
NOTE TO USERS

This reproduction is the best copy available.

UMT

OO-IP Hybrid Language Design and a Framework

Approach to the GIPC

Ai Hua Wu

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy (Computer Science) at

Concordia University

Montreal, Quebec, Canada

April 2009

© Ai Hua Wu, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63431-8
Our file Notre reference
ISBN: 978-0-494-63431-8

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nntemet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ii

ABSTRACT

OO-IP Hybrid Language Design and a Framework Approach to the GIPC

Ai Hua Wu, Ph.D.
Concordia University, 2009

Intensional Programming is a declarative programming paradigm in which

expressions are evaluated in an inherently multidimensional context space. The

Lucid family of programming languages is, to this day, the only programming

languages of true intensional nature. Lucid being a functional language, Lucid

programs are inherently parallel and their parallelism can be efficiently exploited

by the adjunction of a procedural language to increase the granularity of its

parallelism, forming hybrid Lucid languages. That very wide array of possibilities

raises the need for an extremely flexible programming language investigation

platform to investigate on this plethora of possibilities for Intensional

Programming. That is the purpose of the General Intensional Programming

System (GIPSY), especially, the General Intensional Programming Compiler

(GIPC) component.

The modularity, reusability and extensibility aspects of the framework

approach make it an obvious candidate for the development of the GIPC. The

framework presented in this thesis provides a better solution compared to all

other techniques used to this day to implement the different variants of

intensional programming.

Because of the functionality of hybrid programming support in the GIPC

framework, a new OO-IP hybrid language is designed for further research. This

iii

new hybrid language combines the essential characteristics of IPL and Java, and

introduces the notion of object streams which makes it is possible that each

element in an IPL stream could be an object with embedded intensional

properties. Interestingly, this hybrid language also brings to Java objects the

power which can explicitly express context, creating the novel concept of

intensional objects, i.e. objects whose evaluation is context-dependent, which are

therein demonstrated to be translatable into standard objects. By this new feature,

we extend the use and meaning of the notion of object and enrich the meaning of

stream in IPL and semantics of Java.

At the same time, during the procedure to introduce intensional objects

and this OO-IP hybrid language, many factors are considered. These factors

include how to integrate the new language with the GIPC framework design and

the issues related to its integration in the current GIPSY implementation. Current

semantic rules show that the new language can work well with the GIPC

framework and the GIPSY implementation, which is another proof of the validity

of our GIPC framework design.

Ultimately, the proposed design is put into implementation in the GIPSY

and the implementation put to test using programs from different application

domains written in this new OO-IP language.

IV

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisor Dr. Joey Paquet for

being a great mentor. What I learned from him cannot only be covered by these

pages. Ph.D study is a long-term task. His experience, his patience, his

encouragement and his understanding give me great help to carry through. I

really appreciate that he is always there to help especially at the last hardest step.

I would also like to express my sincere appreciation to Dr. Peter Grogono for his

insightful comments and valuable advice. Without their contribution, this thesis

would not have been possible. Thanks also go to Dr. Weichang Du, Dr. Ferhat

Khendek and Dr. Greg Butter for providing great advice and for accepting to

judge this thesis. In the mean time, I have to mention my friendly team members,

Serguei A. Mokhov, Paula Bo Lu, Yimin Ding, Lei Tao, Emil Vassev, Chun Lei

Ren and Kai Yu Wan, for their outstanding team work. It is the whole team effort

which makes the GIPSY becoming a running system. Finally and specially, I

would like to thank my dearest parents, my sisters and my brother. Their love has

always been a great encouragement for me.

v

TABLE OF CONTENTS

Chapter 1 : Introduction 1

1.1 Problem Description 2

1.2 Thesis Contributions 5

1.3 Thesis Organization 7

1.4 Introduction to the Intensional Programming Paradigm 7

1.5 Dataflow Languages 8

1.6 A View of the History of Lucid 10

1.6.1 Pipeline Dataflow 11

1.6.2 Tagged-token Dataflow 12

1.6.3 Multidimensional Dataflow 13

1.6.4 Intensional Programming 14

1.7 A Simple Lucid Program Example-the Hamming Problem 14

1.8 Abstract Syntax for Lucid 16

1.9 Semantics of Lucid [Paq99] 17

1.10 Characteristics of Lucid 20

1.10.1 Stream 20

1.10.2 Loop in Lucid 20

1.10.3 Family of IPL — GIPL and SIPLs 22

1.10.4 Different from other Dataflow Languages 24

1.11 Input/Output in Lucid 25

1.12 Application Domains 25

1.13 Summary 27

vi

Chapter 2 : GIPSY - General Intensional Programming System 29

2.1 Architecture of the GIPSY 30

2.1.1 RIPE 30

2.1.2 GEE 32

2.2 General Intensional Programming Compiler (GIPC) 34

2.3 Summary 36

Chapter 3 : Software Frameworks 38

3.1 Introduction 38

3.2 Features of Frameworks 41

3.3 Framework Classification 44

3.4 Framework Methodology and GIPC 46

3.4.1 Justification for the use of the Framework Approach 46

3.4.2 Automatic Generation of Compiler Components 48

3.5 Summary 49

Chapter4 : GIPC Framework Design 50

4.1 GIPC Framework Overview 50

4.2 Conceptual View of the GIPC Framework 52

4.3 Technical Details of the GIPC Framework 54

4.3.1 GIPL component 54

4.3.2 SIPL component 56

4.3.3 ST component 58

4.3.4 CP component 60

4.3.5 Class diagram of GIPC design 60

vii

4.4 A Scenario: Add a New SIPL into GIPC 61

4.5 Contributions of the Framework Design 62

4.6 Limits of the Framework Design 64

4.7 Summary 64

Chapter 5 : Related Work on Compiler Construction System Design 65

5.1 Introduction 65

5.2 The Criteria for Evaluating Compiler Construction Systems 66

5.3 Related Work on Compiler Construction Systems 71

5.3.1 CENTAUR 71

5.3.2 FNC-2 72

5.3.3 Eli 73

5.3.4 LISA 74

5.3.5 Polyglot 76

5.3.6 JastAdd 78

5.3.7 GLU 80

5.4 Comparative study 81

5.5 Summary 85

Chapter 6 : Object-Oriented Intensional Programming Language Design in

the GIPC 86

6.1 Introduction 86

6.2 Objects as First Class Values 87

6.3 Intensional Classes Using Java and Lucid 94

6.3.1 Preliminary discussions 94

viii

6.3.2 Syntax of JOOIP 98

6.3.3 Operational Semantics 100

6.3.4 Implementation Details of the JOOIP Compiler 108

6.3.5 Data structures 112

6.3.6 Type system 114

6.4 Discussions on JOOIP 115

6.4.1 Object Mutability 116

6.4.2 Demand-Driven Constructors 118

6.4.3 Inheritance 119

6.4.4 Intensional Relationship Across Object of an Intensional Class 120

6.5 Examples of Application 122

6.5.1 Simple Example Illustrating the JOOIP-to-Java Translation Process 123

6.5.2 Euler and Feynman Algorithms in JOOIP 128

6.5.3 Application on CVS 135

6.5.4 Application on Accounting - Inheritance 138

6.5.5 Application on Satellite Tracking - Infinite Stream Expression in

Java 143

6.5.6 Application on Geography - Context Driven Computation 144

6.6 Summary 148

Chapter 7 : Related Work on OO-IP Hybrid Languages 149

7.1 Introduction 149

7.2 GLU# - Intensional Langauge and C++ 150

7.2.1 Introduction 151

ix

7.2.2 Comparable examples in JOOIP 152

7.3 Embedding IPL as lazy multidimensional arrays 155

7.4 Object-oriented IPL implementation 157

7.5 Introduction of Objects into IPL 158

7.6 Summary 159

Chapter 8 : Conclusion and Future Work 160

8.1 Conclusion 160

8.2 Limitations and Future work 165

REFERENCES 167

x

LIST OF FIGURES

Figure 1 - 1 : Dataflow graph for the Hamming problem 16

Figure 1 - 2: Semantics of Lucid [Paq99] 19

Figure 2 - 1 : Architecture of the GIPSY 30

Figure 2 -2 : Architecture of the GEE 32

Figure 2 - 3: Architecture of the GIPC 35

Figure 3 - 1 : The way to generate hot spot in white-box framework 44

Figure 3 -2 : The way to generate hot spot in black-box framework 45

Figure 4 - 1 : Overview of the GIPC framework 51

Figure 4 - 2: Generation-level of the GIPC framework 52

Figure 4 - 3: Detail view on the GIPL 55

Figure 4 -4: Detail view on the SIPL 56

Figure 4 - 5: Detail view on the ST 58

Figure 4 -6 : GIPC class diagram 61

Figure 4 - 7: A sequence diagram of adding a new language in the GIPC 62

Figure 6 - 1 : Class diagram of the JOOIP compiler 112

Figure 6 - 2: The class version and its objects 121

Figure 6 - 3: Java objects in Hybrid JOOIP 121

Figure 6 -4 : The result of above program example 130

Figure 6 - 5: The process of generating data by both algorithms 131

Figure 6 - 6: Solution for the Feynman algorithm with JOOIP 132

Figure 6-7 : Intuitive expression of above IPL class 145

xi

LIST OF TABLES

Table 1 - 1 : Abstract syntax for Lucid 17

Table 4 - 1 : A SIPL operator translation rule file 57

Table 4 - 2: ST specification 59

Table 5 - 1 : The comparison among typical existing systems 84

Table 6 - 1 : Syntax of Objective Lucid 89

Table 6-2 : Additional basic semantics to support hybrid OO-IP language 90

Table 6-3 : Hybrid Language Specifications 92

Table 6-4 : Syntax of JOOIP 99

Table 6 - 5: Additional basic semantics of JOOIP 102

Table 6-6 : Translation rules to translate JOOIP into Java 107

Table 6-7 : Summary of type mappings between Java and Lucid in JOOIP.... 115

XII

LIST OF CODE EXCERPTS

Excerpt 1 - 1 : definition of operator "upon" 13

Excerpt 1-2: Indexical Lucid program for the Hamming problem 15

Excerpt 1 - 3: Generic Lucid program for the Hamming problem 23

Excerpt 3 - 1 : A single class framework 41

Excerpt 4 - 1 : A simple example of sequential threads 60

Excerpt 6 - 1 : the programming example of OO-IP hybrid language 93

Excerpt 6 - 2: A class version 120

Excerpt 6-3 : GIPLtest.jooip - natural number example written in JOOIP 123

Excerpt 6 -4 : GIPLtest.jop - intermediate file of natural number example 124

Excerpt 6-5: The translated pure Java class - GIPLtest.java 127

Excerpt 6 -6 : Java code for the Euler and Feynman Algorithm application 130

Excerpt 6 - 7: Feynman Algorithm in JOOIP 133

Excerpt 6 - 8: CVS example - version.jooip 137

Excerpt 6-9 : Accounting example - Account.jooip 140

Excerpt 6 -10: Translated Accounting example 142

Excerpt 6 -11 : satellite example - satellite.jooip 144

Excerpt 6-12: Geography example - Geo.jooip 147

Excerpt 7 - 1 : Prime.jooip - Sieve of Eratosthenes in JOOIP 152

Excerpt 7-2 : Hamming.jooip - Hamming example in JOOIP 153

Excerpt 7-3: TrafficLight.jooip - Traffic Light example in JOOIP 154

Excerpt 7 - 4: Comparison on the same multi program 156

xiii

Chapter 1 : Introduction

Hybrid programming is the process of building programs in which the source

code is written in two or more languages, possibly belonging to different

programming paradigms. Frameworks are used in many application domains

because of their modularity, adaptability and extensibility aspects. These are two

separated domains. This thesis presents how to use the framework approach to

develop the General Intensional Programming Compiler (GIPC) in the General

Intensional Programming System (GIPSY), which can support hybrid

programming between Intensional Programming Languages (IPL) and Java, one

of the Object Oriented Programming Languages (OOPL). Based on the feasibility

of hybrid programming in the GIPC, as proven by earlier successes by Mokhov

[Mok05], the notion of intensional object is introduced into the Java language to

form a hybrid object-oriented intensional programming language. This thesis

presents a new OO-IP hybrid language which combines the essential features of

IPL and Java. The integration between this hybrid language and the GIPC

1

framework effectively demonstrates that the design of the GIPC framework

achieves the original goals at flexibility, generality and adaptability.

1.1 Problem Description

Intensional Programming (IP) is a declarative programming paradigm in which

expressions are evaluated in an inherently multidimensional context space

[PGW04]. The Lucid family of programming languages is, to this day, the only

programming languages of true intensional nature. Lucid being a member of the

family of functional programming languages, Lucid programs are inherently

parallel and their parallelism can be efficiently exploited by the adjunction of a

procedural language to increase the granularity of its parallelism, forming hybrid

Lucid languages. Thus, Lucid itself forms a family of languages, and all these

languages can be executed in sequential, parallel, or distributed mode, and the

two latter modes of execution can be using various architectures and

technologies for exchanging information between processing units.

Motivations

There are two topics in this thesis, one is about GIPC framework design and the

other is about OO-IP hybrid language design. The reason why we design GIPC in

a framework manner is because that very wide array of possibilities (pure

intensional languages, hybrid languages, different possible execution schemes,

middleware technologies, and application domains) raises the need for an

extremely flexible programming language investigation platform to investigate on

this plethora of possibilities for IP. That is the rationale for the development of the

GIPSY. As a main component in the GIPSY, the General Intensional

2

Programming Compiler (GIPC) component plays an important role to achieve the

high flexibility, especially from the point of view of developing new variants of the

Lucid language, and experimenting with them using a flexible language

development platform.

The modularity, reusability and extensibility aspects of the framework approach

[FS97] make it an obvious candidate for the development of the GIPC. In this

thesis, the GIPC framework is designed in a way that enables the automated

generation of framework hot spots to improve the generality of the system in

terms of programming language development support.

Regarding why to design an OO-IP hybrid language, there are 3 reasons.

1. Compared to pure dataflow programs and functions, functions written in a

procedural language can execute coarser-grained data elements to

increase the granularity of computation.

2. Intensional Programming Languages are off-stream languages, but object-

oriented languages are very popular language in industry, mixing IP with

standard language can help IP to be accepted by more users.

3. This hybrid language is not only one-way hybrid; it is a two-ways hybrid

language. It allows the IP language to mix with Java language, which will

allow the IP language counterpart to use most features of Java, for

example, the object concept, the inheritance of Java, the powerful

input/output of Java. These features introduced in this OO-IP hybrid

language will make it better than pure Lucid languages. It will also allow

Java language to use IP language, which will bring intensional and

3

dimensional concepts into Java. By invoking simple IPL code, this hybrid

language will allow Java to express infinite streams with multi-dimensions

and evaluate them lazily using a demand-driven execution mechanism,

which is impossible in traditional Java.

These two topics look separated, but in fact, they are closely related. The GIPC

framework design makes it is very easy to add a new IP language, and it

provides the basic support to make the implementation of the hybrid language

possible. At the same time, the easy and correct integration between the hybrid

language and the GIPC framework or the current GIPSY system, also proves the

effectiveness of the GIPC framework design.

Goals

At the end of this thesis, we aim to achieve the following goals:

1. Generalize my Master thesis result to create a framework that uses the

Master thesis concept of component generation.

2. Design the OO-IP hybrid language to clarify the concepts

a. Define the syntax of the language;

b. Define the semantics of the language which will describe the

requirements precisely for implementers and will tell users what to

expect exactly;

c. Show examples to explain how is the language used and what are

its advantages;

3. Implement a compiler for this OO-IP hybrid language, and also make sure

the compiler is designed to fit our current GIPSY system's architecture.

4

1.2 Thesis Contributions

This thesis is about hybrid languages, as well as framework design approach to

compiler and programming language development. More specifically, it aims at:

1 Characteristics analysis of the intensional programming paradigm: the

essential characteristics of I PL are the cornerstone for the current design; the

diversity of languages in the Lucid family of languages, and the diversity of

their applications tell us on the necessity to develop a flexible platform for this

language paradigm.

2 Dynamic framework design of GIPC: provides a solution compared to all

other techniques currently used to implement the different variants of

intensional programming. All of these automated generation units are hot spot

generators that generate different components of the framework, which can

then be automatically linked to the framework to provide new capacities to the

system.

o Automated generation of intensional programming language

parsers to ease and normalize the generation of parser

components.

o Automated generation of SIPL-AST to GIPL-AST translators to

enable the semantic translation and execution of any I PL flavor

through its translation into the Generic Intensional Programming

Language primitives, which is the only one understandable by the

General Eduction Engine.

5

o Automated generation of sequential thread generator to adapt to

different imperative languages that are to be used in conjunction

with IPLs to form hybrid languages.

3 Existing compiler construction systems analysis: discuss the related

work and provide the comparison with the GIPC framework design.

o Select typical systems and analyze its advantages and

shortcomings,

o Define a set of criteria to evaluate compiler construction systems to

provide a comparison basis with the capacities of the GIPSY.

4 OO-IP hybrid language design: introduces intensional concept into Java

and makes Java also to have variables that have explicit dimensions to

naturally express the notion of intensional objects. Inversely, a description of

the syntax and semantics of the introduction of object data type in IPLs is

provided. Detailed constructions include:

o Introduction of intensionality into the Java language, i.e. intensional

objects.

o Introduction of the concepts on context-mutable object and context-

immutable object.

o Integration of the above within the GIPC framework design and the

current GIPSY implementation.

o Such a successful integration provides a proof for the validity of the

GIPC framework design approach.

o Formally define the syntax and semantics of the hybrid language

6

o Implementation of the design into the GIPSY,

o Use of the resulting implementation to execute some programs

written in the new OO-IP language.

5 Other hybrid programming systems comparison: investigation to

demonstrate that the new hybrid language is an original contribution to the

field of IP language development.

1.3 Thesis Organization

Chapter 1 presents the concept of intensional programming paradigm. Chapter 2

presents the overview of the GIPSY system. Chapter 3 presents framework

technology and the reason why we adopt this methodology for the GIPC design.

Chapter 4 presents the framework design for the GIPC from implementation level

and generation level. Chapter 5 compares related work on compiler construction

system design. Chapter 6 narrows down the topic to hybrid language and

introduces a new OO-IP hybrid language by formally defining the syntax and

semantics as well as implementation details and application discussion. Chapter

7 discusses related work on hybrid programming system between IPL and 00 .

Finally, Chapter 8 states conclusion and future work.

1.4 Introduction to the Intensional Programming Paradigm

There are two main classes of programming languages: imperative languages

and declarative languages. The former is characterized as having an implicit

state that is modified by imperative constructs in the source language. As a result,

such languages generally have a notion of sequencing to permit precise and

7

deterministic control over the state during program execution. Most of the widely

used languages in existence today are imperative. The latter is characterized as

having no implicit state, and thus the emphasis is placed entirely on

programming with expressions providing invariant characteristics of the elements

manipulated by the program, as well as invariant relationships between these

elements of the program. In particular, functional languages are declarative

languages whose underlying model of computation is strictly the mathematical

notion of function.

Dataflow languages are a variety of functional languages. With the attention

being paid on concurrency, both architectures and languages for concurrency

have been around for some time. Dataflow is one way to achieve concurrency,

particularly at the fine-grain level. Dataflow architectures focus on the data

dependencies between the elements declared and manipulated by a program.

The languages designed to support such machines are called dataflow

languages [Fin95]. The Intensional Programming Language we will introduce in

this chapter can be categorized into the group of dataflow programming

languages.

1.5 Dataflow Languages

Programs in an imperative language are intended to be run on standard von

Neumann machines. A von Neumann machine consists of a processor attached

to a memory that is an indexed collection of storage locations. A program forms a

sequence of control instructions that determine the order in which values are

extracted from memory locations; computations using these values are then

8

performed, and the resulting values are stored in the memory. Sequential

execution is an essential characteristic of Von Neumann computer architectures.

The concepts embodied by the von Neumann architecture have not been directly

applicable to the domain of parallel computation.

This limitation led to the introduction of the dataflow architecture that offers a

simple yet powerful formalism for describing parallel computation. The dataflow

computation model allows the simultaneous execution of several instructions

purely on the availability of data, provided there is enough concurrency in the

application and there are sufficient resources available.

Dataflow languages have no concept of machine state or sequential execution of

program segments. Rather, they allow the declarative description of variables.

Dataflow languages have no imperative statements or commands instead of

expressions [Ost81]. The expression structure of a dataflow language is usually

quite powerful; besides the usual operators and function invocations, there are

several conditional expressions, for example "if-then-else". Since there really is

no "state", the expressions of a dataflow language do not have side effects. So,

dataflow languages are free of side effects [AW77]. This property is all-important.

This makes it possible to translate subroutines separately, without unnecessary

constraining parallelism.

Moreover, dataflow languages need the locality of effect. They simplified the

problem by assigning every variable a definite "scope," or region of the program

in which it is active, and carefully restricting the entry to and exit from the blocks

that constitute scopes. This characteristic of dataflow languages makes it

9

possible to execute programs with parallelism.

Finally, functional semantics is an important characteristic of dataflow languages.

It means in dataflow languages variables stand for values and not for memory

locations. This is different from imperative languages, which allow programmers

to be aware of and have some control over the primary memory allocation for

both programs and data, dataflow languages only allow programmers to deal with

values. Functional semantics offers the advantage of a simplified translation

process to parallel processing.

1.6 A View of the History of Lucid

The Lucid programming language has a very non-standard history for a

programming language. During its lifetime, it went from and to different goals in

mind, had diversified syntactical forms, different execution models were applied

to it and even invented for it. Without claiming to explain all this history in details,

we present here a perspective of it that pertains and is adapted to the subject we

are tackling.

In the 1980s, Lucid was used as a kind of dataflow language designed to

experiment with non-Von Neumann programming models. Besides having the

characteristics of dataflow languages, it has fundamentally different semantics

from a language like C or Lisp: Lucid expressions and their valuations are

allowed to vary in an arbitrary number of dimensions [AW77]. From this

perspective, we briefly introduce the evolving history of Lucid [Paq99].

10

1.6.1 Pipeline Dataflow

The original Lucid dates back to 1974 when Ashcroft and Wadge were working

on a purely declarative language in which iterative algorithms could be expressed

naturally [AW77]. We can say Lucid's history began from the goal of having a

language usable for program verification. Ashcroft and Wadge's work at the time

was suitable to the broad area of research into programming languages

semantics and program verification [AW76]. The original goal was to use Lucid to

describe the sequences of values that are theoretically supposed to be taken

throughout the lifetime of variables in an imperative program, as well as the

declarative expression of dependencies between these variables. In doing so,

one could compare the actual values taken by the variables during run-time, and

compare them with the values as defined by the Lucid declarations.

In the original Lucid, streams were defined in a pipeline manner, with two

separate definitions: one for the initial element, and another one for the

subsequent elements. The following are an example:

(1) f i r s t X = 1

(2) n e x t X = X + 1

The equations define variable x to be a stream. Equation (1) defines the initial

element:

X0 = 1;

and equation (2) gives the definition of the stream

X : Xi+i = Xi+1.

Based on the equations, we can get the stream

11

X = (X0,X1 X) = (1,2 i,...).

1.6.2 Tagged-token Dataflow

There are limitations in the original Lucid. The first one is that the (i+l)-th element

in a stream is only computed once the i-th element has been computed. This

wastes resources especially under the situation in which the i-th element might

not necessary be required otherwise than to compute the (i+l)-th element. More

importantly, it only permits sequential access into streams.

This introduces a different approach, which is random access into a stream by

using an index # corresponding to the current position. This version of Lucid was

eventually called indexical Lucid [FJ91]. At this point, we are defining

computation according to a context instead of manipulating infinite extensions.

It is only at this point in time that Lucid set out on the road to intensional

programming. All operators in original Lucid can be redefined in terms of the

operators, # and @. For example,

(1) f i r s t X o X @ 0

(2) n e x t X o X @ (# + 1)

Equation (1) illustrates operator " f i r s t " means the first element in stream x and

can be redefined by "x @ 0" (literally: the value of stream x at index 0); equation

(2) illustrates operator "next" means the element just after the current element

and can be redefined by "x @ (# + l) " (literally: the element lies the position

which is current context # increased by 1 in the stream x). Specific proofs of

these equivalences can be found in [Paq99].

12

Accompanying the introduction of this new version of Lucid, attempts came at

implementation. The first widely distributed implementation of Lucid is Ostrum's

Luthid interpreter [Ost81]. The technique used in the interpreter is eduction. It

can be described as "tagged-token demand-driven dataflow", in which data

elements are computed on demand following a dataflow network defined in Lucid.

1.6.3 Multidimensional Dataflow

Until now, Lucid only allows one to define simple stream instead of permitting any

sort of sub-computation, in which the sub-computation itself requires streams. To

achieve this, a general solution was also provided in Indexical Lucid [FJ91]. Sub-

computations could take place in arbitrary dimensions, and all indexical operators

would be parameterized by one or several dimensions. The # and @ operators

became #. d and @. d, where . d allows one to query about part of the evaluation

context, rather than the entire evaluation context [Paq99]. For example, the

operator "upon" became as Excerpt 1-1:

X upon

where

d Y =

W = 0 fby

end;

X

.d

@.d W

if Y then (W+l) else W;

Excerpt 1 - 1 : definition of operator "upon"

Here, the "where" clause in which local dimensions can be locally declared is

introduced, so that dimensions can be declared and used as necessary for sub-

computations. This solution also solved the problem of representing data such as

multidimensional matrices by using additional dimensions.

13

If Indexical Lucid allows dimensions to be passed as parameters to functions,

then it can have dimensions as values, which was introduced in 1999 by Paquet

[Paq99]. The definition of operators, # and @, are changed again by #.E and @ .E.

The idea in # .E is to evaluate expression E, which at some point will evaluate to

a dimension d used to query the execution context and return the index

corresponding to the d dimension.

1.6.4 Intensional Programming

Each version of Lucid tended to generalized the concepts of the previous

versions. Today, the general idea is to develop an intensional programming

language which involves the programming of expressions placed in an inherent

multidimensional context space [Paq99].

In conventional programming, values are calculated in a particular context,

usually indicated by subscripts. For example, a [x] denotes the value of variable

a at position x and b [x , t] denotes the value of variable b at position x and

time t . In intensional programming, the context is implicit. As a result,

programs are more concise and closer to their underlying mathematical

formalism. With one implicit dimension, intensional programming is called

unidimensional and, with more than one dimension, it is called multidimensional.

The Generic Intensional Programming Language (GIPL) is the latest and most

generic offspring of the Lucid family of language.

1.7 A Simple Lucid Program Example - the Hamming Problem

As we discussed above, Lucid has two basic intensional operators, one is used

14

respectively for intensional navigation (@) and the other is to query the current

context of evaluation of the program (#). In order to well understand the concepts

of Lucid, we give a typical Lucid program - the Hamming program.

The Hamming problem [WA85] consists of generating the stream of all numbers

of the form 2i3i5k in increasing order and without repetition. It sounds simple, but

we will find it is surprisingly intricate if we use an imperative language to resolve

the problem. The conditions under dataflow language are different. The following

Indexical Lucid program can easily solve this problem, as shown in Excerpt 1-2.

Figure 1-1 represents the dataflow diagram for the Hamming problem [Paq99].

H

where

H = 1

merge(

where

XX =

yy =

end;

end;

fby merge(merge(21

x,y)= if

x upon

y upon

(xx<=yy)

(xx<=yy);

(yy<=xx);

>H,3*H),

then xx

5*H) ;

else yy

Excerpt 1-2: Indexical Lucid program for the Hamming problem

15

Figure 1 - 1 : Dataflow graph for the Hamming problem

The result of the Hamming problem will be the stream:

H = (1,2,3,4,5,8,9,16,25,27,...)-

1.8 Abstract Syntax for Lucid

Lucid being a type-less language (i.e. a language where data types are not

explicitly referred to), its implementations normally supported a very small set of

data types: integer and real numbers. All variants of Lucid include function

application (by extension including operators), conditional expressions,

intensional navigation (@) and intensional query (#). Table 1-1 summarizes the

abstract syntax for Lucid [Paq99].

E

Q •

:= id

I E (E!,...,En)

| if E then E'

I # E

| E @ E' E "

| E where Q

:= dimension id

| id = E

else E''

16

I i d (i d i , . . . , i d n) = E

I QQ

Table 1 - 1 : Abstract syntax for Lucid

The non-terminals E and Q respectively refer to expressions and definitions. The

syntax of Lucid was deliberately designed to be unusual and different, to prevent

programmers from applying procedural-programming habits that might be

inapplicable, and to sustain the illustration of data flows as infinite objects.

1.9 Semantics of Lucid [Paq99]

The operational semantics of Lucid would be the following general form:

V/PhE:v

i.e. under the definition environment D, and in the evaluation context P,

expression E would evaluate to value v. The definition environment D retains the

definitions of all of the identifiers that appear in a Lucid program. It is a partial

function

D : id —» IdEntry

Where id is the set of all possible identifiers and IdEntry has five possible kinds

of value. They are:

Dimensions: define the coordinates in which one can navigate with the #

and @ operators. The IdEntry is (dim).

Constants: are external entities that provide a single value, whatever the

context. The IdEntry is (cons t , c) .

Data operators: are external entities that provide memory-less functions.

17

The IdEntry is (op, f) , where f is the function itself.

Variables: carry the multidimensional streams. The IdEntry is (var , E),

where E is the expression defining the variable. We assume that all

variable names are unique. This constraint should be easy to overcome by

performing compiler-time renaming or using a nesting level environment.

Functions: are user-defined functions. The IdEntry is (func, i d i , E),

where the i d ± are the formal parameters to the function and E is the body

of the function. Lucid encourages the use of iteration rather than recursion

even though the semantics for recursive functions is permitted,

will be changed when the @ operator or a where clause is encountered

and it associates a tag to each relevant dimension. It is a partial function

The operational semantics is defined in Figure 1-2.

18

E*M

EUJIMI

Ev-UI :

E,„, ;

Efct :

E , T :

KCK :

E„.„ :

Pud) — (const.cl .c, Pltdi — idimi

P. V \- id : c ""' ' P . V f- «f : id

Pi id) — (op, / i K, 'P(trfi =; (func,
P . ? l - « i : W ,W ' ' P . P I - « 2 :

P(id; s. {var. £ i P. P 1- £ : c

P. V h (d : r

P , 'P 1- E : id T>< irf) ^ i op, /) V, P 1- £, : P.

P . P h £ i £ i £,,) ; / i>, i'„<

P / P I - £ : * d P<id} = (func,»£;.£•') P,"P 1-• it"[*d, •

P . " P h - £ . £ , Ea\:v

P . V 1- E : trw P. V V li' : u'

P . V\- HE then £ ' e l s e E" ; »••'

P.P h E : fater V,P \-E" : S'

P.Pt-itE then £ ' e l s e E" ; i>"

P,V\-E:id Piidj = idim)

id;, £ '•>

id

'•— I%i% '. ?•'

Ew :

Mdim

Qid :

{ i l id :

QQ :

P.'PV ttE : P(id)

P , ' P h £ ' : i d P(id) = (dim) P. 'P t -£" :? ;" "P. 'Pi [id >~ ;>"] H £ : v
P/P h E-\E'E" :v

P,P\-Q : P'.P V'.-P'h E:v
P / P h £ where Q : v

P,P I- dimension id : Pf\ul>-^ (dim) ,'P\[id*-> 0|

P 7 P I : ^ = !£ : V(\id^(v3^~]7P

P,PV •idiidl,...,idn) =E : Pj\id^ (tunc, id;, E)\/P

P, T\-Q : P\ V P. V h Q' : P" V"
P.Pb-QQ' : P':P"

Figure 1-2: Semantics of Lucid [Paq99]

Each type of identifier can only be used in the appropriate situations. Identifiers

of type, op, func and dim evaluate to themselves. Constant identifiers (const)

evaluate to the corresponding constant.

Eat: The rule for the navigation operator corresponds to the syntactic expression

E @ E' E ' ' , evaluates E in context [E ' : E ' '] < where E' evaluates to a

19

dimension and E ' ' evaluates to a value corresponding to a tag in E'. The

function P(x) = PT [id i-> v"\, if x=id, then P(x) is v"; otherwise it is P(x).

Ew: The rule for the where clause corresponds to the syntactic expression E

where Q, evaluates E using the definitions (Q) therein.

Efct: Function calls require the renaming of the formal parameters into the actual

parameters (as represented by E\id\ <r-E]).

Qdim: adds a dimension to the definition environment and adds this dimension to

the context of evaluation with tag 0 (as a convention).

Qid and Qfid: add variable and function identifiers along with their definition to the

definition environment.

1.10 Characteristics of Lucid

Being a dataflow language, Lucid inherits features from dataflow languages, such

as being free of side-effect. However, it still has its specific features. The

following introduces characteristics of Lucid.

1.10.1 Stream

The distinguishing feature of Lucid is that identifiers are used to represent

streams of values, thus allowing the expression of iteration in a rather concise

manner. It is easy to do nontrivial problems in Lucid without using anything like

an array just because Lucid program uses streams. Lucid is based on data in

motion and streams play a crucial role.

1.10.2 Loop in Lucid

The simplest loop consists of a single variable specified inductively in terms of

20

itself and some constants. For example,

f i r s t V = 1

next V = 2 x v

We can interpret a loop like this as having the effect of first initializing the variable

v, and then repeatedly reassigning to it, so that it takes on the values 1, 2, 4

We can call v as loop variable. Lucid manages to treat assignment statements as

equations, and to make loops implicit, only by imposing restrictions on the use of

assignments. These restrictions all follow from the fact that a variable in a

program can have only one specification, whether direct or inductive.

For a directly specified variable, the restriction is that the variable can be

assigned to at only one place in the program. For example, the two equations

X = Y + I

X = A * B

cannot both appear in the same program. For an inductively specified variable,

the restriction is that the variable can be assigned to only twice in the program,

once for initialization and once for updating. For one thing, this means that a loop

variable cannot be updated twice; thus the equations

next V = 3 x V

next V = V + 1

cannot both appear in the same program. If an intermediate value is needed, a

separate variable must be used, for example,

Vi = 3 * v

next V = Vi + 1

The restriction on inductive definition also means that every loop variable must

21

be updated, whether the value is changed or not. The following statement cannot

appear in a program:

i f X < Y then next Y = Y - X

because it is not even an equation. Instead, we must write

next Y = i f X < Y then Y - X e lse Y

In a sense, Lucid allows only "controlled" or "manageable" use of assignment in

much the same way as a conventional structured programming language allows

only controlled or manageable use of transfer.

1.10.3 Family of IPL — GIPL and SIPLs

The Lucid family of programming languages is evolving and growing. As

mentioned in Section 1.6, Lucid is the first intensional programming language.

However, its evolution has lead to today's Lucid family of intensional

programming languages. For example, the GIPL is the generic language of the

Lucid family of languages [Paq99], which is composed of a very basic set of

operations and syntactic structures, such as the generic intensional operators @

and #, an i f syntactical structure, functions, dimension declarations, and a

where clause used to introduce local scopes. The @ operator represents a

change of context, whereas the # operator represents the interrogation of the

inherent context of evaluation.

The SIPLs (Specific Intensional Programming Languages) each have a set of

domain-specific operations. Each SIPL is a conservative extension of the GIPL,

i.e., all additional operations defined in any SIPL can be translated into GIPL

primitive operations [Paq99]. Different sets of operations, pertaining to a different

22

flavor of intensional programming, or to a different application domain,

correspond to different SIPL versions. For example, the operations f i r s t , next,

prev, fby, wvr, asa, and upon, along with the where clause, form a SIPL

named Indexical Lucid.

It was proven that all SIPLs currently known share the semantics of the GIPL

[Paq99]. This means that the GIPL is the core language (hence its name

identifying it as generic) and all other SIPLs can be translated into its primitives.

See [Wu02] for a description of semantic translation rules between the Indexical

Lucid SIPL and the GIPL. If we only use two intensional operators, the program

in Excerpt 1-1 can be translated into the general intensional program as shown in

Excerpt 1-3.

H
where

dimension d;
H = if (#.d) == 0 then 1 else merge(merge(2*H, 3*H),
merge(x,y) = if (xx<=yy) then xx else yy

where
xx = x @.d W

where
W = if (#.d) = = 0

then 0
else (if (xx <= yy)then W+l else W fi)
fi;

end;
yy = y @.d V

where
V = if (#.d) == 0

then 0
else (if (yy <= xx) then V+l else V fi)
fi;

end;
end;

End

5*H) ;

Excerpt 1 - 3: Generic Lucid program for the Hamming problem

23

1.10.4 Different from other Dataflow Languages

An "assignment statement" in Lucid can be considered as a statement of identity

or an equation. A correctness proof of a Lucid program proceeds directly from

the program text, the statements of the program being the axioms from which the

properties of the program are derived. Furthermore, in Lucid we are not restricted

to proving only partial correctness or only termination or only equivalence of

programs- Lucid can be used to express many types of reasoning.

Lucid has one great advantage: the programmer is not totally restricted to

dataflow and can think in terms of other operational concepts as well [WA85]. It is

true that iteration is not dataflow, but why should everything be reduced to "pure"

dataflow? Lucid does not force either the programmer or the implementation to

make a choice between dataflow and iteration. In fact, it is quite possible that the

programmer's view of the computation can be very different from the actual

implementation. The actual implementation might not use any data flow at all.

However, Lucid is still a "dataflow language" because 1) Pipeline dataflow model

of computation can be used for and 2) the above computation is very effective to

implement Lucid programs [WA85].

Lucid differs from that of some other dataflow languages because 1) it is a

nonprocedural language with a static denotational semantics; 2) programmers

are encouraged to think in terms of dataflow and do not need to understand the

actual implementation details; 3) other forms of operational activity, i.e. modes of

computation, are available to the programmer [WA85].

Lucid offers the possibility to achieve both efficiency and efficacy. The

24

programmer can influence the way in which the computations are to be

performed. Since the operational side is only indicated, not specified, the

programmer is spared the chore of planning the entire computation in all its

technical details such as computation scheduling. Programmers therefore have

no need of extra "dirty" features, of all those levers, handles and switches which

the imperative programmers need to control their machine. The language can

therefore be relatively simple. [WA85]

1.11 Input/Output in Lucid

The information-stream view of input/output is inadequate. It does not allow the

programmer to specify the rate at which output is produced and input consumed.

Even, it does not allow the programmer to specify the way in which input and

output interleave. The syntax of Lucid also shows this point. This is a weakness

of all "pure" (i.e. non-hybrid) Lucid dialects. However, the problem can be solved

by using a more elaborate notion of stream, one in which "pause objects" can

occur.

1.12 Application Domains

IP can be used to naturally represent and efficiently compute solutions to

problems of intensional nature. In fact, there is a plethora of problems of

intensional nature in almost all aspects of science and even in real life. For

example, natural language makes a ubiquitous use of intensional logics, as

represented with intensional words such as "yesterday" and "it", whose meaning

depend on the context of utterance.

25

The vast majority of all pure and applied sciences are also making a ubiquitous

use of intensional logics in differential, integral, or tensor equations, that have a

consistent meaning across manifolds of different dimensionality. For example, in

scientific domains, it is common to do computer simulations that normally

correspond to the operational version of a set of differential equations. These

intrinsically multidimensional and intensional equations allow complex physical

phenomena to be represented very naturally. The programming of such

equations in conventional languages does not reflect their original simplicity. The

situation gets even much worse when programming tensor equations.

Furthermore, very few mathematical programming languages and environments

enables the high-speed (i.e. parallel/distributed) execution of naturally-expressed

equation system.

It has been proven that intensional programming can be used to build programs

to solve such problems and to achieve the high-performance parallel/distributed

computation of differential or tensor equations expressed in a natural manner

[Paq99]. Moreover, intensional programming has been successfully applied to

topics as diverse as reactive programming [HCRP91], software configuration

[PW93] and distributed operating systems [Kro99].

Kropf discusses the Web Operating System (WOS) approach to global

computing [Kro99]. The heterogeneous and dynamic nature of the Web or

Internet makes it impossible to define a fixed set of operating system services,

usable for all services. Rather, generalized software configuration techniques,

based on a demand-driven technique called eduction, can be used to define

26

versions of a Web Operating System that can be built in an incremental manner.

This net-centric approach considers communication as the central issue as

opposed to the common notion of central servers.

Plaice and Wadge give an algebraic version language which allows histories

(numbered series), subversions, and joins to present a new approach to the

control of versions of software and other hierarchically structured entities [PW93],

First conceived in 1996 by Wadge and Yoder, I HTML is an intensional version of

popular Hypertext Markup-Language (HTML). The central idea of IHTML is that

the markup elements of traditional HTML, such as links, images, and file-

inclusion, can be versioned by intensional logic, with the underlying source-files

being stored in the intensional repositories. Under this scheme, every requested

URL in IHTML contains explicit versioning information; when a browser requests

an intensional page, the server makes a best fit to the requested page-version,

given existing source-file versions in the repositories under the document root of

the server.

However, intensional programming is in its early stages of development, and

recent history has proven that it is still an area that is extremely evolutionary and

of general application, which impose very stringent flexibility and adaptability

constraints on the development of programming tools using this paradigm.

1.13 Summary

In this chapter, we introduced the Intensional programming language from the

point of view of its history, characteristics, and application domains. This was

meant to give a first look at what exactly this language is; express its special

27

characteristics in order to lay the basic stones for later design; and the variety of

application domains tell us the necessity to develop platform for such language

paradigm.

In the next chapter, we will move the topic to the system we are developing, i.e.

the GIPSY. We will give the architecture of the whole system and then we will

narrow the topic down to the compiler component, the GIPC.

28

Chapter 2 : GIPSY - General Intensional

Programming System

The General Intensional Programming System (GIPSY) is a system that aims at

effectively demonstrating that Intensional programming can be used as an

effective solution to solve problems of intensional nature, and to efficiently

develop and execute parallel/distributed programs through code reuse in an

intuitive manner. The GLU parallel/distributed programming environment,

developed at Stanford Research Institute (SRI) in Menlo Park, was the first

intensional programming system that enabled the compilation of Indexical Lucid

programs, together with the use of sequential threads written in C. It has proven

to be a usable and highly efficient solution for the parallelization of sequential

programs. However, the GLU system suffered from a lack of flexibility and

adaptability. It could not cope with the latest evolutions of Lucid. Consequently,

new tools for intensional programming are required. The design and

implementation of GIPSY is done towards generality, flexibility and efficiency.

29

2.1 Architecture of the GIPSY

This section outlines the theoretical basis and architecture of the different

modules of the system. The system is composed of three main subsystems:

General Intensional Programming Compiler (GIPC), General Eduction Engine

(GEE) and Run-time Interactive Programming Environment (RIPE). All these

modules are themselves designed in a modular manner to permit the eventual

replacement of each of its components, at compiler-time or even at run-time in

some cases, to improve the overall efficiency and flexibility of the system. Figure

2-1 shows the architecture of the GIPSY [PKOO].

GIPSY

RIPE editor

im s o @§s) G JVW

GIPC

{; Lucid , .̂ / f f l j s f
f u M s r ,

Java
eo«|tit*r

~{^)

GEE

TOP

rvw

collector

Figure 2 - 1 : Architecture of the GIPSY

2.1.1 RIPE

The RIPE is a visual run-time programming environment enabling the

visualization of a dataflow diagram corresponding to the Lucid parts of GIPSY

30

programs. The user can interact with the RIPE at run-time in the following ways,

among many others:

1 Dynamically inspect the Intensional Value Warehouse (IVW);

2 Change the input/output channels of the program;

3 Recompile sequential threads;

4 Change the communication protocol;

5 Change parts of GIPSY itself (e.g. garbage collector).

Because of the interactive nature of the RIPE, the GIPC is modularly designed to

allow the individual on-the-fly compilation of either the DPR (by changing the

Lucid code), CP (by changing the communication protocol) or ST (by changing

the sequential code). Such a modular design even allows sequential threads to

be programs written in different languages (for now, we are concentrating on

Java sequential threads).

A graphical formalism to visually represent Lucid programs as multidimensional

dataflow graphs had been devised in [Paq99]. The nested definitions will be

implemented in the RIPE by allowing the user to expand or reduce sub-graphs,

thus allowing the visualization of large scale Lucid definitions.

Using this visual technique, the RIPE will enable the graphic development of

Lucid programs, translating the graphic version of the program into a textual

version that can then be compiled into an operational version. An extensive and

general requirements analysis will be undertaken, as this interface will have to be

suited to many different types of applications. There is also the possibility to have

a kernel run-time interface on top of which we can plug-in different types of

31

interfaces adapted to different applications [PKOO].

2.1.2 GEE

The GIPSY uses a demand-driven model of computation, whose principle is that

a computation takes effect only if there is an explicit demand for it. A similar

mechanism is used in functional languages such as Haskell, where it is known as

call-by-need. GIPSY uses eduction (from the Latin for "to draw" or "to lead"),

which is demand-driven computation in conjunction with a value cache called a

warehouse. Every demand can potentially generate a procedure call, which is

either computed locally or remotely, thus eventually in parallel with other

procedure calls. A value is warehoused if it is cheaper to extract it from the

warehouse than to re-compute it. Every demand for an already-computed value

is extracted from the warehouse rather than computed again. Eduction thus

reduces the overhead induced by the procedure calls needed for the computation

of demands. The architecture design is as Figure 2-2 [Mok05].

Cs>
Worker

mm r RFE

GEE

t»i>
demaftd

generator

IVW

I D

Figure 2 - 2: Architecture of the GEE

32

The GEE is composed of three main modules: the executor, the intensional

demand propagator (IDP) and the intensional value warehouse (IVW). First, the

intensional data dependency structure (IDS) which represents GEER is fed to the

demand generator (DG) by the compiler (GIPC). This data structure represents

the data dependencies between all the variables in the Lucid part of the GIPSY

program in input. This directs in what order all demands must be generated to

compute values from this program. The demand generator receives an initial

demand, which in turn raises the need for other demands to be generated and

computed. For all non-functional demands (i.e. demands not associated with the

execution of a sequential thread (ST)), the DG makes a request to the

warehouse to see if this demand has already been computed. If so, the

previously computed value is extracted from the warehouse. If not, the demand is

propagated further, until the original demand is resolved and is put in the

warehouse for further use.

Functional demands, (i.e. demands associated with the execution of a sequential

thread), are sent to the demand dispatcher (DD). The DD takes care of sending

the demand to one of the workers or resolves it locally (which normally means

that a worker instance is running on the processor running the generator

process). If the demands are sent to a remote worker, the communication

procedures (CP) generated by the compiler are used to communicate the

demand to the worker. The DD receives some information about the lifecycle and

efficiency of all workers from the demand monitor (DM), to help it make better

decisions in dispatching functional demands.

33

The demand monitor, after some functional demands are sent to workers,

gathers various information of each worker:

1 Its status (is it still alive, not responding, or dead)

2 Its network link performance

3 Its response time statistics for all demands sent to it

This information is accessed by the DD to make better decisions about the load

balancing of the workers, and thus achieving better overall run-time efficiency.

The details about GEE framework design can be found in [Lu04].

2.2 General Intensional Programming Compiler (GIPC)

The design and implementation of the GIPC is a main topic in this thesis. In this

section, we will present the architecture of GIPC, as shown in Figure 2-3.

34

Figure 2 - 3: Architecture of the GIPC

Hybrid GIPSY programs are composed of two parts: a Lucid part that defines the

intensional definitions of the variables and a sequential part that defines the

granular sequential computation units. Programs are compiled in a two-stage

process:

1. The intensional part of the GIPSY program is translated into Demand

Propagation Resources (DPR) representing the dependencies between

the elements of the program. The sequential part of the GIPSY program

35

(currently now restricted to Java) is itself composed of two parts: the first

part is the Java functions that represent the Sequential Threads (ST),

eventually executed in parallel on remote computer nodes. The second

part is the data types' definitions representing the data elements that will

be exchanged by the different computer nodes. These are translated into

Communication Procedures (CP) that are called upon when remote

demands are made. In our current implementation, the Communication

procedures have been abstracted into calls to the Demand Migration

Framework, which uses abstract tuple spaces of demand objects that are

migrated between execution nodes [PVP07].

2. The DPR and the appropriate CPs are linked within the General Eduction

Engine (GEE) to enable proper demand propagation and execution upon

evaluation. This part is compiled into a demand generator component. The

STs and appropriate CPs are packaged into Java classes and compiled

into a demand worker component. Then, the resulting Java programs,

generator and worker, are compiled in the standard way.

The Sequential Threads (STs) are now written in Java, for the sake of simplicity

and code homogeneity with the system's implementation code. However, the ST

generator component is developed in a flexible manner that will eventually allow

the writing of sequential threads in other languages such as C, C++, Fortran, etc.

2.3 Summary

In this chapter, we give an introductory-level description of the three main

components in the GIPSY system. By this big picture, we showed how the GIPC

36

work with other components and what are the requirements for the GIPC. To

achieve these requirements, we consider using a framework approach to develop

the GIPC. In the next chapter, we proceed with the introduction on what is the

framework approach to software development.

37

Chapter 3 : Software Frameworks

In object-oriented programming, the interpretation of "framework" ranges widely.

It is a promising software development approach for reifying proven software

designs and implementations in order to reduce the cost and of reusing software

and improve the quality of software built through reuse of existing architecture

and components.

In this chapter, we discuss features and technical issues about the framework

approach to software development, and illustrate the reason why we adopt the

framework approach for the GIPC.

3.1 Introduction

In the 1960s, people began to focus on software reuse. In the beginning,

reusable software components have been procedural and function libraries; in

the late 1960's, Simula 67 [BDMN73] introduced objects, classes and inheritance

which resulted in class libraries. However, both function libraries and class

libraries are mainly focused on reuse of code [Mat99] or, to a higher level, the

38

reuse of already established structures and infrastructures for building new

programs.

Since design is the main intellectual content of software and it is more difficult to

create and re-create than programming code, how to reuse design became the

main problem. This is partly achieved by packaging classes, which integrate data

and operations into class libraries. The class libraries were further structured

using inheritance to facilitate specialization of existing library classes; it delivered

software reuse beyond traditional procedural libraries. It would be more beneficial

in economical terms.

However, there are still problems with reusing the class libraries, because they

only allow for reuse of relatively small pieces of code and they do not deliver

enough software reuse in larger scales. The striving to increase the degree of

reuse and the desire to reuse higher-level designs has resulted in object-oriented

frameworks.

There are multiple definitions for what is a framework. In [Joh97], the following

two definitions are made: "a framework is a reusable design of all or part of a

system that is represented by a set of abstract classes and the way their

instances interact' and "a framework is the skeleton of an application that can be

customized by an application developer". The former define frameworks from

their structure. It indicates that a framework does not have to address one

application domain entirely but that it is possible to develop frameworks for

smaller domains, thereby opening up for composition of frameworks. The

wording "set of abstract classes" implies that one way of extension of a

39

framework has to be done through inheritance. The latter definition focuses on

the framework's purpose.

In [JF88, FS97], another definition is given: "A framework is a reusable, "semi-

complete" application that can be specialized to produce custom applications." In

contrast to earlier 0 0 reuse techniques based on class libraries, frameworks are

targeted for particular business units and application domains [FS97].

From these different definitions, we can conclude that a framework consists of a

set of classes whose instances collaborate (embodies), is intended to be

extended, and does not have to address a complete application domain (a family

of related problems) [Mat99]. In addition, frameworks are expressed in a

programming language, thereby providing reuse of both code and design.

There is confusion about whether frameworks are large-scale patterns, or

whether they are just another kind of component.

Compared to components, frameworks provide a reusable context for

components; however, frameworks are more customizable, abstract and flexible

than most components. It has more complex interfaces due to the generality of

their intended purpose. At the same time, components represent code reuse;

frameworks are a form of design reuse.

Compared to design patterns, frameworks represent a kind of higher-level pattern.

A single framework usually contains many patterns. Frameworks are a program;

however, patterns are more abstract than frameworks [PS97]. A pattern describes

a problem to be solved, a solution, and the context in which that solution works. It

names a technique and describes its cost and benefits. Patterns are illustrated by

40

programs.

3.2 Features of Frameworks

The following example from [Mat99] clearly explains the concept of a framework.

The single class framework is an abstract class F i l e with read, wri te and

size operations, as shown in Excerpt 3-1.

Fil

{

}

e::copy()(File aFile)

char buffer[BlockSize];

for (int i = 1; i++; i <=

{

this -> read(buffer);

aFile -> write(buffer)

}

this

i

->size())

Excerpt 3 - 1 : A single class framework

In this example, if we want to extend the framework with subclasses, for example,

UnixFile and interNetFi le. Because reading and writing files can be

different for different file types in UnixFile and InterNetFi le subclasses, the

F i le class will not implement read and wri te operations. However, the read

and wr i te operations can be used to implement other operations, for example

copy, by which a file can copy itself to another file. That means the read, wri te

and size operations are defined in class F i le , its subclass can not use these

operations directly, but it can use the copy operation. The copying of a

UnixFile to an InterNetFi le will invoke the read and size operations on

the UnixFile and the wri te operation on the InterNetFi le . The point is

41

that an operation in a superclass, the copy operation, can call operations in

subclasses, i.e. the superclass is controlling the execution flow. Operations like

the copy operation is often called template methods and operations like read

and w r i t e are called hook methods [FHLS97].

The use of template and hook methods are a distinguishing feature of a

framework compared to a traditional class library [Mat99]. Normally, when a class

library is used by an application, it is typically passive; the way is from the

application to the library only. For example, they perform their processing by

borrowing threads of control from self-directed application objects. In contrast,

frameworks are active, the way can be in the opposite direction, i.e. bi-directional.

For example, they control the flow of control within an application via event

dispatching patterns like Reactor and Observer. This is one of framework's

features: Inversion of control, which characterizes the run-time architecture of a

framework. Inversion of control allows the framework to determine which set of

application-specific methods to invoke in response to external events.

In the above example, we can see that hooks provide an alternative and

supplementary view to the design of the framework. If we scale up the above

example to a larger framework which consists of more (abstract) classes and

provides more templates and hook operations; then, this framework will provide a

large number of extension points for applications (i.e. instances of the framework)

to extend. The framework approach enhances its extensibility by providing

explicit hook methods that allow applications to extend its stable interface [FS97].

The appearance of the framework approach arose from the need of higher-level

42

software reuse. There is no doubt that the reusability benefits for an object-

oriented framework emanate from its extensibility and the inversion of control.

Moreover, it needs to accumulate the domain knowledge and prior effort of

experienced developers to generate a framework. This increases the

framework's reusability because for some common solution, new developers can

avoid re-creating and revalidating and avoid recurring application requirements

and software design challenges.

As an essential characteristic of object-oriented methodology, high modularity is

also a feature of framework technology. Framework encapsulates volatile

implementation details behind stable interfaces; then the impact of design and

implementation changes will be localized, which makes it easier to understand

and maintain the existing software.

The foundation of framework technology is the experience arised from large

number of applications in similar domains. The purpose of frameworks is to

increase software reuse at a higher level. So, it must have high flexibility to

support the developers, i.e. at the same time, it must leave enough freedom for

users to customize to achieve their specific requirements. This is achieved by

what is commonly known as design encapsulation, where the flexibility points (i.e.

the framework hot spots) are hidden from the broader structural perspective and

allowed to be used as black boxes.

In conclusion, the primary features of the framework approach to software

development lie in the extensibility, inversion of control [FS97], reusability,

modularity and customizability it provides to developers.

43

3.3 Framework Classification

A framework provides functionality with certain aspects that are fixed and cannot

be changed, and other aspects that are variable and intended to be changed

[Sch96]. The former is called "frozen spots" and the latter is called "hot spots".

Each hot spot incorporates a single, variable aspect of the application domain.

Different programs may be created from a given framework, depending on how

its hot spots are filled out.

According to the way in which an application is created, frameworks are

classified as white-box framework and black-box framework. A white-box

framework provides incomplete classes with regard to hot spots, as shown in

Figure 3-1.

I
I I K i

• J . • • . . • : . - . - '

• ' • • . ! • • .

• • • ' • • , . . ' ' • *

• H o t « s p o t
.. . . «

' i
i:

!

Figure 3 - 1 : The way to generate hot spot in white-box framework

It is reused by completing its classes and makes heavily use of inheritance and

dynamic binding which are available in object-oriented languages. The

extensibility in a white-box framework is achieved by first inheriting from

framework super-classes and secondly overriding the pre-defined hook methods.

White-box frameworks are sometimes called architecture-driven or inheritance-

focused frameworks [BMA97]. An arguably fatal disadvantage of white-box

framework is that developers must understand details of how framework works.

44

For instance, a developer has to derive application-specific classes from abstract

classes by inheritance or redefining their methods.

A black-box framework contains the complete code and a set of alternative

classes for each hot spot, as shown in Figure 3-2.

A
P

C

J Choice of classes

Figure 3 - 2: The way to generate hot spot in black-box framework

It is reuse by composition. The extensibility of a black-box framework is achieved

by first defining components that conform to a particular interface and secondly

integrating these components (objects) into the framework. Black-box

frameworks are sometimes referred to as data-driven or composition-focused

frameworks [BMA97]. It is easy for users because an application developer only

needs to understand client interface to make the choice.

From the point of view of scope, there are system infrastructure frameworks,

middleware integration frameworks and enterprise application frameworks. The

first one includes operating systems, communication frameworks, frameworks for

user interfaces and language processing tools. Normally, they are primarily used

internally within a software organization and are not sold to customers directly.

The second one includes ORB frameworks, message-oriented middleware and

transactional databases. They are commonly used to integrate distributed

applications and components and represent a thriving market and are rapidly

45

become commodities. The last addresses broad application domains which could

be telecommunication domain, avionics domain, manufacturing domain and

financial engineering domain. They are the cornerstone of enterprise business

activities and are more expensive to develop and/or purchase. Enterprise

frameworks can provide a substantial return on investment since they support the

development of end-user applications and products directly.

3.4 Framework Methodology and GIPC

3.4.1 Justification for the use of the Framework Approach

The GIPC component design has to be considered on:

1 Frequent requirement change: In Section 1.10.3, we introduced that the

evolution of Lucid is constant and fast. This requests a very flexible

programming system to handle frequent changes. The premature death of

the GLU system also warns us that the flexibility of a new intensional

programming system should be one of the first considerations.

2 High extensibility: In Section 1.10.3, we talk about the relation between

the core GIPL and new version SIPLs. How to extend the system from the

basic to the specific version should be another consideration.

3 Hybrid programming between IPL and mainstream programming

languages: The mainstream programming languages could be changed

based on users' reality. Allowing the system to allow the programmer to

use a variety of procedural languages (i.e. a "multi-hybrid" programming

environment) adds to the necessity of flexibility and generality of the

46

programming system implementation. The reasons why to provide hybrid

programming include the following 3 aspects:

o Increased granularity. It is well-known that functional languages

exhibit an inherent parallel evaluation semantics at the operation

level. However, the distributed/parallel evaluation of such programs

is generally inefficient because of the fine granularity of the

operands. A solution to this problem is to increase the granularity of

the data elements manipulated by the language and/or permit the

language to call procedural functions with a higher granularity, i.e.

add granular user-defined operations to the language's underlying

arithmetic. This has the effect of reducing the ratio of demand

propagation overhead vs. computation time,

o User acceptance. Intensional programming languages are far from

being mainstream. There is a very strong tendency in Computer

Science to use mainstream languages, and to rely on technologies

that allow for the reuse of existing code written in these mainstream

languages. No matter the magnitude of the advantages of IP, it

would not be realistic to expect that the Computer Science

community will embrace IP very easily. In this context, we have to

find strategies to make IP languages more mainstream. Hybrid

versions of IP and mainstream languages, especially object-

oriented languages, aims at reaching for this goal.

47

o Parallelization of legacy code. In many cases, existing programs

can be parallelized by using IPLs as an inherently parallel skeleton

language that calls legacy functions with minimal changes in the

original code. The GLU system has proven that Lucid can be used

to parallelize legacy programs effectively with minimal changes to

the original code by using Lucid a skeleton language [JDA97].

4 High modularity: The individual components designed in the GIPSY

request high modularity on the GIPC. Note that most of the other

components of the GIPSY are also themselves to be designed as

frameworks, so that the GIPSY is in fact to be an aggregation of

framework.

5 Design reuse: We hope this design can become a typical skeleton and

can be reused, in a broader perspective, for the design of compilers for

other similar families of programming languages.

Based on all these considerations, the modularity, reusability and extensibility

aspects of the framework approach [FS97] make it an obvious candidate for the

development of the GIPC.

3.4.2 Automatic Generation of Compiler Components

Because of the wide range of application domains applicable to the GIPSY, we

also take for granted that potential users will not be professional computer

scientists, and even less compiler designers. From this point of view, we should

design the framework in a way that enables the automated generation of new

compiler components while users develop new languages. That means we will

48

achieve hot spots automatic generation for a new application, which can increase

the power of the GIPSY as well as the difficulty of developing such framework.

3.5 Summary

In this chapter, we introduced the concept, features and advantages of the

framework approach to software development, and illustrate the rationale of

using the framework approach for the GIPC component development. Now, the

problem is how to develop the GIPC and to achieve all requirements. In the next

chapter, we will introduce details of the GIPC framework design.

49

Chapter 4 : GIPC Framework Design

In Chapters 2 and 3, we introduced the conceptual design of the GIPSY system

and the framework methodology of software development. The main task for us

is to design an infrastructure for the compiler construction system embedded in

the GIPSY, namely the GIPC, with maximal flexibility with regard to adding new

languages to the programming system. Due to the flexibility and variability of a

framework, framework design is inherently more complex than application design

[GHJV94]. In this chapter, we introduce details on our GIPC framework design.

4.1 GIPC Framework Overview

We described the architecture of the GIPSY in Chapter 2. There are three main

components in the GIPSY: RIPE, GIPC and GEE. RIPE is a visual run-time

programming environment, at present, the "editor" component in RIPE provides

an environment for users to input the source files which will be fed to GIPC. GEE

is a general eduction engine, whose input is the output of GIPC, an abstract

syntax tree with attributes. In this chapter, we focus on GIPC component. Figure

50

4=1 shows the overview of the GIPC framework.

GIPC

Pre-processor Dispatcher

}OTf*ent em*

5 fstwrj • sn. :

/Srwr«i*& flit***?!

J en j

Figure 4 - 1 : Overview of the GIPC framework

The design of this framework is done at two different levels of abstraction:

Implementation level: deals with the compilation of a particular flavor of GIPSY

programs into DPR, STs and CPs. The implementation level framework design

51

was already shown in Figure 2-2.

Generation level: deals with the automatic generation of compiler components

for the compilation of different flavors of GIPSY programs, taking in input the

corresponding language specifications, as shown in Figure 4-2.

Figure 4 -2 : Generation-level of the GIPC framework

Conceptual description will be given in Sections 4.2 and technical details will be

explained in Section 4.3.

4.2 Conceptual View of the GIPC Framework

In this section, we will show the conceptual view of the GIPC. From

implementation level:

1. The GIPL component deals with Generic Intensional Programming

52

Language (GIPL) which is the core language in this system. It is a GIPL

compiler with visual programming support. So, except syntax and

semantic analysis of GIPL, translators between graphic input and textual

input are also required in this component.

2. SIPL components deal with Specific Intensional Programming Languages

which are extensions of GIPL. The constant evolution of Lucid language

leads to a set of extensions which form different SIPLs. The specific

characteristic of Lucid illustrated in Section 1.10.3 let us simplify this part

of the design. Because all SIPLs share the same basic semantics with the

GIPL and can be translated into GIPL, this component will share the same

semantic analyzer as GIPL components. So, the SIPL component will

include SIPL parser and a translator from SIPL to GIPL. The GIPL and

SIPL components are organized as the middle part in Figure 4-1, which is

the declarative part - pure i.e. non-hybrid Lucid - in the GIPC.

3. Sequential Threads (ST) component deals with the code written in

procedural languages. The reasons why we consider including other

languages are because 1) as we describe in Section 1.11, one weakness

of Lucid is lacking input/output, by using other languages, we can give

clear input and output; 2) as we describe in Section 3.4, in many

application domains of IPL, users would like to use some existing codes.

That system can deal with sequential thread will improve the reusability

and encourage users to accept this new language and system.

From generation level:

53

1. Pre-processor layer will dispatch different code segments to different

components. For example, if a code segment is written in GIPL, it will be

dispatched to the GIPL component. The reason why we consider adding

such layer is to support maximal convenience to users. They do not need

to input different source codes by different menus instead of giving mixture

inputs to the system.

2. Front-end generator layer generates components in front-end layer. It help

automatically generates hot spots of the GIPC framework.

3. Front-end layer translates input programs into intermediate representation

data structures usable by the back end for further semantic analysis and

intermediate code generation.

4. Back-end layer translates intermediate representations into demand

propagation resources (DPR) directly usable at run-time by the GEE.

4.3 Technical Details of the GIPC Framework

The procedure of how the GIPC works is: specifications feeding, then hot spots

generated automatically, finally concrete system running. In this section,

regarding different components, we will introduce based on these 3 steps. The

class diagram of whole GIPC design is shown in Figure 4-6.

4.3.1 GIPL component

Figures 4-3 presents detail view on the GIPL component.

54

;G1PL front «nd

©IM,
' front

| 0 » t !
L»HSj

^ — 3 — 1

! l„v-T-r ~erLi

Figure 4 -3 : Detail view on the GIPL

GIPL class will be responsible for compiling the General Intensional Program.

GIPLParser class parses the GIPL and generates the Abstract Syntax Tree

which will be used by SemanticAnalyzer(). To support visual programming,

GIPL to Data Flow Graph (DFG) analyzer and generator are also included in the

GIPL component, even though they are designed in the RIPE component.

DFGAnalyzer class will translate GIPL code to graph and DFGCodeGenerator

class will translate graphic source input into GIPL code. Details can be found in

[Din04].

In the GIPL front end, the GIPLParser() is automatically generated by JavaCC

when the GIPL specification is given. The specification is described by grammar

expressed in near-BNF format. Examples of GIPL grammar files and the parser

generation process can be found in [Ren02]. According to framework concept,

GIPLParser() is a hot spot. Only when users input the GIPL specification, GIPL

55

front-end generator will automatically generate it.

4.3.2 SIPL component

Figure 4-4 presents a detailed view of the SIPL component.

Figure 4 -4: Detail view on the SIPL

The SIPL class will be responsible for compiling the Specific Intensional Program.

The SIPLParser class parses the SIPL and generates the SIPL Abstract Syntax

Tree, the Translator class translate SIPL-AST to GIPL-AST which will be used

by SemanticAnalyzer(). The visual programming part is the same as the GIPL,

DFGAnalyzer class will translate SIPL code to graph and DFGCodeGenerator

class will translate graphic source input into SIPL code.

In Figure 4-4, we add operator translation specifications to make sure the SIPL

AST - GIPL AST translation can be done automatically. The additional

56

syntactical constructs introduced in each new SI PL are given their GIPL

equivalence using a very simple custom specification language which is near-text

format; the translator generator will parse the file and generate a SIPL-GIPL AST

translator.

The SIPL operator translation rules are used for two different purposes: First, for

the generation of an Abstract Syntax Tree (AST) translator that will translate an

SIPL AST into a GIPL AST (as the back end is designed only for the processing

of GIPL ASTs only). Secondly, the semantic translation rules are used for the

generation of a DFG-SIPL translator that will translate the textual version of

programs written in this SIPL into a DFG representation, as well as a SIPL-DFG

translator that will do the reverse operation. An example of such rule is in the

Table 4-1, which defines how to translate SIPL operators into GIPL equivalence.

first: R

fby:

wvr:

asa:

if

@.D 0

(#.D==0) then L
else R@.D(#.D-1);

L @

(L

.D T
where

T=if (#.D==
else (U@.

where
U=if R
else

end;
end;

@.D T) @.D 0
where

T=if (#.D=
else (U@

where
U=if E
else

end;
end;

=0) then U
D(T+1))@.D (#.D-1);

then #.D
U @.D (#.D+1);

=0) then U
.D(T+1))@.D (#

. then #.D
U @.D (#.D+1)

D-l) ;

Table 4 - 1 : A SIPL operator translation rule file

57

Details of this translator generation can be found in the Chapter 4 of [Wu02].

In the SIPL front end, the SIPLParser() is automatically generated by JavaCC

when the SIPL specification is given. GenericTranslator() is also automatically

generated by TranslatorGenerator() when the operator translation rules are

given. So, SIPLParser() and GenericTranslator() are hot spots in the GIPC

framework.

4.3.3 ST component

ST component deals with sequential threads which are written in different

procedural programming languages. Figure 4-5 shows the detail view of ST

component.

ST f»o«rt e«J

'STWT! f STI v

iiTWT *J»#e| fsh *$»<•"

ST

J STt 1

*

*
HIT

mi

Figure 4-5: Detail view on the ST

58

The ImperativeCompiler class provides the most common possible

implementation for all imperative compilers respectively, so the underlying

concrete compilers only have to override some parts specific to the language

they are to compile. The SequentialThreadParser will parse the sequential

threads, the produced ASTs really contain a single ImperativeNode and are

secondary and should be merged into the main when appropriate. The

SequentialThreadGenerator is an abstract factory for all sequential threads that

has to be overridden by a language-specific sequential thread generator, e.g.

such as JavaSequentialThreadGenerator.

Table 4-2 shows the sequential thread specification.

<STs>

<ST>

<LANGID>

<CODESEGMENTs>:

<CODESEGMENT> :

:= <STXSTs>

:= <LANGIDXCODESEGMENTs>

:= #<CAPLETTER> (<CAPLETTER>)*

: =<CODESEGMENTXCODESEGMENTs>

| empty

:= <LANGDATA> <LANGID>

| <LANGDATA> <EOF>

Table 4 - 2: ST specification

According to Table 4-2, sequential treads will start with #language, then following

by specific functions or class. Excerpt 4-1 shows a simple example of sequential

threads.

#JAVA

Input () {...};

Output() {...};

#c++

cl() {...};

c2() {...};

59

#FORTRAN

f i () { . } ;

Excerpt 4 - 1 : A simple example of sequential threads

SequentialThreadGenerator() will generate sequential threads,

getSequentialThreads() will get sequential threads and produce an AST which

is an ImperativeNode. The compiling process of sequential threads will be a

given specific compiler and when the compile is done, the ImperativeNode will

be replaced by real AST More details of ST component can be found in the

[Mok05].

In the ST component, SequentialThreadParser() and

SequentialThreadGenerator() are hot spots.

4.3.4 CP component

In order to reach for maximal execution flexibility and performance, the

communication procedures can be generated according to different networking

protocols or middleware technologies. Emil provides a demand migrate

framework in [Vas05], which give details of this component.

4.3.5 Class diagram of GIPC design

The class diagram in Figure 4-6 expresses the implementation level of the GIPC

design.

60

J

" ' . I f 1

!!» • >

', ,.11(11..

GPC

'U <->

G E E R G e r e r a l o r

< [7 ,"i r 1 t;AI«.l l .*; t ' ;r . l , i*Ti
Pi >l •

r t,V-: l"f*r

P r e p r o c e s s o r

'r^epxcessorf;^p^ >•'"'* ear":

u ra leNnJe

5 inpitiNc-.v l' iv| O i . i -o r l ' j r H i'.l..

:pr<x.(.«>s<:.rPdr

Gene-a tod L.\
b y JavaCC

: 5 c r . r i ! i c . A r . a ^ . ' e - | ! i > , : ; e r a : w t o " ' D : er

j ', jgwr.-irtu-.-wy;:

Sequent '« iT: i ready HiMf-atM;

. i^.<|.4;'{/

i n w i s o T V ' .

I ' i v ^ ' - ' - i p . :

xy - f i iw ! / :

.-lit!)
, r , i " f ,r.

,vrr,p'

lavA^r.vP i r a 'TiroadCi^-Hwaro

^aviiS«eji.T-.|j:TK«.?*ffi'.-neri3((.T>;Cte

CIR. Cao'p'k' •\n unpn >

in t::

GIPSY P 'oy»* r i

1 IK

i

t'.VS-.-t

'-. n >

Si l l IMi-cr

» i
A IIJ 1 I l>

D i fT io ra ' y

• j e r e r j l e e by

Figure 4 - 6: GIPC class diagram

4.4 A Scenario: Add a New SIPL into GIPC

The sequence diagram showed in Figure 4-7 describes how to add a new SIPL

into GIPC framework.

61

.QK- J JU!K'.T CM W*p l ! < ' r M U P , -J' COPar^ , i^O^iJ&SHUi'J1 'Q» iA^lr.MSvnki-tr^:

• InNin-'ti'ffvs:!*.;:;*'!*!^;

• *»<$/% fmtr.<if}r:f
:i?r«m; ̂ j*i.:.f ̂ i t m i

vTr,ift"iTj;v,^-,3if»Sr;Tr<*lj

C^;*'*.**'.* Trsn^-r^MH.*

'•*=•*,-•.'(¥F..(,:>ynt»!«) i w , . i

>" fW^h.V-r-. ;• v.^P!. A:"

« > . , -^v*'.Tf,^ :?.:••, T J ^ f

.Cj«,*tshc,r:=;irt̂ .viv..-f- !r*'^

Figure 4 - 7: A sequence diagram of adding a new language in the GIPC

4.5 Contributions of the Framework Design

In traditional frameworks design, developers should leverage all collective

knowledge gained from many existing good framework examples to think, design

and decide the set of alternatives for each hot spot. Users can write new classes,

or choose from a pre-established list of classes to fill out a hot spot for generating

a new application.

This GIPC framework design has four major contributions:

1. Introducing the notion of layer into the compiler construction design. For

62

example, there are 4 layers in GIPC framework: Pre-processor layer, front-

end generator layer, front-end layer and back-end layer.

2. Pre-processor layer is introduced in [Mok05], which is like a dispatcher

that dispatches different code segments to different components. The

introduction of this layer can provide maximal convenience to users. They

do not need to input different source codes by different menus instead of

giving mixture inputs to the system. The specification of pre-processor can

be found in Chapter 6, hybrid language design.

3. Front-end generator layer can automatically generate hot spots. This

design greatly enhances the power of the framework, because users only

need to know how to input the specifications for the hot spot generators.

The framework components are totally black-boxes for the users. The

black-box design keeps the back end of the compiler untouched by the

addition of new component instances in the front-end. Any eventual

change in the back-end will be shielded to the users. It is thus much easier

to use for people who are not compiler design initiates, which is our target

audience for this system.

4. The automated generation of hot spots provides the required level of

flexibility and extensibility for the GIPSY. This approach permits the easy

change and addition of compiler components for various IP languages,

procedural languages and middleware technologies by hiding the

intricacies of implementation from the user as much as possible.

63

4.6 Limits of the Framework Design

The limitation of this framework is about the difficulty on type adding in the GIPC

framework. For example, for each new language adding, we must map its types

with the GIPSYtypes, and possibly add new GIPSYtypes when new languages

are added. Details about type mapping discussion are in the Section 6.3.6.

The second important limitation is the fact that all SIPLs must be "translatable" to

the GIPL, and that if the GIPL is changing, then all translation rules of all SIPLs

have to be rewritten, or a generic translation layer will have to be introduced.

4.7 Summary

The framework presented here is designed for withstanding the evolution and

generality of Intensional Programming and its widely different domains of

application. In this chapter, we describe the GIPC framework design from 2

different levels as well as technical details. We also define the content for each

specification as the input for this framework. Finally, we discuss the contributions

and limits for this framework design.

In next chapter, we will compare several typical compiler construction systems to

illustrate the contributions of this framework design. Additional explanation of of

how this framework works could be found in Chapter 7.

64

Chapter 5 : Related Work on Compiler

Construction System Design

5.1 Introduction

Language design and implementation are one of the main challenges in

computer science. The development of the first compiler in the late fifties without

adequate tools was a very complicated and time consuming task. Later on, some

formal methods were developed which made the implementation of programming

languages easier. At the same time, new domain-specific languages appear

frequently, so the language design process should be supported by modularity

and abstraction in a manner that allows incremental changes as easily as

possible. This introduced the field of compiler construction tools design. Tools

such as LEX and YACC are examples. They contributed to the automation of the

process of implementing programming languages. The possibility of the

automatic generation of interpreters or compilers for the formally defined

65

language enables the language developer a quick and simple evaluation of his

ideas in the process of language definition.

Compiler construction systems are infrastructure systems. The result of these

systems is programming development environment. There are some related

works to be done in this topic. In this chapter, we discuss seven different compiler

construction systems and attempt to evaluate them from the point of view of their

architecture, advantages and shortcomings compared to the compiler generation

framework that we described in the last chapter. According to the characteristics

of such systems, we use a set of custom evaluation criteria to compare these

typical existing systems to illustrate the contribution of the GIPC framework

design compared to these existing systems.

5.2 The Criteria for Evaluating Compiler Construction Systems

In [Slo95], the author compares the compiler generated by compiler construction

system and hand-written compilers. Previous work evaluating compiler

construction systems has largely concentrated on subtasks of the generation

problem, for example, lexical analyzer and parser generator. In this section, we

provide a set of evaluation criteria for whole compiler construction systems.

Same ideas have already been presented in the paper, "Survey, Evaluation and

Tendency of Compiler Construction Systems", which was accepted by IASTED

International Conference on ACIT-Software Engineering (ACIT-SE 2005).

Unfortunately, we could not eventually publish this paper, but its results are

presented here. The criteria include:

66

1. Flexibility

Flexibility is the ability for a system to adapt to changes in its environment or in its

requirements. That new language evolutions appear frequently will cause the

requirements of a compiler to frequently change, thus requiring to have tools that

help to change compilers easily when the syntax or semantics of the language is

evolving. In our particular case, GLU was a great achievement, as it effectively

demonstrated that the dataflow programming paradigm could be efficiently

implemented with a Lucid-C hybrid programming language and executed on

distributed and/or parallel computing platforms. However, because GLU's

implementation lacked flexibility, it could not adapt to the subsequent evolutions

of Lucid. It quickly went obsolete and even unsuited for further research because

of this lack of flexibility and was put on the shelf of heroic and defunct "proof-of-

concept" rather than to continue on with the evolution of its field of research.

2. Extensibility

Extensibility is the ability of a system design to allow extensions points where

necessary. Such extension points are designed in an abstract manner that allow

for new design elements to replace old ones, or for new instances of extensions

to be added, all with an increase on system capacities in mind. Clearly,

extensibility is the cornerstone feature of the notion of framework design, as

framework hot spots represent extension points.

In our particular case, evident extension points include the possibility of addition

of new SIPLs, or new procedural languages, so that our system becomes a

programming environment that is in fact suitable for a family of multi-hybrid

67

intensional programming languages, rather than being suitable to only one flavor

of such languages, such as GLU was. From this perspective, it is worth noting

that GLU in fact allowed C and FORTRAN procedures to be used. However, its

design did not provide extensibility provisions to easily add new procedural

languages to be used.

3. Hybrid programming support

Hybrid programming means two or even more kinds of different languages can

be used in the same program. Two of the main programming language

paradigms are imperative languages, for example Java; and declarative

languages, such as Lucid. Language hybrids within the same paradigm are

somewhat easy to merge, compared to merging to languages that belong to

different paradigms, simply because many languages belonging to the same

paradigm will share a similar semantics and execution engine implementation.

Different language paradigms will tend to rely on different execution paradigms,

underlying different semantics, and thus will be harder to "cross-breed".

However, it is not necessary that every compiler construction system should be

suite to consider hybrid programming; however, there is no doubt that for some

application domain, hybrid programming looks extremely important, such as with

the particular case we are investigating, where an inherently multi-dimensional

declarative language executed in demand/context-driven mode is coupled with a

procedural language executed with the standard von Neumann model.

4. Visual programming support

Visual programming means the system supports visual input instead of textual

68

input. Visual programming is currently a very active research area. Current

compiler generators rely on linear textual specifications, which are for designer

less suitable than visual presentation. The main reasons for this are much easier

implementation of the tool and easier processing of textual information.

Nowadays, developing software with integrating development environments and

powerful graphics hardware is much more user friendly. We even enlarge the

visual programming to animation of an interpreter's inner workings, i.e. visual

run-time animation of the program's execution. These visualizations can help

explain the inner workings of programs and are a useful tool for debugging and

teaching. In cases where the programming language at hand is cryptic and non­

standard (such as Lucid is undoubtedly), and a more standard graphical

representation of programs can be inferred from the program (such as

representing Lucid programs as standard dataflow graphs), the benefits of visual

programming are magnified and even in some cases necessary.

5. Powerful integrated environment

Integrated environment means all tools for a system are packaged together and

are controlled by a clear interface. At the beginning, compiler construction tools

were normally single-system programming environments. This approach has a

high degree of integration, because the tools share the same data structures. On

the other hand, it is very difficult to add new tools, especially those designed

outside the environment. Then, the approach is extended to package tools as a

set of independent tools, which can be called a federated environment. Such

environments are designed so that it is relatively easy to add new tools by clearly

69

and purposely defining each tool's interface in a manner that each tool can be

used by other existing and upcoming tools. However, all following shortcomings

limit the power of this integration method: it has risk of poor performance,

consistent and integrated environment do not exist, tools may have different

interfaces and incompatible interfaces often raise the need for brokers, or

translators that inevitably clutters the design and slows down the implementation.

So we need a powerful integration mechanism which offers many of the

advantages of both the single system and the federated environment. The

GIPSY, being designed as a multi-framework, each of which being closely

matched with the others, totally adheres with this important concept.

6. Usability

In short, usability means it is easy for users to understand the compiler

construction system and to use it. Users will adopt a compiler construction

system because it can shorten the process to get a new compiler. If it will take a

long time and much energy to learn the system, it will discourage users to accept

the system. A friendly approach is to provide a black box approach to the users

which, for instance, is implemented through the framework methodology.

7. Automated component generation

Automated generation of compiler components is closely connected to the

framework that we have described in the previous chapter. During the framework

technique discussion in Chapter 3, we introduced hot spots and frozen spots.

This is where the GIPC framework demonstrates one of its most original

contributions: it is designed as a framework, providing hot spots to be filled in by

70

the user when creating new programming languages; simultaneously, it also

relies on automated compiler construction tools to generate these hot spots in

the framework, and thus instantiate new compilers automatically from the

languages' specification. To our knowledge, this is a novel way of design for

compiler construction tools.

5.3 Related Work on Compiler Construction Systems

Since the 1980s, an increasing number of compiler construction systems

appeared. From the CENTAUR system in the early period to today's JastAdd

system, each has different emphasis. Here we would like to discuss some typical

systems.

5.3.1 CENTAUR

The CENTAUR system [BCDetc88], which appeared in the late of 1980s, is a

generic single interactive environment. It produces a language specific

environment by giving formal specifications of a particular programming language

- including syntax and semantics. The resulting environment includes a structure

editor, an interpreter and other tools. For system itself, CENTAUR is made of

three parts: a database component which provides standardized representation

and access to formal objects and their persistent storage; a logical engine that is

used to execute formal specifications; and an interface. The system is essentially

written in Lisp.

CENTAUR system uses formal specification of syntax and semantics to describe

a programming language. Then, the engine is designed to execute the formal

71

specification. In the specification level, the specifications of concrete and abstract

syntax, together with their relationship, are presently written in METAL [KLMM83],

a formalism developed for the MENTOR system [DLM84]. Pretty-printing of

abstract trees is defined in the PPML formalism [MC86]. Prolog is used for the

compilation of semantic specifications.

The CENTAUR system experimented automatic compilation of syntax and

semantic specifications to set up programming language compiler environment.

However, in the CENTAUR system, a lot of different formalisms are used for

language definition and it is hard for users to learn all of these formalisms. For

example, The METAL compiler has been used on large languages (Pascal, Ada,

C); however, it is somewhat difficult to use.

Moreover, the analysis of formal definitions on syntax and semantics still needs a

lot of work to do. For some language, it might be impossible to give formal

semantics specification in certain formalism. CENTAUR system does not support

reuse the language specification, either incremental programming development.

In [BCDetc88], authors also indicate that "it is not very easy to control the use of

space in CENTAUR and much effort in this direction is necessary".

5.3.2 FNC-2

FNC-2 system [JP97] started in 1986, and a first running prototype is available

since early 1989. It is an attribute grammar processing system which consists of

several independent tools (federated environment) such as asx (an attributed

abstract syntax compiler), fnc2 (the OLGA compiler, OLGA is the input language

used by FNC-2 to describe attribute grammars), ppat (a pretty printer for attribute

72

trees), SYNTAX (parser generator), XVISU (dependency graph visualisation).

FNC-2 is developed at the same organization, INRIA, as the CENTAUR system

and gets a step further than the CENTAUR system. Its most important features

are: efficient exhaustive and incremental visit-sequence-based evaluation of

strongly (absolutely) non-circular attribute grammars [KW94]; extensive space

optimizations; a specially-designed AG-description language, with provisions for

true modularity; portability and versatility of the generated evaluators; complete

environment for application development.

The architecture of FNC-2 system is composed of three parts [JPJetc90], linked

through interfaces: the OLGA front-end, the evaluator generator that is the

"engine" of the system, in which all the fundamental knowledge about attributes

evaluation is concentrated; and the translators.

FNC-2 system tries the best on efficiency, expressive power, ease of use and

versatility. However, as the system expressed, OLGA is a big language, and its

analysis and implementation are hard tasks, even with AGs. Not all of the

language is implemented; either the front-end or the translators reject some valid

programs. The most notable omissions are full polymorphism, parameterized

modules and exceptions. In FNC-2 system, the graphic input is not permitted and

it does not support the animation of compiler inner working.

5.3.3 Eli

Eli system [GHLetc92], being started in the late of 1980s, is a complete and

flexible compiler construction system. It is also a federated environment of

several tools such as: LIDO (computations in trees), PTG (Pattern-based Text

73

Generator), Maptool (mapping concrete and abstract syntaxes), etc.

Eli is a collection of off-the-shelf tools controlled by an expert system whose

problem domain is the management of complex user requests [WH88]. It

generates a compiler from specifications of the structures of the four objects

postulated by this model (source program text, source program tree, target

program tree, and machine instruction set) and the relationships between them.

Effectively, the designer defines a particular instance of the general compilation

problem by providing these specifications. Some of the tools check the

specifications for consistency, some extract information relevant to the specific

sub-problems, and others generate code to solve those sub-problems. Finally,

the generated modules are combined with standard modules from Eli's library to

obtain a complete compiler that solves the problem specified by the designer.

Specifications in Eli can be reusable since it is possible to define the attribution

module which can be reused in a variety of applications. Eli is used to create

compilers for small, special-purpose languages, standard programming

languages and extensions to existing languages. However, it does not provide

the language design in a visual manner and it is still aimed at further simplifying

the use of Eli itself.

5.3.4 LISA

LISA [MLAZOO] system, introduced in 2000, is a generic interactive environment

for programming language development, which supports for incremental

language development, for language design in a visual manner, for animation of

compiler/interpreter inner workings, for high portability of the system and the

74

generated environment. It is a set of related tools such as scanner generators,

parser generators, compiler generators, graphic tools, editor and conversion

tools, which are integrated by well designed interfaces.

Before LISA system's appearance, there was no available compiler/interpreter

generator tools support incremental language development, so the language

designer had to design new languages from scratch or by scavenging old

specifications. To avoid this weakness; inheritance, a characteristic feature of

object-oriented programming, is applied in Lisa by multiple attribute grammars. In

attribute grammars, ordinary attribute notation has deficiencies which become

apparent in specifications for real programming languages; on some worse

situation, small modifications of some parts in the specifications will have

widespread effects on the other parts of specifications. Such specifications are

not modular, extensible and reusable. Now with multiple attribute grammar

inheritance, the lexical, syntax and semantic parts of programming language

specification can be extended. It is a structural organization of attribute

grammars where the attribute grammar inherits the specifications from ancestor

attribute grammars, may add new specifications, and may override some

specifications from ancestor specifications. In case when languages have similar

semantics and a very different syntax, templates are introduced.

The system LISA has many improvements compared to similar systems. In LISA

system, the language design process could be supported by modularity and

abstraction in a manner that allows incremental changes as easily as possible.

Moreover, in the compiler/interpreter generator system LISA 2.0 the

75

programming language can be specified in visual manner with finite state

automata, syntax diagrams and semantic diagrams which are then internally

transformed to textual specifications. Finally, users of the generated

compiler/interpreter also have the possibility to visually observe the work of

lexical, syntax and semantic analyzers by watching the animation of finite state

automata, parse and semantic tree.

However, as indicated in LISA system, as an input, formal language specification

is written in the domain specific specification language which supports multiple

attribute grammar inheritance and templates. The architecture of LISA system

does not independent on parser layer, users have to learn the specific

specification language to write the input.

5.3.5 Polyglot

Polyglot project [NCM03], first version appeared in 2003, is an extensible

compiler framework that supports the easy creation of compilers for languages

similar to Java, while avoiding code duplication. There are some Polyglot-based

compiler projects [Ploy03], for example, Jif [Mye99], which extends Java with

security types that regulate information flow; PolyJ [MBL97], which adds bounded

parametric polymorphism to Java; and JMatch [LM03], which extends Java with

pattern matching and iteration features.

In Polyglot, the original unmodified language is referred as the base language;

and the modified language is called a language extension. The Polyglot

framework implements an extensible compiler for the base language Java 1.4.

This framework, also written in Java, is by default simply a semantic checker for

76

Java. However, a programmer implementing a language extension may extend

the framework to define any necessary changes to the compilation process,

including the abstract syntax tree (AST) and semantic analysis.

[LM03]A Polyglot extension is a source-to-source compiler that accepts a

program written in a language extension and translates it to Java source code. It

also may invoke a Java compiler such as Javac to convert its output to byte-code.

The first step in compilation is parsing input source code to produce an AST.

Polyglot includes an extensible parser generator, PG, allows the implementer to

define the syntax of the language extension as a set of changes to the base

grammar for Java. The core of the compilation process is a series of compilation

passes applied to the abstract syntax tree. Both semantic analysis and

translation to Java may comprise several such passes. The pass scheduler

selects passes to run over the AST of a single source file, in an order defined by

the extension, ensuring that dependencies between source files are not violated.

Each compilation pass, if successful, rewrites the AST, producing a new AST

that is the input to the next pass. Some analysis passes (e.g., type checking)

may halt compilation and report errors instead of rewriting the AST. A language

extension may modify the base language pass schedule by adding, replacing,

reordering, or removing compiler passes.

Polyglot adopts extended visitor methodology that supports extension of both

compiler passes and AST nodes, including mixin extension. The methodology

uses abstract factories, delegation, and proxies [GHJV94] to permit greater

extensibility and code reuse than in previous extensible compiler designs.

77

Compared with GIPSY, both concentrate on family programming languages and

consider the compiler framework design. However Polyglot does not support

visual programming, hybrid programming and repeat passing the AST algorithm

will inevitably affect the efficiency of system itself.

5.3.6 JastAdd

JastAdd [HM03] is an aspect-oriented compiler construction system. It is a Java-

based system and is centered around an object-oriented representation of the

abstract syntax tree in which reference variables can be used to link together

different parts of the tree. JastAdd supports the combination of declarative

techniques and imperative techniques in implementing the compiler.

In JastAdd, imperative code is written in aspect-oriented Java code modules. For

declarative code, JastAdd supports Reference Attributed Grammars (RAGs)

[HedOO]. This is an extension to attribute grammars that allows attributes to be

references to abstract syntax tree nodes, and attributes can be accessed

remotely via such references. The important extension in RAGs (as compared to

traditional attribute grammars) is the support for reference attributes. The value

of such an attribute is a reference to an object.

The architecture of JastAdd system includes 2 layers and 2 main modules.

Similar to GIPSY, JastAdd system is built on top of the LL parser generator

JavaCC that is used to parse the program and to build the abstract syntax tree.

On this preparation layer, the abstract grammar is independent of the underlying

parsing system. The parser is simply a front end whose responsibility it is to

produce ASTs that follow the abstract grammar specification. The two main

78

modules are Jadd and Jrag. Imperative behavior is added in Jadd modules that

contain methods and fields. Declarative behavior is added in Jrag modules that

contain equations and attributes. Behavior can be added to the generated

classes in separate aspect-oriented modules.

For each aspect, the appropriate fields and methods for the AST classes are

written in a separate file, a Jadd module. The JastAdd system is a class weaver:

it reads all the Jadd modules and weaves the fields and methods into the

appropriate classes during the generation of the AST classes.

Jrag modules are aspect-oriented in a similar way as Jadd modules: they add

attributes and equations to AST classes analogously to how Jadd modules add

fields and methods. The JastAdd system translates the Jrag modules to Java

and combines them into a Jadd module before weaving.

When building the AST, information about the semantic values of tokens needs

to be included. To support this, JastAdd generates a set-method as well as a get-

method for each token class. For example, for the token class BoolDecl, a

method void setlD(String s) is generated. This method can be called as an action

during parsing in order to transmit the semantic value to the AST.

By using aspect-oriented programming methodology [MJW99], JastAdd system

avoids serious limitations in Visitors in which modularization is only supported of

methods and not of fields, and in which type checking of the method arguments

and return values are not supported. Another important strength of the JastAdd

system is the ease with which imperative Jadd aspects and declarative Jrag

aspects can be combined. A compiler can be divided into many small sub-

79

problems and each can be solved declaratively or imperatively depending on

which paradigm is most suitable.

However, in JastAdd, duplicating code may need to be written for each pass to

support new nodes. Regarding input, system only considers texture input instead

of also supporting visual programming.

5.3.7 GLU

GLU (Granular Lucid) system [JD96, JDA97], developed at Stanford Research

Institute (SRI) in Menlo Park, was the first intensional programming system that

enabled the compilation of Indexical Lucid programs, together with the use of

sequential threads written in C, i.e. a Lucid-C hybrid language.

Using the dataflow programming paradigm, the trivial implementation is of too

fine granularity to be efficient; and in most scientific domains, most programmers

would like to reuse their code as much as possible. If using Lucid as a parallel

programming language would force programmers to entirely rewrite their existing

programs, which will discourage most of them from using it. Based on these

reasons, GLU system tries to increase the granularity and to reuse existing code

in a Lucid program as much as possible.

So, a GLU program includes two distinct source files: one for the Lucid part and

one for the C part. A GLU program not relying on any C functions does not have

any C part. This will permit programmers to use their existing C functions. With

regard to its architecture, GLU uses a generator-worker parallel processing

architecture. The Lucid part defines the implicitly parallel execution flow graph of

the program in terms of dependencies between operations on data elements.

80

The (compiled) Lucid part of the program is executed by the generator following

the eductive model of computation. The low-charge ripe C functions are

evaluated locally by the generator. The high-charge ripe C functions are

evaluated on a remote worker. This will increase the granularity, because in the

Lucid program, parallelism is at the basic operation level, for example, * and +,

which are extremely fine-grained; on the contrary, in the GLU program,

parallelism is at the level of C functions, which opens the door for more

acceptable levels of granularity, given the problem of overwhelming

communication overhead implied by fine granularity.

The GLU system has proven to be a usable and highly efficient solution for the

parallelization of sequential programs. However, the GLU system suffered from a

lack of flexibility and adaptability. It could not cope with the latest evolution of

Lucid. For example, the GLU system does not enable dimensions and functions

as first-class values, which is one of the key principles used in Tensor Lucid

[Paq99]. Also, it could not be easily extended to include other procedural

languages, for example, Java functions. As we will see later in this thesis, GLU

did not allow for objects to be first class values in Lucid, a great limitation that our

proposed solution is eliminating, under certain constraints stated later.

5.4 Comparative study

In the above compiler construction systems, the Centaur and FNC-2 systems

appeared in the late of 1980s, they are relatively old. The Polyglot and JastAdd

systems are all quite new systems based on Java. GLU is in the same

application domain as the GIPSY. In this section, we would like to compare all

81

these systems with the GIPSY.

From Section 5.3, we can tell that Centaur, FNC-2 and Eli systems lack flexibility,

as well as GLU. The Polyglot and GIPSY systems use the framework technology

to achieve maximal flexibility.

LISA was one of the first compiler construction systems to support incremental

programming language development. Before it, the CENTAUR, FNC-2 and Eli

systems did not support such extensibility. After it, Polyglot and JastAdd systems

focus the extension based on Java, whereas GIPSY focuses on Lucid. All of

these have high extensibility from this regard, whereas GLU lacks such

extensibility.

In these systems, JastAdd permits to combine the imperative and declarative

languages; GLU supports hybrid programming between Lucid and C; GIPSY can

support any version Lucid programs with Java functions, and it was designed to

be easily extended to other sequential threads, for example, C++ functions,

Pascal functions, etc; other systems cannot provide such functionality. The

hybrid language solution that we discuss later even allows GIPSY to use a hybrid

of Lucid and Java objects, which can the easily be extended to other languages

using the notion of object.

In these systems, only LISA and GIPSY systems provide visual programming;

other systems only support traditional textual input.

Regarding the integration mechanism, the CENTAUR system is a single system;

the FNC-2 and Eli systems are federated systems, there is a little communication

between tools included in the system; LISA, JastAdd and GLU integrates tools

82

with a nice interface, they provide nice integrated environment; and Polyglot and

GIPSY systems use a framework approach to system design. In fact, it can be

said that GIPSY uses a framework federation integration approach.

There is always a relation between system functionality and usability. It is harder

to learn a multi-functional system than a single-task system, the key is how to

reduce requests on users and let the system handle problems. Here, CENTAUR

has multi formalism for language specification definition, it is not easy for users to

learn all formalism; FNC-2 system pay more attention on ease of use; Eli and

LISA systems need users to learn the specific language for specification input, it

is hard for users; Polyglot and JastAdd systems are based on Java extension;

GLU permits users to reuse legacy C code; and one of the goals for the GIPSY

system is to provide a friendly interface. It proposes to generate framework hot

spots automatically, making it easier for users to develop new language variants.

Finally, automatic generation for framework is a new idea in GIPSY. The

comparison results can be found in Table 5-1.

83

System

Criteria

Flexibility

Extensibility

Hybrid

programming

support

Visual

programming

support

Integrated

environment

Usability

Automatic

generation

Centaur

Low

Low

No

No

Single-

System

No

No

FNC-2

Low

Low

No

No

Feder­

ated

Yes

No

Eli

Low

Mediu

m

No

No

Fede-

ated

No

No

LISA

Medium

Medium

No

Yes

Inte-

G rated

No

No

Polyglot

High

High

No

No

Frame­

work

Yes

No

JastAdd

Medium

High

Yes

No

Inte­

grated

Yes

No

GLU

Low

Low

Yes

No

Inte­

grated

Yes

No

GIPSY

High

High

Yes

Yes

Frame

work

federati

on

Yes

Yes

Table 5 - 1 : The comparison among typical existing systems

Users like to ask for perfect, they hope a system can provide all functionalities

they need. In the real world, it is a very hard task. The GIPSY system, from the

start, considers a lot of factors and tries to achieve as many requirements as

possible. It combines the object-oriented methodology and distributed execution

concepts. It uses the characteristics of intensional programming language and

keeps the design as simple as possible, despite its numerous and stringent

requirements base. Before GIPSY, there was no such compiler construction

system which realizes all these functionalities and qualities. Especially on

framework design, GIPSY introduces automatic generation to provide maximal

power.

84

5.5 Summary

In this chapter, we discuss some typical existing compiler construction systems

and the criteria to evaluate these systems. We can conclude that the GIPSY

system get a further step in such system design by the comparison.

This chapter illustrates the contribution of the GIPC framework design from

theory aspect; in the later chapters, we will, from a practical aspect, demonstrate

the reality of this GIPC framework design. A set of open problems exist here in

the GIPC framework design, for example, how to realize the hybrid programming

in the GIPC? In next chapter, we will narrow down the topic to hybrid language

and in Chapter 7 we will state the implementation specific details on hybrid

programming in the GIPC.

85

Chapter 6 : Object-Oriented Intensional

Programming Language

Design in the GIPC

The GIPSY system supports hybrid programming between Lucid and standard

procedural languages. At first glance, this introduces a challenge - how to

address objects in Lucid; descend to particulars, this also triggers off a new

hybrid language design. In this chapter, we will introduce this OO-IP hybrid

language, which can bring benefits to both languages.

6.1 Introduction

The GIPSY is a programming environment in which users can create and

execute Lucid programs that may use functions written in procedural

programming languages. These hybrid programs are then executed either in

sequential, multithreaded, distributed or parallel mode. The compiler is designed

in a way that can support hybrid programming, combining the different members

86

of the Lucid family of intensional programming languages, and various

programming languages. In our current implementation, we are concentrating our

efforts on Java.

However, Lucid and Java belong to totally different programming language

paradigms. Java is an imperative language and Lucid variants are declarative

languages. As an object-oriented programming language, Java needs strict type

declaration. There are no intensionality and dimension in Java, and the notation

of object is an important element in Java which is absent from all Lucid variants.

On the contrary, implicit type declaration is allowed in IPLs, types can be inferred

by the atomic elements of expressions; so far, there are only basic data types in

Lucid, and the notion of multidimensional streams and intensionality are

important concepts in IPLs.

Simply put, we consider introducing intensional object and designing an OOIP

language, which will combine essential features of IPL and Java and enrich both

languages' semantics. Out of simplicity, we want to preserve the standard

semantics to Java parts of the program, which is achieved by allowing our new

syntactical constructs to be translated to standard Java before execution.

In the following sections, we start with a basic case that IPL uses Java objects as

first class value which is introduced as Objective Lucid in [Mok05]; then, we will

move to a more complex case where the notion of intensional object, i.e. context-

aware objects is introduced.

6.2 Objects as First Class Values

As discussed in Section 1.10.1, one distinguishing feature of Lucid is that

87

identifiers are used to represent multi-dimensional streams of values. Currently,

values are only simple numbers. If values could be objects in this hybrid OO-IP

language, Lucid programs would be expressing streams of objects. Given that

objects lay the ground for much more possibilities than atomic data types, this

greatly adds to the possibilities of Lucid programs. Because this hybrid language

is between IPL and Java, straightforwardly, the class can be defined in Java. In

this case, we notice:

• IPL programs declare streams of objects;

• To access data and function elements of a Java class, the object-oriented

"dot" operator is introduced in the IPL syntax;

• Classes are defined in Java and used as values in the IPL;

• Classes do not encapsulate any notion of intensionality, i.e. intensional

operators cannot be used inside objects, but can only be used in the IPL

to manipulate streams of objects;

• Classes do not encapsulate any notion of dimensionality. Data elements

inside objects are not dimensional.

The introduction of the "dot" notation to the IPL forms a new member in the family

of Lucid programming languages which is called the Objective Lucid in [Mok05].

In [Mok05], the syntax of Objective Lucid is given as Table 6-1.

88

E

Q

= i d

<E>(<E>,...,<E>)

i f <E> then <E> e l s e <E>

#<E>

<E> @ [<E>:<E>,...,<E>:<E>]

<E> where <Q> end

<E>.id

<E>.id (<E>,...,<E>)

= dimension id, . . . , id

id=<E>

id(id 1 , . . . , idn)=<E>

<QXQ>

Table 6 - 1 : Syntax of Objective Lucid

The "dot" notation is added to allow accessing the objects' data members and

member functions in IPL. In [Mok05], the Additional basic semantics to support

hybrid OO-IP language are shown as in Table 6-2 [Mok05].

EobjV:

EobjF:

D,P\->E\v T(v) = D(cid) = (class, cid, JavaCDef)

Z), P h-» vid : vid D(cid.vid) - (class V, cid.vid, Java VDef)

D,P\-^ JVM [[v . v i d]] : v'

D,Pi->E.vid:v'

D,P\-^> E : v T(v) = D(cid) - (class, cid, JavaCDef)

D,P\-* fid : fid D(cid.fid) = (classF, cid.fid, JavaFDef)

D,P\-> E\,...,En: vi,..., v«

D,Ph^ JVM [[v . f i d (v i , . . . , v n)]] : v

D,P\-^E.fid(E\,...,En):v

89

D(ffid) - (freefun, ffid, JavaFreeFDef)

D,P\-*E\,...,E*:v\,...,Vn D,P\^> JVM[[ffw. f f i d (v i , . . . ,v»)]] :v

:freeR D,P^fftd(Eu...,En):v

JavaCdef - c l a s s c i d { . . . }

#JAVArn f" D,P\-) JavaCDef: D | [cid i-> (class, cid, JavaCDef)],P

JavaCDef = c l a s s c id{ . . . JavaVDef. . .}

JavaVDef = p u b l i c t y p e v i d . . . ;

#JAVAvn ' D,Ph^ JavaCDef: Z)f [cid.vid \-> (class V, cid.vid, Java VDef)], P

JavaCDef = c l a s s c i d { . . . JavaFDef. . . }

JavaFDef - p u b l i c f t f i d (f p t i f p i , . . . , f p t n fpn) { . . . }

#JAVA . D,P i-> JavaCDef: D\\cid.fid >-» (classF,cid.fid(v\,...,Vn),JavaFDef)],P

#JAVAFreeFDef:

JavaFFWCDef = c l a s s f fw{ . . . JavaFreeFDef . . . }

JavaFreeFDef = f t f f i d (f p t i fp i , . . . ,fptn fpn) { . . . }

D,P H> JavaFFWCDef : D^ffw.ffid H> (freefun, ffv.ffid, JavaFreeFDef)],P

Table 6-2: Additional basic semantics to support hybrid OO-IP language

According to the GIPC framework design presented in Chapter 4, there is a pre­

processor that splits chunks and feeds different code segments to appropriate

compilers. The chunks are written in the OO-IP hybrid language. In [Mok05],

90

Serguei A. Mokhov gave the specification of the chunks and defined four different

types of "chunk specifications":

#typedecl: defines user-defined types which will be defined in an

imperative language;

#funcdecl: defines imperative functions to be used in the part for a new

version of Lucid;

#JAVA: includes Java code and will be fed to Java compiler; this should

be extended to other languages as well, e.g. #C++, #FORTRAN, etc, as

the following is referring to the general case of IPLs.

#lntensional LANG: written in a Specific Intensional Programming

Language (SIPL) or in the Generic Intensional Programming Language

(GIPL) and will be fed to the appropriate compiler for this variant of Lucid;

The details of specification are shown in Table 6-3 [Mok05].

<GIPSY> ::= <DECLARATIONS> <CODESEGMENTS>

<DECLARATIONS> : : = <FUNCDECLSXDECLARATIONS>

| <TYPEDECLS> <DECLARATIONS>

| Empty

= #funcdecl <PROTOTYPES> <FUNCDECLS>

<TYPEDECLS>

<PROTOTYPES>

= #typedecl <TYPES>

= <PROTOTYPE> 2. <PROTOTYPES>

| Empty

<TYPES> : : = <TYPE> j_ <TYPES>

| Empty

<PROTOTYPE> ::= [immutable]<TYPE>[[]...[]]<ID>_£ <TYPELIST>)_

<TYPELIST> ::= <TYPE> [[]...[]]

| <TYPE> [[]...[]] , <TYPELIST>

| Empty

<CODESEGMENT> : : = <LANGDATA> <LANGID>

I <LANGDATA> <EOF>

91

<CODESEGMENTS>

<ID>

<LANGID>

<TYPE>

• • —

: : =

: : =

<CODESEGMENTXCODESEGMENTS>

Empty

<LETTER> (<LETTER> | <DIGIT>)*

#<CAPLETTER> (<CAPLETTER>)*

I n t

D o u b l e

B o o l

F l o a t

Char

s t r i n g

ID

V o i d

Table 6 - 3: Hybrid Language Specifications

Excerpt 6-1 is developed based on an example in [Mok05]. The pre-processor

parser is already generated by JavaCC and can parse this program correctly.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

#funcdecl
Nat42()
inc()
print()

#JAVA
class Nat42
{

private int n;

public Nat42()

n = 42;

public Nat42 inc()

n++;
return this;

public void print()

System, out.r.

}

#OBJECTIVE LUCIE

92

29.
30.
31.
32.
33.

(N @ [d:2]).print()
where

dimension d;
N = Nat42() fby.d N@[d:d-1].inc();

end;

Excerpt 6 - 1 : the programming example of OO-IP hybrid language

The result of this example will be "n=44". There is a stream of natural number N

and each number in this stream is an object.

In this section, we presented the syntax and semantics of adding "objects as first

class values" in Lucid according to [Mok05]. The syntax and semantic rules

presented here are a complement to the syntax and semantic rules of any variant

of Lucid such as presented in [Paq99] and reproduced here, i.e. it naturally

allows for the creation of hybrid versions of any member of pure Lucid languages

to be extended with objects as first class values. This was achieved quite simply

by introducing the object-oriented "dot notation" in language syntax, adding some

semantic rules allowing for the introduction of class definitions and their

respective public members into the definition environment D, evaluating the

operands of the dot operator with the existing semantic rules, and then simply

calling the underlying Java Virtual Machine to access the members and let its

own semantics take care of this part of the evaluation.

However, this hybrid language design only permits the introduction of objects as

first class values into Lucid dialects and thus involves some changes to Lucid,

but the syntax and semantics of Java is totally preserved in this case. There are

no intensional and dimensional notions inside an object. Moreover, it introduces

objects into Lucid, but does not introduce Lucid into objects. So in a sense, this is

a "one-way hybrid" language where Java code is "injected" or used by Lucid code,

93

but not the inverse. To have a 2-ways hybrid language, we have to enhance our

design; the next section will introduce the other way around, where Java objects

are allowed to use Lucid code in their class definitions.

6.3 Intensional Classes Using Java and Lucid

This section introduces Object-Oriented Intensional Programming (OO-IP), a new

hybrid language between Object-Oriented and Intensional Programming

Languages in the sense of the latest evolutions of Lucid. This new hybrid

language combines the essential characteristics of Lucid and Java, and

introduces the notion of object streams which makes it is possible that each

element in a Lucid stream to be an object with embedded intensional properties.

Interestingly, this hybrid language also brings to Java objects the power to

explicitly express and manipulate the notion of context, creating the novel

concept of intensional object, i.e. objects whose evaluation is context-dependent,

which are here demonstrated to be translatable into standard objects. By this

new approach, we extend the use and meaning of the notion of intensional

objects and enrich the meaning of object streams in Lucid and semantics of

intensional objects in Java.This will form a full-fledged hybrid OOIP language,

which is the main goal if this thesis. However, as will be uncovered in the

remainder of this chapter, introducing Lucid into Java, albeit providing much more

possibilities, is matched with proportional difficulties.

6.3.1 Preliminary discussions

To introduce intensional and dimensional concepts into objects, which introduces

94

intensional objects into the OO-IP hybrid language design; there are two ways to

do this. One is to allow the use of Lucid syntactical constructs into classes (e.g.

Java classes), which we might call "Intensional Object Oriented Programming"

(IOOP); the other way is to devise new Lucid constructs to allow the declaration

of "Lucid objects", which we might call "Object Oriented Intensional

Programming" (OOIP). Before we proceed any further, we must analyze what

both mean, what would be their respective benefits and possible drawbacks and

difficulties, and make a choice as to which approach we are adopting in this

research work.

Solution 1: Lucid classes

One approach requires changing the syntax of Lucid to allow class declarations

to be expressed inside the Lucid syntax. This might seem an interesting concept,

and we have been lured into it in the course of this research work. But eventually,

we have figured out different important reasons why this is not a viable solution.

The main reason is that Lucid is a type-less language, i.e. it does not declare

types, nor does it explicitly refer to types anywhere in its syntax. For sure its

semantics and model of execution use type inference and type analysis, but

types are not explicitly stated in Lucid programs. Even when we have introduced

object as first class values in Lucid in Section 6.2, we have isolated type

references outside of the Lucid part of the syntax, thus preserving Lucid's

"syntactical typelessness". As classes are abstract data types, introducing

classes inside of Lucid would introduce explicit reference to types into Lucid, and

we felt that this would considerably change the language, up to a point where the

95

new language would cease to be in the "standard" Lucid family of languages, and

would thus require that our existing execution engine and compiler frameworks

would have to be redesigned.

Solution 2: Intensional Java objects

This approach requires an extension of the syntax of Java so that Lucid code is

allowed to be included inside otherwise standard Java classes. Here the difficulty

lies not so in the syntax, but rather in the semantics of the thus created language.

Java has a very well established and standard semantics as embedded in Java

Virtual Machines. We certainly do not want to have to dig deep and bury

ourselves in Java semantics and JVM implementation. A workaround solution to

this problem comes in providing a translation of the embedded Lucid constructs

into standard Java, thus having the intensionality syntactically expressed in Lucid

but whose semantics rules are semantic translation rules that translate such

constructs into standard Java, thus allowing ourselves to use the underlying Java

semantics rather than change it. This of course limits certain qualities of our

solution, e.g. the resulting implementation would inevitably be less efficient than if

directly translated into bytecode. But we have to keep in mind that this work's

main goal is language development and proof of concept of the developed

languages. Execution optimization will come in time if our language concepts

prove to be fruitful.

In order to provide a fully integrated OO-IP hybrid language, we need to provide

integration of objects into Lucid, as well as Lucid into objects. Our solution aims

at: (1) allowing Lucid to define streams of objects, and to introduce the dot

96

notation in Lucid syntax, allowing Lucid to use objects and their members; (2)

allowing classes to define intensional data members, as well as allowing

methods to use intensional expressions as part of their statements, yielding

intensional methods; implementation of the proposed solution inside the GIPSY

infrastructure, thus permitting (3) the introduction of any flavor of Lucid inside of

class declarations by the automated translation of Lucid variants into Generic

Lucid prior to execution, as well as (4) the execution of such hybrid OO-IP

programs in a scalable distributed environment using the GIPSY'S run-time

engine architecture. The big picture of our particular vision of OO-IP can be

itemized as the following:

• The object-oriented "dot" notation is introduced in Lucid to access data

and function elements of a class similarly as it was first introduced in

[Mok05].

• Intensionality is introduced into Java classes by the embedding of Lucid

expressions into otherwise standard Java classes.

• Java classes encapsulate the notations of intensionality and

dimensionality, thus creating intensional classes.

• For an intensional class varying over a multidimensional manifold, one

instance (i.e. object) of this class exists for each point in this manifold.

• As intensional data members are declared using Lucid expressions and

translated into standard Java classes calling the eduction engine for the

evaluation of their embedded Lucid expressions, the standard syntax and

semantics of Java is preserved.

97

• An intensional data member in fact declares an intensional relationship

applying to the stream of values that it declares across the objects of the

intensional class in which it is declared.

• All intensional members' object instances are dynamically generated by

the execution of the intensional execution engine, driven by the current

context and the Lucid expression defining that intensional member.

• All Java classes embedding Lucid expressions implies intensional

evaluation only when evaluating the part of their definition that embeds

Lucid expressions. Standard Java classes are still evaluated using the

standard Java semantics, i.e. the execution of OO-IP programs is driven

by standard Java semantics, unless in the punctual presence of Lucid

expressions, in which cases the evaluation is switched to the intensional

evaluation engine.

• The hybrid language being proposed here is bound to the Java syntax

and semantics, so we thus name it "JOOIP".

6.3.2 Syntax of JOOIP

We describe the syntax of JOOIP in Table 6-4, explaining (1) how can Lucid use

objects' members, and (2) how can Lucid expressions be embedded into Java

classes.

... standard Java syntax
(1) <data member declaration ::= (standard Java data member declaration)
(2) | type id = <embedded Lucid expr>;
(3) <expression term> ::= (standard Java expression terms)
(4) | <embedded Lucid expr>

standard Java syntax...

(5) <embedded Lucid expr> ::= /@ <Lucid variant tag> <E> @/
(6) <Lucid variant tag> ::= # <Lucid variant id>

98

(7)
(8)
(9)
(10)
(11)
(12)

(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

<Lucid variant id>

<E> :

<Q> :

| empty
::=GIPL
| INDEXICALLUCID
| JLUCID
| OBJECTIVELUCID
| LUCX

:= id
I <E>(<E> <E>)
| if <E> then <E> else <E>
| #<E>
| <E>@[<E>:<E> <E>:<E>]
| <E>where<Q>end
| <E>.id
| <E>.id(<E> <E>)

:= dimension id id
| id=<E>
| id(id1,...,idn)=<E>
| <Q><Q>

Table 6 - 4: Syntax of JOOIP

In order to achieve the stated features set in Section 6.3.1, we have determined

that the solution is composed of two separate and complementary aspects. One

is about the change to the original syntax of Lucid in order to allow Lucid syntax

to manipulate objects' members using the standard "dot notation" used in object-

oriented languages. That has already been achieved in various solutions. The

other is about the change to the original syntax of Java to allow Java classes to

define intensional data members, as well as intensional methods. Syntactically,

both are achieved by allowing the embedding of Lucid expressions inside of an

otherwise standard Java class. In Table 6-4, productions (13)-(24) provide the

first part, and productions (1)-(12) shows the second part. In Table 6-4,

productions (19) and (20) are added into the original Lucid syntax to allow Lucid

to access, respectively, data and function elements of a class as it was done in

Objective Lucid in [Mok05]. The syntax of JOOIP shows in productions (1)-(12)

99

how to integrate the Lucid expressions into a Java class. We use a tag 7@" to

start an embedded Lucid expression, which is to be ended by a corresponding

"@/" tag (see production (5)). Preceded by "#", the <Lucid variant tag> indicates

which Lucid variant is used for the following embedded Lucid expression (see

production (6)-(12)). This will enable our preprocessor to send the Lucid code

segment to the corresponding Lucid compiler during translation time. These are

the same tags and design solution used by the Preprocessor of GIPC in

generalized compilation [MP05]. This solution permits the JOOIP to embed Lucid

expressions written in any variant of Lucid supported by the GIPSY, a unique

feature of our solution.

6.3.3 Operational Semantics

We use operational semantics to model the computations of programs, which is a

sequence of steps between states [Mos01]. An operational semantics in the style

of involves pairs that consist of two components: a program and an environment

[Plo81]. According to [Paq99], the semantics introduce the third component: the

context; which form a duet <D,P>, where D stands for the intensional definition

environment encompassing the definitions defined by the Lucid program which

are stored as a cross-referenced dictionary pointing to different AST nodes

corresponding to the compiled Lucid program, and P stands for the current

context of evaluation. (Details of Lucid semantics could be found in Section 1.9.)

The component "Environment" defines an "environment" for storing and retrieving

definitions of program identifiers. In this component, the following operations on

environment are defined:

100

• x <- v: Binds a value v to a variable x;

• D, PT [/cte-v]: In the definition environment D, and in the evaluation

context P, binds a value v to a variable /'d.

• D, P\-> E: v. In the definition environment D, and in the evaluation context

P, expression £ evaluates to value v.

• E' [id\ <-£]: Function calls require the renaming of the formal parameters

into the actual parameters.

• D T [/'c/'i-Wc/l, P: In the definition environment D, and in the evaluation

context P, variable id' points to the variable id.

The standard operational semantic rules of generic Lucid from [Paq99, Mok05,

MPG05] are extended as shown in Table 6-5. We present here only the rules that

require changes from the standard semantic rules, as well as additional rules

related to features uncovered by generic Lucid. In these semantic rules, the

semantic operator T represents the addition of a mapping in the definition

environment D, associating an identifier with its corresponding semantic record,

here represented as a tuple. Following is detailed textual description of the

meaning of each semantic rule:

101

•Lob JV

L0 b j F

' F T

Jc D e f

J VDef

'FDef

J p F D e f

P.V \- /•' : r T(i ') = P(cui) = (c l a s s , c id , JavaCDef)
P.V I- fid : rid P(ci.d.rid) = (classV, c id .v id , Java VDef)
P.V \- JVM[[v.vid]] : <v

P.V h K.vid: vr

P.'P \- /-* : v T(v) = P(cUl) = (c l a s s , c id , JavaCDef)
"P.'P I- fid: fid V(cid.fn!) = (classF, c i d . f i d , JavaFDef)
•D.V\-Ki..:..En:vi..'..,v*
P. V h .lVM[[v.fid(v,..... v,,)]} : vr

• f . -Ph E.fid{Ei E„.) : vv

P{jfui) = ffreefun, f f id , JavaFFDef)
P.'P \- Ei Kr-.: -i.-i vn

•P.V \- JVM[[ffw.ffid{vt vn)]]:vr

P,V\- ffid[Es Er>) : vr

JavaCDef = class cid {,..)•

'P.'P \- JavaCDef : 'Pf[cidt— (class, cid, JavaCDef)]. V

JavaCDef = class cid {. . ,JavaVDef . . .}
Java VDef = public type vid . , .;

P.P h JavaVDef r T> J [cid.vid *-* (classV, cid.vid. JavaVDef)]. V

JavaCDef = class cid \...JavaFDef . . .}
JavaFDe|_ = public ft fid(fpti fpi , fptnfpn){. . .\

P.P (- JavaFDef : 'Pt[cid.f id h-» (classF. cid.fid. JavaFDef)]. V

JavaFFWCDef = class ff w {. . . JavaFFDef . . .}
JavaFFDef = ftffid(fpti fpi fptD fpn){. . .)

P.V (- JavaFFDef : J>t[ffid>— (freefun. ffid. JavaFFDef)]. V

Table 6-5: Additional basic semantics of JOOIP

JcDet: semantically identifies a Java class by the syntactical form: class cid {...},

associates this class declaration to the identifier cid, and stores it in the definition

environment D as the semantic record (class, cid, JavaCDef). A class can

contain member variables (JavaVDef) and member functions (JavaFDef, also

called "methods"). These are processed in a similar manner by the two following

semantic rules.

102

JvDef: semantically identifies a Java class member variable (or data member) in

a Java class JavaCDef by the syntactical form: public type vid... found inside of

this class declaration. The semantic record (classV, cid.vid, JavaVDef) is used to

represent a Java class data member vid declared inside a class declaration

JavaVDef for the class cid.

JFDef : semantically identifies a Java member function in a Java class JavaCDef

by the syntactical form: public ft fid(fpti fpi,..., fptn fpn){...}. The semantic record

(classF, cid .fid, JayaFDef) is used to represent a Java member function fid

declared inside a class declaration JavaCDef for the class cid.

JFFDef: semantically identifies a "Java free function" (i.e. a free function such as in

C++, but written in Java syntax) that is not explicitly defined in a given class, and

has the syntactical form: ft ffid(fpti fpi,..., fptn fpn){...}. The semantic record

(freefun, ffid, JavaFreeFDef) is used to represent a "Java free function" ffid, i.e. a

function that is directly available in the Lucid program, and that is not a member

of any class. Note that free functions are not allowed in standard Java. In terms

of implementation, these "free functions" are all put inside a wrapper class to be

part of the worker component of the execution engine as originally defined in

[Mok05, MPG05].

Lobjv: defines the semantics of the evaluation of a reference to a class data

member by a Lucid expression using the object-oriented dot operator. The top

part of the rule insures that, in E.vid: (1) the Lucid expression E evaluates to a

value v that is an object of type cid, as being associated in the definition

environment D to the tuple (class, cid, JavaCDef), (2) the variable vid is a public

103

member of the class cid. Once this is established as holding, the Java Virtual

Machine can be called upon to evaluate v.vid (noted as JVMf.ly.Wd]]), to yield a

value vr.

LobjF: defines the semantics of the evaluation of a reference to a class member

function by a Lucid expression using the object-oriented dot operator. The top

part of the rule insures that, in E.f/d(Ei,..., En): (1) the Lucid expression E

evaluates to a value v that is an object of type cid, as being associated in the

definition environment D to the tuple (class, cid, JayaCDef), (2) the method fid is

a public member of the class cid. Once this is established as holding, all actual

parameters are evaluated to values Vf,...yn, the JVM can be called upon to

evaluate v.fid(vi,..., vn) (noted JVM//V.fid(vi,..., v„)]]), to yield a value vr.

LFF: defines the semantics of the evaluation of "Java free functions". The rule is a

simpler version of L0bjF with no class type identifiers present, and no object to

compute upon which to call the function. As mentioned earlier, Java does not

have free functions, so we cannot claim that the Java Virtual Machine can

execute them. In fact, all free functions are wrapped in a "free function wrapper"

class at compilation, with all free functions inserted in it as static functions

[Mok05, MPG05]. The JFFDef rule is inserting all the free functions in this wrapper

class, which we called ffw. Then, upon calling such "free functions", this rule is

called and assumes that the "free functions" have been wrapped as static

functions into the ffw class, then call the appropriate function. This mechanism is

an improvement and refinement over [Mok05, MPG05].

104

http://JVMf.ly.Wd

The semantics describes precise requirements for developers. Here, we give an

example to show how the semantics is applied. Suppose there is a Lucid

expression E of type class IA which includes a Lucid stream N = 0,1,2..,. , and a

member function averagefn, m) that will get average value of n-th and m-th

elements' value of the Lucid stream N. Then E.average(m, n) yields (Nvm +

Nvn)/2, where Nvm and Nvn are the m-th and n-th elements' values of stream N,

respectively.

The rule to use is L0bjF, which would conclude

D, P |- E.average(m, n): (Nvm + Nvn)/2

To establish this, if working from bottom to top, there will be

D, P |- JVM[[v.average(vm, vn)]] : (Nvm + Nvn)/2

Since the whole system depends on the correctness of the underlying Java

implementation, here we suppose Java compiler translates 'v.average(vm,vn)'

into byte codes correctly and that the JVM interprets this byte code in a standard

manner.

In the above rule, Lucid expression E will evaluate to a value v which is an object

of class IA, as being associated in the definition environment D to the tuple (class,

cid, JayaCDef).

The second line of the rule explains how to find average(x, y): it must be

contained within D, so that the application D(average) yields a tuple which says

that there is a member function named average that has been declared with a

JavaFFDef.

The third line of the rule explains how the variables get evaluated:

105

D, P |- m, n : vm, vn

The instantiation of this rule for the example would be:

Def1 = class IA{. . . Def2...}

Def2 = Stream N;

int average(int x, int y) {return N@x + N@y;}

D, P |- Def2 : D T [v.average -> (v, N, average, Def2)], P

In this way, we also get context for each intensional object.

Table 6-6 shows the translation rules applied to translate JOOIP code into

standard Java code. The following paragraphs explain each of the translation

rules.

(TRl) Start =>
(1) new file: cid.java
(2) new StringBuffer: HdBuf, IdentifierBuf, StaticBuf, MethodBuf, JavaBuf
(3) HdBuf «" impor t gipsy.lang.*;

import gipsy.GEE.GEE;"
public class cid implements ISequentialThread { "

(4) IdentifierBuf « "private GIPSYContext oContext;"
(5) StaticBuf « "static {"
(6) MethodBuf « "public WorkResult work(){cid.main(null); return null;}"

(TR2) standard Java syntax =>
(7) JavaBuf « standard Java data member declaration
(8) JavaBuf « standard Java expression terms

(TR3) <data member declaration> ::= qualifier type id = <embedded Lucid expr> =>
(9) IdentifierBuf « "private type id =0;

« private Boolean b(id)IsWritten = false;"
(10) IdentifierBuf « see (TR4);

(TR4) <embedded Lucid expr> ::= /@ <Lucid variant tag> <E> @/ =>
(11) IdentifierBuf « "private static GIPSYProgram SoGEER;;

« public GEE oGEEj = new GEE(SoGEERj);"
(12) StaticBuf « "GIPC oGIPQ = new GIPC(<E>);

« oGIPCi.compile();
« SoGEERi = oGIPCi.getGEER();"

(13) JavaBuf « "oGEEi.eval(oContext);"
(TR5) Finish =>

(14) StaticBuf « " } "
(15) cid.java « HdBuf;
(16) cid.java « IdentifierBuf
(17) cid.java « StaticBuf
(18) cid.java « MethodBuf

106

(19) cid.java « JavaBuf
(20) cid.java « " } "

Table 6-6: Translation rules to translate JOOIP into Java

TR1. When starting to translate a JOOIP program, the translator first creates a

new Java file and five string buffers, the latter being rendered necessary by the

fact that the translation output cannot be done sequentially upon sequential

scanning of the input JOOIP program. The first translation step is to generate the

class declaration header part to the Java file (3), then generate the code for the

instance context member of the intensional class (4), then initiate a static block

that is to contain static initialization of one GEER data member per each Lucid

expression embedded in the intensional class (5). Finally, a work() method is

generated that is a simple wrapper that calls the main() function of the intensional

class; this method is the one called by the GIPSY run-time system when run from

within a GIPSY instance as prescribed by the ISequentialThread interface that

the class is declared to implement at (3). The work() method refers to a

"WorkResult" class which collects results of work performed by a sequential tread

(ST) or a worker. It is the base class for the work results and it is one of the

interfaces between ST generators, GIPC in general, GEE in general, IDP and

warehouse of GEE.

TR2. This rule signifies that the translator simply copies any standard Java code

(i.e. code for which no translation rule applies) as-is to JavaBuf.

TR3. This rule signifies the translation to occur when an intensional data member

is encountered by the translator. On the surface, the processor will replace the

intensional data member declaration with a standard Java data member

107

declaration. For each such occurrence, the processor records the identifier in a

table and leaves a field for later link to the corresponding GEER as processed by

(TR4). As translation rule (TR5) takes effect, it will replace the Lucid expression

by a call to the GEE to execute the Lucid expression. The qualifier is one of the

Java's visibility qualifiers, such as private, protected, or public, where we

currently opting out for private. The type denotes a Java member type that Java

part expects the Lucid expression to produce. At run-time, when the Lucid

expression is done evaluating, the Lucid-to-Java type matching and conversion

occurs according to the definition of the type system presented in Section 6.3.6.

TR4. This rule signifies the translation of the embedded Lucid code segments, as

identified by the occurrence of the opening /@ and closing @/ markers. For each

such occurrence, the translator generates an identifier of type GIPSYprogram

(representing a GEER) and generates code in the StaticBuf to generate the

instance GEER at run time by calling the appropriate parser in the GIPC

framework, as directed by the Lucid variant tag. The translator then effectively

replaces the embedded Lucid expression invocation by a call to the GEE that

evaluates this Lucid expression in the context of the object in question.

TR5. Finally, the translator aggregates all generated parts in the proper order to

finish the generation of the intensional class in pure Java.

6.3.4 Implementation Details of the JOOIP Compiler

The JOOIP hybrid language is designed as a 2-way hybrid: we allow the

embedding of Lucid code in the Java language and the Lucid code may refer to

Java objects' members. Thus, at the implementation level, we design the

108

modules in such a way as to make sure that the JVM can work smoothly with the

GIPSY run-time engine. To avoid changing the Java compiler, we have chosen

to implement the translation process as a multi-pass compiler that translates the

JOOIP classes into pure Java classes, according to the semantics and

translation rules presented earlier in Section 6.3.3. This compiler is fully

integrated into the GIPSY, and, thus, is a GIPSY compiler instance in the GICF

framework. Integrating our solution into the GIPSY permits us to reuse the

existing Lucid compiler components, as well as executing the Lucid parts using

the GIPSY's run-time environment, the GEE. The compilation process can be

summarized as the following:

1. Firstly, the translator, as it parses a JOOIP program, identifies all embedded

Lucid expressions and conceptually replaces them by a regular Java variable

Lucid_expr_i, where / means it is the i-th embedded Lucid expression placed in

the JOOIP. Concretely, in order to yield a value from the evaluation of this Lucid

expression, the occurrence of the Lucid expression is replaced by a call to the

GEE for the evaluation of this compiled Lucid expression (which has a

corresponding GEER) by the GEE in the context oContext associated with the

object in question. At the same time, the translator creates entries in a Lucid

identifier symbol table to record LucidjexprJ, as well as its corresponding Lucid

expression in the form of a pointer to the root node of that expression in the AST.

After all such embedded Lucid expressions are translated in this manner, the

JOOIP program becomes an intermediate Java program, which can be

109

syntactically parsed by a standard Java parser, but the parser will not be able to

capture the special meaning for the LucidjexprJ variables.

2. Then, the translator passes the intermediate Java program generated in the

first step to our customized Java parser generated from the Java 1.5 grammar

specification (found in [JavaCC]) altered to allow extraction of the Lucid code

segments in order to get the symbol table that records Java class data members

and becomes aware of the Lucid_exprJ corresponding to an intensional data

member declaration or an intensional expression term. After learning that some

Lucid_expr_i corresponds to an intensional data member declaration, the

processor will apply translation rule (TR3) to generate standard Java code. If the

LucidjexprJ corresponds to an intensional expression term, the processor will

apply translation rule (TR4) to generate standard Java code.

3. Next, the translator passes each embedded Lucid expression to the

corresponding Lucid compiler, whose parser name is specified by the Lucid

variant id tag as signified in translation rule (TR4). The tag identifiers here

correspond exactly to the language ID tags as defined in GICF [MOK05] of the

language parsers currently available in the GIPSY. In GICF Lucid variant id is

known as LANGID and is presented in the syntax rules (8)-(12) in Table 6-4.

Every Lucid compiler will return a GEER for each LucidjexprJ, which is stored in

the Lucid identifier table.

4. After that, the translator does semantic checking only for the embedded Lucid

expressions (the Java complete code checking is deferred to later analysis by the

standard Java compiler). The limited semantic checking at this stage involves

110

checking the symbol tables produced in the steps 1 and 2 for undefined or

multiply defined identifiers in their corresponding scope according to the Lucid

and Java semantics. This is especially important when a standard Java identifier

is used inside an intensional expression.

5. Finally, the translator generates a pure Java program, in which the work()

method automatically generated is the one to be called by the GIPSY run-time

system, thereby correctly linking this generated class with other such classes

through the run-time system. It is also possible to invoke the pure Java program

by itself as it defines the main() method to be the starting point of the

computation, that eventually may invoke the GEE if the compiled Lucid

expression is encountered at run-time. In such a case, the invocation of the

GIPSY run-time (GEE) is deferred until some later point when an eval() call is

made to the GEE. For it work, the GIPSY compiled code should be in the

CLASSPATH of our generated program at this step to be runnable.

To explain the implementation details of the compilation process described

above, we show a class diagram of the JOOIP Compiler in Figure 6-1. The main()

method starts in class JOOIPCompiler, and then, by using available Lucid

parsers in the GIPSY, JavaParser and SemanticAnalyzer, which are already in

the GIPC framework, it produces a compiled standard Java class. On the way,

we can get all information in the symbol hashtable and ready for the GEE to use

when we call it indirectly through the intensional code segments. Just like other

compilers in the framework, the large portion of the JOOIP compiler was

generated using JavaCC [JavaCC] and the Java 1.5 grammar specification

111

written in java15.jjt. The grammar file was altered to allow for the intensional

code segments to be extracted as well as the identifiers as described in the steps

above. Later the compiler was customized with some GIPSY-specific annotations

to allow it to be a part of the GIPC framework.

(from jOOlP)

'l-!V1?Oa-.';.5y!'n'';o:Ta^

oenerawa

M' ijlii i ^ U / n ^ v ^ i r)

\ ' i .-ii '.-il'i

:Nj -1(| , 3t:-|

>•« IL ' JC"

' IIHV -no •:1] •

i l - u m KM

Figure 6 - 1 : Class diagram of the JOOIP compiler

6.3.5 Data structures

The main data structure used is a symbol table which records all Java classes,

variables, and Lucid identifiers tentatively called JavaClassSymbolTable. The

112

detailed design of this table is as shown in Figure 6-1. The string strClassName

records the fully-qualified Java class name. The string strExtendName records

the parent's class name. The string strlnterFaceName records the interface

names. The hashtable oMemberTable records all members of this Java class.

The detailed design of each identifier instance in the oMemberTable, called

JavaldentifierSymbolTable, is str presented in Figure 6-1. While designing our

JOOIP language and early testing its properties we opted to have these two

classes implemented ourselves. In JavaldentifierSymbolTable, the string strlD

records the variable's name. The Boolean blsJavaMember records if this

variable is a plain Java class member or is an intensional identifier, which is

defined in the Java class in the form of a Lucid expression. The integer

iMapType records the data type of this variable, which is used in type matching

between Lucid expression and Java types. Further details about the type

mapping can be found in Section 6.3.6. The string strClassName records the

fully-qualified Java class name this variable or intensional identifier belongs to. It

is added here to simplify the semantic scope check for the Lucid code segments.

The string strClasslnit records the declaration of this variable, if it is an

intensional identifier, the strClasslnit will represent the intensional source code

fragment. The oEntry member records the entry of an AST of the intensional

identifier. This AST will be ready only after the Lucid code segments are passed

to the corresponding Lucid parsers and collected back as ASTs for re-linking.

The dictionary oLucidldentifierDictionary records the semantic table for each

intensional identifier. The final preparation of the dictionary instance completes

113

only after the semantic checking of Lucid code is performed. In this hashtable,

the oEntry and oLucidldentifierDictionary will have value only when the

boolean blsJavaMember is set to false.

6.3.6 Type system

Just like JLucid or Objective Lucid (the predecessor hybrid intensional-imperative

languages studied in the GIPSY environment), the JOOIP language cannot avoid

the type mapping between Java and Lucid as the data type sets of both

languages are not identical. In Table 6-7 we summarize the type mapping

between Java and GIPSY types and the intensional counterpart. A particularity

here, that any intensional dialect has a dimension type and its implementing

class GIPSYContext in the GIPSY type system, but its value cannot be directly

mapped to a specific Java type in JOOIP, and the dimensions can presently be,

but may not be limited to in the future, integers and strings and have the

corresponding types of tag sets [TPM07] attached. This especially concerns the

Java method parameters and return types. Additionally, each intensional class

instance has its own context managed internally as described earlier in the

oContext data member of the generated Java class. Instead of doing any re­

mapping to the Java type in that regard, we simply kept the object context

reference as GIPSYContext. The type matching and conversion happens at run­

time, when the GEE completes the evaluation of an intensional expression and

comes back with a value. The final GIPSY type of the value is determined,

examined, and, if possible, converted by the Lucid-Java adapter just before

returning to the calling Java class. A run-time type check semantic error may

114

happen at this point in type if it is not possible to match the type according to the

table shown. A similar process is invoked in the other direction of evaluation,

when the intensional segment uses the result of an imperative evaluation, which

was broadly discussed in JLucid and Objective Lucid works earlier. For an in-

depth discussion of the GIPSY type system, please refer to [MPT07].

Lucid type

dimension
char

int.

hit
hit

(-)
float

double

bool

string
object

()

(")
bool: true

Java type

int. String
char

byte

short
int.

long
float.

double

boolean
array

String
class

interface

enurn

void

GIPSY Type System

GIPSYContext
GIPSYCharacter

GIPSYInteger

GIPSYInteger
GIPSYInteger

GIPSYInteger
GIPSYFloat

GIPSYDouble

GIPSYBoolean
GIPSYArray

GIPSYString
GIPSYObject

()
GIPSYObject

GIPSYVoid

Table 6-7: Summary of type mappings between Java and Lucid in JOOIP

6.4 Discussions on JOOIP

JOOIP is the intensional programming language, Lucid, conservatively extended

with intensional objects, class hierarchy with inheritance and encapsulation; it is

an object-oriented imperative language, enhanced with explicit dimension and

objects organization. In this section, we will discuss the JOOIP from both object-

oriented aspect and intensional aspect.

115

6.4.1 Object Mutability

Object mutability, i.e. the fact that an object's state or behavior can vary in time,

is of central importance in the design of a hybrid OO-IP language. We discuss

here the notions of mutable/immutable objects, as well as the notion of context-

mutability i.e. the fact that, given that our OO-IP objects are defined in a

multidimensional context space, some of these objects are to be constant or

mutable across the context space i.e. context-immutable or context-mutable.

Mutable objects

"Mutable object" means when one has a reference to an instance of an object,

the contents or state of that instance (i.e. the values of its data members) can be

altered, thus making it so that the same object changes its state in time [Java05],

and even that its methods would expose an apparently non-functional behavior

over time, if the methods are referring to the changing values of its data members.

The use of mutable objects with Lucid is highly problematic because the

semantics of Lucid assumes that the values associated with expressions are

constant in a given context, and thus only have to be evaluated once, thus

permitting the storage of evaluation results, and their retrieval when the same

expressions are to be evaluated. Permitting to have streams of mutable objects

would thus be semantically invalid, as each stream element's value could

possibly change in time. One interpretation to mutable objects from a valid IP

perspective would be that mutable objects could be represented as a stream of

immutable objects, where the stream is "recording" the changes in an object's

state in the time dimension. That, in fact, brings us to the absolute beginning of

116

Lucid where Lucid streams were used to represent the changes of values of

program variables upon and throughout execution, in the context of program

verification.

Immutable objects

Immutable objects are simply objects whose state (the object's data) does not

change after construction [Java05]. Immutable objects thus expose strict

functional behavior throughout their entire lifetime. An immutable object is an

object whose evaluation of any of its member always return the same value,

behaving like as if all its members would be preceded by const in C++ or static

final in Java, and all its functions always return the same value when given the

same parameters. Immutable objects work nicely in our view of OO-IP, because

of the converse of the reasons provided in the previous section discussing

mutable objects.

Context-immutable objects

This is a concept arising from the field we are discussing in this research, i.e.

objects whose evaluation is context-independent. In Intensional Programming,

expressions are evaluated in a multidimensional context, possibly yielding a

different value for the same expression when evaluated in different contexts. In

Object-Oriented Programming, expressions evaluate to objects, and there is no

such thing as the context of evaluation. Combining these two paradigms, a

context-immutable object is an object whose evaluation is independent on the

context of evaluation, i.e. an object that is invariant in a multidimensional context

space. This means that a "context-immutable object" does not embed any

117

intensional expression, or it may be an object that embeds an intensional

expression, but that expression is context-invariant. We can say any traditional

Java object is a context-immutable object.

Context-mutable objects

An object of this classification is one whose evaluation is dependent on the

context of evaluation. This means a context-mutable object has an embedded

dimensional concept in its class declaration and that the evaluation of its

members varies in a multidimensional context space, i.e. this class embeds at

least one Lucid expression. In our approach, intensional objects are declared by

the inclusion of Lucid expressions in their class declarations, either by having

data members declared as a Lucid expression, or having member functions to

embed Lucid expressions as part of their Java statements and expressions. By

this way, we can permit both mutable and immutable objects by embedding or

not embedding such Lucid expressions in their class declarations. Interestingly,

as soon as the context of evaluation is decided, objects are evaluated to context-

immutable objects which are normal Java objects.

6.4.2 Demand-Driven Constructors

Object-oriented programming uses constructors to generate objects. However,

Lucid uses demand-driven evaluation, and may generate a demand for objects

that has not been constructed yet. We cannot design constructors for Lucid

streams because most Lucid streams are infinite. However, we translate

intensional data members in an intensional class to standard Java data members

by adding a constructor that calls the eduction engine for the creation of the new

118

object. When there is a demand for an object, the constructor of the

corresponding class is called, potentially generating demands for the

computation of each intensional attribute in this class. For example, if each

element on the stream S is an object. Then "S@[d:3]" generates a demand for

an object, which generates other demands on evaluation at context: [d:3]. This

demand for an object is translated by calling GEE(variable, context) in the

constructor in the translated Java class. This mechanism is in fact defining

demand-driven constructors.

6.4.3 Inheritance

In the JOOIP semantics presented in Figure 6-5, we only allow embedded Lucid

expressions to refer to members defined locally in the current class. We chose to

do so out of simplicity of the expression of the semantics and its implemented

solution that parses the JOOIP classes and extracts its local members in order to

process the first semantic checking/translation step. Java reflection provides a

powerful mechanism for the extraction of class members, even across an

inheritance tree. That can then be used to do semantic checking taking into

consideration an inheritance tree. However, reflection can only be used on

standard Java classes, which JOOIP classes are not. We could further extend

the possibility of the use of inheritance in JOOIP classes by using reflection in the

semantic checking/translation steps occurring after the standard Java code has

been generated.

119

6.4.4 Intensional Relationship Across Object of an Intensional Class

A standard Java object is an instance of a Java class. These objects are isolated,

except by the fact that they belong to the same class. For example, if we have a

class version which the declaration is as in Excerpt 6-2.

public class version
{

public int iNum;
public String sAuthor;
public String sChange;

public void print()
{
System.out.println("version is " + iNum);

}

public static void main(String[] argv)
(
version oTest = new version));
oTest.print();

}
)

Excerpt 6 - 2: A class version

Let us assume that there are a set of objects a, b, c, d, e which are different

versions of class version. As shown in Figure 6-2, the relationship among

objects only lies on they have same structure as the class version, the individual

evaluation is unrelated to the others. If object a wants to communicate with object

b, you have to pass clear instruction messages.

120

Figure 6 - 2: The class version and its objects
JOOIP improves the case by providing clear relationship among objects. If we

define a stream which elements are objects of class version, for the same case,

objects a, b, c, d, e which are different versions of class version not only have

same interface inheriting from Java, but also have very clear relationship which is

defined by the IPL operator, fby, with explicit dimension time as shown in Figure

6-3.

/ class version N̂

IQQQQQ;
\ time /

Figure 6-3: Java objects in Hybrid JOOIP

121

JOOIP allow implicitly defining intensional relationships among objects of a

JOOIP intensional class. JOOIP inherits the essential feature of Lucid that

permits it to use intensional operators to express relationship between across a

multidimensional context space, in turn permitting to define streams of elements

whose values depend on other elements. In JOOIP, since we have objects as

first class values, we can in fact create intensional relationships among Java

objects of a JOOIP class. By declaring an intensional data member inside a

JOOIP intensional class, we in fact implicitly define an intensional relationship

across the objects of this class.

This feature can help update attributes in objects by group and it will be

extremely useful for database storage, which would become an intensional

database.

6.5 Examples of Application

Having described the syntax and semantics of JOOIP, then discussed some

important issues of the resulting hybrid paradigm, we have kept our explanations

at a conceptual level that maybe does not allow the reader to see concretely how

can JOOIP be used to write programs, how such programs are effectively

translated, and what are the advantages brought forth by the use of JOOIP. This

section presents simple JOOIP program examples that will concretely

demonstrate the capacities of JOOIP, as well as illustrate its translation process

and its resulting output code.

122

6.5.1 Simple Example Illustrating the JOOIP-to-Java Translation Process

Excerpt 6-3 shows the typical natural number example derived from [Paq99] of

Lucid written in JOOIP.

public class GIPLtest
{

private int N = /@#GIPL
if (#.d) <= 0 then 42 else (N+l) @.d (#.d)-l fi
where
dimension d;

end @/;

public int computeLocalAverage(int f)
{

return (/@ N@.d f - 1 where dimension d; end @/
+ /@ N@.d f + 1 where dimension d; end @/) / 2;

}

public void print ()
{

System.out.println("N=" + N);
}

public static void main(String[] argv)
{

GIPLtest oTest = new GIPLtest();
oTest.N = oTest.computeLocalAverage(2);
oTest.print ();

}
}

Excerpt 6 - 3: GIPLtest.jooip - natural number example written in JOOIP

The problem is to extract a value from the stream representing the natural

numbers, beginning from the ubiquitous number 42. Let us arbitrarily pick the

third value of the stream and set the stream's variance in the d dimension; then in

the main() method, the tag number two will be assigned to the method

computerLocalAverage(). The method computerLocalAverage(2) will ask the

average value of its neighbours, which is the average of the second and forth

value of the stream. With not much intuition, one can readily expect the program

to return the value 44 which is the result of calculation (43+45)/2.

123

The program will start with the Java main() method which will call

computel_ocalAverage(int f) method. According to the semantic translation

process, the Lucid expression embedded in computeLocalAverage(int f) will be

changed to method calls, GEE.eval([d:f-1],N) and GEE.eval([d:f+1],N). Here we

will pass parameter f as context for Lucid expression. The run-time engine will

drive two demands to calculate the value of the first and third element of the

stream N. The definition of N is already stored in the corresponding GEER.

According to the definition of N, after executing, engine returns the Nat42 object

with value 44. The method print() will display the result on the screen. The

translation process can be abstractly described as the following:

• According to the semantic rules, the JOOIP processor parses this program

first and extracts all Lucid code segments as shown in the intermediate file

in Excerpt 6-4.

public class GIPLtest
{

private int N = IPL_CODE_l;

public int computeLocalAverage(int f)
{

return (IPL_CODE_2
+ IPL_CODE_3) / 2;

}

public void print()
{

System.out.println("N=" + N);
}

public static void main(String[] argv)
(

GIPLtest oTest = new GIPLtest ();
oTest.N = oTest.computeLocalAverage(2);
oTest.print ();

}

Excerpt 6 - 4: GIPLtest.jop - intermediate file of natural number example

124

• The JOOIP compiler then passes the three Lucid segments to the right

GIPL parser to get the corresponding GEERs.

• Then, the JOOIP compiler passes the GIPLtest.jop program to the Java

Parser to get the class's symbol table.

• With the class symbol table and GEERs in hand, the JOOIP compiler calls

upon the GIPSY'S Semantic Analyzer to do semantic check for each Lucid

code segment.

• If the semantic check passes, at the last step, the JOOIP compiler

generates a standard Java class, GIPLtest.java, which is shown in Excerpt

6-5.

package gipsy.tests.jooip;
import gipsy.GIPC.GIPC;
import gipsy.lang.*;
import gipsy.lang.converters.type.*;
import gipsy.interfaces.*;
import gipsy.lang.context.Dimension;
import gipsy.GEE.GEE;
import gipsy.util.*;
import java.lang.reflect.Method;

public class GIPLtest implements ISequentialThread
{

private static GIPSYProgram soGEERl;
private static GIPSYProgram soGEER2;
private static GIPSYProgram SOGEER3;

private int N = 0;
private boolean bNIsWritten = false;
private GIPSYContext ©Context;

public GEE oGEE3 = new GEE{soGEERJ);
public GEE OGEE2 = new GEE (soGEERl') ;
public GEE oGEEl = new GEE{soGEERl);

static)
try
{

GIPC oGIPCl = new GIPC(new
where N = i f (# . d.)
@.G (#.d) -]. fi where
dimension d; end ; end"),
"--debug"});

StringlnputStream("M

new String!] { " --gip1",

125

oGIPCl.compile();
soGEERl = oGIPCl .getGEERO ;
GIPC OGIPC2 = new GIPC(new StringlnputStream(" N@ . d

f - i where dimension d; end ") , new String[] (" gipl", "--debug"});
OGIPC2.compile();
SOGEER2 = OGIPC2.getGEER();
GIPC OGIPC3 = new GIPC (new StringlnputStream (" M!?.d

£ + 1 where dimension d; end ") , new String[] {"--gipl", "--debug"});
oGIPC3.compile();
soGEER3 = OGIPC3. getGEERO ;

}
catch(Exception e)
{

System.err.println(e);
e.printStackTrace(System.err);

}
}

public GIPLtest(GIPSYContext poContext)
(

this.oContext = poContext;
}

public GIPLtest()
{
}

public WorkResult work()
{

G I P L t e s t . m a i n (n u l l) ;
return n u l l ;

}

isOver r ide
public WorkResult getWorkResult()
{

return null;
}

@Override
public void setMethod(Method poSTMethod)
{
}

SOverride
public void run()
{

work ();
}

public int computeLocalAverage(int f)
{

GIPSYContext oContext2 = new GIPSYContext ();

126

Dimension oDimension2 = new Dimension();
oDimension2.setDimensionName(new GIPSYIdentifier("d"));
oDimension2.setCurrentTag(new GIPSYInteger(f - 1));
oContext2.addDimension(oDimension2);

GIPSYContext oContext3 = new GIPSYContext ();
Dimension oDimension3 = new Dimension();
oDimension3.setDimensionName(new GIPSYIdentifier("d"));
oDimension3.setCurrentTag(new GIPSYInteger(f + 1));
oContext3.addDimension(oDimension3);

return
(IPLToJava.convertToInteqer(this.oGEE2.eval(oContext2))

+
IPLToJava.con vert To Integer(this.oGEE3.eval(oContext3))) / 2;

}

public void print()
{

System.out.println("N=" + N);
}

public static void main(String[] argv)
{

GIPLtest oTest = new GIPLtestf);
oTest.M = oTest.computeLocalAverage(2);
oTest.print ();

}

Excerpt 6-5: The translated pure Java class - GIPLtest.java

Notice here that, following our analysis/translation method, the embedded Lucid

expressions ought to be "self-contained". As it is now, upon semantic check, the

processor will report "undefined dimension d" for expressions using a dimension

without a corresponding dimension declaration inside the where clause. That can

be fixed by allowing our semantic checker to have awareness of the

dimensionality of the intensional data members defined in the class, thus

eliminating the need to redeclare dimensions in each embedded Lucid

expression that refers to these dimensions. Once the JOOIP class has been

translated to a regular Java class, the standard Java compiler will take care of

the program compilation and running in within the JVM will print the result on the

127

screen. Since the program also implements the ISequentialThread interface, it

can be run by the GEE as well as being transported as demands distributedly.

The above GIPLtest.java program is already correctly parsed by the Java parser

and is smoothly integrated with GEE. From output, it shows that the

GIPLtest.java calls engine and generate correct ASTs and dictionary.

6.5.2 Euler and Feynman Algorithms in JOOIP

Euler and Feynman Algorithm are very famous in physics. This section will show

how to use the JOOIP to apply the Euler and Feynman Algorithm as well as the

comparison with a traditional implementation in Java.

By Newton's second law [Phy_Java] we can calculate the acceleration of a body

once we know the forces acting on it. The forces are either contact forces or field

forces and may vary with time, position and velocity as the body moves. In order

to describe the kinematics of the motion we need expressions for where the

particle is and how fast it is moving at any time. A table which consists of values

of position and velocity at specified time intervals is a numerical approach to

kinematics. The accuracy of the tabled values depends on the approximations

involved in their calculation.

In the Euler algorithm, the average velocity and acceleration are replaced by the

velocity and acceleration at the beginning of the interval as the equations (1)&(2)

where t is the beginning of the time interval, dt is time interval, v is velocity, a is

acceleration and x is position:

v(t+dt) = v(t) + a(t). dt (1)

x(t+dt) = x(t) + v(t). dt (2)

128

The values at the beginning of the interval are known, and although they are not

the best approximation for the average values, they are not bad if the time

interval is short enough.

The Feynman algorithm approximates the average acceleration and velocity over

a time interval by their values at the midpoint (in time). The equations on which

the Feynman algorithm are based can be written in equations (3)&(4) with same

notations as equations (1)&(2).

x(t+dt) = x(t) + v(t+dt/2). dt (3)

v(t+dt/2) = v(t-dt/2) + a(t). dt (4)

In equations (3)&(4), changes in position are calculated using a velocity value

that is half a step ahead in time. Likewise, changes in velocity are calculated

using an acceleration which is half a step ahead in time. Position and

acceleration are therefore 'in-phase' that is, they are calculated at the same

points in time, and velocity is stepped half a step out of phase with both position

and acceleration.

We can use the Euler and Feynman algorithms to follow the motion of a mass on

a spring with assumption that acceleration depends only on time and position.

Consider a mass of 2kg attached to a spring with a force-constant of 8N/m. It is

passing through its equilibrium position at a velocity of 2.8 m/s at time zero, and

we want to follow its motion for one second with a time step of 0.2 seconds. In

[Phy_Java], a Java program is provided. The main part is shown in Excerpt 6-6:

k=8;

t = 0 ;

f o r

m=2,

y=0,

(i n t

d t = 0 . 2 ;

v = 2 . 8 ; a=-k*y/m;

i = l ; i<=5; i++) {

/ / Eu le r Algor i thm

129

t = t + d t ;
y=y+v*dt;
v=v+a*dt ;
a=-k*y/m;

t = 0 ; y=0; v = 2 . 8 ; a=-k*y/m; / / Feynman Algor i thm

v=v+a*d t /2 ;
for (i n t i = l ; i<=5; i++) {

t = t + d t ;
y=y+v*dt;
a=-k*y/m;
v=v+a*dt ;

}

Excerpt 6-6: Java code for the Euler and Feynman Algorithm application

Figure 6-4 shows the result:

Euler Algorithm
Time
0.0
0.2
0.4
0.6
0.8
1.0

Feynman Alg
Time
0.0

0.2

0.4

0.6

0.8

1.0

Position
0.0
0.56
1.12
1.5904
1.8816
1.918336

orithm
Position
0.0

0.56

1.0304

1.3359361

1.4277223

1.291073

Velocity
2.8
2.8
2.352
1.456
0.18367994
-1.3216001

Velocity
2.8
2.8

2.352

1.5276799

0.4589311

-0.68324685

-1.7161052

Acceleration
-0.0
-2.24
-4.48
-6.3616
-7.5264
-7.672344

Ace election
-0.0

-2.24

-4.1216

-5.3427443

-5.71C8893

-5.164292

Figure 6-4: The result of above program example

We can find the above Java code has the following limits:

1. the expression is very confusing, it cannot tell the natural meaning of the

original differential equations easily;

130

2. infinity cannot be expressed in Java code, we have to pose a beginning

and end of time explicitly;

3. it is not very good at description of kinematics of the motion, because we

cannot arbitrarily ask for information at a time, i.e. it has a purely

extensional view and model of computation;

4. if forces depend on velocity, at the time acceleration is calculated, the only

value available for velocity is the one from a half-step earlier. In this

algorithm, the acceleration cannot dependent on velocity;

If we assume that time interval 7", position Y, acceleration A and velocity V are

streams, we find they have same dimension time and the process is shown in

Figure 6-5.

Euler Algorithm

T = 0
Y=0
V = 2.S

A-0 -

P"V = 0.56 -f———"""->Y =1.12
T=0.2

:{-->V = 2.S •
% |[>A=-2.24^

T-0 .4

(-•V-2.35
!>A=-4.48 V IS

^

0

r -\
y=o

1 V = 2.8
A=0

Feynman Algorithm

L time

Data dependency

Figure 6-5: The process of generating data by both algorithms

From the above figure, we find that the Euler is easier to program in Lucid and

results in a program that resembles much more the original differential equations.

131

However, there is more trouble with the Feynman algorithm because the data is

"out of phase". If we consider each group of data as an individual object on the

same dimension, objects have different structure. This also conflicts with the

semantic restriction that each element of a stream has same type.

Object-oriented concept in the hybrid JOOIP language helps to resolve the

trouble. What need to be done is to encapsulate same structure objects into a

class, and then we will have 2 classes, class InPhase and class OutPhase.

Even, we can let objects from the two classes to have same context but different

value. Figure 6-6 shows the solution:

r-
0 1 2 tiiwt

r ~\ f ^ r ~\
Class T = 0

V - 2 S - J ^i-

T=0.2

. \A=-2 24-.'

T = 0.4

WvA=-4.i2

Class

.QMPtesR

T ™ Q

V = 2.8

^ - ^\
~ *.

T-O.I
*V = 2.S'"

. ' ' ^ V T - 0 . 3
^V = 2 35 ' J

\~ J L J L J

Feynman Algorithm Data depen
-->
dency

Figure 6 - 6: Solution for the Feynman algorithm with JOOIP

Even, if we keep track of changes in velocity as well as velocity itself and using

the last change to project forward a half-step for the acceleration calculation

[Phy_Java], we can include another V stream in class A to record the velocity at

the same time as V and A. This also fixes the "out-of-phase" problem. The

program is in Excerpt 6-7.

132

public class InPhase
{
InPhase CI = new InPhase();
OutPhase C2 = new OutPhaseO;

int k = 8;
int m = 2;

double T = /@#INDEXICALLUCID 0 fby.time (T + 0.2)
Where dimension time; end @/;

double Y = /@#OBJECTIVELUCID 0 fby.time (Y + C2.V g.time #.time
* 0.2) where dimension time; end @/;
double A = /@#OBJECTIVELUCID 0 fby.time (-k / m) * Y @.time

#.time where dimension time; end @/;

public void output(double interval, double distance, double
speed, double accel)

{
System.out.printIn("Feynman Algorithm");
System.out.println("Time = " + interval);
System.out.println("Position = " + distance);
System.out.println("Acceleration = " + accel);
System.out.println("Velocity = " + speed);

)

public static void main(String[] argv)
{
InPhase oMotionln = new InPhase();
OutPhase oMotionOut = new OutPhaseO;

double T_value = /@#OBJECTIVELUCID oMotionln.T @.time 3
where dimension time; end @/;

double Y_value = /@#OBJECTIVELUCID oMotionln.Y @.time 3
where dimension time; end @/;

double A_value = /@#OBJECTIVELUCID oMotionln.A g.time 3
where dimension time; end @/;

double V_value = /@#OBJECTIVELUCID oMotionOut.V @.time 3
where dimension time; end @/;

oMotion.output(T_value, Y_value, A_value, V_value);
)

}

public class OutPhase
{
InPhase C3 = new InPhase();

double T = /@#INDEXICALLUCID if (#.time==0) then 0 else (-0.1
fby.time (T+0.2)) fi where dimension time; end @/;

double V = /@#OBJECTIVELUCID if ((#.time ==0) || (#.time ==
1)) then 2.8 else V + (C3.A g.time #.time - 1) * 0.2 fi

where dimension time; end @/;
)

Excerpt 6-7: Feynman Algorithm in JOOIP

Figure 6-6 shows the reason why we need two classes, InPhase and OutPhase,

it is because the distance Y, acceleration A and velocity V do not change at the

same time. The two former change at time = 0.2, while the latter changes at time

= 0.1. Moreover, acceleration A and velocity V depend on each other even

though they don't change with the same pace. Let us go back to check the

program, Identifiers T, Y and A in class InPhase are three intensional streams

which stand for time interval, distance and acceleration; identifiers T and V in

class OutPhase are two intensional streams which stand for time interval and

velocity. The dependencies among these identifiers are shown in Figure 6-6, for

context [time: t], distance Y in InPhase depends on the velocity V in OutPhase

at the same context; acceleration A in InPhase depends on distance Y in

InPhase at the same context; velocity V in OutPhase depends on the

acceleration A in InPhase at context [time: t-1].

The program starts with the main() method. The run-time engine will generate

three demands in class InPhase, they are eval([time:3],T), eval([time:3],Y) and

eval([time:3],A) and one demand in class OutPhase which is eval([time:3],V).

The definition of T, Y, A and V are already stored in the corresponding GEER. By

object access and intensional operator, the program can easily get correct values

while not like traditional sequential programs. The method output(...) will display

the result on the screen. We find the following advantages by using JOOIP for

this program:

1. A stream could be infinite, and is in fact defining the intension of the series

of values, as opposed to the Java program that computes the extension of

134

a portion of the infinite stream. With the intensional description available,

we can ask kinematics of the motion at any time or interval of time in this

intensional definition, yielding an extensional infinite portion of the infinite

stream;

2. It fixes the "out-of-phase" problem and can be used in the velocity-

dependent case;

3. The potential parallelism in the computation is exploited by the eductive

model of computation as implemented in the GEE and GIPSY;

4. Intensional objects are organized as a group;

5. Redundant computation is avoided by an intensional value warehouse;

6. The same intensional description can be used to compute values in any

context by changing the initial demand;

7. It provides Lucid with richer input/output capabilities provided by the Java

counterpart;

Figure 6-6 shows the fact that we move the class OutPhase half step back on

time dimension to get same context value for both classes. That means if we ask

for context [time:1], the exact time interval for class InPhase is 0.2 and the exact

time interval for class outPhase is 0.1. The time here is relative instead of

absolute. Non-sequence of JOOIP makes the implementation possible.

6.5.3 Application on CVS

In Section 6.4.4, we presented an example about the versioning problem to

explain the objects relationship in JOOIP. This also brings an application in CVS

which is used to record file versions and their changes. As the code in Excerpt 6-

135

8, there is a stream oVersion which contains different file versions in CVS, each

version is an object of class version. Using JOOIP, we can easily choose a

version by indicating context [time: tag].

public class version

I
public int iNum = 0; Public int iMaxVersion = 5;
public String sAuthor;
public String sChange;
public Vector oVersionStore = new

version olnitVersion = new version

Vector();

0;

private version oVersion = /@#OBJECTIVELUCID
olnitVersion.iNum fby.time
where

dimension time;
end@/.getVersionContent ();

public version()
{

this.iNum = iNum;
this.sAuthor = sAuthor;
This.sChange = sChange;

}

int next ()

I
int t = iNum + 1; return t;

}

version getVersionContent()
{
version oTempVersion

if (iNum > iMaxVersion)

olni

System.out.printIn(("The requested
exit! The newest version is:" + iMaxVe

else
{
oTempVersion.iNum = iNum;
oTempVersion.sAuthor

= oVersionStore.ElementAt(
oTempVersion.sChange

= oVersionStore.ElementAt(
}

return oTempVersion;
}

rsion

iNum)

iNum)

tVersion.next();

version is not
);

.sAuthor;

. sChange;

136

public void print()
{
System.out.println(("version is " + oVersion.iNum);
System.out.println(("Author is " + oVersion.sAuthor);
System.out.println(("Change is " + oVersion.sChange);

}

public static void main(String[] argv)
(

/@#OBJECTIVELUCID oVersion O.time 2
where dimension time; end @/.print ();

}
}

Excerpt 6-8: CVS example - version.jooip

The program will start with the Java main() method, according to semantic

translation rules, the Lucid expression embedded in main() will call method

GEE.eval([time:2],oVersion), according to the definition of oVersion, the

embedded Lucid expression will generate a new method call GEE.eval([time:2],

olnitVersion.iNum). The run-time engine will drive demand after demand until

reach the correct context [time=2]. In the getVersionContent() method, the

program will judge if the version is already there or not; if yes, it will return the

version content; otherwise, the program will report an error. We notice that the

program is easily extended by adding functions to allow users creating a new

version if exceeding the maximal version number. After getting the correct

version content, method print() will print all content.

This example is only a sketch of CVS application; however it demonstrates the

point that we can use any class member which could be expressed by IPL

operators to organize a stream's elements which are objects of the class. This

137

also could be used to many applications which are time-oriented, like Web

management and search engine design.

6.5.4 Application on Accounting - Inheritance

In this example, there are two classes: InterestBearingAccount.java and

Account.jooip. InterestBearingAccount.java is a pure Java class and it

inherits from Account.jooip which is written in JOOIP.

In Excerpt 6-9, a stream InterestBaseNumber is defined in Account.jooip

which varies on dimension m. The method Cal_interest() will get the number of

months for interest calculation which can be used directly in class

InterestBearingAccount.

package gipsy.tests.jooip;

public class InterestBearingAccount extends Account
{

private static double default_interest = 7.95;
private double interest_rate;
private double month_number;

public InterestBearingAccount()
{

balance = 0.0;
interest_rate = default_interest;

}

public InterestBearingAccount(double amount, double interest)
{

balance = amount;
interest_rate = interest;

}

public InterestBearingAccount(double amount)
{

balance = amount;
interest_rate = default_interest;

)

public static void main(String args[])
{

InterestBearingAccount my_account = new
InterestBearingAccount();

138

my_account.deposit(250.00);

System.out.println ("Current balance " +

my_account.getbalance ());

my_account.withdraw(80.00);

System.out.println ("Remaining balance " +
my_account.getbalance ()) ;

my_account.month_number = my_account.Cal_interest(3);
my_account.balance = my_account. balance +

(my_account.month_number * my_account.interest_rate / 100) / 12;

System.out.println("Remaining balance " +
my_account.getbalance());

public class Account
{

protected double balance = 0.0;

private double InterestBaseNumber = /@#GIPL
if (#.m) <=1 then 0 else (InterestBaseNumber+1)@.m (#.m)-l fi
where

dimension m;
end @/;

public Account(double amount)

balance = amount;

public void deposit(double amount)

balance += amount;

public double withdraw(double amount)

if (balance >= amount)
{

balance -= amount;
return amount;

}
else

return 0.0;

double Cal_interest(Integer month)
{

double BaseNumber;

1

}

publ

}
}

BaseNumber = /@

return

In
wh

BaseNumber;

ic double getbalance

return balance;

terestBaseNumt
ere

0

dimension
er
m;

@ . m
end

nonth
@/;

Excerpt 6-9: Accounting example - Account.jooip

The program will start with the Java main() method which will call

Cal_interest(lnteger month) method. According to the semantic translation

process, the Lucid expression embedded in Cal_interest(lnteger month) will be

changed to method calls, GEE.eval([m:3], InterestBaseNumber). The run-time

engine will drive a demand to calculate the value of the third element of the

stream InterestBaseNumber. The definition of InterestBaseNumber is already

stored in the corresponding GEER. According to the definition of

InterestBaseNumber, after executing, engine returns the value 2.

This example is simple but it shows how to use inheritance which is an important

feature in objected oriented programming. It is already translated to pure

Account.java by JOOIP compiler correctly as in Excerpt 6 -10.

package gips^
import
import
import
import
import
import
import
import

public

gipsy.
gipsy.
gipsy.
gipsy.
gipsy.
gipsy.
gipsy.
j ava.]

class

1
private private
private

'. tests.jooip;
GIPC.GIPC;
lang.*;
lang.converters.type.*;
interfaces.*;
lang.context.Dimension;
GEE.GEE;
util.*;
ang.reflect.Method;

Account implements ISequentialThread

static GIPSYProgram soGEERl,
static GIPSYProgram soGEER2,
double InterestBaseNumber = 0;

140

private boolean blnterestBaseNumberlsWritten = false;
private GIPSYContext oContext;

public GEE OGEE2 = new GEE (soGEER2) ;
public GEE oGEEl = new GEE(soGEERl);

static{
try
{

GIPC oGIPCl = new GIPC(new
StringlnputStream("InterestBaseNumber where InterestBaseNumber =
if (#.m) <=1 then 0 else InterestBaseNumber®.m (#.m) - 1 fi
where dimension m; end ; end"), new String[] {"--gipl", "--debug"});

oGIPCl.compile();
soGEERl = oGIPCl. getGEERO ;
GIPC OGIPC2 = new GIPC(new StringlnputStream("

InterestBaseNumberS.m month where dimension m; end ") , new String[]
{"--gipl", "--debug"});

OGIPC2.compile();
SOGEER2 = OGIPC2. getGEERO ;

}
catch(Exception e)
{

System.err.printIn(e);
e.printStackTrace(System.err);

)
}

public Account(GIPSYContext poContext)
{

this.oContext = poContext;
}

public Account()
{
}

public WorkResult work()
{

Account.main(null);
return null;

}
@Override
public WorkResult getWorkResult()
{

return null;
}

©Override
public void setMethod(Method poSTMethod)
{
}

SOverride
public void run()
{

work();

141

}

double balance = 0.0;

public Account(double amount)
{

balance = amount;
}

public void deposit(double amount)
{

balance += amount;
}

public double withdraw (double amount)
{

if (balance >= amount)
{

balance -= amount;
return amount;

}
else

return 0.0;
}

double Cal_interest(Integer month)
{

double BaseNumber;

GIPSYContext oContext2 = new GIPSYContext ();
Dimension oDimension2 = new Dimension();
oDimension2.setDimensionName(new GIPSYIdentifier("m"));
oDimension2.setCurrentTag(new GIPSYInteger(month));
oContext2.addDimension(oDimension2);

BaseNumber =
IPLToJava.convertToInteger(this.oGEE2.eval (oContext2));

return BaseNumber;
}

public double getbalance()
{

return balance;
}

Excerpt 6-10: Translated Accounting example

1

6.5.5 Application on Satellite Tracking - Infinite Stream Expression in Java

Excerpt 6-11 shows an example about the movement of a satellite. Suppose

there is a satellite that moves around the earth, it will stay 15 minutes on a zone,

for total 24 zones around the earth, it will take the satellite 6 hours to finish one

orbit. Suppose the satellite starts from zone number 1, with any time we get, we

will know which zone the satellite is on. The satellite will not stop moving in this

case, it is hard to express this infinite situation in traditional Java. Here in

Satellite.jooip, the stream CurrentPosition easily expresses this case.

class Satellite
{

public Integer iZone = 1;
public Integer timer = 15;
public Integer zoner = 24;
public String sZoneName = iZong.toString ();

Satellite statu = new Satellite();

private String CurrentPosition = /@#OBJECTIVELUCID
statu.sZoneName fby.t
statu.next ();
where

dimension t;
end@/;

int num;

public Satellite()
{

this.iZone = iZone;
this.timer = timer;
this.zoner = zoner;

}

String next ()
(

int t = timer - 1;
int position = iZone;

String CPosition = "";

if(t <= 0)
{

t = 15;
iZone ++;

143

}

position = iZone % 24;
}

timer = t;

CPosition = position.toString();

return CPosition;
}

public void print()
{

System.out.printIn(CurrentPosition) ;
}

public static void main(String[] argv)
(

for (num=0; num<100; num++) /@#GIPL
Cur rent Position!? [t: num]

}
@/.print ();

Excerpt 6 -11 : satellite example - satellite.jooip

The program will start with the Java main() method which will ask the value of

elements of a stream CurrentPosition from the 1st element to 100th element.

According to the semantic translation process, the Lucid expression will be

changed to method calls, GEE.eval([t:num],CurrentPosition). Because the

satellite will stay a zone for 15 minutes, so from the 1st element to the 15th

element of the stream CurrentPosition, the return value will be zone 1. From the

16th element to 30th element of the stream CurrentPosition, the return value will

be zone 2. The method print() will display the result on the screen.

6.5.6 Application on Geography - Context Driven Computation

In Excerpt 6-12, an IPL variable Area varies on two dimensions: longitude and

latitude, the stream Area shows the way how the Area gets enlarged - by size of

a grid or by size of a strip. Figure 6-7 shows the intuitive expression:

144

Ion

•
•
•
Q

B •
•
•
•

• • •
• • • >

Separated
objects

lat

Figure 6-7: Intuitive expression of above IPL class

In Figure 6-7, when the context is [lon=1, lat=1], the size of Area will be enlarged

by adding the size of a grid (A). When the context is [lon= <t>, lat=2], dimension

longitude is missing which means objects only vary on dimension latitude and

keep the same on dimension longitude. However, for the reality in this example,

the longitude can not be infinite, so we define range in the dimension declaration

according to the real case on the earth which longitude is from 0 to 360 degree

(from east to west) and the latitude is from -90 to 90 degree (from south to north).

Then, the size of Area will be enlarged by adding the size of a strip, like the

object B in the dash line area.

In this case, dimensions need to be defined in a range to match the reality, the

new introduced Lucid dialect, Lucx, exactly meets this requirement. According to

[Wan06], the syntax of a dimension definition will be "dimension A [x, y]" which

145

means identifier A is a dimension and its range is between x and y. In this

example, we also show how to use the context driven concept in JOOIP.

public class Geo
{

public Integer iLatArea = 360;
public Integer iLonArea = 180;
public Integer iGrid = 1;
public String oDimension ="";

public Geo olnformation = Geo();
public Integer iAreaExtend = 0;

private Integer Area =
/@#Lucx 0 fby [.lat][.lon] Area +

iAreaExtend
where

dimension lat [-90,90];
dimension Ion [0,360];

end @/;

public Geo getInfo(int iLatitude, int iLongitude)
{

boolean bHasLat = true;
boolean bHasLon = true;

if ((iLatitude<-90)||(iLatitude>90))
{

bHasLat = false;
}

if ((iLongitude<0) I I (iLongitude>360))
{

bHasLon = false
}

if ((bHasLat)&&(bHasLon))
{

iAreaExtend = iGrid;
oDimension = "Latitude and Longitude dimensions.";
return(/@#Lucx Area@[lat:iLatitude][Ion:iLongitude]

@/);
}
else if ((IbHasLat)&&(bHasLon))
{

iAreaExtend = iLonArea;
oDimension = "Longitude dimension.";;
return(/@#Lucx Area@[lat:-90..90][Ion:iLongitude] @/);

}
else if ((bHasLat)&&(IbHasLon))
(

iAreaExtend = iLatArea;
oDimension = "Latitude dimension.";

146

return(/@#Lucx Area@[lat:iLatitude][Ion:0..360] @/);
}
else
{

oDimension = "constant.";
return(/@#Lucx Area@[lat:-90..90][Ion:0..360] @/);

1
}

public void print()
{

System.out.printIn("Currently the
olnformation.iDimension);

System.out.println("The Area is "
}

public static void main(String[] argv)
{

Geo oTest = new Geo();
oTest.olnformation = oTest.getlnfo(2,3);
oTest.print ();

}
}

Excerpt 6-12: Geography example - Geo.jooip

The program will start with the Java main() method which will call getlnfo(int

iLatitude, int iLongitude) method. According to the semantic translation

process, the Lucid expression embedded in getlnfo(int iLatitude, int

iLongitude) will be changed to method calls, GEE.eval([lat: iLatitude, Ion:

iLongitude], Area). The run-time engine will generate six demands to calculate

the corresponding value of the stream Area. The definition of Area is already

stored in the corresponding GEER. According to the definition of Area, after

executing, the engine returns an Area value that is enlarged by adding the size

of grid of A times 6. The method print() will display the result on the screen.

All examples in Section 6.5 show different features of JOOIP, they also show the

easiness to integrate different Lucid dialects, for example IndexicalLucid,

stream varies on " +

+ olnformation.Area) ;

147

ObjectiveLucid and Lucx to Java class. Currently, our GIPSY system can

execute JOOIP correctly which only mix GIPL and Java. Regarding other Lucid

dialect mixture, there is still work needed to be done.

6.6 Summary

As research effort, the hybrid language provides a platform for cases which uses

hybrid concepts. However, it is still at an intermediate stage. The translation

process presented here will limit certain qualities of our solution, e.g. the resulting

implementation would inevitably be less efficient than if directly translated into

object code. Moreover, the intensional variable definition in the JOOIP only can

be used when the relationship of neighbours can be expressed by IP operators.

The application domain will be affected by this limit. However, we have to keep in

mind, that this work's main goal is language development and a proof-of-concept

of the developed language.

By integrating Lucid and Java, we combine the essential characteristics of object-

oriented languages with the basic elements of Lucid. We make it possible that

each element in a stream could be an object. By this new point, we extend the

use of objects and enrich the meaning of a stream in Lucid, which can greatly

increase the power of Lucid. The hybrid OO-IP approach proposed here and

adopted by JOOIP is enabling the novel concept of intensional member and

intensional class.

There is much research work done on similar topics. In Chapter 7, we will

discuss related work on combination between 0 0 and intensional programming

languages.

148

Chapter 7 : Related Work on OO-IP

Hybrid Languages

7.1 Introduction

Object-Oriented Languages are quite popular and they are used extensively in

industry; even though it is not completely type-safe and need extensive runtime

testing and debugging. On the contrary, functional languages are completely type

safe and the key property of referential transparency ensures that the

encapsulation cannot be breached; however, it has low industry usage base. As

one of functional languages, intensional programming language (IPL) is

particularly suited for programming dynamic systems whose state varies in one

or more dimensions. Unfortunately, not many people from industry are familiar

with this language.

The two paradigms used in this work have a generally poor interface among

each other: on the one hand are conventional imperative programming

languages that have no room for multidimensionality or intensional or demand-

149

driven evaluation; on the other hand, existing multidimensional languages that

cannot take advantage of imperative features and techniques. Developed over

years of research, the combination typically results in much better performance.

The following solutions are typical combination in this domain.

7.2 GLU# - Intensional Langauge and C++

In Chapter 2, we mentioned the GLU system which was the first try on

combination between imperative language and intensional language [JD96], It

was a usable and efficient solution for the parallelization of sequential programs;

however, it died due to a lack of flexibility and adaptability. GLU# is a small

subset of GLU. Its approach embeds a small multidimensional core (GLU#) in a

mainstream object-oriented programming language (C++) [PK04]. By this way,

without changing the syntax and semantics of the host language,

multidimensionality can be supported and constitutes the core of

multidimensional features. In addition, it encompasses a lazy expression

language with two basic data types (real and Boolean) and a primitive language

of recursive definitions. It can be considered as a language orthogonal to C++

and is implemented as a collection of C++ classes and class templates. The

syntax and semantics of C++ remain unchanged. Programmers, however, are

able to use multidimensional objects which can take the form of lazy arrays and

lazy functions.

150

7.2.1 Introduction

According to [PK04], a program (P) in GLU# is a sequence of definitions (D)

followed by an expression (E) that must be evaluated. However, GLU# does not

support functions directly. Instead, functions are to be defined in C++.

On implementation, programmers need to include the header file glu.hpp in their

C++ source code. Programmers may declare new dimensions by creating new

instances of the class dimension. A multidimensional object is represented as an

instance of the class GLU<T>, where T is the type of the object's extensions.

GLU# distinguishes between wrapper objects and implementation objects,

following a model known in object-oriented development as the letter/envelope

idiom [Cop92]. The objects that are frequently copied are wrappers, which

contain pointers to implementations and whose copying is inexpensive.

Implementations are seldom copied. The programmer is not allowed to use

arbitrary C++ code to alter their values.

GLU# uses the dimensionality analysis (rank analysis) to improve the overall

performance. Moreover, a warehouse of evaluated expressions is equipped in

GLU#. Values of arbitrary expressions, including their sub-expressions are stored

in the warehouse instead of only storing values of variables. The hashing

function uses the identifier of £ and a combination of the indices in X; when a

possible match is found in the hash-table, it must be determined whether X is

really a sub-world of w. Regard to garbage collection, priority is a function of age,

hits and effort required to re-compute a value.

151

GLU# provides a bridge between IPL and 00 . However, it just includes the basic

features of IPL and embeds into C++. Moreover, GLU# is implemented as an

interpreter embedded in C++, with objects modeling both values and expressions

that have not yet been evaluated. In contrast to C++ which supports mutable

variables and objects, multidimensional objects in GLU# are immutable.

7.2.2 Comparable examples in JOOIP

To show the similarities and differences, we provide the translation of some of

the examples given in [PK04] into JOOIP for the comparison reasons and to

show how our approach is more general, adaptive, and flexible than that of GLU#.

Excerpt 7-1 shows the Prime example and Excerpt 7-2 shows the Hamming

program.

class Prime
{
private int prime = /@#INDEXICALLUCID

first.x sieve
where

dimension x, y;
sieve = ints fby.y (sieve wvr.x sieve % prime != 0);
where

ints = 2 fby.x ints + 1;
end

end@/;

int num;

public void print()
{

System.out.println(prime);
}

public static void main(String[] argv)
{

for (num=0; num<100; num++) /@ prime@.x num
where dimension x; end @/.print ();

}
}

Excerpt 7 - 1 : Prime.jooip - Sieve of Eratosthenes in JOOIP

152

public class Hamming
{

private int H = /@#INDEXICALLUCID
1 fby .d if (xx<=yy) then xx else yy fi
where

dimension d;
xx = 2*H upon .d (xx<=yy);
yy = 3*H upon .d (yy<=xx);

end @/;

int num;

public void print()
{

System.out.println(H);
}

public static void main(String[] argv)
{

for (num=0; num<100; num++) /@ H@.d num
where dimension d; end @/.print();

}
}

Excerpt 7 -2 : Hamming.jooip - Hamming example in JOOIP

It is very easy for Lucid programmers to integrate Lucid code in a Java class in

JOOIP, because Lucid code keep the same nature. You do not need to change

Lucid expressions into function format which is the case in GLU#. These two

examples are very similar to the nature example in Section 6.5.1; the only

difference is that the definition of stream prime and H are written in Indexical

Lucid, the remaining process are the same as the natural number example which

already works in the GIPSY system. Excerpt 7-3 shows the traffic light example.

class TrafficLight
{

String[] StateName = new String[]{"GREEN", "YELLOW", "RED"};
int[] timePerLight = new int[]{5, 1, 8};

int getState(String statename)
(

if (statename.equals("GREEN")) return 0;
else if (statename.equals("YELLOW")) return 1;
else if (statename.equals("RED")) return 2;

153

}

public String state = "RED";
public int timer = 8;

TrafficLight statu = new TrafficLight();

private String light = /@#OBJECTIVELUCID
statu.state fby.t statu.
where

dimension t;
end@/;

int num;

public TrafficLight()

t

this.state = state;
this.timer = timer;

}

String next ()

l

int t = timer - 1;
int position;
String LightColor = "";

if(t <= 0)

position = (getState(state)+1) % 3;
t = timePerLight[position];
state = StateName[position];

}

timer = t;
LightColor = state;

return LightColor;
}

public void print()

System.out.printIn(light);
}

public static void main(String[] argv)

for (num=0; num<100; num++) /@ light@.t num
where dimension t

}
}

next ()

; end @/.print();

Excerpt 7-3: TrafficLight.jooip - Traffic Light example in JOOIP

154

For the traffic light example, the JOOIP code is a lot shorter and simpler than

GLU#'s. Functions are not allowed in GLU#, any time there is need for functions,

programmers have to add C++'s templates. Because of the flexibility of our

existing framework, it is very easy for us to extend Lucid code to any Lucid

dialect, which is not the case in GLU#. The most important, OBJECTIVELUCID

makes it is possible for Lucid code to access identifiers and methods of Java

class by introducing the object-oriented dot operator, this also helps JOOIP to

become a 2-way hybrid intensional-imperative programming language. This is

also not the case in GLU#.

7.3 Embedding IPL as lazy multidimensional arrays

A similar embedding of multidimensional characteristics in a conventional

programming language has been proposed by Rondogiannis [Ron99]. In his

approach, Java is used as the host language and intensional languages are

embedded into Java as a form of definitional lazy multidimensional arrays. The

introduction of lazy arrays into conventional programming languages is very

useful in cases where only a small fragment of the elements of an array are

needed in order to compute a desired result.

The basic idea of this approach is that the data definition section of a

conventional program can be extended to include a multidimensional lazy array

definition part. The definitions of this part are in fact definitions of a

multidimensional program and can be used in the remaining conventional part.

This approach tries to introduce multidimensional lazy array into Java and let two

different paradigms benefit each other. However, compared to [Ron99], there are

155

still many limitations. We will provide JOOIP code from the same multi program

as in Excerpt 7-4 to show the difference.

This approach:

public class multi {
/* The multidimensional array definition section */
[[

dimensions x, y;
P = 1 fby_x (0 fby_y (next_y(p)+next_x(p))/2);

]]
public static void main(String [] argv){

System.out.println(p[100][100]);
}

}

JOOIP:

public class multi
{

private int P = /@#INDEXICALLUCID
1 fby.x (0 fby.y (next.y(p)+next.x(p))/2)
where

dimension x,y;
end @/;

public void print (f)
{

System.out.println(/@LUCX P @[x:f][y:f] @/);

public static void main(String[] argv)
{

GIPLtest oTest = new multi();
oTest.print (2);

Excerpt 7-4: Comparison on the same multi program

From Excerpt 7-4, we can tell:

1. The embedded language supports only a subset of the dimensional

operators of GLU, the user-defined functions and the nested where

156

clauses are not allowed in the language. Different Lucid dialects, e.g.

#INDEXICALLUCID and #LUCX can be used in JOOIP.

2. The value of a specific element of a lazy array can not be altered by a

procedural program. In Excerpt 7-4, we pass f as parameter to be the tag

of context [x:f][y:f] of stream P. This parameter pass as tag solution is

already implemented in Natural number example in Section 6.5.1.

3. Only one multidimensional array definition section is allowed in every

class definition. In JOOIP, we don't limit the number of places where the

IPL could appear.

However, this approach concentrates more on implementation efficiency

improvement with lazy array evaluation comparing to imperative array instead of

language design itself like JOOIP.

7.4 Object-oriented IPL implementation

In [Du94], there is another discussion on issues about object-oriented

implementation of intensional languages. In this approach, each variable in a

Lucid program is considered as a class and an object of a class is the variable in

a context. Each variable definition in a Lucid program is compiled into a C++

class definition which has the same name as the variable.

In the traditional implementation of intensional languages, it receives demands

for variable values, checks the value warehouse, fetch and interprets variables

definitions, creates more demands, evaluates expressions on the stack machine,

store values in the value warehouse, and switch context in the contexts registers.

However, in this object-oriented implementation of IPL, a variable in a context is

157

considered as an object which is identified by the variable and the context. All

objects of the variable constitute a class named by the variable.

In this implementation model, the evaluation engine, value warehouse and

context registers are distributed to individual objects, and context switching

means sending messages to other objects with switched contexts. Depending on

the dimensionality of a variable, an instance of a variable class has a set of

private context members. The value of any context members is not mutable after

the object is created.

This approach focuses on implementation level by creating a class for each Lucid

variable, it helps the system to execute in a distributed manner. However, the

objects introduced here do not contain information from C++ variables, which is

provided by JOOIP.

7.5 Introduction of Objects into IPL

The concept about objects in Lucid first appeared in [Fre91] in the early 1990s,

however, it did not clearly define how to realize this idea. In the later 1990s, Peter

Kropf and John Plaice talk about this topic in their paper "intensional objects"

[KP99]. In this paper, intensional objects are considered as open-able boxes

labeled by Lucid contexts. This paper focuses on intensional versioning whose

task is to build a system from versioned components, which are already sitting in

the warehouse. This warehouse is different as the warehouse in intensional

programming. The latter is like a cache to improve the performance. The former

contains the source of everything, it is like a "catalog" or a "repository", in which

the boxes are put. Each box is of some contents and a tag that is context. So, in

158

this approach, these labeled boxes are called intensional objects, which are re-

openable and re-packageable. However, in this approach, authors did not clearly

define the relationship among these "boxes" and if these boxes could include

intensional concept. Moreover, the idea is only on conceptual level.

7.6 Summary

This chapter introduces other hybrid approaches in the same domain. Most

systems focus on implementation instead of language itself. All intensional

objects concepts stated here are different as what we discussed in Chapter 6.

However, what we state in this thesis, the GIPC framework and the OO-IP hybrid

language, are still at an intermediate stage. In the next chapter, we will discuss

the future work and give conclusion.

159

Chapter 8 : Conclusion and Future Work

This chapter draws a conclusion with our work on the GIPC framework design

and the new OO-IP hybrid language design of JOOIP. It also discusses future

work arising from the limitations of this research.

8.1 Conclusion

This thesis develops a framework design based on wide fundamental research;

in parallel, based on the characteristics of the Lucid family of languages, a new

OO-IP hybrid language is designed which has unique features. Implementation

details of this new hybrid language are discussed and preliminary implementation

proves that the framework design can adapt to the particularities of this new

language, which also testifies our original framework design.

The conclusion is organized in four main parts: fundamental research, framework

design, OO-IP hybrid design and implementation; all description also correspond

to the stated contributions listed in Section 1.2.

160

Fundamental research: is the cornerstone of this thesis. It includes the research

on IPLs and the investigation on suitable method to realize their implementation.

Regarding characteristics analysis on intensional programming paradigm, we did

research on:

o I PL's history, syntax and semantics;

o The diversity of languages of Lucid family;

o The diversity of their applications;

o The evolution of Lucid;

We come up with the conclusion that the Lucid family of intensional

programming languages evolves and grows very quickly. In this dynamic and

highly evolutionary context, the standard methods of compiler generation do not

provide enough flexibility. That is the trigger of designing a new flexible system.

Regarding investigation on suitable method to realize the design, we did:

o Investigating the application of object technology on infrastructure

design;

o Research the features of framework methodology;

o Research the classification of framework methodology;

o Research the application of framework methodology;

All research provides good reasons in favour of adopting an object-oriented

framework methodology for the GIPC design.

Dynamic framework design of GIPC: provides a solution compared to all other

techniques currently used to implement the different variants of intensional

161

programming. Detailed introduction of the framework is in Chapter 4, as

conclusion the main tasks include:

o Integrate the design with the original GIPSY architecture;

o Build layers for the framework;

o Define functionalities for separate layers in the framework;

o Introduce hot spots automatic generation in the framework design;

o Separate front and back end of framework;

Layer design bring easy maintenance for the framework, the black-box

framework keep the back end of the compiler untouched by the addition of new

component instances in the front end. Any eventual change in the back end will

be shielded to the users. Automated generation units are hot spot generators that

generate different components of the framework, which can then be automatically

linked to the framework to provide new capacities to the system.

Compared to existing compiler construction systems (detailed comparison

presented in Chapter 5), the GIPC design has better flexibility and extensibility

than the Centaur, FNC-2, Eli and GLU systems, as it resolves new SIPLs

introduction in one stable system. Furthermore, framework features as well as

visual programming support make that GIPSY has high usability. Moreover,

GIPSY supports any Lucid flavour programs with Java functions, and it can be

easily extended to other sequential threads, for example, C++ function, Pascal

function, etc; other systems cannot provide such functionality. Finally, hot spot

automated generation makes the GIPSY framework extremely extensible.

162

OO-IP hybrid language design: By integrating Lucid and Java, we combine the

essential characteristics of object-oriented languages with the basic elements of

Lucid. We make it possible that each element in a stream could be an object. By

this new point, we extend the use of objects and enrich the meaning of a stream

in Lucid, which can increase the power of Lucid. Detailed constructions include:

o Introduce intensionality into the Java language;

o Concepts of context-mutable object and context-immutable object;

o Formally define the syntax of the hybrid language;

o Formally define the semantics of the hybrid language;

o Application discussion using various examples;

Compared to other hybrid programming systems (detailed comparison are in

Chapter 7), we provide a new OO-IP language design instead of only focusing on

implementation. Intensional objects can reflect the relationship among Java

objects. The hybrid OO-IP approach proposed here and adopted by JOOIP is

enabling the novel concept of intensional member and intensional class into

object-oriented programming.

Implementation-specific details: define the data type mapping system in the

GIPC framework for more generic situations. Our current implementation enables

us to realize the power of the framework, as well as to testify that our design suits

the tendency of evolution of intensional programming and it achieves our original

aims at flexibility, generality and adaptability.

This thesis presents the research work on the GIPC framework design, the

hybrid language design, the interacting between two issues and implementation

163

specific issues on hybrid programming in the GIPC. Partial work is based on the

current research result and makes a progress, for example, the using of

framework methodology. The originalities include:

1. Adding hot spots automatic generation in the framework design.

Nowadays, the state-of-art of compiler construction is using automated

compiler generation tools; however, in our method we use these tools

integrated in a framework for the automatic generation of framework

hot spots.

2. Raising ideas, context mutable object and context immutable object;

3. Introduce new concept of intensional member and intensional class;

4. Designing the hybrid language which can express the relationship

among objects and form objects group for management;

5. Permitting intensionality to exist in Java objects;

6. Enhance Java language with explicit dimensions;

7. Applying it on the Feynman algorithm widely used in physics

applications;

The use of the GIPC compiler framework has proven to meet its flexibility

promises in this work by facilitating the development of a hybrid language

permitting the use of any variant of Lucid to be embedded in Java classes. By the

use of this facility, JOOIP is the first language to allow the embedding of different

variants of Lucid. Moreover, as soon as a new compiler for a variant of Lucid is

added to the GIPC, it is automatically available to JOOIP. This feat proves the

validity of the framework approach adopted for the design of the GIPC.

164

As we were working on the design of JOOIP, it initially appeared that we would

have to apply profound changes to our run-time system (GEE). Interestingly, the

solution we present here did not require any such change, again proving the

generality of our design. Generality and flexibility has been one of our major

goals in the design of the GIPSY. This research experience and result provides

us with a positive evaluation of these requirements. We can conclude that this

research work meet all the goals which were shown in Section 1-1.

8.2 Limitations and Future work

Limitations

There are still some limitations of the JOOIP design.

1. Some important Java features such as exceptions, static members and

threads cannot be used in JOOIP. Because of potential distributed

execution in the GIPSY system, anything between objects with shareable

memory is not supported in JOOIP.

2. Because there are many translation processes in the JOOIP compiler

design, the efficiency of execution of the generated code might be affected.

3. The application domain is limited by the fact that objects need to be

organized by IPL operators.

In order to make the GIPC framework and the new JOOIP to be used widely in

real life, there are still lots of work to be done.

165

Future work

Framework implementation. There are still components need to be done in the

GIPC, for example, CP and ST front end generators which work similar to the

other front end generators. After designing each component in the GIPC, the

main task is to integrate them together and implement it. We will apply the GIPC

framework to generate compiler components for other known IP languages, such

as TensorLucid. Then we will carry out some practical experiments using the

generated compilers, such as particle in-cell simulation using the Maxwell

equations [Paq99], and eventually apply the GIPSY to genomics computations.

All these experiments will be made with a constant focus on adapting the

framework to reach for a constant increase of flexibility and, later on, efficiency of

computation.

Extend the concept to other families of languages' compiler design. We

hope to extend this framework design to the general compiler design for families

of programming languages. This should be done step by step. For example, first

changing mixture language from Java to other language, then changing the

original Lucid family languages with other family languages. We will constantly

improve the framework and make it more mature.

166

REFERENCES

[AW76] E.A.Ashcroft and W.W. Wadge. Lucid —A formal system for writing

and proving programs. SIAM Journal on Computing, pp. 336-354.

September 1976.

[AW77] E.A.Ashcroft and W.W. Wadge. Lucid, a nonprocedural language

with iteration. Communication of the ACM, pp. 519-526. July 1977.

[BCDetc88] P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B.

Lang, V. Pascual. CENTAUR: The System. ACM Sigplan Notices,

Vol. 24, No. 2, pp. 14 - 24. 1988.

[BDMN73] G. Birtwistle, O. Dahl, B. Myhrtag and K. Nygaard. Simula Begin.

Auerbach Press. Philadelphia, 1973.

[BMA97] David Brugali, Giuseppe Menga and Amund Aarsten. The

Framework Life Span. Communication of the ACM, Vol. 40, pp. 65-

68. October 1997.

167

[Cop92] Coplien JO. Advanced C++ Programming Styles and Idioms.

Addison-Wesley. 1992.

[Din04] Yi Ming Ding. Bi-directional translation between dataflow graphs

and Lucid programs in the GIPSY Environment. M.Sc. Thesis,

Computer Science Department, Concordia University, Quebec,

Canada. June 2004.

[DLM84] V. Donzeau-Gouge, B. Lang, B. Malese. Practical applications of a

syntax directed program manipulation environment. Proceedings of

the 7th international conference on software engineering, pp. 346-

354. Orlando, Florida, U.S.A., 1984.

[Du94] Weichang Du. Object-oriented Implementation of Intensional

Language. Proceedings of the 7th International Symposium on

Lucid and Intensional Programming, pp. 37-45. SRI International,

Menlo Park, California, U.S.A., September 1994.

[FHLS97] Garry Froehlich, H. James Hoover, Ling Liu, Paul Sorenson.

Hooking into Object-Oriented Application Frameworks. Proceedings

of the 1997 International Conference on Software Engineering, pp.

491-501. Boston, May 1997.

[Fin95] Raphael Finkel. Advanced Programming Language Design.

Addison Wesley. December 1995.

[FJ91] A.A.Faustini and R.Jagannathan. Indexical Lucid. Proceedings of

the Fourth International Symposium on Languages for Intensional

Programming, pp. 19-34. Menlo Park, California, April 1991.

168

[Fre91] B. Freeman-Benson. Lobjcid: Objects in Lucid. Proceedings of the

1991 Symposium on Lucid and Intensional Programming, pp. 80-87.

Menlo Park, CA, April 1991.

[FS97] Mohamed Fayad and Douglas C. Schmidt, object-oriented

Application Frameworks. Communication of the ACM, Vol. 40, No.

10, pp. 32-38. 1997.

[GHJV94] Erich Gramma, Richard Helm, Ralph Johnson and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, 1994.

[GHLetc92] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, W. M. Waite. Eli:

a complete, flexible compiler construction system. Communications

of the ACM, Vol. 35, No. 2, pp. 121-130, 1992.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud. The

synchronous dataflow programming language LUSTRE.

Proceedings of the IEEE, Vol. 79, No. 9, Special Issue, pp. 1305-

1320. September 1991.

[HedOO] G. Hedin. Reference attributed grammars. Informatica, Vol. 24, pp.

301-317, Slovenia, 2000.

[HM03] Gorel Hedin and Eva Magnusson. JastAdd-an aspect-oriented

compiler construction system. Science of computer programming,

Vol. 47, pp. 37-58, 2003.

[Java05] http://www.javapractices.com/Topic29.cjp. Viewed in November,

2005.

169

http://www.javapractices.com/Topic29.cjp

[JavaCC] JavaCC, The Java Parser Generator, http://www.metamata.com/.

Viewed in 2003.

[JD96] Raganswamy Jagannathan and Chris Dodd. GLU programmer's

guide. Technical report, SRI International, Menlo Park, California,

1996.

[JDA97] R. Jagannathan, C. Dodd and I. Agi. GLU: A high-level system for

granular data-parallel programming. Practice and Experience, pp.

63-83, 1997.

[JF88] R. E. Johnson and B. Foote. Designing reusable classes. Journal of

Object-oriented Programming, Vol. 1, No. 2, pp. 22-35. July 1988.

[Joh97] Ralph E. Johnson. Frameworks = (Components + Patterns) .

Communication of the ACM, Vol. 40, No. 10, pp. 39-42. October

1997.

[JP97] M. Jourdan and D. Parigot. The FNC-2 System User's Guide and

Reference Manual. Release 1.19. Technical report, INRIA

Rocquencourt, 1997.

[JPJetc90] Martin Jourdan, Didier Parigot, Catherine Julie, Olivier Durin and

Carole Le Bellec. Design, implementation and evaluation of the

FNC-2 attribute grammar system. Proceedings of the ACM

SIGPLAN'SO Conference on Programming Language Design and

Implementation. Vol. 25, No. 6, pp. 209-222. New York, June 1990.

170

http://www.metamata.com/

[KLMM83] G. Kahn, B. Lang, B. Malese, E. Marcos. METAL: a formalism to

specify formalisms. Science of Computer Programming, Vol. 3, pp.

151-188. North-Holland, 1983.

[KP99] Peter Kropf and John Plaice. Intensional objects. In the 12th

International Symposium on Languages for Intensional

Programming, pp. 180-187. Demokrito Institute, Athens, Greece,

June 1999.

[Kro99] P.G. Kropf. Overview of the Web Operating System (WOS) project.

In Proceedings of the 1999 Advanced Simulation Technologies

Conference (ASTC 1999), pp. 350-356. San Diego, California, April

1999.

[KW94] U. Kastens and W. M. Waite. Modularity and reusability in attribute

grammars. Acta Informatica, Vol. 31, No. 7, pp. 601- 627. 1994.

[LM03] Jed Liu and Andrew C. Myers. Match: Abstract iterable pattern

matching for Java. In Proceedings of 5th International Symposium

on Practical Aspects of Declarative Languages, pp.110-127. New

Orleans, LA, January 2003.

[Lu04] Bo Lu. Framework for the General Eduction Engine (GEE) in the

GIPSY. Ph.D. Thesis. Department of Computer Science and

Software Engineering, Concordia University, Montreal, Canada,

2004.

171

[Mat99] Michael Mattsson. Evolution and Composition of Object-Oriented

Frameworks. Ph.D thesis. University of Karlskrona/Ronneby,

December 1999.

[MBL97] Andrew C. Myers, Joseph A. Bank and Barbara Liskov.

Parameterized types for Java. In Proceedings of the 24th ACM

Symposium on Principles of Programming Languages (POPL),

pp. 132-145. Paris, France, January 1997.

[MC86] E. Morcos-Chounet and A. Conchon. PPML, a general formalism to

specify prettyprinting. In H.-J Kugler, editor, Information

proceedings 86. pp. 583-590. Elsevier Science Publisher, 1986.

[MJW99] O. de Moor, S. Peyton Jones, E. van Wyk. Aspect-oriented

compilers. In proceedings of the First International Symposium on

Generative and Component-based Software Engineering, pp. 121-

133. September 1999.

[MLAZ00] Marjan Mernik, Mitja Lenic, E. Avdicausevic, V. Zumer.

Compiler/Interpreter Generator System LISA. In proceedings of the

33rd Hawaii International Conference on System Sciences, Vol. 8,

pp. 8059. January, 2000.

[Mok05] Serguei A. Mokhov. Towards Hybrid Intensional Programming with

JLucid, Objective Lucid, and General Imperative Compiler

Framework in the GIPSY. Master Thesis. Concordia University.

October 2005.

172

[Mos01] Peter D. Mosses. The varieties of programming languages

semantics and their uses. Lecture notes in computer science,

University of Aarhus, Danemark. 2001.

[MP05] Serguei Mokhov and Joey Paquet. General Imperative Compiler

Framework within the GIPSY. In Proceedings of PLC2005, pp. 36-

42. Las Vegas, Nevada, USA. CSREA Press, June 2005.

[MPG05] Serguei Mokhov, Joey Paquet, and Peter Grogono. Towards JLucid,

Lucid with Embedded Java Functions in the GIPSY. In Proceedings

of PLC2005, pp. 15-21. Las Vegas, Nevada, USA. CSREA Press,

June 2005.

[MPT07] Serguei A. Mokhov, Joey Paquet, and Xin Tong. Hybrid Intensional-

Imperative Type System Enhanced with Context and Semantic

Annotations. Mathematics in Computer Science, Special Issue on

Intensional Programming & Semantics in honour of Bill Wadge on

the occasion of his 60th cycle, 2007. (unaccepted)

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information flow

control. In Proceedings of the 26th ACM Symposium on Principles

of Programming Languages (POPL), pp. 228-241. San Antonio, TX,

January 1999.

[NCM03] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.

Polyglot: An Extensible Compiler Framework for Java. Proceedings

of the 12th International Conference on Compiler Construction, pp.

138-152. Warsaw, Poland, April 2003.

173

[Ost81] C.B.Ostrum. The Luthid 1.0 Manual. Department of Computer

Science, University of Waterloo, Waterloo, Ontario, Canada. 1981.

[Paq99] Joey Paquet. Intensional Scientific Programming. Ph.D. Thesis,

Departement d'lnformatique, Universite Laval, Quebec, Canada,

1999.

[PGW04] Joey Paquet, Peter Grogono and Ai Hua Wu. Towards a

Framework for the General Intensional Programming Compiler in

the GIPSY. In 19th Annual ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA

2004). Pp. 164-165. Vancouver, Canada. October 24-28, 2004.

[Phy_Java] http://www.kw.igs.net/~jackord/bp/f1.html. Physics and Java. Viewd

in Jan, 2006.

[PK00] Joey Paquet, Peter Kropf. The GIPSY Architecture, Proceedings of

Distributed Computing on the Web, pp. 144-153. Quebec City,

Canada, 2000.

[PK04] Nikolaos S. Papaspyrou and loannis T. Kassios. GLU* embedded

in C++: a marriage between multidimensional and object-oriented

programming. Software Practice and Experience, Vol. 34, pp. 609-

630.2004.

[Plo81] G. D. Plotkin. A structural Approach to Operational Semantics.

Report DAIMI FN-19, Computer Science Department, Aarhus

University, Aarhus, Denmark, 1981.

[Ploy03] http://www.cs.cornell.edu/Projects/polyglot/. Viewed in 2003.

174

http://www.kw.igs.net/~jackord/bp/f1.html
http://www.cs.cornell.edu/Projects/polyglot/

[PS97] Wolfgang Pree and Hermann Sikora. Design Patterns for Object-

Oriented Software Development. Proceedings of the 19th

international conference on software engineering, pp. 663-664.

Boston, Massachusetts, U.S.A., 1997.

[PVP07] Amir Hossein Pourteymour, Emil Vassev, Joey Paquet. Towards a

New Demand-Driven Message-Oriented Middleware in GIPSY.

Proceedings of The 2007 International Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA'07),

pp. 91-97. Las Vegas, USA, June, 2007.

[PW93] J. Plaice and W. W. Wadge. A new approach to version control.

IEEE transactions on Software Engineering, Vol. 3, No. 19, pp. 268-

276. 1993.

[Ren02] Chun Lei Ren. Parsing and Abstract Syntax Tree Generation in the

GIPSY System. Master Thesis, Computer Science Department,

Concordia University, Quebec, Canada. September 2002.

[Ron99] P. Rondogiannis. Adding multidimensionality to procedural

programming languages. Software: Practice and Experience, Vol.

29, No. 13, pp. 1201-1221. November 1999.

[Sch96] Hans Albrecht Schmid. Design patterns for constructing the hot

spots of a manufacturing framework. J. Object-Oriented

Programming, Vol. 9, No. 3, pp. 25-37. June 1996.

175

[Slo95] Anthony M. Sloane. An Evaluation of an Automatically Generated

Compiler. ACM Transactions on Programmmg Languages and

Systems, Vol. 17, No. 5, pp. 691-703. September 1995

[TPM07] Xin Tong, Joey Paquet, and Serguei A. Mokhov. Context Calculus

in the GIPSY. Mathematics in Computer Science, Special Issue on

Intensional Programming & Semantics in honour of Bill Wadge on

the occasion of his 60th cycle, 2007. (unaccepted)

[Vas05] Emil lordanov Vassev. General Architecture for Demand Migration

in the GIPSY Demand-Driven Execution Engine. Master Thesis,

department of Computer Science and Software Engineering,

Concordia University, Montreal, Canada. 2005.

[WA85] W. W. Wadge and E. A. Ashcroft. Lucid, the Dataflow Programming

Language. Academic Press, London, 1985.

[Wan06] Kaiyu Wan. Lucx : Lucid enriched with Context. Ph.d Thesis.

Concordia University, Montreal, Canada. June 2006.

[WH88] W. M. Waite, V. P. Heuring. Configuration control in compiler

construction. In International Workshop on Software Version and

Configuration Control'88. 1988.

[Wu02] Aihua Wu. Semantic Analysis and SIPL AST Translator Generation

in the GIPSY. Master Thesis, Department of Computer, Concordia

University, Quebec, Canada, December 2002.

176

