
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

CRYPTANALYSIS OF SYMMETRIC KEY PRIMITIVES

ALEKSANDAR KIRCANSKI

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

JUNE 2009

© ALEKSANDAR KIRCANSKI, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-63043-3
Our file Notre reference
ISBN: 978-0-494-63043-3

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

ABSTRACT

Cryptanalysis of symmetric key primitives

Aleksandar Kircanski

Block ciphers and stream ciphers are essential building blocks that are used to construct

computing systems which have to satisfy several security objectives. Since the security

of these systems depends on the security of its parts, the analysis of these symmetric key

primitives has been a goal of critical importance. In this thesis we provide cryptanalytic

results for some recently proposed block and stream ciphers.

First, we consider two light-weight block ciphers, TREYFER and PIFEA-M. While

TREYFER was designed to be very compact in order to fit into constrained environments

such as smart cards and RFIDs, PIFEA-M was designed to be very fast in order to be used

for the encryption of multimedia data. We provide a related-key attack on TREYFER which

recovers the secret key given around 2 n encryptions and negligible computational effort.

As for PIFEA-M, we provide evidence that it does not fulfill its design goal, which was

to defend from certain implementation dependant differential attacks possible on previous

versions of the cipher.

Next, we consider the NGG stream cipher, whose design is based on RC4 and aims to

increase throughput by operating with 32-bit or 64-bit values instead of with 8-bit values.

iii

We provide a distinguishing attack on NGG which requires just one keystream word. We

also show that the first few kilobytes of the keystream may leak information about the secret

key which allows the cryptanalyst to recover the secret key in an efficient way.

Finally, we consider GGHN, another RC4-like cipher that operates with 32-bit words.

We assess different variants of GGHN-like algorithms with respect to weak states, in which

all internal state words and output elements are even. Once GGHN is absorbed in such a

weak state, the least significant bit of the plaintext words will be revealed only by looking

at the ciphertext. By modelling the algorithm by a Markov chain and calculating the chain

absorption time, we show that the average number of steps required by these algorithms to

enter this weak state can be lower than expected at first glance and hence caution should be

exercised when estimating this number.

IV

Acknowledgments

I would like to acknowledge all the people who made this work possible.

First of all, I would like to express gratitude to my supervisor Dr. Amr Youssef for

guiding me and unselfishly sharing his knowledge, enthusiasm and ideas with me. The

amount of hours he spent considering the problems I encountered, his sincereness and

openness made this work meaningful and possible.

I also wish to express gratitude to my parents. Without their beleif in my goals and their

unselfish support, I would not be able to enter the field of scientific research.

Finally, I would like thank my wife Jelena for not urging me to find a job and supporting

me to concentrate on cryptology. Also, I would like to thank Protee, for being such a great

friend.

v

Contents

List of Figures ix

List of Tables x

1 Introduction 1

2 Overview of cryptanalysis techniques 11

2.1 Block cipher cryptanalysis 13

2.2 Stream cipher cryptanalysis 21

3 Cryptanalysis of two light-weight block ciphers 24

3.1 A Related-Key Attack on TREYFER 25

3.1.1 Description of TREYFER 26

3.1.2 Main Observations 27

3.1.3 The Attack 30

3.2 Cryptanalysis of PIFEA-M 31

3.2.1 PIFEA-M specification 33

3.2.2 The attack 34

vi

4 A new distinguishing and key recovery attack on NGG stream cipher 37

4.1 Introduction 37

4.2 The NGG stream cipher 40

4.3 Weakness in NGG KSA 42

4.3.1 Definitions and assumptions 43

4.3.2 Deriving probabilities for S table entries after KSA 44

4.4 Distinguishing NGG from a random stream 49

4.4.1 Distinguishers based on the m-th keystream word 52

4.5 Key information recovery 53

4.5.1 Recovering the first secret key byte 53

4.5.2 Full key recovery algorithm 54

5 On the Weak State of GGHN-like Ciphers 58

5.1 Introduction 59

5.1.1 Our contribution 60

5.2 RC4 and GGHN specification 61

5.3 Existing attacks 63

5.3.1 Attacks on RC4 63

5.3.2 Attacks on GGHN 65

5.4 Markov Chains background 65

5.5 Modeling idealized GGHN(n,m) by a chain 67

5.5.1 Defining the chain and calculating state transition probabilities . . . 69

vn

5.6 Absorption times 73

5.7 Experimental results on absorption time of different GGHN variants 75

6 Conclusion and future work 78

V l l l

List of Figures

1 Classification of crypto-primitives [44] 2

2 Classification of block ciphers 6

3 Classification of stream ciphers 8

4 Round function of TREYFER, where SKi(x) = sbox((x + Kt) mod 256) . 27

5 TREYFER key recovery algorithm 30

6 NGG(n, m) specification 42

7 Probabilities that, after KSA, S[k] will be representable as a sum of 1, 2, 3
or 4 values from a set 46

8 Probability that after KSA S[k] will be an element of different unions of W
sets 50

9 NGG key recovery algorithm 55

5 Experimental results for different variants of GGHN(n,32): average num­
ber of steps needed for entering the weak state versus l(N) = N line . . . 75

JX

List of Tables

1 Lower bounds on the success rate of different distinguishes 51

2 Probability of error for distinguishers based on the m-th keystream word . . 53

3 Success rate and average number of candidates for j z , 1 < i < 16 56

4 RC4 specification 62

5 GGHN(n,m) specification 63

6 Average number of steps before GGHN*(n,m) enters weak state 74

x

Chapter 1

Introduction

Historically, the classical goal of cryptography was to allow two persons to communicate

over an insecure channel, such as telephone line, so that the adversary can not understand

what is being said. Currently, the goal of cryptography, understood in a broader sense, is

to provide means to enforce other security goals such as privacy, integrity, authenticity and

non-repudiation.

The building blocks for ensuring these goals are crypto-primitives, such as block ci­

phers, stream ciphers, hash functions, and cryptographic protocols. An overview of these

primitives is provided in Fig. 1. In what follows, we provide a brief introduction for these

primitives. For further details, the reader is referred to [44].

- Hash functions are functions that take an arbitrary block of data and return a fixed

size bit string. A secure hash function needs to be easy to compute and difficult to

invert. Also, for any given message, it has to be infeasible to find another message

with the same hash value. Finally, a secure hash function needs to be collision-free,

1

Arbitrary length hash functions

Unkeyed
primitives One-way permutations

Random sequences

/

Security primitives

A Symmetric-key ciphers

Symmetric-key
primitives

Vi
Arbitrary-length hash Junctions

(MACs)

Signatures

Pseudo-random sequences

Identifications primitives

Public-key ciphers

Public-key primitives Signatures

Identification primitives

Figure 1: Classification of crypto-primitives [44]

i.e., it should be practically infeasible to find two different messages with the same

hash value. Hash functions can be used as building blocks for ensuring integrity

of information. Although in practice many constructions are believed to satisfy the

above design objectives, no formal proofs exist to confirm this belief. MD5, SHA-

1 and SHA-2 are some examples of commonly used hash functions. In response

to recent cryptanalytic attacks on several hash functions, the National Institute for

Standards and Technology (NIST) has opened a public competition to develop a new

hash function. The new hash algorithm will be called SHA-3 and will augment the

hash algorithms currently specified in F1PS 180-2.

One-way permutations, like hash functions, need to be easy to compute but difficult

2

to invert. The main difference is that unlike hash functions, one-way permutations

are both injective and surjective. If proven to exist, these primitives can be used in

the construction of several other primitives such as public-key cryptosystems, pseu­

dorandom number generators, oblivious transfer protocols, and key agreement pro­

tocols.

- Unkeyed cryptographically secure pseudo random generators are typically used for

secret key generation. For a secret key to be well chosen, it is necessary that the pro­

duced pseudorandom number sequence satisfies certain statistical properties such as

balanced occurrence of O's and l's, and independence between numbers at different

places in the sequence.

- Symmetric key ciphers include block ciphers and stream ciphers. By a block cipher

we denote a function that transforms a plaintext to ciphertext and vice-versa, depend­

ing on the parameter called the secret key. Block ciphers operate on fixed-length

groups of bits, called blocks, of typical sizes of 64-256 bits. Examples of block ci­

phers include the Advanced Encryption Standard (AES) [17] that has recently been

approved by NIST as a replacement for the Data Encryption Standard (DES).

A stream cipher is usually a pseudorandom number generator that depends on the

secret key. The plaintext is then combined with the produced pseudorandom data,

typically using XOR operation. Unlike the case for block ciphers, currently there

is no specific standard for stream ciphers. On the other hand, the European Net­

work of Excellence for Cryptology (ECRYPT), through its eSTREAM project that

3

was finalized in September 2008, has identified a portfolio of seven promising new

stream ciphers (HC-128, Grain, Rabbit, MICKEY, Salsa20/12, Trivium and SOSE-

MANUK.)

- Message Authentication Codes, often called MACs, are short pieces of information

used to authenticate data. MAC algorithms can be regarded as keyed hash functions.

While similar to hash functions, MAC algorithms need to satisfy different security

requirements. For instance, an adversary, given MACs of arbitrary number of mes­

sages computed under the secret key, should not be able to be able to deduce any

information on the MAC of other messages.

- Symmetric-key and public-key digital signatures are used to give the receiver of the

message assurance that the message was sent by claimed sender, even thought the

channel of communication is insecure. They are implemented using symmetric-key

primitives and public-key primitives. Digital signatures can also be used to enforce

non-repudiation, according to which a signer of the message can not dispute that

she is the actual signer of the message. The RSA, El-Gamal and NTRU signature

algorithms are examples for public key digital signature schemes.

- Symmetric key pseudorandom generators typically include stream ciphers or a one­

time pad system.

- Identification systems are used to allow one party (the verifier) to gain assurances that

the identity of another (the claimant) is as declared, thus preventing impersonation.

4

The difference between identification systems and MACs is that message authenti­

cation does not provide interactive verification of identities. Identification systems

are often built using other crypto-primitives such as public key ciphers or symmetric

ciphers.

- Public key ciphers, also known as asymmetric key algorithms, use different keys for

encryption and decryption. Each user has a pair of keys, a public and a private key.

The private key is kept secret, whereas the public key can be publicly distributed.

Messages are encrypted with user's public key and can only be decrypted by the

user's private key. Although there exists a mathematical relation between the public

and a private key, in order for the cryptosystem to be secure, it needs to be com­

putationally infeasible to find the private key based on the knowledge of the public

key. The RSA, El-Gamal and NTRU encryption algorithms are examples for public

ciphers.

In this thesis, we focus on symmetric crypto-primitives, i.e., block and stream ciphers.

In what follows, we provide a classification for both of these primitives and their corre­

sponding definitions. A block cipher consists of two 1 — 1 functions Ex, EK
l, both de­

pending on the parameter K and mapping n-bit blocks to n-bit blocks. For each parameter

K and n-bit string P

E~K\EK{P)) = P

The parameter K is called the secret key. P and Ex(P) are referred to as the plaintext and

ciphertext, respectively.

I Other structure j

Figure 2: Classification of block ciphers

Construction of block ciphers is done by combining building blocks such as permuta­

tions, s-boxes and non-linear Boolean functions. Usually, these building blocks are com­

bined in units called rounds. Fig. 2 shows a classification for block ciphers with respect to

their construction. The substitution permutation network (SPN) structure and Fiestel (also

referred to as DES-like) structures are the most commonly used designs for block ciphers

constructions.

A typical round of an SPN-structure consists of nonlinear substitution operations to

achieve the required confusion effect, linear transformation to achieve the required diffu­

sion effect and key mixing operation. The user supplied key is often used to derive round

keys using what is referred to as a key scheduling scheme. The AES [17] is an example

of an SPN. As for DES-like structures, the plaintext is usually divided into two halves,

6

denoted by L; and R{ in round i. The following transformation is applied at the i-th round

Ri.+i = Li®F{Ri,Ki\.

The round function, F, does not have to be 1 — 1. The Data Encryption Standard (DES) is

an example for a Feistel block cipher.

As shown in Fig. 2, some block ciphers achieve its required nonlinearity through the

use of nonlinear s-boxes which are typically implemented as look up tables. When the the

ciphers are not based on s-boxes, some other means of non-linearity must be introduced.

This can include multiplication or exponentiation in the appropriate finite field. S-boxes

usually do not depend on the key. However, for some ciphers such as Blowfish [56], the

s-boxes themselves depend on the key.

Consider a block cipher of R rounds and consider the reduced version of-/?— 1 rounds.

If, given a set of plaintexts, it is possible to distinguish whether some arbitrary data rep­

resents the ciphetext produced by encrypting these plaintexts by the R — 1 rounds of the

cipher for an unknown key, the R round cipher can be attacked as follows. For each guess

for the R-\h round subkey, the cryptanalyst checks whether the set of ciphertext can be

distinguished as the output from the cipher on the given set of plaintext. If not, the last

round subkey candidate is discarded. Since the last round subkey usually represents only

a portion of the whole key, significant reduction of the keyspace is achieved. This attack

7

Non LFS

LFSR-based |

!
Rer)iilarctnckir>Q |

NLCG |

(' \

1 NLFF

/'

j Asynchronous

!
[Non-regular
1 clocking

Figure 3: Classification of stream ciphers

method is used in several cryptanalytic attacks on block ciphers including linear cryptanal-

ysis, differential cryptanalysis and interpolation attacks.

Let m = (mj. m2,. . .) denote the bit blocks of some fixed size w of the message

to be encrypted. A stream cipher is a pair of efficient algorithms, one for transforming

each of the messages m, to ciphertext c, and one for the inverse transformation. Both the

encryption and decryption operations depend not only on the secret key ft", but'also oil i

which distinguishes stream ciphers from block ciphers. For example, if m/ = ma for some

/ ^ d, these two blocks will be transformed into two different ciphertexts when encrypted

by a stream cipher. On the other hand, when encrypted by a block cipher, operating in the

basic electronic code book (ECB) mode, these two blocks will be transformed into the same

ciphertext. Frequent building-blocks for stream Ciphers are keystream generators which can

be thought of as finite state machines transforming the secret key K into a pseudorandom

stream z = (zi. z2-:. -.) where z\ € {0. 1}U- In most of the cases, the z, blocks are XOR-ed

to the plaintext to produce the ciphertext stream.

As shown in Fig. 3, stream ciphers can be synchronous or asynchronous. For syn­

chronous stream ciphers, the sender and receiver must maintain synchronization for the

decryption operation to be successful. A stream of pseudo-random digits is generated in­

dependently of the plaintext and then applied to it for encryption. If synchronization is

lost, various offsets need to be tried systematically to obtain correct decryption. In the

case of asynchronous or self-synchronizing ciphers, previous N ciphertexts participate in

computing the next keystream word. Thus, the receiver can automatically synchronize the

keystream after receiving TV ciphertexts. This makes it easier to recover if some ciphertext

words are lost and consequently single-word errors are limited to N plaintext words.

Another classification of stream ciphers is with respect to their design structure. LFSR-

based stream ciphers are those based on linear feedback shift registers, which are shift

registers for which the feedback function is a linear function of its previous state. The

initial value of the LFSR is called the seed. While sequences produced by LFSRs may

have several interesting properties such as long period, balancedness and good correlation

properties, the inherent linearity of these sequences limit their direct applications in cryp­

tography. To ensure additional security properties, irregularly clocked LFSR based stream

cipher design was proposed [21]. Such a design usually consists of more than one LFSR

and at each step each LFSR is clocked. The choice of which of the output bits will be sent

to the output of the cipher is a function of the outputs of LFSRs. A different way to destroy

the nonlinearity of the produced sequence in a regularly clocked LFSR is to use more than

one LFSR and use a non-linear combiner function (NLC generators). In order to ensure

9

security properties of the produced stream, the function needs to satisfy several crypto­

graphic properties such as balance, high nonlinearity, correlation immunity, high algebraic

degree and high algebraic immunity degree. Another way to ensure desired properties of

the output sequence is to use a non-linear filter function (NLFF) which operates on all bits

oftheLFSR.

Non-LFSR based stream ciphers include ciphers designed to be fast when executed in

software. One of the most widely used ciphers in this category is RC4. Since RC4 operates

with 8-bit words, it does not achieve the best possible performance on 32 bit and 64 bit

processors which are in use today. Recent stream ciphers optimized for software usually

operate with 32 and 64 bit words [4,13,23,50].

In the next chapter, we provide an overview of common cryptanalytic attacks on block

ciphers and stream ciphers.

10

Chapter 2

Overview of cryptanalysis techniques

There exist several classifications of cryptanalytic attacks. First, we provide the one that

differentiates attacks with respect to the information the cryptanalyst has access to:

- Known ciphertext attack: In this scenario, the cryptanalyst has access only to the

ciphertext and not to the corresponding plaintext. The goal of the cryptanalyst in this

case is to recover as many corresponding plaintexts as possible or to recover the key

under which the encryption was done.

- Known plaintext attack: The cryptanalyst has both ciphertexts and their correspond­

ing plaintexts. The cryptanalyst's goal is to recover the key under which the encryp­

tion was performed

- Chosen plaintext attack: The attacker has means to choose a set of plaintexts and

obtain their corresponding ciphertexts. Again, the goal is to recover the secret key

under which the encryption was performed.

11

Another classification of the attacks is with respect to whether the attacker has some

sort of physical access to the encrypting device or not:

- Pure mathematical attacks: In this model, the attacker does not consider the physical

implementation of the cipher and regards the problem as how to recover the secret

key given plaintext/ciphertext information from a purely mathematical point of view.

- Physical access dependant attacks: In this model, the attacker has some physical

access to the particular device that performs the encryption. This model includes

side channel analysis in which the attacker measures certain parameters such as the

instantaneous power consumption of the cryptographic device or the time used to per­

form the encryption operation. By utilizing this side channel information the attacker

might be able to deduces some information about the internals of the encrypting pro­

cess, which leads to key information recovery. Another cryptanalysis models that

fall into this category is differential fault analysis of ciphers in which the attacker

induces faults (errors) by applying physical influence such as ionizing radiation to

the device during the encryption. By careful inspection of results of encryption in

the faulty environment, the cryptanalysis might be able to gather information about

the used secret key.

The success of a cryptanalytic attack in a general setting is measured by:

- Amount of required input data: The amount of ciphertext/plaintext information nec­

essary to perform the attack.

- Number of necessary operations: The amount of necessary computations required to

12

execute the attack. For example, in the case of a brute force attack in which every

key is trivially checked, the number of operations is 2 ' x ' _ 1 on average, where \K\

denotes the size of the key in bits.

- Storage complexity: The amount of storage required.

- Number of necessary physical actions on the encrypting device: This can include the

number of necessary measurements in case of side channel analysis (such as power

analysis attacks and timing attacks) or number of induced faults in the memory of

the cipher, in case of fault analysis.

In the past twenty years a variety of efficient encryption algorithms have been devel­

oped. In parallel, the cryptanalysis community yielded many powerful attacks against ci­

phers. The most obvious attack on encryption algorithms is brute force attack, in which the

cryptanalyst tries all the possible secret keys and finds the right one. As mentioned above,

if the key is denoted by K, the number of necessary encryptions is around 2 'K '_ 1 . While

the necessary plaintext-ciphertext pairs required for this attack is usually very small, most

of modern ciphers are designed such that the key size is large enough to make this attack

practically impossible.

In what follows we briefly review some of the most important attacks known today on

both block ciphers and stream ciphers.

2.1 Block cipher cryptanalysis

In this section we give an overview of attacks on block ciphers.

13

Linear Cryptanalysis: In its basic version [41], linear cryptanalysis is a known plaintext

attack that uses a linear relation, between some plaintext and ciphertext bits, that holds

with probability different than | . The first part of linear cryptanalysis is to find linear

approximations of the non-linear building blocks of the cipher, usually s-boxes. In other

words, the relation among input and output bits of a given s-box of the form

^ i j © A; 2 $. . . c A j m $. . . $ Yi1 © Y{2 © . . . © / j n

needs to be established with the probability different than \, where X and Y denote the

input and output of the s-box. For an s-box with n input bits and m output bits, there exist

(2n — 1) x (2m — 1) possibilities and the cryptanalyst needs to investigate which ones hold

with the high bias, defined as e = p — | . Next, these linear approximations are combined

and a biased linear approximation between the key bits, the plaintext and ciphertext for the

cipher reduced to R — 1 rounds is obtained. This is possible due to the fact that an XOR of

several biased random variables is also a biased random variable, as given by the following

Lemma which is usually referred to as the Piling-Up Lemma.

Lemma 1 Let Xx be independent random variables of which the values are 0 with the

probability ofpi and 1 with probability 1 — p,. Then, the probability that X\ ©. .. © Xn = 0

is

Finally, the obtained R-l round distinguisher can be used to mount an attack by guessing

the R-lh round subkey bits and choosing the one for which most of the plaintext-ciphertext

14

pairs satisfy the constructed linear relation. Linear cryptanalysis provided the most suc­

cessful attack on DES, requiring 243 known plaintext-ciphertext pairs.

Differential cryptanalysis: In its basic version [8]. differential cryptanalysis studies how

differences in the plaintexts affect the corresponding differences in the ciphertexts. As in

linear cryptanalysis, the first part of differential analysis is to provide differential properties

of the building blocks participating in the cipher. As for linear parts, such as bit permu­

tations or key addition, the resulting differences are deterministically determined by the

differences in the input. In case of non-linear components, such as s-boxes, knowledge of

the input difference does not guarantee knowledge of the output difference. Instead, the

cryptanalyst makes a table of all possible input/output differences, also called differentials:

AX ^ AY

where p denotes the probability that the input difference of AX will cause the output dif­

ference of AY. To obtain a differential for R — 1 rounds of the cipher, differentials are

combined along a differential path and the final differential probability is given by

where n is the number of s-boxes used in the differential path and p{ the probability of the

difference propagation within the z-th s-box. Again, the attack proceeds same as in linear

cryptanalysis. The last round subkey is guessed and if the distribution of differences for the

current key guess does not correspond to the expected one, the key candidate is discarded.

15

Since the last round subkey is usually smaller than the full key, significant reduction of the

key space is achieved.

Generalizations of linear and differential cryptanalysis: Linear and differential crypt-

analysis techniques have been generalized in different ways. In this part we provide an

overview of these generalizations.

- Differential-linear cryptanalysis [26]: A chosen plaintext attack first applied to 8-

round DES, in which differential cryptanalysis is applied to the first three rounds and

linear cryptanalysis is applied on the remaining five rounds. The main observation

on which the attack relies is that inverting certain bits in the input of the first round

leaves certain third round bits unchanged, implying that the XOR sum of these third

round bits is also left unchanged. From rounds four to seven, a linear approximation

involving exactly these unchanged four-round input bits and certain 7-th round bits

is then used. For each 8-th round subkey portion, it is verified whether for each

plaintext, the XOR sum of the bits in questions changes or not. Using differential-

linear cryptanalysis, the number of necessary chosen plaintext-ciphertext pairs was

reduced to 512 to recover 10 bits of the key, for 8-round DES. The classical Biham-

Shamir differential attack required over 5000 chosen pairs.

- Truncated differential cryptanalysis [30]: In a conventional differential attack, all the

bits in the input and output difference are specified and the differential is denoted by

(a, b) where a and b are of the same length as the plaintext for the cipher. In truncated

differential cryptanalysis. not the whole differences are specified. In [30], truncated

16

differentials have been used to attack a 6-round DES with only 46 chosen plaintext-

ciphertext pairs. Also, in [31], it has been shown that there exists a 24-round Skipjack

truncated differential that holds with probability 1.

- Higher-order differential cryptanalysis 132]: Whereas ordinary differential crypt-

analysis considers differences between plaintexts defined as

A . / (i) = / (i 6 o) f f i / (i)

higher-order differential cryptanalysis utilizes the ?'-th derivative of the function /

Aili...„i/(x) = A„i(A^1>li_i/(x))

It has been shown that it is possible to construct a cipher that is unbreakable by means

of classical differential cryptanalysis and at the same time weak with respect to higher

order differential cryptanalysis, making the attack relevant. For instance, in [32] it

was shown that for the function f(x. k) = (x + k)2 mod p with input/output size of

2 x logip, where p is prime, every non-trivial one round differential has probability

of - and the second order derivative is a constant. The problem with high-order

differentials is to combine them to more than two rounds, as it is possible with first

order differentials.

- Impossible differential cryptanalysis [6]: Instead of using biased differentials, differ­

entials with probability 0 at some intermediate state of the cipher are used to derive

17

key information. The last-round keys are discarded on the basis of the indication that

the impossible event happened during the encryption if this key part was used. The

attack was applied to Skipjack reduced to 31 rounds.

- Boomerang attack [64]: In its basic version, the attack requires chosen-plaintext and

chosen-ciphertext queries to combine two high-probability differential paths which

are not necessarily related to each other. To show that differential cryptanalysis of ci­

phers is infeasible, cipher designers usually compute an upper bound p on the proba­

bility of any differential characteristics of the cipher and then apply the often repeated

"folk theorem" to show that the differential attack would require at least - texts to

break the cipher. According to [64], this folk theorem is wrong, in case that the

attacker can adaptively choose ciphertext for which the plaintext will be obtained.

Other attacks, independent of linear and differentia] cryptanalysis include:

- Interpolation attacks [27]: This attack can be applied to ciphers for which the round

function can be written as an algebraic expression with low degree or sparse. For

ciphers in which s-boxes are used, the first step is to use the following theorem to

find the coefficient of the polynomial that will correspond to the s-box:

Theorem 1 Let K be a field. Given 2n elements x j xn, yi,.. .yn G R, where

x.i 's are distinct, define:

/w = X> II ^

18

Then f(x) is the only polynomial over K of degree at most n — 1 such that f(xt) = yx,

for i = 1 , . . . n.

The expression for / is called the Lagrange interpolation formula. Next, the round

polynomial functions are combined to represent the whole cipher as a polynomial,

in which the coefficients are key dependent. By using a sufficient number of chosen

plaintext-ciphertext pairs, all coefficients may be computed and the cipher will be

considered broken, even without computing the key bits. This is why the attack in its

basic form is called a global deduction attack. In other words, an alternative repre­

sentation of the cipher is found, but the key is not necessarily obtained. However, the

last-round key guessing technique allows it to be converted to a key recovery attack.

- Square attacks, Integral attacks, Multiset attacks [12,16]: Unlike in, say linear crypt-

analysis, in which every plaintext-ciphertext pair can bring the cryptanalysis a piece

of information, in multiset cryptanalysis, information can be obtained only by con­

sidering the whole set of plaintext-ciphertext pairs. The attack relies on the proper­

ties of building blocks which conserve certain properties of the set of input values.

Among such properties are for example the distinctiveness of elements in the set or

their sum. Consider for example the effect of applying a bijective s-box to each el­

ement of a multiset in which every possible plaintext appears the same number of

times. For instance, if there is k x 2n plaintexts in the set, every value appears k

times. Trivially, the property will be preserved in the set of corresponding cipher-

texts as well. Multiset attacks trace this kind of properties through as many rounds

19

as possible. Integral cryptanalysis refers to the attack when the used set property is

that Y2xecx = *-*> where G is the group that the elements belong to, i.e., the set is

balanced. The property is conserved after addition of two sets and this is what is

important for pushing the property through several rounds in the cipher. This attack

was first used to cryptanalyze the cipher Square [16].

- Related key attacks [7J: This type of attack refers more to another cryptanalysis

model than to a specific attack method on ciphers. Namely, in related-key cryptan-

laysis, the cryptanalyst is able to learn ciphertexts of some plaintexts not only under

the original unknown key, but also under a key in some preset relation with the orig­

inal key. In general, the attack can be mounted if a relation between keys K and

K' and a relation between P and P' results in some relation between corresponding

ciphertexts C and C".

While it might appear that the interest of related-key attacks is purely theoretical,

examples of communication protocols exist where simple key management makes

relate-key cryptanalysis practical. The security of the cipher when used in hashing

mode can also be affected by this type of weaknesses.

- Slide attacks [11]: The specific property of this attack is that it usually does not

depend on the number of rounds used in the cipher. The attack relies on the key

schedule weakness in which parts of the key are reused subsequently in different

rounds. Assume for instance, that the same key is used in each round transformation

and this property of the cipher be called self-similarity. The attack starts by finding

20

slid pairs which are defined as follows.

Definition 1 Let F be the round function of an iterated block cipher. If a pair of

known plaintexts (P. C), (P',C) satisfies F(P) = P', then due to the self-similarity

of both the rounds and the key schedule, the corresponding ciphertexts also satisfy

F(C) = C Such a pair is called a slid pair.

By finding a slid pair, which is possible using 0(2?) plaintexts due to the birthday

paradox, the attacker obtains a plaintext P and its one-round ciphertext, P'. If from

pair (P, P') it is possible to deduce the information about key K, the secret key is

compromised.

2.2 Stream cipher cryptanalysis

In this section we provide an overview of attacks on stream ciphers.

Berlekamp-Massey Algorithm [2]: In 1967, Berlekamp presented an algorithm for de­

coding certain type of codes, called Bose-Chaudri-Hocquenghem codes [2]. Two years

after, Massey successfully applied this algorithm to LSFRs. In that form, the algorithm

finds the shortest linear feedback shift register that produces a given sequence of bits. A

generalization of this algorithm is Reeds-Sloane algorithm that finds the shortest LFSR for

a given output sequence, when the elements in the sequence take values from integers mod

n. The algorithm is used for cryptanalysis of LFSR designed stream ciphers if the linear

complexity of the resulting key stream is not long enough.

21

Correlation attacks [58]: This attack is applicable to ciphers that use a Boolean function

to combine several linear feedback shift registers to produce the keystream output. If a

Boolean function is poorly chosen, only then the correlation attack applies. By careful

choice of the combining Boolean function, this attack can be mitigated and therefore the

correlation weaknesses are not inherent to the design itself. The attack works as follows.

Suppose that the keystream is produced by combining x0,... xg, each produced from a dif­

ferent LFSR, by a Boolean function / . Assume also that there exists significant correlation

between x0 and f(x0,... x8), i.e., that for example xO = / (x 0 , . . - x%) in 75% of cases.

To recover the internal state of the LFSR corresponding to x0, all that is needed is to go

through all the possibilities of this LFSR and see which one has around 75% same bits

as the keystream output sequence. The Geffe generator [20] is a well known example for

stream ciphers broken by this technique.

Guess and Determine Attacks: The idea in this type of attack is to guess certain parts

of the internal state and then combine this with certain keystream output words to deduce

more bits of the internal state. If an inconsistency with other keystream words is observed,

the guess for the internal state is discarded. A wide variety of stream ciphers have been

tested with respect to this type of the attack, from RC4 to eSTREAM candidates such as

SOSEMANUK. In the attack on RC4 [33], whereas the effective size of the internal state

is approximately 1800 bits, the guess and determine attack reduces it to around 700 bits.

Guess and determine analysis of SOSEMANUK [1] shows that the internal state of size

384 bits, can be recovered using only 24 keystream words and requires 2224 operations. It

can be concluded that the guess and determine attacks are a powerful technique for finding

22

the internal state of the cipher and that special care must be taken during the design of the

cipher for mitigating this type of weaknesses.

Key scheduling weaknesses: A breakthrough in RC4 cryptanalysis was achieved by Mantin's

observation [36] that the second RC4 keystream byte produced by different randomly dis­

tributed keys is biased. The observation lead to possible recovery of the second plaintext

byte if RC4 was used in broadcast mode in which the same plaintext was encrypted by sev­

eral hundreds of unrelated different keys. The attack put into focus the need for the internal

state to be properly randomized after the key scheduling phase and subsequently RC4 [5]

and other stream ciphers were systematically analyzed with respect to this property.

Throughout the rest of this thesis, we present some of our cryptanalytic results on some

recently proposed block and stream ciphers.

23

Chapter 3

Cryptanalysis of two light-weight block

ciphers

In this chapter we provide attacks on TREYFER [70] and PIFEA-M [15] block ciphers.

TREYFER is a cipher designed for resource constrained environments. We provide a

related-key attack on TREYFER which recovers the secret key with relatively low data

and computational complexity. PIFEA-M is an improvement of IFEA-M, Improved Fast

Encryption Algorithm for Multimedia [46], aimed for data encryption of multimedia data

and designed to resist certain implementation dependent attack on IFEA-M. We show that

PIFEA-M is not resilient to a similar style attack.

24

3.1 A Related-Key Attack on TREYFER

Despite its current implementation advances, the Advanced Encryption Standard (AES)

[49] may not always be the optimal choice for applications with tight resource constraints

such as radio frequency identification (RFID) tags and tiny sensor networks. In fact, with

the widespread applications of these resource-constrained devices, the analysis and design

of lightweight encryption algorithms have started to gain a new momentum (e.g [14], [63].)

TREYFER [70] is a 64 bit block cipher (and also a MAC) proposed by Gideon Yuval,

from Microsoft, at FSE'97. According to Gideon Yuval, TREYFER is targeting an environ­

ment for which even TEA [65] and SAFER [39] are "gross overdesign [70]". The simple

and compact design of TREYFER makes it an attractive choice for resource constrained

environments such as smart cards, RFIDs, and sensor networks. For example, TREYFER

requires only 29 bytes of executable code on the 8051 micro-controller.

The best known attack against TREYFER, presented by Alex Biryukov and David Wag­

ner [11], is a slide attack that requires 232 known plaintexts, 244 time for analysis and 232

memory.

In this chapter, we derive a set of deterministic algebraic relationships between the

ciphertexts corresponding to related plaintexts encrypted with TREYFER under circularly

byte shifted versions of the same key. Based on these relationships, we present a chosen

related-key attack [7]- [10] that directly recovers the secret key of TREYFER using about

211 chosen plaintext encryption operations. The attack complexity is independent of the

number of rounds of the cipher.

25

3.1.1 Description of TREYFER

TREYFER can be seen as an iterative block cipher with the round function shown in Figure

4 where < < < denotes a circular left shift by 1 bit, 4- denotes addition mod 256 and SKi,

i = 0 . . . 7, denotes the key addition and s-box lookup operations S[(x + Kx) mod 256]

function. All operations are byte-oriented, and there is a single 8 x 8-bit s-box.

In [70], the s-box is left undefined; it is suggested that the implementation can simply

use whatever data is available in memory. In each round, each byte has added to it the s-box

value of the sum of a key byte and the previous data byte, then it is rotated left one bit. The

design attempts to compensate for the simplicity of this round transformation by using a

large number of rounds: 32.

The pseudo code implementation of TREYFER is as follows:

for(r = 0: r < N inn Rounds: r + +){
text{8] = text[0];
for(i = 0;i < 8:i + +)
text[i + 1] =
(text[i + 1] + S[{key[i] + text[i])%256]) < < < 1;
text[0] = text[8};

}

In order to obtain a more compact and faster cipher under the assumed hardware con­

straints, the designer of TREYFER opted not to have any complex key scheduling. In

particular, TREYFER simply uses its user supplied key, K, byte by byte in exactly the

same way at each round.

The following notation will be used throughout the this part of the chapter.

26

P7 |

^SHDSHDB-OeK) ISXSJ »{V)JSKS; •{VM$K7|J

n «,'

Figure 4: Round function of TREYFER, where SKi(x) = sbox((x + I<i) mod 256)

• / denotes round function mapping of TREYFER (see Figure 1).

• P = PQP] • • • P? denotes the 8 byte plaintext input

• K — K0Ki - • • K7 denotes the 8 byte key

• C = CoCj • • • C-j denotes the 8 byte ciphertext

3.1.2 Main Observations

In this subsection, we derive an algebraic relationship between the ciphertexts correspond­

ing to related plaintexts encrypted under circularly (byte-wise) shifted versions of the secret

key.

Lemma 2 Let

P0PJ-P7 = f(P0-P7:Ki)-K7)

and

P*Pl---P- =f(P0---P7-!<0--I<7)-

27

Then we have

f{P[P2 • - • P7P0, tfi • • - K7K0) = P'[P2 • • • P7P0

Proof: Let Pi,i = 0 . . . 7 denote i-th byte of f{P[P2 • • • P7-P0,#1 • • • # 7 # o) - Then, by

TREYFER definition, we have:

P, = {P2 + S{P'l,Kl))«<\ = P'2

p2 = (P3 + S(P2,K2))<«l = P^

p7 = (P0 + S(P;,K7))<«l=Pv

Po = (Pi + S(Pi,K0))<«l = Pi

The lemma holds by noting that f(P[P2--P7P0.K1---K7K0)=p0---p7-

This observation can easily be extended to hold for composition of multiple rounds. By

P ^ C we will denote the TRYEFER encryption of the plaintext P with a key, K.

Lemma 3 Let

PQ • • • P7 1—> Co • • • C7,

and

C0---C7 = f(C0---C7,K0---K7).

Then

P'XP2 • • • P7Po m ^ } C[C2--- C7C0

28

Proof: Follows from previous Lemma and the fact that TREYFER function is equal to fn,

n = 32.

That way, for each TREYFER pair (P,C), we can derive another "similar" plaintext-

ciphertext pair, encrypted by key circularly shifted to the left by one byte. Furthermore,

if previous Lemma is applied multiple times, we can get 7 such pairs, as given by the

following Theorem.

Theorem 2 Let rot(K, i) denote the left circular shift of K by i bytes, then, for any

P0...P7>JUC0---C7 (i)

we have

P1P2P3P4P5P6P7P0 '—> CxC2CzCiC^C(,C-jCo (2)

P2P3P4P5P6P7P0P1 '—> C2C%CiC'iC?>CiC{sCl (3)

piPoP'.p'A^p'X ro^7) c'7c0c'Ac'3c'4c'5C6 (8)

It should be noted that the above presented property of TREYFER does not depend on

any particular choice of the s-box.

29

3.1.3 The Attack

Related-key cryptanalysis assumes that the attacker learns the encryption of certain plain­

texts not only under the original unknown key, K, but also under some related keys (e.g.,

K' = g(K)). In a chosen-related-key attack, the attacker specifies how the key is to be

changed. It should be noted that the attacker knows or chooses the relationship between

keys, i.e., #(•), but not the actual key values.

Based on the relations derived in the above subsection, we describe a chosen-related-

key attack against TREYFER.

Given the plaintext-ciphertext pair (P,C), P i—> C where K = K0 • • • K7, the pro­

posed attack proceeds to recover K0 as follows:

For(X = 0; X < 256; X + +) {

• Encrypt the plaintext XP2 • • • P7P0 under the key rot(K, 1) = Kj • • • K-K0

• For each ciphertext in the form Y C2 • • • C7C0, determine KQ that satisfies

X = P[= (P,+S[K0 + P0})<«\,

Y = C[= (C1+S[K0 + C0])<«1.

}

Figure 5: TREYFER key recovery algorithm

The process above finds Px and C\, the second bytes of f(P0 • • • P7. K0 • • - K7), and

/ (C 0 • • • C7, Ku • • • K7), respectively.

Theoretically it is possible that there may exist a n X ^ P[such that XPi • • • P7PQ '£—->

YC2 • • • C7CQ, leading to false information on A'0. However, the probability that this will

happen is practically negligible (K 3 X 10"15).

30

If the s-box is bijective, then only one of the equations above can be used to uniquely

determine K0 = S~1[(P[> > > 1) - P-^] — P0. In the case of non bijective s-boxes, the

above two steps can be repeated until K0 is uniquely determined.

K\ to K6 can be sequentially recovered by performing the above steps using related

plaintexts and keys, according to relations (3)-(8). Similarly, the last byte of the key, K7,

can be recovered using relation (1) or simply by exhaustive search.

Thus, the attack requires about 8 x 256 = 211 chosen plaintext-ciphertext pairs, each.

256 of them are encrypted under a key that is circularly bytes shifted version of the original

secret key.

Remark 1 The above attack can be thought of as a slide attack in which the sliding pairs

are produced at the s-box level and not at the level of the whole round function.

3.2 CryptanalysisofPIFEA-M

Confidentiality plays one of the key roles in proper implementation of multimedia appli­

cations over the Internet. Due to the widespread existence of eavesdropping and hacking

tools, privacy of the content has to be ensured for users exchanging multimedia data such

as video or voice. Encryption is one of the basic tools to achieve this privacy. The volume

of information exchanged in multimedia applications is high and encryption algorithms de­

signed for this purpose have to be fast. At the same time, the algorithm has to be secure

enough.

31

To address this problem. Yi et al. [67] proposed Fast Encryption Algorithm for Multi­

media (FEA-M). The design of the cipher utilizes Boolean matrices and does not follow a

typical scheme of neither block nor stream cipher design. In [69], a practical adaptive cho­

sen plaintext attack on FEA-M, requiring only 1.5 kilobytes of data, has been presented.

Similar attack was also described in [45]. In [46], it is shown that the underlying system

of FEA-M nonlinear equations can be solved in a much more efficient way than in general

case. In the same paper, IFEA-M cipher has been proposed by modifying FEA-M so that

it resists algebraic attacks and to provide tolerance to packet loss errors.

A problem with possible improper implementation of IFEA-M has been pointed out

in [34]. Assuming that the attacker is able to force the user to use the same session key twice

(for example by controlling the pseudorandom generator through public time service), the

attacker would then be able to find the master key using a differential known plaintext

attack. To defend against this differential attack, Chefranov [15] proposed PIFEA-M, a

parameterized version of IFEA-M, and estimated that its performance is around 25% better

than of IFEA-M. As for resistance to previously reported software dependent differential

attack, in [15] it is claimed that breaking the cipher requires at least 0(272) operations,

which is practically infeasible using current technologies.

In this chapter we show that, under the same assumptions, PIFEA-M is still vulnerable

to differential attacks. Let (P /X^) denote a plaintext-ciphertext pair produced by i-th

encryption in session j . Given the pairs (P/.C,1), (P,2,C2), (Pj.C^) and (P | , Cf), we

show that the attacker can recover all other successive plaintexts P7, i: > 3 from both

sessions with very small computational complexity.

32

3.2.1 PIFEA-M specification

In this subsection, we briefly review the specifications of PIFEA-M. For further details, the

reader is referred to [15]. PIFEA-M encrypts n x n Boolean matrices using n x n key.

Master key K0 is assumed to be shared by the users in advance and the steps to achieve

common secret matrix are described in [68]. Session key K, initial matrix V and parameter

matrix R are generated by the sender and transmitted to receiver as follows:

K* = Ka-K^-Ko

V* = KQ-V-KQ (9)

R* = K0-R- A'o

The receiver discloses obtained data as follows:

R = Kg^R'-Ko1

The parameter matrix R contains five n-bit numbers rk, k = 1 5 contained by the first

five rows of the matrix. All other elements of the matrix are set to zero. Session K and

initial matrix V are generated randomly by sender.

The message to be transmitted is padded with zeros if needed and then divided to blocks

Pi,... Pr of size n2. These blocks are then arranged as matrices of dimension n x n and

encrypted and decrypted as follows:

33

(i l)

where ,4 n r 2 = Vr»/T*, and 5r3r4rs, t- = Vr*Kr4+lVrK

3.2.2 The attack

We present a differential style known plaintext attack, provided that the following assump­

tion holds:

Assumption 1 It is assumed that the same session key matrices K and V are used in two

sessions [15].

Again, we stress the fact that the cipher designer in [15] explicitly specified that the cipher

is secure under the above assumption. In fact, resisting such attacks was the main design

goalofPIFEA-M.

Given the four plaintext-ciphertext pairs (P/, C}), {Pi Cf), {Pl+l,C}+,), (/f+1. Cf+1).

our proposed attack proceeds as follows:

1. Considering the difference between C\ and Cf yields:

A C / , = \ \ i i © Ari r2) • /5 r 3 i r . j .r s , : © '^ri.r2)

Substituting ? = 1 and z = 2 in (12) and using the four plaintext-ciphertext pairs, the

34

values of Brsr4r-0ti and Br.jrirb2
 c a n be obtained.

2. From the cipher specification, we have:

(13)

Brmrh:2 = Vr*-Kr*+2-VT*

Inverting both sides of the first equation and then multiplying the equations gives

^ W ^ t f - U , ! = V^KV^ (14)

By noting that

-Drsr/ irsi+l ^r3T4rr,,i

yr3f^r4 + i+lyrifyr3f^r4+iyr5\-l _ (1 5)

V^KV-*3,

then, from (14), we get:

Thus Br3rir5_i for i > 3 can be calculated recursively.

3. As for Arir2, it can be easily derived by solving the linear matrix equation (for i = 1

or i = 2):

Arir.2 = (Q © PiBr3T4r^i){Br3rtr;i.i © 7) _ 1
; (17)

35

where / denotes the identity matrix.

Finally, the knowledge of Br:irnrr>ti and ATlT2 enables the attacker to decrypt the plaintext

corresponding to any ciphertext d, i > 3 in the assumed two sessions.

36

Chapter 4

A new distinguishing and key recovery

attack on NGG stream cipher

NGG is an RC4-like stream cipher designed to make use of today's common 32-bit pro­

cessors. It is 3-5 faster than RC4. In this chapter, we show that the NGG stream can be

distinguished, with success probability ?a 97%, from a random stream using only the first

keystream word. We also show that the first few kilobytes of the keystream may leak in­

formation about the secret key which allows the cryptanalyst to recover the secret key in a

very efficient way.

4.1 Introduction

Because of its simplicity and speed, RC4 [44] is one of the most widely used stream ciphers

in software applications. It is implemented in many protocols and applications such as

37

Secure Socket Layer (SSL), and Wired Equivalent Privacy (WEP).

Typically, RC4 operates with 8-bit values both on output and in the internal state. Ci-

phertext is obtained by XOR-ing keystream bytes with the plaintext. From the perspective

of modern processors with 32/64-bit word size, this is inefficient. A stream cipher that pro­

duces 32/64-bit keystream words and requires similar number of operations per step would

be around 4-8 times faster, since an 8-bit operation on these processors takes equal time as

a 32/64-bit operation. To address this problem, several generalizations of RC4-like stream

ciphers have been proposed (e.g., RC4A [52], VMPC [72], NGG [50] and GGHN [23]).

The NGG cipher was proposed by Nawaz el al. [50] [61]. Originally, NGG was named

RC4(n,m) where m denotes the bit-length of the keystream output word and the size of the

internal state table is 2". Later on, the name NGG was adopted for this cipher. Another

version of this cipher, called GGHN, was introduced in [23], but our focus of this chapter

is the original version of the cipher.

In this chapter, we show that key schedule algorithm (KSA) of NGG is flawed. This

allows the cryptanalyst to distinguish NGG from a random stream using only the first

keystream word. Furthermore, we show that the resulting statistical bias in the key schedul­

ing process allows the cryptanalyst to recover information about the secret key from the first

few kilobytes of the keystream output.

The last decade has witnessed an extensive cryptanalytic literature on RC4 including

distinguishing attacks (e.g., [18,22,37]), internal state recovery attacks (e.g., [33,37,43,

60]), and attacks on the key scheduling algorithm (e.g.. [5,19,36,38,47,53,54,59,62]).

Recently, analyzing the security of generalized RC4-like ciphers has also gained some

38

momentum (e.g., [42], [51], [61], [66]). The cryptanalytic results presented in this chapter

resembles the work in [5,53], in which it is shown that internal state permutation table

of RC4, right after KSA, can leak secret key bytes. On the other hand, apart from [29]

which studies weaknesses associated with concatenating IVs to the key, this is the first

time that the security of NGG key schedule algorithm is addressed. Also, according to

our knowledge, no key recovery algorithms on NGG have been proposed until now. Best

previously published NGG distinguisher [66] exploited a problem in NGG pseudorandom

number generation algorithm and requires around 100 consecutive keystream words. The

distinguisher presented in this chapter requires only the first key stream word generated

right after the the KSA. The attack presented in [61] focuses on GGHN and uses the first

two keystream words associated with about 230 secret keys to build a distinguisher. While

this attack may also be applicable to NGG, the high frequency of key changing required by

this attack (230 keys) questions its practical significance against both ciphers.

Among cryptographers, there exist different stances in the debate on whether distin­

guishing attacks represent a threat to the security of stream ciphers or not. For example,

Rose [25] argues that, unlike the block ciphers case, most of the distinguishing attacks

on stream ciphers do not represent a real threat to the practical security of the cipher and

hence one should make a distinction between powerful distinguishing attacks and weak

ones based on whether the attack may lead to deriving useful cryptanalytic information

such as key bits or not. Conversely, according to Bernstein [3], even distinguishing attacks

that do not yield key or other cryptanalytic information are more than mere certificational

weaknesses. An attacker, at least for some plaintext distributions, might be able to detect

39

change of entropy in the plaintext only by looking at the ciphertext. If for example, a

dummy message with high entropy is sent among sender and receiver from time to time to

foil the attacker's analysis, the attacker might be able to use a distinguisher to isolate and

discard these dummy messages.

The statistical bias weakness presented in this chapter is such that it allows distinguish­

ing the cipher from a random stream and, at the same time, recovering some secret key

information. It should be noted that the exhibited weakness is in key scheduling phase of

the algorithm and not in keystream generation part of the algorithm. In particular, the NGG

keystream generation procedure creates biased internal state and this is detectable in the

first few kilobytes of the cipher. Thus, in a way, by observing this bias, it is natural to

expect that information about the secret key might be revealed.

The rest of the chapter is organized as follows. In section 2, the relevant details of

the NGG cipher are given and previous attacks are described. Non-randomness of the S

table after the NGG KSA is proved in section 3. In section 4, a distinguisher utilizing this

weakness is constructed, and the success probability estimates are given. In section 5, we

show how it is possible to recover information about the secret key by looking at the first

few kilobytes of the keystream output. We conclude in section 6.

4.2 The NGG stream cipher

NGG(n. m) denotes a parameterized family of ciphers. For some fixed n and m, the NGG

internal state consists of a public n-bit counter i, secret pseudorandom n-bit counter j and

40

S table consisting of N — 2n m-bit values. The cipher consists of two separate algorithms

(see Figure 6 where M = 2m):

- Key Scheduling Algorithm (KSA): In the initialization step of the KSA, the ta­

ble S is initialized with prespecified publicly known random array a. Then, in

the scrambling step of the KSA, these values are mixed depending on key bytes

in a pseudorandom value as follows: the z-th and the y-th value are swapped and

the sum of these two values is assigned to the i-th element. This is repeated for

i = 0 , . . . N — 1, where j is incremented pseudorandomly depending on the key.

- Pseudo Random Number Generation (PRNG): First, counters i and j are updated.

Then, S\i] and S[j] values are swapped. Value 5[(5[?'] + S[j}) mod N] is sent to the

output and then changed to S[i] + S[j].

Before using the cipher, it needs to be initialized by the KSA supplied with the secret key.

The output of this process is a randomized secret internal state of NGG. During the encryp­

tion process, m-bit plaintext words are XORed with ?n-bit keystream words produced by

the PRGA. Similarly, during the decryption process, the m-bit ciphertext words are XORed

with the corresponding keystream words.

In [66] it was shown that NGG is distinguishable from a random sequence with about

100 keystream words. The attack relies on the fact that for three random S table entries, the

relation S[X] = S{Y] + S[Z] holds with biased probability, due to the update step of NGG.

In [51], it was found that the least significant bit of NGG keystream word is biased, due to

"bias inducing state", which occurs with probability 2_1t>. Distinguisher based on this can

41

KSA PRGA

Initialization: Initialization:
Fori = 0,..N -1 i = j = 0

S[i] = a; Loop:
j = 0 * i = (i + 1) mod N
Scrambling: j = (j + S[i)) mod N
For * = 0,.JV - 1 Swap(5[i], S[j})

j = (j + S[i\ + K\i mod /]) mod N t = (S[i\ + S[j] mod M) mod N
Swap(5[i], 5[i]) Output=5[<]
5[t] = (5^] + 5[j]) mod M S[t] = {S{i] + S{j}) mod M

Figure 6: NGG(rc, m) specification

be built by using 232 89 keystream words. In Klein's work [29], in which RC4 used in WEP

mode is shown to be weak, NGG is shown to be prone to a similar attack, which makes it

insecure when IVs are concatenated to keys [29].

Unlike previous distinguishing attacks, our attack can naturally be extended to a key

recovery attack. Throughout the rest of this chapter, we consider the popular case of n = 8

and m = 32. It should be noted, however, that the attacks described in this chapter becomes

more sever as m increases (e.g., for m = 64).

4.3 Weakness in NGG KSA

In the initialization step of NGG KSA, S[k] element is assigned a*, k = 0.'.. 255, where

array a is publicly known. One choice for this array is given in [50]. Then, in the scrambling

step, for i = 0,1. 2 255, the f-th value is swapped with pseudorandom element of 5 and

place i is assigned the sum of these two elements.

42

In this section, we show that the scrambling step does not randomize the S table suffi­

ciently. Namely, after the KSA, most of the elements of S can be represented as a sum of

one, two, three or four elements of a values. In other words, there is a high probability that,

for random index k, one of the following four relations will hold:

- S[k\ = aXl for some index x\,

- S[k] = (aXl + aX2) mod M, for some indices xj,x2,

- S[k\ = (aXl + aX2 + aX3) mod M, for some indices xj, x2, x3,

- S[k] = {aXl + aX2 + aX3 + a l 4) mod M, for some indices x\, x2, x-s, x4,

where 0 < x, < 255. As will be shown, this is highly improbable for a randomly chosen

32-bit word. In the following we prove this observation by modelling the KSA procedure.

4.3.1 Definitions and assumptions

We say that the KSA is at step i, i = 0 . . . 256, if i scrambling steps were executed. For

example, KSA is at step 0 right after initialization step of KSA, and before the first scram­

bling step and at step 256 after it is finished. Accordingly, by jt and 5, we denote j and S

at step i of the KSA.

Let W„ = {X^"=ia*.l xi ^ {0..255}}. Unless otherwise specified, we always use

the set of a values proposed in [50]. It should be noted, however, that changing the set

a cannot prevent the attacks described in this chapter. In general, IV',, i = 1, 2, • • • sets

are not disjoint. However, for the choice of a in [50], W\ D W2 = 0, VV'i n H"3 = 0 and

W2 n 11 3 = 0. This is also very likely to be the case if a is chosen at random.

43

We approximate the j value at each step of KSA by a pseudorandom number and make

the usual independence assumptions throughout the proofs.

4.3.2 Deriving probabilities for S table entries after KSA

The KSA changes S[k] values in a structured way. This is shown by the following Lemma.

Lemma 4 Let 0 < k < 255 be an index in S. Then

(a) SQ{k],S1[k],...Sk[k]€W1

(b) Sk+\[k] € Wn+i, for each n such that Sk[jk+\\ £ Wn

(c) If there exists k + 2 < t < 256 such that jt = k, let t0 denote the smallest such

number. Then, Sk+2[k},... Sto-i[k] € W„+i, Sto[k],.. • S25e[k} G W^ If not, then

Sk+2[k}....S25(i[k}e\Vn+J

Proof: Statement (a) is proved by induction on k. For k = 0, the statement takes the

form £o[0] € Vl'j. which holds since So{0] = a0 6 W\- Suppose statement (a) holds for

some 0 < k < 254, we prove that (a) also holds for k + 1. Due to the KSA procedure

specification, table Sk+i differs from 5^ only in values at indices jk+\ and k. As for index

jk+i, according to the swap step and due to induction hypothesis, we have Sk+\\jk+i] =

Sk{k] € Wi. As for index A:, content of Sk+i[k} has no relevancy for the statement. Thus,

(a) holds for each k = 0 . . . 255.

To prove (b), note that £*+][£] = Sk\k] + 5fc[jfc+]]. According to (a), Sk[k] 6 11V

According to (b) assumption, for some n, Sk[jk-n] G VVn. Thus, 5t+i[Ar] G W'n+1.

44

As for statement (c), suppose first that there does not exist t from the assumption of the

statement. Due to (b), we have Sjt+i[A:] G Wn+i. According to the above assumption no

upcoming jt will take value A;. This value remains unchanged until the end of KSA, i.e.,

Sk+2[k], • • • S2bd[k] G W„+]. Now assume that there exists I from the assumption of (c)

and let t() be the smallest such number. At steps k + 2... .t0 — 1, S value on index k will

not be changed and thus S'/C+2[A:],... S/o_i[fc] G Wn+\ holds. However, in step t0, value at

index k is already overwritten by Sto-i [to — 1]. According to (a), this value is a member of

M/j and thus Sto[k}:... 5256[A;] G VV'i also holds. O

Our goal is to show that probability of S256[k] <E W\ U W2 U Wj, U W4 is high. First,

we estimate lower bounds for the probabilities P[5256[fc] G Wn], n = 1,2,3,4 separately.

To do this, we note that each KSA execution in our model uniquely corresponds to a tuple

(jo, j \ - • • • J255) and thus can be identified with it. Lower bounds are obtained by counting

tuples that, according to Lemma 4, certainly yield a value G Wn at some index k.

In the Lemmas below, we also compute P[5,-[fc] G Wn], n = 1, 2,3,4 at some of the

steps i yt. 256. This is necessary because, as can be seen from the obtained formulas,

P{S256\k} G Wn], n = 2,3,4 depend on some of the P{Sl[k\ G W„_i].

Lemma 5 Let i and k be the KSA step and S table index such that i > k + 1. Then,

P{Si[k] G Wi] > 1 - (255/256)''-*-'

Proof: For 1 = k + 1, the statement holds trivially since the right side of the inequality is

equal to 0. Let •/' > k 4 2. Part (c) of Lemma 4 provides a sufficient condition for event

45

0.8

0.6

0.4

0.2

0 1 -

Pis256lk]£ wg
P|S256[k]£ W J
p [S2 5 6 lk le W3]

100 150 200 250

Figure 7: Probabilities that, after KSA, S[k] will be representable as a sum of 1, 2, 3 or 4
values from a set

Si [k] 6 1 V'i to hold. Namely, if for some of the t = k + 2 ,...i, we have j ' t = k, St [k] e Wi

will hold true. Thus, we can derive a lower bound for the probability of event in question

as follows:

P{Sl[k] € Wj] >

= P[jk+2 = k or j k + 3 = k or . . . or j{ = k]

= i-r\jk+2?kjk+.i7Lk,...ji?k]

= 1 - P\jM 1 k] x P\jk+3 ^k}x...x P\j, ^ k]

= 1 - (255/256),-fc"1 D

Lemma 6 Let i and k be the KSA step and S table index such that i > k + 1. Then,

p\Si[k] € ivy >
£,=~oVP[S*[*] e IVi] , 256-A: / /255,,_Jt_1

256 + —) x ()'
256 ; V256;

46

where we take that £ f = o P\Sk[l) G W\] = 0 when k = 0.

Proof: Similar to the proof of previous Lemma, we find a lower bound for P[5,[/c] G W2]

by noting that a combination of parts (b) and (c) of Lemma 4 provide a sufficient condition

for the event in question. Namely, according to part (b) of Lemma 1, if Sk[jk+i] G W'*i.

5fc+i[fc] G W2 will hold true. According to (c), this will remain so until step i if by then

none of j indices takes value k. Thus,

P[Si[k] G W2) >

= P(Sk[jk+i]eW1,jk+2^k,.,.,ji^k)

= P(Sk{jk+i) G W,) x P(Jk+2 ^ k), x . . . x P{h ± k)

= (P(Jk+1 <k)x P(Sk\jk+1] G W\\jk+, < k) +

P(jk+i > k) x P(Sk[Jk+i] G W\\Jk+, > k)) x (255/256)'"fe-1

= (M >< P\^[0] G IVj] + . . . + * x P[Sk[k - 1] G W,}) +

^) x (255/256)i~fc-1

_ / E f j n
1 P [g U Q e " , i] , 256-fr>, v /255\i-fc-l

~ (256 + 256 I X l 2 5 6 ^

If fc = 0, taking Y!iZl P[Sk[l] G VV'i] = 0 is justified by P\Jk+1 < k] = 0. In that case,

we have P\S,{0} G W2] = C§§§)̂ —a for every i > 1. •

Lemma 7 Le? 1 and k be the KSA step and S table index such that i > k + 1. Then,

I . 1 J 3J _ 2 5 (J V 2 5 (J ;

where we take that Y,:=o P\Si\k] G W2] = 0 when k = 0.

47

Proof: As in the proofs of the previous two Lemmas, the event in question can be lower

bounded by events for which the probability can be easily calculated. Namely, according

to parts (b) and (c) of Lemma 1, if Sk[jk+\] £ W2* 5Wi[&] € W3 will hold true and this

will remain so until step i if by then none of j indices take value k.

P[Si[k]e}V3}>

= P{SkbWi] G W2,jk+2 ?k,...,jijL k)

= P(Sk\jk+i] e W2) x P{Jk+2 / k) x . . . x P(jt ^ k)

= (P(jk+1 <k)x P(Sk[Jk+1} G W2\jk+1 < k)+

P(jk+1 >k)x P(Sh[jk+1} e W2\jk+i > k)) x (Iff)-*-1

= M x PiSkM G W2] + . . . + ± x P[Sk[k - 1] e M 2]) x (255/256)i"fe-1

256 *.256^

When A: = 0, taking J ^ 1 P[5jt[/] € W2] = 0 is justified by P\jk+1 < k] = 0 and

^[SfcbWi] e T1/2|j-t+i > k] = 0. In that case, we have F[5,[0] € IV3] = 0 for every i > 1.

D

Lemma 8 Let 1 and k be the KSA step and S table index such that / > k + 1. Then,

w^j>a?6irj.ilr

wAene u-f ta*e ffarf]T*_0
] ^[$[Jfc] G M'"2] = 0 when k = 0.

Proof: Analogous to proof of previous Lemma. •

Figure 7 illustrates the lower bounds obtained by Lemmas 2-5 for S values at indices

A; = 0.255 after the KSA has finished. Since the probability that a random number is an

48

element of IV,, W2, W3 and W4 is &Q = P « 5.96 x 10"8, ^ = ^ f p a 7.66 x

10"6, § J = 2ipM ~ 0.00065 and ^ = n8°f2
0021 « 0.0275 respectively, it is obvious

that 5 table is biased. Sets Wn, n > 5 were not considered since the probability that a

random number is contained in these sets is relatively high and hence the corresponding

distinguishers would be useless.

Note that even though in Lemmas 2-5 we only estimated lower bounds, obtained values

are very close to exact ones. This is because the events by which we approximated Si[k] G

Wn in the proofs of the Lemmas exhaust most of the event space. For example, in Lemma

2, event Si[k] G Wj was lower bounded by the event that KSA operations will write one

of the a values at place k at some point in time. The only other way Si[k] G IV] event can

hold is that KSA leaves an addition of a values at place k and this addition turns out to be

an element of \\\ too, which is possible since Wz. i = 1, 2 . . . are not generally disjoint.

However, the probability of this is very small and thus our estimated lower bound is actually

a good estimate for exact P[5,-[A;] G IV'i] value. Similar reasoning applies for Lemmas 3,

4 and 5. Using 10,000 randomly generated 128-bit keys, the experimentally calculated

values of F[5t[fe] G Wn], n — 1, 2,3 confirmed the above claim.

4.4 Distinguishing NGG from a random stream

As noted in previous section, the probability that S25e[k} G H''n: n = 1. 2. 3. 4 is signifi­

cantly greater than the probability that some random number will be an element of these

49

1

CO

csi 0.8
II
a

^ 0.6

D

3T
M. 0.4

m
rsi

(»
a.

0.2

0
50 100 150 200 250

k

Figure 8: Probability that after KSA S[k] will be an element of different unions of W sets

sets. However, to maximize this bias, we consider the union of these sets. Figure 8 illus­

trates the probability that after the KSA, the S values will be contained in different unions

of W sets. Depending of which sets are included in the union, different distinguishing cri­

teria can be formulated. As will be shown, the probability that a random number will be in

any of these unions is still small.

In the following theorem, we determine a lower bound on the success probabilities of

the distinguishers using criterions based on different unions of the Wl:i — 1, 2,3.4 sets.

Theorem 3 Using the first NGG PRGA key stream output word, kr\, lower bound of success

probability of distinguishing k\ from a random stream are given in Table 1 below.

Proof: First, we prove the statement for the distinguisher 3, in which the distinguisher is

based on k] e Wx U W2 U W3 criterion. Proofs for distinguisher 1 and 2 are similiar.

Suppose that the given word, o, is the first NGG PRGA output word, i.e., o = k} = S-2o(s[k]

50

P [s 2 5 6 [k j e w n]

P[S266[k]e W ^ W J

P[S2 5 6 [k]e W , u W2w W3]

• P[S256[k]e V ^ u W 2 u W3w W4]

1
2
3
4

Distinguishing criterion
ki € Wi

fcj G VKj U W 2

k1eWiUW2U W3

h e wx \JW2U wzu w4

P[Correct decision]
0.6836
0.8679
0.9597
0.9769

Table 1: Lower bounds on the success rate of different distinguishers

for some k. Then, lower bound of the probability that it will be an element of W\ U W2 U W3

can be calculated by applying the Bayes' formula over all possible values k, using the fact

that sets W\, W2 and W3 are mutually disjoint and substituting according values to lower

bounds from Lemmas 2-4.

P[S-a6[k]eWiUW2uW3] =

255

Y, P\k = i]P[S256[k] € W, U W2 U W3\k = 1}
i = 0

256

> 0.92

(18)

(19)

255

- , J ^ P ^ s e f l € W\] + P[S256\t} € W2] + P[S2b6\i] G M'3]) (20)

Thus, in the case that the word o is in fact an NGG first keystream word, probability that

the distinguisher will make a right decision is greater than 0.92. In the case of a random

word, the probability that it will not be representable as a sum of one, two or three elements

of a is given by

1 -]— £ ^ « 0.9993.
232

Thus, the success probability of distinguisher based on k\ € W\ U W2 U IV3 criterion will

51

be greater than 0.5 x 0.92 4- 0.5 x 0.9993 = 0.9597.

As for distinguisher 4, event S25$[k] e W-i U W2 U W3 U VV4 is not a disjoint union of

events S2sn[k] € 14'], n = 1,2,3,4 and thus going from (19) to (20) in the corresponding

proof would not be justified. However, the lower bound events established in the proofs of

Lemmas 2-5 are mutually disjoint. Let L\ be the lower bound event used in Lemma 2 for

i = 256 Lj = {j'fc+i = k or j k + 2 = k or . . . or j 2 5 5 = k} and let events L2, L3 and L4 be

the corresponding events from Lemmas 3-5. Then, we have P[S256[k] G Wi U W2 U W3 U

VV4] > F[Lj U L2 U L3 U L4\ = P[Li] + P[L2] + P[L3] + F[L4]. The proofs of Lemmas

2-5 provide exact values for F[Lj], F[L2], F[L3], P[L4]. The rest of the proof is analogous

to previous ones. •

4.4.1 Distinguishers based on the m-th keystream word

In our reasoning above, we only considered the first keystream word. Calculated probabil­

ities apply only to this word since the S table is updated at each step. However, it is not

hard to see that the same distinguisher is applicable to the m-th keystream word km too,

provided that m is small, but with decreasing success rate as m increases.

To assess success rate of the distinguisher km e Wi U W2 U W3, we conducted the fol­

lowing experiment. For 10000 times, the NGG cipher was initialized by KSA for randomly

generated key. The percentage of km values which were not representable as a sum of one,

two or three a numbers was taken to be the probability of false negatives for distinguisher

based on A;-th element. Table 2 presents results for some m values. It can be seen that

distinguisher guess still differs from random guess at m = 1024. This implies that the

52

traditional solution to resist distinguishing attacks against RC4-like cipher by discarding

some of the output stream words may not practicably work in this case. Naturally, the suc­

cess of the distinguisher can be arbitrarily increased by looking at several keystream words

at once.

m
P[Error]

16
0.050

32
0.066

64
0.077

128
0.150

256
0.288

512
0.407

1024
0.484

Table 2: Probability of error for distinguishers based on the m-th keystream word

4.5 Key information recovery

In this section, we show how to use the observations above to reduce the entropy of the the

secret key based on the first few kilobytes of the keystream.

From the algorithm specifications, it is clear that knowing j 0 . j 1 : . .. j 1 6 , i.e., the values

assumed by the pseudorandom counter j in the first 16 rounds of the scrambling step of

KSA, is equivalent to knowing all key bytes KQ,... K}5. Thus, it suffices to focus on

reducing the entropy of the vector (.7*0, j i , • • iio)-

4.5.1 Recovering the first secret key byte

Among the first 1024 keystream words, all entries of table S ŝe w i " be present with high

probability. The reason for this is that the NGG PRGA sends the .9 table entries to the

output unmasked and changes them only once they are outputted.

As mentioned above, to determine A'n, it suffices to find j} since A'0 = j1 — 0 — an. At

53

the first step of the KSA scrambling step, S[0] + S\ji] = a0 + ajl is written to S[0]. The

only way S\0] can be changed again is that that for some i > 2, jt = 0. The probability that

this will not happen, i.e., 5[0] will remain a0 + an is (255/256)255 = 0.3686. By trying to

decompose each of the first 1024 keystream words in the form of a0 + ax, with probability

0.3686. one of the obtained x values will be equal to J'J. However, there might be more

than one a0 + ax element in S table. Namely, at the first KSA scrambling step, the value

5(0] = a0 is also written to S\j\\. At the jy-th scrambling step, S[ji] will be added another

element from the table. If S[ji] is not altered again by any of remaining steps, there will be

two a0 + ax elements in the table and there would be two candidates for j] .

Similar reasoning applies for the case when, after first scrambling step of KSA, the

value S\0] is altered again by some j t . Then, a value of the form a0 + aX] + aX2 will

be present in the table after the KSA finishes, provided that it is not altered again. The

algorithm can search for values of the form a0 + aXl, a0 + aTj + aT2, a0 + aX] + aT2 + aX3

and a0 + aX] + a l2 + aX:j + aXj among the first 1024 keystream words. There is a tradeoff

between number of candidates and the corresponding success probability. In the following

section, we experimentally evaluate a full key recovery algorithm based on first two forms.

4.5.2 Full key recovery algorithm

To derive a candidate for jt,t = 2.... 16, we use the same idea, only now we have smaller

probability of success since St-i[t — 1] and St-y[jt] might not be equal to at_1 and aJ(,

respectively. The probability that this will hold decreases as / increases.

Let cmuU.Jj) denote the set of candidates for value /',-. Let amd(.l) = C(I:II<1{.IQ) X . .. X

54

INPUT: First 1024 NGG keystream words
OUTPUT: A set of secret key candidates (cand(K))

1: Let cand{J0) = {0} and cand(Ji) = 0 for 1 < i < 16
2: For each word w of first 1024 keystream words do
3: Fori = 1, . . . 16, do

- Check if iv can be written as a ^ + aXl, where x\ € { 0 . 1 , . . . 255}.
If yes, add x\ to cand(Ji)

- Check whether w can be written as a,_] + aXl + aX2, where
Xi, x2 S' { 0 , 1 , . . . 255}. If yes, add x\ and x2 to cand(Ji)

4: cand(J) = cand(Jo) x cand(Ji) x .. . x cand(Jie)
5: Return cand(K) = f(cand(J))

Figure 9: NGG key recovery algorithm

cand(Jie) denote the set of candidates for the vector j = (jQ,. . .j\e). Let f((j0... .jie)) =

(k0l... ki5) where A", = (ji+i — jt — a[i]) mod 256. The set of candidates for key K can be

obtained as cand(K) = f(cand(J)).

Figure 9 shows the algorithm which recovers cand(J). and consequently the set of

secret key candidates, based on the first 1024 keystream words.

It should be noted that computing a,,-_i + a n . a,-_] + aT) + a.l2 for each i, xt and x2

is repeated in each loop pass. Thus, the algorithm can be efficiently executed in negligible

time if these values are precomputed offline and sorted. However, as will be seen, the

number of candidates for secret key K that the algorithm yields is close to 232 and to

discard wrong candidates, a computation of around 232 operations cannot be avoided.

Since the function / is 1-1, only the correct j vector candidate will be mapped to the

correct key. Thus, the effectiveness of proposed algorithm can be measured as follows:

- P[{k0:.. . Ar15) € cand{K)} = P[(j0: . . . j] (i) G cand(J)}, i.e., the probability that

correct key, or equivalently. j values, will be found. For some particular/ e { 1 16},

55

ji £ cand(Ji) will hold if at most 2 a values are added to az which is placed in So[i]

at the beginning of KSA scrambling.

- \cand(K)\ = \cand(J)\, i.e., the number of key candidates. For some particular i £

{ 1 , . . . 16}, \cand(Ji)\ depends on the number of interactions between S0[i] = a2 and

other a values throughout the KSA. Since the additions continue during the PRGA,

wrong candidates not present in table at moment i = 256 might emerge during 1024

PRGA steps performed during the algorithm.

Deriving an analytical expression for P[ji £ cand(J,)] and \cand(Ji)\ seems to be a

relatively hard combinatorial problem. Thus, in order to test the success rate of the algo­

rithm, the following experiment was conducted. For 1000 randomly generated keys, sets

cand(Ji), i = 1 16 were calculated according to the algorithm above. Percentage of

times ji £ Jt was true and average | J?| values are shown in Table 3. Value jQ is omitted

because it is always equal to 0. For example, according to the experiment above, the correct

i

P[ji £ cand(Ji)}
\cand(Ji)\

i

P\ji £ cand(Ji)}

\cand(Ji)\

1
0.7223
3.9362

9
0.7000
4.0837

2

0.7373
4.0994

10

0.6577
3.7904

3
0.6895
4.0225

11

0.6558
3.9808

4
0.7242

4.0629

12

0.6538
3.8288

5
0.6848
3.9268

13

0.6702
3.8221

6
0.7221

3.9740

14

0.6462
3.8365

7
0.6885
3.9510

15

0.6375
3.8144

8
0.6913
3.8712

16
0.6578
3.9250

Table 3: Success rate and average number of candidates for j , . 1 < i < 16

ji value will be among on average 3.9362 candidates proposed by the algorithm with prob­

ability 0.7223. Since j 0 = 0 by algorithm specification, we then have 7\0 will be among

3.9362 candidates with probability 0.7223. The probability that both j j £ JA and j 2 £ Jo

56

is 0.7223 x 0.7373 and in that case, both K0 and K\ will be among proposed candidates.

To generalize, K € cand(K) with probability PS 2 - 8 8 (obtained by multiplying all the

probabilities in Table 3) and \cand(K)\ ss 231 6 (obtained by multiplying the number of

candidates in Table 3). In other words, the above result can be restated as follows: for

approximately 21 1 9 2 of the 128-bit keys, the secret key can be recovered with around 232,

instead of 2128, steps of computation.

57

Chapter 5

On the Weak State of GGHN-like

Ciphers

In this chapter we consider another RC4 generalization, the GGHN stream cipher. As

mentioned in the previous chapter, RC4 is a cipher that makes use of an interna] state

table, S, which represents a permutation over Z2n. Like NGG, GGHN is a relatively more

efficient stream cipher whose design is inspired from RC4 but whose S table, however,

does not represent a permutation over Z2™. In this chapter, we point out one challenging

aspect of the latter design principle. In particular, we assess different variants of GGHN-

like algorithms with respect to weak states, in which all internal state words and output

elements are even. Once GGHN is absorbed in a weak state, the least significant bit of

the plaintext words will be revealed only by looking at the ciphertext. By modelling the

algorithm by a Markov chain and calculating chain's absorption time, we show that the

average number of steps required by these algorithms to enter this weak state can be lower

58

than expected at first glance and hence caution should be exercised when estimating this

number.

5.1 Introduction

As mentioned in the previous chapter, RC4 operates with 8-bit keystream words, which is

inefficient from the perspective of 32 and 64 bit processors. RC4-like cipher that would

produce 32-bit or 64-bit keystream words would be around 4-8 times faster, since an 8 bit

operation on these processors takes equal time as a 32, or 64 bit operation. To address this

problem, Gong et al. [50] first proposed the cipher analyzed in the previous chapter of this

thesis, a generalized version of RC4, namely RC4(n,m), where m denotes the bit-length of

the keystream output word. This cipher was later named NGG. Later, GGHN cipher [23]

was introduced.

The internal state of RC4 includes an S table of 256 8-bit values. The important prop­

erty of this table is that, at each step, it represents a permutation, i.e., all the possible

combinations of the in bit values appear in the table. In NGG(n,m) and GGHN(n,m), the

size of the table that would be needed to store the whole permutation is 2m where m is

the keystream word size, which is impractical for m > 8. Accordingly, smaller table of

size N had to be used in both versions of the ciphers where N = 2n << 2m represents

the table size and m is the keystream word size in bits. Since a table can now hold only a

subset of the possible m bit values, to avoid distinguishing attack which would test whether

keystream words belong to only a subset of all possible m-bit values, internal state update

59

function had to not only perform swap operation as in the original RC4 but to introduce

new values to the S table. In NGG, this was done by replacing the S table element chosen

as keystream word by a sum of two other elements from the table at each step. However,

this was proven to be susceptible to an attack [66] and GGHN(n,m) was proposed. In

GGHN(n,m) another counter, A:, was introduced and attacks similar to [66] are supposedly

eliminated.

5.1.1 Our contribution

By weak state of GGHN, we denote a state in which k and all the S table entries are even.

Since the update and output functions are defined as additions of these elements, once the

cipher reaches this weak state, it will remain in it forever and the output keystream words

will always be even. Therefore, once GGHN is in a weak state, the least significant bit of

the plaintext words will be revealed only by looking at the ciphertext.

In [23], it was noted that the probability that all state entries as well as k become even

is very low, 2~''v+1^, which implies that the average number of steps before GGHN(n,m)

enters weak state is 0(2N). In this chapter we revisit this claim and provide evidence that

caution should be taken when estimating this number for GGHN-like ciphers. We also

show that, if the designers of GGHN kept the swap operation (originally present in both

RC4 and NGG ciphers) for the S table scrambling during the pseudorandom generation

algorithm, then the cipher would enter the weak state in O(20DN) steps as opposed to the

0(2A) steps that might be expected when treating the S table as a purely random table.

Since the exact behavior of GGHN cipher with respect to the number of even numbers

60

in the table is hard to model due to non Markovian nature of the induced chains, we decided

to use a simplified version of GGHN and show that it enters weak state faster than expected

at first glance. We model this simplified version of GGHN by a Markov chain and estimate

the average number of steps before reaching the weak state using results from Markov

chain theory.

Based on our analysis, it follows that with GGHN-like ciphers that are based on non

bijective S tables, caution should be made when estimating the time needed for approaching

weak state. v

The rest of the chapter is organized as follows. In section 2, we review the specifications

of RC4 and GGHN ciphers. Section 3 gives an overview of some attacks on these ciphers.

In section 4, we provide a brief theoretical background for Markov chains. In section 5, an

idealized model of GGHN-like ciphers is presented and then modelled by a Markov chain.

Section 6 presents a way to calculate the absorption times for the defined chain. In section

7 we provide experimental results that indicate that original GGHN(n.m) may enter weak

state faster than previously assumed. Finally, the conclusion is given in section 8.

5.2 RC4 and GGHN specification

In both ciphers, the size of the key is / bytes. Usually, / = 8 or I = 16. The RC4 KSA

procedure initializes the S array to an identity permutation and then swaps each byte with a

pseudorandom element of the table. In RC4 PRGA, two counters i and j are used. Counter

7 is publicly known and j is incremented in a pseudorandom way. At each step, element

61

KSA PRGA

Initialization: Initialization:
Fori = 0...255 i = j = 0

S[i] = i Loop:
j = 0 t = i+l
Scrambling: 3=3 + S[i]
For i = 0, ..255 ' Swap(S[i], S[j})

j =.j + S[i] + K[i mod I] t = S[i] + S\j]
Swap(5[i], S\j)) Output z = S[t]

Table 4: RC4 specification

S[i] and S[j] are swapped. Element 5[5[i] + S[j]] is chosen as the output keystream byte.

A pseudo code for RC4 is shown in Fig. 4.

In GGHN(n.m), another pseudorandom counter, k, is added to the algorithm. Again,

the S table size is N = 2n and the internal and keystream word size is m bits. The GGHN

KSA is similar to the NGG KSA with the only difference is that it is repeated r times (it is

recommended to set r = 20 for n = 8). As for k, after it is initialized to 0 at the beginning

of KSA. the S table entries are added to it iteratively. In comparison to the NGG PRGA,

the GGHN PRGA makes use of a pseudorandom counter, A, both in the update and the

output steps. Instead of outputting plain pseudorandom entry of the S table as in NGG,

value masked by k will constitute the keystream word. Similarly, new value that will be

written to the array depends on k. The pseudo code of the algorithm is shown in Fig. 5.

62

KSA PRGA

Initialization: Initialization:
Fori = 0, . . /V- 1 i = 0

S[i] = a, . j = 0
j = A; = 0 Loop:
Scrambling: i = (i + 1) mod TV
Repeat r times j'• = (j + S\i\) mod N
For i = 0,..TV - 1 k = {k + S\j]) mod A/

j = (j + S[i] + K[i mod I]) mod ^ i = (5[i] + 5(j]) mod N
Swap(S[i], S\j}) om=(S[t] + k) mod 71/
S\i] = (S\i\ + S{j}) mod M S[t] = (k + S]i]) mod M
k = (k + S\i\) mod M

Table 5: GGHN(n,m) specification

5.3 Existing attacks

Security of RC4 has been a subject of extensive research. In this section, we provide a brief

summary of some of these results as well as existing attacks on GGHN.

5.3.1 Attacks on RC4

Knudsen et al. [33] proposed a backtracking algorithm for RC4 internal state recovery.

The attack guesses some values from the internal state, simulates the update process and

searches for contradiction between the keystream output and known values. If a contradic­

tion is met, the algorithm backtracks to the last guessed values and chooses another one.

It requires a small portion of starting keystream word, but has unrealistic time complexity

which amounts to more than 2700 steps. In [42], an attack on RC4 that requires 2241 oper­

ations and similar amount of data is presented. The given algorithm is based on searching

for keystream patterns that correspond to certain internal states.

63

As for distinguishing attacks, Golic [22] shows that the sum of least significant bits of

two keystream words at times t and t + 2 is biased towards 1. To distinguish RC4 from

random variable, around 240 keystream words are needed.

A more efficient distinguisher was found in 2000, when Fluhrer et al. [18] showed that

there exists strong correlation between digraphs of RC4 (i.e., consecutive output bytes).

This correlation permits an attacker to distinguish RC4 keystream from a random output in

around 230 6 steps.

In 2001, an unexpected discovery regarding bias of first two output words was made

by Mantin and Shamir [36]. Instead of looking at the keystream bytes of one key, this

distinguisher makes a decision by looking at first two keystream bytes under a few hundred

of different, unrelated and unknown keys. The authors used this idea to mount an attack

against the broadcast version of RC4, in which they recover second plaintext byte based

only on ciphertext.

As shown by Fluhrer et al., RC4 is insecure when known IV value is concatenated to

a key [19]. This mode of operation is used in Wired Equivalent Privacy Protocol (WEP).

Mantin [38] showed that WEP can be attacked this way even if the first 256 bytes of the

keystream are discarded. In 2006, Klein [29] presented an improved known plaintext attack

which does not need weak IVs to recover the secret key. Vaudenay and Vuagnoux improved

on previous attacks using the weakness they observed in KSA [62]. Tews et al. found an

attack on a 104 bit WEP [59].

Mantin [37] found a new distinguishing attack based on biases by which digraphs tend

to repeat with short gaps between them. The attack needs around 226 keystream words and

64

has success rate around 2/3. In the same chapter, it is shown that RC4 keystream output

has a family of patterns that repeat themselves with probability several times higher than

in truly random sequences. These patterns can be used to predict bits and words of RC4,

using 245 and 250 keystream words, respectively.

Applying theory of random shuffles, Mironov [47] has modeled RC4 by a Markov chain

and recommended that at least 512 beginning keystream bytes should discarded in order for

S table to be uniformly distributed. This way, any attacks based on non-randomness of the

beginning S table should be circumvented.

5.3.2 Attacks on GGHN

Just as with NGG, the least significant bit of the keystream output is biased, due to a bias

inducing state which occurs with probability 2~16 and induces that the LSB of keystream

words is 0 with certainty [51]. The distinguisher can be built upon 232 89 keystream words.

Tsunoo et al. [61] presented a distinguisher based on the first two words of keystream

associated with approximately 230 keys.

5.4 Markov Chains background

In this section we briefly review the Markov chains, absorption states and a way to calculate

the average absorption times from the chain transition matrix [24].

A Markov chain can be described as follows. Let S — {s\. s^-.. • • • s„} denote the set of

states. The chain starts in some state, and in each step, moves from one state to another.

65

The probability that the chain will move to certain state Sj depends only on its previous

state Si, and not on any of the states before that. Therefore, we can write pij for transition

probabilities, denoting the probability that a process will go from s; to Sj. The matrix P =

(Pij)rxr is called the transition matrix. The beginning state of the chain is usually described

by a probability distribution over the set S. The following lemma is a rudimentary result

on Markov chains.

Lemma 9 Let P be a transition matrix ofa Markov chain with set ofstates S = {si,S2; • . • sr}.

The p^ entry of matrix Pn then represents the probability that the. chain, starting in state

Si, will be in Sj after n steps.

When a pseudorandom number generator that we are modelling by a Markov chain en­

ters the weak state, it cannot go out of it anymore. This behavior corresponds to absorbing

state notion, known in Markov chain theory.

Definition 2 A stale s, of a Markov chain is called absorbing state ifpti = 1, i.e., if once

entered, it is impossible for the chain to leave it. A Markov chain is called absorbing if it

has at least one absorbing state and if, from every state, it is possible to go to absorbing

state (not necessarily in one step). Non-absorbing states of an absorbing chain are called

transient states. When a chain enters absorption state, we say that it got absorbed.

Lemma 10 In an absorbing Markov chain, the probability that the process will be ab­

sorbed is 1.

To measure the number of steps needed for absorption, it is convenient to order states

from set S so that absorbing states come at the end. Suppose that there are t transient states

66

and r absorbing states. Then, the transition matrix will be of the form:

Q R

0 I Id
t

where Id is the identity matrix and 0 is zero matrix. The dimensions of Q, R, 0 and Id are

t x t,t x r,r x t and r x r, respectively. The matrix I-Q is called the fundamental matrix

and its inverse reveals information with respect to absorption time. In particular, we use

the following result.

Lemma 11 For an absorbing Markov chain, the matrix I-Q is invertible. The ij -entry of

(I-Q)'1 is the expected number of times the chain is in state Sj, given that it started from

sl. The initial state is counted ifi = j .

That way, the inverse of fundamental matrix gives information on how many times will

a process pass through each state before absorption. We can now calculate the expected

number of steps before absorption. Namely, if we sum all the values of z-th row of matrix

(I-Q) - 1 , we get the expected number of steps before absorption, given that a process starts

from state s,.

5.5 Modeling idealized GGHN(n,ra) by a chain

As specified in GGHN PRGA procedure, counter i iterates from 0 to N — 1 and j and k

are incremented in a pseudorandom way. At each step, k is updated as k = (k + S[j]) mod

M, {S[(S\i] + S\j]) mod N] + k) mod M element is sent to the output and the S table is

67

updated by S[(S[i] + S\j}) mod N] = (k + S[i]) mod M.

To model GGHN-like ciphers, we idealize it as follows. For the update step of k,

we take k = (k + S[X]) mod M where X is random variable taking values from 0 to

N — \, thus approximating pseudorandom number j by a uniformly distributed random

value X. As for the output, we model it as output = (S[Y] + k) mod M, where Y is

a uniform random variable independent from X and takes values from 0 to N — 1 and

substituting pseudorandom value [S[i] + S[j]) mod N. Finally, for the update step, we take

S[Y] = (k + S\Z]) mod M. Here we use already defined Y, and introduce Z, uniform

random value independent of A' and Y, as substitution for counter i. The PRGA algorithm

of GGHN*(n,?n) is then modelled as follows:

k ' = k + S{X}modM

output = k + S[Y] mod M

S[Y] = k + S\Z] mod M

Obviously this algorithm can only be used as an idealized model for the GGHN cipher.

However, we use it for the purposes of illustrating how different variants of GGHN(?z,m)-

like ciphers may enter the weak stale in a number of steps which is significantly smaller

than 2N. Note that we do not initialize S by any KSA, but randomly. An eventual bias

towards even numbers in beginning table may amplify the results given in the chapter.

We say GGHN*(n,m) is in weak state if all elements of S as well as value k are even.

68

5.5.1 Defining the chain and calculating state transition probabilities

We map each possible internal state of the cipher to a state from the chain's state set. Let

Z(S) denote the number of odd numbers in the S table. We say GGHN*(n,m) is in state

(z,p) if Z(S) = z and p = k mod 2 for current S and k. For example, if GGHN*(8,32)

is in state (130,0), that means that exactly 130 values in S are odd, and k is even. Since

Z(S) e {0..yV},p 6 {0,1}, we have that for GGHN*(n,m) the number of states is equal

to 2 x (TV + 1). It follows that GGHN* is in weak state if and only if it is in (0,0) state.

Due to the independence between X, Y and Z and other parts of internal state, this

chain satisfies the Markovian property. In other words, if current state is (zi,pi), proba­

bility distribution of next state {Z2.P2) does not depend on previous state (20, Po) o r states

before that. In the following theorem, we calculate state transition probabilities.

Theorem 4 Let state transition probabilities not mentioned in the table amount to zero.

In rows 1-4 of the table, let z = 1 . . . TV. In rows 5-8 and 9-12 let z — 0 .. . N and

z = 0 . . . N — 1, respectively. Then, the table specifies state transition probabilities of the

defined chain.

69

State transition

P[{z,0)-+(z-l,0)\

P[(z,0)-+{z-l,l)]

P\(zA)^(z-1,0)}

P\(z,l)^(z-l,l))

P[(z,0)^(z,0)]

P[(z,0)^(zA)}

P[(z , l) -» (* ,0)]

P [(z , l) ^ (z , l)]

P [(z , 0) ^ (z + 1 : 0)]

P [(z , 0) - > (z + l , l)]

P [(z , l) ^ (z + 1 , 0)]

P[(2, 1) ^ (2 + 1 , 1)]

Probability

(^) 2 >< £

(f)3

U^ X N

^ x ((^) 2 + (^)2)

2 x (^) 2 x ^

^ x ((^) 2 + (f) 2)

2 x (^) 2 x A

(N-Z\2 v 2

V A' ^ X N

* x (^) 2

^ r x (#)2

Proof. Due to the fact that only one S table element is updated at each PRGA iteration, the

number of even values in the table can either decrease by one, stay the same or increase by

one. Thus, all probabilities not mentioned in the table are equal to 0.

Let P[even(-)] and P\odd(-)\ denote the probability that the enclosed argument is even

70

and odd, respectively. We prove rows 1-4 of the table. Let z = 1../V. Then,

P [(z , 0) ^ (z - L 0)] =

P[even(S[X})} x P[odd{S{Y})\ x P[even{S[Z])} =

N - z z N - z
N X TV X yV •

/>[(*, 0) ^ (i - 1 , 1)] =

P[odd{S[X})} x P[odd{S[Y])] x F[odrf(S[Z])] =

z z z

ax i v x]v'

P [(M) -> (2 - 1,0)] =

Pjo^(5[X])] x P[odd(S[Y])\ x P[even(S[Z])] =

z z N -z

P[(z,I)-*(z-lA)] =

P[even(S[X])] x P[odd(S[Y})} x P[odd(S[Z])] =

A: — Z Z Z

71

Now let z = 0 . . . N. Then, rows 5-8 can be proven as follows.

P[(z,0)^(z,0)} =

P[even(S[X})} x (P[even{S[Y])] x P[even(S[Z}} +

P[odd{S[Y])] x P[odd(S[Z})}) =

N - z ,N - z N - z z 2:

P[(z,0)-*(z,l)) =

P[odd{S[X])] x (P[even{S[Y))] x P[odd{S[Z})] +

P[oc/rf(5[y])] x P[even(S[Z])]) =

2: ,N - z z z N - zN
X (X 1 X).

N K N N N N '

P[(zA)^{z,0)} =

P[odd(S[X])] x (P[even(S[Y])\ x 73[ei;en(S|Z])] +

F[orfrf(5[y])] x P[oeM(S[Z])]) =

z ,N-z N-z z z,
— x (x 1 x —).
N v N N N NJ

72

,P[(z,l)-*(z,l)] =

P[even{S[X])] x {P\even(S[Y})} x P[odd(S[Z})} +

P[odd{S[Y})) x P[even{S[Z])]) =

N - z ,N - z z z N - 2\
X (X 1 X).

N v N N N N .

Proof of rows 9-12 is analogous to the proof of rows 1 -4. •

5.6 Absorption times

To calculate the absorption time for the above defined chain, we follow guidelines from

section 5.4. First, we encode states (z.p) (z = 0 . . . N, p = 0,1) by numbers from 0 to

27V + 1 using one-to-one function f(z,p) = 2N-2z + l-p. Note that / ((0, 0)) = 2N + 1,

so in this ordering, weak state of GGHN*, in which there is 0 odd numbers in the S table

and k is even, comes last, as suggested in section 5.4. The transition matrix P indexed

from 0 to 2N + 1 in both dimensions will contain value P[(z0,p0) —> (zi,pi)} (given by

Theorem 4) at index (i,j), where i — f{zQ,po) and j = f(z\,p\). Then, discarding last

row and last column gives matrix Q and B=I-Q represents the fundamental matrix. Finally

we calculate B _ 1 and then, the sum of «-th row of this matrix represents average number

of steps GGHN* will take before absorption if the algorithm started from / _ 1 (i) state. We

approximate the beginning state distribution by assuming that half of the numbers in S table

are odd and value k is even and thus we take the sum of f((N/2, 0)) row as an estimate for

the expected absorption time of the defined chain.

73

Table 6 shows the match between the analytical and experimental estimate for the aver­

age number of steps before GGHN* enters the weak state. The experiment was conducted

by initializing S table and k to random and running the GGHN*(4,32) (TV = 16) and

GGHN*(5,32) (TV = 32) until reaching weak state, for 1000 times.

N
16
32
64

Avg. number of steps
Markov model

212.763

221-691

23<U

Experimental
912.813

221.606

Table 6: Average number of steps before GGHN*(n,m) enters weak state

One of the discrepancies between GGHN and GGHN* is the difference in distribution

of (S[i\ + S[j]) mod TV and its idealized substituted uniform random variable, Y. Unlike

Y, (S[i] + S[j}) mod TV tends to be even more often whenever the number of even entries

exceeds the number of odd entries in S. In other words, this bias results in the cipher more

often outputting, and also updating, even-indexed S table entries. In fact, this observation is

interesting in itself because, typically, one would expect that any bias in the S table update

process would weaken the cipher. However, as will be shown in the next section, this bias

results in a longer absorbtion time for GGHN.

74

32

30

™ 28

26

S 24

22

20

5 18

16

I
en > <

14

12

10.

GGHN
GGHN*

GGHN"
GGHN*"

y=x

~i r

X

o

9
x

o x
X

o
X
X

X
X

X
X

8

8 10 12 14 16 18 20 22 24 26 28 30 32

N

Figure 5: Experimental results for different variants of GGHN(n,32): average number of
steps needed for entering the weak state versus l(N) = N line

5.7 Experimental results on absorption time of different

GGHN variants

In this section we provide some experimental results for the absorbtion time of different

GGHN(n,32) variants. Let

• GGHN denote the original GGHN(n,32)

• GGHN* denote the idealized model described in the previous section

• GGHN** denote the modified GGHN cipher where an S table swap operation, Swap(S[i], S[j}))

(originally used in both RC4 and NGG), is inserted before the output step in the

75

GGHN PRGA.

• GGHN*** denote the modified GGHN cipher where the least significant bit of t is

XORed with a binary random variable right after the t = S[i] + S[j] mod N step.

The modifications in the code of GGHN** and GGHN*** are done in order to elim­

inate the bias in the /, value towards becoming even whenever the S table tends to have a

large number of even entries. Furthermore, we extend the definition of GGHN(n,?n) which

enforces power-of-two table sizes to GGHN variants in which the S table size, N, can be

any even number.

Figure 5 shows the base 2 logarithm of the average value of the absorbtion time. Let

2 , (A ' denote the average absorbtion time of the cipher with m = 32. Using the minimum

least square error approximation, then, from the experimental data, l(N) for the above

ciphers can be approximated by

0.854 x N + 2.959 for GGHN

0.557 x TV + 3.846 for GGHN*

0.454 x N + 4.920 for GGHN**

0.579 x TV + 3.811 for GGHN***

l(N) « ^

It is clear that, as N increases, in all cases 1{N) is less than N. Substituting N = 256 into

the l(N) formula above indicates that the number of steps needed before GGHN enters

weak state is about 2222 steps, instead of 2256 steps. The above estimates should be inter­

preted with care as it might be the case that GGHN does not behaves this way for N = 256.

76

Providing a theoretically sound argument for this claim seems to be difficult due to the fact

that GGHN does not satisfy the Markovian assumption.

It should also be noted that unlike variants of GGHN, it is not guaranteed for the original

GGHN to enter the weak state. Instead, it can enter a cycle with respect to least significant

bit. This kind of cycles occurs if all LSB internal state values at different i = 0 moments

(close one to another) are equal and this repeats to infinity. Analysis of this type of behavior

is out of the scope of this chapter, but we noted that the probability that this will happen

drops dramatically when TV increases. According to experimental results, for TV = 16, this

kind of cycle happens for around 5% of GGHN instantiations. For TV > 32, throughout our

experiments, we did not observe any cycles and the GGHN always reaches the weak state.

77

Chapter 6

Conclusion and future work

In this thesis, we provided analysis of two block ciphers and two stream ciphers. In partic­

ular we have shown that:

- The key scheduling of the TREYFER block cipher seems to be oversimplified and

that yields several weaknesses. We presented a related-key attack requiring only

2 n chosen plaintext encryptions. While it might be argued that it is unlikely that an

attacker can persuade a human operator to encrypt plaintexts under the 8 related keys,

modern cryptography is implemented using complex protocols, and in some cases a

related-key attack can be made feasible. In these scenarios, our attack can recover

the secret keys in few milliseconds.

- PIFEA-M algorithm is still vulnerable to a the differential style attack that it was sup­

posedly designed to resist. Using only four plaintext ciphertext pairs, and by solving

a set of linear equations over GF{2), all successive ciphertext can be deciphered

even without explicitly recovering the secret key. On the other hand, one should note

78

that, while the given cryptanalysis is based on an explicit assumption from PIFEA-M

algorithm specifications, the considered attack scenario is not a usual one.

- The NGG key scheduling algorithm does not randomize its initial internal state table

sufficiently. In particular, after the KSA, the cipher internal state is highly biased

which allows us to distinguish NGG from a random stream based only on the first

keystream word. Furthermore, the bias left by the KSA reveals information about

the secret key. Since NGG PRGA sends the internal state elements to output with­

out masking, information about the secret key can be recovered by examining the

first few kilobytes of the keystream. Our experimental results show that for approx­

imately 21 1 9 2 of the 128-bit keys, the secret key can be recovered with around 232

steps. Based on the analysis above, it is clear that NGG is insecure. Designing an

efficient and secure generalization of RC4 for 32/64-bit processors remains a chal­

lenging research problem.

- Many variants of GGHN-like ciphers with table size N may need substantially less

than 2N steps to enter a weak state. This was done by modelling an idealized

GGHN^.m) by a Markov chain, and calculating chain's absorption time. We have

also shown that, if the designers of GGHN kept the swap operation originally used

by both RC4 and NGG for the S table scrambling during the pseudorandom genera­

tion algorithm, then the cipher would enter the weak state much faster than expected

when treating the S table, during the PRGA update process, as a purely random table.

To extend these results, further research can be conducted in the following directions:

79

- For TREYFER, it is interesting to investigate if there are other permutations of plain­

texts and keys that derive similar ciphertexts. It is also interesting to provide further

analysis of TREYFER which employs an enhanced key scheduling algorithm (e.g.,

by adding some round dependent constants).

- Since the original FEA-M cipher is inherently linear, it would be interesting to put

more effort in the cryptanalysis of other FEA-M variants and test it with respect to

other known cryptanalytic attacks listed in Chapter 2.

- Since the amount of information about the secret key left by the NGG KSA procedure

grows with increasing the word size from 32 to 64, it would be interesting to derive

a full key recovery algorithm which succeeds with high probability when the word

size is 64.

- The question of how to exactly calculate the number of steps required for GGHN to

enter a weak state is open. A new method for calculating absorption times of non-

Markovian chains is required, for the case when the computational complexity of

experimentally finding these values is too high.

- The design of light weight, yet secure, ciphers suitable for resource constrained en­

vironments still presents a challenging goal for cryptographers.

80

Bibliography

[1] H. Ahmadi, T. Eghlidos, and S. Khazaei, Improved Guess and Determine

Attack on SOSEMANUK, eSTREAM report 2005/085 (2005). Avilable at

http://www.ecrypt.eu.org/stream/papers.html

[2] E. R. Berlekamp, Algebraic coding theory, McGraw-Hill, New York, 1968.

[3] D. Bernstein, Which eStream cipher have been broken?, ECRYPT report, 2008,

Available at http://www.ecrypt.eu.org/stream/papersdir/2008/010.pdf.

[4] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,

L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, H. Sibert, Sosemanuk: a fast

software-oriented stream cipher, eSTREAM report 2005/027 (2005). Avilable at

http://www.ecrypt.eu.org/stream/papers.html

[5] E. Biham and Y. Carmeli, Efficient Reconstruction of RC4 Keys from Internal

States, Proc. of Fast Software Encryption, FSE 2008, pp. 270-288, LNCS 5086,

Springer-Verlag, 2008.

81

http://www.ecrypt.eu.org/stream/papers.html
http://www.ecrypt.eu.org/stream/papersdir/2008/01
http://www.ecrypt.eu.org/stream/papers.html

[6] E.Biham, A.Biryukov, A.Shamir, Cryptanalysis of Skipjack Reduced to 31 Rounds

using Impossible Differentials, In J. Stern, editor, Advances in Cryptology: EURO-

CRYPT'99, LNCS 1592, pp. 12-23. Springer Verlag, 1999.

[7] E. Biham, New Types of Cryptanalytic Attacks Using Related Keys, Advances in

Cryptology, EUROCRYPT '93, Springer-Verlag, 1994, pp. 398-409.

[8] E.Biham, A.Shamir, Differential Cryptanalysis of the Full 16-RoundDES, LNCS-

740, Proceedings of Crypto'92, Springer-Verlag, 1992.

[9] E. Biham, O. Dunkelman and N. Keller, Related-Key Impossible Differential At­

tacks on 8-Round AES-192, Topics in Cryptolog: CT-RSA 2006, LNCS 3860,

2006, pp. 21-33.

[10] E. Biham, O. Dunkelman and N. Keller, A Related-Key Rectangle Attack on the

Full KASUMI, Proc. of ASIACRYPT 2005, LNCS 3788, 2005, pp. 443-461.

[11] Alex Biryukov and David Wagner, Slide Attacks, Proc, of the 6th International

Workshop on Fast Software Encryption (FSE '99), pp. 245-259, Rome: Springer-

Verlag.

[12] A. Biryukov and A. Shamir, Structural Cryptanalysis of SASAS, Proceedings of

Eurocrypt'01, pp 394-405, Lecture Notes in Computer Science, volume 2045,

Springer-Verlag

82

[13] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen and O. Scavenius, Rab­

bit: A new high-performance Stream Cipher, Proc. of FSE 2003, Springer-Verlag,

LNCS 2887, pp. 307-329.

[14] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw,

Y. Seurin and C. Vikkelsoe, PRESENT: An Ultra-Lightweight Block Cipher, CHES

2007, LNCS4727, pp.450- 466, Springer, 2007.

[15] A. G. Chefranov, Parametrized Improved Fast Encryption Algorithm for Multime­

dia P1FEA-M, IEEE Comm. Letters, Vol. 12, No. 6, pp. 404-406, June 2008.

[16] J. Daemen, L. Knudsen and V. Rijmen, The Block Cipher SQUARE, Fast Software

Encryption 1997, Lecture Notes in Computer Science Volume 1267, pp 149-165,

Springer-Verlag.

[17] Joan Daemen and Vincent Rijmen, AES proposal: Rijndael. In AES Round

I Technical Evaluation, CD-I: Documentation. NIST, August 1998. URL:

http://www.esat.kuleuven.ac.be/ rijmen/rijndael/ or http://www.nist.gov/aes.

[18] S.R. Fluhrer and D.A. McGrew, Statistical Analysis of the Alleged RC4 Keystream

Generator, Proc. of Fast Software Encryption, FSE 2000, pp. 19-30, LNCS 1978,

Springer-Verlag, 2000.

[19] S.R. Fluhrer, I. Mantin and A. Shamir, Weaknesses in the Key Scheduling Algorithm

ofRC4, Proc. of Selected Areas in Cryptography, SAC 2001, pp. 1-24, LNCS2259,

Springer-Verlag, 2001.

83

http://www.esat.kuleuven.ac.be/
http://www.nist.gov/aes

[20] Geffe. P. R., How to protect data with ciphers that are really hard to break, Elec­

tronics, Jan. 1973, pg. 99-101

[21] C. G. Gunther, Alternating step generators controlled by de Bruijn sequences, Ad­

vances in Cryptology - EuroCrypt '87 (p5-14), LNCS 304, Springer Verlag, ISBN

3-540-19102-X

[22] J.D. Golic, Linear Statistical Weakness of Alleged RC4 Keystream Generator,

LNCS-1233, EUROCRYPT '97, pp. 226-238, Springer-Verlag, 1997.

[23] G. Gong, K. Chand, M. Hell and Y. Nawaz,Towards a General RC4-Like Keystream

Generator, Proc. of CISC 2005, pp. 162-174, LNCS 3822, Springer-Verlag, 2005.

[24] Charles M. Grinstead, J. Laurie Snell, Introduction to Probability, American Math­

ematical Society, 2nd edition, 1997

[25] P. Hawkes and G. G. Rose, On the applicability of distinguishing attacks against

stream ciphers, Proc. of the Third NESSIE Workshop, 2002.

[26] M.E.Hellman and S.K.Langford, Differential-linear cryptanalysis, Advances in

Cryptology - Proc. Crypto'94, LNCS 839, pages 26Ac39. Springer Verlag, 1994.

[27] Thomas Jakobsen and Lars R. Knudsen, The Interpolation Attack on Block Ci-

phersAn the proceedings of Fast Software Encryption (FSE '97), Lecture Notes in

Computer Science Volume 1267, pages 28-40, Springer-Verlag.

84

[28] J. Kelsey, B. Schneier and D. Wagner, Related-key cryptanalysis of 3-WAY, Biham-

DES,CAST, DES-X, NewDES, RC2, and TEA, Proc. of Information and Communi­

cations Security, LNCS 1334, 1997, pp. 233-246.

[29] A. Klein. Attacks on the RC4 stream cipher. Personal Andreas Klein website (2006)

http://cage.ugent.be/klein/RC4/RC4-en.ps

[30] L.Knudsen, Truncated and Higher Order Differentials, Proceedings of the Sec­

ond International Workshop on Fast Software Encryption, Leuven, Belgium, LNCS

1008, Springer, pp. 196-211, 1995

[31] L.R.Knudsen, M.J.B.Robshaw and D.Wagner, Truncated Differentials and Skip­

jack, CRYPTO 1999, pp. 165-180, Springer-Verlag, 1999.

[32] L.R.Knudsen, Partial and higher order differentials and its application to the DES,

BRICS report series. RS-95-9, ISSN 0909-0878, February 1995.

[33] L.R. Knudsen, W. Meier, B. Prenel, V. Rijmen and S. Verdoolaege, Analysis

Methods for (Alleged) RC4, Proc. of ASIACRYPT'98, pp. 327-341, LNCS 1514,

Springer-Verlag, 1998.

[34] S. Li and K. T. Lo, Security Problems with Improper Implementations of Improved

FEA-M Journal of Systems & Software, Vol. 80, No. 5, pp. 791-794, 2007.

[35] S. Lucks, Ciphers Secure against Related-Key? Attacks, Proc. of Fast Software En­

cryption, LNCS 3017, 2004, pp. 359-370.

85

http://cage.ugent.be/klein/RC4/RC4-en.ps

[36] I. Mantin and A. Shamiiyl practical Attack on Broadcast RC4, Proc. of Fast Soft­

ware Encryption, FSE 2001, pp. 152-164, LNCS2355, Springer-Verlag, 2001.

[37] I. Mantin, Predicting and Distinguishing Attacks on RC4 Keystream Generator,

Proc. of EUROCRYPT' 2005, pp. 491-506, LNCS 3494 Springer-Verlag, 2005.

[38] I. Mantin, A Practical Attack on the Fixed RC4 in the WEP Mode, Proc. of ASI-

ACRYPT 2005, pp.395-411, LNCS 3788, Springer-Verlag, 2005.

[39] James L. Massey, SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm, Proc.

of the first workshop on Fast Software Encryption (FSE'93), pp. 1-17, Springer-

Verlag.

[40] J. L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans, on Inform.

Theory vol. IT-15, January 1969

[41] M. Matsui, Linear Cryptanalysis Method for DES Cipher. LNCS, Advances in

Cryptology, proceedings of EUROCRYPT'93, pp. 386-397, 1993.

[42] A. Maximov, Two Linear Distinguishing Attacks on VMPC and RC4A and Weak­

ness of RC4 Family of Stream Ciphers, Proc. of Fast Software Encryption, FSE

2005, LNCS 3357, pp. 342-358. Springer-Verlag, 2005.

[43] A. Maximov and D. Khovratovich, New State Recovery Attack on RC4, Proc. of

CRYPTO 2008, pp. 297-316, LNCS 5157. Springer-Verlag, 2008.

[44] A J. Menezes, P. C. van Oorschot and S A. Vanstone, Handbook of Applied Cryp­

tography, CRC Press. 1996.

86

[45] M. J. Mihaljevic and R. Kohno, Cryptanalysis of fast encryption algorithm for

multimedia FEA-M, IEEE Communications Letters, Vol 6, Issue 9, pp. 382-384,

2002

[46] M. J. Mihaljevic, On Vulnerabilities and Improvements of Fast Encryption algo­

rithm for Multimedia FEA-M, IEEE Trans, on Consumer Electronics, Vol. 49, No.

4, November 2003.

[47] I. Mironov, Not (So) Random Shuffle RC4, Crypto 2002, LNCS-2442, pp. 304-

319, Springer-Verlag, 2002

[48] S. Mister and S. Tavares, Cryptanalysis of RC4-like Ciphers, Proc. of Selected

Areas in Cryptography, SAC 98, pp. 131-143, LNCS 1556, Springer-Verlag, 1999.

[49] National Institute of Standards and Technology, FIPS-197: Advanced Encryption

Standard, November 2001.

[50] Y. Nawaz, K.C. Gupta and G. Gong, A 32-bit RC4-like keystream generator. Tech­

nical Report CACR 2005-21, Center for Applied Cryptographic Research, Uni­

versity of Waterloo, 2005. Also available at Cryptology ePrint Archive, 2005-175,

http://eprint.iacr.org/2005/175

[51] S. Paul, B. Preenel, On the (In)security of Stream Ciphers Based on Arrays and

Modular Addition, Proc. of ASIACRYPT 2006, pp. 69-83, LNCS 4284, Springer-

Verlag,2006.

87

http://eprint.iacr.org/2005/175

[52] S. Paul, B. Preenel, A new weakness in the RC4 keystream generator and an ap­

proach to improve the security of the cipher, Proc. of Fast Software Encryption,

FSE 2004, LNCS 3017, pp. 245AdAu259. Springer-Verlag, 2004.

[53] G. Paul and S. Maitra, Permutation After RC4 Key Scheduling Reveals the Secret

Key, Proc. of Selected Areas in Cryptography, SAC 2007, pp. 360-377, LNCS

4876, Springer-Verlag, 2007.

[54] S. Paul and B. Preneel, A New Weakness in RC4 Keystream Generator and an

Approach to Improve the Security of the Cipher, Proc. of Fast Software Encryption,

FSE 2004, pp 245-259, LNCS 3017, Springer-Verlag, 2004.

[55] S. Paul and B. Preneel, Analysis of Non-fortuitous Predictive States of the RC4

Keystream Generator, Proc. of Indocrypt 2003, pp. 52-67, LNCS 2904, Springer-

Verlag, 2003.

[56] B. Schneier, Description of a New Variable-Length Key, 64-bit Block Cipher (Blow-

fish), Fast Software Encryption 1993: 191-204, 1993

[57] G. Sekar, S. Paul and B. Preneel, Related-Key Attacks on the Py-Family of Ciphers

and an Approach to Repair the Weaknesses, Proc. of INDOCRYPT 2007, LNCS

4859, 2007, pp. 58-72.

[58] T. Siegenthaler, Correlation-Immunity of Nonlinear Combining Functions for

Cryptographic Applications, IEEE Transactions on Information Theory 30 (5), pp.

776-780, 1984

88

[59] E. Tews, R.P. Weinmann and A. Pyshkin, Breaking of 104 Bit WEP in Less than

60 Seconds, 2007, Cryptology ePrint Archive, 2007-120, IACR 2007, Available at

http://eprint.iacr.Org/2007/l 20

[60] V. Tomasevic , S. Bojanic, O. Nieto-Taladriz, Finding an internal state of RC4

stream cipher, Information Sciences: an International Journal, Vol 177, No. 7, pp.

1715-1727,2007.

[61] Y. Tsunoo, T. Saito, H. Kubo, and T. Suzaki, A Distinguishing Attack on a Fast

Software-Implemented RC4-Like Stream Cipher, IEEE Trans, on Information The­

ory, Vol. 53, No. 9, 2007.

[62] S. Vaudenay and M. Vuagnoux, Passive-Only Key Recovery Attacks on RC4, Proc.

of Selected Areas in Cryptography, SAC 2007, pp. 344-359, LNCS 4876, Springer-

Verlag, 2007.

[63] M. Wang, Differential Cryptanalysis of PRESENT, In proc. of Africacrypt 2008, to

appear, Also available at Cryptology ePrint Archive: Report 2007/408.

[64] D.Wagner, The Boomerang Attack, in the Proceedings of FSE999, LNCS-1636,

Springer-Verlag.

[65] D. J. Wheeler and R. M. Needham, TEA, a tiny encryption algorithm, Proc. of

the 2nd workshop on Fast Software Encryption (FSE'94), pp. 363-366, Leuven,

Belgium, 1994, Springer-Verlag.

89

http://eprint.iacr.Org/2007/l

[66] H. Wu, Cryptanalysis of a 32-bit RC4-like Stream Cipher, Cryptology ePrint

Archive, 2005-219, IACR 2005, Available at eprint.iacr.org/2005/219.pdf

[67] X. Yi, C. K. Tan, C. K. Siew and M. R. Syed, Fast Encryption for Multimedia,

IEEE Trans. Consumer Electronics, Vol. 47, No. 1, pp. 101-107, Feb. 2001.

[68] X. Yi, C. K. Tan, C. K. Siew and M. R. Syed, ID-based key agreement for multi­

media encryption, IEEE Trans. Consumer Electronics, Vol. 48, No. 2, pp. 298-303,

May 2002

[69] A. M. Youssef and S. E. Tavares, Comments on the Security of Fast Encryption

Algorithm for Multimedia (FEA-M), IEEE Trans, on Consumer Electronics, Vol.

49, No. 1, Feb 2003.

[70] G. Yuval, Reinventing the Travois: Encryption/MAC in 30 ROM Bytes, Proc. of the

4th International Workshop on Fast Software Encryption (FSE '97), pp. 205-209,

Springer- Verlag, 1997.

[71] W. Zhang, L. Zhang, W. Wu and D. Feng, Related-Key Differential-Linear Attacks

on Reduced AES-192, Proc. of INDOCRYPT 2007, LNCS 4859, pp. 73-85.

[72] B. Zoltak, VMPC one-way function and stream cipher, Proc. of Fast Software En­

cryption, FSE 2004, LNCS 3017, pp. 210-225, Springer-Verlag, 2004.

90

http://eprint.iacr.org/2005/219.pdf

