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Abstract 

Soft Sensor Development Using Artificial Intelligence and Statistical 

Multivariate Methods 

Radu Platon 

The lack of real-time measurement of certain critical product and process characteristics 

is a major problem in the manufacturing industry, and it can lead to an out of 

specification production. A soft sensor is a predictive model that uses readily available 

process measurements to infer variables that are impossible or difficult to obtain in real-

time. 

In this work, historical process data related to the black liquor recovery circuit from a 

Canadian kraft pulp and paper mill is used to develop soft sensor models for the black 

liquor solid content at the concentrator feed. Prior to modeling, irrelevant variables and 

observations not representative of a normal operating regime are eliminated from the 

dataset. For practical reasons related to modeling restrictions and soft sensor industrial 

implementation, is proposed that a limited number of variables be used as model inputs. 

Two Partial Least Squares-based selection criteria are used to select the most relevant 

predictors. Two different sets of ten variables are obtained and used to develop Sugeno-

type fuzzy logic, neural network and Partial Least Regression models. Their predictive 

performance is compared in order to determine the best model configuration and input 

selection method. 
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Currently, the black liquor solid content at the concentrator feed is measured once every 

eight hours, by performing a laboratory analysis. The proposed soft sensor model can be 

used to provide a real-time value of the solid content, allowing operators to monitor the 

process and act timely if corrective actions are required. 
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1 INTRODUCTION 

1.1 Background 

A soft sensor is a predictive model that uses readily available process measurements in 

order to infer process state and product quality variables that are impossible or difficult to 

obtain in real-time. The inferential algorithm is developed using historical process data 

and it identifies an accurate relationship between the variable to be predicted - typically a 

critical variable not measured on-line - and other process variables measured on-line. 

In this study, the development of a soft sensor for the pulp and paper manufacturing 

process is presented. The model is developed using actual industrial data from a Canadian 

pulp and paper mill, and it predicts the value of the black liquor solid content, a critical 

variable of the chemical pulping process. A detailed description of this process is 

presented below. 

1.2 Soft sensors in the manufacturing industry 

The lack of real-time measurement of certain critical product and process characteristics 

is a major problem in the manufacturing industry, and it can lead to an out of 

specification production. 

In some cases, product quality variables and other key indicators of process performance 

can only be measured through off-line sample analyses, thus introducing discontinuity 

and significant delays in obtaining information relevant to process behaviour. In some 

cases, the available measuring devices are not as accurate as the laboratory analysis. For 
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some applications where accurate measuring instruments are available, financial 

considerations such as the costs associated with purchasing, installing and maintaining 

the instrument, as well as process-related issues, such as performance degradation and 

rigorous maintenance protocols due to harsh operating environments might prevent the 

implementation or practical use of these hardware instruments. 

Not having access to real-time measurements of key process performance indicators can 

lead to potential operability problems, such as reduced efficiency of control policies and 

late detection of abnormal process behaviour. Additional expenses, such as labour and 

material cost, occur if the product has to be reprocessed due to an out of specification 

quality. This also increases the energy consumption of the process and its environmental 

impact, since more waste is produced and it will have to be disposed. 

Soft sensor technology provides an accurate real-time estimate of the values of critical 

process variables not measured on-line, allowing operators to supervise in real-time the 

process behaviour, timely detect deviations from the normal operating range and take 

early corrective actions in order to avoid production not meeting the required 

specifications. In addition to process variable real-time estimation, soft sensors offer a 

number of other advantages over conventional measuring devices: they represent a low-

cost alternative to expensive measuring instruments; they can work in parallel with other 

measuring devices, thus allowing the implementation of more comprehensive process 

monitoring systems; the soft sensor model can be implemented on existing hardware and 

retuned when the process operation conditions change. Soft sensors also play a 

significant role in more complex systems used for process optimization. In such systems, 

the soft sensor represents an individual component whose output is used as an input to 
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another component of the system. For example, it can be used to provide the value of the 

variable used in the control feedback loop. It can be used to detect a process disturbance 

that will be analysed by a fault detection and diagnosis system. It can also be used to 

detect measuring instrument faults: the soft sensor infers the value of a process variable, 

and this value is compared with the actual value recorded by the measuring device. A 

large difference between these two values can indicate deterioration in the instrument's 

measuring accuracy, and its potential malfunction [1]. 

Soft sensors represent a valuable tool for industrial users to monitor the operation of their 

processes in order to increase their productivity, energy efficiency and profitability. They 

can be used to solve a number of problems such as real-time variable estimation, process 

monitoring, on-line prediction for plant control, sensor validation and improvement of 

fault detection and diagnosis strategies. 

1.3 Soft sensor modeling techniques 

There are three main approaches for building the predictive models used as soft sensors: 

first principles (physical) modeling, statistical modeling and artificial intelligence 

modeling. Statistical and artificial intelligence methods are data-driven, since they use 

historical data in order to build the model. Estimates of a process variable's values are 

obtained on the basis of their correlation with other variables, as identified in the 

historical process dataset. From an industrial application perspective, this is a useful 

approach, since very often obtaining an accurate physical model of the plant can be 

difficult [1], 
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1.3.1 First principles models 

First principles models are based on the physics of the process, such as mathematical and 

qualitative relationships between process variables. They can be very robust, but difficult 

to obtain since they require an accurate physical model of the process, which is often a 

very complicated task due to the complexity of the process dynamics. 

1.3.2 Statistical based models 

Statistical models use regression methods. Multivariate data analyses techniques, such as 

Principal Component Analysis (PCA) and Projection to Latent Structures by means of 

Partial Least Squares (PLS), identify correlations between variables and transform a 

number of possibly correlated variables into a smaller number of uncorrelated variables 

called principal components. These principal components are linear combinations of the 

original variables, and they account for most of the variation in the original variables, 

summarizing the data with little information loss [2], 

1.3.3 Artificial intelligence methods 

Artificial intelligence models are typically based on neural network or fuzzy logic 

techniques. Hybrid systems, containing a combination of these two methods, are also 

common. Both these techniques try to mimic human reasoning. Fuzzy logic uses 

gradients of true and false in order to produce an approach that recognizes more than 

simple true and false values; it is used to generate rules of association that can be either 

linguistic or numerical, in order to describe the relationship between the input and output 

of a system. Artificial neural network (ANN) models also describe the relationship 

between the input and output of a system. They represent information processing 
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structures consisting of a number of input and output units connected in a systematic 

fashion. A neural network model learns to identify patterns in the data set and predict or 

classify variables. 

1.4 Description of the kraft pulping process 

Pulp and paper mills use wood chips as the raw material for producing the pulp that will 

be processed into paper. Inside the wood, the fibers used for papermaking are bound 

together by an organic polymer called lignin. Lignin is a natural component of plants, 

together with cellulose and hemicellulose, but it is undesirable in paper, leading to 

yellowing and rapid degradation. The objective of pulping is to dissolve away the lignin 

and leave most of the cellulose and hemicellulose in the form of intact fibers. The kraft 

pulping process is a method for chemically dissolving the lignin by treating wood chips at 

elevated temperature and pressure with an aqueous solution of sodium hydroxide (NaOH) 

and sodium sulphide (Na2S), known as "white liquor". 

Woodchips are fed into large vessels called digesters, and then impregnated with the 

white liquor. At high pressure and temperature, delignification is achieved after a few 

hours. This process is also known as "digesting" or "cooking". The next step involves 

separating the cooking liquor from the pulp. The wood pulp containing the papermaking 

fibers proceeds through various stages of washing, and possibly bleaching, after which is 

pressed and dried into the finished paper product. The mixture of white liquor and 

organics, containing the used process chemicals and organic materials (mainly the 

dissolved lignin) is known as "black liquor". The solid content of the black liquor 

typically ranges from 13% to 20%, and after leaving the digester is concentrated to about 
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65% solids through several stages of evaporation before being burned in the recovery 

boiler. Combustion of the organics dissolved in the black liquor provides heat for 

generating steam that can be used in a turbine to produce electricity, or in different stages 

of the process. Inorganic chemicals present in the black liquor collect as a molten smelt at 

the bottom of the furnace. The smelt is dissolved into water, and then transferred to a 

causticizing tank where quicklime (calcium oxide) is added to convert the solution back 

to white liquor for return to the digester system. A lime mud precipitates from the 

causticizing tank, after which it is calcined in a lime kiln to regenerate quicklime. 

In kraft pulping, the process of recovering the inorganic cooking materials from the black 

liquor, and their regeneration into fresh pulping chemicals, as well the production of 

energy via burning of the organic materials is known as the chemical recovery process. A 

simplified diagram of the paper making process involving kraft pulping is shown in 

Figure 1-1. The white and black liquor circuits are denoted by the WL and BL 

abbreviations, respectively. 
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Figure 1-1 Simplified diagram of the kraft pulp and paper making process 

1.5 Plant description 

This study presents the development of a soft sensor for the chemical recovery process of 

a Canadian kraft mill. The mill daily production rate is over 1,000 tons. The production 

lines include both continuous and batch digesters, washing and bleaching lines and two 

paper machines. The steam network includes three recovery furnaces that provide over 

50% of the steam mill production, and two boilers supplying the remaining steam 

requirements. The black liquor recovery circuit is composed of two six-effect evaporators 

and two concentrators. A diagram of a six-effect evaporator is shown in Figure 1-2: the 

black liquor is fed at the inlet of effect 6, and it is evaporated in the following effects; the 

concentrated black liquor exits the evaporator at effect 1. 
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Figure 1-2 Simplified diagram of a multiple-effect evaporator 

After leaving the digesters, the black liquor has a concentration lower than 15% solid 

content. Water from the black liquor is removed using two lines of multiple-effect 

evaporators operating in parallel. This operation increases the solid content to 

approximately 50%. The black liquor exiting the evaporators is collected in storage tanks 

and its solid content is increased to about 65%, by further evaporating water in two 

concentrators operating in series. Figure 1-3 shows a schematic of the plant's black liquor 

concentration process. 
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Figure 1-3 Schematic of the plant black liquor concentration process 

Sodium carbonate and sodium sulfate salts (Na2CC>3, Na2S04) are the major inorganic 

compounds in black liquor, and they represent a significant cause of scaling in black 

liquor evaporators and concentrators. In the case of concentrators, if the solid content is 

below a critical threshold, the sodium salts crystallise on heat transfer surfaces, leading to 

a loss in concentrator efficiency. A solid content above the critical thresholds ensures that 

enough solids are present to act as seed crystals to promote additional salt precipitation in 

the black liquor solution rather than deposition on heat transfer surfaces. A common 

method used for minimizing this scale deposition is to increase the solid content at the 

concentrator inlet by recirculation of concentrated black liquor. 
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1.6 Problem definition and motivation 

At the plant, salt deposits on the concentrator heat exchange areas occur when the solid 

content drops below 49%. The black liquor solid concentration at the concentrator feed is 

not measured in real-time. It is measured once per work shift (eight hours), by manually 

sampling the black liquor and performing a chemical analysis using the beaume degree 

technique. This method relates the black liquor density to its solid content. The lack of 

real-time measurement of the black liquor solid content at the concentrator inlet delays 

the application of corrective actions required to avoid scaling, and a decrease in 

concentrator efficiency. Hardware devices that provide a real-time measure of the solid 

content exist, but they require a strict maintenance schedule that is not always respected. 

Also, the cost associated with their purchase and maintenance could prevent their 

implementation. At the plant, no measuring instrument is used to provide a real-time 

value of the black solid content at the concentrator feed. The appropriate corrective 

actions required in order to increase the solid content are well known at the mill, but their 

timely application is prevented by the lack of solid content real-time measurement. 

Considering this major shortcoming, the objective is to develop a soft sensor model that 

infers, in real-time, the solid content of the black liquor at the concentrator inlet by using 

real-time measurements of other process variables. This soft sensor provides an accurate 

real-time estimation of the solid content, allowing operators to monitor the solid content 

value and respond as soon as it drops below the critical threshold. This prevents an 

increased steam consumption caused by concentrator scaling and improves the 

productivity of black liquor circuit, since the frequency of shutdowns for cleaning 

purposes is reduced. 
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1.7 Proposed methodology 

Soft sensor models are developed in order to infer the value of the black liquor solid 

content at the concentrator inlet. Given the complexity of the plant constraints and 

dynamics, building an accurate physical model of the black liquor recovery circuit is a 

difficult and time-consuming task. Therefore, only multivariate statistical and artificial 

intelligence methods are used. Measurements related to the black liquor chemical 

recovery circuit are collected from the mill: the historical process dataset contains hourly 

measurements of 400 variables. A particular attention is paid to the data pre-processing 

step, since the presence of invalid data can result in the development of inaccurate 

models. Given the practical considerations related to a soft sensor industrial application, 

as well as the limitations imposed by managing a model with a very large number of 

inputs, it is proposed that a reduced number of variables be used as inputs to the 

predictive model. A predictor set of 10 variables is used to develop the models. These 

input variables have to be carefully selected, as they could have a significant impact on 

the model's performance. A Partial Least Squares (PLS) analysis is performed on the 

dataset containing all 400 variables, and two different criteria are used to obtain two 

different sets of input variables. Models are developed using each dataset, and a 

comparison of each model's predictive performance is carried out in order to determine 

the best model configuration and input selection criterion. 

The objective of this study is three-fold: 

> to determine if 10 input variables are sufficient for developing a soft sensor for this 

application 
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> to determine which PLS-based input selection criterion leads to the development of 

the most accurate model 

> to determine which modeling method generates the smallest predictive error 

The following methodology is used: 

> data collection 

> data pre-processing 

> input variable selection 

> development of multivariate statistical models 

> development of Sugeno-type fuzzy logic models 

> development of neural network models 

> development of adaptive neural fuzzy inference models 

> comparison of the models 

> selection of the best input selection method and model configuration 

1.7.1 Number of model inputs 

Since the soft sensor model uses on-line process measurements to infer the desired 

process variable, its performance can be seriously affected by measuring instrument 

performance degradation. This degradation can be caused by harsh operating process 

conditions and lack of proper cleaning and re-calibration, for example. The instruments 
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providing the measurements for the process variables used as inputs to the soft sensor 

model have to follow a rigorous maintenance and re-calibration schedule, to ensure that 

accurate values are used by the inferential algorithm. This represents capital and 

manpower costs to the plant; therefore, given the financial considerations related to a soft 

sensor industrial implementation, it is desirable to use a relatively low number of process 

variables as model inputs. 

The number of inputs can represent a challenge from a modeling perspective, since 

managing a model with a large number of inputs, and therefore a large number of model 

parameters, can become cumbersome and make the model impractical to use. Also, in an 

industrial context, data-driven models have to be re-computed if process changes occur, 

as the training data used originally for developing the model is no longer representative 

of the current operating conditions; using few inputs can reduce the modeling time. 

On the other hand, using a small number of input variables might compromise the soft 

sensor performance. When dealing with large data sets, it is impractical to use all the 

variables as inputs, especially in the context of a soft sensor industrial application; 

therefore, it is important that a trade-off be achieved in terms of the number of inputs and 

the model's predictive accuracy. In this study, a 10-variable input dataset is proposed to 

develop the models, and one of the objectives is to determine if this number of inputs is 

sufficient to attain a proper predictive performance. 
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1.7.2 Input selection 

Selection of input variables is an essential task in ensuring superior performance of the 

predictive model. The PLS method is used to identify, among all 400 variables collected 

from the plant, the 10 most relevant variables to be used as soft sensor inputs. Two 

selection criteria are used: 

> the variable's ability to simultaneously model the input dataset and to predict the 

output 

> the variable's ability to solely predict the output 

Two different input datasets are obtained and predictive models using each dataset are 

developed. The performance of these models is compared in order to determine the input 

selection criteria leading to the best predictive accuracy. 

1.7.3 Model performance criteria 

The model performance is judged on a modeling and validation predictive error basis. 

The validation error is computed on a set of data not used during the modeling process. 

As the model parameters are calculated to specifically fit the modeling data, it is 

important to evaluate the model performance on "unseen" data. An industrial soft sensor 

uses real-time measurements as inputs to the inferential model; since these values are not 

used during modeling, a superior validation performance is critical. Models displaying 

the best modeling and validation error trade-off are considered as most accurate. 
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1.7.4 Data pre-processing 

Irrelevant variables are identified and removed from the dataset, and data filtering 

techniques are used to pre-process each variable in order to identify and eliminate 

measurements related to abnormal variable operation, such as equipment cleaning or 

malfunction, for example. The principal component analysis is used to perform a global 

analysis of the process, in order to detect deviations from the normal operating range. The 

variables and measurements related to these deviations are investigated, and eliminated if 

necessary. 

1.7.5 Process knowledge 

Process knowledge is a major requirement for a successful soft sensor development 

project [3], Process knowledge is critical when deciding if outliers identified in the data 

pre-processing step represent deviations from a normal process operating regime and 

therefore should be eliminated from the modeling dataset. Process knowledge is also 

essential when deciding upon the significance of the variables to be used as predictors. 

The statistical analysis determines the degree of significance of a variable by looking at 

the amount of variability that it contains. Sometimes, the variability might be artificially 

introduced, and is not necessarily representative of a normal process behaviour: frequent 

equipment shutdowns and start-ups, measuring instrument malfunction, frequent 

communication problems between the instrument and data historian and irregular 

updating of manual logs are examples of such occurrences. The statistical analysis might 

determine that these variables have a significant impact on the prediction, but process 

knowledge is required to confirm it, since the variables might be important from a 

statistical point of view, and not necessarily from a process point of view. During this 
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study, close collaboration with plant personnel is maintained in order to ensure that their 

process expertise is properly used to develop the model. 

1.8 Literature survey 

Artificial intelligence and multivariate data modeling techniques have found extensive 

applications in various fields of engineering and industrial applications, such as soft 

sensors, control, process optimization and fault detection and diagnosis. The objective of 

this literature survey is to identify soft sensor industrial applications, as well as the 

modeling methods used. The survey does not include only stand-alone soft sensor 

applications. It is extended to more complex systems in which the soft sensor represents 

one individual component whose output is used as an input by another component, such 

as control loops and fault identification and diagnosis systems. The literature survey is 

not limited only to the pulp and paper industry, it includes different manufacturing 

sectors. Some of the soft sensor applications described in these publications are already 

implemented on-line in industrial installations, and some of them have been successfully 

tested off-line using actual process data. 

Ahvenlampi et al [4] present a combination of a Takagi-Sugeno fuzzy logic system 

identification and a neural network-based model to predict the Kappa number in a pulp 

and paper manufacturing process. The modeling historical data is obtained from an 

industrial continuous wood chip digesters. The model is developed using a combination 

of the Takagi-Sugeno clustering method for system identification and the Kohonen self-

organized map neural network for classification purposes. This model is tested off-line 
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using data from a continuous digester, and proves to be effective for variable monitoring 

and prediction purposes. 

Abonyi et al [5] use a Takagi-Sugeno fuzzy model to control the temperature of a batch 

polystyrene batch reactor. The Controller Output Error Method (COEM) is used for on-

line tuning of a fuzzy controller. The Takagi-Sugeno fuzzy model combined with the 

COEM method out-performs conventional control solutions. 

Bonissone and Goebel [6] use PCA and an adaptive neural fuzzy inference system 

(ANFIS) to build a break tendency indicator that predicts time-to-break margins in paper 

machines. The principal components identified by the PCA are used as inputs to the 

ANFIS model. When tested with actual industrial data, this system generates an accurate 

break tendency indicator with enough lead time to help in the overall control of the paper 

making cycle by minimizing down time and improving productivity. 

Merikoski et al [7] use the ANFIS method to develop a soft sensor for viscosity in the 

rubber mixing process. Since in the rubber mixing process the viscosity cannot be 

measured in real-time, the need for soft sensor development is explained. The predictive 

performance of the proposed model is high enough so the soft sensor can be used in the 

control strategy of the process. 

Wold and Keitaneh-Wold [8] discuss the benefits of applying multivariate data analysis 

techniques in the pulp and paper industry, mainly for process monitoring, fault detection 

and soft sensor applications. The benefits of using these techniques to improve process 

operational stability, decrease variability in product quality, improved efficiency in the 



use of raw materials and obtain superior understanding of the overall process behaviour 

are highlighted. 

Engin et al [9] model a nonlinear coupled-tank liquid-level system using the fuzzy 

Sugeno and ANFIS modeling techniques. An input-output dataset is used to represent the 

changes in the control valve's adjustments for this tank system. This modelling method 

proves to be superior to the conventional mathematical model when used in the control 

strategy of the coupled tank system. 

Macias-Hernandez et al [10] propose a method based on Takagi-Sugeno fuzzy models for 

predicting the properties of the crude oil distillation side streams. Instrument data and 

laboratory analysis from a crude unit operation are used in this study in order to predict 

temperature profiles of the crude oil streams. The performance of this model is superior 

to that of statistical-based models. The soft sensor is implemented on-line at an oil 

refinery in Spain. 

Dayal et al [ 11] investigate the use of PLS and neural networks to build empirical models 

for Kappa number using historical data from a Kamyr wood chip digester. The Kappa 

number is a measure of the pulp quality. The neural network models perform slightly 

better than the PLS models; however, no insight into the process could be obtained from 

the neural network model, while the PLS model can be used to improve process 

understanding. The PLS model identifies variables most responsible for the variation in 

Kappa number, and these variables are used as inputs to the models. 

Aminian and Shahhosseini [12] use a feedforward backpropagation neural network model 

for the prediction of crude oil fouling behaviour in preheat exchangers of crude 
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distillation units. The predictive performance of the NN model proves to be superior to 

that of conventional models used to evaluate fouling. 

Radhakrishnan et al [13] present a neural-network based model to predict the rate of the 

fouling and the decrease in heat transfer efficiency in heat exchangers from the crude oil 

preheat train in a petroleum refinery. A PCA analysis is used to identify and remove 

outliers, as well as to reduce the number of predictors: highly correlated variables are 

identified, and some of these variables are eliminated from the modeling dataset. A 

methodology for developing a preventive maintenance scheduling tool using this soft 

sensor is also proposed. 

Ahmed et al [14] propose an empirical model for the prediction of the melt index during 

grade change operations in a high density polyethylene plant. The model is developed 

using a recursive partial least square scheme combined with model output bias updating. 

In this work two different schemes have been proposed. The prediction accuracy is 

measured using the root mean square error. A procedure for minimizing the number of 

iterations is also presented. 

Qin et al [15] propose a soft sensor to predict boiler emissions that uses a PCA model to 

select and validate the sensor inputs. A neural network and a linear regression model on 

the principal components (PCR) are used for prediction purposes, while PCA is used for 

input selection. 
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Bolf et al [16] present the development of neural network-based soft sensors for quality 

estimation of kerosene, a refinery crude distillation unit side product. Using temperature 

and flow measurements, two neural network models estimate the kerosene distillation end 

point and freezing point. The results show possibilities of applying soft sensors for 

refinery product quality estimation and inferential control as an alternative for laboratory 

analyzers. 

Delgado et al [17] present a novel approach to design soft sensors for industrial 

applications, by identifying second-order Takagi-Sugeno-Kang fuzzy models by means 

of a co-evolutionary genetic algorithm and a neuro-based technique. The input variables 

of the fuzzy model are pre-selected by considering nonlinear relations among the input 

and output variables, and a co-evolutionary methodology is used to identify the fuzzy 

model itself. Membership functions, individual rules, rule-bases and fuzzy inference 

parameters are optimized using a neuro-genetic algorithm. 

Keski-Santti [18] explores the use of neural network-based modeling techniques for the 

production optimization of a kraft bleach plant. The industrial data is collected during 

normal mill operation at a Finish pulp mill. This study highlights the fact that first 

principle modeling is a complicated time-consuming task, which needs very deep 

knowledge of the process and of mathematics. Also, these kinds of models are quite 

restricted in use, impractical, and the updating is almost as laborious as the model-

building process. Neural network models prove to be an efficient optimization method for 

this application. 
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Facco et al [19] propose the development of multivariate statistical soft sensors for the 

online estimation of product quality in an industrial batch polymerization process. It is 

shown that the estimation accuracy can be improved if dynamic information is included 

into the models, either by using lagged variables, or by averaging the observations on a 

moving window of fixed length. 

A government report produced in 1995 [20] assesses the use of artificial intelligence (Al) 

tools in the industry: it identifies where and how Al-based tools may increase 

productivity, quality and energy efficiency in industry. The study also targets the 

application of these methods in five industrial sectors: iron and steel, cement, mining and 

metallurgy, oil and gas, and .pulp and paper. The report contains examples of Al systems 

implemented in the above-mentioned industrial sectors, along with their technical 

description. Process monitoring and diagnosis, online decision support, soft sensors, 

scheduling and planning, fault diagnosis and maintenance, systematic analysis of 

information about equipment failure, and design (generation of alternative designs) are 

identified as promising areas for the application of Al techniques. These techniques are 

shown to represent significant methods in improving the productivity, final product 

quality and energy efficiency of the targeted industrial sectors. Neural networks, expert 

systems and fuzzy logic are the main methods used in the development of the artificial 

intelligence-based tools presented in this study. 

This literary review provides information about soft sensor technology applications in the 

industrial manufacturing sector and development trends. Different approaches for 

building the predictive model are presented: artificial intelligence techniques, statistical 

analysis, or a combination of both. The literature survey shows that the soft sensor 
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development can be improved by using a hybrid configuration containing more than one 

method. The literature survey also shows that PLS, Takagi-Sugeno fuzzy models and 

feedforward backpropagation neural networks are extensively used for soft sensor model 

development. 

The majority of the soft sensor models presented in the reviewed literature use PCA for 

selecting the model inputs: the principal components are identified by the PCA, and used 

as inputs for feedforward backpropagation neural networks or ANFIS models. PCA 

models the global behaviour of the process, and it ranks variables according to the degree 

of which they describe the global variability of the process. PCA does not analyse the 

degree of importance of a set of variables for predicting another variable. The PLS 

method grades variables according to their significance in predicting another variable. 

Since the objective of a soft sensor is to estimate the value of a variable by using other 

available process measurements, it is important to analyse the performance of a 

predictive model developed using inputs selected according to their importance in 

predicting that variable. The selection of predictors according to a criterion determined 

by a PLS analysis is found in one reviewed publication [11]; however, only one input 

selection method is studied. A comparison of the predictive performance of different 

Sugeno-type model configurations - first order, second order, different implication 

functions - was not found in the reviewed literature, and neither was the development of 

Sugeno-type fuzzy models using inputs selected according to criteria determined by a 

PLS analysis. 

In the study presented in this work, an extensive predictive performance comparative 

study of different configurations of Sugeno-type fuzzy, neural networks and PLS models 
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is carried out. Two different PLS-based variable significance criteria are used to identify 

relevant predictors. The models are built using two different input sets, in order to 

determine which input selection method leads to the development of more accurate soft 

sensors. 

1.9 Thesis outline 

Chapters 2, 3, and 4 contain, respectively, a review of the statistical multivariate, Sugeno-

type fuzzy logic, feedforward backpropagation neural network and adaptive neuro-fuzzy 

modeling techniques used in this study. Chapter 5 contains a description of the procedure 

employed for collecting and pre-processing the industrial data used for developing the 

models. The methodology used to select the soft sensor inputs is presented in chapter 6. 

The development of the PLS, fuzzy logic, neural network and ANFIS models is presented 

in chapter 7. Chapter 8 contains a brief analysis of the effects of data scarcity on the 

validation errors of Sugeno fuzzy models. Finally, the summary, conclusions and future 

work are presented in chapter 9. 
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2 MULTIVARIATE DATA ANALYSIS METHODS 

The multivariate data analysis (MVDA) techniques used in this study are the Principal 

Components Analysis (PCA) and Projection to Latent Structures by means of Partial 

Least Regression (PLS). These techniques are called projection methods, since they 

return a compact representation of the original data by projecting it onto lower-

dimensional planes. The coordinates of the points on these planes provide a compressed 

representation of the data [2], 

2.1 Review of the PCA method 

PCA is a multivariate projection method designed to extract and display the systematic 

variation in a data matrix, and it is used in this study to model the process in order to 

identify data representing deviations from the normal process operating range. PCA 

identifies correlations between variables, and expresses the data in such a way as to 

highlight similarities and differences. Once these patterns in the data are identified, the 

variation in the data set is summarized using new variables, called principal components 

(PCs), which are particular linear combinations of the original variables. Each principal 

component approximates a data grouping as well as possible in the least squares sense. 

The components are extracted in decreasing order of importance so that the first PC 

reflects the greatest source of variance in the original data, and each succeeding 

component accounts for as much of the remaining variability as possible. PCA reduces 

the dimensionality of the data set by extracting the smallest number of PCs that account 

for most of the variation in the original multivariate data and summarize the data with 

little loss of information. The principal components are orthogonal to one another. By 
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projecting the observations on the PC lines, coordinate values in the model plane are 

obtained. These values are known as scores, and they summarize the information in the 

original variables that is relevant of the data variation [2]. 

Figure 2-1 illustrates a geometrical representation of a two-principal component model 

for a three-dimensional dataset: the first principal component (PCI) represents the most 

variation in the dataset, while the second component (PC2) explains the remaining 

variation; the scores represent the projection of the original observations on the plane 

formed by the principal components. 

X data dimensions 

PC principal components 

O original observation 

• score 

3s" X2 

Figure 2-1 Geometrical representation of the principal components 
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2.1.1 Mathematical representation of PCA 

The algebraic solution to PCA using the covariance method is presented in this section. 

The first step in computing the PCA model is the scaling and mean-centering of the data. 

Scaling involves equalizing the variance of each variable in order to equalize their 

influence in the data set. Most common technique is the unit variance scaling, where each 

variable has an equal, unit variance. Mean-centering corresponds to a re-positioning of 

the data set coordinate system, such that the data average point is located at the origin; it 

is achieved by calculating and then subtracting from the each data point the average value 

of its corresponding variable. The unit variance scaling and mean-centering are essential 

to improve the interpretability of the model. Figure 2-2 illustrates the effect of unit 

variance and scaling of a set of variables: it is seen that all variables will have the same 

"length" and a common origin [2], 

measured 
values & 

variance 

unit variance t 

scaling ' 
mean-

centering 0 

Figure 2-2 The effect of unit variance scaling and mean-centering 
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Let X be the n x p matrix containing the scaled and mean-centered data. Each column of 

the matrix X represents a variable. The objective is to obtain a vector a, which is a n x 1 

column vector of projection weights (unknown at this point) that result in the largest 

variance when the data X are projected along a. This vector will represent a principal 

component, which explains the variance in the data. 

The projection of any particular data vector is a linear combination that can be expressed 

J=1 

where: 

p = number of columns (variables) in the X data 

Xj = X variable 

A, = vector resulting in the largest variance when Xj is projected along ai 

T a ~ transpose of a 

The variance is a measure of variability, defined as the average of the squared differences 

between the mean and the individual data values: 

as 

P 
(2.1) 

(2.2) 

where: 
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a 2 = variance 

x(i) = individual data values of variable x 

x = mean of variable x 

p = number of x values 

n = number of individual data values 

Let Xa be a column vector containing the projected values onto a of all data vectors in X. 

The variance along a is calculated by the expression 

0 2=(Xf l ) T (X«) (2.3) 

= aTX TXa 

= aTVa , 

where V = covariance matrix of X 

The covariance measures the degree of the linear relationship between variables. A 

positive value indicates positively correlated data, and a negative value denotes 

negatively correlated data. Diagonalizing the covariance matrix ensures that redundancy, 

measured by the absolute magnitude of the covariance, is minimized; it also maximizes 

the signal, measured by the variance. 

The objective is to maximize <5% in order to maximize the variability of the data when 

projected onto the principal components. 
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Let rt'rt = 1 be an optimization constraint. With this normalization constraint, the 

optimization problem can be re-written as maximizing the quantity given the expression 

cl=aJVa-X(aTa-1) (2.4) 

where A, is a Lagrange multiplier. 

Differentiating with respect to a reduces Equation 2.4 to the eigenvalue form of 

( V - U ) < i = 0 (2.5) 

where: 

I = p x p identity matrix 

p = number of columns (variables) in the X data 

The first principal component a is the eigenvector associated with the largest eigenvalue 

of the covariance matrix V, and it has the largest projected variance: it explains most of 

the variability in the X data. The second principal component has a direction orthogonal 

to the first component, and is the eigenvector corresponding to the second largest 

eigenvalue of V, and so on for each subsequent component [21]. 

The eigenvalues indicate the amount of variance explained by each principal component. 

The eigenvectors contain the variable loadings, which indicate the influence of each 

variable in the linear combination forming each principal component. 
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2.1.2 Detection of process deviations 

PCA can be used for detecting process deviations from the normal operating range 

determined by the statistical analysis. The Hotteling's T2 plot summarizes all process 

variables and all model dimensions (the principal components), by calculating the 

distance from model origin for each observation. It is used for detecting process 

deviations, since it provides, on a single plot, a global picture of the process behavior. 

Figure 2-3 shows a Hotteling's T2 plot for a process displaying deviations from the 

normal operating range: the spikes seen on this plot correspond to process data related to 

an operation outside the normal range. 

Figure 2-3 Hotteling's T2 plot 

2.2 Review of the PLS method 

The Projections to Latent Structures by means of Partial Least Squares (PLS) is used to 

build a predictive model for the black liquor concentration. PLS can be considered a 

regression extension of PCA, since it fits two "PCA-like" models at the same time by 
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modeling the input data X and the output data Y, and simultaneously aligning these 

models to represent the association between X and Y. The PLS objectives are to model X 

and Y, and to predict Y from X. In the X space, the components represent lines that 

approximate the data groupings and provide a good correlation with the Y values. As is 

the case for PCA, the components are extracted in decreasing order of importance, so 

each component improves the description of the X data, while providing a good 

correlation with the Y left unexplained by previous components. In a PLS model, there 

are two sets of score vectors, one for X and one for Y. The scores represent the 

projections of the observations on the X and Y component planes, respectively [2], 

2.2.1 Mathematical representation of PLS 

The same pre-processing steps of unit variance scaling and mean-centering described for 

the PCA analysis are required before computing the PLS model. The algebraic solution to 

PLS using the NIPALS (Nonlinear Iterative Partial Least Squares) algorithm is presented 

in this section. 

The models of the X and Y data as represented by the PLS model are given by the 

expression 

X = T P T + E and Y = U Q T + F (2.6) 

where: 

T = matrix containing the scores of the X data 

P = loadings showing the influence of the X variables in the principal components 
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TP t = principal components of the X space 

U = matrix containing the scores of the Y data 

Q = matrix of weights expressing the correlation between Y and T 

UQ t = principal components of the Y space 

E, F = residuals of the X and Y models, respectively 

The columns of the matrix T containing the X scores are updated at each algorithm 

iteration as follows 

where: 

tj = columns of the matrix T containing the X scores 

Xj = X variables 

w = the weights expressing the correlation between X and U 

The relationship between X and Y is given by the expression 

ti = XjWi+i (2.7) 

Yestimated = SUm(tj6j) + H (2.8) 

where: 

Yestimated = predictive output of the PLS model 
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b - regression coefficient used for the Y prediction 

H = model residuals 

The weights w expressing the correlation between X and matrix U containing the scores 

of the Y data are calculated as follows 

Wj = XT Ui / ||XT Ui|| (2.9) 

where ||XT uj|| = norm of XT Uj 

For the first iteration, u; can be chosen as a column of Y. The weights expressing the 

correlation between Y and T is calculated using the X and Y scores, contained in the T 

and U matrix, respectively, by the expression 

qi= UjT tj/ || U j
T till (2.10) 

where: 

q = columns of the matrix Q of weights expressing the correlation between Y and T 

T T 

|| U| t]|| = norm of U] t) 

After the first iteration, the scores of the Y data are calculated using the expression 

Ui = Yqi (2.11) 

where: 

Uj = columns of the Y score matrix U 
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q = columns of the matrix Q of weights expressing the correlation between Y and T 

The regression coefficient b can now be calculated as 

b = u/t, ( t i V (2-12) 

The previous calculations determine the scores and loadings for the first X and Y 

principal components. The residuals for the X and Y models are then calculated: 

Ej = X - tjp;T and Fj = Y - U j q j T (2.13) 

where: 

X = residual of the X model 

Y = residual of the X model 

After each iteration, the entire procedure is repeated by replacing X and Y with their 

residuals until the algorithm converges [22], 

Two different sets of weights are computed by the PLS model. The Y weights, q;, stored 

in the Q matrix indicate how the Y variable is summarized by the score vector U. The W 

matrix contains the X weights Wj, which show the linear combinations forming the score 

vector T. They are optimized so as to maximize the covariance between T and U, thereby 

indirectly T and Y. X variables that are highly correlated to the Y variable have high 

weights Wj. These two sets of weights provide information about the quantitative relation 

between X and Y. 
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2.2.2 PLS regression coefficients 

The PLS models the Y variable using the X variables as follows 

Y = XB + H (2.14) 

where: 

B = matrix with regression coefficients 

H = regression error 

The regression coefficients are calculated using the X weights: 

B = W ( P t W ) ' Q t (2.15) 

where: 

W = matrix contains the X weights Wj 

P = matrix containing the loadings of the X variables in the principal components 

Q = matrix containing the Y weights qj 

The model output is a linear combination of the X variables: 

^ e s t i m a t e d = b , X , + b 2 X 2 + + b n X n + k (2.16) 

where: 

^ e s t i m a t e d = P L S model O u t p u t 
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b = regression coefficient 

X = X variable 

k = numerical constant 

2.2.3 Variable influence on projection (VIP) 

The variable influence on projection (VIP) parameter summarizes the importance of the 

variables both to explain X and predict Y. For a given model, there is only one VIP 

vector summarizing all X and Y components. Each input variable has its own VIP value. 

The VIP value is calculated as the sum of squares of the X weights (wj), multiplied by the 

residual sum of squares of the Y component - this term indicates the amount of Y 

variance explained by the PLS principal components. The sum of squares of all VIP's is 

equal to the number of X variables; hence the average VIP would be equal to 1. X 

variables with VIP values greater than 1 can be considered as most relevant for 

explaining Y [2], 
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3 SUGENO-TYPE FUZZY MODELING 

3.1 Introduction to fuzzy logic theory 

Fuzzy logic modeling proved to be a powerful tool for handling imprecision and 

vagueness. Traditional binary logic allows only two truth values, 0 or 1, while fuzzy logic 

allows any intermediate values between 0 and 1 to be directly represented. Fuzzy logic 

was introduced by Dr. Lotfi Zadeh in 1965, as an extension from the characteristic 

function of binary logic to multivalued membership functions [23]. The underlying 

concept in the development of this new theory was that meaning in natural language is a 

matter of degree. For example, consider the statement "The water is hot". In classical 

logic, this proposition can be represented only as true or false, or 1 or 0, respectively; 

also, the term "hot" has to be defined in precise numbers. In reality, the understanding of 

the term "hot" is subjective and varies with context. This suggests that if the value of 

water temperature is given, then its degree of compatibility with the term "hot" should be 

a matter of degree between false and true, or 0 and 1, respectively. Fuzzy set theory 

allows for the term "hot" to be defined mathematically, create a "hot water" fuzzy set, 

and evaluate to what degree a given temperature belongs to this set. 

3.2 Fuzzy sets 

Let X be the universal set. A fuzzy set A of the universal set X is a function |Ia ~> [0-1], 

where jj.a represents the membership function that assigns a membership value between 0 

and 1 to elements x from the universal set X in the fuzzy set A. For example, a function 

determining the membership value to the fuzzy set "hot water " used previously can be 
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defined using mathematical terms that assign a degree of membership of a given 

temperature to this fuzzy set. 

Figure 3-1 illustrates the membership function for the "The water is hot" statement, as 

well as the equations calculating the membership of given temperature to the "hot water " 

fuzzy set: "hot water " is defined on the interval [40 90]°C, and temperatures lower than 

40°C are not compatible with the statement "The water is hot" - they do not belong to the 

"hot water " fuzzy set - while temperatures greater than 90°C have a membership value 

of 1. The memberships of temperatures with any other values are calculated according to 

the specified formula; for example, a temperature of 70°C has a membership value of 0.6 

to this fuzzy set. The term | i (x)hot wa te r represents the membership value of a given 

temperature x to the "hot water " fuzzy set. 

1 i f x > 100 UC 

| i ( x ) hot wa te r fx - 40V50 
0 

if 40 < x < 100 

if x < 40 °C 

(3.1) 

Figure 3-1 Membership function of the « hot water » fuzzy set 
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In contrast with a fuzzy set, a conventional set based on classical logic would have 

allowed only two membership values: 0, or false, for temperatures equal or below 40°C, 

and 1, or true, for temperatures equal or greater than 90°C. A fuzzy set admits the 

possibility of partial membership, and the membership function associated with a given 

fuzzy set maps an input to its appropriate membership value. 

3.3 Subjective and objective fuzzy knowledge - based models 

Fuzzy knowledge-based modeling can be particularly useful when the relations between 

the inputs and outputs of a system are not exactly known, or there is no analytical model 

for these relations. In these cases, the only basis for modeling is expert knowledge, which 

is often uncertain and imprecise. Such knowledge can be represented by a set of fuzzy 

rules which describe the relations between the inputs and outputs of a model. 

Fuzzy knowledge-based models can be divided into two groups: subjective and objective 

models. The information contained in subjective models is directly solicited from experts; 

these models attempt to mimic the reasoning process of an expert. The Mamdani-type 

fuzzy methodology is extensively used for developing subjective fuzzy knowledge-based 

models. In Mamdani models, the output variables are defined as fuzzy sets and the final 

output value is converted to a scalar by a defuzzication method. 

The objective models are developed from a set of input and output data by using a 

systematic data analysis process to generate the fuzzy rules describing the information 

contained in the dataset. Introduced in 1985 [24], the Sugeno-type fuzzy methodology 

(also known as Takagi-Sugeno-Kang) is extensively used for developing objective fuzzy 

knowledge-based models. In Sugeno models, the output Variables are scalars that are 
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computed using a polynomial function of input variables. The Sugeno-type fuzzy 

modelling proved to be a powerful tool for developing predictive models using a dataset 

containing input and output variables, and it is used in this study to develop soft sensor 

models. 

3.4 Sugeno-type fuzzy rule 

The general syntax of a fuzzy rule is 

If x is A then y is B (3.2) 

where A and B are the values defined by the fuzzy sets on the ranges X and Y, 

respectively [25], The if-part of the rule - if x is A - is called the antecedent, and the 

then-part of the rule - then y is B - is called the consequent. The consequent has to 

appropriately describe the rule output within the fuzzy region specified by the antecedent. 

In a Sugeno rule, rule consequent is expressed as a polynomial function of the inputs, and 

the order of the polynomial determines the order of the model [24], 

A typical first-order Sugeno rule is: 

I f x i is 1 andx 2 is A2... and Xj is ^4/ then z{u)~p\ u\ + pj «2 + ••• + Pi u\ + k (3.3) 

where: 

i = number of input dimensions 

A = rule antecedents 



u = input value 

z - rule output 

Pi = rule consequent associated with the ith input dimension 

k= numerical constant 

The output of a Sugeno rule is calculated simply by applying the input values to the 

polynomial function. 

3.5 Sugeno-type fuzzy inference system 

The fuzzy inference system maps input variables to output variables through a fuzzy rule 

base. A fuzzy rule base is the collection of rules that the model uses to properly cover the 

space defined by the input and output variables. 

3.5.1 Rule weights 

For a given input, each rule has a certain impact on determining the model result for that 

input; this is called the rule weight - also called the firing strength of the rule. The 

membership values of each input dimension indicate the degree to which each part of the 

antecedent is satisfied, and they are used to determine the rule weight. The calculation of 

the rule antecedents and input membership functions is presented in the next section. 

The function that transforms the individual membership values of each input dimension 

into a rule weight for the multi-dimensional input is called an implication function. Two 



well known fuzzy implication functions are used in this study, and they are presented 

below: 

> the MIN (Minimum) implication function: it interprets the fuzzy implication as the 

minimum operation, and the rule weight is equal to the lowest membership value 

among all input dimensions 

> the PROD (Product) implication function: it implements the fuzzy implication by the 

product operation, and the rule weight is equal to the product between the 

membership values for all input dimensions 

3.5.2 Rule output aggregation 

Combining the output and weight of each rule in order to calculate the model result is 

called aggregation. The output of each rule is multiplied by the rule weight, and the final 

output of the Sugeno system is the weighted rule average of all rule outputs. It is 

computed as the sum of products between each rule output and the corresponding rule 

weight, divided by the sum of weights of all rules: 

N 
^WiZi 

/=1 

where 

i = number of input dimensions 

N = number of rules 
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Wj = rule weight 

z, = output of rule i 

Z = Sugeno model output 

The calculation of the rule consequents, required to compute the rule output, is presented 

in the next section. 

3.6 First order Sugeno model building 

In modeling from input and output data, the parameters of the Sugeno model are typically 

identified by using fuzzy clustering techniques which involves grouping of data into 

clusters of similar behaviour. These clusters are used to determine the rule antecedents, as 

each cluster represents a fuzzy rule. The membership value of a data point is a measure of 

the point's distance from the cluster center. The rule consequents for a given set of 

clusters are obtained using a least square estimation method, such that the error between 

the Sugeno model output and the training output data is minimized. The main steps 

required for computing a first order multiple-input single-output Sugeno-type fuzzy 

model are presented below. 

3.6.1 Normalizing the data 

Before starting the Sugeno modeling process, the input-output data is normalized on the 

interval [0 1]. This ensures that each variable will have the same numerical range, thus 

equalizing their influence in the dataset. After normalization, the minimum value of each 
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variable will be 0, and the maximum value will be 1. The normalization is performed as 

follows 

K-min(K) 
"normalized • \ • • \ P - 7 max(w) - min(w) 

where: 

" n o r m a l i z e d
 = normalized value of each observation of the variable 

u = actual value of the observation, before normalization 

min(w) = minimum value of the variable 

max(w) = maximum value of the variable 

3.6.2 Identifying the rule antecedents using the subtractive clustering 
algorithm 

The purpose of clustering is to extract natural groupings of data from a large data set, 

such that a concise representation of system's behaviour is produced. Clustering is a 

process of partitioning a set using resemblance or dissemblance measures, such as the 

distance between elements of the set. Fuzzy clustering methods include the fuzzy C-

means clustering approach, the mountain clustering method and the subtractive clustering 

method. 

In this study, the subtractive clustering method introduced by Chiu [26] is used to 

estimate the number of clusters and cluster centers in a database. The computational 

effort of this algorithm is independent of the dimension of the space to be clustered, thus 
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improving computing speed. The clustering is performed on the combined input and 

output spaces, and the behaviour of each cluster is modeled by a fuzzy rule. The clusters 

can be disjoint or partial overlapped, and they indicate groupings of data points with 

related behaviour; the center is the data point with the highest measure in the cluster. The 

clusters are projected on each dimension in the input space, and each projection forms the 

fuzzy rule antecedent associated with an input dimension. 

The subtractive clustering method considers the data points themselves as potential 

locations for cluster centers. The potential of a data point to become a cluster center is 

considered to be a function of its distances to all data points, and the subtractive 

clustering algorithm calculates a measure of the potential for each data point based on the 

density of surrounding data points. It is assumed that each point in the data space has 

equal contribution towards system identification. The cluster radius indicates the range of 

influence of a cluster in the data space. 

The potential P for each data point is calculated according to its location to all other data 

points, using the expression 

n 
-a Pi= I e 

J = 1 
X/ —Xj (3.6) 

where: 

a = 4/ ra
2 

ra = cluster radius 
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n = total number of data points 

x„ x: = vectors in combined data space of input and output dimensions 

Pi = potential of the i data point th 

The data point with the highest potential as the first cluster center is selected. The 

potentials of data points located near this cluster center are penalized in order to facilitate 

the emergence of new cluster centers. A clustering parameter, the squash factor, controls 

how close or how far clusters are formed. This parameter is used to compute a so-called 

penalty radius, which determines the neighbourhood of a cluster center within which the 

existence of other clusters is to be discouraged. The penalty radius is computed as 

follows 

where: 

rb = penalty radius 

ra = cluster radius 

f| = squash factor 

Each time a cluster is obtained, the potential of all data points is revised according to the 

expression 

rb = rira (3.7) 

Pi = Pi~P*k e'PhrxkW 
2 

(3.8) 
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where: 

* th Pj( = the potential of the k cluster center 

i = the z'th data point being subtracted 

x\ = the £th cluster center 

The identification of other cluster centers is carried out through the subtraction process, 

as the algorithm selects the data point with the highest remaining potential as the next 

cluster center and revises the potential of the data points. This new cluster center is 

selected based on its revised potential value in relationship to an upper acceptance 

threshold value, called the accept ratio, and a lower rejection threshold value, called the 

reject ratio. The accept ratio sets the new potential as a fraction of the potential of the 

first cluster center, above which another data point will be accepted as a cluster center. 

The reject ratio sets the new potential as a fraction of the potential of the first cluster 

center, below which a data point will be rejected as cluster center [25], This process of 

acquiring a new cluster center and revising the potential of remaining points repeats until 

the potential of all data points falls bellow the reject ratio value. 
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3.6.3 Computing membership values 

The clustering is performed on the combined input-output space, and each cluster 

represents a fuzzy rule. The membership value of a data point is a measure of the point's 

distance from the cluster center, and the cluster center has a membership value of 1. 

For a given input point, the membership value associated with each input dimension 

corresponds to the distance between the point's coordinate on the input dimension and 

the coordinate of the cluster center on that dimension. The membership values of all data 

points are assigned exponentially with respect to all cluster centers as follows 

Mn = e ^ x r x / (3.9) 
J r a 

where: 

fly = membership value of the ith input point with respect to the jth cluster coordinate in 

the input dimension 

ra - cluster radius 

||x, - xj\\ = Euclidean distance between the z'th data point a n d / h cluster center 

The membership functions can be calculated using the same radius value for all of the 

data dimensions, or using a different radius value for each of the data dimensions. 

When using the same radius value for all data dimensions, the cluster has the same range 

of influence in each data dimension. This results in obtaining membership functions with 



the same spread (width) for all dimensions. For example, the membership values for a 

two-dimensional input will be computed as follows 

- 4 2 - 4 2 
H(u) = e

 (uxl-Cxi) +^("x2-Cx2) ] (3.10) 
ra r a 

where: 

xi ,x2 = input dimension 1 and 2, respectively 

ju(u) = membership function of input u 

mx1 = value in the input dimension 1 

u x 2 = value in the input dimension 2 

r a = cluster radius 

Cxi = cluster center coordinate in input dimension 1 

Cx2 ~ c l u s t e r center coordinate in input dimension 2 

It can be seen that the same cluster radius value ra is used to compute the membership 

values associated with each input dimension. 

When using a different radius for each of the data dimensions, the cluster has different 

ranges of influence in each dimension. This results in obtaining membership functions 

with a different spread for each dimension. For example, the membership values for a 

two-dimensional input will be computed as follows 
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r a\ ra2 ra\ 

-4 
(3.11) 

where: 

fl(u) = membership function of input u 

kx1 = value in the input dimension 1 

ux2 = v a ^ u e i n input dimension 2 

r a i = cluster radius for input dimension 1 

r a 2 - cluster radius for input dimension 2 

C x i = cluster center coordinate in input dimension 1 

Cx2 = c l u s t e r center coordinate in input dimension 2 

It can be seen that different cluster radii are used to compute the membership values 

associated with each input dimension: raj for input dimension 1 and ra2 for input 

dimension 2. Using different cluster radii can allow the model more flexibility and 

improve its performance, as an optimal radius can be determined for each of the data 

dimensions. 
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3.6.4 Computing the rule consequents 

The rule consequents are calculated using a least square optimization method that 

minimizes the error between the Sugeno model output and the values of the output 

variable. 

Combining Equations 3.3 and 3.4 - describing the output of a rule and the output of the 

model, respectively - the output of a first order multiple-input single-output Sugeno 

model is calculated as follows 

Z = Pi zj(u) + p2z2(u) + ... + pjz/u) (3.12) 

= filfPll U1 + P21 U2 + ••• + Pil Uj + k,] + p2 [P22 Ui + P22 U2 + -

+ pi2 Uj + k2] + ... + pj [Pij u, + p2j u2 + ... + Pij Uj + kj] 

where: 

Z = model output 

zj = output of rule j 

Ui = input dimension i 

Pn = first consequent of the first rule, corresponding to the first input dimension 

P21 = second consequent of the first rule, corresponding to the second input dimension 

p^ = z'th consequent of the / h rule, associated with the z'th input dimension 
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kj = last consequent of they'th rule 

[ij = term associated with rule j 

The term /? associated with rule j takes into account the weights w of all of the rules, as 

follows 

wAu) 
Pi = — (3. B) Wj (w) + W2 («) + ... + Wj (u) 

For a single output Sugeno-type system, the rule base will have a number of consequents 

equal to the product between the number of rules and number of consequents per rule, as 

shown in the expression 

N r u | e b a s e = / 0 ' + 1 ) 0-14) 

where: 

N r u i e base
 = number of rule consequents in the rule base 

j = number of rules 

i = number of input dimensions 

/ + 1 = number of consequents per rule 

The number of /? terms introduced previously is equal to the number of consequents 

contained in the rule base. These j3 terms are arranged in a matrix n x j, where n is the 

number of observations in the dataset and j is the number of rules, as in the expression 
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P\\U\\Pl\U2\ ..P\\U\\P\\ Pl\U\\ Pl\U\ \ ..Pl\Ui\ pi\ ..Pj\U\\ Pj\U-21 ..Pj\U\\ Pj\ 

P\2U\2P\2U22-P\2U\2P\2 p22U\2 p22^\2 ••Pl2ui2 p22 ~PflM\2 Pj2^22 -Pj2^i2 Pjl 

B = 

P\nU\ P\nU2 n ••P\nu\n P\n p2nU\ p2nU\ n ••P2nuin p2n n Pjn^2n ••PjrMin Pjn 
J 

where: 

P]n = the P term corresponding to t h e / h rule and nlh observation 

um = the input value corresponding to the /th dimension and n h observation 

n = number of observations 

If the values of the output variable and the consequents for the rule base are arranged in 

separate vectors, the problem can be expressed as 

BX = Y (3.15) 

where 

B = matrix containing the ft terms 

X = vector containing the rule consequents 

Y = vector containing the training values of the output variable 
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Using this notation, the calculation of the consequents becomes a least square estimation 

problem. The consequents are calculated such that the difference between the product 

BX, representing the model output, and the output variable Y is minimized. 

3.6.5 Identifying the optimal model parameters 

A given combination of the clustering parameters presented previously determines one 

model configuration. In order to determine the most accurate model, different 

combinations of clustering parameters have to be tested. This is typically carried out by 

varying the clustering parameters on the intervals shown in Table 3-1. 

Cluster ing pa ramete r Cluster rad ius Reject ratio Accep t ratio S q u a s h fac tor 
Interval 0.1 - 1 0 - 0 . 9 0 - 1 0 . 1 - 2 

Table 3-1 Intervals for varying the clustering parameters 

An enumerative search is carried out trough all possible combinations of clustering 

parameters in order to identify the combination leading to the model with the lowest 

predictive error. The user selects the desired step sizes for incrementing the clustering 

parameters. 

3.7 Second order Sugeno models 

In Sugeno systems, the order of the polynomial function describing the rule consequent 

determines the order of a system. A typical second order single-output fuzzy rule of a 

Sugeno model would be: 

2 2 If X\ is A]...andx\is A\ then z(u) = pi i u\ + pi2 U] + ... + p,j ii\+ p,2 u\ +k (3.16) 
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where: 

z = rule output 

i = number of input dimensions 

A = rule antecedents 

u = input value 

Pi = rule consequent associated with the z'th input dimension 

k = numerical constant 

Higher order models, compared to lower order models, can identify a system with less 

error for the same number of rules, or could achieve the same performance with less 

number of rules [27], 

The procedure to compute a second order Sugeno-type model is the same as for the first-

order model. The matrices used to identify the rule consequents are slightly larger, in 

order to accommodate the additional terms contained in the second order polynomial. 
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4 FEEDFORWARD BACKPROPAGATION ARTIFICIAL 
NEURAL NETWORK MODELING 

4.1 Artificial neural networks 

An artificial neural network (ANN) is an artificial intelligence-based model that mimics 

the behaviour of the human brain. Similar to a human neural system, an artificial neural 

network is an information processing structure that consists of a number of input and 

output units connected in a systematic fashion. Between the input and output, there may 

be one or more hidden layers, each consisting of a number of processing units called 

neurons. The connections between units lying on different layers are assigned with 

varying values known as weights. Input data are fed in from the input layer, and they 

follow all possible connection paths to reach the next layer. At each neuron, the signal 

suffers a transformation, and eventually it reaches the output layer. A simplified neural 

network configuration is shown in Figure 4-1: there are 3 input variables, and one output; 

the input layer contains 3 neurons, the hidden layer contains 4 neurons, and there is one 

output neuron. 

hidden neurons 

Figure 4-1 Simplified representation of an ANN 
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Neural networks can be adjusted, or trained, so that they learn how a particular input 

leads to a specific target output. The network weights are adjusted based on the 

comparison between the model result and the target output, until the network result 

matches the target. Although other procedures can be used, the modification of the 

weights provides the traditional method for the design of neural networks [28]. The 

procedure used to perform this learning process is called a learning algorithm, and it 

represents the function used to modify the weights in a systematic manner until the 

desired output is achieved. Neural networks perform very well in regression and 

classification problems, and it was proved that a neural network model can practically fit 

any function [29]. 

4.2 Feedforward backpropagation neural networks 

A class of neural networks extensively used for soft sensor development are the 

feedforward networks using the backpropagation algorithm. They proved to be efficient 

to model nonlinear correlations between the input and output data. The input signal 

propagates through this type of network in a forward direction, on a layer-by-layer basis. 

The backpropagation method, also called the error backpropagation algorithm, is a neural 

network learning procedure consisting of two passes through the network layers: a 

forward pass and a backward pass. In the forward pass, a vector of input data is presented 

to the network. This data is subjected to different transformations in each layer, and the 

network output is calculated. During this pass, the network weights are fixed. During the 

backward pass, the weights are modified according to an error-correction rule, called the 

delta rule. The error is obtained as the difference between the desired output and the 

network output, and is propagated backward through the network. The objective is to 
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modify the weights so that the error is minimized. Standard backpropagation is a 

gradient descent algorithm, in which the network weights are moved along the negative 

of the gradient of the performance function [29]. 

4.2.1 Layers of neurons 

Two or more neurons can be combined in a layer. A network can have multiple layers. 

The outputs of each layer represent the inputs to the following layer. It is common for 

different layers to have different numbers of neurons. The layers have different functions, 

according to their location in the network: 

> the input layer receives the data to be modelled by the network, and the output of this 

layer is fed into subsequent layers, called the hidden layers 

> the output layer produces the network output 

> the hidden layers are the layers located between the input and output layers, and they 

perform most of the computations required to produce the network output. Their 

output represents the input to the output layer. A network can have one or more 

hidden layers. 

Each neuron is connected to all the neurons in the following layer. The input of a neuron 

consists of the sum of the products between all outputs from the previous layer's neurons 

and the corresponding weight for each connection. Another scalar value, called bias, is 

added to this sum. Inside each neuron, the signal suffers a transformation. The function 

performing this transformation is called a transfer function. 



The neuron input vector can contain input data to the network, in the case of the input 

layer, or the outputs of neurons from previous layers, in the case of hidden neurons. 

These values are summed after being multiplied with the weight of each neuron 

connection, and the bias is also added. Therefore, the input to the neuron becomes 

n = ] p\ + W]^P2 + •••• w\,RPR + b (4.1) 

where: 

n = neuron input 

R = number of inputs 

w = connection weights 

p — neuron input 

b = bias 

The model of a single neuron is shown in Figure 4-2: the transfer function is denotes by f , 

and the neuron output is the scalar a. 

Figure 4-2 Neuron model 
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For the input layer, there is no transfer function. This layer receives the input data to the 

network. After being transformed according to Equation 4.1, the data is transmitted to the 

hidden layer(s). 

A three-layer feedforward network is shown in Figure 4-3: a weight matrix W, a bias 

vector b and an output vector a is associated with each layer. 
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Figure 4-3 Three layer network 

4.2.2 Transfer functions 

The transfer functions use the neuron's inputs to calculate its output, and they are an 

essential component of the network's processing capabilities. The transfer functions can 

also be called activation functions. In backpropagation, it is critical that the derivates of 

the transfer functions can be calculated; the non-linear activation functions have to be 

continuously differentiable [28], Backpropagation networks often use transfer functions 



in the hidden layers that compress an infinite input range into a finite output range [29]. 

Some of these functions are presented next. 

The logarithmic sigmoid function - also called the log-sigmoid function - uses the 

following formula to generate outputs between 0 and 1 

logsig(n) = —'— (4.2) 
\ + e 

This function is represented in Figure 4-4. 

a 
/ 

0 

-1 

a = logsi gin) 

Figure 4-4 The log-sigmoid function 

The hyperbolic tangent function - also called the tan-sigmoid function - uses the 

following formula to generate outputs between -1 and 1 

tansig(n) = (4.3) 
(\ + e )-\ 

This function is represented in Figure 4-5. 
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a 

a = tansig(n) 

Figure 4-5 The tan-sigmoid function 

If the last layer of a feedforward network has sigmoid neurons, then the network output 

will be limited to a small range; this is why often networks have one or more hidden 

layers of sigmoid neurons followed by an output layer of linear neurons. The output 

linear activation function allows the network to produce values outside the [-1 1] interval 

4.2.3 Backpropagation algorithm 

The backpropagation algorithm performs a gradient descent minimisation of the absolute 

modelling error, adjusting the network weights such as the difference between the 

network result and target output is minimized. The main steps of this algorithm are 

shown next. Initially, the weights are chosen randomly, and the neuron output is 

computed. The modelling error is used to adjust the weights according to the delta rule 

[29], 

AW= n ^ 
5W 

(4.4) 

W VV f new W-AW (4.5) 

where: 
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A W= weight correction factor used to adjust the weights 

E = neuron modelling error 

W = weights 

Wnew = weight values after adjustment 

r| = learning rate parameter 

SE2 

—— = error sensitivity factor 
SW 

The learning rate parameter determines the rate of network learning, and it will be 

presented in the next section. 

SE2 

The partial derivative represents the sensitivity of the error, indicating the direction 

of search in the weight space for the adjusted value of the weight: 

if it has a negative value, then the weight value has to be increased in order to 

minimize the error 

if it has a positive value, then the weight value has to be decreased in order to 

minimize the error 

Using the chain rule, the error sensitivity factor can be written as 

8E}_ _ 3E^_J>I_ (4.6) 
SW SI SW 

where / represents the neuron input. 
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Eventually, the complete delta can be written as 

AWy = r| Ij (4.7) 
5 I j 

where: 

A Wy = correction factor for adjusting the weight between neuron i and neuron j 

Ij = input to neuron j 

E = neuron modelling error 

r| = learning rate 

SE2 
The gradient depends on whether neuron j is a hidden or an output neuron [28]: 

S l j 

> if neuron j is an output unit, the local gradient equals to the product of the derivative 

of the activation function and the error of neuron j 

> if neuron j is a hidden unit, the local gradient equals to the product of the derivative 

of the activation function of neuron j and the weighted sum of the gradients computed 

for the neurons in the next layer that are connected to node j 

Different error criteria can be employed in order to define convergence for the 

backpropagation algorithm, such as: 

> if the Euclidean norm of the gradient vector reaches a certain threshold 

> if the absolute rate of change in the error computed at each training iteration is 

sufficiently small 
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The backpropagation method is an iterative procedure, as the weight updating process is 

repeated for a number of fixed iterations, called training epochs, or until the error criteria 

is met. 

4.2.4 Learning modes 

Traditionally, backpropagation learning might be performed in two ways: sequential and 

batch modes of training. 

In the sequential training mode, the weight updating step is performed after each 

observation from the training dataset is presented to the network. This learning mode is 

also called incremental training. 

In the batch mode, all the training observations are applied to the network before the 

weights are updated. The gradients calculated at each observation are summed to 

determine the change in the weights and biases. 

4.2.5 Learning rate and momentum 

The learning rate controls the magnitude of change applied to the weights during the 

backpropagation algorithm. The learning rate is positively correlated to the weight 

correction factor: the smaller it is, the smaller the changes to the weights from one 

iteration to the next. A small learning rate leads to a more stable evolution of the weights, 

but it slows down the network learning process. Faster convergence can be achieved by 

increasing the learning rate value. This will result in increasing the changes in the 

weights, but it can lead to an unstable network, as the weights display an oscillatory 

behaviour during the training. The learning rate can be increased without compromising 
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the network stability by introducing in the backpropagation algorithm a training 

parameter called momentum. The momentum has a stabilizing effect in the directions of 

the error gradient that oscillate in sign [28], With momentum, the delta rule for weight 

adjustment is expressed as 

A Wjin) = r\6j(n)yj(n) + a A Wj,{n-1) (4.8) 

where 

A Wjj(ri) = correction factor for adjusting the weight between neuron j of the upper layer 

and neuron I of the lower layer 

r| = learning rate 

a = momentum 

5 • = error signal of the /th neuron 

y.[n) - output value of the /th neuron in the previous layer 

Momentum can also prevent the training process to converge on a shallow local 

minimum on the error surface. Momentum allows a model to react not only to the local 

error gradient, but also to recent changes in the error surface. If the momentum constant 

is 0, the weight adjustment is performed using solely the gradient; if the momentum is 1, 

the gradient is ignored [29]. 
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4.2.6 Data pre-processing 

Before training, it is useful to scale the inputs and targets so that they all fall within the 

same range. Most of the nonlinear activation functions used in backpropagation produce 

a neuron output restricted to certain intervals, such as [0 1] or [-1 1]. Therefore, 

normalization of the data over these intervals is critical. 

4.3 Adaptive neuro-fuzzy inference systems 

The adaptive neuro-fuzzy inference (ANFIS) technique can be used to tune the 

membership functions of a fuzzy inference system using artificial neural network-based 

optimization methods. This learning method works similarly to that of neural networks: 

through an iterative procedure, the fuzzy model learns information about the system, in 

order to estimate the membership function parameters minimizing the error between the 

model output and the desired objective. 

The membership function parameters are adjusted according to the system's error 

gradient vector which indicates the performance of the system in tracking the given 

input-output data. Typically, ANFIS uses either backpropagation or a hybrid method 

consisting of a combination of least squares estimation and backpropagation for 

membership function optimization. This hybrid method uses backpropagation to optimize 

the parameters associated with the input membership functions, and least squares 

estimation for the output membership functions. 

The more the initial membership functions result in a fuzzy system with a good predictive 

performance, the easier it is for the ANFIS training to converge. In case of a Sugeno-type 

fuzzy model, ANFIS is usually applied after the combination of clustering parameters 
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leading to the best prediction performance is identified. The ANFIS training can be set 

for a number of fixed training epochs, or a training stopping criterion related to the error 

size can be defined [25], 
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5 DATA COLLECTION AND PRE-PROCESSING 

5.1 Data collection 

Historical process data from a Canadian kraft pulp and paper mill is collected in order to 

develop a soft sensor for the black liquor solid content at the concentrator feed. Four 

hundred process variables, mostly related to the black liquor recovery circuit, are 

retrieved for a three-month period, starting at the beginning of October 2007. This time 

period was chosen since the process operation was stable during this interval. There were 

no major operational changes or significant equipment shutdowns or malfunctions, so it 

is considered that this period is representative of a normal process operation. 

The measurements are retrieved from the plant data historian as hourly averages, 

resulting in a dataset containing 2521 observations per variable. Discussions with plant 

personnel confirm that this is an acceptable averaging, given the relative slow dynamics 

of the process and the multitude of storage tanks used between key operation units. 

5.2 Data pre-processing 

The successful development of a data-driven model is highly dependent on the quality of 

the data. Data-driven modeling techniques are highly susceptible to the adage "garbage 

in/garbage-out". The steps preceding the development of the model are critical to ensure 

that useful knowledge is derived from the data. These steps are referred to as data pre-

processing, and their objective is to increase the data quality before the modeling 

procedures can be successfully applied. It is not unusual that upwards of 80% of time and 
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effort in a project dealing with data analysis be spent on data understanding and pre-

processing [30]. 

In the industrial process context, data quality is a key issue, since historical process data 

can be incomplete, inconsistent and noisy. Missing variable values, aberrant or out-of-

range measurements, outliers and inaccurate values can be present in a database 

containing process variables. This can be caused by various process or equipment related 

factors, such as drift and malfunction of measuring instruments, starts and stops of key 

unit operations, aberrant process behaviour, relative infrequent laboratory analyses or 

product quality sampling and dubious periods of operation, such as shutdowns, low 

production periods and equipment cleaning. 

The data pre-processing steps performed in this study are data reduction and data 

cleaning. Data reduction involves removing irrelevant variables such that a reduced data 

set is obtained, without a significant loss of information from the original data. Data 

cleaning involves identifying and removing outliers. 

A good comprehension of the process and close collaboration with plant personnel during 

the data pre-processing step is of key importance for developing a proper understanding 

of the data. 

5.2.1 Data reduction 

Irrelevant and redundant variables are eliminated from the dataset. A close inspection of 

the database revealed some redundancy, such as variables derived from other variables. 

For example, there were three measurements related to the flow of black liquor to one of 
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the evaporators. One of these measurements represents the total flow rate, and it is the 

sum of the other two measurements. In this case, only the variable representing the total 

flow rate is kept in the modeling database. 

The data contained variables related to control loops, such as the set point values, remote 

set point values, manual entries and controller output values. If the controlled variable 

was present in the database, all other entries related to the control loop were deemed 

irrelevant and were eliminated. Following discussions with plant personnel, variables not 

related to the process, such as measurements used for safety alarm purposes or manual 

verification tests are identified and eliminated from the database. 

Variables not available on-line and manually entered in the data historian, such as 

laboratory analysis and other manual measurements, are also eliminated. Since the soft 

sensor predicts in real-time the solid content at the concentrator feed, it is critical that 

variables that are used as model inputs be available in real-time. 

A significant number of variables are identified as redundant or irrelevant and 

subsequently eliminated: 267 variables are removed from the dataset. The dataset now 

contains 144 variables: 143 input variables, and the output variable - the solid content of 

the black liquor at the concentrator inlet. 

5.2.2 Data cleaning on a variable basis 

Data cleaning consists of the identification and removal of outliers and other unwanted 

deviations. Outliers and other observations related to abnormal operating conditions, such 

as equipment shutdowns or malfunctions and low-production periods, should be 
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removed, since the model has to capture information representative of a normal operating 

regime. 

The first step performed in order to separate noise from meaningful data is to clean the 

variables: a filtering range is calculated for each variable, and observations outside this 

range are considered outliers and are eliminated from the dataset. The filtering range is 

calculated using the standard deviation and average of each variable, as follows: 

Y~n±ka (5.1) 

where: 

Xn = moving average of variable X over the interval n 

k = numerical constant 

(7 = standard deviation of variable X 

A moving average is used to emphasize the direction of a trend and to smooth out 

fluctuations in the data series. The moving average is calculated over 720 hours, since 

this interval represents approximately a month's worth of measurements. The numerical 

constant used to multiply the standard deviations is set at 2. All observations falling 

outside the above-mentioned range are considered outliers and are eliminated. 

This procedure uses two passes in order to eliminate outliers. The first cleaning pass 

eliminates severe outliers that could lead to standard deviation and average values not 

representative of the general trend of the variable. The second pass uses the standard 
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deviation and average values of the data cleaned after the first filtering run, in order to 

further refine the cleaning. 

A variable with severe outliers is shown in Figure 5-1, and it can be seen that there are 

extreme values in the order of 10"4. Figure 5-2 shows a close-up view of the trend of the 

same variable, and it can be clearly seen that the average value is around 30. Such 

extreme outliers are probably due to instrument malfunctions or communication problems 

between the instrument and data historian. 
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Figure 5-1 Variable containing extreme outliers in the range of 10~4 

Figure 5-2 Close-up view of the trend of a variable containing extreme outliers in the range of 10 4 

74 



Typically, for data cleaning purposes, it can be considered that observations outside the 

interval defined by plus and minus 3 standard deviations (±3o) are outliers. If the data are 

normally distributed, 99.7% of the points will lie within ±3o, and it is considered that any 

values outside this interval do not follow the statistical distribution of the bulk of the data. 

The historical process dataset used in this study contained periods of equipment 

shutdowns, and the numerical range of the measurements related to that equipment 

increases, due to the presence of intermediate measurements from the operating regime to 

the shutdown level. Because of this, a filtering range calculated with a ±3o value would 

have been too wide and not useful in cleaning the data. Using a ±2o value ensures that 

the filtering range eliminates not only outliers, but also observations related to 

shutdowns. A variable containing shutdown data and cleaned using a filtering range 

based on a ±3o value is shown in Figure 5-3: very few observations - 0.69% - are 

eliminated, while virtually all outliers and observations related to the shutdown periods 

are still present. Figure 5-4 shows the same variable, but cleaned using a filtering range 

based on ±2o value: it can be seen that almost all outliers and observations related to 

shutdowns are eliminated - 12.95% of the original data is removed. 
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Variable cleaned using a filtering range based on IUt 
180 T — ———— — 

x Original variable • Cleaned variable 

Figure 5-3 Variable containing shutdowns and cleaned using a filtering range based on a ± 3 c value 

Var iable c leaned using a filtering range based on 2<r 
180 

160 — v 

Original variable * Cleaned variable 

Figure 5-4 Variable containing shutdowns and cleaned using a filtering range based on a ± 2 a value 
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A moving average is used to enable the filtering range to follow the trend of the data 

more closely than a fixed average. Using a moving average can also limit the detrimental 

effect that an outliner has on cleaning a variable, as its magnitude influences only the 

filtering range of the interval containing the outlier, and not the filtering range for the 

whole variable. Figure 5-5 shows a variable cleaned using a fixed average, and it can be 

seen that observations consistent with the general run of the data are eliminated. This is 

not the case when the cleaning is performed using a moving average, as shown in Figure 

5-6. 

Variable cleaned using a fixed average 
65 

x Original variable * Cleaned variable 

Figure 5-5 Variable cleaned using a fixed average 
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Variable cleaned using a moving average 

65 -i 

x Original variable * Cleaned variable 

Figure 5-6 Variable cleaned using a moving average 

The procedure described previously is applied automatically to the entire database. 

However, each variable might display different fluctuations, according to the frequency 

of shutdowns and other changes that might have influenced its behaviour. Since the same 

cleaning parameters are used for the entire database, each variable is individually 

inspected after the automatic cleaning process is completed. The objective is to verify 

that the cleaning procedure performs satisfactory: clear outliers are removed, and valid 

observations that seemed consistent with the general run of the data are not eliminated. If 

the data filtering performance is deemed to be unsatisfactory, the cleaning parameters are 

modified in order to achieve a more efficient filtering. 

After inspection of each cleaned variable, it is considered that the cleaning procedure 

applied to the historical process data is successful in removing outliners, inconsistent and 
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aberrant values, and data related to abnormal equipment and process operation 

conditions. However, measurements of the black liquor solid content at the concentrator 

feed measurements that are below the critical threshold are kept in the modeling dataset 

in order to enable the model to recognize and predict such occurrences. 

Different outlier detection strategies are commonly employed for data filtering. Some of 

them are the 3-Sigma edit rule, the Jolliffe method and the residual analysis of linear 

regression [1], However, the cleaning procedure presented previously proved to be 

efficient in removing inconsistent data and measurements related to abnormal process 

behaviour. 

5.2.3 Data cleaning on a global process basis 

The data cleaning procedure described previously is applied on an individual process 

variable basis, in the sense that it identifies deviations from a normal operating range for 

each variable separately - each variable has a filtering interval corresponding to its own 

statistical behaviour. 

After performing the data cleaning on a variable basis, a principal component analysis is 

performed to model the global process behaviour and determine if any deviations from a 

normal process operating range are present. The Hotteling's T2 plot is obtained. This plot 

summarizes all process values and model components, displaying the distance from the 

origin in the model plane for each observation. Critical limits are determined based on the 

general grouping of the data, and values far above the critical limits represent outliers that 

might influence the model in a detrimental way. For databases containing multiple 

variables, it is practical to visualize all process parameters and measurements on one 
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combined plot, since it reduces the risk of not detecting deviations when inspecting many 

individual plots. An inspection of this plot revealed that very few significant process 

deviations are present in the dataset. The variables most responsible for these deviations 

are identified, and a closer inspection showed that the corresponding observations are 

somewhat farther away from the general trend of each individual variable. Once these 

observations are eliminated, the process deviations disappear. 

The Hotelling's T2 plot showing process deviations, as spikes from the general trend of 

the data, is presented in Figure 5-7. The same plot after the deviations are eliminated is 

shown in Figure 5-8; it can be seen that the process does not display severe deviations 

anymore. 

1 
T2Crit(' 

T2Crit(< 

i f 

Figure 5-7 Hotteling's T2 plot showing process deviations 
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Figure 5-8 Hotteling's T2 plot without process deviations 
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6 SOFT SENSOR INPUT VARIABLES 

The soft sensor performance is directly affected by the quality of real-time measurements 

used as inputs to the predictive model. This implies that the instruments associated with 

the input variables have to be rigorously maintained in order to detect any measuring 

performance degradation. Therefore, if fewer input variables are used, less effort is 

required to maintain the measuring instruments. The cost associated with the maintenance 

and re-calibration of these sensors also decreases. From a modeling perspective, using 

more predictors increases the complexity of the model, making it difficult to manage and 

less practical to use, and it also can considerably increase the time required to re-compute 

the model if changes occur in the process. Given these practical reasons related to a soft 

sensor industrial implementation, it is proposed that 10 input variables be used to develop 

the soft sensor model. The literature review also revealed that typically a small number of 

predictors is used to develop industrial soft sensors. 

6.1 Input selection methodology 

The following methodology is proposed to extract subsets of 10 relevant predictors from 

the cleaned dataset of 143 input variables: 

> a PLS model for inferring the black liquor solid content at the concentrator feed 

using all 143 variables as inputs is developed 

> the correlation between the input and output variables is tested to determine if strong 

nonlinearities and process lagging are present; if this is the case, they need to be taken 

into account prior to model development 
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> two PLS-based criteria are used to identify the most significant variables for 

predicting the black liquor solid content: the significance in modeling the input data 

and predicting the output variable, and the significance solely in predicting the output 

> two different datasets containing the top 10 variables as identified by each PLS-based 

criterion will be used to develop the soft sensor models 

6.2 PLS analysis on the complete dataset 

After the data pre-processing step is completed, a PLS analysis is performed in order to 

obtain a predictive model of the black liquor solid content at the concentrator feed. All 

remaining 143 variables from the historical process database are used as inputs to this 

model. The objective is to estimate the importance of input variables from a regression 

point of view. 

6.2.1 Modeling and validation datasets 

Prior to computing the model, the database is separated into modelling and validation 

subsets. The modeling dataset, also called training dataset, is used for developing the 

model, while the validation dataset is used to validate the model performance. If only the 

training data is used to determine the prediction performance, the accuracy can be over-

estimated, since the model is specifically tuned to fit the training data. The validation 

dataset is obtained by setting aside a portion of the original dataset that will not be used 

during the training process. After the model is fitted on the training data, its performance 

is tested on the validation data. 
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For the objective of this study, the dataset is randomly partitioned to obtain the training 

and validation data. Out of 2521 observations (or lines in the database), 504 lines were 

randomly selected, in a uniformly distributed manner, as validation data; this represents 

20% of the complete database. 

6.2.2 Verification of strong nonlinearities and lagging 

Multivariate data analysis methods, such as PLS, assume linear or quasi-linear 

relationships between variables. When computing predictive models, the correlation 

between the input and output variables has to be tested in order to determine if strong 

nonlinearities are present, since they will detrimental to the predictive performance. The 

input variables are tested for nonlinearities by introducing in the database new variables 

containing their respective squared and cubed values, and determining their regression 

coefficient. A high value of the regression coefficient would show that these new 

variables have a significant impact on predicting the output variable, thus indicating the 

presence of strong nonlinearities. 

Manufacturing processes can be subjected to lag times caused by the process dynamics. 

Lag intervals between the time a change occurs in a process variable and the time when 

the effect of this change impacts the output variable should be taken into account when 

developing the model. Process lags must be synchronized beforehand, since the modeling 

methods used in this study are not time series techniques, treating all observations as 

separate events. Process lagging is verified by introducing lags of 1, 2 and 3 hours 

between the input variables and the output variable. This means that each observation of 

the input variables at a time T is correlated with the output variable value at the time T + 
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1 hour, T + 2 hours and T + 3 hours, respectively. A high value of the regression 

coefficients of the lagged variables would show that they have a significant impact on 

predicting the output variable, thus indicating the presence of lagging. 

The results indicate that there is no significant nonlinearity or lagging between the input 

and output variables. This can be explained by a relatively stable operating regime and 

slow dynamics of the process, as well as the presence of storage tanks between key 

processing units. 

6.2.3 Model performance 

The best PLS model developed using all 143 available input variables contains 7 

principal components and models 51.7% of the input (X) data variation and 97.1% of the 

output (Y) data variation; the model can predict 96.8% of the Y variable variation. Table 

6-1 shows this model performance, along with the percentages of X and Y data variation 

modeled by each component, and the percentage of the Y variable variation predicted by 

the number of specified components. The first principal component models 22.2% and 

51% of the X and Y data, respectively; this means that the first principal component 

captures almost half of the variation of the X and Y data explained by the 7-component 

model: 42.9% and 52.5%, respectively. It can also be seen that a 3-component model is 

able to predict 79.4% of the Y variable variation; this represents 82% of the predictive 

performance of the 7-component model. 
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C o m p o n e n t 
n u m b e r 

% of X var iat ion 
mode led in the 

c o m p o n e n t 

% of Y var iat ion 
mode led in the 

c o m p o n e n t 

% of Y var iat ion pred ic ted 
by the n u m b e r of 

speci f ied c o m p o n e n t s 
1 22.2 51 50.9 
2 7.1 19.7 70.4 
3 7.3 9.1 79.4 
4 7.1 6.2 85.7 
5 3.1 6 91.3 
6 2.8 3 94.7 
7 2.1 2 96.8 

% of X var ia t ion 
mode led by the 

7 - P C mode l 

% of Y var ia t ion 
mode led by the 

7 - P C mode l 

% of Y var ia t ion 
pred ic ted by the 

7 - P C mode l 
51.7 97.1 96.8 

Table 6-1 Influence of each component in the PLS model developed using 143 input variables 

The mean square error (MSE) is used to measure the model's predictive performance on 

the training and validation datasets. These results are shown in Table 6-2. It can be seen 

that the error is very small; this is not surprising, given the considerable number of model 

inputs. 

N u m b e r of inputs Mode l ing M S E Val idat ion M S E 
143 0.057 0.098 

Table 6-2 Performance of the PLS model developed using all 143 inputs 

Figure 6-1 illustrates the modeling performance of this model, while Figure 6-2 shows its 

validation performance. In both cases, it can be seen that the model generates values very 

close to the actual data. 

86 



57 

PLS mode l performance for the model l ing dataset (MSE = 0.057) 
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Figure 6-1 Model ing performance of the PLS model using the complete data set 

PLS model performance for the val idation dataset {MSE = 0.098) 
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Figure 6-2 Validation performance of the PLS model using the complete dataset 
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6.3 Input selection criteria 

The PLS analysis performed previously is used to identify the most significant variables 

for inferring the black liquor solid content. Two selection criteria are used: 

> the significance in modeling the input dataset and predicting the output, as measured 

by the VIP value - the Variable Influence on Projection 

> the significance in predicting the output, as measured by the absolute magnitude of 

the coefficients of regression 

The VIP and the regression coefficient values are computed for each variable. 

Input variables with VIP values greater than 1 can be considered as most relevant for 

explaining the output variable, since the average VIP is equal to 1. Out of all 143 input 

variables, 57 have a VIP value greater than 1. Table 6-3 shows the variables having the 

20 largest VIP values; the top 10 variables are selected as inputs to the soft sensor models 

- due to confidentiality issues, the variable description is not included and only the 

variable number, as entered in the data historian, is shown. 
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Var iab le n u m b e r V I P va lue 
316 1.64971 
83 1.53649 

434 1.53281 
100 1.48366 
804 1.48135 
82 1.37923 

338 1.37902 
800 1.37393 
796 1.36617 
435 1.36535 
793 1.35508 
679 1.34278 
497 1.31075 
366 1.30841 
445 1.29364 
493 1.29287 
217 1.27232 
806 1.25313 
827 1.25023 
828 1.23845 

Table 6-3 Variables with the 20 largest VIP values 

The size of the regression coefficient indicates the size of the effect that the input variable 

is having on the output variable, and the sign on the coefficient (positive or negative) 

indicates the direction of the effect. Table 6-4 shows the variables having the 20 largest 

absolute regression coefficient values; the top 10 variables are selected as inputs to the 

soft sensor models. 
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Var iab le number 
Abso lu te va lue of the 
regress ion coef f ic ient 

316 0.103269 
435 0.101454 
679 0.0638193 
795 0.0496987 
366 0.0421756 
223 0.0363415 
838 0.0350992 
830 0.0348395 
450 0.0336553 
242 0.033317 
379 0.0329404 
454 0.0328659 
281 0.0326359 
839 0.0315617 
428 0.0303781 
92 0.0303355 

661 0.0300577 
835 0.0299866 
434 0.0299355 
338 0.0297899 

Table 6-4 Variables with the 20 largest regression coefficient values 

Two different sets of predictors are selected: the top 10 variables with the largest VIP 

values, and the top 10 variables with the highest absolute magnitude of the regression 

coefficient. Each dataset is used to develop the soft sensor models. Both datasets are 

made up of variables related to the flow of steam and black liquor in the evaporator train, 

but their composition is quite different, since they contain only two common variables. 

Process knowledge and close collaboration with plant personnel are essential in ensuring 

that the variables deemed significant by the statistical analysis are indeed relevant from a 

process point of view. The variables displaying a great amount of variability are 

determined by the statistical model as important in explaining the global dataset 

variability. The data cleaning performed previously proved to be efficient in removing 



measurements not representative of normal process behaviour, such as equipment 

shutdowns for example. However, it is important to inspect the significant variables, as 

artificial variability - not representative of a normal process operation - might still be 

present in the dataset. Variables manually entered in the data historian that were not 

identified and subsequently removed in the data pre-processing step, measuring 

instrument failures or communication errors with the data historian are a few examples of 

causes responsible for the presence of artificial variability in the dataset. Such an example 

is shown in Figure 6-3: the data consists of a manual log that is not updated on a regular 

basis. The same value is entered for a certain time interval, and then a different value is 

repeated over a time interval. The variable is identified as statistically significant, even 

though the measurements are not valid. 

Figure 6-3 Manual log displaying variability not representative of normal process behavior 

A close inspection of the 10-input sets presented previously revealed that all the variables 

are representative of normal process behaviour. 
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7 SOFT SENSOR MODEL DEVELOPMENT 

The 10-input variable datasets described in the previous chapter are used as inputs to the 

soft sensor. Prior to model development, all observations containing missing values are 

removed from the dataset, and the training and validation data are then selected. The 

predictive models are developed using PLS, Sugeno-type fuzzy logic and neural network 

methods. The predictive performance is measured using the training and validation mean 

square errors. Models displaying the best training and validation error trade-off are 

selected. The PLS models are computed using the Umetrics SIMCA-P multivariate data 

analysis software. All the other models are developed using the Matlab software package, 

notably the Fuzzy Logic and Neural Networks toolboxes. All the computations are 

executed using an AMD Athlon 64X2 dual core processor, with a computer processor 

speed of 2.41 GHz and 2.00 GB of RAM. 

7.1 Removal of missing values and validation data selection 

The data cleaning procedure identifies and removes outliers and other invalid data, 

leading to the presence of missing values in the dataset. Since the PLS method is able to 

handle missing values, this issue is not addressed prior to the development of the PLS 

model using the entire dataset. However, fuzzy logic and neural network-based methods 

cannot cope with missing values, and therefore all the rows containing at least one 

missing value are removed from each 10-input dataset. For each input set, the validation 

dataset is formed by randomly selecting, in a uniformly distributed manner, 20% of the 

observations. After the removal of missing values, the number of training and validation 

observations is slightly different for each input set, as they contain only two common 
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variables: the inputs selected according to the VIP values contain approximately 10% 

more training and validation data. These observations are removed, in a uniformly 

distributed manner, so both datasets have the same number of training and validation 

observations. The training and validation data partitioning is presented in Table 7-1. 

Tota l n u m b e r of 
observa t ions 

Tra in ing 
observa t ions 

Va l ida t ion 
observa t ions 

1200 960 - 80% 240 - 20% 

Table 7-1 Training and validation data partitioning for each set of input variables 

7.2 PLS models 

Two PLS models are computed, one for each dataset. The execution time is less than 1 

minute for each model. 

The best model using the inputs selected according to the VIP values contains 3 principal 

components and models 84.5% of the input (X) data and 63.3% of the output (Y) data; 

the model can predict 63.2% of the variation in Y. The mean square modeling and 

validation errors are 0.689 and 0.627, respectively. Table 7-2 shows the fraction of X and 

Y data variation modeled by each component, and the fraction of the Y variable variation 

predicted by the number of specified components. It is seen that the first principal 

component captures more than half of the variation of the X and Y data explained by the 

3-component model: 59.2% and 50.1%, respectively; a 1-component model would be 

able to predict 50.1% of the Y variable variation. 
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C o m p o n e n t % of X var iat ion % of Y var ia t ion % of Y var iat ion pred ic ted 
n u m b e r mode led in the m o d e l e d in the by the n u m b e r of 

c o m p o n e n t c o m p o n e n t speci f ied c o m p o n e n t s 
1 59.2 50.1 50.1 
2 17.2 9.1 59.2 
3 8.1 4.0 63.2 

Table 7-2 Influence of each component in the PLS model developed using the VIP-based input 
variables 

The best model using the inputs selected according to the regression coefficient values 

contains 3 principal components and models 73% of X data and 60.8% of the Y; it 

predicts 60.5% of the variation in Y. The modeling and validation errors are 0.792 and 

0.799, respectively. Table 7-3 shows the fraction of X and Y data variation modeled by 

each component, and the fraction of the Y variable variation predicted by the number of 

specified components. It is seen that the first principal component captures slightly less 

than half of the variation of the X and Y data explained by the 3-component model: 

44.2% and 44.8%, respectively; a 1-component model would be able to predict 44.7% of 

the Y variable variation. 

C o m p o n e n t % of X var iat ion % of Y var ia t ion % of Y var ia t ion pred ic ted 
n u m b e r mode led in the mode led in the by the n u m b e r of 

c o m p o n e n t c o m p o n e n t speci f ied c o m p o n e n t s 
1 44.2 44.8 44.7 
2 21.2 13.9 58.6 
3 7.6 2.1 60.5 

Table 7-3 Influence of each component in the PLS model developed using the regression coefficient-
based input variables 
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The characteristics, modeling and validation performance, and computing time of the 

PLS models developed using each input set are compared in table 7-4. 

Model character is t ics nput da tase t Mode l character is t ics 
V IP Regress ion coef f ic ients 

number of principal components 3 3 
fraction of X data explained by the model 84.5% 73% 
fraction of Y data explained by the model 63.3% 60.8% 
fraction of Y variation explained by the model 63.2% 60.5% 
modeling MSE 0.689 0.792 
validation MSE 0.627 0.799 
execution time < 1 minute < 1 minute 

Table 7-4 Characteristics and performance of the PLS models 

The model based on the VIP inputs is able to explain more of the X data variation than 

the model using the regression coefficient-based inputs; this can be explained by the fact 

that the VIP variables are significant not only for predicting Y, but also for modeling the 

X space. This model also outperforms the model using the regression coefficient-based 

inputs in predicting the Y variable. Table 7-5 presents the reduction in error when the 

model is developed using the VIP-based inputs, compared to the error of the model using 

the regression coefficient-based inputs. 

t ra in ing M S E reduct ion w h e n us ing the V IP -based inputs 13% 
val idat ion M S E reduct ion w h e n us ing the V IP-based inputs 21.5% 

Table 7-5 Error reduction of the PLS model when the VIP input-based are used 
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7.3 Sugeno-type fuzzy models 

First and second order Sugeno-type fuzzy models are developed using each set of inputs. 

All the models are developed by clustering the training data on the combined input-

output space using the subtractive clustering algorithm. The following model 

configurations are used: 

> first order models, with the same cluster radius for all data dimensions, and using the 

Product (PROD) implication function for determining the rule weights 

> first order models, with the same cluster radius for all data dimensions, and using the 

Minimum (MIN) implication function 

> first order models, with a different cluster radius for each data dimension, and using 

the Product (PROD) implication function 

> second order models, with the same cluster radius for all data dimensions, and using 

the Product (PROD) implication function 

The PROD implication function uses the product between the membership values of each 

input dimension to determine the rule weight associated with that input, while the MIN 

function uses the minimum of all membership values to determine the rule weight for that 

input. The order of the polynomial describing the rule consequents determines the order 

of the system. 

Different combinations of clustering parameters are used to generate the Sugeno models, 

and their predictive performance is compared. Based on the training and validation 

errors, the combination of clustering parameters that generates the best model is 
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identified. As mentioned previously, the radius determines the cluster's influence in the 

data space, the squash factor indicates the distance between clusters, and the accept and 

reject ratios indicate the degree of which each data point has the potential of becoming a 

cluster center. 

When using the same radius value for all data dimensions, the cluster has the same range 

of influence in each dimension. For the models obtained by using the same radius value 

for all data dimensions, the values of the clustering parameters are increased on the 

intervals presented in Table 7-6, with an incremental step size of 0.1 in each case. Given 

all possible combinations, 22000 different models are obtained when the clustering is 

carried out using a common radius for all data dimensions. 

Cluster ing pa ramete r Cluster rad ius Reject ratio Accep t ratio S q u a s h fac tor 
R a n g e 0.1 - 1 0 - 0 . 9 0 - 1 0 . 1 - 2 

S tep s ize 0.1 0.1 0.1 0.1 

Table 7-6 Parameters used for clustering with the same radius for all data dimensions 

When using a different radius value for each of the data dimensions, the cluster has 

different ranges of influence in each dimension and the number of clustering 

combinations increases considerably. For a 10-input dataset, if the clustering ranges and 

incremental step sizes are maintained the same as for the clustering using the same radius 

13 

for all data dimensions, 2.2 x 10 different models would be obtained, resulting in an 

extremely long computing time. To avoid this, fewer combinations of the clustering 

parameters are used to perform the clustering with a different radius value for each data 

dimension. These parameters are presented in Table 7-7. 
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Cluster ing pa ramete r Cluster rad ius 
Re jec t 

ratio 
Accep t 

rat io 
S q u a s h 
factor 

Va lues 0.2, 0.5, 0.7 0.1 0.3 0.7 

Table 7-7 Parameters used for clustering with a different radius for each data dimension 

This results in obtaining 177147 different models, and it is considered that a relative 

representative picture of a Sugeno model with clustering performed using a different 

cluster radius for each data dimension could be obtained using this reduced number of 

parameter combinations. 

7.3.1 1st order models with the same cluster radius for all data dimensions, 
and PROD implication function 

For each input set, 22000 first order models with the same cluster radius for all data 

dimensions and using the Product implication function for calculating the rule weights 

are obtained. 

The best Sugeno model using the inputs selected according to the VIP values contains 21 

rules, and generates training and validation errors of 0.236 and 0.358, respectively. The 

execution time for computing all the models is 36.1 hours. 

The best Sugeno model using the inputs selected according to the regression coefficient 

values contains 17 rules, and generates training and validation errors of 0.299 and 0.404, 

respectively. The execution time for computing all the models is 34.2 hours. 

These results, as well as the clustering parameters for each best model are summarized in 

Table 7-8. 
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Clus ter ing parameters 
Input da tase t 

C lus ter ing parameters 
V I P Regress ion coef f ic ients 

number of rules 21 17 
cluster radius 0.6 0.6 
reject ratio 0.1 0.1 
accept ratio 0.6 0.1 
squash factor 0.5 1.1 
training MSE 0.236 0.299 
validation MSE 0.358 0.404 
execution time for all models 36.1 hours 34.2 hours 

Table 7-8 Characteristics of the best Is' order Sugeno model with the same cluster radius for all data 
dimensions, and using the PROD implication function 

The model using the VIP-based inputs outperforms the model using the regression 

coefficient-based inputs, for both the modeling and validation errors. The execution time 

for computing all the models is slightly shorter for the regression coefficients model. The 

reduction in error when the model is developed using the VIP-based inputs, compared to 

the model using the regression coefficient-based inputs, is presented in Table 7-9. 

t ra in ing M S E reduct ion w h e n us ing the V IP -based inputs 21.1% 
val idat ion M S E reduct ion w h e n us ing the V IP-based inputs 11.4% 

Table 7-9 Error comparison between the VIP and regression coefficient-based 1st order Sugeno 
models with the PROD implication function and the same radius for all data dimensions 

7.3.2 1st order models with the same cluster radius for all data dimensions, 
and MIN implication function 

For each input set, 22000 first order models with the same cluster radius for all data 

dimensions and using the Minimum implication function for calculating the rule weights 

are obtained. 

99 



The best Sugeno model using the inputs selected according to the VIP values contains 28 

rules, and generates training and validation errors of 0.185 and 0.393, respectively. The 

execution time for computing all the models is 39.2 hours. 

The best Sugeno model using the inputs selected according to the regression coefficient 

values contains 35 rules, and generates training and validation errors of 0.162 and 0.42, 

respectively. The execution time for computing all the models is 39.6 hours. 

These results, as well as the clustering parameters for each best model are summarized in 

Table 7-10. 

Cluster ing pa ramete rs 
Input da taset 

C luster ing pa ramete rs 
V I P Regress ion coef f ic ients 

number of rules 28 35 
cluster radius 0.7 0.8 
reject ratio 0.1 0 
accept ratio 0.4 0.1 
squash factor 0.5 0.8 
training MSE 0.185 0.162 
validation MSE 0.393 0.42 
execution time for all models 39.2 hours 39.6 hours 

Table 7-10 Characteristics of the best Is' order Sugeno models with the same cluster radius for all 
data dimensions and using the MIN implication function 

For the training error, the model using the regression coefficient-based inputs performs 

better than the model using the VIP-based inputs, reducing the error by 12.4%. For the 

validation error, the model using the VIP-based inputs performs better than the model 

using the regression coefficient-based inputs, reducing the error by 6.4%. 

These results are summarized in Table 7-11. 
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t ra in ing M S E reduct ion w h e n us ing the regress ion coef f i c ien t -based inputs 12.4% 
val idat ion M S E reduct ion w h e n us ing the V I P - b a s e d inputs 6.4% 

Table 7-11 Error comparison between the VIP and regression coefficient-based Is' order Sugeno 
models with the MIN implication function and the same radius for all data dimensions 

7.3.3 1st order models with a different cluster radius for each data 
dimension, and PROD implication function 

For each input set, 177147 models with a different cluster radius for each data dimension, 

and using the Product implication function for calculating the rule weights, are obtained. 

The best Sugeno model using the inputs selected according to the VIP values contains 24 

rules and generates modeling and validation errors of 0.196 and 0.331, respectively. The 

execution time for computing all the models is 167.4 hours. 

The best Sugeno model using the inputs selected according to the regression coefficients 

values contains 27 rules and generates modeling and validation errors of 0.18 and 0.461, 

respectively. The execution time for computing all the models is 184.3 hours. 

The results are summarized in Table 7-12. 
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Cluster ing pa ramete rs 
Input da taset 

C luster ing pa ramete rs 
V IP Regress ion coef f ic ients 

number of rules 24 27 
input 1 cluster radius 0.7 0.7 
input 2 cluster radius 0.7 0.5 
input 3 cluster radius 0.7 0.5 
input 4 cluster radius 0.7 0.5 
input 5 cluster radius 0.7 0.7 
input 6 cluster radius 0.2 0.7 
input 7 cluster radius 0.5 0.7 
input 8 cluster radius 0.2 0.7 
input 9 cluster radius 0.2 0.7 
input 10 cluster radius 0.7 0.5 
reject ratio 0.1 0.1 
accept ratio 0.3 0.3 
squash factor 0.7 0.7 
training MSE 0.196 0.180 
validation MSE 0.331 0.461 
execution time for all models 167.4 hours 184.3 hours 

Table 7-12 Configuration and performance of the best 1st order Sugeno models with a different 
cluster radius for each data dimension and using the PROD implication function 

For the training error, the model using the regression coefficient-based inputs performs 

slightly better than the model using the VIP-based inputs, by an 8.2% margin. For the 

validation error, the VIP-based model significantly outperforms the regression 

coefficient-based model, by a 28.2% margin. These results are summarized in Table 7-13. 

t ra in ing M S E reduct ion w h e n us ing the regress ion coef f i c ien t -based inputs 8.2% 
val idat ion M S E reduct ion w h e n us ing the V IP -based inputs 28.2% 

Table 7-13 Error comparison between the VIP and regression coefficient-based 1st order Sugeno 
models with a different cluster radius for each data dimension 

102 



7.3.4 2nd order models with the same radius for all data dimensions, and 
PROD implication function 

For each input set, 22000 second order models with the same cluster radius for all data 

dimensions and using the Product implication function for calculating the rule weights 

are obtained. 

The best Sugeno model using the inputs selected according to the VIP values contains 15 

rules and generates modeling and validation errors of 0.19 and 0.365, respectively. The 

execution time for computing all the models is 71.3 hours. 

The best Sugeno model using the inputs selected according to the regression coefficient 

values contains 13 rules and generates modeling and validation errors of 0.22 and 0.415, 

respectively. The execution time for computing all the models is 81.9 hours. 

The results are summarized in Table 7-14. 

Cluster ing pa ramete rs 
Input da taset 

C luster ing pa ramete rs 
V I P Regress ion coef f ic ients 

number of rules 15 13 
cluster radius 0.5 0.3 
reject ratio 0.1 0.5 
accept ratio 0.2 0.5 
squash factor 1.2 1.3 
training MSE 0.190 0.22 
validation MSE 0.365 0.415 
execution time for all models 71.3 hours 81.9 hours 

Table 7-14 Characteristics of the best 2nd order Sugeno models with the same cluster radius for all 
data dimensions and using the PROD implication function 

The model using the VIP-based inputs outperforms the model using the regression 

coefficient-based values, for both the modeling and validation error. The reduction in 
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error when the model is developed using the VIP-based inputs, compared to the error of 

the model using the regression coefficient-based inputs, is shown in Table 7-15. 

t ra in ing M S E reduct ion w h e n us ing the V IP -based inputs 13.6% 
val idat ion M S E reduct ion w h e n us ing the V IP -based inputs 12% 

Table 7-15 Error reduction of the 2nd order Sugeno models with the same cluster radius for all data 
dimensions when the VIP-based inputs are used 

7.3.5 The best Sugeno fuzzy models 

The performance of the best Sugeno models obtained previously is presented in Table 7-

16; for each model type, the execution time required to compute all possible clustering 

combinations is also shown. 

S u g e n o mode l type 
Error (MSE) a n d execu t ion 

t ime (hours ) 

Input d a taset 
S u g e n o mode l type 

Error (MSE) a n d execu t ion 
t ime (hours ) V IP 

Regress ion 
coef f ic ients 

1st order, same cluster radius for 
all data dimensions, PROD 
implication 

training 0.236 0.299 1st order, same cluster radius for 
all data dimensions, PROD 
implication 

validation 0.358 0.404 
1st order, same cluster radius for 
all data dimensions, PROD 
implication execution time for all models 36.1 34.2 
1st order, same cluster radius 
for all data dimensions, MIN 
implication 

training 0.185 0.162 1st order, same cluster radius 
for all data dimensions, MIN 
implication 

validation 0.393 0.420 
1st order, same cluster radius 
for all data dimensions, MIN 
implication execution time for all models 39.2 39.6 
1st order, different cluster 
radius for each data dimension, 
PROD implication 

training 0.196 0.180 1st order, different cluster 
radius for each data dimension, 
PROD implication 

validation 0.331 0.461 
1st order, different cluster 
radius for each data dimension, 
PROD implication execution time for all models 167.4 184.3 
2nd order, same cluster radius 
for all data dimensions, PROD 
implication 

training 0.190 0.220 2nd order, same cluster radius 
for all data dimensions, PROD 
implication 

validation 0.365 0.415 
2nd order, same cluster radius 
for all data dimensions, PROD 
implication execution time for all models 71.3 81.9 

Table 7-16 Performance of the best Sugeno models 

The PROD implication function uses the product between the membership values of each 

input dimension in order to determine the weight of the rule associated with the input. If 

these membership values are relatively low, and there are many input dimensions, the 
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rule weights can have very low values. This can lead to a poor predictive performance, 

since there might be an insufficient number of rules with a high enough firing strength to 

accurately compute the model output; in order to have a complete rule-base, any input 

data vector should fire at least one rule with a relative high weight [31]. This situation did 

not occur in our case, as the models developed using the PROD implication function are 

fairly accurate. The first order models developed using the MIN implication function 

display a lower training error and a slightly higher validation error than that of models 

developed using the PROD implication. Second order models display a training 

performance superior to that of first order models developed using the same cluster radius 

for all data dimensions and the PROD implication function; their training performance is 

inferior to that of first order models developed using the MIN implication function. 

The first order model with the same cluster radius for all data dimensions, the MIN 

implication function and developed using the regression coefficient-based inputs has the 

smallest training error among all configurations. The first order model with a different 

cluster radius for each data dimension and PROD implication function, developed using 

the VIP-based inputs, displays the lowest validation error. These results are summarized 

in Table 7-17. 

S u g e n o mode l type Errors M S E ) Input da taset 
1st order, same cluster radius for all data 
dimensions, MIN implication 

training 0.162 Regress ion 
coef f ic ients 

1st order, same cluster radius for all data 
dimensions, MIN implication validation 0.420 

Regress ion 
coef f ic ients 

1st order, different cluster radius for each 
data dimension, PROD implication 

training 0.196 VIP 1st order, different cluster radius for each 
data dimension, PROD implication validation 0.331 

VIP 

Table 7-17 Sugeno models with the lowest training and validation errors 
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In most of the cases, the models developed using the input variables selected according to 

the VIP values outperform the models developed using inputs selected according to the 

regression coefficient values. In the cases when the models using the regression 

coefficient-based inputs have a smaller training error, the models using the VIP-based 

inputs display superior generalization ability, as shown by their validation performance. 

A comparison of the performance of each method, in terms of the predictor selection 

method, is shown in Table 7-18. 

Mode l T y p e 
Super io r 

t ra in ing error 
Super io r 

va l idat ion error 
1st order, same cluster radius for all data 
dimensions, PROD implication 

VIP VIP 

1st order, same cluster radius for all data 
dimensions, MIN implication 

Regression 
coefficients VIP 

1st order, different cluster radius for each 
data dimension, PROD implication 

Regression 
coefficients VIP 

2nd order, same cluster radius for all data 
dimensions, PROD implication VIP VIP 

Table 7-18 Performance of the Sugeno models in terms of predictor selection method 

7.4 Artificial neural network models 

Two feedforward backpropagation neural network architectures are developed for each 

input set: a single hidden layer network, and a two hidden layer network. In both cases, 

the output layer contains one neuron with a linear transfer function. The Levenberg-

Marquardt optimization method is selected as the training function for updating weight 

and bias values; this algorithm is fast, and it is used extensively in backpropagation 

networks [29]. The batch learning mode is used to train all the networks. The learning 

rate and momentum constant are set at 0.01 and 0.9, respectively, in order to ensure 
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network stability and minimize the risk of convergence on a local minimum. The 

maximum number of training epochs is set at 300. 

For both network architectures, the number of neurons in each hidden layer is increased 

from 5 to 20. The transfer functions are either the logarithmic sigmoid or hyperbolic 

tangent functions; these functions are commonly used in backpropagation algorithms 

[28], All possible combinations of these parameters are used to compute the models and 

the networks displaying the best training and validation error trade-off are considered as 

the best models. 

7.4.1 One-layer neural network models 

For the one-hidden layer network, there are 32 possible combinations of different number 

of hidden neurons and transfer functions. 

The best network configuration using the inputs selected according to the VIP values 

contains 18 hidden neurons with the hyperbolic tangent transfer function and generates 

training and validation errors of 0.272 and 0.413, respectively. The execution time for 

computing all the models is 0.16 hours. 

The best network configuration using the inputs selected according to the regression 

coefficient values contains 19 hidden neurons with the hyperbolic tangent transfer 

function, and generates training and validation errors of 0.288 and 0.429, respectively. 

The execution time for computing all the models is 0.14 hours. 

The results are summarized in Table 7-19. 
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Network parameters 
Input dataset 

Network parameters 
VIP Regression coefficients 

number of hidden neurons 18 19 
neuron activation function hyperbolic tangent logarithmic sigmoid 
training MSE 0.272 0.288 
validation MSE 0.413 0.429 
execution time for all models 0.16 hours 0.14 hours 

Table 7-19 The best one-layer standard backpropagation networks 

The model using the VIP-based inputs outperforms the model using the regression 

coefficient-based inputs, in terms of both training and validation errors. 

7.4.2 Two-layer neural network models 

For the two-hidden layer network, there are 1024 possible combinations of different 

number of hidden neurons and transfer functions. 

The best network configuration using the inputs selected according to the VIP values 

contains 14 neurons with the hyperbolic tangent function in the first layer, and 20 

neurons with the hyperbolic tangent function in the second layer; the training and 

validation errors are 0.157 and 0.401, respectively. The execution time for computing all 

the models is 9.8 hours. 

The best network configuration using the inputs selected according to the regression 

coefficient values contains 18 neurons with the logarithmic sigmoid function in the first 

layer, and 11 neurons with the logarithmic sigmoid function in the second layer; the 

training and validation errors are 0.174 and 0.420, respectively. The execution time for 

computing all the models is 10.9 hours. 



The results are summarized in Table 7-20. 

Network parameters 
Inpu dataset 

Network parameters VIP Regression coefficients 
number of neurons in the 1st layer 14 18 
1st layer activation function hyperbolic tangent logarithmic sigmoid 
number of neurons in the 2na layer 20 11 
2na layer activation function hyperbolic tangent logarithmic sigmoid 
training MSE 0.157 0.174 
validation MSE 0.401 0.420 
execution time for all models 9.8 hours 10.9 hours 

Table 7-20 The best two-layer standard backpropagation networks 

The model using the VIP-based inputs outperforms the model using the regression 

coefficient-based inputs, in terms of both training and validation errors. 

7.4.3 The best neural network models 

The two-layer networks generate a smaller training error than the one-layer networks; 

however, the validation errors of the one and two-layer models are very close. The two-

layer model obtained using the VIP inputs displays the smallest training and validation 

errors among all neural network configurations. In both cases, the network using the 

inputs selected according to the VIP values outperforms the network using the inputs 

selected according to the regression coefficient values. However, this difference is not 

significant, being less than 10%. 

The reduction in error when the model is developed using the VIP-based inputs, 

compared to that of the model using the regression coefficient-based inputs, is presented 

in Table 7-21. 
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1-layer 
network 

2-layer 
network 

training MSE reduction when using the VIP-based inputs 5.55% 9.77% 
validation MSE reduction when using the VIP-based inputs 3.73% 4.52% 

Table 7-21 Error reduction of the best neural model when the VIP-based inputs are used 

7.5 ANFIS models 

An ANFIS model is developed for each input dataset. The membership functions of the 

best first order Sugeno models with the same cluster radius for all data dimensions and 

using the PROD implication function are further tuned using the ANFIS method. This 

optimization is carried out using a hybrid method: the backpropagation algorithm is used 

to improve the parameters associated with the input membership functions, while a least 

squares optimization is performed for the output membership functions. The ANFIS 

method combines the advantages of fuzzy and neural networks learning, allowing the 

Sugeno system, trough an iterative process, to adjust the membership functions in order 

to minimize the error. The number of maximum training epochs is set at 3000. The 

ANFIS optimization can be carried out according to a minimum modeling performance 

criterion - the model displaying the lowest training error is considered the best - or 

according a minimum validation performance criterion - the model displaying the lowest 

validation error is considered the best. Compared to the original Sugeno models, the 

ANFIS optimization method according to the validation error results in minimal 

improvement of both training and validation errors - less than 1% for both input sets. 

The results of the ANFIS optimization according to the training error, along with the 

original Sugeno models, are presented in Table 7-22. 
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Mode l type 

Input da taset 

Mode l type 
V I P Regress ion coef f ic ients 

Mode l type 
Model l ing 

M S E 
Val idat ion 

M S E 
Model l ing 

M S E 
Val ida t ion 

M S E 
Sugeno 0.236 0.358 0.299 0.404 
ANFIS 0.163 0.48 0.262 0.402 
ANFIS execution time 2.23 hours 1.4 hours 

Table 7-22 ANFIS models 

The ANFIS method improves the training error of the model using the inputs selected 

according to the VIP values by 30.9% when compared to the corresponding Sugeno 

model; however, this comes at the detriment of the validation error, which increases by 

25.4%. For model using the inputs selected according to the regression coefficient values, 

the ANFIS method optimizes both the training and modeling errors, when compared to 

the corresponding Sugeno model: 12.4% and 0.5%, respectively. 

The ANFIS model using the VIP-based inputs presents a modeling performance increase 

of 37.8% when compared to the modeling error of the model using the regression 

coefficient-based inputs; the validation error of the VIP model is 16.2% bigger than that 

of the regression coefficients model. These results are summarized in Table 7-23. 

t ra in ing M S E reduct ion w h e n us ing the V IP -based inputs 37.8% 
val idat ion M S E reduct ion w h e n us ing the regress ion coef f i c ien t -based inputs 16.2% 

Table 7-23 Error difference between the VIP and regression coefficient-based ANFIS models 
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7.6 Discussion of results 

All models using 10 predictors generate relatively small training and validation errors. 

This indicates that, for the application presented in this work, 10 process variables are 

sufficient to develop an accurate black liquor solid content soft sensor, and both the VIP 

and regression coefficient-based input selection methods are accurate enough to obtain a 

good prediction performance. 

Since a small number of model inputs is used, their selection is critical. The soft sensor 

performance might suffer if variables not relevant to the prediction of the output variable 

are used to develop the model. Both the predictor set selected according to the VIP value, 

and the set selected according to the absolute magnitude of the regression coefficients 

perform well as predictive model inputs. For the models developed using a 10 variable 

input set, the Sugeno-type fuzzy logic and neural network-based models outperform the 

PLS models; this can be explained by their ability to explain nonlinearities better than the 

PLS method, which is a linear modeling technique. The best model configurations, for 

each method used in this study, sorted according to the lowest training and validation 

error are presented in Tables 7-24 and 7-25, respectively. The performance of the PLS 

model developed using all 143 input variables is also shown, and it can be seen that it 

outperforms the other models; however, as mentioned previously, due to modeling 

restrictions and issues related to an industrial implementation, it is not practical to use so 

many predictors for soft sensor development. 
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Mode l ing 
techn ique 

Input 
se lect ion 
me thod 

N u m b e r 
of inputs 

Bes t mode l conf igurat ion 
Tra in ing 

error 
Va l ida t ion 

er ror 

PLS N/A 143 7 principal components 0.057 0.098 
Neural 
networks 

VIP 10 2 layers backpropagation 0.157 0.401 

Sugeno 
fuzzy logic 

Regression 
coefficients 10 

1st order, same cluster 
radius for all dimensions, 

MIN implication 
0.162 0.42 

ANFIS VIP 10 hybrid optimization 0.163 0.480 

Sugeno 
fuzzy logic 

Regression 
coefficients 

10 
1st order, different cluster 
radius for each dimension, 

PROD implication 
0.180 0.461 

Sugeno 
fuzzy logic 

VIP 10 
2na order, same cluster 

radius for all dimensions, 
PROD implication 

0.190 0.365 

Sugeno 
fuzzy logic VIP 10 

1st order, same cluster 
radius for all dimensions, 

PROD implication 
0.236 0.358 

Neural 
networks 

VIP 10 1 layer backpropagation 0.272 0.413 

PLS VIP 10 3 principal components 0.689 0.627 

Table 7-24 Best models sorted according to the lowest training error 

Mode l ing 
techn ique 

Input 
se lect ion 
me thod 

N u m b e r 
of inputs 

Best mode l conf igurat ion 
Tra in ing 

error 
Va l ida t ion 

error 

PLS N/A 143 7 principal components 0.057 0.098 

Sugeno 
fuzzy logic 

VIP 10 
1st order, different cluster 

radius for each dimension, 
PROD implication 

0.196 0.331 

Sugeno 
fuzzy logic VIP 10 

1st order, same cluster 
radius for all dimensions, 

PROD implication 
0.236 0.358 

Sugeno 
fuzzy logic 

VIP 10 
2nd order, same cluster 

radius for all dimensions, 
PROD implication 

0.190 0.365 

Sugeno 
fuzzy logic VIP 10 

1st order, same cluster 
radius for all dimensions, 

MIN implication 
0.185 0.393 

Neural 
networks 

VIP 10 2 layers backpropagation 0.157 0.401 

ANFIS 
Regression 
coefficients 10 Hybrid optimization 0.262 0.402 

Neural 
networks 

VIP 10 1 layer backpropagation 0.272 0.413 

PLS VIP 10 3 principal components 0.689 0.627 

Table 7-25 Best models sorted according to the lowest training error 
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The models developed using inputs selected according to the VIP values consistently 

outperform the models using the regression coefficients values: out of 8 model 

configurations computed for each input dataset, the VIP-based models generate both 

training and validation errors lower than those of the regression coefficient-based models 

in 5 cases. For 2 Sugeno models - the first order model with the same cluster radius for 

all data dimensions and MIN implication function, and the first order model with a 

different cluster radius for each data dimension and PROD implication function - the 

regression coefficient-based models display a slightly better modeling performance, but 

the VIP-based models have lower validation errors. In the case of the ANFIS method, the 

regression coefficient-based model displays a better validation performance, but the VIP-

based model has a lower training error. 

For an industrial implementation, the ability to use real-time measurements not used 

during model training for accurately predicting the output variable is critical in measuring 

the soft sensor performance and its degree of usefulness for optimizing the process 

operation. If the validation error is considered as the main performance measure, the top 

5 models are developed using input variables selected according to the VIP values. 

Given these results, it is considered that, for this application, predictors selected 

according to the VIP value lead to the development of more accurate models than 

predictors selected according to the regression coefficient values. 

Using variables with high VIP values for the development of industrial soft sensors offer 

certain advantages, as these variables describe simultaneously both the X space and the 



correlation between the X and Y variables, while the regression coefficient variables 

describe only the regression relationship between X and Y: 

> datasets of industrial process measurements often contain a significant number of 

correlated variables, and the dataset variability is driven by relatively few process 

variables. In other words, only a few variables might be responsible for the global 

variability displayed by the process. In these situations, variables with high VIP 

values can successfully reduce the X space dimension while retaining most of the 

information pertinent to the process variability, thus allowing the development of an 

accurate regression model with fewer inputs 

> the simultaneous modeling of both the X and Y spaces leads to an unique solution to 

the predictive problem, as opposed to a number of different solutions that regression 

methods dealing solely with the Y prediction can provide. For example, for the same 

input dataset, different partial least regression algorithms will assign different 

regression coefficient values to the input variables; this multiple choice of answers 

can lead to low confidence regarding the choice of model parameters [32], 

For each modelling technique, the execution times required to compute all possible 

model configurations are summarized in Tables 7-26 and 7-27. Table 7-26 shows the 

computing times required to obtain all model configurations in order to identify the 

training-error best models, while Table 7-27 shows the computing times required to 

obtain all model configurations on order to identify the validation-error best models. 
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Mode l ing 
techn ique 

Input 
se lec t ion 
me thod 

N u m b e r 
of inputs 

Best mode l 
conf igura t ion 

N u m b e r of all 
poss ib le mode l 
conf igura t ions 

Compu t i ng 
t ime 

PLS N/A 143 7 principal 
components 

1 < 1 minute 

PLS VIP 10 3 principal 
components 

1 < 1 minute 

Neural 
networks 

VIP 10 1 layer 
backpropagation 32 0.16 hours 

ANFIS VIP 10 hybrid 
optimization 1 2.23 hours 

Neural 
networks 

VIP 10 
2 layers 
backpropagation 1024 9.8 hours 

Sugeno 
fuzzy logic 

VIP 10 

1st order, same 
cluster radius for 
all dimensions, 
PROD 
implication 

22000 36.1 hours 

Sugeno 
fuzzy logic 

Regression 
coefficients 10 

1st order, same 
cluster radius for 
all dimensions, 
MIN implication 

22000 39.6 hours 

Sugeno 
fuzzy logic VIP 10 

2na order, same 
cluster radius for 
all dimensions, 
PROD 
implication 

22000 71.3 hours 

Sugeno 
fuzzy logic 

Regression 
coefficients 10 

1st order, 
different cluster 
radius for each 
dimension, 
PROD 
implication 

177147 184.3 hours 

Table 7-26 Best training-error models sorted according to the lowest computing time required to 
obtain all model configurations 
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Modeling 
technique 

Input 
selection 
method 

Number 
of inputs 

Best model 
configuration 

Number of all 
possible model 
configurations 

Computing 
time 

PLS N/A 143 
7 principal 
components 1 < 1 minute 

PLS VIP 10 
3 principal 
components 

1 < 1 minute 

Neural 
networks VIP 10 

1 layer 
backpropagation 

32 0.16 hours 

ANFIS Regression 
coefficients 10 

Hybrid 
optimization 

1 1.4 hours 

Neural 
networks VIP 10 

2 layers 
backpropagation 1024 9.8 hours 

Sugeno 
fuzzy logic VIP 10 

1s 'order, same 
cluster radius for 
all dimensions, 
PROD 
implication 

22000 36.1 hours 

Sugeno 
fuzzy logic VIP 10 

1s 'order, same 
cluster radius for 
all dimensions, 
MIN implication 

22000 39.2 hours 

Sugeno 
fuzzy logic VIP 10 

2na order, same 
cluster radius for 
all dimensions, 
PROD 
implication 

22000 71.3 hours 

Sugeno 
fuzzy logic 

VIP 10 

1st order, 
different cluster 
radius for each 
dimension, 
PROD 
implication 

177147 167.4 hours 

Table 7-27 Best validation-error models sorted according to the lowest computing time required to 
obtain all model configurations 

The PLS models display the shortest computing time, followed by the neural network 

models and the Sugeno models. The ANFIS models display a relatively short computing 

time. However, prior to computing the ANFIS models, the best first order Sugeno model 

with the same cluster radius for all data dimensions has to be identified; this computing 

time is not included in the previous tables. 
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The training is performed off-line, and the search for the best model configuration is 

carried out one time. Once the best configuration is identified, the real-time calculation of 

the soft sensor output is done very fast: for all the best models identified in this study, it 

takes less than 5 seconds to calculate the output of one input observation. Therefore, it 

can be considered that the computing time required to identify the best model 

configuration is a less relevant performance criterion. 

The best two-hidden layer neural network model generates the lowest training error, but 

the first order Sugeno fuzzy model with clustering performed using a different cluster 

radius for each data dimension generates the lowest validation error. In both cases, the 

model inputs are selected according to the VIP criterion. Identifying the best modeling 

method for this soft sensor application becomes somewhat subjective, in the sense that 

different criteria can be considered: 

> if the main performance criteria is the training error and computational time, the two-

layer neural network model can be considered as the best modeling method 

> if the main performance criterion is the validation error, the Sugeno fuzzy model with 

clustering performed using different cluster radii for each data dimension can be 

considered as the best modeling method 

As mentioned before, the validation error is essential in evaluating the soft sensor 

performance, and the model training time can be considered as being less important. The 

Sugeno fuzzy model obtained by using a different cluster radius for each data dimension 

generates a very low modeling error, and if the practical aspects mentioned previously are 

taken into consideration, it represents the best predictive model configuration. An 
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analysis of a fuzzy rule base can also provide insights into the model behaviour, allowing 

early detection of instances when the prediction is not accurate. 

Also, for the first order Sugeno model with clustering performed using a different cluster 

radius for each data dimension, the search interval for the clustering parameters was 

narrowed to avoid an extremely long computing time for identifying the best model. A 

more precise model might have been obtained had the combinations of clustering 

parameters been performed on the full search interval. 

Both the best Sugeno and neural network models presented previously can be further 

improved by refining certain modeling parameters, such as, among others, the number of 

hidden layers and neurons, and increasing the search intervals for the clustering 

parameters. The modeling and validation performances of the best Sugeno model - the 

actual output values along with the model generated outputs - are illustrated in Figures 7-

1 and 7-2, respectively. 
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Figure 7-1 Model ing performance of the best Sugeno model 
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Optimal Sugeno model val idat ion performance (fwlSE = 0.331) 
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8 EFFECTS OF DATA SCARCITY ON THE VALIDATION 
ERROR OF SUGENO FUZZY MODELS 

8.1 Introduction 

A closer inspection of the Sugeno fuzzy models revealed that the validation error behaves 

in an oscillatory manner, in the sense that its values would abruptly increase or decrease 

from one model to the next. This suggested that some models are not representative of the 

validation observations. For example, for the first order Sugeno models using the same 

cluster radius for all data dimensions and developed using the inputs selected according 

to the VIP values, the validation error increases nearly five times from the 35-rule model 

to the 36-rule model. This behaviour was also observed for the first order models using 

the same cluster radius for all data dimension and developed using the regression 

coefficient-based inputs, as well as for the second order models with both input sets. The 

magnitude and frequency of the validation error oscillations decrease in the case of the 

models obtained by using a different cluster radius for each data dimension, but they are 

still clearly present. An analysis of the validation error evolution for the first order 

Sugeno models with the same cluster radius for all data dimensions, using the PROD 

implication function and developed using the VIP inputs is presented next. 

8.2 Validation error analysis 

The evolution of the validation error values, for the 1 to 40-rule models is presented in 

Figure 8-1. It was considered that models containing more than 40 rules become over-

fitted, since the validation error increases considerably for these models. 
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Figure 8-1 Oscillatory behavior of the validation error 

The 30, 36, 37 and 39-rule models display the most oscillatory behaviour of the 

validation error. An inspection of the validation outputs reveals that for each of these 

models, only one observation displays a significantly higher deviation from its respective 

target value. This observation is responsible for most of the model's validation error, 

suggesting that it falls in a region that is not properly covered by the model's rule base. 

The absolute validation error for these models is presented on the plots below: figures 8-

2, 8-4 and 8-5 show that the same observation - observation number 163 from the 

validation database - displays the greatest error among all validation observations for the 

30, 37 and 39-rule models, respectively. Figure 8-3 shows the deviation of the 

observation 210 being responsible for most of the validation error of the 36-rule model. 
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30-rule model: validation errors for each observation 

Figure 8-2 Validation error of each observation for the 30-rule model 

36-rule model: validation errors for each observation 

Figure 8-3 Validation error of each observation for the 36-rule model 
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30-rule model: validation errors for each observation 

Figure 8-4 Validation error of each observation for the 37-rule model 

39-rule model: validation errors for each observation 

Figure 8-5 Validation error of each observation for the 39-rule model 
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For each model, the percentage of the validation error caused by the observation 

displaying the greatest deviation is presented in Table 8-1. 

Models 
30 rules 36 rules 37 rules 39 rules 

MSE of the complete validation dataset 0.706 3.282 2.583 1.175 
MSE of the validation dataset with the 
observation with the largest deviation 
removed 

0.511 1.273 0.606 0.465 

% of model validation error caused by 
the observation with the largest 
deviation 

27.6% 61.2% 76.5% 60.4% 

Table 8-1 Impact of the validation observation with the largest deviation on the model validation 
error 

For each of these models, a closer inspection of the rule weights and outputs for each 

observation identified previously as displaying a severe error reveals the following: 

> the rule bases contain one rule with a weight fairly higher than the rest of the rules, as 

measured by the standard score of the rule - the standard score indicates how many 

standard deviations an observation is above or below the mean 

> the output of the rule with the highest weight is well outside the interval [48.3 56.4], 

representing the minimum and maximum values of the output variable used in the 

training dataset 

> if the rule with the maximum weight is removed, the mean and standard deviation of 

the remaining rule weights are fairly low 
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The rule base behaviour relative to the observation having the biggest validation error is 

presented in Table 8-2. 

Models 
30 rules 36 rules 37 rules 39 rules 

Output of the rule with the highest weight 85.86 75.95 669.85 -132.29 
Weight of the rule with the highest weight 0.133 0.141 0.234 0.232 
Standard score of the rule with the highest 
weight 

4.4 5.83 5.76 3.74 

Mean of the rule base not containing the 
rule with the highest weight 

0.0055 0.00025 0.00082 0.031 

Standard deviation of the rule base not 
containing the rule with the highest weight 

0.016 0.00071 0.0033 0.042 

Table 8-2 Rule base behaviour 

These findings indicate that for each of these observations, there is only one rule having 

an impact on the modeling result, as suggested by the low mean and standard deviation 

values of the rule base not containing the rule with the highest weight. The output of the 

rule with the maximum weight is not representative of the training data, so therefore the 

model result will not be accurate. 

In order to have a complete rule-base, any input data vector should fire at least one rule 

with a relative high weight [31]. As presented in Table 8-2, the highest rule weights for 

the models presented are below 0.25. 

The rule base of some models cannot handle certain validation observations that appear 

to fall in a model region covered mainly by one rule. Therefore, this rule is most 

responsible for the system output. The presence of regions not properly covered by the 

model rule base is probably caused by training data scarcity: if there is not enough data to 



cover the entire training space, the model does not have the required information to 

accurate generalize for some validation observations. 

For a soft sensor industrial application, this can become an important issue, since the 

prediction might be inaccurate for the real-time measurements used as the model inputs 

that happen to fall in a region not properly covered by the rule base. The brief analysis 

presented in this chapter showed that inspection of the rule behaviour of a fuzzy system 

can provide an insight into the model. By analyzing the rule weights and outputs of each 

incoming real-time observation, criteria can be developed for detecting measurements for 

which the model is not representative. The validation error analysis presented previously 

- output of the rule with the maximum weight, mean and standard deviation values of the 

remaining rules - could be further investigated. A deeper analysis of the model rule base 

can also produce other criteria that can be used in order to provide users with an 

advanced warning concerning the soft sensor accuracy. 
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9 SUMMARY, CONCLUSIONS AND FUTURE WORK 

9.1 Summary 

Soft sensors represent a valuable tool for industrial users to optimize the process 

operation. Predictive models using measurements readily available can be developed to 

infer the value of critical process variables not measured in real-time, and allow an early 

detection of abnormal process behaviour. Historical process data related to the black 

liquor recovery circuit from a Canadian kraft pulp and paper mill is used to develop soft 

sensors models for the black liquor solid content at the concentrator feed. Currently, this 

solid content value is not measured on-line; it is obtained once every 8 hours trough a 

laboratory analysis of a black liquor sample. 

The historical process data is cleaned by removing irrelevant variables and observations 

not representative of a normal operating regime. The cleaned dataset contains 144 

variables: 143 variables to be used as model inputs, and the output variable - the solid 

content. For practical reasons related to model development and soft sensor industrial 

implementation, an input set containing 10 variables is used to build the models. Two 

selection criteria are used to select the top 10 variables most relevant to the prediction: 

the significance in modeling the input space and predicting the output, indicated by the 

so-called VIP value, and the significance solely in predicting the output, indicated by the 

absolute magnitude of the regression coefficients. A PLS analysis is performed on the 

complete dataset, and 2 subsets containing the ten variables with the highest VIP and 

regression coefficient values are formed. Their composition is quite different, as only two 

variables are common to both datasets. Both datasets are made up of variables related to 
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the flow of steam and black liquor in the evaporator train. From each dataset, 20% of the 

observations are used as validation data. These 10-variable datasets are used as inputs to 

predictive models developed using PLS, Sugeno-type fuzzy and neural network methods. 

The PLS analysis performed on the complete dataset also reveals that there is no 

significant nonlinearity or lagging between the input and output variables. Missing values 

are introduced in the dataset during the cleaning process by eliminating unwanted data. 

Prior to modeling, all observations containing at least one missing value are eliminated. 

The modeling and validation datasets obtained using both input selection criteria contain 

960 and 240 observations, respectively: 80% of the available data is used for training, 

while the remaining 20% is used for validation. 

First and second order Sugeno models are developed. The rule antecedents are obtained 

by clustering the input-output data, using either the same cluster radius for all data 

dimensions, or a different cluster radius for each dimension. The rule weights are 

calculated using either the Product or Minimum implication function. The best model is 

selected from all possible combinations of the clustering parameters. A reduced search 

interval for the clustering parameters is used in the case of clustering with a different 

cluster radius for each dimension, in order to avoid an extremely long computing time. 

Neural network models with one and two hidden layers are computed. Two transfer 

functions of the hidden layer are tested: logarithmic sigmoid and hyperbolic tangent. A 

linear output layer transfer function is used in all cases. For each hidden layer, the 

number of neurons is increased from 5 to 20. 



An Adaptive neuro-fuzzy {ANFIS) model is developed for each input dataset, in order to 

further optimize the first order Sugeno models developed using the same cluster radius 

for all data dimensions and the PROD implication function. 

No combinations of modeling parameters were required for the PLS models; for each 

input set, the best PLS model contains 3 principal components. 

In total, 8 different model configurations are developed for each set of input variables: 1 

PLS configuration, 4 Sugeno-type fuzzy configurations, 2 neural network configurations 

and 1 ANFIS configuration. The performance of all those models is compared using the 

modeling and validation errors. 

9.2 Conclusions 

This work presents the development of a predictive model for the black liquor solid 

content at the concentrator feed, using historical process data related to the black liquor 

recovery circuit from a Canadian kraft pulp and paper mill. The objectives are to 

determine if 10 input variables are sufficient for developing an accurate soft sensor, to 

determine which PLS-based input selection criterion leads to the development of the best 

predictive model, and to determine which modeling method generates the smallest error. 

The training and validation errors of the models presented are relatively low, indicating 

that for the application described in this work, 10 predictors are sufficient for developing 

an accurate soft sensor. 

The models developed using the inputs selected according to their ability to both explain 

the input space and predict the output variable consistently outperform, both from a 
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training and validation error perspective, the models developed using the inputs selected 

according to their ability to only predict the output variable. Therefore, is concluded that, 

for the application described in this study, the former method of input selection leads to 

the development of the more accurate soft sensor models. 

The Sugeno-type fuzzy logic and neural network-based models outperform the PLS 

models. The best 2-layer neural network generates the lowest training error, but the first 

order Sugeno fuzzy model with clustering performed using a different cluster radius for 

each data dimension generates the lowest validation error. Since an industrial soft sensor 

uses process measurements not used in the training process as inputs to the predictive 

model, it can be concluded that the first order Sugeno fuzzy model with clustering 

performed using a different cluster radius for each data dimension is the best model. The 

computing time can be considered as being a less important criterion, since the model 

training is performed once, off-line. Moreover, for all the model configurations studied, 

the real-time calculation of the soft sensor output takes less than 5 seconds. 

Since it is shown that 10 predictors can be successfully used to develop an accurate soft 

sensor, and the input selection method as well as the model configuration leading to the 

best predictive performance is identified, it is considered that the objectives of this study 

are met. The developed soft sensor model can be used to provide operators with a real-

time estimation of the black liquor solid content, allowing for rapid corrective action if 

the solid content drops bellow a critical threshold. This prevents loss of equipment 

efficiency due to scaling, reduced frequency of shutdowns for cleaning purposes, and a 

reduced energy consumption. 

131 



9.3 Future work 

The soft sensor models developed in this work use a linear statistical-based method -

PLS - to select a relevant set of variables to be used as inputs to predictive models 

developed using non-linear techniques, such as fuzzy logic and neural networks. 

Identifying an input selection method specific to the technique used for developing the 

model might increase its predictive performance; for example, for a fuzzy logic-based 

predictive model, the significant inputs are selected using fuzzy logic-based criteria. 

The computing time required to identify the clustering parameters leading to the best 

Sugeno model can become an obstacle in developing more precise and complex models. 

Developing a methodology for efficiently identifying shorter optimal search intervals for 

the Sugeno model clustering parameters can facilitate the development of more accurate 

models, by considerably reducing the training time. 

The validation error analysis presented previously should be further investigated, to 

determine precise criteria for identifying real-time measurements for which the model 

cannot produce an accurate prediction. 
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