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ABSTRACT 

Effects of estradiol on central dopamine function and 
dopamine-mediated behaviors in female rats 

Matthew Quinlan, Ph.D. 
Concordia University, 2009 

Estrogen plays an important role in the modulation of cognitive performance in 

both women and female rodents. These effects may be attributed to the estrogenic 

modulation of neuroanatomical structures and neurotransmitter systems in the brain, 

including dopamine. Here, the influence of estrogen on dopamine-mediated behaviors as 

well as dopamine release and synaptic plasticity were examined. 

Study 1 showed that latent inhibition is exhibited by females in proestrus, a time 

of high estrogen, but not by females in estrus or metestrus, periods of low estrogen. Study 

2 examined the effects of chronic estradiol (E2) in ovariectomized rats on cognitive 

strategy. Rats with high levels of E2 predominantly use a place strategy while rats with 

low levels of E2 predominantly use a response strategy. Systemic administration of 

« dopamine Dl receptor (D1R) and dopamine D2 receptor (D2R) antagonists caused a 

switch of strategy use in low E2 rats. To determine where in the brain this effect was 

occurring, Study 3 utilized intracranial infusions of D1R and D2R antagonists in the 

dorsal striatum (DS) or ventral striatum. D1R, but not D2R, antagonists in the DS caused 

a switch in strategy use by low E2 females. This suggests that strategy use in low E2 rats 

is altered by D2R antagonism in another brain region. To this end, in Study 4 D1R and 
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D2R antagonists were infused into the medial prefrontal cortex (mPFC). Both D1R and 

D2R antagonism resulted in a switch of strategy use by low E2 rats. 

In Study 5, in vivo microdialysis was utilized in anaesthetized rats to demonstrate 

that local infusion of E2 into the DS rapidly increases dopamine transmission. Dual-

probe in vivo microdialysis was also used in Study 6 to investigate the effects of E2 on 

dopamine transmission in the mPFC. Additionally, Western immunoblotting was 

conducted to evaluate the effects of E2 on synaptic protein levels. Study 7 examined the 

role of E2 on performance in a mPFC-mediated working memory task. Together, these 

studies suggest that estrogen influences cognitive performance in the female rat and that 

this effect is mediated, in part, by its action in the DS and mPFC. 
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1. Frame of Reference 

Traditionally, research investigating the neurobiological effects of steroid 

hormones on behavior has focused on the control of reproductive processes. In the last 25 

years, however, an increased emphasis has been placed on the role of hormones, 

especially estrogen, on the performance of behavioral tasks. A host of studies have 

established that estrogen significantly influences the performance of both women (e.g. 

Duff and Hampson 2000; Sherwin 2003) and female rats (e.g. Luine and Rodriguez 1994; 

Gibbs 1999) in studies that evaluate task acquisition (Gibbs 1999; Gibbs 2000), working 

memory (Bimonte and Denenberg 1999; Holmes, Wide et al. 2002), and response 

inhibition (Wang, Sable et al. 2008). Despite strong evidence demonstrating the 

modulatory effects of estrogen on learning and memory behaviors a consensus regarding 

the direction and magnitude of its effects has not yet been reached. Estrogen has been 

shown to enhance (Gibbs 1999; Gibbs 2000; Asthana, Baker et al. 2001; Keenan, Ezzat et 

al. 2001), decrease (Holmes, Wide et al. 2002; Rapp, Espeland et al. 2003; Wide, 

Hanratty et al. 2004), or have no effect (Resnick, Maki et al. 1998; Galea, Wide et al. 

2001; Gibbs 2002; Gabor, Nagle et al. 2003) on performance in several types of 

behavioral tasks including place and response learning, delayed alternation, and working 

memory. 

17-P estradiol (E2) is the most abundant and psychoactive estrogen in humans 

(Morissette, Le Saux et al. 2008) as well as the estrogen most commonly used in 

experimental learning and memory research. E2 has been shown to modulate the neural 

function of glutamate (Cyr, Ghribi et al. 2000), GABA (Schultz, von Esenwein et al. 
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2009), acetylcholine (Gibbs and Aggarwal 1998), serotonin (Fink, Sumner et al. 1998), 

norepinephrine (Conde, Bicknell et al. 1995), and dopamine (DA; Becker 1990). High 

levels of E2 abate DA release in the medial prefrontal cortex (mPFC; Dazzi, Seu et al. 

2007) and enhance DA release in the dorsal striatum (DS; Xiao and Becker 1994); 

changes which can be correlated with alterations in learning and memory behavior (e.g. 

Castner, Xiao et al. 1993). High levels of E2 influence several types of DA-mediated 

behavior including the attenuation of response learning (Korol and Kolo 2002; Daniel, 

Hulst et al. 2006), the improvement of working memory (Daniel, Hulst et al. 2006), an 

enhancement of spontaneous alternation (Waif, Koonce et al. 2009), and biasing the use 

of a place strategy (Davis, Jacobson et al. 2005). Additionally, previous work from our 

lab shows that high E2 abolishes latent inhibition (LI; Nofrey, Ben-Shahar et al. 2008); a 

task dependent on dorsal striatal DA function (Lubow 1997). 

It is clear that E2 is a strong modulator of performance in a number of behavioral 

tasks, including those which are mediated by DA transmission in the brain. However, 

relatively little research concerning the behavioral consequences of the estrogenic 

modulation of DA has been conducted and further examination is necessary in order to 

fully understand its effect on performance in learning and memory tasks. Thus, the 

experiments described within this thesis were conducted with the goal of examining the 

role of high and low levels of E2 on the performance of behavioral tasks mediated by 

DA. In addition, the influence of E2 on the structure and neurotransmission of 

dopaminergic target regions in the brain was also investigated in order to determine the 

neurobiological foundation for these behavioral changes. A characterization of this 
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modulation may, in part, contribute to the resolution of inconsistencies seen among 

studies investigating the role of E2 on performance in behavioral tasks. 

1.1. The role of E2 on performance in behavioral tasks 

1.1.1. E2 action in the brain 

All steroid hormones, including estrogens, are produced within an organism from 

native cholesterol molecules and are distributed throughout the body via the bloodstream 

(Nelson 2005). E2, like other steroid hormones, is lipid soluble and passes through the 

membranes of cells and neurons in order to bind to intracellular estrogen receptors (ERs) 

which then regulate gene expression (McEwen 2002). Although initially only identified 

and studied in the hypothalamus and pituitary gland (Pfaff and Keiner 1973), ERs were 

subsequently identified in varied brain regions including the hippocampus (HPC), diverse 

cerebral cortices, the midbrain, and the brain stem of rats (McEwen 2002). All estrogens, 

including E2, are converted from testosterone via the enzyme aromatase (Naftolin, Ryan 

et al. 1972; Nelson 2005). This may occur in the ovaries, adrenal glands, or brain of 

several species including rats and mice (Roselli, Horton et al. 1985; Shinoda, Nagano et 

al. 1994), monkeys (Flores, Naftolin et al. 1973), and humans (Stoffel-Wagner, Watzka et 

al. 1998; Stoffel-Wagner, Watzka et al. 1999). 
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1.1.2. The role ofE2 on cognition 

Initial research on steroid hormones emphasized the estrogenic mediation of 

regulatory, growth, and reproductive processes (Luine 2008). However, anecdotal 

evidence from medical doctors describing the disruptive cognitive symptoms associated 

with the decrease in ovarian hormones at menopause (as cited in: McEwen and Alves 

1999) suggested that E2 may be involved in learning and memory behaviors as well. One 

of the first experimental studies to support this influence of E2 on cognition demonstrated 

that the neonatal gonadectomy of male rats attenuates spatial working memory in 

adulthood but the neonatal administration of E2 to female rats improves performance in 

this task (Williams, Barnett et al. 1990). This, and similar findings, led to clinical trials 

which indicated that E2 could be an effective treatment for the cognitive deficiencies 

associated with Alzheimer's Disease (Simpkins, Green et al. 1997). 

Further research in this area has confirmed the role of E2 in the mediation of 

performance in tasks evaluating learning and memory. The administration of E2 to 

ovariectomized (OVX) female rats enhances task acquisition and working memory 

performance in a radial arm maze (Daniel, Fader et al. 1997; Luine, Richards et al. 1998; 

Fader, Johnson et al. 1999), a T-maze (Fader, Hendricson et al. 1998), and a water escape 

task (O'Neal, Means et al. 1996). E2 appears to be particularly important as task difficulty 

increases (Bimonte and Denenberg 1999) although these benefits are task- and dose-

dependent. In an 8-arm radial maze high E2 impairs, while low E2 enhances, 

performance in a spatial working memory task (Holmes, Wide et al. 2002). High E2 also 

impairs performance in a delayed alternation task in a T-maze (Wide, Hanratty et al. 

2004) but has no effect in a delayed matching-to-place task (Gibbs 1999; Gibbs 2002). In 
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contrast, similarly high levels of E2 delay the acquisition of a water maze task in both 

intact (Warren, Humphreys et al. 1995) and OVX (Chesler and Juraska 2000) females. 

Still other studies find no effect of E2 on task acquisition (Holmes, Wide et al. 2002; 

Wide, Hanratty et al. 2004). Despite these inconsistent findings, it is apparent that E2 is 

an important modulatory factor in several types of behavior involving learning and 

memory. 

The majority of behavioral effects associated with E2 have been observed 

subsequent to chronic hormone administration and are thought to be mediated by the 

genomic activity of classic ERs. However, E2 can also act rapidly, in a time course of 

hours rather than days, to affect learning and memory behavior. For example, E2 

administered within four hours of a testing period has been shown to enhance visual and 

place memory (Luine, Jacome et al. 2003), spatial learning (Frye, Duffy et al. 2007), and 

object recognition (Waif, Rhodes et al. 2006). 

1.1.3. Mechanisms ofE2 action on cognition 

The effects of E2 on performance in tasks evaluating learning and memory are 

thought to be primarily mediated through the ER-P system. The relatively recent 

identification of this ER subtype, with significant population densities in the dentate 

gyrus and frontal and parietal cortices, provided a neurobiological basis for the effects of 

E2 on cognition (Kuiper, Enmark et al. 1996; Kuiper, Shughrue et al. 1998). ER-P is 

now known to play a major role in the regulation of mood, fear, and anxiety (Weiser, 

Foradori et al. 2008) and the modulation of performance in behavioral tasks (Osterlund 
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and Hurd 2001). For example, OVX female P-estrogen receptor knockout (PERKO) mice 

have impairments in spatial memory tasks that cannot be restored by E2 administration 

(Rissman, Heck et al. 2002). In wild-type mice, learning is enhanced by ER-P, but rarely 

by ER-ot, agonists (Rhodes and Frye 2006; Liu, Day et al. 2008; Waif, Koonce et al. 

2008). 

At least some of the effects of E2 that benefit behavioral performance may be 

attributed to the enhancement of cellular functions. Dendritic spine density in the CA1 

area of the HPC is augmented by high E2 levels in both OVX (Gould, Woolley et al. 

1990) and cycling female rats (Woolley and McEwen 1992). Long-term potentiation 

(LTP) in the hippocampal neurons of wild-type mice is enhanced by ER-P agonists 

(Rhodes and Frye 2006; Liu, Day et al. 2008; Waif, Koonce et al. 2008) and is attenuated 

in PERKO mice (Day, Sung et al. 2005). LTP fluctuates across the estrous cycle and is 

associated with improved learning and memory performance (Warren, Humphreys et al. 

1995). 

Much of the estrogenic influence on learning and memory behaviors is attributed 

to the classic genomic effects of ER-a and ER-P, however, recent studies have described 

a rapid action of E2 in the brain, even in regions lacking classic ERs (for a review see: 

McEwen 2002). This non-genomic regulation of neurons includes alterations of cell 

excitability, activation of second messenger pathways, modulation of G-protein coupling, 

and changes in calcium currents. It is possible that these actions of E2 are mediated by 

membrane-bound classic ERs (Levin 2002; Toran-Allerand 2004) but another possible 

candidate is an orphan receptor, GPR-30, which has been found in high concentrations in 

the substantia nigra (SN) and HPC (Brailoiu, Dun et al. 2007) and in lower 
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concentrations in the mPFC and DS (O'Dowd, Nguyen et al. 1998). Whatever the 

mechanism, E2 can alter neuronal activity within minutes, or even seconds. For example, 

the application of physiological concentrations of E2 to cultured striatal neurons rapidly 

reduces calcium currents through effects at the cell membrane (Mermelstein, Becker et al. 

1996). Similar mechanisms potentiate cell excitability through protein kinase A (PKA) 

activation in hippocampal cell populations of wild-type (Gu and Moss 1998) and 

aERKO, but not pERKO, mice (Gu, Korach et al. 1999). When administered with classic 

ER antagonists or bound to bovine serum albumin (thereby making it impermeable to the 

neuronal membrane), E2 can still benefit performance in an inhibitory avoidance task 

suggesting non-genomic action (Frye and Rhodes 2002). 

Although there is little doubt that E2 influences performance in learning and 

memory tasks, controversy still remains as to the exact nature of its modulatory effects. 

Recent research strongly supports the role of ER-|3 in cognition and suggests that 

membrane-associated E2 activity may be relevant as well, yet relatively little is known 

concerning the consequences of these actions on particular neurotransmitter systems. 

Thus far, the estrogenic modulation of cholinergic systems important to learning and 

memory and the subsequent behavioral consequences have been the primary focus of 

research in this area. However, DA, best known for its influence on reward-related and 

goal-seeking behaviors (Wise 1996; Berridge and Robinson 1998), is another 

neurotransmitter with a principal role in learning and memory tasks. I 
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1.2. The role of DA on performance in learning and memory tasks 

Much like E2, the influence of DA on cognition was not a primary focus of initial 

research. Following the identification of DA in the 1950's (as cited in: O'Donnell 2003), 

research centered around dopaminergic control of voluntary movement and the role of 

DA in Parkinson's Disease (PD; Bernheimer, Birkmayer et al. 1973). Other major areas 

of interest included the contribution of DA to the behavioral symptoms associated with 

pathologies such as schizophrenia, depression, and attention deficit hyperactivity disorder 

(ADHD; Benkert, Grander et al. 1992; Wilens 2008) as well as its critical role in 

motivation and the onset and maintenance of addictive behaviors (Wise and Bozarth 

1985; Berridge and Robinson 1998; Koob 2006). As these avenues of study identified 

DA as a major factor in the regulation of motor control, mood, and motivation, it also 

became apparent that DA plays an important role in the cognitive deficits that occur 

concomitant with psychiatric disorders and drug addiction. For example, it was noted that 

PD patients exhibit impairments in spatial planning and working memory tasks (Owen, 

James et al. 1992) which can be temporarily relieved by L-Dopa treatment (Lange, 

Robbins et al. 1992). Age-related cognitive deficits in monkeys (Arnsten 1993; Murphy, 

Amsten et al. 1996) and rats (Lee, Ross et al. 1994) are also correlated with dopaminergic 

dysfunction. Based on these and other findings, DA has been implicated in the 

performance of two main functions; the incentive salience of motivational stimuli in 

reward-related seeking behaviors (Berridge and Robinson 1998; Arias-Carrion and 

Poppel 2007) and working memory (Sawaguchi and Goldman-Rakic 1991). 
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1.2.1. DA action in the brain 

There are two main DA pathways in the brain; the mesocorticolimbic system and 

the nigrostriatal system. The nigrostriatal system originates in the SN and primarily 

projects to the caudate-putamen, otherwise known as the DS (Arias-Carrion and Poppel 

2007). Nigrostriatal DA is principally involved in the initiation and maintenance of 

voluntary motor movement (Bernheimer, Birkmayer et al. 1973; Mackin 2000) although 

it has also been implicated in the regulation of drug reward (Quinlan, Sharf et al. 2004). 

In addition, a number of studies have shown the target region of this system, the DS, to 

be especially important in response selection, habit learning, and procedural memory 

(Eagle, Humby et al. 1999; Myhrer 2003). The mesocorticolimbic system originates in 

the ventral tegmental area (VTA) and has two main components; the mesolimbic pathway 

which primarily innervates the nucleus accumbens (NA) and the mesocortical pathway 

which mainly projects to the mPFC (Arias-Carrion and Poppel 2007). In general, this 

system governs the motivational and reinforcing properties of environmental stimuli, 

such as food, sexual cues, or drugs, involved in the learning and expression of appetitive 

behaviors (Fields, Hjelmstad et al. 2007). In addition, optimal dopaminergic function in 

the mPFC is thought to be essential for peak performance in working memory tasks for 

rodents, monkeys, and humans (Sawaguchi and Goldman-Rakic 1991; Goldman-Rakic, 

Muly et al. 2000). 

Dopaminergic neurotransmission is mediated by two distinct families of G-

protein-coupled receptors which do not directly influence the membrane potentials of 

target neurons but rather modify the responses of incoming afferent signals to these 

neurons (Greengard 2001; O'Donnell 2003). The Dl-like family consists of DA Dl 
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receptors (DIRs) and DA D5 receptors (D5Rs) which, when activated, generally 

stimulate second messenger cascades through adenylate cyclase (O'Donnell 2003; 

Seamans and Yang 2004). The D2-like family consists of DA D2 receptors (D2Rs), DA 

D3 receptors (D3Rs), and DA D4 receptors (D4Rs) which, when activated, tend to 

decrease intracellular second messenger activity through negative regulation of cAMP 

activity (Thompson, Moore et al. 2000). Of the five subtypes, DIRs and D2Rs are the 

most densely expressed and mediate the majority of dopaminergic activity in the brain 

(Sesack, Deutch et al. 1989). The remaining three subtypes have been implicated in 

several types of behaviors and psychiatric disorders but less is known concerning their 

behavioral consequences (Tarazi, Campbell et al. 1998; Floresco and Magyar 2006). 

Studies in humans, non-human primates, and rodents have identified several brain 

regions in which DIRs and D2Rs are expressed, including the mPFC, DS, NA, VTA, and 

SN. In the mPFC of rodents and non-human primates, DIRs and D2Rs are primarily 

located on post-synaptic terminals in cortical layers IV and V (the cortical layers most 

heavily innervated by the VTA) with DIRs being most dense (Goldman-Rakic, Lidow et 

al. 1992; Gaspar, Bloch et al. 1995; Tzschentke 2001). Additionally, both DIRs and 

D2Rs have been identified on the dendrites of GABA interneurons (Gaspar, Bloch et al. 

1995; Tzschentke 2001), pre-synaptic terminal boutons, and extra-synaptic sites (Lidow, 

Goldman-Rakic et al. 1991; Smiley, Levey et al. 1994). Within the NA and DS, DIRs are 

more densely populated than D2Rs but both tend to be found on intrinsic postsynaptic 

neurons and not meso-or cortico-striatal projection neurons (Boyson, McGonigle et al. 

1986; Tarazi, Campbell et al. 1998). Similarly in the SN (pars reticulata and pars 

compacta) and VTA, D1R populations are less densely populated than in target regions 
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but are denser than D2Rs (Boyson, McGonigle et al. 1986; Sesack, Aoki et al. 1994; 

Djouma and Lawrence 2002). 

1.2.2. The role of DA on cognition 

While it is likely that all five DA receptor subtypes contribute to performance in 

DA-mediated behavioral tasks, the majority of studies identify DIRs to be of primary 

importance and D2Rs to play a smaller, but still significant, role in spatial learning and 

memory, incentive learning, and reversal learning (El-Ghundi, Fletcher et al. 1999). It has 

been suggested that DA in the brain is sensitive to changes in the environment and serves 

as a neural signal to adapt one's behavior, especially in reward-related situations 

(Nieoullon 2002). Hence, a number of studies indicate that DA transmission is essential 

for effective performance in goal-oriented tasks that require approach or appetitive 

behaviors (Ikemoto and Panksepp 1999) and when the online maintenance of salient 

information is required, such as during working memory tasks (Dalley, Cardinal et al. 

2004). 

A number of studies, especially those that utilize lesions and receptor antagonism, 

have demonstrated the integral role of DA in reward-related seeking behaviors and spatial 

learning tasks. For example, the catecholaminergic neurotoxin 6-hydroxydopamine (6-

OHDA), often used in conjunction with a noradrenergic reuptake inhibitor (Glinka, 

Gassen et al. 1997), impairs spatial learning and memory after local administration into 

the HPC (Gasbarri, Sulli et al. 1996), DS (Hagan, Alpert et al. 1983), NA (Grigoryan, 

Hodges et al. 1996), and mPFC (Rezvani, Eddins et al. 2008). In a mouse model of PD, 
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6-OHDA lesions to the DS impair performance in spatial learning tasks (De Leonibus, 

Pascucci et al. 2007). Disruption of DA transmission also results in cognitive 

impairments. Spatial learning and memory performance is attenuated in D1R knockout 

mice (El-Ghundi, Fletcher et al. 1999) and with the administration of the D2R antagonists 

to intact rats (Ploeger, Spruijt et al. 1992; Ploeger, Spruijt et al. 1994; Setlow and 

McGaugh 1998). D1R and D2R antagonism also impair responding in a serial reaction 

task (Domenger and Schwarting 2006) and the acquisition of inhibitory avoidance 

(Manago, Castellano et al. 2009). These studies illustrate the integral role of DA in tasks 

that have a goal in mind but interference with DA transmission can also affect the ability 

to perform tasks with no specific reward. 

This is evident in tasks that evaluate attention, such as prepulse inhibition (PPI; 

Koch and Bubser 1994) and LI (Lubow 1997), as well as based on the role of DA in 

clinical disorders such as ADHD (Heilman, Voeller et al. 1991). PPI is disrupted by 6-

OHDA lesions (Bubser and Koch 1994) and D1R and D2R antagonism in the mPFC 

(Ellenbroek, Budde et al. 1996). Systemic and intra-accumbal administration of DA 

agonists as well as classic neuroleptics also disrupt PPI performance (Swerdlow, Braff et 

al. 1990; Swerdlow, Caine et al. 1992; Caine, Geyer et al. 1995; Johansson, Jackson et al. 

1995). Similarly, LI is attenuated by intra-accumbal (Weiner, Lubow et al. 1988) and 

intra-striatal (Konstandi and Kafetzopoulos 1993; Ellenbroek, Knobbout et al. 1997; 

Jeanblanc, Hoeltzel et al. 2003) infusion of the indirect dopaminergic agonist 

amphetamine. These effects can be reversed by the D2R antagonist haloperidol (Weiner, 

Gal et al. 1996). Haloperidol alone enhances LI and augments learning of the task 

(Weiner and Feldon 1987). Performance in another attentional task, the 5-choice serial 
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reaction time task, is improved in low baseline performers and attenuated in high baseline 

performers after D1R antagonism (Granon, Passetti et al. 2000). This suggests that an 

optimal level of DA function is necessary for effective performance in certain types of 

behavioral tasks, an idea that is more commonly identified with paradigms involving a 

delay (Sawaguchi and Goldman-Rakic 1994; Williams and Castner 2006). 

In fact, one of the first studies to implicate DA in learning and memory 

performance demonstrated that depletion of DA in the mPFC leads to impairments in a 

delayed response task (Brozoski, Brown et al. 1979). Fittingly, it had been previously 

shown that neurons in the mPFC remain active during such a delay (Fuster 1973). More 

recently, Floresco and Phillips (2001) have demonstrated that D1R agonists infused into 

the mPFC improve spatial memory during long delays but impair memory during short 

delays. In the mPFC, an increase in extracellular DA from basal levels is correlated with 

accurate performance in a working memory task (Watanabe, Kodama et al. 1997) while 

excessive DA turnover in this region is associated with an attenuation of spatial working 

memory in both rats and monkeys (Murphy, Arnsten et al. 1996). Goldman-Rakic and 

Sawaguchi (1991; 1994) found that local administration of D1R antagonists, but not D2R 

antagonists, into the mPFC of monkeys disrupts performance in delayed response tasks. 

Moreover, 6-OHDA lesions in the mPFC impair the acquisition (Bubser and Schmidt 

1990) and expression (Simon, Scatton et al. 1980) of behavior in delayed response, but 

not uninterrupted, tasks. 

Other types of memory tasks, which also involve aspects of motivation and 

working memory, that are affected by interference with central DA transmission include 

spontaneous alteration (Oades, Taghzouti et al. 1985; Taghzouti, Louilot et al. 1985; 
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Holter, Tzschentke et al. 1996) and passive avoidance (Taghzouti, Louilot et al. 1985; 

Lazarova-Bakarova, Petkova et al. 1991). DA, primarily in the mPFC, is also implicated 

in cognitive set-shifting, also referred to as behavioral flexibility. Sustained levels of DA 

efflux in the mPFC are associated with effective performance during the shift between 

discrimination rules (Stefani and Moghaddam 2006) while only brief enhancements of 

DA release were seen in the NA and DS. Local injections of both D1R (Ragozzino, 

Ragozzino et al. 2002) and D2R (Floresco, Magyar et al. 2006) antagonists into the 

mPFC disrupt effective switching of strategy but have no effect on acquisition of the task. 

When the ability to switch task strategies is impaired by DA receptor antagonism the 

ability to detect changes in reward value is not affected (Winter, Dieckmann et al. 2009). 

In conclusion, while the neurotransmitters acetylcholine (Hasselmo 2006) and 

glutamate (Brown, Chapman et al. 1988) have been shown to directly regulate 

performance in learning and memory tasks it is thought that DA modulates the response 

of neurons to incoming signals from the environment (e.g. Nieoullon 2002; Girault and 

Greengard 2004). Electrophysiological studies suggest this is accomplished by DA 

through the mediation of membrane potentials in learning-relevant neurons (O'Donnell 

2003). It has been shown that midbrain DA efflux increases in response to unpredicted 

rewards early in learning and decreases in the absence of predicted rewards later in 

learning (Hollerman and Schultz 1998). Hence, the antagonism of mesolimbic DA during 

performance of a task may negate the motivational significance of an environmental 

stimulus due to a lack of modulatory influence on neurons directly involved in the 

learning process. Behavior tends to occur based on the availability, salience, and location 
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of a reward in the environment (Phillips, Vacca et al. 2008) and it appears that a DA 

plays an indirect, but significant, role in this process. 

Similar alterations of DA function within the mesocortical pathway will disrupt 

performance in working memory tasks; those requiring the online maintenance of salient 

information. It has been suggested that, within the mPFC, DIRs mediate the tonic firing 

of DA neurons (Cohen, Braver et al. 2002). This may increase the signal-to-noise ratio of 

previously learned information in the face of competing stimuli. On the other hand, D2Rs 

maybe involved in the coding and maintenance of meaningful novel inputs (Cohen, 

Braver et al. 2002). However indirect the effect may be, it is apparent that the influence 

of mesolimbic and mesocortical DA is an important factor on performance in learning 

and memory tasks. 

1.3. The effects of E2 on DA function 

It is clear that, independently, E2 and DA each have a significant role in the 

performance of tasks evaluating learning and memory. However, little work has been 

done investigating the influence of E2 on DA neurotransmission and how this may affect 

such tasks. Several studies have shown that baseline and stimulant-induced DA 

transmission are differentially affected by high and low levels of E2 (e.g. Becker and 

Beer 1986; e.g. Becker 1990) but very few studies have examined the behavioral 

consequences of this action in the brain. Those which do demonstrate that alterations of 

dopaminergic activity in the brain can be an influential factor during performance in 

behavioral tasks (e.g. Daniel, Sulzer et al. 2006). 
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1.3.1. The effects ofE2 on DA-mediated behaviors 

Some of the first studies to identify the estrogenic modulation of DA-mediated 

behavior can be found in studies investigating sex differences in response to stimulants. 

For example, female rats are not only more likely to self-administer higher doses of 

stimulant drugs but to also display exaggerated locomotor responses after comparable 

doses of acute and chronic administration as compared to males (Becker 1990; Lynch, 

Arizzi et al. 2000). Gonadectomy significantly reduces amphetamine-induced rotational 

behavior in female, but not male, rats (Becker, Beer et al. 1984; Camp, Becker et al. 

1986). It has also been shown that E2 in females potentiates DA agonist-induced 

stereotypic behaviors regulated by the SN (Chiodo, Caggiula et al. 1981; Chiodo and 

Caggiula 1983) and that ovariectomy attenuates the magnitude of CPP for cocaine 

(Russo, Festa et al. 2003). These differences in stimulant-induced behavior led to 

investigations of the effect of E2 on DA-mediated learning and memory behaviors. 

Subsequent to gonadectomy, female rats exhibit greater deficits in overall 

accuracy and working memory than males in a maze task (Gibbs and Johnson 2008). 

OVX rats (Wallace, Luine et al. 2006) and menopausal women (Keenan, Ezzat et al. 

2001) exhibit deficits in mPFC-mediated memory tasks which can be ameliorated by E2 

administration or hormone replacement therapy, respectively. With aging, female rats 

display a faster rate of decline in a DA-mediated passive avoidance task when compared 

to males (Benice, Rizk et al. 2006). Conversely, a lack of, or low levels of, E2 may assist 

in the performance of some tasks. During training in a striatum-dependent response 

learning task, OVX females receiving vehicle needed fewer trials to acquire the task than 

OVX females receiving E2 replacement (Davis, Jacobson et al. 2005). In a similar task 
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also mediated by dorsal striatal DA, the administration of E2 enhances the disruptive 

effects of a D1R, but not a D2R, antagonist (Daniel, Sulzer et al. 2006). These studies are 

not only part of a growing literature which demonstrates that E2 exerts a strong influence 

on the performance of DA-mediated behavioral tasks but also suggest that E2 may alter 

DA function in the brain to enact these changes. The estrogenic alteration of DA function 

can include changes in transmission, uptake, and receptor levels. 

1.3.2. Localization ofERs in dopaminergic brain regions 

There are a number of dopaminergic brain regions in which ERs, especially ER-P, 

have been co-localized with tyrosine hydroxylase (TH) staining; these include the VTA, 

NA, SN, DS, and mPFC (Kuiper, Shughrue et al. 1998; Creutz and Kritzer 2002; 

Yamaguchi-Shima and Yuri 2007). In addition, ER-p has been identified in several 

structures which are adjacent to and communicate with the SN such as the subthalamic 

nucleus and zona incerta (Kritzer 1997). In the VTA and SN, ER-P was found to be more 

abundant than ER-a (Shughrue and Merchenthaler 2001) although ER-remains a critical 

component for the regulation of the nigrostriatal DA system (Kuppers, Krust et al. 2008). 

Retrograde labelling studies in the DS have identified connections with DA neurons 

located in projection regions in the dorsal SN and VTA, both of which are dense in ER-P 

(Kritzer 1997; Creutz and Kritzer 2004). Significant labelling of ER-p-dense regions in 

the VTA was also found after infusion of retrograde tracers into the NA. 

ER-P tends to be similarly distributed in the brains of adult male and female rats 

although in dopaminergic brain regions these receptors are twice as dense in males than 
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females (Creutz and Kritzer 2002). Moreover, ER-p" density is 50% greater in proestrus 

females than in diestrus females (Creutz and Kritzer 2002). 

1.3.3. Influence ofE2 on DA transmission 

E2 alters DA transmission in several regions of the brain and has primarily been 

studied in the DS. For example, E2 has been shown to stimulate the synthesis of DA in 

this region, most likely through a non-genomic modulation of this process (Pasqualini, 

Olivier et al. 1995). Dopaminergic neurons in the SN are a direct target of E2 which 

stimulates neurite branching and the expression of TH (Kuppers, Ivanova et al. 2000). In 

addition, the administration of E2 to OVX females rapidly induces the expression of the 

immediate early gene c-jun in both the DS and NA (Zhou and Dorsa 1994). 

E2 also alters extracellular levels of DA. Female rats in proestrus display higher 

baseline levels of dorsal striatal DA than female rats in diestrus or OVX females (Xiao 

and Becker 1994). This is true in both young and aged females (McDermott 1993). 

Likewise, the administration of E2 enhances accumbal DA release in OVX rats 

(Thompson and Moss 1997). Castration of male rats has no effect on DA levels in the DS 

(Xiao and Becker 1994). Agonist-induced DA release is also augmented in the presence 

of E2 subsequent to intra-striatal infusions of amphetamine in gonadectomized female, 

but not male, rats (Castner, Xiao et al. 1993). This also holds true for cycling rats in 

proestrus (Becker, Robinson et al. 1982; Becker and Cha 1989) and for in vitro cultures 

of striatal neurons (Becker and Beer 1986). A number of studies have characterized the 
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estrogenic modulation of dorsal striatal DA but fewer studies have investigated these 

changes in other brain regions. 

One study to do so found that ovariectomy depletes DA levels in the VTA and 

NA of female rats (Russo, Festa et al. 2003). Subsequent administration of E2 results in a 

recovery of DA levels within the VTA but not the NA, which requires the co­

administration of E2 and progesterone. In cycling female rats, the basal and burst firing 

of DA neurons in the VTA is highest in estrus, a time of low E2, and lowest in proestrus 

when E2 levels are at their peak (Zhang, Yang et al. 2008). In addition, OVX rats have 

significantly higher firing rates than proestrus rats. This is in contrast to studies reporting 

an enhancement of DA release in the DS with high E2 but studies of extracellular DA in 

the mPFC, a primary target region of the VTA, agree with this evidence. Baseline levels 

of DA in the mPFC are highest during estrus and lowest during proestrus (Dazzi, Seu et 

al. 2007). Likewise, chronic E2 reduces DA levels in the mPFC of OVX rats (Luine, 

Richards et al. 1998). While its effects on DA transmission may vary from region to 

region, it is clear that E2 is an important influence on DA synthesis and function. 

E2 may also indirectly influence DA transmission by altering DA transporter 

(DAT) function. In cultured NA neurons, the application of E2 does not alter basal DA 

uptake but does attenuate uptake after DA agonist-induced activity (Thompson, Moore et 

al. 2000). In striatal cultures, this attenuation occurs through a decrease in affinity of 

DAT for DA in a dose-dependent manner (Disshon, Boja et al. 1998). This may take 

place due to a change in the association of D2Rs with their G-protein (i/o) which 

indirectly affects DAT function (Thompson and Certain 2005). On the other hand, during 

proestrus in cycling females, DA uptake is enhanced in the NA (Thompson and Moss 
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1997) and dorsal striatal DA uptake sites also increase in number, coincident with the 

highest levels of DA release in this region (Morissette and Di Paolo 1993). It has also 

been shown that ovariectomy results in an upregulation of striatal DAT which is 

prevented by E2 administration; there was no effect in gonadectomized males (Attali, 

Weizman et al. 1997). These studies provide evidence of yet another avenue by which E2 

can alter DA function. 

1.3.4. Changes in DA receptor function with changes in E2. 

Several studies have demonstrated that E2 alters the quantity and function of 

DIRs and D2Rs. Progressive reductions in the density, but not affinity, of DIRs and 

D2Rs are seen in the DS with time after ovariectomy (Bosse and DiPaolo 1996). In 

addition, D2Rs have a greater decline in density thereby upsetting the normal D1R:D2R 

ratio. Chronic E2 treatment for two weeks restores the D2R, but not the D1R, population 

density (Bosse and DiPaolo 1996). Striatal DIRs may be enhanced in OVX females but 

only if E2 administration is initiated the day after surgery (Levesque and Di Paolo 1989). 

Chronic E2 administration in OVX female rats results in decreased D2R, but not D1R, 

mRNA in the DS (Lammers, D'Souza et al. 1999). In monkeys, striatal D2R availability 

is increased during the luteal phase, a time of high E2 (Czoty, Riddick et al. 2009). In 

cycling female rats, striatal D2R antagonist binding remains constant but D2R agonist 

binding sites increase during proestrus (Di Paolo, Falardeau et al. 1988). In OVX female 

rats, D2R binding is reduced within 30 minutes of E2 administration (Bazzett and Becker 

1994). 
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Changes in DA receptor function have also been demonstrated in other 

dopaminergic brain regions. E2 administration produces a supersensitivity of DA 

autoreceptors (Chiodo, Caggiula et al. 1981; Chiodo and Caggiula 1983) and increased 

D2R mRNA (Zhou, Cunningham et al. 2002) in the midbrain of OVX female rats. In the 

NA, ovariectomy decreases agonist and antagonist binding sites on D2Rs (Le Saux, 

Morissette et al. 2006). This is prevented by E2 and ER-|3 agonist treatment. In the 

mPFC, D1R density decreased over time with no change in affinity subsequent to OVX 

(Bosse and DiPaolo 1996). These studies illustrate several ways by which E2 can alter 

DA transmission as well as describe the necessary neurobiological mechanisms by which 

this influence can affect behavior. However, further investigation is necessary to fully 

understand the influence of E2 on DA transmission and DA-mediated behavior. 

1.4. Rationale and Hypotheses 

While studies investigating the respective roles of E2 and DA in learning and 

memory tasks remain largely individual pursuits, research examining the estrogenic 

modulation of DA transmission has shown this, too, is critical for performance in 

learning and memory tasks. This research has not only identified the necessary co-

localization of estrogenic and dopaminergic anatomy but has shown that the influence of 

E2 on DA transmission in the brain leads to alterations of performance in behavioral 

tasks. Further examination of the neurobiological and behavioral consequences of the 

estrogenic modulation of E2 will assist in elucidating the conflicting findings of previous 

studies and direct future work in this area. The following studies were designed with this 
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in mind. Importantly, in the interest of studying E2 within a rat model of healthy, intact 

adult females, these studies utilized either intact, cycling adult female rats or OVX 

female rats in which hormone replacement closely mimicked natural circulating levels of 

E2 during the proestrus (high E2) and estrus (low E2) stages of the rat estrous cycle. 

Thus, the experiments contained in this thesis were conducted in order to further 

investigate the consequences of differential levels of physiological E2 on DA-mediated 

behaviors and on neuroanatomical structure in brain regions which are targets of 

dopaminergic pathways and which underlie these behaviors. 

Previous studies from our laboratory (Nofrey, Ben-Shahar et al. 2008) show that 

the administration of high levels of E2 to OVX females interrupts performance in a dorsal 

striatal DA-dependent LI paradigm. Study 1 evaluates the role of ovarian hormones on 

the performance of intact, naturally-cycling, adult female rats in this task. Additionally, 

pre-pubertal male and female rats were tested in order to identify whether it is the 

perinatal (organizational) or adolescent (activational) surge of hormones which alters 

performance. It was hypothesized that rats in proestrus, a period of high E2 levels, during 

the conditioning phase would have attenuated LI when compared to rats in estrus during 

the conditioning phase. It was also hypothesized that the expression of LI would depend 

on the pubertal surge of hormones and, thus, juvenile female rats would exhibit LI 

behavior on the testing day. 

Based on previous research investigating the effect of E2 on dorsal striatal DA-

mediated tasks (McDonald and White 1994; Packard and McGaugh 1996; Korol and 

Kolo 2002; Korol, Malin et al. 2004), Study 2 examines the effect of high and low levels 

of physiological E2 on the use of response or place strategies by OVX adult female rats 
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in a modified plus-maze. It was hypothesized that rats with high levels of physiological 

E2 would tend to use a place strategy while rats with low physiological E2 would be 

biased towards use of a response strategy. In addition, because DS-dependent response 

learning has been shown to be disrupted by D2R antagonism (Daniel, Sulzer et al. 2006) 

the role of the D1R and D2R systems in the use of cognitive strategy was evaluated using 

systemic administration of the D1R antagonist SKF 83566 and the D2R antagonist 

raclopride. It was hypothesized that both D1R and D2R antagonism would alter the 

tendency to use a response strategy in low E2 rats due to interference with dorsal striatal 

DA transmission. 

In order to identify the specific brain regions in which D1R and D2R antagonism 

were acting to alter strategy use in low E2 rats, Study 3 tests OVX adult female rats in a 

modified plus-maze. Here, the D1R antagonist SCH 23390 and the D2R antagonist 

raclopride were locally infused into either the DS or ventral striatum (NA). It was 

hypothesized that high E2 rats would use a place strategy and that low E2 rats would use 

a response strategy. It was also hypothesized that D1R and D2R antagonism within the 

DS, but not the NA, would alter the use of response strategy in low E2 rats. Based on the 

previous findings that only D1R antagonists in the DS will alter strategy use in low E2 

rats, Study 4 evaluates the role of the mPFC in strategy use. Here, either D1R or D2R 

antagonists were locally infused into the mPFC. It was hypothesized that high E2 rats 

would use a place strategy, low E2 rats would use a response strategy, and medial 

prefrontal cortical D2R antagonism would alter the strategy used by low E2 rats. 

These behavioral studies from our lab demonstrate that E2 can alter performance 

in dorsal striatal DA-mediated behavioral tasks. E2 has been shown to affect dorsal 
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striatal DA release in vitro (Becker and Ramirez 1981), in OVX females (Becker 1990), 

and across the estrous cycle in cycling females (Xiao and Becker 1994). These alterations 

often have rapid effects on DA transmission (Bazzett and Becker 1994; Becker and 

Rudick 1999) and can change dorsal-striatal mediated behaviors (Daniel, Sulzer et al. 

2006). Utilizing single-probe in vivo microdialysis in anaesthetized OVX female rats with 

low levels of E2, Study 5 investigates the effects of the local application of E2 on DA 

transmission in the DS in response to systemic injections of vehicle and amphetamine. It 

was hypothesized that local administration of E2 to the DS would rapidly enhance DA 

activity. Furthermore, it was hypothesized that local E2 infusion would enhance 

amphetamine-induced DA activity in the DS. 

Previous findings provide evidence that E2 modulates neuroanatomical structure 

and synaptic plasticity (Gould, Woolley et al. 1990; Woolley and McEwen 1992) as well 

as catecholamine neurotransmission (Luine, Richards et al. 1998) in several regions of 

the brain. In Study 6, Western immunoblotting is used to examine the effects of E2 on 

pre- and postsynaptic proteins in the target regions of dopaminergic pathways in the 

brains of OVX female rats; these include the mPFC, the DS, and the HPC. It was 

hypothesized that high levels of E2 would increase the quantities of synaptic proteins in 

all three areas when compared to low levels of E2. In addition, both high and low levels 

of physiological E2 would result in enhanced quantities of synaptic proteins when 

compared to OVX rats. To investigate the effects of E2 on neurotransmission in the 

mPFC, DA is measured using dual probe in vivo microdialysis in OVX female rats 

receiving vehicle injections or high or low E2 replacement. DA was independently 

evaluated in the left and right hemispheres of the mPFC after single systemic injections 
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of both saline and amphetamine. It was hypothesized that high levels of E2 would 

attenuate DA neurotransmission while low levels of E2 would enhance DA 

neurotransmission after saline administration. It was also hypothesized that high levels of 

E2 would augment medial prefrontal cortical DA activity after amphetamine injection. 

Study 7 investigates the influence of physiological levels of E2 on the working 

memory performance of OVX female rats in a T-Maze; a task which is dependent on 

medial prefrontal cortical DA in rats (Jones 2002), monkeys, (Sawaguchi and Goldman-

Rakic 1991) and humans (Keenan, Ezzat et al. 2001). In this study, an OVX group 

receiving vehicle injections was also included as a point of comparison with other 

studies. It was hypothesized that rats with physiologically high levels of E2 would make 

fewer errors than rats with physiologically low levels of E2. Moreover, it was expected 

that both high and low E2 rats would make fewer errors than rats receiving only vehicle 

injections. 
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CHAPTER 2: 

THE ATTENUATION OF LATENT INHIBITION BY HIGH LEVELS OF OVARIAN 

HORMONES DURING PROESTRUS IS AN ACTIVATIONAL EFFECT 

Matthew G. Quinlan, Andrew Duncan, Catherine Loiselle, Nicole Graffe, and 
Wayne G. Brake 
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Preface: 

Previous work from our lab at the University of California, Santa Barbara 

conducted by Barbara Nofrey demonstrated that high levels of E2 abolish latent 

inhibition in OVX female rats (Nofrey, Ben-Shahar et al. 2008). Performance in this task 

has been shown to be dependent on dorsal striatal DA function (Lubow 1997; Jeanblanc, 

Hoeltzel et al. 2003). Here, cycling females were tested in latent inhibition paradigm to 

investigate if the high levels of ovarian hormones present during proestrus interfere with 

this dorsal striatal DA-mediated task. 
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Abstract: 

Estrogen has been shown to have a strong modulatory influence on several types 

of learning and memory behaviors in both women and female rodents. Latent inhibition is 

a task in which pre-exposure to a neutral stimulus, such as a tone, later impedes the 

association of that stimulus with a particular consequence, such as a shock. Previous 

work from our lab demonstrates that high levels of estradiol (E2) administered to 

ovariectomized (OVX) female rats abolishes latent inhibition when compared to female 

rats with low levels of E2 or male rats. To determine if this E2-induced impairment also 

occurs with the natural variations of ovarian hormones during the estrous cycle this 

behavior was investigated in cycling female rats. In addition, prepubertal male and 

female rats were also tested in this paradigm to determine if the previously described sex 

differences are activational or organizational in nature. In a latent inhibition paradigm 

using a tone and a shock, adult rats were conditioned during different points of the 

estrous cycle. Rats conditioned during proestrus, a period of high E2 levels, exhibit 

attenuated latent inhibition when compared to rats conditioned during estrus or metestrus, 

periods associated with low levels of E2. Moreover, this effect is not seen until puberty 

indicating it is dependent on the surge of hormones at puberty. This study confirms recent 

findings that high E2 interferes with latent inhibition and is the first to show this is based 

in the activational actions of hormones. 
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1. Introduction 

Estrogen is known to play a significant role in the modulation of performance in 

behavioral tasks in both women (e.g. Duff and Hampson 2000; Sherwin 2003) and 

female rats (e.g. Luine and Rodriguez 1994; Bimonte and Denenberg 1999). However, 

there is no clear consensus as to the direction or extent of these effects. Estrogen has been 

shown to either enhance (Gibbs 1999; Gibbs 2000; Asthana, Baker et al. 2001; Keenan, 

Ezzat et al. 2001), decrease (Holmes, Wide et al. 2002; Rapp, Espeland et al. 2003; Wide, 

Hanratty et al. 2004), or have no effect (Resnick, Maki et al. 1998; Galea, Wide et al. 

2001; Gibbs 2002) on several types of behavioral tasks. There are a number of factors 

which may contribute to such discrepancies in the literature; these include the type of task 

used to evaluate the effects of estrogen (Korol and Kolo 2002), the dose and duration of 

estrogen replacement (Gibbs 1997; Sandstrom and Williams 2004), the particular brain 

region where estrogen is acting (Sinopoli, Floresco et al. 2006), and the effect of estrogen 

on cognitive strategy (Korol, Malin et al. 2004; Quinlan, Hussain et al. 2008). 

Another factor known to play an important role during performance in behavioral 

tasks is attention. Estrogen modulates attention in both humans (Portin, Polo-Kantola et 

al. 1999) and rats (McGaughy and Sarter 1999; Barnes, Staal et al. 2006). For example, 

pre-pulse inhibition (PPI), a measure of sensorimotor gating, is reduced in women during 

the luteal phase of the menstrual cycle when estrogen levels are high (Jovanovic, Szilagyi 

et al. 2004). There is a similar attenuation of PPI in female rats during proestrus, a period 

of high estradiol (E2) levels, when compared to males or females in the estrus stage of 

the estrous cycle, a phase associated with low levels of E2 (Koch 1998). These studies 

suggest that higher levels of E2 interfere with the ability to effectively attend to relevant 
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stimuli or disregard irrelevant stimuli. This has been previously tested in our lab using a 

latent inhibition (LI) paradigm (Nofrey, Ben-Shahar et al. 2008). In this LI task, subjects 

receive a pre-exposure phase in which they are repeatedly exposed to a neutral stimulus, 

the tone, with no consequences. This pre-exposure will later impede the association of 

that neutral stimulus (tone) with an unconditioned stimulus, a shock, during the 

conditioning phase. It has been suggested that LI is based on a learned inattentional 

response in which the pre-exposed stimulus has been rendered irrelevant due to repeated 

presentations with no consequences (Lubow 1997). It is also possible that LI is a result of 

competing associations that are made during the pre-exposure and conditioning phases 

(Escobar, Oberling et al. 2002). Regardless, when E2 levels are high during the 

conditioning phase, the LI effect is abated (Nofrey, Ben-Shahar et al. 2008). This 

paradigm is uniquely suited to exploring the effects of E2 on learning. E2 need only be 

present during the conditioning phase of the task and, thus, cannot modulate any other 

aspect of behavior during the testing phase. As a result, any differences in latent 

inhibition during testing can be attributed to the effects of E2. 

To determine if this impairment of LI in OVX females with high E2 observed in 

our lab also occurs under natural fluctuations of ovarian hormones during the estrous 

cycle this behavior was investigated in intact, adult female rats. In a LI paradigm, cycling 

females were conditioned during different phases of the estrous cycle. It was 

hypothesized that if an intact adult female rat was conditioned during proestrus, a period 

of high E2 levels, the ability to exhibit LI on the testing day would be reduced. More 

specifically, rats which have been pre-exposed to a tone and then conditioned to a tone-

shock pairing while in proestrus will have an attenuated ability to ignore the tone on the 



32 

testing day when compared to pre-exposed rats which were conditioned during estrus, a 

time of low E2. It was also expected that rats not pre-exposed to the tone will not be able 

to ignore the tone during the testing phase and will exhibit freezing behavior. 

In a second experiment, intact pre-pubertal male and female rats were tested in a 

LI paradigm to determine if the sex differences previously observed (Nofrey, Ben-Shahar 

et al. 2008) are organizational or activational in nature. Previous studies show that sex-

related cognitive differences in place learning tasks (Kanit, Taskiran et al. 2000) and 

spatial learning tasks (Galea, Ossenkopp et al. 1994) in rodents do not emerge until 

adulthood. Thus, it was hypothesized that both male and female pre-pubertal rats would 

exhibit LI on the testing day. 

2. Methods 

Subjects. Experiment 1 included 42 young adult, female, Sprague-Dawley rats (Charles 

River, St. Constant, Quebec) aged three months and weighing approximately 225-250 

grams at the time of arrival. Upon arriving, all animals were allowed three weeks to 

habituate to the animal facility and were handled daily from time of arrival until 

completion of the experiments. Experiment 2 included 34 pre-pubertal, juvenile, 

Sprague-Dawley rats, 17 males and 17 females, aged post-natal day (PND 24) and 

weighing approximately 75-100 grams. All juvenile rats used in Experiment 2 were 

birthed by dams, raised, and weaned at PND 21 in the Concordia University Animal Care 

Facility. 

For both experiments, prior to the commencement of behavioral training, animals 

were group-housed in same-sex polyurethane shoebox cages, maintained on a reverse 
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12h:12h light/dark cycle with lights off from 0900-2 lOOh, and were allowed standard lab 

chow and water ad libitum. 48 hours prior to the commencement of behavioral training 

all animals were water-deprived and only allowed access to water for 30 minutes each 

day at approximately 1300h. All training and testing was performed during the dark 

phase of the light/dark cycle beginning at 1300h. All behavioral testing and procedures 

were conducted in accordance with the guidelines of the Canadian Council on Animal 

Care and approved by the Concordia University Animal Research Ethics Committee. 

Determination of Estrous Cycle. Experiment 1 included only intact females exhibiting 

regular 4-5 day estrous cycles for two weeks prior to the study and for its duration. The 

phase of estrous cycle was determined by vaginal cytology characterization using a 

cotton swab dampened with saline to collect epithelial cells from the vaginal wall. All 

samples were collected daily from approximately 1200-13O0h and immediately examined 

under a microscope with lOx magnification. Rats with a majority of cornified epithelial 

cells were considered to be in estrus; rats with a mix of cornified epithelial cells, 

nucleated epithelial cells, and leukocytes were considered to be in metestrus; rats with a 

majority of leukocytes were considered to be in diestrus; and, rats with a majority of 

nucleated epithelial cells were considered to be in proestrus. Rats exhibiting irregular 

estrous cycles were excluded from the experiment. The phase of the cycle on Day 7, 

Conditioning Day, determined which experimental group each rat was included in. 

Apparatus. All testing took place inside six separate modular isolation cubicles 

(Coulbourn Instruments; Whitehall, PA) each insulated with foam walls which absorbed 
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ambient light and noise. Each cubicle is approximately 31 "W x 21"D x 21"H, held an 

inner testing chamber measuring approximately 28"W x 18"D x 19"H, that was equipped 

with a fan. Each inner chamber was identically outfitted with a house light, a cue light, a 

tone box and speaker, a water bottle accessible from inside the chamber, and a water 

lickometer placed outside the chamber. In addition, the grid floor was connected to a 

precision adjustable shock module which was located outside the cubicle. The cubicles, 

inner cages, shock modules, and data collection were controlled by a personal computer 

running Graphic State Notation software (Coulbourn Instruments). 

Behavior. In Experiment 1, rats were randomly divided into two groups; pre-exposed 

(PE), n=17, and non-pre-exposed (NPE), n=23. Rats were further grouped according to 

their phase of estrous cycle as determined on Day 7, Conditioning Day. For the PE group; 

6 rats were in estrus, 3 rats were in metestrus, 3 rats were in diestrus, and 5 rats were in 

proestrus. For the NPE group; 7 rats were in estrus, 6 rats were in metestrus, 3 rats were 

in diestrus, and 7 rats were in proestrus. For Experiment 2, juvenile males and females 

were also randomly divided into PE, n=17, and NPE, n-17, groups. In the PE group; 

there were 8 males and 8 females. In the NPE group; there were 9 males and 9 females. 

Because all female rats in Experiment 2 were pre-pubertal, they were not swabbed for 

vaginal cytology characterization. All rats in both Experiments 1 and 2 underwent the 

same behavioral procedure, which was based on Nofrey et al. (2008). 

Days 1 -3 were referred to as Baseline Days. Each rat spent 20 minutes in the same 

respective testing chamber each day with free access to water and only the chamber 

house light on. Baseline licking behavior was recorded by the Graphic State Notation 
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software every time an infrared beam was broken as a lick was made by the rat. Days 4-6 

were referred to as Pre-exposure Days. Each rat spent 23.5 minutes in its testing chamber 

without access to water and only the house light on. During this period, each rat in the PE 

group was exposed to 40 presentations of a 5-second, 2.5 kHZ tone at a variable 30-

second schedule. Rats in the NPE group spent time in the chamber but were not exposed 

to the tone presentations. During this phase, water was made available for 30 minutes 

after the testing session. Day 7 was the Conditioning Day. All rats in both PE and NPE 

groups spent 20.5 minutes in the testing chambers without access to water and were 

pseudorandomly exposed 4 times to a 5-second, 2.5 kHz tone coinciding with a cue light 

that was immediately followed by a 1-second, 1 mA foot shock (juvenile rats in 

Experiment 2 received shocks of 0.5mA). The pseudorandom tone/light-shock pairings 

were spaced approximately 5 minutes apart. Day 8 was a re-Baseline Day. Each rat spent 

20 minutes in the testing chamber with access to water and only the house light on. 

Day 9 was Testing Day. Each rat was placed in the testing chamber with access to 

water and allowed to make 100 licks; the time to make licks 81-100 was recorded (Bin 

A). Upon the completion of 100 licks, the tone was presented continuously until the rat 

made 120 licks; the time to make licks 101-120 was recorded (Bin B). If any rat failed to 

complete 120 licks within a 5-minute period the testing phase was over and the time to 

complete Bin B was recorded as 5 minutes. A suppression ratio was calculated by 

dividing Bin A (the time to complete licks 81-100) by the sum of Bin A and Bin B (the 

time to complete licks 101-120); or A/A+B. Thus, a 0.5 suppression ratio indicates no 

suppression of licking behavior during the tone, or no conditioned response, and a 

suppression ratio of 0.025 demonstrates complete suppression of licking behavior during 
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the tone, or exhibition of a conditioned response. In other words, if a rat has a high 

suppression ratio, then it exhibited LI in that was more effective in ignoring the tone and 

continued licking. If a rat has a low suppression ratio, then it did not exhibit LI as it could 

not ignore the tone and stopped its licking behavior, most probably due to a freezing 

response. 

Statistical Analyses. For both experiments, one-tailed t-tests were employed to test for 

significant differences between PE and NPE groups within each larger experimental 

group. For Experiment 1, this was phase of the estrous cycle (estrus, metestrus, or 

proestrus) and for Experiment 2 this was sex (male or female). 

3. Results 

Behavior, Experiment 1. In the estrus group, PE rats had a significantly higher 

suppression ratio than the NPE group; t(l 1)=1.92, p=0.04 (Figure 1). In the metestrus 

group, the PE group also had a significantly higher suppression ratio than NPE group; 

t(7)=2.07, p=0.038 (Figure 1). There were no other significant differences, including the 

proestrus group. Statistical analysis of the diestrus group was not done due to the low 

number of total subjects which were tested in this phase of the estrous cycle resulting in 

insufficient statistical power. In Experiment 2, both the male (t(l 1)—-1.953, p=0.038) and 

female (t(15)=-2.192, p=0.022) PE groups had a significantly higher suppression ratios 

than the NPE groups (Figure 2). One-tailed t-tests were used in both experiments because 

it was hypothesized that the PE groups would exhibit higher suppression ratios than the 

NPE groups. 



37 

OUf-l 

o 

OLO-

IZZIPE 

Estrus 

Figure 1. Suppression ratios for cycling adult female rats. PE rats in the estrus (p=0.04) 
and metestrus (p=0.038) phases of the estrous cycle, periods of low E2 levels, exhibited 
high suppression ratios indicating latent LI. PE rats in the proestrus phase, a period of 
high E2 levels, exhibited low suppression ratios indicating a lack of LI. This suggests 
high levels of E2 interfere with LI. The diestrus group was excluded from analysis due to 
a small number of subjects. 
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Figure 2. Suppression ratios for prepubertal male and female rats. Both male (p=0.038) 
and female (p=0.022) PE groups exhibited high suppression ratios indicating latent 
inhibition. This suggests that the interfering effect of E2 on latent inhibition is 
activational in nature. 
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4. Discussion 

These studies investigated the effects of ovarian hormones in a LI paradigm 

utilizing a conditioned response to a tone. Cycling females that were conditioned during 

proestrus, a time of high E2 levels, exhibited disrupted LI when compared to cycling 

females conditioned during either estrus or metestrus, periods of low levels of E2. More 

specifically, while PE rats in the estrus and metestrus groups displayed significantly 

higher suppression ratios during the testing phase than NPE rats in the same groups, the 

suppression ratios of PE rats in the proestrus group did not significantly differ from that 

of the NPE rats in these groups. These data suggest that, in the LI paradigm employed 

here, high levels of estrogen during the conditioning phase interfere with the ability to 

ignore an irrelevant stimulus during the testing phase. This confirms recent data 

indicating that cycling females conditioned during periods of low estrogen exhibit LI 

while those conditioned during periods of high estrogen do not (Arad and Weiner 2008). 

The present findings are the first to demonstrate that this impairment is based in the 

activational (pubertal), rather than the organizational (perinatal), effects of ovarian 

hormones as pre-pubertal males and females in the PE groups had significantly higher 

suppression ratios than those of the male and female NPE groups. 

The LI paradigm begins with a pre-exposure phase in which the subject receives 

repeated exposure to a neutral stimulus, such as a tone, that has no consequences. It is 

thought that this pre-exposure will later impede the association of that neutral stimulus 

(tone) with an unconditioned stimulus, such as a shock, during the conditioning phase. 

This association, or lack thereof, is then evaluated in the testing phase. Some attentional 

theorists posit that the non-reinforced presentation of the tone during the pre-exposure 
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phase will result in a learned inattentional response to the tone-shock pairing during the 

conditioning phase (Lubow 1997). The subject has learned that the stimulus is irrelevant 

as there are no consequences to the tone during pre-exposure and will ignore it in the 

testing phase. An alternative explanation suggests that LI is a product of the competitive 

expression of different conditioned stimulus-unconditioned stimulus associations; these 

may include tone-shock, tone-no shock, and tone-context (Escobar, Oberling et al. 2002). 

Accordingly, if a subject exhibits LI during the testing phase, then the tone-no shock 

pairing is thought to be the strongest association. While the LI is likely a product of both 

learned inattention and associative learning, the detrimental effects of high E2 on this 

behavior appear to be based in an impairment of the ability to effectively ignore 

irrelevant stimuli. 

E2 has been shown to negatively impact attention in adult females in a variety of 

paradigms, including LI. High levels of E2 administered to OVX female rats results in 

the abolition of LI when compared to males and OVX females receiving only vehicle 

(Nofrey, Ben-Shahar et al. 2008). Arad and Weiner (2008) found a similar attenuation of 

LI in intact females conditioned during phases of the estrous cycle associated with high 

levels of E2. Conversely, that group later reported that ovariectomy diminishes LI but the 

behavior is restored by supraphysiological levels of E2 (Arad and Weiner 2009). On the 

other hand, high levels of E2 administered to OVX female rats attenuate performance in a 

task of sustained attention (McGaughy and Sarter 1999; Barnes, Staal et al. 2006) and 

female rats in proestrus show diminished PPI compared to males or females in estrus 

(Koch 1998). In addition, a study of cycling women found that PPI is disrupted during 

the luteal phase of the menstrual cycle, a time of high estrogen (Swerdlow, Hartman et al. 
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1997; Jovanovic, Szilagyi et al. 2004). This type of estrogenic modulation in attentional 

tasks is generally seen only in adult females. While some pre-pubertal cognitive sex 

differences have been identified in humans (McGivern, Huston et al. 1997; Everhart, 

Shucard et al. 2004), the effects of estrogen in rodents do not typically manifest until 

after the onset of puberty (Galea, Ossenkopp et al. 1994; Kanit, Taskiran et al. 2000; 

Hodes and Shors 2005). In accordance with such findings, the present data do not support 

an effect of estrogen in the LI behavior of pre-pubertal rats, only in adult females. 

The mechanisms by which E2 alters LI performance have not yet been 

characterized. One possibility is that high levels of estrogen interfere with 

neurotransmitter function in brain regions which support attentional processes. For 

instance, it is thought that the medial prefrontal cortex (mPFC) plays an important role in 

attention-related tasks (e.g. Pezze, Dalley et al. 2009). Baseline dopamine (DA) levels in 

the mPFC significantly change with fluctuating estrogen levels across the estrous cycle 

(Dazzi, Seu et al. 2007). DA transmission in the dorsal striatum (DS), another brain 

region central to tasks which evaluate attention, is also affected by E2. DA baseline levels 

and release are enhanced during proestrus in this region (Xiao and Becker 1994). 

Although E2 has no effect on DA in male rats, DA release and dorsal striatal DA-

mediated behaviors are enhanced during proestrus in cycling females (Becker 1999). 

Likewise, the administration of E2 to OVX females restores depleted basal DA levels and 

enhances amphetamine-induced DA release in the DS (Becker and Rudick 1999). DA 

neurons in the DS are activated during behavior in a LI paradigm (Jeanblanc, Hoeltzel et 

al. 2003) and both LI and PPI are sensitive to altered DA transmission in this region 

(Koch and Bubser 1994; Lubow 1997; Swerdlow, Braff et al. 2000). Dorsal striatal 
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administration of amphetamine (Konstandi and Kafetzopoulos 1993; Ellenbroek, 

Knobbout et al. 1997) or neuroleptics (Solomon, Crider et al. 1981) alter performance in 

these tasks. Although it has not been investigated directly, it is possible that the 

modulation of DA transmission in the DS by high levels of E2 may contribute, at least in 

part, to the concomitant attenuation of LI behavior. 

These data provide further evidence that high levels of E2 alter performance in a 

dorsal striatal DA-mediated LI task. Moreover, these effects are dependent on the 

activational, rather than the organizational, effects of estrogen. At this time, it is not 

known if the estrogenic modulation of DA in the DS is a major factor in the impairment 

of LI but these effects have been shown to alter behavior in several other types of DA-

mediated behavioral tasks. Further investigation is required in order to evaluate these 

effects as serotonin also plays a key role in attentional tasks (Kehne, Padich et al. 1996; 

Padich, McCloskey et al. 1996; Molodtsova 2003) and is also affected by E2 (Gabor, 

Nagle et al. 2003; Pongrac, Gibbs et al. 2004). The relative contribution of attention and 

associative learning in the LI paradigm also necessitates additional study. 
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Preface: 

The experiments in the previous chapter demonstrated that high levels of ovarian 

hormones during proestrus, which include E2, interfere with the expression of latent 

inhibition, a dorsal striatal DA-mediated task. Performance in another dorsal striatal DA-

mediated task, response learning in a maze (Packard and McGaugh 1996), can also be 

modulated by E2 (Korol and Kolo 2002; Korol, Malin et al. 2004; Daniel, Sulzer et al. 

2006). Thus, the study presented in this chapter was conducted to confirm this alteration 

of a DA-dependent behavior by E2 in a plus maze. In addition, this study investigated the 

effect of DA Dl receptor and DA D2 receptor antagonism in low E2 and high E2 OVX 

female rats. 
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Abstract: 

Accumulating evidence suggests a role for estrogen in the use of a particular 

cognitive strategy when solving a maze task. In order to confirm the role of estrogen in 

this phenomenon, ovariectomized (OVX) female rats receiving either high (~ 90 pg/ml) 

or low (~ 32 pg/ml) circulating levels of 17P-estradiol (E2) performed a plus maze task 

for a reward. Consistent with previous research, OVX rats receiving low levels of E2 

utilized a striatum-mediated response strategy while OVX rats administered high levels 

of E2 employed a hippocampus-mediated place strategy. Furthermore, following a 

systemic injection of a moderate dose of either a dopamine Dl (SKF 83566, 0.1 mg/kg 

IP) or D2 (raclopride, 0.5 mg/kg IP) receptor antagonist, low E2 rats reverted to use of 

the opposite strategy and exercised a hippocampus-mediated place strategy in order to 

obtain the reward. At the same doses, high E2 rats did not change from using a place 

strategy. At a lower dose of these drugs, high E2 rats did not exhibit a preference for 

either strategy while low E2 rats predominantly used a place strategy in response to D2 

receptor antagonism. These results corroborate previous findings that E2 plays a 

significant role in the use of either a response or place strategy when solving a maze for a 

reward. In addition, the shift in strategy after dopamine receptor blockade implies the 

importance of central dopamine function in selecting a cognitive strategy to solve such 

tasks. It is suggested that estrogen alters cognitive strategy not only by improving 

hippocampal function, but also by altering dopamine-regulated striatal function. 
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1. Introduction 

There is extensive evidence demonstrating the effects of estrogen (E) on 

performance in behavioral tasks (for reviews see Hampson 1995; for reviews see Sherwin 

2003). These effects have been confirmed in varied learning and memory paradigms and 

across several species. For instance, a review of these benefits in a clinical population 

(e.g. Sherwin 2003) reports that high levels of naturally circulating ovarian hormones 

enhance performance in female-typical tasks such as verbal memory and fine-motor 

skills. In addition, E replacement therapy in menopausal and hysterectomized women 

maintains or re-invigorates the same cognitive abilities. Although the reported effects of 

E on performance in a cognitive task are well established, E may also have additional 

effects including an influence on the utilization of a particular strategy necessary to solve 

a task than solely the level of performance. 

In fact, recent evidence in rats points to an effect of E on the relative efficacy of 

employing a hippocampus-mediated 'place' strategy versus a striatum-mediated 

'response' strategy when solving a cognitive task (Korol and Kolo 2002; Korol, Malin et 

al. 2004). Evidence for multiple learning and memory systems primarily based in these 

brain areas comes from numerous studies. 

It was originally demonstrated in male rats that selective inactivation of the 

hippocampus affects the expression of a place strategy while damage to the caudate 

nucleus results in deficient response learning in a cross-maze task (Packard and 

McGaugh 1996) and in the Morris water maze (McDonald and White 1994). White and 

McDonald (2002) suggest that interference with hippocampal processing impaired the 
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ability of rats to learn the location of a food reward in an 8-arm radial maze during a win-

shift task but had no effect on learning in a win-stay task (White and McDonald 2002). 

Conversely, lesions of the dorsal striatum attenuated performance in the win-stay, but not 

the win-shift, condition. In an 8-arm radial maze, retrieval of a reward in win-shift tasks 

is primarily dependent on the development of a spatial map of the maze and its 

immediate environment, or a place strategy. Conversely, a win-stay task requires the 

formation of a stimulus-response relationship without the involvement of any extra-maze 

cues, or a response strategy (White and McDonald 2002). Moreover, spatial working 

memory is impaired in rats with hippocampal damage but not striatal damage (Kesner 

1990). However, response memory of a directional turn is attenuated in rats with striatal 

lesions but not hippocampal lesions (Cook and Kesner 1988). During response tasks in 

which striatal lesions significantly impair performance, rats with damaged hippocampi, 

but intact striatal function, exhibit an enhanced performance compared to normal rats 

(Matthews, Simson et al. 1995). Studies such as these suggest a dissociation, yet potential 

interaction, of the neural bases for particular cognitive strategies. In addition, the 

effectiveness of a particular strategy in solving a task is enhanced if relevant information 

from the alternative structure is made unavailable. Investigations of neurotransmitter 

release have also provided evidence for multiple memory systems. Mclntyre et al. (2003) 

showed that acetylcholine release during acquisition of a dual solution T-maze task is 

increased in both the hippocampus and striatum of rats. However, this release was greater 

in the hippocampus of those rats employing a place strategy whereas in rats utilizing a 

response strategy striatal acetylcholine release was greater. 
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Importantly, evidence indicates that these distinct learning and memory systems 

are differentially regulated by the presence of E. An early study by Williams and 

colleagues (1990) established that neonatal hormonal manipulations alter the strategy by 

which rats solve a task in adulthood. In addition, OVX rats receiving E replacement 

acquired a place task more quickly than those receiving the vehicle which, in turn, 

performed better in a response task (Korol and Kolo 2002). The removal of a static cue 

signalling the location of a platform in the Morris water maze interfered with the ability 

of animals receiving vehicle to complete the task but did not affect E treated animals 

(Daniel and Lee 2004). Most convincingly, Korol et al. (2004) have shown that when 

naturally cycling rats in a plus maze are free to use a place or response strategy with 

which to solve the task, rats in the proestrus phase (high E) were biased towards 

utilization of a place strategy whereas rats in the estrus phase (low E) were more likely to 

employ a response strategy. A large body of research has been conducted examining the 

E-mediated enhancement of hippocampal function and its effects on performance in 

learning and memory tasks and strategy solution. Yet, little research has investigated the 

role of striatal dopamine (DA) and its interaction with differential internal hormonal 

states during the selection of a cognitive strategy. 

There is converging evidence implicating striatal DA in response-based learning. 

Electrophysiological studies indicate that circuits within the basal ganglia promote the 

acquisition of a task through trial and error learning in which a particular behavioral 

response is shaped by reward-related contingencies (Graybiel 2005). Moreover the 

striatum contains response- and reward-related neural representations (Mizumori, 

Yeshenko et al. 2004). Chemical and structural lesions to the dorsal striatum interfere 
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with response learning tasks (McDonald and White 1994; Packard and McGaugh 1996; 

Compton 2004) and similar damage impaired acquisition of plus maze and T-maze tasks 

in cue-deficient environments (Chang and Gold 2004). Anatomical evidence shows that 

the striatum contains the highest density of DA Dl receptors (D1R) and DA D2 receptors 

(D2R) in the brain, both within the caudate-putamen and the nucleus accumbens 

(Boyson, McGonigle et al. 1986). A recent study by Daniel et al. (2006) showed that E 

interacts with D2R but not D1R to affect performance in a response learning task. 

Although such results support a role for striatal DA in the performance of 

response-based behavioral tasks, there is a lack of evidence describing the estrogenic 

influence on DA in the selection of a cognitive strategy by which these tasks are solved. 

In order to investigate this interaction, here rats were trained in a dual solution T maze 

task that allows for the utilization of either a place or response strategy. Adult female rats 

were ovariectomized and administered levels of either low or high 17{3-estradiol (E2). 

Based on findings by Korol et al. (2004) using the same task, it was expected that during 

a no-drug probe trial most low E2 rats would solve the maze using a response strategy 

and most high E2 rats would employ a place strategy. Furthermore, in order to determine 

the influence of E2 on DAergic mediation of strategy selection, both groups of animals 

received systemic injections of either a D1R or D2R antagonist prior to subsequent probe 

trials. Considering that performance in a response learning task is reportedly sensitive to 

D2R but not D1R antagonism (Daniel, Sulzer et al. 2006), both were examined here to 

determine whether the same pattern is seen in use of strategy. 
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These effects were investigated with a hormone administration regimen that was 

intended to mimic the levels of E during the estrous cycle. That is, the low E2 group 

received constant levels of E2 similar to that seen during the estrus phase and the high E2 

group received constant low E2 plus daily injections resulting in peaks of E2 similar to 

that seen during the proestrus phase. 

2. Materials and Methods 

Subjects and Surgery: 

Subjects included 30 female Sprague-Dawley rats (Charles River, St. Constant, 

QC, Canada), approximately three months of age. All rats weighed between 225-250 

grams. Before training began, animals were housed in pairs in polyurethane shoebox 

cages and maintained on a reverse 12h:12h light/dark cycle with lights off from 0900-

2100h. Standard lab chow and water were available ad libitum until training began. The 

rats were handled daily from time of arrival until completion of the experiment. 

Approximately one week after arrival, all rats were anaesthetized using a mixture 

of ketamine (50 mg/ml) and xylazine (4mg/ml) in a 4:3 ratio (1 ml/kg, IP) and bilaterally 

ovariectomized using a standard aseptic procedure through a dorsal incision. Post­

surgical care included administration of the antibiotic Baytril (0.03 ml/animal, SC), the 

analgesic banamine (0.03 ml/animal, SC), and 0.9% saline (3ml/animal, SC). Subsequent 

to surgery, all animals were allowed to recover in their home cages for several days until 

surgery for implantation of Silastic tubes. All animal protocols were in accordance with 
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guidelines established by the Canadian Council on Animal Care and were approved by 

the Concordia University Animal Research Ethics Committee. 

Hormone administration and measurement: 

Animals were randomly assigned to one of two groups; low E2 (n=15) or high E2 

(n=15). Three days after the ovariectomy surgeries, all animals were anaesthetized using 

Halothane gas (4% for induction and 2% for maintenance) and a Silastic tube (1cm long; 

i.d. 1.47 mm; o.d. 1.96 mm) containing 5% 17p-E2 (Sigma Chemical Co., St Louis, MO) 

in cholesterol (Sigma) was subcutaneously implanted in the nape of the neck. This has 

been reported to produce a serum concentration of approximately 20 pg/ml consistent 

with naturally circulating low levels of E such as those seen during the estrus phase of the 

rat estrous cycle (Mannino, South et al. 2005). For the high E2 group, in addition to the 

subcutaneous implants, daily subcutaneous injections were given of 17P-estradiol 

benzoate (lOug/kg) dissolved in sesame oil (Sigma) designed to achieve levels seen 

during the proestrus phase of the estrous cycle (75-90 pg/ml). During the same period all 

animals in the low E2 group received daily subcutaneous injections of sesame oil as a 

control (1 ml/kg). All injections began two days before habituation training and occurred 

between 1200-1400h each day. 

Approximately 30 days following the implantation of the Silastic tubes, i.e. at the 

completion of behavioral testing, blood was collected from the tail vein at 1200h. Blood 

samples were immediately centrifuged and plasma was collected and stored at -20 °C 

until assayed. E2 was measured using a commercially available ELISA kit (Immuno-
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Biological Laboratories Inc., Minneapolis, MI). The assay antibodies have 100% cross-

reactivity with E2 and 0.2% and 0.05% cross-reactivity with estrone and estriol 

respectively. The range of the assay is between 0 - 2000 pg/ml and the reported inter-

assay variation is 7-9%. 

DA receptor antagonist administration: 

Animals received systemic injections of DA antagonists on separate days. The 

selective D1R antagonist SKF 83566 (Sigma) was administered in a moderate dose of 0.1 

mg/kg and a lower dose of 0.01 mg/kg. Raclopride, a selective D2R antagonist, was 

administered in a moderate dose of 0.5 mg/kg and lower dose of 0.1 mg/kg. These doses 

were selected because they are in the mid and low ranges for modifying behaviors in 

attention and learning tasks for both SKF 83566 (Serafim and Felicio 2001; Salamone, 

Arizzi et al. 2002; Domenger and Schwarting 2006) and raclopride (Wise and Carlezon 

1994; Shaham and Stewart 1996). Both drugs were dissolved in 0.9% saline at room 

temperature and stored no longer than four days at 4°C. AH drugs were administered 

intraperitoneally (IP) 30 minutes prior to the onset of behavioral testing and animals were 

allowed a washout period for a minimum of 24 h between each drug probe trial. 

Apparatus, Modified Plus Maze: 

All training was carried out in a polyurethane plus maze placed on a table one 

meter above the floor. The maze was constructed with black walls extending 23cm above 



52 

a wire grid floor that is 10.5cm wide and enclosed with removable clear polyurethane 

roof panels. The start and probe arms do not have roof panels on them. The modified plus 

maze had four arms arranged at 90° angles around a 14x14cm central chamber; two goal 

arms, a training start arm, and a probe start arm, all of which were 75cm in length (figure 

1). Entrance from the central chamber to all arms could be occluded by black 

polyurethane guillotine gates which could be lifted by the experimenter using a string 

from a remote location. 

Throughout the training trials the probe start arm was blocked off from the central 

chamber creating a T-shaped maze (figure 1 A). At the commencement of the probe trial, 

the probe arm was unblocked and the original start arm was blocked creating an 

alternative T-shaped maze exactly 180° in orientation (figure IB). Each start arm 

contained a start-box 30cm in length which blocked access to the central chamber by a 

black polyurethane guillotine gate halfway down the arm. Each goal arm contained a 

white ceramic bowl in which a food reward (Kellogg's Froot Loops®) could be placed. 

Froot Loop crumbs were placed underneath both goal arms of the maze during all trials to 

prevent any confounds due to odor cues. Extra-maze cues were very obvious and 

included a large dark poster on a plain white wall opposite blue metal cupboards on the 

other wall. The experimenter in a white lab coat stood in the same position during all 

trials. For all trials, the maze was kept stationary in a position relative to all extra-maze 

cues throughout testing. All testing took place under dim red light illumination. 
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Figure 1: The modified plus maze used in this experiment as adapted from Korol et al. 
(2004). A) Rats were initially trained to receive a reward in either the left or right goal 
arm. Upon reaching criterion, rats were then placed in the opposite arm B) for the start of 
the probe trial. 
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Procedure: 

Habituation. Approximately five days after ovariectomy, all animals were placed 

on food restriction which lasted until completion of the experiment and maintained body 

weight at 90% of free-feeding weight. All training was performed at the beginning of the 

dark phase of the light/dark cycle commencing at 0900h. Beginning seven days after 

implantation of the Silastic tubes, all animals were given three days of habituation to the 

modified plus maze with the probe trial start arm blocked off creating a T-shaped maze 

(see figure 1 A). Habituation consisted of 15-min sessions in the maze with Froot Loops 

scattered throughout the apparatus. 

Training. Following habituation, all rats began acquisition training. Each animal 

was assigned to receive a food reward, half of a Froot Loop, in either the right or left goal 

arm. The baited goal arm was counterbalanced across rats such that half the rats in each 

group received the reward in the right arm and half in the left arm. For each particular rat 

the Froot Loop was always in the same goal arm. Training consisted of 10 daily trials per 

rat beginning in the start box of the training arm. Rats were placed in the start-box behind 

the guillotine gate and were allowed to rear and look and sniff around the room while 

waiting to start.. Once the gate panels of both goal arms were raised the animal was 

released from the start-box and allowed a free choice to enter either the right or left goal 

arm. A trial was ended when all four limbs of a rat crossed into a goal arm and the gate 

could be closed, or when a 2-min time limit was reached. Rats that chose correctly were 

allowed to eat the food reward in the arm before being returned to their home cage. Rats 

that chose incorrectly were allowed to investigate the empty food bowl before being 
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taken out of the arm and placed into the home cage. Inter-trial intervals were 10-30 sec 

during which time another rat completed its trial. Rats were considered to have reached 

criterion after performing 8/10 correct trials for three days in a row. 

Probe testing. On the third day of criterion performance the rat was given a probe 

trial starting from the probe arm (figure IB). The rat was placed in the probe start arm, 

180° opposite the blocked training start arm, and the experimenter returned to the 

standard location. From this position, the goal arm gates were lifted and the animal was 

released and allowed to enter either the right or left arm. If an animal made the same 

directional turn in its choice of an arm for which it had been rewarded in the training 

phase, then it was scored as a response strategy. If an animal made an opposite 

directional turn in its choice of an arm towards the same spatial location of its reward 

during the training phase, then it was scored as a place strategy. 

D1R and D2R Antagonism. Each rat was injected with a particular type and dose 

of drug in a counterbalanced manner. All drug trials were given subsequent to 

achievement of criterion and completion of the initial probe trial. One day after the no-

drug probe trial each rat was injected with a drug and trained again fori 0 trials then given 

the drug probe trial. No subsequent drug injections were given for at least 24 h. Every rat 

maintained its performance of 8/10 correct trials during all drug trials. 
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Statistical Analyses: 

This was a mixed design with E2 level as a between subjects factor and drug as a 

within subjects factor. Because the dependent variable was percent of rats using a type of 

cognitive strategy, probe and drug trial data were analyzed using non-parametric 

statistics. A Chi-square (x2) analysis was conducted to compare high and low E rats in 

their use of strategy in the no-drug probe trial. Multiple x,2 tests were also conducted for 

these two groups for each of the drug probe trials at both doses of SKF 83566 and 

raclopride to test whether there was a significant probability of using one strategy over 

another in each individual case. In order to test the effects of DA antagonists, McNemar 

tests were conducted using a binomial for small frequencies to compare no-drug probe 

trials with each of the respective doses of SKF 83566 and raclopride. 

To control for the effects, if any, of repeated testing in this task, a Cochrane Q test 

was conducted on percent of rats using either strategy across all 5 days of probe and drug 

trials. Finally, to determine if there were any differences in learning this task, a two-tailed 

t-test was conducted on the number of days to reach criterion for low and high E2 groups. 

3. Results 

Plasma E2 levels, task acquisition and no-drug probe test: 

The mean (± S.E.M.) plasma E2 level for the low E2 rats was 32.62 pg/ml (± 

7.05) and for the high E2 rats it was 90.44 pg/ml (± 19.70). These levels are within range 

for estrus and proestrus respectively. 
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By the time the first criterion day was reached the entire testing session for each 

rat lasted no more than 15 min and trials were completed in 20 sec or less, but most often 

within 5 sec. There were no significant differences (t = -0.259, p = 0.79) between the 

high and low E2 groups in the number of days to reach criterion. The means (± S.E.M) 

were 4.68 (± 0.32) for Low E2 and 4.81 (± 0.37) for High E2. In addition, there was no 

effect of trial test day on prevalence of using either a place or a response strategy (Q = 

4.857, p = 0.302). 

Figure 2 illustrates that on the no-drug probe trial, high E2 rats were significantly 

more likely to employ a place strategy (80%, x2 = 0.02) than a response strategy (20%). 

In contrast, Low E2 rats showed a non-significant but strong trend to utilize a response 

strategy (73%, x2 = 0.071) over a place strategy (27%). 

D1R antagonist probe trials (SKF 83566): 

As can be seen in figure 3 (top) D1R blockade by a 0.1 mg/kg dose of SKF 83566 

in the low E2 group resulted in a significant shift (McNemar, p = 0.039) in the method 

used to solve the probe trial from a majority of rats using a response strategy in the no 

drug probe to using a place strategy (80%, x2 - 0.02 ). Conversely, the low dose of SKF 

83566 had no effect in comparison to the no drug probe trial as there was a significantly 

higher probability that these rats would employ a response strategy (87%, x2 = 0.005) 

over a place strategy. 
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Figure 2: Strategy use in ovariectomized rats administered either high or low estradiol. A 
significantly greater proportion of High estradiol rats employed a place strategy *(x = 
0.02, Chi-Square test) over a response strategy. 
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Figure 3: Strategy use in ovariectomized rats administered low estradiol during the no-
drug probe trial and in response to doses of a dopamine D| receptor antagonist (SKF 
83566) and a dopamine D2 receptor antagonist (raclopride). * significant (p < 0.05) 
difference in percent of rats using response strategy versus place strategy (Chi Square). # 
significant switch in strategy compared to probe trial (McNemar). 
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Figure 4: Strategy use in ovariectomized rats administered high estradiol during the no-
drug probe trial and in response to doses of a dopamine Di receptor antagonist (SKF 
83566) and a dopamine D2 receptor antagonist (raclopride). * significant (p < 0.05) 
difference in percent of rats using response strategy versus place strategy (Chi Square). 
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As can be seen in figure 4 (top), after systemic administration of a 0.1 mg/kg dose 

of the selective D1R antagonist SKF 83566, high E2 animals maintained use of their no-

drug strategy and were significantly more likely to employ a place strategy (80%, x2 = 

0.02) than a response strategy (20%). However, administration of a 0.01 mg/kg dose 

resulted in these animals being equally likely to use either a place strategy (40%) or a 

response strategy (60%) in order to solve the task. 

D2R antagonist probe trials (Raclopride): 

Figure 3 (bottom) illustrates that comparable to intermediate D1R antagonism, 

systemic administration of 0.5 mg/kg raclopride in low E2 animals resulted in a 

significant shift of cognitive strategy (McNemar, p = 0.008) as significantly fewer 

animals exercised a response strategy (13%, x2 = 0.005) compared to a place strategy 

(87%). In contrast to the effect of a low dose D1R antagonism in low E2 animals, low 

dose (0.1 mg/kg) D2R antagonism with raclopride resulted in a significant shift of 

cognitive strategy (McNemar, p = 0.021) as significantly more low E2 animals utilized a 

place strategy (80%, % = 0.02) over a response strategy (20%). 

As can be seen in figure 4 (bottom), systemic injection of a 0.5 mg/kg dose of the 

D2R antagonist raclopride did not effect of strategy selection in high E2 animals as the 

majority employed a place strategy (80%, x2 = 0.005) over a response strategy (20%) 

which is how these rats responded in the no drug condition. After administration of 

0.1 mg/kg of raclopride, however, rats were equally likely to utilize either a place strategy 
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(40%) or a response strategy (60%), similar to the effects subsequent to low dose D1R 

antagonism. 

4. Discussion 

The present results confirm previous findings (Korol, Malin et al. 2004) that 

demonstrate variations in the levels of E2 in female rats strongly influence the probable 

use of a particular cognitive strategy when solving a maze for a reward. The data show 

that chronic low levels of E2 will bias an animal towards the utilization of a striatum-

mediated 'response' strategy and repeated high levels of E2 will bias a rat towards use of 

a hippocampus-mediated 'place' strategy. 

The most dramatic effects of DA receptor antagonism in the current study were 

observed in the low E2 rats. Both doses of raclopride and the higher dose of SKF 83566 

caused the majority of low E2 rats that employed a response strategy in the no-drug trial, 

to employ a place strategy. The only exception was in response to the lower dose of the 

D1R antagonist, SKF 83566, which did not change the strategy used by most low E2 rats. 

The effects of DA receptor antagonism on high E2 rats were the same for both the 

D1R antagonist, SKF 83566, and the D2R antagonist, raclopride. Neither of these drugs 

had any effect on strategy selection at the higher doses. That is, high E2 rats maintained 

a greater probability of using a place strategy when administered the higher doses of 

these drugs. On the other hand, high E2 rats responded to the lower doses of both drugs 

by being equally likely to use a place or a response strategy, showing no probability of 
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using one strategy over another. It has been shown that high levels of E when acutely 

administered will increase DA release in the striatum (Becker 1990) and E2 will increase 

both D1R and D2R binding (Di Paolo, Poyet et al. 1981; Levesque and Di Paolo 1989). 

Strategy use was strongly influenced by systemic administration of either a D1R 

or D2R antagonist and these effects were different depending on whether rats were 

administered high or low E2. Although it has been shown that E2 increases binding of 

both D1R and D2R in the striatum (Di Paolo, Poyet et al. 1981; Levesque and Di Paolo 

1989), a recent behavioral study found that E2 interacted with D2R but not D1R 

antagonism. In examining the effects of E2 on performance in a response task, D2R 

antagonism disrupted performance to a greater extent in the high E2 OVX rats than in no 

E2 OVX controls. Conversely, there was no difference in high E2 or no E2 in rats in 

response to D1R antagonism (Daniel, Sulzer et al. 2006). This is not in agreement with 

the results reported here insofar as antagonism of both receptor subtypes had an effect on 

strategy selection. On the other hand, in the study by Daniel and colleagues (2006) the 

measured outcome was performance in a response task, whereas here the measure was 

the use of either a place or a response strategy to solve a task that could be completed 

using either strategy. 

These results suggest that a hippocampus-dependent place strategy is more likely 

to be used by rats receiving high E2. The strategy use of High E2 rats was not altered 

following administration of a moderate dose of either a D1R or D2R antagonist. In 

addition, Low E2 rats administered either a moderate dose of D1R or both doses of D2R 

antagonist were biased to use a place strategy. Numerous studies demonstrate a beneficial 
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influence of high E on hippocampal function and hippocampus-dependent behaviors 

across several species (e.g. McEwen, Akama et al. 2001). For instance, higher levels of 

acute E enhance hippocampal dendritic spine density (Woolley and McEwen 1992) and 

synaptic proteins in rats (Brake, Alves et al. 2001) as well as in rhesus macaques (Choi, 

Romeo et al. 2003). The potential influence of acute E on learning and memory has also 

been demonstrated insofar as it facilitates long term potentiation (Warren, Humphreys et 

al. 1995; Cordoba Montoya and Carrer 1997) and attenuates long term depression (Day 

and Good 2005) in the hippocampus. These studies suggest that E increases hippocampal 

function. In addition, the data presented here suggest that the bias toward hippocampus-

dependent strategy is not only influenced by E but also by its interaction with central DA 

function. 

Low E2 rats show a bias toward use of a striatum-dependent response strategy. In 

addition, following administration of a low dose D1R antagonist, low E2 rats were more 

likely to maintain use of a response strategy. Although less is known concerning 

estrogenic effects on striatum-based learning, evidence suggests that high E levels impair 

learning and performance in tasks dependent on striatal function. For example, high E2 

administration to OVX female rats impaired acquisition of tasks dependent upon 

response learning such as a response variant of the T-maze (Davis, Jacobson et al. 2005) 

and a cue-based Morris water maze subsequent to removal of the cue (Daniel and Lee 

2004). E2 infusion into the striatum also impaired a cue-deficient version of a Y-maze 

(Zurkovsky, Brown et al. 2007). Moreover, low levels of E2 have been shown to improve 

learning and performance in tasks that depend on striatal functioning such as non-spatial 
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working memory in an alternating T-maze task (Wide, Hanratty et al. 2004) and in a 

radial arm maze (Holmes, Wide et al. 2002). 

Studies in this lab using gonadally-intact female rats have shown that during 

proestrus, a period of high E, performance in a latent inhibition task is interrupted 

(Quinlan, Graffe et al. 2006) and high E replacement in OVX rats disrupts latent 

inhibition (Nofrey, Ben-Shahar et al. 2007). Lubow (1997) has reviewed evidence 

strongly suggesting latent inhibition is a task dependent on striatal DA function. 

Additionally, the effects of E on pre-pulse inhibition (PPI), another striatal DA-dependent 

task, are evident in both clinical and experimental populations. Investigations of PPI in 

human subjects indicate that sensorimotor gating performance is reduced during the 

luteal phase of the menstrual cycle when circulating levels of E are high (Jovanovic, 

Szilagyi et al. 2004). Studies in rats also show a significant reduction of PPI during high 

E proestrus females as compared to males or to females in the diestrus or estrus phases of 

the estrous cycle when E levels are low (Koch 1998). 

There are also physiological data to support the idea that E may affect striatal 

function. For example, E is known to affect DA function in the striatum (for review see, 

Becker 1999) and recent evidence suggests that E2 inhibits gamma- aminobutyric acid 

(GABA) release in the striatum (Hu, Watson et al. 2006). 

In summary, the present results are a confirmation of previous findings 

demonstrating the important influence of E2 levels in the use of a strategy during 

performance of a cognitive task. In addition, a comparably relevant role of DA in this 

process is implicated by the shift in strategy selection subsequent to modulation of D1R 
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and D2R. However, this is not merely an isolated effect of hormonal influence or 

neurotransmitter activity but rather an interaction between these two systems that 

significantly impacts the behavior of a rat in a learning and memory task. Dependent on 

the levels of E2 in the brain, there are differential modulations of the DAergic activity 

which significantly alter the approach by which a rat will solve a task for a reward. 
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Preface: 

The findings from the studies in the previous chapter show that the systemic 

injection of DA Dl and DA D2 receptor antagonists differently affects the cognitive 

strategy use of low E2 rats and high E2 rats. To determine the brain regions in which DA 

receptor antagonism is acting to alter the strategy use of low E2 rats, DA Dl receptor and 

DA D2 receptor antagonists were infused into the dorsal striatum and the ventral striatum 

(nucleus accumbens). The dorsal striatum was chosen as a likely area to begin the 

investigation as high levels of E2 attenuate performance in dorsal striatal DA-mediated 

response learning tasks (Korol and Kolo 2002; Daniel, Sulzer et al. 2006). The nucleus 

accumbens was chosen as a control for the dorsal striatum. 
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Abstract: 

Estradiol (E2) has been shown to modulate the cognitive strategy used by female 

rats to find a reward. For example, rats with high levels of E2 tend to use an allocentric 

(place) strategy while rats with low levels of E2 use an egocentric (response) strategy. It 

has been shown that systemic dopamine receptor antagonism interacts with E2 to affect 

strategy use. Here, dopamine antagonists were administered directly into the dorsal 

striatum or nucleus accumbens to determine where in the brain this interaction takes 

place. Seventy-four young adult, female, Sprague-Dawley rats were trained and tested in 

a modified plus maze. All rats were ovariectomized, received a subcutaneous E2 implant, 

and were implanted with bilateral cannulae into either the dorsal striatum or the nucleus 

accumbens. In addition, high E2 subjects received daily injections of E2 in a sesame oil 

solution while low E2 subjects received daily injections of vehicle only. After reaching 

criterion levels of performance in a T-Maze task, subjects were administered 

microinjections of either a dopamine D1 receptor (SCH 23390; 0.1 fig/ml and 0.01 jig/ml) 

or D2 receptor (raclopride; 2u.g/ml and 0.5 ug/ml) antagonist or a vehicle control (saline) 

in a counterbalanced manner. Dorsal striatal administration of a Dl, but not D2, receptor 

antagonist caused a shift in strategy in both high and low E rats. There was no significant 

effect of dopamine antagonism in the nucleus accumbens group. Thus, E2 biases the 

cognitive strategy used in a maze when searching for a reward. This effect is modulated 

by dopamine D1R antagonism in the dorsal but not ventral striatum suggesting that 

cognitive strategy is in part mediated by an interaction between E2 and dopamine in this 

region. 
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1. Introduction 

There is extensive evidence, albeit controversial, implicating estrogen in the 

performance of behavioral tasks by women and other female mammals. Higher levels of 

estrogen increase performance in some behavioral tasks while reducing performance in 

others (e.g. Hampson 1995; e.g. Sherwin 2003). Such conflicting findings have led to the 

suggestion that the effect of estrogen on task performance may be underpinned by its 

effect on cognitive strategy (Korol, Malin et al. 2004; Daniel 2006). Although alternative 

strategies may be used to solve a given cognitive task correctly, one particular strategy 

may allow the task to be completed more quickly and/or with fewer errors than other 

strategies. 

Rats learning to complete a maze can use one of several cognitive strategies 

(Tolman, Ritchie et al. 1946; Blodgett and McCutchan 1947). For example, they may use 

environmental, or allocentric, cues surrounding the maze to develop a cognitive map and 

use this to find the reward. This approach is referred to as a place learning strategy and is 

mediated predominantly by the hippocampus (Packard and McGaugh 1996). Another 

approach involves the use of internal, or egocentric, cues to find the reward. In this case, 

rats learn and employ a series of habitual motor responses such as 'turn left' or 'turn 

right.' This approach is referred to as a response learning strategy and is mediated 

predominately by the dorsal striatum (DS), also known as the caudate/putamen (Packard 

and McGaugh 1996; Chang and Gold 2004). As would be expected, rats use a 

combination of these strategies under normal circumstances (Chang and Gold 2003). 

However, when the brain region responsible for one strategy is made unavailable (e.g. via 
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lesion or lidocaine) the other strategy predominates (e.g. Packard and White 1989; 

Packard and McGaugh 1996; e.g. White and McDonald 2002). Accordingly, the use of 

either a place or response strategy can be influenced by altering the function of either the 

hippocampus or the DS. For example, Packard and White (1991) showed that both Dl 

and D2 receptor agonists injected directly into the DS improve performance on a 

response task with no effect on a place task. However, when these agonists are injected 

into the hippocampus, they improve performance on a place task with no effect on the 

response task. 

There is a preponderance of evidence that estradiol (E2) affects hippocampal 

function (for review see McEwen, Akama et al. 2001) and, thus, it should not be 

surprising that high E2 levels improve hippocampus-based place learning either in a plus 

maze (Korol and Kolo 2002) or a radial arm maze (Davis, Jacobson et al. 2005). A study 

by Korol et al. (2004) showed that when cycling female rats were allowed to solve a 

modified plus maze using either strategy, the majority of proestrus (high E2) rats used a 

place strategy while most estrus (low E2) rats used a response strategy. These findings 

were replicated in ovariectomized (OVX) rats administered high or low E2 replacement 

(Quinlan, Hussain et al. 2008). 

While higher levels of E2 improve performance on tasks requiring the 

hippocampus they may impair performance on tasks regulated by other brain regions, 

including the DS. For example, direct infusion of E2 into the DS impairs response 

learning (Zurkovsky, Brown et al. 2007). Higher levels of E2 also impair performance in 

other behavioral tasks regulated by the DS, viz. response learning in a radial arm maze 
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(Davis, Jacobson et al. 2005), latent inhibition (Nofrey, Ben-Shahar et al. 2008) and pre-

pulse inhibition (Koch 1998). Tasks such as these are particularly sensitive to levels of 

dopamine in the DS (Lubow 1997; Swerdlow, Braff et al. 2000) and it has been also 

shown that E2 alters DS dopamine function (Di Paolo, Poyet et al. 1981; Levesque and 

Di Paolo 1989; Becker 1990). 

Recent evidence demonstrates that E2 interacts with dopamine to influence 

cognitive strategy in female rats. Previous work in this lab (Quinlan, Hussain et al. 2008) 

has shown that dopamine DI receptor (D1R) and D2 receptor (D2R) antagonists are able 

to shift the strategy used by OVX rats administered low but not high E2. That is, D1R 

and D2R antagonists shifted the cognitive strategy used by low E2 rats from a response to 

a place strategy. It is hypothesized that higher E2 levels may not only bias strategy 

toward hippocampal-dependent place learning but may also attenuate DS-dependent 

response learning, specifically by altering DS dopamine transmission. 

Although these data are consistent with this hypothesis, it cannot yet be 

concluded that E2 is specifically interacting with dopamine in the DS to produce these 

behavioral effects because the antagonists were administered systemically in our previous 

study. Other systems including the mesolimbic dopamine system that innervates the 

ventral striatum also play a role in solving a maze for a reward. The current study was 

designed to examine the interaction between chronic E2 and dopamine within the DS and 

ventral striatum (nucleus accumbens; NA). It was hypothesized that D1R and D2R 

antagonist microinjections into the dorsal, but not ventral, striatum would alter the 

cognitive strategy used by low but not high E2 rats. 
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2. Materials and Methods 

Subjects and Surgery: Eighty-six female, Sprague-Dawley rats (Charles River, St. 

Constant, QC, Canada), approximately three months of age and weighing between 225-

250 grams were initially included in this study. Before training began, rats were housed 

in pairs in polyurethane shoebox cages and maintained on a reverse 12h:12h light/dark 

cycle with lights off from 0900-2 lOOh. Standard lab chow and water were available ad 

libitum until training began. 

Approximately one week after arrival all rats were anaesthetized using Halothane 

gas (4% for induction; 2% for maintenance) and bilaterally ovariectomized using a 

standard aseptic procedure through a dorsal incision. During the ovariectomy procedure 

all rats were implanted with a Silastic tube (1cm long; i.d. 1.47 mm; o.d. 1.96 mm) 

containing 5% 17P-estradiol benzoate (Sigma Chemical Co., St Louis, MO) in 

cholesterol (Sigma) which was subcutaneously implanted in the nape of the neck. This 

has been reported to produce a serum concentration of approximately 20-25 pg/ml. This 

is consistent with naturally circulating levels of E2 typical of those seen during the estrus 

phase of the rat estrous cycle (Butcher, Collins et al. 1974; Mannino, South et al. 2005). 

Post-surgical care included administration of the antibiotic Baytril (0.03 ml/animal, SC; 

CDMV, St. Hyacinthe, Quebec), the analgesic banamine (0.03 ml/animal, SC; CDMV), 

and 0.9% saline (3ml/animal, SC). Rats were allowed to recover in their home cages for 

several days prior to implantation of cannulae. 

Rats were randomly assigned to be implanted with cannulae directed at either the 

DS (DS group) or NA (NA group). Rats were anaesthetized using Halothane gas and 
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received stereotaxic bilateral implantations of 21g stainless steel tubing guide cannulae 

(Plastics One, Roanoke, VA). Cannulae were secured with dental cement and skull 

screws. Stereotaxic co-ordinates from bregma for the DS were AP -0.3, ML ± 4.0, DV -

5.0; and forNA were AP +1.4, ML± 2.8 at 10°, DV -6.8 (Paxinos and Watson 1998). 

Cannulae were blocked with 26g obdurators (Plastics One) which extended 1mm below 

the tip of the guide cannula. Rats received the same post-surgical care as after the 

ovariectomy surgery and were allowed several days to recover in their home cages. All 

animal protocols were in accordance with guidelines established by the Canadian Council 

on Animal Care and approved by the Concordia University Animal Research Ethics 

Committee. 

Hormone administration: The DS and NA groups were further randomly divided in half 

and assigned to either low or high E2 conditions. In addition to the low constant levels of 

E2 supplied by the Silastic implants to all rats, rats in the high E2 condition received 

additional daily subcutaneous injections of 17P-estradiol (20ug/kg) dissolved in sesame 

oil (Sigma) designed to achieve E2 levels seen during the proestrus phase of the estrous 

cycle (75-90 pg.ml; Mannino, South et al. 2005; Quinlan, Hussain et al. 2008). To control 

for the daily injection procedure, rats in the low E2 condition received daily subcutaneous 

injections of sesame oil (1 ml/kg). All rats received the first injection two days before 

habituation training. Injections were given between 1200-1400h each day. This hormone 

administration regimen was intended to mimic E2 levels seen during the estrus and 

proestrus phases of the natural estrous cycle. Subcutaneous implants maintain a steady 
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low baseline level of E2 in both E2 groups while daily injections of an E2 solution 

imitates the intermittent peaks of E2 associated with proestrus. Testing began 

approximately 10 days following ovariectomy. 

Approximately 30 days following the implantation of the Silastic tubes, blood was 

collected from the tail vein 22 hrs following the previous E2 or oil injection. Blood 

samples were immediately centrifuged and plasma was collected and stored at -20 °C 

until assayed. E2 was measured using a commercially available ELISA kit (Immuno-

Biological Laboratories Inc., Minneapolis, MI). The assay antibodies have 100% cross-

reactivity with E2 and 0.2% and 0.05% cross-reactivity with estrone and estriol 

respectively. The reported inter-assay variation is 7-9%. 

Dopamine Receptor Antagonist Administration: Animals received bilateral intracerebral 

injections of DA antagonists on separate days; all drugs were administered five minutes 

immediately prior to the start of testing at a rate of 0.5ul/min/side using a Harvard 

Apparatus Model 22 automatic dual pump, 26g stainless steel injectors which extended 

lmm below the tip of the cannulae, and two Hamilton lOul syringes. Injections lasted for 

one minute after which the injectors were left in place for an additional minute to allow 

for drug diffusion. Drugs were only infused on drug probe testing days and not on 

training days. 

The D1R antagonist SCH 23390 (Sigma) was administered in a moderate dose of 

0.1 ug/ml and a low dose of 0.01 ug/ml. Raclopride (Sigma), a selective D2R antagonist, 

was administered in a moderate dose of 2.0ug/ml and a low dose of 0.5ug/ml. These 
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doses were selected because they are in the mid and low ranges for modifying behaviors 

in attention and learning tasks for both SCH 23390 and raclopride (Fernandez-Ruiz, 

Hernandez et al. 1991; Callahan, De La Garza et al. 1997; Seamans, Floresco et al. 1998; 

Zavitsanou, Cranney et al. 1999). Both drugs were dissolved in 0.9% saline at room 

temperature and stored at -20°C until used. Each rat was injected with a particular type 

and dose of antagonist or saline in a counterbalanced schedule using a Balanced Latin 

Square design to rule out sequence and order effects within each group. A washout period 

of at least 24 hrs was given between each drug probe trial. 

Apparatus, Modified Plus Maze: All training was carried out in a polyurethane plus maze 

placed on a table one meter above the floor. The maze was constructed with black walls 

extending 23cm above a wire grid floor that is 10.5cm and enclosed with a removable 

clear polyurethane roof panels. The modified plus maze had four arms arranged at 90° 

angles around a 14x14cm central chamber; two goal arms, a training start arm, and a 

probe start arm, all of which were 75cm in length. Entrance from the central chamber to 

all arms could be occluded by black polyurethane guillotine gates which could be lifted 

by the experimenter using a string from a remote location. 

Throughout the training trials the probe start arm was blocked off from the central 

chamber creating a T-shaped maze (see Quinlan, Hussain et al. 2008). At the 

commencement of the probe trial, the probe arm was unblocked and the original start arm 

was blocked creating an alternative T-shaped maze 180° in orientation. Each goal arm 

contained a white ceramic bowl in which a food reward (Kellogg's Froot Loops®) could 
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be placed. Froot Loop crumbs were placed underneath both goal arms of the maze during 

all trials to mask confounding effects of odor cues. Extra-maze cues included a large dark 

poster on a plain white wall opposite a series of blue metal cupboards on the other wall. 

The experimenter in a white lab coat stood in the same position during all trials. For all 

trials, the maze was kept stationary relative to all extra-maze cues throughout testing. All 

testing took place with overhead red lights with an additional 15 W light for illumination. 

The room was lit only moderately to avoid evoking anxiety in the rats during the task. 

Procedure, Modified Plus Maze: Testing in the modified plus maze was the same as that 

employed previously (Quinlan, Hussain et al. 2008). Briefly, five days after the final 

surgery all animals were placed on food restriction and maintained at a body weight of 

90% of free-feeding weight. All training was performed at the beginning of the dark 

phase of the light/dark cycle commencing at 0900h. All rats were habituated to the 

modified plus maze. Habituation consisted of three, once-daily 15-min sessions in the 

maze with Froot Loops scattered throughout the apparatus. 

Following habituation, each rat was assigned to receive a food reward, half of a 

Froot Loop, in either the right or left goal arm. The baited goal arm was counterbalanced 

across rats such that half the rats in each group received the reward in the right arm and 

half in the left arm. For each particular rat the Froot Loop was always in the same goal 

arm. Training consisted of 10 daily trials per rat beginning in the start box of the training 

arm. The doors to both goal arms were opened and the rat was released from the start-box 

and allowed a free choice to enter either the right or left goal arm. A trial was ended 
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when all four limbs of a rat crossed into a goal arm and the door could be closed, or when 

a 2-min time limit was reached. Rats that chose correctly were allowed to eat the food 

reward in the arm before being returned to their home cage. Rats that chose incorrectly 

were allowed to investigate the empty food bowl before being placed back into the home 

cage. Rats were considered to have reached criterion after performing 8/10 correct trials 

for three consecutive days. 

On the day following the third day of criterion performance probe testing began. 

Each rat ran 10 trials and was then placed in the probe start arm, 180° opposite the 

blocked training start arm, and the experimenter returned to the standard location. From 

this position, the goal arm gates were lifted and the rat was allowed to enter either the 

right or left arm. If a rat made the same directional turn in its choice of an arm for which 

it had been rewarded in the training phase, then it was scored as a 'response' strategy. If a 

rat made an opposite directional turn in its choice of an arm towards the same spatial 

location, then it was scored as a 'place' strategy. 

Histology: At the completion of the experiment rats were deeply anaesthetized with 

Euthanyl (65 mg/kg; CDMV, St. Hyacinthe, QC, Canada) and transcardially perfused 

with 0.9% saline followed by 4% formalin. Brains were removed and post-fixed in 4% 

formalin at 4°C overnight and then cryoprotected in 30% sucrose in 1M phosphate buffer 

for additional 4 days at 4°C. Brains were then frozen and stored at -80°C until sectioned. 

Brains were sectioned on a cryostat along the coronal plane at 40um thickness. 

Sections were mounted on ColorFrost plus slides (Fisher Scientific, Ottawa, ON, Canada) 
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and Nissl stained with Cresyl Violet. Injector tip placements were verified using a rat 

brain stereotaxic atlas (Paxinos and Watson 1998). Rats that did not have cannula 

placements in the correct brain area were omitted from the behaviour analysis. 

Statistical Analyses: To examine strategy use in rats for each the DS and NA groups, a 

mixed design with E2 level as a between subjects factor and drug as a within subjects 

factor was used. Because the dependent variable was number of rats using a type of 

cognitive strategy, data were analyzed using non-parametric statistics. To examine 

whether E2 had an effect on strategy use in general, a chi square analysis was employed 

to test whether there was a significant use of one strategy over another in the saline 

control condition. In order to test the effects of DA antagonists on strategy use, 

McNemar tests were conducted using a binomial for small frequencies to compare saline 

trials with each of the respective doses of SCH23390 and raclopride. 

To determine if there were any differences in learning this task, a two-tailed t-test 

was conducted on the number of days to reach criterion for low and high E2 conditions in 

both the DS and NA groups. Finally, to determine whether there were any differences in 

the time to complete the task following each drug, a two-way mixed analysis of variance 

(ANOVA) was conducted for each the DS and NA groups. The independent variables for 

the two-way ANOVAs were E2 condition as a between factor and drug as a within factor. 
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3. Results 

Histological Confirmation and Plasma Estradiol: Histological confirmation of cannula 

placements into the DS and NA are shown in figures 1 and 2. For the DS group, all 

cannula were distributed between -.26 mm and -.80 mm from bregma (fig. 1). For the NA 

group, cannulae were located between 1.60 mm and 1.00 mm from bregma (fig. 2). This 

placed the cannula injector tips within the core of the NA. One rat in the NA group was 

removed from the analysis because the cannulae were not located in this area. 

Mean plasma levels (± SEM) of E2 for the DS group were 68.79 (± 16.00) for the 

high E2 rats and 18.97 (± 4.24) for the low E2 rats. For the NA group, mean plasma 

levels were 55.68 (± 10.09) for the high E2 rats and 20.24 (± 6.71) for the low E2 rats. 

These levels are within the range of E2 observed in proestrus and estrus respectively. 

Task Acquisition and Completion Times: During the early stages of testing, inter-trial 

intervals lasted approximately 10-30 seconds but were closer to 5 seconds at criterion. 

This is because, as testing progressed, the rats became more adept at the task and the time 

to complete the task decreased. All rats achieved criterion performance in the T-Maze 

but eleven rats from the NA group (five low E2 and six high E2) did not complete the 

probe trials after infusion of the dopamine antagonists and were thus removed from the 

data analysis. Of these subjects, most did not approach the goal arms and, if they did, 

would not eat the reward. More rats were assigned to the NA group to make up for the 

higher attrition rate. Thus, the final number of rats included in both studies was seventy-

four, with 38 rats in the DS group and 36 in the NA group. There were no significant 

differences between low and high E2 groups in the number of days to 
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Bregma -0.26 

Bregma -0.30 

Bregma -0.40 

Bregma -0.80 

Figure 1. Locations, indicated with asterisks, of the lowest point of penetration of cannula 

injectors within the dorsal striatum for all animals included in the DS group. Images from 

Paxinos and Watson (1998). 
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Figure 2. Locations, indicated with asterisks, of the lowest point of penetration of cannula 

injectors within the nucleus accumbens for all animals included in the NA group. Images 

from Paxinos and Watson (1998). 
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criterion. The mean number of days (± S.E.M) required to reach criterion in the DS group 

was 7.19 (± 0.49) for low E2 rats and 6.78 (± 0.63) for high E2 rats. The days to criterion 

for the NA groups were 7.47 (± 0.60) for the low E2 rats and 6.58 (± 0.76) for the high 

E2 rats. 

The mean times it took rats to complete the probe trials in response to saline and 

each drug are provided in table 1. A two-way mixed ANOVA revealed a main effect for 

E2 level for the NA group ( F ( U D = 13.801, p = 0.003). That is, within the NA rats, those 

that received low E2 took significantly longer to complete the task than those that 

received high E2. No other significant effects were observed. 

Table 1. Effects of saline vehicle or dopamine antagonism on time to complete probe 
trials. 

Dorsal 
Striatum 

LowE2 

HighE2 

Nucleus 
Accumbens 

Low E2** 

HighE2 

Saline 

5.88 (±1.33) 

3.23 (±0.37) 

20.96 (±7.51) 

5.85 (±1.27) 

Low 
SCH23390 

3.85 (±0.61) 

4.31 (±0.66) 

20.60 (±8.73) 

5.10 (±0.65) 

Moderate 
SCH23390 

4.12 (±0.79) 

3.21 (±0.46) 

38.43 (±14.0) 

7.72 (±3.36) 

Low 
Raclopride 

4.33 (±0.82) 

3.27 (±0.42) 

12.82 (±3.72) 

5.73 (±1.97) 

Moderate 
Raclopride 

5.44 (±0.75) 

3.01 (±0.44) 

19.71 (±6.39) 

8.35 (±3.35) 

Mean (± SEM) times in seconds to complete probe trials in response to bilateral saline 
control or dopamine Dl receptor (SCH23390; 0.01 & 0.1 ng/ml) and D2 receptor 
(raclopride; 0.5 & 2.0 ug/ml) antagonist injections into the dorsal striatum and nucleus 
accumbens in ovariectomized rats administered low or high estradiol (E2) replacement.** 
Indicates a significant main effect of Low E2 rats versus high E2 rats (p = 0.003). 
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Saline and Dopamine Receptor Antagonist Effects on Strategy: When administered 

saline, rats showed the same pattern of behavior that has been reported previously (Korol, 

Malin et al. 2004; Quinlan, Hussain et al. 2008). That is, low E2 rats were significantly 

more likely to use a response strategy (x,2 = 7.811, p = 0.005; fig. 3) while high E2 rats 

showed a tendency to use a place strategy, although this did not reach statistical 

significance. 

McNemar tests revealed that low E2 rats showed a significant (p = 0.004) switch 

of strategy use in response to a moderate dose (0.1 ug/ml) of the dopamine D1R 

antagonist, SCH23390, when it was infused into the DS (fig. 4A). The high E2 rats in this 

group also showed a switch in strategy use in response to the moderate dose of 

SCH23390 (p = 0.016; fig. 5A). The low dose (0.01 ug/ml) of SCH23390 did not have 

any effect on strategy use. The dopamine D2R antagonist, raclopride, had no effect on 

strategy use when injected into the DS in either low or high E2 rats (figs. 4B & 5B 

respectively). There were no significant effects of either dopamine D1R or D2R 

antagonists on strategy use when injected into the NA in either low or high E2 rats (figs. 

6&7). 
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Figure 3. Strategy use in all ovariectomized rats included in this study in response to a 

saline vehicle. Values in the bars represent the number of rats within each group 

exhibiting a particular strategy. Those with low estradiol replacement showed a 

significantly greater probability of using a response strategy over a place strategy (* p = 

0.005, Chi Square). 
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Figure 4. Strategy use in 
ovariectomized rats with low estradiol replacement in response to intra-dorsal striatal 
injections of either saline vehicle or a low and moderate dose of A) the dopamine Dl 
receptor antagonist, SCH 23390 or B) the dopamine D2 receptor antagonist, raclopride. 
Values in the bars represent the number of rats within each group exhibiting a particular 
strategy. Asterisk indicates a significant (p = 0.004, McNemar) difference in strategy use 
when compared to saline vehicle. 
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Figure 5. Strategy use in ovariectomized rats with high estradiol replacement in response 
to intra-dorsal striatal injections of either saline vehicle or a low and moderate dose of A) 
the dopamine Dl receptor antagonist, SCH 23390 or B) the dopamine D2 receptor 
antagonist, raclopride. Values in the bars represent the number of rats within each group 
exhibiting a particular strategy. * Significant (p = 0.016, McNemar) difference in strategy 
use when compared to saline vehicle. 
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Figure 6. Strategy use in ovariectomized rats with low estradiol replacement in response 
to intra-nucleus accumbens injections of either saline vehicle or a low and moderate dose 
of A) the dopamine Dl receptor antagonist, SCH 23390 or B) the dopamine D2 receptor 
antagonist, raclopride. Values in the bars represent the number of rats within each group 
exhibiting a particular strategy. No significant effects were observed. 
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Figure 7. Strategy use in ovariectomized rats with high estradiol replacement in response 
to intra-nucleus accumbens injections of either saline vehicle or a low and moderate dose 
of A) the dopamine Dl receptor antagonist, SCH 23390 or B) the dopamine D2 receptor 
antagonist, raclopride. Values in the bars represent the number of rats within each group 
exhibiting a particular strategy. No significant effects were observed. 
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4. Discussion 

These findings confirm that OVX rats receiving physiologically low levels of E2 

are significantly more likely to use a response strategy to solve a maze for a reward while 

rats with physiologically high levels of E2 predominantly use a place strategy. These 

results are in agreement with others. Korol et al. (2004) initially showed that intact rats in 

proestrus with high E2 levels are more likely to use a place strategy and rats in estrus 

with low E2 levels predominantly use a response strategy. Previous research in this lab 

replicated these findings in OVX rats with chronic E2 replacement (Quinlan, Hussain et 

al. 2008). In the same study, systemic administration of dopamine antagonists prior to 

probe trials indicated that that strategy use is dependent upon the interaction between E2 

and dopamine. The current results demonstrate that the interactive effects of D1R 

antagonists and E2 are specific to the DS and not the NA. Moreover, there was no effect 

of D2R antagonists on cognitive strategy when administered to either the DS or the 

nucleus accumbens in high or low E2 rats. 

It was previously shown that a systemic injection of the D1R antagonist, 

SKF83566, is able to switch the strategy used by low E2 but not high E2 rats (Quinlan, 

Hussain et al. 2008), that is low E2 rats switch to using a place strategy while high E2 

rats maintain the use of a place strategy. Likewise, the current findings show that a 

microinjection of the D1R antagonist, SCH23390, into the DS also causes low E2 rats to 

switch from using a response strategy to using a place strategy (fig. 3A). As with 

systemic injections, only a moderate, but not a low, dose of the D1R antagonist was 
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effective in this manner. These data suggest that, as hypothesized, the interaction between 

E2 and D1R antagonism on strategy use is centered in the DS. 

Unexpectedly, when the D2R antagonist, raclopride, was infused into the DS of 

low E2 subjects they do not switch but maintained using a response strategy (fig. 3B). 

This suggests that the effects of D2R antagonism observed following systemic 

administration are mediated by DA transmission in a different brain region. Indeed, 

studies from our lab have demonstrated that the prefrontal cortex is a site of interaction 

between E2 and a D2R antagonist (Quinlan et al., submitted). Conversely, Daniel et al. 

(2006) found that E2, when compared to an OVX + vehicle group, increased sensitivity 

to the impairing effects of a D2R antagonist, eticlopride, on a striatal-dependent response 

learning task. However, in that study the dopamine antagonists were administered 

systemically and it cannot be concluded that D2R antagonists are working directly within 

the DS. Thus, perhaps the interaction between E2 and D2R antagonists is occurring at 

another dopaminergic innervation site such as the prefrontal cortex to affect striatal-

dependent behaviours (Quinlan et al., submitted). 

Another unexpected finding was that high E2 rats also switched to using a 

response strategy in response to a dorsal striatal infusion of the D1R antagonist, 

SCH23390 (fig. 4A). This was not observed when the drug was administered 

systemically (Quinlan, Hussain et al. 2008). There could be a number of reasons for this 

discrepant result. Obviously, a different D1R antagonist and dose was used in each case. 

There are differences between SKF83566 and SCH23390, for example SCH23390 also 

binds with high affinity to serotonin 5-HT2C receptors (McMillan, Singer et al. 1996). 
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SCH23390 was used in this experiment because more information on intracerebral doses 

of SCH23390 was available in the literature. Another possible explanation for this 

discrepancy is that after systemic administration of the drug, it is acting at all sites of 

dopaminergic innervation which could mask the effect it may have at any single site. 

As hypothesized, neither dopamine Dl R nor D2R antagonists affected strategy 

use when infused into the NA. Although these rats acquired criterion in the same number 

of days as the dorsal striatal group, -25% did not complete the probe trials after 

administration of the dopamine antagonists. More rats were tested in this group to make 

up for this shortfall so that both NA and DS groups had roughly the same number. 

Dopaminergic projections to the NA are critically important for motivation when solving 

a task for a reward (e.g. Grace, Floresco et al. 2007) and disruption of dopamine 

transmission in this area may have played a role in the higher attrition rate. Although the 

doses of dopamine antagonists employed here are lower than what is normally used to 

reduce motivation for a reward in reinforcement studies, low E2 rats within the NA group 

took significantly longer to complete the probe trials when compared to a saline control 

(table 1). At this point, it is unclear why high E2 rats did not behave in a similar manner. 

Finally, it should be noted that one limitation inherent to microinjections into the NA is 

that the drug solution can diffuse back along the track of the cannulae and into the DS. 

As can be seen in fig 5, the injectors were placed well within the core of the NA but 

combined dorsal striatal effects cannot be ruled out. 

The established finding that high E2 will bias rats toward using a place strategy is 

somewhat perplexing. It has been shown that male rats, when extensively trained on a 
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similar task, will switch from the initial use of a place strategy to predominant use of a 

response strategy (Chang and Gold 2003). That is, while most males initially used a place 

strategy to solve the task, after only 40 training trials most males switched to using a 

response strategy. After 100 trials, all the male rats used a response strategy. In this and 

other studies, high E2 female rats continue to use a place strategy even after extensive 

training. Female rats might be considered over-trained insofar as once they have reached 

criterion they have found the reward in the same arm for approximately 60-100 trials. 

This begs the question, why do high E2 females, even after extensive training, not switch 

to using a response strategy when males and low E2 females do? While it is 

acknowledged that high E2 increases hippocampus-dependent place learning (Zurkovsky, 

Brown et al. 2007), this does not explain why these animals do not eventually use a 

response strategy. 

It is proposed here that high E2 impairs DS-dependent tasks and does so by 

altering dopamine transmission in this region. Dopaminergic inputs to the DS consist of 

nigrostriatal projections that originate in the substantia nigra pars compacta. Dopamine 

seems to have a role in plasticity within the DS as it is shown to modulate both long-term 

potentiation and long-term depression (Walsh 1993; Centonze, Saulle et al. 2001). These 

neurons tend to change firing pattern not during movement per se, but specifically in 

response to reward-related contingencies (Romo and Schultz 1990; Schultz and Romo 

1990). It has been suggested that these neurons play a role in striatal information 

processing determining when striatal synapses should be strengthened or weakened 

(Alexander 1994). 
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High E2 impairs response learning while improving place learning; the opposite is 

true for low E2 (Korol and Kolo 2002). High E2 also impairs performance on other 

dorsal striatal-dependent tasks such as latent inhibition (Nofrey, Ben-Shahar et al. 2008) 

and prepulse inhibition (Koch 1998). Thus, low E2, rather than high E2, seems to be 

advantageous for dorsal striatal dependent tasks. Moreover, tasks such as latent inhibition 

and prepulse inhibiton are not only dependent upon the DS, but are particularly sensitive 

to dopamine transmission in this structure. It has been shown that high E2 increases 

dopamine transmission in the DS (Becker 1990; Becker and Rudick 1999; Becker 2000). 

In E2-primed rats, a decrease in dopamine uptake rate was accompanied by an increase in 

dopamine clearance time in the DS when compared to OVX rats receiving vehicle 

(Thompson 1999). Furthermore, E2 has been shown to decrease the affinity of the 

dopamine transporter for dopamine (Disshon, Boja et al. 1998). It is thought that the 

decrease of dopamine removal from the synapse is due to alterations between the D2R 

and its associated second messenger system (Thompson, Bridges et al. 2001; Dluzen 

2005). 

Recently the subdivisions of the DS have been dissociated based upon their roles 

in different types of learning and memory (for review see Yin, Ostlund et al. 2008). It has 

been shown that the dorsolateral striatum is predominantly involved in habit formation 

whereas the dorsomedial striatum is responsible for goal-directed actions (Yin, Knowlton 

et al. 2004). Both of these subdivisions most likely play a role in the expression of the 

response strategy and future studies might examine the potential differential effects of the 

interaction of E2 and dopamine within each subregion. 
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In summary, E2 biases the cognitive strategy used in a maze when searching for a 

reward. This effect is modulated by dopamine D1R antagonism in the dorsal but not 

ventral striatum suggesting that cognitive strategy is in part mediated by an interaction 

between E2 and dopamine in this region. However, no effect of D2R antagonism was 

observed, suggesting that the effects of D2R antagonism observed following systemic 

administration are mediated by DA transmission in a different brain region. 
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Preface: 

The study in the previous chapter demonstrated that, in a task thought to be 

mediated by dorsal striatal DA (Packard and McGaugh 1996), DA Dl receptor 

antagonism acts in the dorsal striatum to affect strategy use in low E2 rats. DA D2 

receptor antagonism had no effect on strategy use and there was no change in high E2 

rats. To determine where in the brain DA D2 receptor antagonists are acting to cause the 

change in strategy use in low E2 rats seen after systemic injection, the study in this 

chapter investigated the effects of DA Dl and DA D2 receptor antagonism in the medial 

prefrontal cortex of low E2 and high E2 rats. 
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Abstract: 

The strategy used to solve a maze for a reward is influenced by estradiol (E2) in 

female rats. Previous work from this lab has demonstrated that systemically administered 

dopamine Dl receptor (D1R) and dopamine D2 receptor (D2R) antagonists alter the 

strategy used by low E2 rats. Subsequent findings show that a D1R, but not a D2R, 

antagonist locally infused into the dorsal striatum alters the strategy use of low E2 

females. Here, D1R and D2R antagonists were administered directly into the medial 

prefrontal cortex (mPFC) to determine if E2 and D2R antagonists are acting in this brain 

region to influence cognitive strategy. Forty-five Sprague-Dawley young adult female 

rats were implanted with bilateral cannulae into the mPFC. All rats were ovariectomized 

and received subcutaneous implants of 5% 17P-estradiol benzoate that produce low 

serum E2 levels. Half the rats received a daily injection of 10 ug/kg 17(3-estradiol 

benzoate (high E2 condition) and half received sesame oil vehicle (low E2 condition). 

Upon reaching criterion performance in a T-maze task, rats received microinjections of 

either a D1R (SCH 23390; 0.1ng/ul and O.Olug/ul) or a D2R (raclopride; 2ng/^l and 0.5 

Ong/ul) antagonist or a vehicle control (saline) in a counterbalanced manner. The higher 

concentrations of both the Dl and D2 receptor antagonists reversed the strategy used by 

most of the low E2 rats. High E2 rats did not alter their strategy in response to either 

drug. These data confirm that E2 biases strategy use in female rats and show that this is 

partially mediated by its effects on both the Dl and D2 receptors in the mPFC. 
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1. Introduction 

There are several potential strategies a rat can use when searching for a reward in 

a maze. Among these are a place strategy which utilizes extra maze cues and a response 

strategy that relies on habitual motor responses (Tolman, Ritchie et al. 1946). A number 

of studies indicate that place strategy is primarily mediated by the hippocampus (HPC) 

while response strategy is associated with the dorsal striatum (DS; Packard and White 

1989; Packard and White 1991; DS; Packard and McGaugh 1996; White and McDonald 

2002). For example, temporary inactivation of the HPC led rats to display response 

learning in a maze while inactivation of the DS biased rats towards use of place learning 

(Packard and McGaugh 1996). In addition, inactivation of the DS negatively affects the 

acquisition of a response task but only in a cue-deficient environment (Chang and Gold 

2004). These and other studies suggest that when one type of learning and memory 

system is made unavailable the other will be engaged. 

It has been demonstrated that 17P-estradiol (E2) may render one type of memory 

system ineffective or unavailable when solving a maze task for a reward. In a plus maze, 

ovariectomized (OVX) rats learn a response task more readily than rats receiving E2 

injections (Korol and Kolo 2002). Conversely, OVX rats receiving E2 injections learn a 

place task more quickly than rats receiving vehicle injections. In cycling rats, those in 

proestrus (high E2) tend to use a place strategy to solve a maze while estrus (low E2) rats 

are more likely to use a response strategy (Korol, Malin et al. 2004). Direct infusion of 

E2 into the HPC of OVX rats has been shown to enhance place learning while having no 

effect on response learning (Zurkovsky, Brown et al. 2007). On the other hand, E2 
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infusion into the DS impairs response learning without affecting place learning 

(Zurkovsky, Brown et al. 2007). 

E2 is not the only influence which may bias the use of a particular cognitive 

strategy when solving a maze task. Previous work from this lab shows that systemic 

administration of both dopamine Dl receptor (D1R) and dopamine D2 receptor (D2R) 

antagonists alter the cognitive strategy used (Quinlan, Hussain et al. 2008). OVX rats 

administered low levels of E2 switch from a predominant use of response strategy to 

predominant use of place strategy while high E2 rats maintain their use of a place 

strategy. A subsequent study found that intracranial infusions of D1R, but not D2R, 

antagonists into the DS of low E2 rats also resulted in a switch from use of a response 

strategy to use of a place strategy (Quinlan et al., submitted). D1R and D2R antagonism 

in the nucleus accumbens (NA) had no effect on strategy use in either low E2 or high E2 

rats. Thus, there must be another region where D2R antagonism affects strategy use in 

low E2 females. Here, in order to help identify the brain region where D2R antagonism 

is affecting cognitive strategy in low E2 rats, D1R and D2R antagonists were infused into 

the medial prefrontal cortex (mPFC) of OVX female rats receiving either low E2 or high 

E2. 

The mPFC is a brain region where E2 may affect dopamine neurotransmission 

and contribute to the biased use of a particular cognitive strategy. While no studies have 

investigated whether the mPFC is directly involved in the expression of cognitive 

strategy, this structure is an important component of fronto-striatal loops which are 

associated with the basal ganglia and motor response learning (Alexander, DeLong et al. 
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1986; Winstanley, Chudasama et al, 2003). In addition, there are connections between the 

mPFC and the HPC (Jay and Witter 1991). Thus, the mPFC is in a position to influence 

both the DS and HPC and indirectly affect the use of cognitive strategy. Few studies have 

directly examined the effects of E2 on prefrontal cortical dopamine levels. Chronic E2 

has been shown to reduce dopamine in frontal cortical homogenates of OVX rats 

(Dupont, Di Paolo et al. 1981; Luine, Richards et al. 1998) and basal medial prefrontal 

cortical dopamine release is reduced during proestrus when estrogen levels are highest 

(Dazzi, Seu et al. 2007). Considering that the mPFC is heavily innervated by dopamine 

afferents from the ventral tegmental area (VTA), further examination of the effects of E2 

on dopamine transmission in this area is merited. Thus, the present study investigated the 

role of D1R and D2R antagonism in the mPFC on strategy use in OVX rats receiving 

chronic high or low E2. 

These effects were investigated with a hormone administration regimen that was 

intended to mimic the levels of E2 during the estrous cycle. That is, the low E2 group 

received constant levels of E2 similar to that seen during the estrus phase and the high E2 

group received constant low E2 plus daily injections resulting in peaks of E2 similar to 

that seen during the proestrus phase. 

2. Materials and Methods 

Subjects, Surgery and Drug Administration: This study employed forty five female 

Sprague-Dawley rats (Charles River, St. Constant, QC, Canada), approximately three 

months of age weighing between 225-250 grams. Rats were housed in pairs in 
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polyurethane shoebox cages and maintained on a reverse 12h:12h light/dark cycle with 

lights off from 0900-2 lOOh. Standard lab chow and water were available ad libitum until 

training began. 

All rats were anaesthetized using Halothane gas (4% for induction; 2% for 

maintenance) and bilaterally ovariectomized using a standard aseptic procedure and 

implanted with a Silastic tube (1cm long; i.d. 1.47 mm; o.d. 1.96 mm) containing 5% 

17p-estradiol (Sigma Chemical Co., St Louis, MO) in cholesterol (Sigma). Post-surgical 

care included administration of the antibiotic Baytril (0.03 ml/rat, SC; CDMV, St. 

Hyacinthe, QC, Canada), the analgesic banamine (0.03 ml/rat, SC; CDMV), and 0.9% 

saline (3ml/rat, SC). Rats were allowed to recover in their home cages for several days 

prior to implantation of cannulae. 

Rats were again anaesthetized using Halothane gas and received stereotaxic 

bilateral implantations of 21g stainless steel tubing guide cannulae (Plastics One, 

Roanoke, VA). Stereotaxic co-ordinates from bregma for the mPFC were AP +3.2, ML ± 

1.8 at 10°, DV -3.0 (Paxinos and Watson 1998). Cannulae were blocked with 26g 

obdurators (Plastics One) which extended 1mm below the tip of the guide cannula. All rat 

protocols were in accordance with guidelines established by the Canadian Council on 

Animal Care and approved by the Concordia University Animal Research Ethics 

Committee. 

For the high E2 group, in addition to the subcutaneous implants, daily 

subcutaneous injections were given of 17p-E2 (lOug/kg) dissolved in sesame oil (Sigma) 

designed to achieve levels seen during the proestrus phase of the estrous cycle (75-90 
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pg/ml). During the same period all rats in the low E2 group received daily subcutaneous 

injections of sesame oil as a control (lml/kg). All injections began two days before 

habituation training and occurred between 1200-1400h each day. 

Approximately 30 days following the implantation of the Silastic tubes, blood was 

collected from the tail vein 22 hrs following the previous E2 or oil injection. Blood 

samples were immediately centrifuged and plasma was collected and stored at -20°C until 

assayed. E2 was measured using a commercially available ELISA kit (Immuno-

Biological Laboratories Inc., Minneapolis, MI). The assay antibodies have 100% cross-

reactivity with E2 and 0.2% and 0.05% cross-reactivity with estrone and estriol 

respectively. The reported inter-assay variation is 7-9%. 

The procedure for administration of dopamine antagonists were the same as 

described elsewhere (Quinlan et al., submitted). Briefly, rats received bilateral 

intracerebral injections of DA antagonists on separate days at a rate of 0.5ul/min/side 

using injectors which extended 1mm below the tip of the cannulae. Injections lasted for 

one minute after which the injectors were left in place for an additional minute to allow 

for drug diffusion. The D1R antagonist SCH 23390 (Sigma) was administered in a 

moderate concentrations of O.lug/ul and a low concentration of 0.01u.g/ul. Raclopride 

(Sigma), a selective D2R antagonist, was administered in a moderate concentration of 

2.0p,g/ul and a low concentration of 0.5ug/ul. These concentrations were selected 

because they are in the moderate and low ranges for modifying behaviors in attention and 

learning tasks for both SCH 23390 and raclopride (Fernandez-Ruiz, Hernandez et al. 

1991; Callahan, De La Garza et al. 1997; Seamans, Floresco et al. 1998; Zavitsanou, 
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Cranney et al. 1999). Both drugs were dissolved in 0.9% saline at room temperature and 

stored at -20 °C until used. Rats were allowed a washout period for a minimum of 24 hrs 

between each drug probe trial. 

Modified Plus Maze: Training and apparatus were identical to that described elsewhere 

(Quinlan et al., submitted). All training was carried out in a polyurethane plus maze 

placed on a table one meter above the floor. Throughout the training trials the probe start 

arm was blocked off from the central chamber creating a T-shaped maze (see Quinlan, 

Hussain et al. 2008). At the commencement of the probe trial, the probe arm was 

unblocked and the original start arm was blocked creating an alternative T-shaped maze 

exactly 180° in orientation. Each start arm contained a start-box 30cm in length which 

blocked access to the central chamber by a black polyurethane guillotine gate halfway 

down the arm. Each goal arm contained a white ceramic bowl in which a food reward 

(Kellogg's Froot Loops®) could be placed. Froot Loop crumbs were placed underneath 

both goal arms of the maze during all trials to prevent any confounds due to odor cues. 

All testing took place with overhead red lights with an additional 15 W light for 

illumination. The room was lit only moderately to avoid evoking anxiety in the rats while 

completing the maze. 

Five days after the final surgery all rats were placed on food restriction and 

maintained at a body weight of 90% of free-feeding weight. Training was performed at 

the beginning of the dark phase of the light/dark cycle commencing at 0900h. Rats were 
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habituated to the maze during three, once-daily 15-min sessions with Froot Loops 

scattered throughout the apparatus. 

Following habituation, each rat was assigned to receive a food reward, half of a 

Froot Loop, in either the right or left goal arm. The baited goal arm was counterbalanced 

across rats such that half the rats in each group received the reward in the right arm and 

half in the left arm. For each particular rat the Froot Loop was always in the same goal 

arm. Rats were released from the start arm and allowed to enter either the left or right 

goal arm, once they entered the arm, a door was closed behind them. Training consisted 

of 10 daily trials per rat beginning in the start box of the training arm. Rats were 

considered to have reached criterion after performing 8/10 correct trials for three days in 

a row. 

After reaching criterion, each rat was placed in the probe start arm (180° opposite 

the blocked training start arm) and was released and allowed to enter either the right or 

left goal arm. If a rat made the same directional turn in its choice of an arm for which it 

had been rewarded in the training phase, then it was scored as a 'response' strategy. If a 

rat made an opposite directional turn in its choice of an arm towards the same spatial 

location of its reward during the training phase, then it was scored as a 'place' strategy. 

Each rat was injected with a particular type and dose of antagonist or saline in a 

counterbalanced schedule using a Balanced Latin Square design to rule out sequence and 

order effects within each group. All drug trials began on the testing day subsequent to 

achievement of criterion performance. Each rat was injected with a drug, placed in its 

home cage for five minutes, and trained again for 10 trials. After the 10 trials it was 
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given the probe trial where the start arm was oriented 180° from the training arm. No 

subsequent drug injections were given for at least 24 hrs. At the completion of the 

experiment brains were sectioned and stained to histologically confirm cannula 

placements. 

Statistical Analyses: Data on strategy use were analyzed using non-parametric statistics 

because the dependent variable was percent of rats using a type of cognitive strategy. To 

examine whether E2 had an effect on strategy use in general, a chi square analysis was 

employed to test whether there was a significant use of one strategy over another in the 

saline control condition. In order to test the effects of DA antagonists, McNemar tests 

were conducted using a binomial for small frequencies to compare saline trials with each 

of the concentrations of SCH 23390 and raclopride. 

To determine if there were any differences in learning this task, a two-tailed t-test 

was conducted on the number of days to reach criterion for low and high E2 groups for 

each brain region. Finally, to determine whether there were any differences in the time to 

complete the task following each drug, a two-way mixed analysis of variance (ANOVA) 

was conducted. The independent variables for the two-way ANOVAs were E2 group as a 

between factor and drug as a within factor. 
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3. Results 

Histological Confirmation and Plasma Estradiol Analysis: Histological confirmation of 

cannula placements into the mPFC are shown in figure 1. All cannula were distributed 

between +3.7 mm and +2.7 mm from bregma. This placed the cannula injector tips within 

the prelimbic and infralimbic areas of the medial prefrontal cortex. No rats were 

discarded from the analysis due to cannula placements. Mean plasma hormone levels (± 

SEM) for the high E2 rats were 97.42 (± 29.40) and for the low E2 rats they were 18.14 

(± 4.58). These are the within the range of plasma E2 observed during proestrus and 

estrus respectively. 

Behavioral Results: 

There were no significant differences between low and high E2 groups in the 

number of trials to criterion. The mean number of trials (± S.E.M) required to reach 

criterion was 6.68 (± 0.69) for low E2 rats and 7.05 (± 0.47) for high E2 rats. The mean 

times it took rats to complete the probe trials in response to saline and each drug are 

provided in table 1. No significant differences were observed. 
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Fig. 1. Locations, indicated with asterisks, of the lowest point of penetration of cannula 

injectors within the medial prefrontal cortex for all animals included in the study. Images 

from Paxinos and Watson (1998). 
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Table 1. Effects of saline vehicle or dopamine antagonism on time to complete probe 
trials. 

Prefrontal 
Cortex 

LowE2 

HighE2 

Saline 

4.48 (±0.68) 

8.43 (±3.19) 

Low 
SCH23390 

5.00 (±0.88) 

18.11 (±13.1) 

Moderate 
SCH23390 

6.45 (±1.50) 

8.83 (±3.73) 

Low 
Raclopride 

5.49 (±1.14) 

5.67 (±2.57) 

Moderate 
Raclopride 

7.03 (±1.57) 

7.66 (±2.27) 

Mean (± SEM) times in seconds to complete probe trials in response to bilateral saline 
control or dopamine Dl receptor (SCH23390; 0.01 & 0.1 ug/ml) and D2 receptor 
(raclopride; 0.5 & 2.0 ug/ml) antagonist injections into the medial prefrontal cortex in 
ovariectomized rats administered low or high estradiol (E2) replacement. There were no 
significant effects. 



110 

When administered saline, rats showed the same pattern of behaviour that has 

been shown previously (Korol, Malin et al. 2004; Quinlan, Hussain et al. 2008). That is, 

low E2 rats predominantly used a response strategy and high E2 rats predominantly used 

a place strategy (fig. 2). Although this did not reach statistical significance there was a 

strong trend for both the low (x* = 2.91, p = 0.08) and high {£ = 3.20, p = 0.07) E2 rats. 

McNemar tests revealed that low E2 rats showed a significant (p = 0.002) switch 

in strategy use in response to a moderate dose (0.1 ug/ul) of the dopamine D1R 

antagonist, SCH23390 (fig. 3). Furthermore, low E2 rats administered a moderate dose of 

the D2R antagonist, raclopride also showed a significant switch in strategy (p = 0.016; 

fig. 3). There was no effect of either SCH 23390 or raclopride in the high E2 rats (fig. 4). 
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Figure 2. Strategy use in ovariectomized rats in response to an intra-prefrontal cortical 
saline (control) injection. There was a higher tendency for low estradiol rats to use a 
response strategy and a greater tendency for high estradiol rats to use a place strategy. 
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Figure 3. Strategy use in ovariectomized rats with low estradiol replacement in response 
to intra-prefrontal cortical injections of either saline vehicle or a low and moderate dose 
of the dopamine Dl receptor antagonist, SCH 23390 or the dopamine D2 receptor 
antagonist, raclopride. Asterisk indicates a significant (p < 0.01, McNemar) difference in 
strategy use when compared to saline vehicle. 
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Fig. 4. Strategy use in ovariectomized rats with high estradiol replacement in response to 
intra-prefrontal cortical injections of either saline vehicle or a low and moderate dose of 
the dopamine Dl receptor antagonist, SCH 23390 or the dopamine D2 receptor 
antagonist, raclopride. No significant effects were observed. 
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4. Discussion 

These data confirm previous findings that cognitive strategy use in the female rat 

is influenced by E2 levels. That is, high E2 rats tend to use a place strategy while low E2 

rats predominantly use a response strategy. Although the findings did not reach statistical 

significance here, there is a strong trend which is congruent with previous reports (Korol 

and Kolo 2002; Korol, Malin et al. 2004; Quinlan, Hussain et al. 2008) (Quinlan et al., 

submitted). In addition, a direct infusion of moderate doses of both D1R and D2R 

antagonists into the mPFC induced a switch in low E2 rats from predominant use of a 

response strategy to use of a place strategy. High E2 rats were not affected by prefrontal 

cortical dopamine antagonism. It has been shown that systemic administration of both 

D1R and D2R antagonists will affect strategy use in low, but not high, E2 rats (Quinlan, 

Hussain et al. 2008). In addition, administration of D1R, but not D2R, antagonists 

directly into the DS of low E2 subjects also alters strategy use (Quinlan et al, submitted). 

These data demonstrate that the previously shown systemic effects of D2R antagonism on 

strategy use are located, at least in part, in the mPFC. Previously, investigations of place 

and response learning have only evaluated the roles of the HPC and the DS. These 

findings are the first to demonstrate that the mPFC also mediates cognitive strategy use. 

A number of studies provide evidence suggesting that the DS and the HPC are, 

respectively, the main neural substrates underlying response and place learning. For 

example, when the HPC is inactivated place learning is disrupted in both a plus maze 

(Packard and McGaugh 1996) and a Morris water maze (McDonald and White 1994; 

Compton 2004). Similar inactivation of the DS results in an impairment of response 
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learning. Conversely, post-training intracranial injections of dopamine agonists into the 

HPC facilitate performance in a win-shift task but have no effect on a win-stay task 

(Packard and White 1991). Intracranial infusions into the DS improved performance in a 

win-stay, but not a win-shift, task. Measurements of neurotransmitter release in the HPC 

and DS support these behavioral data. Acetylcholine release is enhanced in the HPC 

during early training, when a place strategy is used, but is higher in the DS during later 

training, when a response strategy is predominantly used (Chang and Gold 2003). These 

findings are the first to establish a role for the mPFC in cognitive strategy use, but only in 

low E2 rats. At this time it is unknown why the antagonism of D1R and D2R in the 

mPFC does not affect strategy use in rats with high levels of E2. It is possible that the 

well-documented enhancement of hippocampal function by E2 (for a review see; 

McEwen, Akama et al. 2001) may play a role in the continued use of a place strategy by 

high E2 rats. 

It is unclear whether this influence on strategy use in low E2 rats is a direct effect 

of medial prefrontal cortical dopamine or if it is a result of indirect modulation of dorsal 

striatal or hippocampal function by the mPFC. There are at least three possible means by 

which the mPFC may affect cognitive strategy in this task; through connections with the 

HPC, through direct projections to the DS, and/or through indirect pathways to the DS 

via midbrain structures, primarily the VTA. While a significant portion of the pathway 

between the HPC and the mPFC consists of hippocampal efferents (Jay and Witter 1991; 

Conde, Bicknell et al. 1995; Carr and Sesack 1996) there is also evidence of reciprocal 

communication consisting of mPFC efferents to the HPC (Goldman-Rakic, Selemon et 

al. 1984; Wall and Messier 2001) and its related cortices (Sesack, Deutch et al. 1989; 
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Takagishi and Chiba 1991). Considering the central role of the HPC in the use of a place 

strategy in this task, these reciprocal fronto-hippocampal connections could exert a 

considerable influence on the tendency to use a particular cognitive strategy. It is also 

possible that direct projections from the mPFC to the DS (Alexander, DeLong et al. 1986; 

Sesack, Deutch et al. 1989; Takagishi and Chiba 1991; Berendse, Galis-de Graaf et al. 

1992) may affect the use of response strategy. Electrical stimulation of the mPFC has 

been shown to enhance dopamine release in this brain region (Taber and Fibiger 1993) 

and interference with dorsal striatal dopamine transmission has been shown to alter 

response learning (Daniel, Sulzer et al. 2006) and cognitive strategy use (Quinlan et al., 

submitted). A third possibility is that the medial prefrontal cortical influence on the DS 

could occur through a more indirect route, possibly via reciprocal connections from the 

mPFC through the VTA (Swanson 1982; Oades and Halliday 1987; Carr and Sesack 

2000) or the substantia nigra (SN; Ferreira, Del-Fava et al. 2008). 

It is also possible that the estrogenic modulation of dopamine transmission in the 

DS (Becker 2000) or mPFC (Dazzi, Seu et al. 2007) alters the ability of the DS to support 

the use of a response strategy. White and McDonald (2002) suggest that parallel memory 

systems supported by the DS and HPC may function in a competitive manner. One factor 

that has been shown to play a role in this competition is E2 (Mizumori, Yeshenko et al. 

2004). The fact that high and low levels of E2 differentially bias strategy use in female 

rats is becoming an established phenomenon (Korol and Kolo 2002; Daniel and Lee 

2004; Korol, Malin et al. 2004; Davis, Jacobson et al. 2005; Quinlan, Hussain et al. 

2008). It has also been suggested that it is the effects of E2 on dopamine function in the 

DS which play a role in mediating the respective contributions of the DS and HPC on 
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learning strategy (Mizumori, Yeshenko et al. 2004). High levels of E2 have been shown 

to enhance dopaminergic activity in the DS in vitro (Becker and Ramirez 1981), in OVX 

females (Cashier, Xiao et al. 1993), and in cycling females (Xiao and Becker 1994). This 

alteration of dopaminergic activity in the DS by E2 has been shown to affect DS-

mediated behaviors as well (Chiodo, Caggiula et al. 1981; Becker, Robinson et al. 1982; 

Chiodo and Caggiula 1983; Becker and Cha 1989). E2 has also been shown to affect 

dopamine activity in the mPFC. Post-mortem studies have shown that E2 reduces 

dopamine in the mPFC of OVX rats (Dupont, Di Paolo et al. 1981; Luine, Richards et al. 

1998). In addition, basal medial prefrontal cortical dopamine release, measured using 

microdialysis, is reduced during proestrus as compared to estrus (Dazzi, Seu et al. 2007). 

These and previous findings suggest that, while the tendency to use a particular 

strategy is primarily mediated by the DS and HPC, the mPFC also plays a role. It appears 

that the mPFC Is important in the ability of an animal to effectively regulate the switch 

between two competing strategies. This competition has been shown to be directly 

mediated by dopamine levels in the DS and the enhancing effects of E2 in the HPC but 

little is known concerning the influence of E2 on dopamine neurotransmission and its 

behavioral consequences concerning the use of a cognitive strategy. Further research is 

required to ascertain whether the influence of these factors in the mPFC exerts a direct or 

indirect effect on the use of strategy when solving a maze for a reward. 
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INTRA-STRIATAL ESTRADIOL RAPIDLY INCREASES DOPAMINE 

RELEASE IN FEMALE RATS 

Matthew G. Quinlan, Marie-Pierre Cossette, Wayne G. Brake 
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Preface: 

Rats with low levels of E2 predominantly use a response strategy when solving a 

maze task (Korol and Kolo 2002; Korol, Malin et al. 2004). DA in the dorsal striatum 

supports response learning in a maze (Packard and McGaugh 1996; Daniel, Sulzer et al. 

2006). Studies from the previous chapters have demonstrated that interference with DA 

function in the dorsal striatum through receptor antagonism alters cognitive strategy use 

in female rats with low E2. The studies in this chapter will focus on the manner in which 

E2 alters DA transmission in the dorsal striatum. A number of in vivo studies have 

demonstrated that chronic high levels of systemically administered E2 enhance baseline 

and amphetamine-induced DA levels in the dorsal striatum (e.g. Becker 1990; e.g. Xiao 

and Becker 1994). The rapid effects of E2 have been evaluated in cultured striatal 

neurons (Mermelstein, Becker et al. 1996). The present study is the first to investigate the 

in vivo rapid effects of locally infused E2 in the dorsal striatum of anaesthetized rats 

during baseline and in response to systemic injections of amphetamine. 
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Abstract: 

Estradiol (E2) has been shown to modulate the function of different 

neurotransmitter systems in several areas of the brain. A number of studies demonstrate 

that the estrogenic modulation of dopamine (DA) results in alterations of behavior. The 

majority of investigations into the effects of E2 on DA have focused on dopaminergic 

activity within the dorsal striatum (DS) and have utilized ovariectomized (OVX) females 

receiving chronic systemic administration of high levels of E2. Hence, the resulting 

effects of E2 on DA neurotransmission can only be attributed to the genomic activity of 

classic intracellular estrogen receptors. The rapid effects of E2 have mainly been 

investigated in cultured striatal neurons. To determine if locally infused E2 can rapidly 

affect DA neurotransmission in vivo, single probe microdialysis was used to measure 

extracellular DA levels in the DS of anaesthetized OVX female rats with chronic levels 

of low E2. In addition, DA levels were measured subsequent to systemic injections of the 

indirect DA agonist amphetamine administered one hour after E2 or its vehicle, 

cyclodextrin. Locally infused E2, but not cyclodextrin, resulted in a rapid and transient 

increase of DA levels in the DS. DA levels returned to baseline before the injection of 

amphetamine and had no potentiating effect on the amphetamine-induced increase in DA. 

These results are the first to indicate that locally infused E2 rapidly enhances dorsal 

striatal DA neurotransmission in vivo although this does not affect amphetamine-induced 

DA increases. 
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1. Introduction 

A growing number of studies have provided evidence that estradiol (E2) exerts a 

strong influence on synaptic density and plasticity (e.g. Woolley and McEwen 1992), 

neurotransmission (e.g. Gabor, Nagle et al. 2003), and learning and memory (e.g. Daniel, 

Fader et al. 1997). E2 has been shown to modulate several different neurotransmitter 

systems, including dopaminergic neurons in the nigrostriatal pathway (for a review see: 

Kuppers, Ivanova et al. 2000). Initial reports suggest that the estrogenic modulation of 

dopamine (DA) might be accomplished through classic estrogen receptors (ERs) as most 

behavioral changes in ovariectomized (OVX) females require E2 to be administered at 

least 72 hours prior to testing (Dohanich, Fader et al. 1994; Sandstrom and Williams 

2001). 

Systemic administration of high levels of E2, such as those observed during 

proestrus, enhance baseline levels of extracellular DA in the dorsal striatum (DS), the 

primary target region of the nigrostriatal pathway (Xiao and Becker 1994). In OVX 

female rats, basal levels of DA in the DS are diminished but can be restored by the 

administration of systemic E2 (Ohtani, Nomoto et al. 2001). Similarly, agonist-induced 

release of dorsal striatal DA is augmented by systemically administered E2 (Becker, Beer 

et al. 1984; Becker and Cha 1989; Becker 1990). In addition, high levels of systemic E2 

administration increase DA turnover (Russo, Festa et al. 2003) and uptake sites 

(Morissette, Biron et al. 1990). Studies such as these demonstrate the impact of E2 on 

nigrostriatal DA function. However, the relative contribution of E2 via genomic activity 

mediated by classic nuclear ERs versus rapid, non-genomic effects acting locally through 

putative membrane-bound ERs or other G-protein-coupled receptors is still unknown. It 



121 

is known that the genomic actions of E2 through nuclear steroid receptors take one to two 

hours to produce an effect whereas more rapid E2 effects occur through non-genomic, 

presumably membrane receptor, mechanisms. 

Recent findings support a role for a non-genomic influence of E2 on 

dopaminergic function and behavior. For example, the application of E2 to cultured 

striatal neurons results in a reduction of calcium currents within seconds (Mermelstein, 

Becker et al. 1996) and rapidly amplifies amphetamine-induced DA, but not 

norepinephrine, release (Becker and Ramirez 1981; Becker and Beer 1986). In the DS of 

OVX females, increases in DA turnover develop within 30 minutes of systemic E2 

administration (Di Paolo, Rouillard et al. 1985) as does the enhancement of 

amphetamine-induced DA release (Becker 1990). These rapid effects can induce changes 

in certain types of behaviour as well. If administered to OVX females within four hours 

of testing, E2 improves performance in visual and place learning (Luine, Jacome et al. 

2003), spatial learning (Frye, Duffy et al. 2007), and object recognition (Waif, Rhodes et 

al. 2006). 

While it is becoming established that E2 may alter DA function within the 

nigrostriatal system through both long-term and rapid mechanisms, most studies have 

utilized in vivo, systemic injections of E2 or in vitro application of E2 to cultured 

neurons. At this point, it is unclear whether the rapid, and presumably non-genomic, 

effects of E2 on DA release in the DS in vivo occur through local dorsal striatal 

mechanisms, via another mechanism in DA cell bodies in the substantia nigra, or 

elsewhere in the brain. Thus, the present study utilized in vivo microdialysis to 
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investigate the acute effects of locally applied E2 on baseline levels of DA release in the 

DS of anaesthetized OVX rats receiving chronic levels of physiologically low E2. In 

addition, an amphetamine challenge was systemically administered one hour after the 

local E2 infusion in order to evaluate the ability of the putative rapid estrogenic effects to 

influence stimulant-induced dopamine release. In Group 1, water soluble E2 encapsulated 

in cyclodextrin was administered into the DS one hour prior to systemic amphetamine to 

determine if locally applied E2 would affect amphetamine-induced DA release in this 

area. The effect of the vehicle, cyclodextrin, on DA levels when locally administered 

into the DS one hour prior to amphetamine was investigated in Group 2. Finally, in 

Group 3, both cyclodextrin and E2 were independently locally administered without 

amphetamine to examine their effects on baseline DA levels in the DS. Based upon 

previous findings, it was hypothesized that local infusions of E2 would rapidly increase 

extracellular DA levels in the DS. It was also hypothesized that the effects of locally 

applied E2 would potentiate amphetamine-induced DA release in the DS. 

2. Materials and Methods 

Subjects. This experiment included 12 young adult, female, Sprague-Dawley rats 

(Charles River, St. Constant, Quebec) aged four months and weighing approximately 

300-350 grams. Before the experiment began, all rats were allowed to habituate to the 

animal facility and were handled daily from time of arrival until completion of the 

experiment. All rats were pair-housed in polyurethane shoebox cages, maintained on a 

reverse 12h:12h light/dark cycle with lights off from 0900-2 lOOh, and were allowed 

standard lab chow and water ad libitum. All animal handing and testing procedures were 
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conducted in accordance with the guidelines of the Canadian Council on Animal Care 

and approved by the Concordia University Animal Research Ethics Committee. 

Surgical Procedures, Hormone Administration, and Drugs. Approximately one week 

after arrival, all rats were anaesthetized using Halothane gas (4% for induction; 2% for 

maintenance), bilaterally ovariectomized using a standard aseptic procedure through a 

dorsal incision, and implanted with a Silastic tube (1cm long; i.d. 1.47 mm; o.d. 1.96 

mm) containing 5% 17p-E2 (Sigma Chemical Co., St Louis, MO) in cholesterol (Sigma). 

This has been reported to produce a serum concentration of approximately 20-25 pg/ml 

which is consistent with naturally circulating low levels of E2 such as those seen during 

the estrus phase of the rat estrous cycle (Hum and Macrae 2000; Mannino, South et al. 

2005). Previous studies from this lab have shown this implant to produce serum E2 levels 

of 18-32 pg/ml (Quinlan et al., submitted; Quinlan et al., submitted; Quinlan, Hussain et 

al. 2008). This experiment included only rats with chronic low levels of E2 as it has been 

repeatedly shown that chronic high levels of E2 administered systemically to OVX rats 

results in an enhancement of DA release in the DS (e.g. Becker and Rudick 1999). Post­

surgical care included administration of the antibiotic Baytril (0.03 ml/rat, SC; CDMV, 

St. Hyacinthe, QC, Canada), the analgesic banamine (0.03 ml/rat, SC; CDMV), and 0.9% 

saline (3ml/rat, SC). Following ovariectomy surgery, rats were allowed to recover in their 

home cages for one week. 

Within 1-2 weeks of ovariectomy surgery, each rat was again anaesthetized using 

Halothane gas (4%) and placed in stereotaxic equipment. A three-pronged cannula was 
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implanted into the left or right DS with the center cannula at AP -0.3, ML ±4.0, and DV -

3.0. Each arm of the three-pronged cannula was 21g stainless steel (Plastics One, 

Roanoke, VA), 40mm in length, and permanently fixed in a parallel manner 

approximately 0.5mm apart using solder. The long length of the arms was necessary for 

the secure fixation of the three-pronged cannula in the stereotaxic arm and accurate 

placement of the microdialysis probe due to the solder fixing the arms together. The 

center cannula housed the microdialysis probe while the outer two cannulae were used to 

hold microinjectors when appropriate. Each rat remained under Halothane gas 

anaesthesia (2%) for the duration of the experiment at which time it was decapitated and 

the brain was removed. 

Rats were pseudorandomly assigned to one of the three groups; Group 1 

(baseline-E2-drug; n=3), Group 2 (baseline-cyclodextrin-drug; n=5), or Group 3 

(baseline-cyclodextrin-E2; n=4). Rats received local intracranial injections of 

cyclodextrin (519.6ug/ul; Sigma) or E2-cyclodextrin complex (544ug/ul; Sigma). 

Cyclodextrin was utilized due to its rapid dissolution and action. Concentrations of E2-

cyclodextrin and cyclodextrin were approximated from previous experiments using 

intracranial injections in which E2 infusion had a beneficial effect on memory behavior 

(Packard and Teather 1997; Zurkovsky, Brown et al. 2007). Based on the molecular 

weight of E2 (Sigma), its concentration in E2-cyclodextrin is 0.045% (45mg/lg), or 

24.4ug. Therefore, the vehicle dose of cyclodextrin was made using 95.5% of the E-

cyclodextrin complex (544ug — 24.4ug = 519.6|ag). This results in infusions with a total 

concentration of lnmol/ul which is approximately 2x higher than doses used previously 

(Packard and Teather 1997; Zurkovsky, Brown et al. 2007). This is the first study to 
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investigate the rapid effects of E2 on DA levels in response to acute local administration 

and, thus, this dose was chosen to maximize the likelihood of achieving an observable 

effect. Rats receiving the drug, amphetamine (0.5mg/kg), were administered 

intraperitoneal injections in a saline vehicle. 

Microdialysis Apparatus and Equipment. All testing took place under anaesthesia in the 

stereotaxic equipment (David Kopf Instruments; Tujunga, CA). Sample collection was 

achieved using a dialysis probe with a semi-permeable membrane (Spectra/Por, Spectrum 

Laboratories, Rancho Dominguez, CA, USA) which has a molecular cut-off weight of 

13,000 kDa. The total length of the tip extending from the center cannula was 4mm. 

Dialysate was collected from the probe outlet silica (Polymicro Technologies; Phoenix, 

AZ) into a 0.5 mL Eppendorf (Sigma) tube. Artificial cerebrospinal fluid (aCSF), 

150 mm CI", 145 mm Na+, 2.7 mm K+, 2 mm Na2HP04,1.22 mm Ca2+, 1.0 mm Mg2+, 

0.2 mm ascorbate, pH 7.4 ± 0.1, was pushed through the probe using a pump (KD 

Scientific, Model 780100; Holliston, MA) at a rate of 1.0 ul/min. Once testing began, 

samples were collected every 10 minutes; In addition to 6 baseline samples collected 

from each rat, 6 samples were collected after infusions of E2-cyclodextrin or cyclodextrin 

and 12 samples were collected after amphetamine injection. Intracranial infusions of E2-

cyclodextrin and cyclodextrin through the outer two cannulae were given with two lOul 

Hamilton syringes using 26g injectors. The tips of the injectors extended 4mm beyond 

the end of the cannulae. Injections were manually infused over 1 minute in a total volume 

of 1.5ul and the injectors were left in for 1 additional minute to allow for diffusion of the 

liquid. 
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Approximately IOJLII of each sample was analyzed for DA using high performance 

liquid chromatography (HPLC) with electrochemical detection. Samples were injected 

into a 15cm Cis column (Higgins Analytical Co.) through manual injection ports 

(Rheodyne 7125, Rheodyne, Rohnert Park, CA, 20ul loop). The separated samples 

passed through a dual channel electrochemical detector (ESA Biosciences; Chelmsford, 

MA) and compounds within each sample were detected with a Coulochem HI detector 

(Model 5100A analytical cell, ESA, Inc.). The detectors were set to provide the reduction 

and oxidation currents for DA and its metabolites. The system was calibrated using 

estimates from peak height by comparison with injections of known amounts of standard 

DA concentrations (Sigma). Mobile phase consisted of 20% acetonitrile 40mg, 0.076 M 

sodium dodecyl sulphate, 0.1 M EDTA, 0.058 M NaP04, and 0.27 M citric acid with a 

pH of 3.35 and circulated at l.Oml/min by Waters 515 HPLC pumps (Lachine, QC, 

Canada). EZChrom Chromatography Software Data System (Scientific Software, San 

Ramon, CA) was used to analyze and integrate the data. 

Microdialysis Procedure. On the testing day, each rat was brought into the testing room 

at approximately lOOOh. The rat was anaesthetized using Halothane gas (4%) while the 

three-pronged cannula was inserted into the DS; the location of implantation was 

counterbalanced between the left and right hemispheres. Using digital stereotaxic 

controls, the center cannula with the microdialysis probe already inserted was manually 

lowered at the appropriate coordinates; the bottom of the microdialysis probe was at -7.0 

DV. This was done at a rate of approximately 1mm per minute in order to minimize 

shock and damage to the brain tissue. Once lowered, the rat was given 1 hour to allow for 
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equilibrium of liquid flow to and from the probe tip. Testing began at approximately 

1 lOOh. Samples were collected every 10 minutes and immediately placed in dry ice. 

After collection of 6 baseline samples, the injections began according to the assigned 

group. E2-cyclodextrin and cyclodextrin were always given intracranially while 

amphetamine was administered intraperitoneally. All injections were done at the start of 

each 10-minute sample bin. After sample collection was complete, the rat was 

immediately decapitated, the brain was flash frozen using 2-methylbutane in dry ice, and 

the brain was stored at -80°C until being coronally sectioned at 40um for confirmation of 

cannula placement. 

Statistical Analyses. Levels of analyzed compounds were expressed as concentrations 

(pg/ml) and basal values were estimated as the mean of three samples preceding the first 

local infusion. The effects of hormone, drug, or vehicle administration were analyzed 

using a two-way mixed analysis of variance (ANOVA). Time and drug condition were 

the independent variables and concentration of DA was the dependent variable. Post hoc 

tests were done using a paired two sample t-tests. 

3. Results 

In Group 1, there was a significant main effect of time such that DA levels in the 

DS were significantly higher after systemic administration of amphetamine when 

compared to baseline DA levels; F(l 1,44)=2.271, p=0.027 (Figure 1 A). There was also a 

significant interaction between time and drug condition; F(l 1,44)=2.297, p=0.025. Post 

hoc analysis did not reveal any significant differences between individual time points 
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Figure 1. Effects of systemic amphetamine injection on dorsal striatal DA levels. A) No 
effect of E2-cyclodextrin infusion. There was a significant interaction of time and drug, 
p=0.025, but post hoc analysis did not reveal significant differences at individual time 
points. B) No effect of vehicle infusion. There was a significant interaction of time and 
drug, p=0.002. Post hoc analysis revealed a significant difference at the third time point 
after amphetamine injection. 
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Figure 2. Effects of cyclodextrin and E2-cyclodextrin on DA levels in the dorsal striatum. 
There was no effect of the vehicle, cyclodextrin, on DA levels. There was a significant 
effect of E2 at the first time point after E2 infusion, p=0.05. 
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after systemic amphetamine injections suggesting that local infusion of E2-cyclodextrin 

did not increase extracellular DA levels while amphetamine injection did. 

In Group 2, there was a significant main effect of time such that DA levels in the 

DS were significantly higher after systemic administration of amphetamine when 

compared to baseline DA levels; F(9, 63)=3.284, p=0.002 (Figure IB). There was also a 

significant interaction; F(9,63)=3.357, p=0.002. Post hoc analysis revealed that DA levels 

at the third time point after systemic injection of amphetamine was significantly higher 

than baseline DA levels; t(3)=-2.337, p=0.05. In addition, there was a significant drug 

effect; F(l,7)=16.82, p=0.005. Thus, while the vehicle cyclodextrin did not significantly 

increase extracellular DA levels, amphetamine did. 

Analysis comparing the elevation in DA levels after systemic administration of 

amphetamine following local infusion of E2 or its vehicle cyclodextrin revealed a 

significant main effect of time such that DA levels in the DS were significantly higher 

after amphetamine injection when compared to baseline; F(l 1,55)=4.576, p=0.000. 

However, there was neither a group effect nor an interaction. This indicates that local E2 

infusion did not enhance amphetamine-induced DA release in the DS relative to its 

vehicle cyclodextrin. 

In Group 3, there was a main effect of time such that DA levels were significantly 

higher immediately after a local infusion of E2-cyclodextrin into the DS; F(5,30)=3.299, 

p=0.017 (Figure 2). There was also a significant interaction between time and group; 

F(5,30)=3.288, p=0.017. Post hoc analysis revealed DA levels in the first time point after 
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E2-cyclodextrin infusion to be significantly higher than baseline levels of DA; t(3)=-

2.329, p=0.05. Thus, E2 enhanced DA release while its vehicle cyclodextrin did not. 

4. Discussion 

The present findings confirm the well-documented enhancement of extracellular 

dorsal striatal DA levels in response to systemic administration of amphetamine (e.g. 

Becker 1990). In addition, this study is the first to demonstrate that in vivo local infusion 

of E2 in anaesthetized rats rapidly augments baseline extracellular DA release in the DS. 

This effect occurs within minutes and DA returns to baseline levels within 40-50 minutes. 

However, this rapid estrogenic modulation of DA release did not have a potentiating 

effect on the amphetamine-induced enhancement of DA in the DS one hour later. Local 

infusion of the cyclodextrin vehicle had no effect on DA release. 

The majority of studies investigating the effects of E2 administer chronic high 

levels of hormone beginning 72 hours prior to testing (e.g. Sandstrom and Williams 

2001) suggesting that it is the genomic activity of classic intracellular ERs which enacts 

changes in the brain and in behavior. For example, in a dorsal striatal DA-mediated 

response learning task, chronic E2 augments the disruptive effects of a DA D2 receptor 

antagonist (Daniel, Sulzer et al. 2006). However, several studies have identified relatively 

quick alterations of behavior after systemic E2 administration. Several types of learning 

(Luine, Jacome et al. 2003; Waif, Rhodes et al. 2006; Frye, Duffy et al. 2007) as well as 

DS-mediated rotational behaviors (Becker 1990) are enhanced by acute E2 

administration. DS-mediated tasks are often supported by DA activity. 
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It has been repeatedly demonstrated that E2 augments dorsal striatal extracellular 

DA levels in vitro (Becker and Ramirez 1981; McDermott 1993) and in vivo (Xiao and 

Becker 1994; Ohtani, Nomoto et al. 2001). In general, these studies utilize high levels of 

chronic E2 replacement in OVX female rats or in cultured cells from OVX rats which are 

then compared to OVX females receiving a vehicle injection. As a result, the deliberate 

action of nuclear ERs versus the rapid effects of membrane-bound ERs, or other E2-

activated membrane-bound G-protein coupled receptors, in the estrogenic modulation of 

DA function cannot be extricated from one another. Thus, OVX rats with chronic low 

levels of E2 were used here to demonstrate that local infusions of E2 into the DS rapidly, 

and transiently, enhance extracellular levels of DA. However, this increase was only seen 

after E2 infusion in Group 3 and not in Group 1. This is presumably due to a high 

attrition rate in Group 1 which led to a large variance that may have obscured the 

enhancing effects of E2. An examination of DA levels in the second time period 

following E2 infusion in both Groups 1 and 3 shows a similar increase in average DA 

levels over baseline. It is likely that with the addition of more subjects in both 

experiments that the variance will decrease and the rapid augmentation of dorsal striatal 

DA levels subsequent to local E2 infusions will become more apparent. 

Groups 1 and 3 also demonstrated that the rapid modulation of DA by E2 had no 

effect on extracellular DA levels subsequent to amphetamine administration one hour 

later. This finding contradicts a number of studies which show that high levels of E2 

enhance amphetamine-induced DA levels in the DS (e.g. Becker, Beer et al. 1984; Di 

Paolo, Rouillard et al. 1985; e.g. Becker 1990; Castner, Xiao et al. 1993; Ohtani, Nomoto 

et al. 2001). However, the majority of these studies employ chronic systemic 
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administration of E2 resulting in the constant presence of high E2. Here, an E2-

cyclodextrin complex, which is rapidly metabolized, was used. This resulted in a rapid 

and transient increase in DA which peaked within 20 minutes and returned to baseline 

within 50 minutes. Thus, by the time amphetamine was systemically administered 60 

minutes later, the E2-induced enhancement of DA had already subsided. E2 has also been 

shown to transiently increase DA levels in cultured cells within two minutes (Thompson 

and Moss 1994) and stimulate second messenger pathways linked to membrane-bound 

receptors within 20 minutes (Kelly, Lagrange et al. 1999; Kelly and Levin 2001). 

Although the primary objective of this study was to investigate the rapid effects of E2 on 

baseline DA levels in the DS, the time course of this action was also of concern. The 

results indicate that the action of locally infused E2 diminishes too quickly to affect 

amphetamine-induced DA levels one hour later. One way to investigate these rapid 

effects on stimulant-induced DA is to inject amphetamine immediately, or soon, after E2 

infusion. Another possibility would be to use several concentrations of E2 to create a 

dose-response curve that may uncover other enduring effects. It is also possible to use 

other estrogenic compounds, such as an E2-sulfate complex (Zurkovsky, Brown et al. 

2007), which are reported to be more slowly metabolized. Using local infusions of an E2-

cyclodextrin complex, the present findings suggest that E2 has a rapid and transient 

enhancing effect on baseline DA levels in the DS. 

These data also demonstrate that E2 acts to directly influence DA activity in the 

DS. It has been shown that DA levels in the nigrostriatal pathway can be enhanced 

through the modulation of tyrosine hydroxylase (Kuppers, Ivanova et al. 2000) and DA 

synthesis (Pasqualini, Olivier et al. 1995) in the substantia nigra which indirectly affect 
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dorsal striatal DA levels. However, the direct infusion of E2 into the DS indicates that E2 

action on dopaminergic cell bodies in the ventral tegmental area is not necessary for 

enhanced release in target regions. To this end, it is possible that E2 is acting rapidly 

through ERs on presynaptic DA terminals in the DS. E2 stimulates PKA and PKC 

activity through G-protein coupled receptors (Kelly, Lagrange et al. 1999) and Akt, ERK, 

and MAPK pathways through membrane-bound ERs (Kelly and Levin 2001). In addition, 

low concentrations of an E2-activated membrane-bound receptor, GPR-30, have been 

found in the DS (O'Dowd, Nguyen et al. 1998; Brailoiu, Dun et al. 2007). It is also 

possible that E2 is acting on the cell bodies and/or terminals of non-dopaminergic 

neurons in the DS to alter DA transmission. Although not investigated in the DS, ERs 

have been identified on GABA interneurons in the prefrontal cortex (Blurton-Jones and 

Tuszynski 2006) and hippocampus (Hart, Patton et al. 2001). ERs are also located on 

astrocytes in the substantia nigra (Quesada, Romeo et al. 2007) which results in an 

increase in the expression of glutamate transporters (Pawlak, Brito et al. 2005) and 

MAPK activation (Pawlak, Karolczak et al. 2005). 

The present findings demonstrate for the first time that E2 rapidly enhances DA 

release in the DS in vivo. Although this rapid estrogenic effect does not enhance 

amphetamine-induced DA release in this paradigm, future work utilizing different E2 

complexes or more contiguous injections of amphetamine may demonstrate similar 

results to studies using chronic E2 replacement regimens. 
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Preface: 

E2 modulates synaptic structure and density in the hippocampus of cycling 

(Woolley and McEwen 1992) and ovariectomized (Gould, Woolley et al. 1990) female 

rats. E2 also alters baseline levels of DA in the medial prefrontal cortex across the estrous 

cycle in female rats (Dazzi, Seu et al. 2007). Studies from previous chapters have shown 

that antagonism of DA Dl and DA D2 receptors in the medial prefrontal cortex 

modulates cognitive strategy use in low E2 rats. Thus, the influence of E2 on the quantity 

of synaptic proteins in brain areas innervated by DA was investigated in this chapter. In 

addition, dual-probe in vivo microdialysis was used to evaluate the effect of E2 on 

extracellular DA levels in the medial prefrontal cortex. 
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Abstract: 

Numerous studies have demonstrated that (E2) modulates synaptic structure and 

density in several target regions of dopaminergic pathways in the brain. The majority of 

these changes are found in the hippocampus. Relatively few studies have investigated the 

estrogenic modulation of synaptic proteins in the dorsal striatum (DS) and medial 

prefrontal cortex (mPFC). Similarly, numerous studies have demonstrated that E2 

modulates DA neurotransmission in the DS while fewer studies have investigated these 

changes in other brain regions containing DA, such as the mPFC. In the present study, the 

effect of E2 on the quantity of the synaptic proteins synaptophysin and spinophilin was 

examined in the hippocampus, DS, and mPFC using Western immunoblotting. In 

addition, the estrogenic modulation of DA levels in the mPFC at baseline and in response 

to systemic injection of amphetamine was evaluated using in vivo dual-probe 

microdialysis. Because a lateralization of medial prefrontal cortical function is implicated 

in the regulation of stress as well as in pathologies such as attention deficit hyperactivity 

disorder, the influence of E2 on synaptic density and neurotransmission was investigated 

in both the left and right hemispheres. There was no effect of E2 on the quantities of 

synaptic proteins in any of the three brain regions. While systemic injections of 

amphetamine significantly increased DA levels in both the left and right mPFC, there was 

no effect of E2 at baseline or in potentiating amphetamine-induced increases. 
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1. Introduction 

Estrogen has been shown to modulate synaptic structure and neurotransmission in 

several target regions of the main dopaminergic pathways in the brain. For example, 

synaptic density in the hippocampus (HPC) fluctuates with the estrous cycle such that it 

is highest during proestrus, a period of high estradiol (E2) levels (Woolley and McEwen 

1992). Ovariectomy results in a dramatic decrease of hippocampal dendritic spine density 

which can be prevented by the administration of E2 (Gould, Woolley et al. 1990). Similar 

decreases in synaptic density are seen in the medial prefrontal cortex (mPFC) of 

ovariectomized (OVX) female rats (Wallace, Luine et al. 2006) and monkeys (Tang, 

Janssen et al. 2004). In the dorsal striatum (DS), the intra-membranous composition of 

dendritic spines changes with the estrous cycle (Morissette, Garcia-Segura et al. 1992). 

E2 also affects neurotransmission in these brain areas. Although changes in 

hippocampal dopamine (DA) transmission have not been identified, E2 facilitates 

acetylcholine release in this region (Gabor, Nagle et al. 2003) as well as in the basal 

forebrain (Luine, Richards et al. 1998). Luine et al. (1998) also show that levels of 

norepinephrine, serotonin, and DA decrease in the mPFC following chronic E2 treatment. 

DA release in the mPFC is lowest during proestrus and highest during estrus, a period of 

low E2 levels (Dazzi, Seu et al. 2007). In the DS, there is a robust enhancement of DA 

transmission concomitant with high levels of E2 in both cycling (Xiao and Becker 1994) 

and OVX (Becker 1990) females. 

In vivo microdialysis is a common method utilized in the examination of 

extracellular neurotransmitter levels. DA levels are often measured using this technique 
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but few studies have investigated the effect of E2 on extracellular DA levels in this 

manner. Likewise, the effect of E2 on synaptic structure and morphology is commonly 

evaluated through quantification of synaptic proteins but there is a relative lack of studies 

examining the effects of E2 in brain areas receiving dopaminergic projections. 

Synaptophysin (SYN) is a 38-kDA protein primarily located in the membranes of 

neurotransmitter vesicles and is associated with the docking of these vesicles to the 

presynaptic membrane (Navone, Jahn et al. 1986; Calakos, Bennett et al. 1994; Calakos 

and Scheller 1994). E2 administration in OVX female mice increases hippocampal SYN 

levels (Frick, Fernandez et al. 2002). Spinophilin (SPI) is a 90-kDA protein that is found 

in the dendrites of postsynaptic neurons (Allen, Ouimet et al. 1997). It is thought to play 

a role in cytoskeletal structure, synaptic plasticity, and the creation of new spines (Futter, 

Uematsu et al. 2005; Terry-Lorenzo, Roadcap et al. 2005; Calhoun, Fletcher et al. 2008). 

Hippocampal levels of SPI are enhanced after E2 administration to OVX female rats 

(Lee, Romeo et al. 2004). Because these proteins are primarily found at pre- and 

postsynaptic sites, they may be used as markers of the increased synaptogenesis 

associated with high levels of E2. Using radiolabeled immunocytochemistry, it has been 

demonstrated that the administration of E2 to OVX females produces a significant 

increase of both SYN and SPI in CA1 neurons in the HPC (Brake, Alves et al. 2001). 

To further evaluate the effects of E2 on synaptic density, Study 1 investigated 

levels of SYN and SPI of the HPC, DS, and mPFC using Western immunoblotting. Study 

2 utilized in vivo microdialysis to investigate the influence of E2 on DA transmission in 

the mPFC. Because a lateralization of function in the mPFC has been implicated in stress 

(Sullivan 2004) as well as the pathophysiology of dopaminergic diseases such as 
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attention deficit hyperactivity disorder (ADHD; for a review, see: Sullivan and Brake 

2003), the effects of E2 on synaptic structure and DA neurotransmission were 

investigated in both the left and right hemispheres. 

2. Materials and Methods 

Subjects. All subjects included in Studies 1 and 2 were young adult, female, Sprague-

Dawley rats (Charles River, St. Constant, Quebec) aged three months and weighing 

approximately 225-250 grams at the time of arrival. Upon arriving, all rats were allowed 

one week to habituate to the animal facility and were handled daily from time of arrival 

until completion of testing. All rats were pair-housed in same-sex polyurethane shoebox 

cages, maintained on a reverse 12h:12h light/dark cycle with lights off from 0900-2 lOOh, 

and were allowed standard lab chow and water ad libitum. In Study 2, rats were single-

housed subsequent to cannulae implantation surgery for the remainder of the experiment. 

All animal handing and testing procedures were conducted in accordance with the 

guidelines of the Canadian Council on Animal Care and approved by the Concordia 

University Animal Research Ethics Committee. 

Study 1 included 24 rats; 8 rats in the proestrus phase of the estrous cycle, 8 rats 

in the estrus phase of the estrous cycle, and 8 rats which were OVX and received no 

hormone replacement. Study 2 included 20 rats, all of which were ovariectomized; 6 

received high levels of E2 replacement (see below for hormone replacement paradigm), 8 

rats received low levels of E2 replacement (see below), and 6 rats did not receive E2 

replacement. 
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Study 1, Surgical Procedures. Approximately one week after arrival, 8 of the 24 rats were 

anaesthetized using Halothane gas (4% for induction; 2% for maintenance) and 

bilaterally ovariectomized using a standard aseptic procedure through a dorsal incision. 

Post-surgical care included administration of the antibiotic Baytril (0.03 ml/rat, SC; 

CDMV, St. Hyacinthe, QC, Canada), the analgesic banamine (0.03 ml/rat, SC; CDMV), 

and 0.9% saline (3ml/rat, SC). Following surgery, rats were allowed to recover in their 

home cages for 2-3 weeks prior to tissue collection. All surgical procedures were 

conducted in accordance with the guidelines of the Canadian Council on Animal Care 

and approved by the Concordia University Animal Research Ethics Committee. 

Study 1, Determination ofEstrous Cycle. In Study 1, 16 of 24 rats were intact females 

exhibiting regular 4-5 day estrous cycles for two weeks prior to tissue collection. The 

phase of estrcns cycle was determined daily by vaginal cytology characterization using a 

cotton swab dampened with saline to collect epithelial cells from the vaginal wall. All 

samples were collected daily from approximately 1600-1700h and immediately examined 

under a microscope with lOx magnification. Rats with a majority of comified epithelial 

cells were considered to be in estrus; rats with a mix of cornified epithelial cells, 

nucleated epithelial cells, and leukocytes were considered to be in metestrus; rats with a 

majority of leukocytes were considered to be in diestrus; and, rats with a majority of 

nucleated epithelial cells were considered to be in proestrus. Rats exhibiting irregular 

estrous cycles were excluded from the experiment. In Study 2, all OVX rats were divided 

into three groups and received hormone or vehicle injections as described above. 
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Study J, Procedure: Western Immunoblot Analysis. For the 16 intact rats, tissue 

collection occurred immediately following the determination of estrous cycle phase. 8 

rats were sacrificed during the proestrus phase of the estrous cycle and 8 rats were 

sacrificed during the estrus phase of the estrous cycle. For the 8 OVX rats, tissue 

collection occurred approximately 14 days after ovariectomy surgery. For all rats, this 

took place between approximately 1800-2000h. 

All rats were live decapitated after which the brains were removed. Fresh tissue 

samples were immediately collected from both hemispheres of several dopaminergic 

target regions; the mPFC including the prelimbic and infralimbic areas, the dorsal aspect 

of the HPC, and the DS. Brains were placed on a cold plastic tray in a wet ice bucket and 

samples were manually collected using a standard razor blade. Once collected, samples 

were immediately placed in 0.5ml Eppendorf tubes (Sigma), flash frozen in dry ice, and 

stored in at -80°C until analysis. 120ul of lysis buffer was added to each sample and 

protein was homogenized using a sonicator. Samples were then centrifuged after which 

the supernatant was collected and stored at -20°C. Protein analysis was conducted using 

the BCA-200 Protein Assay Kit (Pierce) according to manufacturer's instructions and 

15jxg of protein was loaded into wells of 12% SDS-PAGE (NuPAGE- Invitrogen) gels 

along with the sample buffer, reducing agent (Invitrogen) and water (if needed) to a total 

volume of 14ul/ well. All buffers were obtained from Invitrogen and used with the 

PowerEase TM 500 from Invitrogen. Gels were run at 110 volts for 15 minutes followed 

by 150 volts for one hour and then transferred to nitrocellulose membranes (Invitrogen) 

at 100 volts for 1 hour. Ponceau S (Sigma) was used to verify successful transfer of 

proteins. Membranes were then washed in a blocking and incubation buffer and 
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incubated in a primary antibody solution at 4°C overnight (anti-synaptophysin 1:2000, 

Sigma; anti-spinophilin 1:1000, Sigma). 

On the following day, membranes were washed and incubated in appropriate 

HRP-conjugated secondary antibody for 2 hours, washed, and processed using 

Chemiluminescence Reagent Plus (Perkin Elmer Life Sciences) detection kit following 

the manufacturer's directions. Images were captured using Kodak ID Image Station and 

Software. Analysis of the immunoblots was evaluated using relative optical density. The 

sum intensity for each blot migrating at the proper weight for each antibody was 

measured; each lane contained tissue from a single rat. 

Study 2, Surgical Procedures, Hormone Administration, and Drugs. Approximately one 

week after arrival, rats were anaesthetized using Halothane gas (4% for induction; 2% for 

maintenance) and bilaterally ovariectomized using a standard aseptic procedure through a 

dorsal incision. 16 of the 24 rats were implanted with a Silastic tube (1cm long; i.d. 1.47 

mm; o.d. 1.96 mm) containing 5% 17P-E2 (Sigma Chemical Co., St Louis, MO) in 

cholesterol (Sigma). This has been reported to produce a serum concentration of 

approximately 20-25 pg/ml which is consistent with naturally circulating low levels of E2 

such as those seen during the estrus phase of the rat estrous cycle (Hum and Macrae 

2000; Mannino, South et al. 2005). Previous studies from our lab have shown that this 

implant results in serum E2 levels of 18-32pg/ml (Quinlan et al., submitted; Quinlan et 

al., submitted; Quinlan, Hussain et al. 2008). Post-surgical care included administration 

of the antibiotic Baytril (0.03 ml/rat, SC; CDMV, St. Hyacinthe, QC, Canada), the 
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analgesic banamine (0.03 ml/rat, SC; CDMV), and 0.9% saline (3ml/rat, SC). Following 

ovariectomy surgery, rats were allowed to recover in their home cages for several days 

prior to cannulae implantation. Rats were anaesthetized using Halothane gas and received 

stereotaxic bilateral implantations of 21g stainless steel tubing guide cannulae (Plastics 

One, Roanoke, VA). Stereotaxic co-ordinates from bregma for the mPFC were AP +3.2, 

ML ± 1.8 at 10°, DV -1.5 (Paxinos and Watson 1998). Cannulae were blocked with 26g 

obdurators (Plastics One) which extended 1mm below the tip of the guide cannula. All 

surgical procedures were conducted in accordance with the guidelines of the Canadian 

Council on Animal Care and approved by the Concordia University Animal Research 

Ethics Committee. 

For the high E2 group, in addition to the subcutaneous implants, daily 

subcutaneous injections of 17P-E2 (10 |ig/kg) dissolved in sesame oil (Sigma) were 

given. These injections were designed to achieve E2 levels seen during the proestrus 

phase of the estrous cycle (75-90 pg/ml; Hum and Macrae 2000; Mannino, South et al. 

2005). Previous studies from our lab have shown that, in conjunction with the E2 

implants, this paradigm results in serum levels of 70-97pg/ml (Quinlan et al., submitted; 

Quinlan et al., submitted; Quinlan, Hussain et al. 2008). During the same period all rats in 

the low E2 group received subcutaneous injections of sesame oil as a control (1 ml/kg) 

such that E2 levels from the implant were similar to that of the estrus phase of the estrous 

cycle (20-30 pg/ml; Hum and Macrae 2000; Mannino, South et al. 2005). OVX rats also 

received sesame oil injections. All injections began two days before testing occurred 

between 0800-0900h each day. During microdialysis testing, all rats received 

intraperitoneal injections of amphetamine (0.5 mg/kg) dissolved in a saline vehicle. 
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Study 2, Procedure: Microdialysis Apparatus and Equipment. All testing took place 

inside four separate modular isolation cubicles (Coulbourn Instruments; Whitehall, PA) 

each insulated with foam walls which absorbed ambient light and noise. Each cubicle is 

approximately 31 "W x 21"D x 21"H, held an inner testing chamber measuring 

approximately 28"W x 18"D x 19"H, and was equipped with a fan. Each inner chamber 

was identically outfitted with a house light and a water bottle accessible from inside the 

chamber. 

Sample collection was achieved using a dialysis probe with a semi-permeable 

membrane (Spectra/Por, Spectrum Laboratories, Rancho Dominguez, CA, USA) which 

has amolecular cut-off weight of 13,000 kDa. The total length of the tip extending from 

the cannula was 4mm. Dialysate was collected from the probe outlet silica (Polymicro 

Technologies; Phoenix, AZ) into a 0.5ml Eppendorf (Sigma) tube. Artificial 

cerebrospinal fluid (aCSF), 150 mm Cl~, 145 mm Na , 2.7 mm K , 2 mm Na2HP04, 

1.22 mm Ca2+, 1.0 mm Mg2+, 0.2 mm ascorbate, pH 7.4 ±0.1, was pushed through the 

probe using a pump (CMA Syringe pump, Model 402; Boston, MA) at a rate of 1.0 

ul/min. Samples were collected every 20 minutes; 6 baseline samples, 2 vehicle samples, 

and 6 drug samples. Each sample contained approximately 18-20ul. 

15ul of each sample was analyzed for DA using high performance liquid 

chromatography (HPLC) with electrochemical detection. Samples were injected into a 

15cm Ci8 column (Higgins Analytical Co.) through manual injection ports (Rheodyne 

7125, Rheodyne, Rohnert Park, CA, 20ul loop). The separated samples passed through a 

dual channel ESA (Chelmsford, MA) and compounds within each sample were detected 
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with a Coulochem III detector (Model 5100A analytical cell, ESA, Inc.). The detectors 

were set to provide the reduction and oxidation currents for DA and its metabolites. The 

system was calibrated using estimates from peak height by comparison with injections of 

known amounts of standard DA concentrations (Sigma). Mobile phase consisted of 20% 

acetonitrile 40mg, 0.076 M sodium dodecyl sulphate, 0.1 M EDTA, 0.058 M NaP04, and 

0.27 M citric acid with a pH of 3.35 and circulated at 1 .Oml/min by Waters 515 HPLC 

pumps (Lachine, QC, Canada). EZChrom Chromatography Software Data System 

(Scientific Software, San Ramon, CA) was used to analyze and integrate the data. 

Study 2, Procedure: Microdialysis. On the testing day, each rat was brought into the 

testing room at approximately 0900h. The rat was briefly anaesthetized using Halothane 

gas (4%) while a probe was inserted into the medial prefrontal cortices of both the left 

and the right hemisphere; all rats were awake and freely moving within 5 minutes of 

anaesthesia. The rat was then given 5 hours to habituate to the chamber and to allow for 

equilibrium of liquid flow to and from the probe tip. At approximately 1400-1500h 

testing began. 6 20-minute baseline samples were collected. Then each rat received an 

intraperitoneal (IP) vehicle injection of saline and two more 20-minute samples were 

collected. Then each rat received an IP injection of amphetamine (0.5 mg/kg) and 6 more 

20-minute samples were collected. Each sample was immediately placed on dry ice and 

stored at -80°C until analysis. Throughout the habituation period and during the testing 

procedure animals were freely moving and had ad libitum access to food and water. 
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After sample collection was completed, each rat was live decapitated and the 

brains were flash frozen using 2-methylbutane (Sigma) cooled in dry ice. Brains were 

stored at -80°C until slicing for confirmation of cannulae placement. 

Statistical Analyses. For Study 1, protein quantities were analyzed using one-way 

analysis of variance tests for each antibody within each brain area. For Study 2, levels of 

analyzed compounds were expressed as concentrations (pg/ml) and basal values were 

estimated as the mean of three samples preceding the first local infusion. The effects of 

hormone regimen and amphetamine administration on DA levels were analyzed using 

two-way analysis of variance (ANOVA) tests. Time and E2 group were the independent 

variables and concentration of DA was the dependent variable. Post hoc tests were done 

using a paired two sample t-test with a level of p<.05 when appropriate. 
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3. Results 

For Study 1, there were no significant differences among hormone groups in any 

of three brain areas tested for either protein in either the left (Table 1) or right (Table 2) 

hemispheres. The SYN antibody was immunoreactive to a single band migrating at 38 

kDa consistent with the molecular weight of SYN (Figure 1). Similarly, the antibody 

used for SPI was immunoreactive for a single band migrating at 90 kDa consistent with 

the molecular weight of SPI. 

For Study 2, there was a significant main effect of time such that DA levels in the 

left mPFC were higher after systemic administration of amphetamine when compared to 

baseline DA levels; F(10, 130)=10.193, p=0.000 (Figure 2A). Similarly, there was a 

significant main effect of time such that DA levels in the right mPFC were higher after 

systemic administration of amphetamine when compared to baseline DA levels; F(13, 

195)=11.453, p=0.000 (Figure 2B). There were no significant interactions or between-

group effects. 
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Figure 1. A representative example of an immunoblot stained for synaptophysin in the 
DS. Both hemispheres and all three hormone groups are represented. There were no 
significant differences in the mPFC, DS, or HPC or among any of the hormone groups. 
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Table 1. Effects of OVX, Low E2, or High E2 on quantities of synaptic proteins in the 
HPC, DS, or mPFC; Left hemisphere 

LEFT 
mPFC 

DS 

HPC 

SYNAPTOPHYSIN 

OVX 
64483.33 
±(14372.67) 

45390 
±(6936.542) 

13059 
±(2173.451) 

LowE2 
37610.5 
±(7553.463) 

34824.5 
±(3350.879) 

17946 
±(3138.01) 

High E2 
40997.33 
±(8975.343) 

40457.13 
±(5859.58) 

12546.75 
±(2191.469) 

SPINOPHILIN 

OVX 
5082.6 
±(903.4319) 

4656.875 
±(2479.659) 

7477.123 
±(1055.794) 

LowE2 
6910.167 
±(1434.685) 

3592.125 
±(642.3824) 

8964.513 
±(1581.697) 

HighE2 
8686.667 
±(1787.885) 

6525.375 
±(3162.133) 

6985.875 
±(2273.493) 

Mean (± SEM) optical density of SYN and SPI in mPFC, DS, and HPC in response to 
OVX, and systemic administration of low E2 and high E2. There were no significant 
differences. 
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Table 2. Effects of OVX, Low E2, or High E2 on quantities of synaptic proteins in the 
HPC, DS, or mPFC; Right hemisphere 

RIGHT 
mPFC 

DS 

HPC 

SYNAPTOPHYSIN 

OVX 
32289.83 
±(7492.641) 

30304.57 
±(4581.033) 

13158.5 
±(2270.795) 

Low E2 
65403.8 
±(5960.516) 

39238.71 
±(8164.468) 

13768.38 
±(2185.797) 

High E2 
53138.5 
±(6583.374) 

31939 
±(5418.853) 

11270.75 
±(1240.983) 

SPINOPHILIN 

OVX 
5887.8 

±(1378.133) 

8476.875 

±(4679.847) 

10836.09 

±(1730.324) 

LowE2 
6910.167 

±(1544.227) 

3259.875 

±(1840.437) 

11324.1 

±(1418.371) 

HighE2 
8686.667 

±(1871.811) 

5787 

±(2402.254) 

12018.38 

±(3842.072) 

Mean (± SEM) optical density of SYN and SPI in mPFC, DS, and HPC in response to 
OVX, and systemic administration of low E2 and high E2. There were no significant 
differences. 
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Figure 2. Effects of systemic amphetamine injections on extracellular DA levels in the 
mPFC. There was a main effect of time such that amphetamine increased DA in both the 
A) left and B) right hemispheres of the mPFC. There were no significant interactions. 
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4. Discussion 

In Study 1, there was no effect of hormone group on synaptic density in any of the 

three brain areas studied. Study 2 is one of the first investigations to utilize dual-probe in 

vivo microdialysis to examine DA release simultaneously in the left and right 

hemispheres of the mPFC. This study confirms previous findings that systemic 

administration of amphetamine increases extracellular DA levels in the mPFC when 

compared to baseline (e.g. During, Bean et al. 1992). However, there were no significant 

differences among the amphetamine-induced DA responses of OVX, low E2, and high 

E2 rats. Contrary to previous studies (Dazzi, Seu et al. 2007), there was no difference in 

baseline DA levels among the three hormone groups. These results suggest that DA 

levels in the left and right hemispheres of the mPFC are similarly increased in response to 

systemic amphetamine injection. There was no effect of E2 on either baseline or 

amphetamine-induced DA levels which may be attributed to a high rate of attrition and 

large variances within groups. 

The majority of studies investigating the estrogenic modulation of extracellular 

DA levels focus on DA in the DS (e.g. Becker 1990). Relatively few studies have 

examined the mPFC. In this region, high levels of E2 have been shown to reverse deficits 

in tyrosine hydroxylase concentration subsequent to ovariectomy (Kritzer 2000). 

Conversely, post-mortem studies in this region show that high levels of E2 decrease DA 

levels in OVX rats (Luine, Richards et al. 1998). It has also been shown that baseline 

extracellular DA levels are lowest during proestrus, a period of high E2 levels, and 

highest during estrus, a time of low E2 levels (Dazzi, Seu et al. 2007). Accordingly, the 

baseline firing rates of DA neurons in the ventral tegmental area, a dopaminergic 
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projection region with connections to the mPFC, are highest during estrus and lowest 

during proestrus. Although the current data did not find a significant difference in 

baseline DA levels, this is probably due to the high level of attrition in this study. There 

is a small trend towards significance and with the addition of more subjects, this 

difference may emerge. 

The present findings did not find a potentiation of amphetamine-induced DA 

release in either the left or right mPFC with any level of E2. The systemic administration 

of ethanol results in a significant increase in medial prefrontal cortical DA levels during 

estrus, but not during proestrus (Dazzi, Seu et al. 2007). Similarly, there have been 

repeated demonstrations of estrogenic modulation of extracellular DA levels in the DS in 

response to systemic amphetamine (e.g. Becker 1990; e.g. Castner, Xiao et al. 1993). 

Here, there is an approximately 200-300% increase in DA levels in the mPFC after 

amphetamine injection for all groups but a large variance within each group at several 

time points may obscure any differences. Perhaps with the addition of more subjects a 

difference similar to that seen in the mPFC after ethanol administration or the DS after 

amphetamine administration will emerge. It should also be noted, although there was no 

significant difference, that in both the left and right mPFC there appears to be an 

enhancement in DA levels in response to the systemic injection of a saline vehicle in the 

low E2 and high E2 groups. This rise in DA levels is not apparent in the OVX group. 

Here, again, there may be an emerging effect which is obscured by high attrition rates 

and large variances within groups. 
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There were no significant differences among the hormone treatment groups in 

synaptic protein quantities in the mPFC, HPC, or DS. Numerous studies have 

demonstrated that high levels of E2 in OVX (e.g. Gould, Woolley et al. 1990) and 

cycling (e.g. Woolley and McEwen 1992) females enhance synaptic density in the HPC. 

E2 treatment in OVX females augments SYN and SPI in the dorsal HPC (Brake, Alves et 

al. 2001). Conversely, both SYN and SPI are reduced in hippocampal slices with the 

application of an aromatase inhibitor (Kretz, Fester et al. 2004) and ovariectomy has been 

shown to decrease synaptic density in the mPFC (Wallace, Luine et al. 2006). It has been 

suggested that the Western immunoblotting technique is not sensitive enough to detect 

changes in protein expression or that long-term exposure to E2 is required in order to 

quantify these effects (Sharma, Mehra et al. 2007). 4 weeks of chronic E2 administration 

were necessary to reverse ovariectomy-induced decreases in hippocampal SYN. 

Likewise, in vitro studies demonstrate that 4, but not 2, days of E2 treatment are required 

to increase SYN in hippocampal primary cell cultures (Chindewa, Lapanantasin et al. 

2008). Radiolabeled immunocytochemistry, a more sensitive technique, has been used to 

identify increases in synaptic proteins after short-term administration of E2 to OVX 

females (Brake, Alves et al. 2001). It is possible that any changes in synaptic protein 

numbers or structure require a more sensitive technique than Western immunoblotting or 

a longer period after ovariectomy in order to be identified. 

Differences in left versus right medial prefrontal cortical DA activity have been 

implicated in the control of stress (Sullivan 2004) and pathologies such as ADHD 

(Heilman, Voeller et al. 1991; Sullivan and Brake 2003). Specifically, asymmetric 

function and abnormal activity of DA in the right mPFC are related to these types of 
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behaviors. Here, there are no differences in baseline DA levels or amphetamine-induced 

DA levels in either the left or right mPFC among the different hormone groups. However, 

it appears that there are trends towards differences in amphetamine-induced DA release 

in the mPFC but more power is necessary to confirm any difference that may exist. 

Similarly, there is a small trend towards a higher baseline level of DA in low E2 rats. A 

high rate of attrition and high levels of variance within groups may have contributed to 

the non-significant differences among groups. Several studies have demonstrated that E2 

alters synaptic structure and plasticity in the HPC while fewer studies have found these 

differences in the DS and mPFC. Future work in this area may require increased periods 

of time after ovariectomy when utilizing Western immunoblotting or more sensitive 

techniques. A smaller number of studies have reported significant differences in DA 

neurotransmission in the mPFC. Here, more subjects may be required to find these 

differences in the present and future studies. 
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Preface: 

Studies from previous chapters have demonstrated that DA Dl and DA D2 

receptor antagonism in the medial prefrontal cortex can alter cognitive strategy use in low 

E2 rats. It has also been demonstrated E2 modulates DA levels in this brain region across 

the estrous cycle (Dazzi, Seu et al. 2007). Another type of cognitive task which is 

mediated by DA in the medial prefrontal cortex is working memory (Sawaguchi and 

Goldman-Rakic 1991). Thus, the study in this chapter investigates the effect of 

ovariectomy, low E2, and high E2 on performance in a DA-mediated working memory 

task in a T-maze. 
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Abstract: 

Estrogen has been found to have varying effects on cognition in female rodents. 

This is most likely due to differences in behavioural testing procedures and hormone 

administration regimens from study to study. Here, ovariectomised female rats received 

either chronic low oestradiol or chronic high oestradiol in a paradigm meant to closely 

mimic oestradiol levels during the oestrus and pro-oestrus phases of the natural oestrous 

cycle. In addition, as a point of comparison with other studies, another group of 

ovariectomised animals received only vehicle injections. All subjects were tested in a 

match-to-place version of the T-maze. Low oestradiol rats required significantly more 

trials to acquire the task than the high oestradiol rats. Upon reaching criterion 

performance in the match-to-place task, a series of extended delays of 60-180 seconds 

were introduced in order to test working memory. Here, high oestradiol rats made more 

correct arm choices than low oestradiol rats. Vehicle-treated animals performed 

comparably to high oestradiol animals in task acquisition and working memory 

performance. These findings suggest that physiologically low levels of chronic oestradiol 

replacement to ovariectomised rats may impair performance when compared to 

ovariectomised rats receiving vehicle administration as well as physiologically high 

levels of oestradiol replacement. 
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1. Introduction 

An extensive body of literature provides support for a modulatory role of 

oestrogen (E) during the performance of behavioral tasks (e.g. Gibbs 2002; Sherwin 2003; 

Korol, Malin et al. 2004); notably working memory (Olton and Samuelson 1976). 

However, findings in this area may sometimes be contradictory as to the direction and 

extent of effects. Before firm conclusions concerning the role of E can be made there are 

a number of factors that must be considered when interpreting the effects of oestradiol 

(E2) on performance in behavioral tasks in rodents; these include the timing of E2 

administration after ovariectomy, the administration regimen (acute, chronic, continuous) 

and dose of E2, the control group used, age, and the type of task used. While many 

studies report a beneficial influence of E2 in behavioral tasks the literature as a whole is 

far from consistent. High levels of E2 have been shown to enhance acquisition of 

delayed-match-to-place (DMTP) tasks versus ovariectomised (OVX) controls in young 

adult (Gibbs 1999; Gibbs 2002) and aged female rats (Gibbs 2000). Low levels of E2 

improve arm choice accuracy during task acquisition in an 8-arm radial maze (Daniel, 

Fader et al. 1997; Luine, Richards et al. 1998; Fader, Johnson et al. 1999) and a T-maze 

(Fader, Hendricson et al. 1998) when compared to vehicle groups. Yet, other studies 

report no differences between high E2 groups and either low E2 or control groups during 

acquisition (Holmes, Wide et al. 2002; Wide, Hanratty et al. 2004). Chesler & Juraska 

(2000) report that treatment with low levels of E plus progesterone, but not E alone, 

impairs acquisition in a Morris Water maze. Similarly, rats in oestrus performed 

significantly better in a spatial version of the Morris water maze than rats in pro-cestrus 

(Warren, Humphreys et al. 1995). 
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There are also inconsistent findings concerning the effect of E2 on working 

memory performance. It has been shown that, when compared to a vehicle control, high 

levels of E2 increase working memory errors while low levels of E2 reduce errors in a 

win-shift task in an 8-arm radial maze (Holmes, Wide et al. 2002). Subjects administered 

supraphysiological levels of E2 do not differ from OVX + vehicle controls (Galea, Wide 

et al. 2001). In a T-Maze, high levels of E2 improve working memory in a delayed 

alternation task (Wide, Hanratty et al. 2004) but have no effect on a DMTP task (Gibbs 

1999; Gibbs 2002). Timing also matters. Acute doses of E2 enhance memory retention in 

a DMTP task; this effect disappears without continuous administration (Sandstrom and 

Williams 2001). E2 administration three, but not 10, months after OVX enhances 

performance in a DMTP task in aged females (Gibbs 2000). Perhaps the conflicting 

results concerning the effect of E2 on the performance of behavioral tasks by rodents may 

at least be partially explained by differences in E2 regimens and behavioural testing 

procedures. 

The present study evaluated the effects of E2 on the rate of acquisition in a 

matching-to-place (MTP) task in a T-Maze using a hormone administration regimen 

meant to closely mimic circulating E2 levels seen during the oestrus and pro-oestrus 

phases of the natural cestrous cycle. Post-acquisition working memory performance was 

also evaluated using a series of extended delays in the same MTP task which, in effect, 

adapted it into a DMTP procedure. In addition, an OVX + vehicle group was included as 

a control during both acquisition and working memory testing in order to provide a basis 

for comparison with other studies using a similar control group. The main purpose of this 

study was to evaluate working memory independently from acquisition. Many paradigms 
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test working memory from the inception of training as the rules of the task are still being 

acquired. Here, the use of extended delays during the DMTP phase only after a 

predefined set of criterion for acquisition has been reached in the MTP task may allow 

for a more specific evaluation of oestrogenic effects on working memory. The acquisition 

of some behavioral tasks, including the presently used MTP task, necessarily requires the 

use of working memory during acquisition. Likewise, there is a learning component 

innate to some working memory tasks, including the present DMTP paradigm using 

extended delays in a MTP task. However, by minimizing the use of working memory 

during acquisition training through brief inter-trial intervals and depreciating the learning 

component during the working memory phase by using post-criterion testing it may be 

possible to assess the influence of E2 on either acquisition or working memory with only 

a minor influence from the other. In this way, the effects of physiologically high and low 

E2 levels on the acquisition of a task and on working memory can be investigated 

relatively independently. 

The influence of high E2, low E2, and vehicle administration in young adult OVX 

female rats on the acquisition of a MTP task and post-criterion working memory 

performance in a DMTP task in a T-Maze was assessed. It was hypothesized that subjects 

with physiologically high levels of E2 would require fewer trials to achieve a criterion 

performance than both OVX + vehicle animals (e.g. Gibbs 1999) and animals 

administered physiologically low levels of E2 (Holmes, Wide et al. 2002). It was also 

hypothesized that subjects with low physiological levels of E2 would require fewer trials 

to acquire the task than OVX + vehicle animals. Based upon previous findings by 

Bimonte & Denenberg (1999), it was hypothesized that animals with high physiological 
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levels of E2 would make a greater number of correct arm choices than either animals 

with low levels of physiological E2 or vehicle animals, particularly as working memory 

load increased during the longer extended delays. Finally, it was hypothesized that 

animals with low physiological levels of E2 would make a greater number of correct arm 

choices at longer extended delays than OVX animals receiving only a vehicle control, as 

previously demonstrated (Fader, Johnson et al. 1999; Holmes, Wide et al. 2002). 

2. Methods 

Subjects. 37 young adult, female, Sprague-Dawley rats (Charles River, St. Constant, 

Quebec) aged three months at the time of arrival and weighing approximately 250-300 

grams were used in this experiment. Upon arriving, all animals were allowed one week to 

habituate to the animal facility. Before behavioural training began, animals were pair-

housed in polyurethane shoebox cages, maintained on a reverse 12h: 12h light/dark cycle 

with lights off from 0900-2 lOOh, and were allowed standard lab chow and water ad 

libitum. The rats were handled daily from time of arrival until completion of the 

experiments. 

Five days prior to the commencement of behavioural training all animals were 

transferred to individual housing, placed on a food-restriction diet, and maintained at 

90% of their individual free-feeding weight until completion of testing. All training was 

performed at the start of the dark phase of the light/dark cycle beginning at 0900h and 

ending at approximately 1200h. All behavioural testing and surgical procedures were 
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conducted in accordance with the guidelines of the Canadian Council on Animal Care 

and approved by the Concordia University Animal Research Ethics Committee. 

Surgery and Hormone Administration. Subjects were randomly assigned to one of three 

groups; high E2 (n=9), low E2 (n=10), or vehicle (n=10). Approximately one week after 

arrival, all subjects were anesthetised using a mixture of ketamine (50 mg/ml; CDMV, St 

Hyacinthe, Quebec) and xylazine (4mg/ml; CDMV) in a 4:3 ratio (1 ml/kg, IP) and 

bilaterally ovariectomised using a standard aseptic procedure through a dorsal incision. 

Post-surgical care included a single administration of the antibiotic Baytril (0.03 

ml/animal, SC; CDMV), the analgesic banamine (0.03 ml/animal, SC; CDMV), and 0.9% 

saline (3 ml/animal, SC). During OVX surgeries, all animals were subcutaneously 

implanted with a Silastic tube containing either 100% cholesterol (vehicle group; Sigma 

Chemical Co., St Louis, MO) or 5% 17P-E2 benzoate (high E2 and low E2 groups; 

Sigma) in cholesterol in the nape of the neck. This 5% implant produces a serum 

concentration of approximately 20-25 pg/ml, which is consistent with naturally 

circulating levels of E2 such as those seen during the oestrus phase of the cestrous cycle 

(Butcher, Collins et al. 1974; Mannino, South et al. 2005; Quinlan, Hussain et al. 2008) . 

Animals in the high E2 group received additional daily subcutaneous injections of 17p-

E2 (lOug/kg) dissolved in sesame oil (Sigma) designed to achieve circulating E2 levels 

similar to those seen during the pro-oestrus phase of the cestrous cycle (75-90 pg/ml; 

Butcher, Collins et al. 1974; Quinlan, Hussain et al. 2008). Animals in the low E2 and 

vehicle groups received daily subcutaneous injections consisting of sesame oil vehicle 
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(1 ml/kg). E2 replacement and vehicle injections began two days before habituation 

training and were administered after completion of testing between 1200-1400h each day. 

Apparatus. Training for all subjects was carried out in a black polyurethane T-maze 

placed on a table one meter above the floor with black walls extending 23cm above a 

wire grid floor 10.5cm wide with removable clear polyurethane roof panels. The T-maze 

had three arms arranged at 90° angles around a 14x14cm central chamber; two goal arms 

and a start arm, all of which were 75cm in length. Entrance to the central chamber from 

the start arm could be occluded by black polyurethane guillotine gate which could be 

lifted by the experimenter using a string from a remote location. Entrance to the goal 

arms from the central chamber were occluded in a similar manner. 

The start arm contained a start-box 30cm in length which could be blocked off 

from the rest of the start arm and the central chamber by a black polyurethane guillotine 

gate halfway down the arm. Each goal arm contained a white ceramic bowl in which a 

food reward (Kellogg's Froot Loops®) could be placed. Froot Loop crumbs were placed 

underneath both goal arms of the maze during all trials to prevent any confounds due to 

odor cues. For all trials, the maze was kept stationary in a position relative to all extra-

maze cues throughout testing. All testing took place in a dim, semi-lighted room with 

extra-maze cues that included a poster on a plain white wall opposite blue cupboards. The 

experimenter always stood in the same location at the foot of the start box. 
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Behaviour. Subjects were trained in a MTP task in a T-Maze during both acquisition and 

working memory testing. A MTP task was used to account for any innate tendencies by 

the animals to alternate arms from trial to trial (Douglas 1966). All subjects received 

once-daily 15-min habituation sessions in the T-Maze for three consecutive days. During 

each session subjects had free access to all components of the T-Maze. Froot Loops were 

scattered throughout the apparatus on the wire grid floor of the T-Maze and in the food 

bowls. 

The next day following habituation, all subjects began pre-training in the T-maze 

which consisted of 10 trials per day per rat. Food rewards (half of a Froot Loop) were 

only available in the food bowls of the assigned goal arms. Pre-training consisted of a 

series of randomly assigned 'forced choice' runs in which each animal was guided to 

either the right or left goal arm via occlusion of the opposite goal arm by the 

polyurethane gate. The open goal arm contained a ceramic bowl which was baited with 

the food reward. Rats were placed in the start-box behind the guillotine gate. Once the 

appropriate gate panels of the goal arms were raised by the experimenter the animal was 

released from the start-box and was free to traverse the maze towards the choice point in 

the central chamber. The trials were pseudo-randomly assigned each day so that the right 

and left goal arms were both baited five times. A trial was ended when all four limbs of a 

rat crossed into a goal arm and the gate could be closed. Each animal was allowed a 

maximum of two minutes to enter the goal arm after which it was allowed a maximum of 

one minute to eat the food reward. If an animal did not enter the goal arm or did not eat 

the reward after entering the goal arm within the time allowed it was removed from the 
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T-maze and placed in its home cage until the next trial. All subjects received 'forced 

choice' training for five days. 

MTP acquisition testing began the next day. Each trial now consisted of a 'forced 

choice' run followed immediately by a 'choice' run. Each animal was given a 'forced 

choice' run with only the assigned goal arm open and baited with a food reward. 

Immediately after this run, with only a brief delay (~5 seconds) during the transfer from 

the goal box to the start box, the animal was placed back into the start arm of the T-maze 

and given a 'choice' run. Here, both goal arms were open but only the arm previously 

baited during the preceding 'forced choice' run contained a food reward. Thus, if a 

'forced choice' run directed an animal to enter the left arm for a reward, only the left arm 

was baited during the 'choice' run in which both goal arms were available to enter. Rats 

that chose correctly were allowed to eat the food reward in the arm before being returned 

to their home cage. Rats that chose incorrectly were allowed to investigate the empty 

food bowl for 10 seconds before being taken out of the arm and placed into the home 

cage. Animals were always tested in pairs with one animal performing the task while the 

other remained in its home cage. Rats were considered to have reached criterion 

performance and acquired the MTP task after performing a minimum of 8/10 correct 

trials for three consecutive days. 

The day after reaching criterion, rats were subjected to the working memory 

phase of testing (delayed MTP) in which a series of extended delays were introduced 

between the 'forced choice' and the 'choice' runs during each of 10 trials in a session. 

Immediately after the 'forced choice' run had been completed, each animal was placed 
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into the start-box of the start arm in the T-maze which was occluded from the rest of the 

maze by a guillotine door. Prior to the door being raised by the experimenter, thereby 

beginning the 'choice' run, the animal remained in the start box for the duration of a 

prescribed delay; either 60, 80, 100, 120, 150, or 180 seconds. These extended delay 

periods were administered to each rat in a random sequence and were considerably longer 

than the brief delay experienced during the transfer of the animal from the goal box to the 

start box during the latter parts of acquisition training. As during acquisition testing, if an 

animal entered the goal arm that had been baited on the immediately preceding 'forced 

choice' run, a correct choice was scored. If it entered the opposite arm, an incorrect 

choice was scored. Here, a working memory error was defined as an incorrect choice 

made during the 'choice' run. 

Statistical Analyses. Rate of acquisition in the MTP task in a T-Maze was analyzed using 

a one-way analysis of variance (ANOVA) by E2 level. The first day of criterion 

performance achievement (8/10 correct arm choices) was used as the point of 

comparison. Significant differences were further analyzed using Tukey's honestly 

significant difference (HSD) post-hoc tests. Differences were considered significant when 

p<.05. 

In order to test working memory performance subsequent to achievement of 

criterion performance, a mixed ANOVA was used to compare E2 groups (between 

subjects factor) and time delays (within subjects factor). Additionally, the number of 

correct arm choices after a delay was analyzed using t-tests. For all three groups within 
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each of the six delay conditions one sample t-tests were conducted comparing the mean 

performance of the group to a chance level of performance, or 50% (5/10) correct 

choices. In order to account for the possibility of false positives resulting from multiple 

comparisons, a Bonferroni correction was employed (.05/18). As a result, differences 

were considered significant when p<.0027. 

3. Results 

Acquisition. During the early stages of acquisition testing, inter-trial intervals lasted 

approximately 10-60 seconds but no longer than ~5 seconds by the time criterion levels 

of performance were being achieved. There was a significant effect of E2 level on rate of 

acquisition (F(2, 33) =4.17, p=.02; fig. 1A). Post hoc analysis using Tukey's HSD 

revealed the high E2 group required significantly fewer testing sessions to reach criterion 

than the low E2 group (p=.02). The mean (± SEM) number of testing sessions required in 

order to achieve criterion performance (fig. IB) for the high E2 group was 8.31 (± 0.91), 

for the low E2 group 11.38 (± 0.96), and for the vehicle group 9.0 (± 0.60). 
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Figure 1. A) Mean (± SEM) number of corrects trials in a T maze task across training 
days for OVX rats that received chronic low E2, chronic high E2 or oil vehicle. B) Mean 
(+ SEM) number of trials to reach criterion. Low E2 rats took significantly more days to 
reach criterion than high E2 rats, *p< 0.05. 
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Working Memory. When comparing mean scores of correct arm choices to chance levels 

of performance, there were several differences within time delays that were statistically 

significant (fig. 2). However, a performance limit was reached during the delays of 150 

and 180 seconds where none of the groups made more correct arm choices than could be 

expected by chance. In the 60 second delay, vehicle (t(9)=5.62, p<.001) and high E2 

(t(8)=4.74, p<.02) groups performed significantly different from chance levels but low 

E2 animals did not. In the 80 second delay, all three groups performed significantly better 

than chance; vehicle (t(9)=.6.09, p<.001), low E2 (t(9)=6.47, p<.001), high E2 (t(8)=4.36, 

p<.002). In the 100 second delay, vehicle (t(9)=5.66, p<.001) and high E2 (t(8)=6.49, 

p<.001) groups performed significantly better than chance levels but low E2 animals did 

not. In the 120 second delay, low E2 (t(9)=5.01, p<.001) and high E2 (t(8)=7.56, p<.001) 

groups performed significantly better than chance levels but vehicle animals did not. 

Because none of the three groups performed better than chance during the two 

longest delays, a mixed ANOVA was performed on the first four delays only. There was 

a significant interaction between time delay and E2 group (F(6, 78) = 2.406, p = 0.035). 

Tukey's HSD showed that the high E2 group made more correct arm choices than the 

low E2 group (p = 0.04). No other significant differences were observed. 
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Figure 2. A) Mean (+ SEM) percent correct trials of OVX rats that received chronic high 
(Estradiol (E2), chronic low E2, or oil vehicle in a delayed match-to-place (DMTP) 
working memory version of the T maze task which utilized six extended inter-trial delays 
(60-180 seconds). Low E2 rats performed significantly worse than the high E2 groups. *p 
< 0.0027 (with Bonferroni correction) indicates significantly higher than chance 
performance (50%). B) Percent of correct trials represented in a sigmoidal curve fit to 
illustrate the relative performance of each group across time trials. 
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4. Discussion 

OVX female rats receiving physiologically high levels of E2 required 

significantly fewer trials to acquire a MTP task in a T-Maze than rats receiving 

physiologically low levels of E2. In addition, during a post-criterion working memory 

DMTP task in the T-Maze, high E2 rats made significantly more correct arm choices than 

low E2 rats. OVX + vehicle rats performed comparably to high E2 rats during both 

acquisition and working memory testing. These findings suggest that physiologically low 

levels of E2 impair performance in OVX female rats. 

Effects of Physiological Levels ofE2 on Acquisition of a MTP Task 

A majority of studies demonstrate the modulatory nature of E2 but do not 

necessarily agree on its precise role. The present results indicate that low E2 impairs task 

acquisition when compared to subjects with high levels of E2 and OVX + vehicle 

subjects. High levels of E2 (~50-90 pg/ml) have been shown to improve task acquisition 

relative to OVX controls in a similar DMTP task, however, these studies do not include a 

low E2 group (Gibbs 1999; Gibbs 2002). Had the present study included only high E2 

and OVX + vehicle subjects the results would demonstrate a slight, but not significant, 

enhancement of task acquisition by E2. This interpretation would be limited, however. 

When a low E2 group is included, as is the case here, the relatively poor performance of 

these subjects as compared to both a high E2 group and an OVX + vehicle group 

suggests that low E2 attenuates task acquisition. It has also been shown that low E2 

enhances reinforced T-Maze alterations, however, a high E2 group was not included 
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(Fader, Hendricson et al. 1998). In a delayed alternation task in a T-Maze comparing 

OVX + vehicle, low E2, and two high E2 groups, Wide et al., (2004) found no 

differences in task acquisition (7,27, 103, and 197 pg/ml, respectively). However, this 

paradigm included inter-trial delays meant to test working memory from the inception of 

training. It is possible that procedures which test working memory during acquisition 

training introduce additional cognitive load that affects learning. The use of a post-

criterion testing paradigm along with two physiologically-relevant E2 groups shows that 

low E2 may impair task acquisition rather than high E2 enhancing it. 

In contrast to the present findings, low levels of E2 (-15-30 pg/ml) enhance task 

acquisition in an 8-arm radial maze when compared to OVX + vehicle subjects (Daniel, 

Fader et al. 1997; Luine, Richards et al. 1998; Fader, Johnson et al. 1999). Similarly, 

studies utilizing a Morris water maze (Warren, Humphreys et al. 1995; Chesler and 

Juraska 2000) demonstrate that low levels of E2 improve task acquisition and 

performance. High E2 groups were not included in these studies and each involved a 

working memory component during acquisition. In addition, perhaps the relatively 

complex apparatuses and behavioral tasks are more sensitive to the influence of E2. 

Although it is clear E2 plays a modulatory role during task acquisition it is also apparent 

that the interpretation of this role is dependent upon several factors including dose of E2, 

task environment, cognitive task, and pre- vs. post-criterion testing. 
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Effects of Physiological Levels ofE2 on Working Memory in a DMTP Task 

According to Dudchenko (2004), working memory in rats can be defined as 

information concerning an object, stimulus, or location that is acquired, maintained for a 

short period of time, and used within a discrete testing session. This information can be 

retrieved and manipulated such that it may influence future behaviour (Olton and 

Samuelson 1976). During post-criterion testing in a DMTP task in a T-Maze, OVX + 

vehicle subjects and subjects with high physiological levels of E2 made more correct arm 

choices than animals with low physiological levels of E2. However, as working memory 

load increased a performance limit was reached and none of the groups make more 

correct arm choices than can be expected by chance. These findings do not agree with 

other studies using a post-criterion task in a T-Maze which demonstrate a beneficial 

effect of high E2 (-50-90 pg/ml; Gibbs 1999; -50-90 pg/ml; Gibbs 2002). However, 

these studies do not include a low E2 group. Additionally, the series of extended delays 

employed in these studies was somewhat shorter (10-90 seconds) and may not have been 

robust enough to demonstrate the effect of E2. Using the present paradigm with delays of 

10, 30, 45, and 60 seconds, high E2 and low E2 groups do not differ in performance until 

the longest delay (Quinlan et al., unpublished data). Similarly, in a water maze, only 

when working memory load increased did higher levels of administered E2 (50 pg/ml) 

benefit performance (Bimonte and Denenberg 1999). Furthermore, this effect of E2 was 

not evident until the latter stages of testing after extensive training. 

It has been shown that, relative to OVX + vehicle controls, subjects with high E2 

(103 and 197 pg/ml) make more errors in a T-Maze while subjects with low E2 (27 
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pg/ml) make fewer errors (Wide, Hanratty et al. 2004). Here, working memory was 

evaluated from the inception of training prior to achievement of criterion performance. In 

pre-criterion testing paradigms, cognitive load seems to be ample enough to necessitate 

the beneficial effects of E2. Perhaps the nature of post-criterion paradigms in a T-Maze, 

with only two possible goal sites from the choice point, require longer extended delays 

with which to increase working memory load and demonstrate an effect. Thus, the 

differing effects of E2 may be explained by differences in behavioural procedures from 

study to study. For example, in a T-Maze, high E2 subjects in a pre-criterion testing 

paradigm make more errors than an OVX + vehicle control (Wide, Hanratty et al. 2004) 

while during post-criterion testing high E2 levels enhanced performance (Gibbs 1999; 

Gibbs 2002). It is also possible the use of different apparatuses may play a role in these 

differences. Acute administration of E2 improved performance in a place task in a plus 

maze (Korol and Kolo 2002) but attenuated performance in a Morris water maze (Chesler 

and Juraska 2000; Snihur, Hampson et al. 2008). 

Studies which utilize relatively complex paradigms may more readily differentiate 

the effects of E2 on working memory. Performance in the Morris water maze is improved 

during estrus in naturally-cycling females (Warren, Humphreys et al. 1995) and in 

subjects administered low levels of E2 (Chesler and Juraska 2000). Likewise, studies 

employing the 8-arm radial maze have shown that low levels of E2 (15-30 pg/ml) are 

sufficient to improve working memory performance (Daniel, Fader et al. 1997; Luine, 

Richards et al. 1998; Fader, Johnson et al. 1999). Holmes et al. (2002) report that in an 8-

arm radial maze low E2 levels (23 pg/ml) decrease working memory errors relative to an 

OVX control but moderate (38 pg/ml) and high (102 pg/ml) levels of E2 increase 
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working memory errors. Supraphysiological levels of E2 (225 pg/ml), on the other hand, 

do not have an effect on working memory performance (Luine and Rodriguez 1994; 

Galea, Wide et al. 2001). It has also been shown that E2 has varied effects in different 

brain regions. In an 8-arm radial maze, working memory performance is enhanced by 

high levels of E2 injected into the prefrontal cortex but only by low levels of E2 when 

injected into the dorsal hippocampus (Sinopoli, Floresco et al. 2006). Similar to the 

differential effects of high E2 and low E2 seen in the T-Maze (Wide, Hanratty et al. 

2004), perhaps these results can be explained by differences in behavioural procedures, 

such as pre- vs. post-criterion testing, and the differential effects of E2 in specific regions 

of the brain. 

Effect ofE2 on Performance 

It is clear that E2 plays an important modulatory role in task acquisition and 

working memory performance. What is not so evident, however, is the exact nature of 

this role and the factors that influence it. The basis for many of the differences in the 

literature may lie in varied hormone administration procedures and dissimilar behavioural 

testing paradigms as well as the differential effects of E2 in various brain regions and 

alternative memory systems required for specific tasks. 

There are a number of methods which have been utilized to study the effects of 

E2 on learning and memory performance. Some studies use naturally-cycling subjects 

(Warren, Humphreys et al. 1995; Bimonte and Denenberg 1999) while those utilizing 

OVX subjects administer exogenous E2 through either subcutaneous implants (Daniel, 
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Fader et al. 1997; Luine, Richards et al. 1998; Bimonte and Denenberg 1999; Fader, 

Johnson et al. 1999; Gibbs 1999; Gibbs 2002) or daily subcutaneous injections of E2 in 

oil (Fader, Hendricson et al. 1998; Chesler and Juraska 2000; Galea, Wide et al. 2001; 

Holmes, Wide et al. 2002; Wide, Hanratty et al. 2004; Sinopoli, Floresco et al. 2006). In 

an effort to mimic natural oestrous cycle conditions, the current study employed both 

implants and injections. Use of E2 implants maintains a steady low baseline level of E2 

in both high and low groups throughout testing while daily injections to the high E2 

group imitate the pulsatile nature of E2 seen in the pro-oestrus phase (see Quinlan, 

Hussain et al. 2008). Differing methods of administration from study to study often 

produce differing levels of circulating E2 and may contribute to discrepancies when 

comparing results. Interpretation of results may also be complicated due to the steady, 

chronic levels achieved with E2 implants versus daily spikes of E2 resulting from daily 

injections. Additionally, recent evidence has shown that increased handling, such as 

during daily injections, may obscure the enhancing effects of E2 in behavioral tasks 

(Bohacek and Daniel 2007). A similar effect may be associated with the daily swabs 

necessary when utilizing naturally-cycling subjects. 

The timing of E2 administration is important as well. Initial studies demonstrate 

that E2-based changes in the hippocampus of OVX subjects require administration 24 

and 48 hours prior to testing (Woolley and McEwen 1992). Memory retention is 

enhanced 24, but not 8, hours after the second administration (Sandstrom and Williams 

2004). E2 administration in this manner also improved performance in a place task 

(Korol and Kolo 2002). The timing of E2 replacement relative to OVX also matters. In 

aged subjects, E2 implanted immediately, but not five months, after OVX improved task 
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acquisition and memory performance (Daniel, Hulst et al. 2006). Similarly, Gibbs (2000) 

has shown that E2 implantation during or three months, but not 10 months, after OVX 

enhances working memory. Disparate regimens of hormone administration among studies 

in which E2 is given through different routes and at different times relative to OVX may 

account for some of the differences in E2 effects. 

It is also important to consider the control group, or point of comparison, when 

interpreting the effects of E2. As with the current findings, high E2 levels may appear to 

enhance learning and memory when compared to a single OVX + vehicle group. With the 

inclusion of an additional comparison group, however, it becomes apparent that low E2 

impairs performance. The OVX + vehicle control reliably serves as a model for the 

effects of menopause and has been repeatedly utilized to illustrate a beneficial effect of 

E2 on cognition. However, when utilizing young adult females, this paradigm does not 

accurately reflect circulating E2 in naturally-cycling subjects. OVX studies using 

hormone regimens which administer physiological levels of high and low E2 may 

provide a more accurate representation of estrogenic effects on performance in behavioral 

tasks. When comparing the performance of high vs. low E2 subjects the effects of 

hormone administration may not be as robust as when comparing an E2 group to an OVX 

+ vehicle group. However, the alternative use of an OVX + vehicle control or two E2 

groups in different studies may explain some of the discrepancies in findings when using 

similar behavioural procedures and testing apparatuses but dissimilar control groups. 

Perhaps the least considered aspect of E2 studies on cognition is the 

interdependent nature of the learning and working memory phases of the procedure. The 
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acquisition of the rules of a task sometimes requires the use of working memory while 

performance during the working memory component of a task often demands an element 

of learning. The majority of studies do not differentiate a learning phase from a working 

memory phase and, in fact, have need to as they are investigating the effect of E2 on the 

acquisition of a working memory task. However, it is possible that the cognitive load 

associated with maintaining a piece of information may interfere with learning the rules 

of the task. Likewise, attempting to learn the rules of the task may interfere with the 

ability to maintain and use that piece of information. Hence, the use of a post-criterion 

testing paradigm may provide a more unambiguous evaluation of the acquisition of the 

rules of the task prior to achievement of criterion by minimizing any working memory 

components. Similarly, this paradigm may also provide an opportunity to more clearly 

interpret the effects of E2 on working memory after criterion achievement by ensuring 

the rules of the task are well-learned and extensively practiced. 

The idea that E2 may differentially affect task acquisition and working memory 

performance not only implies the availability of multiple memory systems but the 

suitability of different systems for different tasks. This is not a new concept (e.g. Tolman, 

Ritchie et al. 1946). Packard & McGaugh (1996) have demonstrated that inactivation of 

the hippocampus leads to an enhancement of response learning while inactivation of the 

striatum leads to augmented place learning. E2 has been shown to differentially modulate 

performance in striatum-dependent response learning tasks and hippocampus-dependent 

place learning tasks (Korol and Kolo 2002; Daniel and Lee 2004) as well as cognitive 

strategies used to solve tasks after learning (Korol, Malin et al. 2004; Quinlan, Hussain et 

al. 2008). It is not only possible, but likely, that specific memory systems will be 
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involved in solving particular tasks and that physiologically high and low levels of E2 

will have different effects in different systems (e.g. Sinopoli, Floresco et al. 2006). It is 

also likely that more than one memory system may be involved in solving a task. For 

example, it has been shown that male rats initially use a hippocampus-dependent place 

strategy in a plus-maze but use a striatum-dependent response strategy after several days 

of training (Chang and Gold 2003). 

The effects of differing E2 levels in various memory systems may be especially 

pertinent to several types of behavioral tasks in which dopamine is essential, including 

working memory (see Williams and Castner 2006). Different levels of E2 have been 

shown to affect dopamine transmission in several brain regions including the striatum 

(Xiao and Becker 1994; Thompson and Moss 1997) and the prefrontal cortex (Dazzi, Seu 

et al. 2007). Dopamine antagonists have been shown to interact with E2 to affect 

cognitive strategy use (Quinlan, Hussain et al. 2008), an effect that is dependent upon 

dopamine Dl receptors in the striatum and dopamine D2 receptors in the prefrontal 

cortex (Quinlan et al., submitted). The prefrontal cortex is important for working memory 

in both rats (Sawaguchi and Goldman-Rakic 1991) and humans (Keenan, Ezzat et al. 

2001). In addition, E2 modulates acetylcholine function in the basal forebrain (Pongrac, 

Gibbs et al. 2004) and hippocampus (Daniel and Dohanich 2001). Inactivation of either 

the hippocampus or the prefrontal cortex impairs working memory performance (Lee and 

Kesner 2003) as does the disruption of communication between these two areas 

(Floresco, Seamans et al. 1997; Wang and Cai 2006). Perhaps high and low levels of E2 

differentially modulate specific memory systems which will affect performance based on 

the behavioural procedures and cognitive requirements of a task. 
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The findings of this and many studies clearly demonstrate a robust, albeit 

complex, influence of E2 on performance during task acquisition and working memory 

performance. A close comparison of these findings suggests that this complexity may be 

based in a number of differences that exist among E2 studies including the testing 

apparatus, type of cognitive task, timing, delivery, and dose of E2, the control group 

used, and pre- vs. post-criterion testing. For instance, factors contributing to conflicting 

results concerning the role of E2 have been seen in studies using varied pre- vs. post-

criterion testing paradigms (Gibbs 1999; Gibbs 2002; Wide, Hanratty et al. 2004), 

different types of apparatuses (Chesler and Juraska 2000; Korol and Kolo 2002), and 

dissimilar control groups (current results, Gibbs 1999; current results, Gibbs 2002). An 

interpretation of estrogenic results on cognition must take these factors into consideration 

when comparing various studies. The use of E2 implants in conjunction with daily 

injections may provide a more ecologically-relevant basis of comparison for these effects. 

In addition, the use of post-criterion testing may be a valid method with which to separate 

the influence of E2 on task acquisition and working memory. 

Previous studies have demonstrated in rats (Jones 2002; Kritzer, Brewer et al. 

2007), non-human primates (Sawaguchi and Goldman-Rakic 1991; Watanabe, Kodama 

et al. 1997), and humans (Keenan, Ezzat et al. 2001) that effective performance in several 

types of working memory tasks requires optimal function of DA in the prefrontal cortex. 

Although it is clear that E2 modulates performance in this paradigm, further investigation 

is necessary to validate this task as one which is dependent on DA efflux in the prefrontal 

cortex. This may be accomplished through utilization of intracranial cannulation into the 

mPFC and infusion of DA Dl and DA D2 receptor antagonists. In addition, the inclusion 
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of additional subjects with further testing may reduce high levels of variance in some of 

the hormone groups and address what can be seen as aberrant results, such as the low E2 

group in the 80-minute delay. 
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CHAPTER 9: 

GENERAL DISCUSSION 



185 

9. General Discussion 

Findings from both human (e.g. Duff and Hampson 2000) and animal (e.g. 

McEwen 2002) studies have established a modulatory role for E2 in the performance of 

behavioral tasks. However, a consensus concerning the direction and magnitude of these 

effects has yet to be reached. There are a number of potential factors that may contribute 

to these inconsistent findings, including how E2 affects the function of neurotransmitter 

systems in the brain. DA is a neurotransmitter that is central to several types of 

behavioral tasks including response learning (Daniel, Sulzer et.al. 2006), LI (Lubow 

1997), and working memory (Sawaguchi and Goldman-Rakic 1991). In addition, DA 

activity in brain regions that support behavior in these tasks is sensitive to differential 

levels of circulating E2 (Becker, Robinson et al. 1982; Dazzi, Seu et al. 2007). Although 

several studies have described the robust effect of high levels of E2 on DA transmission 

in the brain (e.g. Xiao and Becker 1994; Dazzi, Seu et al. 2007), there are relatively few 

studies that investigate the behavioral consequences of this neurobiological action, 

especially in behavioral tasks. Hence, the studies contained in this thesis were conducted 

to further investigate the behavioral consequences of high and low levels of E2 on 

performance in DA-mediated behavioral tasks. In addition, the effect of E2 on DA 

transmission and quantity of synaptic proteins in the DS, mPFC, and HPC, brain regions 

which support behavior in these tasks, was examined to determine the role of structural 

and/or functional changes in these areas which may contribute to the modulation of 

behavior. 
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9.1. Review of Findings 

In general, the findings from the present studies suggest that E2 exerts a 

modulatory influence on DA transmission in the mPFC and the DS which alters 

performance in behavioral tasks supported by these brain regions. Specifically, Study 1 

demonstrated that rats conditioned during proestrus, a period of high E2 levels, do not 

display LI during the testing phase. LI is thought to primarily be mediated by dorsal 

striatal DA (Lubow 1997). This attenuation is only found in adult animals indicating that 

it is the activational (pubertal) effects of E2 which interfere with LI. Response learning 

(Packard and White 1991) and response strategy (Compton 2004) have also been shown 

to be dependent on dorsal striatal DA. Study 2 confirmed that differential levels of E2 

bias the use of a particular cognitive strategy when solving a maze for a reward. 

Furthermore, the systemic administration of D1R and D2R antagonists alters the strategy 

use of low E2 animals such that they switch from predominant use of a response strategy 

to use of a place strategy. Utilizing intracranial injections, Study 3 established the DS as a 

brain region in which D1R antagonists act to cause the switch in strategy seen by low E2 

animals. Study 4 found that the change in strategy use by low E2 rats after systemic 

injection of D2R antagonists is regulated, at least partially, by the mPFC. D1R 

antagonists also act in the mPFC to cause a switch of strategy by low E2 rats. 

To determine the effect of the acute administration of E2 in the DS, Study 5 

utilized in vivo microdialysis to measure DA. Here, the local infusion of E2 results in a 

rapid and transient increase of extracellular DA levels. Similarly, Study 6 found a non­

significant trend towards the modulation of baseline DA transmission in the mPFC by 

different levels of E2. However, there were no differences in synaptic protein quantities 



187 

in the DS, mPFC, or HPC among low E2, high E2, or OVX rats. Based on the idea that 

E2 may modulate medial prefrontal cortical DA, Study 7 investigated the effects of E2 on 

working memory performance, thought to be primarily mediated by medial prefrontal 

cortical DA (Sawaguchi and Goldman-Rakic 1994; Dalley, Cardinal et al. 2004). In this 

task, low levels of E2 impair performance when compared to high E2 rats. 

9.2. Possible modes of action for estrogenic changes in DA-mediated behaviors 

A number of studies have shown that E2 modulates performance in behavioral 

tasks which are mediated by DA, including LI. There are two primary theories 

concerning how the LI effect develops; that it is a learned inattentional response due to 

repeated presentations of a neutral stimulus (Lubow 1997), or that it is the result of 

competing associations formed during the conditioning phase (Escobar, Oberling et al. 

2002). LI is dependent on dorsal striatal DA (Lubow 1997) and interference with DA 

transmission (agonistic or antagonistic) attenuates performance in this task (Solomon, 

Crider et al. 1981; Konstandi and Kafetzopoulos 1993; Ellenbroek, Knobbout et al. 1997; 

Jeanblanc, Hoeltzel et al. 2003). Similarly, previous studies have found that high levels of 

E2 present during conditioning abolish LI in OVX females (Nofrey, Ben-Shahar et al. 

2008). The current findings show that this is also true for rats conditioned during 

proestrus (Study 1). It has been consistently shown that high levels of E2 result in 

enhanced levels of baseline and stimulant-induced DA release in the DS (Becker and 

Beer 1986; Xiao and Becker 1994; Becker 1999). It is possible that when high levels of 

E2 are present during the conditioning phase and DA transmission is augmented that this 
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interferes with the ability to ignore an irrelevant stimulus or to form the necessary 

associations for effective LI during the testing phase. Thus, high levels of E2 amplify 

dorsal striatal DA transmission to such a degree that it has a negative impact on the 

acquisition of the LI task. Accordingly, rats in estrus or metestrus, phases of the estrous 

cycle associated with low levels of E2, exhibit LI during the testing phase. These results 

provide evidence that high levels of E2 may adversely affect the expression of a dorsal 

striatal DA-mediated behavior. However, further testing is necessary to confirm that the 

estrogenic modulation of DA in the DS is the primary cause of attenuated LI behavior. 

Future work might utilize in vivo microdialysis during both the conditioning and testing 

phases of the LI paradigm so that extracellular DA levels maybe correlated to behavior 

in this paradigm. 

Performance in other types of behavioral tasks dependent on dorsal striatal DA, 

such as response learning in a maze (Packard and White 1991; Packard and McGaugh 

1996; Mizumori, Yeshenko et al. 2004), are also sensitive to different levels of E2. Both 

OVX female rats (Korol and Kolo 2002) and cycling females with low levels of E2 

(Korol, Malin et al. 2004) acquire a response learning task more quickly compared to rats 

with high levels of E2. Likewise, rats with low levels of E2 perform more accurately in a 

response variant of the T-maze (Davis, Jacobson et al. 2005). Conversely, low levels of 

E2 impair performance in a cue-deficient version of the Y-maze (Zurkovsky, Brown et al. 

2007) and a cue-based water maze after removal of the cue (Daniel and Lee 2004). High 

E2 rats perform more accurately in place learning tasks mediated by the HPC (Packard 

and McGaugh 1996; White and McDonald 2002; Mizumori, Yeshenko et al. 2004). 
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The present findings (Studies 2, 3, and 4) confirm the tendency to use a response 

strategy by low E2 rats and the predominant use of a place strategy by high E2 rats. 

Moreover, the antagonism of DIRs and D2Rs results in a switch of strategy use by low 

E2 rats but has no effect in high E2 rats. It is possible that the enhancement of dorsal 

striatal DA by high levels of E2 (e.g. Becker 1990) affects the ability of a rat to 

effectively use a response strategy to solve a maze. Although both response and place 

strategies are available at all times, it appears that one or the other may be more 

advantageous in certain situations (Chang and Gold 2003). The present findings, along 

with electrophysiological studies (Mizumori, Yeshenko et al. 2004), suggest that E2 may 

alter the effectiveness of one or both of these strategies and bias the use of the other. In 

this manner, high levels of E2 may create a situation in which hippocampal function is 

enhanced (for a review, see: McEwen 2002), dorsal striatal DA release is altered (Becker 

1990), and a HPC-mediated place strategy is the more efficacious strategy. On the other 

hand, low E2 may create a situation in which dorsal striatal DA function is at a lower 

baseline level and the use of a response strategy is biased. Here again, these findings 

suggest that E2 alters DA activity in the brain and that this modulation can affect the 

expression of DA-mediated behaviors. 

The strategy use of low E2 rats, but not high E2 rats, is also affected by D1R and 

D2R antagonism in the mPFC suggesting that differential levels of E2 may also mediate 

other types of behavioral tasks. Working memory is a behavior for which medial 

prefrontal cortical DA has been shown to be important in rats (Jones 2002), monkeys 

(Sawaguchi and Goldman-Rakic 1991), and humans (Keenan, Ezzat et al. 2001). DA in 

this brain region is modulated by E2 such that high levels of E2 decrease extracellular 
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DA while low levels of E2 augment DA release (Luine, Richards et al. 1998; Dazzi, Seu 

et al. 2007). The findings from Study 7 indicate that E2 affects both the acquisition of a 

working memory task and performance during a post-criterion working memory phase. 

Here, rather than high levels of E2 improving task performance, low levels of E2 seem to 

impair accuracy. During both acquisition and working memory testing, OVX rats 

receiving a vehicle performed comparably to high E2 rats. Although these differences did 

not reach significance versus low E2 rats, there was a strong trend towards greater 

accuracy by OVX rats during acquisition and working memory testing. 

Several previous studies have demonstrated that any level of E2 improves 

performance in working memory tasks when compared to OVX subjects (Gibbs 1999; 

Gibbs 2000; Holmes, Wide et al. 2002; Wide, Hanratty et al. 2004), however, this 

disparity in results may be founded in procedural differences such as the dose of E2 used, 

the cognitive task employed, and the use of pre- versus post-criterion testing of working 

memory. Nonetheless, these present study agrees with previous findings in that E2 

modulates performance in working memory tasks. The current results further suggest that 

it is the estrogenic modulation of DA in the brain that can affect the performance in 

behavioral tasks. Additional testing is necessary to confirm the role of DA in this 

particular version of the working memory task, especially as this study is one of only a 

few (e.g. Bimonte and Denenberg 1999) to utilize a post-criterion testing paradigm. 

Future studies might employ intracranial infusions of DA receptor antagonists into the 

mPFC during both the acquisition and working memory phases of testing to evaluate the 

role of DA. Other studies that may be helpful could include the testing of male rats as a 

point of comparison versus OVX females receiving vehicle, low E2, or high E2 as well as 
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a comparison of pre-criterion versus post-criterion testing for working memory 

performance. 

It is likely that the behavioral changes in LI, strategy use, and working memory 

mediated by E2 are based in the alteration of structure and function in dopaminergic 

target regions of the brain, including the HPC, DS, and mPFC. Several studies have 

demonstrated that E2 results in alterations of synaptic density and protein quantities in 

the brain, especially the HPC (Gould, Woolley et al. 1990; Woolley and McEwen 1992; 

Brake, Alves et al. 2001). The present findings did not agree with these studies although 

it is most likely due to methodological concerns stemming from a lack of sensitivity of 

Western immunoblotting. Future studies might utilize a more sensitive technique, such as 

radiolabeled immunocytochemistry (Brake, Alves et al. 2001), or a more extensive 

hormone treatment regimen employing chronic administration of E2 (Sharma, Mehra et 

al. 2007). 

While the present findings did not reveal any differences in synaptic structure 

related to the presence of E2, they do provide evidence for changes in DA transmission in 

response to different levels of E2. Study 5 found a rapid and transient increase in baseline 

DA levels after a local infusion of E2. These effects were short-lived and had no effect on 

amphetamine-induced DA release one hour later. Similarly, chronic administration of E2 

had no effect on amphetamine-induced DA levels in the mPFC (Study 6). Additionally, 

there was no significant difference among OVX, low E2, and high E2 rats in medial 

prefrontal cortical baseline DA levels. The few studies which have examined the effect of 

E2 on DA in this region have found differences in baseline DA levels and it is possible 

that the lack of significance here is due to a high rate of attrition and large variances 
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within groups. With the continuation of these studies and the inclusion of more subjects, 

it is likely that differences similar to previous studies will emerge. Nonetheless, these 

studies contribute further evidence which suggests that E2 can affect DA transmission in 

brain regions important to behavioral tasks. 

9.3. A proposed framework 

Taken as a whole, the studies contained in this thesis suggest that the estrogenic 

modulation of DA transmission in the DS and mPFC mediates behavioral performance in 

behavioral tasks. Based on these findings, a hypothetical framework is proposed here that 

may account, in part, for the influence of E2 on dopaminergic brain regions and how it 

may affect behavior in behavioral tasks. This framework is a speculative attempt to 

elucidate the direct and indirect roles of the HPC, DS, and mPFC in the modulation of 

DA-mediated behaviors by E2. 

It is clear that the estrogenic modulation of DA in the brain alters performance in 

a number of DA-mediated behavioral tasks. This is most apparent in the abolition of LI 

by high levels of E2 and the impairment of working memory performance by low levels 

of E2. These learning and memory behaviors are thought to be directly regulated by DA 

in the DS (Lubow 1997) and the mPFC (Sawaguchi and Goldman-Rakic 1991), 

respectively. Accordingly, interference with dorsal striatal DA directly affects LI 

(Konstandi and Kafetzopoulos 1993; Ellenbroek, Knobbout et al. 1997; Jeanblanc, 

Hoeltzel et al. 2003) and interference with medial prefrontal cortical DA directly affects 

working memory performance (Sawaguchi and Goldman-Rakic 1994; Watanabe, 
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Kodama et al. 1997; Sawaguchi 2001; Jones 2002). E2 also affects LI (Nofrey, Ben-

Shahar et al. 2008; Arad and Weiner 2009) and working memory performance (Fader, 

Johnson et al. 1999; Wide, Hanratty et al. 2004; Daniel, Hulst et al. 2006; Sinopoli, 

Floresco et al. 2006) although it is thought to do so in an indirect manner. It is possible 

that the estrogenic modulation of DA in the DS and mPFC alters DA transmission in 

these brain areas and subsequently affects the DA-mediated behaviors they support. For 

example, local infusions of E2 into the mPFC enhance working memory performance 

(Sinopoli, Floresco et al. 2006). Although direct infusions of E2 into the DS during LI 

testing have not been investigated, evidence showing E2 enhances dorsal striatal DA 

release (Becker and Beer 1986) suggests that this would result in the disruption of LI. 

Local infusions of E2 into the DS have been shown to disrupt response learning in 

a cue-deficient maze (Zurkovsky, Brown et al. 2007). Response learning and response 

strategy are thought to be primarily mediated by dorsal striatal DA (Packard and 

McGaugh 1996; White and McDonald 2002) and high and low levels of E2 differentially 

bias strategy use (Korol and Kolo 2002; Korol, Malin et al. 2004; Davis, Jacobson et al. 

2005). As noted above, this may be attributed to the enhancement of hippocampal 

function and the augmentation of dorsal striatal DA by high levels of E2. These high 

levels may result in a decrease in the efficacy of a response strategy while increasing the 

effectiveness of a place strategy. Thus, high E2 rats predominantly use a place strategy 

while low E2 rats primarily use a response strategy. Electrophysiological studies show 

that dorsal striatal neurons preferentially fire during specific movements, such as 

directional turns, while hippocampal neurons fire in response to general movement 

(Ragozzino, Leutgeb et al. 2001; Mizumori, Yeshenko et al. 2004). In addition, dorsal 
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striatal neurons are sensitive to alterations in the properties of rewarding stimuli while 

neurons in the HPC are responsive to visual and contextual changes in the environment 

(Knierim 2002). Hence, an enhancement of hippocampal function by high E2 may place 

focus on the spatial and environmental cues leading to the reward and reduce the 

emphasis on the performance of a directional turn. In addition, the enhancement of dorsal 

striatal DA transmission by high E2 may interfere with the ability of neurons in this 

region to effectively support an egocentric representation of the environment. In low E2 

rats, DA transmission is at a baseline level and may result in the DS being more able to 

regulate the expression of a response strategy. 

While it is clear that the DS and HPC play a direct role in the mediation of 

cognitive strategy, it appears that the mPFC is also important, at least in rats with low 

levels of E2. Local antagonism of DIRs and D2Rs in this brain region results in a switch 

of strategy use, but only by low E2 rats. Because inactivation of the DS leads to a 

blockade of response learning (Packard and McGaugh 1996), it is unlikely that the mPFC 

is the primary mediator of strategy use. Therefore, there are three possible means by 

which D1R and D2R antagonism in the mPFC could affect use of a response strategy in 

low E2 rats; through reciprocal connections with the HPC, through direct projections to 

the DS, and/or through indirect projections to the DS via the midbrain, primarily the 

VTA. 

A significant portion of the pathway between the HPC and the mPFC consists of 

hippocampal efferents (Jay and Witter 1991; Conde, Bicknell et al. 1995; Carr and 

Sesack 1996) but there is evidence of reciprocal communication consisting of mPFC 

efferents to the HPC (Goldman-Rakic, Selemon et al. 1984; Wall and Messier 2001) and 
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its related cortices (Sesack, Deutch et al. 1989; Takagishi and Chiba 1991). Because the 

HPC is central to use of a place strategy, these medial prefrontal cortical projections 

could influence the tendency to use a place strategy. It is also possible that direct 

projections from the mPFC to the DS (Alexander, DeLong et al. 1986; Sesack, Deutch et 

al. 1989; Takagishi and Chiba 1991; Berendse, Galis-de Graaf et al. 1992) may affect the 

use of response strategy. Electrical stimulation of the mPFC has been shown to enhance 

DA release in this brain region (Taber and Fibiger 1993) and interference with dorsal 

striatal DA transmission alters response learning (Daniel, Sulzer et al. 2006) and strategy 

use (Study 3). A third possibility is that the medial prefrontal cortical influence on the DS 

could occur through a more indirect route, possibly via reciprocal connections from the 

mPFC through the VTA (Swanson 1982; Oades and Halliday 1987; Carr and Sesack 

2000) or the SN (Ferreira, Del-Fava et al. 2008). These small subsets of dopaminergic 

inputs mainly project to striosomes in the DS which are involved in sensorimotor 

processing (van Domburg and ten Donkelaar 1991). 

Medial prefrontal cortical DA is also implicated in cognitive set-shifting 

(Ragozzino, Detrick et al. 1999; Floresco, Block et al. 2008) and behavioral flexibility 

(Floresco and Magyar 2006; Ragozzino 2007). For example, although the inactivation of 

the mPFC has no effect on the acquisition of a place or response task, deficits in this 

region impair cross-modal shifting when rats are required to change from place to 

response discrimination, and vice versa, after learning (Ragozzino, Detrick et al. 1999; 

Ragozzino, Wilcox et al. 1999). Similar perseverative deficits are seen after disruption of 

medial prefrontal cortical function when rats are required to switch rules in an 8-arm 

radial maze (Joel, Weiner et al. 1997) and when switching use of foraging strategies 
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(Seamans, Floresco et al. 1995). This deficit is not evident during performance in the 

dorsal striatal DA-dependent LI task (Joel, Weiner et al. 1997). 

Although both strategies are generally available for use, the HPC-mediated place 

strategy may be more effective during early stages of training while the DS-mediated 

response strategy may be more effective during later stages of training (Figure 1). Chang 

and Gold (2003) have shown that male rats initially use a place strategy and, with 

extensive training (approximately 40-60 trials), switch to use of a response strategy. This 

suggests that, during initial learning in a maze, the HPC is required to create a spatial 

map of the environment and the location of the reward while, after repeated trials, the 

maze can be solved using a habitual response mediated by the DS. The current findings 

(Studies 3, 4, and 5) suggest that high levels of E2 may interfere with this ability to make 

the transition and that the mPFC may play a key role in this process. Likewise, the 

antagonism of DIRs and D2Rs in this brain region affect the ability of low E2 rats to 

make this transition (Figures 2 & 3). Previous studies suggest that the mPFC is important 

in mediating a shift in strategy use when changing environmental conditions, such as 

changes in hormone levels or DA transmission, necessitate the use of a novel cognitive 

strategy (Ragozzino 2007). Inactivation of the DS has been shown to result in impaired 

behavioral flexibility but this deficit is due to an inability to learn a new response strategy 

rather than a perseveration of a previously learned strategy. (Ragozzino, Ragozzino et al. 

2002). Because DIRs maintain persistent levels of activity in the mPFC and D2Rs 

decrease inhibition of medial prefrontal cortical cells, it has been hypothesized that 

activation of D2Rs enables the inhibition of a previous strategy while 
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Figure 1. Speculative representation of the brain regions involved in strategy use. A place 
strategy (HPC) is used in the initial stages of training while a response strategy (DS) is 
used after repeated trials. Both are generally available for use. 



HIGH E - No Switch -> Place Strategy 

Figure 2. Speculative representation of the brain regions involved in the strategy use of 
high E2 females subsequent to DA receptor antagonism. High E2 enhances hippocampal 
function and augments dorsal striatal DA release and may result in a bias to use a HPC-
mediated place strategy. DA receptor antagonism has no effect on strategy use. 



Low E - Switch -> Place 
Strategy 

Figure 3. Speculative representation of the brain regions involved in strategy use by low 
E2 rats subsequent to DA receptor antagonism. Low E2 rats predominantly use a 
response strategy. D1R antagonism in the DS blocks use of a response strategy and 
causes a switch. Likewise, both D1R and D2R antagonism in the mPFC result in a switch 
to use of a place strategy in low E2 rats. 
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activation of DIRs facilitates the stabilization of a new strategy (Floresco and Magyar 

2006). Thus, it is possible that D2R antagonism in the mPFC blocks the ability of low E2 

rats to inhibit the use of the previously learned place strategy and make the transition to 

use of a response strategy. The fact that D1R antagonism in the mPFC also alters strategy 

use in low E2 rats may be explained by the inability of a rat to stabilize use of the 

relatively new response strategy. It may also be a result of the influence of medial 

prefrontal cortical DA on the DS. 

The studies contained in this thesis indicate that the estrogenic modulation of DA 

in the brain is an important factor in the performance of DA-mediated behavioral tasks 

such as LI, working memory, and strategy use. These studies confirmed previous findings 

that differential levels of E2 bias cognitive strategy use and are the first to demonstrate 

that D1R and D2R antagonism can alter strategy use in low E2 rats. This is also the first 

demonstration that the mPFC is involved in the use of cognitive strategy to solve a maze. 

In conjunction with previous studies, the current findings also provide evidence that these 

behavioral changes are based in the estrogenic modulation of DA which occurs in the DS 

and the mPFC in response to chronic systemic administration of E2 as well as acute 

intracranial infusions of E2. The studies presented here demonstrate that, when 

evaluating the influence of E2 on performance in behavioral tasks, it is important to 

consider its effects on neurotransmitter systems in the brain. The alteration of these 

systems, such as DA, by E2 can have a profound impact on behavior and a better 

understanding of such modulation may contribute to the resolution of at least some of the 

inconsistencies within the literature. 
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