An Integrated Framework for Firewall

Testing and Validation

Mehdi Akiki

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montreal, Quebec, Canada

June 2009

© Mehdi Akiki, 2009

i+l

Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

Ottawa ON K1A ON4
Canada
Your file Votre référence
ISBN: 978-0-494-67146-7
Our file Notre référence
ISBN: 978-0-494-67146-7
AVIS:

L’auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'lnternet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L’auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

11

ABSTRACT

An Integrated Framework for Automated Firewall Testing and Validation

Mehdi Akiki

In today’s global world, most corporations are bound to have an Internet presence.
This phenomenon has led to a significant increase in all kinds of network attacks.
Firewalls are used to protect organizational networks against these attacks. Firewall
design is based on a set of filtering rules. Because of the nature of these rules, and due to
the rising complexity of security policies, an increasing number of mistakes are found in
configurations. A reliable and automated technique for testing firewall configuration is
becoming necessary to ensure the full functionality of the firewall.

In this thesis, a new approach to fully test a firewall has been developed using a
white box approach that takes into account its inner implementation. Also—thanks to the
information provided by the network information file—the environment where the
firewall will be deployed is considered, ensuring a better accuracy and performance than
previous work. Moreover, the method uses a combination of algorithms that remove
common misconfigurations widely present in current firewall configurations [1] and
guarantees a coverage that is greater than previous methods for generating test sets with a
novel test set generation approach. -

The developed framework is fully automated and contains the full steps to get

testing done, from the parsing of the firewall file to the generation of the test set based on

the actual configuration of the firewall to the correction of the error in the firewall file,

i1

avoiding all types of errors of omission and misconfiguration that occur during a manual

configuration.

Keywords: Firewall, Policy Language, Conflict Free Rules, Rule Set, White Box Testing,

Misconfiguration Errors, Configuration, Rule Update

v

ACKNOWLEDGEMENTS

First, I would like to express my gratefulness to my mentor and supervisor, Dr.
Abdeslam En-nouaary, whose guidance, encouragement, support and kindness have made
this thesis possible. I wholeheartedly appreciate his suggestions and the inspiring
discussions we enjoyed.

I also want to thank all the professors who have taught me invaluable lessons
while I was a student at Concordia University.

I dedicate this work to my father, my mother, my wife Houda, my brother, and

my friends.

Table of Contents

LISt OF FRZUIES ..ttt ettt be e e et sa st estessae s snesnnaas vi
LISt OF TADIES ..ttt ettt et e ba e ese e ess e neeene viii
Chapter 1: INroOUCHONeoiiiiieieeteeetc ettt ettt ettt st e st et e e et esseenaens 1
1.1 Objectives 0f This Thesis. .. ccoceriiiieiriieeie et 2
1.2 Organization of this Thesisccceeeriiiieriiieie s e 3
Chapter 2: NetWOTK SECUTILYo.ueerieiririiciieieertentesteteeteerie et st et eee e sts e eneesanesanene 4
2.1 Introduction t0 NetWOTKING.ccevrriririiieiiriieneieencetee ittt eree e st ete e eeesvaene 4
2.2 TCP/IP: The Language of the Internet.........coccoeeeevieniiiinininiiccccceceeee 6
2.3 Risk Management: The Game 0f SeCUrity.......c.cocceveenveueiicincnernecieercceeeene 13
2.4 Types and Sources of Network Threatscooceeieveniiniennennieninenereeeeeeeeee 14
2.5 FITEWALIS ... ettt ettt ettt et st ae et e ee 20
2.5.1 Firewalls DefInitionsccocciiiiriiiiiienieeiciieen et s 20
2.5.2 Types of Firewallsccociiiiiiiiie e 23

2.0 SUININATY ..evtiiieeeitieeieriitee s ereeesert et e eeaatees s steessseeesteeeesbteesesreeesnnbeeessneseesneesesanane 27
Chapter 3: FIrewall TEeStNEccciriiiiiiiiiieeteeetcceterct ettt 29
3.1 PaSSIVE TSI o ettt ettt ettt nene e 29
3.1.1 Vulnerability TeStNEcovvuiieeiiireiiereieen ettt eite e et sveee s 30
3.1.2 Real TIME TESHIE ..eeoreereiiireeeeiiereiee et ete ettt eete st et e e sonessnnne s 31
3.1.3 Formal Network Building..........ccoeeeieiniiiiiiie et 33
3.1.4 Algorithmic APPrOachi....cccceieciiiereiiiieieeriiecereeer et ee e e 35
3.1.5 QUETY ENINES ..ot ceiees e s st etresne et esseasase st s et smeesnaeeerane e 39

3.2 ACHVE TOSHIME ettt ettt ettt se et sana 40
3.2.1 Graphical ANalYSIS .o.eeimiiiiee ettt s 40

vi

3.2.2 Formal POlICY WIHIE ...ccorurieiiiiiiieieiieetreiresee sttt ettt e s e 42

3.3 SUMMIAIY .ottt ettt s et e et e e aee s sabeesebaas e s sanee s e bmneeessematesanns 44
Chapter 4: A New Approach for Automated Firewall Testing and Validation 45
4.1 General Presentation of the Frameworkcccoccvviiniciiiiniiiiieeieeerenee 46
4.2 The Different Modules of the Framework ..o 48
4.2.1 FIT€WAl PAISEI ...ccoeiiieeeeiiieieeeee ettt e 48
4.2.2 Misconfiguration Removalcc.ccooioviiniiniieeece e 49
4.2.3 Test Set GENETAIONuvveereriiiiieecetie ettt steesnae et sree s s e s esneeaneees 53
4.2.4 Test EXCCULION ...eeruiiieeiiieeeniie et ettt ettt ste e st esaree e saee e s 58
4.2.5 LOg FIle ParSer.....cveieeciiiieiieceeeiteee ettt sttt e e e 60
4.2.6 ReSUIS ANAIYZET.....cocccieieiiereeniieire sttt et 61
4.2.7 RUle UPAater......cooiiiiiieiiiieetete ettt s 62

4.3 SUININIATY coeeeeieeieiieneitreereeeesaeassaes e nteeeessaae e nnmresseammteeesaaeeaasasnssrsaeeaesnraetaneeessanenenes 64
Chapter 5: Implementation and Case StudY.......cc.cooereeierieicenicriienieceeeee e 65
5.1 IMPIeMENtationcccoiiiiiiiii e ettt e s 65
5.1.1 Software and Tools USed.......cc.oovriieeiiiiiiiiiieie et 65
5.1.2 UML Class Diagram of the Frameworkcccoooeneiiviniininiiiiinienieeeeee 67

5.2 CASE StUAY nneeiiieeee et e et e e et e st e st s e hae e e e sneen e et 69
5.3 SUINIMATY ..ovveriverieeeeeeeesetreerenr e eeteeeaerenresreeeeseaeesseeeesseacnnassesanneereesasessntaeseessennsnraeessas 78
Chapter 6: Conclusions and SUMMATYcc.ccooicieriiiiiniteceee e 80
6.1 ACRIEVEIMENLS.......oivirieeieitiieeeetieete et ee e ettt et ree e e e et e e s e se e e e s aeenmnesanebaes 80
0.2 FULUIE WOTK ..oiiiiiiiiiiieie ettt ettt e e s e aenaeas 81
RETEIEICES ... ittt ettt ettt et e e e sanesaae s 82

vii

List of Figures

Figure 2.1: The OSIMOdE].......ooioiiiiiieeee e e 5
Figure 2.2: The IP REAAET........ooiviieiieieeeece e e s 7
Figure 2.3: IP SPO0fiNg AttACK ..c..evuiiiieiieiieeeeceeeeeeee e e e 8
Figure 2.4: TP HIJACKING....c.oiieiiiiiiinieieeie ettt 9
Figure 2.5: 3-Way TCP Handshake.........ccoovieiieieeeeceeeeee e I1
Figure 2.6: Denial of Service Atackooveueceieiiieeeeeeeee e, 15
Figure 2.7: Bastion HOSt.....c..ovviiiiiieeee et 21
Figure 2.8: DMZ with one firewall..........ccccoooirieoiioieieieieccceeeeee e 22
Figure 2.9: Proxy Server architeCtureo.eoeeieueeeeueecreieneeeeeeeteeiee e 23
Figure 2.10: Example of an application level firewall...............cocooooivviiiiiiiiceeen. 24
Figure 2.11: Packet Filtering Firewallcccocouiviomiiiioiiiiceeeeeeeeeeeeeeee . 25
Figure 3.1: Blowtorch Packet FIOWc..c.oouiiiiiiiiicceeeeeeeeeeeee e, 31
Figure 3.3: Vigna’s Firewall Testing Approachccocoooeveiiiiiiiccceieeeeeeeee, 34
Figure 3.4: Different Rule Configurations.............cc.ovoieuiiiiiiieieiceeeeeeeeee e 36
Figure 3.5: Policy Segmentation Techniquecccooveeieriiiiicecccceeeeeeee. 37
Figure 3.7: Fang Query Engine Data FIOWc.ocoiiiviiiiiiieceeeee e 39
Figure 3.8: Graphical User INterfaceo.ooeoviuiieioeiicicceeeeeee e, 41
Figure 3.;0: Or-BAC Model in XML.....c.oouiiiiiiieiececeeceeeeeee et 43
Figure 4.2: Testing Framework Schema.......... et r e eerens 45
Figure 4.2: Misconfiguration AIZOTItRIM...........ccoieievieieieeeieeeeeeeeeeee e 51
Figure 4.3: Test Generation AIZOrthm...........ccoooeveiiviiiioiceieieeee e 53

Figure 4.4: Test Bench SChemacooiiiiiii e 58

Figure 4.5: Correction Algorithm’s Pseudo codeoooovvviiiivciiiiiiiiniceeeeeee, 61
Figure 5.1: UML Diagram of the test frameworkccccoociiiiniiniiiciiiiieeeee, 67
Figure 5.2: Our GUI interface for Firewall testingcccoveveverivciiniieeiiieniiieiece e, 74

ix

Table 3.1:

Table 4.1:

Table 4.2:

Table 4.3;

Table 4.4:

Table 4.5:

Table 4.6:

Table 5.1:

Table 5.2:

Table 5.3:

Table 5.4;

Table 5.5;

Table 5.6:

Table 5.7:

Table 5.8:

Table 5.9:

List of Tables

Rule ANOmaly TYPES ..cuuiimiiieieeeieee et 36
Format of the Parsed Rule Setccooovimiioiiiiiiiiceeeeee e 48
Correction to the Current Algorithm Techniquecocooovevvveeeeeiieen 52
Network Information Fileccoooooiiiiiiiiiiccceeececee e, 54
Iptables Lo ENIY c.cocooiiiiiiieieeeeee et 59
Useful 10g file infOrmationc.ccoovieviuieeeeeeicceeeeeeeeeeee e 60
Error Detection and Correction EXampleooovveiiieiiviiiicieeeeeeeeeee 62
Specifications of the Tested Firewallcocooooeieiiiiiiccecee 68
Input configuration file.........cccooieiiiiiiiei e 69
Parsing Results of the Firewall File........cococooviiiiiiiiiiieeeceec 70
Results of the Misconfiguration Removal Algorithmcccccoooevieviinnnenn.. 71
Generated Packets per Rule........coooooviiiiiiiiiieceeeeeeeee e 72
Faulty packets with their deciSionccoooieiieeioiiiecccceeeee e 74
Updated RULES......cccoiiieiieieceeeee ettt 75
Output configuration fileccccooiiiiiiiiiniiic e 76
Comparison with other testing approaches..............ccecveveieveecceeeeeeeienene. 77

Chapter 1: Introduction

The Internet has dramatically transformed the manner in which organizations and
individuals conduct business. The increased communication potential and efficiency of
network technology have made e-commerce, web-based business-to-business operations,
and global connectivity integral components of successful business strategies. For an
ever-increasing number of enterprises, the online presence is crucial. At the same time,
however, this global network has created a variety of problems such as intrusions, both
automated and manual, which cause damage that can cost organizations enormously in
terms of money, efficiency, and resources. Thus, organizations must discover methods to
achieve their mission goals in relation to the Internet, while simultaneously keeping their
websites secure from attacks. Given the unsafe nature of Internet protocol’, as well as the
increasing sophistication of attacks to which organizations are exposed, secure and
reliable access to the Internet must be a priority. In effect, a system that protects
organizations while letting them operate in a normal capacity is critical.

Firewalls play that role in the sense that they act as network devices that filter the
ingoing as well as outgoing traffic that passes through them, preventing various Internet
attacks and intrusions [2]. In other words, they constitute a bridge between trusted and
untrusted networks. In this respect, firewalls are the cornerstone of a corporation’;
general security policy. Thus, these devices have to work properly by correctly

translating the security policy of a given corporation or organization. In this sense, the

testing phase of a firewall is the most essential step towards ensuring that the right
functionality of the device is deployed, thus avoiding network leakage and security holes.
Firewalls are placed between a private network and the Internet. They often
represent the single point of failure in an organization’s network security, since all
connections are established through the firewall policing the network traffic for a given
organization. Moreover, firewalls are only as efficient as their configuration.
Configuration is thus a vital task, if not the most significant factor, in the security
firewalls provide. According to [1], most corporate firewalls are poorly configured. The
main reasons for this deficiency are:
. The rising number of rules needed to enforce more and more protectionist policies
» Thelow level, archaic configuration language used to enforce a given policy
The problematic of testing to validate a system is being able to test a system
covering all cases while keeping it feasible. In an ideal world, exhaustive testing would
be conducted. Unfortunately, due to the duration of testing, this objective would take a
considerable amount of time. Random testing can be an alternative, but is just too
inaccurate to inspire confidence. Given the aforementioned situation, there is a clear need
to test and correct each security policy in order to produce a rule set that accurately maps
it. An intelligent method is needed to select the packets used for testing in order to save
time on exhaustive testing and allow for more accurate results than with a random testing

approach.

1.1 Objectives of this Thesis

Having grasped the ongoing need for testing, this thesis presents an automated
framework to fully test and update a given firewall configuration, using an intelligent test
set selection and correction process. This thesis will describe an approach that takes as an
input a given firewall configuration file, tests it, and then corrects it, ultimately producing
an error free configuration file.

The automated testing approach is based on a white box testing approach thanks
to a set of algorithms that take into account the inner configuration of the firewall,
allowing it to obtain an accurate and complete test set. The test set obtained can then be
applied against the firewall. Once the test is complete, a comparison module detects
errors as it tests results against expected values. The last step is to correct and update the
firewall file.

Moreover, the approach starts by translating the rules into a formal language
from the configuration file. Then, a misconfiguration algorithm is applied in conjunction
with a test set generator module that takes into account both addresses and services in the
network to produce test packets, taking into account the environment where the firewall
is tested. This step will then result in a test set that maps the inner functioning of the
firewall in its environment. Next, the test is applied against the configured firewall.
Finally, the obtained results are analyzed for correctness; a firewall updater module
detects the inconsistencies and corrects them.

This method is based on a combination of algorithms and real-time testing to

produce a reduced yet accurate test set. Due to the increasing number of

misconfigurations in actual firewalls, this approach uses the advantages of the
algorithmic approach by removing all misconfiguration errors and optimizing the test set
generation. At the same time, it takes into account the configuration of the firewall as
well as its environment to provide a realistic set of tests, while keeping the test length
reasonable. Also, the test is applied in real time, ensuring the normal functioning of the
device, as opposed to simulation-only approaches where the functionality of the device is

not taken into consideration. In short, this approach is optimized, complete, and real-time.

1.2 Organization of this Thesis

The structure of this thesis starts with an introduction to computer and network
security. Beginning with an introduction to networking, Chapter 2 discusses these
concepts in detail and introduces more advanced topics like TCP/IP and sources of
network threats. A brief introduction to the role of firewalls in a network is also
discussed. After that, Chapter 3 presents a literature review of testing methods used to
solve the complex issues related to firewall testing. Chapter 4 introduces a new approach
for testing a firewall configuration. The chapter highlights the different modules
composing the framework and its functioning as a whole. Chapter 5 describes the
implementation of the testing framework using Java programming language as well as a
case study to showcase the use of the tool. The case study showcases the use of a firewall
configuration from the Linux firewall iptables. The chapter ends with a comparison of the
framework against existing tools. To conclude, Chapter 6 presents a summary of the
research and presents propositions that can be useful to improve the solutions for this

problem in future work.

Chapter 2: Network Security

In today’s increasingly digital world, there exists a greater need to grasps the
fundamental concepts of network security and risks involved. The notion of network
security raises a number of complex problems. While these concerns have traditionally
resided in the domain of trained specialists, this chapter provides an overview of the
relevant issues, along with some background on networking and Internet protocols.
Factors like risk management, network threats, and protection tools like firewalls are
considered. A thorough understanding of network security is essential to comprehend the

growing need to have reliable firewalls in organizations of all sizes.

2.1 Introduction to Networking

A network consists of two or more computers that are linked in order to share
resources such as printers and CD-ROMs, exchange files, or allow electronic
communications. The computers on a network may be linked through cables, telephone
lines, radio waves, satellites, or infrared light beams. An example of a network is a Local
Area Network (LAN), a computer network that spans a relatively small area.

The International Standards Organization (ISO) Open Systems Interconnect (OSI)
Reference Model is an abstract description of communications and network protocol
designed according to layers. The model consists of seven layers, from highest to lowest:
Application, Presentation, Session, Transport, Network, Data Link, and Physical layers.
Each of the layers, as illustrated in Figure 2.1, is dependent upon the ones below, with the

physical network hardware—like network adapters and connecting wires—at the bottom.

OSI Model
Data Unit Layer Function
Host Layers Data 7. Application Network process to
application
6. Presentation Data representation and
encryption
5. Session Inter host communication
Segment 4. Transport End-to-end connections
and reliability (TCP)
Media Layer Packet/Datagram 3. Network Path determination and
logical addressing (IP)
Frame 2. Data Link Physical addressing (MAC
& LLC)
Bit 1. Physical Media, signal and binary
transmission

Figure 2.1: The OSI Model

This model can be readily understood through the familiar metaphor of telephone
communication. The telephone is a device that allows us to speak over a great distance—
the application layer. However, a telephone by itself is useless without being able to
convert the sound of speech into an electronic signal that can be carried over a telephone
line—the functionality made possible by the layers beneath the application layer.
Ultimately, we reach the physical layer—the hardware and infrastructure that connects
the phones to a switch within the system’s larger network of switches. Making a
telephone call involves lifting the receiver and dialing a number, which directs the
request to a central dispatch. From there, the central office specifies the appropriate
phone to start ringing. The session begins when that phone is answered and the two
pérties commence speaking. This dynamic is, in essence, exactly how a computer
network works. For its functionality, each layer of the ISO/OSI Reference Model depends
on the operation of the layer directly beneath.

With this basic conceptual understanding of networking in place, it is useful to

consider a specific example of the world’s most widely used network. The Internet
6

functions as a meta-network—the biggest network of all the networks in the world. To
access an online resource, like a website, does not actually involve connecting directly to
the Internet. An entity connects to a sub-network that ultimately links up with the Internet
backbone, consisting of vast numbers of interconnected, high-speed, and high-capacity
network components like core routers that can only function with a language protocol.
TCP/IP is the most used and common language protocol and is often described as the

language of the Internet. A throughout description of this protocol is provided as follows.

2.2 TCP/IP: The Language of the Internet

The Internet functions using Transport Control Protocol/Internet Protocol
(TCP/IP). Thus, fluency in TCP/IP is required to access the Internet. In terms of the
ISO/OSI Reference Model, IP corresponds to the Network layer, and TCP to the
Transport layer. Any host with TCP/IP functionality, such as an operating system, is able
to support applications, such as web browsers, that make use of the network.
Collectively, the suite of Internet protocols is known as TCP/IP, since the two were
designed together and are inevitably found together, working in tandem.

Among the most significant elements of TCP/IP is not its technological character,
but what might be termed its uniquely social one. Because this protocol is open, it can be
implemented freely by anyone who wishes. Around the globe, members of the scientific
community regularly contribute to the protocol design that drives the Internet, through
their role in the Internet Engineering Task Force (IETF) work groups.

IP, as a protocol corresponding to the Network layer, enables the hosts to

communicate with each other. IP ensures that devices with Internet connectivity are able

7

to identify and reach each other by carrying datagrams; mapping Internet addresses, such
as 10.2.3.4, to physical network addresses, such as 08:00:69:0a:ca:8f; and routing. The IP

header content is described in Figure 2.2.

4-bit 4-bit 8-bit Type of | 16-bit Total Length
Version | Header Service
Length
16-Bit Identification Number 3-bit 13-bit fragment Offset
Flags
8-Bit Time To Live | 8-Bit Protocol 16-Bit Header Checksum
(TTL)

32-Bit Source IP Address

32-Bit Destination IP Address

Options (if any)

Data

Figure 2.2: The 1P header

There are several significant elements that contribute to the incredible flexibility
and robustness of IP as a protocol, like routing and data encapsulation. However, IP was
not designed to provide a reliable service. This means that the network makes no
guarantee about packets arrival, which can cause security problems and this is the major
weakness of the protocol.

IP is vulnerable to various kinds of attacks. Generally, attackers tak; advantage of
the lack of a strong feature within IP for authentication to ensure that packets actually
originate from their stated source. As a consequence, there is no pre-established way to

determine the provenance of a given packet. While this anonymity does not constitute a

8

flaw as such, it is worthwhile to note that the service of host authentication must take
place at a higher layer in the ISO/OS] Reference Model. This authentication is performed
at the application layer, for instance, in contemporary applications, like cryptographic

applications, that call for strong host authentication.

Spopfing 15 A complex attack
wa are fikely to see more of in k.
the Reture, i —

© X convinces B i ¥
Hatits A & a

© B responds with
packetin A,
acknowiedging =
A's session
number and
. © AsB o
€ X fakes ancther I
s T Ry B
acknowleryes
sesgion number,

Figure 2.3: IP Spoofing Attack

IP spoofing occurs when a host claims to have a different host’s 1P address. A
number of systems, like router access control lists, use the sender’s IP address to
determine the admissibility or inadmissibility of packets; IP spoofing is thus a valuable
weapon in an attacker’s arsenal. Packets can be sent to the host that will result in its
taking a particular action. For some applications, login is allowed on the basis of the
requesting party’s IP address. These examples illustrate the way that undependable layers
can result in weakened security. Figure 2.3 illustrates the different steps engaged in a

typical IP spoofing attack. First, Host X disables Host A. Then, Host X impersonates
9

Host A by sending a connection request to host B. After that, Host B responds to host A
along with a sequence number. Eventually, Host A then sends back an answer to Host B
by guessing the sequence number and Host X is then able to fully communicate with
Host B.

A comparatively more sophisticated attack is IP session hijacking, as first
identified by Steve Bellovin [3]. Such an attack, nonetheless, poses an extremely large
risk, particularly since the underground community now offers toolkits to assist otherwise
untrained would-be perpetrators with this illicit execution. In this type of attack, a user’s
session is taken over and placed in the attacker’s control. If the attacker interrupts a user
in the process of sending emails, the attacker can now access all of the user’s information
and perpetrate functions in the user’s place. Meanwhile, the user under attack will find
that the session has been dropped and might proceed to simply login once more,

potentially unaware that the attacker may still be logged in and executing commands.

Irtial Session .

Figure 2.4: IP Hijacking

For a better understanding of the IP session hijacking attack, an example, in
Figure 2.4 is described in the following. Host A is currently in the middle of a session
with Host B. This occasion could be a telnet session, wherein a user is checking email or
using a home-based account running UNIX. Meanwhile, lurking in the network between
A and B, is Host C, run by a malefactor who observes the traffic between them. Host C
can then implement a tool that imitates A to B, while simultaneously silencing A or even
convincing it that B has left the network, as could occur in a crash or network outage. In
the event of a successful attack, within only a few seconds, the user’s session has been
hijacked. Whatever actions the user could have performed are now possible for the
attacker, while B remains completely oblivious to the infraction.

One possible solution to this scenario is to use encrypted versions of applications
in place of their standard telnet-type counterparts. While the session could still be
hijacked, because of the encryption, only garbled nonsense will be visible to the attacker,
who lacks the necessary key or keys for decrypting the data stream from host G. As a
result, the attacker will be rendered incapable of any actions during the session.

TCP, as the transport layer of the ISO/OSI Reference Model, must rest upon a
network-layer protocol. TCP was intended to work in conjunction with IP, while IP was
designed to carry TCP packets. Some significant features of TCP will be briefly

reviewed.

11

Client Server

Figure 2.5: 3-Way TCP Handshake

Perhaps most notable among these features is guaranteed packet delivery. Host A,
when transferring packets to host B, will anticipate acknowledgment of the receipt of
each packet within a predefined time period. If the expected acknowledgement from B
does not arrive, the packet will be resent by A.

The applications run by host B will expect a complete and properly ordered data
stream from a TCP session. Whenever a packet is missing, as above, A will resend it.
Any packets that arrive out of sequence are re-ordered by B before being passed to the
application requesting the data. In that sense, TCP uses a handshaking technique to open
connections. It is referred to as 3-way handshaking or as "SYN-SYN-ACK". The
handshaking works as follows. Client sends a TCP SYN packet to server to initiate the
session. Server, then, sends a SYN-ACK to the client along with a sequence number.

Client, then, answers by sending the ACK flag with the incremented sequence number.

12

Finally, server receives ACK with the valid sequence number and the TCP connection is
then, established. This mechanism, described in Figure 2.5, is designed so that two
systems attempting to initiate a connection for communication can negotiate one
connection at a time independently of each other.

For many applications, such as a telnet session, this system works very well. For a
user, the key is to ensure that the remote host receives each keystroke and that every
packet is received and sent back. The minor, intermittent slowdowns caused by resending
or rearranging lost or out-of-order packets are a negligible problem in these cases.

On the other hand, when it comes to media-rich applications like streaming audio
and video, this system is far from ideal. In such situations, the occasional dropped packet
in a stream of hundreds is of minor matter. Of greater consequence are speed and the
packets’ timely arrival; slowdowns caused by resending lost packets will result in a break
or pause of the data stream. Only after the lost packet is resent and received can it be
slotted into the appropriate position in the data stream and accessed by the application.

A simple transport-layer protocol, User Datagram Protocol (UDP), provides fewer
features than TCP. UDP is therefore not considered robust or reliable. Still, while UDP is
not suitable for all applications, there are those for which it is better suited than the more
sophisticated TCP.

A major advantage of UDP is the parsimony of this protocol. The fact that it need
not track the packets’ sequences or ensure their receipt results in a lower overhead
compared to TCP. The protocol’s simplicity contributes to its suitability for streaming-
data applications, since it involves expending less effort for rearranging out-of-sequence

packets or resending lost ones. After understanding how the Internet operates, especially

13

the TCP/IP protocol, and the threats that associated with it, an analysis of the risk
management is developed, in other words, the level of security that we need to ensure

against the access that we need to have and the compromises that should be done.

2.3 Risk Management: The Game of Security

When considering risk management, there are no one-size-fits-all solutions, nor is
any one firewall necessarily the best for a given organization. In all cases, the extremes of
total security and total access must be moderated. In practice, absolute security can only
be attained in the case of a machine disconnected from any network and made physically
inaccessible. Of course, this machine would then be of no practical value whatsoever. At
the other extreme, absolute access—without any passwords, authorizations, or other
security measures required—would have the virtue of absolute convenience. From a
security standpoint, however, this increased access would be equally undesirable, given
the risks associated with the Internet. Eventually, the damage caused by attacks or break-
ins could render such a machine just as useless.

The same principle is constantly applied in everyday life: choices must be made
about what level of risk is acceptable in a given situation. Every time someone starts a car
or boards an airplane, the possibility of danger is introduced. We accept these risks in
exchange for the convenience involved, while in other situations convenience is
sacrificed in favor of greater security. Generally, we all operate within certain pre-defined

boundaries that dictate which risks are acceptable and which are not. In situations where

14

the danger associated with an action clearly outweighs its convenience, most of us will

choose the safer alternative.

In terms of organizational security policy, then, the same general rule applies. It
must be decided what point on the spectrum between absolute security and absolute
access is appropriate for that organization’s needs. An effective security policy should
clarify the acceptable level of risk and dictate the mechanisms used to enforce those

boundaries in a consistent way.

2.4 Types and Sources of Network Threats

Having reviewed the relevant networking context, we can now consider the
implications for network security. To begin with, the various kinds of security threats
faced by networked computers will be described. Next, some of the precautionary

measures that can be taken are outlined.

15

Attatiker machin ng client
progiam

b

> | < R | @ . B

Handler Handier Handler Hondler Hantinr Hangier

Compromised Compromited Compromised Compramisesd Compromised Compramised
. f“ S
{‘A’w‘
Chatity
RITEL
Internet

Figure 2.6: Denial of Service Attack

Perhaps the most pernicious attacks are Denial-of-Service (DoS) attacks. The
ease of perpetrating such attacks, the difficulty or impossibility of tracking them, and the
fact that an attacker’s requests cannot easily be refused—without compromising service
to legitimate users—make DoS attacks notoriously tricky to handle. DoS attacks, shown
in Figure 2.6, operate according to a simple premise: more requests are sent to the
machine than it can effectively process. In the underground community, toolkits circulate
that simplify the process further. A program is run that can be instructed to target a
specific host. Then, the program connects to a service port, sometimes using forged

packet header information to misidentify its origin and then immediately drops the
16

connection. By sending a large number of requests per second to which the host is able to
respond, the program renders the host unable to answer all of the requests. In the
meantime, legitimate requests—like those from users trying to access a website on the
server—will also be prevented from being serviced.

The risks of getting hit by such an attack can be mitigated in a few ways. One is
not running visible-to-the-world servers too close to capacity. Packet filtering can be used
to keep the network space clear of packets that are obviously forged—Ilike those claiming
to originate from one’s own hosts, from addresses reserved for private networks as
defined in RFC 1918 [4] and the loopback network (127.0.0.0). Finally, it is helpful to
stay updated on security patches for hosts’ operating systems.

The term unauthorized access refers, at a high level of abstraction, to various sorts
of possible attacks. Overall, such attacks aim to access any resource that the computer
should not grant the attacker. In the case of a web server, for example, the host should
deliver the requested web pages to any user; it should not, however, provide command
shell access to any user, except local administrators or anyone else confirmed to have the
proper authorization.

Clearly, preventing unknown and untrustworthy parties from executing
commands on server machines is essential to the integrity of the system. Generally, the
severity of the problem is classified according to normal user and administrator access.
Normal users can perform certain actions, like reading and mailing files, which would be
undesirable for an attacker. In some cases, retrieving confidential documents may be all
that an attacker hopes to accomplish. In other cases, an attacker might seek administrator

access in order to make configuration changes to the host, resulting in even more

17

dramatic harm. Examples include changing the host’s IP address or putting in place a
start-up script to prevent the machine from starting up effectively.

According to the threat model, the key question to ask is: what is it that one is
trying to protect oneself against? A company’s sensitive documents or other data that can
be accessed by a normal user may cause a great deal of harm if accessed by competitors,
enemies, or the public. Thus, break-ins occurring on normal users’ accounts can have
significant implications for security, in the form of public relations disasters or the
leaking of closely guarded information.

Many of these sorts of break-ins are simply the work of relatively harmless, if
misguided, thrill-seekers. An attacker may have no interest in breaking into a company’s
network beyond the excitement of the deed itself. As discussed below, however, other
attackers may have more malevolent intentions. Keep in mind that the former, thrill-
seeking breed of trouble maker can be enlisted in the service of the latter, more
pernicious enemy or competitor.

The most destructive kinds of attacks and break-ins can be divided into two
classifications: data diddling and data destruction. Data diddling is, in some ways, the
most harmful, since it can be more difficult to initially detect. A data diddler may modify
spreadsheet data, alter key project dates and deadlines, change employee payroll deposit
information, or otherwise interfere with relevant company data. Such tampering may not
become apparent until weeks or months later, when a discrepancy finally turns up. By
this point, tracking down the source of the problem will present enormous difficulties.
Even then, the difficulty of establishing order in the face of unsafe data remains. Data

destruction is often the work of perverse troublemakers who simply enjoy causing trouble

18

by deleting files. The resulting damage to an organization’s computing infrastructure can
be comparable to an arsonist setting a fire that destroys all of the physical equipment.

One obvious question is: how is it possible for attackers to gain access? The
answer 1s that any link to the exterior world—be it through an Internet connection, a
modem, or even staff members’ physical use of equipment—represents a point of
vulnerability. It only takes one unscrupulous employee to uncover sensitive information
like passwords, contacts, and other data. Thus, all such vulnerabilities need to be
carefully considered before security issues can be effectively tackled. All points of access
to an organization’s computing system need to be secured, in keeping with that
organization’s security policies.

Several steps can be implemented to reduce the risks of attack and mitigate their
consequences, based on the types of common attacks identified above. These measures
include both high-level practices to prevent security breaches and damage control

initiatives that can be taken to minimize the harm caused by a successful attack.

The benefits of regularly and thoroughly backing up data are not limited to
security implications. A backup policy, as dictated by the organization’s operational
needs, ought to be accompanied by a comprehensive recovery plan. In the case of
disaster, such as fire or flooding, the backup policy and data recovery plan should
function together to allow normal operations to be restored, even from a remote location
if necessary. The same is true for electronic failures or malicious damage caused by

attackers.

19

Despite the fact that this may seem like common sense, such details often escape
the attention of many. Simply put, any data that need not be available to outsiders should
not be made accessible. Neglecting to protect this information can needlessly compound
the damage caused by break-ins.

An organizational security system is only as strong as its weakest link. If the
entire system can be compromised by access through a single component, the
organization’s overall security will be weak as a result. Redundancy in the system can
help eliminate some of the risk associated with break—ins.

Staying abreast of security-related advisories from the relevant dealers can
prevent one of the most popular, and effective, means of attack: taking advantage of old
bugs in order to break into the system. Somebody familiar with the system should stay
closely updated on operating system patches. Besides information and advisories issued
by commercial vendors, security organizations like CERT[5] and CIAC[6] can be a

valuable source of information.

Within the organization, a good practice is to have at least one employee
responsible for taking note of the latest developments in the field of security. This person
can simply stay informed about advisories and other news related to security and become
familiar with basic security protocols like the “do”s and “don’t”s found in resources like
the “Site Security Handbook™. The person need not be a technical specialist or otherwise
possess special computer expertise. Armed with knowledge of the latest issues, such as
current software problems, this person can be a valuable resource to confer with on

matters of organizational security.

20

2.5 Firewalls

The Internet and other computer networks represent a two-way communication
pathway through which information both enters and leaves a connected organization. In
some contexts, this bilateral flow of information can be detrimental. For instance,
proprietary data may be easily accessible from inside an organization's Intranet. A
firewall, a set of components designed to act as a fence between one network and
another, are commonly used to form a partial barrier between internal and external

networks.

2.5.1 Firewalls Definitions

Before we proceed, some terms associated with firewalls will be defined. This
introduction is important to understand how the designs involved in securing a network
work. The terms that we are going to define in the following are bastion host, router,
access control list, demilitarized zone, and proxy.

A bastion host, depicted in Figure 2.7, is a computer on the network that regulates
contact between an Internal network and any untrusted network, like the Internet.
Designed to resist attacks, bastions are general-purpose computers dedicated to this
purpose, generally running a customized version of a UNIX operating system. All other

service functionality is removed, or limited as much as possible, in order to reduce the

external threat to the system.

21

Bastion Host/
Exterior Router

=

Phrimuly Beluuk

interior Router |55

WONL R W W

Figure 2.7: Bastion Host

A router is used to connect networks to each other. These special purpose
computers are also responsible for functions like routing or traffic management on
connected networks. By using an access control list (ACL), some routers and servers are
able to identify permitted origination addresses, destination addresses, and destination
service ports by analyzing various data about incoming and outgoing packets.
Effectively, the ACL can allow the router to perform selective filtering.

The demilitarized zone (DMZ) is a net:)vork that intervenes between the trusted
and untrusted network. It is not itself part of either one, but connects the two to each
other. This function makes it a key element of the firewall, since the DMZ includes layers

of protection between the network and anyone attempting to break in via the Internet.

22

Figure 2.8 presents architecture of single firewall DMZ. In this case, the firewall must
have three network interfaces, one for the external network, the second for the internal
network and the third for the DMZ. The firewall in this case, must be configured to

handle the traffic on these three interfaces.

Router to External Metwork

Figure 2.8: DMZ with one firewall

A proxy is one host acting in place of another host. As in Figure XX, They can
allow hosts on an internal network to access Internet resources while being unable to
directly connect to the Internet. The proxy server acts on the application layer of the OSI
Model and controls traffic on that level as shown in Figure 2.9. For example, a host
capable of requesting online documents from the Internet can be configured as a proxy
server. Intranet-based hosts can be configured as proxy clients. Every time a host on the
Intranet fetches a given webpage, the web browser connects to the proxy server to request

the URL. In the following section, different kinds of firewalls are described.

23

Primary Server
(also running
proxy server)

» Apglicalion Server
» Internet Conlrol service

?C ! KMacirtosh Linus / Unix
Workstations Workstations Worksiations

Figure 2.9: Proxy server architecture
2.5.2 Types of Firewalls

The next considerations are the three main types of firewalls— application gateways,

packet filtering, and hybrid systems—and their features.

24

4 Dissaiowed Qf Aliowed

Traffic is tiltered based on

specified application rules, such |
as specified applications (such as
a browser) or a protocel, suchas

FTP, or combinations

Unknown traffic is gllowed up 10
the top of the Network Stack.

Incoming Trathic Allowed Quigoing Traffic

Figure 2.10: Example of an application level firewall

Early firewalls functioned as application gateways, or proxy gateways. The
application gateways consist of bastion hosts running software designed to let them
function as a proxy server. In terms of the ISO/OSI Reference Model, the software
operates at the Application layer. All clients behind the firewall need to be configured to
use the proxy before they can access resources and services on the Internet. In terms of
security, because this kind of firewall prevents any default access to traffic, they are
considered the strongest. The security offered by these systems, however, comes at the
cost of speed. Generally, the number of processes required to return a request make them
the slowest. Figure 2.10 shows how the filtering occurs in incoming and outgoing traffic
in an application firewall.

With packet filtering, a router uses access lists (ACL) to regulate incoming traffic.

The default setting allows all traffic to pass through, with no restrictions. ACLs allow

25

security policies to be implemented in terms of access between the internal and external

networks.

Rewies or blooks packets, a8 i
determingd by site's securdty policy. Y

= 3 | Screening Pouter
SR

A &

H

= ’ LT i T

Figure 2.11: Packet Filtering Firewall

Packet filtering, Figure 2.11, compared to application gateways, involves
comparatively low overhead. This property is due to the fact that access control takes
place at a lower level, on the ISO/OSI Reference Model, generally the transport or
session layer. For this reason, and because the routers employed by packet filtering are
special purpose machines designed to function optimally in a network environment,

packet filtering is also usually a faster system than application gateways.

Moreover, since this filtering takes place below the application level, new

applications can be supported with relative ease. The support of new applications either

26

happens automatically or involves specifying particular types of packets that are allowed
to pass.

However, this technique is not without its flaws. As noted above, TCP/IP does not
include any mechanism for authenticating the origin of a given packet. Restricting traffic
thus involves employing layers of packet filters, and all that can be ascertained for certain
is the network from which the packet originated. By using two layers of packet filters, it
is possible to distinguish packets originating from the Internet and those from within the
internal network. The host itself cannot be authenticated.

Some systems have been developed that seek to combine the strengths of each of
these approaches; thus, retaining the stronger security of an application layer gateway,
while offering the greater flexibility and speed associated with packet filtering. This
integration involves a two-stage process, in which authentication and approval is first
granted to new connections at the application layer with the rest of the connection
relegated to the session layer. The connection is then monitored by packet filters,
ensuring that packets which have already been authenticated and approved at the
application layer are allowed to pass.

Another option is to combine packet filtering with proxies at the application layer.
This technique offers the security advantages of protecting machines, like web servers,
which provide Internet resources, while at the same time functioning as an application
layer gateway for an internal network. This approach also has the advantage of setting up
more obstacles through which an attacker must penetrate to access the internal network.
In order to break in, an attacker must get past the access router, bastion host, and choke

router.

27

In order to choose the most suitable solution from among the many options
available, organizations are well advised to consult with a security expert who is familiar
with their security policies. Based on those policies, firewall architecture can be designed
and built to optimize security in keeping with stated objectives, while also taking into
consideration other factors like the required services, ease of use, and scalability.

Often, the term firewall is used to describe a single component, like a bastion
host, that can ostensibly be used all by itself to keep networks from harm’s way. In fact, a
firewall is a series of components working in conjunction to protect the system from
attack. In the case of a single component, of course, there is only one barrier that an

attacker needs to contend with in order to break into the internal network.

2.6 Summary

This chapter has presented some basic issues involved in network security, along
with some of the considerations that networked organizations need to keep in mind in
order to minimize the risk of attacks and break-ins. The nature of TCP/IP protocol, which
lacks any inherent means for host authentication, entails a certain level of vulnerability
for any machine connected to the Internet. Network security testing is thus a crucial step
for mitigating the inevitable risks. The most common types of attacks have already been
outlined. As we have seen, the harm caused by DoS attacks or unauthorized access at the
user or administrator levels can be devastating to an organization. Firewalls, as collective
assemblages of security components, can provide solutions tailored to an organization’s
needs—effectively translating security policy into practice. However, certifications and

other quantifications can be unreliable indicators of a firewall’s practical efficacy. More

28

comprehensive methods for firewall testing are key to ensuring the functionality of these
systems. In that sense, firewalls are as good as the policy they are configured to
implement. When testing firewalls, we are essentially seeking to determine whether
packet filtering has taken place effectively. To accomplish this goal, an efficient and
complete testing method should be implemented.

In the next chapter, the different methods that have been developed and tested to
date in the field of firewall testing are reviewed and compared. As discussed next, the
area of firewall testing can be divided into active and passive testing methods. Active
methods help system administrators in the writing of the policy while passive methods

take existing firewall configurations and correct them.

29

Chapter 3: Firewall Testing

Firewall development and implementation is constantly being improved to
accommodate higher security and performance standards. In contrast, the testing of
firewalls has for a long time not been taken as seriously as it should {1]. In the last couple
of years, however, more research in the field of firewall and network security testing has
been taking place. Methods have evolved from vulnerability testing of firewalls using
tools, like SATAN [7], to more advanced techniques that take into account the firewall
rules to produce a corresponding test.

To fully grasp the issues involved in firewall testing, the basics of network
security testing and the most popular methods used to test a network for security breaches
and functionality must first be discussed. Then, the latest state-of-the-art for firewall
testing will be explored in greater depth. Previous work in firewall testing can be divided
into two categories. On the one hand, passive methods use a given firewall configuration
and develop various methods to test it. Some methods use a predefined test set while
others, more advanced, use the actual firewall configuration and extract tests from it.
Active methods, on the other hand, look for ways to avoid errors during the writing
process of the configuration rules by developing algorithms and formal languages on top

of low level firewall rules or by using graphical interfaces that are more user-friendly.

3.1 Passive Testing

One of the two major methods for firewall testing, namely passive testing, takes
an already-configured firewall device and performs operations on this same

30

configuration, whether to remove mistakes by analyzing the configuration or by

performing a test and analyzing the output, be it log file analysis or program output.

3.1.1 Vulnerability Testing

The first real-time testing technique ever used was based solely on vulnerability
testing» using tools like SATAN [8]. SATAN is used to identify network security
vulnerabilities and misconfigurations. Administrators frequently use this publicly
available tool to identify weaknesses in a network’s security-—however, it can be used by
attackers for the same purpose. In article [7], SATAN is used to test two popular
firewalls, namely, TIS [9] and SOCKS [10]. Test cases include known vulnerabilities and
hence do not take into account the firewall rule set. Moreover, the test does not ensure
that our network is protected against new types of vulnerabilities. Finally, for this test, a
network needs to be already set up; testing comes afterwards, leaving the private network
vulnerable for a certain time window. This type of tésting is time-consuming and can
demand costly resources. In article [11], a CASE tool is used to derive test sets after
formally modeling the network surrounding the firewall. A mechanical approach is used
to derive test-cases that check for common network vulnerabilities and threats. This
method takes into account the network topology as it goes further than SATAN.
Unfortunately and just like SATAN, the approach uses simple check lists for

vulnerabilities without taking into account the particular configuration of the firewall.

31

3.1.2 Real Time Testing

PacketIter
Ip I Ty Yool

I —

PacketScheduler

packets

PacketTransmit

-

t

i

!

I

!

!

|

B I
Transmit |
I

I

I

!

t

1

I

I

I

I

PacketIO
- Iolo Iloz 1003 Y s

[Firewall under test I

I

PacketIO
0, 10, .. IOu_]}

objects

Receive

packets I PacketReceive l

T

I 1 . PacketIter
o 1 o=i f objects

[|

Figure 3.1: Blowtorch Packet Flow

Blowtorch in article [12] is another example of real-time testing. Blowtorch is a
C++ framework designed for testing firewall rule sets in the process-control environment,
where the cost of failure is high and extensive testing is justified. Blowtorch tests the
firewall in isolation, connected only to test equipment. It has more capabilities as it
includes a packet generation module, supports handshaking as well as allows for traffic
capture and replay. The C++ implementation of the framework is based on the packet

flow described in Figure 3.1. In that sense, the flow is being inspired from the real

32

functioning of the firewall and simulates the packets entering and exiting the latter. As
the tool is specifically designed for process control environment, its main focus is in the
real time part of testing. Unfortunately, it lacks an important feature: it does not generate
tests based on the internal specification of the firewall. The test generated remains then
incomplete.

Further improvement has come with PBit [13]. PBit is a pattern-based testing
framework for iptables. It contains a collection of test templates. For example, to test the
protocol options for iptables, we use the following template:

ProtocolTest(rule-proto, test-proto, direction)
The input domains for this test template are:
rule-proto: {tcp, udp}

test-proto: {tcp, udp, icmp}

direction: {inbound, outbound}

Figure 3.2 is an example of a multiport template in PBit as well as the options
available for generating a test set. From the interface, you can select protocols, input
source and destination ports as well as common ports. Then, it uses regression testing
with the help of parameterized test cases that can be configured in the user interface to
reduce the test overhead. Just like the previous tool, PBit does not include tests based on
the firewall specification and thus cannot produce accurate test cases based on the its

functioning.

33

Figure 3.2: PBit multiport template

3.1.3 Formal Network Building

In formal network building approaches, we model the network as well as its
elements to test a firewall configuration. Computer networks are composed of hosts
connected by communication links. Hosts are connected to the communication links by
interfaces, through which messages are sent. The previously described network model
can be used to model vulnerabilities as well—for example IP spoofing. This attack

usually happens when a host tries to masquerade as another host. In article [14], a formal

34

method similar to what was just described 1s presented. In order to test the firewall, the

following steps are presented in Figure 3.3.

Network | Reguirement | Condition | TestCase | Test

Maodeling | Modeling | | Verification |~ | Generation | | Execution

Figure 3.3: Vigna’s Firewall Testing Approach

The proceeding measures must be taken to test firewalls. First, a program models
the network using network topology typified by hypergraphs and trust relations using
trust vectors. Requirement modeling then specifies the types of vulnerabilities against
which the network has to be protected. Condition verification is used to ensure that
sufficient conditions satisfy the requirements of the given firewall. In test case
generation, the set of messages that should be obtained is derived for each requirement.
Then, using monitors, whether the configuration matches the policy can be determined.
During the test execution phase, the messages that correspond to the generated test cases
are injected and verified for correctness.

The main drawback of this method is that it is only a model and fails to take into
account the real functioning of the firewall. Also, this formal representation is not
intuitive and requires the administrator time to become accustomed to the formal

language. Moreover, this approach disregards the inner functioning of the firewall as it

35

tests for common vulnerabilities. The test generation also generates one test per case,

making it inaccurate and not necessarily covering all cases.

3.1.4 Algorithmic Approach

Work in algorithmic research for firewall testing and error detection has been
conducted in several projects to date. On the one hand, we have tools [15,16] that are
used to detect anomalies as depicted in Table 3.1 and Figure 3.4 and remove them using
one or more algorithms. The most advanced work in this field can be found in article
[15]. The approach is can be considered the most general and the most simple. They
consider any misconfiguration a redundancy or a shadowing. Two algorithms are used in
this approach: an algorithm that detects and removes shadowing and a second one that
detects and removes redundancy. In this way, when applying both algorithms
sequentially, we get misconfiguration error free rules. However, these tools do not
guarantee an error-free rule set, since they do not take into account typographical or

policy errors.

36

a) Correlated b) Inclusive c) Disjoint

Figure 3.4: Different Rule Configurations

Shadowing anomaly: R2 subset of R1, R1 decision # R2decision
Correlation anomaly: Some of R2 subset of R, vice versa, R1decision # R2 decision
Generalization anomaly: R1 subset of R2, R1 decision # R2decision

Redundancy anomaly: R1 subset of R2, R1 decision = R2decision

Table 3.1: Rule Anomaly Types

On the other hand, we have algorithms that analyze rules and policies to generate
an efficient test. In Table 3.1, we describe the four types of anomalies, namely
shadowing, correlation, generalization and redundancy. Shadowing consists of covering
the whole address space of a rule by another rule, the consequence is that the shadowed
rule is never used. Correlation, on the other hand consists of having some address space
of one rule that are covered by some address space of the other rule, the covered address
space 1s never used in this case. Generalization anomaly consists of having a rule that is a
subset of another rule. The consequence is that the address space of the subset rule
contained in the other rule never gets triggered. Redundancy is only different from

Generalization in the sense that both rules have the same decision. As in article [16], a

segmentation approach, in Figure 3.5, is used to intelligently select packets to be used for

37

the test. In that sense, a system is used that is capable of smart selection of test packets
using information about the network and the policy. After that, packets are selected to
cover the whole space of possible packets, in the best possible manner. To that end,
weights are used to select packets based on the segmentation and the precedence of rules
in the rule set. The different steps to get to the intended result are the following. First, the
address space is partitioned into segments based on the policy, as depicted in Figure 3.5.
In fact, rule address space is partitioned into segments with each segment covering a
unique address space. After that, the importance of each segment is calculated. Then, the
rules from each segment from the firewall are extracted. Finally, by injecting these test

packets, the output can be logged and analysed.

e, e

{a) Poilicy address-space (b} Segmented sddress-space

Figure 3.5: Policy Segmentation Technique

This packet selection method guarantees a much better and more accurate test
than the previous methods. One major problem with this method is its latency, using a
large set of rules when dynamic firewalls are used. In fact, the complexity of the

algorithm is dependant of the initial address space for segmentation. Moreover, the

38

testing time can increase with an exponential factor. In fact and due to the recursive

loops, see the algorithm in Figure 3.6, the complexity of the algorithm is O(2").

SEGLIST — A
AddSegment (InitDomain A A, defAct
for all rules: i =1 to n do

bl i

EN for segments: j = SEGLIST.Count downto 1 do

5: S = SEGLIST[j]

6: IncSeg — S A5 A AS(R;) {Included part}

7: ExcSeg +— 5. AS A —AS(Ry) {Excluded part}

& if IncSeq # Seg.AS then {Scgment not contained in

the Rule’s AS}

9: if IncSeg # @ then

1 AddSegment (IncSeg. S Ry W {Ri}. S Houe.
S Reps V{R: D

i AddSegment (ExeSeg. S .Rin. S Bowe U {R:},
S Rerr U{R D

| ¥4 else {no intersection of rule and segment}

13: AddSegment (ExeSeg, S Hin, S Row 1V { R},
S.R, 7 { R })

14: end if

15 else {Segment is inside the Rule’s AS}

t6: AddSegment (IneSeg, S. R U {Ri). S Bous.

S R 7}
17: end if
18: SEGLIST.Delete {Segment j) { delete original segment}

19: end for
4y end for
21: return SEGLIST

Figure 3.6: Policy Segmentation Algorithm

39

3.1.5 Query Engines

Query engines like those in [17] answer questions about the firewall’s
configuration and its network. Figure 3.7 shows the data flow of a typical query engine.
They take as input different firewall configuration files. Topology definition is then used
to parse the configuration files into a language that the analyzer can process. The user
thus interacts with the query engine in a query-and-answer session, taking place at a high
level of abstraction. For example, the tool is able to answer such questions as which
machines can reach the DMZ and with what services. This tool therefore serves a
complementary role with respect to existing vulnerability analysis tools. It can be
implemented prior to the deployment of the security policy; it functions at a more

intuitive level of abstraction; and it deals with several firewalls simultaneously.

- Topology Definition
Configuration File
. {MDL Program)
{e g Cisco Router I0S)|
) % Analyzer Program
Configuration File T
{e.g, Lucent Firewall) ol
Query] Answer

Configeration File User

{e.g. Cisco Router IOS})

Figure 3.7: Fang Query Engine Data Flow

40

The main disadvantage of query engines, however, is that they can only manually
detect errors. The system administrator’s job is to formulate these queries. The method is
not automated and lacks precision. It depends too much on human factors, the most

significant being experience.

3.2 Active Testing

Active testing methods take the reverse approach. Given that most errors are the
consequence of a faulty translation of the high-level policy into low-level rules, tools and
methods to avoid these errors have been developed. In the field of active testing, two
main approaches have been developed: visual graphical interfaces that are intuitive and
easy to use and formal languages that are closer than the high level policy that reduce

errors in the process.

3.2.1 Graphical Analysis

In articles [18, 19], for example, intuitive graphical interfaces are used. A graph,
Figure 3.8, is used in article [18], to detect overlapping mistakes as well as masking
mistakes when writing the rules. Colors are also used to help correct and spot those
errors. There is also an editor that is used so the system administrator can manually

correct mistakes.

41

Figure 3.8: Graphical User Interface

On the other hand, an entity-relationship model in [20], illustrated in Figure 3.9 is
used to derive firewall rules from that diagram. The entity-relationship model contains, in
a unified form, global knowledge of the security policy and the network topology. A
model compiler is used to derive this model into low level rules. The model is not
complete as it neither covers all cases nor takes into account the all redundancies and

shadowings leaving the final rule set error-prone.

42

Zone — OI18-10-05€
Consists of —_——p One-to-many
Gateway-Interface[=% G vis "
» eway
Adjacent Zope. ____f [_ erfaces
m
face Host > Host
Host Group]
Consists of r > w
{P Range} I'—_’_' Assumed Roles
Contains |
- > Rode .
Assumed Rotes Capability
r o g T ———
Peer
Raote Group 4
Services
Assignedic
Birects
Rokes
Clased Service
Service Group Protorol Base
Dest Port No Ranpe
inciudes
Siv Port No Range

3.2.2 Formal Policy Writing

Firewall configuration languages currently lack any well founded semantics.
Article [21] tackles the lack of founded semantics in current firewall configuration
languages and suggests a high level configuration language for network access policy.
One of the results of this is the difficulty in managing network access control policies.
Most firewalls, in fact, are incorrectly configured. In Figure 3.10, an access control
language based on XML syntax is presented with the access control model Or-BAC
(Organization Based Access Control) used to interpret its semantics. This language can
be used to dictate high-level network access control policies and automatically derive
practical access control rules with which specific firewalls, by way of a translation

process, can be configured. This approach offers clear semantics for specifying network

43

security policy; greatly increases the ease of policy management for administrators; and

guarantees portability between different firewalls.

Hicrarchy Exwnsion

ia oTBmMpOWEr 12

- E,or:arganization EE”{ 1”%!:}
12 g

foa

| policy E
i ey

i

Hierarchy Hxension
—

-~y or:object

. permission b

Y

R T T

Figure 3.10: Or-BAC Model in XML

In the case of an already configured firewall, the formal policy writing approach
does not actively test the firewall and requires the system administrator to become

accustomed to the language and rewrite the entire rule set.

44

3.3 Summary

Real time testing tools assess the integrity of firewalls in a realistic environment.
Creating an accurate environment to perform the tests; however, is sometimes unfeasible
and can be costly. On the other hand, query engine tools exist that avoid having to set up
a testing environment by modeling the network topology. They can then answer any
query typed by an administrator. However, these tools are lacking in their ability to detect
and correct mistakes. Their functioning is also dependent on human intervention.
Furthermore, the algorithmic approach is convenient because we can automatically detect
and remove all firewall anomalies. Finally, the active method testing tools currently used
do not take into account the existing firewalls and require the network administrator to
rewrite the rules in order for the policy to be applied.

The approach presented in this thesis uses the advantages of the algorithmic
approach to remove misconfigurations, responsible for security leaks. As described in [1],
most corporate firewalls are not correctly configured due to mainly complex policies that
have to be deployed. It combines along with the algorithmic approach, a real time testing
approach that takes into account the network environment where the firewall is deployed
as well as the rules that are enforcing the policy. This way, it ensures that all
misconfigurations errors as well as functioning and policy enforcement errors are
detected and removed._ The removal process is done using an update module that

automatically detects and corrects the firewall configuration and produces a new

configuration file.

45

Chapter 4: A New Approach for Automated Firewall Testing
and Validation

As discussed, in previous chapters, by taking advantage of both passive and active
firewall testing methods, a better solution to address the problems associated with testing
has emerged. This chapter begins by presenting an overview of the entire framework for
this approach. Next, each module of the framework is described in depth, discussing the
motivation behind its use, as well as its inputs and outputs and its inner functioning and

algorithms.

4.1 General Presentation of the Framework

Figure 4.1 shows an overview of the testing framework. It takes as input the
firewall configuration file as well as the network information of the network where the

firewall will be deployed and produces an error free rule set.

Firewali
File

Test Set

Firewal: Misconf Eror Y
Rule F‘:;ig:‘ Removal
Parser . £ Mocule i

Y Firewall

Generator

Firewal |,
File
Uprater f

Firewall
Log Parser

Firewal
File

Figure 4.1: Testing Framework Schema

46

The automated testing approach is based on a set of algorithms that take into
account the network environment as well as the number of rules in the configuration file
to produce an accurate test set. The obtained test set is applied against the firewall. Then,
the last step consists of comparing the intended results against the obtained ones and
correcting the detected errors. The goal is to obtain an error free firewall configuration
file.

The framework starts by taking as input the configuration file. The syntax of this
language corresponds to the iptables. Given the complexity of the language, the first step
is to translate this language into a formal language that the algorithm can process. The
algorithm will then search for misconfiguration errors in the file, remove the faulty rules;
and outputs a rule set that is misconfiguration error free—this step is mainly used to
reduce the number of test packets used to test the given firewall; then, this number is
shrunken to the minimum. The number of test packets is reduced, and only the packets
that will trigger a rule in the rule set are left.

The next step is to generate a test set based on the translated rules. Since a full test
set is nearly impossible to execute—testing all cases can take a great number of years to
complete in some cases, as shown in article [16]—an intelligent way to cover most cases
while keeping the size of the test set computable in a reasonable amount of time must be
devised. To that end, network information as well as the number of packets for each rule
are utilized. By employing all of this information a test set is then generated.

At this point, the different packets in the set are tested against the firewall in a
local environment. An analysis of the log file is then completed. After that, the obtained

results are compared to the intended results. If inconsistencies between the two results are

47

obtained, the original configuration file must be reconsidered to find the faulty rule and
correct it.

This method uses the white box testing approach in the way that the test set is
generated using the information in the configuration file. The main advantage of this
method is the fact that the test is reduced, automated, and complete. The inner working of

the system allows an intelligent testing approach, making it easier to design test cases.

4.2 The Different Modules of the Framework

To fully understand our approach, the framework will be divided into seven
separate modules. The firewall configuration file is taken as input of the framework and
its data is being transformed at each step of the process. For each module, a throughout

description of the inputs and outputs as well a discussion are conducted.

4.2.1 Firewall Parser

The first step in the approach is to redefine the low level rules contained in the
firewall configuration file. To proceed, the file is parsed into another format description
of the language that the algorithm can understand and compute. The parser will conduct a
lexical analysis of the file by dividing the strings into components that are stored in
another format. This formal format is the same for all firewalls, making our a}proach
suitable for testing firewalls of any kind.

The parser works as follows: every time a low level rule from the configuration

file is encountered, it translates and stores it in a Rule object, with each rule composed of

48

a class Condition and a variable Decision. Each Condition is composed of Protocol,
Source Address, Source Port, Destination Address, and Destination Port. Each element
of a Condition is of class Interval. Each parsed Rule is then stored in a container of type
Vector of Rules. Table 4.1 shows an example of a configuration file parsed into the

formal format.

Order Condition Decision
Protocol SrcAddress Sport DestAddress Dport

1 [0, 1] [20, 50] [80,80] [1, 50] [10, 90] Accept
2 [0, 2] [20, 50] [20, 20] [10, 70] [10, 90] Drop
3 [1, 1] [30,100] [1,80] [5,75] [21,21] Accept
4 [2, 2] [30, 30] [1,80] [1,10] {1, 100] Accept
5 [0, 2] [1,90] [1,80] [1,75] {1, 100} Drop
6 [1,2] [1, 100] [1,51] [40,90] [50,80] Drop

Table 4.1: Format of the Parsed Rule Set
The parser used in this step takes into account the different fields of a firewall
static rule. An addition should be to add another field for TCP/IP packets to make it
compatible with stateful firewalls as well. After translation is complete, the next step,

where misconfigurations are removed from the rules, can be undertaken.

49

4.2.2 Misconfiguration Removal

Now that we have parsed the rules into a Vector of Rule, which corresponds to the
formal language described in the previous section, we will be using it to derive error free
rules. In fact and as discussed in Chapter 3, misconfiguration errors are very common and
widespread in current firewall configurations. This situation is due to the low level
archaic firewall configuration language that causes the system administrator to not fully
understand the functioning and the configuration of the firewall.

The method used to remove misconfigurations, namely shadowing and
redundancy, is taken from the work done in [15], which is the most advanced work to
date in the field of misconfiguration errors. The authors simplified and generalized the
errors. In that sense, all misconfigurations can be classified as either shadowing or
redundancy as in [15, 22]. For a better understanding of these errors, a description is
given in the following.

In a first match policy, shadowing is an error responsible for masking a whole
rule with different decision making. An example of shadowing is explained below:

R1: [0, 17[10, 20] [10, 20] [10, 20] [10, 20] ACCEPT
R2: [0, 1][15, 20] [10, 20] [10, 20] [10, 20] DROP

In this case, R2 is shadowed by R1 as R2 will never be matched. When faced with
this kind of shadowing, the rule set is rewritten by simply removing R2 and still keeping

the same decision making:

R1: [0, 1][10,20][10,20][10,20] [10,20] ACCEPT
R2: ¢ Shadowing=True

50

Redundancy relates to masking part of or a whole rule, with both rules having the
same decision. An example of redundancy is described below:

R3: [0, 2]{1, 10][1, 80][1, 100][1, 80] ACCEPT
R4: [0, 2][1, 100][1, 80][1, 100}[1, 80] ACCEPT

In this case, R3 is redundant. When we face this kind of redundancy, the rule set
is rewritten by simply removing R3, as this will not modify the decision making:

R3: g Redundancy=True
R4:10,2}[1,100][1,801[1,100][1, 80] ACCEPT

The algorithm both detects shadowing and redundancy and corrects rules,
removing errors and pointing to where they were found. The removal method uses two
algorithms: the first one removes shadowing from the rules and the second one removes
redundancy. We have to use two separate algorithms because the removal and detection
of redundancy does not obey to the same logic as shadowing and is not as trivial. So, the
complete detection algorithm uses two simple algorithms sequentially. Figure 4.2 shows
the steps that the algorithm goes through in the detection and removal process of both

types of misconfiguration.

51

or shadowed rules.

/* Phase 1 %
for i «— 1 to {countiR} — 1} do

&

if testRedundancy /H, i} then
l Ritredundoncy] — true;
end
if R,iredundancy] then
for 5 — (i + 1Y te count{R) do
if B idecision ¥ R ldecision] then
7 — exclusion (R; R;});
if Bjleovedition] = § then
R;ishadowing] « true;

end
else
for j ~ {i + 1} re countiR} do
Ry — exclusion (R, R
if Ricondition] = { then
Rlshadmying] — frue;

end
end

nd
/* Phase 2 */
for{ — {rount{R) — 1ite 1 do

if Biiredundancy] then

if testRedundancy (i, i) then
l R lcondition] «— §;

else

Riiredundancy’ — folse;
for j « {1+ Lito count{ [} de
if R, [decision]=R, [decision] then
R, —exclusion {(H; K
if H,[condition] = i then
R ishadowing: — true;

end
end

Figure 4.2: Misconfiguration Algorithm

This step is fundamental in the sense that most firewalls contain this type of error
[15]. With this step, we ensure that rules cover the minimum address space, allowing us

to build a minimal and yet complete test set. In other words, we avoid testing redundant

Finally, the algorithm complexity is at most O(n®) as it uses two separate

algorithms and both algorithms have a maximum complexity of two loops inside each

52

other. This reduced algorithmic complexity will allow us to apply the framework against
large rule sets without experiencing performance problems as in article [16].

A correction to the original algorithm has been performed. In fact, the actual
algorithm does not work for Intervals that start with value 0. The correction was to
simply add a value of one to all intervals that start with 0 and then remove the one after

the algorithm has been executed. The steps are described as follows in Table 4.2.

1)Interval = [0, 20]

2)Before the Algorithm add one: Interval’ = Interval + 1 =[1, 21]
3)Execute the Misconfiguration Algorithm

4) After the Algorithm subtract one: Interval = Interval’ — 1 = [0, 20]

Table 4.2: Correction to the Current Algorithm Technique

4.2.3 Test Set Generation

The purpose of this step is to obtain a test set that is as complete as possible.
Unnecessary shadowed and redundant packets have already been removed in the previous
step. Now, the obtained rules to generate a test set using the internal specification of the
firewall, as well as relevant network information, are used to derive a test set, as depicted

in Figure 4.3.

53

for each Rule in errorFreeRules
for each Condition in Rule
Compute Weight
total Weight += Weight
end for
end for
for each Rule in errorFreeRules
for each Condition in Rule
Compute numberOfTests
for each numberOfTests
Extract testPacket
end for
end for
end for
testPacket

Figure 4.3: Test Generation Algorithm

The network information notifies the administrator what addresses and services
are actually used in the network. For a better understanding of the practical use of the
network information, an example is described as follows. A local area network (LAN),
L1, 12.1.1.0/24 contains hosts 12.1.1.2 and 12.1.1.3. Another LAN, L2, 12.1.2.0/24 has
the hosts 12.1.2.2, 12.1.2.3, 12.1.2.5 and 12.1.2.20 that are setup. For each LAN, a rule is
responsible for filtering the traffic to L1 and L2 respectively. As L2 contains more
addresses that are actually used, the test intensity should be greater for L2 than for L1.
The same reasoning can be made for services used in a specific network or host.

Table 4.3 is the transcript of a sample file that describes the format of network

information.

54

File: Network Info.txt

tep 192.168.1.23 20

udp 195.1.2.5
tcp 200.1.1.9

udp 121.1.1.10
udp 200.200.1

udp 121.1.1.2
tecp 121.1.1.3

udp 121.1.1 4

51
21
22
80
8080
21
22

192.1.1.1

192.1.1.0/24
192.1.1.0/24
192.1.1.0/24
192.1.1.0/24

192.168.1.0/16

163.45.2.1
192.1.1.0/24

80:100
70

80

51

22

22
75,78,101
80

Table 4.3: Network Information File

the total space covered by a rule.

Frequencyl =

defined as well as rule’s largeness of address space.

1

CoveredRules

To define test intensity for each rule, two frequencies to help us in the test set

selection process are employed. They take into account network information previously

Frequencyl: The more address space is covered by a rule, the less specific this rule is,

and the fewer test segments are selected. This test frequency is inversely proportional to

Frequency2: The more addresses used in the network that match a rule, the more critical
these rules are. Test intensity increases proportionally with the ratio of the used address

space to the total number of addresses covered by a given rule.

Frequency2 = NumberOfMatche

55

Given the definition of the frequencies used to compute the weights, the test
intensity or weight for each rule is then computed using a simple multiplication of
Frequencyl and Frequency2:

wi = Frequencyl * Frequency?2

Now that the weight computation for each rule is defined, we can extract the
number of tests per rule. To do so, we have to define another constant that is called
testLength. testLength, as its name describes, defines the total number of packets that will
be generated during a test. This let the end user shorten or lengthen the test for its needs.
If we need more precision, we can choose large values or on the other hand we need to
compute a short test for maintenance, in this case smaller values of testLength will be
preferred.

The formula to compute the number of test packets per rule is as follows:

wi
numOfTests = testLength * W

N
Where W = Z wi, N = Number of rules
=0

After calculating the number of packets generated for each rule, a method for
selecting packets should be derived. Two methods can be applied. On the one hand, if
the number of tests that exceeds or equals the packet coverage of a rule, all packets
covered by the given rule are selected. On the oth;r hand, the most obvious method is to
randomly pick packets from each rule. Each interval in condition is taken and a random

function is applied to pick a value from the interval. The second method is to take each

interval, divide it evenly, and take values accordingly. The value by which the interval is

56

divided depends on the number of tests applied. Finally, given the fact that we have
intervals, we could use the limit values method to select values. The smallest and largest
values are selected, and one value in between, for each interval. In this manner, the limit
values are covered—a critical element of the test. The weight or test intensity for each
rule is then computed using a simple multiplication of Frequencyl and Frequency2. Now
that the intensity has been computed, packets from each rule space must be selected. In
the interest of simplicity and efficiency, a random approach is employed. Each packet is
selected according to a random value from each field in the Condition part of the Rule.
As we are computing a random function for each field in condition, the likelihood of
having two packets with the same values is reduced. Randomly selected duplicated
packets are simply removed from the list. An alternative approach would be to cut
intervals and select values from these intervals. Network information as well as test
coverage ensure that test packets will test the behavior of the firewall as it is operating
and deployed in the network. In other words, the test translates the real operation of the
firewall.

Using data mining could further improve the process by selecting only the most
frequent cases for testing. Data mining refers to a selection process used to extract
pertinent information from a large quantity of data. Although this practice is often
associated with business intelligence and financial analysis, it is also increasingly
employed in the scientific community. Using data mining can help scientists comb
through the vast data sets that emerge from experimental and observational research. In
enterprise resource planning, the process involves logically and statistically analyzing

large databases in order to identify recurring patterns. Data mining could be integrated

57

into this test set generation approach by storing statistics on the firewall rules during a
fixed, predefined time span, for example 1 week, 2 weeks, or 1 month.
The relevant information for each rule is:
e Number of matches
e Typical time of the day when this rule is triggered
e Packets that trigger this rule in the case of a rule that matches more than one
packet
Given this information, the actual calculation of the test intensity can be leveraged
by a data mining frequency. The new weight calculation with Frequency3 representing
the data mining can simply be:
wi’ = Frequencyl * Frequency2 *Frequency3
After successfully extracting packets, the next module is going to take these

packets and execute the test against the initial firewall configuration.

4.2.4 Test Execution

The goal in this step is to simulate the test process. To perform the test, three
methods are used, from a simple software simulation of the expected results to a fancier
real time simulation using a test bench in a real environment. In the following, we are
going to describe the three methods in-depth.

In the case of a simple software simulation, the generated packets are used in
conjunction with the rule set and by looping over the rules.

In the case of a distributed simulation, we use client server architecture to

simulate two separate entities, similar to have a real test bench with a test and a machine

58

under test, the firewall. The simulated firewall acts as the real one by accepting the
packets it should let pass and logging the dropped packets.
The last method used consists of a real time simulation using a test bench. This

method is the one that is the closest to the real functioning conditions of the firewall.

Host

with hping
! ‘1 Ethernet
St itEFfECE

() (E1N0)

Ethernet
interface B
(ethd) |

Test Packets

Figure 4.4: Test Bench Schema

The test bench illustrated in Figure 4.4 is employed. It is composed of a computer
that crafts and sends packets to the machine where the firewall is deployed. This packet
generation is made possible thanks to the fact that we are using a packet crafter that can
craft packet header fields; there is no need to have the real deployment module to apply it

against.

59

There are several benefits to using such a configuration over cited methods and
testing in real situation:
. Conformance: Packets are crafted enabling for a real life testing before
really deploying the firewall.
. Speed: The packets are crafted and sent using the same machine, thus the
test can be completed faster
. Cost: Crafting packets is cheaper than reproducing a real network
environment for the testing. Plus, this makes no difference from a firewall
standpoint.
. Flexibility: Test of several configurations can be performed by simply
uploading a different firewall configuration file.
Once the test is run, the results can be analyzed by reviewing the log file where the

results of the packets sent against the firewall are contained.

4.2.5 Log File Parser

The results of the previous test run are found in the firewall log file. The best way
to illustrate the functioning of the parser is by showing an example of a popular firewall

log format, namely iptables. Table 4.4 shows a log entry in the iptables log file.

Date: Jun 19 Time: 15:24:16 DROP portmap IN=eth0 SRC=192.168.1.4

DST=192.168.1.2 PROTO=TCP SPT=33926 DPT=111 SYN

Table 4.4: Iptables Log Entry
To obtain the significant fields in the log file, each entry in the log file is parsed

and stored in a container of type Vector Rule. In this container, only useful information 1s

60

kept. In this way, only the most relevant information for additional processing can be
maintained, and the rest discarded. The relevant information allows the building of
packets with their decisions and putting them into a container for further analysis. In the

example described above, the useful information is as in Table 4.5.

Source Address: 192.168.1.4

Destination Address: 192.168.1.2

Source Port: 33926

Protocol: TCP

Destination Port: 111

Table 4.5: Useful log file information
As the packets logged are only the dropped packets, all logged packets are
associated with Decision DROP. The unlogged packets will be associated with Decision
ACCEPT. Storing packets allows the analysis of the results in a convenient GUI
interface and comparison for the right decision. The next steps give more insight on how

the analysis is performed.

4.2.6 Results Analyzer

This module is used for post-test analysis. It is employed after the test is executed
in a way to validate the given results. To do so, each resulting packet with its decision 1s
displayed for the operator to analyze the results.

This is a semi-automated method, as the expected results are known from the

system administrator. The latter will use those results and his knowledge of the security

61

policy to analyze the resulting packets. In that sense, they are used in this step to validate
the results obtained from the firewall file.

After the comparison is complete, the packets whose decisions were different
from the expected decision are stored in a container of type List. The faulty packets are

then used in the rule set corrector to update the firewall file.

4.2.7 Rule Updater

The correction algorithm, in Figure 4.5, goes through the following steps. First,
the configuration file is read line-by-line. Whenever a line is read that is a rule, this rule
is compared against all faulty packets. When matching occurs, the expected decision is
compared with the obtained decision. If these are not the same, the decision in the file is

changed.

for each Line in the firewall file
if Rule in the firewall file
Compare Rule with all Faulty Packets
if Matching occurs
Compare Expected and Obtained Decision
if Expected Decision != Obtained Decision
Create Rule’ with Decision
Apply Misconf Algorithm
Write Misconf Rules in the new file
else
Write Rule in the new file
end if
end if
else
Write Line in the new file
end if
end for

Figure 4.5: Correction Algorithm’s Pseudo code

62

The verification process is as follows. For each erroneous packet and after
detecting the rule responsible for the faulty packet, a new rule is created and added at the
beginning of the current rule set to match the packet with the right decision. Finally, the
misconfiguration removal algorithm is applied against this rule set to remove potential
misconfiguration errors that have been introduced after this addition. The updated

Table 4.6 presents a simple example to better understand the process.

Rules before Detection Rules after Detection
Faulty Packet: 45 DROP Faulty Packet: 45 DROP
Rule 1: {0,60] ACCEPT Rule 1 : [45,45] DROP
Rule 2: [70,80] DROP Rule 2 : [0,44] ACCEPT

Rule 3: [46,60] ACCEPT
Rule 4: [70,80] DROP

Table 4.6: Error Detection and Correction Example

The wupdater module output is a firewall configuration file without
misconfigurations errors, i.e. shadowing and redundancy, nor policy faults enforcing the
wrong decision on a rule. Figure 4.5 presents the detailed pseudo-code used for the
detection and correction algorithm.

Finally, the firewall configuration file that we obtain after this step has the
following characteristiés. It contains neither redundancy nor shadowing errors and hence
the set of rules are completely independent. The readability is augmented and the packet
processing is enhanced as we can move to the top of the rule set rules that are used more
often. The test set generation and execution allows us to correct faulty decision, which

can result from mistyping errors or wrong policy enforcement.

63

4.3 Summary

This chapter described our framework for testing firewalls and its inner
functioning. An in-depth understanding of each of the seven modules that compose the
framework was presented. First, a parser is used to obtain formal rules that are used for
misconfiguration removal as well as test set generation. Once the test packets are
extracted using rule set and network information, packets are sent against the firewall
using one of the proposed simulation methods depending on the level of accuracy
researched. Then, firewall log results are analyzed and a correction process updates the
rule set by adding rules and removing misconfiguration and errors detected during the
post-test analysis phase.

In the next chapter, and after understanding the functioning of our testing
approach, the implementation of the approach can now be addressed. A case study is

described at the end of the chapter to validate the implementation.

64

Chapter 5: Implementation and Case Study

The current chapter is divided into three parts. The first section presents details of
the implementation of the framework, namely the tools used as well as its UML diagram.
The second part presents a case study using an actual iptables 1.4.1 configuration file to
validate our approach. The chapter ends with a summary that presents the different results

with a comparison of existing tools.

5.1 Implementation

The implementation of the seven modules of our framework is based on a mix of
Java 1.5 programming as well as parser generator using JavaCC [23]. An overview of the
software and tools used is presented as well as a more detailed description of the UML

structure -of our implementation.

5.1.1 Software and Tools Used

The implementation of the seven modules of our framework is based on a mix of
Java programming as well as a parser generator using JavaCC. The first module of the
framework which is the firewall configuration file parser uses JavaCC as the parser
generator. The misconfiguration removal algorithm, which has been developed in [15], is
built using Java. The next step which is the test set generation module uses Java to derive
the test set. After generating the test set, Hping2 [24], is used to craft packets and send
them in the network.

Iptables [25] is the latest entry in Linux firewalls. The choice of iptables is due to

the fact that it is one of the most popular firewalls and the one with the most active

65

communities supporting it, with features added on a regular basis. The rules are defined
using commands in the command line. Those commands facilitate packet filtering;
network address translation (NAT); packet mangling in the most recent Linux versions,
2.4 and above; and logging. A complete description of the syntax for iptables can be
found in their official website [25]. In the following, an explanation of the different
features of iptables is given.

Packet Filtering, as described in detail in Chapter 2, is the selective passing or
blocking of data packets by analyzing and matching the header of these packets. Network
address translation is the process of converting an Internet Protocol address into another
Internet Protocol address. Packet Mangling is the ability to alter passing data packets
before or after rooting occurs. Logging, commonly named data logging, is the process of
recording sequential data, chronologically. Iptables is capable of logging data packets,
often the dropped ones.

In our implementation, the focus has been placed on the packet filtering
capabilities of iptables, but the efforts to offer a framework for packet filtering can be
adapted by adding attributes to Condition for the features and the functionalities of
iptables.

The Java Compiler Compiler (JavaCC) is a parser generator written in Java.
Instead of writing code to parse a data stream, JavaCC can be used to write the parser.

As we are using Java 1.5 language as our implementation language, JavaCC was the most
natural choice as it has syntax similar to Java. In our implementation, JavaCC has been
used to build a parser for the iptables file, the iptables configuration file and log file, as

well as the network information file.

66

The tool used to craft packet headers in order to perform the test is called Hping2.
Hping2 is a command-line oriented TCP/IP packet assembler. It is similar to the well-
known ping UNIX command, but in addition to ICMP echo requests, Hping2 supports
TCP, UDP, and RAW-IP protocols as well.

Cor;lpared to other tools, Hping2 has been used for its overall ease of use as it
does not require any programming like other packet crafting tools that are built with low
level C programming. In our framework, Hping2 commands are triggered using a
wrapper, SysCommandExecutor class, around the Java command line executor method.
Appendix A provides the code of the implementation of the seven modules of the testing

framework.

5.1.2 UML Class Diagram of the Framework

The UML class diagram shows the different packages and classes of the
framework and their interrelationships. This way, we have a holistic picture of the design
and the implementation.

In the following, we will enumerate and explain the three packages that compose
our framework.

Package com contains the following sub packages. com.acl contains the parser
used for the Access List syntax used mainly in Cisco firewalls. com.iptables contains the
parser used for the iptables Linux firewall syntax. It also has the following sub packages.
com.iptables.log contains the parser for the iptables log file. com.iptables.gui contains the

graphical user interface (GUI) used for firewall testing and the main function contained

in class FirewallAnalyzerFrame. com.tester contains the classes responsible for test set

67

generation and execution as well as correction. com.misconf contains the class for the
misconfiguration removal algorithm.

Package obj contains classes for the different objects relative to firewalls and
networking, respectively Rule, Condition, Packet, Address, and Host.

Package util contains a number of utility functions like the parser for network
information, the wrapper for Java command line execution method, and other methods

for test set generation.

co: tester

RemovalAlgorithm
Corrector

{ ResuitSetComparator

] TestSetExecutor

| TestSetGenerator

{1 { 1
com. iptables.gul ob;
CorrectorPane! RandomuUtilities Rule
FirewailAnalyzerFrame NetworkinformetionParser Condition
FirewaliPanel SysCommand Executor Address
SendPacketsPanel TestSetUtllitiesel Host

Figure 5.1: Structure Diagram of the Test Framework

Figure 5.1 is the representation of the different packages and classes of the

implementation of the firewall updater framework presented in this thesis.

68

5.2 Case Study

Type of Firewall First Match Policy
Default Security Policy Deny-everything
Number of Rules 11

Name of Firewall iptables 1.4.1

Table 5.1: Specifications of the Tested Firewall

To validate the methodology presented in this thesis, an iptables configuration file
is used as an input for our framework. Table 5.1 states the specifications of the tested

firewall.

To perform the test, two hosts are used and connected through an RJ 45 Ethernet
crossover cable. The test setup configuration is inspired from [13]. This way, we can
simulate an Internet connection and have both Ethernet interfaces up for the test purpose.
As we are only looking to send the generated packets against the interface, all other
traffic on both interfaces is disabled, such as Address Resolution Protocol (ARP). As a
result of removing all other traffic, the output log checking and analysis is made much
simpler. Both hosts run Fedora Linux 7 and are running iptables 1.4.1. The tested firewall

is installed and run in one host, called the system under test.

69

$IPT --flush
$IPT -t nat --flush
$IPT -t mangle --flush

$IPT -A INPUT -i lo -j ACCEPT
$IPT -A OUPUT -0 lo - ACCEPT

$IPT --policy INPUT DROP
$IPT --policy OUTPUT DROP
$IPT --policy FORWARD DROP

$IPT -A INPUT -i ethO -s 10.0.0.0/8 -j DROP
$IPT -A INPUT -i ethO -s 172.16.0.0/12 -j DROP
$IPT -A INPUT -i eth0 -s 192.168.0.0/16 -j DROP

$IPT -A INPUT -i ethO -s 192.200.21.0/24 -j DROP

$IPT -A INPUT -i ethO -p udp -m multiport --sport 20:50 -d 192.200.21.0/24 -j ACCEPT
$IPT -A INPUT -i eth0 -p udp -m multiport --sport 60:70 -d 192.200.21.0/24 -§ ACCEPT

$IPT -A INPUT -i ethO -p udp -m multiport --sport 1:1024 -d 192.200.21.0/24 -j ACCEPT
$IPT -A INPUT -i eth0 -p tcp -s 170.1.1.0/24 --sport 80 —-dport 55 -j ACCEPT
$IPT -A INPUT -i ethO -p tcp -s 170.1.0.0/16 --sport 80 --dport 55 -j ACCEPT

$IPT -A INPUT -i eth0 -p tcp -s 192.1.1.0/24 --dport 80 5§ ACCEPT
$IPT -A INPUT -i ethO -p tcp -s 192.1.1.20 --dport 80) DROP

Table 5.2: Input configuration file

At first, the configuration file firewall.conf, in Table 5.2 is parsed by the iptables
parser generator. The results of this step are the rules parsed in the format that can be

understood by the misconfiguration detection and removal algorithm as described in

Chapter 4. The parser will also keep all the

loop back interface rules, default policy

recover in the last step of the process. Table 5.3 contains the parsed results and their

format.

information needed like variable declarations,

and the name of the interfaces, in order to

70

Rule 1: [0, 2] [167772160, 184549375] [0, 65534] [0, 4294967295] [0, 65534] DROP
Rule 2: [0, 2] [2886729728, 2887778303] [0, 65534] [0, 4294967295] [0, 65534] DROP
Rule 3 : [0, 2] [3232235520, 3232301055] [0, 65534] [0, 4294967295] [0, 65534] DROP
Rule 4: [0, 2] [3234338048, 3234338303] [0, 65534] [0, 4294967295] [0, 65534] DROP
Rule 5: [2, 2] [0, 4294967295] [20, 50] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 6: [2, 2] [0, 4294967295] [60, 70] [3234338048, 3234338303] {0, 65534] ACCEPT
Rule 7: [2, 2] [3234332928, 3234333183] [1, 1024] [3234338048, 3234338303] [0, 65534] DROP
Rule 8: [1, 1] [2852192512, 2852192767] [80, 80] [0, 4294967295] [55, 55] ACCEPT
Rule 9: [1, 1] [2852192256, 2852257791] [80, 80] [0, 4294967295] [55, 55] ACCEPT
Rule 10: [1, 1] [3221291264, 3221291519] [0, 65534] [0, 4294967295] [80, 80] ACCEPT
Rule 11: {1, 1] [3221291284, 3221291284] [0, 65534] [0, 4294967295] [80, 80] DROP

Table 5.3: Parsing Results of the Firewall File

The parser covers all stateless syntax of iptables. The main reason for not
covering all cases remains in the fact, that in this work, the most important aspect is to
validate the approach using a simple stateless firewall. The development of a more
sophisticated parser that can be used to cover all iptables rules can be derived. This new
parser will generate more fields in Condition like tcpFlag and Time Intervals. Those
added fields will have no consequences in the next modules of the framework.
Consequently, if the method works for this case, it will work for any firewall no matter
the number of features.

After running the misconfiguration removal algorithm module, a summary of the
errors found is presented in Table 5.4. Rule 8 and Rule 11 from last step have been

removed because they were redundant and shadowed respectively.

71

Rule 1: [0, 2] [167772160, 184549375] [0, 65534] [0, 4294967295] [0, 65534] DROP

Rule 2: [0, 2] [2886729728, 2887778303] [0, 65534] [0, 4294967295] [0, 65534] DROP

Rule 3: [0, 2] [3232235520, 3232301055] [0, 65534] [0, 4294967295] [0, 65534] DROP

Rule 4: [0, 2] [3234338048, 3234338303] [0, 65534] [0, 4294967295] [0, 65534] DROP

Rule 5: [2, 2] [0, 167772159] [20, 50] [3234338048, 3234338303] [0, 65534] ACCEPT

Rule 6: [2, 2] [184549376, 2886729727] [20, 50] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 7: [2, 2] [2887778304, 3232235519] [20, 50] [3234338048, 3234338303] [0, 65534) ACCEPT
Rule 8: [2, 2] [3232301056, 3234338047] [20, 50] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 9: [2, 2] [3234338304, 4294967295] [20, 50] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 10: [2, 2] [0, 167772159] [60, 70] [3234338048, 3234338303] [0, 65534] DECISION: ACCEPT
Rule 11: [2, 2] [184549376, 2886729727] [60, 70] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 12:[2, 2] [2887778304, 3232235519] [60, 70] [3234338048, 3234338303] [0, 65534] ACCEPT

Rule 13: [2, 2] (3232301056, 3234338047] [60, 70] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 14: [2, 2] [3234338304, 4294967295] [60, 70] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 15: [2, 2] [3234332928, 3234333183] [1, 19] [3234338048, 3234338303] [0, 65534] DROP
Rule 16: [2, 2] [3234332928, 3234333183] [51, 59] [3234338048, 3234338303] [0, 65534] DROP

Rule 17: [2, 2] [3234332928, 3234333183] [71, 1024] [3234338048, 3234338303] [0, 65534] DROP
Rule 18: [1, 1] [2852192256, 28522577911 [80, 80] [0, 4294967295] [55, 55] ACCEPT
Rule 19: [1, 1][3221291264, 3221291519] [0, 65534] [0, 4294967295] [80, 80] ACCEPT

Table 5.4: Results of the Misconfiguration Removal Algorithm

Table 5.5 presents the results of the test set generation. Weights are computed as
described in Chapter 4. The network information file used is in Appendix C. The number
of packets generated is 241 packets with a festLength value of 250. The generated packets
are different from the test length due to the fact that redundant values are removed from
the set of produced packets. The next step is to select a number of packets per rule using

the random approach described in the previous chapter.

72

Rule Number Matches Weight Generated Packets
1 0 1.09 4
2 0 1.09 4
3 0 1.09 4
4 3 4.35 17
5 0 1.51 6
6 0 1.14 4
7 0 1.40 5
8 0 2.33 9
9 0 1.25 5
10 0 1.51 6
11 1 2.27 9
12 0 1.40 5
13 0 2.33 9
14 0 1.25 5
15 0 3.30 13
16 0 3.30 13
17 0 3.29 13
18 18 20.7 84
19 5 6.53 26

Table 5.5: Generated Packets per Rule

To perform the test, the setup described earlier 1s used. Packet headers, from the
test generation, are crafted into hping packets. A necessary configuration is needed to run
and get the results of the test. In the following, two configuration steps to perform the test

are described.

73

First, the Linux host, where the test framework is running, is configured with root

access. Root access is mandatory to have access to hping crafting capabilities.

As a regular operation, iptables will log the dropped packets into
/log/var/messages. The problem is that this file contains log messages from all processes
running in the machine. In order to make it easier to parse the log file results, as a second
step, messages are logged into a separate file called log/var/fwlog. To do so, the
syslog.conf file has to be configured. The syslog.conf file, which specifies rules for
logging, is the main configuration file used by UNIX systems to log system messages.

Therefore, the following line needs to be added in the file: kem.warn /var/log/fwlog.txt.

After this addition, the system is told to store all messages that have a warn alert
in fwlog.txt. Since logging in iptables is by default of level 4, i.e. level warn, all iptables

messages are logged in that file.

After the log file has been parsed and the dropped packets stored in a Vector

container, the next step is the analysis of the results by a system administrator.

74

Firewail Configuration File: “iptables.txt Browse... b

[——

Network information File: " networkinfo.na { Browse... \1
ol

Generation Algorthm; Random

Weight Calculation: ! Maltiplication @

e ey
£ Start Test |
mensmesneronnt’

ring File Resuits

: Protocol Soyrce Aodrass Source Past Destination Address Destination: Port :Deckinn {Expected Dacision

4] 19.237.72.223 13438 143.157.218.18 77188 DENY »

4] 13.24.330.34 13§42 £7.153.024.3134 3w

1 L2 583125 SUTIRB.1ALI0Y 8034

1 172.27 201 9 136.183.224.252 &

1 172.21.84.15% 52430 Z §.244.29 £3817 DENY

1 172292303 LR i 42.231.116 13122 DENY

¢ 17223851 14498 7233238 17353 DENY

1 132.188.95. 11 33667 §4.27 213 DERY

i 192.188.13 3712 193.150 Ei44d DENY

i3 132165184145 17968 03.77.59 332 DENY

0 1321682350 15544 AB1B730 28413 DENY

g 192.206.21.0% 23%13 20.0.172 19660 DENY

3 192,305 34068 13.131.84.189 404y DENY

1 192.306.21.283 5.111.381 37733 DENY

i 1922062102 8£.130.174.118 31037 DENY

1 1.2 233 3 187.10.30.81 31943 DENY

] 192766213 43 742041973 44048 DERY

3 192.206.% 1£.12,206.61 3834¢ DERY

3t 1922063130 £184% IE4.165.160.138 31040 DENY DENY

i1 19220621 .84 41581 835173233 5433 DENY DENY

2 11.111.164.1 i DNy DENY

i 233.180.70.27 DENY DENY :

i 4£. 149,144,138 DERY DENY i

1 161.102.85.38 DENY DENY M
¥ Output File with No Miscanfigurations | Run Corrector |

Figure 5.2: Our GUI interface for Firewall testing
The GUI interface, in Figure 5.2, makes it easy to change the results by simply

changing the decision for ACCEPT to DROP or the reverse. After analyzing the results,

two faulty packets were found shown in Table 5.6.

Faulty packet 0: [1, 1] [184065102, 184065102] [23934, 23934] [2620904916,
2620904916] [6253, 6253} ACCEPT

Faulty packet 1: [2, 2] [24655340, 24655340] [28, 28] [3234338205, 3234338205]
[52740, 52740} DROP

Table 5.6: Faulty packets with their decision

75

Rule 0: [1, 1] [184065102, 184065102] [23934, 23934] [2620904916, 2620904916] [6253, 6253] ACCEPT
Rule 1: [2, 2] [24655340, 24655340] [28, 28] [3234338205, 3234338205] [52740, 52740] DROP
Rule 2: [0, 0] [167772160, 184549375] [0, 65534] [0, 4294967295] [0, 65534] DROP

Rule 3 : [2, 2] [167772160, 184549375] [0, 65534] [0, 4294967295] [0, 65534] DROP

Rule 4 : [1, 1] [167772160, 184065101] [0, 65534] [0, 4294967295] [0, 65534] DROP

Rule 5 : [1, 1] [184065103, 184549375] [0, 65534] |0, 4294967295] [0, 65534] DROP

Rule 6 : [1, 1] [184065102, 184065102] [0, 23933] [0, 4294967295] [0, 65534] DROP

Rule 7 : [1, 1] [184065102, 184065102] [23935, 65534] [0, 4294967295] [0, 65534] DROP

Rule 8 : [1, 1] [184065102, 184065102] [23934, 23934] [0, 2620904915] [0, 65534] DROP

Rule 9: [1, 1] [184065102, 184065102] [23934, 23934] [2620904917, 4294967295] [0, 65534] DROP
Rule 10 : [1, 1] [184065102, 184065102] 23934, 23934] [2620904916, 2620904916] [0, 6252) DROP
Rule 11 : [1, 1] [184065102, 184065102] [23934, 23934] [2620904916, 2620904916] [6254, 65534] DROP
Rule 12: [0, 2] [2886729728, 2887778303] [0, 65534] [0, 4294967295] [0, 65534] DROP

Rule 13: [0, 2] [3232235520, 32323010551 [0, 65534] [0, 4294967295] [0, 65534] DROP

Rule 14: [0, 2] [3234338048, 3234338303] [0, 65534] [0, 4294967295} [0, 65534] DROP

Rule 15: [2, 2] [0, 24655339] [20, 50] [3234338048, 3234338303] [0, 65534] ACCEPT

Rule 16 : [2, 2] [24655341, 167772159] [20, 50] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 17 : [2, 2] [24655340, 24655340] |20, 27} [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 18 : [2, 2] [24655340, 24655340] [29, 50} [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 19 : [2, 2] [24655340, 24655340] |28, 28] [3234338048, 3234338204] [0, 65534] ACCEPT
Rule 20: [2, 2] [24655340, 24655340] |28, 28] [3234338206, 3234338303] [0, 65534] ACCEPT

Rule 21: [2, 2] [24655340, 24655340 |28, 28] |3234338205, 3234338205] [0, 52739] ACCEPT

Rule 22 : [2, 2] [24655340, 24655340] |28, 28] [3234338205, 3234338205] [52741, 65534] ACCEPT
Rule 23: [2, 2] [184549376, 2886729727] [20, 50] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 24: [2, 2] [2887778304, 3232235519] [20. 50] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 25: [2, 2] [3232301056, 3234338047] [20, 50] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 26: [2, 2] [3234338304, 4294967295] [20. 50] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 27: [2, 2] [0, 167772159] [60, 70] [3234338048, 3234338303] [0, 65534] ACCEPT

Rule 28: [2, 2] [184549376, 28867297271 [60. 70] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 29: [2, 2] [2887778304, 3232235519] [60. 70] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 30: [2, 2] [3232301056, 3234338047] [60, 70] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 31: [2, 2] [3234338304, 4294967295] [60, 70] [3234338048, 3234338303] [0, 65534] ACCEPT
Rule 32: [2, 2] [3234332928, 3234333183] [1, 19] [3234338048, 3234338303] [0, 65534] DROP
Rule 33: [2, 2] [3234332928, 3234333183] [51, 59] [3234338048, 3234338303] [0, 65534] DROP
Rule 34: [2, 2] [3234332928, 3234333183] [71, 1024] [3234338048, 3234338303] [0, 65534] DROP
Rule 35: [1, 1] [2852192256, 2852257791] [80. 80] [0, 4294967295] [55, 55] ACCEPT

Rule 36: [1, 1] [3221291264, 3221291519] [0. 65534] [0. 4294967295] [80, 80] ACCEPT

Table 5.7: Updated Rules

Now, the last step will consist of writing a new configuration file, where no more

errors are to be found. At first, error detection based on the three faulty packets is

performed as described in Chapter 4. The information that has been held in the parser

module is then used to reconstruct the new configuration file. The faulty firewall 1s not

over written and is kept for backup and log. At last, a comparison with the most advanced

techniques for firewall testing is presented as follows. Table 5.7 shows the list of updated

rules. In bold are the rules that have been added or modified after the corrector module

76

has been applied. We parse back the rule set and rewrite them as iptables rules. The

output configuration file is shown in Table 5.8.

»

$IPT --flush
$IPT -t nat —flush
$IPT -t mangle --flush

$IPT -A INPUT -i lo -j ACCEPT
$IPT -A OUPUT -0 lo -j ACCEPT

$IPT --policy INPUT DROP
$IPT --policy OUTPUT DROP
SIPT --policy FORWARD DROP

$IPT -A INPUT -i eth0
$IPT -A INPUT -i ethO

-p tep -s 10.3.170.30 —-sport 2020 -d 144.202.125.243 --dport 63513 -j ACCEPT
-p icmp -s 192.200.21.109 --sport 54461 -d 173.115.81.0 —-dport 18670 -j ACCEPT

S$IPT -A INPUT -i ethQ —p icmp -s 10.0.0.0/8 -j DROP

$IPT -A INPUT -i ethO
$1PT -A INPUT -i ethO
$IPT -A INPUT -i ethO
SIPT -A INPUT -i ethO
$IPT -A INPUT -i eth0
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
SIPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
SIPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i eth0
$IPT -A INPUT -i ethO
$IPT -A INPUT -i eth0
$IPT -A INPUT -i ethO
$IPT -A INPUT -i eth0
$IPT -A INPUT -i eth0
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethQ
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i ethO
$IPT -A INPUT -i eth0
$IPT -A INPUT -i ethO

-p udp -s 10.0.0.0/8 - DROP

-p tep --src-range 10.0.0.0-10.3.170.29 -j DROP

-p tep --sre-range 10.3.170.31-10.255.255.255 -) DROP

-p tcp -m multiport -s 10.3.170.30 --sport 0:2019 -j DROP

-p tep -m multiport -s 10.3.170.30 --sport 2021:65534 -j DROP

-p tep -5 10.3.170.30 --sport 2020 --dst-range 0.0.0.0-144.202.125.242 -j DROP

-p tep -s 10.3.170.30 —-sport 2020 --dst-range 144.202.125.244-255.255.255.255 -j DROP

-p tep -m multiport -s 10.3.170.30 --sport 2020 -d 144.202.125.243 —-dport 0:63512 -j DROP
-p tep -m multiport —s 10.3.170.30 --sport 2020 -d 144.202.125.243 --dport 63514:65534 -j DROP
—-sre-range 172.16.0.0-172.31.255.255 -} DROP

-5 192.168.0.0/16 -j DROP

-ptep -s 192.200.21.0/24 - DROP

-p udp -s 192.200.21.0/24 -j DROP

-p icmp --src-range 192.200.21.0-192.200.21.108 -} DROP

-p icmp --sre-range 192.200.21.110-192.200.21.255 -j DROP

-p icmp -m multiport -s 192.200.21.109--sport 0:54460 5 DROP

-p icmp -m multiport -s 192.200.21.109 --sport 54462:65534 -j DROP

-p icmp -5 192.200.21.109 --sport 54461 --dst-range 0.0.0.0-173.115.80.255 -j DROP

-p icmp -5 192.200.21.109 --sport 54461 --dst-range 173.115.81.1-255.255.255.255 -j DROP

-p icmp -m multiport -s 192.200.21.109 --sport 54461 -d 173.115.81.0 --dport 0:18669 -j DROP

-p icmp -m multiport -s 192.200.21.109 ~-sport 54461 -d 173.115.81.0 --dport 18671:65534 -j DROP

-p udp -m multiport --src-range 0.0.0.0-9.255.255.255 --sport 20:50 -d 192.200.21.0/24 -j ACCEPT

-p udp -m multiport —-src-range 11.0.0.0-172.15.255.255 --sport 20:50 -d 192.200.21.0/24 -} ACCEPT

-p udp -m multiport --src-range 172.32.0.0-192.167.255.255 --sport 20:50 -d 192.200.21.0/24 -j ACCEPT
-p udp -m multiport —-src-range 192.169.0.0-192.200.20.255 —-sport 20:50 -d 192.200.21.0/24 - ACCEPT
-p udp -m multiport --src-range 192.200.22.0-255.255.255.255 --sport 20:50 -d 192.200.21.0/24 -} ACCEPT
-p udp -m multiport --src-range 0.0.0.0-9.255.255.255 --sport 60:70 -d 192.200.21.0/24 -j ACCEPT

-p udp -m multiport —src-range 11.0.0.0-172.15.255.255 ~-sport 60:70 -d 192.200.21.0/24 -j ACCEPT

-p udp -m multiport —-src-range 172.32.0.0-192.167.255.255 —-sport 60:70 -d 192.200.21.0/24 -j ACCEPT
-p udp -m multiport --src-range 192.169.0.0-192.200.20.255 --sport 60:70 -d 192.200.21.0/24 -} ACCEPT
-p udp -m multiport —-src-range 192.200.22.0-255.255.255.255 --sport 60:70 -d 192.200.21.0/24 -j ACCEPT
-p udp -m multiport -s 192.200.1.0/24 --sport 1:19 -d 192.200.21.0/24 -j DROP

-p udp -m multiport -s 192.200.1.0/24 --sport 51:59 -d 192.200.21.0/24 -j DROP
-p udp -m multiport -s 192.200.1.0/24 --sport 71:1024 -d 192.200.21.0/24 -} DROP
-p tep -s 170.1.0.0/16 --sport 80 --dport 55 -} ACCEPT

-p tep -s 192.1.1.0/24 --dport 80 -} ACCEPT

Table 5.8: Output configuration file

77

Testing Approach Complexity
Random O(n)
Misconfiguration Removal O(n’)
Policy Segmentation o2
Our approach o)

Table 5.9: Comparison with other testing approaches

Finally, we conduct a comparison of our method with the most common
techniques with regard to complexity. Table 5.9 presents the results of the comparison.
Our method’s complexity is O(n?). The complexity of the random approach is inferior,
but it also the less accurate detection and testing approach. Policy segmentation’s
complexity is exponential and thus cannot be applied to large and interrelated test sets.
Our approach is as fast as the misconfiguration removal algorithm while being more
accurate as it detects the mistyping and policy errors in addition to misconfiguration
errors. The conclusion that we can draw from this table is that our method can carry large

test sets while producing the most accurate results.

5.3 Summary

This chapter contains the practical part of our work, namely the implementation
as well as the proof of concept of our tool. It started by describing the tools and software
used. Then, a high level picture of the implementation by an UML diagram was
presented. Next, the case study shows an example of an iptables firewall configuration

file that contains common misconfigurations and policy errors. The framework for testing

78

shows how the conjugation of misconfiguration removal and network knowledge
information can help us in removing and getting an error free firewall file. The resulting
firewall is written into another file so the system administrator can compare the modified
firewall with the original one. At last, a comparison with other methods was presented
showing the performance of our approach over other methods. The next chapter is a
summary of the whole thesis. It presents the achievements of this research as well as

further work that can be done in this field.

79

Chapter 6: Conclusions and Summary

Due to the necessity of the global connectivity as well as the nature of the TCP/IP
protocol, firewalls form a central element in protecting organizations. In that prospect,
the problematic of testing firewalls and ensuring their functionality are becoming ever
more vital. Moreover, the increasing number of complex security policies increases the

risk of errors in firewall configurations [1].

6.1 Achievements

In this thesis, a new method for testing a particular firewall configuration has been
presented thanks to an approach that takes into account both the internal functioning of
the firewall as well as network topology information. The intelligent framework for
firewall testing that has been developed includes the following modules. First, we parse
the firewall file into a formal language. The rules in the formal language are then passed
through an algorithm for misconfiguration error detection and removal. The test set is
then generated based on the internal configuration and the information about the topology
of the network. After the test packets are applied, an analysis is conducted that will check
for mistyping errors and correct them. Using this approach, the problematic of firewall
testing and its main problems were confronted: test coverage and accuracy by using an
intelligent method for packet selection, and completeness by using an error detection and

correction algorithm.

80

6.2 Future Work

As future work, we can extend our work to a multiple firewall environment.
Usually, large organizations contain more than one firewall and the interaction between
different firewalls leads to a different set of final decisions and errors. The work would
focus on adapting the current misconfiguration removal technique and test generation
process. Also, more refinement should be brought to the packet selection process, and
different selection methods should be tested and compared. Another enhancement would
be a module that contains tests for known and upcoming vulnerabilities can be added.
This module will be updated on a regular basis just like an antivirus. This procedure is a
complementary addition to our white box approach. In the future, more refinement should
be placed on the packet selection process, and different selection methods should be
tested and compared. On another hand, a formal test coverage quantification method
should be developed in order to accurately compare our testing framework with existing

methods.

81

References

[1] A. Wool, A Quantitative Study of Firewall Configuration Errors, /In IEEE Computer,
2004, 62-67.

[2] G Vigna, A Topological Characterization of TCP/IP Security, In Proc. of the
international Symposium of Formal Methods Europe, 2003, 914-939

[3] W. Cheswick, and S. Bellovin, How Computer Security Works: Firewalls, Scientific
American, 1998, pp. 106-107.

[4] RFC 1918 Specification, http://www.rfc.net/rfc191 8.html.
[5] US CERT, Computer Emergency Readiness Team, http://www.us-cert.gov.
[6] CIAC, Computer Incident Advisory Capability, http://ciac.llnl.gov/ciac.

[7] K. Al-Tawil, and 1. Al-Kaltham, Evaluation and Testing of Internet Firewall, In
International Journal of Network Management, 1999, 135-149.

[8] Info About SATAN, http://www.cerias.purdue.edu/about/history/coast/satan.php
[9] The Firewall Toolkit, http://www.fwtk.org.
[10] Dante a SOCKS Implementation, http://www.inet.no/dante.

[11]J. Jiirjens, and G. Wimmel, Specification Testing of Firewalls, In the 4t International
Andrei Ershov Memorial Conference on Perspectives of System Informatics, 2001, 308-
316.

[12] K. Yoo, and D. Hoffman, Blowtorch: a Framework for Firewall Test Automation, In
Proc. of the 20" JEEE/ACM international Conferencne on automated software
engineering, 2005, 96-103.

[13] Y. Du, and D. Hoffman, PBit: A Pattern-Based Testing Framework for iptables, /n
Proc. of the Second Annual Conference on Communication Networks and Services
Research, 2004, 107-112.

[14] G. Vigna, A Formal Model for Firewall Testing.
[15] F. Cuppens, N. Cuppens-Boulahia, and J. Garcia-Alfaro, Detection and Removal of
Firewall Misconfiguration, In International Conference on Communication, Network and

Information Security, 2005, 154-161.

82

[16] A. El-Atawy, K. Ibrahim, H. Hamed, and E. Al-Shaer, Policy Segmentation for
Intelligent Firewall Testing, In I*' IEEE ICNP Workshop on Secure Network Protocols,
2005, 67-72.

[17] A. Mayer, A. Wool, and E. Ziskind, Fang: a Firewall Analysis Engine, In Proc. Of
IEEE Symposium on Security and Privacy, 2000, 177-187.

[18] W. Geng, S. Flinn, and J. DeDourek, Usable Firewall Configuration, In the Third
Annual Conference on Privacy, Security and Trust, 2005

[19] Checkpoint SmartMap, http://www.checkpoint.com.

[20] Y. Bartal, A.Mayer, K. Nissim and A. Wool, Firmato: a Novel Firewall Management
Toolkit, In IEEE Symposium on Security and Privacy, 1999, 17-31.

[21] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Mi¢ge, A Formal Approach to
Specify and Deploy a Network Security Policy, In IFIP International Federation for
Information Processing, 2004, 203-218.

[22] E. Al-Shaer, and H. Hamed, Firewall Policy Advisor for Anomaly Discovery and
Rule Editing, In Proc. of IFIP/IEEE Eight International Symposium on Integrated
Network Management, 2003, 17-30.

[23] JavaCC Project Page, https://javacc.dev.java.net.

[24] Hping Packet Assembler, http://www.hping.org.

[25] iptables/Netfilter Project, http://www.netfilter.org.

83

