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ABSTRACT

Cryptanalysis of symmetric key primitives

Aleksandar Kircanski

Block ciphers and stream ciphers are essential building blocks that are used to construct
computing systems which have to satisfy several security objectives. Since the security
of these systems depends on the security of ‘its parts, the analysis of these symmetric key
primitives has been a goal of cntical importance. In this thesis we provide cryptanalytic
results for some recently proposed block and stream ciphers.

First, we consider two light-weight block ciphers, TREYFER and PIFEA-M. While
TREYFER was designed to be very compact in ofder io fit into constrained environments
such as smart cards and RFIDs, PIFEA-M was designed to be very fast in order to be used
for the encryption of multimedia data. We provide a related-key attack on TREYFER which
recovers the secret key given around 2!! encryptions and negligible computational effort.
As for PIFEA-M, we provide evidence that it dqes not fulfill its design goal, which was
to defend from certain imp]lememalion de;)endam differential attécks possible on previous
versions of the cipher.

Next, we consider the NGG stream cipher, whose design is based on RC4 and aims to

increase throughput by operating with 32-bit or 64-bit values instead of with 8-bit values.
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We provide a distinguishing attack on NGG which requires just one keystream word. We
also show that the first few kilobytes of the keystream may leak information about the secret
key which allows the cryptanalyst to recover the secret key in an efficient way.

Finally, we consider GGHN, another RC4-like cipher that operates with 32-bit words.
We assess different variants of GGHN-like algorithms with respect to weak states, in which
all internal state words and output elements are even. Once GGHN is absorbed in such a
weak state, the least significant bit of the plaintext words will be revealed only by looking
at the ciphertext. By modelling the algorithm by a Markov chain and calculating the chain
absorption time, we show that the average number of steps required by these algorithms to
enter this weak state can be lower than expected at first glance and hence caution should be

exercised when estimating this number.
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Chapter 1

Introduction

Historically, the classical goal of cryptography was to allow two persons to communicate
over an insecure channel, such as telephone line, so that the adversary can not unders;and
what is being said. Currently, the goal of cryptography, understood in a broader sense, is
to provide means to enforce other security goals such as privacy, integrity, authenticity and
non-repudiation.

The building blocks for ensuring these goals are crypto-brimitives, such as block ci-
phers, stream ciphers, hash functions, and cryptographic ﬁrotocols. An overview of these
primitives is provided in Fig. 1. In what follows, we provide a brief mtroduction for these

primitives. For further details, the reader is referred to [44].

- Hash functions are functions that take an arbitrary block of data and retumn a fixed
size bit string. A secure hash function needs to be easy to compute and difficult to
invert. Also, for any given message, it has to be infeasible to find another message

with the same hash value. Finally. a secure hash function needs to be collision-free,
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Figure 1: Classification of crypto-primitives [44]

1.e., it should be practically infeasible to find two different messages with the same
hash value. Hash functions can be used as building blocks for ensuring integrity
of information. Although inb practice many constructions are believed to satisfy the
above design objectives, no formal proofs exist to confirm this belief. MD5, SHA-
1 and SHA-2 are some examples of commonly used hash functions. In ‘response
to recent cryptanalytic attacks on several hash functions, the National Institute for
Standards and Technology (NIST) has opened a public competition to develop a new

hash function. The new hash algorithm will be called SHA-3 and will augment the

hash algorithms currently specified in FIPS 180-2.

One-way permutations, like hash functions, need to be easy to compute but difficult



to invert. The main difference is that unlike hash functions, one-way permutations
are both injective and surjective. If proven to exist, these primitives can be used in
the construction of several other primitives such as public-key cryptosystems, pseu-
dorandom number generators, oblivious transfer protocols, and key agreement pro-

tocols.

Unkeyed cryptographically secure pseudo random generators are typically used for
secret key generation. For a secret key to be well chosen, it is necessary that the pro-
duced pseudorandom number sequence satisfies certain statistical properties such as
balanced occﬁrrence of 0’s and 1’s, and indépendence between numbers at different

places in the sequence.

Symmetric key ciphers include block ciphers and stream ciphers. By a block cipher
we denote a function that transforms a plaintext to ciphertext and vice-versa, depend-
ing on the parameter called the secret key. Block ciphers operate on ﬁ;{ed—]ength
groups of bits, called blocks, of typical sizes of 64-256 bits. Examples of block ci-
phers include the Advanced Encryption Standard (AES) [17] that has recently been

approved by NIST as a replacement for the Data Encryption Standard (DES).

A stream cipher is usually a pseudorandom number generator that depends on the
secret key. The plaintext is then combined with the produced pseudorandom data,
typically using XOR operation. Unlike the case for block ciphers, currently there
1s no specific standard for stream ciphers. On the other hand, the European Net-

work of Excellence for Cryptology (ECRYPT), through its eSTREAM project that



was finalized in September 2008, has identified a portfolio of seven promising new
stream ciphers (HC-128, Grain, Rabbit, MICKEY, Salsa20/12, Trivium and SOSE-

MANUK.)

Message Authentication Codes, often called MACs, are short pieces of information
used to authenticate data. MAC algorithms can be regafded as keyed hash functions.
While similar to hash functions, MAC algorithms need to satisfy different security
requirements. For instance, an adversary, given MACs of arbitrary number of mes-
sages computed under the secret key, should not be able to be able to deduce any

information on the MAC of other messages.

Symmetric-key and public-key digital signatures afe used to give the receiver of the
message assurance that the message was sent by claimed sender, even thought the
channel of communication is insecure. They are implemented using symmetric-key
primitives and public-key primitives. Digital signatures can also be used to enforce
non-repudiation, according to which a signer of the message can not dispute that
she is the actual signer of the message. The RSA, El-Gamal and NTRU signature

algorithms are examples for public key digital signature schemes.

Symmetric key pseudorandom generators typically include stream ciphers or a one-

time pad system.

Identification systems are used to allow one party (the verifier) to gain assurances that

the identity of another (the claimant) is as declared, thus preventing impersonation.



The difference between identification systems and MACs is that message authenti-
cation does not provide interactive verification of identities. Identification systems
are often built using other crypto-primitives such as public key ciphers or symmetric

ciphers.

- Public key ciphers, also known as asymmetric key algorithms, use different keys for
encryption and decryption. Each user has a pair of keys, a public and a private key.
The private key is kept secret, whereas the public key can be publicly distributed.
Messages are encrypted with user’s public key and can only be decrypted by the
user’s private key. Although there exists a mathematical relation between the public
and a private key, in order for the cryptosystem to be secure, it needs to be com-
putationally infeasible to find the private key based on the knowledge of the public
key. The RSA, El-Gamal and NTRU encryption algorithms are examples for public

ciphers.

In this thesis, we focus on symmetric crypto-primitives, i.e., block and stream ciphers.
In what follows, we provide a classification for both of these primitives and their corre-
sponding deﬁnitions. A block cipher consists of two 1 — 1 functions Ex, Ej', both de-
pending on the parameter /X and mapping n-bit blocks to n-bit blocks. For each parameter
‘K and n-bit string P

B (Ex(P)) = P

The parameter K is called the secret key. P and E' ( P) are referred to as the plaintext and

ciphertext, respectively.
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Figure 2: Classification of block ciphers

3 based

Construction of block ciphers is done by combining building blocks such as permuta-
tions, s-boxes and non-linear Booiean functions. Usually, these building blocks are com-
bined in units called rounds. Fig. 2 shows a classification for block ciphers with respect to
their construction. The substitution permutation network (SPN) structure and Fiestel (also
referred to as DES-like) structures are the most commonly used designs for block ciphers
constructions.

A typical round of an SPN-structure consists of nonlinear substitution operations to
achieve the required confusion effect, linear transformation to achieve the required diffu-
sion effect and key mixing operation. The user supplied key is often used to derive round
keys using what is referred to as a key scheduling scheme. The AES [17] is an example

of an SPN. As for DES-like structures, the plaintext is usually divided into two halves,



denoted by L; and R; in round . The following transformation is applied at the 7-th round
Liyi=1;

R,‘+1 = Li &5 F(Ri, A,‘l'),‘

The round function, F°, does not have to be 1 — 1. The Data Encryption Standard (DES) is
an example for a Feistel block cipher.

As shown in Fig. 2, some block ciphers achieve its re_quir‘ed' nonlinearity through the
use of nonlinear s-boxes which are typically implemented as look up tables. When the the
ciphers are not based on s-boxes, some other means of non-linearity must be introduced.
This can include multiplication or exponentiation in the appfopriate finite field. S-boxes
usually do not depend on the key. However, for somebciphers such as Blowfish [56], the
s-boxes themselves depend on the key.

Consider a block cipher of R rouﬁds and consider the reduced version of i — 1 rounds.
If, given a set of plaintexts, it is possible to distinguish whether some arbitrary data rep-
resents the ciphetext produced by encrypting these plaintexts by the R — 1 rounds of the
cipher for an unknown key. the R round cipher can be attacked as follows. For each guess
for thé R-th round subkey, the cryptanalyst checks whether the set of ciphertext can be
distin;uished‘as the output from the cipher on the given set of plaintext. If not, the last

round subkey candidate is discarded. Since the last round subkey usually represents only

a portion of the whole key, significant reduction of the keyspace is achieved. This attack
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Figure 3: Classification of stream ciphers

method is used in several cryptanalytic attacks on block ciphers including linear cryptanal-
ysis, differential cryptanalysis and interpolation attacks.

Let n = (my,my,...) denote the bit blocks of some fixed size w of the message
to be encrypted. A stream cipher is g pair of efficient algorithms, one for transforming
each of the messages m; to ciphertext c, and one for the inverse transformation. Both the
encryption and decryption operations depend not only on the secret key %, but aiso o ¢
which distinguishes stream ciphers from block ciphers. For example, if m; = m, for some
I # d. these two blocks will be transformed into two different ciphertexts when encrypted
by a stream cipher. On the other hand, when encrypted by a block cipher, operating in the
basic electronic code book (ECB) mode, these two blocks will be transformed into the same
ciphertext. Frequent building-blocks for stream ciphers are keystream generators which can
be thought of as finite state machines tran‘sforming.the secret key K into a pseudorandom
stream z = (zy. z5,...) where z; € {0.1}*. In most of the cases, the z; blocks are XOR-ed

to the plaintext to produce the ciphertext stream.



As shown in Fig. 3, stream ciphers can be synchronous or asynchronous. For syn-
chronous stream ciphers, the sender and receiver must maintain synchronization for the
decryption operation to be successful. A stream of pseudo-random digits is generated in-
dependently of the plaintext and then applied to it for encryption. If synchronization is
lost, various offsets need to be tried systematically to obtain correct decryption. In the
case of asynchronous or self-synchronizing ciphers, previous N ciphertexts participate in
computing the next keystream word. Thus, the receiver can automatically synchronize the
keystream after receiving N ciphertexts. This makes it easier to recover if some ciphertext
words are lost and consequently single-word errors are limited to NV plaintext words.

Another classification of stream ciphers is with respect to their design structure. LFSR-
based stream ciphers are those based on linear feedback shift registers, which are shift
registers for which the feedback function is a linear function of its previous state. The
initial value of the LFSR is called the seed. While sequences produced by LFSRs may
have several interesting properties such as long period, balancedness and good correlation
properties, the inherent linearity of these sequences limit their direct applications in cryp-
tography. To ensure additional security properties, irregularly clocked LFSR based stream
cipher design was proposed [21]. Such a design usually consists of more than one LFSR
and at each step each LFSR is clocked. The choice of which of the output bits will be sent
to the output of the cipher is a function of the outputs of LFS;{S. A different way to destroy
the nonlinearity of the -produced sequence in a regularly clocked LFSR is to use more than

one LFSR and use a non-linear combiner function (NLC generators). In order to ensure



security properties of the produced stréam, the function needs to satisfy several crypto-
graphic properties such as balance, high nonlinearity, correlation immunity, high algebraic
degree and high algebraic immunity degree. Another way to ensure desired properties of
the output sequence is to use a non-linear filter function (NLFF) which operates on all bits
of the LFSR.

Non—LFSR based stream ciphers include ciphers designed to be fast when executed in
software. One of the most widély used ciphers in this category is RC4. Since RC4 operates
with 8-bit words, it does not achieve the best possible performance on 32 bit and 64 bit
processors which are in use today. Recent stream ciphers optimized for software usually
operate with 32 and 64 bit words [4,13,23,50].

In the next chapter, we provide an overview of common crybtanalytic attacké on block

ciphers and stream ciphers.
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Chapter 2

Overview of cryptanalysis techniques

There exist several classifications of cryptanalytic attacks. First, we provide the one that

differentiates attacks with respect to the information the cryptanalyst has access to:

- Known ciphertext attack: In this scenario, the cryptanalyst has access only to the
ciphertext and not to the corrésponding plaintext. The goal of the cryptanalyst in this
case is to recover as many corresponding plaintexts as possible or to recover the 'key

under which the encryption was done.

- Known plaintext attack: The cryptanalyst has both ciphertexts and their correspond-
ing plaintexts. The cryptanalyst’s goal is to recover the key under which the encryp-

tion was performed

- Chosen plaintext attack: The attacker has means to choose a set of plaintexts and
obtain their corresponding ciphertexts. Again, the goal is to recover the secret key

under which the encryption was performed.

11



Another classification of the attacks is with respect to whether the attacker has some

sort of physical access to the encrypting device or not:

- Pure mathematical attacks: In this model, the attacker does not consider the physical
implementation of the cipher and regards the problem as how to recover the secret

key given plaintext/ciphertext information from a purely mathematical point of view.

- Physical access dependant attacks: In this model, the attacker has some physical
access to the particular device that performs the encryption. This model includes
side channel analysis in which the attacker measures certain parameters such as the
instantaneous power consumption of the cryptographic device or the time used to per-
form the encryption operation. By utilizing this side channel information the attacker
might be able to deduces some information about the internals of the encrypting pro-
cess, which leads to key information recovery. Another cryptanalysis models that
fall into this category is differential fault analysis of ciphers in which the attacker
induces faults (errors) by applying physical influence such as ionizing radiation to
the device during the encryption. By carefpl inspection of results of encryption in
the faulty environment, the cryptanalysis might be able to gather information about

the used secret key.
The success of a cryptanalytic attack in a general setting is measured by:

- Amount of required input data: The amount of ciphertext/plaintext information nec-

essary to perform the attack.

- Number of necessary operations: The amount of necessary computations required to

12



execute the attack. For example, in the case of a brute force attack in which every
key is trivially checked, the number of operations is 2/¢/~1 on average, where |K |

denotes the size of the key in bits.
- Storage complexity: The amount of storage required.

- Number of necessary physical actions on the encrypting device: This can include the
number of necessary measurements in case of side channel analysis (such as power
analysis attacks and timing attacks) or number of induced faults in the memory of

the cipher, in case of fault analysis.

In the past twenty years a variety of efficient encryption algorithms have been devel-
oped. In parallel, the cryptanalysis community yielded many powerful attacks against ci-
phers. The most obvious attack on encryption algorithms is brute force attack, in which the |
cryptanalyst tries all the possible secret keys and finds the right one. As mentioned above,
if the key is denoted by K, the number of necessary encryptions is around 2/1-1. While
the necessary plaintext-ciphertext pairs required for this attack is usually very small, most
of modern ciphers are designed such that the key size is large enough to make this attack
practically impossible.

In what follows we briefly review some of the most important attacks known today on

both block ciphers and stream ciphers.

2.1 Block cipher cryptanalysis

In this section we give an overview of attacks on block ciphers.

13



Linear Cryptanalysis: In its basic version [41], linear cryptanalysis is a known plaintext

attack that uses a linear relation, between some plaintext and ciphertext bits, that holds

with probability different than % The first part of linear cryptanalysis is to find linear
approximations of the non-linear building blocks of the cipher, usually s-boxes. In other

words, the relation among input and output bits of a given s-box of the form
X0 @X,®..2X,,@...0Y,0Y,0...0Y,

needs to be established with the probability different than %, where X and Y denote the
input and output of the s-box. For an s-box with n input bits and m output bits, there exist
(2™ — 1) x (2™ — 1) possibilities and the cryptanalyst needs to investigate which ones hold
with the high bias, defined as e = p — % Next, these linear approximations are combined
and a biased linear approximation between the key bits, the plaintext and ciphertext for the
cipher reduced to R — 1 rounds is obtained. This is possible due to the fact that an XOR of
several biased random variables is also a biased random variable, as given by the following

Lemma which is usuzﬂly referred to as the Piling-Up Lemma.

Lemma 1 Let X; be independent random variables of which the values are 0 with the
probability of p; and 1 with probability 1 — p;. Then, the probability that X, ®.. . & X, =0
is

1 1
— + 2"‘1 p — —
5 E(p 5)
Finally, the obtained R — 1 round distinguisher can be used to mount an attack by guessing

the R-th round subkey bits and choosing the one for which most of the plaintext-ciphertext

14



pairs satisfy the constructed linear relation. Linear cryptanalysis provided the most sﬁc—
cessful attack on DES, requiring 243 known plaintext-ciphertext pairs.

Differential cryptanalysis: In its basic version [8]. differential cryptanalysis studies how
differences in the plaintexts affect the corresponding differences in the ciphertexts. As in
linear cryptanalysis, the first part of differential analysis is to provide differential properties
of the building blocks participating in the cipher. As for linear parts, such as bit permu-
tations or key addition, the resulting differences are deterministically determined by the
differences in the input. In case of non-linear components, such as s-boxes, knowledge of
the input difference does not guarantee knowledge of the output difference. Instead, the

cryptanalyst makes a table of all possible input/output differences, also called differentials:
AX B AY

where p denotes the probability that the input difference of AX will cause the output dif-
ference of AY. To obtain a differential for R — 1 rounds of the cipher, differentials are

combined along a differential path and the final differential probability is given by

Hpi
i=1

where 7 is the number of s-boxes used in the differential path and p; the probability of the
difference propagation within the i-th s-box. Again, the attack proceeds same as in linear
cryptanalysis. The last round subkey is guessed and if the distribution of differences for the

current key guess does not correspond to the expected one, the key candidate is discarded.

15



Since the last round subkey is usually smaller than the full key, significant reduction of the
key space is achieved.

Generalizations of linear and differential cryptanalysis: Linear and differential crypt-
analysis techniques have been generalized in different ways. In this part we provide an

overview of these generalizations.

- Differential-linear cryptanalysis [26]: A chosen plaintext attack first applied to 8-
round DES, in which differential cryptanalysis is applied to the first three rounds and
linear cryptanalysis is applied on the remaining five rounds. The main observation
on which the attack relies is that inverting certain bits in the input of the first round
leaves certain third round bits unchanged, implying that the XOR sum of these third
.round bits is also left unchanged. From rounds four to seven, a linear approximation
involving exactly these unchanged four-round input bits and certain 7-th round bits
1s thén used. For each 8-th round subkey portion, it is verified whether for each
plaintext, the XOR sum of the bits in questions changes or not. Using differential-
linear cryptanalysis, the number of necessary chosen plaintexl-ciphgnext pairs was
reduced to 512 to recover 10 bits of the key, for 8-round DES. The classical Biham-

Shamir differential attack required over 5000 chosen pairs.

- Truncated differential cryptanalysis [30]: In a conventional differential attack, all the
bits in the input and output difference are specified and the differential is denoted by
(a,b) where a and b are of the same length as the plaintext for the cipher. In truncated

differential cryptanalysis. not the whole differences are specified. In [30]. truncated
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differentials have been used to attack a 6-round DES with only 46 chosen plaintext-
ciphertext pairs. Also, in [31], it has been shown that there exists a 24-round Skipjack

truncated differential that holds with probability 1.

Higher-order differential cryptanalysis [32]: Whereas ordinary differential crypt-

analysis considers differences between plaintexts defined as

Af(x) = f(xsa)e f(x)
higher-order differential cryptanalysis utilizes the ¢-th derivative of the function f

Al (2) = A (ALY (@)

@y,...0; Ay,

It has been shown that it is possible to construct a cipher that is unbreakable by means
of classical differential cryptanalysis and at the same time weak with respect to higher
order differential cryptanalysis, making the attack relevant. For instance, in [32] it
was shown that for the function f(:f; k) = (x + k)? mod p with input/output size of
2 x log,p, where p is prime, every non-trivial one round differential has probability
of % andlthe second order derivative is a constant. The problem with high-order
differentials is to combine them to more than two rounds, as it is possible with first

order differentials.

Impossible differential cryptanalysis [6]: Instead of using biased differentials, differ-

entials with probability 0 at some intermediate state of the cipher are used to derive
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key information. The last-round keys are discarded on the basis of the indication that
the impossible event happened during the encryption if this key part was used. The

attack was applied to Skipjack reduced to 31 rounds.

- Boomerang attack [64]: In its basic version, the attack requires chosen-plaintext and
chosen-ciphertext queries-to combine two high-probability differential paths which
are not necessarily related to each other. To show that differential cryptanalysis of ci-
phers is infeasible, cipher designers usually compute an upper bound p on the proba-
bility of any differential characteristics of the cipher and then apply the often repeated
“folk theorem” to show that the differential attack would require at least % texts to
break the cipher. According to [64], this folk theorem is wrong, in case that the

attacker can adaptively choose ciphertext for which the plaintext will be obtained.

Other attacks, independent of linear and differential cryptanalysis include:

’

- Interpolation attacks [27]: This attack can be applied to ciphers for which the round
function can be written as an algebraic expression with low degree or sparse. For
ciphers in which s-boxes are used, the first step is to use the following theorem to

find the coefficient of the polynomial that will correspond to the s-box:

Theorem 1 Let K be a field. ‘Given 2n elements 1 T, Y1, .- - Yo € R, where

x;'s are distinct, define:

i@=>w Il —=

1<j<n.j#
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Then f(z) is the only polynomial over K of degree at most n—1 such that {(x;) = y,,

fori=1,...n

The expression for f is called the Lagrange interpolation formula. Next, the round
polynomial functions are combined to represent the whole cipher as a polynomial,
in which the coefficients are key dependent. By using a sufficient number of chosen
plaintext-ciphertext pairs, all coefficients may be computed and the cipher will be
considered broken, even without computing the key bits. This is why the attack in its
basic form is called a global deduction attack. In other words, an alternative repre-
sentation of the cipher is found, but the key 1s not necessarily obtained. However, the

last-round key guessing technique allows it to be converted to a key recovery attack.

Square attacks, Integral attacks, Multiset attacks [ 12, 16]: Unlike in, say linear crypt-
analysis, in which every plaintext-ciphertext pair can briﬁg the cryptanalysis a piece
of information, in multiset cryptanalysis, information can be obtained only by con-
sidering the whole set of plaintext-ciphertext pairs. The attack relies on the proper-
ties of building blocks which consérve certain properties.of the set of input values.
Among such f)ropenies are for example the distinctiveness of elemeénts in the set or
their sum. Consider for example thé_ effect of applying a bijective s-box to each el-
ement of a multiset in which every possif)le plaintext appears the same numbér of
times. For instance, if there is & x 2" plaintexts in the set, every value appears k
times. | Trivially, the property will be preserved in the set of corresponding cipher-

texts as well. Multiset attacks trace this kind of properties through as many rounds
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as possible. Integral cryptanalysis refers to the attack when the used set property is
that ) -z = 0, where G is the group that the elements belong to, i.e., the set is
balanced. The property is conserved after addition of two sets and this is what is
important for pushing the property through several rouﬁds in the cipher. This attack

was first used to cryptanalyze the cipher Square |16].

Related key attacks [7]: This type of attaék refers more to another cryptanalysis
model than to a specific attack method on ciphers. Namely, in related-key cryptan-
laysis, the cryptanalyst is able to learn ciphertexts of some plaintexts not only under
the original unknown key, but also under a key in some preset relation with the ori g-
inal key. In general, the attack can be mounted if a relation between keys K and
K' and a relation between P and P’ results in some relation between corresponding

ciphertexts C and (C'.

While it might appear that the interest of related-key attacks is purely theoretical,
examples of communication protocols exist where simple key management makes
relate-key cryptanalysis practical. The security of the cipher when used in hashing

mode can also be affected by this type of weaknesses.

Slide attacks [11]: The specific property of this attack is that it usually does not
depend on the number of rounds used in the cipher. The attack relies on the key
schedule weakness in which parts of the key are reused subsequently in different
rounds. Assume for instance, that the same key is used in each round transfonﬁation

and this property of the cipher be called self-similarity. The attack starts by finding
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slid pairs which are defined as follows.

Definition 1 Let F' be the round function of an iterated block cipher. If a pair of
known plaintexts (P, C), (P', C") satisfies F'(P) = P, then due to the self-similarity
of both the rounds and the key schedule, the corresponding ciphertexts also satisfy

F(C) = C’. Such a pair is called a slid patr.

By finding a slid pair, which is possible using O(2%) plaintexts due to the birthday
paradox, the attacker obtains a plaintext P and its one-round ciphertext, P’. If from
pair (P, P') it is possible to deduce the information about key K, the secret key is

- compromised.

2.2 Stream cipher cryptanalysis

In this section we provide an overview of attacks on stream ciphers.

Berlekamp-Massey Algorithm [2]: In 1967, Berlekamp presented an algorithm for de-
coding certain type of codes, called Bose-Chaudri-Hocquenghem codes [2]. Two years
after, Massey successfully applied this algorithm to LSFRs. In that form, the algorithm
finds the shortest linear feedback shift register that produces a given sequence of bits: A
generalization of this algorithm is Reeds-Sloane algorithm that finds the shortest LFSR for
‘a given output sequence, when the elements in the sequence take values from integers mod
n. The algorithm is used for cryptanalysis of LFSR designed stream ciphers if the linear

complexity of the resulting key stream is not long enough.
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Correlation attacks [58]: This attack is applicable to ciphers that use a Boolean function
to combine several linear feedback shift registers to rproduce the keystream output. If a
Boolean function is poorly chosen, only then the correlation attack applies. By careful
choice of the combining Boolean function, this attack can be mitigated and therefore the
correlation weaknesses are not inherent to the design itself. The attack works as follows.
Suppose that the keystream is produced by combining xy, . . . g, each produced from a dif-
ferent LFSR, by a Boolean function f. Assume also that there exists significant correlation
between xg and f(xzg,...zg), i.e., that for example z0 = f(xo,...zg) in 75% of cases.
To recover the internal state of the LFSR corresponding to x, all that is needed is to go
through all the possibilities of this LFSR and see which one has around 75% same bits
as the keystream output sequence. The Geffe generator [20] is a well known example for
stream ciphers broken by this technique.

Guess and Determine Attacks: The idea in this type of attack is to guess certain parts
of the jnternal state and then combine this with certain keystream output words to deduce
more bits of the internal state. If an inconsistency with other keystream words is observed,
the guess for tﬁe internal state is discarded. A wide variety of stream ciphers have been
tested with respect to this type of the attack, from RC4 to eSTREAM candidates such as
SOSEMANUK. In the attack on RC4 [33], whereas the effective size of the internal state
is approximately 1800 bits, the guess and determine attack reduces it to ardund 700 bits.
Guess and determine analysis of SOSEMANUK [1] showé that the internal state of size
384 bits, can be recovered using only 2! keystream words and requires 22> operations. It

can be concluded that the guess and determine attacks are a powerful technique for finding
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the internal state of the cipher and that special care must be taken during the design of the
cipher for mitigating this type of weaknesses.
Key scheduling weaknesses: A breakthrough in RC4 cryptanalysis was achieved by Mantin’s
observation [36] that the second RC4 keystream byte produced by different randomly dis-
tributed keys is biased. The observation lead to possible recovery of the second plaintext
byte if RC4 was used in broadcast mode in which the same plaintext was encrypted by sev-
eral hundreds of unrelated different keys. The attack put into focus the need for the internal
state to be properly randomized after the key scheduling phase and subsequently RC4 [5]
and other stream ciphers were systematically analyzed with respect to this property.
Throughout the rest of this thesis, we present some of our cryptanalytic results on some

recently proposed block and stream ciphers.
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Chapter 3

CryptanalySis of two light-weight block

ciphers

In this chapter we provide attacks on TREYFER {[70] and PIFEA-M {15] block ciphers.
TREYFER is a cipher designed for resource constrained environments. We provide a
related-key attack on TREYFER which recovers the secret key with relatively low data
and computational complexity. PIFEA-M is an improvement of IFEA-M, Improved Fast
Encryption Algorithm for Multimedia [46], aimed for data encryption of multimedia data
and designed to resist certain implementation dependent attack on IFEA-M. We show that

PIFEA-M is not resilient to a similar style attack.
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3.1 A Related-Key Attack on TREYFER

Despite its current implementation advances, the Advanced Encryption Standard (AES)
[49] may not always be the optimal choice for applications with tight resource constraints
such as radio frequency identification (RFID) tags and tiny sensor networks. In fact, with
the widespread applications of these resource-constrained devices, the analysis and design
of lightweight encryption algorithms have started to gain a newv momentum (e.g [14], [63].)

TREYFER [70] is a 64 bit block cipher (and also a MAC) proposed by Gideon Yuval,
from Microsoft, at FSE’97. According to Gideon Yuval, TREYFER is targeting an environ-
ment for which even TEA {65] and SAFER [39] are ““gross overdesign [70]". The simple
and compact design of TREYFER makes it an attractive choice for resource constrained
environments such as smart cards, RFIDs, and sensor networks. For example, TREYFER
requires only 29 bytes of executable code on the 8351 micro-controller.

The best known attack against TREYFER. presented by Alex Biryukov and David Wag-
ner [11], is a slide attack that requires 232 known plaintexts, 2?4 time for analysis and 2°2
Memory.

In this chapter, we derive a set of deterministic algebraic relationships between the
ciphertexts corresponding to related plaintexts encrypted with TREYFER under circularly
byte shifted versions of the same key. Based on these relationships, we present a chosen
related-key attack [7]- [10] that directly recovers the secret key of TREYFER using about
211 chosen plaintext encryption operations. The attack complexity is independent of the

‘number of rounds of the cipher.
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3.1.1 Description of TREYFER

TREYFER can be seen as an iterative block cipher with the round function shown in Figure
4 where < << denotes a circular left shift by 1 bit, + denotes addition mod 256 and SKi,
i = 0...7, denotes the key addition and s-box lookup operations S|(z + K;) mod 256]
function. All operations.are byte-oriented, and there is a single 8 x &-bit s-box.

In [70], the s-box is left undefined; it is suggested that the implementation can simply
use whatever data is available in memory. In each round, each byte has added to it the s-box
value of the sum of a key byte and the previous data byte, then it is rotated left one bit. The
design attempts to compensate for the simplicity of this round Iransfofmalion by using a

‘large number of rounds: 32.

The pseudo code impiementation of TREYFER is as follows:

Jor(r = 0;r < NumBRounds;r + +){

text[8] = text[0];

Jor(i =0;i < 8¢+ +)

text[i + 1] =

(texti + 1} + S[(keyld] + text[i])7%256]) <<< 1;
text[0] = text[8];

In order to Aobtain a more compact and faster cipher under the assumed hardware con-
straints, the designer of TREYFER opted not to have any complex key scheduling. In
particular, TREYFER simply uses its user supp]ied key, /{, byte by byte in exactly the
same way at each round.

The following notation will be used throughout the this part of the chapter.
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Figure 4: Round function of TREYFER, where SKi(z) = sboz((z + K;) mod 256)

e [ denotes round function mapping of TREYFER (see Figure 1).
e P = PP, --- P; denotes the 8 byte plaintext input
o K = KyK; --- K, denotes the 8 byte key

e C = CyC, --- C; denotes the 8 byte ciphertext

3.1.2 Main Observations

In this subsection, we derive an algebraic relationship between the ciphertexts correspond-
ing to related plaintexts encrypted under circularly (byte-wise) shifted versions of the secret
key.

Lemma 2 Let

’

PPy P= [(Py-- P, Ko K7)

and
I i 17

PP - P =Py P Ky Ks3).
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Then we have

’

f(P1’P2P7P07K1KTI{O):PIHPQIP;PO

Proof: Let p;;i = 0...7 denote i-th byte of f(P,P,--- P;Py, Ky --- K;Kg). Then, by

TREYFER definition, we have:

m = (P + S(P,,K;)) <<<1=F,

pa= (P + S(P), K,)) <<<1= P,

pr = (Po+ S(P, K7)) <<< 1= P,

po = (P, + S(Py, Ko)) <<<1= P,

The lemma holds by noting that f(P,Py--- PPy, Iy --- K+ Kg) = po-- - pr-
This observation can easily be extended to hold for composition of multiple rounds. By

P+ ¢ we will denote the TRYEFER encryption of the plaintext /° with a key, K.

Lemma 3 Let

Py Pl €y Oy,

-and

Then

rot(K,1)

PI,PQ-'-P7P0 - C;CQCTCO
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Proof: Follows from previous Lemma and the fact that TREYFER function is equal to f",
n = 32.

That way, for each TREYFER pair (P, ('), we can derive another “similar” plaintext-
ciphertext pair, encrypted by key circularly shifted to the left by one byte. Furthermore,
if previous Lemma is applied multiple times, we can get 7 such pairs, as given by the

following Theorem.

Theorem 2 Let rot( K, 1) denote the left circular shift of K by i bytes, then, for any

PP S gy O (1)
we have
PLP PPy Py PoPs Py M5V € 0o 05C4C5C6CHC 2)
PyPyP, Py Ps Py Py Pl M Ol 0y CaCsCsCr O 3)
PiRP PP PER ) cociaccice, 0 (@®)

It should be noted that the above presented property of TREYFER does not depend on

any particular choice of the s-box.
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3.1.3 The Attack

Related-key cryptanalysis assumes that the attacker learns the encryption of certain plain-
texts not only under the original unknown key, K, but also under some related keys (e.g.,
K' = ¢(K)). In a chosen-related-key attack, the attacker specifies how the key is to be
changed. It should be noted that the attacker knows or chooses the relationship between
keys, i.e., g(-), but not the actual key values.

Based on the relations derived in the above subsection, we describe a chosen-related-
key attack against TREYFER.

Given the plaintext-ciphertext pair (P, C), P 5 C where K = Ky Ko, the pro-

posed attack proceeds to recdver Ky as follows:

For( X = 0; X < 256; X + +) {
e Encrypt the plaintext X P, - - - P; Fp under the key rot(K, 1) = K; - - - KK
e For each ciphertext in the form Y (; - - - C5Cy, determine K, that satisfies

X =P, = (P + S|Kg + P)) <<< 1,
Y = C) = (C, + S[Ko + Cy)) <<< 1.

Figure 5: TREYFER key recovery algorithm

The process above finds P, and ('}, the second bytes of [(P,--- P;, Ky --- K+), and
f(Cy-- -‘C7, Kq - - K7), respectively.

Theoretically it is possible that there may existan X # P, suchthat X P, - - - Py Py M)
Y Cy - - - C;Chy, leading to false information on /{;. However, the probability that this will

happen is practically negligible (= 3 x 1071%).
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If the s-box is bijective, then only one of the equations above can be used to uniquely
determine Ky = S '[(P; >>> 1) — P,] — P. In the case of non bijective s-boxes, the
‘avbovve two steps can be repeated until Ky is uniquely determined.

K, to K¢ can be sequentially recovered by performing the above steps using related
plaintexts and keys. according to relations (3)-(8). Similarly, the last byte of the key, K-,
can be recovered using relation (1) or simply by exhaustive search.

Thus, the attack requires about 8 x 256 = 2!! chosen plaintext-ciphertext pairs, each,
256 of them are encrypted under a key that is circularly bytes shifted version of the original

secret key.

Remark 1 The above attack can be thought of as a slide attack in which the sliding pairs

are produced at the s-box level and not at the level of the whole round function.

3.2 Cryptanalysis of PIFEA-M

Confidentiality plays one of the key roles in proper implementation of multimedia appli-
cations over the Internet. Due to the widespread existence of eavesdropping and hacking
tools, privacy of the content has to be ensured for users exchanging mﬁltimedia data such
as video or voice. Encryption is one of the basic tools to achieve this privacy. The volume
éfinformation exchanged in mu]timeaia applications is high and encryption algorithms de-
signed for this purpose have to be fast. At the same time, the algorithm has to be secure

enough.
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To address this problem, Yi et al. [67] proposed Fast Encryption Algorithm for Multi-
media (FEA-M). The design of the cipher utilizes Boolean matrices and does not follow a
typical scheme of neither block nor stream cipher design. In [69], a practical adaptive cho-
sen plaintext attack on FEA-M, requiring only 1.5 kilobytes of data, has been presented.
Similar attack was also described in [45]. In [46], it is shown that the underlying system
of FEA-M nonlinear equations can be solved in 2 much more efficient way than in general
case. In the same paper, IFEA-M cipher has been proposed by modifying FEA-M so that
it resists algebraic attacks and to provide tolerance to packet loss errors.

A problem with possible improper implementation of IFEA-M has been pointed out
in [34]. Assuming that the attacker is able to force the user to use the same session key twice
(for example by controlling the pseudorandom generator through public time service), the
attacker would then be able to find the master key using a differential known plaintext
attack. To defend against this differential attack, Chefranov [15] proposed PIFEA-M, a
parameterized version of IFEA-M, and estimated that its performance is around 25% better
than of IFEA-M. As for resistance to previously reported software dependent differential
attack, in []5] it is claimed that breaking the cipher requires at least O(272) operations,
which is practically infeasible using current technologies.

In this chapter we show that, under the same assumptions, PIFEA-M is still vulnerable
to differential attacks. Let ( Pij . Cf ) denote a plaintext-cipherte;(t pair produced by i-th
encryption in session j. Given the pairs (P!, Cl). (P2, C?), (P}, C}) and (P}, C3), we
show that the attacker can recover all other successive plaintexts F;, ¢ > 3 from both

sessions with very small computational complexity.

32



3.2.1 PIFEA-M specification

In this subsection, we briefly review the specifications of PIFEA-M. For further details, the
reader is referred to [15]. PIFEA-M encrypts n x n Bdo]ean matrices using n x n key.
Master key Ky is assumed to be shared by the users in advance and the steps to achieve
common secret matrix are described in [68]. Session key K, initial matrix V and parameter

matrix R are generated by the sender and transmitted to receiver as follows:

K* = Ky K K,
Ve = Ko V-Ky (9)

R = Ko-R-Ig

The receiver discloses obtained data as follows:

K1 = K;' K- K;!

Vv = K;j'-voK,! (10)

Il

R Kg' R K

The parameter matrix R contains five n-bit numbers r, k = 1,...5 contained by the first
five rows of the matrix. All other elements of the matrix are set to zero. Session K and
initial matrix V are generated randomly by sender.

The message to be transmitted is padded with zeros if needed and then divided to blocks
Py, ... P. of size n?. These blocks are then arranged as matrices of dimension n x n and

encrypted and decrypted as follows:
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Ci = (])1 @ Ar]rz)Br3T4T5,i @ ‘41‘17"2
(11)

Pi - (Ci®AT1T2)B_l ’QAnrz:

T3T4TS,1

where A, ., = V1K™, and B, ; = V3K 4TV,

3.2.2 The attack

We present a differential style known plaintext attack, provided that the following assump-

tion holds:

Assumption 1 [t is assumed that the same session key matrices K and V' are used in two

sessions [15].

Again, we stress the fact that the cipher designer in [15] explicitly specified that the cipher
is secure under the above assumption. In fact, resisting such attacks was the main design
goal of PIFEA-M.

Given the four plaintext-ciphertext pairs (P}, C}), (P?, C?). (P, C7?+1), (PA,.CA ).

our proposed attack proceeds as follows:

1. Considering the difference between C} and C? yields:

AC; = ((]311 S AT]-Tz) ’ BT:;J‘«:TSJ' & "4T1,T2)
®((H2 6} ‘47'] ,1‘2) i 87'3.7‘4:1'5,‘11 CB ‘47'1,7'2) (12)

- API " B‘r3r47'_3,i
Substituting 7 = 1 and 7 = 2 in (12) and using the four plaintext-ciphertext pairs, the
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values of B,,,,, and B,,,,, 2 can be obtained.

. From the cipher specification, we have:

Br3r4r5,1 = VY. gratl s
(13)

Brsr4rs,2 = Vn. K”+2 -y

Inverting both sides of the first equation and then multiplying the equations gives

Bryrars 2B =YKV~ (14)

737475,1

By noting that
BT‘3T4T‘5,1’+]BT_3}-41-5,1'
Vs Kr4+i+l‘/r5(vr3 Kr4+i‘/rs)—1 — (15)
VKV T,

then, from (14), we get:

_ -1 .
BT3T4T5:i+1 - BT3T4T5,2 : Br3r4r5,1 . BT3T4T5,i (16)

Thus B,,,,,; fori > 3 can be calculated recursively.

. Asfor A,,,,. it can be easily derived by solving the linear matrix equation (fori = 1 -

or¢ = 2):

Arlrz = ( /'1? & PiBr;;'r.qr;_.i)(Br;g'rqr_:,.i & ])_1: (17)
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where ] denotes the identity matrix.
Finally, the knowledge of B,.,,,, ; and A,,,, enables the attacker to decrypt the plaintext

corresponding to any ciphertext C;, 7 > 3 in the assumed two sessions.
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Chapter 4

A new distinguishing and key recovery

attack on NGG stream cipher

NGG is an RC4-like stream cipher designed to make use of today’s common 32-bit pro-
cessors. It is 3-5 faster than RC4. In this chapter, we show that the NGG stream can be
distinguished, with success probability ~ 97%, from a random stream using only the first
keystream word. We also show that the first few kilobytes of the keystream may leak in-
formation about the secret key which allows the cryptanalyst to recover the secretb keyina

very efficient way.

4.1 Introduction

Because of its simplicity and speed, RC4 {44] is one of the most widely used stream ciphers

in software applications. It is implemented in many protocols and applications such as
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Secure Socket Layer (SSL), and Wired Equivalent Privacy (WEP).

Typically, RC4 operates with 8-bit values both on output and in the internal state. Ci-
phertext is obtained by XOR-ing keystream bytes with the plaintext. From the perspective
of modemn processors with 32/64-bit word size, this is inefficient. A stream cipher that pro-
duces 32/64-bit keystream words and requires similar number of operations per step would
be around 4-8 times faster, since an 8-bit operation on these processors takes equal time as
a 32/64-bit operation. To address this problem, several generalizations of RC4-like stream
ciphers have been proposed (e.g., RC4A [52], VMPC [72], NGG [50] and GGHN [23]).

‘The NGG cipher was proposed by Nawaz et al. [50] {61]. Originally, NGG was named
RC4(n,m) where m denotes the bit-length of the keystream output word and the size of the
internal state table is 2. Later on, the name NGG was adopted for this cipher. Another
version of this cipher, called GGHN, was introduced in [23], but our focus of this chapter
is the original version of the cipher.

In this chapter, w;: show that key schedule algorithm (KSA) of NGG is flawed. This
allows the cryptanalyst to distinguish NGG from a random stream using only the first
keystream word. Furthermore, we show that the reéu]ting statistical bias in the key schedul-
ing process allows the cryptanalyst to recover information about the secret key from the first
few kilobytes of the keystream output.

The last decade Bas witnessed an extensive cryptana]‘ytic literature on RC4 including
distinguishing attacks (e.g., [18,22,37]), internal state recovery attacks (e.g., [33,37,43,
60]), and attacks on the key scheduling algorithm (e.g., [5, 19,36, 38, 47, 53, 54, 59, 62]).

Recently, analyzing the security of generalized RC4-like ciphers has also gained some
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momentum (e.g., [42], [51], [61]. [66]). The cryptanalytic results presented in this chapter
resembles the work in [5, 53], in which it is shown that internal state permutation table
of RC4, right after KSA, can leak secret key bytes. On the other hand, apart from [29]
which studies weaknesses associated with concatenating 1Vs to the key, this is the first
time that the security of NGG key schedule algorithm is addressed. Also, according to
our knowledge, no key recovery algorithms on NGG have been proposed until now. Best
previously published NGG distinguisher {66] exploited a problem in NGG pseudorandom
number generation algorithm and requires around 100 consecutive keystream words. The
distinguisher presented in this chapter requires only the first key stream word generated
right after the the KSA. The attack presented in [61] focuses on GGHN and uses the first
two keystream words associated with about 23° secret keys to build a distinguisher. While
this attack may also be applicable to NGG, the high frequency of key changing required by
this attack (2% keys) questions its practical significance against both ciphers.

Among cryptographers, there exist different stances in the debate on whether distin-
guishing attacks represent a threat to the security of stream ciphers or not. For example,
Rose {25} argues that, unlike the block ciphers case, most 6f the distinguishing attacks
on stream ciphers do not represent a real threat to the practical secuﬁty of the cipher and
hence one should make a distinction between powerful distinguishing attacks and weak
ones based on whether the attack may lead to aeriving useful cryptanalytic information
such as key bits or not. Conversely, according to Bernstein [3], even distinguishing attacks
that do not yield key or other cryptanalytic information are more than mere certificational

weaknesses. An attacker, at least for some plaintext distributions, might be able to detect
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change of entropy in the plaintext only by looking at the ciphertext. If for example, a
dummy message with high entropy is sent among sender and receiver from time to time to
foil the attacker’s analysis, the attacker might be able to use a distinguisher to isolate and
discard these dummy messages.

The statistical bias weakness presented in this chapter is such that it allows distinguish-
ing the cipher from a random stream and, at the same time, recovering some secret key
information. It should be noted that the exhibited weakness is in key scheduling phase of
the algorithm and not in keystream generation part of the algorithm. In particular, the NGG
keystream generation procedure creates biased internal state and this is detectable in the
first few kilobytes of the cipher. Thus, in a way, by observing this bias, it 1s natural to
expect that information about the secret key might be revealed.

The rest of the chapter is organized as follows. In section 2, the relevant details of
the NGG cipher are given and previous attacks are described. Non-randomness of the S
table after the NGG KSA is proved in section 3. In section 4, a distinguisher utilizing this
weakness is constructed, and the success probability estimates are given. In section 5, we
show how it is possible to recover information about the secret key by looking at the first

few kilobytes of the keystream output. We conclude in section 6.

4.2 The NGG stream cipher

NGG(n, m) denotes a parameterized family of ciphers. For some fixed n and m, the NGG

internal state consists of a public n-bit counter 7, secret pseudorandom n-bit counter j and
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S table consisting of N = 2" m-bit values. The cipher consists of two separate algorithms

(see Figure 6 where M = 2™):

- Key Scheduling Algorithbm (KSA): In the initializalion step of the KSA, the ta-
ble S is initialized with prespecified publicly known random array a. Then, in
the scrambling step‘of the KSA, these values are mixed depending on key bytes
in a pseudorandom value as follows: the ¢-th and the j-th value are swapped and
the sum of these two values is assigned to the i-th element. This is repeated for

1=0,... N -1, where j is incremented pseudofandomly depending on the key.

- Pseudo Random Number Generation (PRNG): First, counters ¢ and j are updated.
Then, S[i] and S{j] values are swapped. Value S[(S[¢] + S[j]) mod N] is sent to the

output and then changed to S[i] + S[j].

Before using the cipher, it needs to be initialized by the KSA supplied with the secret key.
The output of this process is a randomized secret internal state of NGG. During the encryp-
tion process, m-bit plaintext words are XORed with m-bit keystream words produced by
the PRGA. Similarly, during the decryption process, the m-bit ciphertext words are XORed
with the corresponding keystream words.

In [66] if was shown that NGG is distinguishable from a random sequence with about
100 keystream words. The' attack relies on thg fact that for three random S table entries, the
relation S{X] = S[Y] + S|Z] holds with biased probability. due to the update step of NGG.
In [51], it was found that the least significant bit of NGG keystream word is biased. due to

"bias inducing state”, which occurs with probability 27'°. Distinguisher based on this can
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KSA PRGA

Initialization: Initialization:
Fori1=10,.N -1 1=7=0
Sli) = a; Loop:
j=0 ’ i=(i+1)mod N
Scrambling: Jj=1(j+ S[i)) mod N
For:=10,.N —1 Swap(S[z], S[j])
J=(j+ S}i+ K[t modl]) mod N : t = (S]7] + S|j] mod M) mod N
Swap(S[i], S[5]) Output=5]t]
S[i) = (S + S[y]) mod M S[t] = (S]] + S[3]) mod M

Figure 6: NGG(n, m) specification

be built by using 23289 keystream words. In Klein’s work [29], in which RC4 used in WEP
mode is shown to be weak, NGG is shown to be prone to a similar attack, which makes it
insecure when IVs are concatenated to keys [29].

Unlike previous distinguishing attacks, our attack can naturally be extended to a key
recovery attack. Throughout the rest of this chapter, we consider the popular case of n = 8
and m = 32. It should be noted, however, that the attacks described in this chapter becomes

more sever as m increases (e.g., for m = 64).

4.3 Weakness in NGG KSA

In the initialization step of NGG KSA, S[k| element is assigned a;, &k = 0...255, where
array a is publicly known. One choice for this array is given in [5S0]. Then, in the scrambling
step, fori = 0.1, 2,...255, the i-th value is swapped with pseudorandom element of S and

place ¢ 1s assigned the sum of these two elements.
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In this section, we show that the scrambling step does not randomize the S table suffi-
ciently. Namely, after the KSA, most of the elements of S can be represented as a sum of
one, two, three or four elements of a values. In other words, there is a high probability that,

for random index k, one of the following four relations will hold:
- S[k] = a,, for some index z1,
- S|k} = (a;, + a,,) mod M, for some indices x,, x,
- Slk] = (a;, + a,, + a,,) mod M, for some indices z;, 7o, 73,
- Slk] = (a;, + a,, + a,, + a,,) mod M, for some indices zy, z3. 3, 4.

where 0 < z; < 255. As will be shown, this is highly improbable for a randomly chosen

32-bit word. In the following we prove this observation by modelling the KSA procedure.

4.3.1 Definitions and assumptions

We say that the KSA is at step 1,1 = 0...256, if 7 scrambling stéps were executed. For
example, KSA 1is at step 0 right after initialization step of KSA, and before the first scram-
bling step and at step 256 after it is finished. Accordingly, by j; and S; we denote j and S
at step ¢ of the KSA.

Let W, = {>°, a,,| 2; € {0..255}}. Unless otherwise specified, we always use
the set of a values proposed in [50]. It should be noted, however, that changing the set
a cannot prevent the attacks described in this chapter. In general, W, 7 = 1.2, .- sets
are not disjoint. However,,for the choice of a in [50], W, N Wy = 0, W, N W3 = ) and
Wy 1Vs = 0. Thisis aléo very likely to be the case ifa is chosen at random.
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We approximate the 7 value at each step of KSA by a pseudorandom number and make

the usual independence assumptions throughout the proofs.

4.3.2 Deriving probabilities for S table entries after KSA

- The KSA changes S|k| values in a structured way. This is shown by the following Lemma.
Lemmad Let 0 < k < 255 be an index in S. Then

(a) Solk], Si1lk], - .. Sk[k] € W

(b) Ski1lk] € Wiy, for each n such that Si[jry1] € I/Vn'

(c) If there exists k + 2 < t < 256 such that j, = k, let t4 denote the smallest such
number. Then, Syiolk], ... Siy—1lk] € Woy1,Si 1k, - - - Saselk] € Wi. If not, then

Sktalk]. ... Sasslk] € Whia

Proof: Statement (a) is proved by induction on k. For k = 0, the statement takes the
form Sp[0] € W), which holds since Sy[0] = ap € W;. Suppose statement -(a) holds for
some 0 < £k < v254, we prove that (a) also holds for & + 1. Due to the KSA procedure
specification, table Sy differs from Sy only in values at indices ji,; and k. As for index
Jk+1- according to the swap step and due to induction hypothesis, we have Sy, ||jxs1] =
Si[k] € W,. As for index k., content of Sy [k| has no relevancy for fhe statement. Thus,
(a) holds for each & = 0...255.

To prove (b). note that Siyy]k] = Si[k] + Skljes1)- According to (a), Si[k] € Wi.

7

According to (b) assumption, for some n, Sk[jx41] € Wi. Thus, Sey1[k] € Wiy
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As for statement (c), suppose first that there does not exist ¢t from the assumption of the
statement. Due to (b), we have Sy ;1[k] € W, ;. According to the above assumption no
upcoming j; will take value k. This value remains unchanged until the end of KSA, i.e.,
Sky2lk], .- - Saslk] € W,,1. Now assume that there exists ¢ from the assumption of (c)
and let ¢, be the smallest such number. Atsteps k& + 2....{y — 1, .S value on index k will
not be changed and thus Sk+2[k]‘, ... Sy,-1|k] € W,41 holds. However, in step ¢, value at
index k is already overwritten by S;, [ty — 1]. According to (a), this value is a member of
W, and thus S [k]. . .. Sas6[k] € W) also holds. |

Our goal is to show that probability of Sos6[k] € Wy U Wo U W5 U W; is high. First,
we estimate lower bounds for the probabilities P[Sas6[k] € W], n = 1,2, 3, 4 separately.
To do this, we note that each KSA execution in our model uniquely corresponds to a tuple
(Jos 71, - - - 7255) and thus can be identified with it. Lower bounds are obtained by counting
tuples that, according to Lemma 4, certainly yield a value € 1V, at some index k.

In the Lemmas below, we also compute P[S;[k] € W,},n = 1,2,3,4 at some of the
steps ¢ # 256. This is necessary because, as can be seen from the obtained formulas,

P[Sas6]k] € W,], n = 2,3, 4 depend on some of the P(S;[k] € W,,_4].

Lemma 5 Let 1 and k be the KSA step and S table index such that i > k + 1. Then,
P[S;|kl e Wi] > 1— (255/256)i-k-]

Proof: For i = k + 1, the statement holds trivially since the right side of the inequality is

equal to 0. Lets > &k + 2. Part (c) of Lemma 4 provides a sufficient condition for event
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Figure 7: Probabilities that, after KSA, S{k] will be representable as a sum of 1, 2, 3 or 4
values from a set

S;|k] € 1¥) to hold. Namely, if for some of the t = k+ 2,...14, we have j, = k, S;[K] € W,
will hold true. Thus, we can derive a lower bound for the probability of event in question
as follows:
P[S,[k] e W] >
= Pljryo = korjrps =kor... orj = k]
=1 = Pljkya # k. gras £k, Ji # K]
=1 Pljrys # k] X Pljxss # k] % ... x Plj; # k|

= 1— (255/256)ik~! | D

Lemma 6 Let i and k be the KSA step and S table index such that ¢ > k + 1. Then,

255

256

TOPIS) e Wy 256 — k

1—k-1
256 * 256 )
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where we take that Z;:ol P[Sk[l] € Wh] = 0 when k = 0.

Proof: Similar to the proof of previous Lemma, we find a lower bound for P[S;[k] € W]
by noting that a combination of parts (b) and (c) of Lemma 4 provide a sufficient condition
for the event in question. Namely, according to part (b) of Lemma 1, if Si[jxy1] € W1,
Sk11[k] € W5 will hold true. According to (c), this will remain so until step 7 if by then
none of j indices takes value A. Thus,

P[Si[k] € Wy] >

= P(Sklik+1] € W1) X P(jraa # k), x ... x P(ji # k)
= (P(Jrs1 < k) X P(Sk[ik+1] € Wiljksr < k)+

P(Jes1 2 k) x P(Skljr1] € Wiljess > k)) x (255/256) !
= (555(2 X PISK[0) € W]+ .+ & x PSelk — 1] € Wi])+

B0k x (255/256) k!

k-1 ;

o PISk{l]eV] | o256-k 255 \i—k—1
— =0 - 220\
= ( 256 + o5 )x(25,)

=N

If k = 0, taking 31— P|Si[l] € W] = 0is justified by P[jiy, < k] = 0. In that case,

we have P[S;{0] € W] = (5£2)"! forevery 7 > 1. _ O

2535
256

Lemma 7 Letiand k be the KSA step and S table index such that ¢ > k + 1. Then,

oo PISH € W3] 255,04,
256 256

P[S[k] € W3] >
where we take that Zf;ol P|S;[k] € W] = 0 when k = 0.

47



Proof: As in the proofs of the previous two Lemmas, the event in question can be lower
bounded by events for which the probability can be eas;ly calculated. Namely, according
to parts (b) and (c) of Lemma 1, if Sk [jkﬂ} € Wy. Ski1lk] € Wy will hold true and thi