

i^f 
:'oi; 

1| 

li 

1 

' 0i 

...,.r - - -, ,-: 0 ! L 3! 
1 11 

Figure 5.2: Graphical representation of f(x\, x2) = 2x\[x^ + 1 + 2(xi + 2)(x2 + 
l)2] and equivalent classes. 
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In general, since Fp has p elements, | =^j | < p, i.e. there can exist up 

to p equivalents classes. In particular, for an updating or a guard function 

computed by Algorithm 4.1 the following holds. 

Lemma 5.3 Let the updating and guard functions in PDS (4.14) be computed 

by Algorithm 4.1. Then the following holds. 

Vz, j £l,i^ j,Va G S0li, V/3 G ECii. | =a?tj \ < p A | E E ^ . | < 2 

Proof: Immediate by identifying that the images of an updating (respectively, 

a guard) function is a subset of {0.1, • • • ,p — 1} (respectively, {0,1}). • 

If function / is an updating or a guard function, its EFSM implementa­

tion inherits the partitioning induced by =fj, as stated in the following result. 

Lemma 5.4 Let a G T,0, (3 G Ec, and i £ I, and a? and gf be, respectively, 

updating and guard functions in DSDES framework, which are implemented 

in EFSM framework in the sense of Definition 4.10. Let v, w G Fp be integers 

whose binary representations are denoted by (vh, • • • ,vl) and (wh,--- ,wl), 

respectively, and j G I \ {i}. Then we have the following. 

V =a
a,j W <==$• Vfc G J. 

a t ( 4 , / ? ) ( ( A - - - y),Xi.j)=ai{x^i,a)((wh,--- ,wl),Xl_J) 

v=sfjw 4=^ gi((3){{v\--- ,v1),Xi.j) = gl(p)((w\--- ,w1),Xi^j) 

Proof: Follows directly from Definition 4.10. • 

The observation we made in Example 5.3 forms the intuition behind 

communication policy 3. For i,j G I,i ^ j , this policy requires that the 

updated value of Xj be sent to a supervisor Sj, whose (at least) one updating 

or guard function / depends on Xj, if the updated value results in a change in 

the equivalence class, induced by = / j - This policy is formally defined next. 
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Definition 5.6 Associated with PDS (4.14) and for each af and j G / , such 

that a G S0ji,i G I,j ^ i, and Xj G arg(af), consider a partitioning of Fp 

induced by =0?j- Similarly for each gf and k £ I such that (3 G Sc,,,z G 

I,k y^ i, and x^ G arg(gf), consider a partitioning of Fp induced by = CT' ,. For 

PDS (4.14) and its EFSM implementation (4.15), communication policy 3 is 

as follows: For every i,j G I,i ^ j , we have i/j,=0 , E^ j i = 0, E,/]j = E0ij, and 

VaeE0j. Sji{a) = {x'jjeXjj\x'j:j:=aj{x'j:j,<T){Xj) A x^x^ 

A [3a'G Ej,3x' G X t t. ( ^ G aig(ai(x',a')) A [%1^'j 7̂  N a f ' , j ) 

V ( 4 G arg(^(a')) A [%]sf . ± fo]^)] }. • 

Proposition 5.2 4̂ solution to Problem 5.1: Associated with Problem 5.1, if 

the network of supervisors is strongly connected with lossless channels and if 

communication is instantaneous, communication policy 3 insures that L(T>) = 

£ and Lm{V) = E. • 

By Definition 5.6, for i,j£l,i^ j , communication policy 3 prescribes 

the transfer of the new values of a bit x G Xjj through J2^, whose associated 

new integer value of Xj changes the equivalence class induced by (at least) one 

of the updating or guard functions of Sj. In other words, if the new integer 

value entails no change in the equivalent classes in the integer space, the new 

bit values are not sent. As a result, comparing to policy 2 of Definition 5.4, 

fewer J? events would be issued if the partition induced by all updating and 

guard functions (of S,) is coarser than the integer space. This is summarized 

in the following result. 

Definition 5.7 Let i,j G / and i ^ j . Associated with PDS (4.14) define 

CLi = {of I cr G S0;j} and Qi = {gf | a G £c,t} as the sets of updating and 

guard functions, respectively. Define = y as A/ec^ua —/J' i-e- ^n e m e e t °f a ^ 

equivalence relations on the integer space of Xj, each induced by an updating 

or a guard function of Sj. • 
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Lemma 5.5 Consider PDS (4.14) and its EFSM implementation (4.15). Let 

i,j G / , i v̂  j , a G ED, and 2J^j(cr) and 3^i(cr) denote J^ji{o) event under 

communication policies 2 and 3, respectively. 

1. If \3J^ji(a)\ < \2J?ji(&)\, then kev(id¥p) < = i j and | =j j | < p. 

2. Let a G EOJ- and for some a' G Ej either Xj G arg(af) or Xj G arg(gf'). If 

a moves the PDS from x to x and Xj =ij Xj, then |3J^j(a)| < \2J?ji(a)\. 

• 

Notice that the assumptions in part 2 of Lemma 5.5 requires that the PDS 

move from state x to x, which entails Xj ^ Xj, and that Xj = j j Xj, implying 

that kei(idfp) <=ij- Therefore, in a sense part 2 is the "converse" of part 

1. Accordingly, the condition ker(idfp) <=ij is related to the reduction of 

communication content in the sense of Lemma 5.5. 

Remark 5.2 Implied by the proof of Lemma 5.5 and Definition 5.7 is that 

communication policy 3 can be written in the following way, too. Associated 

with PDS (4.14) and its EFSM implementation (4.15), for every i,j € I,i =£ j , 

we have Hji = $ , E ^ = 0 , E ^ j = E0)j, and 

V(7GEOJ-. J?jl(a) = {xk
j£Xjj \xk

j:=aj(x
k
j,a)(Xj) A tfrfx^A 

[3a'£ Ei,3x' G Xu. (x^e arg(ai(x', a')) V x^e arg(^(a'))) 

Afota^ lxih]}- n 

Example 5.4 Let us redo Example 5.2 using the above machinery. First, we 

have the following. 

O V =^t2) = {Mtffih w h e r e [0]„?i,2 = {0,1,2,3,4}; 

(F5 / =^,2) = {[O]8?1)2,[l]0?,2}, where [0]9?,2 = {1}, [ l ] g ^ 2 = {1,2,3,4}; 

(F5 / =^2il) = { [ 0 ] ^ } , where [ 0 ] ^ = {0,1,2,3,4}; 

(F5 / ^ 2 j l ) = { [ O ] ^ , ! , ^ ^ } , where [ 0 ] ^ = {0,1,2,4}, [ 3 ] ^ = {3}. 
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This would lead to (=i,2) = ( = ^ , 2 A =0^,2), (=2,1) = (=^2 , i A = 0 2 2 , i ) ' a n d 

the following. 

1) (F 5 / = l i 2 ) = {[0]1)2)[l]i,2}, where [0]1)2 = {1} and [l]1>2 = {1 ,2 ,3 ,4}; 

2) (F5/ =2i l) = {[0]2,i,[3]2il}, where [0]2,x = {0,1,2,4} and [3]2)1 = {3}. 

Using Definition 5.6, 1) insures that while £2 is altering within the set [l]i,2 = 

{1,2,3,4}, S2 need not inform Si of its exact value. However, a closer obser­

vation of o2
2 reveals that Jm(a2

2) = {0,1}, which in turn implies that x2 is 

actually altering between 0 and 1 all the time, i.e. it is always moving from 

one equivalence class to another, therefore in this case its latest value should 

always be communicated upon changing. Thus, as far as J^2i(a2) is concerned, 

policy 3 performs in the same manner as policy 2 and cannot decrease its num­

ber of occurrence any further. When it comes to =2,i, 2) insures that while 

X\ is moving within [0]2,i = {0,1,2,4}, its exact value is not required by S2. 

On the other hand, Jm(a^1) = {0,1, 2, 3} which implies that x\ indeed takes 

values within the set {0,1,2}, for which, policy 3 decreases the number of 

0̂ 12(0:1) events. 

To see how the above argument is implemented in practice, let us com­

pute actions and guards in EFSM framework. To this end, notice that Algo­

rithm 4.2 initiates from h = [logp] = [log 5] = 3 binary variables for each 

supervisor, i.e. Xj is represented by (xf^xf^x^), where i G {1,2}. To simplify 

the expressions for ai{x\^ a{), k G J = {1, 2, 3}, we have assumed that points 

(£n x i i x i i ) G {(101), (110)} and (111), which do not exist in F5 but can be 

encoded using three Boolean variables, are arbitrarily mapped to (010) and 

(000), respectively. Also, to simplify the expressions for ai(x2 2 ,a2), k G J, all 

three points {x\2x\2x\2) G {(101), (110), (111)}, are mapped to (000). When 

it comes to compute guards gi{ct\) and g2(ct2), we assume that a\ and a2 are 

all disabled at these three points. Following these simplifications, Table 5.5 
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Table 5.5: Actions and guards in EFSM framework for supervisors in Exam­
ple 5.2 

aiixli, 
ai(x2

u, 

a>i(x\i, 
a2{X22, 

(l2\X22 
a2\x

22, 

9i{u\) 
92(^2) 

«i)(x) = 
Qfi)(x) = 

ai)(x) = 
a2)(x) = 
a2)(x) = 
a2)(x) = 

0 
r 2 

x l l 

0 
0 
x 2 2 

•} c 1 

— X1 2-^i2x12 " 
= X2\X2l 

X l l 

xn = 

—2 —1 
x 2 2 x 2 2 

= xn 

xxx 

= X22 

lists the actions and guards. Observe that out of the six introduced Boolean 

variables, x\X)x\2, and x\2 are constantly equal to zero and need not be com­

municated at all. 

Regarding the other three variables, the copies of xxx,x\x, i.e. x\x,x\x 

belong to ^2(^2), and the copy of x\2, i.e. x\2 belongs to gx(ax). Communi­

cation policy 2 then requires that when each of these three variables be sent 

by its owning supervisor to the other supervisor upon getting changed. De­

noting by © the exclusive OR operation of two binary expressions2, x\x,x\x, 

and x\2 will change if x\x © ax(xfx, CKI)(X) = 1, x\x © ax(x\x, cxi)(x) = 1, and 

X22 © (X\ (x\2,a2)(x) = 1, respectively. Whereas the first condition reduces to 

x\x = 1, the last two are always 1, i.e. true. As a result, x\x and x\2 are always 

communicated (because they are always changed upon each occurrence of a.\ 

and a2, respectively), and x\x is communicated only if x\x = 1. These results 

are summarized in Table 5.6. 

On top of conditions imposed by policy 2, policy 3 requires that the 

value of a changed binary variables not be communicated unless its new value 

2For every two Boolean variables c and d, c © d is 1 if and only if c / d. 
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Table 5.6: Communication amongst supervisors in Example 5.2 based on pol-

1 C y 2 r — — F — — — — 

*>M - J {x\T ; if (arh = 0) 
^21(0=2) = {^22}; 

alters the value of the function which depends on the corresponding integer 

variable of the binary variable. Considering xx, we have Im(a°1) = {0,1, 2, 3} 

partitioned into [0]a
ai = {0,1,2} and [l]a

Qi = {3}. Therefore, communication 

of a changed x\ 1 or x\x to S2 is required only when the new binary value changes 

[0]o<»i to [l]a
Qi and vice versa. Encoding £\ as (^n^i i^h) , this condition is 

translated into x^x^ © x^x^ = 1, which is then equal to x\x = 1 upon 

substituting x\x and x\x with their equivalent expressions of the actions from 

Table 5.5. As for x2, we have Im(a%2) = {0,1} partitioned into [0] °<2 = 

{0} and [1](£2 = {1}. Therefore, communication of a changed xl
n to Si is 

required only when the new binary value changes [0]"2 to [ l ] ^ and vice 

versa. Encoding £2 as (£22^22^22) > this condition is translated into x\2 ® 

x\2 = 1, which is always true upon substituting x\2 with its a2(x22,a2) from 

Table 5.5. From the shown results in Table 5.7 and comparing them with those 

in Table 5.6. Observe that policy 3 indeed decreases the number of times ^ 2 

occurs by imposing the new condition x\x = 1 such that now there are cases 

where this communication event is void, i.e. does not occur. 0 

The formalization developed so far is based on the equivalence relation 

= / j , where / is an updating or a guard function owned by Sj and i,j G 

I,j 7̂  i. Recalling Definition 5.5, this relation requires that the value of 

function / remain unchanged for two different values of Xj regardless of values 

of other x^s, where k £ I \{j}. In other words, there are n — 1-dimensional 
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Table 5.7: Communication amongst supervisors in Example 5.2 based on pol­
icy 3 

\xn, xu\ 
SnM = { {x\i} 

0 

if (xli = 1 Ax2
u = 1) 

\i\xl
n = 0 A 4 = 1) 

otherwise 
S2\(oL*) = {x\2} 

subspaces which share the same pattern of values of / . However, this might be 

a strong requirement for a PDS to satisfy and instead, there might be subsets 

of n — 1-dimensional subspaces which share the same pattern of values of / . To 

formalize such cases, the concept of invariance which was introduced before, 

can be extended to invariance with respect to such subsets, as defined next. 

Definition 5.8 Let / : F£ - • Fp : x •-» / (x) , j e I, for every k e I \ {j} 

it holds that 0 ^ A& C Fp, and A = rifce/Uj} ^fc- Define the binary relation 

=/,J,A on Fp as follows. 

yv,v'e¥p.v=fiJ,Av' ^ [Vfce/\{J},Vx_JeA. /(u,x_j)=/K,x_J-)] • 

Relation = / J ,A is also reflexive, symmetric, and transitive implying the follow­

ing result. 

Lemma 5.6 The binary relation = / J ,A is an equivalence relation. • 

Lemma 5.7 For every j £ I, function / , and A as in Definition 5.8, we have 

= / j < = / j , A -

Proof: For every v,v' G Fp, v =fj v' holds for the whole n — 1-dimensional 

subspace, including A as its subset. • 

Example 5.5 Figure 5.3 shows the graphical representation of a function / , 

defined on F | . Observe that 0 =/,2,A 1> where A = Aj x A3, Ai = F3, and 
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A3 = {0,1}. As a result of partitioning the set of point of v2 axis, there are 

two equivalence classes [OJ/^A = {0,1} and [2]/^^ = {2}. 0 

V2 

Figure 5.3: Graphical representation of a function / with symmetric pattern 
with respect to v2 axis. 

Assume that / is an updating or a guard functions owned by S;. De­

finition 5.8 then suggests that while x_j G A, the new value of Xj need not 

be sent to S* as long as this value belongs to the same equivalence class as 

the old value. To insure that x_j G A, Sj requires to be informed by all S^s, 

k G I\{j}, for which A^ ^ Fp. In other words to reduce the amount of commu­

nication associated with J?ji(a), a communication event J^kj{o~') should have 

been sent by S^ to Sj each time x\, enters or leaves A^, where k G / C {j}, 

a G E 0 j , and a' G £0>fc. Whether using these J ^ s to avoid some J ^ s can 

reduce the total amount of communication in the network, depends on many 

factors and cannot be guaranteed in general. As an example, whereas the fact 

that Afc = Fp eliminates J'kj-, a A with larger cardinality may provide larger 

equivalence classes, thereby omitting more J^;S. Therefore it might not be 

even possible to tell which As reduce the communication content more a pri­

ori, i.e. before analyzing different possibilities. The only cases where one can 

trivially say that these « ĵys are redundant and should be avoided are when 

I —f,jA I = Pi l-e- the number of partitions equal to |FP|, itself. In such cases 
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no symmetries exist and therefore, no J ^ events will help reduce (the content 

of) tfjiS. We do not investigate this issue furthermore here and in what follows 

formulate the solution to communication problem subject to a given set A. 

Similar to what we did for = / j in Definition 5.7, when dealing with all 

updating and guard functions of Sj, the meet of the equivalence relations =/,J,A, 

each induced by one such function, should be utilized. To this end, notice that 

the subset of F™_1 for which = /J ,A holds is specific to / . Therefore, for the 

meet to hold, its subset of F" _ 1 is defined as the intersection of all As, each 

for an equivalence relation =/J ,A-

Definition 5.9 Let i,j, k G I,j ^ i,k =£ j , and recall Definition 5.8. Associ­

ated with PDS (4.14) define a* = {a^| a G S0)i} and & = {g° \ a G Ec>i} as the 

sets of updating and guard functions, respectively. For each / G Oj Ug;, j such 

that Xj G arg(/), and every k, assume that the nonempty set A.f^tk C Fp ex­

ists such that A^_j = IlkeA!?} A/'-J>fc a n d =MA/,-j c a n ^ e defined on Fp. 

Define A;,_j)fc = fl/e^ug, A/,-j,fc> K-j = Uka\{j} Ai,-j,fc. a n d l e t =14M-i 

be the restriction of =f,j,Af • to x_j G ^i,-j Q A / , - j - Define =ij^Ai_] as 

A a, = J J I A . _ J ; i.e. the meet of all equivalence relations on Fp, each in­

duced by an updating or a guard function of Sj. D 

Lemma 5.8 Relations = f ,• A- , and =a \. , in Definition 5.9 are well defined. 

m 

In the following we formalize a communication policy which is inspired 

by equivalence relations =jj>Ai>_ and prove its correctness. 

Definition 5.10 Associated with PDS (4.14) and following Definition 5.9, 

for every i,j,k G / , such that j^i and k^j, let = i j ) A . _. be defined on Fp, 

where K,-j,k Q Fp and Ai-j = YlkeI\{j}Ai-j,k. For PDS (4.14) and its EFSM 

implementation (4.15), communication policy 4 is as follows: 
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Vi,jG/ ,2^j ,^=0, E^, = 0, E ^ ^ S ^ u K j ^ ^ a ) ! m6/ ,m^>eS„, r a}}, 

and 

1) VaGEOJ, ^4(0-) = {xJ /eX i J I s ^ a , - ^ , *)(*,-) A x } ^ 4 A 

[3 /G/\{z}. (\=ltiAli_.\<p)A(xjeAl-iJ=^xj<£Al-itj)A(xj£Ai-id 

2) ^ i ({^mj (^ ) | mEl,m^j,aei:0,m}) = {xk
JjeXjj | x^ajix^aXXj) 

A x j ^ 4 A [VaeS0 , r x^iSjte)] 

A[3a'G E i . B x ' e ^ . (x^-G arg(ai(x', a')) V z&G arg(^(a')))A 

( d = t j A , - J < P ) = * -'(^•=<,jA,-,-a:i))]}- D 

In simple words, communication policy 4 suggests that communication among 

supervisors be performed in 2 steps. In the first step each Sj provides other 

SjS with the information to help them recognize their associated A^-jS, where 

I E I \ {i} (it can be equal to j , too). This is done if this information is 

necessary, which is when either XjEAi^ij or Xj GAi^ij, exclusively. Using 

the information which is received through all communication events issued in 

the first step, in the second step each Sj sends its private information to a 

typical Sj if this information changes the value of (at least) one of Sj's guard 

or updating functions, as reflected in ->(XJ =itji^i_.Xj). 

Condition (|=^ )A | _. |<p), in the first step, insures that no communication is 

done when {\=iti,hl_i \=p), i.e. no symmetry exists. For such cases, actually 

every change in a supervisor's private variable should be sent to supervisors 

whose guard or updating functions depend on this variable. This explains 

why in step 2 the same condition appears as a premise of checking different 

classes. In other words, the existence of this condition excludes those relations 

which induce exactly p partitions. Also condition [\/a € E 0 j . £*• ^ J^j(cr)] 

insures that if an Sj's bit has already been sent in the first step (to help Sj 

distinguish partitions), it is not sent in the second step any more, thus avoiding 
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redundant communication. This is justified if one notices that between steps 

1 and 2 no observable event in S0 is assumed to occur, and the contents of 

private variables remain unchanged. 

Proposition 5.3 A solution to Problem 5.1: Associated with Problem 5.1, if 

the network of supervisors is strongly connected with lossless channels and if 

communication is instantaneous, communication policy 4 ensures that L(V) = 

~E and Lm{V) = E. • 

5.2.5 Communication policies which prescribe commu­

nication of encoded events 

Previous communication policies all prescribe communication of a subset of 

Boolean variables which encode the states of the centralized supervisor in a 

decentralized manner as represented by PDS (4.14) and its EFSM implementa­

tion (4.15). The PDS representation also suggests communication of (a subset 

of Boolean variables which encode) observed events by observing supervisors. 

In the following we formalize this idea, thereby demonstrating the capability 

of SDES framework in modeling communication of observed events, too. 

Definition 5.11 For every i £ I, define 

M^ = {j £ I | 3a e £0i i. Xj £ arg(af)} and 

M = {j el\ [3a £ S0ii. Xj <= arg(aO] V [3a' € SCli. xd G arg(tf')]}. 

Define also set Oi C I recursively as follows. 

Mi cot A [Vj el. j eOz =^ Vfc <= Mar heO,} • 

Lemma 5.9 We have Vz £ I,j £ Oi, a £ E o J . xk £ arg(aj) = > k £ Ot. 

Proof: Follows directly from Definition 5.11. • 
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In simple words, what Definition 5.11 means is that Oi is the largest set 

of SjS, on whose private information, i.e. XjS, Sj depends, where i,j E I. 

This dependency is either explicit, i.e. when Xj appears as the argument of 

an updating or a guard function of Sj, or implicit, i.e. when the updating 

function corresponding to such an Xj,j 7̂  i, depends on Xk, k ^ j , i. 

Lemma 5.10 For every i E / , Oi is a fixed point of F : &{V) -» &>(I) : A i-» 

(Aul)jeAK3). 

Clearly F is monotonic and the finiteness of / implies that for every Mi C 7, 

F(Mi) converges to fixed point Oi. This can be regarded as the basis of an 

algorithm to compute Oi. 

Algorithm 5.1 Computation of Of Associated with PDS (4.14), for every 

i E I do the following. 

1. Compute Mi = {jEl | [3aEE0<i. x3 E arg(of)]V[3a'eECii. Xj E axg(gf')]}. 

2. Set A = Mi and B = F(A). 

3. While A ^ B do the following: [A = B and B = F(A)]. 

4. Report Oi = A. • 

Following the concept of Oi, if supervisor Sj stores a copy of the private 

variables it requires (directly or indirectly), to compute its guard and updating 

functions together with the copies of updating functions, which are used to 

reevaluate those copy variables, it can independently compute the new values 

of the copy variables if it is informed of what observable events occur. The 

next definition states what we mean by copy variables and updating equations. 

Definition 5.12 Associated with PDS (4.14) and for each i E I and every 

j E Oi \ {i}, let xlj be the copy of Xj which is stored by Sj. Let x l be the 

166 



vector of all x^s such that they are sorted from left to right based on their 

index j (i.e. in the same order they appear in x). Write x1 = x to state 

Vz E I,\/j E Oi \ {%). xlj — Xj. Also assume that all xljS are initialized to 0. 

Correspondingly, denote by a^(xl) the copy of updating function oj(x) stored 

by Si. • 

Lemma 5.11 For every i E I, j E Oi\ {z}, and a E EOJ, o^x1) in Defini­

tion 5.12 is well defined. 

Proof: It is enough to show that x l includes arg(oj) in it. To this end, let 

Xk E argcrj(x'). By Lemma 5.9, k E Oi which, by Definition 5.12, means that 

Xk is a component of x \ • 

To be able to compute copies of other supervisors' private variables, each Sj 

should store a copy of their updating functions. We take this point for granted 

in the following. 

Assumption 5.1 Assume that for each i E I, each j E Oi\ {z}, and each 

a E S 0 j , Sj stores a^(x l), i.e. it stores a copy of each of S/s non-identity 

updating functions. • 

Under Assumption 5.1, each supervisor Sj can independently compute the 

new values of the private variables of other SjS upon being informed of the 

occurrence of every observable event by those S^s. This paves the way to de­

fine a new communication policy which communicates the observable events, 

rather than state-based information. Whereas in DSDES framework, every 

pieces of information is represented by binary variables before being commu­

nicated, there is no symbolic representation of "events". In the following, we 

first provide such an encoding scheme which is then used to define the fifth 

communication policy. 
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Definition 5.13 Associated with PDS (4.14), let e = |7og2(niaXi6/ |E0ii| + l ) ] , 

U = {1, 2, • • • , e}, and i, j G / , j 7̂  i Denote by Yti = {y^ \ k G 13} the set of 

Sj's private event-encoding Boolean variables and let every event a G £0];U{e} 

be encoded3 arbitrarily as a = (yft • • • y^). The extra artificial event, "e," is 

used to distinguish the case where no event has occurred initially. Denote 

by yk
{j a copy of y^ G Yjj stored by St and let Ytj = {y^ \ yk

j3 G Yj:j}, 

yci = Uj£i\{i}Yij> Yi = Yu U Yci, and Y = \JieiYi- Assume that all variables 

in Y are initially equal to 0. • 

As Definition 5.13 reads, every supervisor assigns a code to each of its observ­

able events. To decode these codes upon their arrival, the target supervisor 

should have a look up table which stores the codes. This is stated in the 

following assumption, where one should notice that for each a G E0, every 

supervisor whose index is in I0(a) assigns its own code to a. 

Assumption 5.2 For each i £ I, each j G Oi, and every a G EOJ-, Sj has a 

look up table which stores the code(s) for a (as assigned by different supervisors 

whose index is in I0(<j)). • 

Once a supervisor observes the occurrence of an event, on top of updat­

ing its own private variable, it updates copies of all other private variables 

which it keeps and are affected by that event, as summarized in the following 

assumption. 

Assumption 5.3 Let Assumption 5.1 holds. Then for every i G /, each 

j G Oi, and each a G E 0 i i nE 0 j , Sj computes £*• := ^(x1) upon the occurrence 

of a. D 
3Although some S0liS may have less then e — 1 elements, we choose a common e for the 

sake of notational simplicity. Clearly, if |£0,i | < e — 1, some higher significant bits in Yu 
would be constantly equal to 0. 
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We have now enough means to introduce the fifth communication policy. 

The following definition will be helpful in defining the new policy. 

Definition 5.14 For each a G £ 0 define I comic) = k, where k G /0(cr). • 

Notice that for each a G £0 , hi®) 7̂  0, and thus homi®) is well defined. 

Definition 5.15 Considering PDS (4.14) and following Definitions 5.12 and 

5.13, for each i E. I, let a* G £0)j U {e}, encoded as cti = (yfu • • • , y^), be the 

last event observed by Sj. Assume that for each a G £Q, I comic) is given as in 

Definition 5.14. Under Assumption 5.1, for PDS (4.14) communication policy 

5 is as follows: 

For all i,j€.I such that i^j we have Hji=Yjj , £ ^ = 0 , T,yj = T,0j, and 

VaG£o J . ^jiicr) = {y^jeYJJ \ a=iye
jj} • • • , y),.) A y%H% 

A W < T ) = J A ithia) A [3^0A{«}- ^ / » ] } (5.4) 

Once J^j is received by Sj, the copies of event-encoding Boolean variables will 

be updated, i.e. 

Vz, j el,i^ jyk G Uyfy G Yjjya G £ A i . 

(1) K& e J?Ao-) = • y* := y£] A [y*, £ ^ , ( a ) = • y% := y*] 

A (2) [V/JeEoj^VmeOiUO.Vx^Ff'l. 

(Sy, • • • , Vy)=0 A me/0(/5) => Vm.= afm(x!)] 

In simple words, upon the occurrence of a G £0 , communication policy 5 

requires that one of the supervisors, that is the one specified by ICOmi°~) (which 

observes the occurrence of a), informs the supervisors which cannot observe a 
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and whose guards or updating functions are affected by its occurrence directly 

or indirectly, of this occurrence, as reflected in (5.4). When the sent bits 

arrive at the target supervisor(s), as (5.5) reads, first they are decoded by the 

receivers to find out which event has been observed by the sender (Conjunct 

1), and then all copies of the private variables, which are kept by each receiver 

and are affected by the decoded event, are updated using the copies of the 

corresponding updating functions (Conjunct 2). Notice that policy 5 employs 

constant messages, introduced in Definition 5.1, as the content of J? events. 

Proposition 5.4 A solution to Problem 5.1: Associated with Problem 5.1, if 

the network of supervisors is strongly connected with lossless channels and if 

communication is instantaneous, communication policy 5 insures that L(V) = 

~E and Lm{V) = E. • 

Definition 5.15 assumes a given ICOm{o~) for every a G S0 and introduces 

communication policy 5 based on it. As (5.4) reads, S/com(0.) is responsible for 

issuing communication event <#icom(a)i to all SjS which cannot observe er, but 

have a copy variable which can be affected by a. Following Definition 5.14, 

when I0(a) is a singleton, there is just one choice for ICom(°~)- However, if 

|/0(cr)| > 1, there are different supervisors which can be the issuer of <#icom(c)i-

By Conjunct 2 of (5.5), once the communication is received, regardless of which 

supervisor (among those whose index is in I0{o~)) has issued it, it results in the 

same process, i.e. reevaluation of all copy variables, stored by Sj, which are 

affected by a. 

However, by (5.4) and Conjunct 1 of (5.5), each choice of ICom{°~) would entail 

communication of the changed bits of Yicom(a)icom(a)- Therefore, it is plausible 

to ask if there are choices of Iami{a)s which entail a minimal communication 

in the sense of (5.3). Whereas this issue is not formally investigated here, it is 

worth mentioning, as a rule of thumb, that if a supervisor S/ has fewer number 
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of observable events, it has probably more constant bits in Y«. Therefore, 

choosing /COm(c) = I can reduce the content of J^u(a). Furthermore, for l,i <E I 

and a G £0,z such that 7COT„(cr) = /, if the employed event-encoding scheme 

for a supervisor S; is such that along the system's evolution, fewer bits in 

Yii change with the occurrence of an event a, the content of ^u(cr) would be 

decreased, too. This point is explained in the next example. 

Example 5.6 Let us apply communication policy 5 for the DSDES in Exam­

ple 4.3. From Table 4.2, we have the following. 

K = A ^ 0 2 = {1,2}, A/"a3 = {3}, M = {1,2}, ^ 2 = {1,2,3}, Af3 = {3} 

Application of Algorithm 5.1 then leads to 0\ — {1,2}, C2 = {1,2,3}, and 

03 = {3}. 

Observe that |£0,i| = |S0 i 2 | — 2 and |E0,3| = 1, therefore following 

Definition 5.13 we have e = \log2{2 + 1)] = 2. Also it holds that I0{ot\) = 

{l},I0(a2) = {2},I0(P) = {1,2}, and 70(a3) = {3}. Following Definition 5.14 

we have Icom{ai) = l,/Com(a2) = 2> a n d 4om(«3) = 3. However, ICOm(P) 

can be either 1 or 2 and, based on the fact that Si and S2 have each two 

observable events, there does not seem to be any difference between choosing 

either supervisors, hence we set ICOm(P) — 1-

Codes for the events are shown in Table 5.8. Here, all supervisors encode 

e as (00), and we have a.\ = (01), a2 = (01), and aj, = (01) 4. To encode @, we 

notice that if (3 — (10), then between a\ = (01) and (3 = (10) there would be 

a difference of 2 bits, i.e. upon the occurrence of one of these events after the 

other one, Sj should send 2 bits. However, if (3 = (11), the difference would 

be between (01) and (11), i.e. just 1 bit. Therefore, this latter choice is taken 

4Notice that these codes are assigned to different variables ( y ^ , ^ ) for i = 1,2, and 3, 
respectively, as shown in Table 5.8. 
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as the code of j3 assigned by Si. Although, S2 need not inform others of the 

occurrence of /3, it encodes (3 as (11), because (10) would require S2 to send 2 

bits when reporting the occurrence of a2 after (3. Moreover, a common code 

for P can save some memory space, by reducing from two different spaces to 

one in the look up table of the events, and helps supervisors distinguish ft 

consistently in the case of any faults. 

Using the above codes and Definition 5.15, communication events can 

be computed. To this end, assume that the last event observed by Sj is 

<7j G E0)j U {e}, encoded as (yf^yji) and the new event is encoded as (#£,2/^), 

where i 6 {1,2,3}. The communication events are shown in Table 5.9, 

where conditions of selecting communication content are simply formulated 

as whether corresponding ys and ys are equal to each other or not. For S3, 

it can be seen that y\z = 0 holds all the time, hence simplifying the content 

condition. 0 

Table 5.8 
Si 

S2 

s3 

(2/11, 

(2/22. 

(3/33. 

: Encodin 

vh) 
2/22) 

2/33) 

e = 
e = 

e = 

g of Events for Exampl 
(00) 
(00) 

(00) 

Q.\ = 

Oi-1 -

tt3 = 

= (01) 

= (01) 

= (01) 

0 = 
p = 

e5.6 

(11) 

(11) 

Remark 5.3 Communication of observed states (State-based communication) 

versus communication of observed events (event-based communication): State-

based and event-based communication policies were shown to maintain the cor­

rectness of the close-loop behavior, in the sense that the centralized supervisor, 

which enforces the desired system specifications, is implemented correctly in 
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Table 5.9: Communication amongst supervisors in Example 5.6 based on pol­
icy 5 

^12 M = 

f {VivVu 
{yh} 
{yh} 

} * (y\i * v\i) * (& * v*n) 
u (vli * v\i) * (v2n = vii) 
X (Vli = vli) * (vli * fa) 
i f (yi 1 i=yi i )A(y? 1=y? 1) 

^ i 3 (a i ) = ^13 (/3) = J?M = 0 

^ 2 i ( « 2 ) = 

1^22 ' 2/22 J 

{llh} 
if Olh ^ ^22) A (#22 ¥" y'22) 
if (j/22 ^ 2/22) A ($2 = 2/22) 
if (£22 = Vh) A (#22 ^ 3/22) 
if (£22 = vh) A (yh = 3/22) 

^23(a2) = ^23(/5) = ^2l(/?) = 0 

*• /„ \ _ / {̂ 33} ; if (£33 ^ vh) 
^ 3 2 M " i 0 ; if (yh = vh) 
^31 (a3) = 0 

a decentralized manner. A general and rigorous comparison between the two 

paradigms of communication is not possible at the current stage of this re­

search. Whereas this issue deserves a separate work, a few observations might 

be useful to point out. 

The state-based communication, examples of which are policies 1, 2, 3, 

and 4, relies on the binary encoding of states, where each supervisor only saves 

its own dynamical equation (or equations in DSDES or EFSM framework). 

Accordingly, a sender transmits the latest values of the bits forming (part 

of) the binary encoding of its current state. The size of communication would 

increase if the number of state changes is high and less symmetry among states 

exists. 

The event-based communication employs a binary encoding of events, 

where each supervisor should store the dynamical equations of some other su­

pervisors on top of copies of their private variables, thereby asking for more 

memory space. The size of communication would increase if the number of 

events and the changes between their encodings are high. However, in cases 
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that state symmetries and the number of events are few, the event-based com­

munication may entail less communication. 

Although we did not investigate the issue, but a mixture of the two 

paradigms is also possible to benefit from the merits of the two and avoid 

unnecessary communication. • 

5.2.6 Synthesis of communicating supervisors using DS-

DESs: a summary 

The whole procedure for "synthesis of communicating decentralized controllers" 

in the DSDES framework may be summarized in the following steps. 

1. Given the plant and specification, compute the centralized supervisor, 

S, using SCT. 

2. Employ an ALM to assign (a set of) integer vectors to each state of S 

to explore its information structure (Theorem 3.2). Use the symmetries 

in the structure of S to define ALMs with smaller image size. Compute 

updating and guard functions (Proposition 4.3). 

3. Represent updating and guard functions as polynomial equations over 

a finite field (Algorithm 4.1). Employ "arbitrary" cases to eliminate as 

many external variables as possible. 

4. To derive state-based communication policies (such as policies 1 to 4) 

implement the above-mentioned polynomials in EFSM framework (Al­

gorithm 4.2). To derive event-based communication policies (such as 

policy 5) employ an event-encoding scheme. 

5. Define handshaking and information policies by analyzing the polyno­

mials (J^ events). 
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6. Design a routing policy {3$ events) and, if necessary, redesign the J' 

events and constant messages (this step is not studied here). 

5.3 A communicat ion-based classification of DS-

DESs 

DSDES framework enjoys an insightful divide-and-conquer approach to mod­

eling supervisors of DESs by capturing the observation- and control- related 

information (of a centralized supervisor) using two distinct means, i.e. updat­

ing and guard functions, respectively. Communication naturally arises to help 

a decentralized supervisor to evaluate either the former or the latter, thereby 

inducing a characterization in terms of "communication for observation" and 

"communication for control," respectively. 

5.3.1 Communication for observation and communica­

tion for control 

Definition 5.16 Associated with PDS (4.14) let i,jEl,i^ j . A supervisor 

Sj is said to depend on Sj if 

[3a G E0ii. Xj G arg(af)] V [3a G EC;i. Xj G arg(gf)]. • 

The above definition may be explained in the following way. Upon observ­

ing the occurrence of an event a G £0,j, S, must update x, with the value 

Xj := of(x). However, if Xj G arg(af), Sj needs to know the value of Xj at 

least once during the evolution of the system. Similarly, an event a G SCii 

is enabled at x if and only if gf (x) = 1. If Xj G arg(gf), to determine if 

the equality holds, Sj requires the value Xj, at least once during the system's 

evolution. This definition includes the case where Sj may require to update its 
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copy of Xj to reevaluate both its updating and guard functions. Based on the 

definitions of communication policies in Section 5.2, to update its copy of x,, 

Sj either receives the values of the variables in (a subset of) Xjj (see Defini­

tion 4.9) to update its Xij, or the values of a subset of Yjj to update its Y^ (see 

Definition 5.13), and, in turn, reevaluates its xly Examples of these two kinds 

of information are seen in information policies of communication policies 1 to 

4, and in the information policy of communication policy 5, respectively. 

Definition 5.16 is based on the functional dependency of Sj's updating 

or guard functions on Xj. This dependency implies that, at least once during 

the system's evolution, Sj needs to have a true copy of Xj to reevaluate its 

guard or updating function(s). That how often Sj needs to update its copy 

of Xj, either as many times as Sj does so or less, would be specified by the 

employed information policy, which is in turn inspired by the analysis of the 

PDS representation of the DSDES. 

Whereas the analysis of particular functional forms associated with a 

PDS reveals more specific points on when each supervisor "requires" to receive 

information from the supervisor(s) on which it depends, there is a general 

observation which pertains to this issue and proves useful in formalizing a 

supervisor's informational requirement. That is an updating function and a 

guard function are different from each other in one fundamental way. A typical 

updating function, of, is used to reevaluate x{ only when Sj observes an event 

a £ £0);. Thus, if Xj £ arg(of), Sj knows when it requires a true copy of Xj, i.e. 

when it observes an event a £ T,0<i. However, a guard function gf is used in 

the algebraic equation "gf (x) = 1." Thus, it should be always reevaluated, i.e. 

at all states x £ F™, by Sj to determine if event a £ £C)i should be disabled or 

enabled. Therefore, if Xj £ gf, Sj should always have a true copy of Xj, because 

otherwise it may be the case that Sj chooses the wrong control decision, which 
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either violates the specification or restricts the plant's behavior unnecessarily. 

This difference between the informational requirements of updating and guard 

functions justifies the following definition. 

Definition 5.17 Associated with PDS (4.14) let i,jEl,i^ j . A supervisor 

S; is said to require a communication for observation (CFO) from Sj if there 

exists an event a E £0ij such that Xj E arg(af). Similarly, a supervisor Sj is 

said to require a communication for control (CFC) from Sj if there exists an 

event a E £c,i such that Xj E arg(gf). • 

Once it is known that an update of the copy of Xj is required by Sj, it is 

reasonable to ask how the required information can be obtained by Sj. This 

issue is explained next. 

Definition 5.18 Associated with PDS (4.14), assume that an information 

policy is given. 

1. The information policy is called automatic if for every i,jEl,i^ j 

such that Sj depends on Sj, once the information policy determines that 

Sj needs to have the true copy of Xj, the following holds. If Xj gets 

updated, i.e. after the occurrence of some event a E E 0 j , Sj issues an 

event J^j(a). 

2. The information policy is called on-demand if for every i,j E I, i ^ j 

such that Sj depends on Sj, once the information policy determines that 

Sj needs to have the true copy of Xj, the following holds. First Sj sends a 

request to Sj in the form of an event ^jj(cr') (as a handshaking message) 

for some a' E £0,j, and then Sj issues an event J"ji{^ij{a')). 

3. The information policy is called mixed if for every i,jEl,i^ j such 

that Sj depends on Sj, once the information policy determines that Sj 
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needs to have the true copy of Xj, the following holds. Either the required 

information is sent as in the case of an automatic policy or as in the case 

of an on-demand policy. • 

Let Sj depend on Sj, where i,j e / , and i ^ j . Whereas this fact implies 

that Sj requires Xj to compute its guard or updating functions, observe that 

Definition 5.18 relies on the fact that it is the information policy which de­

cides when a true copy of Xj is required by Sj. The definition classifies the 

information policies, which can be defined for PDS (4.14), based on if the in­

formation required by Sj is sent for it without its request or not. Accordingly, 

an automatic information policy transfers the required information through 

one single J^j event, issued by the owner of the private information, Sj. Once 

the information policy decides that S, needs a true copy of Xj, which has been 

updated as a result of observing an event a G S 0 j , this J? event will be is­

sued. Therefore, in the absence of losses and delays, Sj needs not worry about 

anything, but updating its copy of Xj upon receiving the communication. On 

the other hand, in an on-demand information policy, the owner of the required 

information, Sj, waits to receive a request from Sj, which is itself an event 

J^j(cr'), issued after an event a' € £0)j. This request is then replied by Sj 

through an event J?ji(J?ij {&'))• Finally, in a mixed information policy, both 

types of automatic and on-demand information transfer schemes are employed 

for disjoint subsets of J? events. 

The difference between the informational requirements of updating and 

guard functions affects the choice of the information policy, as will be ex­

plained next. The fact that an automatic information policy solely relies on 

the updates made by the owner of the required information, makes it generally 

useful for cases where Sj requires both a CFC and a CFO from Sj. This is 

in fact the type of information policy taken by all communication policies in 
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Definitions 5.3, 5.4, 5.6, 5.10, and 5.15. An on-demand information policy is 

however, more limited to use, as stated in the following. 

Lemma 5.12 Associated with PDS (4.14), assume that an information policy 

is given and let i, j G I,i ^ j . If Sj requires a CFC from Sj, but does not 

require any CFOs from Sj, then an on-demand information policy cannot be 

employed to provide S* of the true copy of Xj. • 

The above lemma states that when a CFC is required by a supervisor, an 

on-demand policy cannot be employed singly to guarantee the correct reval­

uation of guards. However, if no supervisor requires any CFCs from other 

supervisor(s), an on-demand policy may be employed, successfully. This is 

shown in the next subsection. 

5.3.2 PDSs with independent guard functions 

In this subsection, we study the PDSs whose supervisors do not require any 

CFCs. Following Definition 5.17, for every such Sj it holds that its every guard 

function is solely a function of £;. We start by introducing this property at 

the DSDES level. 

Definition 5.19 Associated with the DSDES in Proposition 4.3, let V = 

{v G i(r) | r G R}, i G i", and a G ECji. A guard function Qi(a) is called an 

independent guard function (IGF) if 

Vv, v' G V. v G Gi(a) A vt = v[ = • v' G £;(a). • 

In simple words, if a label is in an IGF Gi(a), every other label whose zth 

component is the same as that label is in the IGF, too. In a PDS representa­

tion of a DSDES, IGFs appear as functions which depend on their associated 

supervisor's private variable, only. The following result clarifies this fact. 
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Lemma 5.13 Let PDS (4.14) represent the DSDES in Proposition 4.3, i G / , 

and a G Ec>i. For every IGF Qi{a) it is possible to compute gf such that 

arg(flf) = {Xi}. 

Proof: Recalling Algorithm 4.1, we have the following. 

( 

Vi G / , VCT G S. < 

gf (v) = 1; Vv G £(<r) 

flf(v)=0; V v G l W ( r ) \ f t ( < r ) 

flf (v) = arbitrary; VvGF p
n \ UrGR^(r) 

Next, for every v G F™ \ Urefi^(r) and each v' G Ur€_R£(r) do the following 

assignment. 

[flf(V) = 1 A ^ = < = * flf(v) = 1] and 

[gf(v') = 0Ai; i = ^ = • flf(v)=0] 

This, together with the fact that Qi{a) is an IGF, and Definition 5.19, lead to 

the following. 

Vz G / , Va G S,Vv, V G F£. Vi = v\ «=• flf(v) = flf (V), 

i.e. every such flf is a function of X{ only, and arg(gf) = {x,}. • 

For a PDS whose guard functions are all IGFs, we introduce a communi­

cation policy, whose information policy is on-demand. We start by defining the 

set of the copy variables which keeps, at the transmitter site, the last values of 

the private variables of the transmitter, which are sent to another supervisor. 

Definition 5.20 Associated with PDS (4.14), for every i,jel,i=£ j , such 

that Sj depends on Sj, define Xitjj = [x\^ \ k G J} as a set, kept by Sj, 

whose element xf stores the value of x^ G X,j which is sent by Sj to Sj. Let 

every variable in Xijj is initialized to 0. Furthermore, the values in Xijj are 

updated as follows. 

Vi, J E,i^j,Vk£ J, Va G E^d. x^ G J?ji{a) =4> xk
idj = x% • 
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In other words, under the instantaneous and lossless communication chan­

nels, x^jj has the same value as x\y These sets of copy variables are used in 

communication policy 6, explained next. 

Definition 5.21 Associated with PDS (4.14), for every i £ I and each a G 

EC)i assume that gf is an IGF. For PDS (4.14) and its EFSM implementa­

tion (4.15), communication policy 6 is as follows: For every i,j€.I,i=fi j , let 

Dji be a Boolean variable equal to 1, and define the following. 

Hji = {yji}, £ ^ = 0 , J:yj=EoJU{Jr
kj{a) | kel\{j} AaGE0,fc AXJ G arg(a£)}, 

^ w ^ ^ , f iViih if ZiGarg(aJ) 
1) Ma G S 0 j . J?ji(o-)=< , and 

[ 0; otherwise 

2) V ^ ( a ) G £ ^ - \ S0iJ. SaW)) = {tfjZXn I 4 ^ < « ' A A; £ J} . 

Here, variable x-1 • • G -XJJJ is as introduced and updated in Definition 5.20. • 

Proposition 5.5 A solution to a special case of Problem 5.1: Associated with 

Problem 5.1, if every guard function in PDS (4.14) is independent, the network 

of supervisors is strongly connected with lossless channels and if communica­

tion is instantaneous, communication policy 6 insures that L(T>) = E and 

Lm(V) = E. M 

Example 5.7 Figure 5.4 shows a plant G and a specification S for it. Having 

/ = {1,2}, E0ji = ECii = {o;i,/3i}, and £0,2 = SCj2 = {«2}> it can be verified 

that S is also a centralized supervisor. An ALM £ is defined for S as follows. 

^ o ) = {(0,0)}, £(r1) = {(l,0)}, £(r2) = {(2,0)}, £(r3) = {(2,1)}, 

£(r4) = {(1,1)},£(r5) = {(0,1)}, £(r6) = {(3,1)} 

As a result, we have the following guard functions and the updating functions 

in Table 5.10. 
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(a) 

Figure 5.4: (a) A plant G. (b) A specification and centralized supervisor S. 

Table 5.10: Updating functions for the DSDES in Example 5.7 
V 

A{auv) 
V 

A(Puv) 
V 

A(a2,v) 

0,0 
1,0 
1,0 
2,0 

0,0 
0,1 

1,0 
0,0 

2,0 
1,0 

1,0 
1,1 

1,1 
2,1 

2,1 
3,1 
2,0 
2,1 

0,1 
3,1 

1,1 
0,1 

3,1 
0,1 
3,1 
0,1 

Gi{<*i) = £(r0) U £(ri) U £{U) U i(r5) U £(rs) = {(0, 0), (1, 0), (1,1), (0,1), (3,1)}, 

QiW = £(n) U £(r2) U e(r3) U £(r4) U £(r6) = {(1, 0), (2,0), (2,1), (1,1), (3,1)}, 

g2(a2) = £(r0) U £(n) U £(r2) = {(0, 0), (1, 0), (2, 0)}. 

Observe that the common finite field is F5 = {0,1, 2, 3, 4}, based on which a 

PDS representation of the DSDES is shown in Table 5.11. To compute the 

updating and guard functions, the following assumptions are made on the 

unreachable points in FJ-. 

• To compute g®1, we assume that a\ is also enabled at points (z, 2), (i, 3), (i, 4), 

where i G {0,1, 3}, and at (3, 0), all unreachable. 
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Table 5.11: Computed polynomials for updating and guard functions of the 
DSDES in Example 5.7 

2{xx + l)(xi + 2)(xi + 3)(x2 + 1)(^2 + 2)(x2 + 3) 
(3xix2 + xi + 4x2 + 3) 

xi(x! + l)(xi + 2)(x2 + l)(x2 + 2)(x2 + 3)(xix2 + 2xi + 2x2 + 2) 
4(x2 + l)(x2 + 2)(x2 + 3)(x2 + 4) 

0?1 (x) = (xi + l)(xi + 3)(2x? + 3xi + 2) 
g?1 (x) = 4xi(xi + l)(3x? + 3xi + 1) 
gg2(x) = 4(x2 + l)(x2 + 2)(x2 + 3)(x2 + 4) 

• To compute gf1, we assume that (5\ is also enabled at points (i, 2), (z, 3), (z, 4), 

where i E {1,2,3}, and at (3,0), all unreachable. 

• To compute 022, we assume that a2 is also enabled at points (3,0) and 

(4,0), both unreachable. 

• To compute a^2, we assume that x2 is 1 in the next states of points (3,4) 

and (4,0), reached upon the occurrence of a2. Notice that these two 

points are both unreachable. 

• No further assumption is made for computation of a"1 and af1. 

Observe that all the guard functions are independent. To use Algorithm 4.2, 

observe that h = 3 and #j = (xf^x^x^), for each i E {1,2}. Guards and 

actions are then computed as in Table 5.12. To simplify the guards and actions, 

we make use of the unreachable points, as explained in the following. 

• To compute #i(ai), we assume that a.\ is enabled when {x\x, x\x, x\x) is 

(101) and (111), too. To compute gi(/3i), we assume that Pi is enabled 

when (xf^xf^x^) is (101), (111), and (110), too. 

xi := a?1 (x) 

* i : = a f ( x ) 
x2:=o?2(x) 
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To compute ai(xj[1,ai), we assume that when the Boolean encoding 

(x^x^x^^'^x^x^) is equal to (i,j), where i € {2,4,6} and j € 

{0,1, 2, 3,4, 5, 6, 7} and when i = 0 and j € {2, 3,4, 5, 6, 7}, in the next 

state reached upon the occurrence of a.\, we have x\x = 1. To compute 

ai(x2
n, ai) , we assume that when encoding (^u^u^i i , x\2x\2x

l
22) is equal 

to (i,j), where i £ {0,1} and j £ {3, 5, 7}, in the next state reached upon 

the occurrence of cti, we have x\x = 1. 

To compute ai{xl
n,pi), we assume that when the Boolean encoding 

(xiixii:rii'x22x22a;22) is equal to (i,j), where i € {0,4,6} and j € 

{0,1, 2, 3,4, 5, 6, 7} and when i = 2 and j £ {2, 3, 4, 5, 6, 7}, in the next 

state reached upon the occurrence of Pi, we have x\x = 1. To compute 

ailxli, Pi), we assume that when encoding (^i i^n^n, x\2x\2x\^) is equal 

to (i,j), in the next state reached upon the occurrence of Pi, we have 

x\x = 1. Here, i <E {0,4,6} and j e {1, 3, 5, 7}, or i = 2 and j G {3, 5, 7}, 

or i e {0,1} and j e {2,4, 6}, or i = 0 and j = 0. 

No further assumption is made to compute #2(^2) o r ^ ' s associated 

actions. 

Following communication policy 6 and using Tables 5.11 and 5.12, the com­

munication among the two supervisors is as in Table 5.13. Observe that only 

Si depends on S2, i.e. only the former needs to receive information from the 

latter. Accordingly, since both a"1 and af1 depend on x2, each time Si ob­

serves cti or Pi, it sends a request to S2. Upon the receipt of this request, 

S2 sends a copy of x22, which is the only Boolean variable which can change, 

to Si if S2 finds out Si does not have the latest copy of this variable, i.e. if 

£22 7̂  x\ 22- Notice that x\ 22 is updated each time x\2 is sent out according to 
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Table 5.12: Actions and guards for Example 5.7 in EFSM framework 
O l ( Z i i 

ai(x2
u 

a\{x\i 
ax(x\x 

ai(x2
n 

a\{x\i 
a2(x\2 

a2(x\2 

a2{x\2 

9\{oii) 

9iW 
92(012) 

on) = 
Oil) = 

on) = 
0i) = 
0i) = 
A) = 
Oi2) = 

Oi2) = 

a2) = 

= xn 

— x22 

0 
xn 

T 0 1 

0 
xn 

x1 1x1 1x1 1 -t- xnxl2 

0 
0 
X 2 2 

T^^ 1 IT* 

+ x2
n 

Definition 5.20. 0 

Table 5.13: Communication amongst supervisors in Example 5.7 based on 
policy 6 

SuM = SuiPi) = {1} 

5.3.3 P D S s wi th independen t upda t ing functions 

An updating function also can be independent of external variables. If all 

updating functions associated with a supervisor Sj are independent of external 

variables, then Sj's observation of the system's behavior is independent of 

others. In the sense of Definition 5.17, this is equivalent to saying that Sj does 

not require any CFOs. In the following, we first formalize the notion of an 

independent updating function and then show its advantage. 
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Definition 5.22 Associated with the DSDES in Proposition 4.3, let V = {v G 

£{r) | r £ R}, i £ I, and a£T,0ti. An updating function Ai(cr,.) is called an 

Independent Updating Function (IUF) if 

Vv,v'ev. Vi = v[ => Ai(<T,v) = M°y)- D 

In simple words, the value of function Ai(a,.) solely depends on the value of the 

ith. component of v G V. In a PDS representation of a DSDES, IUFs appear 

as functions which depend on their associated supervisor's private variable, 

only. The following result clarifies this point. 

Lemma 5.14 Let PDS (4.14) represent the DSDES in Proposition 4.3, i £ I, 

and a £ £0)i. If Ai(a,.) is an IUF, it is possible to design of such that 

arg(of) = {xi}. 

Proof: Recalling Algorithm 4.1, we have the following. 

, af(v) = A(<r,v); Vv6ft(ff) 
Vz G / , V<r G E. ' 

of (v) = arbitrary; Vv G F£ \ £(<T) 

Next, for every v G F™\Qi(a) and each v' G Qi{a) do the following assignment. 

vl = v[ = > af(v) = Ai(a,V) 

This, together with the fact that Ai(o~) is an IUF and Definition 5.22, lead to 

the following. 

Vi G / , Vcr G E,Vv, v' G ¥;. Vl = v[ => of(v) = flf(v'), 

i.e. every such of is a function of x, only, and arg(of) = {XJ}. • 

Let i,j, k £ I, i ^ j , and k ^ j . If one of the Sj's associated updating 

functions depend on Xj, any errors in the copy of Xj, which is stored by Sj, will 

affect the correctness of Xi, too. Such an error might be the result of a lossy 

communication channel between the two supervisors or as a result of an error 

in computing Xj in Sj, which might have resulted from an erroneous copy of an 
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external variable xk, on which an S/s updating function depends. Motivated 

by Definition 5.11, the following definition specifies the set of supervisors whose 

private variables may affect Xj. 

Definition 5.23 Recall JV^ = {j £ I \ 3a £ E0ii. Xj E arg(af)} for every 

i E I, from Definition 5.11. Define set O^ C / recursively as follows. 

M^QO^ A [Vj e / . j E a* = • V/c G JV0.. fcGOJ D 

Lemma 5.15 We have the following. 

Vz E J.Vj EO^VaE E o J . xk E arg(aj) = * A; G C \ 

Proof: Follows directly from Definition 5.23. • 

What the above definition and lemma suggest is that the correct reevaluation 

of Xi depends on the availability of the correct copies of Xj to Sj, where j E 

Af^. Also correct evaluation of the set of such XjS, in turn, depends on the 

availability of the correct copies of x^s to the corresponding SjS, where k 

belongs to a subset of O^. 

The dependency of x\ on the external variables can potentially make 

it erroneous in the occasion of a communication error, say one which may 

happen in lossy channels. As a result, the whole PDS would become prone to 

propagation errors. Furthermore, once Xi is computed wrongly as a result of an 

erroneous copy, of say Xj, in general Sj cannot reevaluate it correctly by only 

receiving the correct copy of Xj. To explain this, assume that for some a E £0jj 

we have X\ := a^(xi,Xj). Denote by Vi, vf, Vj, and v'j the (correct) current 

value of Xi (before observing a), the wrong next value of Xi (after observing a), 

the correct copy of Xj, and the erroneous copy of Xj, respectively. Assume that 

first the wrong value of Xj is computed, i.e. vf := a^(fj,f|). As a result, Sj 

enters a "faulty state," at which wrong control decisions may be made. If now 

Sj wants to get recovered from this condition, it should not only receive Vj, but 
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also use Vi, rather than v\. This implies that Sj should store the values of X* 

as they change along the system's evolution. Now assume that Sj's updating 

functions does not depend on external variables and Sj requires no CFOs from 

another supervisor, say Sj. In this always "trustable," and even 

if Vj is received, upon which Sj enters a "faulty mode" issuing wrong control 

decisions, it can be recovered from this condition through simply receiving Vj, 

with no need to store the information on the previous values of X{. 

The above argument on "fault detection and recovery" is beyond the 

scope of this work and is not formalized here. However, it gives some insight 

to distinguish how "safe" a PDS with IUFs is and why "fault recovery" is 

simpler for it. This informal discussion motivates the study of IUFs, their 

characterization, and existence conditions in more details, which is done in 

Section 5.4. 

5.4 IUFs, DSDES behavior, and state repre­

sentations 

This section continues our study of PDSs with independent updating functions 

by first characterizing IUFs, and studying conditions of their existence, and 

the ALMs which can lead to IUFs. 

5.4.1 Weak joint observability 

It turns out that the existence of a DSDES possessing only independent up­

dating functions, depends directly on the structure of the closed and marked 

languages of S. In particular, this is related to a property of the language of 

supervisor S, called weakly joint observability. This property, which is moti­

vated by a definition of joint observability in [28], was originally defined in [47] 
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and is extended to include "marking" now. In simple words, joint observabil­

ity requires that within the closed behavior (respectively, marked behavior) of 

the plant, any legal-illegal pair of strings (respectively, any marked-unmarked 

pair of strings) can be told apart by at least one supervisor. To simplify the 

notation, let us first define two equivalence relations. 

Definition 5.24 Two strings s, s' G E* are called observationally equivalent, 

denoted by s =j s', if for all i E I it holds that Pj(s) = Pi(s'). Also let 

Puo :E* —• E*0 be the natural projection which erases from a string sGE* all 

its observable events. Define s =v s' if Puo{s) = Pu0(s'). • 

It can be easily shown that both =/ and =u are reflexive, symmetric, 

and transitive, hence proving the following result. 

Lemma 5.16 Relations = / and =u are equivalence relations on E*. • 

Denote the equivalence class of s G E* by [s] = {s' | s' =/ s}. Recall 

from [30] that two strings s, s' G E* are trace equivalent if s = / s' and s =v 

s', therefore two observationally equivalent strings are not necessarily trace 

equivalent as their natural projections onto events in Euo might be different. 

A jointly observable language is characterized as follows5. 

Lemma 5.17 (Lemma 3.1, [84]) Let L and K be two nonempty languages 

such that6 K C L C S * . K is called Jointly Observable (JO) with respect to 

L and (E0ii, • • • , E0i„) if and only if 

Vs EK, VS' G L \ K, 3i e I. P(s) ^ Pi(s'). M 

5Lemma 5.17 was originally introduced as the definition of a jointly observable lan­
guage in [28], but was shown later to be equivalent to a new definition for—what is then 
called—observable languages in [84]. Here, for notational convenience we choose the original 
definition. 

6While the original definition is for any two languages K and L, we assume that K C L. 
This is plausible since we use the definition for the case where L and K are respectively the 
plant's and the centralized supervisor's languages (see Assumption 5.4). 
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For control purposes one should differentiate between closed and marked 

languages. Having this in mind, Lemma 5.17 can be equivalently stated for a 

language and its prefix-closure as follows. 

Lemma 5.18 Let L and K be two nonempty languages such that K C L C 

E*. K is called Jointly Observable (JO) with respect to L and (E0)1, • • • , E0)„) 

if and only if 

Vs, s' G I . s G ~K A s EE7 s' = » a' € A\ (5.6) 

V s , s ' € K s e K A s = / s' ==» s' e K (5.7) 

• 

Weak joint observability weakens the requirements of joint observabil­

ity by asking for the distinguishing property between legal strings and the 

minimal-length illegal strings as denned next. The reason is that, from a con­

trol perspective, one cares about the first illegal move regardless of any of its 

feasible future behavior in the plant. 

Definition 5.25 Let L and K be two nonempty languages such that K C 

L C E*. K is called Weakly Jointly Observable (WJO) with respect to L and 

(E0)1, • • • , Eo n) if the following conditions hold. 

Vs, s' e ~K, VCT e E. so- e ~K A s'a e 1 A S = / s' = • s'a G ~K (5.8) 

V s . s ' e f . s G K A s =i s' ==• s' G if (5.9) 

• 

When it is clear from the context, (E0>i, • • • , E0>n) will not be mentioned. 

190 



Lemma 5.19 Let 0 ^ K C L C E*. If A" is JO with respect to L, K is WJO 

with respect to L. • 

Assumption 5.4 As can be seen, weak joint observability assumes that K C 

L. In general, when K and L are respectively taken to be Lm(S) and Lm(G), 

where S is the supervisor, designed using supervisory control theory, for plant 

and G, this does not hold. However, such a supervisor S implements the 

supervisory control map in the following sense: 

L m ( S ) n L m ( G ) = K A L(S) n L(G) = tf. (5.10) 

Therefore, in the subsequent discussion, we may safely assume that Lm(S) C 

Lm(G). D 

We finish this part by proving a result which is used later in subsection. 

Definition 5.26 A language A C £* is called trace-closed if the following 

holds. 

V s , s ' € S * . s = 7 s' A s =u s' A s e A => s' e A D 

Trace-closedness is inherited by K when it is jointly observable with respect 

to L. 

Lemma 5.20 Let 0 ^ A ' C L C £ * , L b e trace-closed, and K be JO with 

respect to L. Then K is trace-closed. 

5.4.2 Undecidability of verification of weak joint ob­

servability 

It is proved in [31] that checking joint observability of K is decidable if L 

is trace-closed, otherwise it is undecidable in general. Inspired by the proof, 
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in the following it is shown that verification of weak joint observability is 

undecidable. We begin by recalling the "Post correspondence problem." 

Problem 5.2 (Post Correspondence Problem (PCP) [85]) Fix a finite alpha­

bet T and let M. be an infinite set of dominos of m e Z + types, where a 

domino of type i, denoted by di (1 < i < m), is characterized by a top string 

Ui E T+ and a bottom string uii <E T+. 

A match is a sequence of k dominos dixdi2 .. .dik, where VI < / < k. ii € 

{1 ,2 , . . . , m} such that the concatenated top string is identical to the concate­

nated bottom string, i.e. u^.u^ uik = w^.w^ wik. 

Given an instance of Post correspondence problem, does there exist a match? • 

To avoid trivial solutions we assume that for all 1 < i < m we have 

Ui 7̂  Wi (otherwise di would be a match of length 1). It is known that PCP is 

undecidable [85]. 

Example 5.8 Let F = {a, b}, m = 2, d\ = ^ and d2 = ^ . There is a match 

of length 3 with i\ — i2 = 2 and i3 = 1. 

a 

aa 

a 

aa 

aab 

b 

0 

For two regular languages K and L over E with K C L, we show that 

the problem of deciding whether K is WJO with respect to L is undecidable 

by reducing PCP to WJOc, namely, an instance of PCP has a match if in the 

corresponding instance of WJO K is not WJO7 with respect to L. 

Theorem 5.6 Weak joint observability is undecidable. 
7With abuse of notation, WJO is used both as an abbreviation, and as the name of the 

corresponding decision problem. 
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5.4.3 Weak joint observability as a necessary condition 

for the existence of IUFs 

This part establishes one side of the relationship between the language of a 

centralized supervisor, i.e. a behavior, and its state realization. The result 

was first shown in [79] in EFSM framework and, for the sake of completeness, 

is proved here in DSDES framework. 

Lemma 5.21 Associated with the DSDES in Proposition 4.3, let i E I and 

for each a E £0ij assume that the updating function Ai(a,.) is independent. 

Then the following holds. 

V S , S ' G L ( S ) , V v e V . Pi(s) = Pl(s') = > A(s ,v ) = A(s ' ,v ) 

Corollary 5.1 Associated with the DSDES in Proposition 4.3, let i £ I and 

for each a G £0ij assume that the updating function Ai(a,.) is independent. 

Then the following holds. 

Vs G L(S), Vv G V. A ( s , v ) - A(Pi(s),v) 

Proof: Lemma 5.21 holds for every s,s' E L(S), including the case where 

s' = Pi(s). m 

The above results imply that every two observationally equivalent strings lead 

to the same state. 

Corollary 5.2 Associated with the DSDES in Proposition 4.3, for every i G / 

and for each a G E0ji assume that the updating function Ai(a,.) is indepen­

dent. Then the following holds. 

VzG/ ,Vs,s 'GL(S) ,VvG V. s=lS' = • A( s ,v ) = A(s' ,v) = A(i3i(s),v) 

Proof: Corollary 5.1 holds for every v G V and specifically for v = 0. • 
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Proposition 5.7 Associated with the DSDES in Proposition 4.3, let £(.) be 

an ALM which labels the states of S = (R, E, £, r0, Rm) such that for every 

i € I and each a G E0ji, Ai(a,.) is an IUF. Then Lm(S) is WJO with respect 

to Lm(G). 

5.4.4 Some state representations which lead to IUFs 

By Proposition 5.7, if for every supervisor each updating function associated 

with every event is independent of other supervisors's private information, 

the behavior of the centralized supervisor enjoys WJO property. The other 

side of this relationship, i.e. if for a WJO behavior we can compute IUFs for 

every supervisor and associated with all its events, seems much more involved. 

First of all, there are different possible state representations for a given be­

havior and there is not a sufficiently rich theory which determines which ones 

are amenable to IUFs. Second, given such a state representation, it can be 

shown, through examples, that the existence of IUFs depends on the choice 

of the associated ALM (see Chapter 3 or [50]), too. Moreover, a general con­

structive procedure for finding a suitable ALM for a specific representation 

of the behavior that yields IUFs is not yet known to exist (even worse, the 

problem may be undecidable). Therefore, the sufficient condition(s) for the 

existence of IUFs apparently are not restricted to WJO property and include 

state representations as well as ALM assignment of state labels. 

This motivates the study of specific constructions for which IUFs can be 

computed. To this end, two types of results are derived here. The first type 

studies specific state representations which are amenable to IUFs and the 

second class of results introduce specific constructive procedures for ALMs 

which yield IUFs. 
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Table 5.14: Updating functions for Ai and A2 of Example 5.9. 

o-i 

a.\ 
a.\ 
Pi 
a 
a 

V 

0 
2 
1 
0 
2 

Ai(ai,v) 

1 
1 
0 
2 
0 

&2 

cx2 

a 
Pi 
— 

— 

v' 
0 
1 
0 
— 

— 

A2{cT2,v') 

1 
0 
0 

— 

— 

Lemma 5.22 For i e / let Ai C E* be a language recognized by A; = 

(Qi,Tii,r}i, go,,, Qm,j) such that for alii E I we have 

Vg, g' e Qu Va G Ei \ S0ii. g' = m(q, a) => q' = g, (5.11) 

i.e. all unobservable transitions to agent i are selfloops. Let A = A\ \\ • • • \\ An C 

E* be the synchronous product of Aj's recognized by A = Ai| | • • • ||A„. There 

exists a finite ALM yielding IUF's for (almost) any such A. • 

Example 5.9 Figure 5.5-a shows two recognizers Ai and A2 where Ei = 

S0,i = {a, ot\, Pi}, E2 — {a,a2,P2}, and E0>2 = {a,a2} and all states are 

assumed to be marked. Clearly (5.11) is satisfied. To arrive at recognizers Ai 

and A2 in part (b) of the same figure, we notice that while the common event 

a makes a selfloop transition at state 0 of Ai, it also makes a state change 

at state 0 of A2. Therefore, by the modification (•&) in the proof, state 0 is 

unfolded yielding state 2 of Aj. Labeling the states of recognizers Ai and 

A2, we would have the corresponding updating functions A\ and A2 as in 

Table 5.14. 

Recognizer A is then computed as the meet of Ai and A2 as can be 
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(a) (b) (c) 

Figure 5.5: (a) Recognizers Ai and A2. (b) The modified recognizers Ai and 
A2 whose states are labeled, (c) The meet of the modified recognizers whose 
states are labeled by the joint labeling of the ALMs for Ai and A2. 

seen in part (c) where the tuple formed by the two ALMs for Ai and A2 is 

used as the ALM for A for which the updating functions in Table 5.14 are 

independent. 0 

Next we show that Lemma 5.22 can be applied to the case where a 

language is trace-closed. 

Lemma 5.23 For a trace-closed language A 6 S* there exists a state repre­

sentation for which there exists an ALM yielding IUFs. 

Proof: Following the fact that A is trace-closed, for each string in A all 

members of the equivalence class of that string modulo =/ belong to A, i.e. 

A = (J.e / p-lPi(A) and A = Ax\\ • • • \\An. Then each P^A) can be recognized 

by Aj = (Qi, Ej, rji, qoti, Qm%i) satisfying the condition of Lemma 5.22, by which 

the required ALM is computed. • 

An intuitive application of the above result is where a (supervisor's) 

language, Lm(S), is derived as a the synchronous product of a number of 

component languages, Lm(Sj), where events in EUOji appear as selfloops in S*. 
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Another application is the case where the plant's behavior L(G) is trace-closed 

and S is JO with respect to Lm(G). 

Corollary 5.3 If Lm{G) is trace-closed and Lm(S) is JO with respect to 

Lm(G), there exists an ALM for S yielding IUFs. 

Proof: By Lemma 5.20, S is itself trace-closed and then Lemma 5.23 guaran­

tees the existence of the required ALM. • 

In light of Lemma 5.22, every substructure derived from such a recognizer 

A, as described in Lemma 5.22, may be assigned the same ALM. This point 

is clarified next. 

Definition 5.27 Let B = (Q, E, £, qQ, Qm) be a recognizer. A recognizer B = 

(Q, E, £, q0, Qm) is called a subrecognizer of B if Q C Q, Qm = Q n Qm, and 

VcreE*, Vq,q'eQ. q' = i(q,a) => q, = £(q,a). D 

Corollary 5.4 Let A = (Q, E, ^, q0, Qm) be a recognizer for which there exists 

an ALM £ yielding IUFs and A = (Q,E,£, q0, Qm) be a subrecognizer of A. 

Then £, restricted to the states of A, is an ALM for A yielding IUFs, too. 

Proof: For every two states q,q' E Q and each string s 6 E*, with q' = 

£(q, s) e Q, and every label v G £(q) assigned by the ALM, and the updating 

function A it holds that 

q' = i(q,s) =^> q' = aq,s) [Defn. 5.27] 

<:==> A{s,v) e£(q). [Lemma 4.3] 

Thus the same updating function applies to A. In particular, this holds for 

the case of the independent updating functions, too. • 
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5.4.5 Construction of IUF-yielding ALMs 

The applicability of the results such as Lemma 5.22 is limited to cases where 

a centralized supervisor can be obtained as the synchronous product of n 

automata, each defined on an observable subalphabet E0ii. Apart from such 

cases, in general finding IUFs for every supervisor and all its events may be too 

much to expect, both because this may not be possible for a given state rep­

resentation and since no constructive procedure for obtaining IUFs is known. 

Accordingly, one approach to tackle the problem of computing IUFs is 

to narrow the study to find out sufficient conditions and constructive ALM-

building procedures under which the updating function, associated with an 

observable event of a supervisor, becomes independent of other supervisors' 

private information. On top of being a reasonable step to begin with, making 

even a single updating function independent of external variables is important 

in its own, say when the supervisor's communication or computation load asks 

for such reduction. In the following, we follow this idea by first reducing the 

problem of finding ALMs to a problem in terms of Latin squares, and then 

employing this characterization to propose constructive procedures to obtain 

IUFs for some particular observable events of a supervisor. 

Latin squares and ALMs 

By Definition 5.22, to arrive at an IUF for an event a 6 £0j;, the ALM-

assigned labels should be such that no v; is mapped, via transitions labeled 

by a, to more than one v[, where Vi ^ v[. In Theorem 3.2 of Chapter 3 we 

used the structure of a Latin square to prove the existence of an ALM for a 

given centralized supervisor. It turns out that this structure might be useful 

in finding ALMs yielding IUFs, too. In what follows, we employ Latin squares 

for this purpose. 
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Definition 5.28 [78] Fix a set F of m symbols. A Latin square of side m 

is an m x m array in which each cell contains a single element from T, such 

that each element occurs exactly once in each row and exactly once in each 

column. • 

Figure 5.6 shows two Latin squares of side 5, with horizontal and vertical 

coordinates numbered 0 to 4, and with symbols taken from F = {TQ, ri,r2,r3,r4} 

(for now ignore the arrows). We refer to the bottom row and the leftmost col­

umn as the first row and first column, respectively. Observe that a Latin 

square is robust with respect to changing the order its rows and columns. 

4i r4 r0 n r2 r3 
i o 

3| r3 r4 r0 n r2 

2i r2 r3 r4 r0 n 

l] n r2 r3 r4 r0 

Oi r0 n r2 r3 r4 
L Jf^. — 
1 0 1 2 3 4 

(a) 

Figure 5.6: (a), (b) Two Latin squares of side m = 5 with F = 
{ro,ri, r2,r3, r 4 } . v\ and v-i denote the horizontal and vertical components 
of a vector v assigned by an ALM to a state r*, (i = 0,1, • • • , m — 1), respec­
tively, (c) An example of an automaton whose states can be labeled by the 
Latin squares in parts (a) and (b) (S0]1 = {a\,Pi}, E0)2 = {a^})-

The fact that there is a copy of every element of F in each row and in 

each column makes this structure appealing for building ALMs. To explain 

the idea, let8 | / | —2. If F — R, i.e. symbols are essentially the states of 

the centralized supervisor, each state has "exactly" one target state at which 

it can arrive using a transition labeled with an event from S0)1 (respectively, 

8 Lat in hypercubes are used in cases tha t | / | > 2 [50]. 
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r\ r2 r0 n r3 

o 

r3 r4 ri r2 r0 

r2 r3 r4 r0 n 

r\ r0 r3 r4 r2 

(b) (c) 



S0i2) along the horizontal (respectively, vertical) axis. In other words, for every 

transition from a source state rt to a target state rj, (j ^ i)9 labeled by an 

event a G E0il (respectively, (3 G £0,2), there exist one copy of rj and one copy 

of Tj in each row (respectively, column) of the Latin square. Following the 

definition of an ALM in Definition 4.6 and its associated updating functions 

(see Lemma 4.2), state r̂  is assigned the set of integer vector labels whose 

positions in the Latin square are denoted by T{. 

Part (c) of Fig. 5.6 shows an automaton Hi with state set Q = {r0, n , r2, 

r3,r4}. Any of the Latin squares in parts (a) and (b) (and in fact any Latin 

square of side 5) may be used to define an ALM for Hi. 

Latin squares and IUFs 

Continuing our observation on Fig. 5.6, notice that out of the two squares 

in parts (a) and (b), only the former yields an IUF for o.\. To explain this 

point, let us denote a transition from r,- to r^, (j ^ k), by an arrow from 

Tj to r\. along Sj's associated axis; for example, a state change from r0 to r\ 

using Qi G E0>i in part (c) is represented by a horizontal arrow from r0 to r\ 

in the first row of the Latin square in part (a). Arrows are shown for rows 1 

and 5 of both squares. Observe that in part (a) arrows map all states in one 

column consistently to states in another column; e.g. for any row (say, 5), a.\ 

triggers a transition from a state in column 1 (r4) to another state in column 2 

(ro) whenever such transition is defined. However, this is not the case in part 

(b); for example, whereas in row 1 the first column is mapped to the second 

column (corresponding to r0-ri transition), in the fifth row the first column is 

mapped to the third column (corresponding to the T^-TQ transition). In other 

words, in part (a), regardless of which row they are in, the arrows induce a map 

9To see how selfloops are treated see [50]. 
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which assigns a column to another column, whereas in part (b) this assignment 

depends on the row number, too. As a result, the first Latin square defines 

an ALM yielding an IUF for a\, whereas in part (b) the updating functions 

associated with a.\ depend on row numbers, i.e. S2's labels. 

Remark 5.4 According to the suggested arrangement for obtaining IUFs, it 

is quite possible that a state with no outgoing arrow is mapped to another 

state by the requirement that the mapping be done regardless of the row 

number (e.g. in Fig. 5.6-a, row 1, r2 is mapped to r3 following the fact that 

in other rows, the cell in column 3 is always mapped to the cell in column 4). 

However, adding such transitions does not contradict the transition function 

of the supervisor since their corresponding guard formulas would evaluate to 

false at the source states. • 

The above observation may be formalized as follows. 

Definition 5.29 Let S = (R, £,£, r0, Rm) be a centralized supervisor and 

i E I. For an event a G S0)i, denote by rjlf a z-tuple of states (q0, <?!,••• , qz-i), 

where z G N , and 

1) Q = {<7o,<?i,--- ,Qz-i} Q R, 

2) Vj,/cG {(),••• ,z-l},(j?k). qj^qk, 

3) Vj G {0, • • • , z - 2}, qj+1 = £(qj, a), and 

4) \/q e R. q0 = £(q, a) => q = qz_v 

Index d G N is to number a tuple when there is more than one such tuple 

associated with a. Also let A^ = {rf^ \ 3m G N. d <E {1, • • • , m}}. D 

Observe that by items 3 and 4 of the above definition and the fact that 

S is a deterministic recognizer, an cn-labeled transition from a state qj G Q 
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would arrive at a state in the same set. In other words, there is no outgoing 

a-labeled transition from the states in rf^ and in this sense it is a maximal 

tuple. However, there may exist ^-labeled transitions leaving some states in 

R\Q and entering a state in {qi, • • • , qz-\}. 

Definition 5.30 Let S = (R, T,,£,r0, Rm) be a centralized supervisor, Q = 

{#0) <7i> • • • > Qz-i}, and vj1^ = (qo, <?i, • • • ,qz-i) be defined as in Definition 5.29. 

Call such an rj^d (or its corresponding tuple) isolated if the following holds. 

Vq ER, q' £ Q. q' = £(q, a) = • q £ Q D 

As an example, for automaton Hi in Fig. 5.6-c we have rj^ = (r3, r4, ro, 

ri) r2)) Vp\ ~ (r3)r2)i and r)^ = (ri,r3). Notice that all these tuples are 

isolated. 

The following result provides a constructive procedure to obtain an IUF 

for Ai(a,.) when \Al
a\ = 1. 

Proposi t ion 5.8 Let i £ I, a G £0)j. If A^ = {rfc1} and rf£ is isolated, there 

exists an ALM which yields an IUF for Ai(a,.). • 

Remark 5.5 Regarding the above result, the following two points are in or­

der. First, in Fig. B.l, left-shifting of the first row to construct the square, 

can be replaced with right shifting, too. Second, to meet the requirement of 

0 £ £(r0) in Definition 4.6, two rows or two columns in the final rectangle may 

be required to change their positions with each other. • 

A closer observation of the proof of Proposition 5.8 reveals that as long 

as we are dealing with disjoint subsets of R, the result still holds. 

Corollary 5.5 Let i £ I,a,fi £ £0)i, \Al
Q\ = JQ, and |A^| = Jp. For every 

d€{l , • • • , Ja} and each d'£{l, • • • , Jg}, let 
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1) rf^ G A^ be isolated, and 

2) rff G A^ be isolated, and 

J4' 3) rjlf and rfp be mutually disjoint. 

There exists an ALM which yields IUFs for Ai(a,.) and Ai(/3, .). 

,v2 

« 2 

>~3 r0 n r2 

r2 r3 r0 n 

r\ r2 r3 r0 

rn n r2 r3 v\ 

(b) 

Figure 5.7: (a) An automaton with E0ii = {a\}, E0;2 = {ct2}. (b) A Latin 
square which defines an ALM yielding IUFs for a\ and a2. 

i ?"3 r2 

r2 r3 

n r0 

ro n 

n r2 

r2 r3 f i 

(b) 

Figure 5.8: (a) An automaton with E0ii = {cti}, £0,2 = {a2}. (b) A Latin 
square which defines an ALM yielding IUF for QJ, but not for a2. 

Example 5.10 As a first simple application of Proposition 5.8, Figure 5.7-

a illustrates an automaton H2 . For this automaton we have r/̂ '1 = rj^ = 

(r0, ri, r2,7*3). These two tuples are the only ones for their corresponding events 

and both are isolated. Therefore, we may employ a Latin square of side 4 whose 

rows and columns are arranged as stated in the proof of the lemma and shown 

in part (b). 
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Figure 5.8-a shows another example for which we have 77^ = (70,^1), 

Vai = (r2, ^3)) and rj%£ = (r0,r2,r3), where all tuples are isolated. If we are 

after an IUF for just cti, a simple solution is to put side by side two Latin 

squares of side 2 with symbols from {r0 ,r i} and {r2,r3}, respectively and 

then copy this structure to build a side 4 Latin square as in part (b). Notice 

that such an arrangement would not result in IUF for a2- 0 

Finding IUFs for non-isolated tuples 

Proposition 5.8 and Corollary 5.5 consider finding IUFs for the case where the 

subsets of R which correspond to rf'- are disjoint. If this is not the case, then 

the Latin rectangle which is desired should "embed" in it Latin squares which 

have some symbols in common, as formally defined next. 

Problem 5.3 Given a Latin square of side mi with symbols taken from the 

set Ti and another Latin square of side m2 with symbols taken from the set T2, 

find a Latin square (if it exists at all) which "embeds" copies of both squares 

such that all appearances of any 7 G T\ n T2 falls in a copy of each square? • 

Unfortunately, there are no existence conditions, nor a general algorithm 

available for finding solutions to the above problem [86]. However, there are 

cases for which a solution exists as demonstrated by the following example. 

Example 5.11 For the automaton in Fig. 5.9-a we have rj^ = (r0, n ) , r)p = 

(7"0) r2, ^4), and 77^ = (r0, n , r2, r4) where all tuples are isolated. Let us assume 

that we are interested in finding IUFs for a.\ and (5\. The two Latin squares in 

parts (b) and (c) define ALMs which yield IUFs for events a.\ and a2. Notice 

that state r0 is a common symbol in both squares. The Latin square in part 

(d) has side 6 and embeds both squares in parts (b) and (c), where copies of 
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^1 
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Figure 5.9: (a) An automaton with £0;i = {ai,Pi}, E0>2 = {a2}. (b), (c) 
Two Latin squares which defines ALMs yielding IUFs for cti, and Pi, but 
not for a2. (d) A Latin square which embeds the Latin squares in parts 
(b) and (c) and satisfies the conditions in Problem 5.3. copies of the square 
corresponding to 77^ are enclosed with dashed lines, and symbols of the two 
copies corresponding to 77̂ ' are marked with underlines and overlines. 

the square corresponding to rj^ are enclosed with dashed lines, and symbols of 

the two copies corresponding to rig are marked with underlines and overlines. 

Moreover, it can be observed that whenever 7~o appears in some place, it par­

ticipates simultaneously in building two copies of Latin squares corresponding 

to 77^ and 77^. As can be seen, there are other fictitious states, namely, r3 

and 7*5, which do not exist in H4 and merely participate in building the larger 

square. Such states may be employed later to simplify guard formulas. 0 

The last example illustrates a case where IUFs for all Si's events can be 

found. 

Example 5.12 The automaton H 5 has three states with 77^ = (r0, r2), 77̂ ' = 

( r 0 , n , r 2 ) , and rj^ = (r0 ,ri) where all tuples are isolated. We show that an 

ALM can be found for events ax,P\ G £0,i. We start by building a Latin 

square which yields IUF for P\. This square can be seen in the left side of part 

(b). To represent ai-labeled transitions, we associate to each column of this 
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(a) (b) 

Figure 5.10: (a) An automaton with E0ji = {ai,pi}, £0]2 = {0:2}- (b) The 
columns of the left Latin square, which defines an ALM yielding IUF for Pi, 
are suitably mapped to columns of the second square, also yielding IUF for Pi, 
to define the part of the ALM which yields IUF for ai. The top and bottom 
arrows represent Pi- and ai-related transitions, respectively. 

square a column in a new square, which is put beside it. For example, since 

ai moves states TQ and r2 to r2 and r0, respectively, each column in the first 

square is associated with a column in the second square in which TQ and r2 are 

interchanged. In other words, we choose a Latin square of the same side and 

symbols but with a different arrangement such that a 1-related transitions can 

be represented by mappings between their columns. 0 

5.5 Conclusion 

This chapter studies the communication among supervisors in DSDES frame­

work. The study begins by defining "information" and "routing" events, as the 

two types of communication-related events, and also introducing the notions of 

information and routing policies. This is followed by deriving six information 

policies for transferring state- or event-related information among supervisors, 

with some prescribing less communication. Next, a communication-based par­

titioning of DSDESs is introduced and some properties of two such special 

classes are derived. The chapter ends with some results on communication-

based state representation of centralized supervisors and introducing some 
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classes of ALMs which enjoy communication-oriented properties. 
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Chapter 6 

Case Study 

6.1 Introduction 

"A communication protocol consists of a set of rules which govern the orderly 

exchange of messages among the system components in order to provide a 

specified set of services to service users located at different access points" [67]. 

The service users of the protocol are usually geographically separated from 

each other. From the protocol point of view, each service user is connected 

to the network through a Protocol Entity (PE), which has partial observation 

of the behavior of the communication network in which it participates. A 

protocol specification determines the functions which should be done by the 

whole network and their details, such as order, time, etc, in a cooperative and 

distributed manner [67]. 

A reliable protocol is one which meets all its associated specifications. 

Reliability, which is inevitably required for almost all commercial protocols, 

can be obtained through mathematical modeling of the network of PEs and 

systematic synthesis and analysis of protocols using standard mathematical 

tools. The discrete nature of a communication protocol allows us to model 
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it, its associated network of PEs, and related specifications as DESs. If such 

DESs can be behaviorally modeled as regular languages, or equivalently as 

finite automata, RW supervisory control theory can be employed to synthesize 

for them a centralized supervisor which guarantees the satisfaction of the spec­

ifications by the network of PEs. This centralized-supervisor observes every 

event which is observable to at least one PE. 

In the next step, DSDES framework can be employed to explore the 

dynamical structure of the centralized supervisor in a distributed way and 

represent it as a PDS. This distributed representation, which assumes limited 

observational window for each PE, serves to systematically derive informa­

tional dependencies of each PE and design communication events which pro­

vides it with the required information, owned by other PEs. The set of com­

munication events thus computed, forms the logical part of a communication 

protocol, i.e. the part which results from logical modeling of the network and 

its specification. This part together with the physical part, which addresses 

continuous dynamics of the network as represented by differential equations, 

form the communication protocol. This classification of a protocol into logical 

and physical parts is based on a general view of protocols as "hybrid sys­

tems," having discrete-event and continuous dynamics. Whereas, it is beyond 

the scope of this work to formalize this classification and verify the correctness 

of that, we take this as a conservative vantage point into the structure of a 

protocol and limit this work to the study to the logical part, only. Further­

more, we notice that the logical part should be itself expressible by a number 

of finite automata, otherwise RW theory cannot be used as stated above. 

A communication protocol may provide service to one or more network 

layers in the sense of Open Systems Interconnection (OSI) reference model [87]. 

In Chapter 3 we discussed Alternating Bit Protocol (ABP), which is used in 
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"physical" and "data link" layers. There, using the proposed machinery in 

EFSM framework, the protocol was synthesized by modeling the network of a 

sender and a receiver, and providing the required information for each entity 

using communication events, which transfer one extra bit attached to each 

data frame. Following that successful experience, this chapter studies another 

protocol, which is known as Reliable Multicast Transport Protocol (RMTP). 

This chapter continues with an overview of RMTP in Section 6.2. For 

a simple network, the model of the component plants and the specifications 

associated with RMTP are introduced in Section 6.3. The synthesis procedure 

of two RMTP-like communication policies for the network is elaborated in 

Section 6.4. 

6.2 An overview of R M T P 

The concept of "multicast communication" means simultaneous delivery of 

messages to a group of destinations such that a message passes over a link only 

once [88]. Whereas multicasting has applications in data link layer, it is mainly 

considered as "IP multicast" and is used for "streaming media" and "internet 

television." In this sense, multicasting is done at the routing level [88]. RMTP 

is a transport protocol for IP multicast which provides reliable transport by 

employing the tree topology of message acknowledgement and local recovery 

from losses [2]. Its revised form, RMTP-II, adds more real-time features to 

increase its efficiency and address time issues. To review RMTP, we assume 

a tree topology for the network and describe the terminology and explain the 

functions of RMTP. 
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6.2.1 Terminology 

We start by introducing the terminology used to describe RMTP within the 

scope of this work. The following should be considered as informal definitions. 

- Control signal: Any message other than "data," which is exchanged in 

the network is called a control signal. It serves control objectives such 

as reliability and guaranteed functionality of the network. 

- Control channel: It is a communication channel which is used for transfer 

of control signals. 

- Unicast channel: It is a data or control channel which is defined between 

two specific PEs. 

- Multicast channel: It is a collection of unicast channels associated with 

the children of a single parent. 

- Sender: It is a PE which wants to send data to other PEs in a network. 

- Receiver: It is a PE which is the end target of the sender's data. 

- Acknowledgement (ACK): It is a control signal which is generated by 

"receivers" of the sender's data or a parent node to inform their upper 

nodes of the receipt and non-receipt of previously sent data by a sender. 

- Tree-based acknowledgement (TRACK): It is a type of acknowledgement 

whose issuance follows the bottom-up network topology of a tree. 

- Data channel: It is a communication channel which is used for data 

transfer. 

- Interior node: Every node between a TN and a receiver in the tree 

structure is called an interior node. 
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- Aggregator node: It is an interior node which collects acknowledgements 

from its children and sends an appropriate acknowledgement to its par­

ent. 

- Designated Receiver: It is an interior node which has the functionality of 

an aggregator node. Furthermore, it receives the data sent by the sender 

so that if its children require the data it sends it to them. 

- Control node: This is another name for every PE, i.e. each node, in the 

RMTP's associated network. 

- Top node (TN): It is a control node which is the highest-located node in 

the tree-hierarchy of control nodes. 

- Stable packet: A data packet which has been received by all receivers is 

called by the sender a stable packet. 

- Transmission window: It is a finite-length frame consisting of ordered 

pieces of data to be sent sequentially. 

6.2.2 Basic functions of R M T P 

This section describes the basic functionality of RMTP and RMTP-II proto­

cols, following [89] and [2]. 

A simple RMTP's associated network consists of one sender node (SD), 

many receiver nodes (RNs), a Top Node (TN), and zero or more Designated 

Receivers (DRs) and Aggregator Nodes (ANs). These nodes are organized into 

a tree with TN (and SD) nodes being its root (or top), RNs nodes being its 

leaves, and all other nodes being in between. Figure 6.1 illustrates an RMTP 

tree with multiple control nodes. The sender and the TN are on one host and 

receivers are on multiple other hosts connected to the network. 
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Legend: 

Multicast Data Channel 

Unicast Control Channel 

/ _ _\ :'...'.: Multicast control channel 

Figure 6.1: An RMTP tree (reprinted from [2]). Arrows specify the direction 
of data and control signals flow. 

There are mechanisms for joining, staying with, or leaving this network, 

which should be performed by all above-mentioned nodes1 [89]. These mecha­

nisms are beyond the scope of this work and are not considered here. Also, in 

an implementation different types of nodes may run in a single process, say a 

host can be a sender and a TN, a receiver and a DR, etc. These cases are not 

studied here, either. Rather, we focus on the basic operation of the network 

which is sending a data packet from sender to all receivers in a reliable man­

ner. Accordingly, one such above-mentioned network should be considered to 

be fixed during the transfer of the data packet. Once this is done, the network 

can change itself to send other data packets. In the following, we limit our 

discussion to one fixed network. 

RMTP performs its communication using multicast data channels and 

unicast and multicast control channels. Initially data is sent on a multicast 

data channel by the sender. Data may be retransmitted by the sender on 

the multicast data channel, or "multicast or unicast on a local control channel 

by a DR" [2]. The tree topology has a one to one relationship with the way 

the control channels are organized. If the network is symmetrical, i.e. control 
lrThese include Heartbeat, HearbeatResponse, NullData, Negative ACK (NACK), For­

ward Error Correction (FEC), etc. 
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tree topology is relatively congruent to the multicast routing tree topology, 

the data and control channels may share the same path. If the network is 

asymmetrical, "such as a one-way satellite network with a terrestrial return 

path" [2], data will be multicast to RNs and DRs directly, but TNs and ANs 

will only receive control traffic. 

The basic operation of RMTP over the network may be explained as 

follows. "A receiver periodically informs its parent about the packets it has 

or has not received by unicasting a Tree-based ACK (TRACK) packet to the 

parent. Each parent node aggregates the TRACKs from its child nodes and 

unicasts a single aggregated TRACK to its parent. The TN aggregates the 

TRACKs from its child nodes and unicasts a single TRACK to SN. Each DR 

or TN has a local control channel, which is a multicast group that connects 

it to all of its children. This is used for local multicast retransmission of lost 

packets to just the parent's children. A tree forms a loop from the sender to 

the receivers, through the control tree, and back to the sender. Data regularly 

exercise the data channel. TRACKs regularly exercise the control channel 

in the upward direction. This combination constantly checks that all of the 

nodes in the tree are still functioning correctly" [2]. The main objective of 

the tree topology is to reduce the control traffic, resulting from receiver's 

acknowledgements of the data receipt, by processing these acknowledgements 

locally in parent nodes. 

6.3 Modeling of RMTP ' s basic functions for a 

simple network 

Following the overview in Section 6.2, this section considers an asymmetrical 

network and a reliability specification for it, and derives an RMTP-like set 
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of communication rules which guarantees reliable data transmission. In this 

study, we assume a fixed network and neglect node mechanisms for joining, 

staying, and leaving the network as well as time issues. As a result, the model 

is limited to these assumptions and the resulting communication rules should 

be considered a guideline to the basic operation of the RMTP. It should be 

noticed that other than expressibility by regular languages, which is currently 

a fundamental limitation of RW supervisory control theory, other assumptions 

are for the sake of this primary study and computational purposes. Therefore, 

once this first study is done, the model can be extended, within the limits 

of expressibility by automata theory, by releasing assumptions and deriving 

parametric solutions to the general case of the problem. Nevertheless, this 

primary study illustrates the applicability of the proposed approach of this 

work and is insightful toward a thorough investigation of RMTP, too. 

6.3.1 Network topology and control nodes 

Let N be an asymmetrical network consisting of sender SD, top node TN, 

designated receivers DRi and DR2 , and receivers RNi , RN2, and RN3, all 

organized in a tree topology shown in Figure 6.2. Observe that T N has two 

children, DRi and DR2 , which are designated receivers. Also DRi and DR2 

have two and one children, respectively. 

The network is supposed to function as follows. 

1. SD fetches a data packet and multicasts it over the multicast data chan­

nel. It is intended that RNi , RN2 , and RN3 receive the data packet. 

DRx and DR 2 may receive it, too though this is not required unless the 

packet is required to retransmit to their children. 
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Figure 6.2: An asymmetrical network consisting of 7 control nodes. 

2. Upon the successful receipt of the data packet or after a certain fixed 

amount of time, during which receivers wait to receive the data packet, 

each receiver issues an acknowledgement to inform its parent of either 

successful receipt of the data packet or receipt failure. 

3. Once a designated receiver receives a receipt-indicating acknowledgement 

from all its children, it issues a successful-indicating acknowledgement 

to its parent, TN. On the other hand, if a designated receiver receives a 

failure-indicating acknowledgement from one of its children or if a time­

out indicates that no acknowledgement has arrived within a specific time 

interval, one of the two cases happens. If the designated receiver has the 

data packet itself, it retransmits the data packet to the failure-indicating 

children and waits for its acknowledgement within a specific time limit. 

If the designated receiver itself does not have the data packet, it issues 

a failure-indicating acknowledgment to its parent, TN. 

4. Once T N receives success-indicating acknowledgements from DRi and 

DR2 , it issues a success-indicating acknowledgement to SD. Otherwise, 

if it receives a failure-indicating acknowledgement from either child, it 

issues a failure-indicating acknowledgement to SD. 
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5. If SD receives a success-indicating acknowledgement, it proceeds to fetch 

a new data packet and sends it, otherwise, it retransmits the previous 

data packet on multicast data channel. 

Assumption 6.1 It is assumed, as a fairness condition, that eventually the 

sender will receive a success-indicating acknowledgement either after it sends 

the data packet, or after some retransmissions by designated receivers or the 

sender itself. D 

Based on this description, in the following subsections, first the events 

which are used to model the network are introduced and then each control 

node is modeled accordingly. 

Assumption 6.2 Since the communication rules which are studied here per­

tain to the transport layer of OSI model [87], it is reasonable to assume that the 

protocols used in lower layers, such as network or data link layers, equip each 

control node with means to distinguish if the piece of information it receives 

(i.e. data or acknowledgements) is erroneous or not. • 

6.3.2 Definition of events 

A major step in modeling a DES is to define events in such a way that they 

unambiguously describe the part of the behavior of the DES in question, while 

keeping the model simple enough for analysis and synthesis purposes. Here, 

we intend to model that part of the network's behavior which is relevant to 

RMTP modeling and synthesis. Accordingly, only those events of each control 

node are defined which serve this modeling. In other words, we avoid denning 

events which "internally" implement the functions of the control node unless 

they also serve to implement the RMTP-related behavior. For every event, 

first its definition, based on the description in Subsection 6.3.1, is given and 
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its symbol is introduced. Then the control nodes which can exercise control 

over it or observe it are identified. 

1. "Data Fetch": This event is to represent SD's fetching a data packet 

and is denoted by fsD- It is controllable and observable by SD. 

2. "Send Data Packet": A data packet may be sent for the first time or 

retransmitted by SD, or retransmitted by a designated receiver, say DR., 

(jf G {1,2}). In the first case, the event is denoted by SSD and in the 

second case, the event is denoted by SJJRJ- These events are controllable 

and observable by their issuers, only. 

3. "Data Packet Received Error-free": This type of event corresponds to 

the successful receipt of a data packet2 by a receiver or a designated 

receiver. Assumption 6.2 implies that this type of event is well-defined 

for the control node which generates it in the sense that every such event 

follows a successful data receipt within its specified time limit. Since data 

packets are supposed to be received by receivers and designated receivers, 

this event, denoted by R, is owned by every such node, and a subscript 

would determine to which control node it belongs. Therefore, RRN% and 

RDRJ belong to RN; (i G {1,2,3}) and DR., (j G {1,2}), respectively. 

Each event is observable by its owner, but it is uncontrollable because its 

issuance follows the error-free receipt of the data packet, automatically. 

4. "Data Packet Received Erroneous": This event corresponds to the re­

ceipt of erroneous data, which is by Assumption 6.2 a well-defined event. 

This type of event is denoted as Re with a subscript which determines 

to which control node it belongs. Similar to event R, Re is used by 
2Note that the data could be sent by SD or the designated receiver who is the parent of 

the control node in question. 
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receivers and designated receivers. Therefore, Re
RNi {i G {1,2,3}) and 

Re
DRj (j G {1,2}) belong to RNj and DR.,, respectively. Each event is 

observable by its owner and uncontrollable . 

5. "Success-indicating Acknowledgement": This type of acknowledgement 

is denoted by A. Three types of control nodes generate this acknowledge­

ment; the receivers, the designated receivers, and the top node. Every 

receiver issues an A event upon the successful receipt of a data packet 

within a specified time limit. This data packet could be sent by SD or 

the designated receiver who is the receiver's parent. For receiver RN, 

(i G {1,2,3}), this acknowledgement is denoted by ARM. Also, every 

designated receiver DRj (jf G {1,2}), issues an A event, denoted by 

A-DRJ, upon receiving event A from all its children. Top node TN gen­

erates an A event, denoted by ATN, when it receives success-indicating 

acknowledgements from both its children. Every A event is controllable 

solely by its issuer and observable by both its issuer and its parent (con­

sidering SD as TN's parent for now). 

6. "Failure-indicating Acknowledgement": This type of acknowledgement 

is denoted by Ae and is generated by the receivers, the designated re­

ceivers, and the top node. Every receiver issues an Ae upon the receipt 

of an erroneous data packet. This data packet could be sent by SD or 

the designated receiver, who is the receiver's parent. For receiver RNj 

(i G {1,2,3}), this acknowledgement is denoted by Ae
RNi. Also, every 

designated receiver DRj (j G {1,2}), issues an Ae event, denoted by 

Ae
DRj, a) upon receiving either an Ae event or an erroneous A or Ae from 

(at least) one of its children and b) it does not have the data packet 

itself (to retransmit it to its children). Top node T N issues an Ae event, 

denoted by A^N, upon receiving an Ae or an erroneous A or Ae from 
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(at least) one of its children. Every Ae event is controllable solely by its 

issuer and observable by both its issuer and its parent (considering SD 

as TN's parent for now). 

7. "Acknowledgement Received": When an acknowledgement, of type A or 

Ae, is received by a control node, which is of course the parent of the 

issuer of the acknowledgement, it is indicated by RA or RAe respectively. 

Furthermore, RAe also represents the erroneous receipt of A and Ae 

acknowledgements, because an erroneous acknowledgement has the same 

effect as a failure-indicating acknowledgement , i.e. the receiver of the 

acknowledgement has received no success-indicating acknowledgement. 

Each such "acknowledgement received" event borrows the subscript of 

the acknowledgement it receives; for example, RATN indicates that SD, 

which is TN's parent, has received ATN- RA and RAe are observable 

by their issuers. Since there are two types of acknowledgements, the 

control node which receives an acknowledgement can choose to generate 

either an RA or an RAe. As a result, we assume that RA and RAe are 

controllable by their issuers. Notice that this is different from the case of 

R and Re events, which represent the receiving of data packets. Unlike 

an acknowledgement, a data packet is sent in one form, i.e. error-free, 

but may receive in two forms, i.e. error-free or erroneous, giving rise to 

R and Re, respectively. 

8. "Time-out": Each time a piece of information, i.e. a data packet or an 

acknowledgement, is to be received by a control node, the control node 

waits for this receipt for a limited time interval. This limited time is 

a parameter of the control node and results from physical constraints 

and other real-time considerations, which are beyond the scope of this 

work. Once the information does not arrive within the time limit, a 
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time-out signal is generated at the control node, which is observable, 

but uncontrollable by it. We assume that the occurrence of a time-out 

resets the timer generating it to 0, though this timer does not appear in 

the model. Event "time-out" may happen in the following situations. 

(a) For i G {1, 2,3}, if receiver RN* does not receive, within a specified 

time, the data message from the sender nor form its parent, i.e. 

the designated receiver above it, a time-out3 is generated at RNj. 

This time-out, which is observable but uncontrollable by RNj, is 

denoted by TRNI-

(b) For j G {1,2}, if designated receiver DRj does not receive the ac­

knowledgements sent from its children within a specified time, a 

time-out is generated at DRj , which is uncontrollable and observ­

able by it and is denoted by TDRJ-

(c) If T N does not receive acknowledgements from its children within 

a specified time, a time-out is generated at TN, which is denoted 

by TTN and is uncontrollable and observable by TN. 

(d) If SD does not receive TN's acknowledgement in a specified time, 

a time-out is generated at SD, which is denoted by TSp and is 

uncontrollable and observable by it. 

The above events are summarized in Table 6.1, where we use "DR" for 

"designated receiver" and "ack." for "acknowledgement." To employ the nota­

tion define in Chapter 4, we set I = { S D , T N , D R i , D R 2 , R N i , RN 2 ,RN 3 } 

and / = {1, 2, 3, 4, 5, 6, 7}, and define a mapping f : I —> / which assigns an 

index to each control node such that f(SD) = 1, f(TN) = 2, f(DRi) = 3, 

f(DR2) = 4, f(RNj) = 5, f(RN2) = 6, and f(RN3) = 7. This mapping lets 
3We assume that both cases have the same time limit, otherwise two time-out events 

should be defined. 
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us refer to the subalphabets associated with each control node by its index. 

Following Notation 4.2, for every i E I, let EC)i and E0>i denote controllable 

and observable subalphabets of control node i and define Ej = EC)i U E0;i, 

£ c = Uie/ Sc«' S ° = Uie/ So,i, and E = \JieI Ej. Correspondingly, the subal­

phabets of each control node are listed in Table 6.2. 

6.3.3 Modeling the control nodes 

The model of each control node n 6 I is obtained by identifying a number of 

states and state transitions labeled with the events in the node's subalphabet 

En . Whereas the detailed behavioral description of the control node may re­

quire more events, states, and state transitions to employ, to keep the model 

simple for synthesis, it is preferred to avoid introducing events and states 

which are irrelevant to RMTP's description (see the explanations in Subsec­

tion 6.3.2). Accordingly, the introduction of subalphabets in Table 6.2 is to 

formalize RMTP specifications rather than deriving a detailed model of each 

control node. In the following, the models of the control nodes are explained. 

Assumption 6.3 It is assumed that each control node has local control means 

to prohibit the occurrence of some events at some states. Whereas these 

"means" are not studied here, it is worth justifying this assumption. To this 

end, notice that if such an event is generated by the node as a reply to the re­

ceipt of some acknowledgement, this local control simply means that the node 

ignores the acknowledgement. Otherwise, i.e. if the event happens as a result 

of some "autonomous internal decision," the node simply avoids generating 

the event. Example of this case is event "fetch," generated by SD. • 
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Table 6.1: Summary of the events used to model the RMTP network. Here 
ie {1,2,3} and j E {1,2}. 

Event's 
name (a) 

/ 

SsD 

TSD 

RATN 

R-^TN 

RRNi 

ReRNi 
AftNi 

•^RNi 

TRNI 

SDRJ 

RDRJ 

n-DRj 

ADRJ 
Ae 
ADRj 

TDRJ 

RARNI 

RARNi 

ATN 

Ae 

TTN 

RADRJ 

RAe
DRi 

U°) 

{SD} 
{SD} 

0 
{SD} 
{SD} 

0 
0 
{RNJ 
{RNJ 
0 
{ D R , } 

0 
0 
{DR.,} 
{ D R , } 

0 

{ D R , } 
{ D R , } 

{ T N } 

{ T N } 

0 
{ T N } 
{ T N } 

Uo) 

{SD} 
{SD} 

{SD} 
{SD} 
{SD} 

{ R N , } 

{RNJ 
{RNi} 

{RNi} 

{RNJ 
{ D R , } 

{ D R , } 
{ D R , } 
{ D R , } 

{ D R ; } 

{ D R , } 

{ D R , } 
{ D R , } 

{ T N } 

{ T N } 

{ T N } 
{ T N } 
{ T N } 

Description 

Fetch a data packet 
Send or retransmit a data packet 
(multicast) 
TN's ack. has not arrived on time 
S D received ATN from T N on time 
SD received A^N from T N on time 

Error-free data received on time 
Received erroneous data 
Error-free data received on time 
Data erroneous or not received on time 
No data received on time 

Retransmit a data packet (local multicast) 
Error-free data received on time 
Received erroneous data 
A from all children received on time 
An Ae or an erroneous ack. received 
from a child 
An ack. from a child has not arrived 
on time 

D R , received AR^% from R N , on time 
D R , received ARNi from R N j on time 

A from all DRs received 
on time 
An Ae or an erroneous ack. received 
from a DR 
An ack. from a DR has not arrived on time 
T N received ADRJ from D R , on time 
T N received Ae

DR1 from D R , on time 
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Table 6.2: Event subalphabets for control nodes (i e {1,2,3}). 
nel 
SD 

T N 

DRi 

DR2 

RNX 

RN 2 

RN 3 

iel 
l 

2 

3 

4 

5 

6 

7 

^c,i 

{/) *Ssx>, RATN, R^-TN) 

{A-TN-, ^TAfi -R^DHl) 

-R^xjfin RADR2, RAe
DR2} 

{SDRI, ADRi,Ae
DR1, RARNi) 

RARNi, RARN2, RAe
RN2} 

{SDJR.2, ADR2, Ae
DR2, 

RARN3, RAe
RN3} 

{ARNI, Ae
RN1} 

{ARN2, Ae
Rm} 

{ARN3,Ae
Rm} 

^ 0 , 1 

{/, SSD, TSD, RATN, RA?N} 
{ATN,A?PN,TTN, RADRI, 

RAe
Dm, RADR2, RAe

DR2} 

{SDRI, RDRI, RDRI> ADRI, 
A6DRI ) TDRI , RARNI , 
RAe

RN1, RARN2, RAe
RN2} 

{SDR2, RDR2, RDR2> ADR2, 

ADR.2-, TDR2, RARM3, 

RARN3} 

{RRN\ , RRNI > ARNI , Ae
RNl, 

TRN\} 

{RRN2, RRN2) ARN2, Ae
RN2 

,TRN2} 

\RRN3, RRN^I ARN3, Ae
RN3, 

TRN3} 

Assumption 6.4 It is assumed that the initial state of each model is also its 

only marked state. This is justified by the fact that in each model the functions 

of the control node would be considered finished once the node returns to its 

initial condition, where it is ready to begin its next round of functions. • 

Modeling the sender 

Figure 6.3 shows the automaton model of SD. Accordingly, initially at state 

r0 a data packet is fetched (event / ) and then sent (event SSD) on multicast 

channel at state r\. The sender then waits to receive one of TiV's acknowl­

edgements (of the receipt of the data) at state r2. If it receives ATN (event 

RATN), indicating the successful receipt of the sent data packet by all three 

receivers, it moves to r0 to fetch a new data packet. Otherwise, if the sender 

receives A^N (event RA?N), indicating that the sent data packet has not been 

received by at least one receiver and cannot be retransmitted by designated 
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receivers, or if no TN's acknowledgement arrives within a specified time limit 

(event TSD)> it retransmits the data packet (event SSD
 a t 7"i) and then waits 

for its associated acknowledgement at r-i-

Figure 6.3: The automaton model of sender SD. 

Following Assumption 6.3, observe that the model prohibits the occurrence of 

some events at some states; for example / and RATN cannot happen at r\ not 

at r2, and at r0 nor at r\, respectively. For RATN, this means that the "local 

control," not studied here, ignores the receipt of ATN from T N when not at 

r0 and r\. 

Modeling the receivers 

Figure 6.4 shows the model of receiver RNj, where i 6 {1, 2, 3}. Initially the 

receiver waits (for a specified amount of time) to receive a data packet from 

either SD or the receiver's parent. Upon the on-time and error-free receipt of 

the data packet (event RRm), the receiver moves to state T\ and issues AR^i. 

On the other hand, if the data does not receive on time (event TNRIyi) or it is 

erroneous (event RR^i), the receiver goes from TQ to r2, where it issues Ae
RNi 

and returns to the initial state. 

Following Assumption 6.3, we assume that the receiver takes action on 
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the first occurrence of RRNI and Re
RNi, only, and ignores the later occurrences 

of them which happen between the first occurrence and issuing the corre­

sponding acknowledgement by the receiver. As a result, the later occurrences 

of these two events do not appear at states rx and r2. 

RNi 

4£JVI T ^Ae
RNi 

(rjH (TJ) \jy 
RRNI R%Ni,Tjim 

Figure 6.4: The automaton model of receiver RNi, where i E {1, 2, 3}. 

Modeling the designated receivers 

The automaton models of DR2 and DRi are shown in Fig. 6.5 and Fig. 6.6, 

respectively. We start by explaining the model for DR2 , which is simpler. 

The model of DR2 has two halves, whose difference is in receiving the 

data packet from SD (event RDRZ)- In fact, if DR2 resides in a state in the left 

half, the occurrence of uncontrollable event RDR2 moves it to a counterpart 

state in the right half. The explanation for the left half is as follows. Initially at 

state r0, DR2 waits to receive the acknowledgement from its child, RN3 . Upon 

the on-time receiving of a success-indicating acknowledgement ARN3 from RN 3 

(event RARN3), DR2 moves to state r\. Following this, DR2 issues an A^m 

and moves to r0. However, if either a) no acknowledgement arrives during 

the specified time limit (event T^m), or b) the received acknowledgement is 

Ae
RN3, indicating RN3 ' s failure in receiving the data packet, or is an erroneous 

copy of ARN3, both modeled as event RAe
RN3, then DR2 is led to r2 where it 

issues an Ae
DR2 and moves to r0. Notice that it is the first acknowledgement 
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which is considered by the designated receiver and further acknowledgements 

are actually neglected by it, as modeled by selfloops at states r\ and r2. If 

DR 2 receives the data packet sent by SD error-free and on-time (event RDRZ), 

depending on where RDR2 occurs, DR 2 moves to one of the states r$, r4, or 

r5 in the right half of the automaton, which are counterparts of r0, n , and 

r2, respectively. When in the states of the right half, DR2 has a copy of the 

data packet so that if RAe
RN3 or TDR2 occur, it retransmits the data packet 

to its child, RN3 . However, if the data packet is received erroneous (event 

Re
DR2), DR 2 does not change its state. This is modeled by adding this event 

as selfloop at each state, though these selfloops are not shown for the sake of 

clarity. 

RARN3, RAe
RN3 

(J 
RDR2,RARN3,RA RN3 

Figure 6.5: Automaton model of DR2 . A selfloop labeled with Re
DR2 should 

be added to every state of the automaton. 
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Similarly, the model of DRi has two halves, which correspond to process­

ing acknowledgements and time-outs without and with having the copy of the 

data packet. Comparing to the model of DR2 , the only difference is that here 

DR4 has two children and should process two acknowledgements, which may 

arrive in either order, from receivers RNx and RN2 . 

o> 10 

Figure 6.6: Automaton model of DRi . A selfloop labeled with Re
DRi should 

be added to every state of the automaton. 

228 



Modeling the top node 

The automaton model of top node T N is shown in Fig. 6.7. Initially, T N 

waits to receive the acknowledgements from both its children, DRi and DR2 , 

within a specified time limit. If both acknowledgements are success-indicating 

and receive in time, i.e. if events RApm and RAQR2 arrive in either order, they 

lead TN to r3, following which T N moves to r0 by issuing ATN- Otherwise, if 

either acknowledgement is failure-indicating or is an erroneous acknowledge­

ment (event RAe
DR1 or RAe

DR2), or either acknowledgement does not arrive 

within the specified time limit (event TTN), T N is led to r^, following which 

T N moves to r0 by issuing A^N. Similar to the designated receivers, T N takes 

action on the first acknowledgement received from its every child and ignores 

second and next acknowledgements. 

RADR\ , RAe
DRl, RADR2 , RAe

DR2 

Figure 6.7: The automaton model of top node TN. 
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Model of the network 

The model of network, N, is the synchronous product of all control node 

models, i.e. 

N = SD||TN||DRi| |DR2 | |RNi| |RN2 | |RN3 , 

where || denotes the "synchronous product" operation. 

6.3.4 R M T P control specifications 

The model of every control node n G I in the RMTP network of Fig. 6.2 

is defined based on its observable events in En . However, certain events of a 

parent node should follow certain events of its children in order for the network 

to transfer acknowledgements from bottom to top, yielding a reliable multicast 

transfer of data packets. The network hierarchical topology helps breaking the 

"global" reliability constraint into control specifications for each parent and its 

children. There are four such parents and their children, resulting in a number 

of desired parent-child behaviors, which are formalized as control specifications 

in the following. 

Assumption 6.5 For each specification, the initial state is considered as the 

marked state, too. The justification is the same as what mentioned in As­

sumption 6.4. • 

Control specification for DRi and its children 

Parts (a) and (b) of Fig. 6.8 show the desired joint behavior of DRi and its 

children, RNi and RN2, as two specifications Si and S2. Each specification 

requires that every child's acknowledgement be followed by its corresponding 

acknowledgement-received event of DRi. For example, Si requires that ARNI 

230 



be followed by RARNi. This requirement can be modeled simply by alter­

nating an acknowledgement and its corresponding acknowledgement-received 

event, too, as shown in part (c) for the case of DRi and RNj. This sim­

ple model inhibits multiple occurrence of the same acknowledgement, which 

in turn reduces the network traffic. However, observe that in this case, the 

synchronous application of the two alternations, one for error-free- and one 

for erroneous-data acknowledgements, which is shown in part (d), allows the 

serial issuance of both kinds of acknowledgements before processing each first. 

This condition would make the processing of the acknowledgements prone to 

event-order errors and increases the network traffic. Therefore, on top of the 

alternation of the events of a parent and those of its child, it is required that 

no acknowledgement (of the same or different type) be issued unless the previ­

ously sent acknowledgement be processed first. For example, according to Si 

once ARM is issued by RNi , neither it nor Ae
RNl can be issued until RARNI 

is issued by DRi . This argument justifies why Si and S2 are modeled as in 

parts (a) and (b), rather than part (c). Notice that in each part of the figure, 

all the events in £ which do not appear in that part, are selflooped at all states 

of the automaton of that part, but not shown. 

Control specification for DR2 and its child 

Figure 6.9 shows the desired joint behavior of DR2 and its child, RN3, as 

specification S3. The idea behind this specification is similar to those of spec­

ifications Si and S2. Notice that all the events in £ which do not appear in 

the figure, are selflooped at all states of the automaton, but not shown. 
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(a) (b) 

IRNl 

(c) 

RN1 

RN1 

(d) 

Figure 6.8: (a), (b) The control specifications for the joint behavior of 
DRi and its children, RNi and RN2 , respectively. All of the events 
in S \ {ARN1, Ae

RN1, RARNU RAe
RN1} and every event in E \ {ARN2,A

e
RN2, 

RARN2, RAe
RN2) are selflooped at all states of Si and S2, respectively. These 

selfloops are not shown to keep the figures clear, (c) Two simple requirements 
for the alternation of RNi 's two types of acknowledgements and DR^s cor­
responding acknowledgement-received events, (d) Synchronous application of 
the simple requirements in part (c) allows the serial issuance of multiple ac­
knowledgements by RNx without processing them by DRi , hence justifying 
the introduction of specification Si in part (a). 

RA RN3 

S3 
n 

* > X * » - — 
RA RN3 

1RN3 A RN3 

Figure 6.9: The control specification for the joint behavior of DR2 and its 
child. All of the events in S \ {ARN3, Ae

Rm, RARN3, RAe
RN3} are selflooped at 

all states, but not shown. 
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Control specification for T N and its children 

Parts (a) and (b) of Fig. 6.10 show the desired joint behavior of T N and its 

children, DRi and DR2 , as specifications S4 and S5, respectively. The idea 

behind these specifications is similar to the previous specifications. Notice 

that all the events in E which do not appear in each part of the figure, are 

selflooped at all states of the automaton of that part, but not shown. 

— * A — * A* ^—^ — * A — y Ae — r 

ADRl ADRl ADR2
 ADR2 

Figure 6.10: The control specifications for the joint behavior of T N 
and its children DRi and DR2 , respectively. All of the events in E \ 
{ADm, Ae

DR1, RADR1, RAe
DRl} nndi:\{ADR2,Ae

DR2,RADR2, RAe
DR2} are self-

looped at all states of the automata in parts (a) and (b), respectively. These 
selfloops are not shown to keep the figures clear. 

Control specification for SD and its child 

Figure 6.9 shows the desired joint behavior of SD and its child, T N as speci­

fication S6. The idea behind this specification is similar to the previous spec­

ifications. Notice that all the events in E which do not appear in the figure, 

are selflooped at all states of the automaton, but not shown. 
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Figure 6.11: The control specification for the joint behavior of SD and TN. 
All of the events in £ \ {AT^, A^N, RATM, RA^N} are selflooped at all states, 
but not shown. 

6.4 Synthesis of the RMTP-like information 

policies for the simple network 

This section provides solutions, in the form of information policies, to the 

communication rules of the RMTP network of Section 6.3. The synthesis 

procedure follows the general procedure for the synthesis of communicating 

supervisors, outlined in Chapter 5, but in a modular fashion. Accordingly, 

for each specification, a centralized supervisor is computed using supervisory 

control theory, which insures the satisfaction of that specification by the plant 

(here RMTP network). This results in six centralized supervisor which are 

shown to be non-conflicting, i.e. their joint supervision does not lead to block­

ing (or deadlock). Then for each of the six centralized supervisors, an ALM 

is introduced, using which a DSDES formulation in the form of a polynomial 

dynamical system (PDS) representation of the supervisor is obtained. This 

representation is then employed to compute a solution in the form of an in­

formation policy. These steps are explained in the following subsections. The 

following result is used in the subsequent computations. 

Theorem 6.1 ( [3] Thm. 3.6.2) Let S be any nonblocking DES over £ such 

that S := Lm(S) satisfies the following two conditions. 

1. 5 is controllable with respect to plant G ; 
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2. SnLm(G) = SnL(G). 

Let 0 7̂  K := S Pi Lm(G) and let W be a marking nonblocking supervisory 

control such that Lm(W/G) = K. Then S implements W. In particular the 

following holds. 

Lm(W/G) = Lm(G) n Lm(S), L(W/G) = L(G) n L(S) (6.1) 

6.4.1 Centralized supervisors for R M T P control speci­

fications 

For each k G {1, 2, 3,4, 5, 6}, specification S^ enjoys the following properties. 

1. Sfc is nonblocking over S. This is verified in Appendix C. 

2. Lm(Sfc) is controllable with respect to N (and Ec). This is verified in 

Appendix C. 

3. Sk n Lm(N) = ~Sk n L(N). This is verified in Appendix C. 

4. 0 ^ Ek := ^ Pi Lm(N) is controllable with respect to N (and Ec). This 

is verified in Appendix C. 

5. Lm(Sk) is observable with respect to N, and natural projection P (in­

duced by E0). This is because all unobservable events, i.e. events in Euo, 

appear as slefloop transitions at all states of Sfc. 

By Theorem 4.1, the last three properties imply that there exists a nonblocking 

feasible supervisory control Wk for N such that Lm(Wk/N) = Lm(Sk). Then, 

by Theorem 6.1 and the first three properties it turns out that S^ implements 
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Wk in the sense of (6.1). In other words, each S^ is a modular supervisor for 

N which enforces Lm(Sk)- Furthermore, as shown in Appendix C, Si, S2, S3, 

S4, S5, and S6 are mutually nonconflicting, so their synchronous supervision 

is nonblocking. This implies that they can be used as modular supervisors to 

supervise plant N with no risk of blocking. 

As a result, rather than dealing with one big centralized supervisor, 

which is the synchronous product of all six supervisors, and implementing it 

in a decentralized way, one can implement six smaller modular supervisors in 

a decentralized way. Towards this end, for each modular supervisor an ALMs 

is introduced, based on which a PDS representation is derived which is then 

used for computation of information policies. In the rest of this chapter, Si, 

S2, S3, S4, S5, and S6 are referred to as modular supervisors. 

Before proceeding to compute PDS representations, it is worth compar­

ing the centralized and modular solutions from the point of view of ALMs and 

integer variables. 

1. First notice that there are 7 control nodes and six modular supervisors, 

each having 3 states. A centralized solution would have (of the order of) 

36 = 729 states. Therefore, a finite field which could encompass (about) 

729 distinct elements would be required. However, in the modular case, 

each required ALM should have 3 distinct elements. This reduction in 

the size of the underlying finite field(s), shows the advantage of working 

with the modular solution. 

2. On the other hand, the state changes of every modular supervisor are 

labeled by the events of exactly 2 control nodes and the events of all other 

control nodes appear as selfloops. For example, all the state changes in 

Si are labeled with events in E3 and E5, and all events in T,j, where 

j £ {1,2,4,7}, are selflooped, i.e. make no state change anywhere. As 
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a result, the actual "dimension" of the ALM, used for each modular 

supervisor, will be 3. Therefore, the order of the underlying finite field 

is reduced from 7 to 2 and 2, being a second advantage for modular 

approach. 

3. Following the previous observation, the events of a control node result 

in state change in more than one modular supervisor. For example, 

DRi 's events result in state changes in Si, S2, and S4. This means 

that each such supervisor would employ, in its PDS representation, one 

separate variable of its own to represent the labels assigned to DR4 by 

the supervisor's ALM. As a result, in the final PDS representation of the 

whole network of the modular supervisors, there are control nodes whose 

related observational information is captured in more than one integer 

variable. 

The following definition is useful in the next subsection. 

Definition 6.1 For k G {1, 2, 3,4, 5,6}, let S& = (Rk, £*,£*:, ro,fc>-Rm,fc) be one 

of the modular supervisors and n £ I be one of the control nodes whose index 

is i € / , assigned by function F in Subsection 6.3.2. Control node n is said to 

participate in S& if there exists an event a G Sj and distinct states r, r' G Rk 

such that r' = £(r, a). • 

For example, control nodes DRi and RNi participate in Si, since (at least) 

they result in state changes from r0 to r\ and from r\ to r0, respectively. Events 

of other control nodes appear as selfloop transitions, only, so these nodes do 

not participate in Si. 
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6.4.2 DSDES model of the modular supervisors 

DSDES modeling starts by defining ALMs for each modular supervisor. To 

define an ALM for each modular supervisor, the method of Latin hypercubes, 

introduced in Chapter 3, is employed. To this end, one needs to know the side 

and order of the six hypercubes. These two correspond to, respectively, the 

number of the states of each modular supervisor, and the number of control 

nodes which participate in the supervisor's automaton. Based on these two 

measures, the following observations can be made for every supervisor S^, 

where k & I. 

1. A general model for S^ can be shown in Fig. 6.12-a, where i,j £ I, i ^ j , 

tti, A 6 S^ and aj,(3j G Ej. Selfloop transitions are labeled by *, which 

represents the events in E \ {«;, $ , otj, f3j}. 

2. Sfc has 3 states and 2 participating control nodes. 

3. Moreover, if an event appears as a selfloop transition at some state, it 

appears as selfloop transition at every other state. In other words, there 

is no need to unfold any selfloop transitions or add states to S& (see 

Remark 3.1). 

The last two observations call for a Latin square of side 3 and dimension 2. Out 

of different arrangements of such Latin squares, one is shown in Fig. 6.12-b. 

Let F3 = {0,1, 2} and addition be done modulo 3. Then the ALM, which 

is built using the Latin square in Fig. 6.12 and is denoted by £, assigns labels 

to states 7"o, n , and T2 as follows. 

V? € F3. £(rq) = {(m, n) \ m, n e F3 A m + n = q) (6.2) 

238 
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ai t Pi 

u (^ ^ T ^ * ' K ''Qi V rV J 

* 
(a) 

2 | r 2 r0 n 
i 

117-1 r2 r0 

| 
0 L O J - J I - ^ ^ 

0 1 2 

(b) 

Figure 6.12: (a) General model of the modular supervisors, where * denotes 
the events in the set £ \ {cti,Pi,aj,Pj}. (b) One arrangement of the Latin 
squares of side 3 and dimension 2, which is suitable for defining an ALM for 
each modular supervisor. 

This results in the following state labels. 

£(r0) = {(0,0),( l ,2),(2,l)}, 

£ ( ^ = {(0,1), (1,0), (2,2)}, 

£(r2) = {(0,2),(l , l) ,(2,0)} 

Associated with S^ and £, the guard functions will be as follows. 

Gl(al) = gi(Pi) = {r0}, ^ ( a , ) = {r1} ) Q^OLJ) = {r2}, (6.3) 

Vcre(S i \{a i > /3 i }) . Gl(a) = WJ, Va € (£,- \ { a ^ - } ) . Gj(a) = Wl (6.4) 

V m e / \ { i , i } , V f f e E m . £ n ( a ) = ^ (6.5) 

The corresponding nonidentity updating functions are as shown in Ta­

ble 6.3, where a point (a, b) 6 F3 is denoted by aft. The identity updating 

functions are as follows. 

V f f € ( E i U E J \ { a i , f t , a „ / 3 i } ) , V v e F 3 . A(a,v) = v, (6.6) 

V m e / \ { U } , V a e £ m , V v e F 3 . .4(<7,v) = v (6.7) 
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Table 6.3: Updating functions associated with S^ and £ 
V 

A(aii,v) 
V 

AWuv) 
V 

A(atj,v) 
V 

A(Pvv) 

00 
10 

00 
20 

10 
12 

20 
21 

21 
01 

21 
11 

01 
00 

11 
12 

12 
22 

12 
02 

22 
21 

02 
00 

else 
— 

else 
— 

else 
— 

else 
— 

The DSDES model of the network is the collection of the six DSDES 

models which are obtained for all six modular supervisors and their corre­

sponding ALMs. 

6.4.3 P D S represen ta t ion of t h e R M T P network 

PDS representation of the typical DSDES: To arrive at the PDS rep­

resentation of the network, we start by computing the PDS representation of 

the typical DSDES associated with Fig. 6.12. The PDS representation of the 

network is he collection of six PDS representations, each corresponding to one 

DSDES model. To this end, first define the following polynomials (see (4.7), 

(4.8), and (4.9)). 

L0(x) 

Li(x) 

L2(x) 

jx-l)(x-2) 

(-1X-2) 
x(x - 2) 

= 2(x+l)(rc + 2) 

(1)(-1) 
x(x — 1) 

= 2x(x + l) 

= 2x(x + 2) 

(6.8) 

(6.9) 

(6.10) 

In computing the guard polynomials using Algorithm 4.1, notice that 
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there is no unreachable point in F3, which can be used to simplify these poly­

nomials (see Remark 4.2). Therefore the following results are obtained. 

9i(<Xi) = Si(Pi) = Looix^Xj) + L2i(xi,Xj) + LX2{xuXj) 

= {xj + 2){x] + 2) + xlxJ(2xlxj + 1) (6.11) 

Qj{otj) = Lw{xuxj) + L0i{xi,Xj) + L22(xi,xj) 

= 2(XJ + 1)(XJ + l)(xiXj + Xi + Xj) + XiXj(xi + 2)(XJ + 2) (6.12) 

BjiPj) = L20{xi,Xj) + Ln(xi,Xj) + L02(xi,xj) 

— (xi + 2)(XJ + 2)(2xiXj + Xi + Xj) + XiXj(xi + 1)(XJ + 1) (6.13) 

Obviously, the rest of guard functions are always equal to 1 and are not 

mentioned here. Nonidentity updating polynomials are computed as follows. 

1. Originally we have o^l{xi,Xj) = Loo(xi,Xj) + 2Li2(xi,Xj). However, «j 

is disabled at states r\ and r2 and the labels associated with these two 

states may be used to simplify dj. To this end, Lm(xi,Xj), 2Lw(xiyXj), 

L02(xi, Xj), and 2Ln(xi, Xj) are added to Oj leading to the following com­

putations. 

af'ixuxj) = [L00(xi,Xj) + L0i(xi,x3) + LQ^X^XJ)] 

+ 2[L12(xi,Xj) + LlQ(xi,Xj) + Ln(xi,Xj)} = L0(XJ) -\-2Ll{xi) = xt + 1 

(6.14) 

2. Originally we have a^(xi,Xj) — 2L0Q(xi,Xj) + L2i(xi,Xj). By a similar 
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reasoning to part 1, we may add 2Z/10(XJ, Xj), L22(xi, Xj), L20(xi, Xj), and 

2L02(xi, Xj) to this expression to compute the following. 

a?i(xi,xJ) = xi + 2 (6.15) 

3. Originally we have aa,3{xi,Xj) = 2Li0(xi,Xj) + L22(xi,Xj). By a similar 

reasoning to part 1, we may add 2L00(xi,Xj), Li2(xi,Xj), 2L20(xi,Xj), 

and Lo2(xi,Xj) to this expression to compute the following. 

a1i(xi,xj) = xj + 2 (6.16) 

4. Originally we have aMxi,Xj) = L20(xi,Xj) + 2Ln(xi,Xj). By a similar 

reasoning to part 1, we may add Lo0(xi, Xj), 2L2\[x^ Xj), Lio(xt, Xj), and 

2L0x(xi,Xj) to this expression to compute the following. 

of<(xi)Xj) = a;j + l (6.17) 

Clearly the above polynomials are all independent of their corresponding ex­

ternal variables, i.e. they are independent updating functions (IUFs) (see 

Section 5.3). 

Introduction of private variables: The next step is to introduce integer 

variables, as required by the PDS representations of different modular super­

visors to come up with a concrete PDS representation of the network. To 

this end, first the number of private variables, which each node requires to 

represent its information, should be specified. This number is determined by 

distinguishing the number of distinct modular supervisors in which the control 

node participates. Accordingly, a separate variable is assigned to the control 

node for each distinct modular supervisor. Table 6.4 determines in which 
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Table 6.4: Participation of control nodes in the six modular supervisors 
n e l 
Sfc in 

which n 
participates 

SD 

s6 

T N 
S4, S 5 , S6 

D R : 

Si, S2, S4 
DR2 

S3, S5 

RNi 
Si 

RN 2 

s2 

RN 3 

S3 

Table 6.5: Private variables owned by control nodes when participating in 
different modular supervisors 

n e l 
n's variable, 
Used in S^ 

n's variable, 
Used in Sfc 

n's variable, 
Used in Sfc 

SD 
xi, SQ 

— 

T N 
x2, S4 

V2, S 5 

^2) §6 

DRi 
X3, S i 

2/3, S 2 

3̂> S 4 

DR2 

X4, S3 

J/4,S5 

RNi 
x5, Si 

— 

RN 2 

%&i S 2 

— 

RN 3 

x7, S3 

— 

modular supervisor(s) each control node participates. 

Using Table 6.4, private variables are assigned to control nodes as spec­

ified in Table 6.5. Observe that the index of each variable is the index of its 

associated control node in / . Depending on in how many modular supervisors 

a control node participates, it employs letters x, y, and z for the lowest-index 

to the highest-index supervisors. For example, SD, whose index is 1 in / , 

participates only in S6 and its private variable is x\. Similarly, the private 

variables of TN, whose index is 2 in i", are x2 (used with S4), y2 (used with 

S5), and z2 (used with Se). 

P D S representat ion of the whole network: Table 6.6 shows the PDS rep­

resentation of the RMTP network, which is the collection of the PDS represen­

tations of its six aggregate DSDESs, where we define x = (xi, x2,2/2> z2, £3,2/3, 
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z3J xii VAI %5, XQ, X-J). In the following two subsections, two information policies 

are derived for this PDS representation. 

6.4.4 RMTP-like state-transferring information policy 

for the R M T P network 

We start by deriving state-transferring information policy 2 for the network 

and justify this policy. To this end, first a set of Boolean variables should 

be introduced for each control node to encode its variables. To this end, the 

notation in Definition 4.9 is employed, where we notice that the integers in 

F3 can be encoded with two Boolean variables. This justifies the introduction 

of the Boolean variables in Table 6.7. Also recall from Definition 4.9 that the 

copy of a typical Boolean variable xk^ which is kept by the i'th node is denoted 

by x'lj (same holds for y and z variables). 

The next step is to compute the actions and guards associated with the 

typical supervisor. To this effect, notice that two Boolean variables can encode 

four different integers and here there are only three integers in F3. Hence the 

fourth one, i.e. 3, encoded by 11, can be used arbitrarily to simplify the 

expressions. Computation of the actions and guards can be summarized as 

follows. 

1. There two kinds of actions associated with the two updating polynomials 

xt := of (x) = Xi + 1 and xt := of (x) = Xi + 2, where x{ and a are an 

integer variable owned by the i'th control node and an event in £0>i, 

respectively. 

2. To compute the actions corresponding to xt := of (x) = x^ + 1, it is 
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Table 6.6: The PDS representation of the RMTP network 
RA- Rtt 

Xl ;= af*™(x) = Xl + 2, xx := g" ™(x) = Xl + 1 
~RM 

X2 

RA = o r D S ' ( x ) = x2 + 2, x2 = 0 , 
TUP, 

• (x) = x2 + 1 

2/2 = a ^ D M f x ) = 2/2 + 2, j/2 : = a. (x) = y2 + 1 

Z2 = a2
4™(x) = z2 + l, Z2 • 

— n"-TN (x) = z2 + 2 
"7?Al 

X 3 

_ - R A f l j v W N _ 
a (x) = x3 + 2, x3 = a. 

n (x) = x3 + l 

2/3 = a 
HAr ! ( x ) = 1/3 + 2, J/3 = Oo 

-R~tt !(x) = 2/3 + I 

2:3 
— n ^ D H l 'x) = 23 + 1, z3 

;3 = a, Dm (x) = z3 + 2 
" H A l 

X4 = a 
RAf (x) = x4 + 2, x4 x) = X4 + 1 

a?D™{x.) = y4 + 2 
~~~—TP ' ' ™ ' —— 

2/4 = Q4D*a(x) = 2/4 + 1, 2/4 

x5 
q*™"(x) = s 5 + l, x5 = cu "(x) = x5 + 2 

x6 
= o£™a(x) = :r6 + l, X 6 = afi 

:(x) = x6 + 2 

x7 
(x) = x7 + 1, x7 = a7 

(x) = x7 + 2 

g^™ 1 

"77A1 
x) = 2(2:2 + l)(xx + l)(z2xi + z2 + xx) + z2xi(z2±\2)(xi + 2) 

(z2 + 2)(Xl + 2)(2Z2X1 + Z2 + Si) + Z2Xx(z2 + l)(Zi + 1) 

2(z3 + l)(x2 + l)(z3x2 + z3 + x2) + z3x2(-z3 + 2)(x2~+~2 
0i (x) = 
~KA~ grDm(x) 
gf^-(x) 

2(Z3 + 1)(X2 + 1)(Z3X2 + Z3 + X2) + Z3X2(-Z3 + 2)(x2 + 2) 

(z3 + 2)(x2 + 2)(22:3x2 + z3 + x2) + £3X2(^3 + l)(x2 + 1) 

2(2/4 + l)(2/2 + l)(2/42/2 + 2/4 + 2/2) + 2/42/2(2/4 + 2)(y2 + 2) 

(j/4 + 2) (2/2 + 2) (22/42/2 + 2/4 + 2/2) + 2/42/2(2/4 + IX2/2 + 1) 

~R7T 0rD*2(x) = 
~R7R 

02 (x) = 
(z2 + 2)(x2 + 2) + z2aji(2z2a:i+ 1) 

02T/V (x) = (z2 + 2)(x2 + 2) + ^2xi(2z2a;i + 1) 

Q3
ARN1(X) = 2(x5 + l)(x3 + l)(x5x3 + x5 + x3) + x5x3(x5 + 2)(x3 + 2) 

KAl 
03 

03 ' 

"(x) = (x5 + 2)(x3 + 2)(2x5x3 + x5 + x3) + x5x3(x5 + l)(x3 + 1) 

~R~A~ 

x) = 2(x6 + IX2/3 + l)(^62/3 + x6 + 2/3) + x&y3(x& + 2) (2/3 + 2) 

03 ™2(x) = (x6 + 2X2/3 + 2X2£62/3 + X6 + 2/3) + X62/3(x6 + l)(?/3 + 1) 
fl3

4Dm(x) = (z3
2 + 2)(x | + 2) + 23x2(2z3a:2 + 1) 

0 3 ^ ( X ) = (^; 

— J ™ 

04 

x) = 2(x7 

2)(x2
2 + 2) + z3x2(2z3x2 + l) 

l ) (x 4 + l ) (x 7 x 4 + x7 + x4) + x7x4(x7 + 2)(x4 + 2) - l ) (x 4 + l ) (x 7 x 4 + x7 + x4) + x7x4(x7 + 2)(x4 + 2) 

r 2)(x4 + 2)(2x7x4 + x7 + xA) + x7x4(x7 + l)(x4 + 1) 

2X2/1 + 2) + 2/42/2(22/42/2 + 1) gfDfl2(x) 
0. 

x) = (x7 + 

05 

"A 

2(x) = (2/4
2 + 2)(j/2

2 + 2) + 2/42/2(22/42/2 + l) 

Xx) = (2/4
2 + 2)(y2

2 + 2) + 2/42/2(22/42/2 + I) 
1 (x) = (x2 + 2)(x2 + 2) + x5x3(2x5X3 + 1 

*DR2(-V.\ 

0^ N 1 (X) = (xl + 2)(X2 + 2) + X5X3(2X5X3 + 1) 

g ^ X x ) = (x2 + 2)(2/3
2 + 2) + x62/3(2x62/3 + 1) 

06 (x) = (x2 + 2)(2/| + 2) + x62/3(2x62/3 + 1) 

g?«"3(x) = (x2 + 2)(x2 + 2) + x7x4(2x7x4 + 1) 

g"RN3(x) = (x2 + 2){x\ + 2) + x7x4(2x7x4 + 1) 
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Table 6.7: Private Boolean variables owned by control nodes for state-
transferring information policy 

Integer variable 
Xi 
x2 

2/2 

-22 
x3 

2/3 

Z3 

£4 

2/4 

x5 

XQ 

x7 

Its Boolean-variable encoding 
{xuxn) 
\X22X22) 

(2/222/22) 

(^22^22) 
(X33X33) 

(2/332/33) 

(233233) 
(x44a:44) 

(2/442/44) 

l^ss^ss) 
(X66X66) 
(x77x77) 

assumed that 3 is mapped to 2. This yields the following actions. 

4 : = at(a£, «) = x\, x\ := a ^ , a) = z«z« (6-18) 

3. To compute the actions corresponding to Xi := of (x) = Xj + 2, it is 

assumed that 3 is mapped to 1. This yields the following actions. 

Xii : = ai\Xiiia) = XiiXiii Xii •= = ai\Xiiia) = xii \p.iM) 

4. There are three types of guard polynomials: Qi(ai) = = (xf + 2)(x"j + 2) + 

XiXj(2xiXj + l), Qj(ocj) = 2(xi + l)(xj + l)(xiXj+Xi+Xj)+XiXj(xi+2)(xj + 

2) and Qj{/3j) = {xi + 2)(XJ + 2)(2xiXj + x{ + Xj) + XiXj(xi + 1)(XJ + 1), 

where ctj G £0,i a n d Qj>/3j £ ^o,j-

5. To compute the guard corresponding to (ji(aj) = (xf + 2)(a^ + 2) + 

XiXj(2xiXj + 1), it is assumed that ct{ is also enabled at the following 
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points in F§: (1, 3), (2, 3), (3,1), (3, 2), and (3,3). This results in the 

following expression for the guard. 

9i\ai) == •^ii^ii^ij'^ij ' ^ii^ij > xii-cij {'O.ZvJ 

6. To compute the guard corresponding to QJ(CXJ) = 2(XJ + 1){XJ + l)(xiXj + 

Xi + Xj) + XiXj(xi + 2)(XJ + 2), it is assumed that <%j is also enabled at the 

following points in F§: (0, 3), (2, 3), (3, 0), (3, 2), and (3, 3). This results 

in the following expression for the guard. 

dji^j) — XjiXjjXjj ' XjiXjiXjj ' XjiXjj (D.ZlJ 

7. To compute the guard corresponding to 0j(/3j) = (XJ + 2)(XJ + 2)(2xiXj + 

Xi + Xj) +XiXj(xi + l){xj + 1), it is assumed that a,j is also enabled at the 

following points in F^: (0, 3), (1,3), (3, 0), (3,1), (3, 2), and (3, 3). This 

results in the following expression for the guard. 

9j\Pj) XjiXjjXjj ' XjiXjiXjj ' XjiXjj \O.Z6) 

The above results lead to the actions and guards for the whole RMTP 

network in Table 6.8 and Table 6.9, respectively. 

Communication policy 2 (see Definition 5.4) requires that the value of 

every external variable, on which a control node depends functionally (i.e. 

as an argument of one of its guards or actions), be sent right after it gets 

changed. Updating functions of the nodes all depend on private variables, 

i.e. only guards may depend on external variables. Accordingly, Table 6.10, 
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Table 6.8: Actions of the control nodes of the RMTP network 
T 2 
X l l 

xn 

X22 

X 2 2 

2/2V 
2/22 

z2 • 
z 2 2 • 

2 22 '• T 2 
x 3 3 

X 3 3 

2/33 

2/33 

Z2 
z 3 3 

2 3 3 

X 4 4 

X 4 4 

2/44 

24 
X 5 5 
X 5 5 

X 6 6 

X 6 6 

x77 

x77 

= ai(x2
n,RATN) — x\xx\x, 

= a^x1^ RATN) = x2
n 

= a2(x22, RADm) — x22x22, 
= a2(x\2) RADRX) = X \ 2 

= a2(y 22, RADR2) = y \2y\2, 
= a2(yl2, RADR2) =y\2 

= a2(z22, ATN) = z22, 
= a2{z22,ATN) = z22z22 

— a 3 ( x 3 3 ) RARNI) = X33X33, 

= a3{x\t,RARNi) = x2
33 

= «3(2/|35 RARN2) = yl$l3, 
= a3{yli, RARN2) = 2/33 
= a 3 ( % , i 4 M i ) = Z33, 

= a 3 ( 2 3 3 , A x j f l i ) = % 3 ^ 3 3 

= 0 4 ( ^ 4 4 , RARNZ) = XUXU, 

= 0 4 ( ^ 4 4 , RARN3) = X 4 4 

= di(yj4, ADR2) = yii, 
= aA(y\A,ADR2) = y\Ay\A 

— a 5 ( % 5 ' A R T V I ) = X 5 5 , 

= ab{x\b, ARNl) = x2
55xl5 

= a 6 ( x 6 6 ' ARN2) = X66, 
:== ae{x66, ARN2) = x66x66 

'•= a7(x77,ARN3) = x77, 
:= a7(x77, ARNZ) = x77x77 

xn 

xn 

T2 

x 2 2 

X22 
2/22 

2/22 

Z2 
z 2 2 

Z1 
z 2 2 

X 3 3 

X 3 3 

2/323 

2/33 

Z 2 
z 3 3 

2 3 3 

XAA 

XAA 

y'L 
2/44 

X 5 5 

^ 5 5 

T 2 
x 6 6 

X 66 

X 7 7 

X 7 7 

— a i (x n , RATN) — ^u 

= a2{x22,RADR1) = x22 

= a2(x22, RADRi) = x22x22 

= a2{yl2, RAe
DR2) = y\2 

= ^ f e ^ I J J B ) = 2/222/22 

= fl2(^22> A r N / = Z22Z21 

= 0 2 ( ^ 2 2 , A T A r ) = 2 2 2 

= ai\x33i RARN\) — x 3 3 

= a j ( x 3 3 , RARNl) = £33X33 

= a i ( 2 / 3 3 ' RA-RN2) = 2/33 

= a i ( ? / 3 3 ' RARN2) = 2/332/33 

— a 3V 2 335 A o . R l ) = ^33^33 

= a3(^j, A f ^ J = 233 

= 0.4 ( x 4 4 , RARN3) = x 4 4 

= 0 .4 (^44 , riA.Rpf2) = X44X44 

= aA{y4i,ADR2) = yAAyAi 

= 04(2/441 ADR2) = y44: 

= a 5 ( x 5 5 > Ae
RN1) = x

5 5 2 ; 5 5 

= a5\x55i ARN1) = X 5 5 

:= a6(:r66, ARN2) = xmx66 

'•— a6\X66iARN2) = X 6 6 

:= a,7{x77, ARN3) = x77x77 

'•— a7\x77) ARN3) = X77 
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Table 6.9: Guards of the control nodes of the RMTP network 
9I{RATN) = Z\2X\\X\\ + Z\2Z\2X\\ + Z\2X\\ 

gi[HATN) = Z\2X\\X\\ + Z\2Z\2X\\ ~̂~ Z\2X\\ 

92\*("A-£)ffi) = Z23
a:'223:'22 ~t~ z23>Z2'$X'Zl "I" ^ 2 3 - ^ 

g2[HADR1) = ^23X22^22 "̂~ 2:23Z23a::22 + ^ 2 3 - ^ 

~92~{RADR2) = 1/24^22^22 + ^24^24^22 + ?/24?/22 
~92(RAe

DR2) = y'j4y
2
22y22 + y ^ k s / i k + 2/24^22 

92\A.TN) — z22z22x"l\x7,\ "^ ^22^21 ~t~ -2223:'21 

ff2J-^TAf J = ^22,S'223:'21-g21 ~^ ^22^21 "̂~ ^22^21 

93\RARNI) = £35X33X33 + X ^ X ^ X g g + XggXgg 

g3{RARN1) = XggXggXgg + X 3 5 x 3 5 x 3 3 + x 3 5 x 3 3 

~gT(-R^flJV2) = ^36^33^33 + ^36^36^33 + ^36^33 
g^{RARN2) = x 3 6 y 3 3 i / 33 + x 3 6 x 3 6 ?/33 + Xggi/gg 

g3(-^Dfl l ) = ^33Z33 :C323:32 + ^33X32 + 2:33X32 

^ ( - A p f l i ) = 2:332:33:r323:;32 + HzxZ2 + ^33:E32 

gA\RA.RN3) = x 4 7 x 4 4 x 4 4 + x 4 7 x 4 7 x 4 4 + x 4 7 x 4 4 

g4\l\ARpj3) = X4yX4 4X4 4 + X4yX4yX44 + £,47X44 

~g4"(^£)fi2) = ^ 4 ^ 4 4 ^ 4 2 ^ 4 2 + ^44^42 + ^44^42 

5 r4(^£)fl2) = 1/44^44^42^42 + ^44^42 + VAAVA2 

gh\ARN\) = X5 5X5 5X53X53 + X5 5X53 + X 5 5 X 5 3 

~g6~(^/W2) = xlAyJA + ^661/63 + X66 /̂63 

JM^- /W2J = ^ e e ^ e e ^ ^ + x66y63 + x66^63 

^(^JgTVSJ = X 7 7 X 7 7 X 7 4 X 7 4 + X 7 7 X 7 4 + X7yX74 

97\ARN3) = x 7 7 x 7 7 x 7 4 x 7 4 + x 7 7 x 7 4 + x 7 7 x 7 4 
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Table 6.11, and Table 6.12 illustrate the implementation of the information 

policy 2 for the network. 

6.4.5 RMTP-like event-transferring information policy 

for the R M T P network 

This subsection presents an implementation of information policy 5, introduced 

in Definition 5.15, for the RMTP network. Recall that policy 5 prescribes 

communication of the (parts of) the event-encoding Boolean variables, under 

Assumption 5.1. 

Computation of 0j for each control node i £ I: Using Algorithm 5.1 for 

the PDS in Table 6.6, and noticing the fact that the updating functions of the 

network are all independent, the following results are obtained. 

0 1 = {2}, 0 2 = {1,3,4}, 0 3 = {2,5,6}, 0 4 = {2,7}, 

0 5 = {3}, 06 = {3}, 0 7 = {4} (6.23) 

Introduction of event-encoding Boolean variables: Following Defini­

tion 5.13, the observable events of each control node, which result in a state-

change in one of the six modular supervisors, i.e. have nonidentity updating 

functions, are encoded. The list of these events, the supervisor(s) in which they 

make a state change, and their Boolean encodings are shown in Table 6.13. For 

the sake of later referencing, these events are defined to form a set themselves 
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Table 6.10: Communication amongst supervisors based on policy 2 

S12(RATN) = 

\xn, xn\ 

{x\i\ 
0 

if (ah © [x2
n]) A (x2

n © [x^xh]) 

if (xl10[a;?1])A-.(a;?1e[x?1^1]) 
if -.(arh © [x^]) A (x2

u © [xf^h]) 
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Table 6.11: Communication amongst supervisors based on policy 2 (Part 2) 
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Table 6.12: Communication amongst supervisors based on policy 2 (Part 3) 
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as follows. 

^ o c , l 

^oc ,2 

^ o c , 3 

^oc ,4 

^oc,5 

Soc,6 

^ o c , 7 

= {RATN,RAe
TN} 

= {ATAr, ^ A M /L4D#I , RAe
Rm, RADR2, RAe

DR2} 

= {ADm,Ae
Dm, RARNi, RAe

RNl, RARN2, RAe
RN2) 

— {ADR2, Ae
DR2, RARN3, RAe

RN3} 

= {ARNI,ARNI} 

= {ARN2, Ae
RN2} 

= {ARN3,ARN3} 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

In column 3 of the table, by "Related supervisor" we mean the modular su­

pervisor in which the event makes a state change. Prom the table it can also 

be observed that control nodes SD, RN1 ( RN2 , and RN 3 each employs 2 

Boolean variables for encoding their events and each of the other three nodes 

uses 3 Boolean variables for this purpose. Moreover, all nodes encodes "e" by 

their 0 codes. Furthermore, since often both types of an acknowledgement, 

i.e. error-free- and erroneous-receipt acknowledgements, appear to be in the 

same supervisor, the codes assigned to them is such that the distance between 

them4 is just one bit, so that a change from one acknowledgement to the other 

induces only one changed bit. 

Implementation of information policy 5: Recall from Definition 5.15 

that policy 5 requires that each supervisor provides other supervisors, who 

directly or indirectly depend on it, the latest values of the changed bits of event 

encodings. Notice that (6.23) specifies informational dependency of nodes and 

4The distance here is considered in the sense of the number of bits which are different in 
the two. 
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Table 6.13: Details of the encoding of the events for communication policy 5 

Control node, 

Number 

SD, 1 

SD, 1 

SD, 1 
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T N , 2 
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7 
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Ae 
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e 
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Ae 
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supervisor 
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s6 
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s5 
— 

s4 
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Si 
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s3 

s3 
— 

Si 
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— 
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(2/222/222/22) = (101) 

(2/222/222/22) = (HO) 

(2/222/222/22) = (111) 

iyky'kyk) = (ooo) 
(2/3^2/332/33) = (010) 

(2/332/3232/33) = (OH) 

(2/332/332/31
3) = (100) 

(2/332/332/33) = (101) 

(2/332/332/33) = (11°) 

(2/I32/332/33) = (111) 

(2/4
3
42/4

242/L) = (000) 

{VWAAVIA) = (010) 
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(2/4342/4242/4I

4) = (100) 
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(<4?4) = (oo) 
(VBBI/SS) = (10) 

(yi5yl5) = (11) 
(y^62/66) = (00) 

(y'ieyk) = (10) 
(1&1&) = ( i i ) 

(2/7272/77) = (00) 

(l&i/W = (10) 
(y 7 ^ 7 7 ) = (11) 



each event in Table 6.13 is observable by only one node. Table 6.14 and 

Table 6.15 presents the implementation of policy 5 for the whole network. 

6.5 Conclusion 

This chapter applies the theoretical results of the previous chapters to the mod­

eling and synthesis of an industrial-size communication protocol, called RMTP. 

After briefly reviewing the essential properties of RMTP, its network, and its 

associated nodes, a network consisting of seven nodes is modeled through in­

troducing the events and the automata of each node. Next, the specifications 

of the network are modeled and shown to satisfy certain properties such as 

controllability and observability. This paves the way to design modular super­

visors which enforce the specifications. These supervisors are then represented 

in DSDES framework and their PDS representations are obtained. The chap­

ter ends by deriving two RMTP-like information policies for the network. 
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Table 6.14: Communication amongst supervisors based on policy 5 (Part 1) 
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Table 6.15: Communication amongst supervisors based on policy 5 (Part 2) 
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Chapter 7 

Conclusions and future work 

Given a (distributed) DES as a plant and some specifications, this thesis stud­

ies the problem of "synthesis of communicating decentralized supervisors," 

which insures the satisfaction of the specifications by the plant's behavior un­

der the joint supervision of decentralized supervisors which communicate (part 

of) their private information amongst them. 

The proposed approach suggests that this problem can be reduced to 

decentralized implementation of an already designed centralized supervisor, 

which itself insures that the plant's behavior satisfies the specifications. Thereby, 

the original problem is reduced to synthesis of communication among super­

visors using a polynomial-dynamical-system representation of the centralized 

supervisor. The communication, formalized by its associated "communication 

events," is designed in two levels, called "information policy" and "routing pol­

icy." Whereas the former represents the "logical informational dependency" of 

decentralized supervisors on each other, the latter is to "implement" the ex­

change of the required information among supervisors in the absence of some 

mutual communication channels or in the presence of communication losses. 

This thesis derives only information policies, whose primary role is to reflect 
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the supervisors' mutual informational dependencies. However, they can be 

implemented by themselves, i.e. with no routing policy, in strongly connected 

networks whose communication channels are delay-free. When either condi­

tion is violated, a routing policy should be designed, on top of an information 

policy, to implement the communication among supervisors. 

Besides deriving six solutions in the form of information policies, the 

research provides a finer partitioning of the class of communicating supervi­

sors and also establishes some relations between communication and the state 

representation of the centralized supervisor. 

The theoretical results are applied to design two RMTP-like information 

policies for multicasting data over asymmetric networks. 

7.1 Conclusions 

The advantages of the proposed distributed SDES and EFSM frameworks are 

explained i n Chapter 1. Here the conclusions of the thesis are listed for each 

chapter as follows. 

1. The formulation of the class of protocol synthesis problems (including 

ABP) in Chapter 3 makes it plausible to think that over ideal chan­

nels the problem of "protocol design" for communication processes with 

non-coobservable specifications can be reduced to the synthesis of com­

municating decentralized supervisors. This chapter presents solutions 

to a special class of problems where the processes need to communicate 

amongst themselves only for control, and a positive result is stated when 

channels are unreliable. 

2. An important contribution of Chapter 3, which has the central role in 

this work, is the introduction of agent-wise labeling maps (ALMs) and 
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their proof of existence, which is essentially a beautiful result, enjoy­

ing importance, applicability, and simplicity. This result establishes the 

foundations for decentralized representation of the information structure 

of a DES, and in particular, a centralized supervisor. 

3. Chapter 4 introduces the (distributed) SDES framework for synthe­

sis of communicating decentralized supervisors out of a given central­

ized supervisor. DSDES framework, in which analysis and design are 

tractable and insightful, encompasses EFSM framework, as its special 

implementation-oriented case; hence the two enjoy their complementary 

facets. Also the two frameworks complement the behavioral study of 

DESs, which is the mainstream in DES study, providing a second view­

point similar to state space analysis of control systems. The central 

tools employed by a DSDES are its ALM, which reflect the structure 

of the centralized controller in a distributed manner, and its updating 

and guard functions, which represent the observation and control-related 

information of the centralized supervisor. When recast as a PDS over 

a field, a DSDES becomes amenable to standard mathematical analysis 

tools, including computational algebraic machinery. 

4. Within DSDES framework, communication among decentralized super­

visors appears naturally as a means to help them reevaluate their guard 

and updating functions. In Chapter 5 the communication problem is 

formally defined with the help of communication-related events, which 

are in turn defined as maps from observed events to a subset of Boolean 

variables. The synthesis of communication becomes then equivalent to 

completely defining these maps. Each such synthesis is done in two lev­

els corresponding to synthesis of information policies and synthesis of 

routing policies, respectively. The former, being studied in this thesis, 
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reveals the mutual informational dependency of decentralized supervi­

sors on each other, regardless of the network topology and communica­

tion channels. An information policy can be implemented by itself in 

strongly connected networks whose communication channels are delay-

free. However, when some mutual communication channels are missing 

or delayed, a routing policy should be designed, on top of an informa­

tion policy, which implements the information exchange in the presence 

of physical (environmental) constraints. Therefore, design of informa­

tion policies is the first step of a communication design, but may have to 

be followed by design of routing policies. To demonstrate the modeling 

power of the proposed framework and synthesis procedure, 6 information 

policies are derived and proved to guarantee the satisfaction of the given 

specifications in (distributed) DESs. 

5. A second group of results of Chapter 5 are those which provide a finer 

partitioning of the class of communicating supervisors. This partitioning, 

being invoked by informational dependency of guard and updating func­

tions of external variables, has consequences in designing information 

policies and fault recovery in the communicating network of supervisors 

and complexity of communication implementation. 

6. A third group of results in Chapter 5 are on the communication-oriented 

state representation of centralized supervisors. This subject, which de­

serves a separate work of its own, has roots in realization theory and 

is of interest to control theorists, specially due to its important role in 

state space methods. The findings of this research opens a new window 

into it. 

7. Motivated by the observation on ABP synthesis in Chapter 3, Chapter 6 
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takes the first steps into the automatic synthesis of communication pro­

tocols by modeling and synthesis of RMTP-like protocols, which are used 

in multicasting data over asymmetric networks. The theoretical results 

of Chapter 5 are applied to this study and proves useful in this regard. 

To the best of author's knowledge, the proposed framework and proce­

dure of this thesis for the synthesis of communicating supervisors is among the 

most general and flexible one for this purpose. The proved properties of the 

derived information policies in Chapter 5 are examples of the capabilities of 

the proposed approach, which is missing in other similar works. Central to the 

proposed frameworks and synthesis procedures is the notion of ALMs, which 

always exist and can be computed efficiently. Moreover, the results on commu­

nication partitioning and communication-oriented state representations open 

windows to interesting and important branches of research in communicating 

supervisors, which are unique to this work. 

7.2 Future work 

Details of some of the extensions of the results may be found throughout the 

thesis. From a general viewpoint, the research can be continued in certain 

directions as follows. 

1. As shown in the proof of Theorem 3.2, an agent-wise labeling map can be 

defined using Latin hypercubes. However, often there is more than one 

arrangement of a Latin hypercube which can be used for this purpose. 

Furthermore, there might be other ways to compute an ALM. Each way 

of defining an ALM may enjoy specific properties which can be of interest 

in cases where more structure is imposed on the ALM. 

2. Currently the symbolic representation of a DSDES is derived solely for 
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the purpose of computing communication rules. However, use of a sym­

bolic representation is one of the ways to tackle computational complex­

ity of the centralized supervisor synthesis (see Chapter 1). It would be 

desirable if relations between these two symbolic representations can be 

found and the two are integrated in one synthesis procedure in which 

a centralized supervisor and its decentralized implementation both are 

derived from a plant and a specification. 

3. Study of routing policies is one of the key steps in applying the theoretical 

results to practical problems. First of all, this requires a study of network 

delay and its effect on supervisor synthesis. On the other hand, design 

of routing policies can potentially affect the definition of an associated 

already-designed information policy. These issues are within natural 

continuations of this research. 

4. "Inference" and "time" are two important issues associated with com­

munication. It is then important to encompass these issues in DSDES 

framework, too. Inference would help a supervisors use its information 

better and may even eliminate the need for some communication, thereby 

affecting the minimality of communication. Also time issues are impor­

tant in real-time implementation communication policies and protocols. 

5. The emphasis of this thesis is on the introduction and development of 

DSDES framework for the synthesis of communicating supervisors. As 

a result, solutions to the communication problem are derived mainly 

to show the capabilities of the framework and the synthesis procedure. 

However, it is also quite important to improve the computational aspects 

of the synthesis procedures, formulate quantitative measures (such as 

the one for communication size) in more details, and solve them using 
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discrete optimization techniques and tools. The quantitative analysis 

will be a complementary facet of the qualitative study of DESs. 

6. Modeling, analysis, and synthesis of real-life problems directly depend on 

the availability of universal modeling schemes and a good realization the­

ory. In author's viewpoint these two are bottlenecks of the application-

side of supervisory control theory and every theory, which is built on it, 

including the proposed synthesis theory. 

A major requirement of most of the above extensions is the availability of 

powerful software tools which can handle large plants and advanced algebraic 

computations. 
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Appendix A 

Missing proofs of the claims of 

Chapter 4 

Proof of Lemma 4.1 

First note that the function A is well-defined. Proof is done by induction 

on the length of strings. 

• Base: 

A{e,0) = £{r) ^ > 0 = £{r) 

<=> r = r0 [Item 1, Defn. 4.3] 

«=>• r = f(r0,e) 

Inductive step: Assume that sa € L(S). Then s <G L(S), i.e. there exists 

r e R such that r = £(ro, s). It follows from the induction assumption 

that *4(s, 0) = £{r) •£=> r = f (r0, s). Let r' = £(r, a). We have: 
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A(sa, 0) = £(r') ^=> A(a, A(s, 0)) = £{r') [Defn. of A] 

4=> A(a, £(r)) = £(r') [Induction assumption] 

«=> r' = f (r, a) [Eq. (4.1), Item 2 of Defn. 4.3] 

<=>. r' = £(r0,sa). • 

Proof of Proposition 4.2 

In the nontrivial case where E is nonempty the proof is by induction 

on the length of strings, where the base is trivial since e G E and e G L(V). 

For the inductive step let a G E, s G E* and r = £(r0, s). By the induction 

assumption, 

seE^^seL(V). (A.l) 

Then we have 

s a e E <=> s G ~E A scr G L A [3r G R. r = f (r0, s) A £(r, a)\] 

<=> s G £ A sa G I A [3r G i?. ^ ( s , 0) = £(r) A f (r, a)!] [Lem. 4.1] 

<=> s G L{V) Asa e l A £(r) G 0(a) [Eq. (A.l), Eq. (4.2)] 

«=> SCT G L(Z>). [Defn. 4.2] 

This proves that !/(£>) = E. For the next part by Definition 4.2 and the fact 

that E is Lm(G)-closed, we have Lm(V) = L(V) n Lm(G) = £ n Lm(G) = E. 

Proof of Lemma 4.3 

Proof is done by induction on the length of strings. 

• Base: 
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A{e,0)ee{r) <=» O e l ( r ) [Eq. (4.4)] 

<==> r = r 0 [Item 1, Defn. 4.6] 

4=> r = f(r0,e) 

• Inductive step: Assume that sa G £(S). Then s G L(S), i.e. there 

exists r E R such that 

r = £(ro,s). It follows from the induction assumption that „4(s, 0) € 

£(r) <̂ =>- r = £(r0,s). Let r' = £(r, a). We have: 

A(sa ,0)e*( r ' ) « = • (A(cr,A(s,0))) e £{r') [Eq. (4.4)] 
V / iei 

4=> (7vlfi(a,A(s,0))) €l(r') [Eq. (4.5)] 

« fi(a,A(s,0))ee(r') 

<=^ r' = £(r,a) [Lem. 4.2] 

« = • r' = £{r0,sa) • 

Proof of Proposition 4.3 

In the nontrivial case where E is nonempty the proof is by induction 

on the length of strings, where the base is trivial since e G E and e G L(T>). 

For the inductive step let u G E , S G E * and r = £(ro,s). By the induction 

assumption sEE<=^sEL(T>). We have: 

sa e ~E <=^ s e~E Asa e~LA[3r e R. r = £(r0, s) A £(r, a)!] 

<̂ => s G ~E A sa G I A [3r G fl. *4(s, 0) E £(r) A f (r, a)!] [Lem. 4.3] 

<=> s G L(V)Asa G LA[3r G i?. -4(s, 0) G £(r) A£(r, a)!] [Induction 
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Assum.] 

<=> s e nieIL(Vi) AsaeZA A(s,o) G f)iei&(°") [Defn- 4-5l 

<==̂  Vz G J. s G L(A) A so G L A *4(s, 0) G ft (a) 

<=• Mi G I. so 6 L(£>i) [Defn. 4.4] 

^=^ scr G n i e /L(P i) 

^ s f f G L(P). [Defn. 4.5] 

This proves that L(P) = E. For the next part we have: 

Lm(V) = f]ieI Lm(Pi) [Defn. 4.5] 

= n i e / (L(Vi) n Lm(G)) [Defn. 4.2] 

= (f| i e/ L(Vi)) n Lm(G) = £ n Lm(G) [Part 1] 

which, by Z/m(G)-closure of E1, is equal to E. • 

Proof of Proposition 4.4 

First we show that within the set of state labels, 0^(.) is indeed the char­

acteristic equation of the guard function Gt(o) and hence correctly represents 

it. From (4.6) 

, {*(r) | re i*A£(r , (7)!}; if o G Sc 
Vex G E. ft(o-) = 

U r e ^ ( r ) ; if<7eEUCii. 

i.e. Qi(.) does not consider a vector v G F™ \ Ureft^(r)- On the other hand, 

by (4.10) we have 

Vv G | J £(r). tf(v) = l ^ v e ft (a). (A.2) 

This proves the claim. Next, recall the definition of updating functions in 
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(4.5), i.e. 

Vr,r' G R,Va G £,Vv G Nn. r' = ^ ( r , a ) A v e £(r) => Al{a,v) = TT^CT, V)) . 

We show that af(v) is equal to Ai(a,v) when the latter is defined. First we 

show that the premise of (4.5), which states the condition under which Ai(.,.) 

is defined, is equivalent to v G Gi(cr) as stated in (4.11). To this end, observe 

that 

Vr, r' G # , V<r G E, Vv G Nn. r' = £(r, a) A v G t(r) 

= * [[a G Ec,t = » v £ { l ( r ) | rGi?A((r l (7)!}] A [a G Euc,t = * v G 

I W M ] [Eq. (4.6)] 

= * v G £ ( a ) [Eq. (4.6)] 

Conversely, by the definition of <?J(<T) in (4.6), we have 

VCT G E, Vv G Nn. v G &(<T) = • 3r, r' e R. r' = f (r, a) A v G ^(r) 

=* At(a,v) = nMa,v)) [Eq. (4.5)] 

Hence v G C'i(c'), as stated in (4.11), determines when Ai(.,.) is defined. Ac­

cordingly af(v) = .A*(er, v) in (4.11) correctly replaces the updating functions, 

when they are defined. Notice that when such an updating function for a is 

not defined, i.e when v G F™ \ Gi(cr), the polynomial erf (v) may be assigned 

arbitrarily because such a a is disabled by the guard function(s). • 

Proof of Proposition 4.6 

For PDS (4.14) Proposition 4.4 insures that L(D) = ~E and Lm{V) = E. 

It is then enough to show that the PDS equations are held by (M;) i€/ for 

x G F™. To this end, observe that since (M,)j£; implements the PDS, Defini­

tion 4.10 insures that, first, for every i,jEl,iy£ j and k G J, x\, — x^ G Xjj. 
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Then, by virtue of the second and the third conjuncts in Definition 4.10, ac­

tions and guards evaluate equivalently, which proves the claim. • 
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Appendix B 

Missing proofs of the claims of 

Chapter 5 

Proof of Proposition 5.1 

We first show that communication policy 2 leads to correct reevaluation 

of guard and updating functions of the PDS (4.14), which then by Problem 5.1 

and Definition 4.7 proves the claim for this policy. This is done by induction 

on the centralized supervisors' states seen along the system's evolution. The 

assumptions of strong connectedness of the network, instantaneous communi­

cation, and lossless channels insure that every two supervisors have a direct 

link between them, through which communication is done with no delay and 

no losses. 

Base: The centralized supervisor starts from state r0 and since no event has 

occurred yet, by Definitions 4.6 and 4.7, the label assigned to r0 is 0. On the 

other hand, by Definition 4.9, all variables in X are initialized to zero, i.e. 

for i G / every x E Xu and its copies are zero and therefore each supervisor 

estimates the state of the system to be x = (xi, • • • , xn) = 0 and evaluate its 

guards and actions and, respectively, guard and updating functions correctly. 
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Inductive step: Let i,j & I, i ^ j , and the PDS representation (4.14) be at 

state x G Fp, where x = (xi, • • • , xn), and Xj = (x^, • • • , xjj). The induction 

assumption states that at state x, every Sj evaluates its guard functions cor­

rectly and if an event a G £ occurs, every S; correctly reevaluate its updating 

functions. By Definition 4.10 this is equivalent to saying that in the EFSM im­

plementation, each Sj correctly evaluates its guards and, upon the occurrence 

of a reevaluates its actions correctly. Let x G F™ be the next state reached 

by the PDS through <7, where x = (x^, • • • , x*j) and Xj = (£#, • • • ,£•$). We 

show that by using communication policy 2, the PDS correctly reevaluates 

its updating functions and guard formulas at x, too. Towards this end, we 

distinguish two possible cases. 

1. If a G Suo, no Sj observes a and therefore no x G Xa changes. Thus 

for every i, x, = Xj and the PDS would remain in x. In other words, no 

private variable changes and each Sj still has the latest copies of others' 

private variables, which it had before. Therefore, by induction assump­

tion, it can correctly evaluates its guards and, upon the occurrence of a 

next event, its actions, which then by Definition 4.10, leads to correct 

evaluation of guard and updating functions. This justifies the fact that, 

by Definition 5.3, we have J^ji{a) = 0. 

2. If a G S0, it is observed by every Sj for which j G I0(a). By communi­

cation policy 2, this may fire a set of communication events J^i(cr) such 

that the following hold. 

Vj G I0(a). ±j := oj(x) = • % ^ Xj 

[Lemma 4.2, Eq. (4.5), and Prop. 4.4] 

=> [3k G J. x% := aj{xk
jpa){Xj) = > xk

5j ^ xk
j3] [Defn. 4.10] 
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[Vi El,i^ j,Vy eXu,We E. x^E arg(a,(y,a')) 

Vx* G a rg^(a ' ) ) = > x% e J3l{a)\ [Defn. 5.3] 

= > [V/c e J. (x^ 7̂  x^ = > Xjj = x^) 

A (a;jj = x^- => - Xy = Zy = x^JJ 

=> [Vfc e J. ^ . = 4 ] 

=> [WeZ^VzeXu. 

ai(z,a")(Xi) and gi(cr")\^. are reevaluated correctly.] 

=* [WezyzeXu. 

ai(z,<j")(Xi) and ^j(o"")|^. are reevaluated correctly.] [Rem. 4.3] 

=>• [Vcr" G E. of (x) and gf (x) are reevaluated correctly.] 

[Defn. 4.10] 

In other words, every St receives the latest copy of all the external vari­

ables it requires for reevaluating its updating and guard functions at 

state x. This completes the proof for policy 2. Since policy 1 requires 

the exchange of the same changed variables in policy 2 besides the un­

changed variables of Sj, the proof works out for policy 1, too. • 

Proof of Proposition 5.2: 

We show that communication policy 3 leads to correct reevaluation of 

guard and updating functions of the PDS (4.14), which then by Problem 5.1 

and Definition 4.7 proves the claim for this policy. This is done by induction 

on the centralized supervisors' states seen along the system's evolution. The 

286 



assumptions of strong connectedness of the network, instantaneous communi­

cation, and lossless channels insure that every two supervisors have a direct 

link between them, through which communication is done with no delay and 

no losses. 

Base: The centralized supervisor starts from state r0 and since no event has 

occurred yet, by Definitions 4.6 and 4.7, the label assigned to r0 is 0. On the 

other hand, by Definition 4.9, all variables in X are initialized to zero, i.e. 

for i £ I every x G Xu and its copies are zero and therefore each supervisor 

estimates the state of the system to be x = (xi, • • • , xn) = 0 and evaluate its 

guards and actions and, respectively, guard and updating functions correctly. 

Inductive step: Let i,j G i", i ^ j , and the PDS representation (4.14) be at 

state x G F™, where x = (x\, • • • , xn), and X; = (xu, • • • , xl
u). The induction 

assumption states that at state x, every Sj evaluates its guard functions cor­

rectly and if an event a G £ occurs, every Sj correctly reevaluates its updating 

functions. By Definition 4.10 this is equivalent to saying that in the EFSM im­

plementation, each Sj correctly evaluates its guards and, upon the occurrence 

of a, reevaluates its actions correctly. Let x G F™ be the next state reached 

by the PDS through a, where x = (x- ,̂ • • • , x^) and X{ = (x^, • • • , x^). We 

show that by using communication policy 3, the PDS correctly reevaluates 

its updating functions and guard formulas at x, too. Towards this end, we 

distinguish two possible cases. 

1. If a G Suo , no Sj observes a and therefore no x G Xu changes. Thus 

for every i, Xj = Xj and the PDS would remain in x. In other words, no 

private variable changes and each St still has the latest copies of others' 

private variables, which it had before. Therefore, by induction assump­

tion, it can correctly evaluates its guards and, upon the occurrence of a 

next event, its actions, which then by Definition 4.10, leads to correct 
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evaluation of guard and updating functions. This justifies the fact that, 

by Definition 5.6, we have J^ji(cr) = 0. 

2. If a G E0, it is observed by every Sj for which j G I0(c)- By communi­

cation policy 3, this may fire a set of communication events o -̂j(er) such 

that the following hold. 

Vj e I0(a). Xj := aj(x) = » Xj ^ x̂ -

[Lemma 4.2, Eq. (4.5), and Prop. 4.4] 

= > [3fc G J. 4 := a i(x^.,a)(X i) = > 4 ^ 4 ] [Defn. 4.10] 

(x*G arg(ai(?/,o-/)) A fo]^. ^ [4af ' j ) 

V ( 4 G a r g ( 5 j ( a ' ) ) A fe]^',,-^ N ^ ' , , ) = • 4 e S^cr)] 

[Defn. 5.6] 

= • [ £ * : = 4 ] [Eq. (5.1)] 

=>• [Vfc G J. (x^- = x,^ = > x^- = x^ = x^ ) 

A ( [ 4 ^ 4 A ([x^j ? [Xj]afj V [Xj]gftJ + [ 4 ^ ) 1 

A ( [ 4 ^ 4 A [XJ^J = [x3}atj A [x,]0^. = [Xj]grJ 

=4> x^- = x^ 7̂  x^JJ 

r* \\r\j \Z. (-/. I X ; ; X ; A >* J^ A A «X/ „• A JJ A A j 

A ( [ 4 ^ xj, A (3x_,- G F ^ 1 . of (%,x_,) ^ of fo.x^) 

V flf (x j ; X.J-) ^ gf (XJ .X . J ) ) ] ==» 4 = 4 ) 

A ( [ 4 ^ 4 A (Vx., G W;-\ of (x^.x^) = of (x„x_,) 

Aflf(^,x_j) = gf(xJ,x_ j))] 

= • 4 = x* ^ 4 ) ] tDefn- 5-5l 
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[Vrc e J. [Xjj — Xjj ==> x^ — xtj — Xjj) 

A ([x^ ^ 4 A {SXi-i E B{n-1)h, k' e J. 

®i v^ii i ® ) V v^jj' ' ' ' ' ~^jj'' ' ' ' *^jj )i i—j ) 

7= <2j \^Xjj , C* J ^ ^ j j , - " - , Xjj, • • • , Xjj J, Aj_j j 

V gi(a'){xh
jp- • • ,xk

jp• • -^^Xi-j) 

^ M ( ( 4 . - . 4 - - ' 4 ' ) ' X H ) ) 1 

^ij Xjj7 

A ([x^ ^ x% A (VXi-j- G l(n-1)ft,Vfc' € J. 

a i l-^ii > °" J V V-^jj > ' ' ' J ^ j j > " ' ' ) ^ j j J) -^i—j j 

= (2j (^Xjj , O" j ^ (.Xjj, • - - , X^, • • • , Xj j J, -A-i-j ) 

Agi{a')(x^, • • •,x)j, • • •,x)j), AVj) 

= ft(0((4''"-'4'--''4)'X*-j))] 

= » [Vie / ,Va"e£ ,VzeX i i . 

aj(z, a") (A*) and gi(a")\x. are reevaluated correctly.] 

= • [ V z G / , V a " e E . 

a^ (x) and Q1 (X) are reevaluated correctly.] [Defn. 4.10] 

In other words, every S, receives the latest copy of those external vari­

ables which are required to reevaluate its updating and guard functions 

at state x. This completes the inductive step of the proof, hence proving 

the claim. • 
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Proof of Lemma 5.5: 

Comparing Definitions 5.4 and 5.6 to each other implies the following. 

2 ^ ( < x ) \ 3 ^ ( a ) = {xk
jeXjj\x

k
jj:=aj(x

k
jj,a)(Xj) A x)^xk

3 

A [3a'e Zi,3x' G Xu. (x*e arg(a2(x',a'))) V (x£,G arg^cx ' ) ) ) ]} 

\ {xk
jeXjj\x

k
j:=aj(x

k
jj,a)(XJ) A xfrfx^ 

A [3a'e Si, 3a;' G Xn. (x*G arg(ai(x/, cr')) A [xj]a?>j ̂  N a f - ) 

V (4-G arg(^(a')) A [ x ^ - ^ N ^ ' j ) ] } 

= {x^eXjj \xk
j:=aj(x

k
j,a)(Xj) A xk^xk

3j 

A -.[acr'e Si,3x' G Xu. (x*G arg(ai(x
/,<T/)) A [ x ^ ] ^ ^ M o f ' , j ) 

V (x^-G arg(^(<T')) A [Xj]^d ? Ngf-)] } 

= {xk
jjeXjj\x

k
Jj:=aj{xk

j,a)(Xj) A xk^xk
3 

A [We Ei.Vx' G X«. -(4, 'G arg(a i(x /,a')) A [ x ^ ] ^ . 7̂  [xj]afj) 

A-(x*G arg(^(ff')) A [ x , ] ^ . ^ N g f - ) ] } 

= {xJJ.GXii|x}j:=aj(xJi,<7)(X7-) A xk^xk
3 

A [Va'G Ej.Vx' G Xu. (x£-G arg(at(x', a')) = » [ x , ] ^ . = fo]^) 

A(x^.G 8Xg(ft((7'))=>[^]Bf ' j = N g f ' j ) ] } 

[Va'e E<. ([x,]Qfj. = [x,] a f j) A ( f o ] ^ . = [x , ]^ . ) ]} 

= {x^eXjjlx^ajix^a^Xj) A x^x^ A 

[We Si. (£j = a f - x,) A (Xj =^j Xj)}} 

= ( 4 6 l J i \xkjj:=aj(xjj>a)(Xj) A £ J^4J
 A

 % = M ^ } 

As a result if as in part 1, 2Jfji{a) \ 3J?ji(a) ^ 0, there exists at least two 

distinct x3 and Xj which belong to the same equivalence class under =ij, 

which is equivalent to saying that ker(idfp) <=i,j- Since |ker(idFp)| = p, we 

have then | =ij \ < p. This proves part 1. 

To see part 2, notice that since a G SOJ-, by Definition 4.6 and Algorithm 4.1, 

Xj 7̂  Xj. As a result there exists some xkj G Xjj such that xkj := Q-j{xk
3, a)(Xj), 
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Xjj ^ x'jj. By assumption Xj G arg(of') or Xj G arg (flf ) hold(s). Therefore, 

by Definition 4.10, there exists x' G Xit such that x^ G arg(ai(a;/,cr/)) or x^ G 

arg(pj(o-')), respectively. Thus, by Definition 5.4, x^ G 2J?ji(o). However, 

the fact that Xj =ii7- a;,- implies that \xA^' , = fx,-|n<T' , and \xAn<,> • = fx,!^' ., 

which then by Definition 5.6 implies that x^ fi 3Jr
ji, and |3J^j(cr)| < \2J?ji(a)\. 

• 
Proof of Lemma 5.8 

From Definition 5.9, for each i, j , k G / , j ^ i, k ^ j , / G Oj U 0;, we have 

the following. 

Aj,-j,fc ^ A/, _•,•,* ==> [Aj,_j = ri/ce/\{j} Ai,-j,fe C ]lfce/\{j} A/,-j,fc = A;,_j] 

= * \4v,v' G Fp. v ^/j.A/,.,- v' = > t; =/j,Ai,_;,. v'], 

i.e. =yj iA. is well defined and, since =i,j,A, _ is the meet of such relations 

on a common set, it is well defined, too. • 

Proof of Proposition 5.3 

We show that communication policy 4 leads to correct reevaluation of 

guard and updating functions of the PDS (4.14), which then by Problem 5.1 

and Definition 4.7 proves the claim for this policy. This is done by induction 

on the centralized supervisors' states seen along the system's evolution. The 

assumptions of strong connectedness of the network, instantaneous communi­

cation, and lossless channels insure that every two supervisors have a direct 

link between them, through which communication is done with no delay and 

no losses. 

Base: Base is the same as what appears in the proof of Proposition 5.2 and is 

not repeated. 

Inductive step: Let i,j G /, i ^ j , and the PDS representation (4.14) be at 

state x G F™, where x = (xi, • • • , xn), and x{ = (x^, • • • , x^). The induction 
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assumption states that at state x, every S; evaluates its guard functions cor­

rectly and if an event a 6 E occurs, every S, correctly reevaluates its updating 

functions. By Definition 4.10 this is equivalent to saying that in the EFSM im­

plementation, each Sj correctly evaluates its guards and, upon the occurrence 

of a, reevaluates its actions correctly. Let x £ F™ be the next state reached 

by the PDS through a, where x = (x^, • • • , xjj) and X; = (x^, • • • , x^). We 

show that by using communication policy 4, the PDS correctly reevaluates 

its updating functions and guard formulas at x, too. Towards this end, we 

distinguish two possible cases. 

1. If a £ Euo, no Sj observes a and therefore no x E Xa changes. Thus 

for every i, Xi = X{ and the PDS would remain in x. In other words, no 

private variable changes and each Sj still has the latest copies of others' 

private variables, which it had before. Therefore, by induction assump­

tion, it can correctly evaluates its guards and, upon the occurrence of a 

next event, its actions, which then by Definition 4.10, leads to correct 

evaluation of guard and updating functions. This justifies the fact that, 

by Definition 5.10, we have J^i(cr) = 0. 

2. If a G E0, it is observed by every Sj for which j € I0{&)- By communi­

cation policy 4, this may fire a set of communication events J^ji(cr) such 

that the following hold. 

Vj e I0{a). Xj := aj(x) = > Xj ^ Xj 

[Lemma 4.2, Eq. (4.5), and Prop. 4.4] 

= • [3k G J. x£. := aJ(x^j,a)(Xj) = • x^ + x)3] [Defn. 4.10] 
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= * [Vz,/ el,i^ jj^i. ((|=M,A,,_i|<p)A(a;jeAji_ij-=>Xj^A/i_ij) 

A (ZjgA/.-ij = • XjeAi,-^)) => x% G S^a) = > ^ := 4 ] (*) 

[Defn. 5.10-Step 1, Eq. (5.1)] 

= > [Vi, Z El,i^j,l^i. ( |=I,J ,A,,_J< p) = » Si knows [xi]j,i,A«,_i] 

[Defn. 5.8, Defn. 5.9] 

=> [Viei\{j},\/yeXlU\/a'eZ. 

(x* G &Tg{ai(y,a')) V x ^ e arg(5i(a'))) A 

( ( l = i j A - J < P ) = > ^ =ij,Ai,-,- ^ ) ) A (V^GSoJ. 4 ^ ^ ( a ) ) 

= * ^ G Sji{{Smj(<7)\ m e / , m ^ j > G E 0 i m } ) = > x£ := x^] 

(**) [Defn. 5.10-Step 2, Eq. (5.1)] 

= ^ [Vi G I \ {j}. ^(xj =iJ-,Ai,_;,. ^ ) = * ^ := x)j] [(*), (**)] 

= > [Vi, j G / , z ^ J, Vfc G J. (x^ = xk
jj =4> x*. = xk

xj = x^.) 

A (LXJJ / x ; j A W —«J.Ai,-j xi)J ==^> ^ij = xii / xjj)J 

=4> [Vz, j G / , i ^ j , Vfc G J, Va' G S. ( 4 = x)j = » x* - x% = x^) 

A ( [ 4 ^ a* A (3x_j G F £ - \ of (x^x- j ) ^ o f ^ - . x - j ) 

V0f (XJ.X-J-) ^ flf'C^.x^-))] = • x% = 4 ) 

A ( [ ^ ^ a* A (Vx_,- G F^"1. of (x,,x_,) = of ( x ^ x ^ ) 

Aflf'(x^x-j) - 0f ' (XJ.X-J)) ] = > 4 = x£ ^ 4 ) ] [Defn. 5.8] 
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= * [Vi, j El,i^ j , V/c G J, VCT' G E. (x^ = x% = • x* = 4 = 4?) 

A ([x^ ^ x% A (IXi.j G B ("-1 ) h , fc' G J. 

* î V^zi > ^ ) \ v^jj' ' ' ' ) ̂ j j ) ' ' ' ' "^jj ) i -™-i—j ) 

V gi(a'){x^, • • •,xk
n, • • •,xjj-), Xi-j) 

^ ft(a')((4> *" •' 4 ' • ' •' 4 ) - Xi-j))] => 4 = ±kjj) 

A ([££• ̂  4 A (VXi-j G B{n-1)h,W G J. 

Ctj^jj , <7 j ( ^ £ j j , • • • , X j j , • • • , XjjJ, A j _ j j 

A ^(<T')(^, • • • ,£jj, • • • ,^}j), -X":-j) 

= &(*')( ( 4 > • • • >4>• • •.4)> Xi-jW =* 4 = 4 ) ] 
[Defn. 4.10] 

= > [Vie/,v<T"ei:,V2GXH. 

aj(2, <T")(XJ) and (^(cr")^. are reevaluated correctly.] 

=>• [Vi G 7,Va" G E. a^ (x) and gf (x) are reevaluated correctly.] 

[Defn. 4.10] 

In other words, every S; receives the latest copy of those external vari­

ables which are required to reevaluate its updating and guard functions 

at state x. This completes the inductive step of the proof, hence proving 

the claim. • 
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Proof of Lemma 5.10 

We have the following. 

Mi e I. F(Oi) = Oi U | J Afaj [Defn. of F] 

A [Vj e Oi. Naj C C?4] [Defn. 5.11] 

= > Vz e / . [F(Of) = Oi U | J AT0.] A [ | J A/-0j c C?̂  

= * F ( ^ ) = Oi, 

i.e. Oi is a fixed point of F. • 

Proof of Proposition 5.4 

We show that communication policy 5 leads to correct reevaluation of 

guard and updating functions of the PDS (4.14), which then by Problem 5.1 

and Definition 4.7 proves the claim for this policy. This is done by induction 

on the centralized supervisors' states seen along the system's evolution. The 

assumptions of strong connectedness of the network, instantaneous communi­

cation, and lossless channels insure that every two supervisors have a direct 

link between them, through which communication is done with no delay and 

no losses. 

Base: The centralized supervisor starts from state TQ and since no event has 

occurred yet, by Definitions 4.6 and 4.7, the label assigned to TQ is 0, i.e. 

x = 0. On the other hand, by Definition 5.12, for every i e I,j G Oi\ {i}, 

all copy variables, i.e. xl-s, are initialized to 0, therefore x l = 0. As a result, 

for all a G £Cjj we have gf (xl) = 0f (x), and for all a £ £0)j we have Xi = 

of(xl) = of (x). In other words, every guard and updating function is evaluated 

correctly. Notice that since no event has occurred, no supervisor has seen any 

event and thus, by (5.4), there is no issued J" events. 
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Inductive step: Let i G / , j G Cj \ {i}, and PDS representation (4.14) be at 

state xGFJJ, where x = {x\, • • • , xn). The induction assumption states that at 

state x, we have x l = x, and therefore, for all a G ECii we have 0f(xl) = of (x), 

and for all a G E0)i we have X{ = of (xl) = of (x), i.e. every S, evaluates its 

guard functions correctly, and if an event a G E occurs, every S; can reevaluate 

its private variable correctly. Let x G F£ be the next state reached by the PDS 

through a, where x = (x\, • • • ,xn). We show that by using communication 

policy 5, every Sj correctly reevaluates its updating and guard functions at x 

by proving that x l = x. Towards this end, we distinguish two possible cases. 

1. If a G T,uo, no Sj observes a and therefore no Xj changes. Thus for 

every j , Xj = x3 and the PDS would remain in x. In other words, 

no private variable changes and, since by (5.5) no communication takes 

place following the occurrence of the events in Suo, xlj = Xj holds by 

induction assumption. Therefore, by induction assumption, every St 

can correctly evaluates its guard functions and, upon the occurrence of 

every next event, its corresponding updating function. 

2. Now assume that a G E0 occurs, thus it is observed by every Sj for which 

j G I0(cr). For i G /0(cr) the following holds. 

\/ieiymeOi\{i}y<TeZ0>i. 

[[aGE0>m ==> x5: = afm(xi)=ofm(x)] A [a^E0>m = > x)=x) =Xj]] 

[Assumption 5.3, Induction assumption: x2 = x] 

= > [[orGE0,m = > x^: = ofm(x) = o^(x)=xm] A [a<£Z0}Tn => x)=x)] 

[Assumption 5.1] 

A [xf.= of (xl) = of (x)]] [Induction assumption: x l = x] 

= > [VzG/,VmGOA{0>VaGEOii. x{
m = xm] 
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=*[We/. iel0(a) => xl = x], (f) 

i.e. every supervisor which observes a updates its own private variable 

and the copies of the private variables of other supervisors, which it 

stores, correctly. 

Let us now assume that i £ I0{cr). Let cti G £0ij U {e}, encoded as 

ai = (vfi>''' iVldi ^ e the ^as^ e v e n t observed by Sj. By communication 

policy 5, observation of a may fire a set of communication events J^ji(a) 

such that the following holds. 

3! j = U ^ ) e l0(a),Wi el\l0(a)yk e 13. 

[(SleOMi}. lel0(a)) A a = (%, • • • , $,) A y j ^ y*, 

= > #£• G Sjiia)] (ft) [Defn. 5.14, (5.4), Defn. 5.13] 

=* [fe e - ^ (a) = » $ = ykjj\ A ^ W ' i K> = » &* = Vij]\ 

[(5.5)-Conjunct 1] 

= > [{yip • • • ,ylj) = cr] [Assumption 5.2, premise of (ft)] 

= » [VmeOAW.Vx* G Fjf'l. [mel0(a) => x*m := afjx1)] 

[(5.5)-Conjunct 2] 

A[m^I0(a)=^x\n:=x\n)] 

= » [VmeOAW.Vx* G Ff'1. [mG/0(a) = > x^ ?=ofj(x
i) = aJ(x)=a;m] 

[Assumption 5.1, Induction assumption: x l = x] 

A [ m ^ / 0 ( a ) =>>xi
m = x\n = xm}] 

[Cor. 4.1, Defn. 4.7, Induction assumption: x l = x] 

A[x l :=anx i ) = aHx)]] 

[i ^ /0(o")> Induction assumption: xJ = x] 
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= > [VmeOi x{
m = xm] 

=»[VzG/. i$I0(a) = • x* = x], (*) 

i.e. when S; does not observe a, through received communication, it can 

still correctly reevaluate its copies of other supervisors' private variables, 

which it stores. 

As a result, from (f) and (Jit) we can conclude that x4 = x, i.e. . 

Vt G J,V0 G E0)i,V7 G ECil. af(x l)=af(x) A07(x l)=07(x) 

In other words, at state x, every Sj reevaluates its guard and updating 

functions correctly by computing correct copies of other supervisors' pri­

vate variables through using copies of their updating functions and then 

plugging these copy variables in its updating and guard functions. This 

completes the inductive step of the proof, hence proving the claim. • 

Proof of Lemma 5.12 

The fact that Sj requires a CFC from Sj implies that there exists an event 

a G SC)j such that Xj G arg(gf). Let us assume that an on-demand information 

policy is employed. Then at some state x 6 FJ}, to reevaluate gf (x), Sj should 

have a true copy of Xj. Then, by on-demand policy of Definition 5.18, Sj 

issues ^fji(j^ij(P)), only after it receives J?ij(f3), where /3 G £0)j. On the other 

hand, the fact that Sj does not require any CFOs from Sj, implies that for all 

a G E0,j we have Xj ^ arg(af). Therefore, before reaching at state x, there has 

not existed any event (3 G S0ij, upon whose observation Sj could send a request 

to Sj. This implies that, unless Sj sends its request infinitely may times, which 
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is of course not possible, it cannot receive the required information to build a 

true copy of Xj at the right time. • 

Proof of Proposition 5.5 

We show that communication policy 6 leads to correct reevaluation of 

guard and updating functions of the PDS (4.14), which then by Problem 5.1 

and Definition 4.7 proves the claim for this policy. This is done by induction 

on the centralized supervisors' states seen along the system's evolution. The 

assumptions of strong connectedness of the network, instantaneous communi­

cation, and lossless channels insure that every two supervisors have a direct 

link between them, through which communication is done with no delay and 

no losses. 

Base: The centralized supervisor starts from state TQ and since no event has 

occurred yet, by Definitions 4.6 and 4.7, the label assigned to r0 is 0. On the 

other hand, by Definition 4.9, all variables in X are initialized to zero, i.e. for 

each i G / , every x G Xu and its copies are zero and therefore each supervisor 

estimates the state of the system to be x = (xi, • • • ,xn) = 0 and evaluate its 

guards and actions and, respectively, guard and updating functions correctly. 

Also, by Definition 5.20, for every i,jEl,i^ j , such that Sj depends on Sj, 

all variables in Xjta are equal to 0, which implies that for all k G J we have 

xju = x%- This means that Sj has stored in X^a the correct copies of the 

variables in X^. 

Inductive step: Let i,j E I, i ^ j , and PDS representation (4.14) be at 

state x G F™, where x = (x\, • • • ,xn) and x^ = (x^, • • • ,x^). The induction 

assumption states that at state x, every Sj has acquired every Xj, for which 

an event a G E0ij exists such that Xj G arg(af), from Sj, i.e. for every k G J 

we have k, •. As a result, Sj has evaluated its actions, or equivalently 

by Definition 4.10, its updating function of (x) and hence Xj, correctly. Since 
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guard functions are all independent, having the correct value of x^ implies 

the correct evaluation of guards or equivalently, by Definition 4.10, guard 

functions gf(xj), for all f3 £ ECii, by Sj. Furthermore, Sj stores the correct 

values of the copies of its variables, which is kept by Sj, i.e. for every k <E J 

we have x'f,, = a£. Let x £ F" be the next state reached by the PDS through 

a, where x = (x^, • • • , x|J and Xj = (x^, • • • , x^j). We show that by using 

communication policy 6, the PDS correctly reevaluates its updating functions 

and guard formulas at x, too. Towards this end, we distinguish two possible 

cases. 

1. If a 6 Eu0, no Sj observes a and therefore no x € Xa changes. Thus 

for every i, £j = Xi and the PDS would remain in x. In other words, no 

private variable changes and each Sj still has the latest copies of others' 

private variables, which it had before. Therefore, by induction assump­

tion, it can correctly evaluates its actions and guards, which then by 

Definition 4.10, leads to correct evaluation of updating and guard func­

tions. This justifies the fact that, by Definition 5.21, we have J^j(cr) = 0. 

2. If a G E0, it is observed by every Sj for which i e I0(v)- As a result, 

every such Sj updates its Xj. By communication policy 6, this may fire 

a set of communication events J^ij(cr) and ^ ( ^ ( c r ) ) , such that the 

following hold. 

[Vz E I0(a)yj e / \ {i}. x3 £ arg(a?) = » J?ij(a) = {1}] 

[Defn. 5.21-Conj. 1] 

=> [Vfc E J. x)^ xk
hjj ==> ( 4 e J?3l{AM))) Pefo. 5.21-Conj. 2] 

A ( x ^ : = 4 ) ] [Defn. 5.20] 
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=> [V/c G J. ( 4 ^ xk
hjj = » x* := 4 A z ^ := a*) [Eq. (5.1)] 

[Induction assumption] 

/* 1 V Av \Z tV • " ^ i i — 17 i l l — 11J 

= > [Xj- e < ^ X y = X# A X M j = Xy] (§) [Defn. 4.9, Defn. 5.20] 

x\ '.— aj(x^, a)(Xi) is computed correctly] 

= > [XJ = (xfj, • • • , Xj-j) is computed correctly] [Defn. 4.10] 

==> [Va G ECij. (g"(xj) is computed correctly) [g° is an IUF] 

A (yi£l\I0(a). xi=xi Agf(xi) is computed correctly)] 

[Induction assumption] 

= > [ V i e / , V a e E c , i ) V / 5 € E 0 , i . 

g"(x) and of (x) are computed correctly] 

In other words, every Sj who observes a, receives the latest copy of 

all external variables on which it depends and therefore computes its 

associated updating function and guard functions correctly at the new 

state, x. Notice that the second conjunct of §, i.e. X^ = Xij, serves 

as part of the induction assumption for the next inductive step. This 

completes the inductive step of the proof, hence proving the claim. • 

Proof of Lemma 5.19 

Let s,s' G K and a e S. Then we have the following. 
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sa £ K A s'a £ L A s =/ s' 

=> sa £ L A s'a £ L A sa £ K A sa =/ sV 

[ATCL.Vie/. P I(S)P I( (7)=P i(S
,)^(^)] 

= ^ s ' ( T G ^ [Eq. (5.6)] 

This, together with the fact that (5.7 is the same as (5.9), complete the proof. 

• 
Proof of Lemma 5.20 

Let s, s' £ E* be two strings such that s = / s', s =y s', and s £ K. Then 

we have 

[KCL] 

[Defn. 5.26] 

[(5-7)] 

i.e. K is trace-closed. • 

Proof of Theorem 5.6 

Proof is by reduction from PCP. For now let K and L be regular prefix-

closed languages over E with K Q L and I = {1,2}. If A' is WJO with respect 

to L, for all s,s' £ K and a £ E we have the following. 

sa £ K A s'a £ L A [Vi £ I. P^s) = Pi{s')} = » s'a £ K 

Let V = (r, {ui,..., um}, {wi,..., wm}) be an instance of PCP where 

Ui £ r + and w{ £ T+ are respectively the top and bottom strings of type i 

dominos, 1 < i < m. We define an instance W = (E0)i, E0)2, K, L) of WJOc 
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[s £ K = > s £ L] 

A [s £ L A s =i s' A 

=>• [s, s' £ L A s = / s' 

s =u s' ==• s' e L] 

A s G AT => s' £ K], 



as follows: 

S0,i := T, E0)2 := {(J!, . . . ,am, a], E = E0]1UE0i2, 

K = (uiaX(j* H h umamo*)* + {wxai -\ \- wmam)*, and 

L = (ui<7ia* H \- umama*)* + (wiaxa* H \- wmama*)*. 

Note that assuming that s G K terminates with a symbol from E2 , it can have 

only one of the two following forms, i.e. 

s = uhaha
ni.uhai2(T

n2 u^a^711 or s = wjlajl.wJ2aJ2 ujkajk. 

Suppose V G PCP, i.e. it has a match of length, say, k. Then: 

uhui2 .. .uik= whwi2.. .wik. 

Let s := (uhah){uhai2)... (uikaik) and s' := {whoh){wi2ai2)... (wikaik). 

Clearly s,s' E K, sa e K, s'a G L, P^s) = P^s') and P2(s) = P2{s'), 

but s'a i K, i.e. W G WJO c . 

Conversely, let W G WJO c , that is there exist s,s' £ K and sa E K 

such that 

S'CT G L A P^S) = P ^ s ' ) A P2(s) = P2(s') A s'a $ K. 

Then we must have the following. 

[saELDK ==>• s = Ui1ail.Ui2ai2 M^er,,] 

A [ s V G L \ K = > s' = wjlajl.wJ2aJ2 uifcajfc]. 

Since P2(s) = P2{s') it follows that k = I and for all 1 < r < k, ir = j r . It 

follows from P\(s) = Pi(s') that u^ui2.. .uik = w^w^ .. .wik, i.e. V has a 

match of length k and therefore V G PCP. 

Notice that the above argument makes no assumption about the observ­

ability of a, hence it addresses the case where E u 0 is nonempty, too. If the 

languages are not prefix-closed, then the verification procedure has two parts 

whose first one is checking the weak joint observability for the closed language 
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K. Therefore, regardless of prefix-closure property, WJO is undecidable for 

general languages. Finally, the extension of the above proof to the case of 

| / | > 2 is intuitive, say by regarding E2 as the union of all of the added 

alphabets, i.e. E3,E4, etc. • 

Proof of Lemma 5.21 

Let s, s' G L(S) so that updating functions are well defined. The proof 

is by induction on the length of string t — Pi(s) = Pi(s') € E* t, where base is 

trivial as Pj(e) = e. 

Inductive step: Let the DSDES be at state v G Nn. As the induction hy­

pothesis, assume that for every s,s' £ L(S) such that Pi{s) = Pi(s') we have 

Ai(s, v) = Ai(s', v). Let s and s1 lead the DSDES to states w and w', respec­

tively. For every a G E we show that Ai(scr,v) = Ai(s'a,v). To begin with, 

we notice that the induction assumption implies the following. 

Ai{s, V) = 7Ti(A(s, V)) = 7T;(w) A Ai(s', v ) = 7Ti(A(s', v ) ) = TT^w') 

[(4-5)] 

= > Wi = w[ (ft) [Induction assump.] 

Next, for event a the following argument holds. 

A(sa, v) = A(a, A{s, v)) A A(s'a, v) = A{a, A(s', v)) [(4.4)] 

==>• A(sa, v) = A(cr, w) A A(s'a, v) = A(a, w') [Induction assump.] 

=^7r i ( (^(sa ,v) ) ) = 7Ti{A(a,w)) A7ii(A(s'a,v)) = TTi(A(a,w')) 

= » A(so", v) = Ai(a, w) A A(sV, v) = Ai{a, w') [(4.5)] 

= > A(scT)v) = A(o",w) = Ai(s'a,v) = Ai{a,W) [Ai(a,.) is an IUF, 

This completes the proof. 
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Proof of Proposi t ion 5.7 

Assume that s,s' G L(G) and a G E such that so G L(S), s'a G L(G), 

s' G L(S), and s = / s'. Then we have: 

[s, s' G L(S) A s =T s' = * £(r„, s) = £(r0, s')] [Cor. 5.2 ] 

= » [ s , s ' €L(S) A s a e L ( S ) A £(r0, s) = £(r0, s') = » s V e t ( S ) ] 

Similarly for any two strings s, s' G L(S) such that s € £m(S) and s =j s' the 

following holds. 

[s, s' G L(S) A s = / s' = » £(r0, s) = £(r0, s')] [Cor. 5.2 ] 

= • [s G Lm(S) A £(r0) s) - £(r„, s') = * s' G Lm(S)] • 

Proof of Lemma 5.22 

The proof relies on the ALMs designed for each individual recognizer. 

To define an ALM ^(.) for each recognizer A,, its selfloops should be modified 

as follows. 

(•&) For an event, say a G E0ii fl E 0 J , J G / , which is selflooped in one 

state, say q\ G Qi, and causes a state change in an state, say q2 G 

Qj, of Aj, a state q\ is added to Aj which inherits all the outgoing 

non-selfloop transitions of q\, all selfloops at qi labeled with events in 

^ioop,i = ^uo,i U {a G E0ii | Vg,g' G Qi. q' = r)i(q,a) => q = g'}, and 

gi 's marking, while all selfloop transitions at q\ which are not labeled by 

events in E;oopj are replaced with transitions with the same labels from 

<7i to q\ and vice versa. 

This modification implies that for all a G E the following holds. 
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[3i G 1(a), qe Qi. &(q,a) = q] ==> [Vi G 1(a), q G Qz. &(q,a)\ 

= » 6(9, *) = <?)] (B.l) 

The ALM £j(.) may be simply computed by assigning label 0 to qit0 and a 

unique nonzero label to each of the other states of the (possibly modified) A*1. 

Notice that labels are chosen from N and are singleton. Therefore, updating 

functions Ai : Ej x N —> N, being IUF by construction2, can be then computed 

using Lemma 4.2 and (4.5). 

Next we follow the construction of product automaton in [72]. Associated 

with each Aj, compute A* = (Qi, E, fji, q~o,i, Qm,i) f°r which we have 

{ r]i(q,a) ; if cr G Ej, 
(B.2) 

q i i f a G E V E , . 

i.e. all events in E \ Ej participate solely as selfloops around every state. 

Conditions (B.2) and (B.l) guarantee that 

V? E I, Vg, q' E Qh V<7 G EUOil. q' = fji(q, a) = » q' = q. (B.3) 

Consequently, as in (4.3) the domain of Ai can be extended to all events, 

i.e. Ai : E x N -»• N. 

Next, compute the meet of Aj's, i.e. A = f]ieI Aj = (Q,E,T],q0,Qm), 

1lt can be seen also as a global labeling map (see Definition 4.3). 
2In Definition 5.22 let n = 1 and this follows naturally. 
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where Q = Qi x • • • x Qn, q0 = (g 1 ; 0 , . . . , qn,0), Qm = Qi,m x • • • x Qn,m, and 

\ {m(qu &),-••, Vn(qn,v)) ; if V i e / . 7^(9;, a)!, 
VCT £ E. r/((gi,...,gn),o-) = < 

not defined ; otherwise. 

(B.4) 

As a result of the modification (>&) above, in the transition structure of A, 

no event can both participate in a selfloop around a state and cause an state-

change in another state. The reason is that q = (91,•• • , qn) = rj(q, a) implies 

that Vz G / . fji(qi,a) = qi, i.e. cr appears as a selfloop around state g* in A;, 

and therefore by the modification (•&) made to Aj at the beginning of the 

proof, it cannot cause any state changes in any Aj's. 

The (partial) transition function defined in (B.4) entails the following 

result, too: For all s, s' G S* we have 

77(90, s)\ A v(qo,s')\ A [VieI.Pl(s) = Pi(s')} 

= > v(Qo, S) = (771(91,0, s), • • • , r)n(9n,o, s)) 

= ( m ( < ? l , 0 , ^ l ( s ) ) , - - - , r ? n ( 9 n , 0 , - P n ( s ) ) ) 

= {Vl(qi,0,Pl(s')),--- ,r}n(qn,0,Pn(s'))) 

= {m(qi,o, s'), • • • , r?n(gn,o, s')) = v(qo, 3'). (B.5) 

In simple words, any two strings which are observationally alike to all agents, 

lead to the same state. As a result, for any s, s' e E* and two distinct states 

q,q' e Q with q = (qu • • • , qn) = 77(90, s) and q' = (q[, • • • , q'n) = 77(90, s') we 
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have the following. 

3t G I. Pi{s) ^ Pi(s') Aqt = Vi(Qo,» Pi(s)) A q[ = 7ll{q0^Pl{s')) A q, ± q\. 

(B.6) 

Define for A the labeling map ^((<?i,--- ,qn)) •= (^i(<?i),-" >4(<?n))-

We show that £(.) is an ALM for A. Clearly, £((q0, • • • , g0)) := ( î(<?i,o), • • • , 

Pn(qn,o)) = (0, • • • , 0) = 0, thus Item 1 of Definition 4.6 is satisfied. Secondly, 

for any two distinct states q = (qi, • • • , qn) G Q and q' — (<?i, • • • , <4) G Q we 

have the following. 

g ^ q> => 3iel. h{qi) ± U{q[) [(3.6),^ ALM] 

= » *(<Z) 7̂  W 

=*• % ) fl % ' ) = 0. [£(.) singleton] 

This shows that Items 2 of Definition 4.6 is satisfied, too. To verify the satisfac­

tion of Item 3, notice that for any q = (<?i, • • • , qn) G Q, q' = (q[, • • • , q'n) G Q, 

a G EOJ and v = % ) = ( f ^ ) , • • • ,4(<7„)) G Nn we have 

?' = *7(9, <*) A q' ^q 

=> Bielo^Ui^q'i [(BS)} 

= • [Vz G / „ ( * ) . 9i ^ <fl 

A[VtG/\/0((7).ft = 9a [(*)] 

= > [Vz G /0(a). 4( f t) ^ %')] 

A [Vz G / \ I0(a). 4( f t) = 4(<#] [4 : ALM] 

<=• 3!v' = % ' ) = (^i(9i),---,CK)) 

GN". [VZG/0(<T). < ^ ] 

A [ V j G / \ / 0 ( a ) . ^ = ^ ] . [4 : ALM] 
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Thus we have shown that £(.) = (^, • • • , £n) is indeed an ALM for A. 

By definition, each ^ assigns its labels independent of the other agents' labels, 

so its associated updating functions Ai(.,.) implement the evolution of the 

system through change of the labels. Therefore A(.,.) = (-4i(., . ) ,••• , An{-, •)) 

represent independent updating functions for A. Since modifications 1 and 2 

are possible for every deterministic recognizer, the above construction holds 

for every recognizer A. Notice that although some states may not be reachable 

in A, this issue is irrelevant as long as the existence proof is concerned. • 

Proof of Proposition 5.8 

By Definition 5.29 we have the following. 

3zl eN,3Q = {q0,--- ,&,-!> QR. 

(*i < \R\ A T&1 = (<?(,,••• ,g*!-i)) A 

(Vg £R,q' £ Q. q' = £(q, a) => q G Q) A [Defn. 5.30] 

( V ! 6 f l . ( ( ? , a ) ! =^ qCQ) [\K\ = 1] 

= • (Vg, q' £R.q' = £(q, a) =^> q, q' <= Q) [Defn. 5.29] 

This insures that all a-labeled transitions are between the states in Q. More­

over, by Definition 5.29, the target of a transition fired at qj is qj+\, where 

addition is modulo z\. For simplicity of illustration, let \I\ = 2 and a 6 E0vl. 

Correspondingly, Latin square LS\ in Fig. B.l-a can be employed to imple­

ment an IUF for Ai(a,.), where arrows specify the image of each column (let 

j = 1 in the figure). 

Therefore, if Q = R, LSi yields an ALM with IUFs associated with event 

a. If R \ Q is nonempty, then let R = R \ Q, where z2 — \R\ = \R\ — z\. For 

these two disjoint sets we have Q D R = 0. With all the states in q' € R, make 

a second tuple of arbitrary arrangement, say rf = (q'Q, • • • , q'z*_i), and form a 

^2-side Latin square, LS2, in an arbitrary way. 
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V2 

2 , - 1 qZj-i <Jo ••• <?2j-2 

qzj-2 qzj-i ••• qZj-3 

<7i 92 • • • Q o 

go 9i • • qz3-\ 

0 1 • • • Z j - \ 
Vi 

Figure B.l: Latin square LS\ corresponds to ^ and is used to construct an 
ALM which yields IUF for a e £0>i. 

Without loss of generality and for the ease of illustration, the rest of proof 

is depicted in Fig. B.2 for the case of two isolated tuples T? '̂1 = (r0, n , r2) and 

V = (r3,r4)> corresponding to Latin squares LS\ and LS2, respectively, which 

were just described above (not shown). Corresponding to these two tuples, 

two Latin squares of sides 3 and 2 are constructed, respectively. Then since 

the least common multiple of z\ = 3 and z2 = 2 is 6, two (respectively, three) 

copies of the first (respectively, the second) square are put side by side to make 

two rectangles of length 6 and widths 3 and 2, that are called rectangles 1 and 

2, respectively (see Fig. B.2-a). Observe that each rectangle inherits its "white 

arrows" from its corresponding Latin square and that the while arrows for the 

two rectangles are the same. Then put one rectangle on top of the other and 

call the result, rectangle 3, as shown in part (b). Each column of rectangle 

3, which is of size 2 + 3 = 5 by 6, has exactly one copy of each state in it. 

As white-head arrows show, the updating function associated with a which 

is computed using this rectangle, would be independent of the row number. 

However, there are symbols which do not appear in some rows of rectangle 

3 and their presence in each row and column is necessary to construct an 
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Figure B.2: Construction of an ALM yielding IUFs from Latin squares corre­
sponding to disjoint tuples, (a) Construction of a rectangle of length 6 from 
Latin squares of sides 3 and 2. (b) Forming the rectangle of size 5 by 6 by 
putting one rectangle on top of the other one. (c) A compact representation 
of rectangle 3. (d) Distributing the rows of rectangle 1. (e) Distributing the 
rows of rectangle 2. (f) The general form of the rectangle used to build an 
ALM yielding IUF for a. (g) A reduced design. 
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ALM. Therefore, our next job is to accommodate these missing symbols in the 

above-mentioned columns. 

To provide a copy of each state in every row, we put "sufficient" number 

of copies of rectangle 3 side by side and "distribute" its rows so that each row 

appears at least once at each v2 = j , for all j E {0,1, • • • , 4}. In each copy, 

a-labeled transitions follow the pattern represented by the white-head arrows 

in the original rectangle 3. We show that the "sufficient" number of copies is 

at most [L-l] + [Li] _ (\ _|_ i ) ; where [.] denotes the ceiling function. Towards 

this end, let us number each row in rectangle 3 by the index of its associated 

Latin square. As a result, rectangle 3 would be represented as in part (c) which 

means that elements of r^'1 (respectively, rf) exist in rows 1 to 3 (respectively, 

4 and 5). Observe in part (d) (respectively, (e)) that to provide all 3 + 2 = 5 

rows with elements of rfc1 (respectively, rf) by changing the order of rows in 

rectangle 3, we need to put at most [|] = 2 (respectively, [|] = 3) rearranged 

copies of rectangle 3, side by side. Notice that we have done this distribution 

of rows separately for each index 1 and 2 in parts (d) and (e), which is not 

necessarily the most efficient way of doing this. Also, notice that as long as 

distribution of index 1 (respectively, 2) is concerned in part (d) (respectively, 

(e)), the empty rows might be filled with arbitrary indices, where in general 

there are more than 2 indices. Considering the fact that the first copy of the 

original rectangle 3 is common to parts (e) and (f), we would need to bring 

[|] — 1 + [|] — 1 rearranged copies of rectangle 3 and put them side by side, 

as shown in part (f). 

In general, if the z is the least common multiple of Z\ and z2, rectangles 

3 would have z columns and z\ + z2 rows and [—] + [Li] — (1 + 1) copies 

of it is required (at most) to build the desired ALM. However, the number 

of copies can be reduced by distributing both indices at the same time (and 
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not separately). For the current example, a reduced design is shown in part 

(g) which requires only two extra copies of rectangle 3 (rather than 3 in part 

(f)). For both designs in parts (f) and (g), notice the white-head arrows which 

represent the a-labeled transitions in each copy and induce a row-number 

independent map everywhere in the rectangle, as required by an IUF. This 

latter Latin square defines an ALM which yields IUF for a. 

If | / | > 2, then first Z\- and z2-side Latin hypercubes for Q and R are 

formed, respectively. The hyper-rectangle 3 would be of size {z\ + z^Y"1 x z, 

and [-LJ-] + \*j^~\ — 2 copies of this hyper-rectangle are required, as before. • 

Proof of Corollary 5.5 

Let Ja + Jp — m and number the subset of R associated with vfcd (re­

spectively, rfp ) as Qd (respectively, QJa+d>). Assume that these sets have 

respectively, zi, • • • ,zm elements. Since every rfcd G Al
a is isolated, by Defini­

tion 5.30, we have 

Vg E R, q' e Qd. q' = £(q, a) =*• q G Qd. 

=> (Vdi,d2e{l,--- ,Ja}. di ^d2 => QdlnQd2 = 0), 

which holds by Definition 5.29. Similarly, we have 

= » (Wvd'2e{i,• • •, J„}. d[ ± 4 = * Qd[ nQ^ = 0). 

Also by 3) above, every pair of sets from {Qi, • • • , QJa} and {Qja+i, • • • , Qm} 

are mutually disjoint. The above three results imply that every two sets i n 

{Qi, • • • , Qjm} are mutually disjoint. Let R = R\ Ujefi - m] Qi an<^ a s s u m e 

it has zm+i elements. Following the proof of Proposition 5.8, form m + 1 

Latin hypercubes of sides Z\, • • • ,zm, zm+i. Let z be the least common mul­

tiple of z\, • • • , zm, zm+\. For j G {1, • • • , m + 1}, put j - copies of the jth 

Latin hypercube to build the j th hyper-rectangle of size (zj)n~l x z. Put these 

m + 1 hyper-rectangles on top of each other to form a hyper-rectangle of size 

(zH + zm)n-1 x z). Provide (at most) [^1 + • • • + [-^-1 - (m + 1) copies 
~ 1 ^ 7 7 1 + 1 
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of this last rectangle to form the final hyper-rectangle which yields the desired 

ALM. • 
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Appendix C 

Details of computations in 

Chapter 6 

This appendix provides the detailed computations which support the results 

of Chapter 6. These computations are done in TCT software tool for Windows 

XP® [90]. 

C.0.1 Labeling of events 

In TCT, controllable and uncontrollable events are represented by odd and 

even numbers, respectively. Using this convention, Table C.l assigns 3 digit 

numbers to each event in Table 6.1, where the first digit is borrowed from the 

node number in Table 6.2. For example, RAe
DR2 is assigned 213, where the 

leftmost digit indicates this event belongs to TN and the right digit, being 

odd, indicates that the event is controllable. 
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Table C.l: Event numbering used in TCT 
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CO.2 Network modeling in TCT 

Models of control nodes are shown in Fig. C.l to Fig. C.7 and models of 

supervisors S1; S2, S3, S4, S5, and S6 are shown in Fig. C.8 to Fig. C.13. These 

figures illustrate the standard output files which are generated by TCT. Each 

figure indicates the name of the control nodes1, its states, initial state, mark 

state(s), number of transitions, and the list of transitions2. 

CO.3 Application of supervisory control theory using 

T C T 

This subsection lists the TCT code of commands which are written to apply 

RW supervisory control theory for the network and its supervisors. In the 

following these commands are explained as they implement the theory, where 

we assume that k E {1, 2, 3,4, 5, 6}. 

Building the network model: Table C.2 lists the commands to generate the 

model of the network, which is obtained as the synchronous product (command 

"Sync") of the models of the seven control nodes (lines 1 to 6). Since the 

synchronous product B = Sync{A\, A2) is computed for two automata A\ and 

A2, the model of the plant is obtained in 6 steps. In each line, the number of 

states and transitions of the resulting automaton is shown as (no. of states, 

no. of transitions). These two numbers which are as high as (24300,575100) 

for the plant, called PLANTMIN, are reduced to the pair (18225,431325) in 

line 7 upon the application of the "Minstate" command, which computes the 

minimal automaton. 

Checking the existence of a supervisor for each specification: For 
xIn TCT models, the index of a node or supervisor appears in front of its name, rather 

than being a subscript. 
2There is no vocal states [3] in this design. 
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Table C.2: The code to generate the whole network. 
1 
2 

3 
4 
5 

6 

7 

RN1RN2 = Sync(RNl,RN2) (9,30) BlockecLevents = None 
RN1RN2RN3 = Sync(RN3,RNlRN2) (27,135) BlockecLevents 

=None 
DR1DR2 = Sync(DRl,DR2) (60,720) Blocked.events = None 
SDTN = Sync(SD,TN) (15,100) Blocked.events = None 
SDTNDR1DR2 = Sync(SDTN,DRlDR2) (900,16800) Blocked_events 

= None 
PLANT = Sync(SDTNDRlDR2,RNlRN2RN3) (24300,575100) 

Blocked.events = None 
PLANTMIN = Minstate(PLANT) (18225,431325) 

every specification S/t, a supervisor, which enforces it, exists if and only if the 

intersection of the plant's behavior and the specification is controllable with 

respect to the plant. "Meet" is the TCT command which computes the inter­

section of (the languages of) two automata. In lines 1 to 6 of Table C.3, the 

intersection of (the languages of) each specification S^ and plant "PLANT­

MIN" is obtained and called as "SkCAPN."3 Next, controllability of each such 

intersection is verified with respect to the (minimal automaton of the) plant 

using command "Condat," whose result appears at the end of each command 

line and, if this result turns to be "Uncontrollable," the illegal transitions 

leading to uncontrollability are listed in the output file at the left side of each 

assignment. Unfortunately, the sizes of the automata are too large for TCT 

to perform this operation4. Instead, the following argument is used to verify 

the existence of supervisors using smaller languages. 

• In effect, each supervisor enforces the specification for the behavior of 2 

control nodes. In other words, as longs as the specification is concerned, 

3The pair of two numbers appearing at the end of each line indicates the number of states 
and transitions of the resulting automaton. 

4 Whereas in TCT the maximum state size depend on each application, as a rule of thumb, 
for procedure "Supcon" to compute the centralized supervisor, "the product of state sizes 
of plant and specification DESs should not exceed a few hundred thousand" [91]. 
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other control nodes may appear as a single-state automata. Accord­

ingly, to verify the existence of each supervisor, first a "sub-plant" is 

formed as the synchronous product of the two5 control nodes for which 

the supervisor determines the joint behavior. For example, Si enforces 

a specification for RNj and DR4. 

Accordingly, the following sub-plant are defined6. 

• To verify the existence of Si,S2, and S4, a sub-plant is defined as the 

synchronous product of TN, DRi , RNi , and RN2 . This is called 

"TNLEFT" and is computed in line 7 to 10 of Table C.3. 

• To verify the existence of S3 and S5, a sub-plant is defined as the syn­

chronous product of TN, DR2 , and RN3 . This is called "TNRIGHT" 

and is computed in line 17 to 19 of Table C.3. 

• To verify the existence of SQ, a sub-plant is defined as the synchronous 

product of SD, TN, D R b and DR2 . This is called "SDTNCH" and is 

computed in line 24 to 27 of Table C.3. 

Next, the intersection of each supervisor and its associated sub-plant is com­

puted, respectively, 11 to 13, 20 to 21, and 28 to 30. The last step includes the 

application of "Condat" command to verify the controllability of each intersec­

tion with respect to its associated sub-plant. This step is shown, respectively, 

in lines, 14 to 16, 22 to 23, and 31 to 33. Observe that all intersections are 

controllable, implying that there exists a supervisor enforcing each. 

5It should be clear that if more than two nodes are considered in the product, the 
computations are still valid. 

6Although it is possible to define other subplants, the ones computed are later used 
for the verification of the mutual nonconflictingness of supervisors in the last part of the 
computations. 
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Table C.3: The code to verify the existence of a controller for each specification. 

S1CAPN = Meet(Sl.PLANTMIN) (54675,1196775) 
S2CAPN = Meet(S2,PLANTMIN) (54675,1196775) 
S3CAPN = Meet(S3,PLANTMIN) (54675,1196775) 
S4CAPN = Meet(S4,PLANTMIN) (54675,1212975) 
S5CAPN = Meet(S5,PLANTMIN) (54675,1206495) 
S6CAPN = Meet(S6,PLANTMIN) (54675,1255095) 

7 DR1RN1 = Sync(DRl,RNl) (30,260) Blocked-events = None 
8 DR1RN1RN2 = Sync(DRlRNl,RN2) (90,930) Blocked-events = None 
9 DR1CH = Sync(DRlRNlRN2,ALL) (90,3180) Blocked-events = None 
10 TNLEFT = Sync(TN,DRlCH) (450,15000) Blocked-events = None 

T T TNLEFTS4 = Meet(S4,TNLEFT) (1350,42930) 
12 TNLEFTS1 = Meet(Sl,TNLEFT) (1350,42600) 
13 TNLEFTS2 = Meet(S2,TNLEFT) (1350,42600) 
14 SMS1DAT = Condat(TNLEFT,TNLEFTSl) Controllable. 
15 SMS2DAT = Condat(TNLEFT,TNLEFTS2) Controllable. 
16 SMS4DAT = Condat(TNLEFT,TNLEFTS4) Controllable. 
17 DR2RN3 = Sync(DR2,RN3) (18,120) Blocked-events = None 
18 DR2CH = Sync(DR2RN3,ALL) (18,696) Blocked-events = None 
19 TNRIGHT = Sync(DR2CH,TN) (90,3300) Blocked-events = None 
20 TNRIGHTS3 = Meet(TNRIGHT,S3) (270,9420) 
21 TNRIGHTS5 = Meet(TNRIGHT,S5) (270,9450) 
22 SMS3DAT = Condat(TNRIGHT,TNRIGHTS3) Controllable. 
23 SMS5DAT = Condat(TNRIGHT,TNRIGHTS5) Controllable. 
24 SDTN2 = Sync(SD,TN) (15,100) Blocked-events = None 
25 SDTNDR1 = Sync(SDTN2,DRl) (150,2050) Blocked-events = None 
26 SDTNDR1DR2 = Sync(SDTNDRl,DR2) (900,16800) Blocked-events = None 
27 SDTNCH = Sync(SDTNDRlDR2,ALL) (900,30300) Blocked-events = None 
28 SDTNCHS4 = Meet(SDTNCH,S4) (2700,86760) 
29 SDTNCHS5 = Meet(SDTNCH,S5) (2700,86400) 
30 SDTNCHS6 = Meet(SDTNCH,S6) (2700,88980) 
31 SMS4DAT2 = Condat(SDTNCH,SDTNCHS4) Controllable. 
32 SMS5DAT2 = Condat(SDTNCH,SDTNCHS5) Controllable. 
33 SMS6DAT = Condat(SDTNCH,SDTNCHS6) Controllable. 
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Checking if each supervisor is nonblocking: Table C.4 lists the code to 

verify that every specification is nonblocking. To this end, for each specifica­

tion, first its trim part, i.e. reachable and coreachable part, is obtained using 

the command "Trim". This step can be seen in lines 1 to 6. Then it is verified 

that if this trim part is isomorphic to the specification, using the command 

"Isomorph," in lines 7 to 12. The "true" answer to this test confirms that 

the specification is reachable and coreachable, where the latter is equivalent 

to being nonblocking. 

Table C.4: The code to verify that each specification is nonblocking and con­
trollable. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

SIT = Trim(Sl) (3,127) 
S2T = Trim(S2) (3,127) 
S3T = Trim(S3) (3,127) 
S4T = Trim(S4) (3,127) 
S5T = Trim(S5) (3,127) 
S6T = Trim(S6) (3,127) 
true = Isomorph(SlT,Sl;identity) 
true = Isomorph(S2T,S2;identity) 
true = Isomorph(S3T,S3;identity) 
true = Isomorph(S4T,S4;identity) 
true = Isomorph(S5T,S5;identity) 
true = Isomorph(S6T,S6;identity) 

Checking if each supervisor is controllable with respect to the plant: 

As mentioned before, the command to check the controllability of a specifica­

tion with respect to a plant is "Condat." Shown in lines 1 to 6 of Table C.5, the 

result of this command appears at the end of the line of each command and, if 

the specification is uncontrollable, the transitions leading to uncontrollability 

are listed in the file which is the left-side of the assignment. Observe that in 

lines 1 to 6, all specifications are declared controllable with respect to plant 
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"PLANTMIN.': 

Table C.5: The code to verify that each specification is controllable. 
1 
2 
3 
4 
5 
6 

S1DAT = Condat(PLANTMIN,Sl) Controllable 
S2DAT = Condat(PLANTMIN,S2) Controllable 
S3DAT = Condat(PLANTMIN,S3) Controllable 
S4DAT = Condat(PLANTMIN,S4) Controllable 
S5DAT = Condat(PLANTMIN,S5) Controllable 
S6DAT = Condat(PLANTMIN,S6) Controllable 

Checking if each supervisor's language is nonconflicting with respect 

to the network: Two languages A and B, defined over the same alphabet, are 

nonconflicting (with respect to each other) if and only ii Af) B = ADB, where 

A and B are prefix-closure of A and B, respectively. Command "Meet" com­

putes the intersection of (the automata of) two languages. Also to compute the 

prefix-closure of a language it is enough to mark all the states of its associated 

automaton using command "Edit." The code to do the nonconflicting test is 

shown in Table C.6. In lines 1 to 6 first the intersection of every supervisor S^'s 

language and plant "PLANTMIN" is computed as "SkCAPN." Next, in lines 

7 to 12 the prefix-closure of each such intersection is computed as "SkCAPN-

BAR," providing the left side of the nonconflicting test, i.e. L(Sfe) n L(N). To 

compte the right side of the test, i.e. L(Sfc) fl L(N), first in lines 13 to 18 the 

prefix-closure of each Sjt is obtained and called "SkBAR" and in line 19 this 

prefix-closure is obtained for the plant and called "PLANTMINBAR."7 Lines 

20 to 25 compute the intersection of each "SkBAR" and "PLANTMINBAR," 

called "SkBARNBAR." This is what needed for the right side of the text. Fi­

nally the equivalence of each "SkCAPNBAR" and "SkBARNBAR" is verified 

7Recall that "PLANTMIN" is the minimal automaton of plant "PLANT" and obviously 
is behaviorally equivalent to it. 
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using command "Isomorph" in lines 26 to 31. 

Verifying that the supervisors are mutually nonconflicting: To verify 

the nonconflictingness of every two supervisors, first the closed-loop language 

induced by every supervisor is formed. In fact, this is the intersection of the 

supervisor and plant's languages, computed by command "Meet." This step 

is performed in lines 1 to 6 of Table C.7. Next the mutual intersection of 

every two such closed-loop languages are obtained by another "Meet" opera­

tion. Unfortunately, this step cannot be performed in TCT due to the very 

large state size of the automata. Assuming that this step could be performed, 

each language in this part should be compared to its counterpart, which is the 

closed-loop language induced by the synchronous supervision of the two su­

pervisors. The latter language is obtained by computing first the synchronous 

product of the two supervisors and then the meet of the result and the plant. 

These first step is performed in lines 7 to 21 and the second step is illustrated 

in lines 22 to 36. Each closed-loop language obtained in this part should be 

compared to its counterpart using command "Isomorph." However, the size 

of the languages are too big for TCT to check the isomorphism. Instead, the 

following argument is used to verify that the supervisors are mutually noncon­

flicting using smaller languages. 

1. Two supervisors which enforce two specifications for two separate groups 

of nodes are nonconflicting. For example, Si enforces a specification for 

RNi and DRi and S6 enforces a specification between SD and TN, 

thus these two supervisors are nonconflicting. The reason is that a con­

flict happens when two specifications are imposed on the same resource 

separately. 

2. Following the previous argument, nonconflictingness should be verified 
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Table C.6: The code to verify that each specification is nonconflicting with 
respect to the network. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

S1CAPN = Meet(Sl.PLANTMIN) (54675,1196775) 
S2CAPN = Meet(S2,PLANTMIN) (54675,1196775) 
S3CAPN = Meet(S3,PLANTMIN) (54675,1196775) 
S4CAPN = Meet(S4,PLANTMIN) (54675,1212975) 
S5CAPN = Meet(S5,PLANTMIN) (54675,1206495) 
S6CAPN = Meet(S6,PLANTMIN) (54675,1255095) 
S1CAPNBAR = Edit(SlCAPN,[mark +[all]]) (54675,1196775) 
S2CAPNBAR = Edit(S2CAPN,[mark +[all]]) (54675,1196775) 
S3CAPNBAR = Edit(S3CAPN,[mark +[all]]) (54675,1196775) 
S4CAPNBAR = Edit(S4CAPN, [mark +[all]]) (54675,1212975) 
S5CAPNBAR = Edit(S5CAPN,[mark +[all]]) (54675,1206495) 
S6CAPNBAR = Edit(S6CAPN,[mark +[all]]) (54675,1255095) 
S1BAR = Edit (SI, [mark +[all]]) (3,127) 
S2BAR = Edit(S2,[mark +[all]]) (3,127) 
S3BAR = Edit(S3,[mark +[all]]) (3,127) 
S4BAR = Edit(S4,[mark +[all]]) (3,127) 
S5BAR = Edit(S5,[mark +[all]]) (3,127) 
S6BAR = Edit(S6,[mark +[all]]) (3,127) 
PLANTMINBAR = Edit(PLANTMIN,[mark +[all]]) (18225,431325) 
S1BARNBAR = Meet(SlBAR,PLANTMINBAR) (54675,1196775) 
S2BARNBAR = Meet(S2BAR,PLANTMINBAR) (54675,1196775) 
S3BARNBAR = Meet(S3BAR,PLANTMINBAR) (54675,1196775) 
S4BARNBAR = Meet(S4BAR,PLANTMINBAR) (54675,1212975) 
S5BARNBAR = Meet(S5BAR,PLANTMINBAR) (54675,1206495) 
S6BARNBAR = Meet(S6BAR,PLANTMINBAR) (54675,1255095) 
true = Isomorph(SlBARNBAR,SlCAPNBAR;identity) 
true = Isomorph(S2BARNBAR,S2CAPNBAR;identity) 
true = Isomorph(S3BARNBAR,S3CAPNBAR;identity) 
true = Isomorph(S4BARNBAR,S4CAPNBAR;identity) 
true = Isomorph(S5BARNBAR,S5CAPNBAR;identity) 
true - Isomorph(S6BARNBAR,S6CAPNBAR;identity) 
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only for the following pairs of supervisors. 

(Si, S2), (Sj, S4), (S2, S4), (S3, S5), (S4, S5), (S4, S6), (S5, S6) 

To this end, for each pair, the control nodes whose events appear as the 

labels of state-changing transitions of at least one of the supervisors, 

are synchronized to form the "sub-plant," with respect to which mutual 

nonconflicting of the two supervisors is verified. 

This leads to the following computations. 

• To verify that Si, S2, and S4 are mutually nonconflicting, the sub-plant 

is defined as the synchronous product of TN, DRi , RNi , and RN2 . 

This is called "TNLEFT" and is computed in line 1 to 4 of Table C.8. 

• To verify that S3 and S5 are nonconflicting, the sub-plant is defined 

as the synchronous product of TN, DR2 , and RN3. This is called 

"TNRIGHT" and is computed in line 23 to 25 of Table C.8. 

• To verify that S4, S5, and S6 are mutually nonconflicting, the sub-plant 

is defined as the synchronous product of SD, TN, DRj, and DR2 . This 

is called "SDTNCH" and is computed in line 1 to 4 of Table C.9. 

After forming the sub-plants, in the next step, the closed-loop behavior, in­

duced by each corresponding supervisor and also by the synchronous operation 

of each pair of supervisors, are computed, respectively, in lines 5 to 10, 26 to 

28, of Table C.8, and 5 to 10 of Table C.9. Next, the prefix-closure of every 

such language is computed, respectively, in lines in lines 17 to 22, 32 to 33, of 

Table C.8, and 11 to 16 of Table C.9. 

Next, the meet of each pair of closed-loop languages is computed, us­

ing "Meet," and compared to the prefix-closure of the closed-loop language 
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induced by the synchronous product of the two supervisor. These two steps 

are shown , respectively, in lines in lines 11 to 16, 29 to 31, of Table C.8, and 

17 to 23 of Table C.9. It can be observed that all supervisors all mutually 

nonconflicting. 
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Table C.7: The code to verify that supervisors are mutually nonconflictiri£ 
(Part 1). 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

S1CAPN = Meet(Sl,PLANTMIN) (54675,1196775) 
S2CAPN = Meet(S2,PLANTMIN) (54675,1196775) 
S3CAPN = Meet(S3,PLANTMIN) (54675,1196775) 
S4CAPN = Meet(S4,PLANTMIN) (54675,1212975) 
S5CAPN - Meet(S5,PLANTMIN) (54675,1206495) 
S6CAPN = Meet(S6,PLANTMIN) (54675,1255095) 
S1S2 = Sync(Sl,S2) (9,357) BlockecLevents = None 
S1S3 = Sync(Sl,S3) (9,357) BlockecLevents = None 
S1S4 = Sync(Sl,S4) (9,357) BlockecLevents = None 
S1S5 = Sync(Sl,S5) (9,357) Blocked-events = None 
S1S6 = Sync(Sl,S6) (9,357) Blocked.events = None 
S2S3 = Sync(S2,S3) (9,357) Blocked.events = None 
S2S4 = Sync(S2,S4) (9,357) Blocked_events = None 
S2S5 = Sync(S2,S5) (9,357) Blocked.events = None 
S2S6 = Sync(S2,S6) (9,357) Blocked.events = None 
S3S4 = Sync(S3,S4) (9,357) Blocked.events = None 
S3S5 = Sync(S3,S5) (9,357) Blocked.events = None 
S3S6 = Sync(S3,S6) (9,357) Blocked.events = None 
S4S5 = Sync(S4,S5) (9,357) Blocked.events = None 
S4S6 = Sync(S4,S6) (9,357) Blocked.events = None 
S5S6 = Sync(S5,S6) (9,357) Blocked.events = None 
S1S2CAPN = Meet(SlS2,PLANTMIN) (164025,3298725) 
S1S3CAPN = Meet(SlS3,PLANTMIN) (164025,3298725) 
S1S4CAPN = Meet(SlS4,PLANTMIN) (164025,3347325) 
S1S5CAPN = Meet(SlS5,PLANTMIN) (164025,3327885) 
S1S6CAPN = Meet(SlS6,PLANTMIN) (164025,3473685) 
S2S3CAPN = Meet(S2S3,PLANTMIN) (164025,3298725) 
S2S4CAPN = Meet(S2S4,PLANTMIN) (164025,3347325) 
S2S5CAPN = Meet(S2S5,PLANTMIN) (164025,3327885) 
S2S6CAPN = Meet(S2S6,PLANTMIN) (164025,3473685) 
S3S4CAPN = Meet(S3S4,PLANTMIN) (164025,3347325) 
S3S5CAPN = Meet(S3S5,PLANTMIN) (164025,3327885) 
S3S6CAPN = Meet(S3S6,PLANTMIN) (164025,3473685) 
S4S5CAPN = Meet(S4S5,PLANTMIN) (164025,3376485) 
S4S6CAPN = Meet(S4S6,PLANTMIN) (164025,3522285) 
S5S6CAPN = Meet(S5S6,PLANTMIN) (164025,3502845) 
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Table C.8: The code to verify that supervisors are mutually nonconflicting 
(Part 2). 

i 1 DR1RN1 = Sync(DRl,RNl) (30,260) Blocked-events = None 
2 DR1RN1RN2 = Sync(DRlRNl,RN2) (90,930) Blocked-events = None 
3 DR1CH = Sync(DRlRNlRN2,ALL) (90,3180) Blocked-events = None 

~ 4 TNLEFT = Sync(TN,DRlCH) (450,15000) Blocked-events = None 
5 TNLEFTS4 = Meet(S4,TNLEFT) (1350,42930) 
6 TNLEFTS1 = Meet(Sl.TNLEFT) (1350,42600) 
7 TNLEFTS2 = Meet(S2,TNLEFT) (1350,42600) 
8 TNLEFTS1S2 = Meet(SlS2,TNLEFT) (4050,120600) 
9 TNLEFTS1S4 = Meet(SlS4,TNLEFT) (4050,121590) 
10 TNLEFTS2S4 = Meet(S2S4,TNLEFT) (4050,121590) 
11 TNLEFTS1BAR = Edit(TNLEFTS1,[mark +[all]]) (1350,42600) 
12 TNLEFTS2BAR = Edit(TNLEFTS2,[mark +[all]j) (1350,42600) 
13 TNLEFTS4BAR = Edit (TNLEFTS4, [mark +[all]j) (1350,42930) 
14 TNLEFTS1S2BAR = Edit(TNLEFTS1S2,[mark +[all]]) (4050,120600) 
15 TNLEFTS1S4BAR = Edit(TNLEFTS1S4,[mark +[all]j) (4050,121590) 
16 TNLEFTS2S4BAR = Edit(TNLEFTS2S4,[mark +[all]j) (4050,121590) 
17 TNLEFTS1BS2B = Meet(TNLEFTSlBAR,TNLEFTS2BAR) (4050,120600) 
18 TNLEFTS1BS4B = Meet(TNLEFTSlBAR,TNLEFTS4BAR) (4050,121590) 
19 TNLEFTS2BS4B = Meet(TNLEFTS2BAR,TNLEFTS4BAR) (4050,121590) 
20 true = Isomorph(TNLEFTSlS2BAR,TNLEFTSlBS2B;identity) 
21 true = Isomorph(TNLEFTSlS4BAR,TNLEFTSlBS4B;identity) 
22 true = Isomorph(TNLEFTS2S4BAR,TNLEFTS2BS4B;identity) 
23 DR2RN3 = Sync(DR2,RN3) (18,120) Blocked-events = None 

~ 24 DR2CH = Sync(DR2RN3,ALL) (18,696) Blocked-events = None 
25 TNRIGHT = Sync(DR2CH,TN) (90,3300) Blocked-events = None 
26 TNRIGHTS3 = Meet(TNRIGHT,S3) (270,9420) 
27 TNRIGHTS5 = Meet(TNRIGHT,S5) (270,9450) 
28 TNRIGHTS35 = Meet(TNRIGHT,S3S5) (810,26910) 
29 TNRIGHTS3BAR = Edit(TNRIGHTS3,[mark +[all]]) (270,9420) 
30 TNRIGHTS5BAR = Edit(TNRIGHTS5,[mark +[all]j) (270,9450) 
31 TNRIGHTS3S5BAR = Edit(TNRIGHTS3S5,[mark +[all]]) (810,26910) 
32 TNRIGHTS3BS5B = Meet(TNRIGHTS3BAR,TNRIGHTS5BAR) (810,26910) 
33 true = Isomorph(TNRIGHTS3BS5B,TNRIGHTS3S5BAR;identity) 
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Table C.9: The code to verify that supervisors are mutually rionconflicting 
(Part 3). 

1 SDTN2 = Sync(SD,TN) (15,100) Blocked-events = None 
SDTNDR1 - Sync(SDTN2,DRl) (150,2050) Blocked.events = None 
SDTNDR1DR2 = Sync(SDTNDRl,DR2) (900,16800) Blocked.events = None 
SDTNCH = Sync(SDTNDRlDR2,ALL) (900,30300) Blocked.events = None 
SDTNCHS4 = Meet(SDTNCH,S4) (2700,86760) 
SDTNCHS5 = Meet(SDTNCH,S5) (2700,86400) 
SDTNCHS6 - Meet(SDTNCH,S6) (2700,88980) 
SDTNCHS4S5 = Meet(SDTNCH,S4S5) (8100,246780) 
SDTNCHS4S6 = Meet(SDTNCH,S4S6) (8100,254520) 

10 SDTNCHS5S6 = Meet(SDTNCH,S5S6) (8100,253440) 
11 SDTNCHS4BAR = Edit(SDTNCHS4,[mark +[all]]) (2700,86760) 
12 SDTNCHS5BAR = Edit(SDTNCHS5,[mark +[all]]) (2700,86400) 
13 SDTNCHS6BAR - Edit(SDTNCHS6,[mark +[all]]) (2700,88980) 
14 SDTNCHS4S5BAR = Edit(SDTNCHS4S5,[mark +[all]]) (8100,246780) 
15 SDTNCHS4S6BAR = Edit(SDTNCHS4S6,[mark +[all]]) (8100,254520) 
16 SDTNCHS5S6BAR = Edit(SDTNCHS5S6,[mark +[all]]) (8100,253440) 
17 SDTNCHS4BS5B = Meet(SDTNCHS4BAR,SDTNCHS5BAR) (8100,246780) 
18 SDTNCHS5BS6B = Meet(SDTNCHS4BAR,SDTNCHS6BAR) (8100,254520) 
19 SDTNCHS4BS6B = Meet(SDTNCHS4BAR,SDTNCHS6BAR) (8100,254520) 
20 SDTNCHS5BS6B = Meet(SDTNCHS5BAR,SDTNCHS6BAR) (8100,253440) 
21 true = Isomorph(SDTNCHS4BS5B,SDTNCHS4S5BAR;identity) 
22 true = Isomorph(SDTNCHS4BS6B,SDTNCHS4S6BAR;identity) 
23 true = Isomorph(SDTNCHS5BS6B,SDTNCHS5S6BAR;identity) 
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SD # states: 3 state set: 0 ... 2 

marker states: 0 

vocal states: none 

initial state: 0 

# transitions: 5 

transitions: 

[ 0,103, 1] [ 

[ 2,109, 1] 
1,101, 2] [ 2,102, 1] [ 2,107, 

Figure C.l: TCT model of control node SD 

TN # states: 5 state set: 0 ... 4 

marker states: 0 

vocal states: none 

initial state: 0 

# transitions: 2 5 

transitions: 

t 0,202, 
[ 0,213, 
[ 1,211, 
[ 2,209, 
[ 3,207, 
[ 4,205, 
[ 4,213, 

4] 
4] 
3] 
4] 
3] 
0] 
4] 

0,207, 
1,202, 
1,213, 
2,211, 
3,209, 
4,207, 

1] 
4] 
4] 
2] 
3] 
4] 

0,209, 
1,207, 
2,202, 
2,213, 
3,211, 
4,209, 

4] 
1] 
4] 
2] 
3] 
4] 

0,211, 
1,209, 
2,207, 
3,203, 
3,213, 
4,211, 

2] 
1] 
3] 
0] 
3] 
4] 

Figure C.2: TCT model of control node T N 
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DRl # states: 10 

marker states: 

vocal states: none 

state set: 0 ... 9 

0 

initial state: 0 

# transitions: 70 

transitions: 

[ 0,302, 
[ 0,309, 
t 1,304, 
[ 1,311, 
[ 2,306, 
[ 2,313, 
[ 3,307, 
[ 4,304, 
[ 4,309, 
[ 5,304, 
[ 5,311, 
[ 6,306, 
[ 6,313, 
[ 7,307, 
[ 8,303, 
[ 8,309, 
[ 9,304, 
[ 9,311, 

4] 
4] 
6] 
3] 
2] 
2] 
3] 
9] 
4] 
5] 
7] 
6] 
9] 
8] 
0] 
8] 
9] 
9] 

0,304, 
0,311, 
1,306, 
1,313, 
2,307, 
3,303, 
3,309, 
4,305, 
4,311, 
5,306, 
5,313, 
6,307, 
7,302, 
7,309, 
8,304, 
8,311, 
9,306, 
9,313, 

5] 
2] 
1] 
4] 
3] 
0] 
3] 
0] 
4] 
5] 
9] 
6] 
9] 
9] 
8] 
8] 
9] 
9] 

0,306, 
0,313, 
1,307, 
2,302, 
2,309, 
3,304, 
3,311, 
4,306, 
4,313, 
5,307, 
6,302, 
6,309, 
7,304, 
7,311, 
8,306, 
8,313, 
9,307, 

0] 
4] 
1] 
4] 
4] 
8] 
3] 
4] 
4] 
6] 
9] 
6] 
7] 
7] 
8] 
8] 
9] 

0,307, 
1,302, 
1,309, 
2,304, 
2,311, 
3,306, 
3,313, 
4,307, 
5,302, 
5,309, 
6,304, 
6,311, 
7,306, 
7,313, 
8,307, 
9,301, 
9,309, 

1] 
4] 
1] 
7] 
2] 
3] 
3] 
4] 
9] 
9] 
6] 
8] 
7] 
7] 
8] 
5] 
9] 

Figure C.3: TCT model of control node D R l 

DR2 # states: 6 

marker states: 

vocal states: none 

state set: 0 ... 5 

0 

initial state: 0 

# transitions: 3 0 

transitions: 

[ 0,402, 
[ 0,409, 
[ 1,407, 
[ 2,406, 
[ 3,404, 
[ 4,403, 
[ 4,409, 
[ 5,407, 

2] 
2] 
1] 
2] 
3] 
0] 
4] 
5] 

0,404, 
1,403, 
1,409, 
2,407, 
3,406, 
4,404, 
5,401, 
5,409, 

3] 
0] 
1] 
2] 
3] 
4] 
3] 
5] 

0,406, 
1,404, 
2,404, 
2,409, 
3,407, 
4,406, 
5,404, 

0] 
4] 
5] 
2] 
4] 
4] 
5] 

0,407, 
1,406, 
2,405, 
3,402, 
3,409, 
4,407, 
5,406, 

1] 
1] 
0] 
5] 
5] 
4] 
5] 

Figure C.4: TCT model of control node DR2 
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RNl # states: 3 state set: 0 ... 2 initial state: 0 

marker states: 0 

vocal states: none 

# transitions: 5 

transitions: 

[ 0,502, 2] [ 0,507, 1] [ 0,509, 2] [ 1,503, 0] 
[ 2,505, 0] 

Figure C.5: TCT model of control node R N l 

RN2 # states: 3 state set: 0 ... 2 initial state: 0 

marker states: 0 

vocal states: none 

# transitions: 5 

transitions: 

[ 0,602, 2] [ 0,607, 1] [ 0,609, 2] [ 1,603, 0] 
[ 2,605, 0] 

Figure C.6: TCT model of control node RN2 

RN3 # states: 3 state set: 0 ... 2 initial state: 0 

marker states: 0 

vocal states: none 

# transitions: 5 

transitions: 

[ 0,702, 2] [ 0,707, 1] [ 0,709, 2] [ 1,703, 0] 
[ 2,705, 0] 

Figure C.7: TCT model of control node RN3 
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SI # states: 3 state set: 0 2 initial state: 0 

marker states: 0 

vocal states: none 

# transitions: 127 

transitions: 

[ 0,101, 
[ 0,109, 
[ 0,207, 
[ 0,301, 
[ 0,305, 
[ 0,401, 
[ 0,405, 
[ 0,502, 
[ 0,509, 
[ 0,607, 
[ 0,705, 
[ 1,102, 
[ 1,202, 
[ 1,209, 
[ 1,302, 
[ 1,306, 
[ 1,401, 
[ 1,405, 
[ 1,502, 
[ 1,603, 
[ 1,702, 
[ 1,709, 
[ 2,107, 
[ 2,205, 
[ 2,213, 
[ 2,304, 
[ 2,311, 
[ 2,403, 
[ 2,407, 
[ 2,509, 
[ 2,607, 
[ 2,705, 

0] 
0] 
0] 
0] 
0] 
0] 
0] 
0] 
0] 
0] 
0] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 

0,102, 
0,202, 
0,209, 
0,302, 
0,306, 
0,402, 
0,406, 
0,503, 
0,602, 
0,609, 
0,707, 
1,103, 
1,203, 
1,211, 
1,303, 
1,307, 
1,402, 
1,406, 
1,507, 
1,605, 
1,703, 
2,101, 
2,109, 
2,207, 
2,301, 
2,305, 
2,313, 
2,404, 
2,409, 
2,602, 
2,609, 
2,707, 

0] 
0] 
0] 
0] 
0] 
0] 
0] 
1] 
0] 
0] 
0] 
1] 
1] 
1] 
1] 
0] 
1] 
1] 
1] 
1] 
1] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 

0,103, 
0,203, 
0,211, 
0,303, 
0,311, 
0,403, 
0,407, 
0,505, 
0,603, 
0,702, 
0,709, 
1,107, 
1,205, 
1,213, 
1,304, 
1,311, 
1,403, 
1,407, 
1,509, 
1,607, 
1,705, 
2,102, 
2,202, 
2,209, 
2,302, 
2,306, 
2,401, 
2,405, 
2,502, 
2,603, 
2,702, 
2,709, 

0] 
0] 
0] 
0] 
0] 
0] 
0] 
2] 
0] 
0] 
0] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 
2] 

0,107, 
0,205, 
0,213, 
0,304, 
0,313, 
0,404, 
0,409, 
0,507, 
0,605, 
0,703, 
1,101, 
1,109, 
1,207, 
1,301, 
1,305, 
1,313, 
1,404, 
1,409, 
1,602, 
1,609, 
1,707, 
2,103, 
2,203, 
2,211, 
2,303, 
2,309, 
2,402, 
2,406, 
2,507, 
2,605, 
2,703, 

0] 
0] 
0] 
0] 
0] 
0] 
0] 
0] 
0] 
0] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
1] 
13 
1] 
2] 
2] 
2] 
2] 
0] 
2] 
2] 
2] 
2] 
2] 

Figure C.8: TCT model of specification Si 
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S4 # s t a t e s : 3 s t a t e s e t : 0 . . . 2 i n i t i a l s t a t e : 0 
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Figure C.ll: TCT model of specification S4 
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