
NOTE TO USERS

This reproduction is the best copy available.

UMI

A Formal Verification Approach of Conversations in Composite Web

Services

Melissa Kova

A Thesis

in

the Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Quality Systems Engineering) at

Concordia University
Montreal, Quebec, Canada

August 2009

© Melissa Kova, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63062-4
Our file Notre reference
ISBN: 978-0-494-63062-4

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nntemet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
auires formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ABSTRACT

A Formal Verification Approach of Conversations in Composite Web Services

Melissa Kova

Web service composition is nowadays a very focused-on topic of research by academic and

industrial research groups. This thesis discusses the design and verification of behaviors of

composite web services. To model composite web services, two behaviors are proposed, namely

control and operational. The operational behavior shows the business logic of the process

functionality for a composite web service. The control behavior shows the constraints that the

operational behavior should satisfy and specifies the states that this behavior should be in. The

idea behind this separation is to promote the design, verification and reusability of web services

in composite settings. To guarantee their compatibility, these two behaviors communicate and

synchronize through conversation messages. State charts are used to model composite web

services and symbolic model checking with NuSMV model checker is used to verify their

conversations. The properties to be verified are expressed in two logics: Linear Temporal Logic

(LTL) and Computation Tree Logic (CTL). A Java-based translation procedure from the design

model to SMV program used by NuSMV has been developed and tested in two case studies.

in

ACKNOWLEDGMENTS

A warm appreciation is extended to all the faculty and staff at the Concordia Institute for

Information Systems Engineering at Concordia University, whose suggestions and

encouragement were invaluable in my courses throughout my first year at the university.

I would also like to thank Dr. Jamal Bentahar for his guidance and his constructive and

helpful remarks throughout the duration of this thesis.

Last but not least, I would like to thank my parents for their continual support throughout

my years of study. Without their help, this degree would not have been possible. I dedicate this

work to all my family and friends.

IV

Table of contents

LIST OF FIGURES VII

LIST OF TABLES IX

LIST OF ACRONYMS X

CHAPTER 1: INTRODUCTION 1

1.1 Context of Research 1

1.2 Motivations 2

1.3 Research Questions 3

1.4 Contributions 3

1.5 Thesis Overview 4

CHAPTER 2: COMPOSITE WEB SERVICES 5

2.1 Overview of Web Services 5

2.2 Definition of Composite Web Services 7

2.3 Types of Composition 9

2.3.1 Orchestration 10

2.3.2 Choreography 11

2.3.3 Orchestration vs. Choreography 13

2.4 Example.: 14

CHAPTER 3: MODEL CHECKING 16

3.1 Introduction 16

3.2 System Models 17

3.3 Properties 18

v

3.4 Verification Method 20

CHAPTER 4: PROPOSED MODEL 27

4.1 Introduction 27

4.2 The Proposed Model 28

4.2.1 Modeling and Formalizing Composite Web Services 28

4.2.2 Synchronization of Conversations among Web Services 30

4.2.3 Verification 34

4.3 Case Studies 39

4.4 Related Work 47

CHAPTERS: IMPLEMENTATION 50

5.1 Introduction 50

5.2 SMV Converter 51

5.2.1 From State Charts to SMV 52

5.2.2 LTL and CTL Specifications 55

5.3 Step by Step Example 56

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 63

6.1 Conclusion 63

6.2 Future Work 64

REFERENCES 65

APPENDICES 69

APPENDIX 1: SMV CONVERTER SOURCE CODE 69

vi

List of Figures

Figure 2.1 The General Process of Engaging a Web Service 7

Figure 2.2 Web Service Standards Stack 8

Figure 2.3 Orchestration Schema 10

Figure 2.4 Choreography Schema 12

Figure 2.5 State Charts Legend 14

Figure 2.6 State Chart of a Ticket Reservation System 15

Figure 3.1 Kripke Model Example 18

Figure 3.2 Model Checking Approach 22

Figure 4.1 Control Behavior of a Composite Web Service 31

Figure 4.2 Operational Behavior of a Ticket Reservation System 32

Figure 4.3 Operational Behavior of an ATM System 33

Figure 4.4 Model of the Ticket Reservation Composite Web Service 37

Figure 4.5 Kripke-like Model of the Ticket Reservation Composite Web Service 38

Figure 4.6 Model Checking of Composite Web Services 39

Figure 4.7 Reduced Kripke-like Model of the Ticket Reservation Composite Web Service
41

Figure 4.8 SMV Code for NuSMV Model Checker 42

Figure 4.9 Verification Results using NuSMV Model Checker (LTL Specifications) 43

Figure 4.10 Verification Results using NuSMV Model Checker (CTL specifications)... 44

Figure 4.11 Model of the ATM Composite Web Service , 44

Figure 4.12 Kripke-like Model of the ATM Composite Web Service 45

Figure 4.13 Reduced Kripke-like Model of the ATM Composite Web Service 46

VH

Figure 4.14 SMV Code of ATM System for NuSMV Model Checker 46

Figure 4.15 Verification Results using NuSMV Model Checker on ATM System (LTL
Specifications) 47

Figure 4.16 Verification Results using NuSMV Model Checker on ATM System (CTL
specifications) 47

Figure 5.1 SMV Converter Interface 51

Figure 5.2 Filling First Box (FROM STATE CHARTS) (1 of 3) 56

Figure 5.3 Filling First Box (FROM STATE CHARTS) (2 of 3) 57

Figure 5.4 Converting First Box to SMV (3 of 3) 57

Figure 5.5 Filling Second Box (LTL SPEC) (1 of 4) 58

Figure 5.6 Adding LTL SPEC To SMV Program (2 of 4) 59

Figure 5.7 Filling Second Box (LTL SPEC) (3 of 4) 59

Figure 5.8 Adding LTL SPEC To SMV Program (4 of 4) 60

Figure 5.9 Filling Third Box (CTL SPEC) (1 of 4) 60

Figure 5.10 Adding CTL SPEC To SMV Program (2 of 4) 61

Figure 5.11 Filling Third Box (CTL SPEC) (3 of 4) 61

Figure 5.12 Adding CTL SPEC To SMV Program (4 of 4) 62

vm

List of Tables

Table 5.1 Ticket Reservation System Transitions 53

Table 5.2 ATM System Transitions.... 54

IX

List of Acronyms

ATM: Automated Teller Machine

BPEL: Business Process Execution Language

BPEL4WS: Business Process Execution Language for Web Services

CTL: Computational Tree Logic

HTTP: Hypertext Transfer Protocol

LTL: Linear Temporal Logic

OBDDS: Ordered Binary Decision Diagrams

OWL-S: Semantic Markup for Web Services

SMTP: Simple Mail Transfer Protocol

SMV: Symbolic Model Verifier

SOAP: Simple Object Access Protocol

UDDI: Universal Description Discovery and Integration

URI: Uniform Resource Identifier

WSCI: Web Service Choreography Interface

WSD: Web Service Description

WSDL: Web Service Description Language

WSFL: Web Service Flow Language

W3C: World Wide Web Consortium

XLANG: XML-based language

XML: Extensible Markup Language

x

Chapter 1: Introduction

In this chapter, we introduce the context of our research and explain what initiated our

interest into the design and implementation of composite web services. We also present the

research questions that we considered, a general description of our objectives and contributions

and an overview of the structure of the thesis.

1.1 Context of Research

The World Wide Web Consortium (W3C) organization, which establishes the standards

for web services, defines them as follows: "A web service is a software system identified by a

URI, whose public interfaces and bindings are defined and described using XML. Its definition

can be discovered by other software systems. These systems may then interact with the web

service in a manner prescribed by its definition, using XML based messages conveyed by Internet

protocols. Web services are characterized by their great interoperability and extensibility, as well

as their machine-processable descriptions thanks to the use of XML. They can be combined in a

loosely coupled way in order to achieve complex operations. Programs providing simple services

can interact with each other in order to deliver sophisticated added-value services" [21].

Web services are emerging nowadays and the best quality of the conversation among composite

web services should be assured. Web services have become the primary infrastructure for varied

interconnection of business processes, systems and products so it is crucial to have a reliable

delivery of messages. The participants should be sure of the completion of message exchanges to

be able to solve the different business problems. When this completion is ensured, we can define

the related web service as secure, interoperable and transactional.

1

Composition in web services brings value-added benefit and flexibility. In fact, composition is an

important aspect in web services and should be supported by the architecture that contains the

protocols and interfaces for reliable message exchanging in order to provide the functions that

customer, software vendors and industries need.

In this thesis, our purpose is to formalize composite web services and then apply model

checking to verify the conformity of the model we propose. The idea of modeling and studying

the web services under two different behaviors: control and operational behaviors was previously

studied in [27] and [39]. In these two publications, the control behavior illustrates the business

logic that underpins the functioning of an isolated web service, and the operational behavior

regulates the execution progress of this control behavior by stating the actions to carry out and the

constraints to put on this progress. However, the composition and verification aspects were not

investigated. The technique we are using in this thesis combines this idea of separating control

and operational behaviors with an additional approach. So, in this thesis, our aim is to develop an

efficient and easy to use verification model for composite web services.

1.2 Motivations

To achieve a highest quality in conversations among web services, some verification should

be done on these conversations. Our first motivation is to have the fastest and most reliable web

access service. Therefore, we present a general framework accessible by the users to check the

correctness in the transfer of messages. Our second motivation is to assure that this framework

can show if there is a problem or not. So we apply a model checking technique to verify the

correctness of the properties that assure the good quality in the communication.

Because a reliable message delivery standard will improve the effectiveness of other web services

standards, like security, transactions and business processes our final motivation will be to assure

2

this reliability by proving the efficiency of the proposed verification model through simulation of

an example using NuSMV model checker [7] and the program code we developed in JAVA.

1.3 Research Questions

The research questions that are considered in this thesis are:

How can we design composite web services to ensure good quality in the mechanism of

message exchanging?

How state charts can be used to verify the reliability of the communication between web

services?

What kind of composition will we consider in the design of our framework?

How model checking can be considered a good verification technique for composite web

services?

1.4 Contributions

Our main objective is to verify the conversations among composite web services to be able to

give the users a best quality.

The contributions of this thesis can be summarized as follows:

- An approach for modeling composite web services based on two behaviors: control and

operational. These two behaviors are linked together to check the synchronization between the

conversations in composite scenarios. We use state charts enhanced with additional syntax to

facilitate the mapping process between the two behaviors to model composite web services.

- A formal and automatic verification approach of the mapping procedure using symbolic model

checking technique. The implementation is done using a Java-based translation procedure and

NuSMV model checker [7].

3

1.5 Thesis Overview

The thesis is divided into 6 chapters. Chapter 1 introduces our work and presents our

motivations and contributions. Chapter 2 introduces composite web services and discusses two

different types of composition. Chapter 3 presents model checking technique along with two

logics for which model checking is used: Linear Temporal Logic (LTL) and Computation Tree

Logic (CTL). In Chapter 4, we propose our model and support it by two different use cases: a

ticket reservation system and an ATM system. Chapter 5 shows the different implementations we

have done to translate state charts to SMV programs that are the inputs of NUSMV model

checker. Finally, Chapter 6 concludes our work and presents some direction for future work.

4

Chapter 2: Composite Web Services

2.1 Overview of Web Services

Web services are modular and self-contained applications that are described, published,

located and invoked over a network: the World Wide Web [20]. They are based on open Internet

standards like XML (Extensible Markup Language), HTTP (Hypertext Transfer Protocol) and

SMTP (Simple Mail Transfer Protocol), and do not rely on a specific operating system, language

or environment. In [34], the definition of a web service is given as: "any process that can be

integrated into external systems through valid XML documents over Internet protocols".

Web services are based on specifications for data transfer, method invocation and publishing.

It is important to emphasize that a web service is a service that should include an interface to

communicate with other applications via SOAP (Simple Object Access Protocol). According to

the previous definition, a weather forecast on a web page for example is not necessary a web

service. It is considered a web service if it communicates with other software components.

Web service must be implemented by a concrete agent (software) that sends and receives

messages (See Figure 2.1) [5]. In this figure, we note that the provider entity is the person or

organization responsible for providing the agent implementing the service. However, the

requester (consumer) entity will use a requester agent to communicate with the provider's agent

by exchanging messages. The messages exchanged between the provider and requester is

documented in a Web Service Description document (WSD). This description is expressed in

WSDL (Web Service Description Language^, wuicu is onen useu in comuination witn SOAP and

XML Schema. A client program connecting to a web service can determine what functions are

available on the server by reading the WSDL file. The data types used are embedded in this file

and the client will use SOAP to call one of the functions in the file.

5

In fact, the WSD represents a contract, it specifies the message formats, transport protocols and

location. One more network location where the provider can be invoked will be specified.

The main elements used in the definition of network services in a WSDL document are:

Types: a container for data type definitions using some type system to describe the

messages exchanged.

Message: an abstract description of the data being exchanged. A message consists of

logical parts, each of which is associated with a definition within some type system.

Operation: an abstract description of an action supported by the service. Each operation

refers to an input message and output messages.

Port Type: abstract collections of operations supported by one or more endpoints.

Binding: a concrete protocol and data format specification for a particular port type.

Port: a single endpoint defined as a combination of a binding and a network address.

Service: a collection of related endpoints/ports.

These elements will not be described in details because they are not our main focus in this work.

"Web services are considerably expanding and being used for many purposes such as

integrated enterprise applications, business-to-business collaborations and e-government systems.

Web services represent a further evolution in distributed computing technologies. They are a set

of standardized technologies that operate on common protocols to facilitate the access to remote

services in a standardized, vendor-neutral way. Although these technologies are mature, web

services still have to encompass additional features (verification, security, transaction-handling,

session-handling, etc.) to facilitate robust, dynamic business services" [18]

6

A- Parties "become known" to each other

REQUESTER ENTITY

C- Input
Semantics
&WSD

PROVIDER ENTITY

Figure 2.1 The General Process of Engaging a Web Service

2.2 Definition of Composite Web Services

Web services provide the basis for the development and execution of business processes

that are distributed over the network and available via standard interfaces and protocols. Service

Composition [23] is very promising in web domain. When combining component web services

(existing web services), we will have composite web services that can execute a lot of new

functionalities. An advantage of composition is the reduction of development time and effort to

make new applications.

Web service composition is an active area of research. The earliest languages to define

standards for web services composition were IBM's Web Service Flow Language (WSFL) [25]

and Microsoft's XLANG (XML-based language) [38]. These two languages were an extension

of the WSDL. WSDL is used to describe the syntactic aspects of a web service.

BPEL4WS (Business Process Execution Language for Web Services) is one of the emerging

standards for describing the behavior of the services. It is a recent language that merges the graph

oriented representation in WSFL and the structural construct based processes of XLANG.

7

Discovery

Choreography

Composition

(Individual)
Service

Description

XML
Messaging

Network

UDDI

WS-Choreography

BPEL4WS OWL-S ServiceModel

WSCL

WSDL OWL-S ServiceProfice

SOAP

HTTP, SMTP, FTP, etc.

Figure 2.2 Web Service Standards Stack

Figure 2.2 illustrates the Web Service Standards stack [22]. These standards enable a flexibility in

combining web services to create more complex ones. UDDI (Universal Description Discovery

and Integration) allow manual and automated discovery of web services and helps in the creation

of composite web services. BPEL (Business Process Execution Language) is used to coordinate

the activities of web services in a procedural language. OWL-S (Semantic Markup for Web

Services) language "describes web services in terms of their inputs, outputs, preconditions and

effects, and of their process model" [22]. Users and agents should be able to automatically

discover, negotiate with, compose, invoke and monitor web services.

There are two main types of composition: static and dynamic composition [4]:

In static composition, the service to which the agents are going to be connected is

determined before the execution of the flow. An example of static composition is the information

for tourists in a travel service such as a list of places of interests, list of car rentals, etc. The

existence of such a service is then known before run-time.

8

In dynamic composition, some of the services are not known during the design time and

they are only known during run-time. For example, if we want to find the lowest price of an air

ticket for a particular destination. During run-time, the agent will connect to all the available

ticket booking services to be able to choose the lowest price.

To resume, we use static composition when the nature of the process to be composed is

fixed and when the business partners and services are slowly changing. However, we use

dynamic composition if the process has mostly undefined functions to perform and it has to adapt

to changes in the environment dynamically.

Composite services could be mandatory or optional. A composite service is mandatory when

all the component services participate in the execution process. However, an optional composite

service does not necessarily involve all the component services. Some services do not participate

in the execution because of non availability or because of substitution.

We discussed several types of compositions. There exist two important approaches to

composition [2] [27]: orchestration and choreography [16] [17] [28]. On the one hand,

choreography specification identifies the set of allowable conversations for a composite web

service. An orchestration, on the other hand, is an executable specification that identifies the steps

of execution for the peers. They will be explained in the following section.

2.3 Types of Composition

Each web service performs one distinct functionality. When combining these individual

components we can make an entire application work. There exist two different ways of

combination: orchestration and choreography. The main difference between them is that

orchestration has a central controller while choreography does not. Section 2.3.1 explains in

9

details the orchestration method and one language related to it: BPEL4WS. Section 2.3.2 defines

the choreography method and the WSCI language.

2.3.1 Orchestration

Orchestration can be basically defined as an orchestra where the leader directs all the

musicians on what to do. Therefore, the musicians are synchronized by following the direction of

one person. In practice when orchestration is in place, a central system says to some remote

systems what to do. Figure 2.3 shows how the messages are transferred between the different web

services. We can see that the process in orchestration is always controlled from one of the

business parties. This central process can be another web service. It should be aware of the

different operations used in the process as well as the order the other web services are invoked in.

The other web services usually do not know that they are involved in a composition scenario.

They do not need to know that. The interaction is done at the message level [29] [30] [31].

> W1EBSHTOCE :~* - ' ^ - - — (• WEBSENMCE

Figure 2.3 Orchestration Schema

One language used in orchestration process is BPEL4WS (Business Process Execution

Language for Web Services). "The BPEL4WS provides an XML-based grammar for describing

the control logic required to coordinate web services participating in a process flow and is layered

10

on top of WSDL, with BPEL4WS defining how the WSDL operations should be sequenced.

BPEL4WS provides support for both abstract business protocols and executable business

processes. A BPEL4WS business protocol specifies the public message exchanges between

parties. Business protocols are not executable and do not convey the internal details of a process

flow, similar to WSCI. An executable process models the behavior of participants in a specific

business interaction, essentially modeling a private workflow. Executable processes provide the

orchestration support described earlier, while the business protocols focus more on web services

choreography" [30].

In BPEL4WS, the activities of a process are structured; they could be sequential and parallel.

BPEL4WS also supports conditional looping and dynamic branching. There are two important

elements in BPEL: the variables and partners. Variables refer to the data exchanged in the

message flow. "When a BPEL4WS process receives a message, the appropriate variable is

populated so that subsequent requests can access the data" [30]. Whereas, partners are all the

different parties that participate in the process.

The typical scenario of orchestration consists of receiving a message into a BPEL executable

process. Then, the process will invoke the concerned web services to be able to respond back to

the requestor at the end.

2.3.2 Choreography

Simply, choreography can be compared to a dancing stage where every dancer knows

exactly what to do, and looks to all the other dancers involved in the process, to synchronize his

steps. A single remote system knows what to do and also what other systems to call after he ends

his processing. Choreography is more collaborative in nature. Therefore, each party involved in

the process should describe the part they play in the interaction [29] [30].

11

""^—-' vteesewce ^*-. -—"'

Figure 2.4 Choreography Schema

Choreography does not rely on a central coordinator like orchestration. All the web services that

are involved in the composition scenario should know exactly with whom to interact an when to

execute their operations. Choreography relies on the exchange of messages in public business

processes. Therefore, as said, all participants in the choreography need to be aware of the

business process, operations to execute, messages to exchange, and the timing of message

exchanges. Figure 2.4 shows the basic interaction of the exchanging of messages that is done in

choreography.

The choreography language is WSCI (Web Service Choreography Interface). The Web

Service Choreography Interface (WSCI) is an XML-based interface description language that

describes the flow of messages exchanged by a web service participating in choreographed

interactions with other services. WSCI only describes the observable behavior (messages

exchanged) between the different web services. In choreography we will have a set of WSCI

interfaces, one for each partner in the interaction. "WSCI can be viewed as a layer on top of the

existing web services stack. Each action in WSCI represents a unit of work, which typically

would map to a specific WSDL operation. WSCI defines an <action> tag for specifying a basic

request or response message. Each activity specifies the WSDL operation involved and the role

being played by the participant. External services can then be invoked through the <call> tag. A

12

wide variety of structured activities are supported, including sequential and parallel processing

and condition looping. WSCI also introduces an <all> activity, used to indicate that the specific

actions have to be performed, but not in any particular order" [30].

Choreography won't be used in this work but it was introduced because it could be interesting to

work on it in future works.

2.3.3 Orchestration vs. Choreography

The main difference between orchestration and choreography is that orchestration is

controlled by a single party whereas in choreography no one controls the conversation. In

orchestration the other web services do not know about the process. Only the central controller is

aware of the flow of the process. However, in choreography, all the web services are aware of the

process and of whom to interact with because they exchange messages between themselves.

In fact, we can say that orchestration is a controlled and coordinated way of utilizing the services

of all the participating web services whereas choreography is just a collaborative effort of

utilizing the services of the participating web services.

Also, regarding the fault handling issue, it is easier in orchestration as the execution is

controlled, which is not the case with choreography. Web services can be easily and transparently

replaced in case of orchestration as the involved web services do not know the actual business

process whereas it will be difficult in case of choreography.

Consequently, we notice that orchestration has few more advantages over choreography:

- The coordination of component processes is managed by a centralized known coordinator.

- Web services are used in large business scenarios and they are unaware of that.

- In case faults occur, orchestration can manage alternative scenarios.

So orchestration is preferred for business implementations. In our work, we choose an

orchestration process flow to implement our approach.

13

2.4 Example

In this section, we present an example of composite web services that will be used in other

sections to explain our framework. Before introducing this example, we briefly give an overview

of state charts, which are used to represent it. A state chart is composed of:

• Filled circle, pointing to the initial state;

• Hollow circle containing a smaller filled circle, indicating the final state (if any);

• Rounded rectangle, denoting a state. This rectangle contains the name of the state;

• Arrow, denoting transition. The name of the event causing this transition labels the arrow

body.

These elements and other additional notations are shown in Figure 2.5.

Legend: 9 Initial State • Final State State AND-state

Sequencial-states > Transition < ^ \ Conditional Selection Q Connector

Figure 2.5 State Charts Legend

Figure 2.6 illustrates the state chart of a composite web service process using orchestration: a

ticket reservation service. This system is a real-life composite service for travel organization. It is

described in BPEL as a state chart. The whole process is composed of states (simple, sequential

or and-states). Sequential and and-state states contain other embedded state charts. Initially, the

process is in the "Itinerary Received" state because the process receives an itinerary from the

client. Then the process invokes the airline reservation web service. If the airline reservation

system is done without faults, the vehicle and hotel reservations services will be invoked in

parallel. If a time-out or fault occurs, the process will end with errors. Otherwise, the invocation

14

of these web services is done correctly. The process moves then to the "Itinerary Modified" state.

At the end, when the submission is done, the process moves to the "Itinerary Returned" state and

so, the itinerary is returned to the client.

Itinerary Received ived J-
Invoke^

©-

t (\Z- T^\ /Resen
M Airline Invoked »\^ ?—

.. (.AirlineReservation_f<rcompli
Reservation Copied) etion

Itinerary Modified

V_
Failure.. ^ AirlineReservation paj|ure

Canceled i
* •

Vehicle Invoked

/VehicleReservation
Reservation Copied

KJ Hotel Invoked

[-FailureA/ehicleReservation^
*1 Canceled J

Ik
> HotelReservation

Reservation C o P i e d

Failure _ (HotelReservation f HotelReservation j
V Canceled f^ Failure"

Submissi
D

G Itinerary Returned n
Failure

Figure 2.6 State Chart of a Ticket Reservation System

15

Chapter 3: Model Checking

3.1 Introduction

Given a simplified model of a system and a specific specification, the concept of model

checking consists of testing automatically whether this model meets this specification. To go to

the root, the original work in the model checking of temporal logic formulas was done by E.M.

Clarke and E. A. Emerson [8] [9] [10] and by J. P. Queille and J. Sifakis [33]. Clarke, Emerson,

and Sifakis shared the 2007 Turing Award for their work on model checking [32] [36].

Model checking has been used in many real applications, including electrical circuits, digital

controllers and communication protocols. Systems are generally hardware or software systems

that could have many safety requirements like for example the absence of deadlocks.

The system consists of several components designed to interact with one another and

with the system's environment. The system has temporal properties, which will be explained in

details in a Section 3.3. The model and the specification should be formulated in a logical

language such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL).

The user provides a model of the system and a formulation of the property to be proven.

Model checking tool then determines whether or not the model satisfies the property. Therefore,

model checking amounts to determining the truth of formulas in models, i.e. whether M |= (p.

However, automatic model checker may have to traverse all reachable system states (state

explosion). For this, state space must be finite.

Now, combining composite web services (Chapter 2) and model checking (Chapter 3) is

one of the axes of this thesis. Model checking of composite web services has been studied before

in [2] [13] [16] [17] using different model checkers. The main difference with our work is in

16

terms of the properties to be verified and the underlying technique. This idea will be developed

later on in Chapter 4.

For now, this chapter mainly defines model checking, the system models (Section 3.2), the LTL

and CTL properties (Section 3.3), and the verification process (Section 3.4).

3.2 System Models

We will consider the system model to be a Kripke Model [7,8]. A kripke structure A" is a

tuple K = (S, I, R, Label)

Where:

S: a countable set of states

I— S: a set of initial states

- R S S x S: a transition relation satisfying ^s G S- (3s> e S- (s> s) G R)

Label: S -^2(1>p: an interpretation function where Op is the set of atomic propositions.

Figure 3.1 shows an example of a Kripke structure [4]:

Where 0>p ={P, Q, R}; S={sO, si, s2, s3, s4 }, I={sO}; (sO, si) G R, (sO, s2) C R, (s2, s2) e R, (s3,

s4) G R; Label (sO)={P, lQ, lR}, Label (s3)={P, iQ, R}

We have to define paths in these structures. Here are some definitions concerning paths [4]:

- A path Is an infinite sequence of states

O = S 0 S] S2 . . .

- Suffix of a path starting at Sj

O j = Sj Sj+i Sj+2 . . .

- State in a path: a [i] = ss

- Path(s): the set of paths starting in state s

17

/

Q

V j

Y PA
V. s c y \

/ P . R \
(' 1

i
V..,

?ix
N / Q \

Figure 3.1 Kripke Model Example

Satisfiability and validity are two important concepts in kripke structures.

Satisfiability is when given a formula <& there exist a Kripke structure K such that K satisfies 0

(i.e. K | = 0) .

Validity is when given a property we have for all Kripke structures K: K\= 0.

3.3 Properties

The properties to be checked can be written in propositional LTL and CTL format. First, we

will introduce the syntax of these two languages. Let 4>p be the set of atomic propositions and p

™ 0p.

PLTL syntax is as follows:

0::= p | -<Z> | 0 v 0 | X0 \ 0 U 0

CTL syntax is as follows:

18

<&::=p \^®\®v®\®U®\ EX® \ AX® \ E(® U ®) \ A{® U ®)

X® means in the next state ® is true. ® U W means ® is true until ¥ becomes true. E and A

are the existential and universal quantifiers over paths. F (future) and G (globally) are

abbreviations i.e.:

F®=TrueU®

G® = -F^®

Note that LTL is very common in practical model-checking. LTL is used when time is modeled

to be linear. However, CTL is used if we want to support branching instead of linear time.

A path is an ordered sequence of states, such that each state is followed by its next state via a

transition.

LTL semantics is given as usual using a Kripke structure equipped with a valuation function L

defined as follows: L: S x ®p —> {True, False). LTL semantics is as follows (we also give the

semantics of some abbreviations for more convenience):

o \=p iff L(x(0), p) - True, where p e ®p

o |= ->® iff x |= ®

G\=®A !Fiff x |= ® and x |= V

o|=<2>v Wiifx\=®orx\=1f

o\=X®iffa(l)\=®

a |= G® iff for all i > 0, o (0 |= ®

c |= F® iff there exists an /' > 0 such that o (/) |= ®

o |= ® U V iff there exists an /' > 0 such that o (/) |= T and for all 0 <j < i, a (j) |= ®

Given a state s in the Kripke structure, CTL semantics is as follows:

s\=p iff L(s, p) = True, where/? e ®p

s |=-.0iffnot5 \=®

s |= ® A W iff s |= ® and s\= ¥

19

5|=<2>v 9/iffs\=0ors\= ¥

s |= EX0 iff there exists a path 5(0), 5(1), ... such that 5(1) |= 0

s |= AX0 iff for all paths 5(0), s(l), ..., s(l) \= &

s |= EG0 iff there exists a path 5(0), 5(1), ... such that for all i > 0, s(i) \= 0

s\=AG0 iff for all paths 5(0), 5(1), ..., for all i > 0, 5(0 |= 0

5 |= EF0 iff there exists a path 5(0), 5(1), ... such that there exists an / > 0 such that s{i) \=0

5 |= AF0 iff for all paths 5(0), 5(1), ..., there exists an / > 0, such that, s(i) |= 0

5 |= E(0 U ¥) iff there exists a path 5(0), 5(1), ... such that, there exists an i > 0 such that s(i) \= W

and for all 0 <j < i, s(j) \= 0

5 |= A(<D U V) iff for all paths s(0), s(1), ..., there exists an i > 0 such that s(i) 1=^ and for all

0<j<i , s (j) |=O

It is important to know that CTL and LTL can express all common safety and liveness properties.

- Safety properties: Nothing "bad" ever happen. They are formalized using state invariants. So the

execution never reaches a "bad" state.

- Liveness properties: Something "good" keeps happening. They are formalized using temporal

logic. We have special logic for describing sequences.

3.4 Verification Method

The model checking technique consists of computing whether or not a formal model M

representing the system satisfies a logical formula cp describing a property. Formally, this

problem is denoted by: M |= 9 or M ¥" cp. The computation is usually automatic for finite models.

The approach used in this work is called symbolic model checking. This approach avoids

building or exploring the state space corresponding to the models explicitly. Instead, a symbolic

representation is used based on ordered binary decision diagrams (OBDDS) or propositional

20

satisfiability (SAT) solvers [20]. Model checking consists of three parts: A framework for

modeling software (some specification language), a specification language for describing

properties to be verified and a verification method for establishing if description satisfies the

specification.

The model checker we use in this thesis is NuSMV [34]. NuSMV is a software tool for the

formal verification of finite state systems based on symbolic model checking. It has been

developed jointly by ITC-IRST and Carnegie Mellon University. NuSMV allows checking finite

state systems against specifications in the temporal logics LTL and CTL. The input language of

NuSMV allows the description of finite state systems that range from completely synchronous to

completely asynchronous. The basic purpose of the NuSMV language is to describe the transition

relation of a finite Kripke structure. It supports modular hierarchical descriptions and definition of

reusable components. This tool has been designed as an open architecture for model checking. It

is aimed at reliable verification of industrially sized designs, for use as a backend for other

verification tools and as a research tool for formal verification techniques.

The advantage of NuSMV is the flexibility in the use, but sometimes with non expert users

there is a danger of inconsistency. To manage this inconsistency, we provide an automatic

translation from the Kripe-like structure obtained by the translation procedure from the

operational behavior, to the SMV code. The properties to be checked are also extracted from the

control behavior and translated into LTL and/or CTL.

To be able to perform verification, we need a modeling language that describes the system, a

specification language that formulates the properties and some calculus and algorithm to be able

to verify the specification. Then, the model checker checks the properties in the system model

and gives the result. The result could be: Yes, the property is satisfied or No with a

counterexample. Figure 3.2 shows this model checking approach.

21

^ ttifuirmu tilts

Formalizing

z'"~pmp,~riy~~
K*P^1

/

\
imium/'

C mf
-—.—

""Model (

|
hfird^

,'hecking

\ voun

v tcm)

MixMing !

_̂ :)

' Mjstctl
v." mooes)

Mated •>•

ieZVZtlHlpii:
> .^f location \

'' \ gTY'Q? J

Figure 3.2 Model Checking Approach

In the NuSMV model checker the SMV language is used to describe the system model. Here is a

part ofSMV syntax [19].

* Expressions

;; symbolic constant

;; numeric constant

;; variable identifier

;; logical not

Expr::

atom

number

id

"!" expr

exprl <op> expr2

"next" "(" id ")" ;; next value

caseexpr

setexpr

* The Case Expression

Caseexpr:: "case"

22

expr_al ":" expr_b2 ";"

expran ":" exprbn ";"

"esac"

• Guards are evaluated sequentially.

• The first one that is true determines the resulting value

• If none of the guards are true, result is numeric value 1

* State Variables

Decl:: "VAR"

atom 1":" type 1 ";"

atom2 ":" type2 ";"

• State is an assignment of values to a set of state variables

• Type of a variable - boolean, scalar, user defined module, or array.

* ASSIGN declaration

Decl:: "ASSIGN"

destl ":=" exprl ";"

dest2 ":=" expr2 ";"

Dest:: atom

| "init" "(" atom ")"

| "next" "(" atom ")"

* Variable Assignments

23

• Assignment to initial state:

init(value) := 0;

• Assignment to next state (transition relation)

next(value) := value + carryin mod 2;

• Assignment to current state (invariant)

carryout := value & carryin;

• Either init-next or invar should be used, but not both

• SMV is a parallel assignment language

* Circular definitions

• Circular definitions are not allowed

• This is illegal:

• a := next(b);

next(b) := c;

c := a;

• This is accepted:

• init(a) := 0;

next(a) := !b;

init(b) := 1;

next(b) := !a;

* Non-determinism

• Completely unassigned variable can model unconstrained input.

24

• {vai l , ..., vain} is an expression taking on any of the given values

nondeterministically.

• Nondeterministic choice can be used to model an implementation that has not been

refined yet and can be used in abstract behavior

* ASSIGN and DEFINE

• VAR a: boolean;

ASSIGN a := b | c;

• declares a new state variable a

• becomes part of invariant relation

• DEFINE d:= b | c;

• is effectively a macro definition, each occurrence of d is replaced by b | c

• no extra BDD variable is generated for d

• the BDD for b | c becomes part of each expression using d

* SPEC declaration

• Decl:: "SPEC" ctlform

• Ctlform :: expr ;; bool expression

| "!" ctlform or (ltlform)

| ctlform 1 <op> ctlform2

| "E" pathform

| "A" pathform

• Pathform :: "X" ctlform (or ltlform)

25

I "F" ctlform (or ltlform)

| "G" ctlform (or ltlform)

| ctlform 1 (or ltlform 1) "IF ctlform2(or ltlform2)

* Modules and Hierarchy

• Modules can be instantiated many times, each instantiation creates a copy of the local

variables

• Each program has a module main

• Scoping

• Variables declared outside a module can be passed as parameters

• Parameters are passed by reference.

26

Chapter 4: Proposed Model

4.1 Introduction

After defining composite web services in Chapter 2 and model checking technique in

Chapter 3, we present in this chapter our proposed model.

In this chapter, we focus on the verification issue and we propose a new verification

approach, based on formal model checking, for conversations between composite web services.

In terms of composition [3] [26], two approaches have been proposed: choreography and

orchestration [29] [30] [31]. As explained before, on the one hand, choreography specification

identifies the set of allowable conversations for a composite web service. An orchestration, on the

other hand, is an executable specification that identifies the steps of execution for the peers. In

this work, the focus is on the orchestration only. Furthermore, we consider conversations between

web services through their two behaviors: operational and control [27] [39]. A control behavior

describes the general behavior of any process related to composite web services. However, an

operational behavior is a behavior specific to each case study according to its business logic. In

[27] and [39], these two behaviors have been investigated only for isolated or individual web

services out of any composition. In this work, we design the control and operational behaviors for

composite web services. Then, we map the control behavior to the operational behavior in order

to verify the synchronization in the composition process using model checking technique and

assuming that the interaction is controlled by a central coordinating process. Model checking is a

formal verification method used to check the correctness of a design model M in terms of the

satisfaction of some properties <p, such as safety and liveness. Formally, the problem is to check if

M \=(p where M is a formal model and cp is a formula expressed in some logics. Model checking

has been detailed in Chapter 3.

27

This chapter is organized as follows. Section 4.2 describes our proposed model.

Therefore, in Section 4.2.1 we introduce the formalization and modeling of composite web

services. We consider an orchestration model as mentioned before and define the different

components of this orchestration. In Section 4.2.2, we present some rules that guarantee a good

conversation between web services in a composite setting. In Section 4.2.3, we verify the good

synchronization of the conversations among the web services. To do that, we present the control

behavior that would be applicable for all the orchestrations of composite web services. Then, we

study the operational behavior of a ticket reservation system case study and an ATM case study.

At the end, in Section 4.3 we verify the synchronization of the two different types of behaviors,

which are the control and operational behaviors using a model checking approach on these two

case studies.

4.2 The Proposed Model

4.2.1 Modeling and Formalizing Composite Web Services

Each web service can provide many functionalities, but when it is unable to provide alone

a user request, it communicates with other web services either to provide a part of the requested

service or to request another part of it. This is the objective of compositions process. The

orchestration-based composition of these web services is formally defined as follows.

Definition 1: The orchestration-based composition of a set of web services is a 4-tuple: CW = <-

W, w(), L, T >, where:

• W is the set of web services that interact in the composition;

• w0 is the client web service (the web service that initiates the orchestration process);

• L is the set of labels used for the transitions;

• Tc.Wx.LxW is the set of labeled transitions between the web services.

28

http://�
http://Tc.Wx.LxW

Each web service w ™ W is defined as follows.

Definition 2: A web set-vice is a 5-tuple: W= < S, s0, F, Li, Ti >

where:

• S is the set of states that form the behavior of the web service;

• s0 is the initial state of this particular web service;

• F is the set of final states;

• Li is the set of labels used for the internal transitions;

• Ti c S x Li x S is the set of internal labeled transitions inside the web service.

In fact, a composite web service consists of a set of individual services (or peers), which

interact with each other via messages. A conversation is a sequence of messages exchanged

among peers participating in a composite web service [6]. Formally, a conversation between n

web services is represented as a finite path as follows:

W0-+ W, ...-* w„_i

where V0<('<«-1 (w„ a,-, w,+,) ™ T.

To verify if the conversations generated by the composite web service satisfy certain

properties, we propose in this work to use model checking, where the desired properties are

expressed in a logical language. Precisely, we use symbolic model checking [12] and properties

are expressed in two languages: LTL (Linear Temporal Logic) and CTL (Computation Tree

Logic). Before introducing the verification method, we define the conversations among web

services and their synchronization in the next section.

29

4.2.2 Synchronization of Conversations among Web Services

To guarantee the correctness of the behavior of the orchestration-based composite web

services, their synchronization is needed. To capture this synchronization, we divide the

composition behavior into control and operational.

A- Control Behavior

The control behavior for composite scenarios shows the execution progress of a typical

orchestration-based composite web service. Such a behavior is supposed to be domain-application

independent, so general for all composite services. Its objective is to control the business logic

execution as it provides the guidelines for an appropriate composition behavior. Based on the idea

of separation of concerns, this general behavior facilitates the reusability of composition

scenarios as it is independent from any specific business case. The idea is to design a general

control behavior that would be applicable for all the orchestrations of composite web services.

Figure 4.1 depicts the state chart representing the control behavior of the composition

scenario. At the initial state, the process is not activated, and then when a certain request is sent

from a client, the process moves to the received state because it receives the request from the

client. If any failure occurs, two choices are possible, either the process is suspended and we have

a retrial, or the process is aborted and it ends. When the process reaches the received state and no

errors occur, it can invoke a certain web service, so the process moves to the invoked state, then

the web service replies, so the process returns to the received state or it can do some other

processing so it moves to the processing state then to the received state. The process can send

other requests to other web services and so on. At the end, the process receives the final

information and it has to commit the action back to the client. When the commitment is satisfied,

the process moves to the done state. At any time, if an error occurs, the process can be diverted to

30

the suspended or aborted states. Compensated state could be reached after failed retrials, so the

process goes back to the not-activated state, or after the commitment.

Not Activated

-start-

commitment

Done

failure

-Rolling back- Compensated

Suspended compensation after failed retrials

retrial

Received

failure

-invoke-

retrial failure

k reply-

Invoked

abortion after failed retrials

waiting for processing

"X failure

Processing

failure- Aborted

-compensation after commitment

Figure 4.1 Control Behavior of a Composite Web Service

B- Operational Behavior

The operational behavior of a composite web service shows the business logic describing

the functioning of a given orchestration-based composition. Unlike the control behavior, the

operational behavior is domain-application dependant. This behavior is supposed to be overseen

31

by the control behavior. The conformance to the control behavior (in terms of synchronization) is

a proof that the operational behavior is well designed.

To explain this notion, we consider first here a concrete example: a ticket reservation service. The

state chart in Figure 4.2 illustrates the operational behavior of this composite web service process

using orchestration. This state chart was previously explained in Section 2.4.

Itinerary Received
Invoke^

©"

W Airline Invoked

. f,AiriineReservation_f<rcompletiont l n e r a r y I
Reservation Copied ~

Failure.. AirlineReservation
Canceled

Failure

J..
m

Vehicle Invoked
s* VehicleReservation

Reservation Copied

Failures VehicleReservation
*• Canceled iFailure'

Hotel Invoked
77= HotelReservation

Reservation C o P ' e d

Failure f HotelReservation
Canceled .Failure

Failure

Figure 4.2 Operational Behavior of a Ticket Reservation System

Figure 4.3 illustrates another example of operational behavior of the composite web service

process using orchestration: An ATM system. In this figure, we also consider an orchestration

case of composite web services. In an ATM system, the user must enter the card first, then enter

the PIN, then the system will invoke the bank system to check if the login info are correct. If they

are wrong, we will have a failure and the process will end. If they are correct, the user will have

choices of transactions to choose from. The user can choose to withdraw, deposit or check

balance.

If the user chooses to withdraw, again the bank system will be invoked to check if the

user has enough balance to withdraw from, if not the process ends with failure. If it has

enough balance, then the withdrawal will be done and then the user can choose to print a

receipt or not. If not he logouts and the process ends. If he wants a receipt, another

32

system will be invoked: the printer system and the receipt will be printed so the user will

receive the receipt of his transaction.

If the user chooses to deposit, the bank system is invoked again and the amount he enters

will be checked to be in a certain limit. And the deposit will be done if the amount is ok;

if not the process will end with a failure. Now, if the deposit is done correctly, the user

also will have a choice to have a receipt. So, if he wants a receipt, another system will be

invoked: the printer system and the receipt will be printed so the user will receive the

receipt of his transaction.

If the user chooses to get his balance, the bank system is invoked again and the balance is

displayed for the user. Here, also the user will have a choice to have a receipt. So, if he

wants a receipt, another system will be invoked: the printer system and the receipt will be

printed so the user will receive the receipt of his transaction.

Figure 4.3 Operational Behavior of an ATM System

33

4.2.3 Verification

To verify the synchronization of the two different types of behaviors, we convert the

operational behaviors into a system model represented as a Kripke structure, and we extract from

the control behavior all the properties available in a temporal logic format. By doing this, we can

verify, using model checking, that the operational behavior is conform to the control behavior,

from which we extract the properties. Thus, soundness and completeness of a composition can be

defined as follows.

Definition 3: An orchestration of composite web services is sound and complete iff all the

properties of the control behavior are satisfied in the operational behavior system model

(soundness) and vice-versa (completeness).

A- Properties to be checked

We have explained in the previous chapter the LTL and CTL syntaxes in details.

Now, in LTL, the default path quantifier is A, so a state satisfies a formula if it is satisfied in all

paths starting by this state. The reason behind using two different languages LTL and CTL to

specify the properties is because they are not equivalent. There are properties that can be

expressed in LTL but cannot be expressed in CTL (for example AF(p A Xp)) and vice versa (for

example: AG(EFp)). We also notice that we are considering^a/V LTL and CTL [12], which means

in any computation, some states, called fair states, should be reached. In the control behavior

depicted in Figure 2.2, Done, Aborted and Compensated are fair states. Thus, in any execution,

Done or Aborted or Compensated should be reached.

To specify the properties we aim to check from the control behavior, we will consider the

following initials (see Figure 2.2): Not activated: Na I Received: Re I Invoked: In I Suspended: Su

I Aborted: Ab I Processed: Pr I Compensated: Co I Done: Do I End: En

34

Let —• be the logical implication. Examples of fair LTL properties we can verify as extracted

from the control behavior are:

1- 0 = G(Na -> XRe)

2-0 = G(Re — XF(In vAbvSuv Do))

3-0 = G(Co^XFNa)

4-0= G(Do — XF(En v Co))

5-0 = G((Do v Ab) -»• XFEn)

6-0= G(In -»XF(Ab v Pr v ^e v 5M))

Explaining for example the first property, we always have after a non-activated state a rece/ve

state. The second property states that always after a receive state, we have an invoked, an aborted,

a suspended, or a cfone state in the future. In the fifth property, we always have an end state after

an aborted or done state.

Examples of CTL properties from the control behavior are:

\-0 = AG(Na-+AXRe)

2-0 = AG(Re-> AXAF(In v Ab v Su v Do))

3-0 = AG(Co -* AXAFNa)

4-0 = AG(Do ->AXAF(En v Co))

5-0 = AG((Do v Ab) - • AXAFEn)

6-0 = AG{ln -> AXAF (^6 vPrvRev Su))

Examples of properties in CTL that cannot be expressed in LTL are:

7-0 = AGEF(En)

S-0 = AGEF(Do)

9- 0 = AGEF(Ab v Do)

10- 0 = AGEF{Re -* In)

35

11-0 = AGEF((/« ->• EXPr) v {In -> EXRe))

12-0 = AGEF((?T -» £A7?e) v (Pr - • EXAb))

Property 7 states that in all paths there always exists a path where in the future we have and end

state. Property 10 states that in all paths there always exists a path where a receive state should be

followed by an invoke state.

B- System Model

After extracting the properties to be checked from the control behavior, the second step in the

verification process is to build the Kripke-like model from the operational behavior. The resulting

model is the one we use to automatically generate the SMV code used by the NuSMV model

checker [7]. This translation is automatic and is as follows. Each state sop in the operational

behavior is translated to a set of states and transitions in the Kripke-like structure M and each

transition is translated to one or many transitions. If sop is a simple state, it is translated into one

state in M with the same content. If sop is a state chart, then two cases are possible: 1) the state is a

sequential state; 2) the state is an and-state. In both cases, each simple state is translated into one

state with the same content and all the end states are translated to one end state. In the first case,

the connector is replaced by the next state if this state is simple, or by the first state of the next

sequential state or and-state. In the second case, the and-states are simply considered as sequential

and the sequence order is selected randomly. The reason is that in an and-state, all the states

should be considered but the order of this consideration is not important. Only the last state in the

selected order is related to the next state by a transition. The number of possible Kripke-like

structures depends then on the number of states in and-states. However, all the executions are

equivalent, which means that only one structure should be considered. The conditional selections

are simply ignored as they are captured by deterministic transitions. Transitions between simple

states are translated to transitions between the corresponding states in the Kripke-like structure.

36

Transitions between simple and sequential states or and-states are translated into transitions

between the corresponding state of the simple state and the corresponding state of the first state of

the sequential state or and-state.

Figure 4.4 Model of the Ticket Reservation Composite Web Service

Figure 4.4 shows the Kripke-like model obtained after translating the operational behavior

given in Figure 4.2 (ticket reservation service) using this translation procedure. As illustrated in

Figure 4.4, after an airline web service is invoked, the action could be committed directly, or a

vehicle and hotel web services could be also invoked depending on the initial client request. At

any time the reservation could be canceled and the process is aborted in that case. The atomic

propositions that are true in the obtained states using the evaluation function L are those used in

the control behavior. Figure 4.5 shows the final Kripke-like model where: R = Re, I = In,S = Su,

37

A = Ab, P = Pr, C = Co, D = Do, and E = En. Note that the idle state corresponds to a non-

activated state.

Figure 4.5 Kripke-like Model of the Ticket Reservation Composite Web Service

C- Model Checking Technique

The model checking technique consists of computing whether or not a formal model M

representing the system satisfies a logical formula (p describing a property. Formally, this

problem is denoted by: M i= (pmM P <p. The computation is usually automatic for finite models.

The approach used in this work is called symbolic model checking. This approach avoids

building or exploring the state space corresponding to the models explicitly. Instead, a symbolic

representation is used based on ordered binary decision diagrams (OBDDS) or propositional

satisfiability (SAT) solvers [12].

The model checker we use is NuSMV [7]. We explained about NuSMV in Chapter 3. The

advantage of NuSMV is the flexibility in the use, but sometimes with non expert users there is a

38

danger of inconsistency. To manage this inconsistency, we provide an automatic translation from

the Kripe-like structure obtained by the translation procedure from the operational behavior, to

the SMV code. The properties to be checked are also extracted from the control behavior and

translated into LTL and/or CTL. The approach of the model checking is described in Figure 4.6.

Operational
behavior

•

Control
behavior

!

cs

rz
'A

.3

SMV program

' LTL & CTL
formulas 5

NuSMV
•

Verification

Figure 4.6 Model Checking of Composite Web Services

4.3 Case Studies

Let us continue the example provided in Figures 10 (control behavior) and 11 (operational

behavior). First, we use a reduction algorithm like the one used to reduce OBDDS [7] in order to

reduce the Kripke-like model illustrated in Figure 4.5. The idea is to reduce the number of states

and transitions based on the fact that two states labeled with the same atomic propositions using

the valuation function L are equivalent, so they can be reduced to only one state. The transitions

are then reduced as follows:

For all S) and s2, ifs2 is reduced to sj, then:

a. If (sj, s2) and (s2, st) are two transitions, then they are replaced by one transition (si, Sj);

b. If only one of the two transitions does exist, then it is removed;

c. For all x, if (sx, s2) is a transition, then it is removed and replaced by the transition (sx, si)

if such a transition does not exist;

39

d. For all v, \f(s2, sy) is a transition, then it is removed and replaced by the transition (st, s%)

if such a transition does not exist;

Proposition 1: Let K be a Kripke-like model and K' be the reduced model obtained using the

reduction algorithm. K and K' are semantically equivalent.

Proof

Let TK be the set of transitions in AT and TK- be the set of transitions in K'. To prove the

proposition, we should prove that for each transition in TK there is a semantically corresponding

transition in TK< (soundness) and vise-versa (completeness).

We prove soundness by deduction on the reduction rules. For the first rule, the removed

transitions from TK are semantically captured by the loop transition in TK- as the two states s/ and

s2 are equivalent. For the second rule, the removed transition is captured by the state. In fact, here

we have (s,, s2) ™ TK and sj and s2 are equivalent, so one state and the transition are redundant.

For the third and fourth rules, the removed transitions are captured by the replaced transitions

because (sx, sj) and (sx, s2) are equivalent and (sj, sy) and (s2, sy) are equivalent since s, and s2 are

equivalent.

The completeness is simply proved by construction as all the transitions in K' are constructed

from the transitions in K.

The reduction algorithm preserves then the semantics and is automatically performed. Figure 4.7

depicts the result of reducing the Kripke-like model presented in Figure 4.5.

Then, the reduced model is automatically translated to the SMV code used by NuSMV model

checker. SMV code mainly describes the transition relation of the Kripke-like model (Figure 4.8).

40

Figure 4.7 Reduced Kripke-like Model of the Ticket Reservation Composite Web Service

To check the properties described in Section 4.2.3, the following commands are used:

NuSMV > readmodel -i TRS.smv (TRS.smv is the name of the smv file we created)

NuSMV > flattenhierarchy

NuSMV > encodevariables

NuSMV > buildmodel

NuSMV > checkjtlspec (to check ltl specifications)

NuSMV > checkctlspec (to check ctl specifications)

Figure 4.9 and Figure 4.10 show the result of the model checking procedure (LTL and

CTL specifications). First we have to read the .smv program then flatten the hierarchy, encode the

variables and build the model. Then, the specifications are checked. For the LTL specifications

checking, all the properties are satisfied, except for the last two, for which counter examples are

provided (Figure 4.9). For CTL, all the properties are satisfied (Figure 4.10).

41

MODULE main
VAR
s ta te : {Na ,Re , i n ,Ab , Pr ,Do,En,co ,su} ;
ASSIGN
i n i t (s t a t e) :=Na;
n e x t (s t a t e) : =

case
(s ta te=Na) : {Re} ;
(s t a t e = R e) : { l n , D o } ;
(s t a t e = i n) : { P r , A b > ;
(s ta te=Ab) : {En } ;
(s t a t e = P r) : { l n , R e , P r } ;
(s ta te=Do) : {En} ;
(s ta te=En) : {Na} ;
l : s t a t e ;

esac;

— LTL s p e c i f i c a t i o n s
LTLSPEC G (state=Na -> x state=Re)
LTLSPEC G (state=Re -> x F (s ta te= ln | s ta te=Ab |s ta te=Do |s ta te=su))
LTLSPEC G (s ta te=co -> x F (s ta te=Na))
LTLSPEC G (state=Do -> x F (s ta te=En |s ta te=co))
LTLSPEC G C(state=Do|state=Ab) -> X F (s ta te=En))
LTLSPEC G (s t a t e = l n -> x F (s ta te=Ab |s ta te=Pr |s ta te=Re |s ta te=su))

—wrong LTL s p e c i f i c a t i o n
LTLSPEC G (state=Ab -> x s t a t e = i n)
LTLSPEC F G state=Re

— CTL s p e c i f i c a t i o n s
SPEC AG (state=Na -> AX state=Re)
SPEC AG (state=Re -> AX AF (s t a t e = l n | state=Ab | s ta te=su | s ta te=Do))
SPEC AG (s ta te=co -> AX AF state=Na)
SPEC AG (state=Do -> AX AF (state=En | s ta te=co))
SPEC AG ((state=Do | state=Ab) -> AX AF state=En)
SPEC AG (s t a t e = i n -> AX AF (state=Ab |s ta te=pr | state=Re | s ta te=su))

SPEC AG EF (state=En)
SPEC AG EF (state=Do)
SPEC AG EF (s tate=Ab|state=Do)
SPEC AG EF (state=Re -> s t a t e = i n)
SPEC AG EF C(s ta te= ln -> EX s t a t e = P r) | (s t a t e = l n -> EX state=Re))
SPEC AG EF ((s ta te=Pr -> EX s ta te=Re) | (s ta te=Pr -> EX s ta te=Ab))

Figure 4.8 SMV Code for NuSMV Model Checker

42

o-: NuSMV In fi^fc ;•••":" "•••„' • ••"• - *

* * * Th i s i „ Nû MU J . t . J 1 L u i-ip J. 1L d uii iu^ May -l i i : d ^ : L l J l L JsJO.'.1

*** For more i n f o r m a t i o n on NuSMU see < h t t p : / / n u s i n M . i r s t . i t c . i t >
*** o r e m a i l t o < n u s m u — u s e r s P i r s t . i t c . i t > .
*** P l e a s e r e p o r t bugs t o < n u s m u G i r s t . i t c . i t > .

»*» Th i s u e r s i o n of NuSMU i s l i n k e d to t h e Min iSa t SAT s o l o e r .
**» See h t t p : / / v j u i i . c s .Cha lmers . s e / C s / R e s e a r c h / F o r m a l M e t hods / M i n i S a t
*** C o p y r i g h t <c> 2 8 0 3 - 2 8 0 5 , N i k l a s Een, N i k l a s Sorensson

NuSMU > r e a d j n o d e l - i TRS.siw
NuSMU > f l a t t e n _ h i e r a r c h y
NuSMU > encode v a r i a b l e s
NuSMU > b u i l d model
NuSMU > c h e c k _ l t l s p e c
— s p e c i f i c a t i o n G < s t a t e = Na —> X s t a t e = Re> i s t r u e
— s p e c i f i c a t i o n G < s t a t e = Re —> X < F < < < s t a t e = In ! s t a t e = ftb> ! s t a t e =
Do> ! s t a t e = Su>>> i s t r u e
— s p e c i f i c a t i o n G < s t a t e = Co -> X < F s t a t e = Na>> i s t r u e
— s p e c i f i c a t i o n G < s t a t e = Do —> X (F (s t a t e = En ! s t a t e = Co>>) i s t r u e
— s p e c i f i c a t i o n G < < s t a t e = Do ! s t a t e = fib> -> X < F s t a t e = En>> i s t r u e
— s p e c i f i c a t i o n G < s t a t e = In -> X C F < < < s t a t e = fib 1 s t a t e = Fr> ! s t a t e =
Re> 1 s t a t e = Su>>) i s t r u e
— s p e c i f i c a t i o n G (s t a t e = fib —> X s t a t e = In> i s f a l s e
— as d e m o n s t r a t e d by t h e f o l l o w i n g e x e c u t i o n sequence
T r a c e D e s c r i p t i o n : LTL Counte rexample
Trace Type: Coun te rexample
-> S t a t e : 1.1 <-

s t a t e = Na
-> I n p u t : 1.2 < -
- > S t a t e : 1.2 < -

s t a t e = Re
-> I n p u t : 1.3 < -
-> S t a t e : 1.3 < -

s t a t e = In
-> I n p u t : 1.4 < -
-> S t a t e : 1.4 < -

s t a t e = flb
-> I n p u t : 1.5 < -
— Loop s t a r t s h e r e
-> S t a t e : 1.5 < -

s t a t e = En
-> I n p u t : 1.6 < -
- > S t a t e : 1.6 < -

s t a t e = Na
- > I n p u t : 1.7 < -
-> S t a t e : 1.7 <-

s t a t e = Re
-> I n p u t : 1.8 <-
-> S t a t e : 1.8 < -

s t a t e = Do
-> I n p u t : 1.9 < -
-> S t a t e : 1.9 < -

s t a t e = En
— s p e c i f i c a t i o n F < G s t a t e = Re> i s f a l s e
— a s d e m o n s t r a t e d by t h e fo l l ov j i ng e x e c u t i o n sequence
Trace D e s c r i p t i o n : LTL Counte rexample
Trace Type: Coun te rexample
— Loop s t a r t s h e r e
-> S t a t e : 2 . 1 < -

s t a t e = Na
-> I n p u t : 2 .2 <—
-> S t a t e : 2 . 2 < -

s t a t e = Re
-> I n p u t : 2 . 3 <-
- > S t a t e : 2 . 3 < -

s t a t e = Do
-> I n p u t : 2 . 4 < -
->__ S_tafee_: 2 , A..<-

s t a t e = En
- > I n p u t : 2 . 5 <-
- > S t a t e : 2 .5 < -

s t a t e = Na
NuSMU > _

X

—

.

t

•

z[

Figure 4.9 Verification Results using NuSMV Model Checker (LTL Specifications)

43

http://nusinM.irst.itc.it
http://vjuii.cs

ifiBmiw
•mbnU > check_ctlspec
— spec i f i ca t ion AG (s t a t e = Na -> AX s t a t e = Re> is t rue
— spec i f i ca t ion AG (s t a t e = Re -> AX (AF (((s t a t e = In ! s
>u> ! s t a t e = Do>>> i s t rue

S3

AG (state = Co -> AX (AF state = Na>> is true
specification AG (state = Do -> AX (AF '(state

AG ((state = Do state = ftb> -> flX (flF state
s t a t e = Co>>>

— spec i f i ca t ion AG (s t a t e = In .-> AX (AF (((s t a t e = A!
Re> ! s t a t e = StO>> i s t rue
— spec i f i ca t ion AG (EF s ta te : = En> is t rue
— spec i f i ca t ion AG (EF s t a t e = Do> is t rue
— spec i f i ca t ion AG (EF (s t a t e = Ab ! s t a t e = Bo>> is
— spec i f i ca t ion AG (EF (s t a t e = He -> s t a t e = In>> i:
— spec i f i ca t ion AG (EF ((s t a t e = In -> EX s t a t e = Pr)

= Re)>> is t rue
— spec i f i ca t ion AG (EF ((s t a t e = Pr ' -> EX s t a t e = Re>

= Ab>>> is t rue
NuSMU > _

s t a t e = Pr>

true
true
{ (state = In

is true
is true
! state =

Figure 4.10 Verification Results using NuSMV Model Checker (CTL specifications)

Figure 4.11 Model of the ATM Composite Web Service

44

Let us consider the second case study that consists of an ATM system. In Figure 4.3 we

presented the operational behavior of this system. Now, if we want to follow the same steps of the

first case study, we will first build the Kripke-like model from the operational behavior. Figure

4.11 shows the model obtained after its translation from operational behavior. Figure 4.12 shows

the final Kripke-like model.

Figure 4.12 Kripke-like Model of the ATM Composite Web Service

We then use the reduction algorithm described earlier in this section that preserves the

semantics. Figure 4.13 depicts the result of reducing the Kripke-like model of the ATM presented

in Figure 4.12

45

Then, the reduced model is automatically translated to the SMV code used by NuSMV model

checker. SMV code mainly describes the transition relation of the Kripke-like model (Figure

4.14).

Figure 4.13 Reduced Kripke-like Model of the ATM Composite Web Service

MODULE main
VAR
state:{Ma, Re, In, Ab, Pr, Do, En,Co, su};
ASSIGN
init(state):=Na;
next (state) : =

case
(state=Na):{Re};
(state=Re):{ln,Do};
(state=In):{Re,Ab,Pr};
(state=Ab):{En};
(state=Pr):{Re};
(state=Do):{En>;
(state=En):{Na};
l:state;

esac;

— LTL specifications
LTLSPEC G (state=wa -> x state=Re)
LTLSPEC G (state=Re -> x F (state=m|state=Ab|state=Do|state=Su))
LTLSPEC G (state-co -> x F (state=Na))
LTLSPEC G (state=Do -> x F (state=En|state=co))
LTLSPEC G ((state=Do|state=Ab) -> x F Cstate=En))
LTLSPEC G (state=ln -> x F (state=Ab|state=Pr|state=Re|state=Su))

— CTL Specif ications
SPEC AG (state=Na -> AX state=Re)
SPEC AG (state=Re -> AX AF (state=In | state=Ab | state=su | state-Do))|
SPEC AG (state=co -> AX AF state=Na)
SPEC AG (state=Do -> AX AF (state=En | state=Co))
SPEC AG ((state=Do I state=Ab) -> AX AF state=En)
SPEC AG (state=m -> AX AF (state=Ab | state=Pr I state=Re I state=su))

SPEC AG EF (state=En)
SPEC AG EF (state-Do)
SPEC AG EF (state=Ab I state=Do)
SPEC AG EF (state=Re -> s ta te - in)
SPEC AG EF ((state=ln -> EX state=Pr) | (state=ln -> EX state=Re))
SPEC AG EF ((state=Pr -> EX state=Re)| (state=Pr -> EX state=Ab))

Figure 4.14 SMV Code of ATM System for NuSMV Model Checker

46

Figure 4.15 and Figure 4.16 show the result of the model checking procedure (LTL and CTL

specifications).

• S ^ H
l*ixs i s NuSMU 2 . 4 . 3 (c o m p i l e d on Tue May 22 1 4 : 0 8 = 5 4 SiTC 2 0 8 7 >
F o r roc-re i n f o r m a t i o n on NuSMU s e e <hfctp: / / n u s n i u . i i ' s t . i t c - i t >
oi* e n a i l t o <nusn»v- u s e i ' s g i r s t - i t c . i t > .
P l e a s e r e p o r t b u g s t o < n u s n u (? i r s t . i t c . i t > _

l i t i s v e r s i o n o f NuSMU i s l i n k e d t o t h e M i n i S a t SAT s o l o e r .
S e e hfc t p : / /www - c s - c h a l n e r s . . ' j e / C s / R e s e a r c h / F o i - m a l M e t h o t i s / M i n iS^\t
C o p y r i g h t Cc> 2 0 0 3 - 2 0 0 5 , N i k l a s E e n , N ik l a s S o r e n s s o n

NuSMU > read r
NuSMU > flatt€
NuSMU > encode
NuSMU > build
NuSMU > checU_

spec if icat:
spec if icat„

Bo> J state =
— G pe c if i c a t:
— spec if icat:

spec if icat.
spec if icat-

Re> i state =
NuSMU >

lodel -
;n_hiei

-i ftTM.r
•archu

J_uariables
_mo de 1
_lt lspec
.on G
Lon G
S u » >
.on G
.on G
.on G
.on G
S u »)

<state
(state
is trt

(state
(state
((stati
(state
is tri

m

=
=: e

=
=
= e

•

Na
Re

Co
Do

- Do
In

->
~>
~>
_> i
->

X
X

X
X

St*
X

s

(
(
(\t

<

F C « s t a t e = I n

F s t a t e = N a))
F (s t a t e = En ! :

; = A b > - > X < F
F (((s t a t e = f ib

state = Ab>

.s true
tate = Co>>)
state = En>>

lofxj

Figure 4.15 Verification Results using NuSMV Model Checker on ATM System (LTL

Specifications)

- n x
U > checi<_ct lspec

s p e c i f i c a t i o n AG (s t a t e = Na -> AX s t a t e = Re> i s t r u e
,— s p e c i f i c a t i o n fiG (s t a t e = Re -> AX (flF (((s t a t e = In i s t a t e = Ab> ! s t a t e =
Su> ! s t a t e = Do>>> i s t r u e
i— s p e c i f i c a t i o n AG < s t a t e = Co -> AX (AF s t a t e = Na>) i s t r u e
'<— s p e c i f i c a t i o n AG (s t a t e = Do -> AX <AF (s t a t e = En ! s t a t e = Co>>> i s t r u e
:— s p e c i f i c a t i o n AG < < s t a t e = Do ! s t a t e = Ab> -> AX <AF s t a t e = En>> i s t r u e
I— s p e c i f i c a t i o n AG (s t a t e = In -> AX <AF (((s t a t e = Ah ! s t a t e = Pr> ! s t a t e =
Ee> ! s t a t e = Su>>> i s t r u e
;— s p e c i f i c a t i o n AG (EF s ta . te = En> i s t r u e
:— s p e c i f i c a t i o n AG <EF s t a t e = Do> i s t r u e

s t a t e = Do>>

In -> EX s t a t e

— s p e c i f i c a t i o n Hti (hf (s t a t e = Rft ! s t a t e = 1)0); i s t r u e
— s p e c i f i c a t i o n AG <EF (s t a t e = Re -> s t a t e = In>> i s t r u e
— s p e c i f i c a t i o n AG (EF ((s t a t e = In -> EX s t a t e = Pr> ! (s t a t e = In -> EX s t a t e

= Re>>> i s t r u e
— s p e c i f i c a t i o n AG (EF ((s t a t e = Pr -> EX s t a t e = Re> ! (s t a t e = Pr -> EX s t a t e

= fib>>> i s t r u e
NuSMU > _

Figure 4.16 Verification Results using NuSMV Model Checker on ATM System (CTL

specifications)

4.4 Related Work

The concept of control and operational behaviors was previously studied in [27] and [39]. In

these two publications, the control behavior illustrates the business logic that underpins the

functioning of an isolated web service, and the operational behavior regulates the execution

47

progress of this control behavior by stating the actions to carry out and the constraints to put on

this progress. However, the composition and verification aspects were not investigated. The

composition issue from a formal perspective and the tools used were also stated in some papers.

In [22], Hull et al. describe concepts and assumptions on current work on service composition.

They present several composition models including semantic web services, the "Roman" model,

and the Mealy conversation model. They also give techniques for analyzing web services such as

translating them into formalisms that are suitable for analysis, for example state machines,

extended mealy machines, and process algebra. However, synchronization between behaviors and

verification of composition design were not analyzed.

Other projects that use model checking techniques for BPEL composite web services

verification were done. In [14], Foster et al. verify mediated composite services specified in

BPEL against the design specified using Message Sequence Chart and Finite State Process

notations. Unlike our proposal, the focus is on the control flow logic and not on the conversations

between the composite services. Also, the proposed verification method is not implemented. In

[15], the tool presented can be used to check that composite web services satisfy LTL properties.

The input of the tool is BPEL specifications that are translated into guarded automata. These

automata are then translated to Promela language to check them in the SPIN model checker. This

allows the authors to verify designs at a more detailed level and to check properties about

message content. Although the verification approach is similar to ours, there are many differences

between the two works. In our proposal, the verification is based on separating behaviors and not

only on BPEL. Also, the model checking technique we use is different as SMV and NuSMV are

based on symbolic model checking and not on automata model checking like in Promela and

Spin. Symbolic model checking has an advantage over automata-based technique as it does not

suffer from the state explosion problem. Finally, in our proposal, we can check not only LTL

specifications like in [15], but also CTL specifications.

48

In [35], the authors show the importance of asynchronous messaging in sharing information

and resources in the form of web processes. Web service interaction models are formalized into a

conversation concept with ordering constraints on messages. FIFO queues are considered in the

design of message passing between services. In terms of verification, only some abstract

strategies of model checking service composition for both bottom-up and top-down design

approaches are outlined. However, no analysis or implementation of these strategies is provided.

Model checking of composite web services has been studied also in [2] [13] [16] [17] using

different model checkers. The main difference with our work is in terms of the properties to be

verified and the underlying technique. To the best of our knowledge, this work is the first

investigation on separating concerns in composite scenarios and automatically verifying the

operational behavior against the control specification using both LTL and CTL languages. The

technique is based on analyzing the two behaviors and extracting properties from the general

control behavior to be verified in the model represented by the operational behavior of the

system. This method enables us to control the orchestration process of the composition in web

services and to verify the synchronization of messages between different web services.

In terms of web services interactions, some researchers have studied feature interactions

in order to model and monitor undesirable interactions [35] [37]. Feature interactions for web

services are described as the situations where the requirements of services are inconsistent [1].

Feature interactions are often seen as the result of complex behavior interleaving for the state

machines that represent the features. In [24], a first-order logic model-checking tool called Alloy

is used for automated detection of feature interactions. Our proposal is different from this work

since we are considering not only undesirable interactions, but all possible interactions that can be

extracted from the control behavior. The model checking technique we are using is also different

from the first order model checking.

49

Chapter 5: Implementation

5.1 Introduction

In the previous chapter, we presented our verification approach of messages synchronization

among web services. First, we discussed how composite web services could be designed and

modeled based on their control and operational behaviors. The operational behavior shows the

business logic of the process functionality for a composite web service. The control behavior

shows the constraints and states that the operational behavior should be in. Synchronizing both

behaviors is a key issue in designing good conversations between the different web services that

participate in composite web services. We used symbolic model checking as the verification

approach. The properties to be checked are taken from the control behavior and are verified in the

different operational scenarios.

In Chapter 4, we translated manually the state charts to SMV code following these steps:

a- Translating the state chart to a model

b- Finalizing the model to a Kripke-like model

c- Reducing this Kripke-like model

d- Translating the reduced model into SMV syntax.

In this chapter, we want to make the translation easy and automatic for the user. We created

for that reason an interface where the user enters the different transitions of states existing in the

original state chart. The user will also add the LTL and CTL properties and then the SMV file is

directly created.

50

In Section 5.2 we will explain the framework of this SMV Converter in more details. In Section

5.3 we will show a step by step example of the ticket reservation system composite web service.

Some samples of the code are listed in Appendix 1.

5.2 SMV Converter

As stated in the previous section, the SMV converter is responsible of converting state charts

to SMV code to automatically help the user in the verification process. The SMV converter we

created (see Figure 5.1) is composed of four areas. The first one is for state charts. The second

and third areas are for LTL and CTL specification. The last area displays the SMV code that will

be put in the ".smv" file.

1-FROM STATE CHARTS

FROM STATE

FROMTYPE: JNotAttwated

TO STATE;

TO TYPE: |Not Activated

2- LTL SPEC

L T L S P E C * (| > | O J f j X J l | & | |

state = JNa[Re J In fAbf"?? \ O O F E - I j Su] Co

ADD LTL SPEC |

ADD j

CONVERTTO SMV

3-CTL SPEC

u 1 SPEC \ A [E | <[;. j o j r j x ! u j t j &J 1

-> | state= j N s l P e | to j A f i f P rToo} E n ! SU j ' co ; ->

ADD CTL SPEC j

4- SMV PROGRAM

CREATE SMV FiLE |

Figure 5.1 SMV Converter Interface

51

Section 5.2.1 describes the first area and the interaction between the first and fourth area. Section

5.2.2 describes the second and third area as well as their interaction with the fourth area.

5.2.1 From State Charts to SMV

The most important phase is the translation from state charts to SMV syntax.

From the state charts, we will extract the different transitions we have showing the state FROM

where the transition is done and the state TO where the transition ends. We assign types to these

states to help in the smv translation procedure.

The types we can have are: Not Activated, Receive, Invoke, Processing, Aborted, Done, End,

Compensated, Suspended.

Therefore, in this first area, we have 4 fields:

1- FROM STATE field: the user enters in this field the state from where the transition begins

2- FROM TYPE field: the user chooses from the drop-down list of types, the type of the FROM

STATE

3- TO STATE field: the user enters in this field the state where the transition ends

4- TO TYPE field: the user chooses from the drop-down list of types, the type of the TO STATE

To facilitate the comprehension of this procedure, we list in a table the different FROM STATE,

FROM TYPE, TO STATE and TO TYPE of the ticket reservation system statechart (Figure 2.6)

and ATM system statechart. Table 5.1 corresponds to the different transitions of the ticket

reservation example. Table 5.2 corresponds to the different transitions of the ATM example.

If we take the first example, we have to enter the information of the table row by row. After

entering each row of the table we click on the ADD button.

52

FROM STATE
INITIAL

ITINERARY
RECEIVED
AIRLINE INVOKED

AIRLINE INVOKED

AIRLINE
RESERVATION
COPIED
HOTEL INVOKED

HOTEL INVOKED

HOTEL
RESERVATION
COPIED
VEHICLE INVOKED

VEHICLE INVOKED

VEHICLE
RESERVATION
COPIED
ITINERARY
MODIFIED
ITINERARY
RETURNED
CANCELED
DONE

FROM TYPE
NOT ACTIVATED

RECEIVE

INVOKE

INVOKE

PROCESSING

INVOKE

INVOKE

PROCESSING

INVOKE

INVOKE

PROCESSING

PROCESSING

RECEIVE

ABORTED
DONE

TO STATE
ITINERARY
RECEIVED
AIRLINE
INVOKED
AIRLINE
RESERVATION
COPIED
AIRLINE
RESERVATION
CANCELED
HOTEL INVOKED

HOTEL
RESERVATION
COPIED
HOTEL
RESERVATION
CANCELED
VEHICLE
INVOKED

VEHICLE
RESERVATION
COPIED
VEHICLE
RESERVATION
CANCELED
ITINERARY
MODIFIED

ITINERARY
RETURNED
DONE

END
END

TO TYPE
RECEIVE

INVOKE

PROCESSING

ABORTED

INVOKE

PROCESSING

ABORTED

INVOKE

PROCESSING

ABORTED

PROCESSING

RECEIVE

DONE

END
END

Table 5.1 Ticket Reservation System Transitions

The ADD button is responsible to add these information in a table that is not visible to the user.

However there is an area below these fields where these information will be shown as transitions

(See Figure 5.2).

53

When all the information are entered, the user clicks on a CONVERT TO SMV button.

This button is responsible of converting all these transitions to the SMV syntax we have in Figure

4.8. The user cannot see what happens backstage.

FROM STATE
INITIAL

CARD AND PIN
ENTERED
LOGIN
VERIFICATION
LOGIN
VERIFICATION
CHOICES

CHOICES
CHOICES

WITHDRAWAL
INVOKED
WITHDRAWAL
INVOKED
BALANCE CHECKED

WITHDRAWAL DONE
WITHDRAWAL DONE
RECEIPT INVOKED
RECEIPT PRINTED
CANCELED
LOGOUT
DEPOSIT INVOKED

DEPOSIT INVOKED
AMOUNT CHECKED
DEPOSIT DONE
DEPOSIT DONE
GETBALANCE
INVOKED
BALANCE
DISPLAYED
BALANCE
DISPLAYED

FROM TYPE
NOT
ACTIVATED
RECEIVE

INVOKE

INVOKE

RECEIVE

RECEIVE
RECEIVE

INVOKE

INVOKE

PROCESSING

RECEIVE
RECEIVE
INVOKE
RECEIVE
ABORTED
DONE
INVOKE

INVOKE
PROCESSING
RECEIVE
RECEIVE
INVOKE

RECEIVE

RECEIVE

TO STATE
CARD AND PIN
ENTERED
LOGIN
VERIFICATION
CHOICES

CANCELED

WITHDRAWAL
INVOKED
DEPOSIT INVOKED
GETBALANCE
INVOKED
BALANCE
CHECKED
CANCELED

WITHDRAWAL
DONE
RECEIPT INVOKED
LOGOUT
RECEIPT PRINTED
LOGOUT
END
END
AMOUNT
CHECKED
CANCELED
DEPOSIT DONE
RECEIPT INVOKED
LOGOUT
BALANCE
DISPLAYED"
RECEIPT INVOKED

LOGOUT

TO TYPE
RECEIVE

INVOKE

RECEIVE

ABORTED

INVOKE

INVOKE
INVOKE

PROCESSING

ABORTED

RECEIVE

INVOKE
DONE
RECEIVE
DONE
END
END
PROCESSING

ABORTED
RECEIVE
INVOKE
DONE
RECEIVE

INVOKE

DONE

Table 5.2 ATM System Transitions

54

So, when this button is clicked, the first part of the code concerning the transitions will appear in

area 4 named: SMV PROGRAM.

A full-example will be shown in Section 1.3

5.2.2 LTL and CTL Specifications

LTL and CTL specifications are extracted from the control behavior (see Section 4.2.2)

These specifications will not be extracted automatically in this work. They are defined one time

and then they are applied on all operational behaviors.

In the second area of the interface of our converter, we have buttons like LTLSPEC, G, F...

that helps the user in writing LTL properties in SMV syntax. After the user enters the property or

properties, he clicks on the ADD LTL SPEC button available in this area. These specifications

will be added to SMV program we are constructing in area 4.

The third area concerns the CTL properties. In this area, we can see buttons that are specific to

the CTL syntax like SPEC, A, E... that could be used by the user to write a CTL property in an

SMV syntax. Like in the LTL area, after the user enters the property or properties, he clicks on

the ADD CTL SPEC button available in this area. These specifications will also be added to

SMV program of area 4.

After adding as much properties as he wants, the syntax of the program is shown in area 4.

The user will then click on the CREATE SMV FILE button available in the bottom of area 4.

Then, the .smv file is created and could be used directly in the NuSMV model checker for

verification of the properties, i.e. for verification of the synchronization of messages among web

services.

55

5.3 Step by Step Example

In this section, we will show snapshots of our program, using the ticket reservation system

example. We should fill the first area of the interface. Table 5.1 shows all the different transitions

we could extract from our ticket reservation system state chart. We can then enter the first row of

this table and click on the ADD button. The first transition is subsequently shown below the four

fields. (See Figure 5.2)

FFiC!MSTAlECHflfi-S

F -.0!* S1A1E

FRCMTYFE . ;No!fl:liwle(t

TO STATE

fOTYFE: iNntfetMKfO

Urif-L (1 Jul MSvs*.J) • • TiNER^y RECEDED I Rfeier/

2- ITl. SPEC:

LTLSPECJ ; S) j G | F j X 1 i \ i.) | \ 0 \

s t e t e s ^ 8 | f i e j ! f l | A & f p r | 0 c f £ n ! S t i C*j -> |

WD LTL SPEC-1

-

,'} j ;

1 ADD !i

CCNVERTTOSItfV ;

- CTL SPEC

SPEC [ftjE! (j j j o j F i x | y i f j ft! i j
--.lair- iNaif ief in j Ab] * j Oc j grJ'siil 'co j -> 1

ADD CTL SPEC j

MVF30SK*M

<:•&£."•!£ SH VFfLE 1

Figure 5.2 Filling First Box (FROM STATE CHARTS) (1 of 3)

We add all the transitions we could have (from table 5.1) and then we will be in Figure 5.3.

Then, we have to convert this first part to SMV syntax. For that, we click on CONVERT TO

SMV button and the syntax obtained will be displayed in the SMV PROGRAM area (see Figure

5.4).

56

TROM STATE CHARTS

FRO* STATE:

f ROM TYPE • | Not Activated

TO STATE' I

fTOT-.-FE

I. (NOt At tFVStKd) •» 17INERAPY RECEIVED (Rfeti»:ve> / S I'lNERASY RECEIVED ! Rf i^ iv f) - - AfRUNF. IN
r-vr-prfj ' AlW.INEIWv'OKEDflnvme;-* AIRUME RESERVATION COPIEO{F'(iie:SMruj: / AISi.iNE (WvC
f-jkc) •* AIRLiNE RESERVATION CANCELED {flii'iffeiS} I AIPIJHF RE?=fVVATiyN COPIED £ P:o.:e< uny

HOTH. INVOKED (Invoke) .' HOTEL INVOKED (Invoke;- ' HO^EL. RESERVATION COPIED I Piocessiiii;) J r-
INVOKED (Irwukf) -» HOTEL RESERVATION CANCELED • ABOMed; f HOTEL RESERVATION COPIED [y ' 0 .
,gi •• VEHICLE INVOKED {Invoke; I VEHICLE INVOKED jInvr-ks v -» VEHICLE RESERVATION COPIED f PIOI
:y! J VEHICLE INVOKED (JnvckP J -> VEHICLE RESEF-VATiON CANCELED ; *J,*orled> / VEHICLE RESEFA'A
COPIED i F'Kicesf-ng) -* ITINERARY MODIFIES (Process nig; ; ITINERARY MODIFIED f Prut essmg) - = -Tit

aRVREriiRNEDlWecsivs;! f nINERAPV REKA'NED(Pec^rvt?)-- DONE (Dan*) < CANCELED- ABCrt-id;
iu-i, i DONE (Dune;- -END (Ena) /

)• SIWV PROGRAM

CONVERT TOSIWV !

:REC

LTLSPECJ t J } \OJ

3- CT1. SPEC

| SPEC, I A !

N3| Rt:* In 'Ati | Pr JDOJEVii

ADDL.TLSFECJ ADD CTLSPECf C P E A T E S M V F I L E

Figure 5.3 Filling First Box (FROM STATE CHARTS) (2 of 3)

1- 'ROM STATE CHARTS

FROM STATE. ;

FSOM TY=>E: fNoi Activated'"'

TO STATE" \ Z-Sr.

TOTYPE: [Noi'Ai-irjslec!'"

4-5MV PROGRAM

MODULE maid

a.Pe.!ri,Ab,Pr,Dc»,Efi.Co.r

rase
(<taie=Na;{Rei,
s= la!e=R&1 {Da. in
(SteK'=lRj Wii, Fr;.
(sta1irFrs.;ih, Pi.f
tilate=Ab>|Cfn.
<=taie=D&).(En>,
(iilatB=Fni;Na{.
1 state,

; CONVERTTO SHv'^

ULSPfcCJ t l > | 0 j . ' r l > * J ^ I * l l j *-*j SPEC | A j E j_ * | > j 0J F | >: | »J j » | « r | [
state = ivialRei in i f t t P f lDc tEn Sui Co! -» I s!ate = NaiR.E; In] Aoj Pt IDoj En; SuiCo:

ADD C7L SPEC CREATE SMV FILE •

Figure 5.4 Converting First Box to SMV (3 of 3)

57

After translating the state charts to SMV Syntax, we write in the second area the LTL properties

we want to check (Figure 5.5) and we click on ADD LTL SPEC to add them in the SMV program

in area 4. Figure 5.6 shows the snapshot after this step. We can also add more LTL specifications

(Figures 5.7 and 5.8).

The third area is for CTL properties, so we add these properties in this area and then we click on

ADD CTL SPEC to add them to the SMV program (Figures 5.9 and 5.10). As for the LTL

specifications, we can also add more CTL specifications in this third field and then append them

to the SMV program (Figures 5.11 and 5.12).

•

1- FROM STATE CHARTS

f ROM STATE:

FROM TYPE' Not* ^*\«

TO 3~ATE:

rOTVPE' 1")*/ t f t * t

2-LTL SPEC !3

LTLSPECJ t l) i & J F | x j l | 8 J 1 | U |
Sta:e= lNs\ Re j In | Asa| Pt JDoi Er i j S u | Co| ~~ j

• L T L Specifications

L T L S F E C 0 (state=N3 -»X sta1e=Re)
LTLSPt'C 0 ist3ts=Re -* x f (tlate=in|st3te=Aa|state=DG|

s;a»=:Su))
L T L S F E C 0 fst5ti»=Cu-» XF C3tale=Nal)
LTLSPEC O i t r s t s - O o - ' X F f£tal8=En:state^Co);

LTLSFEC 0 (fstatB=DoiP!ate=Ab; •* X F <s!3le=En»
LTLSPECO(sta!==!n-"XF (siaie=AS|steie=Piis:3te=Re|s

fe!e=Su))

ADOLTLSPECj

'3
ADD

,

COtWERTTOSMV

CTLSPEC

SPEC f A] E i Cl) | C^ F U U H ! | & j t

state = f N a j P e j In j Ab j P t ^ D o J E n j S S J J C O J - *

ADO CTL SPEC |

4- SMV PROGRAM

MODULE main

ri3tE(Na1R8,tr:dAb.P(IDo1En1Co1Su},

ASSIGN

in Estate; :=Na;
neytiEt3te):=

case
(state-Na)(PeL
istate=Re}:(Do,rn}.
(state-ir,) {Ab, Pi}.

Csta!e=Prj.{ln, Pi, Re),

!3ta!e=Abi{En).
C&!3t6-Do)iEn|;

(state* En) (Ma).
1:slate;

eiac.

I

•

CREATE SMV FILE j

Figure 5.5 Filling Second Box (LTL SPEC) (1 of 4)

58

1 FROM ST*7F CHARTS

FROM STATE

FROMTYPE 1 Net Ait =ted

TO STATE

FOTYPE JNot Actuated

2- LTL SPEC

LTLSPECJ ! | i | 0 I F j x j | j\ &

state = J N a (R e | ^ i j At j P i j p o j En j Eu

§ 3 D L T L S P E C ? ;

, 1

Coj

• " 3

ADD !

J

CONVERT

•3- CTL SPEC

U j GPEC | A \ E j (1)) Gj F ' ¥.\ j \

-» j 5tal8= JNalRe j f r tJAbj P f ' D o U n

ADD CTLSPEC|

t ;

Su

w

•OSMV

& 1 1

ssLz

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 3
4 ^W P P C ^ ^ H

IOC F f . n

" i N3 l - f WjF D j ^ n o c

r:e*Hs:3tel:-

^:at^lJay{Rfei.
<s;&!e-Re>.;De. In>.
ts:ate-lnj !Ab, Ft!,
(s:st?=P:)!ln, P.-. Rej:
(s-3te=At)iEr;i:

fs:ate=D<»:{Enj;
ts:ate= En) jtJa;.

1 sta:e:
esac.

--LTL fepeiifU aliens
LTLSPEC C* fstete=Na --"» state=Re)

LTLSPEC 0 <state=Re -* K F (s1ate=ln|state=Ab|state= Deif iate= &u)J
LTLSPEC G (st.jtF=Co -> V r (sta-^MaS
LTLPPE C 0 (stete=Do -» ;t F i'statP=Eriist3te=C.ci;;

,LTLSPEC C- »iste!s=D9ist3te=A»)•= XF (state=En>;

LTL?PEC G(strIte='n->--ivFi:st3te=Abi'jt3;e=Ff:st3Ee=RG|tt5te=3i:))

CREATE SMVFILE |

3213

Figure 5.6 Adding LTL SPEC To SMV Program (2 of 4)

1

F^CV STCE ; Z MODULE ™,r.

*ROM TV»fc i rot Actuated *? statesNa.Rejri^h.Pr.Do.Eri.Ca.SuJ.
ADD • ASS!«N

r rvPE [wri,>i.twtefi j j r=eiit(sta1e) =
eaie

(:rtatp=W3MRi-l;
fstate=RejiDo,lft}:
(s!3te=inj:*At>. Pr!,
(s!atif=P!i[!n.Pr.Rci.
fsiate=Ab).|Fn},
tstate=L>o;:iEii):
(state-En>iN3};

esac,

-- LTL Spettflfal^ns
LTLSPEC 0 (naif>=Ka-»;-. ftaie=Re)
LTL&PEC 0 (Elate- Re ->• X F (state" Instate- At j state: Donate- Sti;?
lT!.SPECG>sta!e=CH-^yF t!il3tt!sMa))
LTLSPEC i j (state=Do •>'.: f (sl«ie=Eri|s!;ite=C')>}

, LTLSPEC & (i'state=Dostat6=A6)-» >. F (state=En)J
CONVERT TO S»V iLTLSPEC G (ftate=!n -* V F (state-AblstataraPrls tale-Restate- Suj;

2- LTLSPEC =3-CTL SPEC

LTLSPEC! (j ; | G | F j K I ! i fi, ! (| U | SPEC j A j £ j (| } j G j F ; X ; U | t } « j i }

stsLs- JHsJRsitn lABJPr'OolEriS Su| Col -» j state = = Ma<Re| In j Ate { P.-1 ~oj Eo{ S J J C O J -» !

-ivteng LTL specification
LTi.SFFC c («.i3ie=Ab-s x s-ale=lFi;
i.Tl.SP=C F 0 -it3li-=Pe

ADD LTL SPEC! ADD CTL SFFCJ CREATE SMV RLE ;

Figure 5.7 Filling Second Box (LTL SPEC) (3 of 4)

59

)-FROM STATE CHARTS

FROMSTATF

>ROK TYPE: } MOJ Attested

"0 STATE'

10 TYPE [No'A'.trVsted

2- :.TI_ SPEC

LTLS?ECJ { |) l e J F | S | i | & j | j U

Elate = INsffte Jin j Afc | PrJDo]Ei? St 1 Co} -*

toDLTLSP=C;i

I 1 - - ' , • * • • * • " , * J

3 I
- AD3

com

3- CTL SPEC

slate= JNaSRel fn 1 / * | P f ;Co l En

ADD CTL SPEC \

ERTTOSMV

, i

Eu

S | 1

4-3MVPROGRAM

ttCOULE rr.sin
VAT*
s.*a!S|Na,Rt,ln.At.P'.Do.En1Co.r.u},

ASSIGN
iwHSteteJ.-Ns.

{si.3te=M6).|Pef.
{sute-Re):(Do.!n!
{£t5re=lni:(Ab.Pr!,
{s!&lE--P!i{ln.Pr.F(.;'
(state-A(J}; En j .
i5tate-Do> {En J;

1.slate.

-•UTUSpeafK&jont
L™LSPEC •? ftlste-Na --• K siate-Re)
LTLSFEC 0 islate^-Re -=• X F (Sister lni?tals=Aa!£tate-~Do1s!5le-$u)'>
LTLSPEC -j istsle-Co -» :< F (siate^NaJ)
I.TL£?EC G .;tlsiH=r.Ci -= X F (stale=Enis tel=j=Co)>

. LTLSPEC G <(st3te-rj&;st3te=AB,i -» XF (siate^Er))
j LTL&f EC G (slate-;?! - • > F (states AE|sia1&^P>|ste?= FCeislsl^ Su'A

--'•wEing LTL sue castor.
LTLSPEC e-(sIaie=At.->>-*:ale=ln)

JLTLS?ECP0stai3=Se

CREATE BKVFIL.E |

Figure 5.8 Adding LTL SPEC To SMV Program (4 of 4)

1-FROM STATE CHARTS

FROM $TAT£-

FROMTi'PE: | ,JIA t atPd

TO STATE-

roTVPE: jNc: Activated

2-LTL SPEC

LTL5PEC| < !) | o J F J ! (| ! J a f j

state =• JNa^Re! In JAt-j Pt JDeiEitj Sy j Co]

ADD LTL SPEC!

•Zi
ADO

CONVERT T3

!3-CTL SPEC

u | SPEC] A | e 1 < i) 1 o 1 F ^ x | u !

- * | stale = }Na^Ra} In fA i t j «"(}Dij;En:

•- OIL Si-acrtiratiCTS
SPEC AC-<5tate=N3-*As.si6is-ReJ
SPEC AC <S!ai*=Re •> AX AT (state* in 1 =ia:e
uu:ate=DLO!
GFECAG(si3te=Co-*A}<.AJ: slat^Ns;

• U
S„1C

=AB!$

SPFCAG(-;tatf=D«-* AXAF <-5taK--FMsi.«e-C,7i'i
SPEC AP((sra1s=DolEtate=A.o)-* A?.Af sta
SPEC AC- (s;aie=lr •> A> AF csi9te=Ab |s:ate=
;:ts!s=Suj>

ADD C~L SPEC i

e=En)
Pt i sta

FRG&F.AM

MODULE ma-
vAR
•s-t&t&.T Ws.fte.iM.Aii.Fr.Do.En.Co.S u|.

ASSIGN
imitate) =Na.
rte*:is-.ateV=

(s;ate=N-a; {Sej.
(£tai3=R6)'{DCiifl).
(siaesir.MAfc.PiL
f5t*ij?=Pf).(:(i. Fi, Rej;
(5tatf-=A&;-jFnf.
(s!ate=C-o)iEnl
ista;a=ErO.!Na).

esac.

• LTL SCBC HI rati ens
LTLSPEC C- f£tet-f=N*-* X. slafe-Re}
LTLSPEC G <stais: t - s ->x r {si3taKin!sts!f-=.A6!staTe-Do|f.iate=S(;ii
LTLGPEC 0 t?lste=Co -»> F (sl8le=Na)>
LT'.SPEC G <st-ite=D0-* X F (st«iES=En|-itolc=COi;

. LlLSPbC G <is*ate=-Dcl?tate=AM - * x F tM£?s=En;}

; « v j LUSPEC C- t'tlst!»=bi-» X F i-ila!e=Afcis,taEe=PFtslate=Pe[ilaE'j=S=j»

: -v.ionfl LTL $ peciScatiors
1 * LTLSPEC 0(stste=*l;-*Xsiate=lrj

: - - {LTLSPEC rGsla!e=Re

ate^P

?=Ra

CREATE SMV FB.E !

833

Figure 5.9 Filling Third Box (CTL SPEC) (1 of 4)

60

I-FRCH* STATE CHARTS

FROWS-ATE:

FROM TYPE: j^TsTtivi

SWv PROGRAM

(statF=Re; ;Do. ;nj.

- LTL Spe tificalipns.
LTLSPECO(st.3te=Nii-*Xs;.3ie=Rf)
LTLSPEC &fetsfe-Re-u =< F (?ts:e=in!s
LTLEPEC C-tiU=(»=C £i-»X F (Bl*e=NBl
LTLSPEC C- i;st&l8=Co-* X F fsia:te:Efi|sfjte=Co);

; L T L S P E C 0 i(s!3Tf=D0!s!3te=.Jlb) -* x F i'j.t6ie=Eo;>
CONVERTTOSMV ILTLSPEC 0 fsl3te=rn--'^ F <;;fetri^J-isl.jie=F'r|Md1e=Rt-i=t.)[e=?y;)

-A^stste-Debate-Sui)

3-LTLSPEC -3-CTL SPEC

EI-TL-SPECJ_î X,* L?J ZJ . l i J. J~iJ x l j ^J~J^ E C

siaisa JNa^RJ | l iM j i t |P f j 6o iEn j Suj Col ^ iMi i^Tl^ i^HF--

ADDI.TL S=EC !?DDCrL.SPEC8

&PEC AC- (a!3l«:NS-* AX Stsifr-RSJ

SF-ccAO i3isi&=Dc--- Ax AF cs1sa=£n | slate-Co;}
SPFC AG t^tatf=D3 [s!ale=Af')• = AX AF &ESia=Er}
SPEC AG (slate--rn-> AXAF (slsie-At |slaie=F; | state=Re [states Su»

CREATE S«V FILE \

Figure 5.10 Adding CTL SPEC To SMV Program (2 of 4)

1-FROM STATE CHARTS

FROM STATE

FROMTVPE: * N j W t *

TO STATE

TO TYPE J N ^ A ^ E M

2- LTL SPEC

LTLSPECJ f j) I G

BC.

L~L 3pt
LS^EC

L?=EC

SISte=P&
-lsts=lr}
li,iS=P],

itete=*ij
<:|&!B=I>J

tteKiErr
stalk.

Cif-ca!:or,
:• :tt*e=
•>:; ta;e=

•0&, if J,
Ac Prt.
; : i, ?r, p

iEr-"::
itftf.
J*sf;

Na-= Xs
= e . : y r

CCNV£RT70 BMv J LTLSPEC 0 utaie-n •=• X F fslate =-Ao|stat»=.Frtstaw;

i[Pr{t)cJEn; y^iijiiiiiiiii! IIIEJ'-'^"
S?fCA6EF(s;alF=Dr.)
SPEC AG Ef (sials-=Atistalt-=Dj;
SPEC Afl EF {state-Rfc-* state-hi
SPEC AG Ef i!st£!e=lr-
s::F?6,;
3f£C AG Er ftstste=Fr -i
ate=Abl>

ADDCTLSFEC

es=PpJ|is,teie=in -*&> •

•-CTLSpE(it';fat!OT.;
SPFCAC-ftlJte=Wa->
SPEC AC-(i!siF=r*»^

aiSPEC AG(state=Co-
SPECAG{slalt=Do-

t SPEC'AGftflit^Dcl
!iPf.CM?-:sI&li-=n-'

Aj=sia(e=R
w AT'stale
*>"AF Sla'S
ft? AF (slits?
•=!ate=Aci -•
yfAFiS.ti=!s=

CREATE SijfiVFILE

Figure 5.11 Filling Third Box (CTL SPEC) (3 of 4)

61

- F30MS~£T£ CHARTS

FROtf

FROM

" 0 STATE

I D T v f E

.'FE ?Nc1Ar!«

4- SMV PROGRAW

MODULE -nsir.
VAR

slste {N3.Re.lr«,Ati,PirOo,Pn C.

ASSIGN
mltfstete^Ns;

r:erf(slate;.=
tase

(statecNaMRe),
(stete=Re)-{Do, in);
(states in):(AP. Prj,
Cstate=Fr):Hr(. Pi. P t 1:
(slate=Ab}:{.Efi:;
(state=Do>.(Eo).
(state=EnV{Na);
l:sfate.

?S3C.

_>. L "L£P tC

I L T L S P B C

CONVERT TO SMV

M
state = JNa. RH i in [^ | / ' l D f - , j C ' 1 l 3 u ; C 3 j - s 1 state = j K a j f i e j to | ftb | F r] Da | £ri j Su

- LTLSptcifications
L T L G F E C & (st&tesMa-p Xstste-Rej

LTLSFEC 0 (stste= Re--* yf (3ta!3=lnjs:3ie=sj}|slaIe=Dc|statfi=£uj)
L T L S F E C Q i;s!3te-Co-= XF (sUta-Nc-i)
LTLSFEC G (st&!e=Do -- X F (3t3te=En|st&te=Co}>

. LTLSFEC 0 (!s?a:e=Dc-!sts!e=Ati) • =); F (stsie=Eri))
L T L S F E C G (states in - * X F .;^ate=Ablsla1e=Prtslate=Re!3tate=Su:;i

; --wong L"H_ specification

J LTLSFEC 0 (staie=AS •/ X s.tate=lnj

|LTLSPECFGstJt i^Re

-• CTL Specification*.
SPEC AC- (etate^Na-' A> stste^Re;

SPEC AG (state=Re -* AX AF t s t a t ^ t n ! r
SPECAG(StatB=CO=AXAF L=t£ie=NJ)

SPEC AG (state= D o - ' AXAF (3tM?=En | state^Cc)}
SPEC AO (fs!3te=Do I state=A&j -> AX AF state=En>

SPEC AC- (state=in -»AXAF ;state=Ab |state=P; t siate=Ke I state=Su»

:P=AO i f iste-Su I state-Dn);

ADD LTLSFEC sADD CTL SFECll

SFECAGEF(s-3l&-£n;

SPEC AG EF fs;a-e=Dc)

SPEC AG EF <;sta:>»=Ati|slate=Do)
SPEC AG EF i;s.;9te-Rfe •* st&E3-in,
SPEC AG EF ((state-In -> EX state--;

CREATE Sti*Vf-

SPEC AG EF i.(statt-=F-i -= C< state= R e s t a t e

Figure 5.12 Adding CTL SPEC To SMV Program (4 of 4)

62

Chapter 6: Conclusions and Future Work

6.1 Conclusion

In this dissertation, we presented a formal verification approach of conversations in

composite web services. In Chapters 2 and 3, we gave an overview of composition and model

checking concepts. We then proposed an approach for modeling composite web services based on

two behaviors: control and operational. The operational behavior shows the business logic of the

process functionality for a composite web service. The control behavior shows the constraints and

states that the operational behavior should be in. These two behaviors are linked together to

check the synchronization between the conversations of composite services. We use state charts

enhanced with additional syntax to facilitate the mapping process between the two behaviors.

Synchronizing both behaviors is a key issue in designing good conversations between different

web services that participate in composite services. We used symbolic model checking as the

verification approach. The properties to be checked are taken from the control behavior and

verified in the different operational scenarios to check the correctness of conversations among

web services.

Our main contribution is the formal and automatic verification of the mapping procedure using

symbolic model checking technique. A second contribution is the creation of a Java-based

translation procedure which in addition to the NuSMV model checker contributes to the

implementation of our verification model.

63

6.2 Future Work

In this thesis, we only considered centralized processes and orchestration in composition. As

future work, we plan to extend this approach for choreography-based composition. Taking a

choreography composition that does not have any controller process is a challenging issue. In

choreography, all the participating web services know the actual business process and are well

aware of which web services they need to interact with and when to execute the operations.

Consequently, we need a control behavior that corresponds to a choreography process, which is

very dynamic.

Also, fault handling is easier in orchestration as the execution is controlled, which is not the

case with choreography. Web services can be easily and transparently replaced in case of

orchestration as the involved web services do not know the actual business process, whereas it

will be difficult in case of choreography.

Last but not least, we plan to verify other types of conversation between web services such

as negotiation and argumentation which are used in other web services applications, for instance

communities of web services.

64

References

[1]D. Amyot, T. Gray, R. Liscano, L. Logrippo, and J. Sincennes. Interactive conflict detection

and resolution for personalized services. Journal of Communication Networks 7:353-66,

2005

[2] H. Baumeister. System Integration. Informatics and Mathematical Modeling. Technical

University of Denmark. Spring 2008

[3] D. Benslimane, Z. Maamar, C. Ghedira. How to Track Composite Web Services? A Solution

Based On the Concept Of View. Journal of Electronic Commerce Research, 7(3), 2006

[4] J. Bentahar. Formal Methods for Software. Quality Methodologies for Software (INSE 6250/4-

UU). Winter 2008. Principles of Model Checking by Joost-Pieter Katoen.

[5]D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris and D. Orchard. Web

Services Architecture. W3C Working Group Note http://www.w3.org/TR/ws-arch/, 11

February 2004

[6]T. Bultan, J. Su and X. Fu. Analyzing Conversations of Web Services. IEEE Internet

Computing, 10(1): 16-25. February 2006

[7] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani

and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In

Proceeding of International Conference on Computer-Aided Verification (CAV 2002).

Copenhagen, Denmark, July 27-31, 2002

[8] E. M. Clarke and E. A. Emerson. A. P. Sistla. Automatic verification of finite-state concurrent

systems using temporal logic specifications, A CM Transactions on Programming Languages

and Systems 8: 244,doi: 10.1145/5397.5399, 1986

65

http://www.w3.org/TR/ws-arch/

[9] E. M. Clarke and E. A. Emerson. Characterizing correctness properties of parallel programs

using fixpoints, Automata, Languages and Programming, doi:10.1007/3-540-10003-2_69,

1980:

[10] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons Using

Branching-Time Temporal Logic. Logic of Programs 1981: 52-71.

[11] E. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. (2000), Counterexample-Guided

Abstraction Refinement, Computer Aided Verification 1855: 154, doi:10.1007/10722167_15

[12] E.M. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press, 1999

[13] Y. Ding and Y. Zhang. System Modification Case Studies. IEEE computer society. 2007

[14] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of Web service

compositions. In Proc. the 18th IEEE Int. Conf. on Automated Software Engineering

Conference (ASE), 2003

[15] X. Fu, T. Bultan and J.Su. Analysis of Interacting BPEL Web Services. In Proc. Int. World

Wide Web Conf. (WWW), 2004

[16] X. Fu, T. Bultan, and J. Su. Model Checking Interactions of Composite Web Services.

University of California at Santa Barbara. 2004

[17] H. S. Hong, I. Lee and O. Sokolsky. Automatic Test Generation from Statecharts Using

Model Checking. University of Pennsylvania. 2001

[18] http://archive.devx.com/javasr/articles/gabhart/gabhart-l .asp

[19] http://www.cs.cmu.edU/~emc/l5817-s05/smv.ppt

[20] http://www.ibm.com/developerworks/library/w-ovr/ Web Services architecture overview.

The next stage of evolution for e-business IBM Services Architecture Team, Writers, IBM,

Software Group

66

http://archive.devx.com/javasr/articles/gabhart/gabhart-l
http://www.cs.cmu.edU/~emc/l
http://www.ibm.com/developerworks/library/w-ovr/

[21] http://www.w3.org/TR/ws-gloss. Web Services Architecture, February 2003

[22] R. Hull and J. Su. Tools for Composite Web Services: A Short Overview Source. SIGMOD

Record, 34(2): 86-95. 2005

[23] R. Khalaf, N. Mukhi, and S.Weerawarana. Service Oriented Composition in BPEL4WS. In

Proc. WWW'03, 2003.

[24] A. Layouni, L. Logrippo, and K. J. Turner. Conflict Detection in Call Control Using First-

Order Logic Model Checking. In: L. DuBousquet, Jean-Luc Richier (Eds): 9th International

Conference on Feature Interactions in Software and Communication Systems, 77-92, IOS

Press, 2008

[25] F. Leymann andW. Altenhuber. Managing Business ... Web Services Flow Language

(WSFL. 1.0). IBM Corporation, May 2001.

[26] Z. Maamar, D. Benslimane, C. Cherida and M. Mrissa. Views in Composite Web Services.

IEEE internet computing, 79-84, August 2005

[27] Z. Maamar, Q. Sheng, H. Yahyaoui, J.Bentahar and K. Boukadi. A New Approach to Model

Web Services' Behaviors based on Synchronization. Fifth International Symposium on

Frontiers of Information Systems and Network Applications (FINA'2009), Bradford, UK,

2009

[28] K. L. McMillan, Kluwer. Symbolic Model Checking, ISBN 0-7923-9380-5

[29] S. Meng and F. Arbab. Web Services Choreography and Orchestration in Reo and Constraint

Automata. CWI, Amsterdam, The Netherlands

[30] C. Peltz. Web Services Orchestration and Choreography, Computer, 36(10):46-52, Oct. 2003

[31] C. Peltz. Web Services Orchestration: A Review of Emerging Technologies, Tools, and

Standards. Hewlett Packard, Co, January 2003

[32] ACM Turing Award Honors Founders of Automatic Verification Technology, Press Release

67

http://www.w3.org/TR/ws-gloss

[33] J. P. Queille, J. Sifakis. Specification and verification of concurrent systems in

CESAR, International Symposium on Programming, doi: 10.1007/3-540-11494-722, 1982.

[34] S. Robak and B. Franczyk. Modeling Web Services Variability with Feature Diagrams. In

Web, Web-Services, and Database Systems, pages 120-128, 2002.

[35] J. Su, T. Bultan and X. Fu. Web Service Interactions: Analysis and Design. Proceedings of

the Second International Workshop on Semantic and Dynamic Web Processes (SDWP 2005),

pp. 14-19, Orlando, Florida, USA, 2005

[36] USACM: 2007 Turing Award Winners Announced

[37] M. Weiss and B. Esfandiari. On Feature Interactions among Web Services. International

Journal of Web Services Research, 2(4), 21-45, 2005

[38] S. XLANG. Web Services for Business Process Design, Microsoft, 2001

[39] H. Yahyaoui, Z. Maamar and K. Boukadi. Web Services Synchronization in Composition

Scenarios: The Centralized View. The International Conference on Information Science,

Technology and Applications (1STA 2009), Kuwait, 2009

68

Appendices

Appendix 1: SMV Converter Source Code

private Button getButton3() {
if (button3 == null) {

button3 = new Button();
button3.setBounds(newjava.awt.Rectangle(123,710,92,25));
button3.setLabel("ADD LTL SPEC");
button3.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent event)
{

jTextArea4.append(jTextArea2.getText() + "\n");
jTextArea2.setText("");

}

} // end anonymous inner class

); // end call to addActionListener
}

return button3;
}

/**
* This method initializes buttonCTL
*

* @return java.awt.Button
*/

private Button getButtonCTL() {
if(buttonCTL==null) {

buttonCTL = new Button();
buttonCTL.setBounds(new java.awt.Rectangle(429,711,96,23));
buttonCTL.setLabel("ADD CTL SPEC");
buttonCTL.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent event)
{

jTextArea4.append("\n"+jTextArea3.getText() + "\n");
jTextArea3.setText("");

69

}

} // end anonymous inner class

); // end call to addActionListener
}
return buttonCTL;

}

* This method initializes buttonSMV

* @return java.awt.Button
*/

private Button getButtonSMV() {
if(buttonSMV = null) {

buttonSMV = new Button();
buttonSMV.setBounds(newjava.awt.Rectangle(857,709,128,23));
buttonSMV.setLabel("CREATE SMV FILE");
button SMV. add Acti onLi st ener(

new ActionListener() {

public void actionPerformed(ActionEvent event)
{
try{

String lines[] = jTextArea4.getText().split("\\n");

FileWriter ryt=new FileWriter("C:\\Program
Files\\NuSMV\\2.4.3\\smvprogram.smv");

for(int i = 0; i < lines.length; i++) {

ryt.write(lines[i]);
ryt.write("\r\n");
ryt.flush();

}

} catch(IOException e) {
e.printStackTrace();

}
jTextArea4.setText("");

}

} // end anonymous inner class

); // end call to addActionListener

}
return buttonSMV;

70

}
/**

* This method initializes buttonDB
*

* @return java.awt.Button
*/

private Button getButtonDB() {
if(buttonDB = null) {

buttonDB = new Button();
buttonDB.setBounds(newjava.awt.Rectangle(470,78,68,31));
buttonDB.setLabel("ADD");

buttonDB.addActionListener(
new ActionListener() {

public void actionPerformed(ActionEvent
event)

{

jTextAreal.append(jTextFieldFROM.getText() + " (" + choice LgetSelectedItem() + ") - > " +
jTextFieldTO.getText()+ " (" + choice2.getSelectedItem()+ ") / ");

String firstchoice="";
String secondchoice="";
//for first choice

if(choice 1 .getSelectedItem()=="Not Activated")
firstchoice = "Na";

if(choice 1 .getSelectedItem()=="Receive")
firstchoice = "Re";

if(choice 1 .getSelectedItem()=="Invoke")
firstchoice = "In";

if(choice 1 .getSelectedItem()=="Processing")
firstchoice = "Pr";

if(choice 1 .getSelectedItem()=="Aborted")
firstchoice = "Ab";

if(choice 1 .getSelectedItem()=="Done")
firstchoice = "Do";

if(choicel.getSelectedItem()=="End")
firstchoice = "En";

if(choice 1 .getSelectedItem()=="Corapensated")
firstchoice = "Co";

if(choicel.getSelectedItem()==" Suspended")
firstchoice = "Su";

// for second choice
if(choice2.getSelectedItem()=="Not Activated")

secondchoice = "Na";

71

if(choice2.getSelectedItem()="Receive")
secondchoice = "Re";

if(choice2.getSelectedItem()=="Invoke")
secondchoice = "In";

if(choice2.getSelectedItem()=="Processing")
secondchoice = "Pr";

if(choice2.getSelectedItem()=="Aborted")
secondchoice = "Ab";

if(choice2.getSelectedItem()=="Done")
secondchoice = "Do";

if(choice2.getSelectedItem()=="End")
secondchoice = "En";

if(choice2.getSelectedItem()=="Compensated")
secondchoice = "Co";

if(choice2.getSelectedItem()=="Suspended")
secondchoice = "Su";

try
{
Statement stmt;
stmt = connection.createStatement();

String insertString ="INSERT INTO dba(
FROMSTATE, FROMTYPE, TOJSTATE, TOTYPE)" +
"VALUES ('"+jTextFieldFROM.getText()+m,'"+ firstchoice + "','"
+jTextFieldTO.getText() + '","'+ secondchoice +'")";

int counting = stmt.executeUpdate(insertString);
stmt.close();

}
catch (SQLException sqlex) {

sqlex.printStackTrace();
}

jTextFieldFROM.setText("");
jTextFieldTO.setTextC'");

choice 1 .select("Not Activated");
choice2.select("Not Activated");

}

} // end anonymous inner class

); // end call to addActionListener
}
return buttonDB;

}

72

* This method initializes buttonCONVERT

* @return java.awt.Button
*/

private Button getButtonCONVERT() {
if (buttonCONVERT == null) {

buttonCONVERT = new Button();
buttonCONVERT. setBounds(newjava.awt.Rectangle(514,396,123,35));
buttonCONVERT.setLabel("CONVERT TO SMV");
buttonCONVERT.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent event)
{

jTextArea4.append("MODULE main \n VAR \n " +

"state: {Na,Re,In,Ab,Pr,Do,En,Co,Su} ;\n" +
"ASSIGNAn" + "init(state):=Na;\n" +
"next(state):= \n"+

case\n");
jTextAreal.setText("");

try{
Statement statement;

// —NOTACTIVATED

ResultSet rsNa;
String outputNa="";
statement = connection.createStatement();
ResultSet resultSetNa = statement.executeQuery("SELECT COUNT(*) FROM"
+
" (SELECT DISTINCT TOTYPE FROM dba WHERE FROMTYPE^a ')") ;

// Get the number of rows from the result set
result SetNa .next();
int NrowsNa = resultSetNa.getlnt(l);
resultSetNa.close();
statement.close();

if(NrowsNa>=l)
{
jTextArea4.append(" (state=Na):{");
statement = connection. createStatement();
rsNa = statement.executeQuery("SELECT DISTINCT TOTYPE " +
"FROM dba WHERE FROM_TYPE='Na"');
while(rsNa.next())
{
if(rsNa.getRow() < NrowsNa)

73

outputNa += rsNa.getString("TO_TYPE")+ ", ";
else

outputNa += rsNa.getString("TOJTYPE");
}

rsNa.close();
statement.close();
jTextArea4.append(outputNa+"} ;\n");
}

// RECEIVE
ResultSet rsRe;
String outputRe="";
statement = connection.createStatement();

ResultSet resultSetRe = statement.executeQuery("SELECT COUNT(*) FROM" +
" (SELECT DISTINCT TOTYPE FROM dba WHERE FROM_TYPE='Re')");

// Get the number of rows from the result set
resultSetRe.next();

int NrowsRe = resultSetRe.getInt(1);
resultSetRe.close();
statement.close();

if(NrowsRe>=l)
{

jTextArea4.append(" (state=Re): {");
statement = connection. createStatement();
rsRe = statement.executeQuery("SELECT DISTINCT TOTYPE " +
"FROM dba WHERE FROM TYPE='Rem);
while(rsRe.next())

{
if(rsRe.getRow() < NrowsRe)
outputRe += rsRe.getString("TO_TYPE")+ ", ";
else
outputRe += rsRe.getStringC'TOTYPE");

}
rsRe.close();
statement.close();

jTextArea4.append(outputRe+"} ;\n");

// -..—INVOKE
ResultSet rsln;
String outputIn="";
statement = connection.createStatement();
ResultSet resultSetln = statement.executeQuery("SELECT COUNT(*) FROM" +

" (SELECT DISTINCT TOJTYPE FROM dba WHERE
FROM_TYPE=,In')");

74

// Get the number of rows from the result set
resultSetIn.next();

int Nrowsln = resultSetIn.getInt(1);
resultSetIn.close();
statement.close();

if(NrowsIn>=l)

{
jTextArea4.append(" (state=In): {");

statement = connection.createStatement();
rsln = statement.executeQuery("SELECT DISTINCT TO TYPE " +
"FROM dba WHERE FROM_TYPE='In'");
while(rsln.next())

{
if(rsIn.getRow() < Nrowsln)

outputln += rsIn.getString("TO_TYPE")+ ", ";
else

outputln += rsIn.getString("TO_TYPE");

}
rsIn.close();
statement.close();
jTextArea4.append(outputIn+"};\n");
}

//— Processing
ResultSet rsPr;
String outputPr="";
statement = connection.createStatementQ;
ResultSet resultSetPr = statement. executeQuery(" SELECT COUNT(*) FROM"
+" (SELECT DISTINCT TOTYPE FROM dba WHERE FROM_TYPE=TV)");

// Get the number of rows from the result set

resultSetPr.next();
int NrowsPr = resultSetPr.getInt(1);
resultSetPr.close();
statement.close();

if(NrowsPr>=l)
{ jTextArea4.append(" (state=Pr):{");

statement = connection.createStatement();
rsPr = statement.executeQuery("SELECT DISTINCT TOTYPE " +
"FROM dba WHERE FROM_TYPE='Pr'");

while(rsPr.nextQ)
{

if(rsPr.getRow() < NrowsPr)
outputPr += rsPr.getString("TO_TYPE")+ ", ";
else
outputPr += rsPr.getString("TO_TYPE");

}

75

rsPr.close();
statement.close();

jTextArea4.append(outputPr+"};\n");
}

//--
-—ABORTED

ResultSet rsAb;

String output Ab="";

statement = connection.createStatement();

ResultSet resultSetAb = statement.executeQuery("SELECT COUNT(*) FROM" +

" (SELECT DISTINCT TOTYPE FROM dba WHERE FROM_TYPE='Ab')");

// Get the number ofWws from the result set

resultSetAb.next();

int NrowsAb = resultSetAb.getlnt(l);

resultSetAb.close();

statement.close();

if(NrowsAb>=l)

{

jTextArea4.append(" (state=Ab): {");

statement = connection.createStatement();

rsAb = statement.executeQuery("SELECT DISTINCT TOTYPE " +

"FROM dba WHERE FROM_TYPE='Ab'");

while(rsAb.next())

{

if(rsAb.getRow() < NrowsAb)

outputAb += rsAb.getString("TO_TYPE")+ ", ";

else

76

outputAb += rsAb.getString("TO_TYPE");

}

rsAb.close();

statement.close();
i

jText Area4.append(outputAb+"} ;\n");

}

// DONE

ResultSet rsDo;

String outputDo="";

statement = connection.createStatement();
ResultSet resultSetDo = statement.executeQuery("SELECT COUNT(*)
FROM" +" (SELECT DISTINCT TO_TYPE FROM dba WHERE
FROM_TYPE='Do')");

// Get the number of rows from the result set

resultSetDo.next();

int NrowsDo = resultSetDo.getlnt(l);

resultSetDo.close();

statement.close();

if(NrowsDo>=l)

{

jTextArea4.append(" (state=Do): {");

statement = connection.createStatement();

rsDo = statement.executeQuery("SELECT DISTINCT TO TYPE " +

"FROM dba WHERE FROM_TYPE='Do"');

while(rsDo.next())

77

{

if(rsDo.getRow() < NrowsDo)

outputDo += rsDo.getString("TO_TYPE")+ ", ";

else

outputDo += rsDo.getString("TO_TYPE");

}

rsDo.close();

statement.close();

jText Area4.append(outputDo+"} ;\n");

}

COMPENSATED

ResultSet rsCo;

String outputCo="";

statement = connection.createStatement();

ResultSet resultSetCo = statement.executeQuery("SELECT
COUNT(*) FROM" +" (SELECT DISTINCT TO_TYPE FROM dba
WHERE FROM_TYPE='Co')");

// Get the number of rows from the result set

resultSetCo.next();

int NrowsCo = resultSetCo.getlnt(l);

resultSetCo.close();

statement.close();

if(NrowsCo>=l)

{

jTextArea4.append(" (state=Co):{");

78

statement = connection.createStatement();

rsCo = statement.executeQuery("SELECT DISTINCT TOTYPE " +

"FROM dba WHERE FROM_TYPE='Com);

while(rsCo.next())

{

if(rsCo.getRow() < NrowsCo)

outputCo += rsCo.getString("TO_TYPE")+ ", ";

else

outputCo += rsCo.getString("TO_TYPE");

}

rsCo.close();

statement.close();

jText Area4.append(outputCo+"} ;\n");

}

SUSPENDED

ResultSet rsSu;

String outputSu="";

statement = connection.createStatement();
ResultSet resultSetSu = statement.executeQuery("SELECT
COUNT(*) FROM" +" (SELECT DISTINCT TO_TYPE FROM
dba WHERE FROM_TYPE=,Su,)M);

// Get the number of rows from the result set

result Set Su.next();

int NrowsSu = resultSetSu.getlnt(l);

resultSetSu.close();

statement.close();
if (NrowsSu>=l)

79

{

jTextArea4.append(" (state=Su): {");

statement = connection.createStatement();

rsSu = statement.executeQuery("SELECT
DISTINCT TO TYPE " + "FROM dba
WHERE FROM_TYPE='Su"');

while(rsSu.next())

{

if(rsSu.getRow() < NrowsSu)

outputSu += rsSu.getString("TO_TYPE")+ ", ";

else

outputSu += rsSu.getString("TO_TYPE");

}

rsSu.close();

statement.close();

jTextArea4.append(outputSu+"};\n");

}

}
catch (SQLException sqlex) {

sqlex.printStackTrace();
}

jTextArea4.append(" (state=En): {Na} ;\n");
jTextArea4.append(" 1 :state;\n"+"esac;\n\n");

}

} // end anonymous inner class

); // end call to addActionListener

}
return buttonCONVERT;

}

80

