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Abstract

In Structural Health Monitoring (SHM), various sensors are installed in the criticai

locations of a structure. The signals from sensors are either continuously or periodically

analyzed to determine the state and performance of the structure. The objective of this
thesis is to apply statistical pattern recognition techniques to determine the relation among
signals or engineering data from various sensors installed on a structure. An objective
comparison of the sensor data at different time ranges is essential for assessing the
structural condition, detect any malfunction of sensors, or excessive load experienced by

the structure which leads to potential damage in the structure. The objectives of the
current research are to establish a relationship between the data from various sensors to

estimate the reliability of the data, and to determine defective sensor using the statistical

pattern matching techniques. In order to achieve these goals, new methodologies based on
statistical pattern recognition techniques have been developed and implemented using the
MATLAB environment. The proposed methodologies have been developed and validated

using sensor data obtained from an instrumented bridge and road test data from industry.
The statistical pattern matching techniques are quite new in SHM data interpretation and
current research demonstrate that it has high potential in assessing structural conditions,

especially when the data is noisy and susceptible to environmental disturbances.
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Chapterl: Introduction

1.1 General

Bridge condition information is primarily obtained through scheduled biennial visual
inspection which is enforced by the National Bridge Inspection Program (NBIP) in the
limited states. However, a study funded by the Federal Highway Administration (FHWA)

concluded that these are labor and cost intensive activities (Dubin and Yanev, 2001), and

that visual inspections are subjective and unreliable (Phares, 2001). In addition, the
effectiveness of these periodic inspections is highly constrained by the shortage of timely

damage detection ability. Therefore, to maintain overall highway operational safety with
current funding limitations, the development of continuous, automatic, and low cost

bridge structural health monitoring (SHM) systems is highly and urgently needed( Ping
Lu, 2008).

Benefiting from the rapid development of computing, sensing, and tele-communication

technology during the last two decades, computer-based long term SHM systems have
been developing and are more and more widely utilized to provide timely condition
information. A SHM system includes data acquisition, storage and evaluates the status of

entire structure or structural component continuously. It is desired monitoring a structure

would assist in assessing structural conditions and detecting damage in structures.

Damage in a structure may be caused by many factors such as cracking, corrosion,

12



reduction in material properties, reinforcement rupture fractured welds and loosened

bolts. In general the context, damage assessment can be defined at four levels (Rytter,

1993).

They are

1 . To detect whether there is damage

2. To determine the location of damage

3 . To quantify the extent of damage and

4. To carry out prognosis such as safety evaluation and remaining life prediction

It is probable that only global changes such as foundation settlement, bearing failure or

major defects, such as the loss of main cable tension or the rupture of the deck, would be

detectable by global SHM procedures with a minimum of optimally located sensors, as

Saint Venant's principle indicates that the zone of influence is typically small. It is hard,

if not impossible, to find a global measurement that can be monitored by a few sensors
while sensitive to the localized structural response change. Therefore, a relatively dense

and wide spread sensor network is necessary to achieve the required coverage if the

damage location is not already known. At the same time, the data acquisition frequency

should be sufficiently high so that enough information can be obtained to support the

decision making. High data collection frequencies coupled with large sensor numbers

leads to extremely large data volumes. Extremely large data volumes have been seen as

problematic attributes of some long term SHM systems. Data reduction that results in the
extraction of useful information from the original data is a key step toward the

development of a real-time/near real-time damage detection approach.
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1.2 Motivation

SHM can reduce the chance of catastrophic failure, maintenance costs and down time for

rehabilitation. According to Mufti, 2001, more than 40% of the bridges in service in

Canada are over 30 years old. Therefore many of these bridges need proper diagnosis,

rehabilitation or even partial re-construction in order to make them safe for traffic and

also prevent long down-time if sudden collapse occurs. Chase and Washe 1997,

conducted a similar survey for the bridges in United States of America, and found that

about 33% of the total bridges were deficient. Most of these bridges were built before

1970, and their health condition is yet to be determined by any instrumental and scientific

approach. Therefore, in the context of structural safety, the need for the application of

SHM has become highly important. Moreover for maintenance and rehabilitation

purposes, the need for SHM has increased recently. Within the last two decades,

long-term SHM of bridges has been increasing dramatically due to the following factors

(Farrar and Doebling, 1997):

1. Aging of bridge infrastructure

2. Bridge failures

3. Realization of the ineffectiveness of visual inspection

4. Technology development

According to Sohn et al 2000, sensors measuring strains and vibration of a structure

produce signals that always respond to the change of environmental and operational

conditions. Each group of signals can be considered a pattern that has some relation to the

structural and ambient condition. They proposed that if the effect of ambient condition to

the patterns is normalized, they should be clearly identical or close to one another for
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similar vibration effect as long as structural vibration property remains same. However, it

can be assumed, the change in physical properties, mainly stiffness, should be reflected

on the processed signal blocks or patterns. Based on this assumption, various methods of

damage detection by pattern recognition have been developed. Pattern recognition is

aimed for machine learning process, ability of a computer to identify and classify them to
make a decision. It is this feature that makes it attractive to create automated SHM

system.

1.3 Thesis objective

The main objectives of this paper are to

1 . Assess the structural conditions using SHM data

2. Assess the reliability of sensor data

3. Detect defective sensors or potential damage in structure.

1 .4 Thesis organization

This thesis has been organized into seven chapters. Introduction and objective of this

thesis are presented in the current chapter i.e. Chapter 1. A thorough review of literature

on structural health monitoring in civil structures are presented in Chapter 2. In Chapter 3

detail methodology applied in this thesis has been described. Application of

methodologies, test, results, figures, tables are in Chapter 4 and Chapter 5 respectively.

Finally summary and conclusion are in Chapter 6. The thesis ended with a list of

references and appendices.
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Chapter2: Literature review

2.1 General

Damage detection methods for in-service structural components are non destructive.
Canadian Institute of NDE describes non-destructive examination (NDE), also referred to

as NDT (nondestructive testing) and NDI (nondestructive inspection), provide
information about the condition of materials and components without destroying them

(CINDE 2008). Visual inspection, liquid penetration testing (LPT), magnetic particle

testing (MT), radiographic testing (RT), ultrasonic testing (UT), eddy current testing

(ECT), static load test (SLT) are the examples of nondestructive testing. Visual
inspection is difficult for large and complex structures in addition, the structure must be
accessible. LPT is not applicable for the determination of the strength of the material and

needs prior knowledge of the location of the damage like UT and ECT. MT is not
suitable for concrete and wood. In RT, two dimensional views hide additional defects in a

structural component. SLT cannot be used for the prior warning of occurrence of damage

and also the structure may have to be evacuated for the test. For the last few years there
has been noticeable research work done in the Vibration Based Damage Identification

(VBDI) method. A number of different analytical techniques have been developed for the

VBDI method. They are based on frequency changes, method based on mode shape

change, mode shape curvature method, method based on change in flexibility, damage
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index method, method based on modal residual vector, matrix update methods and neural

network (Humar et al, 2006).These methods are usually applied on a finite element model

(FEM), to study two real structures for simulated damage detection based on practical

input of characteristics parameters, such as frequency and mode shapes. FEM should very

closely represent the real structure. However, it is difficult to achieve real life as

structures are relatively large in size with the inherently greater uncertainties in material

properties, support conditions, and connectivity of components. In a complex structure,

the change of modal frequencies is not very sensitive to the damage of some member, and

damaged portions may have larger deviation in mode shapes than rest of the structure
such that it is difficult to calculate the curvature from the measured mode shape.

Considering the limitations of ability as VBDI methods for damage detection, pattern

recognition approaches have been developed in recent years. They are free from

modeling error because they do not need any modeling of the structure like FEM

methods. In the present study, a statistical pattern recognition technique has been
described in detail.

2.2 Pattern recognition by statistical methods
Fugate et al 2001 have proposed a generalized approach for SHM by statistical pattern
recognition.

2.2.1 Operational evaluation

It defines damage for the system being monitored and also the operational and
environmental conditions under which the system structure function.

2.2.2 Data acquisition
It involves selection of the types of sensors and location where they should be placed,

determination of optimal number of sensors to be used and setup of data acquisition

17



,storage or transmission hardware. Vibration response can be only obtained by ambient
excitation.

2.2.3 Data cleansing
The non-structural conditions such as civil loading or climate conditions always vary

with time. Therefore it is needed to normalize the data to make them compatible to

analyze for damage detection. In the case of varying environmental or operational
conditions, normalized data can be compared at similar times of an environmental or

operational cycle. Sources that affect the variation of data and the structure monitored are
to be identified and minimized. For those variability sources which can be eliminated,

they should be made available to be statistically quantified. Signals are usually gathered

continuously. Strain data is significantly influenced by temperature and external loading.
Data needs to be corrected for all of these external noises on the signals. There are

various ways to denoise data. Some are briefly explored in the following section.

2.2.4 De noising

De-noising is a process of signal recovery from noisy data. This problem is easy to

understand by looking at the following simple example, shown in figure 2.1, where a

slow sine wave is corrupted by white noise. The general de-noising procedure involves

three steps. The basic version of the procedure follows the steps described below.

Decompose: Choose a wavelet, choose a level N. Compute the wavelet decomposition of

the signal, s, at level N.

Threshold detail coefficients: For each level from 1 to N, select a threshold and apply

soft thresholding to the detailed coefficients.

18



Reconstruct: Compute the wavelet reconstruction using the original approximation
coefficients of level N and the modified detail coefficients of levels from Ito N.

Original signal

? ????:;: V/ v./ ?/ V/ x
_,l , , , , 1 1 . 1 1 1
"0 100 200 300 400 500 600 700 800 900 1000

Noisy signa!

1000eoo 900600 700400 500200 300100
De-noised signai

3

/> ?// \/

\ /
V//V y

3 1000300 500700500 $00300 400100 200

Figure 2.1 A sample de-noising
Struzik et al 1999 have presented that Haar wavelet transform is a simple and powerful

technique which allows for the rapid evaluation of similarity between time series in large
data bases.

2.2.5 Filter

A filter is usually needed to perform frequency dependent alteration of a data sequence.

For example, a filter could be applied to remove noise above 30 Hz from a data sequence

sampled at 100 Hz. A more rigorous specification might call for a specific amount of
passband ripple, stopband attenuation, or transition width. A very precise specification
could ask to achieve the performance goals with the minimum filter order, or it could call

for an arbitrary magnitude shape, or it might require an FIR filter. Filter design is the

process of creating the filter coefficients to meet specific filtering requirements. Filter
implementation involves choosing and applying a particular filter structure to those



coefficients. Only after both design and implementation have been performed can data be

filtered. To meet the specifications with more rigid constraints like linear phase or

arbitrary filter shape, FIR (finite impulse response) and direct HR (Infinite impulse
response) filter design routines are followed. The primary advantage of HR filters over
FIR filters is that they typically meet a given set of specifications with a much lower filter

order than a corresponding FIR filter. Although HR filters have nonlinear phase, data

processing within MATLAB software is commonly performed "offline," that is, the
entire data sequence is available prior to filtering. This allows for a non causal, zero-
phase filtering approach (via the "filtfilt" function), which eliminates the nonlinear phase
distortion of an HR filter. The classical HR filters, such as, Butterworth approximate the

ideal "brick wall" filter in different ways. Roy et al 1997 have explored the implications

of the low-pass Butterworth filter on the characteristics of correlation analyses. It has also
proposed that knowing the filter response, it is possible to reconstruct the original signal
spectrum and to allow comparisons between data collected with different instruments.
The autocorrelation function also is affected by filtering which increases the value of the

coefficients in the first lags, resulting in an overestimation of the integral length scale of
coherent structures. These important effects add to those related to size and shape

differences in electromagnetic current meters sensors and must be taken into account in

comparative studies.

2.2.6 Data normalization

Sohn et al (2001a, 2001b) show that normalizing and standardizing the acceleration time

history x(t) by

X = ^L (2.1)
s
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where µ is the mean of the signal and s is its standard deviation.

2.2.7 Feature extraction

It is the process of identifying damage-sensitive properties derived from the measured
vibration response that allows one to distinguish between the undamaged and damage
structure. Silva et al 2007 deals with the application of a two-step auto-regressive and

auto-regressive with exogenous inputs (AR-ARX) model for linear prediction of damage

diagnosis in structural systems. This damage detection algorithm is based on the
monitoring of residual error as damage-sensitive indexes, obtained through vibration

response measurements.

The basic input-output configuration of ARX model is shown in figure 2.2. Assuming

unit sampling interval, there is an input quantity or signal u(t) and output quantity or
signal y(t) , t=l ,2 n. Assuming that the signals are related by a linear system , input-
output relationship can be written as

y(t)= G(q)u(t)+v(t) (2.2)

e(t)

u(t) System ^y(t)

Figure 2.2 Basic Input-output configuration of ARX model.

where q is the shift operator and G(q) is the transfer function of the deterministic part of
the system(t) is the disturbance of the system which can be described as filtered white
noise.
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V(t)=H(q)e(t) (2.3)

Where e(t) is white noise with variance and H(q) is the transfer function of the stochastic

part of the system, where e(t) is white noise with variance and H (q) is the transfer
function of the stochastic part of the system. Equations (2.2) and (2.3) together, give a

time-domain description of the system,

y(t)=G(q) + H(q)e(t) (2.4)

A commonly used parametric model is the ARX model that corresponds to

G(q) = ,-nk^; H(q) = ^- (2.5)
The number nk is the number of delays from input to output. Where A(q) and B(q) are

polynomials in the shift operator q -1

B(q) =

'12

b2Xq~ b22q~

Kb\<l -nb+l KblV -nb+l ··" bnbnu<l -nb+l

Here, B(q) is an nb ? nu matrix. The numbers na and nb are the orders of their respective

polynomials, and nu is the number of input variables. For the SISO (Single Input Single
Output) model, nu = 1 . The general structure of the SISO or MISO (Multiple Input Single

Output) ARX models is given by

A(q)y(t) = B(q)u(t-nk) + e(t) (2.6)
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One of the simplest models in the system identification literature is the ARX model.
Where AR refers to the Auto-Regressive part A(q) y(t) and X to the extra input B(q) u (t)

part. Eq. (2.7) can also be written explicitly for a first-order model with a delay of two

sampling times as,

y (O = -aiy(t-l) +bi,u,(t-2) + bi2ui(t-2) + +blnun(t-2) +e(t) (2.7)

Given a description and having observed the input-output quantities u; y, the errors or

residuals e(t) in Eq. (2.8) can be computed as

e(t) = H-1(q)[y(t)-G(q)u(t)] (2.8)

These residuals are, for given observations y and u, functions of G and H . These in turn

are parametrized by the polynomial in Eq. (2.9). The most common parametric
identification method is to determine the estimates of G and H by minimizing

Vn(G,H) = Itn=te-2(t) (2.9)

That is

[GnHn] = arg min Etn=1 ß?2 (t) (2. 1 0)

This is a prediction error method. The identification method for the ARX model is the

LS(Least Square) method, which is a special case for the prediction error method. The LS

method is the most efficient polynomial estimation method because this method solves

linear regression equations analytically.

For linear models, model estimation can be done using time-domain data, and then model

validation can be done using frequency domain data. For nonlinear models, only time-
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domain data can be used for both estimation and validation. Measured and simulated

model output pattern matching can be computed using the following equation:

Best fit =1-7^ xlOO (2.11)

In this equation, y is the measured output, y is the simulated or predicted model output, y

and is the mean ofy. 100% corresponds to a perfect fit, and 0% indicates that the fit is no

better than guessing the output to be a constant (y = y). Because of the definition of

Best Fit, it is possible for this value to be negative. A negative best fit is worse than 0%

and can occur for the following reasons: The estimation algorithm failed to converge. The

model was not estimated by minimizing Iy - y|. Best Fit can be negative when you

minimized 1 -step-ahead prediction during the estimation, but validate using the simulated

output y. The validation data set was not preprocessed in the same way as the estimation

data set. (Matlab help file)

Sohn et al 2000 proposed difference between the actual acceleration measurement for the

new signal and prediction obtained from the auto -regressive and auto-regressive with

exogenous model developed from the selected reference signal, is defined as the damage

-sensitive feature. The applicability of this approach is demonstrated using acceleration

time histories obtained from an eight degree-of -freedom mass-spring system.

Nair and kiremidjian 2006 proposed two algorithms for detection of damage with its

location. Both algorithms are based on the time series analysis of vibration data, and the
feature vectors obtained are classified using a pattern classification technique. The

vibration signals obtained from the structure are modeled as auto-regressive moving
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average (ARMA) processes. The feature vector used in both algorithms is the first three
autoregressive (AR) coefficients. In the first algorithm, a damage index is proposed based
on first three AR coefficients and a metric in the AR coefficient space is used for damage

localization. ASCE Benchmark Structure is used that is a four story, two-bay by two-bay

steel braced frame.

2.2.8 Statistical model development

It is concerned with the implementation of the algorithms that analyze distribution of the
extracted features in an effort to determine the damage state of the structure. The

appropriate algorithm to use will depend on the ability to perform supervised and
unsupervised learning. Supervised learning refers to the case where examples of data
from damaged and undamaged structures are available. Unsupervised learning refers to
the case where data is only available from the undamaged structure.

2.3 Summary

In this chapter, relevant literature on pattern recognition using statistical methods have
been reviewed for the purpose of understanding the field of thesis and identifying the

scope of work. It is found that structural damage affects the dynamic properties of a
structure, causing a change in the vibration signals i.e. strain and acceleration time
histories. Damage detection can be performed using time series analysis of vibration
signals measured from a structure before and after damage. The references cited in this
review propose different techniques of statistical pattern recognition for extracting
damage-sensitive features from vibration response of laboratory based simple structure.
In the thesis, statistical pattern recognition techniques are applied for damage detection of
real structure with operational and environmental variability.
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Chapter3: Methodology

3.1 General

In this study data are collected from two sources. One is from industry which is vibration

response, acceleration data, of a heavy vehicle during road load test and same data

produced by software simulation by the industry partner. Another source of data is from

an instrumented bridge, Portage Creek Bridge, Victoria, BC. Bridge data are collected

from the ISIS website [ISIS Canada SHM Database].

Time series Data

Instrumented Bridge,
Portage Creek bridge

Eight bi-directional
electrical rosette type
strain gauges in
columns, traffic and
seismicload

Figure 3.1 Data sources

Vibration response, acceleration,
of a heavy vehicle

during a road load test

Similar data using
simulation
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3.2 Details of the monitored structure used in this study

While the details of the heavy vehicle road test data are not provided here to protect the

confidentiality of the information as required by the industry partner, details of the

Portage Creek Bridge monitoring are provided below.

The Portage Creek Bridge located in the British Columbia (BC), Canada has been used as

a case study and SHM data source for the current thesis. The Ministry of Transportation

in BC designed the Portage Creek Bridge, as shown in Figure3.2. Located in the City of

Victoria, British Columbia, the bridge crosses Interurban Road and Colquitz River at

McKenzie Avenue. The bridge is described as a 124 m (407 ft) long, three-span structure

with a reinforced concrete deck supported on two reinforced concrete piers, and

abutments on H piles . The deck has a roadway width of 16.2 m (53 ft) with two 1.98 m

(6'6") sidewalks and aluminum railings. There are eight bi-directional electrical strain
gauge rosettes on each column, four long gauge fiber optic sensors on each column and
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Figure 3.2 Plan and elevation of Portage Creek Bridge (Huffman et al 2006)
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one 3-D accelerometer on top of the pier cap of each column. An elevation view of the

instrumented pier No. 2 is shown in Figure 3.3 with sensor locations.
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Figure 3.3 Sensor locations on Pier-2 columns of the Portage Creek Bridge (Huffman et
al 2006).

In this study, the signals produced in every minute from eight bi-directional strain gauges

installed at column-2 (C2) of pier-2 of the Portage Creek Bridge in Victoria, BC (Figure

3.2) have been analyzed. Each bi-directional strain gauges produces two data, one for
horizontal movement and another for vertical movement. So, from eight strain gauges,

sixteen output signals are obtained. In the Table 3.1 column (1), (2), (3) are same sensor

of pier-2 with different notation same as column (4), (5), (6). Table 3.2 is same as Table

3.1 for pier 2. The Caltrans (California Department of Transportation) recommended that

any approach should include enough modes of vibration to achieve a total mass
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participation of not less that 90% for a given bridge. To capture a sufficient number of
modes that gives mass participation more than 95 %, it is required to collect data up to 16

Hz. But considering the Nyquist frequency, frequency data collected is double (32

Hz).the monitoring data was available from the ISIS Canada Research Network. The web
page for Portage Creek Bridge real time monitoring is hosted by a centralized SHM
system ISIS Canada website.The data available from the bridge site covers a period
between 2004 and 2006. A user can pick up and access individual sensor's data from the

sensors list. The data sampling rate is 32Hz. The approaches followed in this study to

process the data are:

1 . Time interval between points, number of data points, data channels to query are

selected.

2. Data points are saved as comma separated values.

3. Data collected in every second are converted into minute data and then again

minute data are converted into hourly data, micro-strain/hr.

4. For the training, time data are taken in the month of December/05, January/06 and

February/06 data. Total number of data points in a segment for each strain gauge

sensor is 1738. (Out of 2160 data points, 1738 are valid and rests are NaN, not a

number, which are removed from data set.)

5. The testing data are taken from the month of March/06 because of the presence of

peaks or novel events in that period.
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Table 3.1 Sensors on Pier-2 of the Portage Creek Bridge

(1) (2) (3) (4) (5) (6)

Sensor# 17

Sensor# 19

1-1

2-1

Strain 1 1 C2 Sensor#18 1-2

Strain3 1 C2 Sensor# 20 2-2

Strain2 2 C2

Strain4 2 C2

Sensor#21 3-1 Strain5 1 C2 Sensor# 22 3-2 Strainó 2 C2

Sensor# 23 4-1 Strain7 1 C2 Sensor# 24 4-2 Strain8 2 C2

Sensor# 25 5-1 Strain9 1 C2 Sensor# 26 5-2 Strain 10 2 C2

Sensor# 27

Sensor# 29

Sensor# 3 1

6-1

7-1

8-1

Strainll 1 C2 Sensor# 28 6-2

Strainl3 1 C2 Sensor# 30 7-2

Strain 15 1 C2 Sensor# 32 8-2

Strain 12 2 C2

Strain 14 2 C2

Strain 16 2 C2

3.3 Data preprocessing
In this thesis data has been preprocessed by De noising, Normalization and Filtering

following the methods proposed in literature review chapter. All data are normalized

using equation 2.1 which removes the mean from each data series. AR-ARX are zero

mean Gaussian process. The above normalization approximates the monitoring data to

have such characteristics. For the training, time data are taken in the month of December,

January and February and the testing data are taken in the month of March to avoid large
environmental variation. To remove the remaining small variation normalization is done

for both the training and test data because after normalization the features extracted from
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the signals from the undamaged structure would have similar statistical characteristics
and the two signals can be compared (Nair et al 2006).

3.4 Damage identification approach by pattern comparison

The basic concept of this approach was first proposed by Sohn et al 2001. It is logical to
assume that the patterns in data a certain state, either steady or agitated, taken at various

points of time of the structure will not vary significantly if the structure does not change
significantly. Conversely if the structure has undergone a significant change, it should
reflect in the pattern of data in a given state. In order to observe the variation of structure

by studying the pattern of signals or data blocks, it is necessary to nominate certain block
as reference data block with which patterns of the other data series or blocks are

compared. Usually, the reference data blocks for particular conditions are taken from the
earlier time of the observation of the structure and other data blocks are called test block.

The time series model (e.g. ARX model) particularly developed for reference block is
defined as reference model. As structure undergoes change, usually, degradation, so will

the pattern of data series change. Therefore the pattern of other data blocks will not match
closely with that of reference block. In this study two types of approach are proposed for
damage identification.

1 . Assessing degree of similarity among sensors data by sets of statistical parameters

using tool developed in MATLAB.

2. Detection of defective sensor by ARX model build up and application of binary

and sequential search method.
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3.5 Assessing degree of similarity among sensors' data by sets of statistical

parameters using tool developed by MATLAB

The following steps have been followed to achieve the goal.

Stepl: Two kinds of data sets have taken. In 1st case same strain gauges data but at
different time. In 2nd case same time two different strain gauges data considered.

Step2: Mean, Standard deviation, Skewness are calculated without preprocessing data
and cross correlation applied with preprocessing data.

Step3: Finally all results are taken to find out the relationship between sensors signals.

To run the analysis for various sensors a tool developed in Matlab which is described in

section 3.5.2. In Figure 3.3 all steps are shown by drawing flow chart to get a quick view

of the proposed method.

Pair of Time ser ¡es Data

-------------------Cr """""'—
DATAPreprocess;
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Vertical shift

CROSS-CORRELATION

Degree of Similarity

Figure 3.3 Schematic diagram for assessing degree of similarity among sensor data.
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3.5.1 Interpretation of the correlation coefficient for assessing degree of similarity

Several authors have offered guidelines for the interpretation of a correlation coefficient.

Cohen for example, has suggested the following interpretations for correlations in

psychological research indicate 0.1 to 0.3 small correlation, 0.3 to 0.5 medium correlation
and 0.5 to 1.0 large correlation. However, all such criteria are in some ways arbitrary and
should not be observed too strictly. This is because the interpretation of a correlation

coefficient depends on the context and purposes. A correlation of 0.9 may be very low if
one is verifying a physical law using high-quality instruments, but may be regarded as
very high cases where there may be a greater contribution from many complicating
factors. Accordingly, it is important to remember that "large" and "small" correlation
should not be taken as synonyms for "good" and "bad" correlation in terms of

determining that a correlation is of a certain size. For example, a correlation of 1 .0 or
-1.0 indicates that the two variables analyzed are equivalent modulo scaling.

Scientifically, this more frequently indicates a trivial result than an important one. But in
the context of SHM data, the following interpretations are proposed by Islam and Bagchi,
2008. Correlation coefficient > 0.89 indicates excellent match. Correlation coefficient >

0.69 indicates good match. Correlation coefficient > 0.49 indicates fair match.
Correlation coefficient < 0.49 indicates not acceptable.

3.5.2 SHM data processing tool developed in Matlab

A software tool has been developed in the MATLAB environment to implement

statistical pattern recognition techniques. The user interface of the tool is shown in Figure
3.4. As the statistical pattern recognition method does not required any modeling of

bridge structure, this tool can be efficiently used by selecting a time history data of
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acceleration and strain gauge sensors of any type of bridge. The detailed procedure for

operating the tool is described below.
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Figure 3.4 Graphical user interface of the tool

To run the software tool in the MATLAB environment, the relevant time history data

files need to be loaded to the MATLAB workspace. Once the user interface is loaded,

clicking "DATA" button the listbox on the left side of the user interface will be populated

by the time history data files that were loaded into the workspace. Now a test data needs
to be selected from the first listbox, corresponding SIM data needs to be selected from the

second listbox and time data needs to be selected from the third listbox. In Statistical

analysis panel "STATISTICS" button shows mean, standard deviation, standard
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deviation ratio and "SKEWNESS" button shows skewness of the selected time series

data. DATA PREPROCESS (1) and DATA PREPROCESS (2) panels are needed for

correlation analysis. Selecting data pre-process option correlation has been conducted in

two stages. First, full data range are used to quantify the correlation and lag time by using
"CORRELATION (1)" button. Second, data are divided into parts and then correlation

and lag time are determined by typing data range in the text box and using
"CORRELATION (2)" button. DATA PREPROCESS (1) panel is needed for FFT

analysis. Selecting data pre-process option FFT has been conducted. Detailed codes are

described in appendices.

3.6 Detection of defective sensor by ARX model build up and application of
binary and sequential search method.

Binary and sequential search methods commonly used in computer science. The concept
has been used in this study for defective sensors detection. Before explaining the total

approach , definition of the two methods are described in the next to subsection.

3.6.1 Binary search

Binary search is an algorithm for locating the position of an element in a sorted list by

checking the middle, eliminating half of the list from consideration, and then performing

the search on the remaining half. If the middle element is equal to the sought value, then

the position has been found; otherwise, the upper half or lower half is chosen for search

based on whether the element is greater than or less than the middle element. The method

reduces the number of elements needed to be checked by a factor of two each time, and

finds the target value (Knuth, 1997).
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3.6.2 Sequential search
Linear search is a search algorithm, also known as sequential search, that is suitable for

searching a list of data for a particular value. It operates by checking every element of a

list one at a time in sequence until a match is found. The best case is that the value is

equal to the first element tested, in which case only 1 comparison is needed. The worst

case is that the value is not in the list (or it appears only once at the end of the list), in

which case ? comparisons are needed. The simplicity of the linear search means that if

just a few elements are to be searched it is less trouble than more complex methods that

require preparation such as sorting the list to be searched or more complex data

structures, especially when entries may be subject to frequent revision. Another

possibility is when certain values are much more likely to be searched for than others and
it can be arranged that such values will be amongst the first considered in the list (Knuth,

1997).

Data harvested by the sixteen strains and one temperature data from the SHM database of

the Portage Creek Bridge. Then these data are divided into training and input groups. In

this study it has chosen simultaneously one strain gauge data as target and remaining

sensor data (15 strain gauge and 1 temperature gauge) as input to create a representative

set of model by proper training. These models are created to produce the data pattern at a

particular period of time with respect to the corresponding input at that time. In Figure
3.5 it is shown that strain gauges data which is time series data first pre-processed by

denoising and normalization method. Then 16 sensors data are used to get simulated

output with the help of ARX model which is trained by similar sensors data of previously

collected undamaged structure. Comparing the output pattern of measured or real time
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output with simulated output by sequential or binary search method help to find the
defective sensor.

Time series DATA

DATAPREPROCESS;

Denoised, Normalized

Simulated Output using ARX
Model

?

Pattern Matching©? Simulated
and Measured Output

BiNARYSEARCH SEQUENTIALSEARCH

/

/
X.

/

DEFECTiVESENSORDETECTION

Figure 3.5 Flow chart describing methods for identifying defective sensor in structure.

To compare the measured and actual output data, system identification tool in MATLAB

(Figure 3.6) has been used. This tool is already available in MATLAB. Some basic steps
to construct the model are

1 . Strain data from various sensors are first uploaded to MATLAB workspace.
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2. 17 strain data are imported as input data and 1 sensor data is imported as output
data. Then the tool builds the model. These data are collected from undamaged

condition of the structure.

3. Again 17 strain data are imported as input data and 1 sensor data is imported as
output data. This output data is used for validation. These data are collected from
damaged condition of the structure.

4. Finally using the model the tool builds simulated output and compare it with
measured output.
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Figure 3.6 Graphical user interface of the system identification tool
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3.6.3 ARX model with sequential search method

To build the ARX model to produce the data pattern at a particular period of time,

December, January, February 2005. One sensor, in this study sensor 17, is always fixed

as the target. For sequential search method 16 trained model has been developed. Each
time, one sensor is removed from 17 sensors including temperature sensor data (sensor#

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, T) and used for training the

model. Then corresponding sensors' data for a different time, March 2006, but similar

environmental and operational condition, has been used as input to get 16 simulated

outputs. In the Figure 3.7(a) it is shown that sensor 17 is used as target and for training
the 1st model sensor 17 is removed from seventeen sensors, including the temperature

sensor. Then, corresponding sensors' data of different time are used to get the 1st
simulated output. In the Figure 3.7(b), it is shown that sensor 17 is used as the target and
for training the 1st model. Sensor 18 is removed from seventeen sensors including
temperature sensor. Then, corresponding sensors' data of different time are used to get
2nd simulated output. In this way, all other simulated outputs are obtained. Each simulated
output pattern is compared with corresponding measured output shown in Figure 3.8. The
highest best fit would indicate that the excluded sensor is responsible for the change in
the data pattern. For instance if sensor 32 is removed from training data and input data
and in that case measured and simulated output shows the highest best fit among all the

16 fits then it indicate sensor 32 is defective.
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Figure 3.7 Schematic diagrams for identifying defective sensor by ARX model with
Sequential search method, (a) simulated output when sensor #17 is removed from
training and actual data, (b) simulated output when sensor #18 is removed from training
and actual data. >
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Figure 3.8 Schematic diagrams for comparing all simulated output with measured output.
The highest best fit would indicate that the excluded sensor is responsible for the change
in the data pattern.

3.6.4 ARX model with binary search method

To build ARX model to produce the data pattern at a particular period of time, December,

January, February 2005. One sensor, in this study sensor 17, is always fixed as target. For

the binary search method, the first 16 sensors including temperature sensor are divided
into two groups. The first 8 sensors ( 17, 18, 19, 20, 21, 22, 23, 24) are used for training
the model. Then the corresponding sensors' data for a different time, March 2006, but

similar environmental and operational conditions, has been used as input to get simulated

output. In the same way, the second 8 sensors ( 25, 26, 27, 28, 29, 30, 31, 32, T) are used
for training the model. Then corresponding sensors data of different time, March 2006,

but similar environmental and operational condition, has been used as input to get another

simulated output. Each simulated output pattern is compared with the corresponding
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measured output. The best fit indicates a defective sensor is in other group. For instance,

in Figure 3.9 it is shown that the best fit value of measured and simulated output of the

2nd group of sensors is higher than that of 1st group. So, the defective sensor is in 1st
group. Then, the 1st group is divided into two group of four. In this way, the defective
sensor is identified.

16 sensors

ln S sensors 2nd S sensors

Bad fit

1st 4 sensors

Good fit

^

2"M sensors

Good fit Bad fit

ln 2sensors 2*A 2sensors

Figure 3.9 Schematic diagram for identifying defective sensor by ARX model with
binary search method.

3.7 Sensitivity analysis
Sensitivity analysis is used to determine how "sensitive" a model is to changes in the

value of the parameters of the model and to changes in the structure of the model. By

showing how the model behavior responds to changes in parameter values, sensitivity

analysis is a useful tool in model building as well as in model evaluation. Sensitivity

analysis helps to build confidence in the model by studying the uncertainties that are

often associated with parameters in models (Breierova and Choudhari, 1996). In this

study, parameter sensitivity has been focused. Parameter sensitivity is usually performed
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as a series of tests in which the modeler sets different parameter values to see how a

change in the parameter causes a change in the dynamic behavior of the stocks. Many

parameters in system dynamics models represent quantities that are very difficult, or even
impossible to measure to a great deal of accuracy in the real world. Also, some parameter

values change in the real world. Sensitivity analysis allows the modeler to determine

what level of accuracy is necessary for a parameter to make the model sufficiently useful
and valid. If the tests reveal that the model is insensitive, then it may be possible to use an

estimate rather than a value with greater precision. Sensitivity analysis can also indicate

which parameter values are reasonable to use in the model. In Chapter 5, Case 1,
sensitivity analysis has been conducted by replacing one sensor's data with random
values. Also a number of test cases were studied in Chapters 4 and 5 to evaluate the

sensitivity of the proposed methods. Such studies could be further expanded to study the
effects randomness in parameters and organization of model constructs. However, based
on the limited studies presented here, the proposed methods are found to be robust.

3.8 Summary

To take care of the issues discussed in the objective, two methods are proposed in this

chapter. The first method, which is degree of similarity, is used to assess the structural
condition and sensor reliability. Time series data pattern of the same sensor at different

times and time series data pattern of two different sensors at the same time should always

follow the similar pattern. The reason of their dissimilarity may either be defective sensor

or damage in structure assuming other conditions i.e. load condition, environmental
condition remain the same. The second method is identifying the defective sensor. In the

case where removing one or two sensor data (one at a time), improves the fitness of the
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measured and simulated output pattern indicate that the excluded senor(s) might be

defective. This can be used as a tool for testing of reliability of sensor data. But, in the

case where removing a bunch of sensors' data (one at a time), does not improve the

fitness of the measured and simulated output pattern, it is that there may be presence of

damage in structure.
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Chapter4: Assessing the relation among sensors' data in SHM.

4.1 General

In this chapter, statistical pattern recognition approach as described in Chapter 3 has been
applied using acceleration and strain data of real structures to assess the reliability of
sensor data. The goal here is to evaluate the feasibility of the proposed approach to
structural damage detection and determination of defective sensor. To do the various tests

described in the following sections, tool developed in Matlab has been used.

4.2 Test 1: Road test data

The data set in Test 1 contains a pair of time series data, one corresponding to vibration

response of a heavy vehicle obtained during a road load test as mentioned in section 3.1,
while the other corresponds to similar data produced using simulation. It is required to
determine the level of similarity between the experimental and simulation data to test

reliability of the simulation data. The results of the similarity test between the signals are
outlined below.

1. 'Plot raw data' button plots the raw data to get preliminary idea of the relation
between test data and simulation data, Figure 4.1 .
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Figure 4.1 Plots of TEST DATA and SIM DATA in their raw forms

Table 4.1 Various statistical parameters on the time series data

I TEST DATA I SIM DATA
MEAN -532.64 -606.34

STD 283.47 170.52

SKEWNESS 0.0788 -0.024

3. In this stage, the data are processed in a number of ways, such as removing the mean
for each series to eliminate the effect of bias from both signals, and filtering the test

data using Fourier Transform or de-noising using Wavelet Transform. This is
performed by selecting the options in Data Preprocess (1) and Data Preprocess (2)
panels sequentially. The correlation on the full range data is performed by clicking the
'CORRELATION (I)' button, which also calculates the lag between the signals to
achieve maximum correlation. Results are shown in Table 4.2.
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Table 4.2 Effect filtering and de-noising of time series data

Data Preprocess (1) (2)
Without filter

With filter(30Hz)

De noise (4)

Simple Correlation

Maximum Correlation

0.89

0.89

0.91

Lag time (sec)
0

4. In order to establish the relation between the two series, at different time windows, the

series are segmented into multiple segments and each pair of them are analyzed. The
results are shown in Tables 4.3, 4.4, 4.5.

5. Filtering (e.g., removing noise above 30 Hz) is performed by specifying the cut-off

frequency (i.e., 30 Hz) in the text box and using the FFT button frequency analysis is
performed. The frequency domain data does not seem to be very useful.
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Figure 4.2 Correlation between TEST DATA and SIM DATA.

Table 4.3 Analysis of subsets of time series data - raw data

Data Range

1:200

200:400

400:600

600:800

Data Preprocess (1) (2)

Without filter

Simple
Correlation

Maximum

Correlation

0.89

0.95

0.85

0.95

Lag time
(sec)
0.06
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Table 4.4 Analysis of subsets of time series data - filtering

Data Range

1:200

200:400

400:600

600:800

Data Preprocess (1) (2)

With

filter(30Hz)
Simple
Correlation

Maximum

Correlation

0.896

0.94

0.85

0.94

Lag time
(sec)

0

0.09

0.12

From the results presented here, data sets are found to be similar. The correlation
coefficient of 0.89 on the raw data or 0.91 on filtered or de-noised data indicates a high

degree of similarity. The correlation improves when smaller time windows are used on
data sets. The test data filtered in frequency domain using a low-pass filter with cut-off

frequency of 30 Hz in one case, and de-noised with wavelet transform, in another case.
The statistical comparison metrics such as correlation coefficient are not affected too

much for these signals.

Table 4.5 Analysis of subsets of time series data - de-noising

Data Range

1:200

200:400

400:600

600:800

Data Preprocess (1) (2)

De noise Simple
Correlation

Maximum

Correlation

0.93

0.95

0.90

0.95

Lag time (sec)
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4.2 Test 2: Portage creek bridge data

The data in Test 2 contains a pair of time series representing strain data in two different

time windows from a strain gauge (Channel Strainllcl) installed on the bridge pier of

Portage Creek Bridge. These statistical patterns of these two data series' are compared to
determine whether the response of the structure at the corresponding time windows is

similar. Data characteristics: Strainl_l_cl data, Starting Time of

Query:2003/1 2/25, 11.00.00 and 2006/08/25,11.00.00, Time Interval between Points:
lsec, Number of Data Points: 302, Data Points (Comma Separated Values).

Table 4.6 Various statistical parameters on Strainl_l_cl data

MEAN

DATA

2003/12/25

-505.52

DATA

2006/08/25

165.49

STD 1.34 0.96

SKEWNESS 0.31 0.51

Table 4.7 Correlation results

Data Preprocess (1) (2)

Without filter
Vertical

Shining

Maximum Correlation

0.74

Lag time (sec)
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Figure 4.3 Correlation of two data sets, starting time of query 2003/12/25,1 1 .00.00 and
Starting Time of Query 2006/08/25,1 1.00.00.

The mean values of the two data sets are different and correlation value indicates they are

74% similar. The data sets are produced by the same sensor and time difference between

them is two years eight months. So it can be said there might some change occur in
structure during this period. Standard deviations are almost same and they skewed at the
same direction that shows they follow same pattern which indicate the data sets are from

51



same sensor.

4.3 Test 3: Portage creek bridge data

The data in Test 3 contains a pair of time series' representing the strain data in a given

time window from two different strain gauges (Channels Strainllcl and Strain4_l_c2)

installed on the bridge pier. The objective in this test is to identify the relationship

between the data generated at the same time, but from different sensors. Data

characteristics: Strainl_l_cl, Strain4_l_c2, Starting Time of

Query:2006/04/01, 10.00.00, Time Interval between Points: lsec, Number of Data Points:

220, Data Points (Comma Separated Values).
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Figure 4.4 Correlation of Strainllcland Strain4_l_c2 data

Table 4.8 Summary of statistics on Strainl_l_cl and Strain4_l_c2 data

Strain 1 1 cl Strain4 1 c2

MEAN -261.335 42.9626

STD 0.47 0.46

SKEWNESS 1.58 6.1
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Table 4.9 Correlation of Strain 1 1 eland Strain4 1 c2 data

Data Preprocess (1) (2)
Without

filter
Vertical Shifting

Maximum Correlation

0.31

Lag time (sec)

414.2

The mean values of the two data sets are different and correlation values indicate they are

only 31% similar. The data sets are produces by two different sensors at the same time

window. They are skewed in the same direction but their skewness values are quite

different which indicates that the data sets are not similar.

4.4 Summary

In this chapter, various test results are presented to assess the structural condition and

reliability of sensors' data by quantifying the degree of similarity between the pairs of

sensor data. In Test 1, mean, standard deviation and skewness values of the two data sets

are close, which indicate the simulation data are reliable. So, expensive and time

consuming tests can be avoided generating data by simulation. In Test 2, the mean values
of the two data sets are different, standard deviation and skewness values are close and

correlation 74%. So, the degree of similarity of strain data in two different time window

is high. It can be implied that structural conditions are not degraded from the initial

condition. In Test 3, the mean, standard deviation values of the two data sets are not

close. Correlation values indicate they are only 31% similar. They are skewed in the same

direction but their skewness values are quite different which indicates that the degree of

similarity is low because they are located in different location of the column. It can be

implied that sensors are working reasonably.
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Noman, 2008 worked on the same Portage Creek Bridge using different statistical pattern

recognition algorithm. In his study, first AR process has been applied to extract
coefficients which are then statistically modeled for damage classification by X-bars.

From the X-bars of strain and vibration readings, percentage of outliers found was not so

high to indicate any damage in the structure or structural degradation. Secondly, pattern

comparison based on fitting of the reference models to test blocks was performed.
Computed R- values that represent the goodness of fit also did not show any trend or
consistent discrepancies to indicate any damage in the structure. The comparison of two

different approach of same structure show consistent results which justify the proposed
statistical approach of the current thesis.
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ChapterS: Detection of defective sensors in SHM

5.1 General

In this chapter, the damage detection method using statistical pattern recognition

approach as described in Chapter 3 has been applied to acceleration and strain data of real
structures. The goal here is to evaluate the feasibility of the proposed approach to

structural damage detection and determination of defective sensor. This chapter

demonstrates how statistical pattern recognition methods can be used for detection of

defective sensor or detection of damage in the structure.

5.2 Case 1: Identifying a sensor known to be defective (sequential search

technique)

In the first run it has found that there is a spike in 2nd half of the March 2006 which is

shown in Figure 5.1. In this figure dotted line represents measured output and solid line
represents simulated output. It is assumed that all sensors are in good condition in the Is
half of the month March 06. So Simulated output generated by feeding all 15 sensors

data of 1st 15 days of March 2006 to the ARX model. Each time one sensor is removed

from input data to see which output give best fit. In Case 1, sensor 6-1 has been made
defective by replacing original data by random numbers. In Figure 5.2 it is found that

56



Measured and simulated model output

C\3

Time(Sec)

Figure 5.1 Measured and Simulated output of March 2006

when sensor 2-1 is removed from the input then measured and simulated output does not

fit well, -267%. In this way all the 16 combination is tested and finally best fit is taken.

Measured and simulated model output
Measured Output
Simulated Output

50 100 150 200 250 300

Time(Hour)

Figure 5.2 Measured and Simulated output of March 2006, sensor# 2-1 removed
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Measured and simulated model output

- Measured Output
-Simulated Output

ICD 150 200

Time (Hour)

Figure 5.3 Measured and Simulated output of March 2006, sensor# 6-1 removed

It is found that when sensor 6-1 is removed from the input then the simulated output fit

best with the measured output which indicates sensor 6-1 is defective. In Table 5.3 when
sensor 6-1 is removed measured and simulated output gives maximum positive fitting

45%. So this method works to detect malfunction sensor. While the sample figures are

presented here in discussing results produced by proposed algorithms, remaining figures
are presented in appendix B. It also shows random change of sensor data affect ARX
model.

Table 5.1 Fitting percentage of measured and simulated output for each sensor removal

Sensor Removed

1-2

2-1

2-2

3-1

Fit (%)

31.6

-267

36.9

40.5
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3-2

4-1

4-2

5-1

5-2

6-1

6-2

7-1

7-2

8-1

8-2

9-1

35.5

-26.5

24.4

21.7

36

45

-32

38

43

-59

-36

35

5.3 Case 2: Identifying unknown defective sensor (sequential search technique)

In Figure 6.1 it is found that defective sensors are in 2nd half of the of the March 2006.

So Simulated output generated by feeding all 15 sensors data of 2nd 15 days of March
2006 to the ARX model. Each time one sensor is removed from input data to see which

output give best fit to detect the defective sensor. In Figure 5.4 it is found that when

sensor 1-2 is removed from the input then measured, dotted line and simulated, solid line

in the figure, output does not fit 10.54% and in Figure 5.5 it is found that when sensor 4-2

is removed from the input then measured and simulated output does not fit well, -109.7%.

In this way all the 16 combination is tested and finally best fit is taken.
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Measured and simulated model output
Measured Output
Simulated Output

Time(Sec)

Figure 5.4 Measured and Simulated output of March 2006, sensor# 1-2 removed

Measured and simulated model oulpui

—— Measured OutputSimulated Output

I I

K

_ J- «— ' *~! _

Figure 5.5 Measured and simulated output of March 2006, sensor# 4-2 removed

In Table 5.2 shows that when sensor 4-2 is removed measured and simulated output gives

maximum positive fitting in percentage. So sensor 4-2 is the defective sensor While the
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sample figures are presented here in discussing results produced by proposed algorithms,

remaining figures are presented in appendix C.

Table 5.2 Fitting percentage of measured and simulated output for each sensor removal

Sensor removed

1-2

2-1

2-2

3-1

3-2

4-1

4-2

5-1

5-2

6-1

6-2

7-1

7-2

8-1

8-2

9-1

Fit (%)

10.54

5.94

-8.32

7.98

7.95

8.53

15.28

11.2

4.664

-22.95

-109.7

8.22

10.1

7.89

0.34

10.48

5.4 Case 3: Identifying unknown defective sensor (binary search technique)

In Case 3, binary search method has followed. In this case first 16 sensors are divided

into 2 groups of 8 sensors. Feeding 1st 8 sensors data as input to trained ARX model and
sensor 1-1 as target or measured output. It is observed in Figure 5.6 and Figure 5.7 that

measured and simulated model output of 2nd 8 sensors fit well than 1st 8 sensors.
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Measured and simulated model output
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Figure 5.6 Measured and Simulated output of March 2006, 1st 8 sensors

Therefore malfunction sensors are located in 1st 8 sensors group, Table 5.3 (a).

Measured and simulated model output

?3

m
2
o

Time(Sec)

-Measured Output
-Simulated Output

Figure 5.7 Measured and Simulated output of March 2006, 2nd 8 sensors
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Dividing 1st 8 sensors data into 2 sub groups of 4 sensors and repeating the same

procedure it is found that measured and simulated model output of 1st 4 sensors does
not fit well than 2nd 4 sensors. Therefore malfunction sensor is located in 1st 4 of 1st 8

sensors group, Table 5.3 (b). More subgroup reduces the data points so much that both

subgroups do not give good results. Now sequential search can be used to find the
defective sensor. Finally it is found that 4-2 is defective. While the sample figures are

presented here in discussing results produced by proposed algorithms, remaining figures
are presented in appendix D.
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Table 5.3 Fitting percentage of measured and simulated output

Sensors

1st 8

2nd 8

Fit (%)

-94.34

7.01

(a)

Comments

Defective sensor group

Non-defective sensor

group

Sensors

1st 4 of defective group
2 4 of defective group

Fit (%)

-10.49

3.03

(b)

Defective sensor group

Non-defective sensor group

Sensors

1st 2 of defective group
2nd 2 of defective group

Fit (%)

49.63

-21.92

(e)

Non-defective sensor group

Defective sensor group

Sensors

1st of defective group
^s2 of defective group

Fit (%)

-2.32

-27.66

(d)

Defective sensor
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5.5 Summary

In this chapter the proposed binary and sequential search methods for detecting defective

sensors have been tested using the data obtained from the portage Creek Bridge. Several

test cases have been presented to show the effectiveness of the proposed methods. In

Case 1, it is found that when sensor 6-1 is removed from the input data then the simulated

output fit best to measured output. In Case 2, defective sensor was unknown initially.

Using the same methodology of Case 1 , it is found that when sensor 4-2 is removed from

the input data then the simulated output fit best to measured output. So sensor 4-2 is
defective. In Case 3, it is found that the same sensor that has been found defective with

sequential search is detected correctly with the binary search technique which is faster

than sequential search technique. Bagchi et al. (2007) describes the implementation of

intelligent sensing for the remote health monitoring of the seismic strengthened pier of

the Portage Creek Bridge. In that study it is found that both strain gauge 4-1 and 6-1

experienced an increase of strains during dynamic test. The comparison of two study
show consistent result which justify the proposed statistical approach of the thesis.

Besides, Case 1 shows Sensitivity analysis
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Chapteró: Summary and Conclusions

6.1 Summary

Structural Health Monitoring (SHM) has been widely studied during the past two decades

and significant progress has been achieved through the development of new sensors and
system that are capable of monitoring the performance of a structure. In literature review
it is found that structural damage affects the dynamic properties of a structure, causing a

change in the vibration signals i.e. strain and acceleration time histories. Damage
detection can be performed using time series analysis of vibration signals measured from
a structure before and after damage. In this thesis, two methods are proposed.

The first method, which is degree of similarity, is used to assess the structural condition
and sensor reliability. Time series data pattern of the same sensor at different times and
time series data pattern of two different sensors at the same time should always follow
the similar pattern. The reason of their dissimilarity may be due to either defective sensor
or damage in structure assuming other conditions i.e. load condition, environmental
condition remain the same. Numerous tests have been done to assess the structural

condition and reliability of sensors' data by quantifying the degree of similarity between

the pairs of sensor data. In chapter 4, three test results have been presented. In Test 1 ,
mean, standard deviation and skewness values of the two data sets are found to be close,
which indicate that the simulation data are reliable. Thus, expensive and time consuming
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tests can be avoided by generating data using simulation. In Test 2, while the mean
values of the two data sets from the same sensor, but taken at different time windows are

found to be different, the standard deviation and skewness values are close and

correlation 74%. Thus, the degree of similarity of strain data in two different time

window can be considered high. It can be implied that structural conditions are not

degraded from the initial condition. In Test 3, data from two different sensors at the same
time window have been considered, where the mean, standard deviation values of the two

data sets are not found to be close, correlation values indicate they are only 31% similar,

and while the data sets are skewed in the same direction, their skewness values are quite

different. It can be implied that sensors are different and the data are related. In all cases

the sensors can be said to be working reasonably for the time windows considered in the

study. Finally, the test results were also compared with Noman (2008) who worked on
the bridge data using different statistical pattern recognition algorithms. The comparison
of two different approach of same structure show consistent results.

The second method is proposed for identifying defective sensors or damage. In the case,

the statistical pattern recognition techniques such as, ARX model have been used to

develop a method for automatically build relationships among the data from various
sensors installed in a structure. Such relationships are tracked over time and abnormal

changes in the data patterns are identified using predefined metrics (e.g., coefficient of
determination between the simulated and real data from a reference sensor). In case of a

deviation in the data pattern, the data segment responsible is processed by eliminating

one or more sensors from the input vector to the ARX model utilizing the concept of the

well known sequential and binary search techniques. In the event of removing a particular
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set or sensors at a time improves the fitness of the established relationship among the

remaining sensors, the excluded sensors are identified as the responsible ones for the

change in the relationship. Once the responsible sensor is identified, physical tests could
be conducted to ascertain if it indeed malfunctioned. On the other hand, if a group of

sensors is found to be responsible, it is likely that the structural or load condition has

changed. In that case, further analysis of the SHM and structural systems would be

necessary. In the absence of unusual patterns, the relationships would be simply updated

with the new data, and compared with the initial pattern of relationship to determine the

rate of gradual change in the data pattern which would indicate the rate of deterioration in
the structure. Numerous tests have been performed to identify the defective sensors or

anomaly in the structural response at different time segments. In chapter 4, three case

study results have been presented. In Case 1, it is found that when sensor 6-1 with known
error in the data is removed from the input set, the simulated output fits best to the

measured output. The sequential search technique as proposed here has been used in this
case. In Case 2, the defective sensor was unknown initially. Using the proposed

methodology in the same manner as in Case 1, it is found that when Sensor 4-2 is
removed from the input set, the simulated output fit best to measured output. In that case

Sensor 4-2 may be defective, which should be verified using manual tests. In Case 3,

using the binary search technique as proposed here, the same sensor has been detected as
the defective one as in the case with sequential search in Case 2. As the binary search

technique is faster than sequential search technique, it should be considered in practical
implementation of the proposed methods. Finally, the test results were also compared
with that reported in Bagchi et al. (2007) which describes the implementation of
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intelligent sensing for the remote health monitoring of the seismic strengthened pier of

the Portage Creek Bridge. In that study it is found that both strain gauge 4-1 and 6-1

experienced an increase of strains during dynamic test. The comparison of two studies
shows consistent results.

6.2 Conclusions

• To determine the reliability of the sensors' data and to assess the structural

condition, a set of statistical parameters, mean, standard deviation, skewness,

correlation can be used in a holistic manner as demonstrated in the present study.

• The ARX model with proposed sequential search technique and or binary search

techniques can be used successfully used in identifying defective sensor or

changes in the behavior of the structure.

• The information about the degree of similarity among various sensors data in a

structure and detection of defective sensors using the proposed methods can be

extended to detect damage in structure.

• Low degree of similarity among sensors data or multiple sensors detected as the
responsible ones for the change of the statistical patterns of data indicates either
the presence of damage/degradation in structure or change in load/environmental
conditions.

• Limited sensitivity analysis shows that the proposed methods are robust.
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6.3 Limitations and Future works

• In the present study, it is assumed that data dissimilarity occurs due to the
presence of damage in structure. But data dissimilarity may be also occurs due to
the presence of individual or combined effect of sensor malfunction or excessive
load or presence of damage in the structure. Further work should consider these
effects in isolating the individual factors.

• For correlation analysis, there is no concrete benchmark to rating the similarity,

the coefficient of determination (i.e., R2 measure) or other similarity metric might
be used to define the rating.

• For the measured and simulated output, the best fit algorithm used here may not

be sufficient. Other metrics could be used as mentioned above to determine the

degree of fitness between simulated and actual data.

• To validate the results of the proposed methods which are based on statistical

pattern recognition techniques, other methods like neural network might be used.
• For sensitivity analysis limited cases are studied which needs more elaborate

work.
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Appendix A

A.l Detail Matlab code for the tool mentioned in Chapter 5.

function varargout = ITEC (varargin)
% ITEC M-file for ITEC. fig
% ITEC, by itself, creates a new ITEC or raises the existing
% singleton*.
%
% H= ITEC returns the handle to a new ITEC or the handle to
% the existing singleton*.
%

% ITEC ( 'CALLBACK' ,hObject, eventData, handles, ... ) calls the local
% function named CALLBACK in ITECM with the given input
arguments .
%

% ITEC ( 'Property' , 'Value' ,... ) creates a new ITEC or raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before ITEC_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to ITEC_OpeningFcn via varargin.
%

% *See GUI Options on GUIDE'S Tools menu. Choose "GUI allows only
one

% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help ITEC

% Last Modified by GUIDE v2 . 5 25-May-2008 19:49:30

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1 ;
gui_State = struct (' gui_Name ' , mfilename, ...

'gui_Singleton' , gui_Singleton, ...
' gui_OpeningFcn ' , @ITEC_OpeningFcn, ...
' gui_OutputFcn ' , @ITEC_OutputFcn, ...
' gui_LayoutFcn ' , [ ] , ...
'gui_Callback' , []);

if nargin && ischar (varargin{l) )
gui_State.gui_Callback = str2func (varargin{l) ) ;

end

if nargout
[ varargout {1 :nargout}] = gui_mainfcn(gui_State, varargin{ : } ) ;

else
gui_mainfcn(gui_State, varargin { : } ) ;

end
% End initialization code - DO NOT EDIT
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% Executes just before ITEC is made visible.
function ITEC_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ITEC (see VARARGIN)

% Choose default command line output for ITEC
handles .output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes ITEC wait for user response (see UIRESUME)
% uiwait (handles . figurel) ;

% Outputs from this function are returned to the command line.
function varargout = ITEC_OutputFcn (hObject , eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT) ;
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout {1} = handles .output ;

% Executes on button press in POPULATE_button.
function POPULATE_button_Callback (hObject, eventdata, handles)
% hObject handle to POPULATE_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
update_l istbox (handles)

function update_listbox (handles)
% hObject handle to update (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get (hObject ,' String ' ) returns listboxl contents as
cell array
% contents {get (hObject, 'Value' ) } returns selected item from
listboxl

% Updates the listbox to match the current workspace
vars = evalin( 'base' , 'who ') ;
set (handles.TEST_listbox, 'String' ,vars)
set (handles. SIM_listbox, 'String' ,vars)
set (handles. TIME_listbox, 'String' ,vars)

function [vari] = get_var_namest (handles)

75



% Returns the names of the two variables to plot
list_entries = get (handles .TEST_listbox, ' String' ) ;
index_selected = get (handles .TEST_listbox, 'Value' ) ;
vari = list_entries{index_selected(l) } ;

function [var2] = get_var_namess (handles)
% Returns the names of the two variables to plot
list_entries = get (handles . SIM_listbox, ' String' ) ;
index_selected = get (handles . S IM_1 is tbox, 'Value ') ;
var2 = list_entries{index_selected(l) } ;

function [var3] = get_var_namesti (handles)
% Returns the names of the two variables to plot
list_entries = get (handles .TIME_listbox, ' String ') ;
index_selected = get (handles .TIME_1 i s tbox, 'Value ') ;
var3 = list_entries{index_selected(l) } ;

% Executes on selection change in TEST_listbox.
function TEST_listbox_Callback(hObject, eventdata, handles)
% hObject handle to TEST_listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get (hObject, ' String ' ) returns TEST_listbox contents
as cell array
% contents {get (hObject, 'Value' ) } returns selected item from
TEST_listbox

% Executes during object creation, after setting all properties.
function TEST_listbox_CreateFcn (hObject, eventdata, handles)
% hObject handle to TEST_listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get(0, 'defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor' , 'white' ) ;
end

% Executes on selection change in SIM_listbox.
function SIM_listbox_Callback (hObject, eventdata, handles)
% hObject handle to SIM_listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get (hObject, ' String' ) returns SIM_listbox contents
as cell array
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% contents{get (hObject, 'Value' ) } returns selected item from
SIM_listbox

% Executes during object creation, after setting all properties.
function SIM_listbox_CreateFcn(hObject, eventdata, handles)
% hObject handle to SIM_listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor' , 'white') ;
end

% Executes on selection change in TIME_listbox.
function TIME_listbox_Callback(hObject, eventdata, handles)
% hObject handle to TIME_listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get (hObject, ' String' ) returns TIME_listbox contents
as cell array
% contents{get (hObject, 'Value' ) } returns selected item from
TIME_listbox

% Executes during object creation, after setting all properties.
function TIME_listbox_CreateFcn (hObject, eventdata, handles)
% hObject handle to TIME_listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

function TIME_edit_Callback (hObject, eventdata, handles)
% hObject handle to TIME_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of TIME_edit as text
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% str2double(get (hObject, 'String' ) ) returns contents of
TIME_edit as a double

% Executes during object creation, after setting all properties.
function TIME_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to TIME_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get(0, 'defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor' , 'white') ;
end

function FREQ_edit_Callback(hObject, eventdata, handles)
% hObject handle to FREQ_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles. Data. FREQ_edit=str2double(get (hObject, 'String')) ;
guidata (hObj ect , handles )
% Hints: get (hObject, 'String' ) returns contents of FREQ_edit as text
% str2double(get (hObject, ' String' ) ) returns contents of
FREQ_edit as a double

% Executes during object creation, after setting all properties.
function FREQ_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to FREQ_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set(hObject, 'BackgroundColor', 'white');
end

function SAMPLE_edit_Callback (hObject, eventdata, handles)
% hObject handle to SAMPLE_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles. Data. SAMPLE_edit=str2double (get (hObject, 'String' ) ) ;
guidata (hObj ect , handles )
% Hints: get (hObject, 'String' ) returns contents of SAMPLE_edit as text
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% str2double (get (hObject, ' String' ) ) returns contents of
SAMPLE_edit as a double

% Executes during object creation, after setting all properties.
function SAMPLE_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to SAMPLE_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

function FILTER_edit_Callback (hObject, eventdata, handles)
% hObject handle to FILTER_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles. Data. FILTER_edit=str2double (get (hObject, 'String' ) ) ;
guidata (hObj ect , handles )
% Hints: get (hObject, 'String' ) returns contents of FILTER_edit as text
% str2double (get (hObject, 'String' ) ) returns contents of
FILTER_edit as a double

% Executes during object creation, after setting all properties.
function FILTER_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to FILTER_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc ScSc isequal (get (hObject, 'BackgroundColor ') ,
get(0, 'defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

function MAXCORR_edit_Callback (hObject, eventdata, handles)
% hObject handle to MAXCORR_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, ' String' ) returns contents of MAXCORR_edit as text
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% str2double (get (hObject, ' String' ) ) returns contents of
MAXCORR_edit as a double

% Executes during object creation, after setting all properties.
function MAXCORR_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to MAXCORR_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc ScSc isequal (get (hObject, 'BackgroundColor ') ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

function LAG_edit_Callback (hObject, eventdata, handles)
% hObject handle to LAG_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of LAG_edit as text
% str2double (get (hObject, ' String' ) ) returns contents of LAG_edit
as a double

% Executes during object creation, after setting all properties.
function LAG_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to LAG_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc ScSc isequal (get (hObject, 'BackgroundColor ') ,
get(0, 'defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

function RATING_edit_Callback (hObject, eventdata, handles)
% hObject handle to RATING_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of RATING_edit as text
% str2double (get (hObject, ' String' ) ) returns contents of
RATING_edit as a double
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% Executes during object creation, after setting all properties.
function RATING_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to RATING_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ' ) ,
get(0, 'defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor' , 'white' ) ;
end

function MEANTEST_edit_Callback (hObject, eventdata, handles)
% hObject handle to MEANTEST_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, ' String' ) returns contents of MEANTEST_edit as
text

% str2double(get (hObject, 'String' ) ) returns contents of
MEANTEST_edit as a double

% Executes during object creation, after setting all properties.
function MEANTEST_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to MEANTEST_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc ScSc isequal (get (hObject, 'BackgroundColor ') ,
get ( 0 , ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

function MEANSIM_edit_Callback (hObject, eventdata, handles)
% hObject handle to MEANSIM_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, ' String' ) returns contents of MEANSIM_edit as text
% str2double (get (hObject, ' String' ) ) returns contents of
MEANSIM_edit as a double
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% Executes during object creation, after setting all properties.
function MEANSIM_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to MEANSIM_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ' ) ,
get(0, 'defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

function STDTEST_edit_Callback (hObject, eventdata, handles)
% hObject handle to STDTEST_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of STDTEST_edit as text
% str2double(get (hObject, 'String' ) ) returns contents of
STDTEST_edit as a double

% Executes during object creation, after setting all properties.
function STDTEST_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to STDTEST_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get(0, 'defaultUicontrolBackgroundColor' ) )

set (hObject, 'BackgroundColor', 'white');
end

function STDSIM_edit_Callback( hObject, eventdata, handles)
% hObject handle to STDSIM_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of STDSIM_edit as text
% str2double(get (hObject, 'String' ) ) returns contents of
STDSIM_edit as a double

% Executes during object creation, after setting all properties.
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function STDSIM_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to STDSIM_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ' ) ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor' , 'white' ) ;
end

function STDRATIO_edit_Callback (hObject, eventdata, handles)
% hObject handle to STDRATIO_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of STDRATIO_edit as
text

% s tr2doubl e (get (hObject, 'String' ) ) returns contents of
STDRATIO_edit as a double

% Executes during object creation, after setting all properties.
function STDRATIO_edit_CreateFcn( hObject, eventdata, handles)
% hObject handle to STDRATIO_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc ScSc isequal (get (hObject, 'BackgroundColor ') ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set (hObj ect , ' BackgroundColor ' , ' white ' ) ;
end

function SKEWTEST_edit_Callback (hObject, eventdata, handles)
% hObject handle to SKEWTEST_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of SKEWTEST_edit as
text

% str2double(get (hObject, 'String' ) ) returns contents of
SKEWTEST_edit as a double

% Executes during object creation, after setting all properties.
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function SKEWTEST_edit_CreateFcn(hObject, eventdata, handles)
% hObject handle to SKEWTEST_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, ' BackgroundColor ' ) ,
get(0, 'defaultUicontrolBackgroundColor' ) )

set (hObject, 'BackgroundColor' , 'white' ) ;
end

function SKEWSIM_edit_Callback (hObject, eventdata, handles)
% hObject handle to SKEWSIM_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of SKEWSIM_edit as text
% str2double (get (hObject, 'String' ) ) returns contents of
SKEWSIM_edit as a double

% Executes during object creation, after setting all properties.
function SKEWSIM_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to SKEWSIM_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor' ) ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

function BIN_edit_Callback (hObject, eventdata, handles)
% hObject handle to BIN_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles. Data. BIN_edit=str2double (get (hObject, 'String' ) ) ;
guidata ( hObj ect , handles )
% Hints: get (hObject, 'String' ) returns contents of BIN_edit as text
% str2double (get (hObject, 'String' ) ) returns contents of BIN_edit
as a double

% Executes during object creation, after setting all properties.
function BIN_edit_CreateFcn (hObject, eventdata, handles)
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% hObject handle to BIN_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, ' BackgroundColor ' ) ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor' , 'white') ;
end

% Executes on button press in HIST_button.
function HIST_button_Callback (hObject, eventdata, handles)
% hObject handle to HIST_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
figure ( )
[x] = get_var_namest (handles) ;
[y] = get_var_namess (handles) ;
TEST=evalin( 'base' ,x) ;
SIM=evalin( 'base' ,y) ;
%histogram and fitting a normal distribution to the data,
subplot (2,1,1)
histfit (TEST) ,-title ( 'TEST DATA' ) ,-ylabel (' Frequency (counts) ');
[historic_mean, historic_stdevl] = normf it (TEST) ;
set (handles. MEANTEST_edit, 'String' ,historic_mean) ;
set (handles. STDTEST_edit, 'String' ,historic_stdevl) ;
subplot (2,1,2)
histfit (SIM) ,-title ( 'SIM DATA' ) ,-ylabel ( 'Frequency (counts)');
[historic_mean, historic_stdev2] = normf it (SIM) ;
set (handles. MEANSIM_edit, 'String' ,historic_mean) ;
set (handles. STDSIM_edit, 'String' , historic_stdev2 ) ;
ratio=historic_stdevl/historic_stdev2;
set (handles. STDRATIO_edit, 'String' ,ratio) ;

% Executes on button press in FULLRANGE_CORR_button.
function FULLRANGE_CORR_button_Callback (hObject, eventdata, handles)
% hObject handle to FULLRANGE_CORR_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[?] = get_var_namest (handles) ;
[y] = get_var_names s (handles) ;
[z] = get_var_names ti (handles) ;
TEST=evalin( 'base' ,x) ;
SIM=evalin ( ' base ' , y ) ;
TIME=evalin ( 'base ' , z) ;
Fs=length (TEST) /max (TIME) ;
p= length (TEST) ;
if get (handles. WITHOUTFILTER_radiobutton, 'Value' )
get (hObject, 'Max' )

if get (handles. CORR_radiobutton, 'Value' ) == get (hObject , 'Max' )
f igureO ;
subplot (3,1,1)
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plot (TEST, 'r' ) ,-hold all ,-plot (SIM, ' k' ) ;hold off;
grid on; title ( 'Simple Raw Data Plot');
legendi 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (3,1,2)
plot (lags,m) ;
grid on; title ( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, 'r' , TIME+lag, SIM, ' k ' ) ;
grid on;xlabel ( 'Time (Sec) ' ) ;
titlef 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles. LAG_edit, 'String' ,lag)
if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. VSHIFT_radiobutton, 'Value' ) ==
get(hObject, 'Max')

figure ( ) ;
TEST=TEST-mean(TEST) ;
SIM=SIM-mean(SIM) ;
subplot (3,1,1)
plot (TEST, 'r' ) ,-hold all ,-plot (SIM, ' k' ) ,-hold off;
grid on; titlet 'Vertical Shifted Data Plot');
legendi 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, ' coeff ' ) ;

subplot (3,1,2)
plot (lags,m) ;
grid on ; title ( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, 'r' , TIME+lag, SIM, ' k ' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , ' SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles . LAG_edit , ' String ' , lag)
if mcorr>.89
set (handles. RATING_edit, 'String' , 'Excellent match' )
elseif mcorr>.69
set(handles.RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
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end

elseif get (handles. FLIPTEST_radiobutton, 'Value' )
get (hObject, 'Max')

figure ( ) ;
TEST=TEST-mean(TEST) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ratio ;
TEST=TEST* -1;
subplot (3,1,1)
plot(TEST, 'r' ) ,-hold all ,-plot (SIM, ' k ') ,-hold off;
grid on; title ( 'VSHIFT & Flipped TEST Data');
legend ( 'TEST DATA' , ' SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (3, 1,2)
plot (lags,m) ;
grid on ; title ( 'Correlation between TEST & SIM Data ' ) ;
[mcorr, lag] =max(m) ;
lag=(lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, 'r' ,TIME+lag,SIM, ' k ' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles .LAG_edit, 'String' , lag)

if mcorr> . 89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. FLIPSIM_radiobutton, 'Value' )
getfhObject, 'Max')

figure () ;
TEST=TEST-mean(TEST) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ rat io,·
SIM=SIM*-1;
subplot (3,1,1)
plot (TEST, 'r' ) ,-hold all,-plot (SIM, ' k' ) ,-hold off;
grid on; title ( 'VSHIFT & Flipped SIM Data');
legend ( 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ) ;
subplot (3,1,2)
plot (lags,m) ;
grid on; titlet 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, ' r' , TIME+lag, SIM, ' k ' ) ;
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grid on;xlabel ( 'Time(Sec) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles. LAG_edit, 'String' , lag)

if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

end

elseif get (handles. WITHFILTER_radiobutton, 'Value' )
get (hObject, 'Max' )
%Butterworth Infinite Impulse Response (IIR) Filter
r=Fs*0.5;
[b,a] = butter (5,handles. Data. FILTER_edit/r) ;
%5 stands for fifth order
%handles.Data.FILTER_edit/50 is cuttoff frequency, normalized to half
the

%sampling frequency ( the Nyquist frequency)
Hd = dfilt.df2t (b,a) ; %direct form 2 transposed structure
TESTF = filter (Hd, TEST) ;

if get (handles. CORR_radiobutton, 'Value' ) == get (hObject , 'Max' )
figure ( ) ;
subplot (3,1,1)
plot(TESTF, 'r' ) ,-hold all ; plot (SIM, ' k '); hold off;
grid on; titlet 'Filtered TEST Data & SIM Data');
legendi 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (TESTF, SIM, 'coeff ' ) ;
subplot (3,1,2)
plot (lags,m) ;
grid on; title) 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TESTF, 'r' , TIME+lag, SIM, 'k' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title( 'Shifting SIM data in Lag amount with respect to TEST

data' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles.LAG_edit, ' String' , lag)
if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
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set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. VSHIFT_radiobutton, 'Value' )
get(hObject, 'Max')

figure) ) ;
TEST=TESTF -mean (TESTF) ;
SIM=SIM-mean(SIM) ;
subplot (3 ,1,1)
plot(TEST, 'r' ) ,-hold all ; plot (SIM, ' k' ) ,-hold off;
grid on ; title ( 'Filtered & VShift TEST Data & SIM Data');
legendi 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, ' coeff ' ) ;
subplot (3,1,2)
plot (lags,m) ;
grid on; title ( 'Correlation between VSHIFT FILTERED TEST DATA &

SIM Data ' ) ;
[mcorr, lag] =max(m) ;
lag=(lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, 'r' , TIME+lag, SIM, ' k ' ) ;
grid on;xlabel ( 'Time (Sec) ') ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , ' SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles . LAG_edit , ' String ' ,lag)
if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String' , 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String' , 'Not Acceptable' )
end

elseif get (handles. FLIPTEST_radiobutton, 'Value' )
get(hObject, 'Max')

figure ( ) ;
TEST=TESTF-mean (TESTF) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ ratio ;
TEST=TEST* -1;
subplot (3,1,1)
plot(TEST, 'r' ) ,-hold all;plot (SIM, ' k ') ,-hold off;
grid on; title ( 'Filtered ,VShift & Flipped TEST Data & SIM

Data ' ) ;
legendi 'TEST DATA' , ' SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (3 , 1, 2)
plot (lags,m) ;
grid on; title ( 'Correlation between FILTERED VSHIFT FLIPPED TEST

DATA Sc SIM Data ' ) ;
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (3,1,3)
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plot (TIME, TEST, ' r' , TIME+lag, SIM, ' k' ) ;
grid on;xlabel ( 'Time (Sec) ') ;
title (' Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , ' SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,racorr)
set ( handles. LAG_edit, 'String' , lag)

if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String' , 'Good match' )
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. FLIPSIM_radiobutton, 'Value' )
get (hObject, 'Max' )

figure ( ) ;
TEST=TESTF-mean (TESTF) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ratio;
SIM=SIM*-1;
subplot (3,1,1)
plot(TEST, 'r' ) ,-hold all ,-plot (SIM, ' k' ) ,-hold off;
grid on; title ( 'Filtered & VShift TEST Data & Flipped SIM

Data' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (3,1,2)
plot (lags,m) ;
grid on; title( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, 'r' , TIME+lag, SIM, ' k ' ) ;
grid on;xlabel ( 'Time (Sec) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles.MAXCORR_edit, 'String' ,mcorr)
set (handles.LAG_edit, ' String' , lag)

if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

end
elseif get (handles. WAVELET_radiobutton, 'Value' ) == get (hObject, 'Max ' )
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%To perform a decomposition of the signal using the dmey wavelet)
[ C, L ] =wavedec (TEST ,handles. Data. WAVELET_edit, 'dmey') ;
[thr,sorh,keepapp]=ddencmp( 'den' , 'wv' ,TEST) ;
%De-noise Data by global threshold
clean=wdencmp( 'gbl' ,C, L, 'dmey' , 3 , thr, sorh, keepapp) ;

if get (handles. CORR_radiobutton, 'Value' ) == get (hObject, 'Max' )
figure () ;
subplot (3,1,1)
plot (clean, 'r' ) ,-hold al 1; plot (SIM, 'k' ) ,-hold off;
grid on; title ( 'Denoised TEST Data & SIM Data');
legendi 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (clean, SIM, ' coef f ' ) ;
subplot (3,1,2)
plot (lags,m) ;
grid on; title ( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag=(lag-p) /Fs;
subplot (3,1,3)
plot (TIME, clean, 'r' , TIME+lag, SIM, 'k' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles .LAG_edit, 'String' , lag)
if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. VSHIFT_radiobutton, 'Value' )
get (hObject, 'Max' )

figure ( ) ;
subplot (3, 1,1)
TEST=clean -mean (clean) ;
SIM=SIM-mean(SIM) ;
plot (TEST, 'r' ) ,-hold all; plot (SIM, ' k' ) ,-hold off;
grid on; title ( 'Denoised & VShift TEST Data & SIM Data');
legendi 'TEST DATA' , ' SIM DATA' ) ;

[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (3,1,2)
plot (lags,m) ;
grid on; titlef 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (3,1,3)
plot (TIME1TEST, 'r' , TIME+lag, SIM, 'k' ) ;
grid on ,-xlabel ( 'Time (Sec) ') ;
titlef 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legend ( 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
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set (handles . LAG_edit , ' String ' , lag)
if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. FLIPTEST_radiobutton, 'Value' )
get (hObject, 'Max' )

figure ( ) ;
TEST=clean-mean (clean) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ratio;
TEST=TEST* -1;
subplot (3,1,1)
plot (TEST, 'r' ) ,-hold all; plot (SIM, 'k' ) ,-hold off;
grid on; title ( 'Filtered, VShift & Flipped TEST Data & SIM

Data ' ) ;
legend( 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (3 , 1, 2)
plot (lags,m) ;
grid on; title ( 'Correlation between DENOISED VSHIFT FLIPPED TEST

DATA & SIM Data ' ) ;
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, 'r' , TIME+lag, SIM, 'k' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles.MAXCORR_edit, ' String' ,mcorr)
set (handles. LAG_edit, 'String' , lag)

if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. FLIPSIM_radiobutton, 'Value' )
get (hObj ect , ' Max ' )

figure () ;
TEST=clean-mean (clean) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ratio ;
SIM=SIM*-1;
subplot (3,1,1)
plot(TEST, 'r' ) ,-hold all ,-plot (SIM, ' k '); hold off;
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grid on; title ( 'Filtered & VShift TEST Data & Flipped SIM
Data ' ) ;

legendi 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (3 , 1, 2)
plot (lags,m) ;
grid on; titlet 'Correlation between TEST & SIM Data');
[mcorr, lag] =max (m) ;
lag= (lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, 'r' ,TIME+ lag, SIM, 'k' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , ' SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles. LAG_edit, ' String' , lag)

if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles . RATING_edit , ' String ' , ' Fair match ' )
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

end

end

% Executes on button press in FFT_button.
function FFT_button_Callback(hObject, eventdata, handles)
% hObject handle to FFT_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[?] = get_var_namest (handles) ;
[y] = get_var_names s (handles) ;
[?] = get_var_namesti (handles) ;
TEST=evalin ( ' base ' , x) ;
SIM=evalin( 'base' ,y) ;
TIME=evalin ( 'base' , z) ;
Fs=length(TEST) /max (TIME) ;
N= length (TEST) ;
f=Fs* (1:N)/N;
SIM=fft (SIM) ;
c=handles . Data . XAXIS_edit ;
if get (handles. WITHOUTFILTER_radiobutton, 'Value' )
get(hObject, 'Max')

f igureO ;
TEST=fft (TEST) ;
plot (f,abs (TEST) , 'r' ) ;xlim( [1 c] ) ,-hold all ,-plot (f , abs (SIM) ) ,-hold

off ,-xlabel ( 'Frequency' ) ;ylabel( 'Amplitude' ) ; legendi 'TEST' , 'SIM' ) ;
title ('FFT TEST DATA & SIM DATA');

elseif get (handles. WITHFILTER_radiobutton, 'Value' )
get (hObject, 'Max' )
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r=N*0 . 5; %the nyquist frequency
[b,a] = butter (5, handles. Data. FILTER_edit/r) ;
Hd = dfilt.df2t (b,a) ;
TESTF = filter (Hd, TEST) ;
TESTF = f ft (TESTF) ;
figure ( ) ;
plot (f,abs (TESTF) ) ;xlim( [1 c] ) ,-hold all,-plot (f , abs (SIM) ) ,-hold

off ;xlabel( 'Frequency' ) ;ylabel( 'Amplitude') ; legend ( 'TEST' , 'SIM' ) ;
title ('FFT FILTERED TEST DATA & SIM DATA');

elseif get (handles. WAVELET_radiobutton, 'Value' ) == get (hObject, 'Max' )
figure ( ) ;

%To perform a decomposition of the signal using the dmey wavelet) ,
[ C, L ] =wavedec (TEST, handles. Data. WAVELET_edit, 'dmey') ;
[thr, sorh,keepapp] =ddencmp ( 'den' , 'wv' ,TEST) ;
set (handles. THRESHOLD_edit, 'String' ,thr) ;
set (handles. THRTYPE_edit, 'String' , sorh) ;
%De-noise Data by global threshold
clean=wdencmp( ' gbl ' ,C, L, 'dmey' , 3, thr, sorh, keepapp) ;
TESTW=f ft (clean) ;
plot (f, abs (TESTW) ) ;xlim( [1 c] ) ,-hold all ,-plot ( f, abs (SIM) ) ,-hold

off ;xlabel( 'Frequency' ) ;ylabel( 'Amplitude' ) ,-legendi 'TEST' , 'SIM' ) ;
title ('FFT DENOISED TEST DATA & SIM DATA');

end

function WAVELET_edit_Callback(hObject, eventdata, handles)
% hObject handle to WAVELET_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles. Data. WAVELET_edit=str2double (get (hObject, 'String' ) ) ;
guidata (hobj ect , handles )
% Hints: get (hObject, 'String' ) returns contents of WAVELET_edit as text
% str2double(get (hObject, 'String' ) ) returns contents of
WAVELET_edit as a double

% Executes during object creation, after setting all properties.
function WAVELET_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to WAVELET_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, ' BackgroundColor ') ,
get ( 0 , ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

% Executes on button press in WAVELET_button.
function WAVELET_button_Callback (hObject, eventdata, handles)
% hObject handle to WAVELET_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
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% handles structure with handles and user data (see GUIDATA)

figure ( ) ;
[x] = get_var_namest (handles) ;
[y] = get_var_names s (handles) ;
TEST=evalin ( ' base ' , x) ;
SIM=evalin( 'base' ,y) ;
subplot (3,1,1)
plot(TEST, 'DisplayName' , 'TEST');
title ( 'Simple TEST Data');
%Low-pass filter by wavelet decomposition which gives approximation
%coef f icients contain less noise than does the original signal
[C, L] =wavedec(TEST, handles. Data. WAVELET_edit, 'dmey ' ) ; %dmey stand for
Meyer Wavelet
T=wrcoef ( 'a' ,C,L, 'dmey' ,handles .Data. WAVELET_edit) ;
subplot (3, 1,2)
plot (T) ; titlet 'Wavelet Transformed TEST Data ' ) ;
subplot (3,1,3)
plot (T, 'DisplayName' , 'TEST' ) ,-hold all; plot (SIM, 'DisplayName' , 'SIM' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ,-hold off ;
title ('SIM Data and Wavelet Transformed TEST Data ');
[m, lags] =xcorr (T, SIM, ' coef f ' ) ;
[mcorr, lag] =max(m) ;
set (handles. WAVELETCORR_edit , 'String' ,mcorr)

function WAVELETCORR_edit_Callback(hObject, eventdata, handles)
% hObject handle to WAVELETCORR_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of WAVELETCORR_edit as
text
% str2double(get (hObject, 'String' ) ) returns contents of
WAVELETCORR_edit as a double

% Executes during object creation, after setting all properties.
function WAVELETCORR_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to WAVELETCORR_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, ' BackgroundColor ') ,
get(0, 'defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

function FFTFILTER_edit_Callback( hObject, eventdata, handles)
% hObject handle to FFTFILTER_edit (see GCBO)
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% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles. Data. FFTFILTER_edit=str2double (get (hObject, 'String' ) ) ;
guidata (hObj ect , handles )
% Hints: get (hObj ect, 'String' ) returns contents of FFTFILTER_edit as
text

% str2double(get (hObject, ' String' ) ) returns contents of
FFTFILTER_edit as a double

% Executes during object creation, after setting all properties.
function FFTFILTER_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to FFTFILTER_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

% Executes on button press in SKEW_button.
function SKEW_button_Callback (hObject, eventdata, handles)
% hObject handle to SKEW_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[?] = get_var_namest (handles) ;
[y] = get_var_namess (handles) ;
TEST=evalin( 'base' ,x) ;
SIM=evalin ( 'base' ,y) ;
%Skewness is a measure of the asymmetry of the data around the sample
mean.

%If skewness is negative, the data are spread out more to the left of
the

%mean than to the right. If skewness is positive, the data are spread
out

%more to the right. The skewness of the normal distribution
%(or any perfectly symmetric distribution) is zero.
TEST3=skewness (TEST) ;
SIM3=skewness (SIM) ;
set (handles . SKEWTEST_edit , ' String ' , TEST3 ) ;
set (handles. SKEWSIM_edit, 'String' ,SIM3) ;

% Executes on button press in PLOT_button.
function PLOT_button_Callback (hObject, eventdata, handles)
% hObject handle to PLOT_button (see GCBO)
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% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[?] = get_var_namest (handles) ;
[y] = get_var_namess (handles) ;
[z] = get_var_names ti (handles) ;
TEST=evalin( 'base' ,x) ;
SIM=evalin ( 'base' ,y) ;
TIME=evalin( 'base ' , z) ;
figure () ;
subplot (2,1,1)
plot(TEST, 'r' ) ,-hold all ,-plot (SIM, ' k' ) ,-hold off;
grid on;
title (' Simple Raw Data Plot');
legend ( 'TEST DATA' , ' SIM DATA' ) ;
subplot (2,1,2)
plot (TIME, TEST, 'r' ,TIME, SIM, ' k ' ) ;
grid on ; xlabel ( ' Time ( sec ) ' ) ;
title (' Simple Raw Data Plot ' ) ;
legend) 'TEST DATA' , ' SIM DATA' ) ;

% Executes on button press in REPORT_button.
function REPORT_button_Callback(hObject, eventdata, handles)
% hObject handle to REPORT_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

report

function editl9_Callback(h0bject, eventdata, handles)
% hObject handle to editl9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of editl9 as text
% str2double(get (hObject, 'String' ) ) returns contents of editl9
as a double

% Executes during object creation, after setting all properties.
function editl9_CreateFcn (hObject, eventdata, handles)
% hObject handle to editl9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc ScSc isequal (get (hObject, ' BackgroundColor ') ,
get(0, 'defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end
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function THRESHOLD_edit_Callback(hObject, eventdata, handles)
% hObject handle to THRESHOLD_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of THRESHOLD_edit as
text

% str2double(get (hObject, 'String' ) ) returns contents of
THRESHOLD_edit as a double

% Executes during object creation, after setting all properties.
function THRESHOLD_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to THRESHOLD_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get ( 0 , ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor' , 'white' ) ;
end

function THRTYPE_edit_Callback (hObject, eventdata, handles)
% hObject handle to THRTYPE_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String' ) returns contents of THRTYPE_edit as text
% str2double(get (hObject, 'String' ) ) returns contents of
THRTYPE_edit as a double

% Executes during object creation, after setting all properties.
function THRTYPE_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to THRTYPE_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor' , 'white' ) ;
end
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function DataRange_edit_Callback(hObject, eventdata, handles)
% hObject handle to DataRange_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles. Data. DataRange_edit=str2double (get (hObject, 'String' ) ) ;
guidata (hobj ect , handles )
% Hints: get (hObject, 'String' ) returns contents of DataRange_edit as
text

% str2double (get (hObject, 'String' ) ) returns contents of
DataRange_edit as a double

% Executes during object creation, after setting all properties.
function DataRange_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to DataRange_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc SlSc isequal (get (hObject, ' BackgroundColor ' ) ,
get(0, 'defaultUicontrolBackgroundColor ' ) )

set (hObj ect , ' BackgroundColor ' , ' white ' ) ;
end

function DataRangel_edit_Callback (hObject, eventdata, handles)
% hObject handle to DataRangel_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles. Data. DataRangel_edit=str2double (get (hObject, 'String' ) ) ;
guidata (hObj ect , handles )
% Hints: get (hObject, 'String' ) returns contents of DataRangel_edit as
text

% str2double (get (hObject, 'String' ) ) returns contents of
DataRangel_edit as a double

% Executes during object creation, after setting all properties.
function DataRangel_edit_CreateFcn (hObject, eventdata, handles)
% hObject handle to DataRangel_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
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if ispc && isequal (get (hObject, ' BackgroundColor ' ) ,
get(0, ' defaultUicontrolBackgroundColor ' ) )

set(hObject, 'BackgroundColor', 'white');
end

function XAXIS_edit_Callback(hObject, eventdata, handles)
% hObject handle to XAXIS_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles. Data. XAXIS_edit=str2double( get (hObject, 'String' ) ) ;
guidata (hObj ect , handles )
% Hints: get (hObject, ' String' ) returns contents of XAXIS_edit as text
% str2double (get (hObject, ' String' ) ) returns contents of
XAXIS edit as a double

% Executes during object creation, after setting all properties.
function XAXI S_edit_CreateFcn( hObject, eventdata, handles)
% hObject handle to XAXIS_edit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor ') ,
get(0, 'defaultUicontrolBackgroundColor ' ) )

set (hObject, 'BackgroundColor', 'white');
end

% . Executes on button press in pushbutton9 .
function pushbutton9_Callback (hObject, eventdata, handles)
% hObject handle to pushbutton9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Executes on button press in pushbuttonlO .
function pushbuttonlO_Callback (hObject, eventdata, handles)
% hObject handle to pushbuttonlO (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
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% Executes on button press in SELECTEDRANGE_CORR_button .
function SELECTEDRANGE_CORR_button_Callback(hObject, eventdata,
handles)
% hObject handle to SELECTEDRANGE_CORR_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

[?] = get_var_namest (handles) ;
[y] = get_var_namess (handles) ;
[z] = get_var_namesti (handles) ;
TEST=evalin ( ' base ' , x) ; .
SIM=evalin( 'base' ,y) ;
TIME=evalin( 'base' , z) ;
Fs=length (TEST) /max (TIME) ;
TEST=TEST (handles . Data . DataRange_edit : handles . Data . DataRangel_edit ) ;
SIM=SIM (handles . Data . DataRange_edit : handles . Data . DataRangel_edi t ) ;
TIME=TIME (handles . Data . DataRange_edit : handles . Data . DataRangel_edi t ) ;
P= length (TEST) ;
if get (handles. WITHOUTFILTER_radiobutton, 'Value' )
get (hObject, 'Max' )

if get (handles. CORR_radiobutton, 'Value' ) == get (hObject , 'Max' )
figure ( ) ;
subplot (3,1,1)
plot (TEST, 'r' ) ,-hold all ,-plot (SIM, ' k ') ,-hold off;
grid on;
title ( 'Simple Raw Data Plot');
legendi 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (3,1,2)
plot (lags,m) ;
grid on ; title ( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag=(lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, 'r" , TIME+lag, SIM, ' k ' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title (' Shifting SIM data in Lag amount with respect to TEST

data' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXC0RR_edit, 'String' ,mcorr)
set (handles. LAG_edit, 'String' ,lag)
if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set(handles.RATING_edit, 'String' , 'Not Acceptable' )
end

elseif get (handles. VSHIFT_radiobutton, 'Value' )
get (hObject, 'Max')

figure () ;
TEST=TEST-mean(TEST) ;
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SIM=SIM-mean(SIM) ;
subplot (3, 1,1)
plot(TEST, 'r' ) ,-hold all,-plot (SIM, 'k' ); hold off;
grid on;
title ( 'Vertical Shifted Data Plot');
legendi 'TEST DATA' , 'SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;

subplot (3,1,2)
plot (lags,m) ;
grid on; title ( 'Correlation between TEST & SIM Data' ?-

? mcorr, lag] =max(m) ;
lag=(lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, 'r' , TIME+lag, SIM, ' k ' ) ;
grid on;xlabel ( 'Time (Sec) ') ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles.LAG_edit, 'String' , lag)
if mcorr>.89
set (handles . RATING_edit , ' String ' , ' Excellent match ' )
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles . RATING_edit , ' String ' , ' Fair match ' )
elseif mcorr<.50
set (handles . RATING_edit , ' String ' , ' Not Acceptable · )
end

elseif get (handles. FLIPTEST_radiobutton, 'Value' )
get(hObject, 'Max')

figure ( ) ;
TEST=TEST-mean(TEST) ;
SIM=SIM-mean (SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ratio;
TEST=TEST* -1;
subplot (3,1,1)
plot(TEST, 'r' ) ,-hold all ,-plot (SIM, 'k' ) ,-hold off;
grid on;
titlet 'Flipped TEST Data');
legendi 'TEST DATA' , ' SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ) ;
subplot (3,1,2)
plot (lags,m) ;
grid on; title ( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (3,1,3)
plot (TIME, TEST, 'r' ,TIME+lag, SIM, 'k' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
titlet ' Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles. LAG_edit, 'String' , lag)
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if mcorr>.89
set (handles. RATING_edit, 'String' , 'Excellent match' )
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. FLIPSIM_radiobutton, 'Value' ) ==
get(hObject, 'Max')

figure () ;
TEST=TEST-mean(TEST) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ratio ;
S IM= SIM*- 1,·
subplot (3,1,1)
plot(TEST, 'r' ) ,-hold all; plot (SIM, 'k' ); hold off;
grid on;
title ( 'Flipped SIM Data');
legendi 'TEST DATA' , ' SIM DATA' ) ;
[m, lags] =xcorr (TEST, SIM, ' coeff ' ) ;
subplot (3,1,2)
plot (lags,m) ;
grid on,· title ( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (3, 1,3)
plot (TIME, TEST, 'r' , TIME+lag, SIM, ' k ' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title (' Shifting SIM data in Lag amount with respect to TEST

data ' )
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles.LAG_edit, ' String' , lag)

if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

end

elseif get (handles. WITHFILTER_radiobutton, 'Value' )
get (hObject, 'Max' )
%Butterworth Infinite Impulse Response (IIR) Filter
r=Fs*0.5;
[b,a] = butter (5, handles. Data. FILTER_edit/r) ;
%5 stands for fifth order
%handles .Data.FILTER_edit/r is cuttoff frequency, normalized to half the
%sampling frequency (the Nyquist frequency)
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Hd = dfilt.df2t (b,a) ; %direct form 2 transposed structure
TESTF = filter (Hd, TEST) ;

if get (handles. CORR_radiobutton, 'Value' ) == get (hObject, 'Max' )
figure ( ) ;
subplot (4, 1,1)
plot(TEST, 'r' )
grid on; title ( 'Simple TEST Data');
subplot (4, 1,2)
plot(TESTF, ' r' )
grid on; title ( 'Filtered TEST Data');
[m, lags] =xcorr (TESTF, SIM, 'coeff ' ) ;
subplot (4, 1,3)
plot (lags,m) ;
grid on; titlet 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag=(lag-p) /Fs;
subplot (4,1,4)
plot (TIME, TESTF, 'r' , TIME+lag, SIM, 'k' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , ' SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles.LAG_edit, 'String' , lag)
if mcorr> . 89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String' , 'Not Acceptable' )
end

elseif get (handles. VSHIFT_radiobutton, 'Value' )
get (hObject, 'Max' )

figure ( ) ;
subplot (4,1,1)
plot(TEST, 'r' )
grid on; titlet 'Simple TEST Data');
subplot (4,1,2)
plot(TESTF, 'r' )
grid on; titlet 'Filtered TEST Data');
TEST=TESTF-mean (TESTF) ;
SIM=SIM-mean(SIM) ;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (4, 1,3)
plot (lags,m) ;
grid on; title ( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (4, 1,4)
plot (TIME, TEST, 'r' , TIME+lag, SIM, 'k' ) ;
grid on; xlabel ( 'Time (Sec) ') ;
title (' Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , ' SIM DATA' ) ;
set (handles. MAXCORR_edit , 'String' ,mcorr)
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set (handles .LAG_edit, 'String' , lag)
if mcorr>.89
set (handles . RATING_edit , ' String ' , ' Excellent match ' )
elseif mcorr>.69
set (handles. RATING_edit, 'String' , 'Good match' )
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. FLIPTEST_radiobutton, 'Value' )
get (hObject, 'Max' )

figure!) ;
subplot (4,1,1)
plot(TEST, 'r' )
grid on ; title ( 'Simple TEST Data');
subplot (4, 1,2)
plot(TESTF, 'r' )
grid on; titlet 'Filtered TEST Data');
TEST=TESTF-mean (TESTF) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ratio;
TEST=TEST* -1;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (4,1,3)
plot (lags,m) ;
grid on; title ( 'Correlation between TEST & SIM Data ' ) ;
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (4,1,4)
plot (TIME, TEST, 'r' , TIME+lag, SIM, ' k ' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title (' Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , ' SIM DATA' ) ;
set (handles.MAXCORR_edit, 'String' ,mcorr)
set (handles.LAG_edit, 'String' , lag)

if mcorr>.89
set (handles . RATING_edit , ' String ' , ' Excellent match ' )
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. FLIPSIM_radiobutton, 'Value' )
get(hObject, 'Max')

f igure( ) ;
subplot (4,1,1)
plot(TEST, 'r' )
grid on ; title ( 'Simple TEST Data');
subplot (4,1,2)
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data ' )

plot(TESTF, 'r' )
grid on ; title ( 'Filtered TEST Data');
TEST=TESTF -mean (TESTF) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ratio ;
SIM=SIM*-1;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (4, 1,3)
plot (lags,m) ;
grid on; titlet 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (4, 1,4)
plot (TIME, TEST, 'r ' ,TIME+lag, SIM, 'k' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

legend) 'TEST DATA' , ' SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles . LAG_edit , ' String ' , lag)

if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String' , 'Not Acceptable' )
end

end
elseif get (handles. WAVELET_radiobutton, 'Value' ) == get (hObject, 'Max'

%To perform a decomposition of the signal using the dmey wavelet) ,
[C, L] =wavedec(TEST, handles. Data. WAVELET_edit, 'dmey') ;
[thr, sorh,keepapp]=ddencmp( 'den' , 'wv' ,TEST) ;
%De-noise Data by global threshold
clean=wdencmp( ' gbl ' ,C, L, 'dmey' , 3 , thr, sorh, keepapp) ;

if get (handles. CORR_radiobutton, 'Value' ) == get (hObject , 'Max' )
figure) ) ;
subplot (4, 1,1)
plot (TEST)
grid on;
title ( 'TEST DATA' ) ;
subplot (4, 1,2)
plot (clean)
grid on;
title( 'DENOISED TEST DATA');
[m, lags] =xcorr (clean, SIM, 'coeff ) ;
subplot (4, 1,3)
plot (lags,m) ;
grid on; title ( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (4, 1,4)
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plot (TIME, clean, 'r' , TIME+lag, SIM, ' k ' ) ;
grid on;xlabel{ 'Time (Sec) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data' ) ;
legend ( 'TEST DATA' , ' SIM DATA' ) ;
set (handles. MAXCORR_edit, 'String' ,mcorr)
set (handles . LAG_edit , ' String ' , lag)
if mcorr>.89
set(handles.RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

elseif get (handles. VSHIFT_radiobutton, 'Value' )
get (hObject, 'Max' )

figure ( ) ;
subplot (4, 1,1)
plot (TEST)
grid on;
titlet 'TEST DATA' ) ;
subplot (4, 1,2)
plot (clean)
grid on;
title ( 'DENOISED TEST DATA');
TEST=clean-mean (clean) ;
SIM=SIM-mean(SIM) ;

[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (4, 1,3)
plot (lags,m) ;
grid on; title ( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (4,1,4)
plot (TIME, TEST, 'r' , TIME+lag, SIM, ' k ' ) ;
grid on;xlabel ( 'Time (Sec) ') ;
titlet 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXC0RR_edit, 'String' ,mcorr)
set (handles. LAG_edit, 'String' , lag)
if mcorr>.89
set (handles. RATING_edit, 'String' , 'Excellent match' )
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String' , 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String' , 'Not Acceptable' )
end

elseif get (handles. FLIPTEST_radiobutton, 'Value' )
get (hObject, 'Max' )

figure!) ;
subplot (4,1,1)
plot (TEST)
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grid on;
title ( 'TEST DATA' ) ;
subplot (4, 1,2)
plot (clean)
grid on;
title ( 'DENOISED TEST DATA');
TEST=clean-mean (clean) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ratio ;
TEST=TEST*-1;
[m, lags] =xcorr (TEST, SIM, 'coeff ' ) ;
subplot (4, 1,3)
plot (lags,m) ;
grid on; title ( 'Correlation between TEST & SIM Data');
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (4, 1,4)
plot (TIME, TEST, 'r' ,TIME+lag,SIM, 'k' ) ;
grid on;xlabel ( 'Time (Sec) ') ;
title (' Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legendi 'TEST DATA' , 'SIM DATA' ) ;
set (handles. MAXCORR_edit , 'String' ,mcorr)
set (handles.LAG_edit, 'String' , lag)

if mcorr> . 89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String', 'Good match')
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String' , 'Not Acceptable' )
end

elseif get (handles. FLIPSIM_radiobutton, 'Value' )
get(hObject, 'Max')

figure ( ) ;
subplot (4, 1,1)
plot (TEST)
grid on;
title ( 'TEST DATA' ) ;
subplot (4,1,2)
plot (clean)
grid on;
title ( 'DENOISED TEST DATA');
TEST=clean-mean (clean) ;
SIM=SIM-mean(SIM) ;
ratio=std(TEST) /std(SIM) ;
TEST=TEST/ratio ;
SIM=SIM*-1;
[m, lags] =xcorr (TEST, SIM, 'coeff ) ;
subplot (4, 1,3)
plot (lags,m) ;
grid on ; title ( 'Correlation between TEST & SIM Data ' ) ;
[mcorr, lag] =max(m) ;
lag= (lag-p) /Fs;
subplot (4,1,4)
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plot (TIME, TEST, ' r' , TIME+lag, SIM, ' k ' ) ;
grid on ; xlabel ( ' Time ( Sec ) ' ) ;
title ( 'Shifting SIM data in Lag amount with respect to TEST

data ' ) ;
legend( 'TEST DATA' , 'SIM DATA' ) ;
set(handles.MAXCORR_edit, 'String' ,mcorr)
set (handles. LAG_edit, 'String' , lag)

if mcorr>.89
set (handles. RATING_edit, 'String', 'Excellent match')
elseif mcorr>.69
set (handles. RATING_edit, 'String' , 'Good match' )
elseif mcorr>.49
set (handles. RATING_edit, 'String', 'Fair match')
elseif mcorr<.50
set (handles. RATING_edit, 'String', 'Not Acceptable')
end

end

end

% Executes on button press in FFTbutton_.
function FFTbutton Callback (hObject, eventdata, handles)
% hObject handle to FFTbutton_ (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[?] = get_var_namest (handles) ;
[y] = get_var_names s (handles) ;
[z] = get_var_namesti (handles) ;
TEST=evalin( 'base' ,x) ;
SIM=evalin ( 'base' ,y) ;
TIME=evalin ( ' base ' , ? ) ;
Fs=length(TEST) /max (TIME) ;
N= length (TEST) ,·
f=Fs* (1:N) /N;
SIM=fft(SIM) ;
if get (handles. WITHOUTFILTER_radiobutton, 'Value' )
get (hObj ect , ' Max ' )

f igureO ;
TEST=fft (TEST) ;
plot (f,abs (TEST) , 'r' ) ,-hold all,· plot (f , abs (SIM) ) ,-hold

off ,-xlabel ( 'Frequency' ) ;ylabel( 'Amplitude' ) ,-legendi 'TEST' , 'SIM' ) ,-
elseif get (handles. WITHFILTER_radiobutton, 'Value' )
get (hObject, 'Max' )

r=N*0.5;%the nyquist frequency
[b,a] = butter (5, handles. Data. FILTER_edit/r) ;

Hd = dfilt.df2t (b,a) ;
TESTF = filter (Hd, TEST) ;
TEST=f ft (TESTF) ;
figure ( ) ;
plot (f, abs (TEST) ) ,-hold all,· plot (f, abs (SIM) ) ,-hold

off ,-xlabel ( 'Frequency' ) ;ylabel( 'Amplitude' ) ,-legendi 'TEST' , 'SIM' ) ;
elseif get (handles. WAVELET_radiobutton, 'Value' ) == get (hObject, 'Max' )

figure ( ) ;
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%To perform a decomposition of the signal using the dmey wavelet) ,
[C,L]=wavedec (TEST, handles. Data. WAVELET_edit, 'dmey') ;
[thr,sorh,keepapp]=ddencmp( 'den' , 'wv' ,TEST) ;
set (handles . THRESHOLD_edit , ' String ' , thr ) ;
set (handles. THRTYPE_edit, ¦ String' , sorh) ;
%De-noise Data by global threshold
clean=wdencmp( 'gbl ' ,C, L, 'dmey' ,3, thr, sorh, keepapp) ;
TEST=f ft (clean) ;
plot (f,abs (TEST) ) ,-hold all ,-plot (f , abs (SIM) ) ,-hold

off ;xlabel( 'Frequency' ) ;ylabel( 'Amplitude' ) ,-legend« 'TEST' , 'SIM' ) ;

end
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Appendix B

B.l Graphical output of defective sensors detection of Portage Creek Bridge. The details

are described in Chapter 5, section 5.2.
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(a) (b)
Figure B.l Measured and Simulated output of March 2006, (a) sensor# 2-1 removed,

(b) sensor# 2-2 removed.
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Measured and simulated model output
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FigureB.2 Measured and Simulated output of March 2006, (a) sensor# 3-1 removed,

(b) sensor# 3-2 removed.
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FigureB.3 Measured and Simulated output of March 2006, (a) sensor# 4-1 removed,

(b) sensor# 4-2 removed.
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Measured and simulated model output
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Figure B.4 Measured and Simulated output of March 2006, (a) sensor# 5-1 removed,
(b) sensor# 5-2 removed.
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Figure B. 5 Measured and Simulated output of March 2006, (a) sensor# 6-2 removed,
(b) sensor# 7-1 removed.
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Measured and simulated model output
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Figure B.6 Measured and Simulated output of March 2006, (a) sensor# 7-2 removed,
(b) sensor# 8-1 removed.
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Figure B. 7 Measured and Simulated output of March 2006, (a) sensor#8-2 removed,
(b) sensor# 9-1 removed.
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Appendix C

Cl Graphical output of defective sensors detection of Portage Creek Bridge. The details
are described in Chapter 5, section 5.3.
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Figure Cl Measured and Simulated output of March 2006, (a) sensor# 2-1 removed,
(b) sensor# 2-2 removed.
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Figure C.2 Measured and Simulated output of March 2006, (a) sensor# 3-1 removed,
(b) sensor# 3-2 removed.
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Figure C. 3 Measured and Simulated output of March 2006, (a) sensor# 4-2 removed,
(b)sensor#5-l removed.
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Measured and simulated model output
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Figure C.4 Measured and Simulated output of March 2006, (a) sensor# 5-2 removed,
(b) sensor# 6-1 removed.
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Figure C. 5 Measured and Simulated output of March 2006, (a) sensor# 6-2 removed,
(b) sensor# 7-1 removed.
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Measured and simulated model output
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Figure C.6 Measured and Simulated output of March 2006, (a) sensor# 7-2 removed,
(b) sensor# 8-1 removed.
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Figure C. 7 Measured and Simulated output of March 2006, (a) sensor# 8-2 removed,
(b) sensor# 9-1 removed.
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Appendix D

D.l Graphical output of defective sensors detection of Portage Creek Bridge. The details

are described in Chapter 5, section 5.4.
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Figure D.l Measured and Simulated output of March 2006, (a) 1st 4 sensors,
,nd(b) 2na 4 sensors.
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Measured and simulated model output
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Figure D.2 Measured and Simulated output of March 2006, (a) 1st 2sensors,
,nd(a) 2na 2 sensors,
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Figure D.3 Measured and Simulated output of March 2006, (a) 1st 2sensors,
,nd(a) 2 2 sensors.
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