
DISCRIMINANT ANALYSIS BASED FEATURE 

EXTRACTION FOR PATTERN RECOGNITION 

WEI Wu 

A THESIS 

IN 

THE DEPARTMENT 

OF 

ELECTRICAL AND COMPUTER ENGINEERING 

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

CONCORDIA UNIVERSITY 
MONTREAL, QUEBEC, CANADA 

SEPTEMBER 2009 

© Wei Wu, 2009 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

Biblioth&que et 
Archives Canada 

Direction du 
Patrimoine de l'6dition 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-63403-5 
Our file Notre reference 
ISBN: 978-0-494-63403-5 

NOTICE: AVIS: 

The author has granted a non-
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non-
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Biblioth&que et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

M 

Canada 



ii 



ABSTRACT 

Discriminant Analysis Based Feature Extraction for Pattern 

Recognition 

Wei Wu, Ph.D. 

Concordia University, 2009 

Fisher's linear discriminant analysis (FLDA) has been widely used in pattern 

recognition applications. However, this method cannot be applied for solving the pattern 

recognition problems if the within-class scatter matrix is singular, a condition that occurs 

when the number of the samples is small relative to the dimension of the samples. This 

problem is commonly known as the small sample size (SSS) problem and many of the 

FLDA variants proposed in the past to deal with this problem suffer from excessive 

computational load because of the high dimensionality of patterns or lose some useful 

discriminant information. This study is concerned with developing efficient techniques 

for discriminant analysis of patterns while at the same time overcoming the small sample 

size problem. With this objective in mind, the work of this research is divided into two 

parts. 

In part 1, a technique by solving the problem of generalized singular value 

decomposition (GSVD) through eigen-decomposition is developed for linear discriminant 

analysis (LDA). The resulting algorithm referred to as modified GSVD-LDA (MGSVD-

LDA) algorithm is thus devoid of the singularity problem of the scatter matrices of the 

traditional LDA methods. A theorem enunciating certain properties of the discriminant 
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subspace derived by the proposed GSVD-based algorithms is established. It is shown that 

if the samples of a dataset are linearly independent, then the samples belonging to 

different classes are linearly separable in the derived discriminant subspace; and thus, the 

proposed MGSVD-LDA algorithm effectively captures the class structure of datasets 

with linearly independent samples. 

Inspired by the results of this theorem that essentially establishes a class separability 

of linearly independent samples in a specific discriminant subspace, in part 2, a new 

systematic framework for the pattern recognition of linearly independent samples is 

developed. Within this framework, a discriminant model, in which the samples of the 

individual classes of the dataset lie on parallel hyperplanes and project to single distinct 

points of a discriminant subspace of the underlying input space, is shown to exist. Based 

on this model, a number of algorithms that are devoid of the SSS problem are developed 

to obtain this discriminant subspace for datasets with linearly independent samples. 

For the discriminant analysis of datasets for which the samples are not linearly 

independent, some of the linear algorithms developed in this thesis are also kernelized. 

Extensive experiments are conducted throughout this investigation in order to 

demonstrate the validity and effectiveness of the ideas developed in this study. It is 

shown through simulation results that the linear and nonlinear algorithms for discriminant 

analysis developed in this thesis provide superior performance in terms of the recognition 

accuracy and computational complexity. 
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Chapter 1 

Introduction 

1.1 Background 

Pattern recognition is the discipline that studies how a machine can observe the 

environment, learn to distinguish patterns (samples), and make reasonable decisions on 

the classes of new patterns [1]. Pattern is a quantitative or structural description of an 

object or some other entity of interest. Depending on the applications, patterns can be 

handwritten cursive words, speech signals, odor signals, fingerprint images, animal 

footprints, human faces or any type of measurements that need to be classified. 

One of the widely used pattern recognition approaches is the statistical pattern 

recognition. In the statistical approach, each pattern is represented in terms of m features. 

Depending on the measurements of an object, features in a pattern can be either discrete 

numbers or real continuous values. The requirement on features is that the features can 

reflect the characteristics of desired objects and differ from those other objects to the 

largest extent. For example, a face image, being a d x d array of 8 bit intensity values, 

can be represented as a vector of dimension m - d 2 . Thus, each pattern can be viewed as 

an m-dimensional feature vector or a point in an m-dimensional space, that is, 

x = [X[, x2, • • •, xm ] 
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where x],x2,---,xm are the features. This space is called sample feature, feature space or 

input space. For example, an image of size 256x256 becomes a 65536-dimensional 

vector or equivalently, a point in a 65536-dimensional space. 

The procedure of a statistical pattern recognition system has two main steps: training 

(learning) and classification (testing). In the training step, feature extraction creates a set 

of representative features based on transformations or combinations of the given patterns. 

The set of representative features is considered to be the most important and effective 

attributes in distinguishing the patterns from different classes. The classification step is to 

assign a class label to each new pattern. 

Patterns, being similar in overall configuration, are not randomly distributed in the input 

space and thus can be described by a relatively low-dimensional subspace. The idea is to 

find appropriate features for representing the samples with enhanced discriminatory 

power for the purpose of recognition. This process is known as feature extraction. A 

commonly used feature extraction technique is to transform the original sample space 

into a lower-dimensional discriminant subspace, in which a transformed sample of the 

dataset is easily distinguished. The objective is to find a set of transformation vectors 

spanning over the discriminant subspace, on which the projections of the samples within 

each class condense into a compact and separated region. 

1.2 Motivation 

Two classical linear feature extractors are principal component analysis (PCA) [2] -

[3], [7] - [8] and Fisher's linear discriminant analysis (FLDA) [4], [5], [6]. Both these 

methods extract features by projecting the original sample vectors onto a new feature 
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space through a linear transformation matrix. However, the goal of optimizing the 

transformation matrix in the two methods is different. In PCA, the transformation matrix 

is optimized by finding the largest variations in the original feature space [2] - [3], [7] -

[8], On the other hand, in FLDA, the ratio of the between-class and within-class 

variations is maximized by projecting the original features to a subspace [4], [5], [6], 

PCA is effective in restructuring the dataset, but it is weak in providing the class 

structure. FLDA formulates the class boundaries by finding a discriminant subspace in 

which different classes occupy compact and disjoint regions using the Fisher criterion 

[5], [6] 

_ |G r S„G| G ^ a r g m a x ^ - ^ 

where SB and Sw are, respectively, the between-class and within-class scatter matrices, 

G is the transformation matrix whose columns are the projection vectors that span the 

discriminant subspace, and |*| denotes the determinant of the associated matrix. The 

solution to this maximization problem is the set of eigenvectors corresponding to the non-

zero eigenvalues of the matrix S~'SA. 

The Fisher linear discriminant analysis cannot be applied to solve pattern recognition 

problems if the within-class scatter matrix is singular, a situation that occurs when the 

number of the samples is small relative to the dimension of the samples. This is so-called 

the small sample size (SSS) problem [4]. Small sample size data with high dimensionality 

are often encountered in real applications, such as in human face recognition. Many 

FLDA variants have been proposed to address this singularity issue [9] - [46]. Tian et al. 

[15] have used the pseudoinverse method by replacing S"1 with its pseudoinverse. Cheng 



et al. [16] have proposed a rank decomposition method based on successive eigen-

decomposition of the total scatter matrix S, and the between-class scatter matrix SB. 

However, the above methods are typically computationally expensive since the scatter 

matrices are very large [17]. In [18], a two-stage FLDA method has been introduced, in 

which a principal component analysis is carried out for dimension reduction prior to 

applying the Fisher criterion. However, this dimension reduction step eliminates some 

useful discriminant information, since some of the eigenvectors of the total scatter matrix 

are discarded in order to make Sw non-singular [19] - [24]. In the direct LDA (D-LDA) 

method [19], the null space of SA is first removed, and then the discriminant vectors in the 

range of S6 are found by simultaneously diagonalizing SB and Sw [4], A drawback of this 

method is that some significant discriminant information in the null space of Sw gets 

eliminated due to the removal of the null space of SA [20], [22] - [24], In the regularized 

FLDA (RLDA) [21], [29] - [33], the singularity problem is solved by adding a 

perturbation to the scatter matrix. The optimal perturbation parameter is normally 

estimated adaptively from the training samples through cross-validation, a process which 

is very time consuming. Some FLDA variants have attempted to overcome the SSS 

problem by using the generalized singular value decomposition (LDA/GSVD) [34], [35], 

However, these methods suffer from excessive computational load because of the large 

dimension of the samples [36]. Chen et al. [41] proposed the null space method based on 

the modified FLDA criterion 

_ | GTSBG | 
GMFLDA =arg max * 
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where S, is the total scatter matrix [42], [43]. However, the authors did not give an 

efficient algorithm for applying this method to solve the singularity problem of the Fisher 

criterion [47]. 

Since the linear feature extraction methods cannot capture the nonlinear class 

boundaries, which exist in many patterns and affect the recognition accuracy of the 

patterns, kernel machines [49] - [56] are used to map the patterns into a high-dimensional 

kernel feature space where the patterns are linearly separable, and thus, the linear feature 

extraction techniques can be applied in the mapped space. The integration of the kernel 

machine with a linear discriminant method provides a nonlinear algorithm with improved 

recognition accuracy [57] - [77]. However, nonlinear algorithms also suffer from the 

same problems as that inherent in the corresponding linear versions. Hence, the choice of 

a good linear algorithm is crucial to obtaining an efficient kernelized algorithm. 

From the foregoing discussion, it is clear that the existing discriminant analysis 

techniques, in general, suffer from the excessive computational load in dealing with the 

high dimensionality of patterns or lose some useful discriminant information in order to 

overcome the singularity problem associated with the Fisher criterion. It is, therefore, 

necessary to conduct an in-depth study of the mechanism of the discriminant analysis 

leading to designs of efficient low computational complexity algorithms for feature 

extraction without having to deal with the SSS problem. 

1.3 Scope of the Thesis 

The objective of this research is to devise efficient techniques for discriminant 

analysis of patterns and to apply them for developing feature extraction algorithms that 
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are devoid of the small sample size problem. With this unifying theme, the work of this 

study is carried out in two parts. 

In part 1, a low-complexity algorithm that overcomes the singularity problem of the 

scatter matrices of the traditional FLDA methods is developed for linear discriminant 

analysis (LDA) by solving the problem of generalized singular value decomposition 

(GSVD) through eigen-decomposition. A theorem providing the distance between 

samples in the discriminant subspace derived from this GSVD-based algorithm is 

established to address the class structure and separability of linearly independent samples. 

In part 2, a new systematic framework for the feature extraction of datasets with 

linearly independent samples is developed. Within this framework, a discriminant model 

is first established. It is shown that if the samples of a dataset are linearly independent, 

then the samples of the individual classes of the dataset lie on parallel hyperplanes and 

the samples of the entire class can be projected onto a unique point of a discriminant 

subspace of the underlying input space. A number of algorithms that are devoid of the 

SSS problem are developed to determine the discriminant subspace for datasets with 

linearly independent samples. 

1.4 Organization of the Thesis 

The thesis is organized as follows. 

In Chapter 2, a brief review of the linear and nonlinear techniques for feature 

extraction is presented. This review is intended to facilitate the understanding of the 

development of the techniques for feature extraction presented in the thesis. This chapter 
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also includes some preliminaries on the commonly used techniques for dealing with the 

singularity problem associated with the Fisher criterion. 

In Chapter 3, a new technique [37], referred to as the MGSVD-LDA algorithm that 

can effectively deal with the SSS problem, is presented by applying eigen-decomposition 

to solve the problem of the generalized singular value decomposition. A scheme is 

developed to kernelize the proposed linear algorithm to deal with the discriminant 

analysis of datasets in which samples are not linearly separable and a direct application of 

a linear algorithm fails to separate the classes of the datasets. In order to improve the 

recognition accuracy of the proposed linear and nonlinear algorithms further, a method is 

devised to take care of the over-fitting problem by orthogonalizing the basis of the 

discriminative subspace [38], [39]. Extensive simulation results are also presented in this 

chapter to demonstrate the effectiveness of the proposed linear, kernelized and 

orthogonalized algorithms and compare their performance with that of other existing 

algorithms. 

In Chapter 4, a theorem that establishes the class structure and separability of linearly 

independent samples in the discriminant subspace derived from the proposed MGSVD-

LDA algorithm is developed. This theorem is then used to develop a method to estimate 

the numerical errors of the proposed algorithms and also to control the kernel parameters 

to maximize the recognition accuracy of the kernelized algorithm. 

In Chapter 5, a systematic framework for the pattern recognition of datasets with 

linearly independent samples is developed [40], A discriminant model, in which the 

samples of the individual classes of a dataset lie on parallel hyperplanes and project to 

single distinct points of the discriminant subspace of the underlying input space, is shown 
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to exist. In conformity with this model, three new algorithms are developed to obtain the 

discriminant subspace for datasets with linearly independent samples. A kernelized 

algorithm is also developed for the discriminant analysis of datasets for which the 

samples are not linearly independent. Simulation results are also provided in this chapter 

to examine the validity of the proposed discriminant model and to demonstrate the 

effectiveness of the linear and nonlinear algorithms designed based on the proposed 

model. 

Finally, in Chapter 6, concluding remarks highlighting the contributions of the thesis 

and suggestions for some further investigation of the topics related to the work of this 

thesis are provided. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Feature extraction is one of the central and critical issues to solving pattern recognition 

problems. It is the process of generating a representative set of data from the 

measurements of an object, which are considered to be the most important and effective 

descriptors or characteristic attributes in distinguishing the object to belong to one class 

from another class. The main objective here is to find techniques that can introduce low-

dimensional feature representation of objects, i.e., reduce the amount of data needed in 

representing objects, while achieving the best discriminatory power. 

Feature extraction techniques, in general, can be classified into two categories: linear 

and nonlinear methods [1], [4], Linear methods can be applied when the samples are 

linearly separable. Two subsets U and V of are said to be linearly separable (LS) if 

there exists a hyperplane P in 5?m such that the samples of U and those of V lie on its 

opposite sides. On the contrary, if they are nonlinearly separable (NLS), then a single 

hyperplane cannot be used to classify them [84], [87]. Figure 2.1 shows an example of LS 

and NLS set of sample points. In some cases, linear methods may not provide a sufficient 

discriminating power for nonlinearly separable samples. Nonlinear techniques, such as 
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kernel methods [49] - [56], can be used to transform the input samples into a higher 

dimensional kernel feature space by a nonlinear kernel mapping where samples become 

linearly separable so that the linear discriminant analysis can be applied in that high 

dimensional kernel feature space. 

• 
i—| ^ in n 

D # • 
• 

(a) (b) 

Figure 2.1: Examples of (a) LS set of sample points and (b) NLS set of sample points 

In this chapter, the linear feature extractors — principle component analysis (PCA) 

[2], [3], [7], [8], Fisher's linear discriminant analysis (FLDA) [5], [6] and some of the 

representative FLDA variants — are reviewed. Techniques to deal with the singularity 

problem of the scatter matrices of the traditional FLDA are explained in detail. Some 

nonlinear discriminant methods that can effectively deal with nonlinearly distributed 

patterns are also briefly discussed. 

2.2 Linear Feature Extraction Techniques 

Many linear methods have been proposed for feature extraction during the last two 

decades [2], [3], [5] - [46]. Among these methods, PCA and FLDA are the two most 

well-known and frequently used techniques. In PCA, the projection axes, along which the 
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variance of the projected components of all the sample vectors is maximized, are found. 

In FLDA, the optimal directions to project input samples in high-dimensional space onto 

a lower-dimensional space are searched with an objective of finding a discriminant 

subspace where different class categories occupy compact and disjoint regions. 

2.2.1 Principle Component Analysis 

Given a set of w-dimensional samples, the total covariance matrix can be formed as 

where x, is the /th sample vector, n the sample size, and c the global centroid given by 

c = - 5 > , (2-2) n ,=\ 

PCA finds the set of projection directions, G ^ , in the sample space that maximize the 

total scatter across all the samples: 

where G is the transformation matrix, GPCA is the optimal transformation matrix whose 

columns are the orthonormal projection (transformation) vectors that can maximize the 

total scatter, and |*| denotes the determinant of the associated matrix. Essentially, this is 

an eigenvalue problem. If the eigenvectors are sorted in the order of descending 

eigenvalues, the variance of the projected samples along any eigenvector is larger than 

that along the next eigenvector in the sorted sequence. When the number of non-zero 

7 (2.1) 

G PCA = arg max | GrS,G (2.3) 
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eigenvalues is less than the dimension of the original sample space, PCA can be used to 

project the samples from the original high-dimensional sample space to a subspace of the 

sample space to reduce the dimensionality of the samples and to set them as apart as 

possible. 

Generally, if the original sample space is low-dimensional, the eigenvectors and 

eigenvalues of the matrix S, can be calculated directly. However, for a problem, such as 

face recognition using holistic whole-image based approach, the dimensionality of a face 

sample vector is always very high. A direct calculation of the eigenvectors of S ; is 

computationally expensive, or even infeasible on computers with low cache memory. 

The Eigenface technique [25] that determines the required eigenvectors has been 

proposed to deal with this problem. These eigenvectors are also called eigenfaces. In this 

method, S, is first expressed as 

X T 
whereH, =—t=[X, -c,.. . ,xn - c ] , and then an nxn matrix R = H,H , is formed. In case 

yjn 

that the number of samples n is much smaller than the dimension m of the samples, the 

size of R is much smaller than that of S,, and hence, it is much easier to obtain its 

eigenvectors. Let u,, u2, ..., un_, be the orthonormal eigenvectors of R, corresponding 

to the n-1 largest eigenvalues \ > A2 >... > An_t . Then, the corresponding orthonormal 

eigenvectors of Sr are given by 

S l = - 2 ( X / - c X x , - c ) r = H , H f 
n ,=, 1 (2.4) 

1 (2.5) 
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The projection of the sample x, on the eigenvector g. is given by 

T 
yj=gj * = (2.6) 

The resulting features, yv y2, ..., yn_,, form a PCA-transformed feature vector 

y/ = b p y2> •••> y»-if for the samples x,, / = 1, ..., n. 

2.2.2 Fisher's Linear Discriminant Analysis and its Variants 

Fisher's Linear Discriminant analysis is one of the most prevalent linear feature 

extraction techniques for discriminant analysis. Similar to PCA, in FLDA, the optimal 

directions are obtained to project input high-dimensional samples onto a lower-

dimensional subspace. However, while the key idea behind PCA is to find the directions 

along which the data variance is the largest, that behind FLDA is to search for the 

projection directions that simultaneously maximize the distance between the samples of 

different classes and minimize the distance between the samples of the same class. The 

class separability in low-dimensional representation is maximized in the FLDA method 

while it is not in PCA [1], [4]. FLDA-based algorithms usually outperform PCA-based 

ones because of the more rational objective and optimality criterion of the former. 

Given a set of w-dimensional samples that consisting of N classes with the /th class 

having nt samples, the global centroid is given by (2.2) and the centroid of /th class is 

given by 

c (2.7) 
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(2.8) 

where ki=nx+n2-\- ... + ni, and x, is the /th ( I = 1, 2, . . . , « ) sample vector, n the 

N 

sample size, « = , and i the class number, i - 1, ..., N. By using the three matrices, 
M 

H I5 Hw and H,, given by 

H6 = [V^(c (1) - c),..., - c)] 

H ; = - U ( X l - c ) , . . . , ( x n - c ) ] 
V" 

the between-class and within-class and total scatter matrices can be defined as 

S „ = H X . S t = H X > S ( = H , H (
r (2.9) 

respectively. The linear discriminant analysis employs the Fisher criterion given by 

IGTS GI Gflda =argmax * =[g„ g2, ..., g j (2.10) 

where G is the transformation matrix and GFLDA is the optimal transformation matrix 

whose columns, g ;, i = l ,2, ..., d, are the set of generalized eigenvectors of SA with 

regard to Sw[5] corresponding to the d < N-\ largest generalized eigenvalues that is, 

SAg,.=A;Swg „i = l,2 d. (2.11) 
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When the inverse of Swdoes exist, the generalized eigenvectors can be obtained by the 

eigen-decomposition of S~'S6 . The new feature vectors y, are defined by 

Yi = GT x,, 1 = 1, 2, ..., n. 

Through the above process of FLDA, the set of the transformation vectors is found to 

map the high-dimensional samples onto a low-dimensional space, the discriminant 

subspace, and at the same time, all the samples projected along this set of transformation 

vectors have the maximum between-class and minimum within-class scatters 

simultaneously. 

It is seen that the Fisher linear discriminant analysis has a limitation in that it requires 

the within-class scatter matrix Sivto be non-singular, which is not the case in practice 

when the SSS problem occurs, i.e., when the number of the samples is smaller than the 

dimension of the samples. Small sample size datasets with high dimensionality widely 

exist in real applications such as human face recognition and analysis of micro-array data. 

To deal with this limitation of the FLDA technique, a number of variants to this 

technique have been proposed in the literature. 

1) PCA + FLDA Method 

Swets and Weng [18] have proposed the PCA + FLDA method, also known as the 

Fisherface method, in order to solve the singularity problem of the Fisher criterion. In this 

method, in order to make Sw nonsingular, PCA is first applied to reduce the sample 

dimension from m to n-N and the transformation matrix G PCA is obtained. Then, the 

dimension is further reduced to N-1 for obtaining a lower-dimensional feature 



representation of the samples and the transformation matrix G FLDA . The overall 

transformation matrix of the PCA + FLDA method is given by 

Gp, PCA+FLDA (2.12) 

where GPCA can be obtained from (2.3), which rewritten here as 

GPCA
 = argmax | GfS,G, | O (2.13) 

and GFWA is given by 

GFLDA =argn (2.14) 

with G, and G2 being the matrices whose columns are the projection vectors in the PCA 

and FLDA transformed spaces, respectively, and Sj = G ^ S ^ G ^ and Sw = GT
PCASWGPCA 

A problem with this algorithm is that the discarded eigenvectors in its PCA part may 

contain some discriminant information, very useful to the FLDA part. Later, Chen et al. 

[41] have proved that the null space of Sw , as a matter of fact, contains the most 

discriminative information. To avoid the loss of significant discriminant information due 

to the PCA preprocessing step, an algorithm, referred to as direct LDA (D-LDA), without 

a separate PCA step, has been proposed in [19]. 

2) Direct LDA (D-LDA) Method 

In the D-LDA method [19], the idea of "simultaneous diagonalization" [4], [78] of SA 

and Slv is employed to deal with the SSS problem. The matrix SB is first diagonalized and 

scaled, and then Swis diagonalized. 
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The eigenvector matrix V that diagonalizes S6 is obtained by using eigen-

decomposition of S6 such that 

VTSB\ = A (2.15) 

where V is the eigenvector matrix and A is the eigenvalue matrix of SB. By keeping only 

the non-zero eigenvalues of A , (2.15) is re-written as 

V rS4V = A6 (2.16) 

where in this equation, the diagonal elements of AB, with the non-zero eigenvalues only, 

are arranged in a non-increasing order and V is the eigenvector matrix with the 

eigenvectors corresponding to the non-zero eigenvalues only. Next, using the matrix 

Z = VA^ (2.17) 

the S4 is diagonalized as 

Z r S 6 Z = I (2.18) 

and the matrix Z rSwZ is diagonalized using eigen-decomposition as 

U r(Z rSwZ)U = Dw (2.19) 

where U is the eigenvector matrix and Dw is the eigenvalue matrix of ZTSWZ. Finally, 

the transformation matrix is given by 

G = ZUD_i (2.20) 
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In this algorithm, the null space of SB, which the authors of [19] claim to contain no 

useful information for discrimination, is ignored in the first step. However, Gao et al. [28] 

have pointed out that the D-LDA algorithm has a shortcoming in that ignoring of the null 

space of for dimension reduction would also neglect part of the null space of Sivand 

would thus result in the loss of some useful discriminant information contained in the null 

space of Sw. 

3) Regularized LDA Method 

To deal with the singularity problem of the Fisher criterion, a regularized FLDA 

(RLDA) has been introduced in [29], [29]. The basic idea of the regularization technique 

is to add a constant a > 0 , known as the regularization parameter, to the diagonal 

elements of the scatter matrices. This parameter is estimated via cross-validation. 

The way to deal with the singularity of scatter matrix Sw in the classical or S, in the 

modified Fisher criterion [42] is to apply regularization by adding a constant to the 

diagonal elements of Sw or S,, i.e., Sw = Sw +al or S, = S, + al, where I is the identity 

matrix of size m x m . 

The classical Fisher criterion giving GFLDA is defined by (2.10), and the modified 

Fisher linear discriminant criterion [4] is given by 

GMFLDA = arg max (2.21) ° I Lr I 

where 
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S,=S w + S t (2.22) 

Since Sw and S( are positive semi-definite, Sw and S, are also positive definite, and 

hence, nonsingular. Then, the transformation matrix for the RLDA method, GRLDM or 

GRLDA2 , can be obtained by using the following optimality criteria: 

G , ^ = a r g n , a x | G J (
G

s ^ G | (2.24) 

The solution to (2.23) or (2.24) can be obtained by computing the eigen-decomposition of 

(Sw + aI)- !S4 or (S, +al)~x S 4 . 

This method has a high computational load when the samples have a large dimension. 

Also, an adaptive estimation of the optimal regularization parameter from the training 

samples using cross-validation is very time-consuming. To overcome the shortcomings of 

the RLDA method, a number of improved RLDA algorithms have been proposed in the 

literature [21], [31]-[33], 

4) Null Space Method 

In order to overcome the singularity problem of the Fisher criterion, Chen et al. [41] 

have proposed the null space method based on the modified criterion [4] for Fisher's 

linear discriminant analysis. 

In this method, a preprocessing step is employed to extract the geometric features and 

to reduce the dimension of the original sample space. All the training samples are then 
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projected onto the null space of Sw . The projection vectors thus obtained are finally 

transformed into the projection vectors by applying PCA. 

The algorithm given in [41] for applying the null space method in the original sample 

space is not efficient. A pixel grouping method is applied to extract geometric features so 

as to reduce the dimension of the sample space. It has been pointed out that the 

performance of this method depends on the dimension of the null space of Sw in the 

sense that a larger dimension provides a better performance. Thus, a preprocessing step to 

reduce the original sample dimension should be avoided [47], [88], [89]. 

2.3 Nonlinear Feature Extraction Techniques 

Although the linear discriminant methods described in the previous section are 

successful when the samples in datasets are linearly separable, they do not provide good 

performance when the samples do not follow such a pattern, since it is difficult to capture 

a nonlinear distribution of samples with linear mapping. As the distributions of most 

patterns in real world are nonlinear and very complicated, problem of pattern recognition 

of nonlinearly separable samples should be addressed using nonlinear methods. Kernel 

machine techniques [49] - [56] are a category of such nonlinear methods. The main idea 

behind these techniques is to transform the input space into a higher dimensional feature 

space by using a nonlinear kernel mapping where patterns become linearly separable so 

that the principles of linear discriminant analysis can be applied in the kernel feature 

space. The kernel functions allow such nonlinear extensions without explicitly forming a 
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nonlinear mapping, as long as the problem formulation involves the inner products 

between the mapped data points. 

A kernel is a nonlinear mapping ® , designed to map the samples of the input space 

y{m into a higher-dimensional feature space T : 

<X> . 9 T - > r 

Correspondingly, the samples x, 's in the original input space are mapped into the 

kernel feature space T , where the classes of the resulting higher dimensional feature 

vectors 's become linearly separable. However, the high dimensionality of the feature 

space makes the feature extraction computationally infeasible. This problem is overcome 

by using the so-called "kernel trick" [54], in which the inner product of the mapped 

vectors in the feature space can be implicitly derived from the inner products between the 

input samples, such that 

where (•) denotes the inner product of the two associated vectors, &(•) denotes a kernel 

function, and klh is a scalar. The key to a successful kernelization of a linear algorithm is 

in its ability to construct inner products in the input space and then to reformulate these 

products in the feature space. A number of kernelized discriminant analysis algorithms 

have been proposed with enhanced recognition accuracy [57] - [77]. In the next two 

subsections, the method of kernelizing linear algorithms is demonstrated using the linear 

principle component analysis [2] and Fisher's discriminant analysis [4] methods. 

(2.25) 
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2.3.1 Kernelization of the Principle Component Analysis Method 

The basic idea of the kernelized principle component analysis (KPCA) [57] is to map 

the input data into a new feature space T where the samples become linearly separable 

so that the linear PCA can be performed in that feature space. 

Given a set of m-dimensional training samples x,, / = 1, 2, ..., n , the matrices 

and O are defined as 

- V ) ] (2-26) yjn 

0 = [M/„M/2,...,Y|/„] (2.27) 

where is the mapped sample vector corresponding to sample vector x, and \j/ is the 

global centroid of the mapped sample vectors in the kernel feature space. 

Similar to the definition of the total scatter matrix S, in the input sample space, by 

using the matrix the total scatter matrix S, in the feature space is given as 

S, = (2.28) 

The elements of the matrix R = <DrO are then determined by using the "kernel trick": 

) = *((*/>**» (2-29) 

The mapped samples are centered around the global centroid by replacing the matrix R 

by 

R = R-1„R-R1„+1„R1„ (2 30) 
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where the matrix 1„ = (1 / n)nxn. 

The orthonormal eigenvectors u,,u2,...,un_1 of R , corresponding to the n-1 largest 

decomposition of R and the corresponding orthonormal eigenvectors of S, , 

gi> £2> •••> g„-i5 given by 

form the kernelized transformation matrix. 

2.3.2 Kernelization of the Fisher Linear Discriminant Analysis Method 

FLDA is designed for linear pattern recognition applications. However, it fails to 

perform well for the recognition of patterns that are not linearly separable. To deal with 

this problem, nonlinear versions of FLDA have been proposed. First, Mika [58] 

formulated a kernelized Fisher discriminant (KFD) analysis method for a two-class case, 

and then Baudat [59] proposed a generalized kernel discriminant analysis (GDA) for 

datasets with multiple classes. 

In basic idea of the GDA method is to first perform the centering in the kernel feature 

space by shifting each mapped sample vector using the global centroid, and then to apply 

the discriminant analysis in the centralized kernel feature space. In this method, given a 

non-zero eigenvalues, Xx>X1> ... > A can be obtained by using the eigen-

g (2.31) 
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set of m-dimensional training samples x/5 / = 1, 2, ..., n, consisting of N classes where 

N 

the /'th class has samples(thus, n = ^ ), first the following three matrices are defined: 
1=1 

y/n 

yjn 

(2.32) 

where \|/, is the mapped sample vector corresponding to the input sample vector x,, \(/ (0 

is the centroid of the mapped samples of the /th class, and v|/ is the global centroid of the 

mapped samples in the kernel feature space. The Fisher criterion can then be expressed 

as 

G K - arg max 
GSBG 

G S,„G 
(2.33) 

where Sb and Sw are, respectively, the between-class and within-class scatter matrices 

defined in the kernel feature space T as 

(2.34) 

S = ® & W WW (2.35) 

and G = [gA:i, gK2> • ••> gKdf ' s the transformation matrix. The matrix G^is the optimal 

transformation matrix with its columns gKl's as the eigenvectors corresponding to the d 
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largest eigenvalues obtained by solving the generalized eigenvalue problem: 

Sftgjcf = Ki • This generalized eigenvalue problem cannot be solved due to the high 

dimensionality of the mapped sample vectors. This problem is solved by formulating an 

alternate generalized eigenvalue problem. 

Let a(. = (an,...,ain)T, i = 1, 2, ..., d, such that 

n 
g , = X a „ V , = ® a , (2-36) 

/=i 

where <J> is defined by (2.27). The transformation matrix G can be expressed as 

G = O [ a „ a 2 , . . . , a J = <D0 (2.37) 

where 0 = [a1 ,a2 , . . . ,a r f] . Substituting (2.37) into (2.33), the Fisher criterion can be 

expressed as [57] 

0 r ( R W R ) 0 
0 ^ = a r g m a x — (2.38) 0 0 (RR)0 

where the matrix R is given by (2.30) and W = diag(W,,...W,.,...,Ww) is an nxn 

block diagonal matrix with W( being an nt x nj diagonal matrix with all its diagonal 

elements equal to 1 / ni. 

Conducting an eigen-decomposition of the matrix R yields 

R = PAP r (2.39) 
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where P is the eigenvector matrix of R with PRP = I , and A is the eigenvalue matrix 

with non-zero eigenvalues as its diagonal elements. Substituting (2.39) into (2.38), (2.38) 

can be expressed as 

0K = arg max 
( A 2 P R 0 ) R ( A 2 P R W P A 2 ) ( A 2 P R 0 ) 

( A 2 P R 0 ) R A ( A 2 P R 0 ) 
(2.40) 

By letting 

B = A 2 P 0 (2.41) 

Eqn. (2.40) can be expressed as 

B a = arg max 
B S A B 

B R S B 
(2.42) 

where Sb = A P WPA is semi-positive definite and Siv = A is positive definite. The 

columns of the optimal transformed coefficient matrix B ,̂ =[P,, P2, ..., P^]are actually 

the eigenvectors of Sw Sb corresponding to the d (d < N -1) largest eigenvalues, and can 

be obtained by eigen-decomposition of SwSb. Once the optimal transformed coefficient 

matrix B^ is determined, the corresponding optimal coefficient matrix can be 

obtained as 0 ^ = PA 'B^ . Finally, based on Fisher's optimality criterion given by (2.33), 

the optimal transformation matrix G^ is obtained as 

GK =®0„ =®PA BJ, (2.43) 
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2.4 Summary 

In this chapter, feature extraction techniques have been reviewed for solving pattern 

recognition problems. Techniques for feature extraction can be classified into linear and 

nonlinear categories. 

Linear methods are applied when the samples are linearly separable. In linear category, 

the principle component analysis (PCA), Fisher's linear discriminant analysis (FLDA) 

and some typical FLDA variants have been reviewed. Both the PCA and FLDA methods 

extract features by projecting the original sample vectors onto a new lower dimensional 

feature space through a linear transformation. However, the goal of optimizing the 

transformation matrix in the two methods is different. The FLDA-based algorithms 

usually outperform the PCA-based ones because of the use of more rational and objective 

optimality criteria in the former. The singularity problem of the scatter matrices of the 

traditional FLDA has been explained and techniques used in the FLDA variants for 

solving this problem have been described in detail. 

In the nonlinear category, the kernel technique has been discussed to deal with the 

nonlinearly distributed patterns. The main idea behind the kernel techniques is to 

transform the input data into a higher dimensional space by using a nonlinear mapping 

function, so that the samples become linearly separable and hence, the principles of linear 

discriminant analysis can be applied in that space. The method of kernelizing linear 

algorithms has been demonstrated using the methods of the linear principle component 

analysis and Fisher's discriminant analysis. 
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Motivations behind the development of the various discriminant analysis techniques 

discussed in this chapter and their limitation have been point out. 
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Chapter 3 

Discriminant Analyses Based on Modified Generalized 

Singular Value Decomposition 

3.1 Introduction 

An alternative to the FLDA algorithm [5] is the LDA/GSVD algorithm [34], [35], in 

which the GSVD [82], [83] is adapted to the FLDA algorithm for pattern recognition 

problems. GSVD not only provides a framework for finding the feature vectors with high 

recognition accuracy, but more importantly, it relaxes the requirement of the within-class 

scatter matrix to be non-singular. Thus, the LDA/GSVD algorithm is an effective 

approach to overcome the SSS problem. However, this algorithm has a drawback in that 

it cannot provide a practical solution to a pattern recognition problem with a large sample 

dimension. An important area is the face recognition problem, in which the sample 

dimension is almost invariably very high. Thus, in such a case, the LDA/GSVD 

algorithm experiences a memory overflow problem and fails to carry out the task of face 

recognition. The memory overflow occurs in conducting the SVD of a high-dimensional 

matrix associated with large dimension patterns. In the same paper [35], Ye et al. have 

presented yet another method, known as approximate LDA/GSVD method, in which the 

K-Means algorithm is introduced to reduce the computational complexity. However, it 

does not effectively address the problem of high computational complexity related to the 
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high dimensionality of the samples. This method also results in losing some useful 

discriminant information while dealing with the computational complexity problem. 

This LDA/GSVD algorithm may also suffer from the over-fitting problem in some 

applications, since the samples in the derived discriminant subspace may get corrupted 

with some random features that are unrelated to the actual discriminatory features and 

adversely impact the recognition accuracy. Ye et al. [86] have proposed a method to 

deal with the over-fitting problem of the LDA/GSVD algorithm. However, the proposed 

orthogonalization technique achieved through QR decomposition is not computationally 

efficient for high dimensional data and also it cannot be subjected to kernel methods. 

In this chapter, an algorithm, referred to as MGSVD-LDA algorithm, which 

overcomes the singularity problem in the Fisher criterion and deals effectively with the 

excessive computational load problem of the LDA/GSVD algorithm, is developed by 

using the eigen-decomposition to conduct the generalized singular value decomposition 

in the discriminant analysis. Schemes are given to kernelize the proposed linear algorithm 

and to deal with the over-fitting problem. 

Section 3.2 gives a brief review of the LDA/GSVD algorithm. The development of the 

proposed MGSVD-LDA [37] is carried out in Section 3.3. The scheme to kernelize the 

proposed linear algorithm is given in Section 3.4. A method that orthogonalizes the basis 

of the discriminant subspace derived from the GSVD-based algorithms is given in 

Section 3.5 to deal with the over-fitting problem [38], [39]. Experimental results 

demonstrating the performance of the proposed algorithms and their comparisons with 

other existing algorithms are presented in Section 3.6. 
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3.2 An Review of the LDA/GSVD Algorithm 

The objective of the Fisher linear discriminant analysis is to find an optimal 

transformation matrix G that consists of a set vectors g's given by 

I G r S GI 
GFLDA = arg max » =[g , ,g 2 , - - - ,gj (3.1) 

I w I 

where SB and Sware, respectively, the between-class and within-class scatter matrices. 

This criterion is equivalent to the generalized eigenvalue problem, SAg = ASwg, in which 

X is the generalized eigenvalue and g is the corresponding eigenvector of SB respect to 

Sw. The solution of this generalized eigenvalue problem has an important property that 

the matrix consisting of g's diagnolizes SB, Sw, and the total scatter matrix S, = SB + SW 

simultaneously [4]. Because of this property, the generalized singular value 

decomposition based LDA [34], [35] tries to find an optimal transformation matrix G that 

consists of g's. 

Given a set of w-dimensional training samples that consists of N classes, where the /th 

class has nt images, the global centroid and the class centroid are given by (2.2) and (2.7), 

respectively. We define Hftand Hw as given by (2.8) and a matrix C as 

C = 
H 

b 

H7 
(3.2) 

Then, SVD of C can be obtained as 
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C = P 
R 0 

0 0 
(3-3) 

where R e , k being rank(C), is a diagonal matrix whose diagonal components are 

the non-zero singular values of the matrix C sorted in a non-increasing order, and 

p g (̂<v+«)x(A'+«) a n d Q e m̂xm a r e orthogonal eigenvector matrices. The matrix P can be 

partitioned as 

P P r, r2 ^ s-1 
k n+N-K 

(3 .4) 

where P, e <R<"+">X* and P2 € g ^ " ) " ^ " - * ) . The sub-matrix Pi can be further partitioned 

as 
1 2 . 

, where P., e 9t"x* and P12 6 9TX*. Now, using SVD of Pi, we have 

U 'PuW = i:4 = D, (3 .5) 

(Nxk) 

and 

V P12W = = D (3 .6) 

(nxt) 
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where matrix U ,V and W are orthogonal eigenvector matrices and ~Lb and are 

eigenvalue matrices. In and Zw , lb e and Iw e 91 (k-u-s)x(k-u-s) are the identity 

matrices, where 

5 = rank(Hi) + rank(Hw) - rank(C) (3.7) 

and u = rank(C) - rank(Hw),O i e SR^-""^-" - 0 and 0W e 5R("-*+")K" are zero matrices, 

and D6 = diag( #„+/,..., au + s) and Dw = diag {3„+/,..., fiu+s) satisfying 

l>«„ + 1 >- - ->a H + s >0 

0< /?„ + 1 <-< /? H + J <l (3.8) 

a i + ft, =1, i = u +1, • • •, u + s 

Combining (3.3), (3.5) and (3.6) gives 

H 

H 
Q = [P,R, 0] = 

UL,W rR 0 

VE W rR 0 
(3.9) 

which can be expressed equivalently as 

(3.10) 

and 

V rHlQ = E , [ w r R 0] (3.11) 

Let 
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R ' W 0 
Y = Q (3.12) 

0 I 

Then, (3.10) and (3.11) can be transformed into 

H4
RY = u [ E 4 O], HR

WY = V | X 0 ] (3.13) 

from which we have 

Y rS,Y = = D (3.14) 
0 0 

(3.15) 

Thus, both Sb and Sw are diagonalized by the matrix Y . As the null space of D, has little 

discrimination information [35], the only columns of the matrix Y that correspond to the 

range of St need to be maintained during the feature extraction, and they collectively 

form the optimal transformation matrix G. 

A limitation of the above LDA/GSVD algorithm is the excessive computation involved 

with the SVD of C whose size is (/V + n) x m. In the case, when the sample dimension m 

is higher than the sample size n, the computational complexity depends mainly on m, and 

very little on n or on the number of classes N. This algorithm is found to suffer from the 

over-fitting problem in some applications. This is because all the singular vectors of the 

matrix C are maintained, and as the singular vectors are divided by their associated 

singular values, the impact of the small singular vectors gets amplified in the 

classification. 
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In order to reduce the computational complexity, Ye et al. [35] have presented an 

approximation method, where the AT-Means algorithm has been introduced to somewhat 

reduce the size of C. The samples within each class are grouped to generate K clusters, 

and the centroid of each cluster is used to replace all the samples of the cluster. For 

instance, if K = 2, the class size is reduced to 2. Unfortunately, there are two drawbacks 

of this approximation method: First, it loses some of the information to be used for 

discrimination because of the approximation of the samples of a cluster by their centroid. 

Second, it does not effectively address the problem of high computational complexity 

that is caused mainly due to the large size of Q. The size of Q depends on the sample 

dimension m, which is not affected by the clustering of the class samples. 

Park et al. [36] have recently proposed a method to reduce the computational load of 

the LDA/GSVD algorithm. They replace the two SVDs in the conventional GSVD 

framework with two eigen-decompositions. The first eigen-decomposition is carried out 

on the total scatter matrix to find its range. To reduce the computational load of the 

eigen-decomposition, the total scatter matrix is transformed into its inner product form. 

The second eigen-decomposition is carried out on the between-class scatter matrix in the 

range found above. This method does not address the over-fitting problem. 

Ye et al. [86] have addressed the over-fitting problem of the LDA/GSVD algorithm 

through an orthogonalization of the basis of the discrimination subspace, and used QR 

decomposition to achieve orthogonalization. However, QR decomposition is not efficient 

when the data is of high dimension, and moreover this method cannot be combined with 

kernelization. 
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3.3 MGSVD-LDA: Linear Discriminant Analysis Based on Modified 

GSVD 

In order to reduce the computational complexity, we now propose a method in which 

for the SVD of C, as given by (3.3), the explicit computation of Q is avoided. The 

singular vector matrices, P and Q, are the eigenvector matrices of CCT and C r C , 

T 

respectively. Therefore, we can first evaluate P from CC whose size is (n + N) x (n + N). 

In order to compute Q whose size i smxm,we proceed as follows instead of computing it 

explicitly by using SVD. 

Just as P is partitioned in a form given by (3.4), where P2 corresponds to the null space 
T 

of CC , Q is partitioned in the form 

Q = Q, Q2 
k m-k _ 

(3.16) 

where k - rank(C), and Q2 corresponds to the null space of CC . Since both P2 and Q2 

correspond to the null space, removal of these sub-matrices from the SVD of C in the 

proposed scheme has no influence on the discrimination effectiveness. The matrix C can 

now be rewritten as 

C = [P„P2] 
R 0~ o r 

0 0 Ql. 

P,RQt (3.17) 

From this equation, we have 

Q, =C r P,R 1 (3.18) 
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Using the above equation in (3.12), Y*, the matrix consisting of the first k columns of Y, 

can be expressed as 

Yt =Q,R W = C rP,R 2W (3.19) 

Thus, without an explicit computation of Q, Yt is obtained, which can be used to 

diagonalize the scatter matrices Sb and Sw simultaneously by employing (3.12) into 

(3.14) as 

Y%Yk = L f o (3.20) 

Y rSwY t = £ | X (3-21) 

The leftmost r columns of Y^ form the optimal transformation matrix G, where r = 

rank(H i). The proposed MGSVD-LDA algorithm is summarized in Table 3.1. 

Table 3.1: MGSVD-LDA algorithm 

Input: Training sample X/ 

Output: Transformation matrix G 

1. Use Equation (2.8) and (3.2) to obtain Hi, Hw and C; 

2. Find P and R from CCr = P 
R2 0 

0 0 
P r ; 

3. = rank(C); 

4. Find W through SVD of Pn: P„ = U£AW r ; 

5. Yk <- C rP,R 2 W; 

6. G <— Y t( : , 1 :r), r = rank(H6). 
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2 3 

Computing SVD of C requires approximately 2m (N+ n)+ l\(N+ n) flops, if Chan's 

algorithm [78], which is efficient for a matrix with the column dimension much higher 

than the row dimension (the case of small sample size datasets), is used. On the other 
T 3 2 

hand, computing the eigen-decomposition of CC needs only 3/4 (N + n) + 0((N + n)) 

flops [78], which is much smaller than the flop count required form computing the SVD 

of C. In addition, computing of the SVD of C requires a memory space of approximately 

(m + N + n) (N + n) locations, whereas computing the eigen-decomposition of matrix 
T 2 

CC requires only (N + n) locations. In the case of small sample size datasets, that is, 

m » (N+ ri), the proposed MGSVD-LDA algorithm uses much less memory space than 

the LDA/GSVD algorithm does. From the above discussion, we conclude that, in the case 

of small sample size datasets, the proposed MGSVD-LDA algorithm has much lower 

levels of time and space complexities than that of the LDA/GSVD algorithm. 

3.4 Kernelization of MGSVD-LDA 

In the preceding section, we have presented a linear discriminant algorithm, which, 

like most other linear discrimination approaches, assumes that the classes are linearly 

separable in the input space. However, the distributions of many patterns in the real world 

are nonlinear, and linear methods of discriminant analysis may not provide sufficient 

recognition accuracy. Fortunately, in this case one can establish the linear separable 

condition [87] by using appropriate kernels [55] and then apply the linear discriminant 

analysis techniques in that space. We now present a scheme to kernelize the proposed 

MGSVD-LDA algorithm. The new kernel discriminant analysis algorithm is hereafter 
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referred to as the MGSVD-KDA algorithm. 

As it was done for the development of the MGSVD-LDA algorithm, we first define the 

following matrix: 

® * = I [•^(N>( , ) - V), • • •, V'V0«K(,) - V), • • •, V M V*0 - V)] 
(3 .22 ) 

and 

r = 
o 

o 
(3 .23) 

where \|/(,) is the centroid of the /'th embedding class, and \|/ is the global centroid of the 

embedding samples in the /-dimensional kernel feature space. The SVD of T is given by 

r = p 
R O 

0 0 
(3 .24 ) 

where P € and Q e W* f are orthogonal matrices, and R e 9?zxz with z = 

rank( T ) is a diagonal matrix with its elements being equal to non-zero singular values of 

r sorted in a non-increasing order. Due to the high dimensionality of T , it would be 

practically not feasible to conduct the SVD directly. However, the smaller dimension 

singular vector matrix P and singular value matrix R can be evaluated separately by 

using the kernel method. We form a symmetric matrix as 

r r = 
. w b w w . 

(3 .25 ) 
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where each of the four sub-matrices is in an inner product form. The matrix P is exactly 

the eigenvector matrix of ITR and the matrix R is the square root of its eigenvalue 

matrix. The main problem here is as how to evaluate the matrix IT R , or equivalently, the 

four sub-matrices. We construct a kernel matrix 

K = ( * / A W , „ (3 .26) 

whose elements are the inner products in the feature space determined through a kernel 

function. Then, we can express the sub-matrices in (3 .25) in terms of K as 

0 [ 0 A = D ( B - L) R K ( B - L ) D 

< D > W = ( I - A ) K ( I - A ) (3 .27) 

0 > [ < I > W = D ( B - L ) R K ( I - A ) 

where 

A = diag{A,,• • •, AN), A,. = (1 / n , ) ^ 

B = diag(Bl,-,BN),Bl=(l/ni)lliX, 

i = \,---,N, L = (1 / ri)nxN, and I is an n x n identity matrix. 

Derivation of this set of formulas is presented in Appendix A. 

Similar to the MGSVD-LDA algorithm, the eigen-decomposition of ITR generates 

the eigenvector matrix P and the non-zero eigenvalue matrix R . The leftmost z columns 

of P,, where z = rank( ITR ), form the matrix P,, and the first N rows of P, form the 
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matrix Pu . The SVD of Pu provides the orthogonal matrices U and W such that 

P„ = UZ^W . Letting Yz = rrP,R 2W and A = WrR ^ , we have 

Y: = Ar (3.28) 

Further, let 

G = A . r (3.29) 

where v = rank(0 r 0 6 ) , and Av consists of the first v rows of A . The columns of G are 

the extracted feature vectors of the feature space. 

Given a test image x( with its mapping in the feature space being i|/,, the kernel 

function is applied again to obtain 

q, =k((xl,x,)) = {v„yrl) 

and subsequently to form the vectors 

Q * = x [ - q)' - ' yfi to1 0 - • • •' V M q ( " } - q)] 

(3.30) 

(3.31) 

where q(,) =— ]T q, and q = — X"=1q,. Since r\j/r = 
n 

q r , the projection of 

\|/, on the feature vectors can be found as 

w = Gr\|/, = Av 
Q[ (3.32) 

The proposed MGSVD-KDA algorithm is summarized as in Table 3.2 

This algorithm, like many other kernelized algorithms, has a computational 

complexity determined approximately by the accumulated effects of implementing the 
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kernel operator and the associated linear discriminant algorithm with the cost of 

computing the kernel matrices depending mainly on kernel function chosen. 

Table 3.2: MGSVD-KDA algorithm 

Training stage 

Input: Training sample x/ 

Output: Av in (3.29) 

1. Form the kernel matrix K based on (3.26) and (3.26) and the kernel function 

chosen; 

2. Evaluate the matrix I T given by (3.25) using (3.27); 

3. Find Pand R from IT7" = P 
R2 0 
0 0 

P ' ; 

4. P, P(:,l: z), Pn P,(l: N,:), z = ranker 7 ") ; 

5. Find W through SVD of P„: P„ = UL.W7 ; 

6. Av <- the first v rows of W' R 2P, , v = rank(0A ) ; 

Classification stage 

Input: Test vector x, 

Output: Weight vector w in (3.32); 

7. Evaluate q, as in (3.30); 

8. Form Q6 and Qwin (3.31); 

9- ^ 
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3.5 Solving the Over-Fitting Problem 

The proposed MGSVD-LDA algorithm, like other GSVD based algorithms, is 

susceptible to the over-fitting problem. As all the eigenvectors computed in the eigen-

decomposition of CCT are maintained and these eigenvectors are divided by the 

corresponding eigenvalues, as seen from (3.19), the impact of the random features on the 

eigenvectors corresponding to small eigenvalues gets amplified. 

There are mainly three methods to address the over-fitting problem. The first one is a 

regularization method [31], [33] in which a small positive perturbation is introduced to a 

matrix in order to bring small changes to large eigenvalues relative to the changes in the 

small eigenvalues. Thus, the effect of over-fitting can be reduced when the eigenvectors 

are divided by the eigenvalues resulting from the perturbed matrix. The optimal 

perturbation parameter is estimated adaptively from the training samples through cross-

validation. However, this process is time consuming. In the second method, the smaller 

eigenvalues and the corresponding eigenvectors are dropped [85]. But, there is no 

universal criterion to determine as to how many eigenvalues can be considered small 

enough to be dropped. Both these methods affect the main idea behind the GSVD 

technique in that the samples of different classes do not converge into distinct compact 

regions. 

The third approach to fixing the over-fitting problem is to orthogonalize the basis of 

the discriminant subspace [86]. In this method, the basis is orthogonalized through a QR 

decomposition of G. However, QR decomposition is computational inefficient for high 

dimensional data. Also the result linear algorithm cannot be kernelized. 



We now propose a novel orthogonalization method to deal with the over-fitting 

problem of the GSVD-based algorithms. The basis of the discriminant subspace derived 

from the conventional GSVD mechanism is not orthogonal and the projection of the 

between-class or total scatters on each of the basis vectors is of unit length. Through 

orthogonalization, the basis vectors are rescaled so that the larger eigenvectors are 

assigned more discrimination capacity. The main idea of this method is to orthogonalize 

the basis of the discriminant subspace by means of the eigen-decomposition of an inner 

product matrix. Through orthogonalization, the basis vectors are re-scaled so that the 

larger eigenvectors are assigned more discrimination capacity. Thus, the over-fitting 

problem is effectively controlled. This method is equally efficient for low and high 

dimensional data and compatible with the process of kernelization. 

First, an eigen-decomposition of G r G carried out as 

G r G = W / R 2Wr = 0;r0r (3.33) 

where Wr e 9i<xr consists of the left r columns of W , 0 e 5Rrxr is an orthogonal matrix 

and 7i is a diagonal matrix. Then, 

G0 = G0;r-1/2 (3.34) 

is the transformation matrix with its columns mutually orthogonal. Since the size of the 

matrix Wr
rR~2Wr is small, this orthogonalization step is computationally efficient. The 

proposed orthogonalized algorithm, referred as MGSVD-OLDA algorithm, is 

summarized as in Table 3.3. 
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Table 3.3: MGSVD-OLDA algorithm 

Input: Training sample X/ 

Output: Transformation matrix G 

1. Use Equation (2.8) and (3.2) to obtain Hj, Hw and C; 

2. Find P and R from CC r = P 
R2 0~ 

0 0 
Pr; 

3. = rank(C); 

4. Find W through SVD of Pu: Pu=ULbWr; 

5. Yk <- C rP,R 2 W ; 

6. G <— Y t( : , 1: r), r = rank(Hfe). 

7. Obtain W r , 0 and it through eigen-decomposition o f G r G . 

8. Find the orthogonalized transformation matrix Gousing (3.34). 

As in the case of the proposed linear algorithm, the over-fitting problem in the 

proposed kernelized algorithm is taken care through a process of orthogonalization of the 

basis. To this end, we first obtain the eigen-decomposition of G r G as 

WjR~2Wv =0jr(F (3.35) 

where Wv consists of the left most v columns of W , and 0 and n are, respectively, the 

eigenvector and eigenvalue matrices. Then, an orthogonalized G , namely G0 , is 

obtained such that 

G^ = r 1 / 2 e r G r (3.36) 
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The proposed orthogonalized algorithm, referred as MGSVD-OKDA algorithm, is 

summarized as in Table 3.4. 
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Table 3.4: MGSVD-OKDA algorithm 

Training stage 

Input: Training sample x/ 

Output: G^in (3.29) 

1. Form the kernel matrix K based on (3.26) and (3.26) and the kernel function 

chosen; 

2. Evaluate the matrix I T r given by (3.25) using (3.27); 

3. Find Pand R from I T 7 = P 
R 2 0 

0 0 
P7; 

4. P, < - P ( : , L : Z ) , P N P , ( l :N,0 , z = rank( IT r ) ; 

5. Find W through SVD of P„ : P„ = UL 6W r ; 

6. Av the first v rows of W ' R_IP, , v = rank(®; ) ; 

7. Obtain W v , 9 and it through eigen-decomposition of G r G . 

8. Find the orthogonalized transformation matrix G0using (3.36). 

Classification stage 

Input: Test vector x, 

Output: Weight vector w in (3.32); 

9. Evaluate q, as in (3.30); 

10. Form QAand Qwin (3.31); 

QL 11. w<- A 
Q 
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3.6 Experiments 

In this section, two sets of experiments are conducted for empirical evaluation of the 

performance of the proposed MGSVD-LDA and MGSVD-KDA algorithms and their 

orthogonalized versions. The first set of experiments is designed to evaluate the 

performances of the proposed linear algorithms, MGSVD-LDA and its orthogonalized 

version, MGSVD-OLDA, and four other linear algorithms, using small sample size 

datasets. The four linear algorithms chosen for comparison are LDA/GSVD [34], RLDA 

[33], PCA+LDA [85], and PCA [25] algorithms. The second set of experiments evaluates 

the performance of the kernelized versions of the above linear algorithms, namely 

MGSVD-KDA, MGSVD-OKDA, KDA/GSVD [76], KRDA [75], KPCA+LDA [73] and 

KPCA [57] algorithms, in comparison with one another and with that of the LDA 

algorithm using large sample size datasets. The execution platform used is Pentium 4, 2.8 

GHz CPU, 1.0 GB RAM and WinXP operating system. Ten databases are used in our 

experiments. Among them, FERET [90], [91], YALE [93], AR [92] and ORL [97] are 

human face databases, and Datasetl [94], Dataset2 and Dataset3 [95] are text document 

databases. The images of human face databases are preprocessed to move the faces to the 

centers of the images and to crop them to include mainly the face part. The other three, 

the spoken letter database, Isolet [96], the molecule conformation database, MUSK [96] 

and handwritten digital database, MNIST [98] are large sample size databases, where the 

small sample size problem does not occur. These databases are described briefly 

hereunder. 

FERET face database contains 1564 sets of images for a total of 14,126 images and 

includes 1199 individuals and 365 duplicate sets of images (a duplicate set is a second set 



of images of a person already in the database and was usually taken on a different day). A 

subset of the FERET database is used in our experiments. This subset includes 280 

images of 28 individuals (each individual has ten images). The original images are 

cropped into 168 x 128 pixel images with 256 gray scales. In each run, 6 images from 

each class are randomly chosen for training and the remaining 4 images are used for 

testing. 

YALE face database contains 165 images of 15 individuals (classes), each having 11 

320 x 243 pixel 256 gray scale images with different facial expression and lighting 

conditions. The images contain variations with the following facial expressions or 

configurations: center-light, with glasses, happy, left-light, without glasses, normal, right-

light, sad, sleepy, surprised, and wink. Each image is manually cropped into a size of 92 

x 112 pixels and is rearranged as a 10,304-dimensional vector. From each class, 5 images 

are randomly selected for training and the remaining 6 are used for testing. 

AR face database contains over 4,000 images of 126 individuals (classes), all of which 

are frontal view faces with different facial expressions, illumination conditions, and 

occlusions like sun glasses and scarf. Our experiments involve 67 individuals each 

having 13 images. The original color images that are of 768 x 576 pixels and 24 bits of 

depth are converted and cropped into 140 x 126 pixel images with 256 gray scales. In 

each run, 15 of the 67 classes (individuals) are randomly drawn and 6 images from each 

class are randomly chosen for training and the remaining 7 images are used for testing. 

ORL face database contains 40 persons/classes with each having 10 images. The 

images are taken at different times with varying lighting conditions, facial expressions, 

and facial details. All individuals are in an upright, frontal position (with tolerance for 
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some side movement). All these images are 92 x 112 pixel grey scale pictures and are 

expressed as 10304-dimension vectors in the input space. From each class, 6 images are 

randomly selected for training and the remaining 4 for testing. 

Datasetl is a text document database, derived from the TREC-5, TREC-6, and TREC-

7 collections. It consists of 7 clusters of 30 documents, each document being arranged in 

a 7,454-dimensional vector space. From each cluster (class) 20 documents are randomly 

selected for training and the remaining 10 documents are used for testing. 

Dataset2 is also a text document database, derived from the Reuters-21578 text 

categorization test collection Distribution 1.0. This dataset has 4 clusters each having 80 

elements represented in a 2,887-dimensional vector space. One-half of the dataset is 

randomly chosen for training and the other half used for testing. 

Dataset3 is also derived from the Reuters-21578 text categorization test collection 

Distribution 1.0, but contains 5 clusters each having 98 documents. Each document is 

represented as a vector of dimension 3,759. As in the case of Dataset2, one-half of the 

elements are randomly chosen for training and the other half for testing. 

Isolet is a spoken letter database with 150 subjects speaking the name of each letter of 

the 26 alphabets (classes) twice. The number of training instances is 6238 and that of the 

test instances is 1559. Each instance is described by 617 attributes which are continuous, 

real valued, and scaled in the range -1.0 to 1.0. In the experiments, for each alphabet 25 

instances are randomly chosen as training samples and 40 instances are chosen for testing. 

MUSK is a two class database containing 6,598 molecule conformations, which are 

categorized into musks and non-musks. The conformations are described by 166 features. 
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From each category 250 conformations are randomly drawn for training and another 200 

conformation are used for testing. 

MNIST handwritten digit database includes 10 digits/classes from 0 to 9. It has 

60,000 images and a test set of 10,000 images, each of which is a 28 x 28 pixel grey scale 

image and is represented by a 784-dimension vector. In the experiments, 50 images from 

each class are randomly drawn as training samples and the same number of images is 

chosen for testing. 

Table 3.5 gives a summary of the databases used in our experiments. Appendix B 

gives the images of one subject (class) of each of the four human face databases in this 

chapter. 

The two kernel functions used in our experiments are the Gaussian radial basis 

||x - x f 
function (RBF) kernel, k(x,,xh) = exp(-— —), where || • || denotes the Euclidean 2-

a 

norm and cr > 0 , and the nonhomogeneous polynomial kernel, 

k((x,, xh)) = ((x,, xh) + l)d, where d is an integer. 

Except for GSVD-based LDA algorithm, for all the other linear and nonlinear 

algorithms, we specify a mechanism to determine the parameters. For the PCA+LDA and 

KPCA+LDA algorithms, the largest N~ 1 eigenvalues and the corresponding eigenvectors 

are used in the PCA stage, where N is the number of the classes. The parameters are 

estimated through cross validation by using a part of the training samples to carry out the 

actual training and the remaining for the estimation. The optimal regulation parameters 

for the RLDA and the optimal kernel parameters, d or a, of all the kernelized algorithms 

are estimated using the K -fold cross validation method, where AT > 10 . The parameter 
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corresponding to the highest average recognition accuracy over the K iterations is chosen 

as the optimal parameter. The KRDA algorithm has two parameters, perturbation and 

kernel, to be estimated; hence, a double cross-validation is needed. 

Since our focus is on feature extraction, a simple classifier, the nearest neighbor 

classifier [3], is chosen to be used in all the algorithms so that the differences in the 

recognition accuracy of the various algorithms can be attributed to feature extraction 

process of the algorithms rather than the classifier employed. For each database, ten sets 

of samples are randomly drawn and each algorithm is run using one set at a time. The 

average recognition rate and execution time of an algorithm is determined as an average 

taken over ten runs of the algorithm using the ten data sets. Here, execution time includes 

both the training and testing times. Parameter estimation time is not explicitly given, but 

can be estimated as the product of K , the number(s) of parameter candidates, and the 

execution time. 

(a) Performance evaluation using small sample size databases 

In this set of experiments, we assess the performance in terms of the recognition 

accuracy and the execution time of the six linear algorithms, MGSVD-LDA, MGSVD-

OLDA, LDA/GSVD, RLDA, PCA+LDA and PCA, using small sample size databases, 

FERET, YALE, AR, ORL, Datasetl, Dateset2 and Dataset3. The results of the 

experiments are given in Table 3.6 and Table 3.7 from which we make the following 

observations: 

1) For the four high-dimensional face databases, memory overflow occurs when the 

LDA/GSVD algorithm is used; whereas the RLDA, PCA+LDA, PCA and the proposed 
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MGSVD-LDA algorithm do not encounter this problem. Note that the GSVD-based 

algorithms are a special case of the RLDA algorithm with zero perturbation of the eigen 

values or in the values of the elements of the scatter matrix. 

2) For the three text databases, the proposed MGSVD-LDA algorithm maintains the 

high level of recognition accuracy of the LDA/GSVD algorithm. However, the execution 

time of the former is significantly lower than that of the latter. Specifically, the execution 

times of the proposed linear algorithm are reduced from those of the LDA/GSVD 

algorithm by 99.5%, 94.6% and 92.4%for Datasetl, Dataset2 and Dataset3, respectively. 

Table 3.5: Summary of databases 

Database Size of 
database 

Dimension Number of 
classes 

Number of 
training 
samples 

Number of 
test 

samples 
FERET 14126 21504 28 168 112 

YALE 165 10304 15 75 90 

AR 4000 17640 15 90 105 

ORL 400 10304 40 240 160 

Datasetl 210 7454 7 140 70 

Dataset2 320 2887 4 160 160 

Dataset3 490 3759 5 245 245 

Isolet 7797 617 26 650 1040 

MUSK 6598 166 2 500 400 

MNIST 70,000 784 10 500 500 
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3) In some situations such as when the GSVD-based algorithms are employed to the 

FERET, YALE, AR and ORL databases, the orthogonalized algorithm significantly 

outperforms its original form. Overall, the orthogonalized algorithm is competitive to the 

other algorithms in terms of recognition accuracy and computational efficiency. 

The above observations suggest that, compared to the LDA/GSVD algorithm, the 

proposed MGSVD-LDA algorithm overcomes the high computational complexity 

problem, works for patterns of large dimension without memory overflow. The over-

fitting problem that sometime is encountered in the GSVD-based algorithms is 

effectively resolved with little effect on the computation load. 

(b) Performance evaluation using large sample size datasets 

This set of experiments is devoted to assessing the recognition accuracy and execution 

times of the four kernelized algorithms with the three large sample size databases, Isolet, 

MUSK and MNIST. Since in the case of a large sample size databases, the associated 

scatter matrix does not have the singularity problem, we also compare the recognition 

accuracy of the kernelized algorithms with that of the LDA algorithm, which is a linear 

algorithm not suitable for discriminant analysis of small sample size databases. The Table 

3.8 gives the results on the recognition rate and execution time of the algorithms. From 

the results we observe the following: 

1) Compared to the LDA algorithm, all the kernelized algorithms enhance the 

recognition accuracy significantly. Among all the algorithms considered, the proposed 

algorithms give the highest recognition accuracy. 
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2) Orthogonalization improves the recognition accuracy of the GSVD-based 

algorithms. 

From the simulation results, we can see that kemelization of linear discriminant 

analysis algorithms is a necessary requirement for their applications to large sample size 

databases. This necessity arises from the fact that in large sample size databases, the 

samples are not linear separable, and therefore, linear algorithms cannot be effective for 

discriminant analysis. The process of kemelization facilitates the distribution of samples 

to be linearized and simplified in a high dimensional space. Over-fitting occurs to the 

GSVD-based algorithms but orthogonalization overcomes this problem. 
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3.7 Summary 

In this chapter, the modified generalized singular value decomposition has been 

integrated with linear discriminant analysis resulting in the development of a new 

algorithm, the MGSVD-LDA algorithm, which successfully overcomes the singularity 

problem of the scatter matrices of the traditional FLDA methods and deals effectively 

with the computational complexity problem of the LDA/GSVD algorithm. In the new 

algorithm, the GSVD framework used in the LDA/GSVD algorithm has been modified 

by replacing the SVD of a high-dimensional matrix with the eigen-decomposition of a 

small size inner product matrix, thus circumventing the direct calculation of a high-

dimensional singular vector matrix. A kernelized version of the proposed linear algorithm 

has been developed for the discriminant analysis of samples that are not linearly 

separable. An orthogonalization technique has been proposed to deal with the over-fitting 

problem of the GSVD-based algorithms. The main idea of this technique is to 

orthogonalize the basis of the discriminant subspace derived from the GSVD-based 

algorithms through eigen-decomposition. 

The proposed MGSVD-LDA algorithm has been demonstrated to deal effectively with 

the computational problem associated with the high dimensionality of the patterns, when 

the LDA/GSVD algorithm completely fails. It has been shown that even in the case when 

the dimension of the patterns is not so high and the LDA/GSVD algorithm works, the 

proposed MGSVD-LDA algorithm provides a solution to the pattern recognition problem 

that is significantly less time consuming and more memory-space efficient and has an 

equally high recognition accuracy. It has also been shown that the orthogonalized 

algorithm, the MGSVD-OLDA algorithm, significantly outperforms its original form 
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with high recognition accuracy and low computational load when the over-fitting 

problem occurs. 

Overall, the simulation results have shown that the MGSVD-based linear and kernel 

algorithms, especially their orthogonalized versions, provide high recognition accuracy 

with low computational load. 
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Chapter 4 

Class Structure of Linearly Independent Patterns in an 

MGSVD- Derived Discriminant Subspace 

4.1 Introduction 

In Chapter 3, new GSVD-based linear and nonlinear algorithms have been developed 

for discriminant analysis. It has been shown that these algorithms deal effectively with 

the small sample size problem and are capable of accomplishing the task of feature 

extraction with low computational complexity and high recognition accuracy. In the 

MGSVD-LDA algorithm, the LDA/GSVD's operation of singular value decomposition 

of C is replaced by the eigen-decomposition of the inner product matrix CCr in order to 

reduce its computational complexity. The accumulated round-off errors arising from 

forming the inner product matrix and that from carrying out its eigen-decomposition 

could become nontrivial when the samples have large dimensionality. Also, if the inner 

product matrix is ill-conditioned, its eigenvectors become sensitive to these errors [78], 

[79]. 

Although the eigen-decomposition of inner product matrices has been widely exploited 

in pattern recognition and mathematicians have studied its numerical stability [79], [80], 

few attempts have been made on investigating the implication of the numerical errors in 
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feature extraction techniques involving eigen-decomposition of inner product matrices. 

Therefore, it is important to study the effects of the numerical errors caused by the round-

off errors introduced in carrying out the eigen-decomposition of the inner product 

matrices of the proposed algorithms. A question that also needs to be answered is as to 

how the accumulated computational errors influence the accuracy of the feature 

extraction in the implementation of the proposed algorithms. 

The purpose of the proposed linear and nonlinear feature extraction methods, like other 

feature extraction techniques, has been to find a lower dimensional discriminant subspace, 

where different classes occupy compact and disjoint regions. However, in order to 

determine the impact of finite arithmetic in implementing the proposed algorithm on the 

accuracy of the feature extraction, one needs to have a better understanding of the class 

structure of the samples in the derived discriminant subspace. 

The purpose of this chapter is first to study the class structure of the samples in the 

discriminant subspace derived from the proposed MGSVD algorithms and then to 

investigate whether this structure can be used to assess the numerical errors caused when 

the proposed algorithms are implemented. 

In Section 4.2, a theorem is established to determine the class structure of linearly 

independent samples in the discriminant subspace derived from the proposed MGSVD 

algorithms. The numerical error incurred in the computational process of obtaining the 

inner product matrix and in carrying out its eigen-decomposition is investigated in 

Section 4.3. A scheme is described in this section for using the above theorem to estimate 

the numerical errors incurred in implementing the MGSVD algorithms and to adjust the 

kernel parameters to minimize the numerical errors in the implementation of the proposed 
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kernelized algorithm. In Section 4.4, experiments are designed to demonstrate the validity 

of the theorem presented to establish the class structure of linearly independent samples 

and to evaluate the effects of the numerical errors in implementing the proposed linear 

and kernelized algorithms. 

4.2 Class Structure of Datasets with Linearly Independent Samples 

The proposed MGSVD-LDA algorithm provides an optimal transformation matrix that 

projects the input samples onto a lower-dimensional discriminant subspace, where 

different class categories occupy compact and disjoint regions. The extent of separability 

between the samples belonging to different classes and the proximity of the samples 

belonging to the same class could provide an insight into the class structure of the 

samples in the subspace derived by a feature extraction algorithm. In this section, we first 

establish a theorem to gain an insight into the class structure of linearly independent 

samples in the discriminant subspace derived by the MGSVD-LDA algorithm. Then, it is 

shown that, in view of this theorem, a similar insight can be gained for nonlinearly 

distributed input samples. 

Lemma 4.1: Given a set of m-dimensional linearly independent samples consisting of N 

classes with the /th class having samples and sample size being n, we have 

rank(HA ) - N - I and rank(C) = rank(Hft) + r a n k ( H J . 

Proof: Let us define the following three matrices 

(4.1) 
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Hw =-)=[(x , -c (1)),...,(xB| -c(1)),(x„i+1 -c(2)),...,(xn]+„2 yjfl (4.2) 

H , = - U ( x , - c ) , . . . , ( x „ - c ) ] (4.3) 
yjn 

where the global centroid is given by 

1 ^ 
c = - 5 > / (4-4) n ,=\ 

and the centroid of /th class is given by 

(0 l k 

c = — 
n. i-k +i I M 

2 (4-5) 

IV 

where ki = + n2 + ... + ni, and x, is the /th (/ = 1, 2, . . . , « ) sample vector, n = ^ nt;. 

The between-class and within-class and total scatter matrices can, respectively, be 

defined as 

Sw = UwHl . S6 = H t H[ , s ( = H,Hf (4.6) 

It has been shown in [34] that 

S, = SA +SW = C r C (4.7) 

We now prove by contradiction that rank(H,) = n -1. 

We know that rank(H() < n - \ . Assume that rank(H,) * m-1 . Then, it follows that 

rank(H,) < n-l, and in this case the left most n — 1 columns of H, must be linearly 

dependent. That is, there exists a set of numbers {o, }7=1 „_,, not all zero, such that 
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n-1 n-1 n J n-1 

7=1 7=1 7=1 " i=l 

from which it follows that 

n-l na, 

implying that the sample xn is a linear combination of the other n - 1 samples. This 

contradicts the given condition that the samples are linearly independent. Consequently, 

the assumption that rank(H,) < n -1 is not valid. Thus, we have rank(H,) = n -1. 

Since rank(H J <n-N , rank(HFC) < N-1 , and rank(HJ + rank(HW) > rank(H,), it 

follows that rank(H J = n-N , rank(HA) = N-1, and rank(H6) + rank(HJ = rank(H(). 

From (4.7), and the fact that rank(H,) = rank(S,) and rank(C) = rank(CrC), we have 

rank(C) = rank(H ;) = rank(H6) + r ank (HJ . 

• 

Lemma 4.2: Given a set of m-dimensional linearly independent samples that consisting 

of N classes with the z'th class having samples, then the discriminative transformation 

matrix G derived from the MGSVD-LDA algorithm satisfies the relations 

GrStG = GrSbG - Ir (4.8) 

and 

G r S w G = 0 (4.9) 

where Ir is an rxr identity matrix with r = rank(H6) = N- 1. 

Proof: Given that the samples of a datasets are linearly independent, we know that 

rank(C) = rank (HA) + rank (H w ) . Using this result in (3.7), we have s = 0. Thus, DA in 
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(3.5) and Dw in (3.6) vanish, and (3.20) and (3.21) become 

h o 
Y f o Y4 = X2

b = k ^b *-k 

0 0 
(4.10) 

0 0 
Xfs^Y* - X2 -

where lk_r is a (k - r) x (k - r) identity matrix with k — rank (H t)~n~ 1. Since G 

consists of the r left most columns of Yk and S, = Sb + Sw , (4.8) and (4.9) follow. 

• 

Theorem 4.1: Given a set of m-dimensional linearly independent samples consisting of N 

classes with the /th and y'th classes having n, and rij samples, respectively, i,j = 1, ..., N, 

xh and x, are two samples from the /'th and yth classes, respectively, the Euclidean 

distance between the two corresponding sample vectors, and Gx; , in the 

discriminant subspace derived from the MGSVD-LDA algorithm, is given by 

where G is the transformation matrix derived from the proposed MGSVD-LDA 

algorithm. 

Proof: Since GrSwG is a semi-positive definite matrix and according to Lemma 4.2 (see 

(4.9)), it is a zero matrix, we have GrHw = 0, that is, 

(4.11) 

Gt(X, - c ( 0 ) = Gr(x„ - c 0 ) ) = 0, or 

Grx ; = Grc ( 0 , and GrxA = Grc(y) (4.12) 
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Case (1): i=j 

Since G 'x , = Grxh = GTc(J), we obtain 

dist(GTxl,GTxh) - 0 

Case (2): i * j 

(4.13) 

Using (4.12), we have 

dist(GTx,,GTxh) 

= dist(Gt (C(0 - c), G r (c0) - c)) (4.14) 

where g, and g, are, respectively, the zth andyth columns of H6 . Thus, from (3.13) and 

(4.10), we have 

=[lw_,,0]Ur = U (4.15) 

where Ui consists of the N-lcolumns of U leftmost , and U e ^ " " is the left singular 

vector matrix of Pn. The Mh column of U, u, which is excluded from Ui, corresponds to 

Pn ' s null space, i.e., uT Pn = 0. Since 

1 2 . 

= P,=CQ,R"' = 
H[Q,R 

Hr
wQ,R 1 

(4.16) 

we have Pn = H^Q,R . Therefore, u H6 = 0 or HAu = 0. Solving this equation gives 

the components of u asup = ^Jnp I n , f o r p - \ , . . . ,N. Letting d, and dy to be, respectively, 

the ith andy'th columns of , and concatenating d; with u„ and d, with u, , the resulting 

two vectors become two orthogonal unit vectors, which are the z'th and y'th columns of the 
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matrix U . Using these results in (4.14), we have 

dist{GTx,,GTxh) 

Theorem 4.1 provides the theoretical distance between two samples in the MGSVD-

discriminant subspace given that all the samples are linearly independent. If the two 

samples belong to the same class in a given dataset, then according to this theorem, they 

are merged into a single point in the discriminant subspace. On the other hand, if they 

belong to two different classes, the distance between them is determined by the number 

of samples in the respective classes. When the samples are linearly independent, each 

class condenses into a distinct point in the discriminant subspace derived from the 

MGSVD-LDA algorithm. Thus, if the samples of a dataset are linearly independent, the 

class structure of the samples can be effectively captured through the linear operation of 

the MGSVD-LDA algorithm. Hence, for small sample size datasets in which the samples 

are linearly independent, the performance of a linear algorithm cannot be improved by 

subjecting it to the process of kernelization. On the other hand, if the samples of a dataset 

are not linearly independent, i.e., when the sample size of the dataset is larger than the 

sample dimension, the samples of a class cannot condense into a single point in the 
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derived MGSVD-LDA discriminant subspace. Divergence of class samples in the 

discriminant subspace leads to nonlinear class boundaries, and thus affects the 

recognition accuracy. In this case, the linear independence condition can be established 

by using the proposed kernelized MGSVD-KDA algorithm [54], Thus, the class structure 

of the datasets with samples that are not linearly independent would be the same in the 

kernel discriminant subspace derived by using the MGSVD-KDA algorithm as the one 

provided by the above theorem. 

4.3 Numerical Error Analysis of the Proposed MGSVD Algorithms 

The proposed MGSVD-LDA algorithm includes the operations of inner product in 

computing the inner product matrix CCr and its eigen-decomposition. The round-off 

errors accumulated through these operations could be nontrivial. Normally, the 

eigenvalues of a symmetric matrix are well-conditioned. However, the sensitivity of the 

eigenvector or the subspace represented by a subset of the eigenvectors to the numerical 

error depends on the proximity between the associated eigenvalues and the rest of the 

eigenvalues [78] - [81]. 

In the proposed MGSVD-LDA algorithm, the sensitivity of the range represented by 

T 

P, depends on the minimum non-zero eigenvalue of CC . The smaller the minimum 

non-zero eigenvalue, the more sensitive the range to a perturbation. In such a case, the 

numerical error will amplify the deviation between the computed range P,, and the actual 

range P,. This deviation, in turn, will result in an angular difference between G , the 

computed transformation matrix and G, the actual transformation matrix. Consider the 



distance between two samples in the discriminant subspace, which is generally used as a 

measure of similarity between the objects in recognition problems. The angular 

difference between G and G will be reflected in the distance between the two samples. 

The error in the computed distance is the result of the accumulated computational errors, 

and hence, represents the degree to which the numerical errors influence the accuracy of 

the feature extraction algorithm. The problem of determining the numerical error of the 

proposed MGSVD-LDA algorithm finally boils down to finding the actual (theoretical) 

distance between two samples. Once such a distance is obtained, it can be compared with 

the computed one in order to evaluate the effects of the numerical errors on the 

performance of the algorithm. 

It was shown in the previous section that according to Theorem 4.1, if the two samples 

belong to the same class in a given dataset, then according to this theorem, they are 

merged into a single point in the discriminative subspace, and the distances between the 

points depend only on the respective numbers of the samples in the corresponding classes. 

Note that distance between two samples in the computed discriminant subspace 

represented by G will have an error term resulting from the computational errors 

accumulated in calculating the matrix G . The magnitude of this error term is the 

difference between the actual distance obtained from Theorem 4.1 and the computed one. 

If the maximum of such errors is much smaller than the minimum computed inter-class 

distance, the feature extraction can be considered reliable for a given database. The 

maximum of these differences, denoted as p , is used as a metric of numerical errors. In 

case p is significantly larger than the computed minimum inter-class distance, each class 

will not merge into a single point in the discriminative subspace. Thus, the derived 
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discriminative subspace cannot be considered reliable. A nonlinear kernel function has to 

be used to adjust the input matrix to build the linearly separable condition by adjusting 

the kernel parameter appropriately. 

Similar to the linear case, the kernelized MGSVD-KDA algorithm should also be 

examined for the effects of numerical errors. As a matter of fact, the numerical errors of 

the kernelized algorithm is of greater concern, since the round-off errors introduced due 

to the inner product operations could be amplified by several folds by the involvement of 

the kernel function. Theorem 4.1 still provides a basis of analyzing the numerical errors 

of the kernelized algorithm. Recall that the results of Theorem 4.1 is applicable to 

situations where the samples are linearly independent, and since the kernelization 

establishes this independence for samples that are otherwise not so, the procedure of 

analyzing the numerical errors of the linear algorithm described earlier can also be 

applied to the samples in the high dimensional feature space. The linear independence for 

the mapped samples can be easily checked by examining whether or not the kernel matrix 

K is of full rank [54]. The numerical error metric p corresponding to the kernelized 

algorithm can be used to adjust the kernel parameters so as to minimize the effects of the 

numerical errors. 

4.4 Experiments 

In this section, simulations are carried out in support of the results established in 

this chapter. The first set of experiments is designed to illustrate that for datasets with 

linearly independent samples, linear algorithms are quite effective and that the process of 

kernelization does not help in improving their performance. For this purpose, six 
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kernelized algorithms, namely MGSVD-KDA, MGSVD-OKDA, KDA/GSVD, KRDA, 

KPCA+LDA, and KPCA, are run using small sample size datasets. The corresponding 

linear algorithms were run in Chapter 3 using the same linearly independent datasets. The 

second set of experiments is designed to evaluate the effects of the numerical errors 

arising from the implementation of the proposed MGSVD-LDA linear algorithm and that 

of its kernelized version, the MGSVD-KDA algorithm. 

The execution platform used is Pentium 4, 2.8 GHz CPU, 1.0 GB RAM and WinXP 

operating system. As in the Section 3.4, the same ten databases are used in the 

experiments. Four face databases and three text document databases are small sample 

size databases, where the samples of each database are linearly independent. The other 

three, spoken letter database, Isolet, molecule conformation database, MUSK, and digital 

handwritten database, MNIST are large sample size databases, where the SSS problem 

does not occur. 

The two kernel functions used in our experiments are the same as in the previous 

||x x 
section. The Gaussian radial basis function (RBF) kernel, = exp(-— —), 

a 

where || • || denotes the Euclidean 2-norm and cr>0 , and the nonhomogeneous 

polynomial kernel, &(x/,x/i) = ((x/,xA) + l)rf, where d is a positive integer. The above two 

kernel functions result in providing linear independence among the samples of large 

sample size databases which are otherwise not linearly independent. The linear 

independence is successfully established if the kernel matrix is confirmed to be of full 

rank. We use the same mechanism to determine the parameters of the linear and 

nonlinear algorithms. 
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(a) Performance evaluation of the kernelized algorithms using small sample size 

datasets 

In this set of experiments, we examine the effectiveness of six linear algorithms for the 

feature extraction of linearly independent samples in terms of their recognition accuracy 

and execution time. Linear algorithms were run in Chapter 3. We present those results 

here again, along with the simulation results obtained by running their kernelized 

counterparts, namely MGSVD-KDA, MGSVD-OKDA, KDA/GSVD, KRLDA, 

KPCA+LDA and KPCA. The complete simulation results are given in Table 4.1 and 

Table 4.2, from which we make the following observations: 

1) The kernelization has no significant effect on the performance of the algorithms 

except for the case of KDA/GSVD algorithm whose linear counterpart suffered from the 

memory overflow problem. 

2) The recognition accuracies of GSVD and MGSVD are not always the same. Even 

though these two methods are theoretically equivalent, their computations are different, 

and thus their numerical errors are also different. These numerical errors result in a slight 

angular difference between the discrimination subspaces computed from these two 

algorithms. This angular difference influences the distance between a test sample and the 

point that represents a class. If a test sample has almost the same distance to two points 

representing two different classes, then a small error in finding the two distances may 

alter the classification results 

The above observations suggest that kernelization does not have significant positive 

effect on the performance of the algorithms except for the case of KDA/GSVD algorithm 



whose linear counterpart suffers from the memory overflow problem. For small sample 

size databases, the performance of the most of the linear algorithm cannot be improved 

through their kemelization. The fact that recognition accuracy of both the MGSVD-LDA 

and MGSVD-KDA algorithms are the same is consistent with the finding of Theorem 4.1, 

according to which the MGSVD-LDA algorithm effectively separates the classes of 

datasets with linearly independent samples. 

(b) Analysis of the numerical errors of the MGSVD-LDA and MGSVD-KDA 

algorithm 

In this set of experiments, we examine the numerical errors of the proposed linear 

MGSVD-LDA algorithm and that of its kernelized version, the MGSVD-KDA algorithm. 

For the purpose of this examination, we use the scheme proposed based on Theorem 4.1 

and described in Section 4.2 for examining the sensitivity of the proposed algorithms to 

numerical errors. The small sample size databases, the face databases (FERET, YALE, 

AR and ORL) and the text databases (Datasetl, Dataset2 and Dataset3) are used to 

investigate the effects of the numerical errors of the linear algorithm, since the samples in 

these databases are linearly independent. On the other hand, the large sample size 

databases, the Isolet and MUSK databases are used for the kernelized algorithm. For a 

given database, using Theorem 4.1, the theoretical values of the intra-class and inter-class 

distances are obtained. Note that the theoretical value of the inter-class distance is always 

zero. The computed values of these distances are obtained by using the samples projected 

in the discriminative subspace obtained from the linear or kernelized algorithm. The 

differences between a theoretical and the corresponding computed distances are obtained. 
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For the linear algorithm and a database, this process is repeated ten times by running the 

algorithm repeatedly, with the samples in each run taken randomly from the database. 

The final value of a distance difference is chosen as the one having the maximum value 

over the ten runs of the algorithm. The results are summarized in Table 4.3 - Table 4.4. 

The minimum computed inter-class distance that consists of the theoretical inter-class 

distance minus the maximum computed error of the inter-class distance is given in this 

table in a pair of parentheses for each database. Note that each maximum computation 

error is negligibly small compared to the theoretical inter-class distance. The last row of 

the table gives the maximum computational error of the intra-class distance for each 

database. These results imply that the accumulated computational errors, including those 

generated from the computation of the inner products, have negligible influence on the 

accuracy of the feature extraction. The comparison of the value of the minimum 

computed inter-class distance with that of the maximum inter-class difference shows that 

the latter is negligibly smaller compared to the former for each database used. Hence, we 

conclude that the accumulated computational errors, including those generated from 

computation of the inner products, have no influence on the accuracy of the feature 

extraction performance of the algorithms for these databases. In our experiments, the 

proposed linear algorithm, when operating on databases with linearly independent 

samples, was found to produce only small values for p, thus indicating that for these 

databases the performance of the algorithm is not sensitive to numerical errors. 

For the kernelized algorithm, the polynomial kernel and RBF kernel with different 

values of the kernel parameters are used. This process is repeated ten times with the 

samples in each run taken randomly from the databases. With every parameter the linear 
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independence condition in the kernel feature space is confirmed. The recognition 

accuracy as well as the numerical error metric p, associated with every value of the kernel 

parameters is obtained. The average accuracy rate and the maximum p of the ten runs as a 

function of the parameter value are depicted in Figure 4.1 and Figure 4.2 for the 

polynomial kernel and RBF kernel, respectively. Figure 4.1 shows that with the 

polynomial kernel the numerical errors are negligibly small for the entire range of the 

parameter values. But as the parameter value increases, recognition accuracy shows a 

slightly downward trend. This result suggests that once the linear independence is 

established and the numerical error metric p is sufficiently small, one should choose the 

lowest order of polynomial. For the RBF kernel, Figure 4.2 shows that with some kernel 

parameter values the numerical error metric p are very large and the corresponding 

classification has a low recognition accuracy or the recognition process totally fails. On 

the other hand, the parameter values associated with the minimum p corresponds to high 

recognition accuracy. This result has an important implication in that when empirical test 

is not conductible due to the lack of proper test samples, one can choose the RBF kernel 

parameter that leads to the minimum p. 

Table 4.3: The maximum differences between the theoretical values and computed values 
of the inter- and intra-class distances in the discriminant subspace derived from the 

MGSVD-LDA algorithm using face databases * 

Database FERET YALE AR ORL 

Minimum, computed 

inter-class distance 

(0.6324 -

3.66E-15) 

0.6324 -

5.00E-15) 

(0.6324 -

4.22E-15) 

(0.6323 -

4.56E-15) 

Max.diff(Intra-class) 8.73E-14 4.75E-14 4.69E-14 5.76E-15 

* The precision of the experimental computer is approximately IE-16. 
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Table 4.4: The maximum differences between the theoretical values and computed values 
of the inter- and intra-class distances in the discriminant subspace derived from the 

MGSVD-LDA algorithm using text document databases * 

Database Datasetl Dataset2 Dataset3 

Minimum, computed 

inter-class distance 

0.5345-

1.22E-15) 

(0.2236 -

4.44E-16) 

(0.4899 -

3.87E-16) 

Max.diff(Intra-class) 2.76E-15 3.76E-14 5.98E-15 

* The precision of the experimental computer is approximately IE-16. 

Musk Isolet 

-12.5; 

-13.5 

3 4 5 
Order of polynomial 

2 4 6 
Order of polynomial 

3 4 5 
Order of polynomial 

2 4 6 
Order of polynomial 

Figure 4.1: The recognition accuracy and numerical errors of MGSVD-KDA with respect 
to the order of the polynomial kernel function 
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MUSK Isolet 

Figure 4.2: The recognition accuracy and numerical errors of MGSVD-KDA with respect 
to the parameter of the RBF function 

4.5 Summary 

In this chapter, a theorem has been established to determine the class structure of 

datasets with linearly independent samples in the discriminant subspace derived from the 

proposed MGSVD-LDA algorithm. According to this theorem, if the samples of datasets 

are linearly independent in the input space, all the samples of a class condense into a 

distinct single point of the discriminant subspace derived from the MGSVD-LDA 

algorithm, whereas a pair of samples belonging to different classes are separated in the 

discriminant subspace by a distance that is determined by the number of samples in each 

of the two classes. Thus, under the linear independence condition, the classes are linearly 

separable, that is, through the linear MGSVD-LDA algorithm the class structures of the 
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datasets can be successfully captured. It has been shown through simulation that for small 

sample size datasets, in which the samples are linearly independent, kemelization of the 

proposed linear algorithm, therefore, provides little improvement in the recognition 

accuracy. 

The results of the above theorem have been used to develop a method to estimate the 

numerical errors in implementing the proposed linear and nonlinear algorithms. If the 

linear algorithm runs into a situation of datasets with linearly dependent samples, one 

necessarily needs to employ the kernelized algorithm. This estimate of numerical errors 

has also been used to devise a scheme to adjust the values of the kernel parameters to 

minimize the numerical errors in implementing the nonlinear algorithm and thus to 

improve the recognition accuracy. 

Simulation results have shown that the proposed linear algorithm, when operating on 

datasets with linearly independent samples, produces only small values of numerical 

errors and the performance of the algorithm is not sensitive to numerical errors. For the 

polynomial kernel, the numerical errors in implementing the proposed kernelized 

algorithm are negligibly small for a wide range of values of the kernel parameter for the 

databases used in our experiments. For the RBF kernel, it has been shown that, by 

employing an estimate of the numerical errors, it is possible to adjust the kernel 

parameter so as to reduce the numerical errors and thus to increase the recognition 

accuracy. 
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Chapter 5 

A Discriminant Model for the Feature Extraction of 

Linearly Independent Samples 

5.1 Introduction 

As mentioned in Chapter 2, a number of FLDA variants have been presented in the 

literature in order to overcome the singularity problem of the scatter matrices of the 

traditional FLDA algorithms. However, these variants, as also pointed out earlier, suffer 

from excessive computational load in dealing with the high dimensionality of patterns or 

lose some useful discriminant information in order to overcome the singularity problem 

in applying the Fisher criterion. 

In Chapter 3, we proposed new GSVD-based linear and nonlinear algorithms for 

discriminant analysis. These algorithms provide an effective solution to the singularity 

problem of the Fisher criterion with low computational complexity and high recognition 

accuracy. In Chapter 4, we presented a theorem that essentially established the class 

structure for datasets with linearly independent samples in a specific discriminant 

subspace derived from the proposed MGSVD-LDA algorithm. Linearly independent 

samples are a very important category of patterns. For instance, face datasets, which are 

small sample size datasets with high dimensionality, are normally linearly independent. 

Samples in many other datasets, such as fingerprints, DNA data and iris data in biometric 
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applications, are also linearly independent. In view of the inspiration drawn from the 

results of Theorem 4.1, coupled with the practical significance of patterns with linearly 

independent samples, it is worth undertaking a deeper study of the feature extraction 

problem of datasets with linearly independent samples. 

In this chapter, a discriminant model for a dataset with linearly independent samples in 

the input space is developed. It is shown that if the samples of a dataset that has N 

classes Ct(i = 1,2,"-N) are linearly independent, then there exist N-1 sets 

5 /(/ = l ,2 , -" , iV- l ) of mutually orthogonal hyperplanes in the input space, with each set 

S, containing N parallel hyperplanes P' (z = 1,2, • • •, N) so that all the samples of the z'th 

class (z = 1,2,---,JV) can be mapped onto the hyperplane P' (i.e. onto the zth hyperplane 

of each of the N—l sets of the mutually orthogonal hyperplanes). The common normal g, 

to all the parallel hyperplanes in S, can then be selected as a discriminant vector and the 

collection of all such vectors { g ^ - " j i t f - i } a s ^ discriminant subspace. Based on 

this model of datasets with linearly independent samples, some novel algorithms for 

discriminant analysis that do not run into the SSS problem are developed. Extensive 

simulations are carried out using benchmark datasets to examine the validity of the 

discriminant model presented and to demonstrate the effectiveness of the proposed 

algorithms, both in terms of the complexity and classification accuracy. 

In Section 5.2, the discriminant model for the feature extraction of datasets with 

linearly independent samples is proposed. In Section 5.3, three new algorithms without 

encountering the SSS problem for obtaining the discriminant subspace of the proposed 

model are developed. In Section 5.4, a kernelized algorithm is also presented to deal with 
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the datasets in which the samples are not linearly independent. Section 5.5 presents the 

experimental results that are obtained by applying the proposed method on some 

benchmark datasets. The performance of the proposed algorithms is compared with that 

of several other well-known algorithms. 

5.2 A Discriminant Model of Linearly Independent Samples 

The objective of feature extraction in pattern recognition problems is to find 

appropriate features for representing the samples with enhanced discriminatory power for 

the purpose of classification. One of the commonly used feature extraction techniques is 

to transform the original sample space into a lower-dimensional discriminant subspace in 

which a sample of the dataset is more distinguishable in terms of the unique class to 

which it belongs. The idea is to find a transformation vector or a set of transformation 

vectors spanning over the discriminant subspace, on which the projections of the samples 

within each class condense into a compact region (ideally into a single point) separated 

from the regions corresponding to the other classes of the dataset. In this section, we 

show the existence of a discriminant model that allows the creation of a feature subspace 

in which the classes of linearly independent samples of a dataset can be efficiently 

discriminated. 

Assume that a dataset consists of /^-dimensional linearly independent samples each 

belonging to one of a total of N classes. If the /th class has ni samples (/' = 1,2,-••, N), the 

total number of samples in the dataset is n = Ejl, . We define an m xn matrix 
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X — [Xll'" "'Xl«| 'X21»'" "'X2n2 "'X/l '" "»X// '" ''Xin, "'XW1 ' ' ' ' X NnN ] (5-1) 

where x(y is the yth ( j = 1,2, •••,«,) sample in the /th class. Let g be an m-dimensional 

transformation vector, then the projection of the samples on g is given as 

p = gTX = (pu,---,plni,p2i,---,p2ni,---,Pn,---,Pij,---,Pini,---,Pm---,PNnN) (5.2) 

where the scalar ptJ is the projection of the data sample xy. on g. This linear 

transformation can also be expressed as 

X rg = pr (5.3) 

where, using the terminology of linear systems, X r is the coefficient matrix, g is the 

unknown vector, and p is a known constant vector of the nonhomogeneous linear system. 

Since the rows of X r consists of n linearly independent samples, the rank of this matrix is 

n. With an arbitrary vector p r , the rank of the augmented matrix X = [XT :pr] is also n. 

The linear independence also implies that the sample dimension m must be larger than or 

equal to the sample size n ( i .e .n<m). As X and X have the same rank, namely n, the 

existence of solutions of the linear system given by (5.3) is guaranteed. If n-m, (5.3) has 

a unique solution for g, otherwise it has infinitely many solutions. Thus, the existence of 

a solution for an arbitrary pr implies that we can choose the elements of p such that 

Pi\=Pii="- = Pbh=Qi> i = l,2, — ,N (5.4) 

and 

qt*qk,i,k = \, — ,N; (5.5) 

that is, <7, is a projection of the samples of the /th class on the transformation vector g, 

different from those of the samples of the other classes. Thus, there always exists a 

transformation vector g such that all the samples belonging to a class are mapped onto a 
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unique single point of each transformation vector g. 

A single-valued projection of all the samples within a class suggests that there exists an 

(m-l)-dimensional hyperplane in the original input space that is perpendicular to g and 

all the samples of this class lie on this hyperplane. There are N different projection points 

corresponding to the samples of the N different classes on a transformation vector g. This 

implies that there exist N parallel hyperplanes, each corresponding to one class and all the 

samples of one class belong to only one of these parallel hyperplanes. Thus, g is a vector 

normal to all the N hyperplanes. 

As all the samples belonging to a class have the same projection point on each vector 

g , without loss of generality, any sample of the class can be used to represent all the 

samples of that class. From (5.2), using the constraints imposed by (5.4) and (5.5), we 

have the following equations: 

g r (x i V i - x k r i )*0 , i,k = \,2,---,N, i*k,rx e {1, •••,«,}, r2 e{l,---,nk} (5.6) 

and 

g r<X,-x i > 2) = 0, i — \,2,---N ,rx,r2 e {1,•••,«,},r, * r2 (5.7) 

To facilitate the calculation of g, let us now construct the following two matrices: 

A^—[(x21 — xu) , ... Xx^! — xn),(x31 — x21), ... ,(x„,-x2 1), ... Xx^! — x ^ ^ , ) ] (5.8) 

— [(x12 — xn) , ... ,(xlf)| — x,,),(x22 — x2]), ... , (5.9) 
(X2„2

 _ X
2 1) , ... ,(XN2 — Xjy,), ... ,(X„„„ - X m ) ] 

Note that the columns of matrix Aware formed by subtracting the first sample of each 

class from all the remaining samples of the same class. On the other hand, the columns of 

matrix Ab are formed by subtracting the first samples of two different classes. It is 
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obvious that the columns of Ab are linearly dependent, since they are formed through 

linear operations of the first samples of all the classes. We can obtain a matrix Ab by 

selecting N—l linearly independent columns of Ab as follows: 

Using (5.10) into (5.6) and (5.9) into (5.7) yields, respectively, the following equations: 

where a is a column vector with all its elements being non-zero and unequal. Let E( ) 

and N(-) denote the range and the null space of the associated matrix, respectively. 

Equation (5.12) indicates that g e N(AW), and (5.11) implies that the columns ofA6 have 

non-zero projections on g . As stated earlier, there exists a set of vectors g ' s that satisfy 

(5.4) and (5.5), therefore it also satisfies (5.6) and (5.7) or (5.11) and (5.12) as long as the 

samples of a dataset are linearly independent. We now establish the following lemma and 

theorems to prove that the set of vectors g ' s consist of a subspace of N(Aw) such that the 

columns of Ab have non-zero projections on this subspace. 

Lemma 5.1: Assume that a dataset X consists of m-dimensional samples xiy 's 

(i = 1,2, • • •, N; j = 1,2, • • • , ) such that the /th class C. from the N classes has ni samples. 

Given the matrices Aw and Ab as formed by the (5.9) and (5.10), the columns of the 

matrix [Aw Ab ] are linearly independent. 

The proof of the lemma is straightforward and thus omitted. 

(5.10) 

(5.11) 

(5.12) 
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Theorem 5.1: Given an TV-class dataset whose samples x;>.'s 

(/ = 1,2,•••,N; j = 1,2,•••,ni) are linearly independent, and the matrices Aw and Ah as 

formed according to (5.9) and (5.10), respectively, the projection vectors of the columns 

of Ab on N(Aw) are linearly independent. 

Proof: Let q>, (/ = 1, - - •, TV — 1) denote the N-1 columns of Ab , and 

5, (/ = 1, • • •, Â  — 1), denote the projections of tp, on N(AW) . We prove by contradiction 

that the projection vectors of the columns of the matrix Ab on N(Amj) are linearly 

independent. Assume that the vector 8, 's are linearly dependent. Then there exists a set 

N-1 

of constants{ad}d=i...N_x, not all zero, such that ^<3,5, = 0 is a zero (null) vector. It 
/=i 

N-\ 

follows that the linear combination of the columns of Ab, ^ al<$l, which is a non-zero 
/=i 

N-1 

vector, has zero projection on N(AW). Thus, p, must belong to R(AW). A linear 

combination of the columns of Ab can be expressed as a linear combination of that of Aw, 

which contradicts Lemma 5.1. As a consequence, the projection vectors of Ab on 

N(Aw) , that is, 8, (/ = 1, • • •, N — 1), are linearly independent. 

• 

As Ab has N-1 non-zero linearly independent projections on N(AW), the dimension 

of the subspace spanned by these non-zero projection vectors 8, (/ = 1, •••, iV — 1) is N-l. 
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We now establish a relation between the subspace spanned by vector d, 's and the 

subspace spanned by g, 's. 

Theorem 5.2: Given an jV-class dataset whose samples xy. 's 

(i = 1,2, •••,N\j = 1,2, •••,«,) are linearly independent, all the samples of a class are 

projected into a distinct single point in the subspace spanned by 8 ; (/ = 1, • • •, N — 1). 

Proof: First, since according to (5.12), the projection of the difference between any 

two samples is a zero scalar, all the samples of a class project to the same point of 

N(Aw) , and hence, to the same point of the subspace spanned by (/ = 1, • • •, N — 1). 

Now, we will prove by contradiction that a pair of projection points on the subspace 

spanned by 8 ; (I = \,---,N — V) corresponding to any two samples belonging to two 

different classes cannot be the same point. Assume that any two samples belonging to 

two different classes are projected to a single point in the subspace spanned by 

dl (I = — 1) . It follows that the projections of the columns of Ab have zero 

projections on the subspace, that is, for some /, there exists a zero-vectorS,. This implies 

that the vectors 5 ; (/ = — 1) are not linearly independent, that is, Theorem 5.1 is 

contradicted. Thus, the projections of the samples of a class are a distinct single point in 

the subspace spanned by 8, (/ = 1, • • •, ./V — 1). 

• 

Since all the samples of a class are projected into a single distinct point in the 

subspace spanned by vectors 8, (/ = 1, • • •, N — 1) , this subspace can be used as the 

discriminant subspace (DS) and since the vectors 8, (I = !,•••,N— I) are linearly 
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independent, the set {8,,... 8^ ,} constitutes a basis of this DS. Theorem 5.2 implies that 

the DS is actually the same set of vectors as that spanned by the vectors g satisfying 

(5.11) and (5.12). Hence, any vector in this DS can be treated as g that satisfies (5.11) and 

(5.12). Once the set of projection vectors 8, (/ = 1,•••,7V — 1) is obtained, this DS is 

determined. Therefore, we can select g, = 8, I = \ , 2 , . . . , N a s a set of transformation 

vectors; any other vectors in this subspace can be represented as a linear combination of 

g; (/ = 15--TV — 1) . Without loss of generality, we can assume the basis of the 

discriminant subspace to consist of an orthonormalized set {g,,..,gA,_1} such that 

||gt|| = land g[g, =0 for k, I = 1, ..., N—\ and k I. Before closing this section, we can 

summarize the foregoing discussion and analyses as follows. 

If a dataset X consisting of m-dimensional linearly independent samples xy 's 

(i = 1,2, •••,N; / = 1,2, •••,«,) such that the z'th class C, from a total of N classes has nt 

samples, then there exists a set of mutually orthonormal transformation vectors 

g, (/ = 1,2, • • • N - 1 ) . The set of {§,,... g^.,} forms the discriminant subspace in the sense 

that for each g,, there exists a set of N parallel hyperplanes P. (i = 1,2,..., N) that are 

normal to g, such that all the samples xy. 's of C(. lie on the hyperplane P' and have a 

distinct point on g ; as their projection. The discriminant subspace is a subspace of the 

null space of Aw, N(AW), on which Ab has non-zero projections. 
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5.3 Algorithms for Finding the Orthonormal Basis of the DS 

The discriminant model developed in the previous section for a dataset with linearly 

independent samples shows that there exists a DS in which all the samples of a class 

merge into a unique point. It has also been shown that this DS is a subspace of N(Aw) on 

which the projection of Ab is non-zero. In this section, we develop three algorithms 

referred to as Algorithm A, Algorithm B, and Algorithm C for finding the DS that 

comprises the set of vectors g, (/ = 1,2, • • • TV -1) of the proposed model for a given 

dataset. 

Among these three algorithms, the first one is a straight forward technique of finding 

the DS in that first, N(Aw)is found by solving the linear equations ZrAw = 0 . Then, a 

subset of the solutions is determined on which Ab has non-zero projections. In Algorithm 

B, by utilizing the range of Aw, a direct solution of the linear equations ZrAw = 0 is 

avoided. Algorithm C is based on the same philosophy as that of deriving Algorithm B. 

However, here the range of (AM,:A4)is utilized instead of that of Aw. In Section 3.3 we 

will show that steps of this algorithm leading to the determination of the DS are very 

amenable to a kernelization of this algorithm. 

Algorithm A 

As the DS is a subspace of N(AW) on which Ab has non-zero projections, we propose 

an algorithm that first finds N(AW) and then projects Ab onto N(AW) to evaluate the 

basis of the DS. Consider the homogeneous linear system 



ZTAw = 0 (5.13) 

where Z represents a solution of the system. The set of solutions {Z} forms the null space 

of Aw , i.e. N(AW). Then, the DS is obtained by projecting Ab onto N(AW) as 

G = ZZTAb (5.14) 

In order to find G , the transformation matrix with orthonormal basis, an eigen-

decomposition of G r G is carried out to orthogonalize the columns of G as 

G r G = G r R 2G (5.15) 

where R is a diagonal eigen-value matrix corresponding to G. 

Overall, the algorithm just presented can be summarized as having the steps given in 

Table 5.1. 

Table 5.1: Algorithm A 

Input: Training sample x. 

Output: Transformation matrix G 

Step Al: Form the Ab and Aw using (5.9) and (5.10). 

Step A2: Find a set of orthogonal solutions {Z } of the linear system given by (5.13). 

Step A3: Evaluate G using (5.14) 

Step A4: Find transformation matrix G by applying eigen-decomposition of G using 

(5.15). 

Although this algorithm is straight forward, its use is limited to determining the DS for 

low-dimensional datasets because of the high computational complexity involve with the 
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solution of the associated linear systems. The development of the following algorithms 

addresses this problem. 

Algorithm B 

Consider an orthonormal matrix Q e 5ftmxm , partitioned as [Q, :Q2] > where the 

columns of Q, and Q, consist of the bases of R(AW) and N(A ) , respectively. Since 

QQr = I , an identity matrix, we can write Ab as 

A 6 = Q Q r A 6 = [ Q , Q2] 

Ql 

A , = E + E' (5.16) 

where 

e = q , q [ a 6 (5.17) 

and 

E = Q 2 Q ^ A a (5.18) 

It is seen from the above equation that E and E' are the projections of Ab on R(AW) 

and N(AW), respectively. This equation indicates that Ab can be decomposed into two 

mutually orthogonal components, E and E ' . As A w e g^*"-") and N ( A J e mx(m-n+N) 

the size of M(Aw) is smaller than that of N(AW) when the sample dimension is large. 

Consequently, the evaluation of R(AW) is computationally less expensive than that of 

N(AW). The orthonormal basis of R(AW) , i.e. Q, , can be obtained by carrying out 
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eigen-decomposition of AT
WAW. Then, matrix E ' can be obtained using (5.18) and E in 

turn can be used in (5.16) yielding 

E = A a - E ' (5.19) 

Finally, G , the orthonormal basis of the DS can be obtained through an eigen-

decomposition of E r E . This algorithm circumvents the direct calculation of N(AW) and 

thus it is time-efficient. 

The steps of the algorithm thus developed are given in Table 5.2. 

Table 5.2: Algorithm B 

Input: Training sample x, 

Output: Transformation matrix G 

Step Bl: Form Aw and Ab using (5.9) and (5.10). 

Step B2: Find Q, by obtaining the eigen-decomposition of AT
wAw. 

Step B3: Find E' using (5.18). 

Step B4: Find E using (5.19). 

Step B5: Find G by finding the eigen-decomposition of E r E . 

Algorithm C 

In this algorithm, we first construct an augmented matrix AC = [AW A a] and then 

project the matrix Aw onto M(AC). The null space of Aw found within R(AC) is then the 

DS. 
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To findR(Ac), one can conduct a singular value decomposition of Ac. However, for 

high-dimensional datasets, it would result in a high computational load. An efficient 

alternate approach is to conduct an eigen-decomposition of the inner product matrix 

A^Acas 

A c
rA c=UAU r (5.20) 

where Ae5R'x' with t = rank(Ac), is the diagonal matrix whose diagonal elements are 

the nonzero eigenvalues of A^Ac , and U e 9T*' is the eigenvector matrix corresponding 

j* A 
to Ac Ac. Then, the columns of U given by 

U = ACUA-1/2 (5.21) 

constitute an orthonormal basis of R(AC). Projecting the columns of Aw onto M(Ac) 

A T 

gives Bw = U Aw. The range and the null space of Bw can be obtained by conducting the 

eigen-decomposition of Bw as 

" 0 0 " 

0 

where E e Wdxd, with d = rank(Aw), is a diagonal matrix whose diagonal elements are 

the nonzero eigenvalues of Bw , and V G is the eigenvector matrix corresponding to 
K 

We partition V as [V, V2] , where V, e yi""0'^ consists of the eigenvectors 

corresponding to R(BW) and V2 e corresponds to N(BW). Finally, the orthonormal 

basis of the DS is obtained as 

B = V (5.22) 
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G = UV2 = AcUA"1/2V2 (5.23) 

The steps of the algorithm just described are put together in Table 5.3. 

Table 5.3: Algorithm C 

Input: Training sample x, 

Output: Transformation matrix G 

Step CI: Form AW and AB using (5.9) and (5.10), and set A c= ( Aw: AB). 

Step C2: Find U using (5.20) and (5.21). 

Step C3: Evaluate the projection Bw = U r A w . 

Step C4: Find V by eigen-decomposition of Bw given in (5.22). 

Step C5: Find V2 by partitioning V. 

Step C6: Find the orthonormal basis of the DS using (5.23). 

5.4 Kernel-Based Discriminant Subspace 

In the preceding sections, a discriminant model for a dataset with linearly independent 

samples has been developed. It has been shown that there exists a discriminant subspace 

in which all the samples of a class merge into a distinct single point. Three algorithms 

have also been proposed based on this discriminant model. However, the linearly 

independent condition used for the development of the model may not be satisfied in 

many cases. For instance, when the sample size is large relative to the sample dimension, 

the samples of a dataset cannot be linearly dependent. In such a case, one can restore the 
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linear independence condition in a higher-dimensional space through a nonlinear kernel 

mapping of the input samples [48], [84], 

A kernel is a nonlinear mapping O that is designed to map the samples in the input 

space 9lm onto a higher-dimensional feature space T 

9T - > T 

Correspondingly, sample xy 's in the original input space 9?m is mapped into a 

potentially much higher-dimensional feature vector \|/(;/ 's in the feature space T , in 

which samples become linearly independent, and hence, a linear technique for 

discriminant analysis can be applied. However, the high dimensionality of the derived 

feature space can make the overall process of the discriminant analysis computationally 

infeasible in practice. This problem is generally overcome by using the so called "kernel 

trick", in which the inner products of the mapped sample vectors in the feature space can 

be implicitly derived from the inner products between the input samples [54], [56] such 

that 

where denotes the inner product of two vectors in the feature space, £(•) denotes a 

kernel function, and klh is a scalar. The key to a successful kemelization of a linear 

algorithm is in its ability to construct inner products in the input space and then to 

incorporate these in the feature space again in the form of inner products. The 

formulations of Algorithm A and Algorithm B developed in the previous section in their 

present forms lack suitable inner product representations for their kemelization. However, 

(5.24) 

(5.25) 
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the third algorithm, Algorithm C, has highly suitable format for its kernelization. Hence, 

we now kernelized this algorithm. 

Define the following matrices similar to Aw, Ab and Ac using samples in the higher-

dimensional feature space defined by the mapping given by (5.24): 

[O12 -Vii)>--->0,„, -xu),(v|/22-\|/21),...,(\|/2„2 - y 2 1 ) , . . . , 

[(V21 - V n U V s i -V11) (V/i " - Vn)] 

As for the linear algorithm (Algorithm C), form a symmetric matrix 

< D > (5.26) 

, w b W W 

In order to evaluate the above matrix, we first construct the following matrices: 

(5.27) 

0>2 = [i|/12,.. .!]/,„_,\|/22,...,\|/2„2,...,yN2,..., v|/NnN ] (5.28) 

0 

c,= c = (5.29) 

0 

Then, we can express the matrix O tand Oiv used in (5.26) as 

= ®,c: (5.30) 

(5.31) 

The four sub-matrices on the right side of (5.26) can be expressed as 
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O ^ C f K , ^ 

= k 2 2 -C^K12 ~(CT
2K12)T+CT

2KUC2 
(5.32) 

o>w=c;K12-c(Knc2 

where K u = ®f<D1, K22 = 0 2 0 2 , and KI2 =(K2 ]) r = 0 [ 0 2 . Derivation of this set of 

formulas is presented in Appendix C. Carrying out an eigen-decomposition of , 

we have 

<D̂<DC = UAU7 
(5.33) 

where A e 9?"", with t = rank(Oc), is a diagonal matrix whose diagonal elements are the 

nonzero eigenvalues of , and U is the eigenvector matrix corresponding to O^®c . 

Thus, U = ®cUA~'/2 is the eigenvector matrix of <t>cOc
r with its orthonormal columns 

that span M(Oc). Projecting the columns of ®w onto U yields 

® = U' a> = A 1/2ura>ro. = A 1 u -1/2*17" 
^22 ~ ^2 -̂12 ~(ClK12)T + C 2 K u C 2 

C fK12 - C i r K l l C 2 

(5.34) 

Now, another eigen-decomposition is carried out to find N(Ow) in R(Oe) as follows 

= v WW (5.35) 

where £ is a diagonal matrix with nonzero eigenvalues of its diagonal and V is 

the eigenvector matrix corresponding to Partitioning Vas ĵ V, V2J, where V, is 

the eigenvector matrix corresponding to the null space of , the transformation 

matrix can be obtained as 
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G = <DcUA1/2V, = (5.36) 

where ¥ = UA"1/2V,. 

Table 5.4: Algorithm KC 

Training stage 

1. Form the kernel matrices K,, , K12and K22 using a kernel function and (5.25), 

(5.27), (5.28), (5.29) and (5.32). 

2. Evaluate the matrix given in (5.26) by using (5.32). 

3. Find U and A by eigen-decomposition of given in (5.33). 

4. Evaluate the projection of Q>w on E(O c) using (5.34). 

5. Find V through the eigen-decomposition given in (5.35) of . 

6. V2 <-\(:,N:n-N). 

7. Find the orthonormal basis of the DS using (5.36). 

Classification stage 

8. Form k( using (5.38). 

9. Find the projection vj/( on feature vectors: n <— xPTkl . 

Finally, in order to determine as to the class to which a given test sample belongs to, 

the projection on the transformation vectors of its map i|/, in the feature space has to be 

found. This projection using inner product can be express as 

n = G r\|/, = = (5.37) 

where the column vector k( can be evaluated as 

100 



k. = (5.38) 

The kernel scheme just described can be summarized in the form of an algorithm, 

kernelized Algorithm C (Algorithm KC). This algorithm is summarized in Table 5.4. 

5.5 Experiments 

In this section, four different sets of experiments are carried out in order to illustrate 

the various ideas and schemes developed in this chapter. In the first set of experiments, 

the validity of the proposed discriminant model is examined. In the second set of 

experiments, the computational complexity of the three proposed algorithms is compared 

using three text document databases. The third set of experiments evaluates the 

performance of linear algorithms, Algorithm B and Algorithm C proposed in this chapter, 

and the PCA+LDA, MGSVD-LDA, MGSVD-OLDA and RLDA algorithms, using four 

human dace databases. In the last set of experiments, the performance of the proposed 

kernelized Algorithm C (Algorithm KC) and four other kernelized algorithms 

( KPCA+LDA, MGSVD-KDA, MGSVD-OKDA and KRDA algorithm) in comparison 

to that of the linear LDA algorithm is carried out using three large sample size databases. 

Ten databases are used in our experiments. Among them, FERET, YALE, ORL and AR 

are human face databases, and Datasetl, Daraset2 and Dataset3 are text document 

databases. Each of these six databases is small sample size database, in which samples 

are linearly independent. The remaining three databases, Isolet (a spoken letter database), 
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MUSK (a molecule conformation database), and MNIST (a handwritten digit database) 

are large sample size databases, in which samples are not linearly independent. 

As discussed in the previous sections, if samples of a given database are linearly 

independent, they must be linearly separable. In the case of large sample size databases, 

samples are not linearly independent; kemelization is, therefore, necessary to establish 

the linear independence condition by using an appropriate kernel. Since the main 

objective of the kemelization is to achieve a linear independence among samples, the 

same simple kernel, a nonhomogeneous polynomial kernel [4], is chosen for all the 

nonlinear algorithms considered to establish the linear independence so that the 

differences in the recognition accuracy of the various algorithms can be attributed to 

feature extraction process of the algorithms. The nonhomogeneous polynomial kernel is 

given as 

where d is a positive integer. In the classification stage, the nearest neighbor classifier [3] 

is used for all the algorithms. 

For the PCA+LDA and KPCA+LDA algorithms, the largest N-\ eigenvalues, where N 

is the number of the classes, and the corresponding eigenvectors are used in the first stage 

for dimension reduction. The optimal regularization parameter for the RLDA and the 

optimal kernel parameter, d, for all the kernelized algorithms are estimated through the k-

fold cross validation method, where k > 10, by using a part of the training samples for the 

actual training and the remaining for estimation. The parameter corresponding to the 

highest average recognition accuracy over the k iterations is chosen as the optimal 

parameter. The KRDA algorithm has two parameters, regularization and kernel, to be 

(5.39) 
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estimated; hence, a double cross-validation is needed. For each database, ten sets of 

samples are randomly chosen and each algorithm is run using one set at a time. The 

average recognition rate and execution time of an algorithm is determined as an average 

taken over ten runs of the algorithm. Parameter estimation time is not explicitly given, 

but can be estimated as the product of the number of parameter candidates k, and the 

execution time. The execution platform used is dual core AMD opteron (tm), processor 

180, 2.41 GHz, 2.0 GB RAM and Win XP operating system. 

(a) Validation of the discriminant model 

According to the proposed discriminant model, if the samples of a dataset are linearly 

independent, then there must exist a set of transformation vectors {g,,... g ^ , } and a set 

of parallel hyperplanes normal to g, such that all the samples of a class of the dataset lie 

on one of hyperplanes and have a distinct point on g, as their projection. In this set of 

experiments, we validate this model experimentally. 

The proposed algorithms, Algorithm A, Algorithm B, Algorithm C, and three other 

algorithms, namely MGSVD-LDA, RLDA and PCA+LDA, are applied on the small size 

face database AR as an example of a dataset of linearly independent samples, whereas the 

kernelized version of Algorithm C (that is, the KC algorithm) and the kernelized versions 

of the other three algorithms, MGSVD-KDA, KRDA and KPCA+LDA, are applied on 

the large sample size database Isolet as an example of linearly dependent dataset. Since 

the vector g, 's are expected to be mutually orthogonal, for the purpose of illustration, 

any pair of arbitrarily chosen vectors can be used to form a plane in two dimensions. 
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Figure 5.1-Figure 5.4 depicted the projections of the samples on such two-dimensional 

planes, where only eight randomly selected classes are shown for the sake of simplicity. 

These figures show that if the samples are linearly independent or become linearly 

independent through nonlinear kernel mapping, the projections of the samples of each 

class condense to a distinct single point on the plane formed by any two transformation 

vectors that are derived from the proposed linear or kernelized algorithms. Thus, this 

example illustrates that, for the linearly independent samples, the proposed discriminant 

model holds. It is clear that the RLDA and PCA+LDA algorithms and their kernelized 

versions, the RLDA and KPCA+LDA algorithms, which are not designed on this 

discriminant model, are not as successful as the proposed algorithms in discriminating the 

classes. 

(b) Computational efficiency of the proposed linear algorithms 

As it has been pointed out in Section 5.4, the application of Algorithm A is limited to 

low-dimensional datasets because of its high computational complexity. Thus, it suffers 

from memory overflow problem when applied to patterns, such as human faces, that have 

a very high dimension. Hence, in order to compare the performance of the three proposed 

algorithms, Algorithms A, B, and C, the three text document databases are used in this 

experiment and their dimensions are reduced by one-half in order to avoid memory 

overflow of Algorithm A. The results of the experiment are given in Table 5.5. From 

these results, we can make the following observations: 
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(a) 

(c) (d) 

Figure 5.1: Sample projections in a two-dimensional discriminant subspace using 
algorithms (a) Algorithm A, (b) Algorithm B, (c) Algorithm C and (d) Algorithm KC 
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-3 - 2 - 1 0 1 

(a) (b) 

Figure 5.2: Sample projections in a two-dimensional discriminant subspace using 
algorithms (a) MGSVD-LDA and (b) MGSVD-KDA 

0.5 h 

-0.5 h 

-1.5 

Figure 5.3: Sample projections in a two-dimensional discriminant subspace using 
algorithms (a) RLDA and (b) KRDA 
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(a) (b) 

Figure 5.4: Sample projections in a two-dimensional discriminant subspace using 
algorithms (a) PCA+LDA and (b) KPCA+LDA 

1) All the three proposed algorithms have the same recognition accuracy for the three 

text document databases. 

2) The execution times of Algorithms B and C are significantly lower than that of 

Algorithm A. 

3) For the three text document databases, the execution time of Algorithm B is lower 

than that of Algorithm C. 

As expected, the three algorithms provide equally high recognition accuracy, since all 

the three are based on the same proposed discriminant model. However, their execution 

times are different. The computationally demanding of Algorithm A is the solution of the 
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linear equations ZrAw = 0 to obtain the null space of A w ,N(A w ) . Since the dimension 

m is still much larger than the sample size n, the basis of N(AW) , whose size is m x (m-

n+N), requires a significant amount of computation. Implementation of neither Algorithm 

B nor Algorithm C involves computing the complete null space of Aw; hence, these 

algorithms are computationally more efficient. 

Table 5.5: Performance of the three proposed linear algorithms 

Database Datasetl Dataset2 Dataset3 

Algorithm Recognition 

Rate 

(%) 

Execution 

Time in 

Seconds 

Recognition 

Rate 

(%) 

Execution 

Time in 

Seconds 

Recognition 

Rate 

(%) 

Execution 

Time in 

Seconds 

Algorithm 

A 

96.4 16.23 83.54 11.58 91.79 3.71 

Algorithm 

B 

96.4 0.20 83.54 0.20 91.79 0.07 

Algorithm 

C 

96.4 0.29 83.54 0.49 91.79 0.09 

(c) Performance evaluation using datasets with linearly independent samples 

In this set of experiments, the performance of the proposed linear algorithms, 

Algorithm B and Algorithm C, are evaluated and compared with that of the PCA+LDA, 

MGSVD-LDA and RLDA algorithms in terms of the recognition accuracy and execution 
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time using three human face databases. The three human face databases used for this 

evaluation are FERET, YALE, ORL and AR. The results of the experiment are given in 

Table 5.6. From the results, we have the following observations: 

1) As in the case of low-dimension text databases, the two proposed algorithms 

provide high level of recognition accuracy and low execution time for large dimensional 

databases as well. 

2) The recognition accuracy of Algorithm B and Algorithm C is higher than those of 

the MGSVD-LDA and PCA + LDA algorithms. The execution times of these four 

algorithms are about the same. 

3) The proposed algorithms are competitive to the RLDA algorithm in terms of the 

recognition accuracy. However, the execution time of the RLDA algorithm is much 

larger than that of Algorithm B or Algorithm C due to the requirement of selection of the 

regulation parameter in the former. 

Thus, taking into consideration both the recognition accuracy and execution time, the 

proposed Algorithm B and Algorithm C outperform the MGSVD-LDA, RLDA and 

PCA+LDA algorithms. The computational complexity of Algorithm C depends mainly 

on the operation of the eigen-decomposition o f A c , whose size is (n+N) x (n+N). In 

contrast, the implementation of Algorithm B involves mainly the inner product 

computations and some arithmetic operations of vectors in obtaining the discriminant 

subspace. This difference in the computational complexities of Algorithm B and 

Algorithm C can be attributed to the lower execution time of the former. 
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(d) Performance Evaluation Using Datasets with Linearly Dependent Samples 

In this set of experiments, the performance of the proposed kernelized algorithm, 

the Algorithm KC, and that of three other kernelized algorithms, the MGSVD-KDA, 

KRDA and KPCA+LDA algorithms, are assessed using three large sample size databases, 

MUSK, Isolet, and MNIST. We also compare the performance of the kernelized 

algorithms with that of the linear LDA algorithm. Table 5.7 shows the simulation results 

of this experiment. The purpose of including this linear algorithm is to illustrate the 

effectiveness of kemelization in each of the nonlinear algorithms. 

1) Compared to the LDA algorithm, all the kernelized algorithms enhance the 

recognition accuracy significantly. 

2) The proposed KC algorithm provides the highest recognition accuracy compared to 

the other kernelized algorithms. 

3) The proposed KC algorithm requires a smaller execution time than its competitors 

except for the KPCA+LDA algorithm with the Isolet database. 

The process of kemelization facilitates the samples to achieve a linear independence to 

capture the class structures of the databases in a high dimensional space. Compared to 

other kernelized algorithms, the proposed Algorithm KC provides the highest recognition 

accuracy with low computational load. 
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5.6 Summary 

In this chapter, a systematic framework for the feature extraction of the linearly 

independent samples have been developed, which effectively addresses the SSS problem. 

Within this framework, first a discriminant model for the linearly independent samples 

has been established. If the samples of a dataset with N classes are linearly independent, 

then in accordance with this model, it has been shown that there exists a set of TV-1 

mutually orthogonal transformation vectors forming a discriminant subspace. For each of 

the transformation vectors, there exists a set of N parallel hyperplanes that are normal to 

this transformation vector. All the samples of one class lie totally on one of the N parallel 

hyperplanes and have a single distinct point on this transformation vector as their 

projections. Based on the proposed discriminant model, three algorithms have been 

developed. Whereas the first algorithm has been designed for low-dimensional datasets, 

the other two have been designed without such a restriction on the data dimensionality. 

Since the samples of a dataset are not linearly independent when the sample size is larger 

than its dimension, a kernelized algorithm has also been developed for the discriminant 

analysis of such datasets. 

Extensive experiments have been conducted using benchmark database to demonstrate 

the validity of the proposed discriminant model for linearly independent samples. It has 

been shown that if the samples are linearly independent or made linearly independent 

through a nonlinear kernel mapping, the projections of the samples of each class 

condense into a distinct single point on any of the transformation vectors that are derived 

from the proposed linear or kernelized algorithms. It has been demonstrated that the three 

proposed linear algorithms provide a solution to the pattern recognition problem yielding 
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an equally high recognition accuracy with two of them consuming significantly less 

computational time. Simulation results using benchmark datasets have also shown that 

these two algorithms, in general, outperform the other existing linear algorithm in terms 

of recognition accuracy and execution time. Simulation results have also demonstrated 

that the proposed kernelized algorithm provides high recognition accuracy with low 

computational load compared to other kernelized algorithms. 
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Chapter 6 

Conclusion 

6.1 Concluding Remarks 

Fisher's linear discriminant analysis provides an effective solution to many pattern 

recognition applications. However, it has a limitation in that it requires the within-class 

scatter matrix to be non-singular, which in practice is not the case when the small sample 

size problem occurs. Many FLDA variants that have been proposed in the past to address 

the small sample size problem either suffer from the high computational complexity due 

to the way the high-dimensionality of the input samples are dealt with or lose some useful 

discriminant information in dealing with the singularity problem of the scatter matrices of 

the traditional FLDA. This research has been concerned with an in-depth study of the 

discriminant analysis and development of feature extraction algorithms that can 

effectively deal with the small samples size problem. With this objective, the work of this 

research has been divided into two parts. 

In the first part of this study, an algorithm, referred to as the MGSVD-LDA algorithm, 

which overcomes the small sample size problem, has been developed by solving the 

problem of generalized singular value decomposition through eigen-decomposition. The 

proposed algorithm has provided an efficient solution to the singularity problem of the 

within-class scatter matrix of the Fisher criterion with low computational complexity and 
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high recognition accuracy. A scheme has also been developed to kernelize the proposed 

linear algorithm yielding a nonlinear algorithm for discriminant analysis when the 

samples of a dataset are not linearly separable and a direct application of the linear 

algorithm fails to separate the classes of the dataset. An orthogonalization technique has 

been proposed to deal with the over-fitting problem through an eigen-decomposition of 

the basis of the discriminant subspace derived from the proposed MGSVD-LDA 

algorithm. 

A theorem has been established to determine the class structure of linearly 

independent samples in the discriminant subspace derived by the proposed MGSVD-

LDA algorithm. According to this theorem, if the samples of a dataset are linearly 

independent in the input space, then all the samples in a class condense into a distinct 

single point of the discriminative subspace, whereas a pair of samples belonging to two 

different classes are separated by a distance determined by the number of samples in each 

of the two classes. Thus, under the linear independence condition, the classes of a dataset 

are linearly separable, that is, through the linear MGSVD-LDA algorithm the class 

structures of the datasets with linearly independent samples can be successfully captured. 

It has been shown that for small sample size datasets, in which the samples are linearly 

independent, kernelization of the proposed linear algorithms provides little improvement 

in the recognition accuracy. The theorem that establishes the class structure of linearly 

independent samples has also been used to estimate the numerical errors of the proposed 

linear and nonlinear algorithms. This estimate of numerical errors has also be used to 

develop a scheme to adjust the kernel parameters to minimize the numerical errors in the 

implementation of the nonlinear algorithm and thus to improve the recognition accuracy. 
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In the second part of this thesis, a discriminant model for datasets with linearly 

independent samples has been established. If the samples of a dataset with N classes are 

linearly independent, then in accordance with this model, it has been shown that there 

exists a set of N-1 mutually orthogonal transformation vectors forming a discriminant 

subspace. For each of the transformation vectors, there exists a set of N parallel 

hyperplanes that are normal to this transformation vector. All the samples belonging to a 

single class lie totally on one of the N parallel hyperplanes and have a single distinct 

point on this transformation vector as their projections. Based on this discriminant model, 

three linear algorithms that effectively deal with the adverse effects of the SSS problem 

have been developed to determine the discriminant subspace for a given dataset with 

linearly independent samples. One of the three algorithms has been designed for low-

dimensional datasets, whereas the other two have been designed to deal effectively with 

the computational problem associated with the high dimensionality of patterns. A scheme 

has also been developed to kernelize one of the three proposed linear algorithms for the 

discriminant analysis of datasets with linearly dependent samples. 

Extensive experiments have been conducted throughout this research using benchmark 

databases to investigate the validity and effectiveness of the ideas developed therein. 

Simulation results have been used to demonstrate the validity of the schemes and the 

model presented. It has also been shown that the discriminant analysis algorithms 

proposed in this thesis provide superior performance in terms of the recognition accuracy 

and computational complexity. 

117 



6.2 Scope for Further Investigation 

While the work of this thesis has focused on developing efficient techniques for 

feature extraction and developing a discriminant model for datasets with linearly 

independent samples, in the opinion of the author of this thesis, there are a number of 

problems related to the work of this thesis that needs to be further investigated. 

1. The crux of the SSS problem is in the use of the Fisher criterion that involves the 

inversion of a scatter matrix, which cannot be accomplished when it is singular. 

Existing solutions dealing with this problem has been computationally expensive 

or lack of accuracy. Thus, there is a need to devise a new rational and objective 

optimality criterion, altogether different from the Fisher criterion that does not 

have to deal with the inversion of matrices. 

2. There is a need to develop new feature extraction algorithms dealing with more 

complex databases having subjects with missing pixels, outliers or occlusions, or 

subjects corrupted by various types of noise. 

3. In dealing with the feature extraction of datasets with samples that are not linearly 

separable, almost invariably linear algorithms have been kernelized. However, the 

computational complexity of the kernelized algorithms is very high. Hence, there 

is a need to develop directly low-complexity nonlinear algorithms without 

recourse to the linear ones. 
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Appendix A 

Derivation of the Expressions for 0[0>M and the 

MGSVD-KDA Algorithm 

In this section, we give the expressions for <DT
b<S>b, , and , which are the 

submatrices of r T r given by (3.27). 

1) Derivation of 

= | /) r(V ; )-v| /))=. * 
j=\ N 

j=1 N 

where 

v ( 0 V y ) = _ L £ tf I ; ^ 

1 *! 
ninj l=kM+\h=kH+\ 

=>(\|/(0r\|/0)),=i N = B r KB 

and ki=nl+n2 + ... + a n d kj = n]+n2+ ... + n} 
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ninj /=*,.,+1 h=i 

• (v (0rv)/=i n = BrKL 
j=\ N 

j n k: 
v V > = — S Z ** 

w = LrKB 
j=\ W 

J n n 
W /=1 A=1 

1 n n 

n i=| /,=| 

7=1 JV 

Hence, we have 

= D ( B - L f K ( B - L ) D . 

2) Expression for 

O ' O W W 

= ((V/ -VK(°)r(VA-M'(y')))'e(i'-+1 i')'/,e(V'+1 *;> 
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where 

(VFVI/J = K v x I x h ' (s( t + 1 kj l+1 ij) 
i,j=l A/ 

n j h=kH+1 

• ( « [ / ) = K A 

/,j=l ff 

, = A K i,) 
i,y=l N 

V V ' — Z I * A 

/ (or O')) = A K A 

ij=l * 

Thus, the submatrix can be expressed as 

® > W = ( I - A ) R K ( I - A ) . 
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3) Expression for O a O w 

= [ - V) , . . , V M V " ' - V)] [(V, - V 0 ) , . . . , (M/„ - Y(JV))] 

= - V ^ V a - *y> 

/j=i w 

where 

Z kth ni /=*,-,+! 

=*(V(,)7V») = BrK v T • +1 
/,;=] at 

v ° v ; ) = — t £ 

rift] /=*._,+i +1 

( i | / ( 0 V 7 ) ) =B rKA VT T Ae(ft,_i+1 4,) 1,7=1 ^ 

1 " 
" /=1 

=>(VrVA) = LrK T " ' kj) 
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1 n k, 1 
v V ; ) = — z I klh nrij /-] h=kJ_]+1 

• ( w V y ) ) = LrKA. V T T 'MIY-L+L *Y> 
IJ-1 W 

Thus, from the above, we have 

^ © ^ D C B - L f K f l - A ) . 
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Appendix A 

Examples of Some Typical Images in Face Databases 

ff^^ 
M^pil^Mi^Ml ^̂ ^̂ Sâ mijffî î ^̂  ^̂ ^̂ ^̂ B̂̂ ŷ Mfê H 

^ ^ ^ ^ ^ ^ ^ > 

k) 
Figure B.l: Images of one subject in the FERET face database 
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Figure B.2: Images of one subject in the YALE face database 
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Figure B.4: Images of one subject in the ORL face database. 

137 



Appendix A 

Derivation of the Expressions for Q>T
bO>w, and <l>T

w<l>win 

Algorithm KC 

In this section, we give the expressions for , and which are 

submatrices of 3>̂ <DC given by (5.32). 

1) Derivation of 

= [(V21 ~Vn)»(V3i - Vn).-"»(V/i ~ - V , , ) ] 

[\|/n,\|/21,...,\| /lx(AT-l) 

V / 

cd.C, 

where 

c ,= x(jV-l) 

A ' - l J 
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2) Derivation of <Dv 

(D 

= [(Vi2-Vn).".,(v,» -xn),(\|/22-v|/21),...,(\|/2„2-v|/21),...,(\|/W2-v|/M),...,(v|/^ 

] 

(1) l x ( « , - l ) 

0 

0 

(1) 1*(«aH) J 

where 

0 2 =[v|/12,...v|/lni,\|/22,...,\i/2„2,...,\|/W2,...,M/^J, 

C2 = 

(1) l x ( " | - l ) 0 

0 (1) l x ( % - l ) J 

1) Derivation of O^Ob 

= (o,c1)T ®,c, 

= C ^ O .Q 

C, KUC, 
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where K„ =Of<t>r 

3) Derivation of OfvO>iv 

= O . O . - C ^ O . - C C . O ^ f + C . O f O . C , 

= K 2 2 - C 2 K 1 2 - ( C 2 K 1 2 ) r +C2K,,C2 

where 

K 2 2 =O^O 2 , 

K 1 2 = ( K 2 1 ) r = 0 r 0 2 . 

4) Derivation of 

= (®,C,)r (o2-o,c2) 

= C f K u - C f K , , C 2 
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