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ABSTRACT

Discriminant Analysis Based Feature Extraction for Pattern

Recognition

Wei Wu, Ph.D.
Concordia University, 2009

Fisher’s linear discriminant analysis (FLDA) has been widely used in pattern
recognition applications. However, this method cannot be applied for solving the pattern
recognition problems if the within-class scatter matrix is singular, a condition that occurs
when the number of the samples is small relative to the dimension of the samples. This
problem is commonly known as the small sample size (SSS) problem and many of the
FLDA variants proposed in the past to deal with this problem suffer from excessive
computational load because of the high dimensionality of patterns or lose some useful
discriminant information. This study is concerned with developing efficient techniques
for discriminant analysis of patterns while at the same time overcoming the small sample
size problem. With this objective in mind, the work of this research is divided into two

parts.

In part 1, a technique by éolving the problem of generalized singular value
decomposition (GSVD) through eigen-decomposition is developed for linear discriminant
analysis (LDA). The resulting algorithm referred to as modified GSVD-LDA (MGSVD-
LDA) algorithm is thus devoid of the singularity problem of the scatter matrices of the

traditional LDA methods. A theorem enunciating certain properties of the discriminant
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subspace derived by the proposed GSVD-based algorithms is established. It is shown that
if the samples of a dataset are linearly independent, then the samples belonging to
different classes are linearly separable in the derived discriminant subspace; and thus, the
proposed MGSVD-LDA algorithm effectively captures the class structure of datasets

with linearly independent samples.

Inspired by the results of this theorem that essentially establishes a class separability
of linearly independent samples in a specific discriminant subspace, in part 2, a new
systematic framework for the pattern recognition of linearly independent samples is
developed. Within this framework, a discriminant model, in which the samples of the
individual classes of the dataset lie on parallel hyperplanes and project to single distinct
points of a discriminant subspace of the underlying input space, is shown to exist. Based
on this model, a number of algorithms that are devoid of the SSS problem are developed

to obtain this discriminant subspace for datasets with linearly independent samples.

For the discriminant analysis of datasets for which the samples are not linearly

independent, some of the linear algorithms developed in this thesis are also kernelized.

Extensive experiments are conducted throughout this investigation in order to
demonstrate the validity and effectiveness of the ideas developed in this study. It is
shown through simulation results that the linear and nonlinear algorithms for discriminant
analysis developed in this thesis provide superior performance in terms of the recognition

accuracy and computational complexity.
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Chapter 1

Introduction

1.1 Background

Pattern recognition is the discipline that studies how a machine can observe the
environment, learn to distinguish patterns (samples), and make reasonable decisions on
the classes of new patterns [1]. Pattern is a quantitative or structural description of an
object or some other entity of interest. Depending on the applications, patterns can be
handwritten cursive words, speech signals, odor signals, fingerprint images, animal
footprints, human faces or any type of measurements that need to be classified.

One of the widely used pattern recognition approaches is the statistical pattern
recognition. In the statistical approach, each pattern is represented in terms of m features.
Depending on the measurements of an object, features in a pattern can be either discrete
numbers or real continuous values. The requirement on features is that the features can
reflect the characteristics of desired objects and differ from those other objects to the
largest extent. For example, a face image, being a d xd array of 8 bit intensity values,
can be represented as a vector of dimension m = &*. Thus, each pattern can be viewed as

an m-dimensional feature vector or a point in an m-dimensional space, that is,

x:[xl’xz,...,xm]T



where x,,x,, -+, x, are the features. This space is called sample feature, feature space or

input space. For example, an image of size 256x256 becomes a 65536-dimensional
vector or equivalently, a point in a 65536-dimensional space.

The procedure of a statistical pattern recognition system has two main steps: training
(learning) and classification (testing). In the training step, feature extraction creates a set
of representative features based on transformations or combinations of the given patterns.
The set of representative features is considered to be the most important and effective
attributes in distinguishing the patterns from different classes. The classification step is to
assign a class label to each new pattern.

Patterns, being similar in overall configuration, are not randomly distributed in the input
space and thus can be described by a relatively low-dimensional subspace. The idea is to
find approprniate features for representing the samples with enhanced discriminatory
power for the purpose of recognition. This process is known as feature extraction. A
commonly used feature extraction technique is to transform the original sample space
into a lower-dimensional discriminant subspace, in which a transformed sample of the
dataset is easily distinguished. The objective is to find a set of transformation vectors
spanning over the discriminant subspace, on which the projections of the samples within

each class condense into a compact and separated region.

1.2 Motivation

Two classical linear feature extractors are principal component analysis (PCA) [2] -
[3], [7] - [8] and Fisher’s linear discriminant analysis (FLDA) [4], [5], [6]. Both these

methods extract features by projecting the original sample vectors onto a new feature
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space through a linear transformation matrix. Howevér, the goal of optimizing the
transformation matrix in the two methods is different. In PCA, the transformation matrix
is optimized by finding the largest variations in the original feature space [2] - [3], [7] -
[8]. On the other hand, in FLDA, the ratio of the between-class and within-class
variations is maximized by projecting the original features to a subspace [4], [S], [6].
PCA is effective in restructuring the dataset, but it is weak in providing the class
structure. FLDA formulates the class boundaries by finding a discriminant subspace in

which different classes occupy compact and disjoint regions using the Fisher criterion

[51, [6]

- |G'S,G|
G p  =arg max G'S.G|

where S, and S are, respectively, the between-class and within-class scatter matrices,

G is the transformation matrix whose columns are the projection vectors that span the

denotes the determinant of the associated matrix. The

discriminant subspace, and

solution to this maximization problem is the set of eigenvectors corresponding to the non-
zero eigenvalues of the matrix S_'S, .

The Fisher linear discriminant analysis cannot be applied to solve pattern recognition
problems if the within-class scatter matrix is singular, a situation that occurs when the
number of the samples is small relative to the dimension of the samples. This is so-called
the small sample size (SSS) problem [4]. Small sample size data with high dimensionality
are often encountered in real applications, such as in human face recognition. Many

FLDA variants have been proposed to address this singularity issue [9] - [46]. Tian et al.

[15] have used the pseudoinverse method by replacing S;' with its pseudoinverse. Cheng



et al. [16] have proposed a rank decomposition method based on successive eigen-
decomposition of the total scatter matrix S, and the between-class scatter matrix S, .

However, the above methods are typically computationally expensive since the scatter
matrices are very large [17]. In [18], a two-stage FLDA method has been introduced, in
which a principal component analysis is carried out for dimension reduction prior to
applying the Fisher criterion. However, this dimension reduction step eliminates some
useful discriminant information, since some of the eigenvectors of the total scatter matrix

are discarded in order to make S  non-singular [19] — [24]. In the direct LDA (D-LDA)
method [19], the null space of S, is first removed, and then the discriminant vectors in the
range of S, are found by simultaneously diagonalizing S,and S, [4]. A drawback of this
method is that some significant discriminant information in the null space of S  gets
eliminated due to the removal of the null space of S, [20], [22] - [24]. In the regularized

FLDA (RLDA) [21], [29] - [33], the singularity problem is solved by adding a
perturbation to the scatter matrix. The optimal perturbation parameter is normally
estimated adaptively from the training samples through cross-validation, a process which
is very time consuming. Some FLDA variants have attempted to overcome the SSS
problem by using the generalized singular value decomposition (LDA/GSVD) [34], [35].
However, these methods suffer from excessive computational load because of the large
dimension of the samples [36]. Chen et al. [41] proposed the null space method based on

the modified FLDA criterion

|G'S,G|

G s = A1 max G'SG|



where S, is the total scatter matrix [42], [43]. However, the authors did not give an

efficient algorithm for applying this method to solve the singularity problem of the Fisher
criterion [47].

Since the linear feature extraction methods cannot capture the nonlinear class
boundaries, which exist in many patterns and affect the recognition accuracy of the
patterns, kernel machines [49] - [56] are used to map the patterns into a high-dimensional
kernel feature space where the patterns are linearly separable, and thus, the linear feature
extraction techniques can be applied in the mapped space. The integration of the kernel
machine with a linear discriminant method provides a nonlinear algorithm with improved
recognition accuracy [57] - [77]. However, nonlinear algorithms also suffer from the
same problems as that inherent in the corresponding linear versions. Hence, the choice of
a good linear algorithm is crucial to obtaining an efficient kernelized algorithm.

From the foregoing discussion, it is clear that the existing discriminant analysis
techniques, in general, suffer from the excessive computational load in dealing with the
high dimensionality of patterns or lose some useful discriminant information in order to
overcome the singularity problem associated with the Fisher criterion. It is, therefore,
necessary to conduct an in-depth study of the mechanism of the discriminant analysis
leading to designs of efficient low computational complexity algorithms for feature

extraction without having to deal with the SSS problem.

1.3 Scope of the Thesis

The objective of this research is to devise efficient techniques for discriminant

analysis of patterns and to apply them for developing feature extraction algorithms that



are devoid of the small sample size problem. With this unifying theme, the work of this
study is carried out in two parts.

In part 1, a low-éomplexity algorithm that overcomes the singularity problem of the
scatter matrices of the traditional FLDA methods is developed for linear discriminant
analysis (LDA) by solving the problem of generalized singular value decomposition
(GSVD) through eigen-decomposition. A theorem providing the distance between
samples in the discriminant subspace derived from this GSVD-based algorithm is
established to address the class structure and separability of linearly independent samples.

In part 2, a new systematic framework for the feature extraction of datasets with
lbinearly independent samples is developed. Within this framework, a discriminant model
is first established. It is shown that if the samples of a dataset are linearly independent,
then the samples of the individual classes of the dataset lie o.n parallel hyperplanes and
the samples of the entire class can be projected onto a unique point of a discriminant
subspace of the underlying input space. A number of algorithms that are devoid of the
SSS problem are developed to determine the discriminant subspace for datasets with

linearly independent samples.

1.4 Organization of the Thesis

The thesis is organized as follows.
In Chapter 2, a brief review of the linear and nonlinear techniques for feature
extraction is presented. This review is intended to facilitate the understanding of the

development of the techniques for feature extraction presented in the thesis. This chapter



also includes some preliminaries on the commonly used techniques for dealing with the
singularity problem associated with the Fisher criterion.

In Chapter 3, a new technique [37], referred to as the MGSVD-LDA algorithm that
can effectively deal with the SSS problem, is presented by applying eigen-decomposition
to solve the problem of the generalized singular value decomposition. A scheme is
developed to kernelize the proposed linear algorithm to deal with the discriminant
analysis of datasets in which samples are not linearly separable and a direct application of
a linear algorithm fails to separate the classes of the datasets. In order to improve the
recognition accuracy of the proposed linear and nonlinear algorithms further, a method is
devised to take care of the over-fitting problem by orthogonalizing the basis of the
discriminative subspaée [38], [39]. Extensive simulation results are also presented in this
chapter to demonstrate the effectiveness of the proposed linear, kernelized and
orthogonalized algorithms and compare their performance with that of other existing
algorithms.

In Chapter 4, a theorem that establishes the class structure and separability of linearly
independent samples in the discriminant subspace derived from the proposed MGSVD-
LDA algorithm is developed. This theorem is then used to develop a method to estimate
the numerical errors of the proposed algorithms and also to control the kernel parameters
to maximize the recognition accuracy of the kernelized algorithm.

In Chapter 5, a systematic framework for the pattern recognition of datasets with
linearly independent samples is developed [40]. A discriminant model, in which the
samples of the individual classes of a dataset lie on parallel hyperplanes and project to

single distinct points of the discriminant subspace of the underlying input space, is shown



to exist. In conformity with this model, three new algorithms are developed to obtain the
discriminant subspace for datasets with linearly independent samples. A kernelized
algorithm is also developed for the discriminant analysis of datasets for which the
samples are not linearly independent. Simulation results are also provided in this chapter
to examine the validity of the proposed discriminant model and to demonstrate the
effectiveness of the linear and nonlinear algorithms designed based on the proposed
model.

Finally, in Chapter 6, concluding remarks highlighting the contributions of the thesis
and suggestions for some further investigation of the topics related to the work of this

thesis are provided.



Chapter 2

Literature Review

2.1 Introduction

Feature extraction is one of the central and critical issues to solving pattern recognition
problems. It is the process of generating a representative set of data from the
measurements of an object, which are considered to be the most important and effective
descriptors or characteristic attributes in distinguishing the object to belong to one class
from another class. The main objective here is to find techniques that can introduce low-
dimensional feature representation of objects, i.e., reduce the amount of data needed in
representing objects, while achieving the best discriminatory power.

Feature extraction techniques, in general, can be classified into two categories: linear

and nonlinear methods [1], [4]. Linear methods can be applied when the samples are
linearly separable. Two subsets U and V of "™ are said to be linearly separable (LS) if

there exists a hyperplane P in R”™ such that the samples of U and those of V lie on its
opposite sides. On the contrary, if they are nonlinearly separable (NLS), then a single
hyperplane cannot be used to classify them [84], [87]. Figure 2.1 shows an example of LS
and NLS set of sample points. In some cases, linear methods may not provide a sufficient

discriminating power for nonlinearly separable samples. Nonlinear techniques, such as



kernel methods [49] - [56], can be used to transform the input samples into a higher
dimensional kernel feature space by a nonlinear kernel mapping where samples become
linearly separable so that the linear discriminant analysis can be applied in that high

dimensional kernel feature space.

(b)
Figure 2.1: Examples of (a) LS set of sample points and (b) NLS set of sample points

In this chapter, the linear feature extractors --- principle component analysis (PCA)
[2], 3], [7], [8], Fisher’s linear discriminant analysis (FLDA) [5], [6] and some of the
representative FLDA variants --- are reviewed. Techniques to deal with the singularity
problem of the scatter matrices of the traditional FLDA are explained in detail. Some
nonlinear discriminant methods that can effectively deal with nonlinearly distributed

patterns are also briefly discussed.

2.2 Linear Feature Extraction Techniques

Many linear methods have been proposed for feature extraction during the last two
decades [2], [3], [5] - [46]. Among these methods, PCA and FLDA are the two most

well-known and frequently used techniques. In PCA, the projection axes, along which the

10



variance of the projected components of all the sample vectors is maximized, are found.
In FLDA, the optimal directions to project input samples in high-dimensional space onto
a lower-dimensional space are searched with an objective of finding a discriminant

subspace where different class categories occupy compact and disjoint regions.

2.2.1 Principle Component Analysis

Given a set of m-dimensional samples, the total covariance matrix can be formed as
1 r
S, = ;Z(Xz ~¢)(x, —¢) @2.1)
I=1

where x, is the /th sample vector, n the sample size, and ¢ the global centroid given by

c =li‘x, 2.2)

non

PCA finds the set of projection directions, G,.,, in the sample space that maximize the

total scatter across all the samples:

G, =argmax | G'S,G| 23)

where G is the transformation matrix, G, i1s the optimal transformation matrix whose

columns are the orthonormal projection (transformation) vectors that can maximize the

total scatter, and |+| denotes the determinant of the associated matrix. Essentially, this is

an eigenvalue problem. If the eigenvectors are sorted in the order of descending
eigenvalues, the variance of the projected samples along any eigenvector is larger than

that along the next eigenvector in the sorted sequence. When the number of non-zero

11



eigenvalues is less than the dimension of the original sample space, PCA can be used to
project the samples from the original high-dimensional sample space to a subspace of the
sample space to reduce the dimensionality of the samples and to set them as apart as
possible.

Generally, if the original sample space is low-dimensional, the eigenvectors and
eigenvalues of the matrix S, can be calculated directly. However, for a problem, such as
face recognition using holistic whole-image based approach, the dimensionality of a face

sample vector is always very high. A direct calculation of the eigenvectors of S, is

computationally expensive, or even infeasible on computers with low cache memory.
The Eigenface technique [25] that determines the required eigenvectors has been
proposed to deal with this problem. These eigenvectors are also called eigenfaces. In this

method, S, is first expressed as

1
St = ;Z(XI - C)(X, —c)T = HthT (24)
=1

—c¢], and then an nxn matrix R=H!H, is formed. In case

n

1
where H, =—[x, —¢,...,X
Jn'

that the number of samples » is much smaller than the dimension m of the samples, the
size of R is much smaller than that of S, and hence, it is much easier to obtain its

eigenvectors. Let u,, u,, ..., u,_, be the orthonormal eigenvectors of R, corresponding
to the n-1 largest eigenvalues 4, >4, >...2 4, ,. Then, the corresponding orthonormal

eigenvectors of S, are given by

=L 2.5)

g \/ZHluj’ j=1, ..., n-1
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The projection of the sample x, on the eigenvector g, is given by
y. =g Tx——l—u H'x, j=1, ..., n-1 (2.6)
j -_ j —_ j 1 :3 y veey - .
7

The resulting features, y,, y,, ..., ¥,,» form a PCA-transformed feature vector

Y, =¥ Ya» ++v» ¥, ) forthe samples x,, I =1, ..., n.

2.2.2 Fisher’s Linear Discriminant Analysis and its Variants

Fisher’s Linear Discriminant analysis is one of the most prevalent linear feature
extraction techniques for discriminant analysis. Similar to PCA, in FLDA, the optimal
directions are obtained to project input high-dimensional samples onto a lower-
dimensional subspace. However, while the key idea behind PCA is to find the directions
along which the data variance is the largest, that behind FLDA is to search for the
projection directions that simultaneously maximize the distance between the samples of
different classes and minimize the distance between the samples of the same class. The
class separability in low-dimensional representation is maximized in the FLDA method
while it is not in PCA [1], [4]. FLDA-based algorithms usually outperform PCA-based
ones because of the more rational objective and optimality criterion of the former.

Given a set of m-dimensional samples that consisting of N classes with the ith class
having »; samples, the global centroid is given by (2.2) and the centroid of ith class is

given by

k
I
C =n_ Z XI (27)
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where k, =n +n,+ ... +n,, and x,is the /th (/=1, 2, ..., n) sample vector, n the
N

sample size, n = Zn,. , and i the class number, i = 1, ..., N. By using the three matrices,
i=1

H,, H,6 and H,, given by

H, =—\/1—;[\/Z(c“) —c),...,M(c(N) ~c)}

HW = %[(xl - c(l) ): ey (an - c(l))’ (xnl+l - c(Z))’ Tt (Xn, n, c(Z))’ tee
(2.8)
K =€), (x, — ¢ )]
H, =—1—[(x1 —€),..0s (X, = 0)]
Jn
the between-class and within-class and total scatter matrices can be defined as
S,=H H! ,S,=H,H], S, =HH (2.9)
respectively. The linear discriminant analysis employs the Fisher criterion given by
|G"S,G|
G, =argmax =[8;, & > 84] (2.10)

¢ |G'S,G|

where G is the transformation matrix and G, is the optimal transformation matrix
whose columns, g, i=1,2, ..., d, are the set of generalized eigenvectors of S, with

regard to S, [5] corresponding to the d < N —1 largest generalized eigenvalues A, that is,

S,g, =48,8,,i=12 ...4d. (2.11)
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When the inverse of S, does exist, the generalized eigenvectors can be obtained by the
eigen-decomposition of S]'S, . The new feature vectors y, are defined by
y,=G" x,, I=1,2, ..., n.

Through the above process of FLDA, the set of the transformation vectors is found to
map the high-dimensional samples onto a low-dimensional space, the discriminant
subspace, and at the same time, all the samples projected along this set of transformation
vectors have the maximum between-class and minimum within-class scatters
simultaneously.

It is seen that the Fisher linear discriminant analysis has a limitation in that it requires
the within-class scatter matrix S to be non-singular, which is not the case in practice
when the SSS problem occurs, i.e., when the number of the samples is smaller than the
dimension of the samples. Small sample size datasets with high dimensionality widely
exist in real applications such as human face recognition and analysis of micro-array data.
To deal with this limitation of the FLDA technique, a number of variants to this

technique have been proposed in the literature.

1) PCA + FLDA Method

Swets and Weng [18] have proposed the PCA + FLDA method, also known as the
Fisherface method, in order to solve the singularity problem of the Fisher criterion. In this

method, in order to make S nonsingular, PCA is first applied to reduce the sample
dimension from m to »-N and the transformation matrix G,., is obtained. Then, the

dimension is further reduced to N-1 for obtaining a lower-dimensional feature
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representation of the samples and the transformation matrix G sps - The overall

transformation matrix of the PCA + FLDA method is given by

Grcasrion = GroiGhres (2.12)
where G, can be obtained from (2.3), which rewritten here as

G, =argm('§1x|G,TS,Gl | (2.13)
and G FLp4 18 given by

A GIG.8,G .G, | G}S,G,|
G, =ar max| 2 hed"y TPca 72 | aro max a2l
FLDA g g GgstZ‘

(2.14)
G, | G§G£CASWGF’CAG2 l G,

with G, and G,being the matrices whose columns are the projection vectors in the PCA

and FLDA transformed spaces, respectively, and S, =G} S,G,,and S, =G}.S G, .
A problem with this algorithm is that the discarded eigénvectors in its PCA part may
contain some discriminant information, very useful to the FLDA part. Later, Chen et al.

[41] have proved that the null space of S, , as a matter of fact, contains the most

discriminative information. To avoid the loss of significant discriminant information due
to the PCA preprocessing step, an algorithm, referred to as direct LDA (D-LDA), without

a separate PCA step, has been proposed in [19].

2) Direct LDA (D-LDA) Method

In the D-LDA method [19], the idea of “simultaneous diagonalization” [4], [78] of S,
and S is employed to deal with the SSS problem. The matrix S, is first diagonalized and

scaled, and then S is diagonalized.
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The eigenvector matrix V that diagonalizes S, is obtained by using eigen-

decomposition of S, such that
VIS, V=A (2.15)

where V is the eigenvector matrix and A is the eigenvalue matrix of S,. By keeping only

the non-zero eigenvalues of A, (2.15) is re-written as
VTSb\_] — Ab (216)
where in this equation, the diagonal elements of A, , with the non-zero eigenvalues only,

are arranged in a non-increasing order and V is the eigenvector matrix with the

eigenvectors corresponding to the non-zero eigenvalues only. Next, using the matrix

Z=VA, 2.17)
the S, is diagonalized as

Z'S,Z=1 (2.18)
and the matrix Z'S_Z is diagonalized using eigen-decomposition as

U’ (Z'S,Z)U=D, (2.19)

where U is the eigenvector matrix and D, is the eigenvalue matrix of Z'S,Z . Finally,

the transformation matrix is given by

G=ZUD (2.20)
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In this algorithm, the null space of S,, which the authors of [19] claim to contain no

useful information for discrimination, is ignored in the first step. However, Gao et al. [28]
have pointed out that the D-LDA algorithm has a shortcoming in that ignoring of the null

space of S, for dimension reduction would also neglect part of the null space of S, and

would thus result in the loss of some useful discriminant information contained in the null

space of S .

3) Regularized LDA Method

To deal with the singularity problem of the Fisher criterion, a regularized FLDA
(RLDA) has been introduced in [29], [29]. The basic idea of the regularization technique
is to add a constant & >0, known as the regularization parameter, to the diagonal
elements of the scatter matrices. This parameter is estimated via cross-validation.

The way to deal with the singularity of scatter matrix S, in the classical or S, in the
modified Fisher criterion [42] is to apply regularization by adding a constant to the
diagonal elements of S or S, , i.e., éw =S, +al or é, =8, +al, where I is the identity

matrix of size mxm .
The classical Fisher criterion giving G,,, is defined by (2.10), and the modified

Fisher linear discriminant criterion [4] is given by

|G'S,G|

2.21
|G'SG| @20

G \rips =318 max

where
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S, =S, +8, (2.22)

Since S, and S, are positive semi-definite, Sw and S, are also positive definite, and
hence, nonsingular. Then, the transformation matrix for the RLDA method, G,,,,, or

G .04, » €an be obtained by using the following optimality criteria:

|G”S,G |

G = arg max 2.23
RLDAI g P |GT(SW +al)G | ( )

T
G ;.psp = aTg Max G 5,6 (2.24)

¢ |G'(S,+al)G|

The solution to (2.23) or (2.24) can be obtained by computing the eigen-decomposition of
S, +al)’'S, or (S, +al)’'S,.

This method has a high computational load when the samples have a large dimension.
Also, an adaptive estimation of the optimal regularization parameter from the training
samples using cross-validation is very time-consuming. To overcome the shortcomings of
the RLDA method, a number of improved RLDA algorithms have been proposed in the

literature [21], [31] - [33].

4) Null Space Method

In order to overcome the singularity problem of the Fisher criterion, Chen et al. [41]
have proposed the null space method based on the modified criterion [4] for Fisher’s

linear discriminant analysis.

In this method, a preprocessing step is employed to extract the geometric features and

to reduce the dimension of the original sample space. All the training samples are then
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projected onto the null space of S, . The projection vectors thus obtained are finally

transformed into the projection vectors by applying PCA.

The algorithm given in [41] for applying the null space method in the original sample
space is not efficient. A pixel grouping method is applied to extract geometric features so
as to reduce the dimension of the sample space. It has been pointed out that the

performance of this method depends on the dimension of the null space of S in the

sense that a larger dimension provides a better performance. Thus, a preprocessing step to

reduce the original sample dimension should be avoided [47], [88], [89].

2.3 Nonlinear Feature Extraction Techniques

Although the linear discriminant methods described in the previous section are
successful when the samples in datasets are linearly separable, they do not provide good
performance when the samples do not follow such a pattern, since it is difficult to capture
a nonlinear distribution of samples with linear mapping. As the distributions of most
patterns in real world are nonlinear and very complicated, problem of pattern recognition
of nonlinearly separable samples should be addressed using nonlinear methods. Kernel
machine techniques [49] - [56] are a category of such nonlinear methods. The main idea
behind these techniques is to transform the input space into a higher dimensional feature
space by using a nonlinear kernel mapping where patterns become linearly separable so
that the principles of linear discriminant analysis can be applied in the kernel feature

space. The kernel functions allow such nonlinear extensions without explicitly forming a
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nonlinear mapping, as long as the problem formulation involves the inner products
between the mapped data points.

A kernel is a nonlinear mapping ®, designed to map the samples of the input space
R"™ into a higher-dimensional feature space I' :
®: R">T

X, 2>V,

Correspondingly, the samples X, ’s in the original input space R” are mapped into the
kernel feature space I', where the classes of the resulting higher dimensional feature
vectors y,’s become linearly separable. However, the high dimensionality of the feature

space makes the feature extraction computationally infeasible. This problem is overcome
by using the so-called “kernel trick” [54], in which the inner product of the mapped
vectors in the feature space can be implicitly derived from the inner products between the

input samples, such that

(wiw,) =k((x,x,)) =k, (2.25)
where (-) denotes the inner product of the two associated vectors, k(-) denotes a kernel

function, and £, is a scalar. The key to a successful kernelization of a linear algorithm is

in its ability to construct inner products in the input space and then to reformulate these
products in the feature space. A number of kernelized discriminant analysis algorithms
have been proposed with enhanced recognition accuracy [57] - [77]. In the next two
subsections, the method of kernelizing linear algorithms is demonstrated using the linear

principle component analysis [2] and Fisher’s discriminant analysis [4] methods.
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2.3.1 Kernelization of the Principle Component Analysis Method

The basic idea of the kernelized principle component analysis (KPCA) [57] is to map
the input data into a new feature space I' where the samples become linearly separable
so that the linear PCA can be performed in that feature space.

Given a set of m-dimensional training samples x,, /=1, 2, ..., n, the matrices ®,

and ® are defined as
1
D, = 7—”“[(“’1 —y),..., (W, —¥)] (2.26)

®=[y,¥,,....V,] (2.27)

where v, is the mapped sample vector corresponding to sample vector X, and y is the
global centroid of the mapped sample vectors in the kernel feature space.
Similar to the definition of the total scatter matrix S, in the input sample space, by

using the matrix @, the total scatter matrix S, in the feature space is given as
S, =00’ (2.28)
The elements of the matrix R =®”® are then determined by using the “kernel trick”:

Rij = ‘I’/T‘Vk = <\|’1: ‘I’k> = k((XI,Xk» (2-29)
The mapped samples are centered around the global centroid by replacing the matrix R
by

R=R-1 R-R1, +1R1, (2.30)
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where the matrix 1, =(1/n)

nxn *

The orthonormal eigenvectors u,,u,,...,u, , of R, corresponding to the n-1 largest

n-1

non-zero eigenvalues, >A,>..24_,, can be obtained by using the eigen-
n-1 y g

decomposition of R and the corresponding orthonormal eigenvectors of S, ,

gp gzy veey g,,_l, given by

j=1129"'n_1 (231)

form the kernelized transformation matrix.

2.3.2 Kernelization of the Fisher Linear Discriminant Analysis Method

FLDA is designed for linear pattern recognition applications. However, it fails to
perform well for the recognition of patterns that are not linearly separable. To deal with
this problem, nonlinear versions of FLDA have been proposed. First, Mika [58]
formulated a kernelized Fisher discriminant (KFD) analysis method for a two-class case,
and then Baudat [59] proposed a generalized kernel discriminant analysis (GDA) for
datasets with multiple classes.

In basic idea of the GDA method is to first perform the centering in the kernel feature
space by shifting each mapped sample vector using the global centroid, and then to apply

the discriminant analysis in the centralized kernel feature space. In this method, given a
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set of m-dimensional training samples x,, /=1, 2, ..., n, consisting of N classes where

N
the ith class has », samples(thus, »n = Zn,. ), first the following three matrices are defined:
i=1

[J_ WO =Wy (W )]

SI

1
= J‘[(W )W, )W, YD), (v, L, — ),

Wyt — ™), -9 ™) | (2.32)
1
@, -—ﬁ[(wl W), (W, — )]

where v, is the mapped sample vector corresponding to the input sample vector x,, y®

is the centroid of the mapped samples of the ith class, and y is the global centroid of the

mapped samples in the kernel feature space. The Fisher criterion can then be expressed

as

. IGTS G]

G, =ar max =[8x1> Bxo> +ovs Byl (2.33)
g IGTSW k1> 8k2 8k

where S, and S, are, respectively, the between-class and within-class scatter matrices

defined in the kernel feature space I' as

S, =®,0! (2.34)
S, =®, 0 (2.35)

and G =[gy,, 8x,» --+» Exs) i the transformation matrix. The matrix G « 1s the optimal
transformation matrix with its columns g,,’s as the eigenvectors corresponding to the d
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largest eigenvalues obtained by solving the generalized -eigenvalue problem:
S8 = A8, « - This generalized eigenvalue problem cannot be solved due to the high

dimensionality of the mapped sample vectors. This problem is solved by formulating an

alternate generalized eigenvalue problem.

Let o, =(@,,...,a,) ,i=1, 2, ..., d, such that

g = Zai,\v, =Qa, (2.36)
I=1

where @ 1s defined by (2.27). The transformation matrix G can be expressed as
G=9[0,0,,...,0,]=DO (2.37)

where @ =[a,,a,,...,a,]. Substituting (2.37) into (2.33), the Fisher criterion can be

expressed as [57]

|®T(1iw1‘z)®|

| 2.38
|®T(RR)® (238)

0, = arg max

where the matrix R is given by (2.30) and W =diag(W,,...W,,...,W,) is an nxn
block diagonal matrix with W, being an »,xn, diagonal matrix with all its diagonal

elements equal to 1/n,.

Conducting an eigen-decomposition of the matrix R yields

R =PAP’ | (2.39)
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where P is the eigenvector matrix of R with PP =1, and A is the eigenvalue matrix
with non-zero eigenvalues as its diagonal elements. Substituting (2.39) into (2.38), (2.38)

can be expressed as

|(A%PT@)T(A%PTWPA%)(A%P’@)‘

®, =argmax (2.40)
y C ](A%PTQ)TA(A%PT@)|

By letting

B=AP’® (2.41)
Eqn. (2.40) can be expressed as

ra
B, =argmax |B ?bBl (2.42)
»"[B"S, B

where S, = AY2P"WPA"? is semi-positive definite and S, = A is positive definite. The

columns of the optimal transformed coefficient matrix B, =[B,, B,, ..., B,]are actually
the eigenvectors of §:§b corresponding to the d (d < N —1) largest eigenvalues, and can

be obtained by eigen-decomposition of §:§b. Once the optimal transformed coefficient

matrix B, is determined, the corresponding optimal coefficient matrix @, can be

obtained as @ = PA™B « - Finally, based on Fisher’s optimality criterion given by (2.33),

the optimal transformation matrix G is obtained as

G, =®0, =DPA'B, (2.43)

26



2.4 Summary

In this chapter, feature extraction techniques have been reviewed for solving pattern
recognition problems. Techniques for feature extraction can be classified into linear and
nonlinear categories.

Linear methods are applied when the samples are linearly separable. In linear category,
the principle component analysis (PCA), Fisher’s linear discriminant analysis (FLDA)
and some typical FLDA variants have been reviewed. Both the PCA and FLDA methods
extract features by projecting the original sample vectors onto a new lower dimensional
feature space through a linear transformation. However, the goal of optimizing the
transformation matrix in the two methods is different. The FLDA-based algorithms
usually outperform the PCA-based ones because of the use of more rational and objective
optimality criteria in the former. The singularity problem of the scatter matrices of the
traditional FLDA has been explained and techniques used in the FLDA variants for
solving this problem have been described in detail.

In the nonlinear category, the kernel technique has been discussed to deal with the
nonlinearly distributed patterns. The main idea behind the kernel techniques is to
transform the input data into a higher dimensional space by using a nonlinear mapping
function, so that the samples become linearly separable and hence, the principles of linear
discriminant analysis can be applied in that space. The method of kernelizing linear
algorithms has been demonstrated using the methods of the linear principle component

analysis and Fisher’s discriminant analysis.
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Motivations behind the development of the various discriminant analysis techniques

discussed in this chapter and their limitation have been point out.
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Chapter 3

Discriminant Analyses Based on Modified Generalized

Singular Value Decomposition

3.1 Introduction

An alternative to the FLDA algorithm [S] is the LDA/GSVD algorithm [34], [35], in
which the GSVD [82], [83] is adapted to the FLDA algorithm for pattern recognition
problems. GSVD not only provides a framework for finding the feature vectors with high
recognition accuracy, but more importantly, it relaxes the requirement of the within-class
scatter matrix to be non-singular. Thus, the LDA/GSVD algorithm is an effective
approach to overcome the SSS problem. However, this algorithm has a drawback in that
it cannot provide a practical solution to a pattern recognition problem with a large sample
dimension. An important area is the face recognition problem, in which the sample
dimension is almost invariably very high. Thus, in such a case, the LDA/GSVD
algorithm experiences a memory overflow problem and fails to carry out the task of face
recognition. The memory overflow occurs in conducting the SVD of a high-dimensional
matrix associated with large dimension patterns. In the same paper [35], Ye et al. have
presented yet another method, known as approximate LDA/GSVD method, in which the
K-Means algorithm is introduced to reduce the computational complexity. However, it

does not effectively address the problem of high computational complexity related to the
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high dimensionality of the samples. This method also results in losing some useful
discriminant information while dealing with the computational complexity problem.

This LDA/GSVD algorithm may also suffer from the over-fitting problem in some
applications, since the samples in the derived discriminant subspace may get corrupted
with some random features that are unrelated to the actual discriminatory features and
adversely impact the recognition accuracy. Ye et al. [86] have proposed a method to
deal with the over-fitting problem of the LDA/GSVD algorithm. However, the proposed
orthogonalization technique achieved through QR decomposition is not computationally
efficient for high dimensional data and also it cannot be subjected to kernel methods.

In this chapter, an algorithm, referred to as MGSVD-LDA algorithm, which
overcomes the singularity problem in the Fisher criterion and deals effectively with the
excessive computational load problem of the LDA/GSVD algorithm, is developed by
using the eigen-decomposition to conduct the generalized singular value decomposition
in the discriminant analysis. Schemes are given to kernelize the proposed linear algorithm
and to deal with the over-fitting problem.

Section 3.2 gives a brief review of the LDA/GSVD algorithm. The development of the
proposed MGSVD-LDA [37] is carried out in Section 3.3. The scheme to kernelize the
proposed linear algorithm is given in Section 3.4. A method that orthogonalizes the basis
of the discriminant subspace derived from the GSVD-based algorithms is given in
Section 3.5 to deal with the over-fitting problem [38], [39]. Experimental results
demonstrating the performance of the proposed algorithms and their comparisons with

other existing algorithms are presented in Section 3.6.
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3.2 An Review of the LDA/GSVD Algorithm

The objective of the Fisher linear discriminant analysis is to find an optimal

transformation matrix G that consists of a set vectors g’s given by

T
G o4 =argmax| G

2 mz[gngza---,gd] (3.1)

where S, and S are, respectively, the between-class and within-class scatter matrices.
This criterion is equivalent to the generalized eigenvalue problem, S,g = AS g, in which
A is the generalized eigenvalue and g is the corresponding eigenvector of S, respect to
S, . The solution of this generalized eigenvalue problem has an important property that

the matrix consisting of g’s diagnolizes S;, S,, and the total scatter matrix S, = S, + S,,
simultaneously [4]. Because of this property, the generalized singular value
decomposition based LDA [34], [35] tries to find an optimal transformation matrix G that
consists of g’s.

Given a set of m-dimensional training samples that consists of N classes, where the ith
class has »; images, the global centroid and the class centroid are given by (2.2) and (2.7),

respectively. We define H,and H , as given by (2.8) and a matrix C as

C= (3.2)

((N+n)yxm)

Then, SVD of C can be obtained as
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C=P Q’ (3.3)

where R e R*** k being rank(C), is a diagonal matrix whose diagonal components are
the non-zero singular values of the matrix C sorted in a non-increasing order, and
P e RA*V*m and Q e R™™ are orthogonal eigenvector matrices. The matrix P can be
partitioned as

P=[Pl Pz] (3.4)

k  n+N-K

where P, € R"*”* and P, e RV*""*"9 The sub-matrix P; can be further partitioned

P
as L’n} , where P, € RY* and P, € R™* . Now, using SVD of P,, we have

12

I,

U'PW=Z, = D, (3.5

L J(wxk)

and

VIP,W=X = D (3.6)

L w J(nxk)
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where matrix U ,V and W are orthogonal eigenvector matrices and X, and X are
eigenvalue matrices. In £, and £, I, e R and I, e R* ¢ are the identity

matrices, where

s =rank(H,) + rank(H ) — rank(C) 3.7

I

and u = rank(C) — rank(H,),0, e RV "V and 0, € R"**> are zero matrices,

and D, = diag ( @ 44,..., 9y+s) and Dy, =diag (B +1,..., Burs) satisfying

1\

-2a,., >0

u+s

1>au+l
0<B, <<pB,. <l (3.8)

a’+ B =1, i=u+lu+s
Combining (3.3), (3.5) and (3.6) gives

H) UZ,W'R 0
Q=[PR, 0]= (3.9)
H VE WR 0

which can be expressed equivalently as

U'H;Q=%,[W'R 0] (3.10)
and

VH,Q=2,[WR 0] (3.11)

Let
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R'W 0
Y=0Q (3.12)

Then, (3.10) and (3.11) can be transformed into
H;Y=U[Z, 0], HY=V[EZ, 0] (3.13)

from which we have

'y, 0
Y'S,Y = =D, (3.14)
0 0
r T’z 0
Y'S Y= Wo ¥ 0 =D, (3.15)

Thus, both S; and S,, are diagonalized by the matrix Y . As the null space of D, has little

discrimination information [35], the only columns of the matrix Y that correspond to the
range of S, need to be maintained during the feature extraction, and they collectively
form the optimal transformation matrix G.

A limitation of the above LDA/GSVD algorithm is the excessive computation involved

with the SVD of C whose size is(N + n)xm. In the case, when the sample dimension m

is higher than the sample size n, the computational complexity depends mainly on m, and
very little on » or on the number of classes N. This algorithm is found to suffer from the
over-fitting problem in some applications. This is because all the singular vectors of the
matrix C are maintained, and as the singular vectors are divided by their associated
singular values, the impact of the small singular vectors gets amplified in the

classification.
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In order to reduce the computational complexity, Ye et al. [35] have presented an
approximation method, where the K-Means algorithm has been introduced to somewhat
reduce the size of C. The samples within each class are grouped to generate K clusters,
and the centroid of each cluster is used to replace all the samples of the cluster. For
instance, if K = 2, the class size is reduced to 2. Unfortunately, there are two drawbacks
of this approximation method: First, it loses some of the information to be used for
discrimination because of the approximation of the samples of a cluster by their centroid.
Second, it does not effectively address the problem of high computational complexity
that is caused mainly due to the large size of Q. The size of Q depends on the sample
dimension m, which is not affected by the clustering of the class samples.

Park et al. [36] have recently proposed a method to reduce the computational load of
the LDA/GSVD algorithm. They replace the two SVDs in the conventional GSVD
framework with two eigen-decompositions. The first eigen-decomposition is carried out
on the total scatter matrix to find its range. To reduce the computational load of the
eigen-decomposition, the total scatter matrix is transformed into its inner product form.
The second eigen-decomposition is carried out on the between-class scatter matrix in the
range found above. This method does not address the over-fitting problem.

Ye et al. [86] have addressed the over-fitting problem of the LDA/GSVD algorithm
through an orthogonalization of the basis of the discrimination subspace, and used QR
decomposition to achieve orthogonalization. However, QR decomposition is not efficient
when the data is of high dimension, and moreover this method cannot be combined with

kernelization.
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3.3 MGSVD-LDA: Linear Discriminant Analysis Based on Modified
GSVD

In order to reduce the computational complexity, we now propose a method in which

for the SVD of C, as given by (3.3), the explicit computation of Q is avoided. The

singular vector matrices, P and Q, are the eigenvector matrices of CC” and C'C,

T
respectively. Therefore, we can first evaluate P from CC whose size is (n+ N)x(n+ N).

In order to compute Q whose size ism xm , we proceed as follows instead of computing it
explicitly by using SVD.

Just as P is partitioned in a form given by (3.4), where P, corresponds to the null space

T
of CC , Q is partitioned in the form

Q=£_QV_,J 92} (3.16)

where k = rank(C), and Q, corresponds to the null space of CC”. Since both P,and Q,

correspond to the null space, removal of these sub-matrices from the SVD of C in the
proposed scheme has no influence on the discrimination effectiveness. The matrix C can

now be rewritten as

R 0][Qf
C=[P,P,] =PRQ/ (3.17)
0 0]/Q]

From this equation, we have

Q,=C"PR" (3.18)
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Using the above equation in (3.12), Y, the matrix consisting of the first £ columns of Y,

can be expressed as
Y, =QR'W=C"PR?’W (3.19)

Thus, without an explicit computation of Q, Y, is obtained, which can be used to

diagonalize the scatter matrices S, and S simultaneously by employing (3.12) into

(3.14) as
Y'S,Y, =X/, (3.20)
Y'S )Y, =2T% (3.21)

The leftmost 7 columns of Y, form the optimal transformation matrix G, where r =

rank(H, ). The proposed MGSVD-LDA algorithm is summarized in Table 3.1.

Table 3.1: MGSVD-LDA algorithm

Input: Training sample x;

Output: Transformation matrix G

1. Use Equation (2.8) and (3.2) to obtain H,, H,, and C;

R> 0
2. Find P and R from CC’ =P P’;
0 0

3. P<«P(:.,1:k),P,«<P1:N, :),k=rank(C),

4. Find W through SVD of Py;: P, = UL, W’ ;

5. Y, <« C'PR*W,;

6. G« Y, (:,1:r), r=rank (Hp).
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2 3
Computing SVD of C requires approximately 2m (N + n) + 11(N + n) flops, if Chan’s
algorithm [78], which is efficient for a matrix with the column dimension much higher

than the row dimension (the case of small sample size datasets), is used. On the other

T 3 2
hand, computing the eigen-decomposition of CC needs only 3/4(N + n) + O((N + n) )
flops [78], which is much smaller than the flop count required form computing the SVD
of C. In addition, computing of the SVD of C requires a memory space of approximately

(m + N + n) (N + n) locations, whereas computing the eigen-decomposition of matrix

CCTrequires only (N + n)2 locations. In the case of small sample size datasets, that is,
m >> (N + n), the proposed MGSVD-LDA algorithm uses much less memory space than
the LDA/GSVD algorithm does. From the above discussion, we conclude that, in the case
of small sample size datasets, the proposed MGSVD-LDA algorithm has much lower

levels of time and space complexities than that of the LDA/GSVD algorithm.

3.4 Kernelization of MGSVD-LDA

In the preceding section, we have presented a linear discriminant algorithm, which,
like most other linear discrimination approaches, assumes that the classes are linearly
separable in the input space. However, the distributions of many patterns in the real world
are nonlinear, and linear methods of discriminant analysis may not provide sufficient
recognition accuracy. Fortunately, in this case one can establish the linear separable
condition [87] by using appropriate kernels [55] and then apply the linear discriminant
analysis techniques in that space. We now present a scheme to kernelize the proposed

MGSVD-LDA algorithm. The new kernel discriminant analysis algorithm is hereafter
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referred to as the MGSVD-KDA algorithm.

As it was done for the development of the MGSVD-LDA algorithm, we first define the

following matrix:

@, =3[ S (WO =), (WO - ),y (0 )]

(3.22)
(Dw ='71;‘[\|’1 _\V(l),"'a‘vl —WU)"",‘VN —\V(N)]
and
,
r= (3.23)
(DT

where y'” is the centroid of the ith embedding class, and vy is the global centroid of the

embedding samples in the f~-dimensional kernel feature space. The SVD of I' is given by

=]
=

r=»p Q’ (3.24)

where P e RV and Q e R/ are orthogonal matrices, and R € R™* with z =
rank(I") is a diagonal matrix with its elements being equal to non-zero singular values of
I' sorted in a non-increasing order. Due to the high dimensionality of I', it would be
practically not feasible to conduct the SVD directly. However, the smaller dimension
singular vector matrix P and singular value matrix R can be evaluated separately by

using the kernel method. We form a symmetric matrix as
O, P, @,

IT’ = (3.25)
o’p, @0,
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where each of the four sub-matrices is in an inner product form. The matrix P is exactly
the eigenvector matrix of I'T” and the matrix R is the square root of its eigenvalue

matrix. The main problem here is as how to evaluate the matrix I'T”, or equivalently, the
four sub-matrices. We construct a kernel matrix

K= (klh)l,h=],-~-,n (3.26)

whose elements are the inner products in the feature space determined through a kernel

function. Then, we can express the sub-matrices in (3.25) in terms of K as

®'®, =DB-L) KB-L)D
O'®, =(1-AKIA-A) (3.27)
®'®, =DB-L)YK(I-A)

where

A=diag(A,-,A,), A, =(1/n)

n‘- xn;

B =diag(B,,---,B,),B, =(1/n,)

n,x1
D =diag(D,, D), D, = (4f,),.,
i=1--,N, L=(1/n),,, and Lis an nx n identity matrix.

Derivation of this set of formulas is presented in Appendix A.

Similar to the MGSVD-LDA algorithm, the eigen-decomposition of I'T” generates

the eigenvector matrix Pand the non-zero eigenvalue matrix R . The leftmost z columns

of l~’1 , where z = rank(I'T” ), form the matrix f’l , and the first N rows of l~’1 form the
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matrix P,,. The SVD of P,, provides the orthogonal matrices U and W such that
P, =UEL,W. Letting Y, =T"PR™W and A=W R7P], we have

Y/ = Al (3.28)
Further, let

G =AT (3.29)

where v = rank(®"®,), and A, consists of the first v rows of A . The columns of G are

the extracted feature vectors of the feature space.

Given a test image x, with its mapping in the feature space being ,, the kernel

function is applied again to obtain
g, =k({x,x,) ={w,.v,) (3.30)

and subsequently to form the vectors
Q, =+ [V @ -1 (@ -a), .\, (@ - )|

Q.=+[a,-q",.q,-9%,,q, -q™]

(3.31)

) mny+. 1 ) T i )
where ¢ =— ) q, and q==X/,q,. Since I'y, = [g: } , the projection of
n

n,' I=m+ny+.. +n_ +1 w

v, on the feature vectors can be found as

T
Q,
T

w=GTy, = A, {
Q.

] . (3.32)

The proposed MGSVD-KDA algorithm is summarized as in Table 3.2
This algorithm, like many other kernelized algorithms, has a computational

complexity determined approximately by the accumulated effects of implementing the
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kernel operator and the associated linear discriminant algorithm with the cost of

computing the kernel matrices depending mainly on kernel function chosen. .

Table 3.2: MGSVD-KDA algorithm

Training stage

Input: Training sample Xx;

Output: A, in (3.29)

1. Form the kernel matrix K based on (3.26) and (3.26) and the kernel function

chosen;

2. Evaluate the matrix I'T” given by (3.25) using (3.27);

- - - [ R? .
3. Find Pand R from I'T’ =P{ 0 ﬂPr;

4. P «P(,1:2),P, < P(1:N,:), z=rank(ITT");

5. Find W through SVD of B,: P, = UL, W’ ;

6. A, «the first vrows of W R?P/,v = rank(®, ®,);

Classification stage

Input: Test vector x,

Output: Weight vector w in (3.32);

7. Evaluate q,as in (3.30);

8. Form Q,and Q, in (3.31);

9. w«—AV{ngl.
Q

w
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3.5 Solving the Over-Fitting Problem

The proposed MGSVD-LDA algorithm, like other GSVD based algorithms, is

susceptible to the over-fitting problem. As all the eigenvectors computed in the eigen-

decomposition of CC’ are maintained and these eigenvectors are divided by the
corresponding eigenvalues, as seen from (3.19), the impact of the random features on the
eigenvectors corresponding to small eigenvalues gets amplified.

There are mainly three methods to address the over-fitting problem. The first one is a
regularization method [31], [33] in which a small positive perturbation is introduced to a
matrix in order to bring small changes to large eigenvalues relative to the changes in the
small eigenvalues. Thus, the effect of over-fitting can be reduced when the eigenvectors
are divided by the eigenvalues resulting from the perturbed matrix. The optimal
perturbation parameter is estimated adaptively from the training samples through cross-
validation. However, this process is time consuming. In the second method, the smaller
eigenvalues and the corresponding eigenvectors are dropped [85]. But, there is no
universal criterion to determine as to how many eigenvalues can be considered small
enough to be dropped. Both these methods affect the main idea behind the GSVD
technique in that the samples of different classes do not converge into distinct compact
regions.

The third approach to fixing the over-fitting problem is to orthogonalize the basis of
the discriminant subspace [86]. In this method, the basis is orthogonalized through a QR
decomposition of G. However, QR decomposition is computational inefficient for high

dimensional data. Also the result linear algorithm cannot be kernelized.
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We now propose a novel orthogonalization method to deal with the over-fitting
problem of the GSVD-based algorithms. The basis of the discriminant subspace derived
from the conventional GSVD mechanism is not orthogonal and the projection of the
between-class or total scatters on each of the basis vectors is of unit length. Through
orthogonalization, the basis vectors are rescaled so that the larger eigenvectors are
assigned more discrimination capacity. The main idea of this method is to orthogonalize
the basis of the discriminant subspace by means of the eigen-decomposition of an inner
product matrix. Through orthogonalization, the basis vectors are re-scaled so that the
larger eigenvectors are assigned more discrimination capacity. Thus, the over-fitting
problem is effectively controlled. This method is equally efficient for low and high

dimensional data and compatible with the process of kernelization.

First, an eigen-decomposition of G’ G carried out as
G'G=W'R?W, =0n0" (3.33)
where W, € R* consists of the left » columns of W, 6 € R™ is an orthogonal matrix
and = is a diagonal matrix. Then,
G, =Gon™""” (3.34)
is the transformation matrix with its columns mutually orthogonal. Since the size of the
matrix WR™W , is small, this orthogonalization step is computationally efficient. The

proposed orthogonalized algorithm, referred as MGSVD-OLDA algorithm, is

summarized as in Table 3.3.
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Table 3.3: MGSVD-OLDA algorithm

Input: Training sample x;

Output: Transformation matrix G

1. Use Equation (2.8) and (3.2) to obtain H;, H,, and C;

R 0
2. Find P and R from CC” =P P’;
0 0

3. P«P(:,1:k),P,<P(:N, :),k=rank(C);

4. Find W through SVD of Py: P, = UZ, W’ ;

5. Y, «<C'PR*’W,;

6. G« Y,(:,1l:r), r=rank (Hp).

7. ObtainW, , @and = through eigen-decomposition of G'G .

8. Find the orthogonalized transformation matrix éausing (3.34).

As in the case of the proposed linear algorithm, the over-fitting problem in the

proposed kernelized algorithm is taken care through a process of orthogonalization of the

basis. To this end, we first obtain the eigen-decomposition of G”G as
W/R?W, = 070" (3.35)
where W, consists of the left most v columns of W, and @ and 7 are, respectively, the

eigenvector and eigenvalue matrices. Then, an orthogonalized G , namely (~}a , 18
obtained such that

Gl =a""9"G’ (3.36)
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The proposed orthogonalized algorithm, referred as MGSVD-OKDA algorithm, is

summarized as in Table 3.4.
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Table 3.4: MGSVD-OKDA algorithm

Training stage

Input: Training sample x;

Output: G in (3.29)

1. Form the kernel matrix K based on (3.26) and (3.26) and the kernel function
chosen;

2. Evaluate the matrix I'T'” given by (3.25) using (3.27);

3. Find Pand R from I'T” =1~’{l~;2 g}f“;

4. P «P(,1:z2),P, «<P(1:N,), z=rank(I'T");

5. Find W through SVD of P: P, = UL, W’ ;

6. A, < the first v rows of W R?P/,v =rank(®®,);

7. Obtain W, , 8 and 7 through eigen-decomposition of G'G .

8. Find the orthogonalized transformation matrix f}a using (3.36).

Classification stage

Input:Test vector x,

Output: Weight vector w in (3.32);

9.

Evaluate q, as in (3.30);

10. Form Q, and Q, in (3.31);

11. w(—Av|:Q£}.
Q

w
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3.6 Experiments

In this section, two sets of experiments are conducted for empirical evaluation of the
performance of the proposed MGSVD-LDA and MGSVD-KDA algorithms and their
orthogonalized versions. The first set of experiments is designed to evaluate the
performances of the proposed linear algorithms, MGSVD-LDA and its orthogonalized
version, MGSVD-OLDA, and four other linear algorithms, using small sample size
datasets. The four linear algorithms chosen for comparison are LDA/GSVD [34], RLDA
[33], PCA+LDA [85], and PCA [25] algorithms. The second set of experiments evaluates
the performance of the kernelized versions of the above linear algorithms, namely
MGSVD-KDA, MGSVD-OKDA, KDA/GSVD [76], KRDA [75], KPCA+LDA [73] and
KPCA [57] algorithms, in comparison with one another and with that of the LDA -
algorithm using large sample size datasets. The execution platform used is Pentium 4, 2.8
GHz CPU, 1.0 GB RAM and WinXP operating system. Ten databases are used in our
experiments. Among them, FERET [90], [91], YALE [93], AR [92] and ORL [97] are
human face databases, and Dataset]l [94], Dataset2 and Dataset3 [95] are text document
databases. The images of human face \databases are preprocessed to move the faces to the
centers of the images and to crop them to include mainly the face part. The other three,
the spoken letter database, Isolet [96], the molecule conformation database, MUSK [96]
and handwritten digital database, MNIST [98] are large sample size databases, where the
small sample size problem does not occur. These databases are described briefly
hereunder.

FERET face database contains 1564 sets of images for a total of 14,126 images and

includes 1199 individuals and 365 duplicate sets of images (a duplicate set is a second set
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of images of a person already in the database and was usually taken on a different day). A
subset of the FERET database is used in our experiments. This subset includes 280
images of 28 individuals (each individual has ten images). The original images are
cropped into 168 x 128 pixel images with 256 gray scales. In each run, 6 images from
each class are randomly chosen for training and the remaining 4 images are used for
testing.

YALE face database contains 165 images of 15 individuals (classes), each having 11
320 x 243 pixel 256 gray scale images with different facial expression and lighting
conditions. The images contain variations with the following facial expressions or
configurations: center-light, with glasses, happy, left-light, without glasses, normal, right-
light, sad, sleepy, surprised, and wink. Each image is manually cropped into a size of 92
x 112 pixels and is rearranged as a 10,304-dimensional vector. From each class, 5 images
are randomly selected for training and the remaining 6 are used for testing.

AR face database contains over 4,000 images of 126 individuals (classes), all of which
are frontal view faces with different facial expressions, illumination conditions, and
occlusions like sun glasses and scarf. Our experiments involve 67 individuals each
having 13 images. The original color images that are of 768 x 576 pixels and 24 bits of
depth are converted and cropped into 140 x 126 pixel images with 256 gray scales. In
each run, 15 of the 67 classes (individuals) are randomly drawn and 6 images from each
class are randomly chosen for training and the remaining 7 images are used for testing.

ORL face database contains 40 persons/classes with each having 10 images. The
images are taken at different times with varying lighting conditions, facial expressions,

and facial details. All individuals are in an upright, frontal position (with tolerance for
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some side movement). All these images are 92 x 112 pixel grey scale pictures and are
expressed as 10304-dimension vectors in the input space. From each class, 6 images are
randomly selected for training and the remaining 4 for testing.

Datasetl is a text document database, derived from the TREC-5, TREC-6, and TREC-
7 collections. It consists of 7 clusters of 30 documents, each document being arranged in
a 7,454-dimensional vector space. From each cluster (class) 20 documents are randomly
selected for training and the remaining 10 documents are used for testing.

Dataset2 is also a text document database, derived from the Reuters-21578 text
categorization test collection Distribution 1.0. This dataset has 4 clusters each having 80
elements represented in a 2,887-dimensional vector space. One-half of the dataset is
randomly chosen for training and the other half used for testing.

Dataset3 is also derived from the Reuters-21578 text categorization test collection
Distribution 1.0, but contains 5 clusters each having 98 documents. Each document is
represented as a vector of dimension 3,759. As in the case of Dataset2, one-half of the
elements are randomly chosen for training and the other half for testing.

Isolet is a spoken letter database with 150 subjects speaking the name of each letter of
the 26 alphabets (classes) twice. The number of training instances is 6238 and that of the
test instances is 1559. Each instance is described by 617 attributes which are continuous,
real valued, and scaled in the range -1.0 to 1.0. In the experiments, for each alphabet 25
instances are randomly chosen as training samples and 40 instances are chosen for testing.

MUSK is a two class database containing 6,598 molecule conformations, which are

categorized into musks and non-musks. The conformations are described by 166 features.
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From each category 250 conformations are randomly drawn for training and another 200
conformation are used for testing.

MNIST handwritten digit database includes 10 digits/classes from 0 to 9. It has
60,000 images and a test set of 10,000 images, each of which is a 28 x 28 pixel grey scale
image and is represented by a 784-dimension vector. In the experiments, 50 images from
each class are randomly drawn as training samples and the same number of images is
chosen for testing.

Table 3.5 gives a summary of the databases used in our experiments. Appendix B
gives the images of one subject (class) of each of the four human face databases in this
chapter.

The two kernel functions used in our experiments are the Gaussian radial basis

2
||x, — X "

function (RBF) kernel, k(x,,x,) = exp(— ), where || - || denotes the Euclidean 2-

noom and o>0 , and the nonhomogeneous polynomial kernel,
k((x,,x,)) = ((x,,x,) +1)¢, where dis an integer.

Except for GSVD-based LDA algorithm, for all the other linear and nonlinear
algorithms, we specify a mechanism to determine the parameters. For the PCA+LDA and
KPCA+LDA algorithms, the largest N—1 eigenvalues and the corresponding eigenvectors
are used in the PCA stage, where N is the number of the classes. The parameters are
estimated through cross validation by using a part of the training samples to carry out the
actual training and the remaining for the estimation. The optimal regulation parameters
for the RLDA and the optimal kernel parameters, d or o, of all the kernelized algorithms

are estimated using the x -fold cross validation method, where x >10. The parameter
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corresponding to the highest average recognition accuracy over the x iterations is chosen
as the optimal parameter. The KRDA algorithm has two parameters, perturbation and
kernel, to be estimated; hence, a double cross-validation is needed.

Since our focus is on feature extraction, a simple classifier, the nearest neighbor
classifier [3], is chosen to be used in all the algorithms so that the differences in the
recognition accuracy of the various algorithms can be attributed to feature extraction
process of the algorithms rather than the classifier employed. For each database, ten sets
of samples are randomly drawn and each algorithm is run using one set at a time. The
average recognition rate and execution time of an algorithm is determined as an average
taken over ten runs of the algorithm using the ten data sets. Here, execution time includes
both the training and testing times. Parameter estimation time is not explicitly given, but
can be estimated as the product of x, the number(s) of parameter candidates, and the

execution time.

(a) Performance evaluation using small sample size databases

In this set of experiments, we assess the performance in terms of the recognition
accuracy and the execution time of the six linear algorithms, MGSVD-LDA, MGSVD-
OLDA, LDA/GSVD, RLDA, PCA+LDA and PCA, using small sample size databases,
FERET, YALE, AR, ORL, Datasetl, Dateset2 and Dataset3. The results of the
experiments are given in Table 3.6 and Table 3.7 from which we make the following
observations:

1) For the four high-dimensional face databases, memory overflow occurs when the

LDA/GSVD algorithm is used; whereas the RLDA, PCA+LDA, PCA and the proposed
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MGSVD-LDA algorithm do not encounter this problem. Note that the GSVD-based
algorithms are a special case of the RLDA algorithm with zero perturbation of the eigen

values or in the values of the elements of the scatter matrix.

2) For the three text databases, the proposed MGSVD-LDA algorithm maintains the
high level of recognition accuracy of the LDA/GSVD algorithm. However, the execution
time of the former is significantly lower than that of the latter. Specifically, the execution
times of the proposed linear algorithm are reduced from those of the LDA/GSVD

algorithm by 99.5%, 94.6% and 92.4%for Datasetl, Dataset2 and Dataset3, respectively.

Table 3.5: Summary of databases

Database Size of Dimension Number of | Number of | Number of

database classes training test
samples samples

FERET 14126 21504 28 168 112

YALE 165 10304 15 75 90

AR 4000 17640 15 90 105

ORL 400 10304 40 240 160

Datasetl 210 7454 7 140 70

Dataset2 320 2887 4 160 160

Dataset3 490 3759 5 245 245

Isolet 7797 617 26 650 1040

MUSK 6598 166 2 500 400

MNIST 70,000 784 10 500 500
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3) In some situations such as when the GSVD-based algorithms are employed to the
FERET, YALE, AR and ORL databases, the orthogonalized algorithm significantly
outperforms its original form. Overall, the orthogonalized algorithm is competitive to the

other algorithms in terms of recognition accuracy and computational efficiency.

The above observations suggest that, compared to the LDA/GSVD algorithm, the
proposed MGSVD-LDA algorithm overcomes the high computational complexity
problem, works for patterns of large dimension without memory overflow. The over-
fitting problem that sometime is encountered in the GSVD-based algorithms is

effectively resolved with little effect on the computation load.

(b) Performance evaluation using large sample size datasets

This set of experiments is devoted to assessing the recognition accuracy and execution
times of the four kernelized algorithms with the three large sample size databases, Isolet,
MUSK and MNIST. Since in the case of a large sample size databases, the associated
scatter matrix does not have the singularity problem, we also compare the recognition
accuracy of the kernelized algorithms with that of the LDA algorithm, which is a linear
algorithm not suitable for discriminant analysis of small sample size databases. The Table
3.8 gives the results on the recognition rate and execution time of the algorithms. From
the results we observe the following:

1) Compared to the LDA algorithm, all the kernelized algorithms enhance the
recognition accuracy significantly. Among all the algorithms considered, the proposed

algorithms give the highest recognition accuracy.
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2) Orthogonalization improves the recognition accuracy of the GSVD-based
algorithms.

From the simulation results, we can see that kemelization of linear discriminant
analysis algorithms is a necessary requirement for their applications to large sample size
databases. This necessity arises from the fact that in large sample size databases, the
samples are not linear separable, and therefore, linear algorithms cannot be effective for
discriminant analysis. The process of kernelization facilitates the distribution of samples
to be linearized and simplified in a high dimensional space. Over-fitting occurs to the

GSVD-based algorithms but orthogonalization overcomes this problem.
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3.7 Summary

In this chapter, the modified generalized singular value decomposition has been
integrated with linear discriminant analysis resulting in the development of a new
algorithm, the MGSVD-LDA algorithm, which successfully overcomes the singularity
problem of the scatter matrices of the traditional FLDA methods and deals effectively
with the computational complexity problem of the LDA/GSVD algorithm. In the new
algorithm, the GSVD framework used in the LDA/GSVD algorithm has been modified
by replacing the SVD of a high-dimensional matrix with the eigen-decomposition of a
small size inner product matrix, thus circumventing the direct calculation of a high-
dimensional singular vector matrix. A kernelized version of the proposed linear algorithm
has been developed for the discriminant analysis of samples that are not linearly
separable. An orthogonalization technique has been proposed to deal with the over-fitting
problem of the GSVD-based algorithms. The main idea of this technique is to
orthogonalize the basis of the discriminant subspace derived from the GSVD-based
algorithms through eigen-decomposition.

The proposed MGSVD-LDA algorithm has been demonstrated to deal effectively with
the computatiqnal problem associated with the high dimensionality of the patterns, when
the LDA/GSVD algorithm completely fails. It has been shown that even in the case when
the dimension of the patterns is not so high and the LDA/GSVD algorithm works, the
proposed MGSVD-LDA algorithm provides a solution to the pattern recognitionvproblem
that is significantly less time consuming and more memory-space efficient and has an
equally high recognition accuracy. It has also been shown that the orthogonalized

algorithm, the MGSVD-OLDA algorithm, significantly outperforms its original form
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with high recognition accuracy and low computational load when the over-fitting
problem occurs.

Overall, the simulation results have shown that the MGSVD-based linear and kernel
algorithms, especially their orthogonalized versions, provide high recognition accuracy

with low computational load.
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Chapter 4

Class Structure of Linearly Independent Patterns in an

MGSVD- Derived Discriminant Subspace

4.1 Introduction

In Chapter 3, new GSVD-based linear and nonlinear algorithms have been developed
for discriminant analysis. It has been shown that these algorithms deal effectively with
the small sample size problem and are capable of accomplishing the task of feature
extraction with low computational complexity and high recognition accuracy. In the

MGSVD-LDA algorithm, the LDA/GSVD’s operation of singular value decomposition

of C is replaced by the eigen-decomposition of the inner product matrix CC” in order to

reduce its computational complexity. The accumulated round-off errors arising from
forming the inner product matrix and that from carrying out its eigen-decomposition
could become nontrivial when the samples have large dimensionality. Also, if the inner
product matrix is ill-conditioned, its eigenvectors become sensitive to these errors [78],
[79].

Although the eigen-decomposition of inner product matrices has been widely exploited
in pattern recognition and mathematicians have studied its numerical stability [79], [80],

few attempts have been made on investigating the implication of the numerical errors in
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feature extraction techniques involving eigen-decomposition of inner product matrices.
Therefore, it is important to study the effects of the numerical errors caused by the round-
off errors introduced in carrying out the eigen-decomposition of the inner product
matrices of the proposed algorithms. A question that also needs to be answered is as to
how the accumulated computational errors influence the accuracy of the feature
extraction in the implementation of the proposed algorithms.

The purpose of the proposed linear and nonlinear feature extraction methods, like other
feature extraction techniques, has been to find a lower dimensional discriminant subspace,
where different classes occupy compact and disjoint regions. However, in order to
determine the impact of finite arithmetic in implementing the proposed algorithm on the
accuracy of the feature extraction, one needs to have a better understanding of the class
structure of the samples in the derived discriminant subspace.

The purpose of this chapter is first to study the class structure of the samples in the
discriminant subspace derived from the proposed MGSVD algorithms and then to
investigate whether this structure can be used to assess the numerical errors caused when
the proposed algorithms are implemented.

In Section 4.2, a theorem is established to determine the class structure of linearly
independent samples in the discriminant subspace derived from the proposed MGSVD
algorithms. The numerical error incurred in the computational process of obtaining the
inner product matrix and in carrying out its eigen-decomposition is investigated in
Section 4.3. A scheme is described in this section for using the above theorem to estimate
the numerical errors incurred in implementing the MGSVD algorithms and to adjust the

kernel parameters to minimize the numerical errors in the implementation of the proposed
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kernelized algorithm. In Section 4.4, experiments are designed to demonstrate the validity
of the theorem presented to establish the class structure of linearly independent samples
and to evaluate the effects of the numerical errors in implementing the proposed linear

and kernelized algorithms.

4.2 Class Structure of Datasets with Linearly Independent Samples

The proposed MGSVD-LDA algorithm provides an optimal transformation matrix that
projects the input samples onto a lower-dimensional discriminant subspace, where
different class categories occupy compact and disjoint regions. The extent of separability
between the samples belonging to different classes and the proximity of the samples
belonging to the same class could provide an insight into the class structure of the
samples in the subspacé derived by a feature extraction algorithm. In this section, we first
establish a theorem to gain an insight into the class structure of linearly independent
samples in the discriminant subspace derived by the MGSVD-LDA algorithm. Then, it is
shown that, in view of this theorem, a similar insight can be gained for nonlinearly

distributed input samples.

Lemma 4.1: Given a set of m-dimensional linearly independent samples consisting of N
classes with the ith class having »; samples and sample size being n, we have

rank(H,)=N -1 and rank(C) =rank(H,)+rank(H ).

Proof: Let us define the following three matrices

H, =%[\/Z (€D —c),...of1y (€™ -c)] (4.1)
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1 1
H, =—\/7[(x, -c),..,(x, =€), (%, —€?),.0 (%, —€P),.,

4.2)
(X1 =€) (X, = c(N))]
H, =—1—[(xl -¢),...,(x,—0)] (4.3)
Jn
where the global centroid is given by
1 n
c= —Z X, 4.4)
R
and the centroid of ith class is given by
k
T
¢ =— X 4.5)
ni I=§+l !
N
where k, =n +n,+ ... +n,, and Xx,1s the /th (/ =1, 2, ..., n) sample vector, n=Zni .

i=1
The between-class and within-class and total scatter matrices can, respectively, be
defined as

S,=H H!,S,=H,H;, S, =HH/ (4.6)
It has been shown in [34] that

S,=S,+S,=C"C 4.7

We now prove by contradiction that rank(H,) =n-1.

We know that rank(H,)<n-1. Assume that rank(H,)# n—1. Then, it follows that
rank(H,) <n-1, and in this case the left most » — 1 columns of H, must be linearly

dependent. That is, there exists a set of numbers {a} not all zero, such that

peoh=12
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implying that the sample x, is a linear combination of the other n — 1 samples. This
contradicts the given condition that the samples are linearly independent. Consequently,
the assumption that rank(H,) < #n—11s not valid. Thus, we have rank(H,)=n—1.

Since rank(H,)<»n-N, rank(H,)<N -1, and rank(H,)+rank(H,)>rank(H,), it
follows that rank(H ) =n~ N, rank(H,) =N -1, and rank(H, )+ rank(H,) = rank(H, ) .
From (4.7), and the fact that rank(H,) = rank(S,) and rank(C) =rank(C'C), we have
rank(C) = rank(H,) = rank(H, ) + rank(H ) .

[
Lemma 4.2: Given a set of m-dimensional linearly independent samples that consisting

of N classes with the ith class having »; samples, then the discriminative transformation

matrix G derived from the MGSVD-LDA algorithm satisfies the relations
G'SG=G'S,G=1, 4.8)
and
G'S,G=0 (4.9)

where I, is an »xr identity matrix with » =rank(H,)=N—1.

Proof: Given that the samples of a datasets are linearly independent, we know that
rank(C) = rank (H,) + rank (H, ). Using this result in (3.7), we have s = 0. Thus, D, in

65



(3.5) and D, in (3.6) vanish, and (3.20) and (3.21) become

I 0
Y/S,)Y, =X, =

0 0

kxk
(4.10)

0 0
YkTSka = va =

0 Ik" kxk

where I,  isa(k — r)x (k — r)identity matrix with £ = rank (H,) =»n — 1. Since G
consists of the r left most columns of Y, and S, =S, +S,, (4.8) and (4.9) follow.

»
Theorem 4.1: Given a set of m-dimensional linearly independent samples consisting of N

classes with the ith and jth classes having »; and »; samples, respectively, i, j =1, ..., N,
x, and x, are two samples from the ith and jth classes, respectively, the Euclidean
distance between the two corresponding sample vectors, Gx, and GXx, , in the

discriminant subspace derived from the MGSVD-LDA algorithm, is given by

0, = 7
diSt(GTX,,GTXh)={\/1—1— i,j=1, 2, .... N (411)
wtas ifi#j

"
nj

where G is the transformation matrix derived from the proposed MGSVD-LDA

algorithm.

Proof: Since G'S G is a semi-positive definite matrix and according to Lemma 4.2 (see

(4.9)), it is a zero matrix, we have G'H , =0, that is,
G'(x,-c¢")=G"(x,-¢)=0, or
G'x,=G'c”,and G'x, =G'¢V (4.12)
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Case (1): l;=j
Since G'x, =G'x, =G'c¢"”, we obtain
dist(G'x,,G"x,)=0 (4.13)
Case (2): i#j
Using (4.12), we have
dist(G'x,,G"x,)
=dist(G" (¢ —¢),G" (¢ -¢)) (4.14)
= dist(ﬁ Grgi,ﬁGng)
where g; and g; are, respectively, the ith and jth columns of H, . Thus, from (3.13) and
(4.10), we have
G'H, =[I,_,,0]U" =U; (4.15)

where U; consists of the N-1columns of U leftmost , and U e R"" is the left singular
vector matrix of Py;. The Nth column of U, u, which is excluded from U,, corresponds to

P;;’s null space, i.e., u’ Py, = 0. Since

P, H,QR"
=P, =CQR™"'= (4.16)

P, H,QR™
we have P, =H!Q,R™. Therefore, u"H; =0 or H,u=0. Solving this equation gives
the components of u asu, =, /np /n,for p=1,..., N. Letting d; and d; to be, respectively,
the ith and jth columns of U] , and concatenating d; with u;, and d; with u;, the resulting

two vectors become two orthogonal unit vectors, which are the ith and jth columns of the
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matrix U . Using these results in (4.14) , we have

dist(G"x,,G"x,)

Theorem 4.1 provides the theoretical distance between two samples in the MGSVD-
discriminant subspace given that all the samples are linearly independent. If the two
samples belong to the same class in a given dataset, then according to this theorem, they
are merged into a single point in the discriminant subspace. On the other hand, if they
belong to two different classes, the distance between them is determined by the number
of samples in the respective classes. When the samples are linearly independent, each
class condenses into a distinct point in the discriminant subspace derived from the
MGSVD-LDA algorithm. Thus, if the samples of a dataset are linearly independent, the
class structure of the samples can be effectively captured through the linear operation of
the MGSVD-LDA algorithm. Hence, for small sample size datasets in which the samples
are linearly independent, the performance of a linear algorithm cannot be improved by
subjecting it to the process of kernelization. On the other hand, if the samples of a dataset
are not linearly independent, i.e., when the sample size of the dataset is larger than the

sample dimension, the samples of a class cannot condense into a single point in the
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derived MGSVD-LDA discriminant subspace. Divergence of class samples in the
discriminant subspace leads to nonlinear class boundaries, and thus affects the
recognition accuracy. In this case, the linear independence condition can be established
by using the proposed kernelized MGSVD-KDA algorithm [54]. Thus, the class structure
of the datasets with samples that are not linearly independent would be the same in the
kernel discriminant subspace derived by using the MGSVD-KDA algorithm as the one

provided by the above theorem.

4.3 Numerical Error Analysis of the Proposed MGSVD Algorithms

The proposed MGSVD-LDA algorithm includes the operations of inner product in
computing the inner product matrix CC” and its eigen-decomposition. The round-off

errors accumulated through these operations could be nontrivial. Normally, the
eigenvalues of a symmetric matrix are well-conditioned. However, the sensitivity of the
eigenvector or the subspace represented by a subset of the eigenvectors to the numerical
error depends on the proximity between the associated eigenvalues and the rest of the
eigenvalues [78] - [81].

In the proposed MGSVD-LDA algorithm, the sensitivity of the range represented by

. . . T . .

P, depends on the minimum non-zero eigenvalue of CC . The smaller the minimum

non-zero eigenvalue, the more sensitive the range to a perturbation. In such a case, the

numerical error will amplify the deviation between the computed range f’l , and the actual

range P, . This deviation, in turn, will result in an angular difference between G , the

computed transformation matrix and G, the actual transformation matrix. Consider the
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distance between two samples in the discriminant subspace, which is generally used as a

measure of similarity between the objects in recognition problems. The angular

difference between G and G will be reflected in the distance between the two samples.
The error in the computed distance is the result of the accumulated computational errors,
and hence, represents the degree to which the numerical errors influence the accuracy of
the feature extraction algorithm, The problem of determining the numerical error of the
proposed MGSVD-LDA algorithm finally boils down to finding the actual (theoretical)
distance between two samples. Once such a distance is obtained, it can be compared with
the computed one in order to evaluate the effects of the numerical errors on the
performance of the algorithm.

It was shown in the previous section that according to Theorem 4.1, if the two samples
belong to the same class in a given dataset, then according to this theorem, they are
merged into a single point in the discriminative subspace, and the distances between the
points depend only on the respective numbers of the samples in the corresponding classes.
Note that distance between two samples in the computed discriminant subspace
represented by G will have an error term resulting from the computational errors
accumulated in calculating the matrix G . The magnitude of this error term is the
difference between the actual distance obtained from Theorem 4.1 and the computed one.
If the maximum of such errors is much smaller than the minimum computed inter-class
distance, the feature extraction can be considered reliable for a given database. The

maximum of these differences, denoted as p, is used as a metric of numerical errors. In
case p is significantly larger than the computed minimum inter-class distance, each class

will not merge into a single point in the discriminative subspace. Thus, the derived
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discriminative subspace cannot be considered reliable. A nonlinear kernel function has to
be used to adjust the input matrix to build the linearly separable condition by adjusting
the kernel parameter appropriately.

Similar to the linear case, the kernelized MGSVD-KDA algorithm should also be
examined for the effects of numerical errors. As a matter of fact, the numerical errors of
the kernelized algorithm is of greater concern, since the round-off errors introduced due
to the inner product operations could be amplified by several folds by the involvement of
the kernel function. Theorem 4.1 still provides a basis of analyzing the numerical errors
of the kernelized algorithm. Recall that the results of Theorem 4.1 is applicable to
situations where the samples are linearly independent, and since the kernelization
establishes this independence for samples that are otherwise not so, the procedure of
analyzing the numerical errors of the linear algorithm described earlier can also be
applied to the samples in the high dimensional feature space. The linear independence for
the mapped samples can be easily checked by examining whether or not the kernel matrix

K is of full rank [54]. The numerical error metric p corresponding to the kernelized

algorithm can be used to adjust the kernel parameters so as to minimize the effects of the

numerical errors.

4.4 Experiments

In this section, simulations are carried out in support of the results established in
this chapter. The first set of experiments is designed to illustrate that for datasets with
linearly independent samples, linear algorithms are quite effective and that the process of

kernelization does not help in improving their performance. For this purpose, six
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kemelized algorithms, namely MGSVD-KDA, MGSVD-OKDA, KDA/GSVD, KRDA,
KPCA+LDA, and KPCA, are run using small sample size datasets. The corresponding
linear algorithms were run in Chapter 3 using the same linearly independent datasets. The
second set of experiments is designed to evaluate the effects of the numerical errors
arising from the implementation of the proposed MGSVD-LDA linear algorithm and that
of its kernelized version, the MGSVD-KDA algorithm.

The execution platform used is Pentium 4, 2.8 GHz CPU, 1.0 GB RAM and WinXP
operating system. As in the Section 3.4, the same ten databases are used in the
experiments, Four face databases and three text document databases are small sample
size databases, where the samples of each database are linearly independent. The other
three, spoken letter database, Isolet, molecule conformation database, MUSK, and digital
handwritten database, MNIST are large sample size databases, where the SSS pr;)blem
does not occur.

The two kernel functions used in our experiments are the same as in the previous

-

3

section. The Gaussian radial basis function (RBF) kernel, k(x,,x,) = exp(—

where || - || denotes the Euclidean 2-norm and o >0, and the nonhomogeneous
polynomial kernel, k(x,,x,) = ((x,,x,)+1)?, where d is a positive integer. The above two
kernel functions result in providing linear independence among the samples of large
sample size databases which are otherwise not linearly independent. The linear
independence is successfully established if the kernel matrix is confirmed to be of full
rank. We use the same mechanism to determine the parameters of the linear and

nonlinear algorithms.
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(a) Performance evaluation of the kernelized algorithms using small sample size

datasets

In this set of experiments, we examine the effectiveness of six linear algorithms for the
feature extraction of linearly independent samples in terms of their recognition accuracy
and execution time. Linear algorithms were run in Chapter 3. We present those results
here again, along with the simulation results obtained by running their kernelized
counterparts, namely MGSVD-KDA, MGSVD-OKDA, KDA/GSVD, KRLDA,
KPCA+LDA and KPCA. The complete simulation results are given in Table 4.1 and

Table 4.2, from which we make the following observations:

1) The kernelization has no significant effect on the performance of the algorithms
except for the case of KDA/GSVD algorithm whose linear counterpart suffered from the

memory overflow problem.

2) The recognition accuracies of GSVD and MGSVD are not always the same. Even
though these two methods are theoretically equivalent, their computations are different,
and thus their numerical errors are also different. These numerical errors result in a slight
angular difference between the discrimination subspaces computed from these two
algorithms. This angular difference influences the distance between a test sample and the
point that represents a class. If a test sample has almost the same distance to two points
representing two different classes, then a small error in finding the two distances may

alter the classification results

The above observations suggest that kernelization does not have significant positive

effect on the performance of the algorithms except for the case of KDA/GSVD algorithm
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whose linear counterpart suffers from the memory overflow problem. For small sample
size databases, the performance of the most of the linear algorithm cannot be improved
through their kernelization. The fact that recognition accuracy of both the MGSVD-LDA
and MGSVD-KDA algorithms are the same is consistent with the finding of Theorem 4.1,
according to which the MGSVD-LDA algorithm effectively separates the classes of

datasets with linearly independent samples.

(b) Analysis of the numerical errors of the MGSVD-LDA and MGSVD-KDA

algorithm

In this set of experiments, we examine the numerical errors of the proposed linear
MGSVD-LDA algorithm and that of its kernelized version, the MGSVD-KDA algorithm.
For the purpose of this examination, we use the scheme proposed based on Theorem 4.1
and described in Section 4.2 for examining the sensitivity of the proposed algorithms to
numerical errors. The small sample size databases, the face databases (FERET, YALE,
AR and ORL) and the text databases (Datasetl, Dataset2 and Dataset3) are used to
investigate the effects of the numerical errors of the linear algorithm, since the samples in
these databases are linearly independent. On the other hand, the large sample size
databases, the Isolet and MUSK databases are used for the kernelized algorithm. For a
given database, using Theorem 4.1, the theoretical values of the intra-class and inter-class
distances are obtained. Note that the theoretical value of the inter-class distance is always
zero. The computed values of these distances are obtained by using the samples projected
in the discriminative subspace obtained from the linear or kernelized algorithm. The

differences between a theoretical and the corresponding computed distances are obtained.
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For the linear algorithm and a database, this process is repeated ten times by running the
algorithm repeatedly, with the samples in each run taken randomly from the database.
The final value of a distance difference is chosen as the one having the maximum value
over the ten runs of the algorithm. The results are summarized in Table 4.3 — Table 4.4.

The minimum computed inter-class distance that consists of the theoretical inter-class
distance minus the maximum computed error of the inter-class distance is given in this
table in a pair of parentheses for each database. Note that each maximum computation
error is negligibly small compared to the theoretical inter-class distance. The last row of
the table gives the maximum computational error of the intra-class distance for each
database. These results imply that the accumulated computational errors, including those
generated from the computation of the inner products, have negligible influence on the
accuracy of the feature extraction. The comparison of the value of the minimum
computed inter-class distance with that of the maximum inter-class difference shows that
the latter is negligibly smaller compared to the former for each database used. Hence, we
conclude that the accumulated computational errors, including those generated from
computation of the inner products, have no influence on the accuracy of the feature
extraction performance of the algorithms for these databases. In our experiments, the
proposed linear algorithm, when operating on databases with linearly independent
samples, was found to produce only small values for p, thus indicating that for these
databases the performance of the algorithm is not sensitive to numerical errors.

For the kernelized algorithm, the polynomial kernel and RBF kernel with different
values of the kernel parameters are used. This process is repeated ten times with the

samples in each run taken randomly from the databases. With every parameter the linear
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independence condition in the kernel feature space is confirmed. The recognition
accuracy as well as the numerical error metric p, associated with every value of the kernel
parameters is obtained. The average accuracy rate and the maximum p of the ten runs as a
function of the parameter value are depicted in Figure 4.1 and Figure 4.2 for the
polynomial kernel and RBF kernel, respectively. Figure 4.1 shows that with the
polynomial kernel the numerical errors are negligibly small for the entire range of the
parameter values. But as the parameter value increases, recognition accuracy shows a
slightly downward trend. This result suggests that once the linear independence is
established and the numerical error metric p is sufficiently small, one should choose the
lowest order of polynomial. For the RBF kernel, Figure 4.2 shows that with some kernel
parameter values the numerical error metric p are very large and the corresponding
classification has a low recognition accuracy or the recognition process totally fails. On
the other hand, the parameter values associated with the minimum p corresponds to high
recognition accuracy. This result has an important implication in that when empirical test
is not conductible due to the lack of proper test samples, one can choose the RBF kernel
parameter that leads to the minimum p.

Table 4.3: The maximum differences between the theoretical values and computed values

of the inter- and intra-class distances in the discriminant subspace derived from the
MGSVD-LDA algorithm using face databases *

Database FERET YALE AR ORL

Minimum. computed (0.6324 — 0.6324 - (0.6324 — (0.6323 —

inter-class distance | 3.66E-15) | S5.00E-15) | 4.22E-15) | 4.56E-15)

Max.diff(Intra-class) 8.73E-14 4.75E-14 4.69E-14 5.76E-15

* The precision of the experimental computer is approximately 1E-16.
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Table 4.4: The maximum differences between the theoretical values and computed values
of the inter- and intra-class distances in the discriminant subspace derived from the
MGSVD-LDA algorithm using text document databases *

Database Datasetl Dataset2 Dataset3
Minimum. computed 0.5345 - (0.2236 — (0.4899 —
inter-class distance 1.22E-15) 4.44E-16) 3.87E-16)
Max.diff(Intra-class) 2.76E-15 3.76E-14 5.98E-15

* The precision of the experimental computer is approximately 1E-16.
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Figure 4.1: The recognition accuracy and numerical errors of MGSVD-KDA with respect
to the order of the polynomial kernel function
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Figure 4.2: The recognition accuracy and numerical errors of MGSVD-KDA with respect
to the parameter of the RBF function

4.5 Summary

In this chapter, a theorem has been established to determine the class structure of
datasets with linearly independent samples in the discriminant subspace derived from the
proposed MGSVD-LDA algorithm. According to this theorem, if the samples of datasets
are linearly independent in the input space, all the samples of a class condense into a
distinct single point of the discriminant subspace derived from the MGSVD-LDA
algorithm, whereas a pair of samples belonging to different classes are separated in the
discriminant subspace by a distance that is determined by the number of samples in each
of the two classes. Thus, under the linear independence condition, the classes are linearly

separable, that is, through the linear MGSVD-LDA algorithm the class structures of the
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datasets can be successfully captured. It has been shown through simulation that for small
sample size datasets, in which the samples are linearly independent, kernelization of the
proposed linear algorithm, therefore, provides little improvement in the recognition
accuracy.

The results of the above theorem have been used to develop a method to estimate the
numerical errors in implementing the proposed linear and nonlinear algorithms. If the
linear algorithm runs into a situation of datasets with linearly dependent samples, one
necessarily needs to employ the kernelized algorithm. This estimate of numerical errors
has also been used to devise a scheme to adjust the values of the kernel parameters to
minimize the numerical errors in implementing the nonlinear algorithm and thus to
improve the recognition accuracy.

Simulation results have shown that the proposed linear algorithm, when operating on
datasets with linearly independent samples, produces only small values of numerical
errors and the performance of the algorithm is not sensitive to numerical errors. For the
polynomial kernel, the numerical errors in implementing the proposed kernelized
algorithm are negligibly small for a wide range of values of the kernel parameter for the
databases used in our experiments. For the RBF kemel, it has been shown that, by
employing an estimate of the numerical errors, it is possible to adjust the kernel
parameter so as to reduce the numerical errors and thus to increase the recognition

accuracy.
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Chapter 5

A Discriminant Model for the Feature Extraction of

Linearly Independent Samples

5.1 Introduction

As mentioned in Chapter 2, a number of FLDA variants have been presented in the
literature in order to overcome the singularity problem of the scatter matrices of the
traditional FLDA algorithms. However, these variants, as also pointed out earlier, suffer
from excessive computational load in dealing with the high dimensionality of patterns or
lose some useful discriminant information in order to overcome the singularity problem
in applying the Fisher criterion.

In Chapter 3, we proposed new GSVD-based linear and nonlinear algorithms for
discriminant analysis. These algorithms provide an effective solution to the singularity
problem of the Fisher criterion with low computational complexity and high recognition
accuracy. In Chapter 4, we presented a theorem that essentially established the class
structure for datasets with linearly independent samples in a specific discriminant
subspace derived from the proposed MGSVD-LDA algorithm. Linearly independent
samples are a very important category of patterns. For instance, face datasets, which are
small sample size datasets with high dimensionality, are normally linearly independent.

Samples in many other datasets, such as fingerprints, DNA data and iris data in biometric
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applications, are also linearly independent. In view of the inspiration drawn from the
results of Theorem 4.1, coupled with the practical significance of patterns with linearly
independent samples, it is worth undertaking a deeper study of the feature extraction
problem of datasets with linearly independent samples.

In this chapter, a discriminant model for a dataset with linearly independent samples in
the input space is developed. It is shown that if the samples of a dataset that has N

classes C,(i=1,2,---N) are linearly independent, then there exist N—1 sets
S,(I=12,---,N -1) of mutually orthogonal hyperplanes in the input space, with each set
S, containing N parallel hyperplanes P'(i=1,2,---, N) so that all the samples of the ith
class (i=1,2,-+-,N) can be mapped onto the hyperplane P' (i.e. onto the ith hyperplane
of each of the N~ sets of the mutually orthogonal hyperplanes). The common normal g,
to all the parallel hyperplanes in S, can then be selected as a discriminant vector and the
collection of all such vectors {g,,:-,& j.,-»--,gN_l} as the discriminant subspace. Based on

this model of datasets with linearly independent samples, some novel algorithms for
discriminant analysis that do not run into the SSS problem are developed. Extensive
simulations are carried out using benchmark datasets to examine the validity of the
discriminant model presented and to demonstrate the effectiveness of the proposed
algorithms, both in terms of the complexity and classification accuracy.

In Section 5.2, the discriminant model for the feature extraction of datasets with
linearly independent samples is proposed. In Section 5.3, three new algorithms without
encountering the SSS problem for obtaining the discriminant subspace of the proposed

model are developed. In Section 5.4, a kernelized algorithm is also presented to deal with
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the datasets in which the samples are not linearly independent. Section 5.5 presents the
experimental results that are obtained by applying the proposed method on some
benchmark datasets. The performance of the proposed algorithms is compared with that

of several other well-known algorithms.

5.2 A Discriminant Model of Linearly Independent Samples

The objective of feature extraction in pattern recognition problems is to find
appropriate features for representing the samples with enhanced discriminatory power for
the purpose of classification. One of the commonly used feature extraction techniques is
to transform the original sample space into a lower-dimensional discriminant subspace in
which a sample of the dataset is more distinguishable in‘terms of the unique class to
which it belongs. The idea is to find a transformation vector or a set of transformation
vectors spanning over the discriminant subspace, on which the projections of the samples
within each class condense into a compact region (ideally into a single point) separated
from the regions corresponding to the other classes of the dataset. In this section, we
show the existence of a discriminant model that allows the creation of a feature subspace
in which the classes of linearly independent samples of a dataset can be efficiently
discriminated.

Assume that a dataset consists of m-dimensional linearly independent samples each

belonging to one of a total of N classes. If the ith class has #, samples(i =1,2,---,N), the

total number of samples in the dataset is n=2", n,. We define an m xn matrix
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b C15 FITEIS WS SRTHS FTITES WRTHS SHRTIS SETITES WIS Sl (5.1
where x,is the jth (j=1,2,---,n,) sample in the ith class. Let g be an m-dimensional
transformation vector, then the projection of the samples on g is given as

p:gTXZ(pn"":Pmlapzl"",Pznz""’Pm"'sp,-ja"'spin,.:""PNl"'apNnN) (5.2)
where the scalar p, is the projection of the data sample x, on g. This linear

transformation can also be expressed as

X'g=p’ (5.3)
where, using the terminology of linear systems, X' is the coefficient matrix, g is the
unknown vector, and p is a known constant vector of the nonhomogeneous linear system.
Since the rows of X consists of » linearly independent samples, the rank of this matrix is
n. With an arbitrary vector p”, the rank of the augmented matrix X =[X" :p”] is also .
The linear independence also implies that the sample dimension m must be larger than or

equal to the sample size n (i.e.n<m). As X and X have the same rank, namely 7, the
existence of solutions of the linear system given by (5.3) is guaranteed. If » = m, (5.3) has

a unique solution for g, otherwise it has infinitely many solutions. Thus, the existence of
a solution for an arbitrary p’ implies that we can choose the elements of p such that
Pn=Pp="=py, =4, =12 N (5.4)
and
q, #q,Lk=1- N; k#i (5.5)
that is, g;is a projection of the samples of the ith class on the transformation vector g,

different from those of the samples of the other classes. Thus, there always exists a

transformation vector g such that all the samples belonging to a class are mapped onto a

85



unique single point of each transformation vector g.

A single-valued projection of all the samples within a class suggests that there exists an
(m—1)-dimensional hyperplane in the original input space that is perpendicular to g and
all the samples of this class lie on this hyperplane. There are N different projection points
corresponding to the samples of the N different classes on a transformation vector g. This
implies that there exist N parallel hyperplanes, each corresponding to one class and all the
samples of one class belong to only one of these parallel hyperplanes. Thus, g is a vector
normal to all the N hyperplanes.

As all the samples belonging to a class have the same projection point on each vector
g, without loss of generality, any sample of the class can be used to represent all the
samples of that class. From (5.2), using the constraints imposed by (5.4) and (5.5), we
have the following equations:

gT(x,.rl—xkrz):ﬁO, i,k=12,--,N, i#k,r,e{l,.-,n},r,efl,,n} (5.6)

and
gT(xirl —xirz)=0, i=12,--N,p,r,e{l,-,n},n#r (5.7

To facilitate the calculation of g, let us now construct the following two matrices:
Ab= (X5 =% ooe (X = X0 (X5 = Xg0) oon (X = X5,), oo (X =X (yy)] (5.8)
A, =[(x,-%x), ... ,(xlnI =X (X =X5), oon s
(5.9
(X, =Xp)s oo (X = Xpi)s oon (X, —Xy)]
Note that the columns of matrix A are formed by subtracting the first sample of each

class from all the remaining samples of the same class. On the other hand, the columns of

matrix Ab are formed by subtracting the first samples of two different classes. It is
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obvious that the columns of Ab are linearly dependent, since they are formed through

linear operations of the first samples of all the classes. We can obtain a matrix A, by

selecting N—/ linearly independent columns of A , as follows:

A, = Xy =X), (X =Xy (X =X )5 (X — X)) (5.10)
Using (5.10) into (5.6) and (5.9) into (5.7) yields, respectively, the following equations:

g'A, =0 (5.11)

g’A, =0 (5.12)

where ais a column vector with all its elements being non-zero and unequal. Let R(-)

and N(-) denote the range and the null space of the associated matrix, respectively.

Equation (5.12) indicates that g € N(A ), and (5.11) implies that the columns of A, have

non-zero projections on g . As stated earlier, there exists a set of vectors g’s that satisfy

(5.4) and (5.5), therefore it also satisfies (5.6) and (5.7) or (5.11) and (5.12) as long as the
samples of a dataset are linearly independent. We now establish the following lemma and

theorems to prove that the set of vectors g ’s consist of a subspace of N(A ) such that the
columns of A, have non-zero projections on this subspace.

Lemma 5.1: Assume that a dataset X consists of m-dimensional samples x;'s
(i=12,--,N;j=1,2,---,m) such that the ith class C, from the N classes has n, samples.
Given the matrices A, and A, as formed by the (5.9) and (5.10), the columns of the
matrix [A,, A,] are linearly independent.

The proof of the lemma is straightforward and thus omitted.
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Theorem  5.1: Given an  N-class dataset whose samples x,'s
(i=12,---,N;j=12,---,n) are linearly independent, and the matrices A and A, as
formed according to (5.9) and (5.10), respectively, the projection vectors of the columns
of A,on N(A)) are linearly independent.

Proof: Let ¢, {=1,--,N—1) denote the N-1 columns of A, , and
8, (=1,---,N—1), denote the projections of ¢, on N(A ). We prove by contradiction

that the projection vectors of the columns of the matrix A, on N(A ) are linearly

independent. Assume that the vector 8,’s are linearly dependent. Then there exists a set

N-1
of constants{a,}, .y, not all zero, such that Za,ﬁ, =0 1s a zero (null) vector. It
I=1

N-1
follows that the linear combination of the columns of A, Za,q), , which is a non-zero
=1

N-1
vector, has zero projection on N(A ). Thus, Za,(p, must belong to R(A ). A linear
I=1

combination of the columns of A, can be expressed as a linear combination of that ofA ,
which contradicts Lemma 5.1. As a consequence, the projection vectors of A, on

N(A,) , thatis, 8, (/ =1,---,N —1), are linearly independent.

As A, has N—1 non-zero linearly independent projections on N(A ), the dimension

of the subspace spanned by these non-zero projection vectors 8, (/ =1,--,N —1) is N—1.
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We now establish a relation between the subspace spanned by vector §,’s and the

subspace spanned by g, ’s.

'

Theorem  5.2: Given an  N-class dataset whose samples x;'s

(i=12,---,N;j=12,---,n) are linearly independent, all the samples of a class are
projected into a distinct single point in the subspace spanned by, (! =1,---,N —1).

Proof: First, since according to (5.12), the projection of the difference between any

two samples is a zero scalar, all the samples of a class project to the same point of

N(A,), and hence, to the same point of the subspace spanned by 8, (/=1,---,N—1).
Now, we will prove by contradiction that a pair of projection points on the subspace

spanned by &, (/=1,---,N —1) corresponding to any two samples belonging to two

different classes cannot be the same point. Assume that any two samples belonging to
two different classes are projected to a single point in the subspace spanned by

6, (/=1--,N—1). It follows that the projections of the columns of A, have zero
projections on the subspace, that is, for some /, there exists a zero-vector,. This implies
that the vectors 8, (/ =1,---,N —1) are not linearly independent, that is, Theorem 5.1 is

contradicted. Thus, the projections of the samples of a class are a distinct single point in
the subspace spanned by 8, (! =1,---,N —1).
[
Since all the samples of a class are projected into a single distinct point in the

subspace spanned by vectors §, (/=1,---,N—1), this subspace can be used as the

discriminant subspace (DS) and since the vectors 6, (/=1,---,N—1) are linearly
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independent, the set {8,,...0,,_,} constitutes a basis of this DS. Theorem 5.2 implies that
the DS is actually the same set of vectors as that spanned by the vectors g satisfying

(5.11) and (5.12). Hence, any vector in this DS can be treated as g that satisfies (5.11) and

(5.12). Once the set of projection vectors &, (/=1,---,N—1) is obtained, this DS is
determined. Therefore, we can select g, =6, /=1,2,...,N—1, as a set of transformation

vectors; any other vectors in this subspace can be represented as a linear combination of

g, (/=1---,N—1) . Without loss of generality, we can assume the basis of the
discriminant subspace to consist of an orthonormalized set {g,,...§,_,} such that
|8.]|=1and &;&, =0 for k, /=1, ..., N-1 and k = I. Before closing this section, we can

summarize the foregoing discussion and analyses as follows.

If a dataset X consisting of m-dimensional linearly independent samples x,'s

(i=12,---,N;j=1,2,---,n) such that the ith class C, from a total of N classes has

samples, then there exists a set of mutually orthonormal transformation vectors

g, (/=12,---N-1). The set of {g,,...8,_,} forms the discriminant subspace in the sense
that for each §,, there exists a set of N parallel hyperplanes P' (i=1,2,...,N) that are
normal to g, such that all the samples x,'s of C, lie on the hyperplane P’ and have a
distinct point on g, as their projection. The discriminant subspace is a subspace of the

null space of A, N(A ), on which A, has non-zero projections.
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5.3 Algorithms for Finding the Orthonormal Basis of the DS

The discriminant model developed in the previous section for a dataset with linearly
independent samples shows that there exists a DS in which all the samples of a class

merge into a unique point. It has also been shown that this DS is a subspace of N(A ) on
which the projection of A, is non-zero. In this section, we develop three algorithms

referred to as Algorithm A, Algorithm B, and Algorithm C for finding the DS that

comprises the set of vectors g, (/=1,2,---N—1) of the proposed model for a given

dataset.

Among these three algorithms, the first one is a straight forward technique of finding

the DS in that first, N(A ) is found by solving the linear equations Z"A_ =0. Then, a
subset of the solutions is determined on which A, has non-zero projections. In Algorithm

B, by utilizing the range of A, a direct solution of the linear equations Z'A =0 is

w?

avoided. Algorithm C is based on the same philosophy as that of deriving Algorithm B.

However, here the range of (A, :A,)is utilized instead of that of A . In Section 3.3 we

will show that steps of this algorithm leading to the determination of the DS are very

amenable to a kernelization of this algorithm.

Algorithm A

As the DS is a subspace of N(A ) on which A, has non-zero projections, we propose
an algorithm that first finds N(A ) and then projects A, onto N(A ) to evaluate the

basis of the DS. Consider the homogeneous linear system
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Z'A, =0 (5.13)
where Z represents a solution of the system. The set of solutions {Z} forms the null space
of A ,i.e.N(A,). Then, the DS is obtained by projecting A, onto N(A ) as
G=17Z"A, (5.19
In order to find G, the transformation matrix with orthonormal basis, an eigen-
decomposition of G'G is carried out to orthogonalize the columns of G as
G'G=G'R?G (5.15)
where R is a diagonal eigen-value matrix corresponding to G.
Overall, the algorithm just presented can be summarized és having the steps given in

Table 5.1.

Table 5.1: Algorithm A

Input: Training sample x,

Output: Transformation matrix G

Step Al: Form the A; and A,, using (5.9) and (5.10).

Step A2: Find a set of orthogonal solutions {Z } of the linear system given by (5.13).

Step A3: Evaluate G using (5.14)

Step A4: Find transformation matrix G by applying eigen-decomposition of G using

(5.15).

Although this algorithm is straight forward, its use is limited to determining the DS for

low-dimensional datasets because of the high computational complexity involve with the
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solution of the associated linear systems. The development of the following algorithms

addresses this problem.

Algorithm B

Consider an orthonormal matrix Q € ™™ | partitioned as [Q,:Q,], where the
columns of Q, and Q, consist of the bases of R(A,) and N(A ), respectively. Since

QQ’ =1, an identity matrix, we can write A, as

A,=QQ'A, =[Q, Q,] @ A, =E+E’ (5.16)
Q;
where
E=QQ[A, 17
and
E'=Q,Q]A, (5.18)

It is seen from the above equation that E and E' are the projections of A, on R(A )
and N(A ), respectively. This equation indicates that A, can be decomposed into two
mutually orthogonal components, E andE’. As A, € R™" ™ and N(A ) e R™""M |
the size of R(A ) is smaller than that of N(A ) when the sample dimension is large.
Consequently, the evaluation of R(A,)is computationally less expensive than that of

N(A,) . The orthonormal basis of R(A ), i.e. Q,, can be obtained by carrying out
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eigen-decomposition of ATA . Then, matrix E’ can be obtained using (5.18) and E in

turn can be used in (5.16) yielding

E=A,—F (5.19)

A

Finally, G, the orthonormal basis of the DS can be obtained through an eigen-
decomposition of EE . This algorithm circumvents the direct calculation of N(A ) and
thus it is time-efficient.

The steps of the algorithm thus developed are given in Table 5.2.

Table 5.2: Algorithm B

Input: Training sample x,

Output: Transformation matrix G

Step B1: Form A,, and A, using (5.9) and (5.10).

Step B2: Find Q, by obtaining the eigen-decomposition of ATA .

Step B3: Find E’ using (5.18).

Step B4: Find E using (5.19).

Step B5: Find G by finding the eigen-decomposition of E'E .

Algorithm C

In this algorithm, we first construct an augmented matrix A, = [A, A,] and then

project the matrix A onto R(A ). The null space of A, found withinR(A)is then the

DS.
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To findR(A,), one can conduct a singular value decomposition of A.. However, for

high-dimensional datasets, it would result in a high computational load. An efficient

alternate approach is to conduct an eigen-decomposition of the inner product matrix
AlA as
ATA, =UAU’ (5.20)
where A € R™ , with #=rank(A ), is the diagonal matrix whose diagonal elements are
the nonzero eigenvalues of ATA_, and U e R™ is the eigenvector matrix corresponding
to ATA,. Then, the columns of U given by
U=AUA"? (5.21)
constitute an orthonormal basis of R(A,). Projecting the columns of A, onto R(A))
gives B = i A, . The range and the null space of B, can be obtained by conducting the

eigen-decomposition of B as
B, =V \'4 (5.22)

where T e R, with d =rank(A,), is a diagonal matrix whose diagonal elements are
the nonzero eigenvalues of B, , andV € ™' is the eigenvector matrix corresponding to
B,.

We partition V as [V, V,], where V,eR"*? consists of the eigenvectors

corresponding to R(B,)and V, e R*’ corresponds to N(B,). Finally, the orthonormal

basis of the DS is obtained as
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G =0V, =A_UAM™Y, (5.23)

The steps of the algorithm just described are put together in Table 5.3.

Table 5.3: Algorithm C

Input: Training sample X,

Output: Transformation matrix G

Step C1: Form A,, and A, using (5.9) and (5.10), and set A.= (A :A,).

Step C2: Find U using (5.20) and (5.21).

Step C3: Evaluate the projection B, =U"A, .

Step C4: Find V by eigen-decomposition of B, given in (5.22).

Step C5: Find V, by partitioning V.

Step C6: Find the orthonormal basis of the DS using (5.23).

5.4 Kernel-Based Discriminant Subspace

In the preceding sections, a discriminant model for a dataset with linearly independent
samples has been developed. It has been shown that there exists a discriminant subspace
in which all the samples of a class merge into a distinct single point. Three algorithms
have also been proposed based on this discriminant model. However, the linearly
independent condition used for the development of the model may not be satisfied in
many cases. For instance, when the sample size is large relative to the sample dimension,

the samples of a dataset cannot be linearly dependent. In such a case, one can restore the
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linear independence condition in a higher-dimensional space through a nonlinear kernel
mapping of the input samples [48], [84].
A kernel is a nonlinear mapping @ that is designed to map the samples in the input

space R” onto a higher-dimensional feature space I’

®: R">T
(5.24)
X; W,

Correspondingly, sample x, ’s in the original input space R" is mapped into a
potentially much higher-dimensional feature vector y, ’s in the feature space I', in

which samples become linearly independent, and hence, a linear technique for
discriminant analysis can be applied. However, the high dimensionality of the derived
feature space can make the overall process of the discriminant analysis computationally
infeasible in practice. This problem is generally overcome by using the so called “kernel
trick”, in which the inner products of the mapped sample vectors in the feature space can
be implicitly derived from the inner products between the input samples [54], [56] such

that
<‘|’1"Vh> =k(<xl’xh>)=k1h (5.25)
where (-> denotes the inner product of two vectors in the feature space, k(-) denotes a

kernel function, and k, is a scalar. The key to a successful kernelization of a linear

algorithm is in its ability to construct inner products in the input space and then to
incorporate these in the feature space again in the form of inner products. The
formulations of Algorithm A and Algorithm B developed in the previous section in their

present forms lack suitable inner product representations for their kernelization. However,
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the third algorithm, Algorithm C, has highly suitable format for its kernelization. Hence,

we now kernelized this algorithm.

Define the following matrices similar toA,, A, and A_using samples in the higher-

dimensional feature space defined by the mapping given by (5.24):

D= [V Wi (Wi =X, (W =Wai s s (Wap, =War)seoos

(Wrz =Wnids s (W, — W]

Q= [(Wy ~ Wi (Ws = Wi s s (W =Wy (W — W)

o, =[®, o,]
As for the linear algorithm (Algorithm C), form a symmetric matrix

o7, - O, 0, O,

'O, oo,

In order to evaluate the above matrix, we first construct the following matrices:

D =[y,, ¥,y Wil

D, =[\ylz,...\vlnl,\|122,...,\|12n2,...,\|1N2,...,\yNnN]

~ —

(D 0

0 (l)lx(nN—l) )

Then, we can express the matrix ®,and ®  used in (5.26) as
®,=0C,
P =0,-0C,

The four sub-matrices on the right side of (5.26) can be expressed as

98

(5.26)

(5.27)
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(5.29)
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o;®, =C/K, C,
o’'® =K, -CK,-(CK,) +C}K|C, (5.32)
oo, =CK,-CK,C,
where K, =®/®, K,, =®]®,,and K, = (K,,)" =®/®,. Derivation of this set of
formulas is presented in Appendix C. Carrying out an eigen-decomposition of ®®_,

we have
®’®, =UAU" (5.33)
where A e R™, with 1 = rank(® ), is a diagonal matrix whose diagonal elements are the
nonzero eigenvalues of ®’®_ , and U is the eigenvector matrix corresponding to ®’®_ .
Thus, U=®_,UA""* is the eigenvector matrix of ® @’ with its orthonormal columns
that span R(®,) . Projecting the columns of @, onto U yields
~ - - . - - Ky _CgKIZ "(C;Klz)r +C§K11C2
o =U'o =A"Ud® =A"U (5.34)
C1TK12 - CITKnCz
Now, another eigen-decomposition is carried out to find N((i>w) in R(®,) as follows
0 0|
o'®, =V \'%4 (5.35)
0 x?
where L is a diagonal matrix with nonzero eigenvalues of ®’®_ on its diagonal and V is
the eigenvector matrix corresponding to ®7®, . Partitioning V as |:\~’1 \~’2:|, where V, is
the eigenvector matrix corresponding to the null space of (i>fv(i)w , the transformation

matrix can be obtained as
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G=0,UA*V, =0,¥ (5.36)
where ¥ = UA?V,,

Table 5.4: Algorithm KC

Training stage

1. Form the kernel matrices K,,, K ,and K,, using a kernel function and (5.25),

(5.27), (5.28), (5.29) and (5.32).

2. Evaluate the matrix ®’®_given in (5.26) by using (5.32).

3. Find Uand A by eigen-decomposition of ®'®_given in (5.33).

4. Evaluate the projection of @ on R(®,) using (5.34).

5. Find V through the eigen-decomposition given in (5.35) of (i)a(iJW.

6. V,—V(N:n—N).

7. Find the orthonormal basis of the DS using (5.36).

Classification stage

8. Form Kk, using (5.38).

9. Find the projection y,on feature vectors: m < Yk, .

Finally, in order to determine as to the class to which a given test sample belongs to,
the projection on the transformation vectors of its map w, in the feature space has to be
found. This projection using inner product can be express as

=Gy, =¥7 (@ y,)="Yk, (5.37)

where the column vector k, can be evaluated as

3
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Clo/y,-Djy,
k = (5.38)
Cloy,

The kernel scheme just described can be summarized in the form of an algorithm,

kernelized Algorithm C (Algorithm KC). This algorithm is summarized in Table 5.4.

5.5 Experiments

In this section, four different sets of experiments are carried out in order to illustrate
the various ideas and schemes developed in this chapter. In the first set of experiments,
the validity of the proposed discriminant model is examined. In the second set of
experiments, the computational complexity of the three proposed algorithms is compared
using three text document databases. The third set of experiments evaluates the
performance of linear algorithms, Algorithm B and Algorithm C proposed in this chapter,
and the PCA+LDA, MGSVD-LDA, MGSVD-OLDA and RLDA algorithms, using four
human dace databases. In the last set of experiments, the performance of the proposed
kemelized Algorithm C (Algoritm KC) and four other kernelized algorithms
( KPCA+LDA, MGSVD-KDA, MGSVD-OKDA and KRDA algorithm) in comparison
to that of the linear LDA algorithm is carried out using three large sample size databases.
Ten databases are used in our experiments. Among them, FERET, YALE, ORL and AR
are human face databases, and Datasetl, Daraset2 and Dataset3 are text document
databases. Each of these six databases is small sample size database, in which samples

are linearly independent. The remaining three databases, Isolet (a spoken letter database),
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MUSK (a molecule conformation database), and MNIST (a handwritten digit database)
are large sample size databases, in which samples are not linearly independent.

As discussed in the previous sections, if samples of a given database are linearly
independent, they must be linearly separable. In the case of large sample size databases,
samples are not linearly independent; kernelization is, therefore, necessary to establish
the linear independence condition by using an appropriate kernel. Since the main
objective of the kernelization is to achieve a linear independence among samples, the
same simple kernel, a nonhomogeneous polynomial kernel [4], is chosen for all the
nonlinear algorithms considered to establish the linear independence so that the
differences in the recognition accuracy of the various algorithms can be attributed to
feature extraction process of the algorithms. The nonhomogeneous polynomial kernel is
given as

k(x,x, ) = ((x,,%,) +1)° ~. (5.39)
where d is a positive integer. In the classification stage, the nearest neighbor classifier [3]
is used for all the algorithms.

For the PCA+LDA and KPCA+LDA algorithms, the largest N-1 eigenvalues, where N
is the number of the classes, and the corresponding eigenvectors are used in the first stage
for dimension reduction. The optimal regularization parameter for the RLDA and the
optimal kernel parameter, d, for all the kernelized algorithms are estimated through the -
fold cross validation method, where k£ > 10, by using a part of the training samples for the
actual training and the remaining for estimation. The parameter corresponding to the
highest average recognition accuracy over the k iterations is chosen as the optimal

parameter. The KRDA algorithm has two parameters, regularization and kernel, to be
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estimated; hence, a double cross-validation is needed. For each database, ten sets of
samples are randomly chosen and each algorithm is run using one set at a time. The
average recognition rate and execution time of an algorithm is determined as an average
taken over ten runs of the algorithm. Parameter estimation time is not explicitly given,
but can be estimated as the product of the number of parameter candidates %, and the
execution time. The execution platform used is dual core AMD opteron (tm), processor

180, 2.41 GHz, 2.0 GB RAM and Win XP operating system.

(a) Validation of the discriminant model

According to the proposed discriminant model, if the samples of a dataset are linearly

independent, then there must exist a set of transformation vectors {g,,...g,_,} and a set
of parallel hyperplanes normal to g, such that all the samples of a class of the dataset lie
on one of hyperplanes and have a distinct point on g, as their projection. In this set of

experiments, we validate this model experimentally.

The proposed algorithms, Algorithm A, Algorithm B, Algorithm C, and three other
algorithms, namely MGSVD-LDA, RLDA and PCA+LDA, are applied on the small size
face database AR as an example of a dataset of linearly independent samples, whereas the
kernelized version of Algorithm C (that is, the KC algorithm) and the kernelized versions
of the other three algorithms, MGSVD-KDA, KRDA and KPCA+LDA, are applied on
the large sample size database Isolet as an example of linearly dependent dataset. Since

the vector @,’s are expected to be mutually orthogonal, for the purpose of illustration,

any pair of arbitrarily chosen vectors can be used to form a plane in two dimensions.
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Figure 5.1-Figure 5.4 depicted the projections of the samples on such two-dimensional
planes, where only eight randomly selected classes are shown for the sake of simplicity.
These figures show that if the samples are linearly independent or become linearly
independent through nonlinear kernel mapping, the projections of the samples of each
class condense to a distinct single point on the plane formed by any two transformation
vectors that are derived from the proposed linear or kernelized algorithms. Thus, this
example illustrates that, for the linearly independent samples, the proposed discriminant
model holds. It is clear that the RLDA and PCA+LDA algorithms and their kernelized
versions, the RLDA and KPCA+LDA algorithms, which are not designed on this
discriminant model, are not as successful as the proposed algorithms in discriminating the

classes.

(b) Computational efficiency of the proposed linear algorithms

As it has been pointed out in Section 5.4, the application of Algorithm A is limited to
low-dimensional datasets because of its high computational complexity. Thus, it suffers
from memory overflow problem when applied to patterns, such as human faces, that have
a very high dimension. Hence, in order to compare the performance of the three proposed
algorithms, Algorithms A, B, and C, the three text document databases are used in this
experiment and their dimensions are reduced by one-half in order to avoid memory
overflow of Algorithm A. The results of the experiment are given in Table 5.5. From

these results, we can make the following observations:
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Figure 5.1: Sample projections in a two-dimensional discriminant subspace using
algorithms (a) Algorithm A, (b) Algorithm B, (c) Algorithm C and (d) Algorithm KC

105



1 T S T 1 &
AR Database
08¢t Isolet Database 1
05 -
0B} .
<
Or < 1
0.4} + .
»*
4
054+ = 0.2} x 1
+ O
U | -
Atk 4
O -02 T
45k * <&
* 0.4+ .
% o]
2 L L L -0.6 L 1
-3 .2 1 0 1 1 2 3 4
€)) (b)

Figure 5.2: Sample projections in a two-dimensional discriminant subspace using
algorithms (a) MGSVD-LDA and (b) MGSVD-KDA
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Figure 5.3: Sample projections in a two-dimensional discriminant subspace using
algorithms (a) RLDA and (b) KRDA
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Figure 5.4: Sample projections in a two-dimensional discriminant subspace using
algorithms (a) PCA+LDA and (b) KPCA+LDA

1) All the three proposed algorithms have the same recognition accuracy for the three

text document databases.

2) The execution times of Algorithms B and C are significantly lower than that of

Algorithm A.

3) For the three text document databases, the execution time of Algorithm B is lower

than that of Algorithm C.

As expected, the three algorithms provide equally high recognition accuracy, since all
the three are based on the same proposed discriminant model. However, their execution

times are different. The computationally demanding of Algorithm A is the solution of the
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linear equations Z'A , =0 to obtain the null space of A ,,N(A ). Since the dimension

m‘is still much larger than the sample size n, the basis of N(A ) , whose size is m x (m-

n+N), requires a significant amount of computation. Implementation of neither Algorithm

B nor Algorithm C involves computing the complete null space of A ; hence, these

algorithms are computationally more efficient.

Table 5.5: Performance of the three proposed linear algorithms

Database Datasetl Dataset2 Dataset3
Algorithm | Recognition | Execution | Recognition | Execution | Recognition Execution
Rate Time in Rate Time in Rate Time in
(%) Seconds (%) Seconds (%) Seconds
Algorithm 96.4 16.23 83.54 11.58 91.79 3.71
A
Algorithm 96.4 0.20 83.54 0.20 91.79 0.07
B
Algorithm 96.4 0.29 83.54 0.49 91.79 0.09
C

(c) Performance evaluation using datasets with linearly independent samples

In this set of experiments, the performance of the proposed linear algorithms,

Algorithm B and Algorithm C, are evaluated and compared with that of the PCA+LDA,

MGSVD-LDA and RLDA algorithms in terms of the recognition accuracy and execution
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time using three human face databases. The three human face databases used for this
evaluation are FERET, YALE, ORL and AR. The results of the experiment are given in
Table 5.6. From the results, we have the following observations:

1) As in the case of low-dimension text databases, the two proposed algorithms
provide high level of recognition accuracy and low execution time for large dimensional
databases as well.

2) The recognition accuracy of Algorithm B and Algorithm C is higher than those of
the MGSVD-LDA and PCA + LDA algorithms. The execution times of these four
algorithms are about the same.

3) The proposed algorithms are competitive to the RLDA algorithm in terms of the
recognition accuracy. However, the execution time of the RLDA algorithm is much
larger than that of Algorithm B or Algorithm C due to the requirement of selection of the

regulation parameter in the former.

Thus, taking into consideration both the recognition accuracy and execution time, the
proposed Algorithm B and Algorithm C outperform the MGSVD-LDA, RLDA and
PCA+LDA algorithms. The computational complexity of Algorithm C depends mainly
on the operation of the eigen-decomposition of A, whose size is (n+N) x (n+N). In
contrast, the implementation of Algorithm B involves mainly the inner product
computations and some arithmetic operations of vectors in obtaining the discriminant

subspace. This difference in the computational complexities of Algorithm B and

Algorithm C can be attributed to the lower execution time of the former.
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(d) Performance Evaluation Using Datasets with Linearly Dependent Samples

In this set of experiments, the performance of the proposed kernelized algorithm,
the Algorithm KC, and that of three other kernelized algorithms, the MGSVD-KDA,
KRDA and KPCA+LDA algorithms, are assessed using three large sample size databases,
MUSK, Isolet, and MNIST. We also compare the performance of the kernelized
algorithms with that of the linear LDA algorithm. Table 5.7 shows the simulation results
of this experiment. The purpose of including this linear algorithm is to illustrate the
effectiveness of kernelization in each of the nonlinear algorithms.

1) Compared to the LDA algorithm, all the kemnelized algorithms enhance the
recognition accuracy significantly.

2) The proposed KC algorithm provides the highest recognition accuracy compared to
the other kernelized algorithms.

3) The proposed KC algorithm requires a smaller execution time than its competitors
except for the KPCA+LDA algorithm with the Isolet database.

The process of kernelization facilitates the samples to achieve a linear independence to
capture the class structures of the databases in a high dimensional space. Compared to
other kernelized algorithms, the proposed Algorithm KC provides the highest recognition

accuracy with low computational load.
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5.6 Summary

In this chapter, a systematic framework for the feature extraction of the linearly
independent samples have been developed, which effectively addresses the SSS problem.
Within this framework, first a discriminant model for the linearly independent samples
has been established. If the samples of a dataset with N classes are linearly independent,
then in accordance with this model, it has been shown that there exists a set of N-1
mutually orthogonal transformation vectors forming a discriminant subspace. For each of
the transformation vectors, there exists a set of N parallel hyperplanes that are normal to
this transformation vector. All the samples of one class lie totally on one of the N parallel
hyperplanes and have a single distinct point on this transformation vector as their
projections. Based on the proposed discriminant model, three algorithms have been
developed. Whereas the first algorithm has been designed for low-dimensional datasets,
the other two have been designed without such a restriction on the data dimensionality.
Since the samples of a dataset are not linearly independent when the sample size is larger
than its dimension, a kernelized algorithm has also been developed for the discriminant
analysis of such datasets.

Extensive experiments have been conducted using benchmark database to demonstrate
the validity of the proposed discriminant model for linearly independent samples. It has
been shown that if the samples are linearly independent or made linearly independent
through a nonlinear kernel mapping, the projections of the samples of each class
condense into a distinct single point on any of the transformation vectors that are derived
from the proposed linear or kernelized algorithms. It has been demonstrated that the three

proposed linear algorithms provide a solution to the pattern recognition problem yielding

113



an equally high recognition accuracy with two of them consuming significantly less
computational time. Simulation results using benchmark datasets have also shown that
these two algorithms, in géneral, outperform the other existing linear algorithm in terms
of recognition accuracy and execution time. Simulation results have also demonstrated
that the proposed kernelized algorithm provides high recognition accuracy with low

computational load compared to other kernelized algorithms.
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Chapter 6

Conclusion

6.1 Concluding Remarks

Fisher’s linear discriminant analysis provides an effective solution to many pattern
recognition applications. However, it has a limitation in that it requires the within-class
scatter matrix to be non-singular, which in practice is not the case when the small sample
size problem occurs. Many FLDA variants that have been proposed in the past to address
the small sample size problem either suffer from the high computational complexity due
to the way the high-dimensionality of the input samples are dealt with or lose some useful
discriminant information in dealing with the singularity proBlem of the scatter matrices of
the traditional FLDA. This research has been concerned with an in-depth study of the
discriminant analysis and development of feature extraction algorithms that can
effectively deal with the small samples size problem. With this objective, the work of this
research has been divided into two parts.

In the first part of this study, an algorithm, referred to as the MGSVD-LDA algorithm,
which overcomes the small sample size problem, has been developed by solving the
problem of generalized singular value decomposition through eigen-decomposition. The
proposed algorithm has provided an efficient solution to the singularity problem of the

within-class scatter matrix of the Fisher criterion with low computational complexity and
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high recognition accuracy. A scheme has also been developed to kernelize the proposed
linear algorithm yielding a nonlinear algorithm for discriminant analysis when the
samples of a dataset are not linearly separable and a direct application of the linear
algorithm fails to separate the classes of the dataset. An orthogonalization technique has
been proposed to deal with the over-fitting problem through an eigen-decomposition of
the basis of the discriminant subspace derived from the proposed MGSVD-LDA
algorithm.

A theorem has been established to determine the class structure of linearly
independent samples in the discriminant subspace derived by the proposed MGSVD-
LDA algorithm. According to this theorem, if the samples of a dataset are linearly
independent in the input space, then all the samples in a class condense into a distinct
single point of the discriminative subspace, whereas a pair of samples belonging to two
different classes are separated by a distance determined by the number of samples in each
of the two classes. Thus, under the linear independence condition, the classes of a dataset
are linearly separable, that is, through the linear MGSVD-LDA algorithm the class
structures of the datasets with linearly independent samples can be successfully captured.
It has been shown that for small sample size datasets, in which the samples are linearly
independent, kernelization of the proposed linear algorithms provides little improvement
in the recognition accuracy. The theorem that establishes the class structure of linearly
independent samples has also been used to estimate the numerical errors of the proposed
linear and nonlinear algorithms. This estimate of numerical errors has also be used to
develop a scheme to adjust the kernel parameters to minimize the numerical errors in the

implementation of the nonlinear algorithm and thus to improve the recognition accuracy.
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In the second part of this thesis, a discriminant model for datasets with linearly
independent samples has been established. If the samples of a dataset with N classes are
linearly independent, then in accordance with this model, it has been shown that there
exists a set of N-1 mutually orthogonal transformation vectors forming a discriminant
subspace. For each of the transformation vectors, there exists a set of N parallel
hyperplanes that are normal to this transformation vector. All the samples belonging to a
single class lie totally on one of the N parallel hyperplanes and have a single distinct
point on this transformation vector as their projections. Based on this discriminant model,
three linear algorithms that effectively deal with the adverse effects of the SSS problem
have been developed to determine the discriminant subspace for a given dataset with
linearly independent samples. One of the three algorithms has been designed for low-
dimensional datasets, whereas the other two have been designed to deal effectively with
the computational problem associated with the high dimensionality of patterns. A scheme
has also been developed to kernelize one of the three proposed linear algorithms for the
discriminant analysis of datasets with linearly dependent samples.

Extensive experiments have been conducted throughout this research using benchmark
databases to investigate the validity and effectiveness of the ideas developed therein.
Simulation results have been used to demonstrate the validity of the schemes and the
model presented. It has also been shown that the discriminant analysis algorithms
proposed in this thesis provide superior performance in terms of the recognition accuracy

and computational complexity.
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6.2

Scope for Further Investigation

While the work of this thesis has focused on developing efficient techniques for

feature extraction and developing a discriminant model for datasets with linearly

independent samples, in the opinion of the author of this thesis, there are a number of

problems related to the work of this thesis that needs to be further investigated.

1.

The crux of the SSS problem is in the use of the Fisher criterion that involves the
inversion of a scatter matrix, which cannot be accomplished when it is singular.
Existing solutions dealing with this problem has been computationally expensive
or lack of accuracy. Thus, there is a need to devise a new rational and objective
optimality criterion, altogether different from the Fisher criterion that does not
have to deal with the inversion of matrices.

There is a need to develop new feature extraction algorithms dealing with more
complex databases having subjects with missing pixels, outliers or occlusions, or
subjects corrupted by various types of noise.

In dealing with the feature extraction of datasets with samples that are not linearly
separable, almost invariably linear algorithms have been kernelized. However, the
computational complexity of the kernelized algorithms is very high. Hence, there
is a need to develop directly low-complexity nonlinear algorithms without

recourse to the linear ones.
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Appendix A

Derivation of the Expressions for ®®,, ®® , and ®,®, in the

MGSVD-KDA Algorithm

In this section, we give the expressions for @, ®,, ®,®, , and ®.®_, which are the

submatrices of I'T” given by (3.27).

1) Derivation of ®,®,

®,®,
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= (\yT\y )i:l,..,,N =17KL.

J=l..,N

Hence, we have
® @, =D(B-L) K(B-L)D.

2) Expression for ® @,
.0,
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where
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Thus, the submatrix ® @ can be expressed as

®’'®, =(1-A) KI-A).
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3) Expression for ®,®,,
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Thus, from the above, we have

®'®, =DB-L)YK(I-A).
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Appendix B

Examples of Some Typical Images in Face Databases

Figure B.1: Images of one subject in the FERET face database
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Figure B.3: Images of one subject in the AR face database.
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Figure B.4: Images of one subject in the ORL face database.
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Appendix C

Derivation of the Expressions for ®,®, ® ®_  and ®.® in

Algorithm KC

In this section, we give the expressions for ®,®,, ®;®_, and ® ® , which are the

submatrices of ®’®_ given by (5.32).

1) Derivation of ®,
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2) Derivation of @,
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1) Derivation of ®,®,
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where K, = @/ ®,.
3) Derivation of ®.®,
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4) Derivation of ©,®,,
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