
Automatic Semantic Annotation of Web Documents

Milos Vujicic

A Thesis

In the Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Quality Systems Engineering) at

Concordia University
Montreal, Quebec, Canada

May 2009

© Milos Vujicic, 2009

?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre référence
ISBN: 978-0-494-67266-2
Our fíle Notre référence
ISBN: 978-0-494-67266-2

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

ABSTRACT

Automatic Semantic Annotations for Web Documents

Milos Vujicic

Ontologies are the most important construct of the Semantic Web. From the first attempt

of using simplified RDF syntax to the advanced features of the OWL languages,

ontologies have arisen as the most viable technology offering solutions to integrate

various Web resources into a more intelligent Web. The work presented in this thesis is

a contribution to the new generation of the Web, which should be readable and

interpreted not only by humans but also by machines, such as software agents. In order

to allow ontologies to achieve their role of "animating" the traditional Web into this next

generation Web, it is essential to find an efficient way to map all existent Web resources

onto their corresponding ontology classes. In this thesis, we propose an approach for
automatic semantic annotation of Web documents which is an effective way to make the

Semantic Web a reality. Such an integrated Web would greatly improve the accuracy of

search engines, bring a new generation of intelligent Web services, push the limits of

multi-agent technologies and improve many other areas of human activity that we cannot

even imagine today. Considering the size and the speed of the growing Web, it is clear

that this task cannot be achieved manually. Semi-automatic and automatic annotations

of Web documents using statistical text classification methods seem to be the most

promising solution. This work is focused on an approach based on Naive Bayes text

classification adapted to some characteristics that are particular to Web documents. A

complete software solution is developed to allow testing feasibility of such an approach.
iii

Furthermore, different variations of the text classification algorithms are tested and

analysed in order to identify the most optimal approach to semantically annotate Web

documents. Notably, the usage of Web documents hierarchy is explored as an option to

improve the accuracy of semi-automatic and automatic annotations of Web documents.

The results of each tested method are presented and commented. Finally, some aspects

that could possibly be improved or approached in a different way are identified for future
work.

IV

Table of Contents

List of Figures vii
List of Tables viii

List of Equations ix

Chapter 1 Introduction 1
1.1 Context and Motivations 1

1.2 Semantic Web Basics 3

1.3 RDF- Resource Description Framework 4

1.4 RDFS - Resource Description Framework Schema -6

1.5 OWL- Web Ontology Language 9
1.6 Semantic Web Services 11

1.7 Current State and Future Improvements 16
1.8 Contributions and Thesis Outline 19

Chapter 2 Automatic Semantic Annotation of Web Resources 21
2.1 Introduction 21

2.2 Web Documents Classification 21

2.3 Problem Formulation 23

2.4 Overview 26

2.5 Statistical Text Classification 27

2.6 Feature Selection 30

2.7 Hierarchy of Documents 33

Chapter 3 Semantic Annotation Tool 35
3.1 Introduction 35

3.2 Technical Environment 35

3.3 Software Training 36
?

3.4 Recognizing Ontology Class Instances 37

3.5 Software Settings 39
3.6 Data Model 41

3.7 Program Units 45

Chapter 4 Experimental Results 47
4.1 Introduction 47

4.2 Tests Description 47

4.3 Feature Selection Analysis 48
4.4 Words vs. Word Stems Classification 50

4.5 Hierarchical Method 54

4.6 Mixed Method 59

Chapter 5 Conclusion 62
5.1 Conclusion 62

5.2 Future Work 65

References 69

Appendix 75

Vl

List of Figures

Figure 1.1 Dublin Core Metadata 3

Figure 1.2 RDF Statement 4

Figure 1.3 Ontology Vocabulary 7

Figure 1 .4 RDFS Ontology 8

Figure 1.5 OWL Ontology 10

Figure 1.6 OWL-S Service Ontology 14

Figure 2.1 University Ontology 27

Figure 3.1 Semantic Annotation Tool - Training Data 37

Figure 3.2 Semantic Annotation Tool - Page Classifier 38

Figure 3.3 Semantic Annotation Tool - Data Settings 40

Figure 3.4 Data Model for Semantic Annotation Tool 43

Figure 4.1 Frequency of the CMU Dataset Features 49

Figure 4.2 Words vs. Stems Vocabulary Performance 52

Figure 4.3 Words vs. Stems Vocabulary Performance Excluding Other' Class 53

Figure 4.4 Performance of Standard vs. Hierarchical Approach 55

Figure 4.5 Performance of Standard vs. Hierarchical Approach Without 'Other' Class ..56

Figure 4.6 Activity - Hierarchical vs. Standard Approach 57

Figure 4.7 Person - Hierarchical vs. Standard Approach 58

VII

List of Tables

Table 4.1 Results with 250-Word Vocabulary 50

Table 4.2 Results with 800-Stem Vocabulary 51

Table 4.3 Results with 400-Stem Vocabulary Excluding the Class Other' 54

Table 4.4 Results with 650-Word Vocabulary Excluding the Class 'Other' .54

Table 4.5 Hierarchical Approach Results 58

Table 4.6 Hierarchical Approach Results without 'Other' Class 59

Table 4.7 Mixed Approach Results 60

Table 4.8 Mixed Approach Results without Other 'Class' 61

VlIl

List of Equations

Equation 2.1 Document Score 28

Equation 2.2 Word Probability 29

Equation 2.3 Domain Vocabulary 32

IX

Chapter 1

Introduction

1.1 Context and Motivations

Since its inception, the Internet has grown incredibly fast. Such an extraordinary

development has brought incredible opportunities in many areas, but also many

concerns regarding its basic architecture. This chapter gives a brief overview of the
current status of the Web and its limitations followed by an introduction to the most

popular approaches to overcome these limitations. The last part describes the state of

current efforts to improve the current Web and various issues related to these efforts.

More specifically, the problem related to Semantic Web Annotation is introduced, which

is the subject of this thesis.

The content of Internet as it is known today is entirely intended for human reading

purposes and is purely display oriented. It is constructed without any notions of

taxonomy and the categorisation of its content. In other words, Web browsers, Web

servers and even search engines cannot distinguish a personal homepage from a major

corporate Web site. The only way to classify and organize the Web is to perform

keyword matching of its content. The disadvantage of this approach is the fact that it is

impossible to find the Web pages related to a given subject of the search without finding

many unrelated pages. For example, Google displays dozen of millions of pages related

to the word "SOAP", which is a World Wide Web Consortium (W3C) standard for Web

services. An important number of these pages are actually related to completely different

subjects such as Soap Opera. To eliminate unrelated findings, it is always possible to

add more search keywords. In our example, we could perform a search using Simple

1

Object Access Protocol keywords. That would definitely improve the results, but also

eliminate all pages that are related to our subject without explicitly using the same

keywords.

Another limit of the traditional Web is related to integration. Since there are no formal

rules in the categorisation of the Web content, it is extremely hard to combine and

aggregate its resources. For example, booking an airline ticket online can be a very

tedious task. The first step is to find a few travel agencies selling tickets to our

destination. Then we have to get the flight schedules and choose the most appropriate

ones. Finally, we can choose the best price and book the ticket. In a perfect world, we

should be able to accomplish the same task just by specifying our preferences regarding

the dates, prices, destination and the rest would be performed automatically.

The Internet can be viewed as a huge distributed database. It is an important source of

information and it has become a very important learning tool. Web data mining refers to

the activity of getting useful information from the Internet. Since the current Web is made

for human reading only, it is very difficult to build intelligent agents that can browse the

Internet content in order to automatically synthesize and interpret various data. For

example, we could have a Web site presenting the cities of California and another

presenting the states of America. In today's Internet, only humans can deduce that the

cities of California are actually the cities of America at the same time. This is a significant

limit of the current Web and it is caused by the fact that it is not made to be read and

automatically understood by computers.

2

1.2 Semantic Web Basics

The Semantic Web is the idea of having data on the Web defined and linked in a way

that it can be used by machines, not only for display purposes, but also for automation,

integration, and the reuse of data across various applications. The missing piece in the

traditional Web that could allow the implementation of the Semantic Web is a metadata

layer. In general, metadata is defined as "data about data"; it is data that describes
information resources. To ensure that metadata can be automatically processed by

machines, some metadata standards are needed. A standard is a set of agreed upon

criteria for describing data. For instance, a standard may specify that each metadata

record should consist of a number of predefined elements representing some specific

attributes of a Web document, and each element can have one or more elements. This

kind of standard is called metadata schema.

<htral>

<r.ead>

. . . [document; title here] . . .
<meta r. arce= "DC. Date" content=" ischerce=ISOS601) 2Q07-07-16">
<raeta nair;e="DC. Title" content="Dublin Core Sample">
<meca r:air.e="DC. Creator" content="Surnarte, Name">
<meta r;arse="DC. Crea tor .Addre33" cent er.t="e-mail@3erver. com" >
<meta naiEe="DC. Subject . keyword" content="Dublin Ccrer Metadata">
<rrseta r.arr.e="DC.Type" cor.ter,t="User Guide, Iiitcriai">
<ir.eta r.anse="DC. Identifier" content=" (3chen>e=url) http : //url/Mame .html">
<meta naree="DC. Lançuaçe" content-=" ¡scheme=! 50. 633-1) 3v">

</head>
<bcdy>

. . . [document body beçina" . . .
</body>

</htnû>

Figure 1.1 Dublin Core Metadata

An example of a standard is the Dublin Core (DC) (Figure 1.1). It was developed in 1995

and it has 15 elements, which are called the Dublin Core Metadata Element Set. It is

proposed as the minimum number of metadata elements required to facilitate discovery
3

of document objects in a networked environment such as the Internet. Although the DC

schema is a very simple example, it shows the key idea of adding metadata to a given

document. The DC schema adds only general information to the Web documents and

cannot be used to express complex semantic relations within various Web documents.

In order to add semantic metadata to the Web, much more powerful tools are needed

such as the RDF (Resource Description Framework) language.

1.3 RDF - Resource Description Framework

The RDF is an XML based language for describing information contained in a Web

resource. A Web resource can be a Web page, an entire Web site, or any item on the
Web that contains information in some form. RDF is considered to be the basic building

block of the Semantic Web. The basic element of an RDF document is an RDF

statement. It is used to describe the properties of Web resources and has the following

format:

Resource (subject) + Property (predicate) + Property Value (object)

The property value can be a string literal or a resource. Therefore, in general an RDF

statement indicates that a resource (the subject) is linked to another resource (the

object) via a property (predicate). It can be interpreted as follows:

<subject> has a property <predicate>, whose value is <object>

<?xrcl version="!. 0"?>
<rdf:RDF xid.^3:rdf="httc://wvv?. w3.org/ 1999/02/22 -rdí-svntax-naí"

xr=i ? ? = "htic://S5KcleURL.r.et/V€r:ieìe* " >
<rdf ¡Description rdf : ab3ut="'sttc : / /SaispleURL ¦ net/tcvst aCcroiIa2 OQS . rdf#To yotaCcrclla2 DOS ">

<rdf:type rài: retourc£="nttc: //SaneleJjRL.üet/"ehicle#3edan"/>
•ínusberCfDoor = rdf :datas\Te°"atsc://fc^v.«3.orc/2001/XMISchei!sa#inT:eger">4</r.u!ri:srC-fDoer5>

</rdf :DE3cripC-cn>
</rdf :RD?>

Figure 1.2 RDF Statement
4

Figure 1.2 shows an example of an RDF statement that demonstrates how the rules

explained above are implemented using the RDF syntax. The first line says that the

document is in XML format. The second line indicates that the document is an RDF

document. It shows the RDF namespace URI reference (http://www.w3.org/1999/02/22-

rdf-syntax-ns#) and Ydf is used as a shortcut to represent this namespace. There is

another namespace in the second line (http://SampleURL.net/Car#), which is the default

namespace of the resource described in our RDF document. Therefore, any name that

does not have a prefix in this document is assumed to be in this namespace. In the third

line the Ydf:Description' begins section where the resource is defined. In the same line

there is á keyword Ydf:abouf used to identify the resource being described, which is

'http://SampleURL.net/ToyotaCorolla2008.rdf#ToyotaCorolla2008'. The fourth line, with

the keywords Ydf:type' and Ydf:resource', specifies that the described resource is an

instance of class 'Sedan', defined in the 'http://SampleURL.net/Vehicle#' namespace.

The fourth line specifies that the 'Sedan' class has a property, named 'numberOfDoors',

and for the resource ToyotaCorolla2008', the value of this property is '4'. In other words,

the RDF document above should be read as follows: The resource

'http://SampleURL.net/ToyotaCorolla2008. rdf#ToyotaCorolla2008' has a property

'http://SampleURL.net/Vehicle#numberOfDoors', whose value is '4'.

When creating new resources, it is important to reuse those that already exist. This rule

is applicable not only to the subjects and objects, but also to the predicates. In the

previous example, instead of reinventing the resource Sedan, it was reused from the

resource 'http://SampleURL.net/Vehicle#Sedan'. This implies that the resource

'http://SampleURL.net/ToyotaCorolla2008. rdf#ToyotaCorolla2008' represents exactly the

5

same concept as 'http://SampleURLnet/Vehicle#Sedan'. Everything that has been

added to this new resource is considered to be additional knowledge about it.

1.4 RDFS - Resource Description Framework Schema

The RDF Example shown in Figure 1.2 is a valid and compete RDF document that

creates a new Web resource. But, it is obvious it cannot work without the class 'Sedan',

which is declared somewhere else. The resource ToyotaCorolla2008' is an instance of

class 'Sedan' and from the previous example, it is impossible to know what this class

looks like. Moreover, it is impossible to know if there are super-classes or sub-classes of

that class. It is impossible to know, if other properties can be defined, beside the

property 'numberOfDoors'. Of course, it is acceptable not to reuse the existing resources

and to reinvent the new vocabulary in each RDF document, but in that case none of

these documents would be connected to the external world, which is exactly the principal

objective of the RDF.

The RDFS is a language that one can use to create a vocabulary for describing classes,

subclasses and properties of RDF resources. It is also used to associate the properties

with the classes it defines. RDFS also defines the meaning of a given term by specifying

its properties and what kinds of objects can be the values of these properties. In the

case of the example with the resource 'Sedan', the vocabulary used for its definition

could look like it is shown on Figure 1.3. This diagram shows that resource 'Sedan', used

in the RDF example, is a sub-resource of another resource called 'Car'. It has a property

called 'NumberOfDoors' which takes the value of the type

'http://www.w3.Org/2001/XMLSchema#integer'. Besides 'Sedan', there are three other

6

sub-resources of 'Car', which are: 'Coupe', '4X4' and 'Van'. At the same time, 'Car' itself

is sub-resource of 'Vehicle'. 'Vehicle' has a property called 'OwnedBy' which takes a

resource 'Driver'. The resource 'Driver' is a sub-resource of 'Person'.

? ehieieQwnedBvDnver

TruckPerson

Sedan

Numb erO fDoors

http://www.w3 . org/200 1 /XMLSchema#int eger

Figure 1.3 Ontology Vocabulary

The vocabulary presented in the diagram above, expressed using the RDFS syntax,

looks like that shown on Figure 1.4. The RDFS syntax is relatively simple; the resources

are defined using the keyword 'rdfs:Class' and sub-resources are identified with the

keyword YdfsrsubClassOf. Properties are presented with the keyword 'rdf: property',

whereas a property's parent resource is identified with the keyword 'rdfs:domain'. The

keyword 'rdfs:range' defines the type of value that can be used for a given property.

Figure 1.4 shows an example of RDFS document whose role is to define the vocabulary

for creation of RDF resources, such as ToyotaCorolla2008'. This kind of vocabulary is

known as ontology and represents one of the fundamental categories of the Semantic
Web.

7

<?xml version="1.0"?>

<rdf:RDF >:mln3 : rdf = "http : //www. w3 . orct/ 1999/02/22-rdf-3vntax-n3#"
xmlns:rdfs='rhttp://T»rTO. w3 . orcr/20QQ/01/rdf-schema#"
xml : base= "http : //Samp IeURL . net/Vehicle#">

<! —Classes Definitions— >

<rdfs: Class rdf: ID="Vehicle">

</rdfs:Class>
<rdf3: Class rdf : ID="Person">

</rdfs:Clas3>
<rdfs:Class rdf : ID="Truck">

<rdfs: subC lassOf rdf : resource= "#Vehic Ie"/ >
</rdfs:Clas3>
<rdfs: Class rdf : ID= "Car ">

<rdfs:sutiClassOf rdf : resource= "#Vehicle"/>
</rdfs:Clas3>
<rdfs: Class rdf : ID="Bus">

<rdfs:sulDClassOf rdf : resource="#Vehicle"/>
</rdfs:Class>
<rdfs:Clas3 rdf : ID="Sedan">

<rdfs:subClassOf rdf : resource= "#Car"/>
</rdfs:Class>
<rdfs: Class rdf : ID="Coupe">

<rdfs:subCla3s0f rdf : resource= "#Car"/>
</rdfs:Class>
<rdfs: Class rdf: ID= "Four ByFour">

<rdfs:sufoClassOf rdf : resource= "#Car"/>
</rdfs:Class>
<rdfs:Clas3 rdf : ID="Van">

<rdfs : suk>Clas30f rdf : resource= "#Car "/>
</rdfs:Class>
<rdfs: Class rdf: ID="Driver">

<rdfs:subCla3sOf rdf : reso urce= "#Person"/>
</rdfs:Class>
< !--Properties Definitions— >
<rdf : Property rdf: ID="NumberOf Doors">

<rdfs : domain rdf : resource="#Sedan"/>
<rdfs : range rdf : resource= "http : //www. w3 . orq/2001/XHLSchema#inteqer "/>

</rdf : Property>
<rdf : Property rdf: ID="OwnedBy">

<rdfs: domain rdf : resource="#Vehicle"/>
<rdfs: range rdf: resource= "#Driver"/>

</rdf :Property>
</rdf :RDF>

Figure 1.4 RDFS Ontology

8

1.5 OWL - Web Ontology Language

Although RDFS allows expressing quite complex relationships between various Web

resources, it also has several limitations. For example, with RDFS it is impossible to

indicate that two classes express the same concept. Even though the number one rule in

RDFS is to reuse the existing resources, it is impossible to avoid a situation where

someone creates a resource which already exists. In such a context, ability to recognize

two or more Web resources as identical is extremely important. Another limitation of

RDFS is related to the fact that it cannot express cardinality constraints. For example, in

the case of ToyotaCorolla2008' resource, it would be possible to add more than one

property 'numberOfDoors', which is totally meaningless.

For the above reasons and because of several other limitations, it was necessary to

extend RDFS to allow the expression of more complex relationships between classes

and to identify constraints on specific classes and properties. Thus, a new language was

born with more expressive capability. The name of this language is OWL (Web Ontology

Language) and it is the latest recommendation of W3C. It is probably the most popular

language for creating ontologies today and it is built on RDFS. Therefore, all the classes

and properties provided by RDFS can be used when creating an OWL document. The

document below (Figure 1.5) shows the previous RDFS example expressed with OWL.
Some new details have been added to this new ontology in order to show the extended

expressive capacity of this tool.

9

<?xml version="1.0"?>
<rdf:RDF xmlns: owl= "http://uCTW.CT3 .org/ 2 002/ 07/ OTJlfl"

xmlns:rdf="http://wCTW.w3 .org/1999/02/22-rdf-3vntax-ns#"
xroln3: rdf3= "http://wCTCT.w3 .org/ 2000/ 01/rdf-schemaft"
xml : base= "http: //Samp leURL.net/Vehiclefl">

<! —Classes Definitions—>
<owl: Class rdf : ID="Vehicle">

<rdfs: SiJbC lassOf>

<owl: Restriction

<o¥l : onProperty rdf : re3ource="#0wnedBy"/>
<owl : cardinality

rdf : datâtype="http:// www . ct3 . or q/2001/XMLSchema#nonNeqativeInteqer">
1

</owl : cardinal ity>
</owl : Restr iction>

</rdf3:subClass0f>
</owl:Class>
<owl:Class rdf : ID="Person">

</owl:Class>
<owl: Class rdf : ID="Truck">

<rdf3:subClas30f rdf :resource="#Vehicle"/>
</owl:Class>
<owl: Class rdf : ID="Car">

<rdfs:subClassOf rdf : resource= "#Vehic Ie"/ >

<owl : equivalente lass
rdf :re3Qurce="http:// Another SanipleuRL.net/AutomobileSAutomobile"/>

</owl:Class>
<oct1: Class rdf : ID="Bus">

<rdfs:subClassOf rdf : resource= "flVehic Ie"/ >
</owl:Class>
<OCTl:Cla33 rdf : ID="Sedan">

<rdfs : subC Ia3s0f rdf : resource= "#Car "/>
</owl:Class>
<owl: Class rdf : ID="Coupe">

<rdfs : subClassOf rdf : resource= "#Car "/>
</owl:Class>

<owl:Class rdf : ID="FourByFour">
<rdfs:subClassOf rdf : resource= "#Car"/>

</owl:Class>
<owl: Class rdf : ID="Van">

-crdfsrsubClassOf rdf !resource= "#Car"/>
</owl:Class>
<owl:Ciass rdf : ID="Driver">

-CrdfsrsubClassOf rdf : resource= "#Person"/ >
</owl:Class>
< ! — Properties Definitions— >
<owl: DatâtypeProperty rdf : ID="NuirtoerOfDoors">

<rdfs: domain rdf : resource="#5edan"/>

<rdfs: range rdf !resource= "http : //www. ct3 ¦ orq/2001/XHLScher[ia# integer "/>
</owl : DatatypeProperty>
<owl :ObjectProperty rdf: ID="OCTnedBy">

<rdfs : domain rdf: resource="#Vehicle"/>
<rdfs: range rdf : resource= "#Dr iver "/>

</owl : ObjectFroper ty>
</rdf :RDF>

Figure 1.5 OWL Ontology

10

The OWL syntax is very similar to the syntax of RDFS. Thus, classes and subclasses

are declared with the same keywords. Properties are also declared in similar way,

except for the fact that in OWL there is a distinction between properties connecting a

resource to another resource and properties connecting a resource to an 'rdfs:Literal' or

an XML schema built-in data type value. Properties connecting to a resource are

declared with the keyword OwLObjectProperty' whereas the properties pointing to an

Ydfs: Literal' or an XML schema built-in data type value are identified with

OwLDatatypeProperty'.

The most important difference between RDFS and OWL is OWL's capacity to express

more complex relationships between Web resources. Figure 1.5 shows an example of a

cardinality constraint within the 'Vehicle' class. This is done by using 'owl !Restriction',

OwLonProperty' and OwLcardinality' keywords. Thus, a 'Vehicle' can be owned by only

one 'Driver'. Another example of OWL's additional capability is shown in the 'Car' class.

The keyword OwLequivalentClass', indicates that the class 'Car' is equivalent to the

class 'Automobil' located at http://AnotherSampleURL.net/Automobile. Besides these

two examples, there are many others OWL keywords that can be used to express much

more detailed and complex relationships between resources.

1.6 Semantic Web Services

Before discussing how Web services could benefit from the Semantic Web, it is

important to understand current Web service architecture and its standards. A Web

service is an application (server) that provides a Web-accessible API, so that another

application (client) can invoke it programmatically. The standard communication protocol

11

used for accessing Web services is Hypertext Transfer Protocol (HTTP). The obvious

reason for this standard is the fact that HTTP is everywhere. Any machine that can run a

Web browser supports HTTP. Firewalls normally allow HTTP traffic; so it is possible to

use HTTP to talk to any machine. Web services are a relatively new solution in software

integration and adopted standards are still evolving. However, WSDL, SOAP and UDDI

seem to be well adopted standards by all major players in Web services industry. WSDL

(Web Services Description Language) is an XML-based language used for describing
Web services. A WSDL document is automatically generated by any Web service,

describing its all public methods as well as all the input and output data types used by

these methods. SOAP is a protocol implemented over the HTTP protocol used to

transfer data between Web services. This protocol ensures data transmission between

the applications running on different servers, regardless of the programming languages

and platforms that are used. Since SOAP is layered over HTTP, it inherits all its

advantages. UDDI acts as a Web services registry. Its main function is to provide

support for finding and publishing services description. It has a directory structure where

businesses can register and search for Web services.

Web services have brought numerous advantages in software integration. The ability to

integrate applications running on different platforms and developed with different

programming languages is definitely the most important advantage of using Web

services. The first step in a software integration process, implicating Web services, is

finding the appropriate Web service. UDDI is the ultimate tool made for Web service

discovery. At present, UDDI classification schémas facilitate the discovery of Web

services, but its categorizations still do not allow an unambiguous Web service definition.

Thus, even when the appropriate Web service seems to have been found, there is no
12

guarantee that it is actualy true. This is because two Web services can have exactly the
same methods and be related to the same subjects, but give completely different types

of outputs. Therefore, before its integration, some additional tests and technical analysis
must be done. The semantic Web gives us the tools to possibly solve this problem. The

principal idea is to add semantics to Web services so they could be unambiguously
defined. This could be achieved by using ontologies, which have already been

introduced in this document. Solving the problem of ambiguous categorization and
taxonomy of Web services could greatly improve their discovery process. At the same
time, it would bring many other opportunities in Web services integration. If it is possible
to find the appropriate Web service with no mistake, why not make this process

automatic. The next step is to invoke the Web service automatically. Ontologies can be
used to describe Web services but, they can also be used to describe in detail a Web

service's operations, which would allow their invocation on the fly. Introducing the
Semantic Web in the world of Web services, gives the possibility of going even further.

Automatic composition of existing Web services to obtain a new functionality is another
objective that could be reached. Quite often, a specific business need requires several
Web services to work together. If it is possible to discover and invoke them

automatically, their composition could be done automatically as well. At present, the
three most popular Semantic Web services approaches to reach the objectives
explained above are:

- Web Ontology Language - Services (OWL-S)

- Web Services Modeling Ontology (WSMO)

- Web Service Description Language Semantics (WSDL-S)

1 . OWL-S Upper Ontology to Describe Web Services

13

OWL-S ¡s written using OWL language. It could be defined as an upper ontology used to

semantically mark-up Web services. An upper ontology is not related to any particular
knowledge domain, its role is to provide some common and general information about a

given Web service. OWL-S is made of three sub-ontologies whose role is to describe the
following aspects of Web services:

- Profile ontology describes what service does. This ontology is mainly used to
advertise the service, thereby enabling a service requester to determine whether the

given service meets the needs or not.

- Process ontology describes how service works. More precisely, it describes the
procedures necessary to interact with the service from the client's point of view.

- Grounding ontology describes how the service is invoked. This ontology provides
terms that can be used to describe how the service can be accessed technically.

Service

presents descijbedBy supports

ServiceProfìle

Profile

Main class in
profile.owl

ServiceModel

Process

Main class in
process.owl

ServiceGrounding

WsdlGrounding

Main class in
grounding, owl

Figure 1.6 OWL-S Service Ontology

14

The three OWLS-S sub-ontologies are connected together through a final higher-level

ontology, called Service ontology (Figure 1.6). The role of this ontology is to describe the

semantic relationships among the other three ontologies.

2. WSDL-S Semantic Annotations

Besides the OWL-S approach which is based on creating stand-alone semantic

descriptions of Web services based on OWL ontology, there are also other approaches

that focus on reusing and extending existing structures. One of these approaches is

WSDL-S approach introduced by IBM and the University of Georgia. This method adds a

semantic layer to the WSDL document, which has been accepted by W3C as a standard

since 2001. WSDL-S depends on domain-specific ontologies. Its semantic annotations

are added to different parts of a WSDL document by using domain ontologies. Another

advantage of WSDL-S is that it does not limit the choice of the language in which the

domain specific ontology is constructed. This approach mainly focuses on dynamic

discovery of Web services. However, it does not provide enough semantic information
for automatic invocation and composition of Web services. To solve the problems of

automatic discovery, the service description must be published in some registry such as

UDDI. The Organisation for the Advancement of Structured Information Standards

(OASIS) has published a recommended mapping schema that implements the mapping
of WSDL-S onto UDDI data structure.

3. WSMO Web Service Modeling Ontology

WSMO provides a complete framework allowing semantic description of Web services. It

is an ongoing research and development initiative which consists of three following

domains of activity:

15

- WSMO, which provides formal specification of concepts for Semantic Web services.

- WSML (Web Services Modeling Language), which defines the language for WSMO

concepts.

- WSMX (Web Services Execution Environment), which defines and provides

reference implementation allowing the execution of Semantic Web services.

The WSMO approach can be summarized in four top level concepts: Ontologies, Web

services, Goals and Mediators. WSML is used as the modeling tool in each of these four

concepts. As in the two previous approaches, the fundamentals of the WSMO are

Ontologies. The language used for building ontologies in the WSMO is WSML.

1.7 Current State and Future Improvements

It is commonly recognized that the Semantic Web would solve many issues and bring

new possibilities to numerous computer related fields. At present, there are still many

Semantic Web aspects that have to be improved. However, like any other computer

technology, the Semantic Web will never stop evolving and will never reach the point

where everything would be perfect.

1. RDF related issues

At present, almost all Semantic Web concepts are subject to criticisms and even the

basic foundations are not an exception. For instance, a RDF statement, the basic

building block of OWL ontology language, has been criticized due to various technical

aspects. Here is a list of some points that are subject to criticisms related to RDF [12]:

16

It is impossible to distinguish an RDF node element from a property element by

simple inspection of the element in question.

- The frame-style approach of the description block does not clearly match the RDF

model - triples in the RDF graph.

- There are excessive choices for users in choosing how to write RDF/XML.

- Elements, attributes and attribute values are used for the same purposes, for

example, encoding an RDF URI reference.

- The way that XML QNames are used does not constrain the elements and attribute

tags that can appear in RDF/XML.

- The unconstrained syntax cannot be described completely with XML schema

languages such as DTDs and W3C XML Schema (WXS).

- It does not allow using xsi:type for specifying W3C XML Schema data types.

- The syntax is not easy to use with XML technologies such as XSLT, XQuery and

other XML tools (mostly due to the unconstrained tags and many abbreviations).

- It is impossible to embed RDF/XML in XHTML while retaining DTD validation (while

this is also true for any other XML syntax embedded in a DTD-constrained format).
- It is hard to emit human-readable RDF/XML from an RDF graph due to the range of

choices

RDF/XML cannot describe collections of literals.

Not all property URIs can be encoded.

As it might be observed from the above criticisms, the issues reported to RDF are mainly

of technical nature. Although they indicate some important problems, they do not seem

to be unsolvable.

17

2. Ontologies development and evolution

Although there already exist large-scale ontologies, ontology engineers are still needed

to construct the ontology and knowledge base for a particular task or domain, and to

maintain and update the ontology to keep it relevant and up-to-date. Manually

constructed ontologies are time-consuming, labour-intensive and error-prone. Moreover,

a significant delay in the update of ontologies causes currency problems that actually

hinder the development and application of the ontologies [13]. The majority of existing

ontologies have been generated manually. Generating ontologies in this manner has

been the normal approach undertaken by most ontology engineers. For this reason,

researchers are looking for other alternatives to generating ontologies in a more efficient

and effective way. The starting point for creating an ontology could arise from different

situations. An ontology can be created from scratch, from existing ontologies (whether

global or local ontologies) only, from a corpus of information sources only; or a

combination of the latter two approaches. Various degrees of automation could be used

to build ontologies, ranging from fully manual, semi-automatic, to fully automatic. At

present, the fully automatic method only functions well for very lightweight ontologies in

very limited circumstances. At present there are several approaches to automate

ontologie creation. In [13], there are summarized descriptions of the major approaches.

However, none of them have solved all potential problems. Advancement in this area

would definitely help a more rapid introduction of Semantic Web.

3. Implementing semantic annotations

Considering the scale and dynamics of the worldwide Web, the largest knowledge base

ever built, it becomes clear that it is impossible to annotate Web documents manually.

Thus, introducing automatic or semi-automatic methods for semantic annotations of Web

18

resources comes into view as a logical and obvious solution to this problem. At the same

time, knowing that similar methods have been used by the most popular Web crawlers

for categorisation purposes, it is questionable if these approaches can perform a better

job in the context of Semantic Web. There are a few elements that have to be

considered to justify using automatic and semi-automatic approaches for Semantic Web

annotations. First of all, it is true that problems related to the Web resources

categorization in the current Web are due to the errors caused by the limits of automatic

methods. However, the primary problem of the current Web lays in the categorization

itself, which is based only on keywords. By introducing ontologies for classification

purposes, these approaches would perform a much better job. Still, it can be difficult to

accept the idea of using approaches that inevitably must generate defects. At the same

time, manual annotation can not be considered safer. When performed manually,

semantic annotations get highly dependent on personal preferences of individuals. Also,

the level of knowledge related to semantic annotation of Web resources is not equal

from one person to the other, which could create some important reliability related
issues. For all these reasons, automatic and semi-automatic semantic annotations

should not be considered just as a possible solution but rather as a necessity.

1.8 Contributions and Thesis Outline

The subject of this thesis is automatic and semi-automatic semantic annotation of Web

documents. It is particularly focused on the usage of text classification algorithms to

recognize ontology class instances among documents that belong to a Web domain.

Although several aspects related to the classification of Web documents are introduced,

particular attention is given to feature selection and the hierarchy of documents. An

19

approach for feature selection is proposed using the Porter Stemming algorithm along

with a new algorithm for the text classification exploiting the hierarchy of Web

documents. In addition, a software application is developed for automatic annotation of

Web documents. Results of various analyses, from the data gathered with this

application are presented to describe advantages and disadvantages of the different

approaches.

The thesis is divided into five chapters. After introducing the Semantic Web in Chapter 1,

in Chapter 2, automatic and semi-automatic semantic annotations are presented in detail

explaining the difficulties and limitations of that approach as well as the details of the

method used in this thesis. Chapter 3 describes the functionalities of the software

application developed for automatic annotation of Web documents. The results and

analyses of the tests related to the different approaches are presented in Chapter 4 and

at the end, a conclusion and some propositions for future work are presented in Chapter
5.

20

Chapter 2

Automatic Semantic Annotation of Web Resources

2.1 Introduction

This chapter introduces the principles of statistical document classification and its
possible application in the Web context. In the next two sections, an introduction to the
basics of the Web document classification is given along with some important issues that

have to be resolved. The fourth part of this chapter describes in detail the approach used
in this work as well as the data set that is used for tests and data analysis. The fifth

section describes in detail the algorithms used for the statistical text classification and
the last two sections focus on feature selection and the hierarchy of documents. As

already mentioned, these two aspects of Web document classification are in fact the
principal research area of this thesis.

2.2 Web Documents Classification

The Semantic Web is still in its early development stage and has a lot of unfinished

features. As shown in the previous chapter, some fundamental aspects such as ontology

languages, development and evolution of ontologies, as well as semantic annotations of
documents are not an exception. In this work, the main research goal is automatic and
semi-automatic semantic annotation of Web documents. Since, all the areas of semantic

Web are highly interconnected, a significant breakthrough in any of them could bring
completely new approaches in all other areas. However, this work is focussed solely on
semantic annotations of Web documents and only the current standards from other

areas will be considered.

21

Although, there are significant differences between automatic annotations for the
traditional Web and the annotations for the Semantic Web, some of the basic principles

and approaches are the same. In both cases, classification algorithms are needed to

determine the type or category of a given Web document. That job is basically done

through the evaluation of Web resource's text content by applying different mathematical
and statistical methods.

In the case of the traditional Web, the objective of this classification process is to find

and rank the relations between Web resources and various subjects or keywords. In the

case of the Semantic Web, instead of subjects or keywords, we speak rather about

ontologies, ontology classes or ontology attributes. Relations between these new

categories and Web resources are determined within ontologies themselves.

As a starting point in this work, some existing resources have been considered which

focus on similar area of researches ([59], [15], [51], [56], [31], [36], [44]). In all these

works, the main objective is the semantic annotation of Web documents using automatic
and semi-automatic methods. The statistical text classification is another point shared

across all these approaches. In these and many other reference papers, various

algorithms for text classification have been analysed providing valuable information

about their characteristics. In an important number of these works, the Naive Bayes

Classifier algorithm has been tested and proven to be a very good choice for document

classification [22], [29], [23]. This algorithm is also used in this thesis and its

implementation is more detailed in the second part of this chapter.

22

There are many factors that influence the efficiency of a text classification approach. The

most important factors are the algorithms used for the text classification and many

reference papers provide valuable results in that domain ([17], [18], [27]). Although

various findings from these papers have been used in this thesis, the main area of

research is focused on Feature Selection and the Hierarchy of Web Documents. These

two aspects also have a great impact on the efficiency of a text classification approach.

Some important reference papers related to these areas have also been used in this

thesis ([18], [31]).

2.3 Problem Formulation

As already mentioned, automatic and semi-automatic methods for semantic annotations

are not just a possible direction for a full implementation of the Semantic Web, but rather

a necessity. First, converting the current traditional Web to the semantic one, with no

automatic or semi-automatic methods, would require a manual updating of all current

Web pages currently available on the Internet. In other words, each html document

should be manually tagged as an instance of one or more ontology classes. Of course,

this kind of global software conversions would not be the first in the history of computer

science. The year 2000 bug would be a good example of the software adaptation to the

new global conditions. However, there are some significant differences between the

millennium bug software conversion and an eventual implementation of the Semantic
Web. In the case of the millennium bug, non-correction of a piece of software was simply

not an option, unless it was already at end of its life. On the other hand, introducing the
Semantic Web will not eliminate the traditional Web. They can coexist together and at

23

present it is almost impossible to imagine a reason that would motivate people all around
the world to add the semantic annotations to their HTML documents.

Another important reason why automatic and semi-automatic approaches are required is

related to the accuracy and consistency of the semantic annotations. They would be

required, even if the Semantic Web was already reality where all HTML documents are

semantically annotated by their owners. For multiple reasons, human performed

annotations cannot be always trusted or taken as the only source of information. Even in

the traditional Web, there are many examples where people try to cheat the Web

crawlers by adding keywords unrelated to their Web pages, in order to improve their

visibility. These kinds of issues will definitely exist in the Semantic Web. In addition to

this, there are also human errors as well as omissions that have to be taken into

account. For instance, HTML documents can be related to many different ontology

classes. When manually annotated, some of these relationships might not be expressed.

In summary, regardless of which technologies will be used to bring the Semantic Web

into reality, the usage of automatic and semi-automatic methods seems to be an
inevitable choice for semantic annotation of HTML documents. Of course, manual

annotations will largely facilitate this job, but they will definitely be insufficient to create a
basis for a robust and consistent Semantic Web.

Automatic and semi-automatic annotations for the text content of the Web pages have

already been the subject of several academic studies. In all of them, the text classifying

algorithms have been used as the principal approach for identifying and classifying
textual content of HTML documents. These algorithms have already been implemented

24

¡? spam detecting software with a high degree of success. However, in the case of the

Semantic Web annotations, the same success is still lacking.

Machine learning is the primary element of all text classification approaches [47]. The

efficiency of a machine learning algorithm depends on the quality of data that are used

for training purposes. For instance, in the case of spam detecting software, examples of
unsolicited e-mails must be used in order to train the software for recognizing this kind of

documents. Basically, the same technique is used in the case of Web documents

classifying.

In the case of the spam detection, the learning process is controlled by end-users. As

soon as an e-mail is identified as a spam, the same e-mail can be easily traced and

eliminated in any inbox of the same e-mail server. Then, the detected unsolicited e-mail
is added to the training set of data which will allow the software to eliminate these kinds

of defects in the future automatically.

The process of classifying HTML documents for semantic annotating purposes is

different and more complex in many regards. First of all, it is not just about detecting the

defects. It is about assigning a document to the right category with the fewest possible

defects. Here the term defect is referred to assigning a document to the wrong category.

The number of categories is equal to the number of ontology classes describing the

domain for which the HTML pages have to be classified.

Another important difference is in the way the training data is provided. In the case of

Web resources classification, training data sets have to be gathered and classified
25

manually. For each ontology class, a set of related HTML documents must be provided

in order to teach the software how to recognize the same kinds of documents. Of course,

recognizing a document category cannot be one hundred percent accurate and it is a

serious limitation of this approach, because these defects have to be detected within an

additional process. Although promising, all recent research has still not succeeded in

significantly reducing the relative number of defects. Hence, the main objective of this

work is to identify and understand the main causes of these defects and to try to find

solutions or possible ways to improve the overall process of the semantic annotation of
Web documents.

2.4 Overview

One of the most important aspects in any study is having results that can be compared
with the results from other similar studies. In the case of document categorization and

recognition, this can be very challenging given that the results of different approaches

are literally incomparable unless the input data are the same. In this work, the data used

in all tests has been chosen from a previous study [15], which is publically available at

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/. This data set contains

HTML pages collected from computer science departments of various universities in

January 1997 by the World Wide Knowledge Base (Web->Kb) project of the CMU text

learning group. The 8,282 pages were manually classified into the following categories:

Student (1641), Faculty (1124), Staff (137), Department (182), Course (930), Project

(504) and Other (3764).

26

The class 'Other' is a collection of pages that were deemed not to be the "main page",

For example, a particular faculty member may be represented by a home page, a

publications list, résumé and several research interests' pages. Only the faculty
member's home page was placed in the 'Faculty' class. The publications list, résumé and

research interest's pages were all placed in the 'Other' category. For each class the data

set contains pages from four universities: Cornell (867), Texas (827), Washington

(1205), Wisconsin (1263). Remaining 4120 pages, labelled as Miscellaneous in the

dataset, are collected from several other universities. The ontology diagram below

(Figure 2.1) shows the relations between different classes which are part of the data set
used in this work.

i other

research_project
members_of_project :
PIs of:

entity
home_page:
home_page_tiììe:

activity

course

instructors_of:
TAs of

person
departmentof:
projects_of:
courses_taught_by:
name of:

facuity
projects_jed_by:
students of:

\ staff

department
members_of_department:

student
advisors_of:
courses_TAec_by:

Figure 2.1 University Ontology

2.5 Statistical Text Classification

Recognizing the type of a document based on its textual content is basically a question

of statistical calculations performed on words found in it. The statistical methods used for

classifying pages involve using the so-called bag of words. The text appearing anywhere

on a HTSML page is taken into account, but also the words that occur in the title and
27

HTML headings of the page as well as the words that occur in hyperlinks that point to

other pages. The approach involves building a probabilistic model for each defined class
using classified training data, and then classifying new pages by selecting the class that

is most probable given the evidence of words describing the new page. The method
used for classifying Web pages is based on the Naive Bayes classifier. The probabilistic

model used in this classifier ignores the sequence in which the words occur. Such

models are often called unigram or bag-of-words models because they are based on

statistics about single words in isolation. Since the unigram model naively assumes that

the presence of each word in a document is conditionally independent of all other words
in the document, this approach, when used with Bayes Rule, is often called naive Bayes.

The conditional independence assumption is clearly violated in real-world data, however,

despite these violations; empirically the Naive Bayes classifier does a good job of
classifying text documents [22], [29], [23].

In this thesis, Naive Bayes classifier is used with minor modifications based on

Kullback-Leibler Divergence [15]. Given a document d to classify, a score is calculated
for each class as follows:

Scorejä) - '^^> + ±Pr(„, | vJgZg)? tí [Pr(W1Id))

Equation 2.1 Document Score

In this formula ? is the number of words in document d, T is the number of words in the

vocabulary (discussed later in this chapter) that exist in a given document, and w, is the

/,h word defined for T. Pr(w\c) represents the probability that a randomly drawn word
28

from a randomly drawn document in class c will be the word w¡. Pr(w¡\d) represents the

proportion of words in document d that are word w¡. The class predicted by the method
for a given document is simply the class with the greatest score. This method makes
exactly the same classifications as Naive Bayes, but produces classification scores that
are less extreme.

Estimating the word probabilities, Pr(w¡\c) is the principal element in Naive Bayes.

Basically, by calculating the product of word probabilities for a given type of document, it

is possible to recognize, with a certain level of confidentiality, if a documents belongs to

that type. One of the problems that have to be solved in this approach is due to

assigning zero probability to words that do not occur in the training data for a particular
class. For instance, even if many words strongly indicate that a given document is

possibly an instance of a given ontology class, only one document word that is not a part

of the training data would give a probability zero, which once multiplied with other

probabilities would result in zero as a total probability. There are several smoothing
methods that can be used to solve this problem. In this work, it has been achieved by

calculating the overall probability for a given document using only the words that exist in

both, the document and the training data. The probability calculated this way can be

expressed as follows:

N(w.,c)Pr(W1 c) = ' '

Equation 2.2 Word Probability

29

In this formula, N (w¡, c) is the number of times word w, occurs in the training data for

class c and Tc is the total number of unique words in class c.

2.6 Feature Selection

In text recognition and classification algorithms, it is extremely important to decide what
should be considered as a word and what words are worth considering. As a first

approximation, a word could be defined as sequence of characters delimited by an

empty space or an EOF (end of the line) character. However after a little more analysis,

it is easy to realize that all comas, periods, semicolons, question marks, quotes are

attached to the words which have to be removed as well. Of course, these are the

easiest ones, but what about the dashes and slashes? How to distinguish a compound

word from two words separated with a dash? How to consider the URLs and e-mail

addresses or phone numbers? In this work, all these special characters are treated as

word delimiters. Also, all the "'s" at the end of words are eliminated before being stored

into the database. It is true that this approach eliminates some important parts of

information (obviously a compound word does not have the same meaning as two

separate words). However, the approach used in this work is based on Naive Bayes

algorithms and one of its principal assumptions is that the presence (or absence) of a

particular feature is unrelated to the presence (or absence) of any other feature. So by

removing the special characters a text of course loses some important parts required for

its understanding, but from the statistical point of view it is rather insignificant.

Besides the special characters, there are also words that are considered to be of no

significant value for text recognition algorithms. They occur evenly in any text regardless

30

of its subject. These words are called stop words and in this work the following words

have been excluded in the case of all ontology classes: a, an, and, are, as, at, be, but,

for, have, has, I, if, in, is, it, me, not, of, on, or, out, so, that, the, there, they, this, to, was,

with, you, your. In addition, all words made of only one character have been removed as
well.

In English as well as in all other European languages, a word can be inflected into many

different words. For instance, the word connect can is used to make words such as

connected, connecting, connection, connections. Even though the meaning of these

words is not the same, they all refer to the same semantic concept. Therefore, reducing

them to their root form can be advantageous for two reasons. First, the total number of

words in a document would be reduced which improves the performance of text

recognition algorithms. Secondly, differences in writing styles used in same kinds of

documents is reduced which improves the success rate in the text recognition

algorithms. The process for reducing inflected words to their root or stem forms is called

stemming and the reduced form of words are known as stems. The stem does not need

to be identical to the morphological root of the word. It is sufficient that related words

map to the same stem, even if this stem is not in itself a valid root. At present, there are

many stemming algorithms available for various purposes. The algorithm used in this

work is known as the Porter Stemming algorithm [16]. This algorithm has been

developed by Martin Porter and it is publicly available for reusing. It is widely used and

became the de-facto standard algorithm used for English stemming.

Another very important topic in estimating document classes is related to the definition of

the domain vocabulary. The objective at this stage is to find a set of words which are the

31

most representative for delineating differences between the available ontology classes.

Basically, the perfect word would be a word that is systematically present in one

particular class of documents and systematically absent in all other classes. So it

becomes easily obvious that some very common words for all classes are in fact the

worst candidates. For instance, in the case of the University ontology, the words such as

university, student, courses, department or faculty are not the best candidates. The most

valuable words can be easily found mathematically from the training data set. For each

word, a score representing its statistical value is calculated then the words with the

highest scores are selected for the domain vocabulary. This is achieved using the

following expression [15]:

HCW1)= S ^Pr(CV1)IoA Pr('pV'J Ì,,^^ [Pr(C)Pr(V1))

Equation 2.3 Domain Vocabulary

In the formula above, v, is a random variable indicating whether word w, is present or

absent in a document. Thus, V1. e {??,,-iw,.} for the values it takes in a document. The C

is a random variable taking values of all the class labels, ce C . Pr(c) is the probability of

the class in the training data set, which can be calculated by dividing the number of

documents representing the class c with the total number of the documents. Pr(v)

represents the probability that a word is found in a document from the training data set,

regardless the class it belongs to. It can be obtained by dividing the number of

documents having a given word with the total number of the documents. Finally, Pr(c, v)

is the probability that a given word is found in a particular document class. It can be

32

found by dividing the number of documents belonging to a particular class that contain a

given word with the total number of documents belonging to the same class.

Once, these scores are calculated for all words, it is important to decide on the

vocabulary size. In this work, tests have been performed with different vocabulary sizes

in order to find the most appropriate value. Most of the studies done on text

classifications suggest using smaller vocabulary sizes in order to achieve better results.

2.7 Hierarchy of Documents

The University Ontology shown on Figure 2.1, like majority of ontologies, has a tree

structure. Two levels containing more than two ontology classes can be identified in the

case of the University Ontology. The first level is made of Other', 'Activity', 'Person' and

'Department' ontology classes, where as at the second level, there are two separate

groups of classes. The first group is made of 'Research Project' and 'Course' classes,
which are the sub-classes of the 'Activity' class. The second group contains 'Faculty',
'Staff and 'Student' classes which are the sub-classes of the 'Person' class. As a result,

the initial ontology can be divided into 3 different subsets or domains and perform

document classification independently for each domain. This approach divides

documents into more homogenous groups which can be more efficient while classifying

texts that have very similar words. From a technical point of view, the same
mathematical calculations can be used as in the non-hierarchical approach. However,

feature selection has to be performed for each domain separately as well as various

probability calculations. In this approach, features selected in the lower domains can be

significantly different from those selected in the first level. In the process of the text

33

Classification, a document is first evaluated against the domain in the first level. If the

document is identified as an instance of the 'Department' or Other' class than the

classification process ends at that point. On the other hand, if the document is identified

as an 'Activity' or 'Person' instance then it has to be evaluated one more time against the

domain containing the sub-classes of the class chosen at the first level.

Another approach consists of keeping the same hierarchical separation of the University

ontology. The difference from the approach described in the previous paragraph is in the

way a class of a given document is evaluated at the first level. Instead of having four

ontology classes: 'Person', 'Activity', 'Department' and 'Other', the first two classes are

actually replaced by their sub-classes. Thus, the number of classes at the first level is

equal to the total number of University ontology classes. In this way, evaluating the class

of a document at the first level is exactly the same as in the non-hierarchical approach.

As a result, right after the first level class evaluation, the ontology classes from all

domains are already estimated. Re-estimating documents being evaluated as the

instances of the second level classes is a part of the next step of this approach. This

step could be seen as process of refining. It is exactly the same as the process

performed at the first hierarchical approach. This second approach is in fact a mix of

hierarchical and non-hierarchical approach. Implementing and analysing both

approaches gives more detailed information about efficiency of hierarchical versus non-

hierarchical approach.

34

Chapter 3

Semantic Annotation Tool

3.1 Introduction

The objective of this chapter is to describe the software developed in this thesis, which is

used for all the experimental tests and data analyses described in the following chapters.

The next section of this chapter briefly introduces various technologies used to develop

the tool. The following three sections give respectively the detailed information about

three main modules of the tool: the software training module used to train the software to

semantically annotate Web documents, the module responsible for annotation of new

Web documents and the tool's settings module used to enable or disable various

software settings. The last three sections are intended to describe the technical side of

the tool. In the Data Model section, there is an overview of the entity-relationship model.

The Performance Considerations section describes some performance considerations

that have to be taken into account with this kind of tool and last section describes some

of the most important program units that were used to implement the algorithms

described in the previous chapter.

3.2 Technical Environment

The main part of this work is the Semantic Annotation Tool, developed for identifying and

classifying HTML resources. This software has been developed for the research

purposes of this work. It was developed on J2EE platform, using the following open

source software:

MySqI database for data storing purposes

35

- SQL language for program units that access stored data and implement all major

statistical and mathematical algorithms

HTML Parser, used for parsing HTML documents

- Java language used for developing the main software layer that integrates together

SQL program units, HTML Parser and the presentation tier

- HTML and JavaScript for development of the presentation tier

- Apache Tomcat Web server

The Semantic Annotation Tool is made of three modules: the 'Page Classifier', the

Training Data' and the 'Data Settings'. All the aspects and topics of the semantic

classification of Web documents discussed in Chapter 2 are implemented in three

modules described in the following sections.

3.3 Software Training

The role of the Training Data' module is to load pre-classified pages in order to teach

the software how to recognize new pages belonging to the same ontology classes. The

main screen of this module (Figure 3.1) provides the interface for uploading Web pages

by providing their addresses at the 'Web Resource URL' text field and selecting the

corresponding ontology class from the 'Ontology Class' list. Once the page is uploaded

and classified, a message in red appears confirming successful completion. In the

example below, the page http://www.cosc.brocku.ca/ (Brock Computer Science) has

been uploaded as an instance of the department class. The limitation of this option is

that only one page can be specified at a time. Therefore, the option 'Add a list of URLs'

has been add to this module in order to allow the specification of a file containing the list

36

of URLs that have to be classified. It is exactly the same as the previous option, except

that instead of a URL, a file location has to be specified. In addition to selecting the

ontology class from the list, in this option it can also be specified in the file for each URL.

If both options are chosen, the one from the file has the priority. This option was used for

loading 8282 HTML documents from the World Wide Knowledge Base project. The

entire process of parsing and classifying these pages takes around one hour.

Semantic Annotation Too] - Mozilla Ftrefpx ta-

fite :.v. Edit. View History Bookmarks Took Help

K L http://localhost:8030/The5Í5/pageLo3d.J5p?url=http://v\ftvw.co5C,brccku.ca/

Semantic Annotation Tool

Training Data -> Add a URL

Page Classifier Training Data Data Settings
Add a list of URLs

Web Resource URL: http://www.cosc.brockuca/
Ontology Class: Department "»"

http/Àvww.cosc.brocku.ca'' has been submited.
Submit

Done

Figure 3.1 Semantic Annotation Tool - Training Data

3.4 Recognizing Ontology Class Instances

The 'Page Classifier' module is used for loading and identifying ontology classes of

unclassified HTML documents (Figure 3.2). In this module as well, there are two options

for uploading HTML documents. They work in exactly the same way as those described

37

in the previous module. The only difference is that in this module there are no lists to

specify ontology classes. When a new page is successfully uploaded and classified, a

message in red characters appears giving the information about the ontology class that

has been assigned by the software. In the example below, the page

http://www.cosc.brocku.ca/ (Brock Computer Science) has been recognized by the

software as an instance of the department class. The option 'Add a list of URLs',

available in both modules described above, is very useful for loading large numbers of

documents. It also allows integration of the Semantic Annotation Tool with Web crawling

tools, since most of them can generate URL lists of found Web resources.

kae&BSemantic Annotation Tool - ¡MozilJa Brefox

FiJe Edit View History Bookmarks Tods ?f (gfe' ^ Û O K
{ i_j j http://bcalhost:8080/Thesis/pageCIass.jsp?url=http://vvvvw.co5c.brücku,c3/&cla5S=Departmet %¿

Semantic Annotation Tool

Page Classifier -> Add a URL

? ?

Pase Classifier Training Data I Data Settings
Add a Kst of UKLs

Web Resource URL: http://www.cosc.brocku.ca/

Non-Hierarchical Classification F
CIaSsJfV1HIg Option: Hierarchical Classification ?

Mixed Classification C

http://www.cosc.brocku.ca' has been submited as an instance of: Department
Submit

Done

Figure 3.2 Semantic Annotation Tool - Page Classifier

38

As discussed in this thesis, HTML documents can be classified using three different

methods: Non-Hierarchical classification, Hierarchical classification and Mixed

Classification. Any of these three classification approaches can be chosen by selecting

the corresponding radio-button at the 'Page Classifier" module.

3.5 Software Settings

The third module 'Data Settings' contains the options that have to be configured once

the training dataset is uploaded in order to prepare the software for recognizing new

HTML documents (Figure 3.3). There are five options available in this module:

- The 'Extract All Documents' Words' option is used to extract the words from all the

documents that are already uploaded and stored in the database. It is the only option

that does not have to be executed after loading the training data, because it is

performed implicitly while parsing HTML documents. This option has to be executed

only if some other system parameters have been changed after uploading the

training data. Examples of such parameters are the stop words or the stemming

algorithm (introduced in Chapter 2).

- The 'Load Training Documents' Words' procedure identifies the words that belong to

the documents used for the training purposes. During this process, all unique words

are eliminated as their statistical value is with no significance. Since it uses the

words extracted by 'Extract All Documents' Words', it must be executed after that

procedure.

The 'Load Feature Selection' is used to identify the words (features) for each domain

vocabulary of a given ontology. This procedure creates one vocabulary per domain.

It also calculates all the probabilities and statistics required for the document

39

Classification algorithms. This option must only be executed after 'Load Training

Documents' Words' procedure had been executed, since it uses the data generated

by that procedure.

Semantic Annotation Tool - Mozilla Fîrefox

File Edit View Histciy Bookrnàrlçs; Toots Help ?. ? e- m
|http://localho5t8080/The£Ì5/dataSettingsJ5p

Semantic Annotation Tool

Data Settings

Page Classifier Training Data Data Settings

Setting Options

Extract AB Documents' Words

Extract Training Documents' Words

Load Feature Selection

Last Execution: 2008-10-15

Last Execution: 2009-01-1 1

Last Execution: 2009-03-10

® Word Stems
O Original Words

Confirm Change Currently Used: Word Stems

Done

W

Figure 3.3 Semantic Annotation Tool - Data Settings

The Semantic Annotation Tool can use original words or word stems. This choice

should be made before loading the training data because switching from one option

to the other requires the re-execution of the procedures previously described.

40

3.6 Data Model

The entity-relationship data model on Figure 3.4 shows the database structure used for

storing all data required by the Semantic Annotation Tool. This data model is made of

eight SQL tables:

- The 'webj-essource' table contains the basic information for all stored documents,
such as URL, title and the total number of words.

- The table 'web_ressource_content' is used to store the whole textual content of Web

documents. It is populated right after the successful parsing of a Web document.

- The 'word_occurrence' table is used to store words as well as the number of times

they occur on each HTML document. It is populated from the data stored in

'web_ressource_content', which allows the software to reload the words from stored

documents without parsing the HTML document again.

- The Ontology_class' table contains basic information about of the ontology classes,

such as URL and Description. During the training phase, the content of this table will

determine for which ontology classes the software can be trained.

- The 'class_instance' is used to link a Web resource to the appropriate ontology class.
The column 'Confirmed' in this table is used to differentiate between the training data

and the documents discovered by the software. This information could have also

been stored in the 'web_ressource' table, given the fact that a Web page can be

indentified as instance of only one ontology class. However, in the real world, this is

not true and for that reason, the table 'classjnstance' is added to the data model.

- The table 'stopword' contains the words that are considered to be of no significant

value for the text recognition algorithm. Although, the relationship "zero to many" with

the 'ontology_class' table allows storing different words for each class, in this work all

the stop words are the same for all ontology classes.
41

- The table 'web_ressourceJinks' is used to store the links, as well as the text
associated with them for each stored HTML documents. Same as with the

'web_ressource_content' table, the 'web_ressource_links' is also loaded during the
page parsing phase.

- The table 'linkjype' contains different types of links that can be found on the Web
pages such us: http, https, ftp, e-mail, ire and javascript. Although they are a part of
the model, the tables 'web_ressource_links' and 'linkjype' are not really used by the

text classifying algorithms.

- The domains or the ontology subsets used for hierarchical text classifications are
stored in the 'domain' table. The number of features used by classifying algorithms

for each domain is stored in this table as well.

- Various software variables, such as last execution times of each procedure or the

parameter determining whether the software uses the stemmed words or not, are
stored in the table 'software_settings'.

- The Porter stemming algorithm requires some data which has to be permanently

stored. For that purpose the table 'porter_stemming' has been created. It contains
some basic rules used for word stemming.

42

?} : O O JT

« °
öS
UJ O ?2 2 5

:? ¡V ;? y

"B-S-O

g. g· S W

5 2 2 S -F.

1; Sili

v ^

: » S- J? in

«¦! ° e -? -

¦s y

îî a

Î6ss

S 2 R-3 2-!= -fi

"* * -S &

*> o — _c

m.

O O ,—, O

¿S X IL

¦er.

Ill

H

s-a ä Q

H.

V V > > V

5*äat-

I filili

¦lilis
SgSg .

?? U"> IT)
a — —

^ :V IV ?:

if««
a;is ï

ß> l/ì ¡n .3

».

Figure 3.4 Data Model for Semantic Annotation Tool

Statistical text classification involves complex mathematical calculations and as such it

can be very challenging in the case of several ontology classes with a lot of pages used
for training purposes. In this work, more than 8000 pages have been used with almost
two million words in total. In such a context, software performance becomes a very

important aspect. Since the calculations are performed on data stored in a relational
database, SQL language was the most appropriate choice to implement all major

algorithms. Furthermore, some additional SQL tables have been added to the data
model shown on Figure 3.4, in order to store some data that takes long time to calculate,

but that does not change frequently. For instance, all calculations involving only the

training data have to be performed only once. The following tables contain this type of
data:

- The table 'class_probability' stores the information about probability or proportion of

documents for each ontology class within the training data set.

- The table 'class_word_probability' contains probabilities or distributions of words
across the ontology classes.

- The table 'feature_selection' is used to store the words chosen for each domain

vocabulary.

- The words selected for training purposes are stored in 'trn_word_occurence'. All the
words stored in this table can be found in the 'word_occurence' table, but the

opposite is not true, because of the unique words which are not used for training

purposes.

44

The information in these three tables could have been accessed through the SQL

queries or views, since it is calculated upon previously stored data. However, having

them physically stored significantly improves the performance of the software.

3.7 Program Units

Besides the SQL tables, there are various SQL functions and procedures that are used

in order to fully implement the features of the Semantic Annotation Tool. The complete

source code of these program units is available in the annex of this document. Here is a

non-exhaustive description of the most important ones:

- The functions: 'evaluate_document_class', 'evaluate_document_class_hier' and

'evaluate_document_class_mix' are used to evaluate documents' ontology classes in

the 'Page Classifier' module (Figure 3.2). They respectively implement Non-
Hierarchical, Hierarchical and Mixed Classification. Despite the different algorithms

used in these classifications, they are all based on the same statistical calculations

described in Equation 2.1 (in Chapter 2).

- The procedure 'extract_web_ressource_words' is used to extract the words of a

given Web page using the rules and limitations already described (see Feature

Selection). This procedure depends on the implementation of several functions, for

example the Porter stemming algorithm [16]. This procedure implements the features

of the Training Data' module (Figure 3.1).

- Compared to the previous procedure, 'extract_all_web_ressource_words' is almost

the same, except that it is used for re-loading the words of all the documents already

stored instead of loading only one document at a time. This procedure is used for

45

implementation of the first option "Extract All Documents' Words' of the 'Data

Settings' module (Figure 3.3)

- The procedure 'extract_tm_word_occurrence' is used to reload words used as

training data into a separate SQL table. The option 'Extract Training Documents'

Words' in the 'Data Settings' module (Figure 3.3) is implemented using this

procedure. This feature is basically used to improve the system performance and to

add more flexibility when different training data sets have to be produced from the

preloaded Web documents.

- Probably the most important procedure, from the point of view of statistical text

categorization, is 'load_feature_selection'. It is used when executing the 'Load

Feature Selection' option from 'Data Settings' module (Figure 3.3), which is in fact an

implementation of the formulas shown in Equation 2.2 and Equation 2.3 (Chapter 2).

46

Chapter 4

Experimental Results

4.1 Introduction

This chapter details the results of the various tests and analysis performed in this work.

The next section briefly describes the data set on which the tests were performed. The

subsequent sections explain in detail the following topics: feature selection analysis,

words vs. word stems classification, hierarchical method and mixed method. While

feature selection analysis focuses more on the feature frequency or how often a given

feature can be found in a randomly drawn document, remaining sections focus attention

on the efficiency of different approaches in Web document classification.

4.2 Tests Description

Different types of tests and analysis have been performed using the data from the CMU

text learning group. As suggested by the members of that group, the Semantic Anotation

Tool was trained on three of the universities plus the mise collection, and tested on the

pages from a fourth, held-out university. The universities chosen for the training

purposes are Washington, Wisconsin and Texas, whereas Cornell University is taken for

testing the software. This choice is not related to any particular characteristic of the

dataset and is purely random. The issue with using the pages from only one university is

the fact that there is only one Web page in such dataset that belongs to the 'Department'

ontology class. In order to add more statistical significance to the test results related to

that class, the Web pages from the computer science departments of 26 Canadian

universities have been added to the testing data. The added pages have been found

using the Google search tool by using the keywords "computer science department" and
47

using the option "pages from Canada". From the result set of approximately 30000

pages, the first 26 pages that were actually the main pages of a computer science

department were added to the testing data set.

In all tests, the class 'Other' has obtained the worst results, which is normal because this

class contains documents of various types. In an ideal world, these pages would be

classified into additional ontology classes, which would be represented in the training

data set. However, it is obvious that some Web documents will always be unclassified or

be a part of the 'Other' class, since the development of ontologies is conditioned by the

development of the Web content. Although very often it is possible to anticipate the

evolution of a given ontology, it is impossible to create perfectly suitable categories for

something that has not been created yet. Therefore, the presence of the class 'Other' in

the University ontology is quite realistic. Nevertheless, in the case of the dataset used by

CMU text learning group, the content of the class 'Other' also includes the pages that are
in fact the instances of the real classes, but are classified as Other because they are not

the main pages [15]. Consequently, the accuracy achieved in classifying documents of

this class is very low.

4.3 Feature Selection Analysis

Once the stop words are eliminated and all the rules used for feature selection are

applied (such as word stemming), there are around 48000 different words or features

representing the dataset used by CMU text learning group. By eliminating the features

that occur in only one document, the number of features is reduced to approximately

23000. Additional elimination of the least occurring features further reduces the number

48

of the remaining features, but at a slower rate. For instance, by eliminating the features

occurring in only two documents or less, the total number of remaining features

becomes 16000. Figure 4.1 shows number of documents represented by different

number of features which follows an exponential distribution. It can be seen that a small

proportion of the features have high frequency, namely about 500 features occur in a

little more than in 400 documents. In following section of this chapter, it can be seen that

the most accurate results are obtained with the vocabulary sizes that are in the zone

close to the mean of this distribution (715 features for the dataset made of stemmed

words excluding the stop words).

1500

1200

1100

1000

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 150Oi
Number of Documents

Figure 4.1 Frequency of the CMU Dataset Features

49

4.4 Words vs. Word Stems Classification

To compare properly the efficiency of these two text classification methods, several tests

were performed with the same data set, using different vocabulary sizes. The

performance of each of these tests was measured by calculating the percentage of

pages assigned to a given class that are actually members of that class (accuracy) and

by the percentage of pages of a given class that are correctly classified as belonging to

the class (coverage). Table 4.1 shows the best results obtained using the vocabulary

made of the documents' original words. As expected, the class 'Other' shows a very poor

performance in coverage (23.75%) due to the very diverse textual content of these

documents. However, very few documents that do not belong to this class are put in this

category, which gives a very high level of accuracy (93.04%) for the class 'Other'.

Other Department Faculty Staff Student Project Course Coverage
Other 147 56 34 17 169 72 123 23.75%

Department 25 1 92.59%

Faculty 20 58.82%
Staff 4.76%

Student 103 80.47%

Project 35.00%!
Course 0 0 36 81 .82%!

Accuracy 93.04% 27.17% 27.40% 3.70% 35.52% 8.14% 21.69% 37.96%

Table 4.1 Results with 250-Word Vocabulary

Another interesting class is the 'Staff class which shows very poor results as well, only

4.76% for coverage and 3.70 for accuracy. This can be explained by the fact that the

textual content of these documents is very similar to the content of the 'Student' and

'Faculty' classes ('Person' super-class). From Table 4.1, it can be seen that 9 documents

that belong to 'Staff are identified as 'Faculty' and 4 as 'Student'. As a result, if

measured at the level of its super-class 'Person', the coverage would be 67%. In fact,

this phenomenon is the reason why the hierarchical approach in document recognition

50

has been addressed in the following sections. The overall performance for the approach

of using the original words is 37.96%. This percentage is the same for both, accuracy

and coverage, so it can be used to measure performance of different types of tests.

The best performance was obtained by using the word stems instead of the original
documents' words as shown on Table 4.2. As it can be seen, all the performance

measures are a little better than in previous method (38.30%). However, the difference

between these two tests in overall performance is less then 1%, so it is difficult to draw a

conclusion about the efficiency of the tested methods.

Other Department Faculty Staff Student Project Course Coverage
Other 147 86 30 19 106 114 117 23.75%

Department 24 88.89%

Faculty 17 50.00%
Staff 9.52%

Student 97 75.78%

Project 12 60.00%
Course 0 1 0 0 43 97.73%

Accuracy 91.30% 19.51% 28.33% 8.70% 45.75% 8.33% 25.29% 38.30%

Table 4.2 Results with 800-Stem Vocabulary

In order to have a better idea about the performance of these two methods the Figure

4.2 shows the results obtained on the same data set, using different vocabulary sizes.

For each classification method, 49 tests were performed using vocabulary sizes starting

from 100, iteratively increasing by 50, up to 2500. It can be seen that using original

words with a very small vocabulary gives better results than using stemmed words.

However, better results are obtained with stemmed words for the majority of the tests as

well as the best recorded performance among all the tests.

51

Besides the results, it is also the stability that differentiates these two methods. A

stronger variability can be observed within the results obtained using the original words.

For instance, while several results between 37% and 38% can be observed from the

tests performed using stemmed words, only one of them can be seen in the other group
of tests. The difference between the best result and second best result achieved with the

original words is around 1% (37.96 and 36.95%), which gives the impression that it could
be a matter of chance.

-Stems Vocabulary —*— Words Vocabulary

* 33

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

Vocabulary Size

Figure 4.2 Words vs. Stems Vocabulary Performance

Because of all the characteristics of the class 'Other' discussed in this document, it is

questionable how relevant it is to use these documents for the test purposes. Even the

CMU text learning group have published most of their test results without this class.

Figure 4.3 shows the results from the same tests as these shown on Figure 4.2

excluding the results related to the class Other'. It can be seen that overall performance

is much higher for all the tests.

52

-Sterns Vocabulary —»—Words Vocabulary
76
74
72
70

~Z 66
u

S *»
Ë 62
?
S 60
°- 58

56
54
52
50

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600

Vocabulary Size

Figure 4.3 Words vs. Stems Vocabulary Performance Excluding 'Other' Class

The highest score for the method using the word stems is 74.45% whereas for the

method using the original words is 72.99%. This time, the best results are achieved with

the vocabulary sizes of 400 and 650 respectively, using the stems' vocabulary and the

words' vocabulary. This is quite different from the previous tests where the vocabulary

sizes were 800 and 250 respectively, for the stems' vocabulary and the words'

vocabulary. In addition, the tendency to have better results with original words while

using very small vocabularies no longer exists in these tests. The method using

stemmed words shows consistently better results.

Table 4.3 and Table 4.4 show detailed information about the best results obtained using

both methods. It can be seen that the performance is significantly improved when

documents that belong to the class Other' are removed form the testing data set.

53

Department Faculty Staff Student Project Course Coverage
Department 24 0 0 0 1 88.89%

Faculty 21 61.76%

Staff 9.52%
Student 102 79.69%!
Project 12 60.00%:

Course 1 0 0 0 0 43 97.73%

Accuracy 70.59% 58.33% 28.57% 88.70% 57.14% 82.69% 74.45%

Table 4.3 Results with 400-Stem Vocabulary Excluding the Class Other'

Department Faculty Staff Student Project Course Coverage
Department 24 0 0 0 1 88.89%

Faculty 22 64.71%

Staff 11 9.52%

Student 102 79.69%

Project 45.00%
Course 1 0 0 0 41 93.18%l

Accuracy 70.59% 53.66% 15.38% 91.89% 64.29% 78.85% 72.99%

Table 4.4 Results with 650-Word Vocabulary Excluding the Class 'Other'

4.5 Hierarchical Method

As described in this document, the approach using the hierarchy of documents performs

multiple classifications of a given document. The number of classifying processes is

equal (at the maximum) to the number of the ontology domains or sub-classes. The first

classification is performed against the top domain made of the most upper ontology

classes using the vocabulary corresponding to those classes. If a given page is

classified as a class that contains sub-classes, then an additional classification is

performed using a vocabulary made of these sub-classes in order to determine which

one represent the best that page. This process has to be repeated until the lowest level
classes are reached.

In order to see if the hierarchical approach can improve the overall results, the results of

the classification at the first level must be better than final results of the non-hierarchical

54

approach when grouped by the top level classes. Figure 4.4 shows the results obtained

from both approaches.

-«—University (Hierarchical) -*— University (Standard -grouped by top domain classes)
45
44
43
42
41
40

t X X X X-
?? 39
e 38
E 37
fi 36
» 35

34

33
32

31
30

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1G00 1700 1800 1900 2000 2100 2200 23O0 2400 2500 2600

Vocabulary Size

Figure 4.4 Performance of Standard vs. Hierarchical Approach

The curve representing the standard (non-hierarchical) approach is obtained from data

used in Figure 4.2 representing the results of the approach using stemmed words. All

the tests of the hierarchical approach are performed using stems because, as shown in

this document, this method tends to improve the classification process. Once the results

are grouped by the four the top domain classes ('Department', 'Person', 'Activity' and

'Other'), the curve identified as "Stems Vocabulary" on Figure 4.2 becomes the one

titled "University (Standard - grouped by top domain classes)" on Figure 4.4. The other

curve shown on same figure is obtained from the separate tests using the hierarchical

approach. It can be seen that hierarchical approach tends to deliver better results than

the standard one. Only with very small vocabulary sizes, do the results tend to be

similar, but the performance achieved at that level is very poor for both approaches.
Therefore these cases shouldn't be used for text classification.

55

In order to better understand exactly how the hierarchical approach improves the results

of the classifying algorithm, Figure 4.5 shows the same results as Figure 4.2, from which
the documents belonging to the class 'Other' have been removed.

University (Hierarchical) —?— University (Standard - grouped by top domain classes)
86
85
84
83
82
81
80
79
78

S 77
= 76
Ê ?'

74
73

o 72
°- 71

70
69
68
67
66
65

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 15O0 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600

Vocabulary Size

Figure 4.5 Performance of Standard vs. Hierarchical Approach Without Other' Class

This situation looks quite different from the previous figure. In fact, the hierarchical

approach is significantly less efficient that the standard approach if the results
concerning the class 'Other' are removed. The reason why the class 'Other' is
advantaged to the hierarchical approach whereas other classes are disadvantaged, can
be seen as an effect of the grouping of the lower level classes into higher ones. As

shown in the previous section, the class 'Other' systematically obtained worse results
than the other classes because of its less homogenous content. In the hierarchical

approach, this characteristic of the 'Other' class is slightly neutralized because it is
compared against classes with less homogenous content ('Person' and 'Activity') than
was the case with classes in the standard approach ('Faculty', 'Student', 'Staff, 'Course',

'Project'). Consequently, the class 'Other' obtained better results while the success ratio
has decreased for the rest of the classes.

56

Another interesting aspect of the hierarchical approach is the success ratio obtained

among lower level classes ('Activity' and 'Person' sub-classes). It was shown that the
classification at the top domain is less efficient for these classes. However, in Figure 4.6

and Figure 4.7 it can be seen that overall classification performance of these classes is
rather similar.

Despite very uneven correlation between the different approaches, it is impossible to

identify the best of the two approaches, neither for the 'Activity' nor for the 'Person* sub-
classes. It is obvious that the gain of the overall success ratio concerning these sub-

classes comes from the classifying process at the second level, which means that

classifying similar classes that belong to the same domain in a separate process is more

efficient then classifying them in a global process that includes all the ontology classes.

—·— Activity (hierarchical) -x— Activity (standard)

U 82

a. 76

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600

Vocabulary Size

Figure 4.6 Activity - Hierarchical vs. Standard Approach

57

- Person (hierarchical) -*— Person (Standard) |

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600

Vocabulary Size

Figure 4.7 Person - Hierarchical vs. Standard Approach

One of the advantages of the hierarchical approach is the fact that vocabulary size can
be different for each domain. Thus for the University ontology, the size of each

vocabulary can be chosen according to the best results achieved on the training data.

For instance, it can be seen from the previous figures that the best results for the top

domain are obtained using 1100 features, and for the 'Activity' and 'Person' domains

using respectively 600 and 150 features. When performed using these vocabulary sizes,

the overall performance for the Ontology class is 40.65% which is slightly higher than the

score obtained using the standard approach (38.30%). The detailed information

regarding the scores for each class is shown on Table 4.5.

Other
Department

Faculty
Staff

Student
Project
Course

Accuracy

Other
186

12

91.18%

Department
111
24

11

15.29%

Faculty
28

1
21
12
8

29.17%

Staff

0.00%

Student
94

82

44.81%

Project
84

10

9.52%

Course
116

11

40
23.26%

Table 4.5 Hierarchical Approach Results

Coverage
30.05%
88.89%
61.76%

0.00%
64.06%
50.00%
90.91%
40.65%

58

Table 4.6 shows that the best results were obtained when documents that belong to

Other" class are excluded. For this test, vocabulary sizes for 'Activity' and 'Person' have

been kept the same as in the previous test (600 and 1 50 respectively) while the size of

the top domain has been adjusted from 1100 to 150. This vocabulary size provides the

best results for the top domain as it is shown on Figure 4.5.

Department Faculty Staff Student Project Course Coverage
Department 24 1 88.89%

Faculty 25 1 73.53%
Staff 10 0.00%

Student 100 78.13%

Project 30.00%
Course 0 0 39 88.64%

Accuracy 63.16% 52.08% 0.00% 85.47% 40.00% 86.67% 70.80%

Table 4.6 Hierarchical Approach Results without 'Other' Class

As expected, the results are not as good as those obtained using the standard method.

The overall performance in the hierarchical approach was 70.80% whereas in the

standard approach, using stemmed words, the total success ratio was 74.45%.

4.6 Mixed Method

The analysis that has been introduced so far in this chapter is related to the Standard

and Hierarchical methods. In summary, the Standard method tends to achieve better

results when the class 'Other' is excluded, which indicates that this approach is more

suitable to the classes that contain documents with homogenous content. On the other

hand, Hierarchical method performs better with the data set including the class 'Other'.

The opposite behaviour of this method shows its ability to deal better with the classes

that contain documents less similar to each other. The purpose of the Mixed method, as

explained in Chapter 2, is to merge the best of each method into a single method. The
59

results shown in Table 4.7 were obtained using the Mixed method with a 400-word

vocabulary size for the University ontology that is used at the first classifying process

and 600 and 150 respectively for 'Activity' and 'Person' domain vocabularies. While the

vocabulary sizes for 'Activity' and 'Person' domains are the same as in the Hierarchical

method (since the classification processes are the same at that level), the size of the first

vocabulary is different form the one used in the previous approach. It corresponds to the

vocabulary size that produces the best results, grouped by the top level classes, using

the Standard approach. This is the most optimal size for this vocabulary because the

classification in this step was achieved by using the standard approach and then the

obtained results were grouped by the top level classes. For both types of tests, including

and excluding the class 'Other', the size of this vocabulary size was 400. It can be seen

on Figure 4.4 as well as on Figure 4.5 that this size is optimal in each case.

Table 4.7 shows the results obtained using this method including the class 'Other'. The

overall success ratio is 37.63% which is worse then either the Standard (38.30%) or the

Hierarchical (40.65) approach. Table 4.8 illustrates the results for the data set excluding

the class 'Other'. This time, the overall performance is 73.36%, which is between the

Hierarchical (70.80%) and the Standard (74.45%) methods.

Other Department Faculty Staff Student Project Course Coverage
Other 135 42 33 169 110 130 0.2181

Department 24 88.89%

Faculty 23 67.65%!
Staff 12 0.00%

Student 10 101 78.91%

Project 12 60.00%
Course 0 1 0 41 93.18%

Accuracy 93.75% 31 .58% 28.75% 0.00% 36.07% 9.02% 22.78% 37.63%

Table 4.7 Mixed Approach Results

60

Department Faculty Staff Student Project Course Coverage
Department 24 0 1 88.89%

Faculty 23 67.65%

Staff 12 0.00%

Student 10 101 78.91%

Project 12 60.00%
Course 1 0 0 41 93.18%

Accuracy 70.59% 48.94% 0.00% 90.99% 52.17% 82.00% 73.36%

Table 4.8 Mixed Approach Results without Other 'Class'

From the results presented in these tables it can be seen that combining more efficient

features from different methods doesn't necessarily assure better results. It can also be

noticed that while in some case overall performance increases in hierarchical and mixed

methods, the performance regarding the class 'Staff is in all cases equal to 0%. The

problems related to this class have already been addressed in previous sections.

Clearly, neither Hierarchical nor Mixed method is able to improve the results concerning

this class. On the contrary, even a very low success ratio from the Standard method was

impossible to reach. Although no additional practical methods are introduced in this

document, the theoretical aspects of this problem are further addressed in the following
sections.

61

Chapter 5

Conclusion

5.1 Conclusion

Annotating existing Web documents for the Semantic Web is a very audacious objective

that has to be completed in order to make the Semantic Web a reality. At present,

automatic and semi-automatic methods are the only credible approaches to achieve this

task even though they cannot yet provide an acceptable level of accuracy. As

demonstrated in this work, as well as in several other similar works, it is possible to

reach a relatively high ratio of success in recognizing instances of some ontology

classes whereas some others obtain a rather small degree of success. In some cases, it

is possible to improve the accuracy of classifying algorithms by adjusting some of the

parameters or by changing the algorithm itself. While some other works ([17], [18]) have

maintained the focus on comparing the efficiency of different classifying algorithms, in

this work the main objective was to identify and to quantify the impact of some other

variables that can also impact significantly results of an algorithm for classifying Web
documents. Thus, all the tests in this work have been performed using the same

algorithm, based on Naive Bayes text classifier. On the other hand, aspects such as

feature selection and hierarchy of documents are put forward as potential candidates to

improve the process of classifying Web documents.

Feature selection has a very strong impact on the efficiency of document classification

algorithms. Various tests performed in this work show that the accuracy rate of an

algorithm can fluctuate significantly when the number of selected features representing a

domain (domain vocabulary size) is changed. For instance, in the case of tests

62

performed using stemmed words shown on Figure 4.2, it can be seen that when the

vocabulary size is increased from 700 to 2500, the success ratio drops by more than

6%. Therefore, it is very important to find the most optimal vocabulary size. In this work,

the optimal size for each test was found by using an experimental method, by performing

the tests using several different vocabulary sizes and then choosing the size that allows
the best results. In all the tests, the success ratio tends to follow a Poison distribution

while increasing the vocabulary size, which means that theoretically there is only one

optimal size. In the real world, it could be difficult to find the optimal number of features

for a domain. In the case of the university ontology used in this work, there are around

48000 features. Even by eliminating unique words and by converting them into their

stems the number of features remains relatively high (16000). Knowing that vocabulary

sizes follow a Poison distribution at least indicates that the optimal size should be

relatively small. However, as demonstrated in this work, results can be significantly

different even with small vocabulary size changes. One of the possible solutions to this

problem could possibly be found by analysing the frequency of the features in the

training data set. Figure 4.1 shows the number of documents represented by different

numbers of features (stemmed words) in the training data set used for the university

ontology. For instance, it can be seen that there are only around 500 features that can

be found in approximately 400 documents. By increasing the number of features, the
number of documents that contain these features gets smaller and this behaviour follows

an exponential distribution. In the case of the university ontology, the mean of that

distribution is 715, which is very close to the vocabulary size of 800 that was

experimentally found to be the optimal size for the same training data set. If this

hypothesis is true, the difference between the two vocabulary sizes could be explained

by the fact that the training data used to calculate the mean is different from the testing
63

data that was used to experimentally find the optimal size. Because of the limited

availability of testing data, no additional tests have been performed to confirm or to reject

this hypothesis.

Using word stems instead of original words was another aspect of feature selection that

was introduced in this work. Word stems bring several advantages over original words in

text classification. First of all, the total number of features is reduced by using word

stems. In the case of the university ontology, the total number of features is reduced

from around 63000 to approximately 48000, which is very important for software

performance. The second advantage of using word stems is the increase of the success

ratio. In all the tests with optimal vocabulary sizes, the best results were achieved using

word stems. Although, not very significant, the results were approximately 1% better

than identical tests with original words. Finally, the third advantage that was observed

during the tests is the consistency of the results. With word stems, better results are
achieved not only with the optimal vocabulary sizes, but also with almost all other

vocabulary sizes. Moreover, the results tend to decrease by a smaller degree when

using non-optimal vocabulary sizes which can be a very interesting characteristic

knowing that finding optimal vocabulary size can be a difficult task.

The hierarchy of documents is another aspect that was introduced and evaluated in the
context of text classification. From the test results, it can be seen that not all types of

ontology classes benefit from this approach. In the case of the university ontology, the

results were improved mainly within the documents of the class 'Other'. The reason for
that is the fact that this class contains documents with a very different textual content

and the hierarchical approach tends to privilege this type of classes. Although, the
64

overall results were improved with this method, it can be seen that in fact the results per

class actually decreased for almost all the classes except the class 'Other'. Therefore,

depending on importance of the ontology classes, this method might or might not be

advised.

In the hierarchical approach, an ontology is in fact divided into several other ontologies

or domains and then each of them is used to perform a separate classification of the

corresponding documents. This approach brings the possibility of fine tuning each

document classification process separately which might be potentially advantageous for

very large ontologies. For instance, for each domain it is possible to create separate

feature selections and determine optimal vocabulary sizes for each of them.

5.2 Future Work

As mentioned in this document, there are still a lot of Semantic Web areas that need to

be improved. The particularity of automatic and semi-automatic Semantic Web

annotations is the fact that it is impossible to make a 100% accurate solution. Even if it

was possible, such a situation would not last long since the Web is constantly evolving

and it should be readjusted periodically which means that some defects are always

unavoidable. From the tests performed in this work, it can be seen that there are a lot of

different ways to improve the accuracy of a classification algorithm. Adjusting the

vocabulary size, using a hierarchy of documents, or refining the feature selection

process are just a few of the numerous possibilities to improve the results. However, no

matter which approach is used; some documents cannot be properly classified because

their textual content is different from those used for the training data. Such situations can

65

occur for various reasons. Some documents can simply use other words to describe the

same concepts which sometimes can be improved by adding more documents to the

training data. Another approach could be creating a more intelligent feature selection

process. It was shown that using stemmed words instead of the original words improves
the results. This was due to the fact that some documents are wrongly eliminated,

because they use a different writing style. The feature selection could be further

improved by adding synonyms to some selected features or by detecting them in

documents that have to be classified and converting them into selected features.

Besides the semantic reasons for misclassifying documents, there are also defects

caused by the structure of the ontologies. Most of the ontologies are developed by

humans according to their knowledge about the domain that has to be described. The

problem is that ontologies are meant to be used by machines. Therefore, the ontology

classes might not represent the reality that is perceived by computers. For instance, the

ontology class 'Other' used in this work is in fact a potpourri of several other classes. It is

obvious that such a class cannot have a high degree of success in a document

classification. To a different degree, the same remark can be made for any other class.

From the perspective of an automatic classification process made by computers, it could

be more efficient to subdivide existing classes into several smaller classes that do not

necessarily have a particular significance for humans. For example, the class

Department could be broken into sub-classes such as 'Department with less then 100

words', 'Department with more then 100 words', 'Department with parent page menu',

'Department with sub-pages', and so forth. It would be also interesting to compare

results between the hierarchical and standard approach with such divided classes.

66

Recognizing relations between extracted class instances was not a topic in this work.

However that subject has the same importance as the semantic annotation of Web

documents. The complete picture of the Semantic Web must include the relations

between the ontology classes in order to allow computers to read and reason about

various Web resources. Logically, recognizing class instances comes first and then

finding relations between them second. However, knowing the relations that a class can

have with others might be useful for the process of class identification itself. For

instance, knowing that a course is taught by a professor could possibly facilitate

identifying instances of the class 'Professor' once an instance of the class 'Course' is

discovered.

All the topics and issues mentioned in this section for future works are very complex

subjects and knowing the scale of the Web it is impossible to expect a single software

solution to all of them. The most realistic way to handle these types of problems is by

using distributed multi-agent systems. Semantic annotation of Web documents depends

on several areas that can be implemented through different agents: creation and

evolution of ontologies, process of recognizing (classifying) Web documents, process of

recognizing relations between classes, control and verification of Semantic Web

annotations. Each of the identified groups can be contain multiple agents specialized by

domain or geography. Probably the most challenging is the control and verification of

Semantic Web annotations, because it has to be done ultimately by humans. Only the

end-users of the Semantic Web are actually in position to evaluate the success ratio of a

Semantic Web annotation process. With their feedback, it would be possible not only to

re-annotate properly the misclassified documents but also to adjust any parameter used

in the process of the semantic annotation. Moreover, this information could be used to

67

modify existing ontologies and create new ones. At this stage of Semantic Web

development, it is not yet obvious how such a feedback could be obtained from the end-
users. However, some other areas could be considered as an example of handling

similar issues. For instance, in the e-mail spam detecting software, the option of spam

releasing could be a good example of providing the end-user feedback on an automatic

process of another type of document classification process.

Multi-agent systems are closely tied with the Semantic Web. The ontologies represent a

very important piece in the artificial reasoning that can enable various intelligent agents

to communicate and cooperate using worldwide Web resources. Semantic Web services

are the perfect example of such an initiative. Multi-agent systems will not only benefit the

most from the Semantic Web, but also be used to build and maintain the next generation

of the internet.

68

References

[I] Jorge Cardoso and Amit P. Sheth, Semantic Web Services, Processes and Applications,

August 3, 2006

[2] Liyang Yu, Introduction to the Semantic Web and Semantic Web Services, June 14, 2007

[3] WSDL Web Services Description Language, http://www.w3.org/TR/wsdl, W3C Note March

15, 2001

[4] UDDI Spec Technical Committee, http://uddi.Org/pubs/uddi-v3.0.2-20041019.htm, October

19,2004

[5] RDF/XML Syntax Specification, http://www.w3.org/TR/rdf-syntax-grammar, W3C

Recommendation February 10, 2004

[6] RDF Vocabulary Description Language 1.0: RDF Schema, http://www.w3.org/TR/rdf-

schema, W3C Recommendation February 10, 2004

[7] OWL Web Ontology Language, http://www.w3.org/TR/owl-features, W3C Recommendation

February 10, 2004

[8] OWL-S: Semantic Markup for Web Services, http://www.w3.org/Submission/OWL-S, W3C

Member Submission, November 22, 2004

[9] WSDL-S Web Service Semantics, http://www.w3.org/Submission/WSDL-S, W3C Member

Submission November 7, 2005

[10] WSMO, Web Service Modeling Ontology, http://www.w3.org/Submission/WSMO/, W3C

Member Submission, June 3, 2005

[II] Daniel Boley, Maria Gini, Robert Gross, Eui-Hong (Sam) Han, Kyle Hastings, George

Karypis, Vipin Kumar, Bamshad Mobasher and Jerome Moore, Partitioning-Based

Clustering for Web Document Categorization, Decision Support Systems, Vol. 27, No. 3.

(1999), pp. 329-341.

[12] Becket D. Modernising Semantic Web Markup, 2004

http://www.idealliance.Org/papers/dx_xmle04/papers/03-08-03/03-08-03.html#problems

69

[13] Ying Ding, Schubert Foo, Ontology Research and Development Part 1, 2002

[14] Nadzeya Kiyavitskaya, Nicola Zeni, James R. Cordy, Luisa Mich and John Mylopoulos,

pp.14 - 15, Semi-Automatic Semantic Annotations for Web Documents, Proc. SWAP

2005, 2nd Italian Semantic Web Workshop, 2005.

[15] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom Mitchell, Kamal

Nigam and Sean Slattery, Learning to Construct Knowledge Bases from the World Wide

Web, http://www.cs.cmu.edu/~webkb/, pp. 69 - 1 13, Artif. Intell, 2000

[16] The Porter Stemming Algorithm, http://tartarus.org/~martin/PorterStemmer/

[17] Elena Montañés, Irene Díaz, José Ranilla, Elias F. Combarro, and Javier Fernández,

University of Oviedo, Scoring and Selecting Terms for Text Categorization

[18] Dunja Mladenic, Marko Grobelnik, Feature selection on hierarchy of Web documents

[19] Marilyn R. Wulfekuhler, William F. Punch, Finding Salient Features for Personal Web Page

Categories

[20] Bo Leuf, The Semantic Web - Crafting Infrastructure for Agency

[21] John Davies, Rudi Studer, Paul Warren, Semantic Web Technologies - Trends and

Research in Ontology-based Systems

[22] D. D. Lewis and M. Ringuette. A comparison of two learning algorithms for text

categorization. In Third Annual Symposium on Document Analysis and Information

Retrieval, pages 81 - 93, 1994.

[23] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng. Improving text classification by

shrinkage in a hierarchy of classes. In Proceedings of the 15th International Conference on

Machine Learning, pages 359-367. Morgan Kaufmann, 1998.

[24] Sean Luke, Lee Spector, David Rager and James Hendler, Ontology Web Based Agents

[25] Marko Balabanovic, Yoav Shoham, Yeogirl Yun, An Adaptive Agent for Automated Web

Browsing

[26] P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under

zero-one loss. Machine Learning, 29:103-130, 1997.

70

[27] A. K. McCallum and K. Nigam. A comparison of event models for Naive Bayes text

classification. In Working Notes of the ICML/AAAI Workshop on Learning for Text

Categorization, 1998. http://www.cs.cmu.edu/~mccallum.

[28] Stephen Soderland. Learning information extraction rules for semi-structured and free text.

Machine Learning, 34(1), February 1999.

[29] T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text

categorization. In Proceedings of the Fourteenth International Conference on Machine.

Learning, pages 143 - 151, Nashville, TN, 1997. Morgan Kaufmann.

[30] D. Koller and M. Sahami. Toward optimal feature selection. In Proceedings of Thirteenth

International Conference on Machine Learning. Morgan Kaufmann, 1996.

[31] D. Koller and M. Sahami. Hierarchically classifying documents using very few words. In

Proceedings of the Fourteenth International Conference on Machine Learning, pages 170 -

178, Nashville, TN, 1997. Morgan Kaufmann.

[32] G. H. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem,

Proceedings of the 11th International Conference on Machine Learning ICML94, San

Francisco, CA, 1994, pp. 121- 129. , Morgan Kaufmann.

[33] Cimiano, P., Handschuh, S., and Staab, S.: Towards the self-annotating web. In

Proceedings of the 13th international conference on World Wide Web,462-471, ACM

Press, 2004

[34] Decker, S., Erdmann.M., Fensel.D., and Studer, R.: Ontobroker: Ontology based access to
distributed and semi-structured unformation. In DS-8: Database Semantics - Semantic

Issues in Multimedia Systems, IFIPTC2/WG2.6 Eighth Working Conference on Database

Semantics, 351-369, Rotorua, New Zealand, 1999

[35] Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo.T., McCurley, K.

S., Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J. Y.: A Case for Automated Large-

Scale Semantic Annotation. Journal of Web Semantics, 1(1) 115-132, 2003

71

[36] Etzioni, O., Cafarella, MJ., Downey, D., Popescu, A.M., Shaked, T., Soderland, S., WeId,

D.S., Yates, ?.: Unsupervised named-entity extraction from the web: An experimental

study. Artificial Intelligence 165, 91 - 134, 2005

[37] Yang, Y, Noise Reduction in a Statistical Approach to Text Categorization, Proc. of

SIGIR'95, pp. 256-263, 1995

[38] Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM- Semi-automatic Creation of Metadata.

The 13th International Conference on Knowledge Engineering and Management

(EKAW2002), ed. Gomez-Perez, A., Springer Verlag, 2002

[39] Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation,

Indexing, and Retrieval. Elsevier's Journal of Web Sematics, 2(1), 2005

[40] Leidner, J. L.: Current Issues in Software Engineering for Natural Language Processing.

Proc. of the Workshop on Software Engineering and Architecture of Language Technology

Systems (SEALTS), the Joint Conf. for Human Language Technology and the Annual

Meeting of the Noth American Chapter of the Association for Computational Linguistics

(HLT/NAACL'03), Edmonton, Alberta, Canada, 45-50

[41] Kogut, P. and Holmes.W.: AeroDAML: Applying Information Extraction to Generate DAML

Annotations from Web Pages. First International Conference on Knowledge Capture (K-

CAP 2001). Workshop on Knowledge Markup and Semantic Annotation, Victoria, B.C.,

Canada, October 2001

[42] Muslea, I., Minton, S., Knoblock, CA.: Active learning with strong and weak views: A case

study on wrapper induction. In Proc. 18th Int. Joint Conference on Artificial Intelligence,

415-420,2003

[43] Nobata, C, Sekine, S.: Towards automatic acquisition of patterns for information extraction.

In Proc. International Conference on Computer Processing of Oriental Languages, 1999

[44] Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A., Goranov, M.: Towards

Semantic Web Information Extraction. Human Language Technologies Workshop at the

2nd International Semantic Web Conference (ISWC2003), 20 October 2003, Florida, USA

72

[45] Yang, Y. & Liu, X, A Re-examination of Text Categorization Methods, Proc. of SIGIR'99,

pp. 42-49, 1999

[46] Torkkola, K, Linear Discriminant Analysis in Document Classification, 2002

[47] Sebastiani, F, Machine Learning in Automated Text Categorization, ACM Computing

Surveys, 34(1): 1-47, 2002

[48] Bettina Berendt, Andreas Hotho, and Gerd Stumme, Semantic Web Mining and the

Representation, Analysis, and Evolution of Web Space, In Proceedings of RAWS 2005

Workshop

[49] D. Mladenic and M. Grobelnik, "Feature Selection for Unbalanced Class Distribution and

Naive Bayes," Proc. 16th Int'l Conf. Machine Learning (ICML 99), Morgan Kaufmann, 1999,

pp. 258-267.

[50] Y. Yang and J.O. Pedersen, A Comparative Study on Feature Selection in Text

Categorization, Proc. 14th Int'l Conf. Machine Learning (ICML 97), Morgan Kaufmann,

1997, pp. 412-420.

[51] Daniel Boley, Maria Gini, Robert Gross, Eui-Hong Han, Kyle Hastings, George Karypis,

Vipin Kumar, Bamshad Mobasher and Jerome Moore, Document Categorization and Query

Generation on the World Wide Web Using WebACE, pp. 365—391, vol. 13, Al Review.

[52] Tao Liu Zheng Chen, Benyu Zhang, Wei-ying Ma, Gongyi Wu, Improving Text

Classification using Local Latent Semantic Indexing, pp.162-169, Fourth IEEE International

Conference on Data Mining (ICDM'04), 2004

[53] WebACE: a Web agent for document categorization and exploration, Eui-Hong (Sam) Han,

Daniel Bole, Maria Gin, Robert Gross, Kyle Hastings, George Karypis, Vipin Kuma,

Bamshad Mobasher, Jerome Moore, 1998

[54] CC. Aggarwal, F. Al-Garawi, and P.S. Yu. Intelligent crawling on the World Wide Web with

arbitrary predicates. In Proceedings of the WWW Conference, 2001.

[55] B. Berendt, A. Hotho, and G. Stumme. Usage mining for and on the semantic web, In [57],

pages 461-480. AAAI/MIT Press, 2004.

73

[56] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to topic

specific Web resource discovery. Computer Networks, 31:1623 - 1640, 1999.

[57] A. Doan, R. McCann, and W. Shen. Collaborative development of information integration

systems. In [26], pages 34 - 41 . 2005.

[58] A. Kralisch and B. Berendt. Language-sensitive search behaviour and the role of domain

knowledge. New Review in Hypermedia and Multimedia, Vol. 11, No. 2. pp. 221-246, 2005

[59] Borislav Popov, Atañas Kiryakov, Angel Kirilov, Dimitar Manov, Damyan Ognyanoff,
Miroslav Goranov, KIM - Semantic Annotation Platform, 2nd International Semantic Web

Conference (ISWC2003), 20-23 October 2003, Florida, USA. LNAI Vol. 2870, pp. 834-849,

Springer-Verlag Berlin Heidelberg 2003.

74

Appendix

Source Code 1: evaluate_document_class

CREATE FUNCTION evaluate_document_class (_IdWebRessource int(10) unsigned)
RETURNS int (10) unsigned
BEGIN

RETURN (
SELECT IdOntologyClass
FROM (

SELECT e. IdOntologyClass,
(LOG (g. Probability) /f .WordsCount) +SUM (((d. Occur rence/f .WordsCount) *L0G (e. Probab
ility/ (d. Occurrence/ f .WordsCount)))) Ranking

FROM feature_selection c, word_occurrence d, class_word_probability e,
web_ressource f, class_probability g

WHERE d. IdWebRessource = _IdWebRessource
AND d. IdWebRessource = f . IdWebRessource
AND c.Word = d.Word
AND c.Word = e.Word
AND c. idDomain = 1
AND c. idDomain = e. idDomain

AND e. idDomain = g. idDomain
AND e. IdOntologyClass = g . IdOntologyClass
GROUP BY e. IdOntologyClass
ORDER BY 2 DESC) AS a

LIMIT 1) ;
END;

Source Code 2: evaluate_document_class_hier

CREATE FUNCTION evaluate_document_class_hier (_IdWebRessource int(10) unsigned)
RETURNS int(10) unsigned
BEGIN

DECLARE _Ret int(10) unsigned;
DECLARE __IdDomain int DEFAULT 2;

WHILE (_IdDomain > 1) DO
SELECT IdOntologyClass
INTO _Ret
FROM (

SELECT IdOntologyClass
FROM (

SELECT e. IdOntologyClass,
(LOG (g. Probability) /f .WordsCount) +SUM (((d. Occur rence/f .WordsCount) *LOG (e. Probab
ility/ (d.Occurrence/f .WordsCount)))) Ranking

FROM feature_selection c, word_occurrence d, class_word__probability e,
web_ressource f, class_probability g

WHERE d. IdWebRessource = _IdWebRessource
AND d. IdWebRessource = f . IdWebRessource
AND c.Word = d.Word
AND c.Word = e.Word

AND c. IdDomain = _IdDomain
AND c. IdDomain = e. IdDomain
AND e. IdDomain = g. IdDomain
AND e. IdOntologyClass = g . IdOntologyClass
GROUP BY e. IdOntologyClass
ORDER BY 2 DESC) AS a

UNION ALL
SELECT 4) AS b

75

LIMIT 1;

SELECT IdDomain

INTO _IdDomain
FROM (

SELECT IdDomain
FROM domain

WHERE IdOntologyClass = _Ret
UNION ALL
SELECT 0) a

LIMIT 1;
END WHILE;

RETURN _Ret;
END;

Source Code 3: evaluate_document_class_mix

CREATE FUNCTION evaluate_document_class_mix (_IdWebRessource int(10) unsigned)
RETURNS int(10) unsigned
BEGIN

DECLARE _IdDomain int DEFAULT 1;
DECLARE JToRefine int DEFAULT 0;
DECLARE _Ret int (10) unsigned;

WHILE (_ToRefine < 2) DO
SELECT IdOntologyClass
INTO _Ret
FROM (

SELECT IdOntologyClass
FROM (

SELECT e. IdOntologyClass,
(LOG (g. Probability) /f .WordsCount) +SUM (((d. Occurrence/ f .WordsCount) *L0G (e. Probab
ility/ (d. Occur renee /f .WordsCount)))) Ranking

FROM feature_selection c, word_occurrence d, class_word_probability e,
web_ressource f, class_probability g

WHERE d. IdWebRessource = _IdWebRessource
AND d. IdWebRessource = f . IdWebRessource
AND c. Word = d.Word
AND c.Word = e.Word

AND c. IdDomain = _IdDomain
AND c. IdDomain = e. IdDomain
AND e. IdDomain = g. IdDomain
AND e. IdOntologyClass = g . IdOntologyClass
GROUP BY e. IdOntologyClass
ORDER BY 2 DESC) AS a

UNION ALL
SELECT 4) AS b

LIMIT 1;

SELECT IdDomain

INTO _IdDomain
FROM (

SELECT b. IdDomain

FROM ontology__class a, domain b
WHERE a. IdParentOntologyClass = b . IdOntologyClass
AND a. IdParentOntologyClass != 1
AND a. IdOntologyClass = _Ret
UNION ALL
SELECT 0) a

LIMIT 1;

76

IF (_IdDomain > O) THEN
SET JToRefine = JToRefine + 1;

ELSE

SET _ToRefine = 2;
END IF;

END WHILE;

RETURN _Ret;
END;

Source Code 4: extract_web_ressource_words

CREATE PROCEDURE extract_web_ressource_words (_IdWebRessource int(10) unsigned,
_uniqueCall bit, _StemWord bit)
BEGIN

DECLARE TextLength INT;
DECLARE Next INT;
DECLARE Previous INT;
DECLARE Text VARCHAR (50000) ;
DECLARE Done INT DEFAULT 0;
DECLARE CurWebRessourceContent CURSOR FOR

SELECT CONCAT (LTRIM(REPLACE (REPLACE (REPLACE (REPLACE (Content, CHAR(13)
'), '/',' '),'-', ' '), '-',' ')),· *)

FROM web_ressource_content
WHERE IdWebRes source = _IdWebRessource;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

IF (_StemWord IS NULL) THEN
SELECT CAST (Value AS UNSIGNED)
INTO _StemWord
FROM software_settings
WHERE IdSoftwareSetting = 1;

END IF;

IF (_uniqueCall = 1) THEN
DROP TEMPORARY TABLE IF EXISTS WebRessourceWords;
CREATE TEMPORARY TABLE WebRessourceWords (Word VARCHAR (255)) ;

ELSE
TRUNCATE TABLE WebRessourceWords;

END IF;
OPEN CurWebRessourceContent;

REPEAT
FETCH CurWebRessourceContent INTO Text;
IF NOT done THEN

SET TextLength = LENGTH (Text) ;
SET Previous = 1;

WHILE Previous < TextLength DO
SET Next = LOCATEC-*, Text, (Previous));
INSERT INTO WebRessourceWords VALUES

(clean_word (LOWER (SUBSTRING (SUBSTRING (Text, Previous, Next-
Previous) , 1,255)) ,_StemWord)) ;

SET Previous = Next+1;
END WHILE;

END IF;
UNTIL done END REPEAT;

CLOSE CurWebRessourceContent;

IF (_uniqueCall = 1) THEN
DELETE

FROM word_occurrence
WHERE IdWebRessource = _IdWebRessource;

END IF;

77

INSERT INTO word_occurrence (IdWebRessource, Word, Occurrence)
SELECT _IdWebRessource, a. Word, COUNT(O)
FROM WebRessourceWords a
WHERE a. Word != ' '
AND NOT EXISTS (

SELECT 0

FROM stop_word b
WHERE b.Word = a. Word
AND b.IdOntologyClass IS NULL

)
GROUP BY a. Word ;

UPDATE web_ressource ?
SET x.WordsCount = (

SELECT SUM (y. Occurrence)
FROM word_occurrence y
WHERE y . IdWebRessource = ?. IdWebRessource)

WHERE ?. IdWebRessource = __IdWebRessource;
END;

Source Code 5: extract_all_web_ressource_words

CREATE PROCEDURE extract_all_web_ressource_words ()
BEGIN

DECLARE _IdWebRessource INT(IO) UNSIGNED;
DECLARE Done INT DEFAULT 0;
DECLARE CurWebRessource CURSOR FOR

SELECT IdWebRessource

FROM web_ressource;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

TRUNCATE TABLE word_occurrence;
DROP TEMPORARY TABLE IF EXISTS WebRessourceWords;
CREATE TEMPORARY TABLE WebRessourceWords (Word VARCHAR (255)) ;
CREATE INDEX WebRessourceWordsIndl ON WebRessourceWords (Word) ;
OPEN CurWebRessource;

REPEAT

FETCH CurWebRessource INTO _IdWebRessource;
IF NOT done THEN

CALL extract_web_ressource_words (IdWebRessource, 0, (
SELECT CAST (Value AS UNSIGNED)

FROM sof tware_settings
WHERE IdSoftwareSetting = I));

END IF;
UNTIL done END REPEAT;

CLOSE CurWebRessource;
DROP TEMPORARY TABLE IF EXISTS WebRessourceWords;

UPDATE software_settings
SET Value = (SELECT CURDATEO)
WHERE IdSoftwareSetting = 2;

END;

Source Code 6: extract_trn_word_occurrence

CREATE PROCEDURE extract_trn_word_occurrence ()
BEGIN

TRUNCATE TABLE t rn_word_occur rence;
INSERT INTO trn__word_occurrence

78

SELECT a.IdWordOccurrence, a. IdWebRessource, b. IdOntologyClass, a. Word,
a. Occurrence

FROM word_occurrence a, class_instance b
WHERE a. idWebRessource = b. idWebRessource
AND b. Confirmed = 1;

DROP TEMPORARY TABLE IF EXISTS trn_word_occurrence_temp;
CREATE TEMPORARY TABLE trn_word_occurrence_temp as
SELECT *

FROM trn_word_occurrence a
WHERE EXISTS (

SELECT '?*

FROM trn_word_occurrence b
WHERE b.Word = a. Word
AND b.IdTrnWordOccurrence != a. IdTrnWordOccurrence) ;

TRUNCATE TABLE trn_word_occurrence;

INSERT INTO trn_word_occurrence
SELECT *

FROM trn_word_occurrence_temp;

DROP TEMPORARY TABLE IF EXISTS trn_word_occurrence_temp;

UPDATE web_res source ?
SET x.WordsCount = {

SELECT SUM (y. Occurrence)
FROM trn_word_occurrence y
WHERE y. IdWebRessource = x. IdWebRessource)

WHERE EXISTS (
SELECT '?'

FROM trn_word_occurrence ?
WHERE ? . IdWebRessource = ?. IdWebRessource

);

UPDATE software_settings
SET Value = (SELECT CURDATEO)
WHERE IdSoftwareSetting = 3;

END;

Source Code 7: load_feature_selection

CREATE PROCEDURE load_feature_selection ()
BEGIN

DROP TABLE IF EXISTS ontology_class_members_temp;-
CREATE TABLE ontology_class_members_temp AS
SELECT CASE WHEN b. idOntologyClass IS NULL THEN O ELSE a . idOntologyClass END

idDomain,
IFNULL (b. idOntologyClass, a. idOntologyClass) idOntologyClass,
IFNULL (IFNULL(C. idOntologyClass, b. idOntologyClass) , a . idOntologyClass)

idConnectingOntologyClass
FROM ontology_class AS a
LEFT JOIN ontology_class AS b ON b. idParentOntologyClass = a . idOntologyClass
LEFT JOIN ontology_class AS c ON c . idParentOntologyClass = b. idOntologyClass
ORDER BY 1, 2, 3;

UPDATE ontology_class_members_temp b
SET b. idDomain = (

SELECT a. idDomain

79

FROM domain a

WHERE (b.idDomain = a. idOntologyClass
AND a. Hierarchical = 1)

OR (b.idDomain = 0
AND a. Hierarchical = O));

TRUNCATE TABLE class_probability ;
INSERT INTO class_probability (idDomain, IdOntologyClass, Probability)
SELECT d. idDomain, d. IdOntologyClass, d. Documents/b. Documents Probability
FROM (

SELECT c. idDomain, c . IdOntologyClass, COUNT(O) Documents
FROM class_instance a, ontology_class_members_temp c
WHERE a. Confirmed = 1

AND a. IdOntologyClass = c. IdConnectingOntologyClass
GROUP BY c. idDomain, c. IdOntologyClass
) d, (
SELECT f. idDomain, COUNT(O) Documents
FROM class_instance e, ontology_class_members_temp f
WHERE e. Confirmed = 1

AND e. IdOntologyClass = f. IdConnectingOntologyClass
GROUP BY f. idDomain
) b

WHERE d. idDomain = b.idDomain;

TRUNCATE TABLE class_word_probability ;
INSERT INTO class__word_probability (idDomain, IdOntologyClass, Word,

Probability)
SELECT a. idDomain, a . IdOntologyClass, a. Word, a . Occurrence/b. AllWords

Probability
FROM (

SELECT b.idDomain, b. IdOntologyClass, a. Word, SUM (a .Occurrence) Occurrence
FROM (

SELECT a. IdOntologyClass, a. Word, SUM (a . Occurrence) Occurrence
FROM trn_word_occurrence a
GROUP BY a. IdOntologyClass, a. Word) a, ontology_class_members_temp b

WHERE a. IdOntologyClass = b. IdConnectingOntologyClass
GROUP BY b.idDomain, b . IdOntologyClass, a. Word
) a, (
SELECT c. idDomain, c . IdOntologyClass, SUM (a .Occurrence) AllWords
FROM trn_word_occurrence a, ontology__class_members_temp c
WHERE a. IdOntologyClass = c. IdConnectingOntologyClass
GROUP BY c. idDomain, c . IdOntologyClass
) b

WHERE a. IdOntologyClass = b. IdOntologyClass
AND a. idDomain = b.idDomain;

DROP TABLE IF EXISTS class_word_document_probability_temp;
CREATE TABLE class_word_document_probability_temp AS
SELECT b.idDomain,

b. IdOntologyClass,
a .Word,
CAST(COUNT (0) /c. Documents AS DECIMAL (10, 9)) DocumentProbability

FROM trn_word_occurrence AS a, ontology_class_members_temp b, (
SELECT b.idDomain, b. IdOntologyClass, COUNT(O) Documents
FROM class_instance a, ontology_class_members_temp b
WHERE a. Confirmed = 1

AND a. IdOntologyClass = b. IdConnectingOntologyClass
GROUP BY b.idDomain, b . IdOntologyClass) c

WHERE a. IdOntologyClass = b. IdConnectingOntologyClass
AND b. IdOntologyClass = c . IdOntologyClass
AND b.idDomain = c. idDomain
GROUP BY b.idDomain, b. IdOntologyClass , a. Word;

80

CREATE INDEX class_word_document_probability_temp_indl ON
class_word_document_probability_temp (IdOntologyClass) ;

CREATE INDEX class_word_document_probability_temp_ind2 ON
class_word_document_probability_temp (Word) ;

DROP TABLE IF EXISTS word_document_probability_temp;
CREATE TABLE word_document_probability_temp AS
SELECT a. Word,

CAST (COUNT(O) /e. Document s AS DECIMAL (10, 9)) DocumentProbability
FROM trn_word_occurrence AS a, class_instance AS b, (

SELECT COUNT(O) Documents
FROM class_instance
WHERE Confirmed = 1) e

WHERE a. IdWebRessource = b. IdWebRessource
AND b. Confirmed = 1
GROUP BY a. Word;

CREATE INDEX word_document_probability_temp_indl ON
word_document_probability_temp (Word) ;

DROP TABLE IF EXISTS word_ranking_templ ;
CREATE TABLE word_ranking_templ AS
SELECT a. Word, a . IdOntologyClass, d.idDomain,

SUM (a. Document Probability* (LOG (a . DocumentProbability/ (b. Probabi lit y *c. Document P
robability))))+

SUM (1-a. Document Probability* (L0G(l-a. DocumentProbability/ (b. Probability* (1-
c . DocumentProbability))))) Ranking

FROM class_word_document_probability_temp a, class_probability b,
word_document_probability_temp c, ontology_class_members_temp d

WHERE a. IdOntologyClass = b . IdOntologyClass
AND a. Word = c.Word
AND a. IdOntologyClass = d. idConnectingOntologyClass
GROUP BY a. Word, a . IdOntologyClass, d.idDomain;
CREATE INDEX word_ranking_templ_indl ON word_ranking_templ (Word, idDomain) ;

DROP TABLE IF EXISTS word_ranking_temp;
CREATE TABLE word_ranking_temp (

IdWordRanking int(10) unsigned NOT NULL AUTO_INCREMENT,
Word varchar(255) NOT NULL,
IdOntologyClass int(10) unsigned NOT NULL,
idDomain int(10) NOT NULL,
Ranking double,
PRIMARY KEY (IdWordRanking));

INSERT INTO word_ranking_temp (Word, IdOntologyClass, idDomain, Ranking)
SELECT a. Word, a . IdOntologyClass, a . idDomain, a. Ranking
FROM word_ranking_templ a
WHERE a. Ranking = (

SELECT MAX (b. Ranking)
FROM word_ranking_templ b
WHERE b.Word = a. Word
AND b. idDomain = a. idDomain)

ORDER BY a. idDomain, a. Ranking DESC;

TRUNCATE TABLE feature_selection;
INSERT INTO feature_selection (idDomain, Word)
SELECT a. idDomain, a. Word
FROM word_ranking_temp a, domain b, (

SELECT idDomain, MIN (IdWordRanking) Startposition
FROM word_ranking_temp
GROUP BY idDomain) c

81

WHERE a.idDomain = b.idDomain
AND a.idDomain = c.idDomain
AND a.IdWordRanking BETWEEN c. Startposition AND

+FeatureNumber-1;

DROP TABLE IF EXISTS class_word_document_probability_temp;
DROP TABLE IF EXISTS word_document_probability_temp;
DROP TABLE IF EXISTS word_ranking_templ ;
DROP TABLE IF EXISTS word_ranking_temp;
DROP TABLE IF EXISTS ontology_class_members_temp;

UPDATE software_settings
SET Value = (SELECT CURDATEO)
WHERE IdSoftwareSetting = 4;

END;

