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ABSTRACT 
Pattern Detection And Recognition Using Over-Complete And Sparse 

Representations 

Wumo Pan, Ph.D. 

Concordia University, 2009 

Recent research in harmonic analysis and mammalian vision systems has revealed that 

over-complete and sparse representations play an important role in visual information 

processing. The research on applying such representations to pattern recognition and 

detection problems has become an interesting field of study. The main contribution 

of this thesis is to propose two feature extraction strategies - the global strategy and 

the local strategy - to make use of these representations. 

In the global strategy, over-complete and sparse transformations are applied to the 

input pattern as a whole and features are extracted in the transformed domain. This 

strategy has been applied to the problems of rotation invariant texture classification 

and script identification, using the Ridgelet transform. Experimental results have 

shown that better performance has been achieved when compared with Gabor multi­

channel filtering method and Wavelet based methods. 

The local strategy is divided into two stages. The first one is to analyze the 

local over-complete and sparse structure, where the input 2-D patterns are divided 

into patches and the local over-complete and sparse structure is learned from these 

patches using sparse approximation techniques. 

The second stage concerns the application of the local over-complete and sparse 

structure. For an object detection problem, we propose a sparsity testing technique, 
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where a local over-complete and sparse structure is built to give sparse representations 

to the text patterns and non-sparse representations to other patterns. Object detection 

is achieved by identifying patterns that can be sparsely represented by the learned 

structure. This technique has been applied to detect texts in scene images with a 

recall rate of 75.23% (about 6% improvement compared with other works) and a 

precision rate of 67.64% (about 12% improvement). 

For applications like character or shape recognition, the learned over-complete and 

sparse structure is combined with a Convolutional Neural Network (CNN). A second 

text detection method is proposed based on such a combination to further improve 

(about 11% higher compared with our first method based on sparsity testing) the 

accuracy of text detection in scene images. Finally, this method has been applied to 

handwritten Farsi numeral recognition, which has obtained a 99.22% recognition rate 

on the CENPARMI Database and a 99.5% recognition rate on the HODA Database. 

Meanwhile, a SVM with gradient features achieves recognition rates of 98.98% and 

99.22% on these databases respectively. 
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Chapter 1 

Introduction 

In this introductory chapter, the research topic, namely, feature extraction using 

over-complete and sparse representations, is presented. We begin with a description 

of the motivation behind this research endeavor. The applications and the proposed 

methods are then briefly introduced. Finally, we conclude with an outline of this 

thesis. 

1.1 Motivation 

An important step in pattern recognition and pattern detection is to extract key in­

formation or features that highlight the difference among patterns (in pattern recog­

nition), or the difference between the target patterns and the irrelevant backgrounds 

(in pattern detection). Generally speaking, extracting useful features from complex 

input patterns is not an easy task. A common practice then is to apply a certain 

transformation to a given pattern and then extract the features in the transformed 

domain. Among many possible transformations, linear ones have long been appealing 

due to their simplicity and efficiency. The most well-known linear transformations 

are Fourier transform and Wavelet transform. 

Fourier transform treats a given signal as a sum of sine/cosine waves. This is 

amazing since even though the signal itself might be complex, its ingredients are 
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curves with very easy-to-understand properties. Furthermore, Fourier transform can 

be efficiently computed, due to the Fast Fourier Transform. Unfortunately, Fourier 

transform can only tell us which frequency components have occurred in the given 

signal. It can not tell us when those components start in the signal and when they 

stop. Therefore, Fourier transform is not a good analysis tool for time/space variant 

signals (such as images). 

Wavelet transform is another very popular signal analysis tool. Several amazing 

properties of the wavelet transform have made it widely accepted in many applications 

[25, 79]: It is localized in both space and frequency domains and therefore very useful 

in analyzing time-variant signals. It naturally takes into consideration the multi-

scale aspect of the signals. Furthermore, a very efficient algorithm to calculate the 

transformation is available. 

Despite its great successes in many applications, Wavelet has three major limita­

tions. One well-known fact is that the critically sampled Discrete Wavelet Transform 

(DWT) is not shift invariant In other words, the DWT transform of a shifted signal 

is not a shifted version of the DWT transform of the original signal. This effect is 

shown in Figure 1.1. Two synthesized signals are given in Figure 1.1 (a), where one is 

the shifted version of the other. One level wavelet decomposition is applied to these 

signals using the Daubechie-6 wavelets. It can be observed that the wavelet coeffi­

cients (Figure 1.1 (b)) of the two signals are not shift invariant. This observation also 

applies to the scaling functions (Figure 1.1 (c)) of these two signals. 

Another limitation of the DWT lies in its extension to higher dimensions. While 

efficient in representing point singularities in 1-dimension, separable DWT becomes 

inefficient in representing singularities in higher dimensions, e.g. lines or curves in 

2-dimensions. Suppose we have an image / with discontinuity along a generic C2 

smooth curve and the image is smooth elsewhere. The best m-term approximation 

2 
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(a) Input 

1 L _ ^ 

(b) Scaling function (Level 1) (c) Wavelets (Level 1) 

Figure 1.1: One level wavelet decomposition applied to two signals using Daubechie-6 
wavelets: (a) Two input signals, one is the shifted version of another, (b) the scaling 
functions of the input signals, and (c) the wavelet coefficients of the input signals. 

fm of this image would decay slowly [10]: 

1 1 / - fm\\l - m~1,m —>• oo. 

Furthermore, separable DWT suffers from its poor directional selectivity. The 

usual orthogonal wavelet transforms have wavelets with only vertical, horizontal and 

diagonal orientations. This directional selectivity is, as we know, a very desirable 

property in pattern recognition applications. 

To overcome these limitations of DWT, different variants of the wavelet methods 

have been proposed in recent years. One way of providing shift invariance is to use 

the un-decimated form of the dyadic filter tree, which is implemented most efficiently 
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(c) Wavelets (level 1) 

Figure 1.2: One level un-decimated wavelet decomposition applied to two signals 
using the algorithme a trous: (a) Two input signals, one is the shifted version of 
another, (b) the scaling functions of the input signals, and (c) the wavelet coefficients 
of the input signals. 

by the algorithme a trous [82]. Results of this algorithm on the above-mentioned two 

signals (see 1.1 (a)) are shown in Figure 1.2. Another way to achieve shift invariance 

is to use the Dual-Tree Complex Wavelet Transform [61], which also provides better 

directional selectivity. One important point here is that both transformations are 

redundant in that the lengths of the coefficients of the transformation are larger than 

that of the input signals. 

Extending the wavelet method to handle high-dimensional singularities and to 

provide sufficient directional selectivity is more involved. Many methods have been 

proposed, including steerable pyramids [111], bandlet [101], beamlet [34], Ridgelet 
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Figure 1.3: Examples of the Curvelets. 

[9], Curvelet [11, 12] and Contourlet [32]. The latter two methods have attracted 

much attention. The construction of the Curvelet transform is based on windowing 

the subband images into blocks and applying the Ridgelet transform on these blocks. 

Figure 1.3 shows some examples of the Curvelet. Since the Ridgelet transform is 

defined by polar coordinates, the implementation of Curvelet transform for discrete 

images defined by the rectangular coordinates is a challenging task. On the other 

hand, the construction of the Contourlet transform works naturally on the discrete 

images. First, it applies the Laplacian pyramid introduced in [6] to achieve a multi-

scale image decomposition. Each bandpass image resulting from the decomposition 

procedure is fed into a directional filter bank. Both methods are able to achieve 

optimal approximation behavior in a certain sense for 2-D piecewise smooth functions 

in R2, where the discontinuity curve is a C2 function. Furthermore, they provide 

flexible schemes in that they allow for finer directional selectivity at finer scales. 

In this evolution of transforms, two important properties are worth noting. First, 

these transforms are over-complete, or redundant. They represent a given signal with 

a set of atoms, the number of which is (much) larger than the dimension of the signal. 

For example, the version of the discrete Curvelet transform in [116] has a redundancy 

factor equal to 16J+1, where J is the number of multi-scale levels, and the redundancy 
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factor of the Contour let is 1.3. Second, these transforms are sparse in that most of the 

transformation coefficients are small in magnitude. Therefore, most information is 

concentrated in a few atoms. Some examples of the coefficient amplitude distribution 

of wavelet transform, Curvelet transform and Contourlet transform are shown in 

Figure 1.4. In each case, over 70 percent of the coefficients possess an amplitude that is 

only 10 percent of the maximum. This property explains why the simple thresholding 

method based on these transforms can achieve a state-of-the-art image denoising 

performance [116, 35, 76] and why the JPEG2000 image compression method has 

become a success [120]. 

The above two properties would become more interesting if we look at some recent 

results from the field of vision research. It is well known that the simple cells in the 

mammalian primary visual cortex have some distinct properties. That is, they are 

tuned to be spatially localized, oriented and bandpassed [8]. These properties of 

the simple cells are believed to make the visual system more efficient in processing 

visual information by finding the sparse structure available in the input and thus 

increasing the independence of the responses of the visual neurons [39]. Meanwhile, 

if we explicitly put sparsity as the goal, we can actually learn from natural scenes 

the building blocks that have all of the above-mentioned properties [91], as shown in 

Figure 1.5. Strikingly, these sparse components resemble closely the aforementioned 

Curvelets, as shown in Figure 1.3. Therefore, it has been suggested that the human 

visual system is more likely working in an over-complete and sparse way [92]. On the 

one hand, it has a huge amount of visual neurons (mathematically, this corresponds 

to an over-complete dictionary). On the other hand, only a few neurons (this means 

sparsity) are excited in order to capture essential information from the scene. 

In summary, all research results from computational harmonic analysis, signal pro­

cessing and mammalian vision systems suggest that over-completeness and sparsity 
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Figure 1.4: Sparse property of the coefficients of the wavelet, Curvelet and Contour-
let transforms: (a) Amplitude distribu-tion of the wavelet coefficients in the finest 
horizontal sub-band, (b) amplitude distribu-tion of the Curvelet coefficients in one 
finest sub-band, and (c) amplitude distribu-tion of the Contourlet coefficients in one 
finest sub-band. 
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16 by 16 
image patches 

Figure 1.5: Experiment producing sparse components of the natural images in [91]. 
These sparse components are learned from 16 by 16 (in pixel) image patches, which are 
extracted from natural scenes with the goal of maximizing both preserved information 
and the sparsity of the expan-sions. 

are innate properties in signals and are important for visual information processing. 

It can be worthwhile to investigate how to apply these two properties to pattern anal­

ysis, especially pattern detection and recognition. This is the problem to be addressed 

in this thesis. 

1.2 Problem Statement 

In this thesis, two feature extraction techniques are proposed that exploit the advan­

tage of over-complete and sparse representations. First, a rotation invariant feature 

extraction method in the Ridgelet transform domain is proposed and applied to the 

problem of texture classification, where transformation-based methods have become 

an important class of feature extraction algorithms. A typical scenario here is to 

transform an image into its frequency domain, where features are extracted by gen­

erating a proper tiling in that domain. However, two problems exist. First, when 
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an image is rotated, its Fourier transform also rotates. Therefore, features extracted 

from spectrum information on a rectangular grid can be unstable. Second, in the 

frequency tiling, dyadic sub-band decomposition is usually adopted (such as Gabor 

multi-channel filtering and DWT). Therefore, this might not be optimal to capture 

most classification-related information. Solutions to these problems will be provided 

in this thesis. 

As a case study, we also apply some recent texture classification methods, includ­

ing the proposed one, to a problem from document image processing field, the prob­

lem of script identification. The evaluation results show that the proposed method 

performs very well in this case. 

The second feature extraction technique is based on the analysis of local sparse 

structures. This feature extraction technique is then applied to the problem of text 

detection from scene images and handwritten Farsi numeral recognition. Existing 

redundant sparse transforms do not work well in these problems, where local features 

play a more important role. Furthermore, it is not obvious how suitable a given 

transformation is for sparsely describing the signals in question. In the proposed 

method, a local sparse structure is analyzed using small image patches in the input 

pattern using a similar strategy to that in [91]. A recently proposed method, the 

K-SVD algorithm [3], is also adopted to learn the sparse structure from the data. 

One way to apply the learned sparse structure is to identify those signals/patterns 

that can be effectively represented by this structure. This procedure is useful in 

pattern detection problems, of which text detection in scene images is an example. 

Specifically, sparse structure is learned from the curve segments on the boundaries 

of the characters and text detection is achieved from the edge map of a given scene 

image. This idea has been inspired by the fact that, by only looking at the edge map 

of a scene image, human beings are able to tell which edge point is, or is not part 
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of a text. To simulate the over-complete and sparse way in which the human vision 

system is working, we have built an over-complete dictionary that gives sparse (or 

efficient) representation to text signals and non-sparse (or inefficient) representation 

to non-text signals. Thus, text detection is achieved by sparsity testing of the edge 

segments in the edge map. 

While the above method shows promising results, it has a high time complexity 

and a high false alarm rate. To overcome these limitations, we propose a different 

method of using the sparse structure lying inside the data. Instead of using the edge 

map, we switch to the topographic map [87, 14] in the second proposed method. 

Thus, we convert the text detection problem to the shape classification problem. The 

latter is then solved by the combination of the sparse structure analysis and a machine 

learning technique, namely, the Convolutional Neural Network (CNN) [66]. 

Lastly, we show that the combination of sparse structure analysis technique and 

CNN is readily extended to other pattern recognition problems, such as character 

recognition. Specifically, the problem of handwritten Farsi numeral recognition is 

chosen as an example to show the merit of such a combination. 

1.3 Thesis Outline 

This thesis is organized as follows. Chapter 2 provides background information for 

the chapters that follow. Specifically, we introduce the material related to sparse 

structure analysis, including pursuit methods and the K-SVD algorithm. We also 

present the convolutional neural network and the Ridgelet transform. 

Chapter 3 and Chapter 4 then discuss the problem of text detection from scene 

images. In Chapter 3, we first review the related literature and then we present 

the text detection method via sparsity testing. We move on to present the second 

text detection method in Chapter 4. This method identifies the candidate characters 
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from the topographic map [87, 14], which are actually shapes in the image that satisfy 

certain properties. Real characters are selected from the candidate characters through 

a shape classification technique that combines the sparse structure learned from shape 

boundaries and the CNN. 

Chapter 5 applies the combination of sparse structure analysis technique and 

CNN to the problem of handwritten Farsi numeral recognition. We also compare this 

method with SVM, MQDF and CNN by itself. 

Chapter 6 presents the application of Ridgelet transform to the problem of rota­

tional invariant texture classification. It will be shown that Ridgelet transform is an 

ideal tool for rotation invariant texture classification since it is able to compute the 

spectrum information on a polar grid, instead of a rectangular grid. However, the 

wavelet transform as the building block of the Ridgelet transform has to be chosen 

properly in order to extract most classification-related information from the samples. 

Dyadic wavelets usually do not work well in this respect. 

Finally, Chapter 7 concludes this thesis. 
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Chapter 2 

Background Material 

In this chapter, we present the background material on which the research endeavors 

are based. First, we present the Ridgelet transform, which is applied as a feature 

extraction tool for texture classification. Then, we introduce algorithms related to 

the analysis of the over-complete and sparse structure inside the data. This structure 

is able to give sparse representations of the data with an over-complete set of atoms. 

The application of some of these techniques in text detection and handwritten Farsi 

numeral recognition will be described in the following chapters. Finally, we briefly 

introduce a machine learning technique: the Convolutional Neural Network, which 

plays an important role in our selected shape recognition and handwritten numeral 

recognition problems. 

2.1 Continuous Ridgelet Transform 

The two-dimensional continuous Ridgelet transform in R2 can be defined as follows 

[9]: Let ip : R —• R with sufficient decay that satisfies the admissibility condition: 

/hK0l7l£l2#<oo, (2.i) 

which holds if w has a vanishing mean J ip(t)dt = 0. Here, ip stands for the Fourier 

transform of the function ijj. 
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Figure 2.1: An example of ridgelets in two orientations. The ridgelet on the right is 
a rotated version of the one on the left. 

For each a > 0, each b G R and each 9 G [0, 2-K), we define the bivariate Ridgelet 

V>a,6,o : R2 -* R as: 

ipa,b,o(xi,x2) =a~1/2 • ip{{xi cos6 + x2 sin9 -b)/a). (2.2) 

A ridgelet is constant along the lines x\ cos 9 + x2sin# = const. Transverse to the 

ridgelet is a wavelet. Figure 2.1 gives an example of ridgelets in two orientations. 

Given an integrable bivariate function / (x) , we define its Ridgelet transform as: 

®f(a,b,e)= f $a>M/(x)dx. (2.3) 

JR.2 

Here, ijj stands for the complex conjugate of ijj. 

Ridgelet analysis may be viewed as wavelet analysis in the Radon domain. We 

denote the Radon transform as: 

Rf(0,t)= I f(x)8{xiCos6 + x2sm6-t)dx., (2.4) 

JR2 

with 6 being the Dirac function. Then, the Ridgelet transform is the application of a 

1-D wavelet transform to the slices of the Radon transform, as follows: 

Uf(a, b,9)= [ tia,b(t)Rf{6, t)dt, (2.5) 
JR. 

13 



where i/>a,&(£) = i/)((t — b)/a)/y/a is a one-dimensional wavelet. 

The Ridgelet transform will become the basic tool used in the rotational invariant 

texture feature extraction technique proposed in Chapter 6. 

2.2 Sparse Approximation And Over-Complete Dic­
tionary Learning 

In this section, we mainly explain the K-SVD algorithm [3], which will be applied 

extensively to learn the over-complete and sparse structure from the data. Before 

delving into the details of the K-SVD algorithm, some useful notations are given 

first. Then, two major steps of the K-SVD algorithm, the sparse approximation step 

and the dictionary update step, are presented in detail. 

2.2.1 Notations 

Usually, the objects we deal with in pattern detection and recognition problems fit 

into the rf-dimensional, real inner-product space Rd, which is called the signal space, 

with d finite. Elements of the signal space are generally referred to as signals. The 

inner product is written as (•), and we denote the corresponding Euclidean norm by 

|| • H2. The distance between two signals is the Euclidean norm of their difference. 

A dictionary for the signal space is a finite collection D of unit-norm elemen­

tary signals. The elementary signals in a dictionary D are called atoms, and each 

atom is denoted by 0j, where the parameter i is drawn from some index set I. The 

indices may have an interpretation, such as the time-frequency or time-scale or time-

scale-orientation localization of an atom, or they may simply be labels without any 

underlying metaphysics. The whole dictionary structure is thus: 

D = {& : i e I}. 
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The number of atoms in a dictionary is denoted as N = |D| = |I|, where | • | denotes 

the cardinality of a set. 

If a dictionary spans the whole signal space, we say that the dictionary is complete. 

In this thesis, we are interested in a redundant complete, or over-complete, dictionary, 

with N > d. In this case, each signal has an infinite number of representations due 

to the redundancy of the dictionary. A possibility is to choose the sparsest one from 

these representations. 

Suppose we have a signal s, which is represented as a linear combination of the 

atoms in the dictionary D: 

The coefficient vector x is a vector whose ith element is X{. The sparsity of the 

coefficient vector x is measured by the IQ quasi-norm \\ • ||o, which counts the number 

of non-zero components in the vector. The smaller this IQ norm, the higher degree of 

the sparsity in the coefficient vector x. 

2.2.2 Over-complete Dictionary Learning with K-SVD Algo­
r i thm 

Suppose we have a set of data that contains L samples of the signal in question. 

These samples can be represented by a d x L matrix Y, where each column of Y 

stands for one sample. We want to find an over-complete dictionary D (D € HdxK 

with K > d) so that: 

Y = DX (2.6) 

and each column of X (a coefficient vector) is as sparse as possible. In effect, a relaxed 

version of this problem is considered as follows: 

min{||Y - DX | | | } subject to V?;, ||.T;||0 < T0, (2.7) 
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where To is a threshold specifying the maximum number of non-zero coefficients 

needed for the representation, and the notation || • \\p stands for the Frobenius norm. 

To is a parameter that needs to be specified by the user. Another parameter we need 

to determine before applying this algorithm is the redundant factor Rf = K/d, which 

determines how redundant the dictionary should be. Note that Rf > 1. To solve this 

problem, the K-SVD algorithm has been proposed in [3]. Here, the "SVD" stands for 

the Singular Value Decomposition [117]. 

The K-SVD algorithm works iteratively. First, the target D is assumed to be 

fixed and the algorithm tries to find the best coefficient matrix X. This step is also 

called sparse coding, which is described in the next subsection. Second, once the sparse 

coding task is done, a second stage is performed to search for a better dictionary using 

singular value decomposition. This iteration continues until the algorithm converges. 

2.2.2.1 Sparse Coding 

Since the penalty term in the problem (2.7) above can be rewritten as: 

L 

| |Y-DX| |J . = £ ; | | y i -D X i | | ; j , (2.8) 
i = l 

when the dictionary D is assumed to be known, problem (2.7) can then be decoupled 

into L distinct problems of the following form: 

min{||yi -DxiHa} subject to ||XJ||0 < T0,for i = 1,2,...,L. (2.9) 

Each of these problems is a sparsity-constrained approximation problem. 

When the dictionary D is orthonormal, the sparsity-constrained approximation 

problem is easy to solve. Suppose y is a sample signal, consider the orthogonal series: 
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If we sort the terms so that the inner products are decreasing in magnitude, then we 

may truncate the series after To terms to obtain an optimal To-term approximation 

of the input signal. The coefficients in the representation of this approximation are 

just the inner products that appear in these To terms. 

On the other hand, the sparsity-constrained approximation problem is NP-hard 

in general [27, 89]. Therefore, we have to live with some algorithms that give sub-

optimal results. The two most common approaches are: greedy methods and convex 

relaxation methods. We focus only on greedy methods, due to their simplicity and 

efficiency. 

A greedy method for sparse approximation constructs a solution one step at a 

time by selecting the atom most strongly correlated with the residual part of the 

signal and using it to update the current approximation. We are going to present two 

of the most prevalent greedy techniques, Matching Pursuit and Orthogonal Matching 

Pursuit. In both techniques, suppose we have an input signal y and we want to find 

the coefficient vector x that solves the sparsity-constrained approximation problem. 

A. Matching Pursuit(MP) [80] 

The Matching Pursuit algorithm works as follows: 

1. Initialize the coefficient vector x <— 0, the residual r0 <— y, and the loop 

index t — 1. 

2. Determine an index it such that: 

it e argmax|(r t_i,0i)| . 

3. Update the coefficient vector: 

x(zt) = x ( i t ) + (r f_i,0 i t). 
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4. Compute the new residual: 

rt = rt_l - (rt_i,<pit)(f)it. 

5. Increment the loop index: t = t + 1. 

6. If the stopping criterion has not been met, return to Step 2. 

Several points are worth mentioning in this algorithm. Step 2 is the greedy 

selection, which chooses an atom that is most strongly correlated with the 

residual part of the signal. Note that the MP algorithm may select the same 

index many times over when the dictionary is not orthogonal. This repetition 

occurs because the inner product between an atom and the residual does not 

account for the contributions of other atoms to the residual. Step 4 computes 

a new residual by subtracting a component in the direction of the atom 0,t . 

If the dictionary is complete, it can be shown that the norm of the residual 

converges to zero as t approaches infinity [80]. 

The computational cost of this algorithm can be estimated as follows: the 

greedy selection in Step 2 nominally involves computing the inner products 

between the residual and all the atoms in the dictionary, which generally requires 

0{dN) floating-point operations. Steps 3 and 4 require only 0(d) floating-point 

operations. If the loop is executed To times, then the cost of the algorithm is 

O(dT0N). 

B. Orthogonal Matching Pursuit(OMP) [124] 

OMP adds a least-squares minimization to MP to obtain the best approximation 

over the atoms that have already been selected. The algorithm works as follows: 

1. Initialize the index set IQ = 0, the residual r0 <— y, and the loop index 

t = 1. 
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2. Determine an index it such that: 

it e argmax|(r t_i,0i)|. 
i 

3. Update the index set It = It-\ \J{U}-

4. Find the solution x of the least-squares problem: 
t 

min Hy-Y'xfo^-lk 

5. Compute the new residual: 

r* = rt_i - (r t_i,^ i t)0i t . 

6. Increment the loop index: t — t + 1. 

7. If the stopping criterion has not been met, return to Step 2. 

The most essential difference between MP and OMP lies in step 4 above, where 

the coefficient vector is the solution to a least-squares problem. Thus, OMP 

maintains a loop invariant: 

{rU(f>i.) = 0,forj = l,...,f. 

It follows that Step 2 always selects an atom that is linearly independent from 

the atoms that have already been chosen. In consequence, the residual must be 

equal to zero after d steps. 

The computational cost of OMP can be analyzed in a similar way to MP. The 

only difference is in Step 4. Since the solution of the least-squares problem 

at iteration t can be built based on the solution to iteration t — 1, the time 

complexity at this step is 0(td) and the total cost after T iterations would be 

0{dT(T + N)). 

Another point we need to mention for MP and OMP is the stopping criteria. In the 

case of K-SVD algorithm, these algorithms will stop after T0 iterations. 
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2.2.2.2 Dictionary Updating 

The update of the dictionary D is achieved one column at a time. Assume that both 

coefficients X and the dictionary D are fixed and we put in question only one column 

dfc in the dictionary and the coefficients that correspond to it, at the kth row in X, 

are denoted as x^. Then the penalty term in (2.7) can be rewritten as: 

|Y -DX| | f , 
K 

Yl di*r 
J = l 

Y - £ d , 4 

= ||Efc — dfcxT||F. 

d f cx| 

(2.10) 

The multiplication of DX has been decomposed into the sum of K rank-1 matrices. 

Each K — 1 of these matrices is assumed to be fixed. The matrix E& stands for the 

error for all N samples when the kth atom is removed. 

Note that the SVD algorithm can not be directly applied here to solve d^, since 

the sparsity constraint can not be guaranteed this way. A remedy has been proposed 

in [3] which works as follows: Define u>k as the group of indices pointing to examples 

in Y that use the atom dk, i.e., those where Xj, is nonzero. Thus: 

uk = {i|l <i < K,x%.(i) ^ 0 } . 

Define matrix O^ of size L x \u;k\, with ones on the (u^(i).i)th entries and zeros 

otherwise. By multiplying x^ = x^Slfc, the row vector x^ is shrunk and all zero 

components are discarded. The multiplication Y^ = Yftk creates a matrix of size 

d x |a;* | that includes only sample signals currently using the dk atom. A similar 

effect happens with E^ = ~Ekftk, where error is computed only from samples that use 

the d/j atom. 
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Now, by using SVD to minimize: 

||Efcfifc - d f c4n f c | | | . = ||Ef - dfcx* fF, (2.11) 

the sparsity constraint of the coefficient vector x£ is maintained. Furthermore, while 

updating one atom in the dictionary, this algorithm simultaneously updates the af­

fected entry in all the coefficient vectors. 

2.3 Convolutional Neural Network (CNN) 

A Convolutional Neural Network is a neural network with a "deep" supervised learn­

ing architecture that has been shown to perform well in visual tasks [66, 110]. A 

CNN can be divided into two parts: automatic feature extractor and a trainable 

classifier. The automatic feature extractor contains feature map layers that extract 

discriminating features from the input patterns via two operations: linear filtering 

and down-sampling. In the linear filtering process, the size of the filter kernels in 

the feature maps is set to 5 by 5 and the down-sampling ratio is set to 2. A back-

propagation algorithm is used to train the classifier and learn the weights in the filter 

kernels. 

Instead of using the CNN with a more complicated architecture like LeNet-5[66], 

we chose a simplified implementation as proposed in [110]. The network architecture 

is shown in Figure 2.2. The input layer is an Si x Si matrix containing an input 

pattern. The second (with Ari feature maps and S2 = (Si + l)/2) and the third (with 

N2 feature maps and S3 = (S2 + l)/2) layers are two feature map layers, which are 

trained to do feature extraction at two different resolutions. Each neuron in these 

two layers is connected to a 5 by 5 window in the previous layer, with the strength 

of the connection defined by the weights in the filter kernel. Neurons in one feature 

map share the same filter kernel. The remaining part of the architecture consists of 
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Figure 2.2: Adopted CNN architecture. 

a fully connected multi-layer perceptron with JV3 neurons in the hidden layer and N4 

neurons in the output layer. Here, Si, Ni,N2, iV3 and iV4 are the parameters we need 

to determine before using the CNN. 

The structure of the CNN provides an ideal platform to incorporate the sparse and 

over-complete structure, which is learned from the data using the K-SVD algorithm. 

As will be presented later, the atoms in the learned structure are applied to initialize 

the weights of the filters in the first feature map layer of the CNN. Such a combination 

is a good feature analysis technique and it will be applied in Chapters 4 and 5. 
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Chapter 3 

Text Detection from Scene Images 
Using Sparsity Testing 

In this chapter, we present our first method for text detection from scene images, 

which is based on sparsity testing using the edge map generated by the Canny edge 

detector. First, we briefly introduce the background of this problem and its possible 

applications. Then we present related work around this problem. After that, we 

present the proposed method and finally, the experimental results. 

3.1 Introduction 

As mobile digital imaging devices, such as digital cameras, cell phones, camcorders 

etc., become more and more ubiquitous, researchers in the field of document image 

processing and recognition (DIPR) are getting increasingly interested in studying the 

images/videos captured by these devices. Naturally, one of their top concerns is to 

automatically extract, if there is any, text information from these documents, since 

text is a valuable source of high-level semantics and is useful in many applications. 

In the literature, texts in images are usually classified into the following two 

categories: 

• Artificial text, or superimposed text, is superimposed on the image after the 
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image/video has been taken with the camera. It is designed to show some 

important information. Therefore, it is rendered with high a contrast against 

the background so that it can be read easily. To increase the readability of 

the text against the complex background, the designer of the screen text sys­

tems usually uses artificial shadows to enhance the contrast of the text against 

its background. While making text detection easier, this also makes the text 

segmentation more difficult for automatic text reading systems. Examples of 

artificial text are subtitles in movies or dates on photos, etc. 

• Scene text, on the other hand, is the text printed on the surface of some ob­

jects in the image. Due to different recording conditions, the text can be partly 

occluded, unevenly illuminated, distorted by perspective projection or by the 

surface properties of the objects. The text can also have varying sizes, styles 

and colors. To save space which is limited on handheld devices, the captured 

images usually are encoded in a compressed format, such as JPG. Such a com­

pression procedure would introduce further degradation to the captured images. 

Examples of scene text include text on a road-sign, a car plate, or a book cover, 

etc. 

In this research, we will focus on scene text detection in camera document images. 

This is a very challenging problem due to the above-mentioned properties. 

Possible applications of detecting text in scene images include, but are not limited 

to, image and video indexing/retrieval, video surveillance, and license plate recogni­

tion. Furthermore, when connected with a city map database, it maybe possible to 

build a system that provides location information via the use of text clues extracted 

from the camera captured images. Such a system can be very useful for people in a 

foreign city. It may also be possible to help tourists to overcome the language barrel 

24 



by translating the detected text into their native languages. 

3.2 Related Works 

Many text detection methods can be found in the literature. Generally, three types 

of information in the image have been exploited for text detection: edge, texture and 

color. 

Edge-based methods 

Methods falling into this category assume that text can be characterized as 

regions of high contrast and high frequencies. In [129], edges are grouped into 

strokes, and then strokes are aggregated to form character strings. A complex-

valued edge orientation map in a small window is calculated and then fed into a 

neural network for classification in [70]. Chen et al. [18] use the morphological 

dilation operation to connect horizontal and vertical edges into text region can­

didates, which are further verified by machine learning techniques. Garcia et 

al. [43] proposed a new feature referred to as variance of edge orientation. This 

method relies on the fact that text strings contain edges in many orientations. 

However, some background areas, such as trees, may also have this property. In 

[74], edge detection is conducted directly in the RGB color space. Limitations 

of these methods include: edges are sensitive to the imaging conditions and it is 

usually difficult to differentiate between edges from characters and edges from 

background details. 

Texture-based methods 

Methods in this category treat text as a type of texture. They usually divide the 

whole image into blocks and extract texture features in each block. Commonly 

used features include: wavelet features [48, 104, 44, 106] and autoregressive 

25 



features [59]. Then proper classifiers, e.g., neural network [48], support vector 

machine (SVM) [59] or if-means classifier [44, 106], are employed to classify 

image blocks into text or non-text. The limitation of texture-based methods 

in detecting text in scene image is that texture property in the text region 

is usually weak and it is difficult to differentiate it from background textures. 

Another problem with such methods is that handling texts in different sizes is 

not a straightforward task. 

Color-based methods 

Methods using color information usually assume that a text string contains 

a uniform color. For example, in [51], Jain and Yu propose a method called 

connected color component analysis (CCA) for text location. CCA uses spatial 

structure analysis of the color connected components and can work well in 

situations like the characters on book covers, news titles, and video captions. In 

[86], clustering is performed in Lab color space and then connected component 

analysis is applied to detect text regions. Low level features including color 

continuity, gray-level variation and color variance are exploited to detect text in 

scene images [58]. The detected text regions are verified by multi-scale wavelet 

features and SVM. In scene images, these methods usually do not work well 

since the uniform color assumption is no longer valid. 

Some methods also use the combination of the three above-mentioned information. 

In [23], a hierarchical detection framework that embeds multi-resolution, multi-scale 

edge detection and Gaussian mixture model based color analysis has been proposed. 

In [42], Gao and Yang combine the edge information with the color layout analysis 

to detect scene text. In [131], color, texture and OCR feedback are combined to 

locate the text regions in the image. Chen and Yuille [22] extract three sets of 
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features, including mean and standard deviation properties of the image intensity 

within predefined box patterns, histogram features of the image intensity and gradient 

and edge-based features. These features are used to build weak classifiers, which are 

then combined into one strong classifier to classify an image region into text or non­

text, using the AdaBoost technique. The method proposed in [57] is a combination 

of two methods. The first one extracts candidate text regions using edge information 

extracted by the Laplacian operator. The second one is a split-merge algorithm using 

image intensity information. 

3.3 Text Detection via Sparsity Testing 

The first text detection method we propose is to build an over-complete dictionary 

that gives sparse representations to text signals and non-sparse representations to non­

text signals. In other words, we are trying to build a dictionary that can represent 

text signals more efficiently and use that dictionary for text detection. The rationale 

behind the proposed method lies in the following facts and assumptions: 

• We notice that, in most cases, advertisers tend to make the text somehow 

distinct from the background, so that the text can be easily noticed and read 

by human beings. This means that analyzing edge information in an image 

might be a good choice for text detection. Actually, many methods in the 

literature [129, 70, 18, 43, 23, 42] did make use of edge information. 

• Except for some extreme cases (such as text in very small sizes), humans can 

tell where the text lies by only looking at the edge map of an image. As 

explained in Chapter 1, the human vision system is very likely working in a 

sparse-overcomplete way. We want to simulate this strategy and apply it to the 

text detection problem. 
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Our proposed method first calculates the edge map of the input image using Canny 

operator [13]. Then, it scans the edge map with a small window. Each edge segment 

falling into the small window undergoes a sparsity test. If it passes the test, which 

means it can be efficiently represented by the dictionary, we label those edge pixels 

on the segment as text. Those text edge pixels are then grouped into text lines. 

3.3.1 Learning Over-Complete Dictionary for Text 

The core of our method is to create an over-complete dictionary that gives sparse 

representations to text or characters. Many transforms, such as Gabor transform, 

Wavelet transform, Ridgelet transform and Curvelet transform, etc., can be used to 

give sparse representations for different types of signals. However, these transforms 

are not readily applicable in our situation, where we try to identify text connected 

components from the edge map of a given image. Actually, to search for sparse 

representation of given signals is a difficult task itself and is still an active research 

topic. 

Instead of applying those transforms mentioned above, we turn to methods that 

can learn the over-complete representation from data. There are already several 

methods available for this task, including probabilistic methods [69, 63], the Method 

of Optimal Directions (MOD) [37] and the union of orthonormal bases [68], etc. 

Recently, a new method named K-SVD [3] has been proposed, which will be adopted 

in our experiments for learning the over-complete dictionary from data. 

3.3.1.1 Learning Procedure 

To train an over-complete dictionary for text signals using the K-SVD algorithm, we 

need to first collect some data for training. It would be extremely tedious to manually 

collect data from real scene images. Therefore, we have used images of isolated 

machine-printed characters, which include 10 digits and lowercase and uppercase 
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letters. There are 12 typefaces (such as Times New Roman, Arial, etc.), 4 styles 

(normal, bold, italic and bold italic), and 2 size variations (11-point and 8-point) in 

these images. The data has been collected by using the following procedure: 

1. Generate the edge map for each character image using the Canny operator. 

2. Scan each edge map with a small window of size 16 x 16 pixels. If a long enough 

edge segment (with a length longer than 16 pixels) falls into the small scanning 

window, we generate a new observation by doing the following: initialize with 

zero a new image of the same size as the scanning window; center the edge 

segment into this image; convert this image to a vector by concatenating its 

rows. 

3. The newly generated observation is added into the observation set if it is sig­

nificantly different from other observations already in the set. The difference 

between observations is measured by the Euclidean distance between vectors. 

In total, we have collected 12278 observations from the edge maps of these isolated 

character images. On the left of Figure 3.1, we give some examples of the observations 

used for dictionary learning. 

It would be tempting to use the whole character edge map as one observation. 

This idea does not work well since in a real edge map of a real scene image, it is 

very difficult to get a complete character edge map. A dictionary learned in this way 

would find it difficult to be applied to real images. Furthermore, using the whole 

edge map of a character usually results in long observation vectors and would take 

the K-SVD too much time to learn. Therefore, instead of working on the whole edge 

map, we only look at the curve segments on the edge of characters. 

We also need to pay attention to the size of the sliding window. If it is too large, 

again it will generate very long observation vectors and thus increase the difficulty in 
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Figure 3.1: Left: Examples of the observations taken from character edges for learning 
the dictionary. Right: The most frequently used atoms learned by K-SVD. 

learning. If it is too small, the curve segments will not bear too much character shape 

information and therefore will not be so useful in text detection. In our experiments, 

we found that size 16 x 16 is the best tradeoff. 

Another important point is that we need to center the edge segment into the newly 

generated image. This is because the learned dictionary D is not shift-invariant: it 

will give quite different representations to shifted versions of the same observation. 

Therefore, in both data collecting and text detection, we explicitly center the edge 

segment at the center of the small image window. 

In applying the K-SVD algorithm, there are two important parameters we need 

to choose: the redundancy factor Rf and the number of elements in each linear 

combination, or To. These values are chosen empirically so that a good text detection 

performance can be achieved. Details of the parameter selection process will be 

described in section 3.3.3. 
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3.3.2 Text Detection Algorithm 

In this section, we present in detail how to detect text through a sparsity test us­

ing the learned dictionary. This method consists of four procedures: Preprocessing, 

Connected Component Labeling, Layout Analysis and Multi-scale Processing. 

3.3.2.1 Preprocessing 

Given an input image, we first apply the Canny operator to extract the edge map. We 

adopt the implementation of this operator in the Matlab® image processing toolbox 

and use the default parameters. Then, connected component analysis is applied to 

remove from the edge map those edge pixels that belong to lines or large connected 

components. 

3.3.2.2 Connected Components Labeling 

The CC labeling procedure actually consists of two stages. The first stage is called 

pixel-level labeling. The edge map is scanned using a 16 x 16 pixels window in a 

similar way as we scan the character edge map in data collecting. The scanning step 

is set to 4 pixels in both horizontal and vertical directions. If a long enough edge 

segment (with a length longer than 16 pixels) falls into the small window, we generate 

an observation vector y, as we have done in data collecting, and we solve for x in the 

following equation using OMP (see section 2.2.2): 

y = Dx (3.1) 

Here, D is the over-complete dictionary we have learned. If x is sparse enough, we 

label pixels on this edge segment as text. By saying sparse enough, we mean that x 

has at most T\ = 16 non-zero components. This number has been empirically chosen 

based on a dataset of 120 real scene images. The results of this pixel-level labeling 

on three sample images are shown in Figure 3.2 in section 3.3.3. 
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After the pixel-level labeling stage, we group the edge points into connected com­

ponents and label each connected component as text if more than 25 percent of its 

edge points have been labeled as text at the pixel labeling stage. Here, we intention­

ally choose a low threshold to avoid missing any true text components. 

3.3.2.3 Layout Analysis 

Layout is defined as the way characters are arranged when they are printed. In the 

scene images, we can still take advantage of the layout information to filter out some 

of the non-text components. In this work, we mainly exploit the following layout 

knowledge: 

• Characters are usually arranged into horizontal or vertical lines. Since the image 

can be captured at various angles, the text lines can be skewed. 

• Within one text line, characters are roughly of the same size. 

• The distance between neighboring characters in a text line is within a certain 

threshold. 

The layout analysis procedure can be divided into two stages: Connected Component 

(CC) merging stage and the verification stage. In the first stage, we differentiate two 

sets of connected components. The first set contains connected components that are 

labeled as text by the connected component labeling procedure in section 3.3.2.2, and 

we call it set A. The second set, B, contains the remaining connected components in 

the image. Two connected components are merged if the following two conditions are 

satisfied: 

1. They are of the same height, or, 

minimum height of the two CCs , . 
maximum height of the two CCs ~~ 
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2. Their horizontal distance is shorter than their average height. 

The merging process starts by picking out one CC from set A and trying to merge it 

with other CCs in set A and set B according to the above merging conditions, until 

no more merging could happen. These merged CCs are put into a data structure, 

called a "LINE". This merging process continues until set A has been exhausted. 

The above merging algorithm works for horizontal text lines only. However, it is 

easy to extend it to handle vertical cases too. 

The verification stage mainly focuses on those "short" LINEs, or, LINEs with no 

more than 3 CCs. We will discard a short LINE if, among all the edge points it has, 

the percentage of the edge points that are labeled as text is less than 80. 

The detected text LINEs are shown in Figure 3.2 in section 3.3.3. In these exam­

ples, we draw the bounding box of each LINE along with the bounding boxes of the 

connected components inside that LINE. 

3.3.2.4 Multi-scale Processing 

The text detection algorithm described so far works fine on texts with heights between 

20 ~ 40 pixels. One possible method to extend this algorithm to handle texts with 

larger sizes is to work on different scales of the input image. In our experiments, three 

scales are considered. Each scale is generated from a previous scale by down-sampling 

with a factor of two in both directions. The results of detection at different scales are 

combined by merging overlapped LINEs. 

3.3.3 Experimental Results 

A database of 120 scene images has been collected to help us in selecting the parame­

ters used in the proposed method. To evaluate the proposed method, we use the 2003 
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ICDAR (International Conference on Document Analysis and Recognition) Text Lo­

cation Contest trial test database, which is publicly available and can be downloaded 

at http://algoval.essex.ac.uk/icdar/Datasets.html [122]. Included in this database are 

251 images and the ground truth of the word bounding boxes of all the target texts 

in these images. 

The evaluation is based on the notions of precision and recall. Precision, p, is 

defined as the number of words correctly detected divided by the total number of 

words detected. Recall, r, is defined as the number of words correctly detected divided 

by the total number of words in the ground truth. 

As mentioned above, we have experimentally selected two main parameters in 

the K-SVD algorithm: the redundant factor Rf and the sparse threshold To. Let 

Rf E {1, 2, 3,4, 5} and T0 e {6, 7, 8,9,10}. We have exhaustively tried all combina­

tions of these two parameters on the training dataset and the performance of these 

experiments are shown in Figure 3.3. 

From these experiments, we can see that as the redundant factor Rf grows, the 

recall rate also grows. However, the difference between Rf = 4 and Rf = 5 is not 

significant. If we fix the parameter Rf and let T0 grow, the recall rate also increases, 

since more edge points can be labeled as text. The situation is different when it comes 

to the precision of text detection. When Rf starts to grow, the precision grows too, 

but very slowly. While Rf grows to 5, the precision starts to fall. For each fixed Rf, 

the precision gradually starts to fall while To grows. 

As the tradeoff between recall rate and detection precision, we choose To = 8 and 

Rf = 4, which means we have 1024 atoms in the dictionary. On the right of Figure 

3.1 in section 3.3.1.1, we show some of the most frequently used learned atoms in 

reconstructing the observations. 

Even though many text detection methods can be found in the literature, most 
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Figure 3.3: (a) Recall rate of the proposed algorithm under different parameter set­
tings, (b) Precision rate of the proposed algorithm under different parameter settings. 
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Table 3.1: Experimental results and comparison. 
Method 

[57] 
[58] 

Proposed method 

p (precision) 

56.3% 
55.8% 

67.64% 

r(recall) 

64.3% 
68.9% 

75.23% 

authors have reported their results on private databases. To the best of our knowledge, 

only two authors in [57, 58] have reported their results on the same public database 

adopted in this work. We include these results in Table 3.1, where we can see that 

both the recall rate and the precision rate of the proposed method are much better 

than the other two methods [57, 58]. 

3.4 Conclusion 

In this chapter, a text detection method based on sparse representation is proposed. 

This idea has been inspired by the results from vision research. Experimental results 

show that such a mechanism could be an interesting computation model for text 

detection in images. It may also be possible to apply this model to other object 

detection problems. 

The limitation of the proposed method mainly lies in that only very local infor­

mation is considered in the dictionary learning and text detection. This results in a 

low precision of detection. Furthermore, the time complexity of the proposed method 

is also high, due to the calculation of the coefficient vectors for each edge segment. 

In the next chapter, we are going to present a different way to make use of the sparse 

structure inside the data. Using that way, we can significantly alleviate these two 

limitations. 
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Chapter 4 

Text Detection from Natural Scene 
Images Using Topographic Maps 
And Sparse Representations 

In Chapter 3, text detection is achieved by sparsity testing. This idea has been 

inspired by recent research results in vision research, which have suggested that sparse 

structure is an innate property of natural scene images and that mammalian visual 

systems have evolved, enabling them to process the spatial information by finding the 

sparse structure available in the input [39, 91, 92]. 

While showing promising results, sparsity testing has some limitations. First, it 

works on the edges generated by the Canny operator [13], which gives very local 

information. This results in a high rate of false alarms in text detection. Second, 

the computational complexity of this method is high since the size of the adopted 

over-complete dictionary is large and it takes time to do the sparsity testing. 

In this chapter, a more sophisticated text detection method is proposed. This 

method makes use of an image representation technique named Topographic Maps [87, 

14], to convert the text detection problem into a shape classification problem. This 

conversion can significantly improve the time efficiency issue and reduce the number 

of false alarms. 
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4.1 Introduction 

The text detection method proposed in this chapter: 

1) Converts the text detection problem to a shape classification problem, and 

2) Performs shape classification by exploiting the sparse structure in the shape 

data. 

The proposed method first calculates the topographic map from a given image. The 

topographic map contains the level lines that are organized into a tree. These level 

lines are capable of capturing the boundaries of characters in the images and thus can 

provide a good starting point for shape analysis. The non-text level lines are then 

efficiently removed by first analyzing the e-meaningful boundaries and then applying 

adaptive thresholding to the maximal monotone intervals in the level line tree. After­

wards, the sparse structure is learned from the shape data using the K-SVD algorithm 

and integrated with a well-known machine learning technique - Convolutional Neural 

Network (CNN) - to classify the remaining level lines into text or non-text shapes. 

Finally, layout analysis is applied to complete the text line detection. 

To justify the selection of the topographic map representation of an image in this 

research, we mention several important advantages that this representation possesses: 

• It is invariant to global contrast change. 

• It is a hierarchical representation since level sets are ordered by the inclusion 

relation. 

• Object contours (especially character contours in our case) locally coincide very 

well with level lines. This is a very important property that makes level lines 

a better choice than edges to the text detection problem, since edge detectors 

usually fail near T-junctions and can not give complete character boundaries. 
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Furthermore, using a topographic map representation to convert the text detection 

problem to a shape classification problem improves our capability to handle texts 

in different sizes via size normalization before shape classification. Multi-resolution 

processing is not required by the proposed method. 

4.2 Identification of Text Candidates Based on To­
pographic Maps 

In this section, we introduce the topographic maps [14] and compare them with the 

edge maps given by the Canny operator. We use the topographic maps to efficiently 

identify shapes as text candidates. Afterwards, the shape classification procedure 

works on these candidate shapes and picks out true text shapes. 

4.2.1 Topographic Maps - Background Information 

Let f2 be a domain in R2 and u : Q —> R be an image (a bounded measurable 

function). Given any A E R, the upper level set of u is given by: 

Xxu = { x e R 2 : u(x) > A}. (4.1) 

Note that the family of upper level sets is decreasing: 

VA < ii, Xxu D X^u. (4.2) 

The upper topographic map of an image is a family of the connected components 

of the upper level sets of u. It is obvious that the upper topographic map is con­

trast invariant. Furthermore, the upper topographic map provides a complete image 

representation, since we can reconstruct the image from it [107]: 

u(x) = sup{\, ?i(x > A} = sup{\, x G X\u). (4.3) 
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The level lines [14] of u are the boundaries of the upper level sets of u. If image u 

is such that, for each level set X\u, A G R, the boundary dXxu is made of a finite or 

countable union of closed Jordan curves1, then the oriented level lines will perfectly 

define the level sets and hence the image u. As mentioned in [14], the discrete images 

always satisfy the above condition and therefore, we can use the terms "topographic 

map" and "level line" equivalently in this method. 

4.2.2 Tree Representation of Level Lines 

According to, equation (4.2), the upper level sets are nested. This property is still 

valid when going from the whole level sets to their connected components. These 

inclusions can be represented by a tree. Monasse et al. [87] have shown that, however, 

this representation sometimes leads to a non-intuitive description of the inclusion 

relationship. Instead of working directly on level sets, they propose to focus on the 

level lines of these level sets. 

In our case, only discrete images are considered. Any connected component C of 

a level set is bounded and its border dC is a union of Jordan curves: 

dC = \JJi(C). (4.4) 
i 

According to Jordan theorem2, each closed Jordan curve J has an interior and an 

exterior and the interior is, by definition, bounded. Furthermore, from all the JjS in 

(4.4), only one Jordan curve has an interior that contains C. This Jordan curve is 

denoted as J{C) and its interior is called a "shape" [87]. 

Based on these "shapes", a tree structure is proposed in [87] as follows: each node 

corresponds to a shape, its descendants are the shapes that are included inside it and 
1A Jordan curve is a plane curve which is topologically equivalent to (a homeomorphic image of) 

the unit circle, i.e., it is simple and closed. 
2the Jordan curve theorem states that, if J is a simple closed curve in R2 , then R2 — J has two 

components (an "inside"' and an "outside"), with J the boundary of each. 
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its parent is the smallest shape that contains it. The boundaries of these shapes are 

most interesting to us, since they define the character boundaries clearly. 

4.2.3 Identification of Text Candidates 

Before we continue, let us look at two examples as shown in Figure 4.1, and discuss 

the differences between the traditional edges (the output of the Canny edge detector 

[13]) and the level lines. In Figure 4.1(a), we show a rather simple example, where 

the almost uniform gray background is divided by a diagonal white strip. The re­

sulting two diagonal edges would cut the boundaries from any foreground character 

that intersect with them into broken parts and thus the complete character shape 

information would be lost, as shown in Figure 4.1(c). On the contrary, we can see 

that in Figure 4.1(b), with properly chosen A (A = 80 for this sample), the character 

shape information is perfectly retained. 

In Figure 4.1(e), we show a difficult sample with a very complex background. After 

applying the Canny edge detector, we find that the edges from foreground character 

boundaries are buried in the edges from background details and, in some cases, they 

are broken again (see Figure 4.1(g)). On the other hand, level lines still work fine on 

this sample (see Figure 4.1(f)) with A = 194. 

The above two examples show that level lines work better in preserving the shape 

information of the characters in the image when compared with traditional edge 

detectors. However, one question left unanswered is this: what about the parameter 

A? Generally speaking, we do not know which A to use in order to get those nice 

shapes of characters from a given image. The grayscale values of the characters in 

the scene images can range from black to white. This property requires us to take 

into consideration level lines on all possible grayscale values (A = 0, • • • , 255 with 

scene images). However, this requirement brings another problem: there could be too 
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(a) Example A (b) Level lines of A with A = 80 (c) Edge map of A (d) All the level lines 
of A 

ofB 

Figure 4.1: Comparison between level lines and edges with two examples. 

many level lines in a scene image, as shown in Figures 4.1(d) and 4.1(h). Therefore, 

to make the level line representation useful in the text detection problem, one has 

to come up with a method that efficiently identifies candidate text shapes and filters 

out other non-text shapes. 

In the proposed method, the identification of text candidates is achieved via the 

following two steps: Selecting e-meaningful boundaries and adaptive thresholding of 

maximal monotone interval. 

4.2.3.1 Selecting ^-Meaningful Boundaries 

This is actually a step in the edge detection method proposed in [29], which is an 

application of a basic principle of perception described by Helmholtz. The key point 

of this principle says that perceptually "meaningful" structures may be viewed as 

exceptions to randomness. 

Suppose C is a level line of the image u with length I and there are Nu level lines 

in the image. Then C is called an e-meaningful boundary if: 

NFA{C) = NuH (min |JDM(X)M < e, (4.5) 

where D is the gradient operator and H(p) = P(\Du\ > //) is the distribution of 
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the gradient norm (a measure of contrast) of image u, which is empirically estimated 

using: 

v„ > n p(x > ,A - #MDu(x)\>ti 
V/x > 0,P(X > /x) - # { x p u ( x ) 1 > 0 } 

where the symbol # gives the cardinality of a set. As discussed in [29], the e is set 

equal to 1 in practice. 

The number NFA is called Number of False Alarms and it measures the mean-

ingfulness of a level line. Smaller NFAs indicate perceptually more meaningful level 

lines. After this step, we only keep those contrasted level lines that satisfy equation 

(4.5). 

4.2.3.2 Adaptive Thresholding of Maximal Monotone Interval 

The e-meaningful boundaries are still redundant in that there are many "fat" edges, 

which are made of well contrasted parallel level lines. These "fat" edges happen more 

often at the boundaries of characters in the scene images since, for easy readability, 

characters in real scenes (advertise, signs, etc.) are generated in a way that makes 

them well contrasted from their backgrounds. The consequence of this property is 

that similar contrasted level lines delineating the character shapes tend to occur at 

consecutive gray levels. This phenomenon has been made obvious in Figure 4.2, which 

shows the frequency maps of the two example images in Figure 4.1. The frequency 

maps are created by accumulating, at each pixel, the number of instances when that 

pixcel becomes a point on some level line in each image and then normalizing these 

numbers into [0,1] by dividing them with the maximal possible number of occurrences 

at any pixel. As we expected, pixels located along the character boundaries usually 

achieve higher frequencies. 

The above observation suggests that the occurrence of those "fat" edges gives a 

useful clue for text detection. The problem here is how to measure the "fatness" of 
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Figure 4.2: Frequency maps of the images in Figure 4.1 shown as images. In these 
images, the darker the pixel is, the higher frequency it has. 

the edges. This can be done by thresholding the Maximal Monotone Interval in the 

level line tree. 

Note that the above level line selecting procedure maintains the inclusion rela­

tionship among the selected e-meaningful boundaries. Therefore, these boundaries 

can still be represented as a tree and furthermore, the maximal monotone level line 

interval[29] can be defined in this tree. This level line interval is monotone in that 

any level line in this interval has a unique descendant. It is maximal since no more 

level lines can be added. Furthermore, the gray levels on which the level lines in this 

interval are detected are either increasing or decreasing. 

Based on the maximal monotone level line interval, we impose a similarity con­

straint and define the maximal similar level line interval. Due to the time efficiency 

consideration, the similarity measure here is a very simple one, which is described as 

follows. Let C\ and C2 be two level lines. We say that C\ and C2 are similar if: 

\area{C\) — area(C2}\ < 2max(7i.J2), 

where area(C) gives the area of the shape defined by level line C and h, l2 are the 

lengths of C\ and C2, respectively. Thus, a maximal similar level line interval contains 

a consecutive sequence of level lines in the maximal monotone level line interval and 
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each neighboring pair of level lines satisfy the above similarity constraint. 

If the number of level lines in the maximal similar level line interval is large, these 

level lines are more likely to reside at the boundary of some character. Therefore, we 

pick those maximal similar level line intervals with the number of level lines larger 

than a threshold t, and in each of these picked out level line intervals, only the level 

line with the smallest NFA is retained as the character candidate. 

The threshold t has to be chosen carefully so that it will adapt to the local contrast 

variation in the image. Naturally, when the contrast between foreground characters 

and the background is low, we expect a small threshold. On the other hand, when the 

contrast is large, we need a higher threshold. In the proposed method, we introduce 

a nonlinear function T as: 

T = 0.5 * (1 + tanh(a * (Q - /?))) , (4.6) 

where Q is the local contrast calculated as the variance of the grayscale values of 

the pixels around each level line, a is a parameter which controls how fast T should 

increase when c\ increases. f3 is selected so that when c; is close to zero, T will also 

be close to zero. In our experiments, a = 0.25 and 0 = 12. Figure 4.3 shows how 

the function T would vary with local threshold Q. Finally, we calculate the adaptive 

threshold t = kT, where k = 12 is a constant. 

The text candidates detected by the proposed method on some typical sample 

images in our database are shown in Figure 4.4. The number of identified text candi­

dates is much smaller than that of the level lines. At the same time, most characters 

have been retained. Since we use an adaptive threshold selection technique, the local 

contrast variation in the image (as in Figure 4.4(e)) can be handled satisfactorily. 

Therefore, these text candidates provide us with a good starting point for future 

shape analysis. 
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Figure 4.3: The curve that shows how the function T would vary with local threshold 

4.3 Shape Analysis Using CNN And Sparse Rep­
resentations 

After text candidate identification procedure, the next task is to find the real character 

shapes from those text candidates. This in fact is a pattern recognition problem -

classifying the text candidates into character shapes and non-character shapes. In this 

research, we exploit the sparse structure in the shape data and apply it to this specific 

shape classification problem. We adopt a well-known classification technique named 

Convolutional Neural Network (CNN) [66, 110]. One advantage of CNN is that it can 

automatically learn important features from the training samples. Furthermore, the 

structure of the CNN allows us to easily integrate the sparse structure learned from the 

data, into the training procedure and improve the performance of the classification. 

In the following, we will discuss how the over-complete and sparse structure is 

learned from the shape data and how the CNN classifier is configured in this method. 
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Figure 4.4: Detection of text candidates in some scene image samples. 
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Figure 4.5: Atoms in the learned over-complete dictionary. 

4.3.1 Learning Sparse Structure from the Data 

As mentioned earlier, the sparse structure of the shape data is learned using the 

K-SVD algorithm [3]. To collect some shape data for sparse structure learning, we 

first apply the above text candidate identification procedure on the image samples 

in our training dataset, then extract the identified candidate shapes and save each 

shape boundary into a black-and-white bitmap image. From these bitmap images, we 

randomly select 3000 images and in each of these selected images, we sample along 

the shape boundary 5 by 5 image patches at a sampling step of 3 pixels. The size of 

the image patch is chosen to be the same as the filter kernel in the first feature map 

layer of the CNN, which we will discuss in the following paragraphs. In total, we have 

chosen 31,833 image patches. The number of atoms in the dictionary to be learned 

is set as K = 50, which means that the dictionary D has a redundancy factor of 2. 

Another parameter we need to specify is To, which has been chosen to be 7 according 

to our previous experience in handwritten numeral recognition [99]. The atoms in 

the learned dictionary are shown in Figure 4.5. These atoms show strong properties 

of locality and orientation selectivity. 

49 



4.3.2 The CNN Classifier 

CNN is a well-known machine learning technique. Different from regular neural net­

works, CNN is a "deep" learning structure in that it has more layers of neurons. The 

first two layers of this neural network can be viewed as a trainable feature extractor, 

where simple features are extracted at a higher resolution, and then converted into 

more complex features at a coarser resolution through down-sampling. The remaining 

part can be viewed as a trainable classifier, usually a neural network. 

The special structure of the CNN provides an ideal platform for integrating the 

over-complete and sparse structure learned from the shape data. Therefore, we have 

selected the CNN for the shape classification task. The structure of the CNN classifier 

used in this thesis has been shown in Figure 2.2, Chapter 2. We have considered two 

sets of parameters. In the first set, or the regular set, the network parameters are 

Si = 49, Ni = 5, N2 = 10, N3 = 50 and N4 = 2. The CNN with this parameter set 

will be initialized randomly in the training process. In the second parameter set, the 

over-complete set, we have Si = 49, Ni = 50, N2 = 10, N3 = 50 and N4 = 2. The 

CNN with this parameter set is going to be trained with the weights of the first feature 

map layer initialized with atoms in the learned sparse and over-complete dictionary 

and other weights will be initialized randomly. The details of training procedure of 

these two CNNs will be discussed in section 4.5. 

Shape classification results of these two types of CNNs on some sample images are 

shown in Figure 4.6. Results generated by regular CNN are shown in the left column 

whereas results generated by over-complete CNN are shown in the right column. 

Only text shapes are shown in red. It can be observed that most non-text shapes in 

these samples can be effectively removed, while better performances can be achieved 

by the over-complete CNN. Also, note that some character shapes are not correctly 

classified, such as the letters Y and T in Figure 4.6(e). The shapes of these letters 
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in certain fonts are difficult to differentiate since they look very similar to the shapes 

of short vertical lines. 

4.4 Text Line Growing And Text Segmentation 

The shape classification method proposed in the previous section efficiently eliminates 

those non-text shapes from the shape set generated by the text candidate identifi­

cation procedure. After that, we group those text shapes into text lines using the 

following layout analysis rules: 

• Within one text line, text shapes are roughly of the same size. 

• The distance between neighboring text shapes in a text line is within a certain 

threshold. 

• The neighboring text shapes should have a significant overlap in the y-direction. 

As shown in Figure 4.6, some characters were not detected for the following reasons: 

1) Since the local contrasts in the scene images are so complex, the adaptive thresh­

old selection technique in the text identification procedure could not handle 

some extreme cases; 

2) The CNN classifiers do not work well on certain special fonts or touched char­

acters. 

To overcome the above limitations, an extension procedure is applied to each text line 

by looking at those neighboring shapes that have been missed during the previous 

procedures. For those shapes which meet the above mentioned layout analysis rules, 

we put them back into the text line. Some examples of the final text detection results 

are shown in Figure 4.7. Images are samples in our training database. The results 

are generated using over-complete CNN. 
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Figure 4.6: Shape classification results using the proposed method. Only shapes 
classified as texts are shown in red. Left column: results from regular CNN. Right 
column: results from over-complete CNN. 
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Figure 4.7: Examples of the final text detection results using the proposed method 
using over-complete CNN. 
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After text line detection, it is usually desirable to extract the characters from their 

backgrounds. Another advantage of using level lines is that the text segmentation task 

becomes straightforward: since these level lines delineate the boundaries of characters, 

we first sample along the character boundary using a sampling step of 5 pixels. For 

each sampled point on the boundary, we collect the grayscale value of the pixels in 

a 5 pixel by 5 pixel window centered at that point. This collection contains samples 

from background gray values and foreground gray values, so we use Otsu's method 

[93] to find the optimal threshold and extract the character by image thresholding. 

Examples of the extracted texts are shown in Figure 4.8. 

4.5 Experimental Results 

In this section, first we briefly present the databases used for training and testing. 

Then, we describe how our CNNs are trained. Finally, evaluation results and discus­

sion are presented. 

4.5.1 Databases 

For training purposes, we have collected 350 scene images using digital cameras. 

During the image capture process, the camera was set to the default automatic setting 

for focus, flashlight and contrast gain control. These training images have been 

captured on streets, in parks, subway stations and airports, including examples of 

homogeneous, multicolored, textured and imaged backgrounds. The texts appearing 

in these images vary in color, orientation, style and size. The resolution of these 

images ranges from 640 x 480 pixels to 2,048 x 1,536 pixels while text size varies 

from about 6 by 11 pixels to 135 by 170 pixels. 

For testing purposes, we choose the 2003 ICDAR (International Conference on 

Document Analysis and Recognition) Text Location Contest trial test database, the 
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Figure 4.8: Examples of the extracted texts using the proposed method. Left column: 
text line images cropped from the original images. Right column: extracted characters 
from their backgrounds. 
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Figure 4.9: Examples of the samples used in CNN training. All samples were nor­
malized to 47 by 47 pixels. 

same public database we use in Chapter 3. Included in this database are 251 images 

and the ground truth of the word bounding boxes of all the target texts in these 

images. 

4.5.2 Training the CNNs 

To train the CNNs for shape classification, we needed to prepare some data. We 

first applied the proposed text candidate identification technique to the images in our 

training set and manually divided those identified text candidates into text shapes and 

non-text shapes. In total, we collected 19,858 non-text shape samples and 19,369 text 

shape samples. All shapes were normalized to 47 by 47 pixels and then padded with 

0 to 49 by 49 pixels before sending them to the CNN for training. Figure 4.9 shows 

some of these positive and negative samples. To accommodate possible distortions 
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that the characters in the image may have undergone during image capturing and 

encoding, we applied a combination of scaling transformation, rotation transformation 

and elastic transformation [110] to each sample before it was propagated through the 

CNN in each training epoch. The scaling factor was selected uniformly from [-0.15, 

0.15], with the negative scaling factor standing for shrinkage while the positive scaling 

factor standing for enlargement. The rotation angle was also picked uniformly from 

[—5°,5°], with the negative angle standing for counter-clockwise rotation and the 

positive angle standing for clockwise rotation. 

4.5.3 Comparison between Regular CNN and Over-complete 
CNN 

As shown in Figure 4.6 in section 4.3, using over-complete CNN for shape classification 

can achieve better results. Now let us look at the difference between these two CNNs 

in terms of their performance of text detection. This comparison has been performed 

on the test database. 

To match the text detection results to the ground truth, we have adopted the 

algorithm in [77]. The match m,p between two rectangles is defined as the area of 

intersection divided by the area of the minimum bounding box containing both rect­

angles. Hence, the best match m(r, R) for a rectangle r in a set of rectangles R is 

defined as: 

m(r, R) = maxmp(r, r )\r € R. 

Then, the precision and recall are defined as: 

J2reeEm(fe,T) 
P 

r = 

\E\ 
J2rt€Tm(n,E) 

\T\ 

where T is the set of ground-truth rectangles and E is the set of estimated rectangles. 

57 



Table 4.1: Comparison using the test database (%). 

Regular CNN 
Over-complete CNN 

Precision Recall f t(s) 
71.1 67.2 68.1 2.5 
77.2 66.3 67.5 7.4 

The precision and recall measures are then combined into an / measure using the 

following formula: 

/ = , 1 , 

a/p + (1 — a)/r 

with a set to 0.5. 

The results of the proposed method on the test database using regular CNN and 

over-complete CNN are shown in Table 4.1. In this table, t stands for the average 

processing time in seconds per image. We can see from this table that the recall 

rates of the two CNNs are almost the same. The main differences between the two 

CNNs are the precision of the text detection and the processing time. While the 

over-complete CNN can detect texts with a higher accuracy, it also requires more 

processing time. 

4.5.4 Comparison with Other Methods 

Even though many text detection methods have been proposed in the literature, 

most of them have used private databases for evaluation. In the ICDAR text location 

competitions [78, 77], several methods have been evaluated on a common database, 

to which we did not have access. To the best of our knowledge, our previous work 

[100] and two other methods [58, 57] have reported evaluation results on the same 

test database as the one used in this chapter. The way the precision and recall rates 

were calculated in these methods is different from that in [77]. In order to compare 

the proposed method with the methods in [58, 57], we also adopted their precision 

and recall measures described in the following paragraphs. 
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Table 4.2: Performance comparison using the same test database (%). 

[58] 
[57] 

[100] 
Proposed method with regular CNN 

Proposed method with Over-complete CNN 

Precision 
55.8 
56.3 
67.6 
70.3 
78.7 

Recall 
68.9 
64.3 
75.2 
74.1 
73.4 

Let Sum be the total number of text regions in the ground truth, True be the 

number of correctly detected text regions, Part be the number of partially detected 

text regions, and False be the number of false alarms. Then, Precision and Recall 

are defined as: 

True 
Precision = — 

True + Part + False 
True 

Recall = — . 
bum 

The results of the proposed method compared with other methods are shown in 

Table 4.2. We can see that while maintaining a high text detection rate, the proposed 

method can achieve a significant improvement in text detection accuracy. 

4.5.5 Discussion 

Since the proposed method makes use of the complete character boundaries for clas­

sification, it becomes advantageous in enhancing the precision of text detection when 

compared with other methods, which mainly use local information for feature extrac­

tion and thus are prone to false alarms. Another benefit of the proposed method is 

its capability to handle varying text sizes, since shapes with different sizes will be 

normalized to the same scale during classification. No multi-resolution analysis is 

needed. 

As we can see in Table 4.1, the introduction of sparse representations into the 

shape1 classification procedure can further improve the precision of text detection, as 
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it improves shape classification accuracy. However, it does not help much in improving 

the text recall rate. This is natural because all text lines in an image are possibly 

detected during the text candidate identification process. The shape classification 

procedure mainly focuses on eliminating the false alarms. 

Though the proposed method has made a good progress, we notice that the per­

formance of the proposed method is still not high enough. Therefore, it is necessary 

to investigate the failure cases of the proposed method. In total, we identified six 

typical failure cases, as shown in Figure 4.10. We elaborate on them here: 

1) Failure due to contrast-related issues. Even based on the topographic map 

representation of an image, which is invariant to global contrast variation, the 

proposed method still suffers from local contrast variations. First, selection of 

the e-meaningful boundaries is based on a global threshold. Second, since the 

thresholding of the maximum monotone interval takes into consideration the 

local contrast variation, it is empirical in nature and is not optimal. Therefore, 

the proposed method could miss some target text lines where contrast between 

text and background is very low, as shown in Figures 4.10(a)~4.10(c). We need 

to point out that, due to the shading in the image, the upper part of the text 

line in Figure 4.10(c) is well contrasted while its lower part is poorly contrasted. 

This makes the situation more complicated. 

2) Touching characters. As the proposed method relies on shapes that correspond 

to the boundaries of characters, it fails to detect touching characters. Examples 

of such cases are shown in Figures 4.10(d)~4.10(f). The method proposed in 

[22] might work better in these cases. 

3) Broken characters. When characters are broken, as shown in Figure 4.10(g) and 

Figure 4.10(h), the proposed method can not detect them. 
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4) Flash reflection. A typical problem with camera-based images is the glare from 

flash reflections, especially on smooth surfaces like book covers (as shown in 

Figure 4.10(i)) and glass surfaces. The highlighted region barely contains any 

image information. Any text which falls into that region can not be detected 

by the proposed method. 

5) Character-like non-text shapes. In most cases, shapes contain enough informa­

tion for the CNN to classify them as text or non-text. However, there are still 

some ambiguous shapes that the proposed method can not handle properly. 

Figure 4.10(j) gives one such example where the boundaries of those dark dots 

are similar to that of an '0' or 'o'. Such cases are the key sources of the false 

detections using the proposed method. 

6) Special designs. Finally, Figure 4.10(k) and Figure 4.10(1) give two examples of 

specially designed texts, which are difficult to be detected. 

From the above identified failure cases, we can see that the text detection problem 

is still a very challenging one. It is an "open" problem in that, we have not imposed 

any limitation on the content of the image, or on the imaging conditions. Such an 

"openness" is the main difficulty in the text detection problem. Continuous research 

efforts towards this problem are needed. 

4.6 Conclusion 

A new text detection method is proposed in this chapter to find text lines in scene 

images. This method is based on topographic maps and sparse and over-complete 

representations, and it converts the text detection problem into a shape classification 

problem. The layout analysis technique is applied as a postprocessing stage. The 

benefits of this method include improved text detection accuracy, better capability of 
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(a) (b) (c) 

Figure 4.10: Examples of failures of the proposed method. (a)~(c) show failures 
related to image contrast; (d)~(f) are examples of touching characters; (g) and (h) are 
examples of broken characters; (i) gives an example of the glare from flash reflections 
on a book cover; (j) demonstrates an example of character-like shapes that cause false 
alarms; (k) and (1) are examples of some special designs, which cannot be processed 
properly by the proposed method. 
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handling texts with different sizes and more robustness to varying imaging conditions. 

Experimental results show that a good performance has been achieved. 

Future research directions include: 

a) Improving the text segmentation algorithm. Our experiments show that the 

adopted simple segmentation algorithm does not work well when the contrast 

between the background and the foreground is too small or when the color on the 

character boundary and the color inside the character boundary are different. 

More sophisticated methods are needed in these cases. 

b) Recognition of characters with projection distortions, some of these distortions 

might be very severe, and recognition of characters with background noise. 
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Chapter 5 

Isolated Handwritten Farsi 
Numeral Recognition Using Sparse 
and Over-Complete 
Representations 

The goal of this chapter is to show that the shape classification method, proposed 

in Chapter 4, can be easily applied to a classical pattern recognition problem: hand­

written numeral recognition. Specifically, it will be applied on handwritten Farsi 

numerals. The sparse structure is represented as an over-complete dictionary which 

is learned from 5 pixels by 5 pixels image patches randomly selected from the Farsi 

numeral database. The atoms in this dictionary have been adopted again to initial­

ize the first feature map layer of the CNN, and the CNN is then trained to do the 

classification task. 

5.1 Introduction 

Recognition of handwritten Latin numerals has been extensive^ studied in the past 

few decades. Many methods have been proposed with very high recognition rates 

[118, 64, 71, 73, 133, 110, 66, 84, 55]. Some of these techniques have been applied in 

real systems, such as mail sorting [115] and bank check recognition [30, 65]. 
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Figure 5.1: Numerals in Farsi that can be legally written in different shapes. 

On the other hand, research progress has been very limited towards automatic 

recognition of numerals written in scripts other than Latin. In this paper, we look 

at the recognition of handwritten numerals in one important cursive script: Farsi 

(Persian). Farsi is the main language used in Iran and Afghanistan, and it is spoken 

by more than 110 million people, including some people in Tajikistan, and Pakistan. 

Due to its wide usage, the problem of automatic recognition of handwritten Farsi 

script has attracted increasing interest in the research community. 

Similar to Latin script, handwritten Farsi numerals have large variations in writ­

ing styles, sizes, and orientations. What makes the recognition of the handwritten 

Farsi numerals more challenging is that some of the numerals can be legally written 

in different shapes. Figure 5.1 demonstrates this situation, where numerals '2', '3 ' , 

'4' and '6' are written in two different shapes, respectively. 

In the following paragraphs, we first present related works in the problem of 

handwritten Farsi numeral recognition and then move on to introduce the proposed 

method. 

y 
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5.2 Related Works 

Several recognition techniques for handwritten Farsi characters and numerals have 

already been published. Different types of features have been investigated. In this 

section, we discuss some of these proposed algorithms, with emphasis on the feature 

extraction methods. 

In a study on Farsi/Arabic handwritten isolated digit recognition, Soltanzadeh et 

al. [113] use features extracted from outer profiles, crossing counts and projection 

histograms at multiple orientations. Figure 5.2 demonstrates the calculation of these 

quantities at horizontal and vertical orientations. Since their lengths at different 

orientations are different, the outer profiles are normalized to a fixed length using 

down-sampling or up-sampling followed by a smoothing procedure. The normalized 

outer profiles are then used as features. The same procedure is applied to crossing 

counts and projection histograms. Finally, a size feature is introduced to help classify 

the digit '0', which is usually written as a small dot. A Support Vector Machine 

is trained using these features for classification. A private database of handwritten 

Farsi numerals has been collected by the authors, which has 5000 training samples 

and 4000 testing samples, written by 90 writers. The best results reported in this 

paper is a 99.57% recognition rate with 257 extracted features, using SVM classifiers 

with RBF kernels. 

Mowlaei et al. [88] propose a system for recognition of isolated Farsi numerals 

and characters. In this system, each input pattern undergoes three preprocessing 

procedures. First, it is aligned properly by finding the bounding box of the character. 

Then, the pattern is normalized to 64 by 64 pixels in size. Lastly, stroke width 

normalization by skeletonization is applied. The Haar wavelet is applied to decompose 

the preprocessed pattern into three resolution levels. The approximate image at the 
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(a) (b) (c) 

Figure 5.2: Demonstration of the feature extraction procedure in [113]: (a) Outer 
profiles, (b) projection histograms, and (c) crossing counts from two directions. 

3rd level is converted to a feature vector after applying a low-pass filter. This feature 

vector is then fed to a Support Vector Machine for training. This method has been 

applied to recognize city names and zip numbers in handwritten postal addresses. 

Ziaratban et al. [134] propose a template-based feature extraction method. In this 

method, twenty templates that are believed to be able to capture the most signifi­

cant information from handwritten Farsi/Arabic numerals are selected heuristically. 

Feature extraction is carried out via the following template matching method: For 

each template, find the best match in an input image and record the location and 

the match score of the best match as two features. These features are then fed into 

a multi-layer perceptron for training. The proposed method has been evaluated on 

a private database containing 10,000 samples of handwritten Farsi numerals. These 

samples have been collected from 200 people of different ages and literacy levels. Six 

thousand of these samples have been used for training and the rest for testing. A 

recognition rate of 97.65% on the testing set has been achieved. 

An interesting feature extraction technique, called shadow coding, has been ap­

plied in [109]. The main idea is to encode the digit in such a way that information 
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(a) (b) 

Figure 5.3: Demonstration of the shadow coding feature extraction technique: (a) 
Mask definition, and (b) shadow codes for a sample of the Farsi numeral '8'. 

regarding its shape structure is embedded in the resulting code. This is achieved 

by defining a mask that consists of several line segments in the principal directions 

(e.g., vertical, horizontal, diagonal, and off-diagonal), covering the strategic locations 

within the image. The line segments in each principal direction are grouped into a 

single category. The shadow coding operation is carried out by projecting the shape 

in the image onto the line segments in each category. The projection is applied by 

assigning each shape pixel to the closest line segment in the considered category. The 

extracted features (shadow codes) are defined as the total number of shape pixels 

assigned to each line segment divided by the length of the respective line segment. 

A specific mask has been defined to represent the shape characteristics of the hand­

written Farsi numerals, as shown in Figure 5.3 (a). An example demonstrating the 

calculated shadow codes for Farsi digit '8' is shown in Figure 5.3 (b). The extracted 

shadow coding features are fed to a probabilistic neural network for training and test­

ing. A recognition rate of 97.8% has been achieved on a private handwritten Farsi 

numeral database. 
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Another type of features, called structural features, have been applied to hand­

written Farsi character recognition in [2], where a two-stage recognition process has 

been proposed. The first is the preprocessing stage. In this stage, a skeletonization 

algorithm is first applied to capture the structural relationships between the character 

components, which include straight line segments, loops, and dots. Then, the char­

acter skeleton is converted to a tree structure suitable for recognition. In the second 

stage, a set of Fuzzy Constrained Character Graph Models (FCCGMs) has been built 

based on those basic character components. These models are graphs, with fuzzily 

labeled arcs, and are used as prototypes of the character set. The recognition control 

applies a set of rules in sequence to match a character tree to an FCCGM. One major 

limitation of this method is its high time complexity. 

In addition to the above mentioned Farsi script related features, moment-based 

features, which are script independent, are also applied to the recognition of hand­

written Farsi numeral recognition. Orthogonal moments that are invariant to the 

basic image transformation, such as translation, scaling, and rotation, are of great 

importance in pattern recognition [123, 4]. In [28], Dehghan and Faez have evaluated 

the effectiveness of utilizing various orthogonal moments as features in the recogni­

tion of the handwritten Farsi characters. Zernike moments, pseudo Zernike moments 

and Legendre moments have been investigated in this evaluation. These moments are 

invariant to translation and scaling transformations, and are robust to noise. These 

moment features are used to train an unsupervised neural network, called Adaptive 

Resonance Network [38]. The experimental results on a database with 20 classes and 

3,200 samples show that the Pseudo Zernike moments, with an order of 5, perform 

the best. They have achieved an error rate of 3.06%. 

In the following sections, we present the proposed method and the experimental 
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results. Since the numeral recognition methodology is the same as the shape classifi­

cation method in Chapter 4, we only explain how the CNNs are configured and how 

the K-SVD algorithm has been carried out in this work. 

5.3 Configuration of the CNN 

We used two sets of parameters in this work. In the first set, or the over-complete 

set, the network parameters are N\ = 50, N2 = 50, 7V3 = 150 and JV4 = 10. With this 

parameter set, we train two CNNs in our experiments for comparison, as follows: 

• The first CNN is trained with the weights of the first feature map layer ini­

tialized with the learned sparse and over-complete atoms, and other weights 

are initialized randomly. We call this CNN the Sparse-Over-Complete (SP-OC) 

network. 

• The second CNN is trained with all its weights initialized randomly. We call 

this CNN the Random-Over-Complete (RD-OC) network. 

In the second parameter set, the regular set, we have Ni = 5, N2 = 50, iV~3 = 100 

and JV4 = 10, which have been applied in [110]. We call this CNN architecture the 

Regular network. This network is trained with all its weights initialized randomly. 

The same size parameter, Si = 35, is used in both parameter sets. 

5.4 Learning Over-Complete And Sparse Repre­
sentations 

To learn the over-complete dictionary for the Farsi handwritten numerals, we ran­

domly selected 26,156 image patches from the CENPARMI database after prepro­

cessing. Each of these image patches has a size of 5 by 5 pixels. The CENPARMI 

database and the preprocessing procedure will be discussed later in Section 5.5. The 
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size of each image patch has been chosen to be the same as the size of the filter kernels 

in the first feature map layer of the CNN. We have chosen K = 50, which means that 

the dictionary D has a redundancy factor of 2. Another parameter we need to specify 

is To, which has been chosen empirically. We will discuss the selection of T0 in the 

following section. 

5.4.1 Determining the To in the K-SVD algorithm 

Before using the K-SVD algorithm, one has to specify the parameter To, which de­

termines how sparse the representations given by the learned dictionary should be. 

If we use a very small To and ask the learned dictionary to give a very sparse repre­

sentation, then the dictionary can not give faithful representations of the data. On 

the other hand, if we use a large To, we can achieve a good data representation. But 

we may lose some desired properties in the learned dictionary, such as locality and 

orientation selectivity. 

In this work, the parameter T0 has been chosen experimentally. That is, several 

different values of T0 have been selected, and the dictionaries corresponding to these 

T0s have been built using the K-SVD algorithm. Then, these learned dictionaries 

have been applied to initialize the weights of the first feature map layer of the CNNs 

to be trained. The value that gives the CNN that achieves the best performance is 

chosen as the parameter T0. The data used in this procedure is the validation set 

of the CENPARMI Handwritten Farsi numeral database [112]. We will give more 

details about this database in Section 5.5. 

We choose To to be one of the following numbers: {5, 7, ..., 17, 19} and train the 

corresponding CNN classifier via the proposed method. The performance of these 

classifiers is shown in Figure 5.4, from which we can see that the best performance is 

achieved when To is set to 7 and after that, the performance of the classifier tends to 
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Figure 5.4: Error rate of the proposed method on the validation set of the CENPARMI 
Handwritten Farsi numeral database, using different values of the parameter TQ. 

72 



(a) To = 7 (b) To = 13 (c) T0 = 19 

Figure 5.5: Over-complete and sparse dictionaries learned using different values of 

drop while To increases. In Figure 5.5 we show the over-complete dictionaries learned 

via the K-SVD algorithm when T0 is set to 7, 13 and 19. When T0 = 7, the atoms 

in the learned dictionary possess significant orientation and scale selectivity, which 

are the desired properties for feature extraction. However, as T0 increases, these 

properties are gradually lost. Therefore, we use T0 = 7 in all of our experiments. 

5.5 Experiments 

To evaluate the effectiveness of the proposed method, we have conducted experiments 

under different conditions. We first introduce the databases used in these experiments. 

Two publicly available isolated Farsi numeral databases are adopted: the CENPARMI 

Handwritten Farsi numeral database [112] (CENPARMI database in short), and the 
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HODA Handwritten Farsi numeral database [56] (HODA database in short). We 

briefly describe the properties of these databases and show some of their samples. We 

also explain the preprocessing procedures that have been applied to these samples. 

As an evaluation, it would be interesting to first compare the proposed method 

with the "traditional" CNN, or the CNN without using over-complete and sparse 

representations. This evaluation procedure has been conducted using the CENPARMI 

database. Similar results and conclusions could be achieved on the other databases. 

Another interesting point is to compare the proposed method with some other well-

known classification techniques. In our case, we have chosen SVM and the Modified 

Quadratic Discriminant Function (MQDF) classifiers for comparison. Since these 

classifiers require explicitly extracted features from the input pattern, we also describe 

the features we have considered in our experiments. 

5.5.1 The Farsi Handwritten Numeral Databases 

The first Farsi handwritten numeral database we have used in our experiments was 

built at CENPARMI[112]. These samples were collected from 175 writers of different 

ages, education level and genders. All of these samples were scanned as 300dpi color 

images and then converted into grayscale images. These samples were further divided 

into non-overlapping training, verification and testing sets. There are 11,000 samples 

in the training set, with 1100 samples for each class; 2000 samples in the verifica­

tion set, with 200 samples for each class and 5000 samples in the testing set, with 

500 samples for each class. Some samples from this database are shown in Figure 5.6. 

The second database used is the HODA database [56], which contains samples 

collected from both high school students and undergraduate students in Iran. The 

sample images were scanned at 200 dpi in 24 bit color and then converted into binary 
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Figure 5.6: Some samples in the CENPARMI Farsi handwritten numeral database. 

75 



format. In the training set of this database, there are 6000 samples for each class and 

in total, there are 60,000 samples. In the testing set of this database, there are 2000 

samples for each class and in total, there are 20,000 samples. Some samples from this 

database are shown in Figure 5.7. 

Compared with the CENPARMI database, the HODA database is different in 

database size and scan resolution. The samples in the CENPARMI database are in 

grayscale images, while the samples in the Hoda database are in binarized images. 

The shape variations in some of the patterns (such as '0', '2', '3 ' , etc.) are also 

different. 

5.5.2 Preprocessing 

As shown in Figure 5.6, there are large variations in both the grayscale values and the 

sizes of the samples in the CENPARMI database. Therefore, grayscale normalization 

and size normalization techniques are needed for preprocessing. Since the samples in 

the HODA database contains are binary, we have also converted these samples into 

pseudo-grayscale images using a Gaussian blur before preprocessing. 

For grayscale normalization, we have re-scaled the gray levels of the foreground 

pixels of each input image so that the scaled values would give a standard mean of 

210 and a deviation of 20. 

As to size normalization, we have applied the moment normalization technique 

[72], which first aligns the centroid of a character image with the geometric center of 

the normalize plan, and then re-frames the character using second-order moments. 

This method works better than the traditional linear normalization technique in hand­

written character recognition, since it is able to reduce the position variation of the 

important feature points in the image. Furthermore, it can cut the tails of some elon­

gated strokes in the pattern and thus retain most classification-related information. 
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Figure 5.7: Some samples in the HODA Farsi handwritten numeral database. 
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Figure 5.8: Examples of the preprocessing results from the CENPARMI Farsi hand­
written numeral database: Left, original samples; Right, corresponding samples after 
preprocessing. 

Some examples of the numerals before and after preprocessing are given in Figure 

5.8. Each pattern has been normalized to a size of 35 by 35 pixels. 

5.5.3 Comparisons between CNN-Based Methods 

In this experiment, we will compare the proposed method with the regular CNN 

classifier. Mainly, we will investigate the impact of the following 4 conditions over 

the classification performance of these CNNs: 

a) Over-complete set or regular set 

This condition defines which CNN structure parameter set will be applied: the 

over-complete set or the regular set. These parameter sets have been discussed 

in Section 5.3. 
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b) Using or not using sparse representations 

This condition states whether the first feature map layer of the CNN will be 

initialized with the learned over-complete dictionary or just initialized randomly. 

c) The amount of the data available for training 

Another interesting issue is to look at how the algorithm behaves when the 

amount of data available for training changes. For this purpose, we have created 

four training sets with different sizes using the training data in the CENPARMI 

database. One is the whole original training set (set-4-4) and we have built the 

other three training sets by randomly selecting one-fourth (set-1-4), two-fourths 

(set-2-4) and three-fourths (set-3-4) of the samples from the original training 

set. 

d) The number of training epochs 

This condition indicates how fast the learning process can be. 

Since the CNN architecture has a large number of weights to be learned, the 

number of training samples required by this network is also very large. In order to 

get a better performance in terms of the capability of generalization, one usually 

adopted practice is to expand the training data set by introducing some distortions 

or transformations to the data at hand, such as affine transformations [66] and elastic 

distortions [110]. It is also useful to look at the effect of this data expanding technique 

on the proposed method. 

In this experiment, we combine Simard's elastic distortions with scaling and rota­

tion transforms [110]. The scaling factor is selected uniformly from [-0.15, 0.15], with 

the negative scaling factor standing for shrinkage, while the positive scaling factor 

for enlargement. The rotation angle is also picked uniformly from [—5°, 5°], with the 

negative angle standing for counterclockwise rotation and the positive angle standing 
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Figure 5.9: Some distorted samples. Rows 1 and 3: samples after preprocessing. 
Rows 2 and 4: the same samples after distortion. 

for clockwise rotation. Figure 5.9 shows some examples of the distorted samples. 

All the CNNs evaluated in this experiment have been trained in 90 epochs. The 

error rates of these CNNs in these experiments are given in Table 5.1. The configu­

rations of these CNNs have been discussed in Section 5.3. 

The results in this table show that if we go to over-complete CNN (increasing the 

number of the feature maps in the first feature map layer of the CNN) but do not 

Table 5.1: Test error rates (%) of CNN based methods on the CENPARMI database. 

set-l-4 
set-2-4 
set-3-4 
set-4-4 

SP-OC 
30 epochs 

1.9 
1.48 
1.38 
0.90 

60 epochs 
1.8 

1.36 
1.24 
0.82 

90 epochs 
1.6 

1.14 
1.02 
0.78 

RD-OC 
30 epochs 

2.16 
2.06 
1.72 
1.58 

60 epochs 
1.90 
1.74 
1.44 
1.44 

90 epochs 
1.8 

1.48 
1.36 
1.2 

Regular 
30 epochs 

3.12 
2.36 
2.08 
1.64 

60 epochs 
2.54 
1.98 
1.66 
1.28 

90 epochs 
2.3 
1.74 
1.42 
1.2 
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initialize the CNN with the pre-learned dictionary, then the performance of the over-

complete CNN is better than the regular CNN only when the amount of data for 

training is small. However, when the size of the training data set increases, the differ­

ence between the RD-OC CNN and the regular CNN becomes smaller. On the other 

hand, if we initialize the CNN as proposed in this research and introduce sparsity into 

the learning procedure, significantly better performance can be achieved, even when 

the size of the training data set becomes larger. This demonstrates the effectiveness 

of the proposed method. Another interesting property shown by these results is that 

the proposed method converges faster than the other two CNNs in the learning pro­

cess. When all the training data is applied in the training procedure, the proposed 

method achieves very good results after only 30 epochs. 

Now we look more closely at the misrecognized numerals by the proposed method. 

As shown in Table 5.1, the error rate of the proposed method is 0.78%, which means 

that it has committed 39 errors on the test set of the CENPARMI database. These 

misrecognized samples are shown in Figure 5.10. To further analyze these errors, we 

present the confusion matrix in Table 5.2, where we can identify the following common 

error cases: a) '2' - '3 ' misclassification, b) '3 ' - '4' misclassification and c) T - '0' 

misclassifications. As shown in Figure 5.10, most of these misclassified samples are 

very similar in shape. Some are due to the defects in the samples, which might have 

been introduced by the writers participating in the data collection process. Possible 

improvement in eliminating these errors could be achieved by combining different 

types of classifiers. However, for some common misclassifications as in the '2' - '3 ' 

cases, it would be necessary to analyze the writing habits of Persians. 
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Figure 5.10: Misrecognized samples from the test set of the CENPARMI database by 
the proposed method. 
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Table 5.2: Confusion matrix of the proposed method on the CENPARMI database. 
—-— _̂_̂  R e c . R e s u l t 

T r u e L a b e l ^~~~~~~--^^^ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Total(errors only) 

0 
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3 

1 

4 

1 

1 
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1 

1 

3 

2 
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7 
3 

10 
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3 
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3 

6 
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5 
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1 

1 
1 

500 
1 
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1 

497 

1 
1 

3 

7 

1 

500 

1 

8 

498 

0 

9 

1 

1 

1 
499 

3 

Rec. Rate(%) 

99.2 
99.2 
99.2 
97.4 
98.4 
100 
99.4 
100 

. 99.6 
99.8 

99.22 

5.5.4 Comparison with Other Classifiers 

To further evaluate the proposed method, we will compare it with two other types of 

classifiers, e.g. the MQDF classifier and the SVM classifier. These comparisons are 

conducted on both CENPARMI Farsi handwritten numeral database [112] and the 

Hoda Farsi handwritten numeral database [56]. 

The MQDF [60] is the modification of the ordinary QDF by replacing the minor 

eigenvalues of each class with a constant. There are two parameters to be determined 

before using this classifier: the number m of the principal eigenvectors to be retained 

and the constant 5, which is used to replace those small eigenvalues. Usually m is 

heuristically chosen as a fixed constant while 5 is set to the average of the minor 

eigenvalues. In our experiments, m is set to 35. 

As for the SVM classifier, we have used the LIBSVM software [15]. The popular 

RBF kernel is chosen in our experiments. The penalty parameter C and the variance 

parameter 7 of the RBF kernel have been chosen via 5-fold cross validations. 

Contrary to the CNN-based methods, the above two classifiers require feature 

extraction from the input patterns. Two different sets of features, namely, the gradient 

features and the profile features, have been investigated in this work. The former 
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feature set is generally applied in different pattern recognition problems, while the 

latter is somewhat specifically designed for Farsi handwritten digits. In the following 

paragraphs, we first briefly describe these two sets of features, and then we show the 

performance of these classifiers together with that of the proposed method. 

Gradient Features Gradient features are among the most effective features in char­

acter recognition [72, 108]. In this research, our feature extraction procedure is 

similar to that proposed in [72]. First, we apply the Sobel operator to calcu­

late the gradient vector for each pixel in the input image. Then, we divide the 

input pattern into 5 x 5 zones and calculate local orientation histograms by de­

composing those gradient vectors into eight equally spaced standard directions, 

starting from 0 degrees. If a gradient vector lies between two standard direc­

tions, it is decomposed into two components in the two standard directions, as 

shown in Figure 5.11. The feature vector is built by concatenating these local 

orientation histograms and normalizing all the values to [0, 1]. In total, we have 

200 features for each pattern. 

Outer Profile Features These features actually include several types of features, 

including outer profiles, crossing counts and projection histograms of the image 

calculated at multiple orientations. Details on the procedure to extract these 

features can be found in [113]. 

The results of these experiments are shown in Table 5.3. There we can see that, 

generally speaking, MQDF does not perform as well as SVM or CNN-based methods. 

This is because MQDF usually works well for data whose underlying distribution is 

Gaussian. However, the deviation from Gaussian distribution of the handwritten Farsi 

numerals is significant, especially for Farsi digits like '2:, ' 3 \ "4' and '6', where each 

pattern has more than one representative shapes. If our target is to recognize each 
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0 

Figure 5.11: Decomposition of a given gradient direction. 

Table 5.3: Test error rates (%) of the classifiers investigated in this research. 

CENPARMI 
Database 
HODA 
Database 

MQDF 
Gradient Profile 
Features Features 
2.12 3.18 

1.68 1.98 

SVM 
Gradient Profile 
Features Features 
1.02 2.68 

0.78 1.08 

CNN-Based 
Regular 

1.2 

0.74 

RD-OC SP-OC 

1.2 0.78 

0.86 0.50 

shape, instead of recognizing each pattern/digit, then we may get better results. The 

difference between SVM and regular CNN is insignificant, while the CNN initialized 

with learned sparse and over-complete representations generates the best results. 

All classification techniques produce better results on the HODA database, which 

has more data for training. Compared with the HODA database, the CENPARMI 

database has less data and the number of samples from different shapes are less 

balanced and thus it is a more challenging database. 
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5.6 Conclusion 

In this chapter, we have proposed a new handwritten Farsi numeral recognition 

method that makes use of the over-complete and sparse structure within the data. 

The proposed method has been applied to two publicly available handwritten Farsi 

numeral databases: the CENPARMI handwritten Farsi numeral database and the 

HODA handwritten Farsi numeral database. We have evaluated the proposed method 

using data sets with different sizes and compared it with different network structures 

and initialization methods. Comparison between the proposed method and two other 

popular classifiers (SVM and MQDF) has also been made. The good experimental 

results have justified the benefit of exploiting the over-complete and sparse structure 

in the data in handwritten Farsi numeral recognition problems. 
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Chapter 6 

Rotat ion Invariant Texture 
Classification by Ridgelet 
Transform 

A new rotation invariant feature extraction method in the Ridgelet transform do­

main for texture classification is presented in this chapter. This feature extraction 

technique is an example of the global feature extraction strategy using over-complete 

and sparse representation. As mentioned in Chapter 2, the Ridgelet transform can be 

divided into two stages: the Radon transform stage and the 1-D wavelet transform 

stage. According to the Projection-Slice theorem1, the Radon transform actually 

provides information about the image data on a polar-grid in the frequency domain. 

Frequency information on a polar grid is ideal for rotation invariant feature extraction. 

Furthermore, by using wavelets that have compact support in the frequency domain, 

we can actually use the Ridgelet transform to achieve frequency-orientation decom­

positions for the given image data, which is similar with the multi-channel filtering 

technique. Such decompositions enable the proposed method to effectively capture 

texture properties in different frequency bands and orientations. Experimental results 

show that a good performance can be achieved by the proposed method. 

JThis theorem is described in Section 6.3.1 
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A rotational invariant feature extraction technique in the Ridgelet transform do­

main has been proposed in [19, 20]. This method works well for patterns like charac­

ters and shapes. However, it usually generates features with high dimensions. Given 

a 64 x 64 character pattern, for example, it generates features with a dimension as 

high as 168. This makes it inappropriate for texture classification, where the size of 

the texture image could be even larger. 

6.1 Related Works 

Texture classification is a topic that has been investigated by many researchers during 

the past few decades. Research in this direction plays an important role in many 

applications such as remote sensing [53], document image processing [7, 75, 24, 119], 

medical imaging [5] and content-based image retrieval [40]. Some surveys of related 

research can be found in [132, 105]. Texture classification methods that are invariant 

under transformations, such as rotation and scaling, are of great interest. In this 

section, techniques for planar rotation invariant texture classification are reviewed. 

They are broadly divided into two categories: model-based methods and filtering-

based methods. 

6.1.1 Model-Based Methods 

Many model-based methods for rotation invariant texture classification can be found 

in the literature. In these methods, a texture image is modeled as a probability model 

or as a linear combination of a set of basis functions. The coefficients of these models 

are used to characterize texture images. How to choose the correct model for the 

textures under consideration and how to estimate the coefficients of these models are 

the core issues for the model-based methods. 
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6.1.1.1 Simultaneous Autoregressive (SAR) 
Model-Based Methods 

Let f(s) be the gray level value of a pixel at site s = (i,j) in an N x N textured 

image, i, j = 1,2,..., N. The SAR model is then defined as: 

f(s)=u + J26(r)f(s + r) + e(s), (6.1) 
rGuj 

where u> is the set of neighbors of the pixel at site s, e(s) is an independent Gaussian 

random variable with a zero mean and a variance of a2, u is the bias independent of 

the mean gray value of the image, and 6(r)s represent the model parameters which 

can be used as texture features. 

The SAR model is the basis of the Circular Simultaneous Autoregressive (CSAR) 

model proposed in [54], where the neighborhood of a pixel is circular in order to 

handle rotated texture images. In CSAR, only one circle around a given pixel is 

considered. Mao and Jain [83] have extended the CSAR model so that several circles 

around a pixel can be handled. This extended model is called Rotation-Invariant 

SAR (RISAR) model. There are two limitations related to the application of the 

RISAR model. One is how to choose a proper neighborhood size in which pixels can 

be regarded as independent. The other is how to select an appropriate window size 

in which the texture is regarded as being homogenous. 

To overcome these limitations, multi-resolution image representation has been 

introduced so that models with different neighborhood sizes and window sizes are 

unified into one, which is named Multi-Resolution RISAR (MR-RISAR) model in 

[83]. 

6.1.1.2 Markov Model 

In [26], Cohen et al. have extended the 2D Gaussian Markov Random Field (GMRF) 

model with a likelihood function to estimate rotation and scale parameters. The 
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problem of this method is that the likelihood function is highly nonlinear and local 

maxima may exist. In addition, the algorithm must be realized by using an iterative 

method that is computationally intensive. 

Chen and Kundu [21] have addressed rotation invariance by using multichannel 

sub-band decomposition and Hidden Markov Model (HMM). The proposed method 

can be divided into two stages. In the first stage, the Quadrature Mirror Filter (QMF) 

bank is used to decompose the texture image into sub-bands. In the second stage, 

the sub-bands are modeled in sequence using HMM, which is able to exploit the 

dependence of these sub-bands and capture the trend of the changes caused by the 

rotation. Two sets of statistical features are extracted from each sub-band. The first 

set consists of the third- and fourth-order central moments normalized with respect 

to the second-order central moments. The second set is composed of normalized 

entropy and energy. Since the feature vectors derived from the original texture and its 

rotated version through the QMF bank are obviously different, the proposed method 

implicitly achieves rotational invariance via the learning capability of the HMM. As 

the number of texture classes grows, the rate of the correct texture classification of 

this method would decrease. 

To better handle the variations in the feature values introduced by image rotation, 

Wu and Wei [130] have further developed the above idea by re-sampling the texture 

image along a spiral contour and converting it into a 1-D signal. Then, the QMF 

decomposition and HMM are applied to the 1-D signal and a better performance can 

be achieved. 

6.1.2 Filtering-Based Methods 

In this section, we mainly introduce two types of filtering-based rotational invariant 

texture classification methods: Gabor multi-channel filtering and wavelet transforms. 
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A comprehensive review of the filtering-based texture classification methods can be 

found in [105]. 

6.1.2.1 Gabor Multi-Channel Filtering 

It is now widely accepted that the processing of pictorial information in the Human 

Visual System (HVS), and the visual cortex in particular, involves a set of parallel and 

quasi-independent mechanisms or channels [126]; each of which is tuned to a specific 

narrow band of spatial frequency and orientation. These properties with respect to 

the response of the visual cortex of mammals can be modeled satisfactorily using 

Gabor functions [85]. 

Gabor filters are complex sinusoidal gratings modulated by 2-D Gaussian func­

tions in the space domain, and shifted Gaussian functions in the frequency domain. 

They can be configured to have various shapes, bandwidths, orientations and center 

frequencies. Furthermore, Gabor functions have been shown to achieve the optimum 

space-frequency localization [25]. These results have laid the foundation for lots of 

work using Gabor multi-channel filtering in texture classification, where a bank of 

Gabor filters are applied to extract features from texture images [45, 41, 102, 119]. A 

commonly adopted Gabor filter bank configuration is shown in Figure 6.1. Compar­

ative studies show that Gabor filtering usually performs well [105]. However, how to 

appropriately configure the filter bank in applications is very tricky. 

Another limitation of the Gabor multi-channel filtering is that, when rotational in-

variancy is required, sampling in orientation has to be dense enough at each central 

frequency. This means that many Gabor filtering operations have to be performed in 

the feature extraction process. To speed up this process, a steerable approximation 

technique has been proposed in [97]. The idea is to find, for each central frequency, 

a basis with a smaller number of functions than that of the filters in the Gabor filter 
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Figure 6.1: A commonly adopted Gabor filter bank configuration. 

bank, where the linear combinations of the functions in the basis provide least-square 

optimal approximations to those Gabor filters. Filtering via the Gabor filters can 

then be achieved by filtering using a small number of basis functions followed by a 

linear combination. The optimal approximation is achieved using the Singular Value 

Decomposition (SVD) algorithm. Suppose the matrix G represents the p digitized 

Gabor filters with the same central frequency, with one column corresponding to one 

filter, then the SVD gives: 

G = [A, /2 , • • • , fp] = USVT = UW. (6.2) 

The columns of U and the rows of W give the basis functions and the coefficients for 

representing the Gabor filters, respectively. S is a diagonal matrix of non-negative 

singular values, in decreasing order of magnitude. These singular values play a role 

of weighting in this representation. Those basis functions corresponding to the small 
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Figure 6.2: (a) Basis functions given by SVD decomposition, (b) Normalized accu­
mulative sum of the singular values. 

singular values get a small weight and do not make a significant contribution to the 

representation. Therefore, least-square optimal approximation can be achieved by 

just ignoring those insignificant basis functions. Figure 6.2 shows an example of the 

SVD decomposition results. In this example, a band of 16 isotropic Gabor filters 

with a central frequency set to 16 cycles/image have been digitized and the SVM 

decomposition is applied. Figure 6.2 (a) gives the basis functions and Figure 6.2 

(b) shows the normalized accumulative sum of the corresponding singular values. It 

is clear that most contributions in the linear representation come from the leading 

eight basis functions, while the other basis functions can be ignored. Experimental 

results show that up to 40% of computations can be eliminated compared with the 

traditional Gabor multi-channel filtering method. In the meantime, almost the same 

high texture classification correct rate can be achieved. 

6.1.2.2 Wavelet Decompositions 

Wavelet transformations also play an important role in texture classification. Meth­

ods using Discrete Wavelet Transform (DWT) have been pioneered by Mallard [81], 
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where texture images are decomposed into dyadic sub-band structures. Later, the 

work by Chang and Kuo [16] indicates that texture features are most prevalent in 

intermediate frequency bands, thus the octave band decomposition is not optimal. 

Instead, they have proposed a discrete wavelet packet transform, which achieves a 

better performance. 

The DWT and the discrete wavelet packet transform are critically sampled multi-

rate filter banks. However, critically sampled filter banks typically are not translation 

invariant, as mentioned in the Introduction chapter, and they imply inaccurate tex­

ture edge localization [105]. To alleviate this problem, an over-complete wavelet 

representation, called the wavelet frame, has been proposed [125]. 

Although significant progress has been made, these methods are unsatisfactory 

when rotation invariant features are needed. This is because textures have differ­

ent frequency components along different orientations, while the ordinary wavelet 

transform has a limited orientation selective capability. For example, 2D DWT only 

distinguishes three directions (horizontal, vertical and diagonal) while 2D complex 

wavelet [61] distinguishes only six directions. Many attempts have been made to 

overcome this disadvantage. In [17] and [33], the authors exploited the steerability 

of certain wavelets to calculate the wavelet transform at different orientations to ex­

tract rotation invariant features. Meanwhile, image transforms, such as the log-polar 

transform [103] and the Radon transform [50], were applied at the preprocessing stage 

to convert image rotation into circular shifting of the transformed data. Afterwards, 

a shift-invariant wavelet transform was applied to extract rotation invariant features. 

Different from the above methods, the authors in [49] applied the Radon transform 

to estimate the principal direction of the texture image and then applied the wavelet 

transform along that direction for feature extraction. 
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6.2 Wavelet Selection In Ridgelet Transformation 

In the following two sections, we introduce the proposed rotational invariant texture 

classification algorithm using the Ridgelet transform. As seen in Chapter 2.1, the 1-D 

wavelet transform is an important building block of the Ridgelet transform. In the 

1-D wavelet transform stage, it is very important to choose the appropriate wavelet 

transform for feature extraction in the applications. In texture classification, we 

expect the selected wavelet transform to have a good localization in the frequency 

domain, so that features can be extracted from different frequency sub-bands. This 

makes the common time domain compactly-supported wavelets inappropriate here. 

Therefore, frequency B-spline wavelets [121] have been chosen in this research. 

The frequency B-spline wavelets are defined in the frequency domain on a compact 

frequency interval of support described in terms of a desired center frequency fc and 

a desired bandwidth /{,. These wavelets consist of an entire family of valid analyzing 

wavelets, indexed by an integer order parameter m. If m = 1, then the frequency 

B-spline wavelet is the Shannon wavelet. 

Let functions 6m(t) be defined as: 

M 0 = ( ^ ) m . ™ = l , 2 , 3 , . . . (6.3) 

In the frequency domain, this corresponds to: 

dm = l[-l/2,l/2) * l[-l/2.1/2) • ' • * l[-l/2.1/2)- (6-4) 
* • , •> 

-v 
m times 

Here, the symbol '*' stands for convolution and 1[_ 1/2.1/2) is the indicator function of 

the interval [-1/2, 1/2). 

Then, the frequency B-spline wavelet is defined in the frequency domain interval 

(fc — fb/2, fc + /b/2] through the translation and dilation of 8m as: 

gm = TfcDmf-x6m. (6.5) 
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Here, r a stands for the operator of a translation, and Da stands for the operator of 

a dilation. 

Taking the inverse Fourier transform gives: 

9m(t) = ( / b / m ) ( 1 / 2 - " V 2 ^ [ ~ ^ ] • (6-6) 

More properties about frequency B-spline wavelets can be found in [121]. Fig­

ure 6.3 shows one third-order B-spline wavelet in the time and frequency domain, 

with fc = 0.256 radian per sample and ft = 0.512 radian per sample. We can see 

that this wavelet is a band-pass filter in the frequency domain. In this research, 

we use six third-order real frequency B-spline wavelets with the following parame-

ters: ft = 0.256, ft = 0.512; ft = 0.512, ft = 0.768; ft = 0.768, ft = 1.024; ft = 

1.024, ft = 1.28; ft = 1.28, ft = 1.537; ft = 1.537, and ft = 1.793, respectively. 

These parameters are measured in radians per sample. They are chosen empirically 

(based on the experiments on the training set built from Bradatz textures) to have 

linear increments, a strategy different from the Gabor transform-based method [41], 

where a dyadic frequency decomposition was chosen. 

6.3 Rotation Invariant Texture Feature Extraction 
in the Ridgelet Domain 

In this section, we show that the Radon transform stage in the Ridgelet transform 

actually enables us to calculate the 2-D polar Fourier transform (Fourier transform 

on polar grids, instead of on traditional Cartesian grids), which is more appropri­

ate for rotation invariant feature extraction. This is possible due to the well-known 

Projection-Slice theorem. We also give a simple and effective rotation invariant tex­

ture feature extraction method using Ridgelet transform coefficients. 
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Figure 6.3: Plot of a B-spline wavelet in the time and frequency domain with fc = 
0.256 and fb = 0.512 radians per sample: (a) The real part of the wavelet in the time 
domain, (b) the imaginary part of the wavelet in the time domain, and (c) the Fourier 
spectrum of this wavelet (properly scaled). 
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6.3.1 Calculating the Polar Fourier Transform from Radon 
Transform 

We start this section by introducing the well-known Projection-Slice theorem, which 

has been commonly used in image reconstruction from projection methods [46]. Ba­

sically, the theorem states that the one-dimensional Fourier transform of a projection 

of a function / (x) is a "slice" through the 2-dimensional Fourier transform of this 

function. More specifically, let FJ{UJ) be the 2-dimensional Fourier transform of / (x) , 

then: 

F/(fcos0,£sin0)= [ e~jitRf{9,t)dt (6.7) 

This theorem gives us a way to calculate the polar-Fourier transform of a given 

image using the Radon transform. Let I(m, n) be an image with size N by N pixels. 

We choose a disk area within the image, as shown in Figure 6.4. Then, the Radon 

transform is applied to the selected area, followed by 1-D Fourier transform applied to 

each projection. The final result consists of the discrete Fourier transform of the given 

image on the polar grids. This polar Fourier transform is ideal for rotation invariant 

feature extraction, since rotation in the space domain corresponds to rotation in the 

frequency domain. 

6.3.2 Rotation Invariant Feature Extraction 

Given a square texture image of size N x N, we first select a disc region at the 

center of the image, as shown in Figure 6.4. We then apply the Radon transform 

on the selected area with equal spaced projections (0.75 degrees apart from each 

other) within the orientation interval [0°, 180°). The 1-D DFT is then applied on 

each projection to convert the Radon transform coefficients into the 2-D polar Fourier 

domain. The 1-D frequency B-spline wavelets given in the previous section are applied 

to decompose each projection into six sub-bands. In the end, we get the Ridgelet 

98 



Radon Transform 1-0 Fourier Transform 

Figure 6.4: Calculation of the polar Fourier transform using the Radon transform. 

transform coefficients in six M x L matrices, with row index M indicating each 

projection in the Radon transform. The column index L stands for the length of 

each projection, whose value depends on how the Radon transform is implemented. 

It is easy to see that the rotation of the given image would result in a circular shift 

along M in each matrix. 

For each sub-band of the Ridgelet transform coefficients in a matrix, features are 

extracted as follows: 

1. Group the Ridgelet transform coefficients across orientations by equally dividing 

the M rows in the matrix into 16 groups. For example, group 1 contains rows 1 

to 15 of the given matrix, group 2 contains rows 16 to 30 of the given matrix, 

and so on. 

2. From each group of coefficients, calculate the first and the second order mo­

ments of the amplitudes and store them cumulatively into two arrays, m and s, 
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respectively: 

e^group i 

s^ = ̂  £ (e-™«)2)§ (6-9) 
eEgroup i 

with JVj being the number of coefficients in group i 

3. Apply the 1-D DFT to array m. The amplitudes of the most significant Fourier 

coefficients are selected as features. In our case, only the amplitudes of the first 

five most significant coefficients are selected. The same procedure is applied 

to s. Since the amplitudes of the 1-D DFT coefficients are shift invariant, the 

extracted features are rotation invariant. 

Here, the grouping of the columns of the coefficient matrix is equivalent to the sam­

pling of the orientation variable. It reduces the amount of data to be processed and 

the amount of features to be extracted. We have chosen a total of 16 groups/sample 

in order to ensure the rotation invariance of the extracted features. 

6.3.3 Relation of the Proposed Method to Multi-Channel 
Filtering 

Looking at the Fourier domain, we can see that the proposed method decomposes 

the image data into parts. Each has a different frequency and orientation selectiv­

ity. Using the Radon transform and the grouping method in the feature extraction 

procedure, we split the data into different orientations. Then, the wavelet transform 

allows us to divide the data into different frequency sub-bands. These procedures 

are depicted in Figure 6.5. Therefore, the proposed method is closely related to 

multi-channel filtering. 
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Figure 6.5: Demonstration of the frequency-orientation decomposition achieved by 

the proposed method. 

6.4 Experiments and Discussion 

6.4.1 Experimental Results 

To evaluate the performance of the proposed method, different data sets have been 

used. We also compare the proposed method with Jafari-Khouzani's method [49] 

(Method I) and the Gabor multichannel filtering method [41] (Method II). 

We use three data sets to demonstrate the effectiveness of the proposed method. 

The details about how to generate these data sets will be described below. In order 

to make the textures nondiscriminable for the local mean gray level or local variance, 

the images in these data sets have been separately histogram equalized prior to being 

used, as in [105]. We note that in many papers, this factor has been ignored. 

For all of these experiments, a fc-nearest neighbor classifier has been used for 

feature classification. Three different values of k are considered: k = 1, 3, and 5. The 

features are normalized before classification using fij = (fij — Hj)/crj, where fitj is 

the j t h feature of the i th image, and \ij and Oj are the mean and variance of the j t h 

feature, respectively, in the training set. 

Data set 1 consists of 60 texture images of 640 x 640 pixels from the Brodatz 
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album (the same texture images as in data set 3 of [49]). Each image has been 

divided into 25 non-overlapping sub-images of 128 x 128 pixels to create a training 

set of 1500 (60 x 25) images. To create the test set, each original texture image 

has been rotated to 16 orientations (10, 20, 30, ..., 150, 160 degrees, respectively). 

From the center of each rotated image, four non-overlapping sub-images have been 

extracted. Therefore, a total of 3840 (60 x 16 x 4) test images have been obtained. 

To show the discrimination capability of the proposed features, we first show, in 

Figure 6.6, the clusters corresponding to the ten textures (D15, D20, D23, D34, D37, 

D46, D57, D81, D87, and D93) using the samples in the training set of data set 1 

and the two features with the highest discrimination power as x and y axes. We can 

see that, with these textures, a good discrimination capability can be achieved using 

only two features. When more textures are added, more features are needed to get a 

good classification performance. All classification results are presented in Table 6.1. 

Data set 2 consists of the 24 texture images used in [90]. Each image has been 

captured at nine rotation angles (0, 5, 10, 15, 30, 45, 60, 75, and 90 degrees). Each 

image is of 538 x 716 pixels. Twenty non-overlapping sub-images of 128 x 128 pixels 

have been extracted from each image. All of the extracted images with zero degrees 

of rotation have been used for training and the rest of the images have been used for 

testing. Therefore, there are 480 (24 x 20) training samples and 3840 (24 x 20 x 8) 

testing samples in this data set. The classification results are presented in Table 6.2. 

Table 6.1: The Correct Classification Rate for Data Set 1 Using Different Feature 
Extraction Methods and Different k Values for A;-NN Classifier (%). 

Method I: 

Method II: 
Proposed Method: 

k = 
db4 
db6 

1 
93.65 
92.66 
92.79 
94.71 

3 
94.48 
94.17 
92.79 
95.36 

5 
94.61 
94.45 
93.05 
95.73 

7 
94.22 
94.22 
93.15 
95.91 

9 
94.30 
94.19 
93.23 
95.94 
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Figure 6.6: Demonstration of the discrimination capability of the proposed features: 
(a) Ten texture samples from the Brodatz texture album (from left to right and top 
to bottom: D15, D20, D23, D34, D37, D46, D57, D81, D87, and D93), and (b) the 
clusters corresponding to the 10 textures in the training set. Here, we use the two 
features with the highest discrimination power as x and y axes. 

Table 6.2: The Correct Classification Rate for Data Set 2 Using Different Feature 
Extraction Methods and Different k Values for &-NN Classifier (%). 

Method I: 

Method II: 
Proposed Method: 

k = 
db4 
db6 

1 
97.14 
97.34 
94.69 
99.30 

3 
95.63 
96.20 
94.51 
99.04 

5 
93.78 
94.77 
94.56 
98.91 

7 
92.55 
93.65 
94.11 
98.78 

9 
91.43 
91.75 
93.67 
98.33 
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Figure 6.7: The 35 Texture Samples from the VisTex Database[127]. 

Table 6.3: The Correct Classification Rate for Data Set 3 Using Different Feature 
Extraction Methods and Different k Values for fc-NN Classifier (%). 

Method I: 

Method II: 
Proposed Method: 

k = 
db4 
db6 

1 
95.63 
95.49 
93.44 
97.50 

3 
95.58 
95.36 
93.44 
97.19 

5 
94.78 
94.87 
93.57 
96.88 

7 
94.87 
94.24 
93.26 
96.56 

9 
94.20 
94.38 
93.66 
96.16 

Data set 3 consists of 35 textures selected from the VisTex database[127] , which 

are displayed in Figure 6.7. These samples are images taken from different natural 

scenes. Each image has 512 x 512 pixels. Only gray-scale levels of the images have 

been used in the experiments. Each original image has been divided into 16 non-

overlapping sub-images. Each sub-image has 128 x 128 pixels. Thus, a training 

database of 560 (35 x 16) images has been built. The testing data set was built in 

the same way as data set 1. Therefore, there are 2240 (35 x 16 x 4) testing images 

in this data set. The classification results are presented in Table 6.3. 
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Prom these results, it is evident that a better classification performance can be 

achieved by the proposed method. Detailed discussion with respect to these results 

will be given in the following section. 

6.4.2 Discussion 

Our discussion is divided into two parts: the effects of the histogram equalization and 

the error analysis of the proposed method. 

Effects of histogram equalization: It is worthwhile to investigate the effects of 

histogram equalization on texture images. Histogram equalization is a well-

known non-linear operation that generates an approximately uniform distri­

bution of gray-levels over the available range in an image. It helps to make 

the textures non-discriminable for the local gray level mean or local gray level 

variance and allows a more precise evaluation of the capabilities of the texture 

classification methods. 

On the other hand, we point out two issues related to the histogram equalization 

technique. First, it tends to introduce high frequency components into an image. 

We will use a synthesized image to illustrate this point. Consider the simple 

synthetic textured image in Figure 6.8a. It consists of one texture generated by 

a sinusoid. Figure 6.8b shows the same texture after histogram equalization. For 

illustration purposes, consider one horizontal scan line through each of the two 

images, as shown in Figure 6.8c and Figure 6.8d, respectively. We can see that 

the scan line in the histogram equalized image is much sharper than the one in 

the image without the histogram equalization. Therefore, some high frequency 

components are introduced in a histogram equalized image. The second issue is 

that histogram equalization tends to amplify the background noise in the image, 

as shown in Figures 6.8e and 6.8f. This phenomenon is more frequently observed 
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Figure 6.8: Demonstration of the two issues related to histogram equalization: (a) 
A synthetic texture generated by a sinusoid, (b) the same texture after histogram 
equalization, (c) a horizontal scan line in texture image (a), (d) a horizontal scan line 
in texture image (b), (e) texture D48 from Brodatz texture data set, and (f) histogram 
equalized version of (e), where background noise has been greatly amplified. 

in the Brodatz texture data set. In the Outex texture data set, however, the 

noise amplification effect is not so significant. Since the proposed method works 

in the Radon domain (where the additive Gaussian white noise with a zero mean 

tends to be canceled), the noise amplification phenomenon is not so critical. 

Error analysis of the proposed method: We have performed a detailed error anal­

ysis for the proposed method on texture data set 1 only, since the proposed 

method achieves the lowest performance on this data set as compared with 

data sets 2 and 3. Actually, the same phenomenon can be observed for all three 

methods investigated in this research. Here, we use the results generated by the 
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Table 6.4: The confusion matrix of the proposed method on the Brodatz data set 
using the i-NN Classifier. Textures with classification rates higher than 75% are not 
shown in this table. 

DUO 
D23 
D27 
D74 
D98 

DUO 
31 
0 
0 
0 
0 

D23 
0 
25 
15 
4 
11 

D27 
0 
13 
23 
16 
11 

D5 
0 
0 
0 
1 
0 

D74 
0 
10 
24 
39 
0 

D98 
0 
16 
2 
4 
42 

D9 
33 
0 
0 
0 
0 

1-NN classifier for the error analysis. 

To begin with, we have singled out those textures with the correct classification 

rates lower than 75%. The confusion matrix for this data set is shown in Ta­

ble 6.4. Some of these errors are caused by the resemblance between textures, 

such as (DUO, D9) and (D23, D27). Other errors come from the confusion 

between textures D23, D27, D74 and D98, where objects with similar shapes 

are observed. Refer to Figure 6.9 for some examples of these textures with high 

misclassification rates. Similar texture classification errors have been observed 

in Method I and Method II. It seems that filter-based methods, such as those 

investigated in this work, are more efficient in characterizing the edges in tex­

tures. However, they are inefficient in capturing the differences between the 

gray scale distributions of the sub-regions in textures. 

It is also interesting to look at the behavior of the extracted features when the 

number of nearest neighbors in the A:-NN classifier is increased. On the Brodatz 

texture data set, both the performances of Method II and the proposed method 

keep increasing as k increases, while that of Method I reaches the maximum at 

k = 5 and then drops a little. In this case, the features extracted by Method II 

and the proposed methods are more coherent. 

On the Outex texture data set, the performances of all three methods tend to 
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Figure 6.9: Textures with low classification rates. 
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drop as k increases. However, when k increases from 1 to 9, the decrease in the 

performance of Method I is much more significant (over 6 percent) than that 

of the other two methods (about 1% only). The reason for this phenomenon is 

that, for some textures, the features extracted by Method I from the training 

data set do not fit well enough with those from the test data set, as shown in 

Figure 6.10. On the Vistex texture data set, the performances of both Method 

I and the proposed method tend to drop slightly (between 1 and 1.5%), while 

that of Method II tends to remain at the same level. 

6.5 Script Identification - A Case Study 

In this section, we will investigate a problem from the document image processing 

field - script identification. We will apply some texture classification techniques to 

this problem, including the Ridgelet transform-based texture classification method 

proposed in this chapter. We will show that, when treated as a texture classification 

problem, the script identification problem can be solved satisfactorily with the pro­

posed feature extraction technique. We will evaluate some recently published texture 

classification algorithms and describe the best performance that has been achieved 

by the Ridgelet transform-based method. 

6.5.1 Background 

Although many Optical Character Recognition (OCR) systems have been developed 

over the past few decades, almost all existing studies on OCR assume that the lan­

guage or script in which a document has been prepared is already known. However, 

as the world is getting more interconnected, documents in different languages have 

become more pervasive. Therefore, script identification has become an important 
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Figure 6.10: Plots of the training and testing samples in the feature space. Each 
graph (a, b, c) corresponds to one feature extraction method. The features have been 
extracted from texture Canvas023 in the Outex data set. For each figure, we used 
the two features with the highest discrimination power as x and y axes: (a) Features 
extracted by Method I, (b) features extracted by Method II, and (c) features extracted 
by the proposed method. 110 



step in the automatic processing of document images in such a multilingual environ­

ment, especially where the high volume of documents and the variety of languages 

make manual identification impractical. Early determination of the language used in 

a document can greatly facilitate further processing, such as character recognition, 

document image indexing and translation. 

Research work in script identification techniques can be grouped into two cat­

egories: local methods and global methods. In local methods, features or specific 

character/word tokens are extracted at the connected component level or text line 

level. Therefore, these methods generally require preprocessing like skew removal, 

page decomposition and connected component analysis. In global methods, language 

identification is treated as a texture classification problem. Textural features are 

extracted at the regional level and thus no connected component analysis is needed. 

Furthermore, since rotation invariant features are available, image skew removal is not 

necessary in global methods. In the next two subsections, we will provide background 

information for these two differen methods. 

6.5.1.1 Local Methods 

There has been a lot of research on local script identification methods. In [114], 

Spitz first classifies the languages under consideration into Asian languages (Chinese, 

Japanese, and Korean) or European languages (English, French, German, and Rus­

sian) using the vertical distributions of the upward concavities. Where two runs of 

black pixels appear on top of a single scan line of the image, if there is a run of black 

pixels on that scan line that spans the distance between these two runs, an upward 

concavity is formed on the line. Statistics of the optical densities (the density of 

black pixels in the connected components) are calculated to further differentiate the 

three Asian languages. The European languages are discriminated by means of the 
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most frequent occurring word shape tokens. These tokens are also derived from the 

connected components. 

Extensions of Spitz's work have been made by Lee et al. [67] and Ding et al. [31] 

to cope with complex degraded document images and with more languages. More 

features are extracted to achieve these goals, including the distributions of character 

height, the top and bottom profiles of character bounding boxes, the ratio of the 

white to black areas in the horizontal projection profiles, and the relative positions 

of character bounding boxes. 

Hochberg et al. [47] have used cluster analysis to find the frequent character or 

word shapes in each script and a representative template is defined for each cluster. 

Script identification is achieved by comparing a subset of the document's textual 

symbols to these templates and finding the best match. 

Pal et al. [95] have performed script identification at the text line level. The 

scripts under consideration include English, Chinese, Arabic, Devanagari and Bangla. 

First, the length and position of the longest horizontal run in a text line are used as 

features to classify these scripts into Indian scripts or Non-Indian scripts. Then, the 

three non-Indian scripts are differentiated by means of: vertical black run information, 

character density difference between the original image and the image after applying 

a modified RLSA algorithm [128], distribution of lowermost points of the component 

and some features based on water overflow analogy. For Devanagari and Bangla 

scripts, some specific character level stroke configurations [94] are used to achieve the 

script identification goal. 

Elgammal et al. [36] have studied the English/Arabic script identification at both 

the text line level and word level. Three classes of features are considered, including 

peak-number extracted from horizontal projection profiles, moments from horizontal 

projection profiles and 2-D run-length histograms. Their experiments show that at 

112 



the text line level, moment-based features outperform the other two types of features, 

while the run-length histogram achieves the best results at the word level. 

In all the methods mentioned above, features have been chosen manually. In order 

to automate the feature selection process and reduce the amount of textual informa­

tion used in script identification, Ablavsky et al. [1] have proposed an automatic 

feature selection scheme, which works on features extracted from the connected com­

ponents. At the training stage, 72 features are extracted, including moment features; 

shape features like compactness, curvature, holes, and eccentricity; and features ex­

tracted from the co-occurrence matrix. Then, the RELIEF-F algorithm [62] is applied 

to select the 25 features that have the top discriminating power. At the test stage, a 

stream of connected components is generated and the 25 selected features are applied. 

A simple k Nearest Neighbor (k-NN) classifier is used to assign the likelihood of a 

script to each connected component. These likelihood values are fed into the evidence 

accumulation framework to finally give the script a label. 

6.5.1.2 Global Methods 

Instead of using local textual features, global methods make use of texture features 

extracted from document image patches for the script identification purpose. Since 

different scripts often have their distinctive visual appearances. Tan [119] has formu­

lated the language identification problem as a texture classification problem. Repre­

sentative features for each script have been obtained by computing the mean of the 

channel output of Gabor filters at different central radial frequencies and orientations. 

To eliminate the need to apply many image filter operations to achieve rotational 

invariant features, steerable approximation of the Gabor multichannel filtering has 

been proposed in [98] for feature extraction purposes. Experimental results on docu­

ment images printed in Chinese, Japanese, Korean and English have shown that an 
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over 98.5% correct language identification rate has been achieved, while image filtering 

operations have been reduced by 40%. The possibility of using texture classification 

methods to identify languages has also been mentioned in [52]. 

In this chapter, we follow the same idea of the global methods and treat script 

identification as a texture classification problem. Since paper documents could be 

scanned with skewness, or even with different orientations, methods that achieve 

rotational invariant script identification are desirable. Luckily, many texture classi­

fication algorithms, including the method proposed in this chapter, are rotationally 

invariant. 

6.5.2 Experiments 

In this section, the evaluation of some recent texture classification methods on the 

problem of script identification is presented. These methods all fall into the group of 

global methods. First, we will show how the data used in the evaluation procedure is 

prepared. Then, we will briefly state the methods adopted in this evaluation process. 

Finally, we will present the experimental results and discussions. 

6.5.2.1 Data Preparation 

In this research, six languages have been investigated, including Chinese, Korean, 

Japanese, English, Russian and Arabic. To create a database for the evaluation, we 

have collected 550 non-overlapping sample image blocks for each language. Of these 

image blocks, 300 have been used for training and the remaining 250 have been used 

for testing. These image blocks were extracted from newspapers, books, magazines 

and computer printouts, which were scanned at a resolution of 200 dpi. Each sample 

image block has 256 by 256 pixel. Other block sizes are also possible. However, to 

ensure that enough textural information could be retained for language identification, 

we have verified that the block size should not be too small. 
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Font variations have also been taken into consideration during the data prepa­

ration process. For example, four fonts, including SongTi, KaiTi, HeiTi and Fang 

Song, have been used for the Chinese language and three fonts, including Times New 

Roman, Arial and Courier, have been used for the English language. For the other 

four languages, different fonts have also been used. Foreign characters, such as En­

glish characters in oriental languages, have been preserved in our samples. Figure 

6.11 shows some sample images in our database. 

In order to evaluate the rotation invariance of the script identification methods, the 

above database has been extended by rotating each sample in that basic database by 

an angle randomly chosen within (0, 180) degrees. The nearest neighbor interpolation 

method has been adopted in the image rotation procedure. In total, we have 600 

samples per script for training and 500 samples per script for testing. 

6.5.2.2 Selected Methods for Script Identification 

During the evaluation process, we investigated the following four global rotational 

invariant methods: 

Met hod-A: 

Gabor multichannel filtering [119], where each feature is extracted as the av­

erage of each Gabor channel output. Rotation invariance is achieved through 

the application of the 1-D Discrete Fourier Transform (DFT) to the features 

extracted from those Gabor channels that have the same central frequency. 

Method-B: 

Steerable Gabor multichannel filtering [98], which provides an efficient rota­

tional invariant feature extraction method. 

Method-C: 
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Figure 6.11: Image samples in different scripts with different fonts: (a) Chinese, (b) 
Japanese, (c) Korean, (d) Arabic, (e) English, and (f) Russian. 
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Radon transform plus wavelet transform [49], where the Radon transform is 

applied first to estimate the principal orientation of the texture image, and 

then DWT is applied along the principal orientation for feature extraction. 

This method also achieves rotational invariance. Two wavelet transforms are 

considered in this method: Daubechies orthogonal wavelets db4 and db6. The 

two variations of this method are denoted as Method-C-db4 and Method-C-db6. 

Method-D: 

Ridgelet transform-based method [96], which is the texture classification method 

proposed in this thesis. 

6.5.3 Experimental Results And Discussion 

In the experiments, each of the texture classification methods has been applied to 

the image samples in the database and texture features have been extracted. Then, 

a A;-NN classifier has been adopted for classification. The effect of the number of the 

nearest neighbors on the correct classification rate has also been investigated, with 

k = 1, 3, 5, and 7, respectively. The results are shown in Table 6.5. 

These results show that Gabor multichannel filtering-based methods and the 

method using the Ridgelet transform (Method-A, Method-B, and Method-D) achieve 

better performances (about 99% on average) when compared with the DWT-based 

method (Method-C) (with an average recognition rate lower than 97.5%). This re­

sult is expected since characters are composed of strokes at different orientations, 

which is an important texture property of the document images. Gabor multichannel 

filtering and Ridgelet transform-based methods have good direction selectivity and 

therefore are appropriate in capturing this texture property of the document images. 

On the other hand, although the Radon transform can be applied to find the princi­

pal orientation of the document image as a whole in Method-C. the followed DWT 
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has limited direction selectivity and thus can not adequately capture the dominant 

texture property of the document images. 

For Method-C, the performance is also dependant on the selection of the wavelet. 

The orthogonal wavelets used in this evaluation are from Daubechies family wavelets, 

which are usually denoted as dbN. Here, 'AT stands for the order, or the number of 

vanishing moments, of the wavelet. The regularity of a Daubechies wavelet increases 

with its order. Furthermore, as the order increases, the Daubechies wavelet becomes 

more localized in the frequency domain. Therefore, higher order Daubechies wavelets 

can provide better frequency selectivity, and better features can be extracted. This 

property explains why db6 outperforms db4 (about 1% gain in average recognition rate 

when fc=l, as shown in Table 6.5). On the other hand, the difference in performance 

becomes smaller when N becomes even larger. 

The best performance is achieved by the feature extraction method using the 

Ridgelet transform. Apart from its advantages presented in previous sections, such as 

frequency-orientation decomposition on a polar grid and localization in the frequency 

domain, Ridgelet transform is very good at handling the line singularities that are 

abundant in the document images. As shown in Table 6.5, among all 6 languages 

under investigation, Chinese and Korean are the scripts that our method can not 

ideally differentiate, especially when k becomes larger. On the other 4 scripts, our 

method achieves 100 percent recognition rate. This is a very interesting result since 

it reveals that, from texture point of view, Chinese and Korean are closer or similar 

to each other. 

6.6 Conclusion 

We proposed a new rotation invariant feature extraction method in the Ridgelet 

transform domain for texture classification. This method is advantageous mainly 
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in two aspects. First, the Radon transform stage in Ridgelet transform provides us 

with information about data on polar grids in the frequency domain, which is ideal 

for rotation invariant feature extraction. Second, the frequency B-spline wavelet 

transform brings good frequency selectivity. This enables the extraction of features 

from appropriate sub-bands in the frequency domain. Another advantage of the 

proposed method is that working in the Radon transform domain gives features that 

are more robust against additive noise. We compared the proposed method with two 

recent methods in the field of texture classification, the wavelet-based method and the 

Gabor multichannel filtering method. Experimental results show that the proposed 

method performs better than the other two methods on all three popular data sets. 

Application of these methods to script identification, a problem from the document 

image processing field, has also been investigated. 
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Chapter 7 

Conclusion 

In this thesis, two feature extraction strategies using over-complete and sparse repre­

sentations have been investigated: a) feature extraction in the transformed domain by 

globally applying over-complete and sparse transformations, and b) feature extraction 

via local over-complete and sparse structure analysis. 

In the first strategy, the over-complete and sparse transformations are directly 

applied to the input pattern as a whole. This strategy does not focus on the local 

details of the input patterns. A special case of this strategy, rotation invariant feature 

extraction using Ridgelet transform, has been applied to the problem of texture clas­

sification. The proposed method achieves 95.94% on the Brodatz texture database, 

99.3% on the Outex texture database, and 97.5% on the Vistex texture database. 

These results outperform those that are achieved by the wavelet-based method and 

the Gabor multichannel filtering method. When applied to the problem of rota­

tional invariant script identification in document images using texture properties, the 

proposed method has achieved an average recognition rate of 99.4% on a database 

Containing 6 scripts: Chinese, English, Russian, Japanese, Korean, and Arabic. 

Contrary to the first global strategy, the second feature extraction strategy ex­

plicitly performs local over-complete and sparse structure analysis, by dividing the 

input patterns into small patches and performing learning on these local data. The 
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learning process is achieved via the K-SVD algorithm, which has been chosen in this 

thesis due to its simplicity and flexibility in controlling how sparse the representation 

could be given by the learned dictionary. 

The learned local over-complete and sparse structure has been applied to detect 

texts from scene images in two different ways. First, the local over-complete and 

sparse structure is learned solely from text signals so that it is able to give sparse 

representations to text signals and non-sparse representations to non-text signals. 

Thus, text detection can be achieved via sparsity testing. Experimental results show 

that a good text detection rate has been achieved with a recall rate of 75.2% by the 

sparsity testing technique. However, it gives a relatively high frequency of false alarms 

and the precision rate of text detection is only 67.6%. Meanwhile, the time complexity 

of this method is also high. To overcome these drawbacks, a second text detection 

method is proposed in this thesis, where the text detection problem is converted into 

a shape recognition problem using the Topographic Map Representation of an image. 

The shape recognition is achieved using a combination of the learned over-complete 

and sparse dictionary and the CNN. With the second text detection algorithm, we are 

able to achieve a recall rate of 73.2% and a precision rate of 78.7%. All these results 

show that over-complete and sparse structure is very useful in the text detection 

problem. 

The idea of combining the learned over-complete and sparse dictionary and the 

CNN has been extended to problems related to handwritten character recognition. 

In this thesis, handwritten Farsi numeral recognition has been investigated and very 

high recognition rates have been achieved (99.22% on the CENPARMI Farsi Numeral 

Database and 99.5% on the HODA Farsi Numeral Database). 

The research work in this thesis has shown promising results of applying over-

complete and sparse representations into the field of pattern recognition and detection. 
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Future research could be conducted along two directions. First, research on learning 

algorithms that produce over-complete and sparse dictionaries for given data is still at 

an early stage. More research endeavors should be made in this direction to find new 

algorithms that are more efficient and more capable in handling larger data sets and 

larger image patches. Second, applications other than those mentioned in this thesis 

are worth investigating, using the idea of the over-complete and sparse structure. One 

possible application, for example, is to apply the over-complete and sparse structure 

in the feature extraction procedure in handwritten word recognition. 
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