NOTE TO USERS

This reproduction is the best copy available.

L]

A Formal Verification Approach of Conversations in Composite Web

Services

Melissa Kova

A Thesis
in

the Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Quality Systems Engineering) at
Concordia University
Montreal, Quebec, Canada

August 2009

© Melissa Kova, 2009

Library and Archives Bibliotheque et
Canada Archives Canada
Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre référence
ISBN: 978-0-494-63062-4
Our file Notre référence
ISBN: 978-0-494-63062-4
NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
‘printed or otherwise reproduced
without the author's permission.

L’auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L’auteur conserve la propriété du droit d’auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thése.

Bien que ces formulaires aient inclus dans -
la pagination, il n'y aura aucun contenu
manquant.

ABSTRACT

A Formal Verification Approach of Conversations in Composite Web Services

Melissa Kova

Web service composition is nowadays a very focused-on topic of research by academic and
industrial research groups. This thesis discusses the design and verification of behaviors ‘of
composite web services. To model composite web services, two behaviors are proposed, namely
control and operational. The operational behavior shows the business logic of the process
functionality for a composite web service. The control behavior shows the constraints that the
operational behavior should satisfy and specifies the states that this behavior should be in. The
idea behind this separation is to promote the design, verification and reusability of web services
in composite settings. To guarantee their compatibility; these two behaviors communicate and
synchronize through conversation messages. State charts are used to model composite web
services and symbolic model checking with NuSMV model checker is used to verify their
conversations. The properties to be verified are expressed in two logics: Linear Temporal Logic
(LTL) and Computation Tree Logic (CTL). A Java-based translation procedure from the design

model to SMV program used by NuSMV has been developed and tested in two case studies.

11i

ACKNOWLEDGMENTS

A warm appreciationb is extended to all the faculty and staff at the Concordia Institute for
Information Systems Engineering at Concordia University, whose suggestions and

encouragement were invaluable in my courses throughout my first year at the university.

I would also like to thank Dr. Jamal Bentahar for his guidance and his constructive and

helpful remarks throughout the duration of this thesis.

Last but not least, I would like to thank my parents for their continual support throughout
my years of study. Without their help, this degree would not have been possible. 1 dedicate this

work to all my family and friends.

v

Table of contents

LIST OF FIGURES VII
LIST OF TABLES : : . IX
LIST OF ACRONYMS X X
CHAPTER 1: INTRODUCTION 1
1.1 Context Of RESEATCH.........cooiriieieieceeee ettt 1
1.2 IMOBIVALIONS ..ccnniiiiiiieecitiseeeereste e e esss e e e e ee e et e ssteseseaemseensesse e e e e smnessssesanens 2
1.3 Research QUESHIONS.........vvveeiieiiiieeieee ettt et e e sa e e e s saame e e e s ssneee 3
1.4 Contributions.........coeveveuieerceeeccieneecee e erer ettt 3
1.5 ThesiS OVEIVIEWoc.oiiiieeiieeiiieieeieteeireesteetestesesse e seaeseessessneesseesaseessmnesnsnenane 4
CHAPTER 2: COMPOSITE WEB SERVICES 5
2.1 Overview of Web ServiCescoererveeiienieeececeteecesest e e 5
2.2 Deﬁnibtion of Composite Web Servicesccocvevrreereeenirrieeeeeieereee e 7
23 Types 0f COMPOSIHION.....ccocverrrerierrieeiiieeeieereeree et tet e e seeeseesse et e e e e sseeennees 9
2.3.1 OrCheStTAtION.eiiiiiieeririeriteeireeeiitee e st erre st e e see e e seessreeseneeesaanaeeesssneens 10
2.3.2 Chor€ography... ..o eieieiee ettt ettt 11
2.3.3 Orchestration vs. ChOr€0graphycoocovueeeremeeseeeesreeeeeeseessessesesssenenns 13

24 EXAMPIE leoreeieeeeeeeeeeeeeee e e 14
CHAPTER 3: MODEL CHECKING : : 16
3.1 INTOAUCHION ...ttt et et s 16
3.2 SyStem MOAElS....c..oiiiiiiiieiieicc et 17
33 PIOPEITIES ..ttt e aee et ase s s s ais 18

34 Verification Method............oovvvvieimivrievemiieiirerineereeeeeersirnnenes

CHAPTER4: PROPOSED MODEL

4.1 INtrodUCHION......coiiiiiiiiiiec e
42 The Proposed Modelcocooioiiiniiiiceeeeeeeeereee
4.2.1 Modeling and Formalizing Composite Web Services

4.2.2 Synchronization of Conversations among Web Services

423 VErTICAtON ..ot eeeeee e e e e e eesareresssesessans
4.3 CASE STUAIES .ottt eeeeeeeseeseateesreresessesenansnes
4.4 Related WOTK ..ottt teree s e s esaveansas

CHAPTER 5: IMPLEMENTATION

................................

...........................

5.1 INtrOdUCHION......eiiiiei e
52 SMV CONVEITEToovorrveerreeeossansssssesssssssnssssesssenssssssnsssssenans
'5.2.1 From State Charts t0 SMV........cooimereeeeeeereeseeesseeeenees
5.2.2 LTL and CTL Specificationsccoceveervreeeeceereensueennenas

5.3 Step by Step Examplec.coevieeiieiiiiiiininieeeeeeee

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 CONCIUSION ettt eeereseeseseesessessnssnsssaesesasssanns

6.2 FULUEE WOTK oo e e

REFERENCES

APPENDICES

APPENDIX 1: SMV CONVERTER SOURCE CODE

vi

65
69

69

List of Figures

Figure 2.1 The General Process of Engaging a Web Service.......cccevveeiiiniinicencenncicnne 7
Figure 2.2 Web Service Standards Stack..........occoooiiiiiiiiiiiee e 8
Figure 2.3 Orchestration SChEeMA.coueieiiriiiiiiiieeitecri ettt e 10
Figure 2.4 Choreography SChema.........ccocecoiiiiiiiriiinriiiiieeentese ettt 12
Figure 2.5 State Charts Legend..........ccooooiiiiininieteeeeree e 14
Figure 2.6 State Chart of a Ticket Reservation Systemccoceevveeveriiieiiniieneneeneeenen. 15
Figure 3.1 Kripke Model EXampleccccooiiioniiiiiiinieeertccccne et 18
Figure 3.2 Model ChecKing ApProach.........ccccoooiiceiiiiiiniinienrreeeeeesee et ee e ens 22
Figure 4.1 Control Behavior of a Composite Web Servicecoocevveinieeniinerencnncnenn. 31
Figure 4.2 Operational Behavior of a Ticket Reservation Systemcccceeeveerrenvueeennen. 32
Figure 4.3 Operational Behavior of an ATM System.........cccccevviieviciniiniinniincnceniecnnnen. 33
Figure 4.4 Mode] of the Ticket Reservation Composite Web SEIVICE veoveeervrereeererenne 37
Figure 4.5 Kripke-like Model of the Ticket Reservation Composite Web Service.......... 38
| Figure 4.6 Model Checking of Composite Web Services........coceveevereiecensiccnncecueeennen. 39
Figure 4.7 Reduced Kripke-like Model of the Ticket Reservation Composite Web Service
... 4]
Figure 4.8 SMV Code for NuSMV Model Checker........c..ccoceeriiienieniicniinnctiicenecneene 42

Figure 4.9 Verification Results using NuSMV Model Checker (LTL Specifications) ... 43

Figure 4.10 Verification Results using NuSMV Model Checker (CTL specifications)... 44

Figure 4.11 Model of the ATM Composite Web Service............occreiriiininnnencnn 44
Figure 4.12 Kripke-like Model of the ATM Composite Web Servicecoceeeeveennnenn. .. 45
Figure 4.13 Reduced Kripke-like Model of the ATM Composite Web Service 46

© Vil

Figure 4.14 SMV Code of ATM System for NuSMV Model Checker..........cccoceveueenens 46

Figure 4.15 Verification Results using NuSMV Model Checker on ATM System (LTL

SPECHICAIONS) .eneieieeiiieeeeiiee ettt et ettt e st e e s et e e e st e e e sat e e e aaeessssnneesananenns 47
Figure 4.16 Verification Results using NuSMV Model Checker on ATM System (CTL

SPECHICALIONS) ..o 47
Figure 5.1 SMV Converter INterfaceccocceereierniiiieeiiiceeeeetest et 51
Figure 5.2 Filling First Box (FROM STATE CHARTS) (1 0f3) cevvemeeeeeeeeeeeeeeerrern. 56
Figure 5.3 Filling First Box (FROM STATE CHARTS) (2 0f3) ceoeceiviriiiiienicccnis 57
Figure 5.4 Converting First Box to SMV (30f3) ccccooceerinvnivenennen. eereeeeteereetrenaenraeas 57
Figure 5.5 Filling Second Box (LTL SPEC) (1 of 4) e e et r e 58
Figure 5.6 Adding LTL SPEC To SMV Program (2 0f 4)coooiririivininieeeccnes 59
Figure 5.7 Filling Second Box (LTL SPEC) (30f4) ..curiiiiieieeeerc e 59
Figure 5.8 Adding LTL SPEC To SMV Program (4 0f 4)ccoocerveeveinnnenncenicciecens 60
Figure 5.9 Filling Third Box (CTL SPEC) (1 0f 4) cceeeiimiieeieeeeeeeeeeeeeeeeene 60
Figure 5.10 Adding CTL SPEC To SMV Program (2 0f 4) ...c..cccoccirviiinenieeeeecceeenne 61
Figure 5.11 Filling Third Box (CTL SPEC) (3 0f4) c.couvririeiececccenceceeeenne 61
Figure 5.12 Adding CTL SPEC To SMV Program (4 0f 4) ...c.ccccoeiiviriimnnccciceneeene 62

viii

List of Tables

Table 5.1 Ticket Reservation System Transitionscocceveveieeeieerrcvrererireeeseeeeeeeeenens

Table 5.2 ATM System Transitions...........c....... et ete oot ettt e et e s e et e et nee st e nneeaan

1X

List of Acronyms

ATM: Automated Teller Machine

BPEL: Business Process Execution Language
BPEL4WS: Business Process Execution Language for Web Services
CTL: Computational Tree Logic

HTTP: Hypertext Trénsfer Protocol

LTL: Linear Temporal Logic

OBDDS: Ordered Binary Decision Diagrams

OWL-S: Semantic Markup for Web Services

SMTP: Simple Mail Transfer Protocol

SMYV: Symbolic Model Verifier

SOAP: Simple Object Access Protocol

UDDI: Universal Description Discovery and Integration
URI: Uniform Resource Identifier

WSCI: Web Service Choreography Interface

WSD: Web Service Description

WSDL: Web Service Description Language

WSFL: Web Service Flow Language

W3C: World Wide Web Consortium

XLANG: XML-based language

XML: Extensible Markup Language

Chapter 1: Introduction

In this chapter, we introduce the context of our research and explain what initiated our
interest into the design and implementation of composite web services. We also present the
research questions that we considered, a general description of our objectives and contributions

and an overview of the structure of the thesis.

1.1 Context of Research

The World Wide Web Consortium (W3C) organization, which establishes the standards
for web services, defines them as follows: “A web service is a software system identified by a
URI, whose public interfaces and bindings are defined and described using XML.. Its definition
can be discovered by other software systems. These systems may then interact with the web
service in a manner prescribed by its definition, using XML based messages conveyed by Internet
protocols. Web services are characterized by their great interoperability and extensibility, as well
as their machine-processable descriptions thanks to the use of XML. They can be combined in a
loosely coupled way in order to achieve complex opérations. Programs providing simple services
can interact with each other in order to deliver sophisticated added-value services” [21].
Web services are emerging nowadays and the best quality of the conversation among composite
web services should be assured. Web services have become the primary infrastructure for varied
interconnection of business processes, systems and products so it is crucial to have a reliable
delivery of mevssages. The participants should be sure of the completion of message exchanges to
be able to solve tﬁe differeﬁt business problems.v When this completion is ensured, we can define

the related web service as secure, interoperable and transactional.

Composition in web services brings value-added benefit and flexibility. In fact, composition is an
important aspect in web services and should be supported by the architecture that contains the
protocols and interfaces for reliable message exchanging in order to provide the functions that
customer, software vendors and industries need.

In this thesis, our purpose is to formalize composite web services and then apply model
checking to verify the confonnity of the model we propose. The idea of modeling and studying
the web services under two different behaviors: control and operational behaviors was previously
studied in [27] and [39]. In these two publications, the control behavior illustrates the bﬁsifxess
logic that underpins the functioning of an isolated web service, and the operational behavior
regulates the execution progress of this control behavior by stating the actions to carry out and the
constraints to put on this progress. However, the composition and verification aspects were not
investigated. The technique we are using in this thesis combines this idea of separating control
and operational behaviors with an additional approach. So, in this thesis, our aim is to develop an

efficient and easy to use verification model for composite web services.

1.2 Motivations

To achieve a highest quality in conversations among web services, some verification should
be done on these conversations. Our first motivation is to have the fastest and most reliable web
access service. Therefore, we present a general framework accessible by the users to check the
correctness in the fransfer of messages. Our second motivation is to assure that this framework
can show if there is a problem or not. So we apply a model checking technique to verify the
correctness of the properties that assure the good quality in the communication.

Because a reliable message delivery standard will improve the effectiveness of other web services

standards, like security, transactions and business processes our final motivation will be to assure

this reliability by proving the efficiency of the proposed verification model through simulation of

an example using NuSMV model checker [7] and the program code we developed in JAVA.

1.3 Research Questions

The research questions that are considered in this thesis are:

- How can we design compbsite web services to ensure good quality in the mechanism of
message exchanging?

- How state charts can be used to verify the reliability of the communication between web
services?

- What kind of composition will we consider in the design of our framework?

- How model checking can be considered a good veriﬁcatiqn technique for composite web

services?

1.4 Contributions

Our main objective is to verify the conversations among composite web services to be able to

give the users a best quality.
The contributions of this thesis can be summarized as follows:

- An approach for modeling composite web services based on two behaviors: control and
operational. These two behaviors are linked together to check the synchronization between the
conversations in composite scenarios. We use state charts enhanced with additional syntax to
facilitate the mapping process between the two behaviors to model composite web services.
- A formal and automatic verification approach of the mapping procedure using symbolic model

checking technique. The implementation is done using a Java-based translation procedure and

NuSMV model checker [7].

1.5 Thesis Overview

The thesis is divided into 6 chapters. Chapter 1 introduces our work and presents our
motivations and contributions. Chapter 2 introduces composite web services and discusses two
different types of composition. Chapter 3 présents model checking technique along with two
logics for which model checking is used: Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL). In Chapter 4, we propose our model and support it by two different use cases: a
ticket reservation system and an ATM system. Chapter 5 shows the different implementations we
have‘done to translate state charts to SMV programs that are the inputs of NUSMV model

checker. Finally, Chapter 6 concludes our work and presents some direction for future work.

Chapter 2: Composite Web Services-:

2.1 Overview of Web Services

Web services are modular and self-contained applications that are described, published,
located and invoked over a network: the World Wide Web [20]. They are based on opén Internet
standards like XML (Extensible Markup Language), HTTP (Hypertext Transfer Protocol) and
SMTP (Simple Mail Transfer Protocol), and do not rely on a specific operating system, language
or environment. In [34], the definition of a web service is given as: "any process that can be
integrated into external systems through valid XML documents over Internet protocols”.

Web services are based on specifications for data transfer, method invocation and publishing.
It is important to emphasize that a web service is a service that should include an interface to
communicate with other applications via SOAP (Simple Object Access Protocol). According to
the previous definition, a weather forecast on a web page for example is not necessary a web
service. It is considered a web service if it communicates with other software componeﬁts.

Web service must be implemented by a concrete agent (software) that sends and receives
messages (See Figure 2.1) [5]. In this figure, we note that the provider entity is the person or
organization responsible for providing the agent implementing the service. However, the
requester (consumer) entity will use a requester agent to communicate with the provider’s agent
by exchanging messages. The messages exchanged'between the provider and reqﬁest_er is

documented in a Web Service Description document (WSD). This description is expressed in

)
s

WSDL (Web Service Description Language), which is often used in combination with SOAP and
XML Schema. A client program connecting to a web service can determine what functions are
available on the server by reading the WSDL file. The data types used are embedded in this file

and the client will use SOAP to call one of the functions in the file.

In fact, the WSD represents a contract, it specifies the message formats, transport protocols and

location. One more network location where the provider can be invoked will be specified.

The main elements used in the definition of network services in a WSDL document are:

Types: a container fo~r data type definitions using some type system to describe the
messages exchanged.

Message: an abstract description of the data being exchanged. A message consists of
logical parts, each of which is associated with a definition within some type system.
Operation: an abstract description of an action supported by the service. Each operation
refers to an input message and output messageé.

Port Type: abstract collections of operations supported by one or more endpoints.
Binding: a concrete protocol and data format specification for a particular port type.

Port: a single endpoint defined as a combination of a binding and a network address.

Service: a collection of related endpoints/ports.

These elements will not be described in details because they are not our main focus in this work.

“Web services are considerably expanding and being used for many purposes such as

integrated enterprise applications, business-to-business collaborations and e-government systems.

Web services represent a further evolution in distributed computing technologies. They are a set

of standardized technologies that operate on common protocols to facilitate the access to remote

services in a standardized, vendor-neutral way. Although these technologies are mature, web

services still have to encompass additional features (verification, security, transaction-handling,

session-handling, etc.) to facilitate robust, dynamic business services” [18]

Requester /
Human

A- Panties “become known" to each other

B- Agree on semantics & WSD

D- Interact

\ Provider

Human

C- Input

C- fnput Semantics
} Sem + WSD
oanics Sem+wsD \&WSP

Requester Provider
Agent Agent

REQUESTER ENTITY PROVIDER ENTITY

Figure 2.1 The General Process of Engaging a Web Service

2.2 Definition of Composite Web Services

Web services provide the basis for the development and execution of business processes
that are distributed over the network and available via standard interfaces and protocols. Service
Composition [23] is very promising in web domain. When combining component web services
(existing web services), we will have composite web services that can execute a lot of new
functionalities. An advantage of composition is the reduction of development time and effort to
make new applications. |

Web service composition is an active area of research. The earliest languages to define
standards for web services composition were IBM’s Web Service Flow Language (WSFL) [25]
and Microsoft’s XLANG (XML-based language) [38]. These two languages were an extension
of the WSDL. WSDL is used to describe the syntactic aspects of a web service.

BPEL4WS (Business Process Execution Language for Web Services) is one of the emerging
standards for describing the behavior of the services. It is a recent language that merges the graph

oriented representation in WSFL and the structural construct based processes of XLANG.

Discovery UDDI

Choreography WS-Choreography
Composition BPEL4WS OWL-S ServiceModel
{Individual) WSCL
Service
Description WsDL OWL-S ServiceProfice
XML :
Messaging SOAP
Network HTTP, SMTP,FTP, etc.

Figure 2.2 Web Service Standards Stack

Figure 2.2 illustrates the Web Service Standards stack [22]. These standards enable a flexibility in .
combining web services to create more complex ones. UDDI (Universal Description Discovery
and Integration) allow manual and automated discovery of web services and helps in the creation
of composite web services. BPEL (Business Process Execution Langunage) is used to coordinate
the activities of web services in a procedural language. OWL-S (Semantic Markup for Web
Services) language “describes web services in terms of their inputs, outputs, preconditions and
effects, and of their process model” [22]. Users and agents should be able to automatically
discover, negotiate with, compose, invoke and monitor web services. ’
There are two main types of composition: static and dynamic composition [4]:

In static compoéition, the service to which the agents are going to be connected is
determined before the execution of the flow. An example of static composition is the inforrﬁation
for tourists in a travel service such as a list of places of interests, list of car rentals, etc. The

existence of such a service is then known before run-time.

In dynamic composition, some of the services are not known during the design time and
they are only known during run-time. For example, if we want to find the lowest price of an air
ticket for a particular destination. During run-time, the agent will connect to all the available
ticket booking services to be able to choose the lowest price.

To resume, we use static composition when the nature of the process to be composed is
fixed and when the business partners and services are slowly changing. However, we use
dynamic composition if the process has mostly undeﬁned functions to perform and it has to adapt

to changes in the environment dynamically.

Composite services could be mandatory or optional. A composite service is mandatory when
all the component services participate in the execution process. However, an optional composite
service does not necessarily involve all the component services. Some services do not participate
in the execution because of non availability or because of substitution.

We discussed several types of compositions. There exist two important approaches to
composition [2] [27]): orchestration and choreography [16] [17] [28]. On the one hand,
choreography specification identifies the set of allowable conversations for a composite web
service. An orchestration, on the other hand, is an executable specification that identifies the steps

of execution for the peers. They will be explained in the following section.

2.3 Types of Composition

Each web service performs one distinct functionality. When combining these individual
components we can make an entire application work. There exist two different ways of
combination: orchestration and choreography. The main difference between them is that

orchestration has a central controller while choreography does not. Section 2.3.1 explains in

details the orchestration method and one language related to it: BPEL4WS. Section 2.3.2 defines

the choreography method and the WSCI language.

2.3.1 Orchestration

Orchestration can be basically defined as an orchestra where the leader directs all the
musicians on what to do. Therefore, the musicians are synchronized by following the direction of
one person. In practice when orchestration is in place, a central system says to some remote
systems what to do. Figure 2.3 shows how the messages are transferred between the different web
serviges. We can see that the process in orchestration is always controlled from one of the
business parties. This central process can be another web service. It should be aware of the
different operations used in the process as well as the order the other web services are invoked in.
The other web services usually do not know that they are involved in a composition scenario.

They do not need to know that. The interaction is done at the message level [29] [30] [31].

Figure 2.3 Orchestration Schema

One language used in orchestration process is BPEL4WS (Business Process Execution
Language for Web Services). “The BPEL4WS provides an XML-based grammar for describing

the control logic required to coordinate web services participating in a process flow and is layered

10

on top of WSDL, with BPEL4WS defining how the WSDL operations should be sequenced.
BPEL4WS provides support for both abstract business protocols and executable business
processes. A BPEL4WS business protocol specifies the public message exchanges between
parties. Business protocols are not executable and do not convey the internal details of a process
flow, similar to WSCIL. An executable process models the behavior of participants in a specific
business interaction, essentially modeling a private workflow. Executable processes provide the
orchestration support described earlier, while the business protocols focus more on web services

choreography” [30].

In BPELAWS, the activities of a process are structured; they could be sequential and parallel.
 BPEL4WS also supports conditional looping and dynamic branching. There are two important
elements in BPEL: the variables and partners. Variables refer to the data exchanged in the
message flow. “When a BPEL4WS process receives a message, the appropriate variable is
populated so that subsequent requests can access the data” [30]. Whereas, partners are all the
different parties that participate in the process.

The typical scenario of orchestration consists of receiving a message into a BPEL executable
process. Then, the process will invoke the concerned web services to be able to respond back to

the requestor at the end.

2.3.2 Choreography

Simply, choreography can be compared to a dancing stage where every dancer knows
exactly what to do, and looks to all the other dancers involved in the process, to synchronize his
steps. A single remote system knows what to do and also what other systems to call after he ends
his processing. Choreography is more collaborative in nature. Therefore, each party involved in

the process should describe the part they play in the interaction [29] [30].

I

4 v AN e
[S B SERVICE
\ L -

N ; ~ N p
§ N J A
\. // /
I v
\\\ SN /
/ . o
o WEBSTRVICE e —

Figure 2.4 Choreography Schema

Choreography does not rely on a central coordinator like orchestration. All the web services that
are involved in the composition scenario should know exactly with whom to interact an when to
execute their operations. Choreography relies on the exchange of messages in public business
processes. Therefore, as said, all participants in the choreography need to be aware of the
business process, operations to execute, messages to exchange, and the timing of message
exchanges. Figure 2.4 shows the basic interaction of the exchanging of messages that is done in
choreography.

The choreography language is WSCI (Web Service Choreography Interface). The Web
Service Choreography Interface (WSCI) is an XML-based interface description language that
describes the flow of messages exchanged by a web service participating in choreographed
interactions with other services. WSCI only describes the observable behavior (messages
exchanged) between the different web services. In choreography we will have a set of WSCI
interfaces, one for each partner in the interaction. “WSCI can be viewed as a layer on top of the
existing web services stack. Each action in WSCI represents a unit of work, which typically
would map to a specific WSDL operation. WSCI defines an <action> tag for specifying a basic
request or response message. Each activity specifies the WSDL operation involved and the role

being played by the participant. External services can then be invoked through the <call> tag. A

12

wide variety of structured activities are supported, including sequential and parallel processing
and condition looping. WSCI also introduces an <all> activity, used to indicate that the specific
actions have to be performed, but not in any particular order” [30].

Choreography won’t be used in this work but it was introduced because it could be interesting to

work on it in future works.

2.3.3 Orchestration vs. Choreography

The main difference between orchestration and choreography is that orchestration is
controlled by a single party whereas in choreography no one controls the conversation. In
orchestration the other web services do not know about the process. Only the central controller is
aware of the flow of the process. However, in choreography, all the web services are aware of the
process and of whom to interact with because they exchange messages between themselves.

In fact, we can say that orchestration is a controlled and coordinated way of utilizing the services
_ of all the participating web services whereas choreography is just a collaborative effort of
utilizing the services of the- participating web services.

Also, regarding the fault handling issue, it is easier in orchestration as the execution is
controlled, which is not the case with choreography. Web services can be easily and transparently
replaced in case of orchestration as the involved web services do not know the actual business
process whereas it will be difficult in case of choreography.

Consequently, we notice that orchestration has few more advantages over’ choreography:

- The coordination of component processes is managed by a centralized known coordinator.
- Web services are used in large business scenarios and they are unaware of that.
- In case faults occur, orchestration can manage alternative scenarios.

So orchestration is preferred for business implementations. In our work, we choose an

orchestration process flow to implement our approach.

13

2.4 Example

In this section, we present an example of composite web services that will be used in other
sections to explain our framework. Before introducing this example, we briefly give an overview

of state charts, which are used fto represent it. A state chart is composed of:
¢ Filled circle, pointing to the initial state;
* Hollow circle containing a smaller filled circle, indicating the final state (if any);
e Rounded rectangle, denoting a state. This rectangle contains the name of the state;

e Arrow, denoting transition. The name of the event causing this transition labels the arrow
body.

These elements and other additional notations are shown in Figure 2.5.

Legend: . Initial State O Final State D State AND-state
Sequencial—states —> Transition O Conditional Setection () Connector

Figure 2.5 State Charts Legend

Figure 2.6 illustrates the state chart of a composite web service process using orchestration: a
ticket reservation service. This system is a real-life composite service for travel organization. ft is
described in BPEL as a state chart. The whole process is composed of states (simple, sequential
or and-states). Sequential and: and-state states contain other embedded state charts. Initially, the
process is in the “Iltinerary Received” state becaﬁse the process‘reéeives an itinerary from the
client. Then the process invokes the airline reservation web service. If the airline reservation
system is done without faults, the vehicle and hotel reservations services will be invoked in

parallel. If a time-out or fault occurs, the process will end with errors. Otherwise, the invocation

14

of these web services is done correctly. The process moves then to the “Itinerary Modified” state.

At the end, when the submission is done, the process moves to the “Itinerary Returned” state and

so, the itinerary is returned to the client.

Vehicle Invoked

Reservation
Vg
Failure

VehicleReservatibn
Copied

VehicleReservation
Canceled

Failure

Hotel Invoked

r’(HotelReservation
Reservation

Copied

HotelReservation
Canceled

_{ AirlineReservation 1 Cme,eﬁon
Invoke Reservati i
ltinerary Received nvo 4‘ Airline Invoked ervane Copied

Failure_{ AirlineReservation Failu@
Canceled

Figure 2.6 State Chart of a Ticket Reservation System

15

Submissien

Itinerary Returned

Itinerary Modified

Failure

Chapter 3: Model Checking

3.1 Introduction

Given a simplified model of a system and a speciﬁé specification, the concept of model
checking consists of testing automatically whether this model meets this specification. To go to
the root, the original work in the model checking of temporal logic formulas was done by EM.
Clarke and E. A. Emerson [8] [9] [10] and by J. P. Queille and J. Sifakis’[33]. Clarke, Erherson,

and Sifakis shared the 2007 Turing Award for their work on model checking [32] [36].

Model checking has been used in many real applications, including electrical circuits, digital
controllers and communication protocols. Systems are genefally hardware or software systems
that could have many safety requirements like for example the absence of deadlocks.

The system consists of several components designed to interact with one another and
with the system’s environment. The system has temporal properties, which will be explained in
details in a Section 3.3. The model and the specification should be formulated in a logical
language such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL).

The user provides a model of the system and a formulation of the property to be proven.
Model checking tool then determines whether or not the model satisfies the property. Therefore,
model checking amounts to determining the truth of formulas in models, i.e. whether M |= ¢.
- However, automatic model checker may have to traverse all reachable system states (state
explosion). For this, state space must be finite.

Now, combining composite web services (Chapter 2) and model checking (Chapter 3) is
one of the axes of this thesis. Model checking of composite web services has been studied before

in [2] [13] [16] [17] using different model checkers. The main difference with our work is in

16

terms of the properties to be verified and the underlying technique. This idea will be developed
later on in Chapter 4.
For now, this chapter mainly defines model checking, the system models (Section 3.2), the LTL

and CTL properties (Section 3.3), and the verification process (Section 3.4).

3.2 System Models

We will consider the system model to be a Kripke Model [7,8]. A kripke structure K is a

tuple K= (S, , R, Label)

Where:
- S: a countable set of states
- I% S: a set of initial states
- RESxS: atransition relation satisfying VS€S.(Is€ S.(s,8) € R)

- Label: S 2% an interpretation function where ®p is the set of atomic propositions.

Figure 3.1 shows an example of a Kripke structure [4]:

Where ®p ={P, Q, R}; S={s0, 51, 52, 53, 54 }, I={s0}; (s0, s1) € R, (s0, s2) € R, (s2, s2) € R, (s3,
s4) € R; Label (s0)={P, 71Q, 7R}, Label (s3)={P, 7Q, R}

We have to define paths in these structures. Here are some definitions concerning paths [4]:

- A path Is an infinite sequence of states

o= S S8 .--

- Suffix of a path starting at s;

G i = Si Si+} Sjr2---

- State in a path: o [i] = s;

- Path(s): the set of paths starting in state s

17

j/
r *52
/
/Q \; [PR
i& f! { }
\\,‘i/ {,f %\ 53 /
{ ! Y
[|
7 !
P /
{7 e
- } i QN
i %2 ; }
A e)
\\E‘:«;’ '\5
A

Figure 3.1 Kripke Model Example

Satisfiability and validity are two important concepts in kripke structures.
Satisfiability is when given a formula ® there exist a Kripke structure K such that X satisfies @
(i.e. K|=).

Validity is when given a property we have for all Kripke structures K: K |= @.

3.3 Properties

The properties to be checked can be written in propositional LTL and CTL format. First, we
will introduce the syntax of t};ese two languages. Let @p be the set of atomic propositions and p
™ Dp.

PLTL syntax is as follows:

G=p|~D| PV B|XD| DU D

CTL syntax is as follows:

18

O=p|~D|PVvD|DPUP|EXD|AXD | E(P U D) | A(® U D)

X® means in the next state @ is true. @ U ¥ means @ is true until ¥ becomes true. E and A
are the existential and universal quantifiers over paths. F (future) and G (globally) are
abbreviations i.e.:

Fo=TrueUP

GDP=—~F~P

Note that LTL is very common in practical model-checking. LTL is used when time is modeled
to be linear. However, CTL is used if we want to support branching instead of linear time.

A path is an ordered sequence of states, such that each state is followed by its next state via a
transition.

LTL semantics is given as usual using a Kripke structure equipped with a valuation function L
defined as follows: L: § x ®p — {True, False}. LTL semantics is as follows (we also give the
semantics of some abbreviations for more convenience):

o [=piff L(x(0), p) = True, where p € Pp

ol @iffx|= @

cFPAYiffx|=Pandx|=¥

c=ov¥iffx=dorx =¥

o [=XPiffc ()=

oGP ifffor alli>20, o ()= P

o |= F@ iff there exists an i = 0 such that ¢ (i) |= @

o=@ UV iff thereexistsani >0 suchthato ({) = Yand forall 0<j<i, o(j)|=D

Given a state s in the Kripke structure, CTL semantics is as follows:

s |= p iff L(s, p) = True, where p € &p

sl=—Piffnots|= P

sSEFPAYiffs=Pands|= ¥

19

sEOVvViffsEdors|=¥

s |= EX® iff there exists a path s(0), s(1), ... such that (1) |= @

s |= AX @ iff for all paths 5(0), s(1), ..., s(1) = @

s |= EG® iff there exists a path s(0), s(1), ... such that forall i > 0, s(i) |= @

s |= AG® iff for all paths 5(0), s(1), ..., foralli >0, s()) |= P

s |= EF & iff there exists a path s(0), s(1), ... such that there exists an 7 > 0 such that s(?) |=q5

s |‘= AF @ iff for all paths s(0), s(1), ..., there exists an i > 0, such that, s(7) |= @

s = E(@ U ¥) iff there exists a path s(0), s(1), ... such that, there exists an i > 0 such that s(i) |= ¥
and forall 0 <j <i, s(j) |- @

s |= A(® U W) iff for all paths s(0), s(1), ..., there exists an 1 > 0 such that s(i) =¥ and for all

0<j<i, sj) | ®

It is important to know that CTL and LTL can express all common safety and liveness properties.
- Safety properties: Nothing “bad” ever happen. They are formalized using state invariants. So the
execution never reaches a “bad” state.

- Liveness properties: Something “good” keeps happening. They are formalized using temporal

logic. We have special logic for describing sequences.

3.4 Verification Method

The model checking technique consists of computing whether or not a formal model M

representing the system satisfies a logical formula ¢ describing a property. Formally, this

problem is denoted by: M |= ¢ or M F ¢. The computation is usually automatic for finite models.
The approach used in this work is called symbolic model checking. This approach avoids
building or exploring the state space corresponding to the models explicitly. Instead, a symbolic

representation is used based on ordered binary decision diagrams (OBDDS) or propositional

20

satisﬁability (SAT) solvers [20]. Model checking consists of three parts: A framework for
modeling software (some specification language), a specification language for describing
properties to be verified and a verification method for establishing if description satisfies the
specification.

The model checker we use in this thesis is NuSMV [34]. NuSMV is a software tool for the
formal verification of finite state systems based on symbolic model checking. It has been
developed jointly by ITC-IRST and Carnegie Mellon University. NuSMV allows checking finite
state systems against specifications in the temporal logics LTL and CTL. The input language of
NuSMYV allows the description of finite state systems that range from completely synchronous to
completely asynchronous. The basic pufpose of the NuSMYV language is to describe the transition
relation of a finite Kripke structure. It supports modular hierarchical descriptions and definition of
reusable components. This tool has been designed as an open architecture for model checking. It
is aimed at reliable verification of industrially sized designs, for use as a backend for other
verification tools and as a research tool for formal verification techniques.

The advantage of NuSMV is the. flexibility in the use, but sometimes with non expert users
there is a danger of inconsistency. To manage this inconsistency, we provide an automatic
translation from the Kripe-like structure obtained by the translation procedure from the
operational behavior, to the SMV code. The properties to be checked are also extracted from the
control behavior and translated into LTL and/or CTL.

To be able to perform verification, we need a modeling language that describes the system, a
specification language that formulates the properties and some calculus and algorithm to be able
to verify the specification. Then, the model checker checks the propénies in the system model |
and gives the result. The result could be: Yes, the property is satisfied or No with a

counterexample. Figure 3.2 shows this model checking approach.

21

e T
spstom 3
‘, J

Modeling |

[eSS

o e
£ apnt b
(pystem modﬁf/) e

S

: “rodel Checking™

1” fj' e T — ; ;,.’*V"’"—““'""\

A - .) . .

i Y yolaled 5 ~ . ’ 5
{ T } o Sinntation | reor &
\\auim‘eieﬁmun;mz . o TS

- e

T

Figure 3.2 Model Checking Approach

In the NuSMV model checker the SMV language is used to describe the system model. Here is a
part of SMV syntax [19].

* Expressions

Expr ::
atom - ;; symbolic constant
| number ;; numeric constant
I1d ;; variable identifier
| “1” expr ;; logical not

| exprl <op> expr2
| “next” “(“id “)” ;; next value
| case_expr
| set_expr
* The Case Expression

Case_expr :: “case”

22

expr_al “:” expr_b2 “;”

[39%-3

expr_bn

«©@,

expr_an
“esac” .

B Guards are evaluated sequentially.
B The first one that is true determines the resulting value
B If none of the guards are true, result is numeric value 1

* State Variables
Decl :: “VAR”
atoml “:” typel 7

atom?2 “:” type2 “;”

* State is an assignment of values to a set of state variables
» Type of a variable —- boolean, scalar, user defined module, or array.

* ASSIGN declaration
Decl :: “ASSIGN”
destl “:="exprl *;”

dest2 “:=" expr2 ;”

Dest :: atom
! (19

init” “(SC at()m ‘6)7’

B

next” (6(“ atom 6‘)’7

* Variable Assignments

23

B Assignment to initial state:

init(value) := 0;

B Assignment to next state (transition relation)

next(value) := value + carry_in mod 2;

B Assignment to current state (invariant)

carry_out := value & carry_in;
B Either init-next or invar should be used, but not both_
B SMV is a parallel assignment language

* Circular definitions

B Circular definitions are not allowed

B This is illegal:

B 3 = next(b);
next(b) :=c;
c:=a;

B This is accepted:

® init(a) := 0;
next(a) := 'b;
init(b) == I;
next(b) 1= la;

* Non-determinism

B Completely unassigned variable can model unconstrained input.

24

B {val 1, ..., val n} is an expression taking on any of the given values
hondeterministically.

Nondeterministic choice can be used to model an implementation that has not been

refined yet and can be used in abstract behavior

* ASSIGN and DEFINE
B VAR a: boolean;

ASSIGN a:==b|c;
B declares a new state variable a

B becomes part of invariant relation

m DEFINEd:=b|c;

B s effectively a macro definition, each occurrence of d is replaced by b | ¢

B 1o extra BDD variable is generated for d

B the BDD for b | c becomes part of each expression using d

* SPEC declaration

B Decl :: “SPEC” ctliform

B Ctlform :: expr ;; bool expression

| “¥ ctiform or (Itlform)
| ctiform! <op> ctlform?2
| “E” pathform

[“A” pathform

B Pathform :: “X” ctiform (or itlform)

25

| “F” ctlform (or ltIform)
| “G” ctlform (or ltlform)
| ctliform1(or Itlformi) “U” ctiform2(or ItIform2)
* Modules and Hierarchy |
B Modules can be instantiated many times, each instantiation creates a copy of the local

variables
B Each program has a module main
B Scoping
B Variables declared outside a module can be passed as parameters

B Parameters are passed by reference.

26

Chapter 4: Proposed Model

4.1 Introduction

After defining composite web services in Chapter 2 and model checking technique in
Chapter 3, we present in this chapter our proposed model.

In this chapter, we focus on the verification issue and we propose a new verification
approach, based on formal model checking, for conversations between composite web services.
In terms of composition [3] [26], two approaches have been proposed: choreography and
orchestration [29] {30] [31]. As explained before, on the one hand, choreography specification
identifies the set of allowable conversations for a composite web service. An orchestration, on the
other hand, is an executable specification that identifies the steps of execution for the peers. In
this work, the focus is on the orchestration only. Furthermore, we consider conversations between
web services through their two behaviors: operational and control [27] [39]. A control behavior
describes the general behavior of any process related to composite web services. However, an
operational behavior is a behavior specific to each case study according to its business logic. In
[27] and [39], these two behaviors have been investigated only for isolated or individual web
services out of any composition. In this work, we design the control and operational behaviors for
composite web services. Then, we map the control behavior to the operational behavior in order
to verify the synchronization in the composition process using model checking technique and
assuming that the interaction is controlled by a central coordinating process. Model checking is a
formal verification method used to check the correctness of a design model M in terms of the
satisfaction of some properties ¢, such as safety and liveness. Formally, the problefn is to check if
M |=¢ where M is a formal model and ¢ is a formula expressed in some logics. Model checking

has been detailed in Chapter 3.

27

This chapter is organized as follows. Section 4.2 describes our proposed model.
Therefore, in Section 4.2.1 we introduce the formalization and modeling of composite web
services. We consider an orchestration model as mentioned before and define the different
components of this orchestration. In Section 4.2.2, we present some rules that guarantee a good
conversation between web services in a composite setting. In Section 4.2.3, we verify the good
synchronization of the conversations among the web services. To do that, we present the control
behavior tﬁat would be applicable for all the orchestrations of composite web services. Then, we
study the operational behavior of a ticket reservation system case study and aﬁ ATM casevstudy.
At the end, in Section 4.3 we verify the synchronization of the two different types of behaviors,.
which are the control and operational behaviors using a model checking approach on these two

case studies.

4.2 The Proposed Model

4.2.1 Modeling and Formalizing Composite Web Services

Each web service can provide many functionalities, but when it is unable to provide alone
a user request, it communicates with other Web services either to provide a part of the requested
service or to request another part of it. This is the objective of compositions process. The

orchestration-based composition of these web services is formally defined as follows.

Definition 1: The orchestration-based composition of a set of web services is a 4-tuple: CW = <.
W, wy, L, T >, where:

o Wis the set of web seﬂices that interact in the composition;

® wy is the client web service (the web service that initiates the orchestration process),

o L is the set of labels used for the transitions;

o T c Wx L x Wis the set of labeled transitions between the web services.

28

http://�
http://Tc.Wx.LxW

Each web service w ™ W is defined as follows.

Definition 2;: 4 web service is a S-tuple: W= < 8§, sy, F, Li, Ti >
where: |

o S is the set of states that form the behavior of the web service,
® 5y is the initial state of this particular web service;

o Fis the set of final states,

e Liis the set of labels used for the internal transitions;

o 7i < Sx Lix Sis the set of internal labeled transitions inside the web service.

In fact, a composite web service consists of a set of individual services (or peers), which
interact with each other via messages. A conversation is a sequence of messages exchanged
among peers participating in a composite web service [6]. Formally, a conversation between n
web services is represented as a finite path as follows:

ap an>
Wy — W ... W,
where V 0 <i<n-1 (w, a;, wis)) ™ T.

To verify if the conversations generated by the composite web service satisfy certain
properties, we propose in this work to use model checking, where the desired properties are
expressed in a logical language. Precisely, we use symbolic model checking [12] and properties

kare expressed in two languages: LTL (Linear Temporal Logic) and CTL (Computation Tree
Logic). Before introducing the verification method, we define the conversations among web

services and their synchronization in the next section.

29

4.2.2 Synchronization of Conversations among Web Services

To guarantee the correctness of the behavior of the orchestration-based composite web
services, their synchronization is needed. To capture this synchronization, we divide the

composition behavior into control and operational.

A- Contfol Behavior

The control behavior for composite scenarios shows the execution progress of a typical
orchestration-based composite web service. Such a behavior is supposed to be domain-application
independent, so general for all composite services. Its objective is to control the business logic
execution as it provides the guidelines for an appropriate composition behavior. Based on the idea
of separation of concerns, this general behavior facilitates the reusability of composition
scenarios as it is independent from any specific business case. The idea is to design a general
control behavior that would be applicable for all the orchestrations of composite web services.

Figure 4.1 depicts the state chart representing the control behavior of the composition
scenario. At the initial state, the process is not dctivated, and then when a certain request is sent
from a client, the process moves to the received state because it receives the request from the
client. If any failure occurs, two choices are possible, either the process is suspended and we have
a retrial, or the process is aborted and it ends. When the process reaches the received state and no
errors occur, it can invoke a certain web service, so the process moves to the invoked state, then
the web service replies, so the process returns to the received state or it can do some other
processing so it moves to the processing staté then to the received state. The process can send
other requests to other web services and so.on. At the end, the process receives the final
information and it has to commit the action back to the client. When the commitment is satisfied,

the process moves to the done state. At any time, if an error occurs, the process can be diverted to

30

the suspended or aborted states. Compensated state could be reached after failed retrials, so the

process goes back to the not-activated state, or after the commitment.

Rolling back

Compensated

Suspended compensation after failed retrials

Not Activated

retrial /
) retrial failure
failure
Received —invoke— Invoked
reply abortion after failed retrials
_
commitment waiting for processing
failure
Processing
‘Done /
failure failure___y Aborted
l ,
N

compensation after commitment

@

Figure 4.1 Control Behavior of a Composite Web Service

B- Operational Behavior

The operational behavior of a composite web service shows the business logic describing
the functioning of a given orchestration-based composition. Unlike the control behavior, the

operational behavior is domain-application dependant. This behavior is supposed to be overseen

31

by the control behavior. The conformance to the control behavior (in terms of synchronization) is
a proof that the operational behavior is well designed.

To explain this notion, we consider first here a concrete example: a ticket reservation service. The
state chart in Figﬁre 4.2 illustrates the operational behavior of this composite web service process

using orchestration. This state chart was previously explained in Section 2.4.

l _{ AidineReservation 1 Clompletion Itlnerz?ry Madified
Invoke Reservation i -
Itinerary Received o 4. Airline Invoked rvat Copied @ Submissie
Failure_{ AirlineReservation Failure
Canceled

VehicleReservation
Reservation ~ Copied

/ .
Failure

ltinerary Returned
Failure

Failure

HotelReservation
Copied

Reservation

Figure 4.2 Operational Behavior of a Ticket Reservation System

Figure 4.3 illustrates another example of operational behavior of the composite web service
process using orchestration: An ATM system. In this figure, we also consider an orchestration
case of composite web services. In an ATM system, the user must enter the card ﬁrst? then enter
the PIN, then the system will invoke the bank system to check if the login info are correct. If they
are wrong, we will have a failure and the process will end. If théy are correct, the user will have
choices of transactions to choose from. The user can choose to withdraw, deposit or check
balance.
- If the user chooses to withdraw, again the bank system will be invoked to check if the
user has enough balance to withdraw from, if not the process ends with failure. If it has
enough balance, then the withdrawal will be done and then the user can choose to print a

receipt or not. If not he logouts and the process ends. If he wants a receipt, another

32

system will be invoked: the printer system and the receipt will be printed so the user will
receive the receipt of his transaction.

If the user chooses to deposit, the bank system is invoked again and the amount he enters
will be checked to be in a certain limit. And the deposit will be done if the amount is ok;
if not the process will end with a failure. Now, if the deposit is done correctly, the user
also will have a choice to have a receipt. So, if he wants a receipt, another system will be
invoked: the printer system and the receipt will be printed so the user will receive the
receipt of his transaction.

If the user chooses to get his balance, the bank system is invoked again and the balance is
displayed for the user. Here, also the user will have a choice to have a receipt. So, if he
wants a receipt, another system will be invoked: the printer system and the receipt will be

printed so the user will receive the receipt of his transaction.

Evrer

by 4 P Id Pray W Y Crocme cepuk
.—». £¥! Card Entered PN Enb‘.—;’id\rm‘—eb .—q LOGI verification o Choices i—;\\—f—-»{ir)

[

®

(f

4

Thoose grskamnos @

g
el Receipt Printed

-
I % Eatwoe c¥, N o SR— ,‘Mmm,_ ,»

S ." Wihdrawsl Invcked Batance Chenked Withdrawai Done : @

‘ h d Y '

W—D{ Logoa

w'vs—;g Receipt Prnted

——— S 1‘_"“‘“'

N
)—><\ Amcxmx Checked -——————N C:pus t Done
. ((\ J ~ / /—’—\

- Lugcm‘x

2 %

o N i — B

7 Sgemuance N
‘-’é GeBatance Invoked [——,{ Saance Disgiayed
' | B@ance Disayee

Figure 4.3 Operational Behavior of an ATM System

33

4.2.3 Verification

To verify the synchronization of the two different types of behaviors, we convert the
operational behaviors into a system model represented as a Kripke structure, and we extract from
the control behavior all the properties available in a temporal logic format. By doing this, we can
verify, using model checking, that the operational behavior is conform to the control behavior,
from which we extract the properties. Thus, soundness and completeness of a composition can be

defined as follows.

Definition 3: An orchestration of composite web services is sound and complete iff all the
properties of the control behavior are satisfied in the operational behavior system model

(soundness) and vice-versa (completeness).

A- Properties to be checked
We have explained in the previous chapter the LTL and CTL syntaxes in details.

Now, in LTL, the default path quantifier is 4, so a state satisfies a formula if it is satisfied in a//
paths starting by this state. The reason behind using two different languages LTL and CTL to
specify the properties is because they are not equivalent. There are properties that can be
expressed in LTL but cannot be expressed in CTL (for example AF(p A Xp)) and vice versa (for
example: AG(EFp)). We also notice that we are considering fair LTL and CTL [12], which means
in any computation, some states, called fair states, should be reached. In the control behavior
depicted in Figure 2.2, Done, Aborted and Compensated are fair states. Thus, in any execution,
Done or Aborted or Compensated should be reached.

To specify the properties we aim to check from the control behavior, we will consider the

following initials (see Figure 2.2): Not activated: Na / Received: Re / Invoked: In / Suspended: Su

/ Aborted: Ab / Processed: Pr / Compensated: Co / Done: Do / End: En

34

Let — be the logical implication. Examples of fair LTL properties we can verify as extracted
from the control behavior are:

1- & = G(Na — XRe)

2- @ =G(Re — XF(In v Ab v Su v Do))

3- &= G(Co — XFNa)

4- @ = G(Do — XF(En v Co))

5- @ = G({(Do v Ab) — XFEn)

6- @ = G(In — XF(Ab v Pr v Re v Su))

Explaining for example the first property, we always have after a non-activated state a receive
state. The second property states that always after a receive state, we have an invoked, an aborted,
a suspended, or a done state in the future. In the fifth property, we always have an el;d state after

an aborted or done state.

Examples of CTL properties from the control behavior are:
I-¢p= AG(Na - AXRe)

2- @ =AG(Re — AXAF(In v Ab v Su v Do))

3- @ =AG(Co — AXAFNa)

4- @ = AG(Do — AXAF(En v Co))

5- &= AG((Do v Ab) — AXAFEn)

6- & = AG(In — AXAF (4b v Prv Re v Su))

Examples of properties in CTL that cannot be expressed in LTL are:
7- & = AGEF(En)

8- & = AGEF(Do)

9- @ = AGEF(Ab v Do)

10- @ = AGEF(Re — In)

35

11- @ = AGEF((i{n — EXPr) v (In ‘—> EXRe))

12- @ = AGEF((Pr — EXRe) v (Pr — EXADb))

Property 7 states that in all paths there always exists a path where in the future we have and end .
state. Property 10 states that in all paths there always exists a path where a receive state should be

followed by an invoke state.

B- System Model

After extracting the properties to be checked from the control behavior, the second step in the
verification process is to build the Kripke-like model from the operational behavior. The resulting
model is the one we use to automatically generate the SMV code used by the NuSMV model
checker [7]. This trans]atjon is automatic and is as follows. Each state s,, in the operational
behavior is translated to a set of states and transitions in the Kripke-like structure M and each
transition is translated to one or many transitions. If s,, is a simple state, it is translated into one
state in M with the same content. If 5,, is a state chart, then two cases are possible: 1) the staté isa
sequential state; 2) the state is an and-state. In both cases, each simple state is translated into one
state with the same content and all the end states are translated to one end state. In the first case,
the connector is replaced by the next state if this state is simple, or by the first state of the next
éequential state or and-state. In the second case, the and-states are simply considered as sequential
and the sequence order is selected randomly. The réason is that in an and-state, a]i the states
should be considered but the order of this consideration is not important. Only the last state in the
selected order is related to the next state by a transition. The number of possible Kripke-like
structures depends then on the numbér of states in and-states. However, all the executions are
equivalent, which means that only one structure should be considered. The conditional selections
are simply ignored as they are captured by deterministic transitions. Transitions between simple

states are translated to transitions between the corresponding states in the Kripke-like structure.

36

Transitions between simple and sequential states or and-states are translated into transitions
between the corresponding state of the simple state and the corresponding state of the first state of

the sequential state or and-state.

tinerary
Airline
invoked

Figure 4.4 Model of the Ticket Reservation Composite Web Service

Figure 4.4 shows the Kripke-like modei obtained after translating the operational behavior
given in Figure 4.2 (ticket reservation service) using this translation procedure. As illustrated in
Figure 4.4, after an airline web service is invoked, the action could be committed directly, or a
vehicle and hotel web services could be also invoked depending on the initial client request. At
any time the reservation could be canceled and the process is aborted in that case. The atomic
propositions that are true in the obtained states using the evaluation function L are those used in

the control behavior. Figure 4.5 shows the final Kripke-like model where: R = Re, I = In, S = Su,

37

A = Ab, P= Pr, C = Co, D = Do, and E = En. Note that the idle state corresponds to a non-

activated state.

Figure 4.5 Kripke-like Model of the Ticket Reservation Composite Web Service

C- Model Checking Technique

The model checking technique consists of computing whether or not a formal model M

representing the system satisfies a logical formula ¢ describing a property. Formally, this
problem is denoted by: M |= por M FE ¢. The computation is usually automatic for finite models.

The approach used in this work is called symbolic model checking. This approach avoids
building or exploring the state space corresponding to the models explicitly. Instead, a symbolic
representation is used based on ordered binary decision diagrams (OBDDS) or propositional
satisfiability (SAT) solvers [12].

The model checker we use is NuSMV [7]. We explained about NuSMYV in Chapter 3. The

advantage of NuSMV is the flexibility in the use, but sometimes with non expert users there is a

38

danger of inconsistency. To manage this inconsistency, we provide an automatic translation from
the Kripe-like structure obtained by the translation procedure from the operational behavior, to
the SMV code. The properties to be checked are also extracted from the control behavior and

translated into LTL and/or CTL. The approach of the model checking is described in Figure 4.6.

S 2
<
Operational Z
behavior g SMV program
=
— [
Control JE LTL&CTL
behavior £ formulas
3
\ — =

Figure 4.6 Model Checking of Composite Web Services

4.3 Case Studies

Let us continue the example provided in Figures 10 (control behavior) and 11 (operational
behavior). First, we use a reduction algorithm like the one used to reduce OBDDS [7] in order to
reduce the Kﬁpke-like model illustrated in Figure 4.5. The idea is to reduce the number of states
and transitions based on the fact that two states labeled with the same atomic propositions using
the valuation function L are equivalent, so they can be reduced to énly one state. The transitions
are then reduced as follows:

For all 5; and s,, if 5, is reduced to s;, then:

a. If (s, s,) and (s;, 5;) are two transitions, then they are replaced by one transition (s;, s;);

b. If only one of the two transitions does exist, then it is removed;

c¢. Forall x, if (s, 52) is a transition, then it is removed and replaced by fhe transition (sy, 5;)

if such a transition does not exist;

39

d. Forally, if (s2, 5,) is a transition, then it is removed and replaced by the transition (s, s,)

if such a transition does not exist;

Proposition 1: Let K be a Kripke-like model and K’ be the reduced model obtained using the
redu‘ction algorithm. K and K’ are semantically equivalent.
Proof
Let T be the set of transitions in K and Tk be the set of transitions in K’. To prove the
proposition, we should prove that for each transition in Tk there is a semantically corresponding
transition in 7x- (soundness) and vise-versa (completeness).
We prove soundness by deduction on the reduction rules. For the first rule, the removed
transitions from Ty are semantically captured by the loop transition in Tk- as the two states s; and
s, are equivalent. For the second rule, the removed transition is captured by the state. In fact, here
we have (s;, s;) ™ Tk and s; and s, are equivalent, so one state and the transition are redundant.
For the third and fourth rules, the removed transitions are captured by the replaced transitions
because (s,, ;) and (s,, s2) are equivalent and (s, s,) and (s, s,) are equivalent since s, and s, are
equivalent.
The completeness is simply proved by construction as all the transitions in K’ are constructed
from the transit.ions in K.
The reduction algorithm preserves then the semantics and is automatically performed. Figure 4.7
depicts the result of reducing the Kripke-like fnodel presented in Figure 4.5.

Then, the reduced model is automatically translated to the SMV code used by NuSMV model

checker. SMV code mainly describes the transition relation of the Kripke-like model (Figure 4.8).

40

aer

Figure 4.7 Reduced Kripke-like Model of the Ticket Reservation Composite Web Service

To check the properties described in Section 4.2.3, the following commands are used:
NuSMV > read model —i TRS.smv (TRS.smv is the name of the smv file we created)
NuSMYV > flatten_hierarchy
NuSMYV > encode_variables
NuSMV > build_model
NuSMYV > check ltlspec (to check ltl specifications)

NuSMYV > check ctlspec (to check ctl specifications)

Figure 4.9 and Figure 4.10 show the result of the model checking procedure (LTL and
CTL specifications). First we have to read the .smv program then flatten the hierarchy, encode the
variables and build the model. Then, the specifications are checked. For the LTL specifications

checking, all the properties are satisfied, except for the last two, for which counter examples are

provided (Figure 4.9). For CTL, all the properties are satisfied (Figure 4.10).

4]

MODULE main

VAR

state:{Na,Re,In, Ab,Pr,Dpo,En,Co, Su}t;

ASSIGN

Init(state):=na;
next(state):=

esac,

case
(state=Na):{Re};
(state=Re):{In,Do};
(state=In):{Pr,Ab};
(state=aAb):{EN};
(state=Pr):{In,Re,Pr};
(state=Do):{En};
(state=En):{Na};

l:state;

—— LTL Specifications

LTLSPEC
LTLSPEC
LTLSPEC
LTLSPEC
LTLSPEC
LTLSPEC

-~wrong
LTLSPEC
LTLSPEC

G (state=Na -> X state=Re)

G (state=Re -»> X F (state=In|state=Ab|state=Do|state=su)})
G (state=Co -> X F (state=Na))

G (state=Do -> X F (state=En|state=Co))

G ((state=Dolstate=aAb) -> X F (state=En))

G (state=In -> X F (state=Ab|state=Pr|state=Re|state=su))
LTL specification

G (state=ab -> X state=In)
F G sTate=Re

-- CTL specifications

SPEC AG
SPEC AG
SPEC AG
SPEC AG
SPEC AG
SPEC AG

SPEC AG
SPEC AG
SPEC AG
SPEC AG
SPEC AG
SPEC AG

{state=Na -> AX state=Re)

(state=Re -> AX AF (state=In | state=Ab | state=su | state=D0))
{state=Co -> AX AF state=Na)

(state=Do -> AX AF (state=En | state=Co))

((state=Do | state=ab) -> AX AF state=Enh)

(state=In -> AX AF (state=fb |state=Pr | state=Re | state=5u))

EF (state=En)

EF (state=D0o)

EF (state=Ab|state=DD)

EF (state=Re -> state=In)

EF ((state=Ih ~> EX state=Pr)|(state=In -»> EX state=Re))
EF ((state=Pr -»> EX state=Re)|{state=Pr -»> EX state=Ab))

Figure 4.8 SMV Code for NuSMV Model Checker

42

This is NuSMU 2.4.3 C(compiled on Tue May 22 14:88:54 UIC 2887
For more information on NuSMU see {(http://nusmu.irst.itc._it>
or email to {nusmv-—users@irst.itc.it>.

Please report bugs to <{pusmu@irst.itc.itl>.

This version of NuSMU is linked to the MiniSat SAT soluer.
See http:/ruvwu.cs.chalners.sesCs/ResearchsFormalMethods MiniSat
Copyright {(¢> 2883-2885. Niklas Een,., Niklas Sorensson

NuSMU > read_model —i TRS.smu
NUSMU > flatten_hierarchy
NuSMU > encode_wvariables
NuUSMU > build_model
NuSMU > check_ltlspec
specification G {(state
specification G (state
02> | state = SulXd>) is tru
— agpecification G {(state true
specification G {(state = Codr> s true
specification G {({state = 3] is true
specification G {(state state =
> | state = Su»>> 1is true
specification G (state = fh —-> ¥ state = In> is
—— as demonstrated by the following execution seguence
Trace Description: LTL Counterexample
Trace Type: Counterexample

is

[T I TR

false

~> State:
. state =
—> Input:
—> State:
state =
—-> Input:
> State:
state =
> Input:
—-> State:
state =
—> Input:

1.1
Ma
1.2
1.2
Re
1.3
1.3
In
1.4
1.4
fih
1.5

<_

<_.
<..

(_
(_

(_
<_

<_

— Loop starts here

> State:
state =
-> Input:
—> State:
i state =
> Input:

—> Input:
—-> State:
state =

— specificatien

1.5 <

<_
(.._

(._
<..

<_
<._

<_
(_

F ¢ G state = Re>

false

is

—— as demonstrated hy the followiny execution sequence
Trace Description: LIL Counterexample

Trace Type: Counterexample

—— Loop starts here

> State:
state =
> Input:
-> State:
state =
-> Input:
—> State:
state =
—~> Input:

2.1

> State: 2.4

. state =
—-> Input:
—> State:

L=

(_

(._
<_.
<_
<._
(_

<_.
<_

i state =
NuSMU >

Figure 4.9 Verification Results using NuSMV Model Checker (LTL Specifications)

43

http://nusinM.irst.itc.it
http://vjuii.cs

NuSHU > th‘l,k ctl*‘pec
specification AG (state
specificatioen AG (state

i state = Dodd>) is tru

i state = Re> true
AY. (AF (({state In 1 state = Ab)

specification ARG (state (AF ‘state = Nad) is true - .

specificatien 6G (state . (AF {(state = En | state = Col>)) is true

specification AG ((state “i.state = Ah) —> AX (AF state = End)> is true

specification AG <(state =) AY- (AF (state = Ah | state = Pr) | state =
I state = Sud>> is true .

specif ication AG <EF state = En) 1is true

specification (EF state De> dis true

o g

specification (EF (state Ab | state = Dod) is true
specification (EF (state:= Re -> state = In>)> is true
specification CEF ((state = In -> EK state = Pr> ! (state = In -> E¥
Re>>> is true .
specification R8G (EF ({state =:Pr -> EX state = Red ! (state = Pr -> EX s
Ah>>> is true . .

gMusMU >

Figure 4.10 Verification Results using NuSMV Model Checker (CTL specifications)

N

verificati] —

/Q’V T

:
z/

Cho;ces <
Te— Ca
i A
/Mhd} @EPQ\ GetBala \
/ ¢ \invoked ;

\oned ™~ , \N/ \ un\voked/ \ \'
/ N | |
. 4 o ,// A . N {
énceled\ /Bala:é\ lfmoun}a /Cg\celed d:lplra‘;e 1
. \checked/ ‘checked; / |
N N N ‘
/ 4 . ' !

done

; wal done; y
"l \/‘ \\//)
\\ Recelpl\ —

// \@ke? A -

S e oo \ / | |

|
|
f

P

: ; e
i i / Recelk\

J

\ \ \ aned / / /
\ N’
/.y\
\ \A\ Logouga Iy /

Figure 4.11 Model of the ATM Composite Web Service

44

Let us consider the second case study that consists of an ATM system. In Figure 4.3 we
presented the operational behavior of this system. Now, if we want to follow the same steps of the
first case study, we will first build the Kripke-like model from the operational behavior. Figure
4.11 shows the model obtained after its translation from operational behavior. Figure 4.12 shows

the final Kripke-like model.

Figure 4.12 Kripke-like Model of the ATM Composite Web Service

We then use the reduction algorithm described earlier in this section that preserves the
semantics. Figure 4.13 depicts the result of reducing the Kripke-like model of the ATM presented

in Figure 4.12

45

Then, the reduced model is automatically translated to the SMV code used by NuSMV model

checker. SMV code mainly describes the transition relation of the Kripke-like model (Figure

é o

\/E

4.14).

Figure 4.13 Reduced Kripke-like Model of the ATM Composite Web Service

MODULE main

VAR
state:{Na,Re, In, aAb,Pr,Do,En,Co,Su};
ASSIGN
init(state):=Na;
next(state):=
case
(state=mNa):{re};
(state=Re):{In,Do};
(state=In):{Re,Ab,Pr};
(state=Ab):{En};
(state=Pr):{Rre};
(state=Do):{en};
(state=en):{nNa};
l:state;
esac;

-- LTL specifications

LTLSPEC G (state=nNa -> X state=Re)

LTLSPEC G (state=Re -> X F (state=In|state=Ab|state=Dpo|state=5u))
LTLSPEC G (state=Co -> X F (state=Na))}

LTLSPEC G (state=Do0 -> X F (state=En|state=Co))

LTLSPEC G ((state=Do|state=Ab) -> X F (state=En))

LTLSPEC G (state=In -> X F (state=Ab|state=Pr|state=Re|state=su))

-- CTL Specifications

SPEC AG (state=Na -> AX state=Re)

SPEC AG (state=Re -> AX AF (state=In | state=Ab | state=Su | state=Do)))|
SPEC AG (state=Co -> AX AF state=Na)

SPEC AG (state=Do -> AX AF (state=En | state=Cp))

SPEC AG ((state=Do | state=Ab) -> AX AF state=En)

SPEC AG (state=In -> axX AF (state=ab | state=Pr | state=Re | state=su))

SPEC AG EF (state=En)

SPEC AG EF (state=Do)

SPEC AG EF (state=Ab | state=Do)

SPEC AG EF (state=Re -> state=In)

SPEC AG EF ((state=In -> EX state=Pr)|(state=In -> EX state=Re))
SPEC AG EF ((state=Pr -> EX state=Re)|(state=Pr -> EX state=Ab))

Figure 4.14 SMV Code of ATM System for NuSMV Model Checker

46

Figure 4.15 and Figure 4.16 show the result of the model checking procedure (LTL and CTL

specifications).

NuSMU 2 .43 d(compiled on Tue May 22 14:88:54 UTC 2097
« For more information on NuSHMU see <http:i / rnusmu.ipst.ite.it>
or email to <nusmu-—usersBirst.ite.it>.
FPlease report bugs to <{nusmulBirst.itec.itd>.

- This version of Nu i ink the Minilat 8AT sel
- Bee http:/ uuu.cs 4 zarchsFormalMeth
Copyright (cd 286 < Niklas Sorens

NuSML > read_smodel —i ATM.snmu
fHuSHMU > flatten_hierarchy
> encode_variahles
> hbuild _model
> check_ltlspec
specification G (state
specificatien G at : . F 1 state
ate = Sud>d>>
ication G = Lrue
ication G -
cation G ({(state
lg)ecification G <

i state = Sud>d> is true

Figure 4.15 Verification Results using NuSMV Model Checker on ATM System (LTL

Specifications)

_ pec
—— specification AG state = Re> 1is true
-> (AF ({(state = In { state = @&h?
I state = Doddd
specificatien AG -> (AF state = Nad> idis true
specification AG = -» (AF (state = En | state = Co¥>> is true
— specification AG {(<state = Do | state = Ab> —-> &K <(AF state = End)> is true
— specification AG {(state = In ~> A (AF (((state = Ab | state = Pr> | state
I state = §udld) is true
End is true

is
specification AG (EF state =

specification AG (EF state = Do) is true

specification AG (EF (state = b | state = Do2) is true

specification AG (EF (state Re —> state = Ind>) is true

specification AG (EF ((state = In —-> E¥ state = Pr> | {(state = In -> EX state
Redd> is true

specification AG (EF ({state = Pr —-> EX state = Re> | (state = Pr -> EX state
Abh»>> dis true

Figure 4.16 Verification Results using NuSMV Model Checker on ATM System (CTL

specifications)

4.4 Related Work

The concept of control and operational behaviors was previously studied in [27] and [39]. In
these two publications, the control behavior illustrates the business logic that underpins the

functioning of an isolated web service, and the operational behavior regulates the execution

47

progress of this control behavior by stating the actions to carry out and the constraints to put on
this progress. However, the composition and verification aspects were not investigated. The
composition issue from a formal perspective and the tools used were also stated in some papers.
In [22], Hull et al. describe concepts and assumptions on current work on service composition.
They present several composition models including semantic web services, the "Roman"” model,‘
and the Mealy conversation model. They also give techniques for analyzing web services such as
translating them into formalisms that are suitable for analysié, for example state machines,
extended mealy machines, and process algebra. However, synchronization between behaviors and
verification of composition design were not analyzed.

Other projects that use model checking techniques for BPEL composite web services
verification were done. In [14], Foster et al. verify mediated composite services specified in
BPEL against the design specified using Message Sequence Chart and Finite State Process
notations. Unlike our proposal, the focus is on the control flow logic and not on the conversations
between the composite services. Also, the proposed verification method is not implemented. In
[15], the tool presented can be used to check that composite web services satisfy LTL properties.
The input of the tool is BPEL specifications that are translated into guarded automata. These
automata are then translated to Promela language to check them in the SPIN model checker. This
allows the authors to verify designs at a more detailed level and to check properties about
message content. Although the verification approach is similar to ours, there are many differences
between the two works. In our proposal, the verification is based on separating behaviors and not
only on BPEL. Also, the model checking technique we use is different as SMV and NuSMYV are
based on symbolic model checking and not on automata model checking like in Promela and
Spin. Symbolic model checking has an advantage over automata-based technique as it does not
suffer from the state explosion problem. Finally, in our proposal, we can check not only LTL

specifications like in [15], but also CTL specifications.

43

. In [35], the authors show the importance of asynchronous messaging in sharing information
and resources in the form of web processes. Web service interaction models are formalized into a
conversation concept with ordering constraints on messages. FIFO queues are considered in the
design of message passing between services. In terms of verification, only some abstract
strategies of model checking service composition for both bottom-up and top-down design
approaches are outlined. However, no analysis or implementation of these strategies is pro;/ided.
Model checking of composite web services has been studied also in [2] [13] [16]. [17] using
different model checkers. The main difference with our work is in terms of the properties to be
verified and the underlying technique. To the best of our knowledge, this work is the first
investigation on separating concerns in composite scenarios and automatically verifying the
operational behavior against the control specification using both LTL and CTL languages. The
technique is based on analyzing the two behaviors and extracting properties from the general
control behavior to be verified in the model represented by the operational behavior of the
system. This method enables us to control the orchestration process of the composition in web
services and to verify the synchronization of messages between different web services.

In terms of web services interactiqns, some researchers have studied feature interactions
in ofder to model and monitor undesirable interactions [35] [37]. Feature interactions for web
services are described as the situations where the requirements of services are inconsistent [1].
Feature interactions are often seen as the result of complex behavior interleaving for the state
machines that represent the features. In [24], a first-order logic model-checking tool called Alloy
is used for automated detection of feature interactions. Our proposal is different from this work
since we are considering not only undesirable interactions, but all possible interactions that can be
extracted from the control behavior. The model checking technique we are using is also different

from the first order model checking.

49

Chapter 5: Implementation

5.1 Introduction

In the previous chapter, we presented our verification approach of messages synchronization
among web services. First, we discussed how composite web services could be designed and
modeled based on their control and operational behaviors. The operational behavior shows the
business logic of the process functionality for a composite web service. The control behavior
shows the constraints and states that the operational behavior should be in. Synchronizing both
behaviors is a key issue in designing good conversations between the different web services that
participate ip composite web services. We used smbolic model checking as the verification
approach. The properties to be checked are taken from the control behavior and are verified in the
different operational scenarios.

In Chapter 4, we translated manually the state charts to SMV code following these steps:
a- Transiating the state chart to a model

b- Finalizing the model to a Kripke-like model

c- Reducing this Kripke-like model

d- Translating the reduced model into SMV syntax.

In this chapter, we want to make the translation easy and automatic for the user. We created
for that reason an interface where the user enters the different transitions of states existing in the
original state chart. The user will also add the LTL and CTL properties and then the SMV file is

directly created.

50

In Section 5.2 we will explain the framework of this SMV Converter in more details. In Section
5.3 we will show a step by step example of the ticket reservation system composite web service.

Some samples of the code are listed in Appendix 1.

5.2 SMYV Converter

As stated in the previous section, the SMV converter is responsible of converting state charts
to SMV code to automatically help the user in the verification process. The SMV converter we
created (see Figure 5.1) is composed of four areas. The first one is for state charts. The second
and third areas are for LTL and CTL specification. The last area displays the SMV code that will

be put in the “.smv” file.

FROMSTATE. -}

FROMTYPE: [Notactvated i
TOSTATE oo
boTvee. [Nt Actvated
CONVERTTO SV
P . ool
2. LT sPEC 3 CTLSPEC
useect [y fefrixfitediiol eme falefciilelrixivl ifal]

state = |Ha| Ko | In [Ab] PriD0}En: Su) o} -» | lale= INaiFat iniAbi briDo}EniSuiCofon

ADDLTLSPEC i ADDCTL SPEC§ CREATE SMVFILE E

Figure 5.1 SMV Converter Interface

51

Section 5.2.1 describes the first area and the interaction between the first and fourth area. Section

5.2.2 describes the second and third area as well as their interaction with the fourth area.

5.2.1 From State Charts to SMV

The most important phase is the translation from state charts to SMV syntax.
From the state charts, we will extract the different transitions we have showing the state FROM
where the transition is done and the state TO where the transition ends. We assign types to these
states to help in the smv translation procedure.
The types we can have are: Not Activated, Receive, Invoke, Processing, Aborted, Done, End,
Compensated, Suspended.
Therefore, in this first area, we have 4 fields:
1- FROM STATE field: the user enters in this field the state from where the transition begins
2- FROM TYPE field: the user chooses from the drop-down list of types, the type of the FROM
STATE
3- TO STATE field: the user enters in this field the state where the transition ends

4- TO TYPE field: the user chooses from the drop-down list of types, the type of the TO STATE

To facilitate the comprehension of this procedure, wé list in a table the different FROM STATE,
FROM TYPE, TO STATE and TO TYPE of the ticket reservation system statechart (Figure 2.6)
and ATM system statechart. Table 5.1 corresponds to the different transitions of the ticket

reservation example. Table 5.2 corresponds to the different transitions of the ATM example.

If we take the first example, we have to enter the information of the table row by row. After

entering each row of the table we click on the ADD button.

52

FROM STATE FROMTYPE |TOSTATE TO TYPE
INITIAL NOT ACTIVATED | ITINERARY RECEIVE
RECEIVED
ITINERARY RECEIVE AIRLINE INVOKE
RECEIVED INVOKED
AIRLINE INVOKED INVOKE AIRLINE PROCESSING
RESERVATION
COPIED
AIRLINE INVOKED INVOKE AIRLINE ABORTED
RESERVATION
CANCELED
AIRLINE PROCESSING HOTEL INVOKED | INVOKE
RESERVATION
COPIED
HOTEL INVOKED INVOKE HOTEL PROCESSING
RESERVATION
. COPIED
HOTEL INVOKED INVOKE HOTEL ABORTED
RESERVATION
' CANCELED
HOTEL PROCESSING VEHICLE INVOKE
RESERVATION INVOKED
COPIED
VEHICLE INVOKED INVOKE VEHICLE PROCESSING
RESERVATION
COPIED
VEHICLE INVOKED INVOKE VEHICLE ABORTED
RESERVATION
CANCELED
VEHICLE PROCESSING ITINERARY PROCESSING
RESERVATION MODIFIED
COPIED
ITINERARY PROCESSING ITINERARY RECEIVE
MODIFIED : RETURNED
ITINERARY RECEIVE DONE DONE
RETURNED
CANCELED ABORTED END END
DONE DONE END END

Table 5.1 Ticket Reservation System Transitions

The ADD button is responsible to add these information in a table that is not visible to the user.
However there is an area below these fields where these information will be shown as transitions

(See Figure 5.2).

53

When all the information are entered, the user clicks on a CONVERT TO SMYV button.
This button is responsible of converting all these transitions to the SMV syntax we have in Figure

4.8. The user cannot see what happens backstage.

FROM STATE FROM TYPE | TO STATE TO TYPE
INITIAL NOT CARD AND PIN RECEIVE
ACTIVATED ENTERED

CARD AND PIN RECEIVE LOGIN INVOKE

ENTERED VERIFICATION

LOGIN INVOKE CHOICES RECEIVE

VERIFICATION

LOGIN INVOKE CANCELED ABORTED

VERIFICATION

CHOICES RECEIVE WITHDRAWAL INVOKE
INVOKED

CHOICES RECEIVE DEPOSIT INVOKED | INVOKE

CHOICES RECEIVE GETBALANCE INVOKE
INVOKED

WITHDRAWAL INVOKE BALANCE PROCESSING

INVOKED CHECKED

WITHDRAWAL INVOKE CANCELED ABORTED

INVOKED

BALANCE CHECKED | PROCESSING WITHDRAWAL RECEIVE
DONE

WITHDRAWAL DONE | RECEIVE RECEIPT INVOKED | INVOKE

WITHDRAWAL DONE | RECEIVE LOGOUT DONE

RECEIPT INVOKED INVOKE RECEIPT PRINTED | RECEIVE

RECEIPT PRINTED RECEIVE LOGOUT DONE

CANCELED ABORTED END END

LOGOUT DONE END END

DEPOSIT INVOKED INVOKE AMOUNT PROCESSING
CHECKED

DEPOSIT INVOKED INVOKE CANCELED ABORTED

AMOUNT CHECKED | PROCESSING DEPOSIT DONE RECEIVE

DEPOSIT DONE RECEIVE RECEIPT INVOKED | INVOKE

DEPOSIT DONE RECEIVE LOGOUT DONE

GETBALANCE INVOKE BALANCE RECEIVE

INVOKED DISPLAYED ™

BALANCE RECEIVE RECEIPT INVOKED | INVOKE

DISPLAYED

BALANCE RECEIVE LOGOUT DONE

DISPLAYED

Table 5.2 ATM System Transitions

54

~

So, when this button is clicked, the first part of the code concerning the transitions will appear in
area 4 named: SMV PROGRAM.

A full-example will be shown in Section 1.3

5.2.2 LTL and CTL Specifications

LTL and CTL specifications are extracted from the control behavior (see Section 4.2.2)
These specifications will not be extracted automatically in this work. They are defined one time

and then they are applied on all operational behaviors.

In the second area of the interface of our converter, we have buttons like LTLSPEC, G, F...
that helps the user in writing LTL properties in SMV syntax. After the user enters the property or
properties, he clicks on the ADD LTL SPEC button available in this area. These specifications

will be added to SMV program we are constructing in area 4.

The third area concerns the CTL properties. In this area, we can see buttons that are specific to
the CTL syntax like SPEC, A, E... that could be used by the user to write a CTL property in an
SMV syntax. Like in the LTL area, after the user enters the property or properties, he clicks on
the ADD CTL SPEC button available in this area. These specifications will also be added to
SMYV program of area 4.

After adding as much prdperties as he wants, the syntax of the program is shown'in area 4.
The user will then click on the CREATE SMV FILE button available in the bottom of area 4.
Then, the .smv file is created and could be used directly in the NuSMV model checker for
verification of the properties, i.e. for verification of the synchrdnization of messages among web

Services.

55

5.3 Step by Step Example

In this section, we will show snapshots of our program, using the ticket reservation system
example. We should fill the first area of the interface. Table 5.1 shows all the different transitions
we could extract from our ticket reservation system state chart. We can then enter the first row of
this table and click on the ADD button. The first transition is subsequently shown below the four

fields. (See Figure 5.2)

- FROMSTATE CHARTS
tnonstAE L

FROMTYPE | {NotAcivated
TOSTATE. y

{ao0 ¥

o e ot Adated 3
TATIRL (WOl ketved) -« IHNERARY RECEWVED (Reteras [

CONVERT TO BRY |
O |

2- LT SPEL
wuweee] ({yleleixd
stote = |Nsi e} Pride]

{ul =re igiiele
cf o §_states Tea{Bel inTab] vidclenlacleof >}

POCLTL SPECH ADDCT. spscj CRERTE SWVFRE |

Figure 5.2 Filling First Box (FROM STATE CHARTS) (1 of 3)

We add all the transitions we could have (from table 5.1) and then we will be in Figure 5.3.
Then, we have to convert this first part to SMV syntax. For that, we click on CONVERT TO
SMYV button and the syntax obtained will be displayed in the SMV PROGRAM area (see Figure

5.4).

56

s
FRON STATE:
FroMTYPE : INotAcivated
TogTaTE | o
o TrE

=}

> RIRLIME RESEFWATION COPIED [Frotessing, | &
CELED (ARodes} § ANUNE RESERVATION
INVEVED { tvake 3 -» HOTEL RESERVATION COFIET:

GKED {invake} § VEHICLE INVOKER &
INVOMED (Inveke) -» VEHICLE RESERVATION CANCELED | aborler
ess-ng) - » ITIERRRY MODIFIED { Processing} § + RaR
LTURNED (Receve) § THNERASY RETURNED (Frrkve) -» §
o 5 DONE (Dona}-» ENG {Eng) 1

2. L7 SPEC 3 CTL SPEC
imspecf ¢ iy faiF ui seee faielii]el

Y RECENVED ¢ Raveme §-» ARLINE INVOK

TualRelIn fan]prio

] BujC3) -} Stotw= |Naife IniAb} Dol En) Suical

o in seect

]

RO STATE CHARTS

FROM STATE
R OM TYOR:

INotACtvated

FOFTATE R

TOTYPE: Nol Activated

& LTL SFEC 3 CTL SPEC

vegeee} L]y fal e ity 1iud seec {aledfyie]e]
State= [na! Relin ab] PriDefeni €ul ol » | state= [NalRel misaipit

ADD CTLSPEC

MV PROSRAM
WODUILE main
an

stz atia Pe sl Pr 0o En o Sy,
AEE:GH

<late=Na; (Rel,
1state=Re) {Ga, in}.
P

(shate=Fn} {Na
1 state,

CREATE SMVFILE §
CREATESMVILE |

Figure 5.4 Converting First Box to SMV (3 of 3)

57

After translating the state charts to SMV Syntax, we write in the second area the LTL properties
we want to check (Figure 5.5) and we click on ADD LTL SPEC to add them in the SMV program
in area 4. Figure 5.6 shows the snapshot after this step. We can also add more LTL specifications

(Figures 5.7 and 5.8).

The third area is for CTL properties, so we add these properties in this area and then we click on
ADD CTL SPEC to add them to the SMV program (Figures 5.9 and 5.10). As for the LTL
specifications, we can also add more CTL specifications in this third field and then append them

to the SMV program (Figures 5.11 and 5.12).

1~ FROM STATE CHSRTS

£ROM STATE:
FROM TYPE:
TO STATE: ARD
TOTYPE (Mot Ariivated o
ase
{state=Na){Re},
{state=Re}{Do, in},
{state=in} (A, P},
te=PAIn, Pr, Be),
tstate=At) {En),
Do) {En);
ecac,
CONVERTTO SHY §
2 LTL SPEC 3 CTLEPEC
tneree} (i {e v O] ia i o] spec {aieiciled Nl e
Stao= Na] Re]in A9l PriDoiEn] Gul o] - | stswe= INalRe| n{Ab] oriDolen] sulcol >]

-» X stole=Re)

KE (state=Em)
e=Abistales Prisiate=Rels
tate= Su))

ADC LTL SPEE A0 CTL ePEC _CREATESMVFILE }

Figure 5.5 Filling Second Box (LTL SPEC) (1 of 4)

58

4- SHV PRUGRAM

1- FROMEYATE CHARTS

FroMetaTer -
FROM T/PE =i
O STATE AoD
O TYPE frotctvated =i

esa,

- LT Spedifcatens.

LTLSPEC G (stale=Na -- ¥ stafe=Re)

=Injstate=Abjetate= Dirielates 61)
¥ F (staie=al}
TUSPES G {state=30-» (F (state=Enistate=(.o};
LTLEPES G ifstete=Dotstate=A0) -> X F {state=Eny;
CONVERT 10 SMY ILTLSPEC G (state=n- » X F (state=Abistaie=Prstaie=Relctat .
2-LTL SPEC 3 CTL SPEC

ingeee] t 1y foiFfx]
Iva{Re i faciPriny

Apoomseec]

SV PROGRAR

1-FROM 8 ATE
. . MODULE mam
FRON STATE. o : Hee "
RO YRR Ot Attivated «:: ate{Na Fratr Ab P Do,
S — N
70 BTATE - AD
TS TYPE {Net Actvated |
£aLe
(tatestia{Res,

1€ ate=Ab) ()
(state=Tio}
tetate= B
* state,

ea,

- LTL Spesfinations
LTLEPES 3 (state:
LILEFEC G (siate: Re -~ X F
s tin -2 X F

ate=C o)
3-» Y.F (state=En))

CONVERT 1) SMY §L1LSFECG‘

i3 CTLSPEC

felaiud viitle}d
Priveleni gul Cof > | ofEnl gafcel =1
-waeng LTL £o00Meation
LTLSFEC tale=Ak -> X clate=n}
i TLSF =P

EATE SMYTILE ¢

ADD UL SPE:

Figure 5.7 Filling Second Box (LTL SPEC) (3 of 4)

59

1- FROK STATE CHARTS 4- SMY PROGRAM

FROM STATE

HODILE misin
VAR

FROW TFE: ot Acvated NaRe fo Ak P 00, En.Ca,5u,

STATE:

16 TYPE iNet ectvated

- LTh Soeificaiong
LTLEFEC 3 (slate=Na
L‘»'LS."E': & (state=Re -»

COMVERTTO SV
B -
.- 1L SPEC
LILEPEC]

T3 crseRe
cjydeielxletaitul sec faleldd;ielr!
nsi Re [In [ap] Price

fujrisd 'JLTL"-‘E'.
Pouice] > | shtes [WalRel iniap] Pr L €0} BuiCol > JLTLSRES

A 0 CTL SPEC

Figure 5.8 Adding LTL SPEC To SMV Program (4 of 4)

1- FROM STATE CHARTS 4- SMVFROGRAM

FROM$TATE
FROMTPE: notActivated

MOTULE man

iR

S i AL FLDOENS 050
ADD SSIGH

Actvated

esae,

- LTL Spaciicatieons
LTL.-’-‘PE {6

Fro-» X F tstates nistates A
te=Co ->» F {state=Na}}
D0-» XF (st

XF e e
2- LTLSFED 3 CTLSPEC
: . ; . : N Fwrang LTL ¢ pecifcaton
useee! i) e r}x;-eai ul seec Jaleiy Pt]pmspe,g,ﬂ,
state= NaRelln tak{P1]DoEn] Sujco] ~ 1 siste= fMalRe] niay

te=id3 -2 &% sleig=he}
ate=Re -> 43 AF (erafesln | sialezAD | state=§
ujsnate=Du}
QF‘EC Au (s 3le=0 0 -> AXAF state=N6)
te:=[h

o] state=sn} -+ A% AJ state=€;
Me=ir -» £% AF siate=Ab [siate=F1

_CREATE SMvFLE |

Figure 5.9 Filling Third Box (CTL SPEC) (1 of 4)

60

FROM STATE:

FROM TYPE:

70 STATE,

O TYRE:

- LTLGPEG > CTLSRES
nseect 41y jeivin

PSDULE mam
vek

stale Nz Re in,
on | ASSIGK

esa

- LTL Speufications
LTLSPES & (siate=
LTLEPEC G stste:

wrong LTL speeiicazor
TLSFEC G (stetezAk -* X esate=lr)

Tt ihial Re |t (st Pe]0

3)

AxBE istatemEa) sigtes 203

> RXAF Er}

£C AG (slatesin-» AXAF (sl3te: + | state=Re | states Sl

1- FRCM STATE CHARTS

FROMSTATE

cROMTPE |
TO STATE

ot fctvate

TC TYPE

2-LTLSPEC * CML 37

4 SMY PROGRM

Lk man

At P G0 En CuSut,

ista

istate=anyiEr:

= Rejstates Suyy

sle=Ab}

ALTLTL BPE

SREC AG EF {(stetesin-» EX state=Pilistetesin - » £ 5161 SPEC AG (S1316=Co -» £ AF State

€);
SPEC AG EF {istste=F1 -» EX slate=FejlistatesT

i state=Ciol

» 83 AT (stalezn | s

-> slal i

CREATE S¥¥F))

Figure 5.11 Filling Third Box (CTL SPEC) (3 of 4)

61

1- FROMSTATE DHARTS

FROE ST8TE

FROM TYFE o f

H

STTE o |
TG TYRE ot arinated i

2 LT EPEC 3 CTLSPED

4- S¥/ PROGRAMY

MODULE mam

VAR

tate {3 Re I A P00 En Co S,
ASTION

niffetete) =Nz,

283c,

-- LTL Spectficalions
LBFEC & (state=Na -» K elate=Re)
=Re - ¥ F {5tat2=Inj¢iste=Abjstate=Dojstate=Su))

- CTL Specifizaticrs
SPET AG (state=Na -> A state=Re)
SPEC AS (stali= Re -> AXAF (513
SPET AG {state=C0 > AU AF 5
SPEL AG (states Do -> AXAF (sta
SPET AD (fsiate= 00 | state=,
SPEC AG (state=in-> AX AT

feinesAD | eiate=Su | state=D0)}
43}
+| state=Coly

iate=RE | state=Suly

SPEC AG EF
SPEC AG EF
SPEC AG EF
SPEC AG EF §
SPEC A EF (st
SPEC AG EF ysta

i}
<)
p=Abstale=Do}
€ - > 5t
n-> E4 stat .
1-» £X state=Reji

Figure 5.12 Adding CTL SPEC To SMV Program (4 of 4)

62

Chapter 6: Conclusions and Future Work

6.1 Conclusion

In this dissertation, we presented a formal verification approach of conversations in
composite web services. In Chapters 2 and 3, we gave an overview of composition and model
checking concepts. We then probosed an approach for modeling composite web services based on
two behaviors: control and operational. The operational behavior shows the business logic of the
process functionality for a composite web service. The control behavior shows the constraints and
states that the operational behavior should be in. These two behaviors are linked together to
check the synchronization between the conversations of composite services. We use state charts
enhanced with additional syntax to facilitate the mapping process between the two behaviors.
Synchronizing both behaviors is a key issue in designing good conversations between different
web services that participate in composite services. We used symbolic model checking as the
verification approach. The properties to be checked are taken from the control behévior and
verified in the different operational scenarios to check the correctness of conversations among

web services.

Our main contribution is the formal and automatic verification of the mapping procedure using
symbolic model checking technique. A second contribution is the creation of a Java-based
translation procedure which in addition to the NuSMV model checker contributes to the

implementation of our verification model.

63

6.2 Future Work

In this thesis, we only considered centralized processes and orchestration in composition. As
future work, we plan to extend this approach for choreography-based composition. Taking a
choreography composition that does not have any controller process is a‘challenging issue. In
choreography, all the participating web services know the actual business process and are well
aware of which web services they need to interact with and when to execute the operations.
Consequently, we need a control behavior that corresponds to a choreography process, which is
very dynamic.

Also, fault handling is easier in orchestration as the execution is controlled, which is not the
case with choreography. Web services can be easily and transparently replaced in case of
orchestration as the involved web services do not know the actual business process, whereas it
will be difficult in case of choreography.

Last but not least, we plan to verify other types of conversation between web services éuch
as negotiation and argumentation which are used in other web services applications, for instance

communities of web services.

64

References

{11D. Amyot, T. Gray, R. Liscano, L. Logrippo, and J. Sincennes. Interactive conflict detection
and resolution for personalized services. Journal of Communication Networks 7:353-66,
2005

[21 H. Baumeister. System Integration. Informatics and Mathematical Modeling. Technical

University of Denmark. Spring 2008

[3]1 D. Benslimane, Z. Maamar, C. Ghedira. How to Track Composite Web Services? A Solution
Based On the Concept Of View. Journal of Electronic Commerce Research, 7(3), 2006

{41J. Bentahar. Formal Methods for Software. Quality Methodologies for Software (INSE 6250/4-
UU). Winter 2008. Principles of Model Checking by Joost-Pieter Katoen.

[5]D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris and D. Orchard. Web
Services Architecture. W3C Working Group Note http://www.w3.org/TR/ws-arch/, 11
Febﬁaw 2004

[6]T. Bultan, J. Su and X. Fu. Analyzing Conversations of Web Services. IEEE Internet
Computing, 10(1):16-25. February 2006

[71 A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani

and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In
Proceeding of International Conference on Computer-Aided Verification (CAV 2002).

Copenhagen, Denmark, July 27-31, 2002

(8] E. M. Clarke and E. A. Emerson. A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications, ACM Transactions on Programming Languages

and Systems 8: 244,doi:10.1145/5397.5399, 1986

65

http://www.w3.org/TR/ws-arch/

[9] E. M. Clarke and E. A. Emerson. Characterizing correctness properties of parallel programs
using fixpoints, Automata, Languages and Programming, doi:10.1007/3-540-10003-2_69,

1980:

[10] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons Using

Branching-Time Temporal Logic. Logic of Programs 1981: 52-71.

[111 E. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. (2000), Counterexample-Guided

Abstraction Refinement, Computer Aided Verification 1855: 154, doi:10.1007/10722167 15

[12] E-M. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press, 1999
[131 Y. Ding and Y. Zhang. System Modification Case Studies. IEEE computer society. 2007

[14] H. Foster, S. Uchitel, J. Mageg, and J. Kramer. Model-based verification of Web service
compositions. In Proc. the 18th IEEE Int. Conf. on Automated Software Engineering
Conference (ASE), 2003

[15]1 X. Fu, T. Bultan and J.Su. Analysis of Interacting BPEL Web Services. In Proc. Int. World
Wide Web Conf. (WWW), 2004

[16) X. Fu, T. Bultan, and J. Su. Model Checking Interactions of Composite Web Services.

University of California at Santa Barbara. 2004

(173 H. S. Hong, 1. Lee and O. Sokolsky. Automatic Test Generation from Statecharts Using

Model Checking. University of Pennsylvania. 2001
[18] http://archive.devx.com/javasr/articles/gabhart/gabhart-1.asp

[19] http://www.cs.cmu.edu/~emc/15817-s05/smv.ppt
[20] http://www.ibm.com/developefworks/library/w-ovr/ Web Services architecture overview.
The next stage of evolution for e-business IBM Services Architecture Team, Writers, IBM,

Software Group

66

http://archive.devx.com/javasr/articles/gabhart/gabhart-l
http://www.cs.cmu.edU/~emc/l
http://www.ibm.com/developerworks/library/w-ovr/

[21] http://www.w3.org/TR/ws-gloss. Web Services Architecture, February 2003

f22] R. Hull and J. Su. Tools for Composite Web Services: A Short Overview Source. SIGMOD
Record, 34(2):86-95. 2005

[23] R. Khalaf, N. Mukhi, and S.Weerawarana. Service Oriented Composition in BPEL4WS. In
Proc. WWW’03, 2003.

{24] A. Layouni, L. Logrippo, and K. J. Turmner. Conflict Detection in Call Control Using First-
Order Logic Model Checking. In: L. DuBousquet, Jean-Luc Richier (Eds): 9th International
Conference on Feature Interactions in Software and Communication Systems, 77-92, 10S
Press, 2008

(25] F. Leymann andW. Altenhuber. Managing Business ... Web Services Flow Language
(WSFL. 1.0). IBM Corporation, May 2001.

[26] Z. Maamar, D. Benslimane, C. Cherida and M. Mrissa. Views in Composite Web Services.
IEEE internet computing, 79-84, August 2005

[27] Z. Maamar, Q. Sheng, H. Yahyaoui, J.Bentahar and K. Boukadi. A New Approach to Model

Web Services’ Behaviors based on Synchronization. Fifth International Symposium on
Frontiers of Information Systems and Network Applications (FINA’2009), Bradford, UK,

2009

(28] K. L. McMillan, Kluwer. Symbolic Model Checking, ISBN 0-7923-9380-5

[29] S. Meng and F. Arbab. Web Services Choreography and Orchestration in Reo and Constraint
Automata. CWI, Amsterdam, The Netherlands

[30] C. Peltz. Web Services Orchestration and Choreography, Computer, 36(10):46-52, Oct. 2003

[(31] C. Peltz. Web Services Orchestration: A Review of Emerging Technologies, Tools, and
Standards. Hewlett Packard, Co, January 2003

{32] ACM Turing Award Honors Founders of Automatic Verification Technology, Press Release

67

http://www.w3.org/TR/ws-gloss

(331J. P. Queille, J. Sifakis. Specification and verification of concurrent systems in
CESAR, International Symposium on Programming, doi:10.1007/3-540-11494-7 22, 1982.
[34] S. Robak and B. Franczyk. Modeling Web Services Variability with Feature Diagrams. In

Web, Web-Services, and Database Systems, pages 120-128, 2002.

[35] J. Su, T. Bultan and X. Fu. Web Service Interactions: Analysis and Design. Proceedings of
the Second International Workshop on Semantic and Dynamic Web Pro‘cesses (SDWP 2005),
pp. 14-19, Orlando, Florida, USA, 2005

[36] USACM: 2007 Turing Award Winners Announced

(371 M. Weiss and B. Esfandiari. On Feature Interactions among Web Services. International
Journal of Web Services Research, 2(4), 21-45, 2005

[38] S. XLANG. Web Services for Business Process Design, Microsoft, 2001

[39] H. Yahyaoui, Z. Maamar and K. Boukadi. Web Services Synchronization in Composition

Scenarios: The Centralized View. The International Conference on Information Science,

Technology and Applications (ISTA 2009), Kuwait, 2009

68

Appendices

Appendix 1: SMV Converter Source Code

private Button getButton3() {
if (button3 == null) {
button3 = new Button();
button3.setBounds(new java.awt.Rectangle(123,710,92,25));
button3.setLabel("ADD LTL SPEC");
button3.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent event)

{
jTextAread.append(jTextArea2.getText() + "\n");

jTextArea2.setText("");

}

} // end anonymous inner class

); // end call to addActionListener

}

return button3;

}

* This method initializes buttonCTL
*

/**

* (@return java.awt.Button

*/

private Button getButtonCTL() {

if (buttonCTL == null) {
buttonCTL = new Button();
buttonCTL.setBounds(new java.awt.Rectangle(429,711,96,23));
buttonCTL.setLabel("ADD CTL SPEC");
buttonCTL.add ActionListener(
new ActionListener() {

public void actionPerformed(ActionEvent event)
{ .
jTextAread.append("\n"+ jTextArea3.getText() + "\n");
jTextArea3.setText("");

69

/**

}

} // end anonymous inner class

); // end call to addActionListener
}

return buttonCTL;

}

* This method imtializes buttonSMV
*

* (@return java.awt.Button
*/
private Button getButtonSMV() {
if (buttonSMV == null) {
buttonSMV = new Button();
buttonSMV.setBounds(new java.awt.Rectangle(857,709,128,23));
buttonSMV .setLabel("CREATE SMV FILE");
buttonSMV .addActionListener(
new ActionListener() {

public void actionPerformed(ActionEvent event)

{
try {
String lines[] = jTextAread.getText().split("\\n");

FileWriter ryt=new FileWriter("C:\\Program
Files\NuSMV\\2.4.3\\ smvprogram.smv");

for(int i = 0; 1 < lines.length; i++) {
ryt.write(lines[i});
ryt.write("\r\n");
ryt.flush();

}

} catch(IOException e) {
_e.printStackTrace();

jTextAread.setText("");
}
} // end anonymous inner class
); // end call to addActionListener

}
return buttonSMV;

70

}

buttonDB.setBounds(new java.awt.Rectangle(470,78,68,31));

new ActionListener() {

public void actionPerformed(ActionEvent

/ sk
* This method initializes buttonDB
*
* (@return java.awt.Button
*/
private Button getButtonDB() {
if (buttonDB == null) {
buttonDB = new Button();
buttonDB.setLabel("ADD");
buttonDB.addActionListener(
event)

{

jTextAreal.append(jTextFieldFROM.getText() + " (" + choicel.getSelectedltem() + ") -> " +
jTextFieldTO.getText()+ " (" + choice2.getSelectedltem()+ ") / ");

String firstchoice="";
String secondchoice="";
//for first choice

if(choicel.getSelectedltem()=="Not Activated")

firstchoice = "Na";
if(choicel.getSelectedltem()=="Receive")
firstchoice = "Re";
if(choicel.getSelectedItem()=="Invoke")
firstchoice = "In";
if{choicel.getSelectedltem()=="Processing")
firstchoice = "Pr";
if(choicel.getSelectedItem()=="Aborted")
firstchoice = "Ab";
if(choicel.getSelectedltem()=="Done")
firstchoice = "Do";
if(choicel.getSelectedltem()=="End")
firstchoice = "En";

if(choicel.getSelectedltem()=="Compensated")

firstchoice = "Co";
if{choicel.getSelectedltem()=="Suspended")
firstchoice = "Su";

// for second choice

if(choice2.getSelectedItem()=="Not Activated")

71

secondchoice = "Na";

if(choice2.getSelectedltem()=="Receive")
secondchoice = "Re";

if(choice2.getSelectedltem()=="Invoke")
secondchoice = "In";

if(choice2.getSelectedItem()=="Processing")

secondchoice = "Pr";
if(choice2.getSelectedltem()=="Aborted")
secondchoice = "Ab";
if(choice2.getSelectedItem()=="Done")
secondchoice = "Do";
if(choice2.getSelectedltem()=="End")
secondchoice = "En";

if(choice2.getSelectedltem()=="Compensated")

secondchoice = "Co";

if(choice2.getSelectedltem()=="Suspended")

secondchoice = "Su";

try
{

Statement stmt;

stmt = connection.createStatement();

String insertString ="INSERT INTO dba(

FROM_STATE, FROM_TYPE, TO STATE, TO TYPE)" +
"VALUES ("+ jTextFieldFROM.getText()+", "'+ firstchoice + ™', "
+jTextFieldTO.getText() + ™, "'+ secondchoice +")";

)
return buttonDB;

int counting = stmt.executeUpdate(insertString);

stmt.close();

}
catch (SQLException sqlex) {
sqlex.printStackTrace();

}

jTextFieldFROM.setText("");
jTextFieldTO.setText("");
choicel.select("Not Activated");
choice2.select("Not Activated™);

}

} // end anonymous inner class

); // end call to addActionListener

72

/** . -

* This method initializes button CONVERT

*

* @return java.awt.Button

*/
private Button getButtonCONVERTY() {
if (buttonCONVERT == null) {
buttonCONVERT = new Button();
buttonCONVERT .setBounds(new java.awt.Rectangle(514,396,123,35));
buttonCONVERT .setLabel("CONVERT TO SMV");
buttonCONVERT .addActionListener(
new ActionListener() {

public void actionPerformed(ActionEvent event)

{
jTextAread.append("MODULE main \n VAR \n " +

"state: {Na,Re,In,Ab,Pr,Do,En,Co,Su};\n" +
"ASSIGN\n" + "init(state):=Na;\n" +
"next(state):= \n"+

" case\n");
jTextAreal.setText("");

try {
Statement statement;

iz NOTACTIVATED

ResultSet rsNa;

String outputNa="";

statement = connection.createStatement();

ResultSet resultSetNa = statement.executeQuery("SELECT COUNT(*) FROM"
+

" (SELECT DISTINCT TO_TYPE FROM dba WHERE FROM_TYPE=Na")"),

// Get the number of rows from the result set
resultSetNa.next();

int NrowsNa = resultSetNa.getInt(1);
resultSetNa.close();
statement.close(); -

if (NrowsNa>=1)

{

jTextAread.append(" _ (state=Na): {");

statement = connection.createStatement();

rsNa = statement.executeQuery("SELECT DISTINCT TO _TYPE " +
"FROM dba WHERE FROM_TYPE=Na");

while(rsNa.next())

{
if(rsNa.getRow() < NrowsNa)

73

1/

outputNa += rsNa.getString("TO _TYPE")}+ ", ";
else

outputNa += rsNa.getString("TO_TYPE");

)

rsNa.close();
statement.close();
jTextAread.append(outputNa+"};\n");
}

RECEIVE

ResultSet rsRe;
String outputRe="";
statement = connection.createStatement();
ResultSet resultSetRe = statement.executeQuery("SELECT COUNT(*) FROM" +
" (SELECT DISTINCT TO_TYPE FROM dba WHERE FROM_TYPE=Re")");

// Get the number of rows from the result set
resultSetRe.next();
int NrowsRe = resultSetRe.getInt(1);
resultSetRe.close();
statement.close();

if (NrowsRe>=1)
{
jTextAread.append(" (state=Re): {");
statement = connection.createStatement();
rsRe = statement.executeQuery("SELECT DISTINCT TO_TYPE " +
"FROM dba WHERE FROM_TYPE="Re");
while(rsRe.next())
{
if(rsRe.getRow() < NrowsRe)
outputRe += rsRe.getString("TO_TYPE")+ ", ";
else
outputRe += rsRe.getString("TO_TYPE");

rsRe.close();
statement.close();

jTextAread.append(outputRe+"};\n");

/! ~--INVOKE
ResultSet rsin;
String outputln=
statement = connection.createStatement();
ResultSet resultSetIn = statement.executeQuery("SELECT COUNT(*) FROM" +
" (SELECT DISTINCT TO_TYPE FROM dba WHERE
FROM_ TYPE="In"}");

",
b

74

1

// Get the number of rows from the result set
resultSetIn.next();

int Nrowsln = resultSetIn.getInt(1);

resultSetIn.close();

statement.close();

if (NrowsIn>=1)
{
jTextAread.append(" (state=In): {");

statement = connection.createStatement();
rsln = statement.executeQuery("SELECT DISTINCT TO TYPE " +
"FROM dba WHERE FROM_TYPE='In"");
while(rsIn.next())

{

if(rsIn.getRow() < Nrowsln)

outputln += rsIn.getString("TO_TYPE")+ ", ";

else
outputln += rsln.getString("TO_TYPE");
}
rsIn.close();

statement.close();
jTextAread.append(outputInt"};\n");

}

Processing
ResultSet rsPr;
String outputPr=
statement = connectlon.createStatement();
ResultSet resultSetPr = statement.executeQuery("SELECT COUNT(*) FROM"
+" (SELECT DISTINCT TO_TYPE FROM dba WHERE FROM_TYPE="Pr')");

H"

// Get the number of rows from the result set

resultSetPr.next();

int NrowsPr = resultSetPr.getInt(1);
resultSetPr.close();
statement.close();

if (NrowsPr>=1)

{ jTextAread.append(” (state=Pr):{");
statement = connection.createStatement();
rsPr = statement.executeQuery("SELECT DISTINCT TO TYPE " +
"FROM dba WHERE FROM_TYPE="Pr'");

while(rsPr.next())
{

if(rsPr.getRow() < NrowsPr)

outputPr += rsPr.getString("TO_TYPE")+ ", ";
else _

outputPr += rsPr.getString("TO_TYPE");

75

rsPr.close();
statement.close();

jTextAread.append(outputPr+"};\n");

/-
ABORTED '

ResultSet rsAb;

String outputAb="",;

statement = connectioﬂ.createStatement();

ResultSet resultSetAb = statement.executeQuery("SELECT COUNT(*) FROM" +

" (SELECT DISTINCT TO_TYPE FROM dba WHERE FROM_TYPE='Ab'")");

// Get the number of'rows from the result set
resultSetAb.next();

int NrowsAb = resultSetAb. getint(1);
resultSetAb.close();

statement.close();

if (NrowsAb>=1)
{
jTextAread.append(" (state=Ab):{");
statement = connection.createStatement();
rsAb = statement.executeQuery("SELECT DISTINCT TO TYPE " +
"FROM dba WHERE FROM_TYPE='Ab");
while(rsAb.next())
{
if(rsAb.getRow() < NrowsAb)
outputAb +=rsAb.getString("TO_TYPE"+ ", ";

else

76

outputAb += rsAb.getString("TO_TYPE"),
}
rsAb.close();
statement.close();
jTextAread.append(outputAb+"};\n");

}

// DONE

ResultSet rsDo;

String outputDo="";

statement = connection.createStatement();

ResultSet resultSetDo = statement.executeQuery("SELECT COUNT(*)

FROM" +" (SELECT DISTINCT TO_TYPE FROM dba WHERE
FROM_TYPE='Do")");

// Get the number of fows from the result set
resultSetDo.next();
int NrowsDo = resultSetDo.getInt(1);
resultSetDo.close();

statement.close();

if (NrowsDo>=1)
{
jTextAread.append(" (state=Do): {");
statement = connection.createStatement();
rsDo = statement.executeQuery("SELECT DISTINCT TO_TYPE " +
"FROM dba WHERE FROM_TYPE="Do™);

while(rsDo.next())

77

if(rsDo.getRow() < NrowsDo)
outputDo += rsDo.getString("TO_TYPE")+ ", ";
else
outputDo += rsDo.getString("TO_TYPE");
}
rsDo.close();
statement.close();

jTextArea4.append(outputDo+"};\n");

}

1/ COMPENSATED

ResultSet rsCo;
String outputCo="";
statement = connection.createStatement();
ResultSet resultSetCo = statement.executeQuery("SELECT
COUNT(*) FROM" +" (SELECT DISTINCT TO_TYPE FROM dba
WHERE FROM_TYPE="Co")");
// Get the number of rows from the result set
resultSetCo.next();
int NrowsCo = resultSetCo.getlnt(1);

resultSetCo.close();

statement.close();

if (NrowsCo>=1)

{

jTextAread.append(" (state=Co):{"),

78

statement = connection.createStatement();
rsCo = statement.executeQuery("SELECT DISTINCT TO_TYPE " +
"FROM dba WHERE FROM_TYPE='Co™),
while(rsCo.next())
{
if(rsCo.getRow() < NrowsCo)
outputCo += rsCo.getString("TO_TYPE")+ ", ";
else
outputCo += rsCo. getStﬁng("TO_TYPE"),
}
rsCo.close();
statement.closé();
jTextAread.append(outputCo+"};\n");

}
/"

SUSPENDED
ResultSet rsSu;
String outputSu="";
statement = connection.createStatement();
ResultSet resultSetSu = statement.executeQuery("SELECT
COUNT(*) FROM" +" (SELECT DISTINCT TO_TYPE FROM
dba WHERE FROM_TYPE="Su")");
// Get the number of rows from the result set
resultSetSu.next();
int NrowsSu = resultSetSu.getInt(1);
resultSetSu.close();
statement.close();

if (NrowsSu>=1)

79

{
jTextAread.append(” (state=Su): {");
statement = connection.createStatement(); |
‘rsSu = statement.executeQuery("SELECT
DISTINCT TO_TYPE " + "FROM dba
WHERE FROM_TYPE='Su™);
while(rsSu.next())
{
if(rsSu.getRow() < NrowsSu)
outputSu += rsSu.getString("TO_TYPE")+ ", ";
else
outputSu += rsSu.getString("TO_TYPE");
}
rsSu.close();

statement.close();

jTextAread.append(outputSu+"};\n");

}

}
catch (SQLException sqlex) {
sqlex.printStackTrace();

‘ }
jTextAread.append(“ (state=En):{Na};\n");
jTextAread.append(" 1:state;\n"+"esac;\n\n");

}

} // end anonymous inner class

); // end call to addActionListener

}
return buttonCONVERT;

80

