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ABSTRACT 

A New Methodology for Obtaining Piecewise Affine Models Using a Set 

of Linearisation Points and Voronoi Partitions 

Scott Casselman 

To understand complex dynamical systems, approximations are often made by a lin­

earisation about an operating point of interest. The drawback of this linear approxi­

mation is that it only describes the system locally, around the operating point. One 

possible solution to overcome this drawback is to approximate the complex nonlinear 

dynamical system with a piecewise affine (PWA) system. Approximating nonlinear 

dynamical systems is very important in system theory where one is interested in sim­

plifying its analysis and numerical simulation. PWA modelling is a very powerful tool 

to represent nonlinear systems as a collection of a finite number of linear systems. In 

the literature of PWA, a uniform grid (UG) approximation is the current method be­

ing used to approximate a nonlinear system as a PWA system. The drawback of this 

method is the potential large amount of regions required to obtain a desired accuracy, 

which is most evident for systems with more than one variable in the domain of the 

nonlinearity. In order to reduce the number of regions, the proposed research will 

develop a new methodology for obtaining PWA models using a set of linearisation 

points (SLP) and the Voronoi partition. First, in order to generate a partition based 

on a SLP, the curvature of the nonlinearity is used as a tool for selecting appropriate 

locations for the linearisation points. Next, an algorithm is proposed to automate 

the SLP approximation for both curves and surfaces. The SLP and UG approxima­

tion methods are then compared over several simple examples. Finally, the newly 

proposed approximation methodology is applied to three case studies: modelling of a 
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nonlinear mechanical system and modelling and control of an unmanned aerial vehicle 

(UAV) and a micro air vehicle (MAV). 
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Chapter 1 

Introduction 

1.1 Motivation 

To understand complex dynamical systems, approximations are often made by a 

linearisation about an operating point of interest. The drawback of this linear ap­

proximation is that it only describes the system locally, around the operating point. 

One possible solution to overcome this drawback is to approximate the complex non­

linear dynamical system with a PWA system. This approximation is very important 

in system theory where one is interested in simplifying the analysis and numerical 

simulation of a complex dynamical system [10]. PWA modelling is a very powerful 

tool to represent nonlinear systems as a collection of a finite number of linear sys­

tems. A PWA system is the result of approximating the nonlinearities of the original 

system into a finite number of designated regions. The accuracy of this approxima­

tion can be increased by increasing the number of regions. The main advantage of 

approximating a nonlinear dynamical system as a PWA system is the simplicity of 

its theoretical formulation, which makes it easy to apply to complex systems [11]. 

Moreover, in many engineering cases, nonlinearities such as Coulomb friction and 

actuator saturation can be modelled exactly by PWA characteristics. PWA systems 
> 



are a subclass of hybrid systems where the discrete dynamics are associated with 

the designated regions and each region has a particular set of continuous dynamics. 

Existing literature on approximating complex nonlinear dynamics systems as PWA 

systems generally has the potential for a large number of regions. This fact motivates 

the use of a new approach to approximate the nonlinear dynamics in order to reduce 

the number of regions in the approximation. 

Based on the above motivation, the goal of this thesis is to develop a new 

methodology for obtaining PWA models. This thesis will investigate the use of a SLP 

and the Voronoi partition to approximate nonlinear systems with smooth vector fields. 

This methodology will be applied to several case studies including a rotorcraft MAV. 

In the following two sections, the previous work on modelling complex dynamical 

systems is reviewed. The first section describes previous work done on PWA modelling 

in general, while the second section will focus on MAV modelling in particular. 

1.2 Literature Survey 

1.2.1 Piecewise Affine Modell ing 

This section will be broken into two parts. The first part will review the literature of 

PWA systems and the second part will review the literature of Voronoi partitions. 

Piecewise Affine Systems 

PWA systems have received a great amount of attention since the pioneering work 

of Andronov [12] on oscillations in nonlinear systems in the late 1940's. In the early 

1980's, Sontag [13] presented the analysis of discrete-time piecewise linear (PWL) 

systems using polyhedral partitions. Later, Julian et al. [14] proposed an algorithm 

to approximate a nonlinear dynamical system as a PWL system over a simplicial 

partition of a UG. Rantzer and Johansson [15. 16] developed a systematic method 
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for continuous-time PWL systems to improve nonlinear approximations around an 

equilibrium point by refining the number of polytopic cells of a simplicial partition. 

Inspired by the work in [15], Morari et al. [17] extended the existing continuous-time 

approach to discrete-time PWL systems. Other works using a simplicial partition of 

a uniform rectangular grid to approximate nonlinear systems as PWL and PWA sys­

tems include [10, 18, 19, 20] and [5, 6, 21, 22, 23, 24, 25, 26], respectively. Simplicial 

partitions over a non-UG have also been used. For instance, Khargonekar et al. [27] 

obtain a non-uniform PWL approximation using a least squares algorithm that min­

imises a functional. Recently, Samadi and Rodrigues [28] developed a MATLAB and 

SIMULINK1 toolbox capable of approximating a continuous time nonlinear system 

and synthesising PWA controllers using a uniform rectangular grid. This toolbox can 

perform anchored approximations, which ensures that the linearisation of the PWA 

approximation is equivalent to linearisation of the original nonlinear function at the 

equilibrium point of the system. As a result of these developments, Yue et al. [23] de­

rived the first PWA model of a three DOF aerobatic helicopter. The largest drawback 

to the PWA helicopter model in [23] is the use of 30 regions leading to 30 different 

controllers. Although [28] considers a single linearisation point (at the equilibrium 

point) in the PWA anchored approximation, a SLP is not considered. 

Voronoi Partitions 

There exists two main dual techniques to partition the domain of a finite point set 

into polytopic regions: Delaunay triangulation and Voronoi partitions. A Voronoi 

partition can always be used to partition the domain of a point set consisting of n 

points, even when the points are collinear. Therefore, only Voronoi partitions are 

considered in this thesis. Voronoi partitions have received a great amount of atten­

tion for modelling purposes. Voronoi partitions have modelling applications in many 

1 MATLAB and SIMULINK are trademarks of The Mathworks, Inc 
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areas including engineering [8, 29], natural and health sciences [30, 31] and physical 

sciences [32, 33] to name a few. These partitions are even observed in nature [34]. 

Despite the wealth of applications that apply the Voronoi partition, to the best of 

the authors knowledge, there has not been any formal work dedicated to partitioning 

the domain of a nonlinear system with a Voronoi partition to obtain a PWA system. 

1.2.2 Micro Air Vehicle Modelling 

This section will be broken into two parts. The first part will give a brief background 

of MAVs and the second part will review the literature of MAVs. 

Background 

A MAV is a small, lightweight aircraft characterised by its small aspect ratio and 

low Reynolds number (Re). Typically, the size of a MAV (wingspan, chord and 

height) is smaller than 15 centimeters as defined by DARPA2 with a cruise speed of 

40 kph or less [35] [36]. This kind of aircraft has been receiving an increasing amount 

of research within the past few years because of its advantages of being a low-cost 

multi-functional aircraft [37]. The military envision the use of a MAV as a tactical 

tool that a single soldier will be able to use. With this light, low radar profile, and 

easily deployable MAV, a soldier is able to obtain vital information either through re­

connaissance or sensing-type missions by launching it from a compact tube [1][38][39]. 

In terms of civilian use, MAVs can be useful for weather and atmosphere monitoring, 

search and rescue, surveillance, controlling harmful insect populations, air sampling, 

surveying wildlife, providing recreation and real-estate photography as well as many 

other applications [40] [41]. Figure 1.1 taken from [1] presents a comparison between 

common aircraft and wildlife as a function of the operating weight and Reynolds 

number. There are currently three types of MAV designs (as seen in Figure 1.2) : 

2 The Defense Advanced Research Projects Agency 
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H 1 1 1 1 H 
10s 10* 10s 106 10? 108 

Reynolds Number 

Figure 1.1: Comparison between a MAV and various aircraft and wildlife [1]. 

flapping wing, rotorcraft and fixed wing. The flapping wing MAV, also known as an 

ornithopter, is the most difficult to design due to need for a complex mechanical struc­

ture and an efficient power supply for the flight endurance. Its ability to hover and fly 

in close quarters to obstacles makes this design an invaluable choice to perform cer­

tain missions [42]. The rotorcraft MAV has the innate ability to hover, which makes 

it more maneuverable around obstacles at the expense of requiring additional power 

to keep the main lifting surfaces operational. Fixed wing MAVs hold the potential 

to generate the fastest vehicles and currently have a very promising future as there 

is some research focusing into combining the rotorcraft's and ornithopter's ability to 

hover with the fixed wing MAVs higher speed and smaller energy consumption [43]. 

Literature Review 

The majority of the models for MAVs in the literature are linear. This comes as 

no surprise as linear aircraft models have proved to be quite accurate over the years 

and much easier to be used in control design than a nonlinear model. Nonlinear 

models are, thus far, much less popular in terms of implementation. Despite the 
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Fixed Wing Rotorcraft 

Figure 1.2: Types of MAVs (adapted from [2, 3, 4]). 

type of model, there are four main approaches to obtain the unknown aerodynamic 

parameters that characterise the system: wind tunnel testing, analytical relations, 

computational fluid dynamics (CFD) and system identification. 

© Wind tunnel testing is a powerful visual tool because the physical MAV wing 

assembly can be tested and its aerodynamic properties can be measured and 

observed directly [44] [40] [45] [46] [47] [48] [47] [49] [50] [51] [52] [53] [54]. 

® The analytical procedure follows basic assumptions (such as level flight and 

thin airfoil theory) to simplify the process of determining unknown aerodynamic 

parameters. Alongside wind tunnel test data, analytical relations are obtained 

based on the trends observed [55] [40] [48] [49] [56] [52] [57] [58] [53] [43] [59] [60] [61]. 

• A CFD approach uses a multitude of 2D [62] [63] [64] and 3D [50] [55] [65] [66] [67] 

[68][69] [70] [71] [72] methods to numerically predict the aerodynamic parameters. 

• System or model identification requires that input-output data be obtained 

directly from flight testing before a model can be created. Part of the recorded 
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data is used to obtain the model while the other part is used for validation [73] 

[74] [75] [76] [77] [78]. 

Table 1.1: Summary of MAV Data 

University 
Florida 
Sydney 

Notre-Dame 
Colorado 

Concordia 
Wuhan and City 

Brigham 
Glasgow 
Arizona 

Linkoping 
Rochester 

Drexel 
Kanpur and Kharagpur 

Cranfield 
I I S 

City and Tsinghua 

Sys/ID 
X 

X 

X 

Wind/Tunn 
X 
X 
X 

X 
X 

X 
X 
X 

X 

CFD 
X 

X 
X 

X 
X 

X 
X 

Analyt. 
X 

X 

X 

X 
X 
X 

X 
X 

X 
X 

Linear 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 

X 
X 
X 

Nonlinear 

X 
X 

X 

According to Table 1.1, the majority of the MAV models developed so far were 

obtained using the wind tunnel test data in conjunction with an analytical procedure 

and a CFD approach. The last method, system identification, is the least common 

approach. It is obviously favourable to use each method in developing a model but 

as seen in Table 1.1, only one of the universities has combined all of the approaches. 

Furthermore, only three sources have nonlinear models. This fact motivates the 

research being done in this thesis. The next section will state the objectives and the 

contributions of the thesis. 



1.3 Objective and Contributions 

The main objective of this thesis is to propose a new methodology for obtaining PWA 

models using Voronoi partitions. The advantages of the proposed methodology are: 

• Smaller number of regions. A SLP with a Voronoi partition requires signif­

icantly less regions than the UG method in the literature to meet a desired 

approximation error requirement. 

• Effective global analysis and synthesis tool. Analysis of a system or a designed 

PWA controller can be performed in a formal and systematic manner as a set 

of convex optimisation problems. For example, a Lyapunov function can be 

determined to prove the stability of the closed-loop system. Furthermore, less 

regions imply less controllers. 

The main contributions of this thesis are the following: 

1. To propose a new methodology for obtaining PWA models using a SLP and 

Voronoi partitions. 

2. To successfully apply the newly proposed approximation methodology to case 

studies including a MAV. 

3. To compare the SLP approximation method with the current UG method in 

the literature and to show that the proposed method yields a smaller number 

of regions for the same desired model accuracy in several case studies. 

1.4 Structure of the Thesis 

The thesis is structured as in Figure 1.3. In Chapter 2, a general PWA system is 

defined followed by two methods that can be employed to partition the state space. 

Next, the algorithm to obtain a PWA model for smooth curves using a SLP is pro-
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Conclusion 

Figure 1.3: Structure of the Thesis 

posed and then compared against the UG approximation method in the literature. 

Subsequently, the SLP approximation method is extended to smooth surfaces using 

a Voronoi partition in Chapter 3. Next. Chapter 4 applies the methodology pre­

sented in Chapter 3 to three case studies: a mechanical system with nonlinear spring 

and damper elements, a 3 DOF rotorcraft model, and a simplified model of a MAV. 

Finally, conclusions are drawn in Chapter 5. 

Chapter 3 and part of Chapter 4 are mainly based on the following papers: 

• Scott Casselnian and Luis Rodrigues. Piecewise Affine Modelling of a Micro Air 

Vehicle using Voronoi Partitions. In Proceedings of the 10th European Control 

Conference, pages 3857-3862, 2009. 

• Scott Cassehnan and Luis Rodrigues. "A New Methodology for Obtaining 

Piecewise Affine Models LTsing Voronoi Partitions," accepted for publication 
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in Proceedings of the 48th IEEE Conference on Decision and Control, Shang­

hai, China, December 16-18, 2009. 



Chapter 2 

Piecewise Affine Modelling of 

Curves 

2.1 Introduction 

In this chapter, a general PWA system is defined. First, two methods will be de­

scribed to partition the state space of a nonlinear system and approximate it by a 

PWA system. The method reviewed in Section 2.3 is the UG method. This method 

is currently being widely used in the literature of PWL [14, 15, 16, 10, 18, 19] and 

PWA [6, 22, 23, 24, 26] approximations PWA approximations. The UG method uses 

a simplicial partition for the approximation because any continuous function can be 

approximated uniformly by a PWA function on compact domains over simplicial par­

titions [6]. Alternatively, a new approximation method called the SLP method will 

be proposed in Section 2.4. To the best of the author's knowledge, there has not 

been any formal work dedicated to approximating smooth nonlinear control systems 

as PWA systems using a SLP and comparing it to other alternatives. This is one 

of the main contributions of this thesis. As a first step, an automated procedure to 
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approximating smooth curves is presented using a SLP. Finally, the two approxima­

tion methods in Sections 2.3 and 2.4 are compared using the algorithm proposed in 

Section 2.5. 

2.2 Piece wise Affine Systems 

In Chapter 4, we will see that an aircraft model can be written in the form 

x = Ax + f(x) + Bu (2.1) 

where i G 1 " is the state vector and A G Rn x n and B € E n x m are constant ma­

trices. Moreover, it is assumed that f(x) is a known smooth (or at least of class 

C2) nonlinear function of the state. The reasons for restricting the class of nonlinear 

functions become apparent later in Section 2.4.1. The objective in this thesis is to 

obtain a global approximation of systems in the form (2.1) that is both simpler than 

system (2.1) and able to predict the behaviour of the original system. A PWA system 

is described by 

x — AiX + cii + BiU, for x G K ; (2.2) 

where A{ e K"xr\ at E Rn, Bt G Rnxm for Ki, i G I = {1..... A/}. The regions 7^ 

partition the state space such that each region is constructed as the intersection of a 

finite number (p^ of half spaces defined by 

Hi = {x | EiX >- 0} (2.3) 

where £",- = Ei e; 
iX(n+1) and x x 1 

T 
. Any two polytopic cells sharing a 

common facet are called level-1 neighbouring cells. Let Mi = {level-1 neighbouring 

cells of TZi}. In addition, we assume that there exists vectors hjj e R" and scalars g^ 

such that the facet boundary between cells 1Z{ and IZj is contained in the hyperplane 
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described by { i 6 1 " | hfjX + gtj - 0} for i = 1, ...,M, j E .A/j. As a result, the 

parametric description of the boundaries can be obtained as [5] (refer to Figure 2.1) 

I -Ki n TZj C < x | x = FijS | s.e Rn ,s (2.4) 

0 1 
, Fy e Enx(n-1) is a full rank where IZi indicates the closure of 7?.,, F^ = 

matrix whose columns span the null space of hij and /^ G M.n can be written as 

Ijj — —fiij\fiijiiij) gij. 

^ 

K 
/ ~ 

/ \ 

/ 

x - F j j S 

Figure 2.1: Polytopic Regions TZj and TZj and Boundary (adapted from [5]) 

In order to approximate System (2.1) by (2.2), the nonlinearity f(x) needs to 

be approximated by a PWA function. To proceed, a method to partition the space 

of variables in the domain of the nonlinearity into polytopic regions is required as 

shown in Figure 2.2. The next two sections will describe two methods that can be 

used to partition the domain of f(x) and hence obtain an approximation of f(x) as 

a PWA function. Section 2.3 will review the UG method. Subsequently, Section 2.4 

will propose a new partitioning method that uses a SLP. 
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Approximation' 

State Space 
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Method ,. poiytopic 
Description 

Figure 2.2: PWA Approximation Method (adapted from [6]) 

2.3 Method 1: Uniform Grid 

The first method uses a uniform rectangular grid to partition the space of variables 

in the domain of the nonlinearity. A UG is the most widely used method in the 

literature of PWL [14, 15, 16, 10, 18, 19] and PWA [6, 22, 23, 24, 26] approximations. 

A simplicial partition is used to partition the state space into poiytopic cells. A 

simplex is defined as follows 

Definition 2.3.1 A simplex in Mn is defined as the convex hull of n + 1 affinely 

independent points. The convex hull of a set S is the smallest convex set that contains 

S. 

For example, a simplex in K2 is a triangle, and in K3 is a tetrahedron. The procedure 

for computing a PWA approximation proposed in [6] is as follows 

1. Order all the vertices of the chosen uniform rectangular grid. 

2. Group the vertices into simplicial cells. 

3. Obtain a poiytopic description for each cell. 

4. Obtain a parametric description for each boundary 

14 
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5. Determine the PWA approximation of f(x) and the piecewise constant approx­

imation of the input matrix B within each cell. 

After f(x) from the nonlinear system (2.1) is replaced by its PWA approximation, 

a PWA system of the form (2.2) is obtained. The greatest disadvantage of the UG 

method is the potential large amount of regions required to obtain a desired accuracy 

for systems with more than one variable in the domain of the nonlinearity. The next 

section will describe the SLP method to approximate and partition the space of the 

nonlinearity in order to reduce the number of regions in the partition. 

2.4 Method 2: Set of Linearisation Points 

The method proposed in this thesis to partition the space of the nonlinearity and 

obtain a PWA approximation is called SLP. The idea is to compute several linearisa­

tions of (2.1), each linearisation being valid for a particular region. The SLP method 

is based on the first order Taylor series. A first order Taylor series approximation 

involves the use of the function value and its derivative at a single point Xi. Given a 

function f(X) and a set X = {X\,..., Xn] of n distinct points, the linear approxima­

tion fLi(X) is 

df 
fLt(X) = f{Xi) + • (X - Xi) for i = 1, ...n (2.5) 

Xi dX, 

In order to select the linearisation points for an approximation, it is proposed in 

this thesis to use the curvature of the nonlinearity. This choice is made due to the 

correlation between the curvature and the gradient of a function. A function with zero 

curvature is linear, as well will see in Section 2.4.2. Before attempting to approximate 

a smooth surface (which is the case as we will see in the aircraft model that will be 

presented in Chapter 4), it is necessary to begin with a simpler case, ie a smooth 

curve. The approximation of a smooth curve using (2.5) and its curvature will be 

explained in the next section. 
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2.4.1 A Smooth Curve in M2 and its Curvature 

In order to motivate the approximation of a smooth curve using a SLP and its cur­

vature, consider the aircraft model (4.14), which will be presented later in Chapter 4. 

Assume that there is no side slip (v = 0, v = 0 and /? = 0). The system can now be 

simplified and written as 

• for , Qm J-tH 

r — -y-r + j -j— 
1zz 1zz *zz 

^ = r (2.6) 

y = uo sinfy) 

Evidently the system of equations is nonlinear in only a single variable, if). In order to 

approximate the nonlinear function sin(?/>), it is proposed to investigate the curvature 

property of smooth curves. A smooth curve in R2 is defined as follows [79]: 

Definition 2.4.1 A smooth curve in R2 is a smooth function f(x) that is contin­

uously differentiable over a specified interval on x (Figure 2.3). The curve can be 

Figure 2.3: Smooth Curve in IR2 

reparameterised by the position vector f(x) such that f(x) — (x.f(x)). The velocity. 
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speed and acceleration of the curve can now be defined as: 

f(x) = (l,f(x)) 

f(x)\\ = yjl + f(xy 

f(x) = (0, / (*)) 

(2.7) 

(2.8) 

(2.9) 

where || • || is the Euclidean norm. The curvature of a smooth curve is defined as the 

length of the acceleration vector computed relative to the arc length when r(x) traces 

the curve at a constant unit speed. In other words, the curvature k(x) can be written 

as 

k(x) = 
df(x) 
ds(x) 

df{x) 
dx 

dx 
ds{x) 

dT(x) 
dx 

ds(x) 
dx 

(2.10) 

(2.11) 

(2.12) 

where T(x) and s(x) are the unit tangent vector and arc length, respectively, defined 

by 

f(x) 
T(x) = 

f(x) 

s(x) = I f(x) 
Jo 

dx 

(2.13) 

(2.14) 

Finally, substituting (2.13)-(2.14) into (2.12) gives 

fix) 
k{x) = 

r(x) 
(2.15) 

Since the k(x) is proportional to T(.x) , the second derivative must exist and be 

continuous. Hence f(x) must be smooth or at the very least of class C2. The next 

section will focus on a strategy to automate the approximation of a smooth curve 

by a PWA function, which will be extended to the approximation of surfaces later in 

Chapter 3. 
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2.4.2 Automated PWA Approximation Procedure of a Smooth 

Curve in R2 using a SLP 

As mentioned previously in Section 2.4.1, the curvature will be used as a reference 

to selecting linearisation points. The approximation algorithm is structured in Fig­

ure 2.4. 

("Sample the Function and 
Compute the curvature 

• • - -

eje, Input 

Operating Point 
Selection 

Linearise the Nonlinear 
Function about each 

Generator 

» 

, 

^ i 
Compute the PWA 1 

Approximation ' 

) I 

T 

Change the Generators [ . 

f 
Verity Error Requirement 

Final PWA 
Approximation 

& • 

Figure 2.4: Smooth Curve Approximation Procedure 

1. User Input: First, the smooth curve is sampled using a UG and the curva­

ture k(x) is computed. Additionally, an error requirement, e^s, is chosen to 

determine the accuracy of the approximation. 

2. Initial Point Selection: The initial selection of linearisation points is selected 

based upon the curvature. Three different cases arise from inspecting the cur­

vature. 
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(a) Nonzero constant curvature: The first case is nonzero constant curva­

ture. If the curvature is constant, then an initial generator is placed at the 

centroid of the grid. The spacing between each subsequent linearisation 

point is chosen to be inversely proportional to the curvature. Assuming 

that the constant curvature is k, then the spacing A^ is (refer to Figure 2.5) 

Ax = £ (2.16) 

where c : (0,1 ] is a constant that is used to fine tune the spacing of the 

points. The initial approximation will take c = 1, which corresponds to the 

coarsest approximation. If there is no nonzero constant mean curvature 

found, the algorithm checks for case 2. 

Figure 2.5: Placement of Linearisation Points on a Curve with Nonzero Constant 

Curvature 

(b) Zero curvature: The second case is that of zero curvature. If the calcu­

lated curvature is zero for all x in the sampled grid, then a single lineari­

sation point is required and it is placed at the center of the sampled grid. 

If the calculated curvature is zero for some of the sampled points, then a 

linearisation point is placed at each of these points. 
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(c) Neither zero nor nonzero constant curvature exists: If case 1 and 

case 2 fail, then linearisation points are placed at the locations correspond­

ing to the minimum of the absolute value(s) of the curvature. 

3. Linearisation: The nonlinear function f(x) is then linearised about each lin­

earisation point using (2.5). 

4. PWA Approximation Computation: Subsequently, the PWA approxima­

tion is computed and therefore the maximum approximation error, emax, is 

obtained. Here emax is defined as 

C'mtt.T max sup f(x) - (Atx + at) (2.17) 

initial Operating Point 
Selection 

Zero Curvature 

Additional Operating [ 
Point Selection 

Y • •y y 
Nonzero Constant 

Curvature 
Minimum Absolute I 

Curvature 

_j_ 
Decrease c to fine tune ! 

the spacing and number of: 
linearisation points 

Add a generator at thej 
point corresponding to (^ 

- • I Error Check 

Done 

Figure 2.6: Methodology for adding new generators. 
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5. Error Requirement Verification: The approximation error is then compared 

to the desired error requirement, e<fes. If the e^s requirement is met, then the 

PWA model is obtained. 

6. Addition of Operating Points: If the e<ies requirement is not met, the ap­

proximation procedure repeats itself by including additional operating points, 

as follows (refer to Figure 2.6): 

(a) Case 1: For the case of nonzero constant curvature, additional points are 

added by decreasing c in order to have a finer approximation. 

(b) Case 2 and 3: For cases 2 and 3, additional points are added where emax 

occurs until the approximation meets the error requirement. 

Before applying the proposed methodology to system (2.6), a few simple cases will be 

used to verify the algorithm. Figures 2.7 and 2.8 depict the results of approximating a 

straight line and a circular section, respectively, with varying error requirements. For 

the first case, the straight line is approximated exactly using one linearisation point 

at the centroid of the sampled grid. The second case involves the approximation 
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Figure 2.7: Approximation of the Straight Line y = x. 
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Figure 2.8: Approximation of a Circular Section of x2 + y2 — 4. 
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of a circular curve. Figures 2.8a-2.8c show the approximation results over a range 

of error requirements. As expected, as the error requirement decreases, c decreases 

in order to allow for a finer approximation. With two simple cases verified, the 

2 

1.9 

1.8 

1.7 

1.6 

1.5 

1.4 

1.3 

-1.5 -1 -0.5 0 0.5 1 1.5 
x 

(c) Approximat ion Resul ts : e^es = 0.075 and c = 0.35 

Figure 2.8: (Continued) 

algorithm can now be applied to the the nonlinearity sin(^) in system (2.6). The 

approximation of / , / , is shown for three different error requirements in Figure 2.9. 

The first approximation consists of linearisation points Pi and P2, which are the zero 

curvature points found within the sampled domain. The second approximation is 

obtained by adding points P3-P5 to the original two points. Notice that these new 

linearisation points are indeed placed at the points of maximum error as indicated 

in the algorithm. The third approximation is a result of adding points P6-P9 to the 

previous five linearisation points. As in the secondary approximation, the new points 

are added at the locations corresponding to the maximum error. With the algorithm 

verified for smooth curves, the SLP and UG approximation methods will be compared 

in the next section. 
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<*-, 0 

1 2 

ilj[rad] 

Figure 2.9: SLP Approximation of f(tp) = sm(V/) over — | < i/j < ^ . 

2.5 Comparison Algorithm 

To compare the two approximation methods, the following algorithm is proposed and 

shown in Figure 2.10: 

ede 

• - • SLP 
i # of regions 

; # of regions 

Grid j • 

Figure 2.10: Block Diagram of the Comparison Algorithm. 

1. Choose a desired approximation error, e^e 
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2. (a) SLP: Compute the PWA approximation and the corresponding maximum 

error, emax, using (2.5) and (2.17), respectively. 

(b) UG: Compute the PWA approximation and emax for a given UG using the 

algorithm in section 2.3. 

3. (a) SLP: Repeat step two while emax > e&es by varying the number and location 

of points using the algorithm in Section 2.4.2. 

(b) UG: Repeat step 2 while emax > edes using the Toolbox in [28]. 

4. Compare the number of regions that each method needed to meet the desired 

error requirement. 

2.5.1 Curve Approximation Comparison and Results 

The objective of this section is to compare the SLP and UG methods using the 

algorithm in Section 2.5 applied to system (2.6) for two cases. In the first case, the 

UG and SLP methods will be compared over — | < tp < ^ while the second case will 

use a range of — IT < ij; < w. 

• Case 1: - f < V < T 

The comparison results for case 1 can be seen in Table 2.1 for three different 

edes as in Section 2.4.2. Moreover, Figures 2.9 and 2.11 depict the approxi­

mation results using a SLP and a UG, respectively. The main result of case 

Table 2.1: Curve Approximation Results for Case 1 

&des 

0.7 
0.20 
0.05 

SLP Approximation 
V-max 

0.57 
0.15 

0.046 

Number of Regions 
2 
5 
9 

UG Approximation 
^max 

0.57 
0.13 

0.031 

Number of Regions 
2 
5 
9 
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— f(i>) \ 
f(1>)(ede. = 0.7) 
fW(edes= 0.2) -

f(i>)(edes = 0-05) 

J L 

- 1 0 1 2 3 4 
tp[rad] 

Figure 2.11: UG Approximation of f(ip) — sin(ip) over — | < ifr < \ . 

1 is that the SLP and UG approximation methods use the same number of 

regions. The difference between the two approximation methods is the emax 

for the second and third e<ies. Although the UG approximation has a smaller 

maximum approximation error than the SLP approximation, the SLP method 

guarantees that the slope and value of the PWA approximation are equivalent 

to the nonlinear function at each linearisation point. 

• Case 2: — n < ip < ix 

The comparison results for case 2 can be seen in Table 2.2 for the same edes 

as in case 1. Moreover, Figure 2.12 depicts the approximation results using a 

SLP and a UG. It is interesting to note that the SLP approximation results 

for case 2 are consistent with the results presented for case 1 in that the emar 

are the same for each edes. Additionally, with the exception of erfes = 0.7. the 
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same number of regions are required in the SLP approximation for cases 1 and 

2. The UG approximation results for case 2 do not have the same consistency 

in emax than the SLP approximation results. Moreover, the UG approximation 

for the last e&,s requires one more region than the SLP approximation. 

Table 2.2: Curve Approximation Results for Case 2 

^des 

0.7 
0.2 

0.05 

SLP Approximation 
^max 

0.57 
0.15 

0.046 

Number of Regions 
3 
5 
9 

UG Approximation 

€-max 

0.437 
0.18 

0.047 

Number of Regions 
3 
5 

10 
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(a) SLP Approximation Results 

Figure 2.12: SLP and UG Approximation of f(ip) = sin(^) over — n <ip<i\. 

It should be noted that the goal of this thesis is to reduce the complexity of 

PWA models that have more than one variable in the domain of the nonlinearity. 
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(b) UG Approximation Results 

Figure 2.12: (Continued) 

With the SLP approximation method successfully applied to system (2.6), the focus 

can be shifted to extending the algorithm in Section 2.4.2 to include smooth surfaces, 

which is the topic of Chapter 3. 

2.6 Summary 

In summary, this chapter develops the framework needed to obtain a PWA model us­

ing the SLP method. First, the existing UG approximation method is reviewed and 

a new approximation technique called SLP is proposed. Second, the SLP approxi­

mation method is applied to smooth curves and then validated for several examples 

in Section 2.4.2. Finally, the UG and SLP methods are compared in Section 2.5.1 

using the algorithm proposed in Section 2.5. The main result of this comparison is 
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that the SLP method gives consistent approximation results while the UG method 

gives inconsistent approximation results for a nonlinear function with two different 

sampled domains. 
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Chapter 3 

Piecewise Affine Modelling of 

Surfaces 

3.1 Introduction 

In this chapter, the SLP procedure proposed in Chapter 2 for smooth curves is ex­

tended to smooth surfaces. Moreover, the Voronoi partition is proposed to partition 

the domain of a nonlinear function. Subsequently, the SLP and UG approximation 

methods are compared using a modified version of the algorithm proposed in Sec­

tion 2.5. 

3.1.1 A Smooth Surface in M3 and its Curvature 

In order to compute the curvature of a smooth surface in K3, one would expect, as with 

curves, to study the changes in the tangent planes. However, since the orientation of a 

tangent plane can be described by its normal vector, we can simply compute how the 

normal vector field is changing at each point on the surface [7]. Curvature of surfaces 

can also be extended to R". For the purpose of this thesis, only smooth surfaces in 

K3 are considered since the function f(ip,v) in (4.14) is nonlinear in two variables. 
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as we will see later in Chapter 4. The change in the normal vector field is obtained 

from the Weingarten map, L, which is defined as follows (refer to Figure 3.1) [79]: 

Definition 3.1.1 A smooth surface in M.3 is a smooth function f(x,y) that is con­

tinuously differentiable over a specified interval on x and y. Let M. C M3 be a smooth 

surface parameterised such that M. = (p, f(p)) where p is a point G M. with coordi­

nates {x,y). The Weingarten map of M. at p is the linear map L : TVM. —> TPM. 

written as 

L(p) = -VN(p) (3.1) 

where Tp is the tangent space of M atp and N is the unit normal vector field defined 

by 

N = 
dM dM 
dx dy 

dM dM 
dx dy 

(3-2) 

Figure 3.1: Smooth surface A4 and its unit normal vector at point p. 

In order to assign a single value of curvature to each point on M, a single value is 

required from the Weingarten map. This assignment can be done by either obtaining 

the determinant or the trace of L and they are defined in the following [7, 79]: 

Definition 3.1.2 
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1. The determinant K(p) is called the Gaussian curvature where 

K(p) = detL = k1(p)k2(p) (3.3) 

2. The average value ll(p) is called the mean curvature where 

H(p) = lT,iL) = Mri + Mri (34) 

3. A point p on a surface is called 

elliptic if K(p) > 0 

hyperbolic if K(p) < 0 

parabolic if K(p) = 0 and H(p) ^ 0 

a level point if K{p) = H(p) = 0 

Special Case 

umbilic if ki(p) = A~2(p) 7̂  0 

where kj(p) and k.2(p) are the principal curvatures of M. at p. 

Examples of elliptic, hyperbolic and parabolic surfaces can be seen in Figure 3.2. 

An ellipsoid has only elliptic points, while a hyperboloid has only hyperbolic points. 

On the other hand, a circular cylinder only has parabolic points, a sphere lias only 

umbilic points, while a plane consists only of level points. The reader is referred 

to [79. 80, 7] for more detailed explanations. The next step is to extend the approxi­

mation algorithm in Section 2.4.2 to surfaces. Recall that there exists two measures 

of curvature for surfaces: Gaussian and mean curvature. For the purpose of this 

thesis, the Gaussian curvature is disregarded and the mean curvature will be taken 

as the curvature of the nonlinearity. The reason for this selection is based on the 

approximation algorithm in Section 2.4.2 and the property of parabolic surfaces. For 

example, assume that the surface to be approximated is parabolic and the Gaussian 

curvature was selected instead of the mean curvature. Then, according to the approx­

imation algorithm and the definition of a parabolic surface (the Gaussian curvature 
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Figure 3.2: Elliptic (1s t row), hyperbolic (2nd row) and parabolic (3rd row) surfaces 
with level curves [7]. 

is zero), a single linearisation point would be placed at the centroid of the sample 

grid. Of course this would not be a good approximation because the curvature is 

varying in a single direction. It is proposed in this thesis to use the Voronoi partition 

to partition the domain of the nonlinearity based on the set of linearisation points 

X (defined at the beginning of Section 2.4) for surfaces. To the best of the author's 

knowledge, there has not been any formal work dedicated to partitioning the domain 

of a nonlinear system with a Voronoi partition to obtain a PWA system. This is one 

of the main contributions of this thesis. 

3.1.2 Voronoi SLP Approximation: Automated Generation 

Procedure 

This section will describe in detail the proposed algorithm that will be used in this 

thesis to automatically approximate a given smooth surface. The approximation 

algorithm is structured in Figure 3.3. The only subtle; difference between the curve and 

surface approximation algorithms is the addition of the Voronoi partition computation 
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Figure 3.3: The Voronoi Partition Modelling Procedure 

in Figure 3.3 as compared to Figure 2.4. Also, mean curvature as defined by (3.4) 

replaces curvature in this algorithm. In order to proceed it is necessary to review 

Voronoi partition theory. 

The Voronoi Partition 

A Voronoi partition or diagram is defined as follows [81]: 

Definition 3.1.3 Given a domain S c i " and X c S of n distinct points (often 

called generators), the Voronoi partition of S is the subdivision of the domain into n 

cells defined by 

V{Xi) = U G S \\q- Xt\\ < \\q - Xj\\\, VX,- E X with j ^ i (3.5) 

where V(Xi) is the Voronoi cell corresponding to generator Xj. 

34 



Figure 3.4 (adapted from [8]) illustrates a two dimensional Voronoi partition (denoted 

by the bold lines) as well as its geometric dual called Delaunay triangulation (denoted 

by the lighter lines). From this figure, it can clearly be seen that the outer Voronoi 

Figure 3.4: Sample Voronoi partition (adapted from [8]). 

cells (V(P4),V(P5),V(P6),V(P7),V(P8),V(P9)) are unbounded. For the purpose of 

this thesis, since all physical variables are bounded, a bounding polytope will be 

added to enclose the outer Voronoi cells. The bounding polytope B is defined by its 

vertices as 

B = <x e Rn I x = J2aiVil)-- 0 < «* < 1; Ylai = l f (3-6) 
I i=i t=i J 

where Vp is the i-th vertex of B and vv is the total number of vertices. The strategy 

that will be adopted in this thesis is to make the generators be the linearisation points. 

1. User Input : In the first step of the surface approximation algorithm, the 

surface is sampled using a UG and the mean curvature is computed using (3.1) 

and (3.4). Additionally, an error requirement, e^es, is chosen to determine the 

accuracy of the approximation. 

2. Initial Generator Selection: Subsequently, the initial Voronoi generators 

are chosen based upon the curvature. As with curves in Section 2.4.2. the same 

three cases arise from inspecting the curvature for surfaces. 
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(a) Nonzero constant mean curvature: Recall from Section 3.1.1 that 

nonzero constant mean curvature can exist for surfaces that have umbilic 

and parabolic points. To distinguish between the two, the principal cur­

vatures. ki(p) and Ar2(p), are computed. If both principal curvatures are 

identical, the surface is umbilic. Otherwise, the surface is parabolic. To ap­

proximate either surface, a similar approach to approximating curves with 

nonzero constant curvature is proposed i.e, the spacing between generators 

will be inversely proportional to the principal curvature. For convenience, 

we assume that the coordinate system is chosen such that the .r-axis is 

aligned with the direction along which ki(p) is changing and the y-axis 

is aligned with the direction along which h~2(p) is changing. There is no 

loss of generality in doing so because we can simply modify the coordinate 

system to align the axes with the direction of curvature change. 

i- ki(p) ^ ^ (p) : Assume that ki(p) is zero and that foQt?) is nonzero. 

This assumption suggests that the curvature is invariant in the x di­

rection wliile it is variant in the y direction. For example. Figure 3.5 

shows a parabolic surface whose curvature varies only in the y direc­

tion. The first generator, P], is chosen to be the centroid (xc,yr) of 

the sampled grid. Since the curvature does not vary in the x direction, 

the .T coordinate for additional linearisation points (ie P2) will remain 

x,.. The y coordinate, .however, will vary and the distance between 

each successive point along y is Av defined by 

A-=m (3J) 

where c is defined in Section 2.4.2. 

ii. k\{p) — ^ (p) : If both principal curvatures are identical, then the 

surface is umbilic. As with the case of a parabolic surface, the first, 

generator is selected to be the centroid of the sampled grid. The 
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fp2 n 
Figure 3.5: Placement of Linearisation Points on a Parabolic Surface 

locations of successive points will now vary in the x and y direction 

according to (3.7). Figure 3.6 shows how successive points are added 

to the surface. If there is no nonzero constant mean curvature found, 

the algorithm checks for case 2. 

•Av 

,J 

• • 

Figure 3.6: Placement of Linearisation Points on anUmbilic Surface 

(b) Zero mean curvature: If the mean curvature is zero ie. both princi­

pal curvatures are zero, then a single linearisation point is placed at the 

centroid of the sampled grid. Otherwise, if there are points whose mean 

curvature is zero, then generators are placed at each of those points. 
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(c) Neither zero nor nonzero constant mean curvature exists: If case 

1 and case 2 fail, then linearisation points are placed at the locations corre­

sponding to the minimum of the absolute value(s) of the mean curvature. 

3. Linearisation: The next step is to linearise the nonlinear function about each 

generator using (2.5). 

4. Voronoi Partition Computation: To avoid potential numerical problems 

due to the domain of the sampled nonlinear function being thin (for example, the 

range of ip is twice that of the range of v in system (4.14), which we will see later 

in Section 3.2.1), the Voronoi partition will be normalised. The normalisation 

of the Voronoi generators is computed by 

* „ - { * . . * ) (3.8) 

where XN is the set of normalised generators and Ximax is the maximum value 

that a generator can take within the specified range of Xi, i — 1, ...n. Finally, 

following the rules written in (3.5), (3.6) and (3.8), the Voronoi partition is 

computed using the Multi Parametric Toolbox (MPT) [82]. 

5. P W A Approximation Computation: the PWA approximation can be com­

puted and therefore the maximum approximation error, emax, is obtained using 

equation (2.17). 

6. Error Requirement Verification: The approximation error is then compared 

to the desired error requirement, e<ies- If the e^s requirement is met, then the 

PWA model is obtained. 

7. Addition of Operating Points: If the edes requirement is not met, the ap­

proximation procedure repeats itself by including additional operating points, 

as follows (refer to Figure 2.6 in Section 2.4.2): 
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(a) Case 1: For the case of nonzero constant mean curvature, additional 

points are added by decreasing c in order to have a finer approximation. 

(b) Case 2 and 3: For cases 2 and 3, additional points are added where emax 

occurs until the approximation meets the error requirement. 

Before applying the proposed methodology to system (4.14), a few simple cases will 

be used to verify the algorithm. Figures 3.7 and 3.8 depict the results of approx­

imating a plane and a parabolic section, respectively. For the first case, the plane 

(a) Approximation Results. (b) Voronoi Partition of the Approxima­
tion. 

Figure 3.7: Approximation of the Plane z = x + y. 

is approximated exactly using one linearisation point at the centroid of the sampled 

grid. The second case involves the approximation of a parabolic surface. Figure 3.8 

depicts the approximation results for edes = 0.5 and its accompanying Voronoi parti­

tion. As desired, the algorithm has placed additional linearisation points only along 

the x direction. The partition of the domain can also be seen from the normalised 

Voronoi partition. With two simple cases verified, the following section will describe 

an algorithm to compare the SLP and UG methods for surfaces. 
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(a) Approximation Resul ts : e ^ = 0.5 and (b) Voronoi Par t i t ion of the Approxima-
c = 0.75 tion. 

Figure 3.8: Approximation of a Parabolic Section 

3.2 Comparison Algorithm 

To compare the two approximation methods, the algorithm proposed in Chapter 2 is 

modified to include surfaces (refer to Figure 2.10): 

1. Choose a desired approximation error, edes. 

2. (a) SLP: Compute the PWA approximation, the description of the regions and 

the corresponding maximum error, emax, using (2.5), (3.5)-(3.6) and (2.17), 

respectively. 

(b) UG: Compute the PWA approximation, the description of the regions and 

emax f°r a given UG using the algorithm in section 2.3. 

3. (a) SLP: Repeat step two while emax > e^s by varying the number and location 

of points using the algorithm in Section 3.1.2. 

(b) UG: Repeat step 2 while emax > edes using the Toolbox in [28]. 

4. Compare the number of regions that each method needed to meet the desired 

error requirement. 
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3.2.1 Surface Approximation Comparison and Results 

In this section, the SLP and the UG methods are applied to the nonlinear aircraft 

model (4.14) that will later be presented in Chapter 4. Both approximation methods 

are compared using the algorithm in Section 3.2. We will show that the SLP ap­

proximation will require significantly less regions than the UG approximation. The 

nonlinear function in the model is equations (3.9)-(3.10) 

/(V>, v) = «0 sin(V' + P) + v cos(ij) + (5) 

v 
P = arctan 

u0 

(3.9) 

(3.10) 

To evaluate f(ip, v), three physical parameters are required: u0, i> and v. The forward 

velocity, uo, is assumed to be constant while ip and v are allowed to vary as in [23] and 

are shown in Table 3.1. The following results are obtained and shown in Table 3.2 

Table 3.1: Physical parameters used to approximate f(ijj,v) 

Parameter 
u0(m/s) 
ip(rad) 
v(m/s) 

Value/Range 
0.7 

i f < V > < f 
-0.8 < v < 0.8 

for two desired error requirements: e<fes = 0.50 and 0.25. Notice that the Voronoi 

Table 3.2: Surface Approximation Results 

&des 

0.50 
0.25 

SLP Approximation 

"max 

0.27 
0.24 

Number of Regions 
9 

13 

UG Approximation 

^max 

0.31 
0.201 

Number of Regions 
18 
50 

partition in Figure 3.9 is normalised as mentioned in the approximation algorithm 

in Section 3.1.2. The main result of this comparison is that the SLP approximation 

uses a significantly smaller number of regions to approximate f{^\v) than the UG 
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Figure 3.9: Voronoi Partition for the PWA approximation with edes = 0.25 

approximation. The SLP approximation required fifty percent less regions than the 

UG approximation for edes = 0.50. Moreover, only thirteen regions were required in 

the SLP approximation to achieve edes = 0.25 while the UG approximation needed 50 

regions. These results are extremely useful because if one were to control (2.2) using 

the state feedback law (3.11) 

u = KiX, for x € 7£,; (3.11) 

where Kt = K% m-i as done in [23], one would need a controller for each region. 

The drawback to the Voronoi approximation is due to the potential discontinuities at 

the boundaries of each region as seen in Figure 3.10. These discontinuities can lead 

to a non-smooth control signal. In order to overcome this problem, a condition to 

ensure control input continuity will be used in the controller design. With the SLP 

approximation method successfully applied to surfaces, the focus can now be shifted 

to applying the newly proposed method to various case studies, which is the topic of 

the next chapter. 
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Figure 3.10: Voronoi PWA Approximation of f(ip, v) for edes = 0.25 

3.3 Summary 

In summary, this chapter extends the SLP approximation method proposed in Chap­

ter 2 to smooth surfaces using Voronoi partitions to partition the domain of the non-

linearity. The SLP approximation method is then validated for several examples in 

Section 3.1.2. Subsequently, the UG and SLP methods are compared in Section 3.2.1 

using the algorithm proposed in Section 2.5. The main result of this comparison is 

that the number of regions in the SLP approximation is significantly less than the 

number of regions for the UG approximation. 
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Chapter 4 

Case Studies 

4.1 Introduction 

The purpose of this chapter is to apply the SLP approximation methodology presented 

in Chapter 3 to case studies. The first case stud}' is the modelling of a mechanical 

system with a nonlinear spring and damper. The second and third case studies involve 

the modelling and control of a rotorcraft UAV and MAV, respectively. 

4.2 Case Study 1: Modelling of a Nonlinear Spring 

and Damper Mechanical System 

The first case study is a mass-spring-damper mechanical system with nonlinear spring 

and damper elements [16]. Assuming a constant unity mass, the dynamics that 

describe this mechanical system can be written as follows: 

x\ = x2 (4.1) 

x2 = -b{x2)x2 - kixjxi (4.2) 

where bfa) = 1x21 and k{x\) = (1 + x\) are the nonlinear damping and spring 

coefficients, respectively, and | • | is the absolute value. Equations (4.1)-(4.2) can be 
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written in the state space form of (2.1) as 

±1 

X2_ 

0 1 

- 1 0 

Xi 

?2. 
+ 

0 

f(xi,x2)_ 
(4.3) 

f{xi,x2) \x2\x2-x1 
(4.4) 

Note that the second derivative of f(xi, x2) is not continuous for x2 — 0 and therefore 

the surface approximation algorithm developed in Section 3.1.2 cannot be immedi­

ately applied. To make the second derivative of f(x\,x2) continuous (which makes 

the curvature continuous), the absolute value function in (4.4) is replaced with the 

following function [10]: 

, , 2.X2 
* 2 

7T 
arctan(ax2) (4.5) 

where a > 0 is a parameter that tunes the smoothness of (4.5). The algorithm in 

Section 3.1.2 is now applied to system (4.3) with edes = 2, a = 100 and —2 < x,\ < 2, 

—2 < x2 < 2 as in [16]. The resulting approximation of f(xi,x2) and the Voronoi 

partition can be seen in Figure 4.1. A total of 20 Voronoi cells are used in the SLP 

approximation while a uniform grid consisting of 32 simplicial regions is considered 

in [16]. Figure 4.2 compares the open loop system trajectories of the nonlinear, the 
r iT 

SLP and the grid PWA systems for the initial conditions XQ = 1.5 1 (Top) and 
T 

1.5 2 (Bottom) over a time period of 35 seconds. The main result is that the 

open loop response of the SLP PWA system follows the nonlinear trend more closely 

than the grid PWA system. This result is easily seen when the system begins to oscil-

r ~\T 

late to its equilibrium point 0 0 • The grid approximation reaches the equilibrium 

point after 10 seconds while the SLP approximation continues to oscillate with the 

nonlinear system. The advantage that the UG method has in this example over the 

SLP method is that it does not require that the absolute function be approximated 

by (4.5). 
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Figure 4.1: Voronoi Partition and PWA Approximation of f{x\, x2). 

15 20 
Time (s) 

Figure 4.2: Nonlinear, SLP and Grid Open Loop Responses. 
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4.3 Case Studies 2 and 3: Modelling and Control 

of UAV and MAV Helicopters 

The second and third case studies are the modelling and control of rotorcraft UAV 

and MAV. To proceed, Section 4.3.1 will present the nonlinear equations of motion 

for an aircraft. Next, a simplified nonlinear lateral model of a rotorcraft is obtained 

and the lateral model is linearised about an operating point. Subsequently, a PWA 

controller design methodology will be reviewed in Section 4.3.2 for systems of the 

form of (2.1). Section 4.3.3 will present the approximation and simulation results 

for the rotorcraft UAV and MAV. As a first step, the aircraft model (4.14) will be 

validated through comparison of simulation results using the software in [9]. Next 

the results are shown for the rotorcraft UAV followed by the rotorcraft MAV. 

4.3.1 Aircraft Modelling 

Equations of Motion 

In this section, a simplified nonlinear rotorcraft model that was derived in [9] is 

considered. The motion of the rotorcraft will be restricted to the lateral plane as seen 

in Figures 4.3 and 4.4 for the UAV and MAV, respectively. Therefore, the equations 

of motion can be written as follows: 

X 
u = vr -\ 

m 
Y 

v — —ur -\ (4.6) 
m 

N 

ip = r 

where u and v are translational veloeites, r is the yaw rate, il> is the yaw angle, m 

is the rotorcraft mass and /-- is the mass moment of inertia. The resulting 3 DOF 
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model is highly nonlinear. The difficulty present in the model arises when one needs 

to evaluate the forces (X, Y) and moment (N). These unknowns are highly nonlinear 

functions that depend upon the state variables and control inputs. Moreover, these 

forces and moment must be evaluated over a complex arrangement of five interacting 

subsystems: main rotor, tail rotor, horizontal stabiliser, vertical fin and fuselage. The 

goal of this thesis is not to address the issue of evaluating these forces and moment. 

The reader is referred to [9] for a detailed description of each subsystem, including 

their interactions and the forces and moments they generate. Instead we will assume 

that these forces and moment are known. 

Control Objective and Simplified Model 

The control objective in this thesis is to design a controller to drive the rotorcraft to 

follow the straight line y = 0 at a constant forward velocity UQ. In other words, the 

following variable is set to zero: u = 0. Therefore, system (4.6) becomes: 

Y 
v = -u0r + — (4.7) 

m 
N r = f (4.8) 

0 = r (4.9) 

• UAV Model 

For the UAV, the model complexity is reduced further by simplifying the force Y and 

the moment N. Equations (4.7) —(4.9) now become (refer to [9] for all the relevant 

details): 

(4.10) 

(4.11) 

il} = r (4.12) 

V = 

r = 

— UQT '-V 

m 

-7T + ZT 
Ttlt 
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o 

Figure 4.3: Lateral Rotorcraft UAV Model([9]) 

where kv and kr are slide damping and yaw damping coefficients, respectively, Qm is 

the torque produced by the main rotor, lt is the distance from the center of gravity 

to the hub of the tail rotor and Tt = kt5ped is the tail rotor thrust with k.t and Sped 

being the tail blade constant and the tail rotor pedal control input, respectively. To 

meet the control objective, the velocity equation on yb is included as 

y = u0 sin('0 + j3) + v cos(ip + 0) (4.13) 

where j3 is the sideslip angle. Combining (4.10)—(4.13) gives the lateral rotorcraft 

UAV model written in the form of (2.1) as 

0 

0 

0 

0 

1 

kr 
Izz 

- M O 

0 

0 0 

0 0 

0 

0 0 

If, 

r 

V 

y 

+ 

0 

Qm 
Izz 

0 

_/0M_ 

+ 

0 

kth 
Izz 

0 

0 

u (4.14) 
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f(ip, v) = uo sin(^ + P)+v cos(^ + 0) 

v 
P = arctan 

UQ 

(4.15) 

(4.16) 

MAV Model 

The Micro Mosquito MAV (as seen in Figure 4.4) has a pair of counter-rotating main 

rotors that controls hovering and turning of the helicopter. The tail rotor controls the 

pitch of the helicopter and hence the forward (and reverse) motions. This is different 

O 

Figure 4.4: Lateral Rotorcraft MAV Model. 

from the UAV in that the tail rotor was used to control the hovering and turning. 

Furthermore, there is no vertical fin and therefore, the total yawing moment, N, is 

produced by the main and tail rotors. For the purpose of this thesis, the pitch angle 

of the MAV helicopter is assumed to be small. The model can then be approximated 
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by (4.17)-(4.19) 

0 1 0 0 

0 0 0 0 

0 -no - £ 0 

0 0 0 0 

v> 
r 

V 

y_ 

+ 

0 

Qt 
Izz 

0 

/OM 

+ 

0 

i 
lzz 

0 

0 

WtUdi ff 
(4.17) 

f{ip, v) = M0 sin(V' + P) +v cos(V> + /?) 

P — arctan 
UQ 

(4.18) 

(4.19) 

where Qt is the torque produced by the tail rotor and Qmdiff — km8m is the differential 

main rotor torque with the main rotor torque constant km and the differential main 

rotor control input Sm. 

The next section will focus on linearising systems (4.14) and (4.17) about the 

r i r 

equilibrium condition xo = \ip0 ro VQ yo • 

Linearised Lateral Model 

A linear system of differential equations can be described in state space form by the 

following expression: 

x = Ax + Bu (4.20) 

where x € Kn is the state vector, u G M.m is the control input, A and B are matrices 

€ E n x " and R n x m respectively. To obtain the A and B matrices, the nonlinear 

system (4.20) is linearised about the operating condition XQ. The Jacobian matrix, 

J, is a matrix whose elements are all first-order partial derivatives (evaluated at the 

equilibrium point) of a multivariate3 function. Suppose that there are n multivariate 

functions (yi...yn) which are functions of m variables (xi...xm). The corresponding 

involves more than one variable 
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n x m Jacobian matrix can be written as 

J = 

dyi 
dxi 

dyn 
dxi 

dy\ 
dxm 

dxm 

(4.21) 

. To obtain the A matrix, a For the case of the rotorcraft, XQ = L;0 ro Vo y0 

4 x 4 Jacobian matrix must be determined because there are 4 multivariate functions 

(one for each state equation) that involves 4 variables (one for each state variable). 

However, the only nonlinear multivariate function is f(ip, v) while all other elements 

are linear. Therefore, only the variables involved in f(tp, v) are taken into account. 

Moreover, the B matrix is constant and the Jacobian procedure does not need to 

be applied. The linearised system of (4.14) can now be represented by the following 

expression: 

r^» o i 0 

0 

0 

Oy 

hz 

- M O 

0 
xo 

0 

0 

Kv 

m 

0y\ 
dv \xo 

0 

0 

0 

0 

tp 

r 

V 

V 

+ 

0 

ktlt 
lzz 

0 

0 

u (4.22) 

The only difference between the linearised system of (4.17) and (4.22) is that 

the elements in the second row are all zero. The next, section will review the control 

design methodology proposed in [21, 28]. 

4.3.2 Piecewise Affine Controller Design 

This section will focus on the development of a PWA controller to stabilise the ro­

torcraft models (4.14) and (4.17) that were previously derived. In order to meet the 

control objective, a globally quadratic control Lyapunov function will be searched for. 

Next, the set of constraints imposed on the controller design is presented. Finally, 

the control synthesis problem is formulated and solved. This section is a review of 

the work in [21, 28]. 
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Controller Design Methodology 

The objective is to design a PWA controller to enable the rotorcraft to follow the 

straight line y = 0. In order to do this, the system's equilibrium point xci = 

0 0 0 0 will be stabilised using the state feedback control law (3.11). Sub­

stituting (3.11) into (2.2) leads to 

x = (Ai + BiKi)x (4.23) 

where Ai 
Ai di 

0 0 
and Bj 

Bi 

0 
To design the controller, a Lyapunov based 

method is used. The candidate Lyapunov function to be searched for will be globally 

quadratic defined by 

V{x) = xTPx (4.24) 

where P = 
-Pxr 

-1%PT 

and P = PT > 0. The following constraints are 

imposed in order to design the stabilising controller [21, 28]: 

1. Positive definitiveness of the candidate Lyapunov function: The can­

didate Lyapunov function is positive definite if 

V(x) > 0. for x ^ xd 

To satisfy the inequality, P must be positive definite. Therefore, 

P > 0 

(4.25) 

(4.26) 

2. Decay of t h e candidate Lyapunov function over time: The candidate 

Lyapunov function is decreasing with time if 

V(x) < -aV{x) (4.27) 
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where a > 0 is the decay rate of the Lyapunov function. Sufficient conditions for 

satisfying inequality (4.27) for each region TZt can be shown using the polytopic 

description of the cells (2.3) and the 5-procedure [83] to determine the existence 

of matrices A; with nonnegative entries that satisfies 

P (At + BiKi) + (Ai + BiKifP + aP + 21^% < 0 (4.28) 

3. Continuity of the control input: Recall from Section 3.2.1 that the SLP 

approximation can be discontinuous. Therefore, to ensure that the control 

input is continuous across.region boundaries, we need to have Ui(x) = Uj(x) for 

i £ ^ n IZj or in other words 

Kii = Kfx for x = FijS (4.29) 

Therefore, the constraint to satisfy the continuity of the control signal is 

(Kt - K^Fij = 0, for j = Ni (4.30) 

The PWA controller design used in this thesis consists of the following steps [5]: 

1. Linear controller design: The first step consists of designing a local linear 

controller for region 7^. containing the equilibrium point i* to meet a stability 

or performance requirement. To proceed, consider the dynamics of the system 

within this region to be given by 

x = Ai*x + aj* + B{.u, for x € 7<V (4-31) 

Next we assume that there exists a vector m*. such that 

Ai.xd + ar +Bi.mr = 0 (4.32) 

With the control input given to be 

v. = Ki-x + m.j* (4.33) 
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Hence, the closed loop dynamics are obtained by substituting (4.33) into (4.31). 

x = (Ai* + Bi.Ki*)x (4.34) 

The feedback matrix K^ can now be designed using linear control methodolo­

gies. In this thesis, a LQR controller controller is designed for the UAV and the 

MAV using the following weighting parameters 

QUAY — 

50 0 0 0 

0 500 0 0 

0 0 500 0 

0 0 0 50 

(4.35) 

RVAV — 0.5 (4.36) 

Q MAV 

0.91 0 0 0 

0 0 0 0 

0 0 2421 0 

0 0 0 0.04 

(4.37) 

R MAV (4.38) 

2. P W A Problem formulation: Given xcl, a, and fixing K{* and m^, the 

problem can be formulated as follows 

Find P 

s.t. (4.26), (4.28): (4.30) 

p = PT > o: At y 0, (4.39) 

fori el = {I,..., A/} 
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where Kum is a limit imposed on the controller gains and -< and >- are component­

wise inequalities. 

The set of constraints (4.39) in the synthesis problem contains a set of Bilinear Matrix 

Inequalities (BMIs), which are nonconvex and difficult to solve. To solve the current 

synthesis problem, a general purpose, non-commercial software called PENBMI [84] 

is used in conjunction with YALMIP [85]. 

If a solution exists to problem (4.39), the following results can be established to prove 

stability of the closed-loop system [5]. 

Theorem 4.3.1 Assume that the Lyapunov function is defined in X C Rn. If there 

exists a feasible solution to problem (4-39). then the PWA approximate closed-loop 

system is locally exponentially stable inside any subset of the largest level set of the 

control Lyapunov function (4-%4) that is contained in X. 

Proof: The reader is referred to [5] for details. 

Furthermore, if the approximation error between the PWA closed-loop system and the 

original closed-loop system is small enough, then it follows that the original closed-

loop system is locally exponentially stable inside any subset of the largest level set of 

the control Lyapunov function (4.24) that is contained in X [5]. The resulting PWA 

feedback control law for the UAV is presented in the Appendix at the end of this 

Chapter and the global control Lyapunov functions proving stability of the closed-

loop UAV and MAV systems are shown in Figures 4.5 and 4.6. It should be noted 

that the PWA feedback control law for the UAV using the SLP method required 20 

seconds to compute compared to an hour of computation time in [23] for the UG 

method. 
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Figure 4.5: Control Lyapunov Function for the UAV. 
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Figure 4.6: Control Lyapunov Function for the MAV. 
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4.3.3 Results 

This section will present the PWA approximation and simulation results for case 

studies 2 and 3. First, the simplified 3 DOF rotorcraft model (4.14) developed in 

Section 4.3.1 will be validated through simulation against the software in [9]. In 

case study 2, the SLP and UG approximation results are revisited from Section 3.2.1. 

Subsequently, the closed-loop simulation results for case study 2 validate the feedback 

controller laws designed using the methodology reviewed in Section 4.3.2. In the third 

case study, a SLP PWA approximation for the MAV model (4.17) is obtained and 

compared to a UG approximation. Finally, a PWA controller is designed for the MAV 

to follow a desired trajectory. 

Software Validation 

This section presents the software validation of the open-loop system (4.14) by com­

paring with simulation results from [9]. The validation will be performed for three.; 

different cases. For the first case, the helicopter will be initially be flying at its equilib­

rium condition with no control input applied. The second case will verify the response 

of the rotorcraft subject to an initial flight condition other than the equilibrium con­

dition without any control input. Finally, the third ,case will use the same initial 

conditions as the first case but with a doublet4 control input. The model parameters 

used for the simulations are tabulated in 4.1 and the initial conditions used for the 

three cases are as follows: 

Case One: x0 = 

Case Two: x0 = 

T 
0 0 0 o' 

f 0 0 5 

and control input u = 0. 
T 

and control input u — 0. 

Case Three: xo = 0 0 0 0 a n d a doublet control input of amplitude 50. Fig­

ures 4.7, 4.8 and 4.9 compare the dynamical responses of the nonlinear open-loop 

system (4.14) and the one found in [9]. In each of the cases, it can clearly be seen 

4 A doublet is characterised by the input being a one period sinusoid. 
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that each responses is identical, thus validating the software. 

Table 4.1: UAV Helicopter Simulation Parameters 

Parameter 

hz 
m 

h 
kt 
Kf 

Kv 

*°im 

U0 

Value 
0.01 

1 
0.5 

0.01 
0.1 
1 
1 

0.7 

Unit 
kg — rri1 

kg 
m 
— 
— 
— 

N -m 
m/s 

_ 1 I 1 1 u : i i i i i i i 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
(!me[sj 

Figure 4.7: Time histories of case one. 
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Figure 4.9: Time histories of case three. 
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Case Study 2: 3 DOF Rotorcraft UAV 

Recall that in Chapter 3, a SLP and a UG approximation was obtained for the UAV 

model (4.14) that was derived earlier in Section 4.3.1 (the full PWA model of the 

UAV can be found in the Appendix at the end of this chapter). Both approximation 

methods were then compared and it was shown that the SLP approximation required 

significantly less regions than the UG approximation. In this section, the developed 
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—^ 

switching signal PWA Controller 

Figure 4.10: UAV Simulink Model Layout 

SLP PWA controller is applied directly to (4.14) as seen in the Simulink block diagram 

shown in Figure 4.10. Figure 4.11 shows the time histories for the nonlinear closed 

loop models obtained with the proposed methodology in this thesis and from previous 

work [23]. It can easily be seen that both PWA controllers are able to stabilise the 

nonlinear system. However, as mentioned previously in Section 3.2.1, less regions 

imply less controllers. In this case, the SLP PWA controller consists of thirteen 

controllers as opposed to thirty controllers in [23]. The x — y trajectory of the closed 

loop system shown in Figure 4.12 confirms that the rotorcraft meets the control 

objective by following the straight line y = 0. Given a different set of other initial 

conditions, Figure 4.13 shows that the PWA controller is still able to stabilise the 

nonlinear system. However, if one were to apply the linear controller designed 

for the region containing the equilibrium point to the nonlinear system, the control 

objective is no longer achieved. Figures 4.15 and 4.16 show that the nonlinear system 

in feedback with the linear controller is not stabilised unlike with the PWA controller. 
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Figure 4.11: Time histories of the SLP and UG based nonlinear closed-loop systems 
with initial conditions ipo = | , yo = 5. 
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Figure 4.13: Closed-loop system trajectories with different initial conditions. 
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Case Study 3: Rotorcraft MAV 

In the third case study, the simplified lateral model derived for the Micro Mosquito 

MAV in Section 4.3.1 will be approximated with the SLP and UG approximation 

methods. Subsequently, a PWA controller is designed to make the MAV follow the 

straight line y = 0 at a constant forward speed UQ. TO proceed, the nonlinear func­

tion f(ip, v) is evaluated with a desired error requirement of 0.012 and the physical 

parameters used both in the approximation and simulation are shown in Table 4.25. 

The resulting SLP PWA approximation can be seen in Figure 4.17 and Table 4.3 

Table 4.2: Physical parameters used to approximate f(ip, v) for the Micro Mosquito 

Parameter 
UQ 

*l> 
V 

m 

Izz 
k 

Kv 

Qt 

Value/Range 
0.0508 

i r < ^ < f 
-0.02 < v < 0.02 

0.025 
0.001 
0.01 
0.1 
0.05 

Unit 
m/s 
rad 
m/s 
kg 

kg — m2 

— 

— 

N -m 

Table 4.3: Approximation Results 

^des 

0.012 

SLP Approximation 

^•raax 

0.01 
Number of Regions 

15 

Uniform Grid Approximation 

&max 

0.01 
Number of Regions 

32 

compares the results between the SLP and UG methods using the algorithm in Sec­

tion 3.2. The main result is that the SLP approximation requires 53 percent less 

regions than the UG approximation for edes = 0.012. A SLP PWA controller is then 

designed for the rotorcraft to follow the straight line y = 0 using the methodology in 

5The maximum forward velocity for the MAV is 0.1016 m/s [86] and the maximum slideslip 
velocity, v. is assumed to be 20% of this value. 
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Section 4.3.2. Given a large set of initial conditions far from the origin, Figure 4.18 

shows that the SLP PWA controller is able to stabilise the nonlinear system (4.17). 

However, if one were to apply a linear controller, the control objective is no longer 

achieved. Figure 4.19 shows that the nonlinear system in feedback with the linear 

controller is not stabilised unlike with the PWA controller. 
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Figure 4.19: x-y trajectory of the closed-loop system with a linear controller for initial 

conditions ipo = f, Vo = 1-

4.4 Summary 

In summary, this chapter presents the application of the SLP approximation method­

ology developed in Chapter 3 to three case studies. The first case study deals with 

a mass-spring-damper mechanical system with a nonlinear spring and damper. The 

SLP approximation is obtained and validated against the nonlinear model and a UG 
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approximation through open loop simulations. The SLP approximation is shown to 

follow the nonlinear model more accurately than the UG approximation at the ex­

pense of approximating a nonlinearity to make its curvature continuous. The second 

case study involved a 3 DOF UAV model that was derived in Section 4.3.1. The 

PWA controller obtained using the methodology reviewed in Section 4.3.2 is shown 

to stabilise the nonlinear helicopter model in simulation for a large number of initial 

conditions far away from the equilibrium point. Furthermore, a linear controller in 

feedback connection with the nonlinear model is unable to stabilise the origin.. The 

final case study is the simplified lateral model of a Micro Mosquito rotorcraft MAV, 

which was also derived in Section 4.3.1. Similarly to the UAV, a PWA controller is 

designed so that the MAV can follow the straight line y = 0. The PWA controller is 

shown to stabilise the nonlinear MAV model for a large number of initial conditions 

far from the origin. A linear controller is, however, unable to stabilise the original 

nonlinear system. 
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4.5 Appendix 

UAV P W A Model and P W A Controller 
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Chapter 5 

Conclusion 

This chapter summarises the main conclusions that can be drawn from this work 

based on the contributions of the thesis that are stated in Chapter 1. Subsequently, 

potential future work is proposed that can extend the present research. The focus of 

this thesis has been to develop a new methodology for obtaining PWA models using 

a SLP. The main conclusions are stated in the following: 

« To develop a new approximation method to obtain PWA models using a SLP 

and Voronoi partitions. 

Chapter 2 proposed a new approximation method using a SLP. In this method, 

the approximation of a smooth curve is obtained by using its curvature as a 

measure for selecting linearisation points. Subsequently, the proposed approxi­

mation method is extended to smooth surfaces in Chapter 3, where the domain 

of the surface is partitioned with a Voronoi partition and each Voronoi gener­

ator is chosen to be a linearisation point. A useful extension to the proposed 

approximation algorithm is to accommodate more precision at certain regions 

of interest (e.g. for stability purposes). Another interesting extension would be 

to change the error function to be related to the open loop trajectories of the 

nonlinear system instead of the approximation error. 
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Conclusions 

— The SLP method requires that the smooth nonlinear curve or surface has 

a continuous second derivative. 

— The SLP method has the potential for generating a discontinuous PWA 

approximation while the UG method is continuous. 

• To successfully apply the SLP approximation method to case studies and to 

compare it to the UG approximation method in the literature. 

In Chapter 4, the SLP approximation method is successfully applied to three 

case studies. The first case study is a mechanical system with a nonlinear spring 

and damper. The SLP PWA system is able to follow the open loop response of 

the nonlinear system better in comparison to the UG PWA system. The second 

case involved a 3 DOF UAV model that was derived in Section 4.3.1. The UAV 

model was previously approximated as a PWA system using a SLP and a UG 

in Section 3.2.1 using the comparison algorithm proposed in Section 3.2. The 

result of this comparison is that the SLP PWA model requires a significantly 

less amount of regions than the UG PWA approximation for a given desired 

error requirement. A PWA controller is then designed using the methodology 

reviewed in Section 4.3.2. The PWA controller is found to stabilise the nonlinear 

system in simulation for a large number of initial conditions far away from 

the equilibrium point. Also, a linear controller in feedback connection with 

the nonlinear model is unable to stabilise the origin. The third case applied 

the SLP approximation algorithm to a simplified Micro Mosquito MAV model 

that was derived in Section 4.3.1. The SLP approximation requires 53 percent 

less regions than the UG approximation using the comparison algorithm in 

Section 3.2. A PWA controller is designed with the same control objective 

as the UAV. Simulation results show that the PWA controller stabilises the 
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nonlinear MAV plant, while a linear controller is unable to do so. A useful 

extension to this work would be to extend the SLP approximation method to 

smooth nonlinear functions of more than two variables. 

Conclusions 

- In all surface approximation examples, the SLP method requires signifi­

cantly less regions than the UG method. 

— In case 1, the UG method is able to handle the absolute value function 

while the SLP method required the function to be approximated. 

Based on previous observations, potential future work that can be done to 

improve and continue this research includes: 

1. To formulate an optimal approach to selecting the approximation points. 

2. To guarantee the continuity of the approximation. 

3. To accommodate more precision at certain regions of interest. 

4. To change the error function to be related to the open loop trajectories of the 

nonlinear system instead of the maximum approximation error. 

5. To extend the SLP approximation method to include smooth nonlinear functions 

of more than two variables. 

Approximating nonlinear systems with smooth vector fields using a set of lin­

earisation points thus seems to be a very rich field of study. 
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