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ABSTRACT 

Cryptanalysis of symmetric key primitives 

Aleksandar Kircanski 

Block ciphers and stream ciphers are essential building blocks that are used to construct 

computing systems which have to satisfy several security objectives. Since the security 

of these systems depends on the security of its parts, the analysis of these symmetric key 

primitives has been a goal of critical importance. In this thesis we provide cryptanalytic 

results for some recently proposed block and stream ciphers. 

First, we consider two light-weight block ciphers, TREYFER and PIFEA-M. While 

TREYFER was designed to be very compact in order to fit into constrained environments 

such as smart cards and RFIDs, PIFEA-M was designed to be very fast in order to be used 

for the encryption of multimedia data. We provide a related-key attack on TREYFER which 

recovers the secret key given around 2 n encryptions and negligible computational effort. 

As for PIFEA-M, we provide evidence that it does not fulfill its design goal, which was 

to defend from certain implementation dependant differential attacks possible on previous 

versions of the cipher. 

Next, we consider the NGG stream cipher, whose design is based on RC4 and aims to 

increase throughput by operating with 32-bit or 64-bit values instead of with 8-bit values. 
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We provide a distinguishing attack on NGG which requires just one keystream word. We 

also show that the first few kilobytes of the keystream may leak information about the secret 

key which allows the cryptanalyst to recover the secret key in an efficient way. 

Finally, we consider GGHN, another RC4-like cipher that operates with 32-bit words. 

We assess different variants of GGHN-like algorithms with respect to weak states, in which 

all internal state words and output elements are even. Once GGHN is absorbed in such a 

weak state, the least significant bit of the plaintext words will be revealed only by looking 

at the ciphertext. By modelling the algorithm by a Markov chain and calculating the chain 

absorption time, we show that the average number of steps required by these algorithms to 

enter this weak state can be lower than expected at first glance and hence caution should be 

exercised when estimating this number. 
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Chapter 1 

Introduction 

Historically, the classical goal of cryptography was to allow two persons to communicate 

over an insecure channel, such as telephone line, so that the adversary can not understand 

what is being said. Currently, the goal of cryptography, understood in a broader sense, is 

to provide means to enforce other security goals such as privacy, integrity, authenticity and 

non-repudiation. 

The building blocks for ensuring these goals are crypto-primitives, such as block ci­

phers, stream ciphers, hash functions, and cryptographic protocols. An overview of these 

primitives is provided in Fig. 1. In what follows, we provide a brief introduction for these 

primitives. For further details, the reader is referred to [44]. 

- Hash functions are functions that take an arbitrary block of data and return a fixed 

size bit string. A secure hash function needs to be easy to compute and difficult to 

invert. Also, for any given message, it has to be infeasible to find another message 

with the same hash value. Finally, a secure hash function needs to be collision-free, 
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Figure 1: Classification of crypto-primitives [44] 

i.e., it should be practically infeasible to find two different messages with the same 

hash value. Hash functions can be used as building blocks for ensuring integrity 

of information. Although in practice many constructions are believed to satisfy the 

above design objectives, no formal proofs exist to confirm this belief. MD5, SHA-

1 and SHA-2 are some examples of commonly used hash functions. In response 

to recent cryptanalytic attacks on several hash functions, the National Institute for 

Standards and Technology (NIST) has opened a public competition to develop a new 

hash function. The new hash algorithm will be called SHA-3 and will augment the 

hash algorithms currently specified in F1PS 180-2. 

One-way permutations, like hash functions, need to be easy to compute but difficult 
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to invert. The main difference is that unlike hash functions, one-way permutations 

are both injective and surjective. If proven to exist, these primitives can be used in 

the construction of several other primitives such as public-key cryptosystems, pseu­

dorandom number generators, oblivious transfer protocols, and key agreement pro­

tocols. 

- Unkeyed cryptographically secure pseudo random generators are typically used for 

secret key generation. For a secret key to be well chosen, it is necessary that the pro­

duced pseudorandom number sequence satisfies certain statistical properties such as 

balanced occurrence of O's and l's, and independence between numbers at different 

places in the sequence. 

- Symmetric key ciphers include block ciphers and stream ciphers. By a block cipher 

we denote a function that transforms a plaintext to ciphertext and vice-versa, depend­

ing on the parameter called the secret key. Block ciphers operate on fixed-length 

groups of bits, called blocks, of typical sizes of 64-256 bits. Examples of block ci­

phers include the Advanced Encryption Standard (AES) [17] that has recently been 

approved by NIST as a replacement for the Data Encryption Standard (DES). 

A stream cipher is usually a pseudorandom number generator that depends on the 

secret key. The plaintext is then combined with the produced pseudorandom data, 

typically using XOR operation. Unlike the case for block ciphers, currently there 

is no specific standard for stream ciphers. On the other hand, the European Net­

work of Excellence for Cryptology (ECRYPT), through its eSTREAM project that 
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was finalized in September 2008, has identified a portfolio of seven promising new 

stream ciphers (HC-128, Grain, Rabbit, MICKEY, Salsa20/12, Trivium and SOSE-

MANUK.) 

- Message Authentication Codes, often called MACs, are short pieces of information 

used to authenticate data. MAC algorithms can be regarded as keyed hash functions. 

While similar to hash functions, MAC algorithms need to satisfy different security 

requirements. For instance, an adversary, given MACs of arbitrary number of mes­

sages computed under the secret key, should not be able to be able to deduce any 

information on the MAC of other messages. 

- Symmetric-key and public-key digital signatures are used to give the receiver of the 

message assurance that the message was sent by claimed sender, even thought the 

channel of communication is insecure. They are implemented using symmetric-key 

primitives and public-key primitives. Digital signatures can also be used to enforce 

non-repudiation, according to which a signer of the message can not dispute that 

she is the actual signer of the message. The RSA, El-Gamal and NTRU signature 

algorithms are examples for public key digital signature schemes. 

- Symmetric key pseudorandom generators typically include stream ciphers or a one­

time pad system. 

- Identification systems are used to allow one party (the verifier) to gain assurances that 

the identity of another (the claimant) is as declared, thus preventing impersonation. 
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The difference between identification systems and MACs is that message authenti­

cation does not provide interactive verification of identities. Identification systems 

are often built using other crypto-primitives such as public key ciphers or symmetric 

ciphers. 

- Public key ciphers, also known as asymmetric key algorithms, use different keys for 

encryption and decryption. Each user has a pair of keys, a public and a private key. 

The private key is kept secret, whereas the public key can be publicly distributed. 

Messages are encrypted with user's public key and can only be decrypted by the 

user's private key. Although there exists a mathematical relation between the public 

and a private key, in order for the cryptosystem to be secure, it needs to be com­

putationally infeasible to find the private key based on the knowledge of the public 

key. The RSA, El-Gamal and NTRU encryption algorithms are examples for public 

ciphers. 

In this thesis, we focus on symmetric crypto-primitives, i.e., block and stream ciphers. 

In what follows, we provide a classification for both of these primitives and their corre­

sponding definitions. A block cipher consists of two 1 — 1 functions Ex, EK
l, both de­

pending on the parameter K and mapping n-bit blocks to n-bit blocks. For each parameter 

K and n-bit string P 

E~K\EK{P)) = P 

The parameter K is called the secret key. P and Ex(P) are referred to as the plaintext and 

ciphertext, respectively. 



I Other structure j 

Figure 2: Classification of block ciphers 

Construction of block ciphers is done by combining building blocks such as permuta­

tions, s-boxes and non-linear Boolean functions. Usually, these building blocks are com­

bined in units called rounds. Fig. 2 shows a classification for block ciphers with respect to 

their construction. The substitution permutation network (SPN) structure and Fiestel (also 

referred to as DES-like) structures are the most commonly used designs for block ciphers 

constructions. 

A typical round of an SPN-structure consists of nonlinear substitution operations to 

achieve the required confusion effect, linear transformation to achieve the required diffu­

sion effect and key mixing operation. The user supplied key is often used to derive round 

keys using what is referred to as a key scheduling scheme. The AES [17] is an example 

of an SPN. As for DES-like structures, the plaintext is usually divided into two halves, 
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denoted by L; and R{ in round i. The following transformation is applied at the i-th round 

Ri.+i = Li®F{Ri,Ki\. 

The round function, F, does not have to be 1 — 1. The Data Encryption Standard (DES) is 

an example for a Feistel block cipher. 

As shown in Fig. 2, some block ciphers achieve its required nonlinearity through the 

use of nonlinear s-boxes which are typically implemented as look up tables. When the the 

ciphers are not based on s-boxes, some other means of non-linearity must be introduced. 

This can include multiplication or exponentiation in the appropriate finite field. S-boxes 

usually do not depend on the key. However, for some ciphers such as Blowfish [56], the 

s-boxes themselves depend on the key. 

Consider a block cipher of R rounds and consider the reduced version of-/?— 1 rounds. 

If, given a set of plaintexts, it is possible to distinguish whether some arbitrary data rep­

resents the ciphetext produced by encrypting these plaintexts by the R — 1 rounds of the 

cipher for an unknown key, the R round cipher can be attacked as follows. For each guess 

for the R-\h round subkey, the cryptanalyst checks whether the set of ciphertext can be 

distinguished as the output from the cipher on the given set of plaintext. If not, the last 

round subkey candidate is discarded. Since the last round subkey usually represents only 

a portion of the whole key, significant reduction of the keyspace is achieved. This attack 
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Figure 3: Classification of stream ciphers 

method is used in several cryptanalytic attacks on block ciphers including linear cryptanal-

ysis, differential cryptanalysis and interpolation attacks. 

Let m = (mj. m2,. . .) denote the bit blocks of some fixed size w of the message 

to be encrypted. A stream cipher is a pair of efficient algorithms, one for transforming 

each of the messages m, to ciphertext c, and one for the inverse transformation. Both the 

encryption and decryption operations depend not only on the secret key ft", but'also oil i 

which distinguishes stream ciphers from block ciphers. For example, if m/ = ma for some 

/ ^ d, these two blocks will be transformed into two different ciphertexts when encrypted 

by a stream cipher. On the other hand, when encrypted by a block cipher, operating in the 

basic electronic code book (ECB) mode, these two blocks will be transformed into the same 

ciphertext. Frequent building-blocks for stream Ciphers are keystream generators which can 

be thought of as finite state machines transforming the secret key K into a pseudorandom 

stream z = (zi. z2-:. -.) where z\ € {0. 1}U- In most of the cases, the z, blocks are XOR-ed 

to the plaintext to produce the ciphertext stream. 



As shown in Fig. 3, stream ciphers can be synchronous or asynchronous. For syn­

chronous stream ciphers, the sender and receiver must maintain synchronization for the 

decryption operation to be successful. A stream of pseudo-random digits is generated in­

dependently of the plaintext and then applied to it for encryption. If synchronization is 

lost, various offsets need to be tried systematically to obtain correct decryption. In the 

case of asynchronous or self-synchronizing ciphers, previous N ciphertexts participate in 

computing the next keystream word. Thus, the receiver can automatically synchronize the 

keystream after receiving TV ciphertexts. This makes it easier to recover if some ciphertext 

words are lost and consequently single-word errors are limited to N plaintext words. 

Another classification of stream ciphers is with respect to their design structure. LFSR-

based stream ciphers are those based on linear feedback shift registers, which are shift 

registers for which the feedback function is a linear function of its previous state. The 

initial value of the LFSR is called the seed. While sequences produced by LFSRs may 

have several interesting properties such as long period, balancedness and good correlation 

properties, the inherent linearity of these sequences limit their direct applications in cryp­

tography. To ensure additional security properties, irregularly clocked LFSR based stream 

cipher design was proposed [21]. Such a design usually consists of more than one LFSR 

and at each step each LFSR is clocked. The choice of which of the output bits will be sent 

to the output of the cipher is a function of the outputs of LFSRs. A different way to destroy 

the nonlinearity of the produced sequence in a regularly clocked LFSR is to use more than 

one LFSR and use a non-linear combiner function (NLC generators). In order to ensure 
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security properties of the produced stream, the function needs to satisfy several crypto­

graphic properties such as balance, high nonlinearity, correlation immunity, high algebraic 

degree and high algebraic immunity degree. Another way to ensure desired properties of 

the output sequence is to use a non-linear filter function (NLFF) which operates on all bits 

oftheLFSR. 

Non-LFSR based stream ciphers include ciphers designed to be fast when executed in 

software. One of the most widely used ciphers in this category is RC4. Since RC4 operates 

with 8-bit words, it does not achieve the best possible performance on 32 bit and 64 bit 

processors which are in use today. Recent stream ciphers optimized for software usually 

operate with 32 and 64 bit words [4,13,23,50]. 

In the next chapter, we provide an overview of common cryptanalytic attacks on block 

ciphers and stream ciphers. 
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Chapter 2 

Overview of cryptanalysis techniques 

There exist several classifications of cryptanalytic attacks. First, we provide the one that 

differentiates attacks with respect to the information the cryptanalyst has access to: 

- Known ciphertext attack: In this scenario, the cryptanalyst has access only to the 

ciphertext and not to the corresponding plaintext. The goal of the cryptanalyst in this 

case is to recover as many corresponding plaintexts as possible or to recover the key 

under which the encryption was done. 

- Known plaintext attack: The cryptanalyst has both ciphertexts and their correspond­

ing plaintexts. The cryptanalyst's goal is to recover the key under which the encryp­

tion was performed 

- Chosen plaintext attack: The attacker has means to choose a set of plaintexts and 

obtain their corresponding ciphertexts. Again, the goal is to recover the secret key 

under which the encryption was performed. 
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Another classification of the attacks is with respect to whether the attacker has some 

sort of physical access to the encrypting device or not: 

- Pure mathematical attacks: In this model, the attacker does not consider the physical 

implementation of the cipher and regards the problem as how to recover the secret 

key given plaintext/ciphertext information from a purely mathematical point of view. 

- Physical access dependant attacks: In this model, the attacker has some physical 

access to the particular device that performs the encryption. This model includes 

side channel analysis in which the attacker measures certain parameters such as the 

instantaneous power consumption of the cryptographic device or the time used to per­

form the encryption operation. By utilizing this side channel information the attacker 

might be able to deduces some information about the internals of the encrypting pro­

cess, which leads to key information recovery. Another cryptanalysis models that 

fall into this category is differential fault analysis of ciphers in which the attacker 

induces faults (errors) by applying physical influence such as ionizing radiation to 

the device during the encryption. By careful inspection of results of encryption in 

the faulty environment, the cryptanalysis might be able to gather information about 

the used secret key. 

The success of a cryptanalytic attack in a general setting is measured by: 

- Amount of required input data: The amount of ciphertext/plaintext information nec­

essary to perform the attack. 

- Number of necessary operations: The amount of necessary computations required to 
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execute the attack. For example, in the case of a brute force attack in which every 

key is trivially checked, the number of operations is 2 ' x ' _ 1 on average, where \K\ 

denotes the size of the key in bits. 

- Storage complexity: The amount of storage required. 

- Number of necessary physical actions on the encrypting device: This can include the 

number of necessary measurements in case of side channel analysis (such as power 

analysis attacks and timing attacks) or number of induced faults in the memory of 

the cipher, in case of fault analysis. 

In the past twenty years a variety of efficient encryption algorithms have been devel­

oped. In parallel, the cryptanalysis community yielded many powerful attacks against ci­

phers. The most obvious attack on encryption algorithms is brute force attack, in which the 

cryptanalyst tries all the possible secret keys and finds the right one. As mentioned above, 

if the key is denoted by K, the number of necessary encryptions is around 2 'K '_ 1 . While 

the necessary plaintext-ciphertext pairs required for this attack is usually very small, most 

of modern ciphers are designed such that the key size is large enough to make this attack 

practically impossible. 

In what follows we briefly review some of the most important attacks known today on 

both block ciphers and stream ciphers. 

2.1 Block cipher cryptanalysis 

In this section we give an overview of attacks on block ciphers. 
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Linear Cryptanalysis: In its basic version [41], linear cryptanalysis is a known plaintext 

attack that uses a linear relation, between some plaintext and ciphertext bits, that holds 

with probability different than | . The first part of linear cryptanalysis is to find linear 

approximations of the non-linear building blocks of the cipher, usually s-boxes. In other 

words, the relation among input and output bits of a given s-box of the form 

^ i j © A; 2 $ . . . c A j m $ . . . $ Yi1 © Y{2 © . . . © / j n 

needs to be established with the probability different than \, where X and Y denote the 

input and output of the s-box. For an s-box with n input bits and m output bits, there exist 

(2n — 1) x (2m — 1) possibilities and the cryptanalyst needs to investigate which ones hold 

with the high bias, defined as e = p — | . Next, these linear approximations are combined 

and a biased linear approximation between the key bits, the plaintext and ciphertext for the 

cipher reduced to R — 1 rounds is obtained. This is possible due to the fact that an XOR of 

several biased random variables is also a biased random variable, as given by the following 

Lemma which is usually referred to as the Piling-Up Lemma. 

Lemma 1 Let Xx be independent random variables of which the values are 0 with the 

probability ofpi and 1 with probability 1 — p,. Then, the probability that X\ ©. .. © Xn = 0 

is 

Finally, the obtained R-l round distinguisher can be used to mount an attack by guessing 

the R-lh round subkey bits and choosing the one for which most of the plaintext-ciphertext 

14 



pairs satisfy the constructed linear relation. Linear cryptanalysis provided the most suc­

cessful attack on DES, requiring 243 known plaintext-ciphertext pairs. 

Differential cryptanalysis: In its basic version [8]. differential cryptanalysis studies how 

differences in the plaintexts affect the corresponding differences in the ciphertexts. As in 

linear cryptanalysis, the first part of differential analysis is to provide differential properties 

of the building blocks participating in the cipher. As for linear parts, such as bit permu­

tations or key addition, the resulting differences are deterministically determined by the 

differences in the input. In case of non-linear components, such as s-boxes, knowledge of 

the input difference does not guarantee knowledge of the output difference. Instead, the 

cryptanalyst makes a table of all possible input/output differences, also called differentials: 

AX ^ AY 

where p denotes the probability that the input difference of AX will cause the output dif­

ference of AY. To obtain a differential for R — 1 rounds of the cipher, differentials are 

combined along a differential path and the final differential probability is given by 

where n is the number of s-boxes used in the differential path and p{ the probability of the 

difference propagation within the z-th s-box. Again, the attack proceeds same as in linear 

cryptanalysis. The last round subkey is guessed and if the distribution of differences for the 

current key guess does not correspond to the expected one, the key candidate is discarded. 
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Since the last round subkey is usually smaller than the full key, significant reduction of the 

key space is achieved. 

Generalizations of linear and differential cryptanalysis: Linear and differential crypt-

analysis techniques have been generalized in different ways. In this part we provide an 

overview of these generalizations. 

- Differential-linear cryptanalysis [26]: A chosen plaintext attack first applied to 8-

round DES, in which differential cryptanalysis is applied to the first three rounds and 

linear cryptanalysis is applied on the remaining five rounds. The main observation 

on which the attack relies is that inverting certain bits in the input of the first round 

leaves certain third round bits unchanged, implying that the XOR sum of these third 

round bits is also left unchanged. From rounds four to seven, a linear approximation 

involving exactly these unchanged four-round input bits and certain 7-th round bits 

is then used. For each 8-th round subkey portion, it is verified whether for each 

plaintext, the XOR sum of the bits in questions changes or not. Using differential-

linear cryptanalysis, the number of necessary chosen plaintext-ciphertext pairs was 

reduced to 512 to recover 10 bits of the key, for 8-round DES. The classical Biham-

Shamir differential attack required over 5000 chosen pairs. 

- Truncated differential cryptanalysis [30]: In a conventional differential attack, all the 

bits in the input and output difference are specified and the differential is denoted by 

(a, b) where a and b are of the same length as the plaintext for the cipher. In truncated 

differential cryptanalysis. not the whole differences are specified. In [30], truncated 
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differentials have been used to attack a 6-round DES with only 46 chosen plaintext-

ciphertext pairs. Also, in [31], it has been shown that there exists a 24-round Skipjack 

truncated differential that holds with probability 1. 

- Higher-order differential cryptanalysis 132]: Whereas ordinary differential crypt-

analysis considers differences between plaintexts defined as 

A . / ( i ) = / ( i 6 o ) f f i / ( i ) 

higher-order differential cryptanalysis utilizes the ?'-th derivative of the function / 

Aili...„i/(x) = A„i(A^1>li_i/(x)) 

It has been shown that it is possible to construct a cipher that is unbreakable by means 

of classical differential cryptanalysis and at the same time weak with respect to higher 

order differential cryptanalysis, making the attack relevant. For instance, in [32] it 

was shown that for the function f(x. k) = (x + k)2 mod p with input/output size of 

2 x logip, where p is prime, every non-trivial one round differential has probability 

of - and the second order derivative is a constant. The problem with high-order 

differentials is to combine them to more than two rounds, as it is possible with first 

order differentials. 

- Impossible differential cryptanalysis [6]: Instead of using biased differentials, differ­

entials with probability 0 at some intermediate state of the cipher are used to derive 
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key information. The last-round keys are discarded on the basis of the indication that 

the impossible event happened during the encryption if this key part was used. The 

attack was applied to Skipjack reduced to 31 rounds. 

- Boomerang attack [64]: In its basic version, the attack requires chosen-plaintext and 

chosen-ciphertext queries to combine two high-probability differential paths which 

are not necessarily related to each other. To show that differential cryptanalysis of ci­

phers is infeasible, cipher designers usually compute an upper bound p on the proba­

bility of any differential characteristics of the cipher and then apply the often repeated 

"folk theorem" to show that the differential attack would require at least - texts to 

break the cipher. According to [64], this folk theorem is wrong, in case that the 

attacker can adaptively choose ciphertext for which the plaintext will be obtained. 

Other attacks, independent of linear and differentia] cryptanalysis include: 

- Interpolation attacks [27]: This attack can be applied to ciphers for which the round 

function can be written as an algebraic expression with low degree or sparse. For 

ciphers in which s-boxes are used, the first step is to use the following theorem to 

find the coefficient of the polynomial that will correspond to the s-box: 

Theorem 1 Let K be a field. Given 2n elements x j . . . . xn, yi,.. .yn G R, where 

x.i 's are distinct, define: 

/w = X> II ^ 
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Then f(x) is the only polynomial over K of degree at most n — 1 such that f(xt) = yx, 

for i = 1 , . . . n. 

The expression for / is called the Lagrange interpolation formula. Next, the round 

polynomial functions are combined to represent the whole cipher as a polynomial, 

in which the coefficients are key dependent. By using a sufficient number of chosen 

plaintext-ciphertext pairs, all coefficients may be computed and the cipher will be 

considered broken, even without computing the key bits. This is why the attack in its 

basic form is called a global deduction attack. In other words, an alternative repre­

sentation of the cipher is found, but the key is not necessarily obtained. However, the 

last-round key guessing technique allows it to be converted to a key recovery attack. 

- Square attacks, Integral attacks, Multiset attacks [12,16]: Unlike in, say linear crypt-

analysis, in which every plaintext-ciphertext pair can bring the cryptanalysis a piece 

of information, in multiset cryptanalysis, information can be obtained only by con­

sidering the whole set of plaintext-ciphertext pairs. The attack relies on the proper­

ties of building blocks which conserve certain properties of the set of input values. 

Among such properties are for example the distinctiveness of elements in the set or 

their sum. Consider for example the effect of applying a bijective s-box to each el­

ement of a multiset in which every possible plaintext appears the same number of 

times. For instance, if there is k x 2n plaintexts in the set, every value appears k 

times. Trivially, the property will be preserved in the set of corresponding cipher-

texts as well. Multiset attacks trace this kind of properties through as many rounds 
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as possible. Integral cryptanalysis refers to the attack when the used set property is 

that Y2xecx = *-*> where G is the group that the elements belong to, i.e., the set is 

balanced. The property is conserved after addition of two sets and this is what is 

important for pushing the property through several rounds in the cipher. This attack 

was first used to cryptanalyze the cipher Square [16]. 

- Related key attacks [7J: This type of attack refers more to another cryptanalysis 

model than to a specific attack method on ciphers. Namely, in related-key cryptan-

laysis, the cryptanalyst is able to learn ciphertexts of some plaintexts not only under 

the original unknown key, but also under a key in some preset relation with the orig­

inal key. In general, the attack can be mounted if a relation between keys K and 

K' and a relation between P and P' results in some relation between corresponding 

ciphertexts C and C". 

While it might appear that the interest of related-key attacks is purely theoretical, 

examples of communication protocols exist where simple key management makes 

relate-key cryptanalysis practical. The security of the cipher when used in hashing 

mode can also be affected by this type of weaknesses. 

- Slide attacks [11]: The specific property of this attack is that it usually does not 

depend on the number of rounds used in the cipher. The attack relies on the key 

schedule weakness in which parts of the key are reused subsequently in different 

rounds. Assume for instance, that the same key is used in each round transformation 

and this property of the cipher be called self-similarity. The attack starts by finding 
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slid pairs which are defined as follows. 

Definition 1 Let F be the round function of an iterated block cipher. If a pair of 

known plaintexts (P. C), (P',C) satisfies F(P) = P', then due to the self-similarity 

of both the rounds and the key schedule, the corresponding ciphertexts also satisfy 

F(C) = C Such a pair is called a slid pair. 

By finding a slid pair, which is possible using 0(2?) plaintexts due to the birthday 

paradox, the attacker obtains a plaintext P and its one-round ciphertext, P'. If from 

pair (P, P') it is possible to deduce the information about key K, the secret key is 

compromised. 

2.2 Stream cipher cryptanalysis 

In this section we provide an overview of attacks on stream ciphers. 

Berlekamp-Massey Algorithm [2]: In 1967, Berlekamp presented an algorithm for de­

coding certain type of codes, called Bose-Chaudri-Hocquenghem codes [2]. Two years 

after, Massey successfully applied this algorithm to LSFRs. In that form, the algorithm 

finds the shortest linear feedback shift register that produces a given sequence of bits. A 

generalization of this algorithm is Reeds-Sloane algorithm that finds the shortest LFSR for 

a given output sequence, when the elements in the sequence take values from integers mod 

n. The algorithm is used for cryptanalysis of LFSR designed stream ciphers if the linear 

complexity of the resulting key stream is not long enough. 
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Correlation attacks [58]: This attack is applicable to ciphers that use a Boolean function 

to combine several linear feedback shift registers to produce the keystream output. If a 

Boolean function is poorly chosen, only then the correlation attack applies. By careful 

choice of the combining Boolean function, this attack can be mitigated and therefore the 

correlation weaknesses are not inherent to the design itself. The attack works as follows. 

Suppose that the keystream is produced by combining x0,... xg, each produced from a dif­

ferent LFSR, by a Boolean function / . Assume also that there exists significant correlation 

between x0 and f(x0,... x8), i.e., that for example xO = / ( x 0 , . . - x%) in 75% of cases. 

To recover the internal state of the LFSR corresponding to x0, all that is needed is to go 

through all the possibilities of this LFSR and see which one has around 75% same bits 

as the keystream output sequence. The Geffe generator [20] is a well known example for 

stream ciphers broken by this technique. 

Guess and Determine Attacks: The idea in this type of attack is to guess certain parts 

of the internal state and then combine this with certain keystream output words to deduce 

more bits of the internal state. If an inconsistency with other keystream words is observed, 

the guess for the internal state is discarded. A wide variety of stream ciphers have been 

tested with respect to this type of the attack, from RC4 to eSTREAM candidates such as 

SOSEMANUK. In the attack on RC4 [33], whereas the effective size of the internal state 

is approximately 1800 bits, the guess and determine attack reduces it to around 700 bits. 

Guess and determine analysis of SOSEMANUK [1] shows that the internal state of size 

384 bits, can be recovered using only 24 keystream words and requires 2224 operations. It 

can be concluded that the guess and determine attacks are a powerful technique for finding 
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the internal state of the cipher and that special care must be taken during the design of the 

cipher for mitigating this type of weaknesses. 

Key scheduling weaknesses: A breakthrough in RC4 cryptanalysis was achieved by Mantin's 

observation [36] that the second RC4 keystream byte produced by different randomly dis­

tributed keys is biased. The observation lead to possible recovery of the second plaintext 

byte if RC4 was used in broadcast mode in which the same plaintext was encrypted by sev­

eral hundreds of unrelated different keys. The attack put into focus the need for the internal 

state to be properly randomized after the key scheduling phase and subsequently RC4 [5] 

and other stream ciphers were systematically analyzed with respect to this property. 

Throughout the rest of this thesis, we present some of our cryptanalytic results on some 

recently proposed block and stream ciphers. 
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Chapter 3 

Cryptanalysis of two light-weight block 

ciphers 

In this chapter we provide attacks on TREYFER [70] and PIFEA-M [15] block ciphers. 

TREYFER is a cipher designed for resource constrained environments. We provide a 

related-key attack on TREYFER which recovers the secret key with relatively low data 

and computational complexity. PIFEA-M is an improvement of IFEA-M, Improved Fast 

Encryption Algorithm for Multimedia [46], aimed for data encryption of multimedia data 

and designed to resist certain implementation dependent attack on IFEA-M. We show that 

PIFEA-M is not resilient to a similar style attack. 

24 



3.1 A Related-Key Attack on TREYFER 

Despite its current implementation advances, the Advanced Encryption Standard (AES) 

[49] may not always be the optimal choice for applications with tight resource constraints 

such as radio frequency identification (RFID) tags and tiny sensor networks. In fact, with 

the widespread applications of these resource-constrained devices, the analysis and design 

of lightweight encryption algorithms have started to gain a new momentum (e.g [14], [63].) 

TREYFER [70] is a 64 bit block cipher (and also a MAC) proposed by Gideon Yuval, 

from Microsoft, at FSE'97. According to Gideon Yuval, TREYFER is targeting an environ­

ment for which even TEA [65] and SAFER [39] are "gross overdesign [70]". The simple 

and compact design of TREYFER makes it an attractive choice for resource constrained 

environments such as smart cards, RFIDs, and sensor networks. For example, TREYFER 

requires only 29 bytes of executable code on the 8051 micro-controller. 

The best known attack against TREYFER, presented by Alex Biryukov and David Wag­

ner [11], is a slide attack that requires 232 known plaintexts, 244 time for analysis and 232 

memory. 

In this chapter, we derive a set of deterministic algebraic relationships between the 

ciphertexts corresponding to related plaintexts encrypted with TREYFER under circularly 

byte shifted versions of the same key. Based on these relationships, we present a chosen 

related-key attack [7]- [10] that directly recovers the secret key of TREYFER using about 

211 chosen plaintext encryption operations. The attack complexity is independent of the 

number of rounds of the cipher. 
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3.1.1 Description of TREYFER 

TREYFER can be seen as an iterative block cipher with the round function shown in Figure 

4 where < < < denotes a circular left shift by 1 bit, 4- denotes addition mod 256 and SKi, 

i = 0 . . . 7, denotes the key addition and s-box lookup operations S[(x + Kx) mod 256] 

function. All operations are byte-oriented, and there is a single 8 x 8-bit s-box. 

In [70], the s-box is left undefined; it is suggested that the implementation can simply 

use whatever data is available in memory. In each round, each byte has added to it the s-box 

value of the sum of a key byte and the previous data byte, then it is rotated left one bit. The 

design attempts to compensate for the simplicity of this round transformation by using a 

large number of rounds: 32. 

The pseudo code implementation of TREYFER is as follows: 

for(r = 0: r < N inn Rounds: r + +){ 
text{8] = text[0]; 
for(i = 0;i < 8:i + +) 
text[i + 1] = 
(text[i + 1] + S[{key[i] + text[i])%256]) < < < 1; 
text[0] = text[8}; 

} 

In order to obtain a more compact and faster cipher under the assumed hardware con­

straints, the designer of TREYFER opted not to have any complex key scheduling. In 

particular, TREYFER simply uses its user supplied key, K, byte by byte in exactly the 

same way at each round. 

The following notation will be used throughout the this part of the chapter. 
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Figure 4: Round function of TREYFER, where SKi(x) = sbox((x + I<i) mod 256) 

• / denotes round function mapping of TREYFER (see Figure 1). 

• P = PQP] • • • P? denotes the 8 byte plaintext input 

• K — K0Ki - • • K7 denotes the 8 byte key 

• C = CoCj • • • C-j denotes the 8 byte ciphertext 

3.1.2 Main Observations 

In this subsection, we derive an algebraic relationship between the ciphertexts correspond­

ing to related plaintexts encrypted under circularly (byte-wise) shifted versions of the secret 

key. 

Lemma 2 Let 

P0PJ-P7 = f(P0-P7:Ki)-K7) 

and 

P*Pl---P- =f(P0---P7-!<0--I<7)-

27 



Then we have 

f{P[P2 • - • P7P0, tfi • • - K7K0) = P'[P2 • • • P7P0 

Proof: Let Pi,i = 0 . . . 7 denote i-th byte of f{P[P2 • • • P7-P0,#1 • • • # 7 # o ) - Then, by 

TREYFER definition, we have: 

P, = {P2 + S{P'l,Kl))«<\ = P'2 

p2 = (P3 + S(P2,K2))<«l = P^ 

p7 = (P0 + S(P;,K7))<«l=Pv 

Po = (Pi + S(Pi,K0))<«l = Pi 

The lemma holds by noting that f(P[P2--P7P0.K1---K7K0)=p0---p7-

This observation can easily be extended to hold for composition of multiple rounds. By 

P ^ C we will denote the TRYEFER encryption of the plaintext P with a key, K. 

Lemma 3 Let 

PQ • • • P7 1—> Co • • • C7, 

and 

C0---C7 = f(C0---C7,K0---K7). 

Then 

P'XP2 • • • P7Po m ^ } C[C2--- C7C0 
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Proof: Follows from previous Lemma and the fact that TREYFER function is equal to fn, 

n = 32. 

That way, for each TREYFER pair (P,C), we can derive another "similar" plaintext-

ciphertext pair, encrypted by key circularly shifted to the left by one byte. Furthermore, 

if previous Lemma is applied multiple times, we can get 7 such pairs, as given by the 

following Theorem. 

Theorem 2 Let rot(K, i) denote the left circular shift of K by i bytes, then, for any 

P0...P7>JUC0---C7 ( i) 

we have 

P1P2P3P4P5P6P7P0 '—> CxC2CzCiC^C(,C-jCo (2) 

P2P3P4P5P6P7P0P1 '—> C2C%CiC'iC?>CiC{sCl (3) 

piPoP'.p'A^p'X ro^7) c'7c0c'Ac'3c'4c'5C6 (8) 

It should be noted that the above presented property of TREYFER does not depend on 

any particular choice of the s-box. 
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3.1.3 The Attack 

Related-key cryptanalysis assumes that the attacker learns the encryption of certain plain­

texts not only under the original unknown key, K, but also under some related keys (e.g., 

K' = g(K)). In a chosen-related-key attack, the attacker specifies how the key is to be 

changed. It should be noted that the attacker knows or chooses the relationship between 

keys, i.e., #(•), but not the actual key values. 

Based on the relations derived in the above subsection, we describe a chosen-related-

key attack against TREYFER. 

Given the plaintext-ciphertext pair (P,C), P i—> C where K = K0 • • • K7, the pro­

posed attack proceeds to recover K0 as follows: 

For( X = 0; X < 256; X + +) { 

• Encrypt the plaintext XP2 • • • P7P0 under the key rot(K, 1) = Kj • • • K-K0 

• For each ciphertext in the form Y C2 • • • C7C0, determine KQ that satisfies 

X = P[ = (P,+S[K0 + P0})<«\, 

Y = C[ = (C1+S[K0 + C0])<«1. 

} 

Figure 5: TREYFER key recovery algorithm 

The process above finds Px and C\, the second bytes of f(P0 • • • P7. K0 • • - K7), and 

/ ( C 0 • • • C7, Ku • • • K7), respectively. 

Theoretically it is possible that there may exist a n X ^ P[ such that XPi • • • P7PQ '£—-> 

YC2 • • • C7CQ, leading to false information on A'0. However, the probability that this will 

happen is practically negligible ( K 3 X 10"15). 

30 



If the s-box is bijective, then only one of the equations above can be used to uniquely 

determine K0 = S~1[(P[ > > > 1) - P-^] — P0. In the case of non bijective s-boxes, the 

above two steps can be repeated until K0 is uniquely determined. 

K\ to K6 can be sequentially recovered by performing the above steps using related 

plaintexts and keys, according to relations (3)-(8). Similarly, the last byte of the key, K7, 

can be recovered using relation (1) or simply by exhaustive search. 

Thus, the attack requires about 8 x 256 = 211 chosen plaintext-ciphertext pairs, each. 

256 of them are encrypted under a key that is circularly bytes shifted version of the original 

secret key. 

Remark 1 The above attack can be thought of as a slide attack in which the sliding pairs 

are produced at the s-box level and not at the level of the whole round function. 

3.2 CryptanalysisofPIFEA-M 

Confidentiality plays one of the key roles in proper implementation of multimedia appli­

cations over the Internet. Due to the widespread existence of eavesdropping and hacking 

tools, privacy of the content has to be ensured for users exchanging multimedia data such 

as video or voice. Encryption is one of the basic tools to achieve this privacy. The volume 

of information exchanged in multimedia applications is high and encryption algorithms de­

signed for this purpose have to be fast. At the same time, the algorithm has to be secure 

enough. 
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To address this problem. Yi et al. [67] proposed Fast Encryption Algorithm for Multi­

media (FEA-M). The design of the cipher utilizes Boolean matrices and does not follow a 

typical scheme of neither block nor stream cipher design. In [69], a practical adaptive cho­

sen plaintext attack on FEA-M, requiring only 1.5 kilobytes of data, has been presented. 

Similar attack was also described in [45]. In [46], it is shown that the underlying system 

of FEA-M nonlinear equations can be solved in a much more efficient way than in general 

case. In the same paper, IFEA-M cipher has been proposed by modifying FEA-M so that 

it resists algebraic attacks and to provide tolerance to packet loss errors. 

A problem with possible improper implementation of IFEA-M has been pointed out 

in [34]. Assuming that the attacker is able to force the user to use the same session key twice 

(for example by controlling the pseudorandom generator through public time service), the 

attacker would then be able to find the master key using a differential known plaintext 

attack. To defend against this differential attack, Chefranov [15] proposed PIFEA-M, a 

parameterized version of IFEA-M, and estimated that its performance is around 25% better 

than of IFEA-M. As for resistance to previously reported software dependent differential 

attack, in [15] it is claimed that breaking the cipher requires at least 0(272) operations, 

which is practically infeasible using current technologies. 

In this chapter we show that, under the same assumptions, PIFEA-M is still vulnerable 

to differential attacks. Let (P /X^) denote a plaintext-ciphertext pair produced by i-th 

encryption in session j . Given the pairs (P/.C,1), (P,2,C2), (Pj.C^) and (P | , Cf), we 

show that the attacker can recover all other successive plaintexts P7, i: > 3 from both 

sessions with very small computational complexity. 
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3.2.1 PIFEA-M specification 

In this subsection, we briefly review the specifications of PIFEA-M. For further details, the 

reader is referred to [15]. PIFEA-M encrypts n x n Boolean matrices using n x n key. 

Master key K0 is assumed to be shared by the users in advance and the steps to achieve 

common secret matrix are described in [68]. Session key K, initial matrix V and parameter 

matrix R are generated by the sender and transmitted to receiver as follows: 

K* = Ka-K^-Ko 

V* = KQ-V-KQ (9) 

R* = K0-R- A'o 

The receiver discloses obtained data as follows: 

R = Kg^R'-Ko1 

The parameter matrix R contains five n-bit numbers rk, k = 1 . . . . 5 contained by the first 

five rows of the matrix. All other elements of the matrix are set to zero. Session K and 

initial matrix V are generated randomly by sender. 

The message to be transmitted is padded with zeros if needed and then divided to blocks 

Pi,... Pr of size n2. These blocks are then arranged as matrices of dimension n x n and 

encrypted and decrypted as follows: 
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( i l ) 

where ,4 n r 2 = Vr»/T*, and 5r3r4rs, t- = Vr*Kr4+lVrK 

3.2.2 The attack 

We present a differential style known plaintext attack, provided that the following assump­

tion holds: 

Assumption 1 It is assumed that the same session key matrices K and V are used in two 

sessions [15]. 

Again, we stress the fact that the cipher designer in [15] explicitly specified that the cipher 

is secure under the above assumption. In fact, resisting such attacks was the main design 

goalofPIFEA-M. 

Given the four plaintext-ciphertext pairs (P/, C}), {Pi Cf), {Pl+l,C}+,), (/f+1. Cf+1). 

our proposed attack proceeds as follows: 

1. Considering the difference between C\ and Cf yields: 

A C / , = \ \ i i © Ari r2) • /5 r 3 i r . j .r s , : © '^ri.r2) 

Substituting ? = 1 and z = 2 in (12) and using the four plaintext-ciphertext pairs, the 
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values of Brsr4r-0ti and Br.jrirb2
 c a n be obtained. 

2. From the cipher specification, we have: 

(13) 

Brmrh:2 = Vr*-Kr*+2-VT* 

Inverting both sides of the first equation and then multiplying the equations gives 

^ W ^ t f - U , ! = V^KV^ (14) 

By noting that 

-Drsr/ irsi+l ^r3T4rr,,i 

yr3f^r4 + i+lyrifyr3f^r4+iyr5\-l _ ( 1 5 ) 

V^KV-*3, 

then, from (14), we get: 

Thus Br3rir5_i for i > 3 can be calculated recursively. 

3. As for Arir2, it can be easily derived by solving the linear matrix equation (for i = 1 

or i = 2): 

Arir.2 = (Q © PiBr3T4r^i){Br3rtr;i.i © 7) _ 1
; (17) 
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where / denotes the identity matrix. 

Finally, the knowledge of Br:irnrr>ti and ATlT2 enables the attacker to decrypt the plaintext 

corresponding to any ciphertext d, i > 3 in the assumed two sessions. 
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Chapter 4 

A new distinguishing and key recovery 

attack on NGG stream cipher 

NGG is an RC4-like stream cipher designed to make use of today's common 32-bit pro­

cessors. It is 3-5 faster than RC4. In this chapter, we show that the NGG stream can be 

distinguished, with success probability ?a 97%, from a random stream using only the first 

keystream word. We also show that the first few kilobytes of the keystream may leak in­

formation about the secret key which allows the cryptanalyst to recover the secret key in a 

very efficient way. 

4.1 Introduction 

Because of its simplicity and speed, RC4 [44] is one of the most widely used stream ciphers 

in software applications. It is implemented in many protocols and applications such as 
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Secure Socket Layer (SSL), and Wired Equivalent Privacy (WEP). 

Typically, RC4 operates with 8-bit values both on output and in the internal state. Ci-

phertext is obtained by XOR-ing keystream bytes with the plaintext. From the perspective 

of modern processors with 32/64-bit word size, this is inefficient. A stream cipher that pro­

duces 32/64-bit keystream words and requires similar number of operations per step would 

be around 4-8 times faster, since an 8-bit operation on these processors takes equal time as 

a 32/64-bit operation. To address this problem, several generalizations of RC4-like stream 

ciphers have been proposed (e.g., RC4A [52], VMPC [72], NGG [50] and GGHN [23]). 

The NGG cipher was proposed by Nawaz el al. [50] [61]. Originally, NGG was named 

RC4(n,m) where m denotes the bit-length of the keystream output word and the size of the 

internal state table is 2". Later on, the name NGG was adopted for this cipher. Another 

version of this cipher, called GGHN, was introduced in [23], but our focus of this chapter 

is the original version of the cipher. 

In this chapter, we show that key schedule algorithm (KSA) of NGG is flawed. This 

allows the cryptanalyst to distinguish NGG from a random stream using only the first 

keystream word. Furthermore, we show that the resulting statistical bias in the key schedul­

ing process allows the cryptanalyst to recover information about the secret key from the first 

few kilobytes of the keystream output. 

The last decade has witnessed an extensive cryptanalytic literature on RC4 including 

distinguishing attacks (e.g., [18,22,37]), internal state recovery attacks (e.g., [33,37,43, 

60]), and attacks on the key scheduling algorithm (e.g.. [5,19,36,38,47,53,54,59,62]). 

Recently, analyzing the security of generalized RC4-like ciphers has also gained some 
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momentum (e.g., [42], [51], [61], [66]). The cryptanalytic results presented in this chapter 

resembles the work in [5,53], in which it is shown that internal state permutation table 

of RC4, right after KSA, can leak secret key bytes. On the other hand, apart from [29] 

which studies weaknesses associated with concatenating IVs to the key, this is the first 

time that the security of NGG key schedule algorithm is addressed. Also, according to 

our knowledge, no key recovery algorithms on NGG have been proposed until now. Best 

previously published NGG distinguisher [66] exploited a problem in NGG pseudorandom 

number generation algorithm and requires around 100 consecutive keystream words. The 

distinguisher presented in this chapter requires only the first key stream word generated 

right after the the KSA. The attack presented in [61] focuses on GGHN and uses the first 

two keystream words associated with about 230 secret keys to build a distinguisher. While 

this attack may also be applicable to NGG, the high frequency of key changing required by 

this attack (230 keys) questions its practical significance against both ciphers. 

Among cryptographers, there exist different stances in the debate on whether distin­

guishing attacks represent a threat to the security of stream ciphers or not. For example, 

Rose [25] argues that, unlike the block ciphers case, most of the distinguishing attacks 

on stream ciphers do not represent a real threat to the practical security of the cipher and 

hence one should make a distinction between powerful distinguishing attacks and weak 

ones based on whether the attack may lead to deriving useful cryptanalytic information 

such as key bits or not. Conversely, according to Bernstein [3], even distinguishing attacks 

that do not yield key or other cryptanalytic information are more than mere certificational 

weaknesses. An attacker, at least for some plaintext distributions, might be able to detect 
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change of entropy in the plaintext only by looking at the ciphertext. If for example, a 

dummy message with high entropy is sent among sender and receiver from time to time to 

foil the attacker's analysis, the attacker might be able to use a distinguisher to isolate and 

discard these dummy messages. 

The statistical bias weakness presented in this chapter is such that it allows distinguish­

ing the cipher from a random stream and, at the same time, recovering some secret key 

information. It should be noted that the exhibited weakness is in key scheduling phase of 

the algorithm and not in keystream generation part of the algorithm. In particular, the NGG 

keystream generation procedure creates biased internal state and this is detectable in the 

first few kilobytes of the cipher. Thus, in a way, by observing this bias, it is natural to 

expect that information about the secret key might be revealed. 

The rest of the chapter is organized as follows. In section 2, the relevant details of 

the NGG cipher are given and previous attacks are described. Non-randomness of the S 

table after the NGG KSA is proved in section 3. In section 4, a distinguisher utilizing this 

weakness is constructed, and the success probability estimates are given. In section 5, we 

show how it is possible to recover information about the secret key by looking at the first 

few kilobytes of the keystream output. We conclude in section 6. 

4.2 The NGG stream cipher 

NGG(n. m) denotes a parameterized family of ciphers. For some fixed n and m, the NGG 

internal state consists of a public n-bit counter i, secret pseudorandom n-bit counter j and 
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S table consisting of N — 2n m-bit values. The cipher consists of two separate algorithms 

(see Figure 6 where M = 2m): 

- Key Scheduling Algorithm (KSA): In the initialization step of the KSA, the ta­

ble S is initialized with prespecified publicly known random array a. Then, in 

the scrambling step of the KSA, these values are mixed depending on key bytes 

in a pseudorandom value as follows: the z-th and the y-th value are swapped and 

the sum of these two values is assigned to the i-th element. This is repeated for 

i = 0 , . . . N — 1, where j is incremented pseudorandomly depending on the key. 

- Pseudo Random Number Generation (PRNG): First, counters i and j are updated. 

Then, S\i] and S[j] values are swapped. Value 5[(5[?'] + S[j}) mod N] is sent to the 

output and then changed to S[i] + S[j]. 

Before using the cipher, it needs to be initialized by the KSA supplied with the secret key. 

The output of this process is a randomized secret internal state of NGG. During the encryp­

tion process, m-bit plaintext words are XORed with ?n-bit keystream words produced by 

the PRGA. Similarly, during the decryption process, the m-bit ciphertext words are XORed 

with the corresponding keystream words. 

In [66] it was shown that NGG is distinguishable from a random sequence with about 

100 keystream words. The attack relies on the fact that for three random S table entries, the 

relation S[X] = S{Y] + S[Z] holds with biased probability, due to the update step of NGG. 

In [51], it was found that the least significant bit of NGG keystream word is biased, due to 

"bias inducing state", which occurs with probability 2_1t>. Distinguisher based on this can 
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KSA PRGA 

Initialization: Initialization: 
Fori = 0,..N -1 i = j = 0 

S[i] = a; Loop: 
j = 0 * i = (i + 1) mod N 
Scrambling: j = (j + S[i)) mod N 
For * = 0,.JV - 1 Swap(5[i], S[j}) 

j = (j + S[i\ + K\i mod /]) mod N t = (S[i\ + S[j] mod M) mod N 
Swap(5[i], 5[i]) Output=5[<] 
5[t] = (5^] + 5[j]) mod M S[t] = {S{i] + S{j}) mod M 

Figure 6: NGG(rc, m) specification 

be built by using 232 89 keystream words. In Klein's work [29], in which RC4 used in WEP 

mode is shown to be weak, NGG is shown to be prone to a similar attack, which makes it 

insecure when IVs are concatenated to keys [29]. 

Unlike previous distinguishing attacks, our attack can naturally be extended to a key 

recovery attack. Throughout the rest of this chapter, we consider the popular case of n = 8 

and m = 32. It should be noted, however, that the attacks described in this chapter becomes 

more sever as m increases (e.g., for m = 64). 

4.3 Weakness in NGG KSA 

In the initialization step of NGG KSA, S[k] element is assigned a*, k = 0.'.. 255, where 

array a is publicly known. One choice for this array is given in [50]. Then, in the scrambling 

step, for i = 0,1. 2 . . . . 255, the f-th value is swapped with pseudorandom element of 5 and 

place i is assigned the sum of these two elements. 
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In this section, we show that the scrambling step does not randomize the S table suffi­

ciently. Namely, after the KSA, most of the elements of S can be represented as a sum of 

one, two, three or four elements of a values. In other words, there is a high probability that, 

for random index k, one of the following four relations will hold: 

- S[k\ = aXl for some index x\, 

- S[k] = (aXl + aX2) mod M, for some indices xj,x2, 

- S[k\ = (aXl + aX2 + aX3) mod M, for some indices xj, x2, x3, 

- S[k] = {aXl + aX2 + aX3 + a l 4) mod M, for some indices x\, x2, x-s, x4, 

where 0 < x, < 255. As will be shown, this is highly improbable for a randomly chosen 

32-bit word. In the following we prove this observation by modelling the KSA procedure. 

4.3.1 Definitions and assumptions 

We say that the KSA is at step i, i = 0 . . . 256, if i scrambling steps were executed. For 

example, KSA is at step 0 right after initialization step of KSA, and before the first scram­

bling step and at step 256 after it is finished. Accordingly, by jt and 5, we denote j and S 

at step i of the KSA. 

Let W„ = {X^"=ia*.l xi ^ {0..255}}. Unless otherwise specified, we always use 

the set of a values proposed in [50]. It should be noted, however, that changing the set 

a cannot prevent the attacks described in this chapter. In general, IV',, i = 1, 2, • • • sets 

are not disjoint. However, for the choice of a in [50], W\ D W2 = 0, VV'i n H"3 = 0 and 

W2 n 11 3 = 0. This is also very likely to be the case if a is chosen at random. 
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We approximate the j value at each step of KSA by a pseudorandom number and make 

the usual independence assumptions throughout the proofs. 

4.3.2 Deriving probabilities for S table entries after KSA 

The KSA changes S[k] values in a structured way. This is shown by the following Lemma. 

Lemma 4 Let 0 < k < 255 be an index in S. Then 

(a) SQ{k],S1[k],...Sk[k]€W1 

(b) Sk+\[k] € Wn+i, for each n such that Sk[jk+\\ £ Wn 

(c) If there exists k + 2 < t < 256 such that jt = k, let t0 denote the smallest such 

number. Then, Sk+2[k},... Sto-i[k] € W„+i, Sto[k],.. • S25e[k} G W^ If not, then 

Sk+2[k}....S25(i[k}e\Vn+J 

Proof: Statement (a) is proved by induction on k. For k = 0, the statement takes the 

form £o[0] € Vl'j. which holds since So{0] = a0 6 W\- Suppose statement (a) holds for 

some 0 < k < 254, we prove that (a) also holds for k + 1. Due to the KSA procedure 

specification, table Sk+i differs from 5^ only in values at indices jk+\ and k. As for index 

jk+i, according to the swap step and due to induction hypothesis, we have Sk+\\jk+i] = 

Sk{k] € Wi. As for index A:, content of Sk+i[k} has no relevancy for the statement. Thus, 

(a) holds for each k = 0 . . . 255. 

To prove (b), note that £*+][£] = Sk\k] + 5fc[jfc+]]. According to (a), Sk[k] 6 11V 

According to (b) assumption, for some n, Sk[jk-n] G VVn. Thus, 5t+i[Ar] G W'n+1. 

44 



As for statement (c), suppose first that there does not exist t from the assumption of the 

statement. Due to (b), we have Sjt+i[A:] G Wn+i. According to the above assumption no 

upcoming jt will take value A;. This value remains unchanged until the end of KSA, i.e., 

Sk+2[k], • • • S2bd[k] G W„+]. Now assume that there exists I from the assumption of (c) 

and let t() be the smallest such number. At steps k + 2... .t0 — 1, S value on index k will 

not be changed and thus S'/C+2[A:],... S/o_i[fc] G Wn+\ holds. However, in step t0, value at 

index k is already overwritten by Sto-i [to — 1]. According to (a), this value is a member of 

M/j and thus Sto[k}:... 5256[A;] G VV'i also holds. O 

Our goal is to show that probability of S256[k] <E W\ U W2 U Wj, U W4 is high. First, 

we estimate lower bounds for the probabilities P[5256[fc] G Wn], n = 1,2,3,4 separately. 

To do this, we note that each KSA execution in our model uniquely corresponds to a tuple 

(jo, j \ - • • • J255) and thus can be identified with it. Lower bounds are obtained by counting 

tuples that, according to Lemma 4, certainly yield a value G Wn at some index k. 

In the Lemmas below, we also compute P[5,-[fc] G Wn], n = 1, 2,3,4 at some of the 

steps i yt. 256. This is necessary because, as can be seen from the obtained formulas, 

P{S256\k} G Wn], n = 2,3,4 depend on some of the P{Sl[k\ G W„_i]. 

Lemma 5 Let i and k be the KSA step and S table index such that i > k + 1. Then, 

P{Si[k] G Wi] > 1 - (255/256)''-*-' 

Proof: For 1 = k + 1, the statement holds trivially since the right side of the inequality is 

equal to 0. Let •/' > k 4 2. Part (c) of Lemma 4 provides a sufficient condition for event 
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Figure 7: Probabilities that, after KSA, S[k] will be representable as a sum of 1, 2, 3 or 4 
values from a set 

Si [k] 6 1 V'i to hold. Namely, if for some of the t = k + 2 ,...i, we have j ' t = k, St [k] e Wi 

will hold true. Thus, we can derive a lower bound for the probability of event in question 

as follows: 

P{Sl[k] € Wj] > 

= P[jk+2 = k or j k + 3 = k or . . . or j{ = k] 

= i-r\jk+2?kjk+.i7Lk,...ji?k] 

= 1 - P\jM 1 k] x P\jk+3 ^k}x...x P\j, ^ k] 

= 1 - (255/256),-fc"1 D 

Lemma 6 Let i and k be the KSA step and S table index such that i > k + 1. Then, 

p\Si[k] € ivy > 
£,=~oVP[S*[*] e IVi] , 256-A: / /255,,_Jt_1 

256 + —) x ( )' 
256 ; V256; 
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where we take that £ f = o P\Sk[l) G W\] = 0 when k = 0. 

Proof: Similar to the proof of previous Lemma, we find a lower bound for P[5,[/c] G W2] 

by noting that a combination of parts (b) and (c) of Lemma 4 provide a sufficient condition 

for the event in question. Namely, according to part (b) of Lemma 1, if Sk[jk+i] G W'*i. 

5fc+i[fc] G W2 will hold true. According to (c), this will remain so until step i if by then 

none of j indices takes value k. Thus, 

P[Si[k] G W2) > 

= P(Sk[jk+i]eW1,jk+2^k,.,.,ji^k) 

= P(Sk{jk+i) G W,) x P(Jk+2 ^ k), x . . . x P{h ± k) 

= (P(Jk+1 <k)x P(Sk\jk+1] G W\\jk+, < k) + 

P(jk+i > k) x P(Sk[Jk+i] G W\\Jk+, > k)) x (255/256)'"fe-1 

= ( M >< P\^[0] G IVj] + . . . + * x P[Sk[k - 1] G W,}) + 

^ ) x (255/256)i~fc-1 

_ / E f j n
1 P [ g U Q e " , i ] , 256-fr>, v /255\i-fc-l 

~ ( 256 + 256 I X l 2 5 6 ^ 

If fc = 0, taking Y!iZl P[Sk[l] G VV'i] = 0 is justified by P\Jk+1 < k] = 0. In that case, 

we have P\S,{0} G W2] = C§§§)̂ —a for every i > 1. • 

Lemma 7 Le? 1 and k be the KSA step and S table index such that i > k + 1. Then, 

I . 1 J 3J _ 2 5 ( J V 2 5 ( J ; 

where we take that Y,:=o P\Si\k] G W2] = 0 when k = 0. 

47 



Proof: As in the proofs of the previous two Lemmas, the event in question can be lower 

bounded by events for which the probability can be easily calculated. Namely, according 

to parts (b) and (c) of Lemma 1, if Sk[jk+\] £ W2* 5Wi[&] € W3 will hold true and this 

will remain so until step i if by then none of j indices take value k. 

P[Si[k]e}V3}> 

= P{SkbWi] G W2,jk+2 ?k,...,jijL k) 

= P(Sk\jk+i] e W2) x P{Jk+2 / k) x . . . x P(jt ^ k) 

= (P(jk+1 <k)x P(Sk[Jk+1} G W2\jk+1 < k)+ 

P(jk+1 >k)x P(Sh[jk+1} e W2\jk+i > k)) x (Iff)-*-1 

= M x PiSkM G W2] + . . . + ± x P[Sk[k - 1] e M 2]) x (255/256)i"fe-1 

256 *.256^ 

When A: = 0, taking J ^ 1 P[5jt[/] € W2] = 0 is justified by P\jk+1 < k] = 0 and 

^[SfcbWi] e T1/2|j-t+i > k] = 0. In that case, we have F[5,[0] € IV3] = 0 for every i > 1. 

D 

Lemma 8 Let 1 and k be the KSA step and S table index such that / > k + 1. Then, 

w^j>a?6irj.ilr 

wAene u-f ta*e ffarf ]T*_0
] ^[$[Jfc] G M'"2] = 0 when k = 0. 

Proof: Analogous to proof of previous Lemma. • 

Figure 7 illustrates the lower bounds obtained by Lemmas 2-5 for S values at indices 

A; = 0.255 after the KSA has finished. Since the probability that a random number is an 
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element of IV,, W2, W3 and W4 is &Q = P « 5.96 x 10"8, ^ = ^ f p a 7.66 x 

10"6, § J = 2ipM ~ 0.00065 and ^ = n8°f2
0021 « 0.0275 respectively, it is obvious 

that 5 table is biased. Sets Wn, n > 5 were not considered since the probability that a 

random number is contained in these sets is relatively high and hence the corresponding 

distinguishers would be useless. 

Note that even though in Lemmas 2-5 we only estimated lower bounds, obtained values 

are very close to exact ones. This is because the events by which we approximated Si[k] G 

Wn in the proofs of the Lemmas exhaust most of the event space. For example, in Lemma 

2, event Si[k] G Wj was lower bounded by the event that KSA operations will write one 

of the a values at place k at some point in time. The only other way Si[k] G IV] event can 

hold is that KSA leaves an addition of a values at place k and this addition turns out to be 

an element of \\\ too, which is possible since Wz. i = 1, 2 . . . are not generally disjoint. 

However, the probability of this is very small and thus our estimated lower bound is actually 

a good estimate for exact P[5,-[A;] G IV'i] value. Similar reasoning applies for Lemmas 3, 

4 and 5. Using 10,000 randomly generated 128-bit keys, the experimentally calculated 

values of F[5t[fe] G Wn], n — 1, 2,3 confirmed the above claim. 

4.4 Distinguishing NGG from a random stream 

As noted in previous section, the probability that S25e[k} G H''n: n = 1. 2. 3. 4 is signifi­

cantly greater than the probability that some random number will be an element of these 

49 



1 

CO 

csi 0.8 
II 
a 

^ 0.6 

D 

3T 
M. 0.4 

m 
rsi 

(» 
a. 

0.2 

0 
50 100 150 200 250 

k 

Figure 8: Probability that after KSA S[k] will be an element of different unions of W sets 

sets. However, to maximize this bias, we consider the union of these sets. Figure 8 illus­

trates the probability that after the KSA, the S values will be contained in different unions 

of W sets. Depending of which sets are included in the union, different distinguishing cri­

teria can be formulated. As will be shown, the probability that a random number will be in 

any of these unions is still small. 

In the following theorem, we determine a lower bound on the success probabilities of 

the distinguishers using criterions based on different unions of the Wl:i — 1, 2,3.4 sets. 

Theorem 3 Using the first NGG PRGA key stream output word, kr\, lower bound of success 

probability of distinguishing k\ from a random stream are given in Table 1 below. 

Proof: First, we prove the statement for the distinguisher 3, in which the distinguisher is 

based on k] e Wx U W2 U W3 criterion. Proofs for distinguisher 1 and 2 are similiar. 

Suppose that the given word, o, is the first NGG PRGA output word, i.e., o = k} = S-2o(s[k] 

50 

P [ s 2 5 6 [ k j e w n ] 

P[S266[k]e W ^ W J 

P[S2 5 6 [k]e W , u W2w W3] 

• P[S256[k]e V ^ u W 2 u W3w W4] 



# 
1 
2 
3 
4 

Distinguishing criterion 
ki € Wi 

fcj G VKj U W 2 

k1eWiUW2U W3 

h e wx \JW2U wzu w4 

P[Correct decision] 
0.6836 
0.8679 
0.9597 
0.9769 

Table 1: Lower bounds on the success rate of different distinguishers 

for some k. Then, lower bound of the probability that it will be an element of W\ U W2 U W3 

can be calculated by applying the Bayes' formula over all possible values k, using the fact 

that sets W\, W2 and W3 are mutually disjoint and substituting according values to lower 

bounds from Lemmas 2-4. 

P[S-a6[k]eWiUW2uW3] = 

255 

Y, P\k = i]P[S256[k] € W, U W2 U W3\k = 1} 
i = 0 

256 

> 0.92 

(18) 

(19) 

255 

- , J ^ P ^ s e f l € W\] + P[S256\t} € W2] + P[S2b6\i] G M'3]) (20) 

Thus, in the case that the word o is in fact an NGG first keystream word, probability that 

the distinguisher will make a right decision is greater than 0.92. In the case of a random 

word, the probability that it will not be representable as a sum of one, two or three elements 

of a is given by 

1 - ]— £ ^ « 0.9993. 
232 

Thus, the success probability of distinguisher based on k\ € W\ U W2 U IV3 criterion will 
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be greater than 0.5 x 0.92 4- 0.5 x 0.9993 = 0.9597. 

As for distinguisher 4, event S25$[k] e W-i U W2 U W3 U VV4 is not a disjoint union of 

events S2sn[k] € 14'], n = 1,2,3,4 and thus going from (19) to (20) in the corresponding 

proof would not be justified. However, the lower bound events established in the proofs of 

Lemmas 2-5 are mutually disjoint. Let L\ be the lower bound event used in Lemma 2 for 

i = 256 Lj = {j'fc+i = k or j k + 2 = k or . . . or j 2 5 5 = k} and let events L2, L3 and L4 be 

the corresponding events from Lemmas 3-5. Then, we have P[S256[k] G Wi U W2 U W3 U 

VV4] > F[Lj U L2 U L3 U L4\ = P[Li] + P[L2] + P[L3] + F[L4]. The proofs of Lemmas 

2-5 provide exact values for F[Lj], F[L2], F[L3], P[L4]. The rest of the proof is analogous 

to previous ones. • 

4.4.1 Distinguishers based on the m-th keystream word 

In our reasoning above, we only considered the first keystream word. Calculated probabil­

ities apply only to this word since the S table is updated at each step. However, it is not 

hard to see that the same distinguisher is applicable to the m-th keystream word km too, 

provided that m is small, but with decreasing success rate as m increases. 

To assess success rate of the distinguisher km e Wi U W2 U W3, we conducted the fol­

lowing experiment. For 10000 times, the NGG cipher was initialized by KSA for randomly 

generated key. The percentage of km values which were not representable as a sum of one, 

two or three a numbers was taken to be the probability of false negatives for distinguisher 

based on A;-th element. Table 2 presents results for some m values. It can be seen that 

distinguisher guess still differs from random guess at m = 1024. This implies that the 
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traditional solution to resist distinguishing attacks against RC4-like cipher by discarding 

some of the output stream words may not practicably work in this case. Naturally, the suc­

cess of the distinguisher can be arbitrarily increased by looking at several keystream words 

at once. 

m 
P[Error] 

16 
0.050 

32 
0.066 

64 
0.077 

128 
0.150 

256 
0.288 

512 
0.407 

1024 
0.484 

Table 2: Probability of error for distinguishers based on the m-th keystream word 

4.5 Key information recovery 

In this section, we show how to use the observations above to reduce the entropy of the the 

secret key based on the first few kilobytes of the keystream. 

From the algorithm specifications, it is clear that knowing j 0 . j 1 : . .. j 1 6 , i.e., the values 

assumed by the pseudorandom counter j in the first 16 rounds of the scrambling step of 

KSA, is equivalent to knowing all key bytes KQ,... K}5. Thus, it suffices to focus on 

reducing the entropy of the vector (.7*0, j i , • • iio)-

4.5.1 Recovering the first secret key byte 

Among the first 1024 keystream words, all entries of table S ŝe w i " be present with high 

probability. The reason for this is that the NGG PRGA sends the .9 table entries to the 

output unmasked and changes them only once they are outputted. 

As mentioned above, to determine A'n, it suffices to find j} since A'0 = j1 — 0 — an. At 
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the first step of the KSA scrambling step, S[0] + S\ji] = a0 + ajl is written to S[0]. The 

only way S\0] can be changed again is that that for some i > 2, jt = 0. The probability that 

this will not happen, i.e., 5[0] will remain a0 + an is (255/256)255 = 0.3686. By trying to 

decompose each of the first 1024 keystream words in the form of a0 + ax, with probability 

0.3686. one of the obtained x values will be equal to J'J. However, there might be more 

than one a0 + ax element in S table. Namely, at the first KSA scrambling step, the value 

5(0] = a0 is also written to S\j\\. At the jy-th scrambling step, S[ji] will be added another 

element from the table. If S[ji] is not altered again by any of remaining steps, there will be 

two a0 + ax elements in the table and there would be two candidates for j ] . 

Similar reasoning applies for the case when, after first scrambling step of KSA, the 

value S\0] is altered again by some j t . Then, a value of the form a0 + aX] + aX2 will 

be present in the table after the KSA finishes, provided that it is not altered again. The 

algorithm can search for values of the form a0 + aXl, a0 + aTj + aT2, a0 + aX] + aT2 + aX3 

and a0 + aX] + a l2 + aX:j + aXj among the first 1024 keystream words. There is a tradeoff 

between number of candidates and the corresponding success probability. In the following 

section, we experimentally evaluate a full key recovery algorithm based on first two forms. 

4.5.2 Full key recovery algorithm 

To derive a candidate for jt,t = 2.... 16, we use the same idea, only now we have smaller 

probability of success since St-i[t — 1] and St-y[jt] might not be equal to at_1 and aJ(, 

respectively. The probability that this will hold decreases as / increases. 

Let cmuU.Jj) denote the set of candidates for value /',-. Let amd(.l) = C(I:II<1{.IQ) X . .. X 
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INPUT: First 1024 NGG keystream words 
OUTPUT: A set of secret key candidates (cand(K)) 

1: Let cand{J0) = {0} and cand(Ji) = 0 for 1 < i < 16 
2: For each word w of first 1024 keystream words do 
3: Fori = 1, . . . 16, do 

- Check if iv can be written as a ^ + aXl, where x\ € { 0 . 1 , . . . 255}. 
If yes, add x\ to cand(Ji) 

- Check whether w can be written as a,_] + aXl + aX2, where 
Xi, x2 S' { 0 , 1 , . . . 255}. If yes, add x\ and x2 to cand(Ji) 

4: cand(J) = cand(Jo) x cand(Ji) x .. . x cand(Jie) 
5: Return cand(K) = f(cand(J)) 

Figure 9: NGG key recovery algorithm 

cand(Jie) denote the set of candidates for the vector j = (jQ,. . .j\e). Let f((j0... .jie)) = 

(k0l... ki5) where A", = (ji+i — jt — a[i]) mod 256. The set of candidates for key K can be 

obtained as cand(K) = f(cand(J)). 

Figure 9 shows the algorithm which recovers cand(J). and consequently the set of 

secret key candidates, based on the first 1024 keystream words. 

It should be noted that computing a,,-_i + a n . a,-_] + aT) + a.l2 for each i, xt and x2 

is repeated in each loop pass. Thus, the algorithm can be efficiently executed in negligible 

time if these values are precomputed offline and sorted. However, as will be seen, the 

number of candidates for secret key K that the algorithm yields is close to 232 and to 

discard wrong candidates, a computation of around 232 operations cannot be avoided. 

Since the function / is 1-1, only the correct j vector candidate will be mapped to the 

correct key. Thus, the effectiveness of proposed algorithm can be measured as follows: 

- P[{k0:.. . Ar15) € cand{K)} = P[(j0: . . . j ] ( i) G cand(J)}, i.e., the probability that 

correct key, or equivalently. j values, will be found. For some particular/ e { 1 . . . . 16}, 
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ji £ cand(Ji) will hold if at most 2 a values are added to az which is placed in So[i] 

at the beginning of KSA scrambling. 

- \cand(K)\ = \cand(J)\, i.e., the number of key candidates. For some particular i £ 

{ 1 , . . . 16}, \cand(Ji)\ depends on the number of interactions between S0[i] = a2 and 

other a values throughout the KSA. Since the additions continue during the PRGA, 

wrong candidates not present in table at moment i = 256 might emerge during 1024 

PRGA steps performed during the algorithm. 

Deriving an analytical expression for P[ji £ cand(J,)] and \cand(Ji)\ seems to be a 

relatively hard combinatorial problem. Thus, in order to test the success rate of the algo­

rithm, the following experiment was conducted. For 1000 randomly generated keys, sets 

cand(Ji), i = 1 16 were calculated according to the algorithm above. Percentage of 

times ji £ Jt was true and average | J?| values are shown in Table 3. Value jQ is omitted 

because it is always equal to 0. For example, according to the experiment above, the correct 

i 

P[ji £ cand(Ji)} 
\cand(Ji)\ 

i 

P\ji £ cand(Ji)} 

\cand(Ji)\ 

1 
0.7223 
3.9362 

9 
0.7000 
4.0837 

2 

0.7373 
4.0994 

10 

0.6577 
3.7904 

3 
0.6895 
4.0225 

11 

0.6558 
3.9808 

4 
0.7242 

4.0629 

12 

0.6538 
3.8288 

5 
0.6848 
3.9268 

13 

0.6702 
3.8221 

6 
0.7221 

3.9740 

14 

0.6462 
3.8365 

7 
0.6885 
3.9510 

15 

0.6375 
3.8144 

8 
0.6913 
3.8712 

16 
0.6578 
3.9250 

Table 3: Success rate and average number of candidates for j , . 1 < i < 16 

ji value will be among on average 3.9362 candidates proposed by the algorithm with prob­

ability 0.7223. Since j 0 = 0 by algorithm specification, we then have 7\0 will be among 

3.9362 candidates with probability 0.7223. The probability that both j j £ JA and j 2 £ Jo 
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is 0.7223 x 0.7373 and in that case, both K0 and K\ will be among proposed candidates. 

To generalize, K € cand(K) with probability PS 2 - 8 8 (obtained by multiplying all the 

probabilities in Table 3) and \cand(K)\ ss 231 6 (obtained by multiplying the number of 

candidates in Table 3). In other words, the above result can be restated as follows: for 

approximately 21 1 9 2 of the 128-bit keys, the secret key can be recovered with around 232, 

instead of 2128, steps of computation. 
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Chapter 5 

On the Weak State of GGHN-like 

Ciphers 

In this chapter we consider another RC4 generalization, the GGHN stream cipher. As 

mentioned in the previous chapter, RC4 is a cipher that makes use of an interna] state 

table, S, which represents a permutation over Z2n. Like NGG, GGHN is a relatively more 

efficient stream cipher whose design is inspired from RC4 but whose S table, however, 

does not represent a permutation over Z2™. In this chapter, we point out one challenging 

aspect of the latter design principle. In particular, we assess different variants of GGHN-

like algorithms with respect to weak states, in which all internal state words and output 

elements are even. Once GGHN is absorbed in a weak state, the least significant bit of 

the plaintext words will be revealed only by looking at the ciphertext. By modelling the 

algorithm by a Markov chain and calculating chain's absorption time, we show that the 

average number of steps required by these algorithms to enter this weak state can be lower 
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than expected at first glance and hence caution should be exercised when estimating this 

number. 

5.1 Introduction 

As mentioned in the previous chapter, RC4 operates with 8-bit keystream words, which is 

inefficient from the perspective of 32 and 64 bit processors. RC4-like cipher that would 

produce 32-bit or 64-bit keystream words would be around 4-8 times faster, since an 8 bit 

operation on these processors takes equal time as a 32, or 64 bit operation. To address this 

problem, Gong et al. [50] first proposed the cipher analyzed in the previous chapter of this 

thesis, a generalized version of RC4, namely RC4(n,m), where m denotes the bit-length of 

the keystream output word. This cipher was later named NGG. Later, GGHN cipher [23] 

was introduced. 

The internal state of RC4 includes an S table of 256 8-bit values. The important prop­

erty of this table is that, at each step, it represents a permutation, i.e., all the possible 

combinations of the in bit values appear in the table. In NGG(n,m) and GGHN(n,m), the 

size of the table that would be needed to store the whole permutation is 2m where m is 

the keystream word size, which is impractical for m > 8. Accordingly, smaller table of 

size N had to be used in both versions of the ciphers where N = 2n << 2m represents 

the table size and m is the keystream word size in bits. Since a table can now hold only a 

subset of the possible m bit values, to avoid distinguishing attack which would test whether 

keystream words belong to only a subset of all possible m-bit values, internal state update 
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function had to not only perform swap operation as in the original RC4 but to introduce 

new values to the S table. In NGG, this was done by replacing the S table element chosen 

as keystream word by a sum of two other elements from the table at each step. However, 

this was proven to be susceptible to an attack [66] and GGHN(n,m) was proposed. In 

GGHN(n,m) another counter, A:, was introduced and attacks similar to [66] are supposedly 

eliminated. 

5.1.1 Our contribution 

By weak state of GGHN, we denote a state in which k and all the S table entries are even. 

Since the update and output functions are defined as additions of these elements, once the 

cipher reaches this weak state, it will remain in it forever and the output keystream words 

will always be even. Therefore, once GGHN is in a weak state, the least significant bit of 

the plaintext words will be revealed only by looking at the ciphertext. 

In [23], it was noted that the probability that all state entries as well as k become even 

is very low, 2~''v+1^, which implies that the average number of steps before GGHN(n,m) 

enters weak state is 0(2N). In this chapter we revisit this claim and provide evidence that 

caution should be taken when estimating this number for GGHN-like ciphers. We also 

show that, if the designers of GGHN kept the swap operation (originally present in both 

RC4 and NGG ciphers) for the S table scrambling during the pseudorandom generation 

algorithm, then the cipher would enter the weak state in O(20DN) steps as opposed to the 

0(2A ) steps that might be expected when treating the S table as a purely random table. 

Since the exact behavior of GGHN cipher with respect to the number of even numbers 
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in the table is hard to model due to non Markovian nature of the induced chains, we decided 

to use a simplified version of GGHN and show that it enters weak state faster than expected 

at first glance. We model this simplified version of GGHN by a Markov chain and estimate 

the average number of steps before reaching the weak state using results from Markov 

chain theory. 

Based on our analysis, it follows that with GGHN-like ciphers that are based on non 

bijective S tables, caution should be made when estimating the time needed for approaching 

weak state. v 

The rest of the chapter is organized as follows. In section 2, we review the specifications 

of RC4 and GGHN ciphers. Section 3 gives an overview of some attacks on these ciphers. 

In section 4, we provide a brief theoretical background for Markov chains. In section 5, an 

idealized model of GGHN-like ciphers is presented and then modelled by a Markov chain. 

Section 6 presents a way to calculate the absorption times for the defined chain. In section 

7 we provide experimental results that indicate that original GGHN(n.m) may enter weak 

state faster than previously assumed. Finally, the conclusion is given in section 8. 

5.2 RC4 and GGHN specification 

In both ciphers, the size of the key is / bytes. Usually, / = 8 or I = 16. The RC4 KSA 

procedure initializes the S array to an identity permutation and then swaps each byte with a 

pseudorandom element of the table. In RC4 PRGA, two counters i and j are used. Counter 

7 is publicly known and j is incremented in a pseudorandom way. At each step, element 

61 



KSA PRGA 

Initialization: Initialization: 
Fori = 0...255 i = j = 0 

S[i] = i Loop: 
j = 0 t = i+l 
Scrambling: 3=3 + S[i] 
For i = 0, ..255 ' Swap(S[i], S[j}) 

j =.j + S[i] + K[i mod I] t = S[i] + S\j] 
Swap(5[i], S\j)) Output z = S[t] 

Table 4: RC4 specification 

S[i] and S[j] are swapped. Element 5[5[i] + S[j]] is chosen as the output keystream byte. 

A pseudo code for RC4 is shown in Fig. 4. 

In GGHN(n.m), another pseudorandom counter, k, is added to the algorithm. Again, 

the S table size is N = 2n and the internal and keystream word size is m bits. The GGHN 

KSA is similar to the NGG KSA with the only difference is that it is repeated r times (it is 

recommended to set r = 20 for n = 8). As for k, after it is initialized to 0 at the beginning 

of KSA. the S table entries are added to it iteratively. In comparison to the NGG PRGA, 

the GGHN PRGA makes use of a pseudorandom counter, A, both in the update and the 

output steps. Instead of outputting plain pseudorandom entry of the S table as in NGG, 

value masked by k will constitute the keystream word. Similarly, new value that will be 

written to the array depends on k. The pseudo code of the algorithm is shown in Fig. 5. 
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KSA PRGA 

Initialization: Initialization: 
Fori = 0, . . /V- 1 i = 0 

S[i] = a, . j = 0 
j = A; = 0 Loop: 
Scrambling: i = (i + 1) mod TV 
Repeat r times j'• = (j + S\i\) mod N 
For i = 0,..TV - 1 k = {k + S\j]) mod A/ 

j = (j + S[i] + K[i mod I]) mod ^ i = (5[i] + 5(j]) mod N 
Swap(S[i], S\j}) om=(S[t] + k) mod 71/ 
S\i] = (S\i\ + S{j}) mod M S[t] = (k + S]i]) mod M 
k = (k + S\i\) mod M 

Table 5: GGHN(n,m) specification 

5.3 Existing attacks 

Security of RC4 has been a subject of extensive research. In this section, we provide a brief 

summary of some of these results as well as existing attacks on GGHN. 

5.3.1 Attacks on RC4 

Knudsen et al. [33] proposed a backtracking algorithm for RC4 internal state recovery. 

The attack guesses some values from the internal state, simulates the update process and 

searches for contradiction between the keystream output and known values. If a contradic­

tion is met, the algorithm backtracks to the last guessed values and chooses another one. 

It requires a small portion of starting keystream word, but has unrealistic time complexity 

which amounts to more than 2700 steps. In [42], an attack on RC4 that requires 2241 oper­

ations and similar amount of data is presented. The given algorithm is based on searching 

for keystream patterns that correspond to certain internal states. 
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As for distinguishing attacks, Golic [22] shows that the sum of least significant bits of 

two keystream words at times t and t + 2 is biased towards 1. To distinguish RC4 from 

random variable, around 240 keystream words are needed. 

A more efficient distinguisher was found in 2000, when Fluhrer et al. [18] showed that 

there exists strong correlation between digraphs of RC4 (i.e., consecutive output bytes). 

This correlation permits an attacker to distinguish RC4 keystream from a random output in 

around 230 6 steps. 

In 2001, an unexpected discovery regarding bias of first two output words was made 

by Mantin and Shamir [36]. Instead of looking at the keystream bytes of one key, this 

distinguisher makes a decision by looking at first two keystream bytes under a few hundred 

of different, unrelated and unknown keys. The authors used this idea to mount an attack 

against the broadcast version of RC4, in which they recover second plaintext byte based 

only on ciphertext. 

As shown by Fluhrer et al., RC4 is insecure when known IV value is concatenated to 

a key [19]. This mode of operation is used in Wired Equivalent Privacy Protocol (WEP). 

Mantin [38] showed that WEP can be attacked this way even if the first 256 bytes of the 

keystream are discarded. In 2006, Klein [29] presented an improved known plaintext attack 

which does not need weak IVs to recover the secret key. Vaudenay and Vuagnoux improved 

on previous attacks using the weakness they observed in KSA [62]. Tews et al. found an 

attack on a 104 bit WEP [59]. 

Mantin [37] found a new distinguishing attack based on biases by which digraphs tend 

to repeat with short gaps between them. The attack needs around 226 keystream words and 
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has success rate around 2/3. In the same chapter, it is shown that RC4 keystream output 

has a family of patterns that repeat themselves with probability several times higher than 

in truly random sequences. These patterns can be used to predict bits and words of RC4, 

using 245 and 250 keystream words, respectively. 

Applying theory of random shuffles, Mironov [47] has modeled RC4 by a Markov chain 

and recommended that at least 512 beginning keystream bytes should discarded in order for 

S table to be uniformly distributed. This way, any attacks based on non-randomness of the 

beginning S table should be circumvented. 

5.3.2 Attacks on GGHN 

Just as with NGG, the least significant bit of the keystream output is biased, due to a bias 

inducing state which occurs with probability 2~16 and induces that the LSB of keystream 

words is 0 with certainty [51]. The distinguisher can be built upon 232 89 keystream words. 

Tsunoo et al. [61] presented a distinguisher based on the first two words of keystream 

associated with approximately 230 keys. 

5.4 Markov Chains background 

In this section we briefly review the Markov chains, absorption states and a way to calculate 

the average absorption times from the chain transition matrix [24]. 

A Markov chain can be described as follows. Let S — {s\. s^-.. • • • s„} denote the set of 

states. The chain starts in some state, and in each step, moves from one state to another. 
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The probability that the chain will move to certain state Sj depends only on its previous 

state Si, and not on any of the states before that. Therefore, we can write pij for transition 

probabilities, denoting the probability that a process will go from s; to Sj. The matrix P = 

(Pij)rxr is called the transition matrix. The beginning state of the chain is usually described 

by a probability distribution over the set S. The following lemma is a rudimentary result 

on Markov chains. 

Lemma 9 Let P be a transition matrix ofa Markov chain with set ofstates S = {si,S2; • . • sr}. 

The p^ entry of matrix Pn then represents the probability that the. chain, starting in state 

Si, will be in Sj after n steps. 

When a pseudorandom number generator that we are modelling by a Markov chain en­

ters the weak state, it cannot go out of it anymore. This behavior corresponds to absorbing 

state notion, known in Markov chain theory. 

Definition 2 A stale s, of a Markov chain is called absorbing state ifpti = 1, i.e., if once 

entered, it is impossible for the chain to leave it. A Markov chain is called absorbing if it 

has at least one absorbing state and if, from every state, it is possible to go to absorbing 

state (not necessarily in one step). Non-absorbing states of an absorbing chain are called 

transient states. When a chain enters absorption state, we say that it got absorbed. 

Lemma 10 In an absorbing Markov chain, the probability that the process will be ab­

sorbed is 1. 

To measure the number of steps needed for absorption, it is convenient to order states 

from set S so that absorbing states come at the end. Suppose that there are t transient states 
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and r absorbing states. Then, the transition matrix will be of the form: 

Q R 

0 I Id 
t 

where Id is the identity matrix and 0 is zero matrix. The dimensions of Q, R, 0 and Id are 

t x t,t x r,r x t and r x r, respectively. The matrix I-Q is called the fundamental matrix 

and its inverse reveals information with respect to absorption time. In particular, we use 

the following result. 

Lemma 11 For an absorbing Markov chain, the matrix I-Q is invertible. The ij -entry of 

(I-Q)'1 is the expected number of times the chain is in state Sj, given that it started from 

sl. The initial state is counted ifi = j . 

That way, the inverse of fundamental matrix gives information on how many times will 

a process pass through each state before absorption. We can now calculate the expected 

number of steps before absorption. Namely, if we sum all the values of z-th row of matrix 

(I-Q) - 1 , we get the expected number of steps before absorption, given that a process starts 

from state s,. 

5.5 Modeling idealized GGHN(n,ra) by a chain 

As specified in GGHN PRGA procedure, counter i iterates from 0 to N — 1 and j and k 

are incremented in a pseudorandom way. At each step, k is updated as k = (k + S[j]) mod 

M, {S[(S\i] + S\j]) mod N] + k) mod M element is sent to the output and the S table is 
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updated by S[(S[i] + S\j}) mod N] = (k + S[i]) mod M. 

To model GGHN-like ciphers, we idealize it as follows. For the update step of k, 

we take k = (k + S[X]) mod M where X is random variable taking values from 0 to 

N — \, thus approximating pseudorandom number j by a uniformly distributed random 

value X. As for the output, we model it as output = (S[Y] + k) mod M, where Y is 

a uniform random variable independent from X and takes values from 0 to N — 1 and 

substituting pseudorandom value [S[i] + S[j]) mod N. Finally, for the update step, we take 

S[Y] = (k + S\Z]) mod M. Here we use already defined Y, and introduce Z, uniform 

random value independent of A' and Y, as substitution for counter i. The PRGA algorithm 

of GGHN*(n,?n) is then modelled as follows: 

k ' = k + S{X}modM 

output = k + S[Y] mod M 

S[Y] = k + S\Z] mod M 

Obviously this algorithm can only be used as an idealized model for the GGHN cipher. 

However, we use it for the purposes of illustrating how different variants of GGHN(?z,m)-

like ciphers may enter the weak stale in a number of steps which is significantly smaller 

than 2N. Note that we do not initialize S by any KSA, but randomly. An eventual bias 

towards even numbers in beginning table may amplify the results given in the chapter. 

We say GGHN*(n,m) is in weak state if all elements of S as well as value k are even. 
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5.5.1 Defining the chain and calculating state transition probabilities 

We map each possible internal state of the cipher to a state from the chain's state set. Let 

Z(S) denote the number of odd numbers in the S table. We say GGHN*(n,m) is in state 

(z,p) if Z(S) = z and p = k mod 2 for current S and k. For example, if GGHN*(8,32) 

is in state (130,0), that means that exactly 130 values in S are odd, and k is even. Since 

Z(S) e {0..yV},p 6 {0,1}, we have that for GGHN*(n,m) the number of states is equal 

to 2 x (TV + 1). It follows that GGHN* is in weak state if and only if it is in (0,0) state. 

Due to the independence between X, Y and Z and other parts of internal state, this 

chain satisfies the Markovian property. In other words, if current state is (zi,pi), proba­

bility distribution of next state {Z2.P2) does not depend on previous state (20, Po) o r states 

before that. In the following theorem, we calculate state transition probabilities. 

Theorem 4 Let state transition probabilities not mentioned in the table amount to zero. 

In rows 1-4 of the table, let z = 1 . . . TV. In rows 5-8 and 9-12 let z — 0 .. . N and 

z = 0 . . . N — 1, respectively. Then, the table specifies state transition probabilities of the 

defined chain. 
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State transition 

P[{z,0)-+(z-l,0)\ 

P[(z,0)-+{z-l,l)] 

P\(zA)^(z-1,0)} 

P\(z,l)^(z-l,l)) 

P[(z,0)^(z,0)] 

P[(z,0)^(zA)} 

P[(z , l ) -» (* ,0 ) ] 

P [ ( z , l ) ^ ( z , l ) ] 

P [ ( z , 0 ) ^ ( z + 1 : 0 ) ] 

P [ ( z , 0 ) - > ( z + l , l ) ] 

P [ ( z , l ) ^ ( z + 1 , 0 ) ] 

P[(2, 1 ) ^ ( 2 + 1 , 1 ) ] 

Probability 

( ^ ) 2 >< £ 

(f)3 

U^ X N 

^ x ( ( ^ ) 2 + (^)2) 

2 x ( ^ ) 2 x ^ 

^ x ( ( ^ ) 2 + ( f ) 2 ) 

2 x ( ^ ) 2 x A 

(N-Z\2 v 2 

V A' ^ X N 

* x ( ^ ) 2 

^ r x (#)2 

Proof. Due to the fact that only one S table element is updated at each PRGA iteration, the 

number of even values in the table can either decrease by one, stay the same or increase by 

one. Thus, all probabilities not mentioned in the table are equal to 0. 

Let P[even(-)] and P\odd(-)\ denote the probability that the enclosed argument is even 
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and odd, respectively. We prove rows 1-4 of the table. Let z = 1../V. Then, 

P [ ( z , 0 ) ^ ( z - L 0 ) ] = 

P[even(S[X})} x P[odd{S{Y})\ x P[even{S[Z])} = 

N - z z N - z 
N X TV X yV • 

/>[(*, 0 ) ^ ( i - 1 , 1 ) ] = 

P[odd{S[X})} x P[odd{S[Y])] x F[odrf(S[Z])] = 

z z z 

ax i v x ]v' 

P [ ( M ) -> ( 2 - 1,0)] = 

Pjo^(5[X])] x P[odd(S[Y])\ x P[even(S[Z])] = 

z z N -z 

P[(z,I)-*(z-lA)] = 

P[even(S[X])] x P[odd(S[Y})} x P[odd(S[Z])] = 

A: — Z Z Z 
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Now let z = 0 . . . N. Then, rows 5-8 can be proven as follows. 

P[(z,0)^(z,0)} = 

P[even(S[X})} x (P[even{S[Y])] x P[even(S[Z}} + 

P[odd{S[Y])] x P[odd(S[Z})}) = 

N - z ,N - z N - z z 2: 

P[(z,0)-*(z,l)) = 

P[odd{S[X])] x (P[even{S[Y))] x P[odd{S[Z})] + 

P[oc/rf(5[y])] x P[even(S[Z])]) = 

2: ,N - z z z N - zN 
X ( X 1 X ). 

N K N N N N ' 

P[(zA)^{z,0)} = 

P[odd(S[X])] x (P[even(S[Y])\ x 73[ei;en(S|Z])] + 

F[orfrf(5[y])] x P[oeM(S[Z])]) = 

z ,N-z N-z z z, 
— x ( x 1 x —). 
N v N N N NJ 
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,P[(z,l)-*(z,l)] = 

P[even{S[X])] x {P\even(S[Y})} x P[odd(S[Z})} + 

P[odd{S[Y})) x P[even{S[Z])]) = 

N - z ,N - z z z N - 2\ 
X ( X 1 X ). 

N v N N N N . 

Proof of rows 9-12 is analogous to the proof of rows 1 -4. • 

5.6 Absorption times 

To calculate the absorption time for the above defined chain, we follow guidelines from 

section 5.4. First, we encode states (z.p) (z = 0 . . . N, p = 0,1) by numbers from 0 to 

27V + 1 using one-to-one function f(z,p) = 2N-2z + l-p. Note that / ((0, 0)) = 2N + 1, 

so in this ordering, weak state of GGHN*, in which there is 0 odd numbers in the S table 

and k is even, comes last, as suggested in section 5.4. The transition matrix P indexed 

from 0 to 2N + 1 in both dimensions will contain value P[(z0,p0) —> (zi,pi)} (given by 

Theorem 4) at index (i,j), where i — f{zQ,po) and j = f(z\,p\). Then, discarding last 

row and last column gives matrix Q and B=I-Q represents the fundamental matrix. Finally 

we calculate B _ 1 and then, the sum of «-th row of this matrix represents average number 

of steps GGHN* will take before absorption if the algorithm started from / _ 1 ( i ) state. We 

approximate the beginning state distribution by assuming that half of the numbers in S table 

are odd and value k is even and thus we take the sum of f((N/2, 0)) row as an estimate for 

the expected absorption time of the defined chain. 
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Table 6 shows the match between the analytical and experimental estimate for the aver­

age number of steps before GGHN* enters the weak state. The experiment was conducted 

by initializing S table and k to random and running the GGHN*(4,32) (TV = 16) and 

GGHN*(5,32) (TV = 32) until reaching weak state, for 1000 times. 

N 
16 
32 
64 

Avg. number of steps 
Markov model 

212.763 

221-691 

23<U 

Experimental 
912.813 

221.606 

Table 6: Average number of steps before GGHN*(n,m) enters weak state 

One of the discrepancies between GGHN and GGHN* is the difference in distribution 

of (S[i\ + S[j]) mod TV and its idealized substituted uniform random variable, Y. Unlike 

Y, (S[i] + S[j}) mod TV tends to be even more often whenever the number of even entries 

exceeds the number of odd entries in S. In other words, this bias results in the cipher more 

often outputting, and also updating, even-indexed S table entries. In fact, this observation is 

interesting in itself because, typically, one would expect that any bias in the S table update 

process would weaken the cipher. However, as will be shown in the next section, this bias 

results in a longer absorbtion time for GGHN. 
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Figure 5: Experimental results for different variants of GGHN(n,32): average number of 
steps needed for entering the weak state versus l(N) = N line 

5.7 Experimental results on absorption time of different 

GGHN variants 

In this section we provide some experimental results for the absorbtion time of different 

GGHN(n,32) variants. Let 

• GGHN denote the original GGHN(n,32) 

• GGHN* denote the idealized model described in the previous section 

• GGHN** denote the modified GGHN cipher where an S table swap operation, Swap(S[i], S[j})) 

(originally used in both RC4 and NGG), is inserted before the output step in the 
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GGHN PRGA. 

• GGHN*** denote the modified GGHN cipher where the least significant bit of t is 

XORed with a binary random variable right after the t = S[i] + S[j] mod N step. 

The modifications in the code of GGHN** and GGHN*** are done in order to elim­

inate the bias in the /, value towards becoming even whenever the S table tends to have a 

large number of even entries. Furthermore, we extend the definition of GGHN(n,?n) which 

enforces power-of-two table sizes to GGHN variants in which the S table size, N, can be 

any even number. 

Figure 5 shows the base 2 logarithm of the average value of the absorbtion time. Let 

2 , ( A ' denote the average absorbtion time of the cipher with m = 32. Using the minimum 

least square error approximation, then, from the experimental data, l(N) for the above 

ciphers can be approximated by 

0.854 x N + 2.959 for GGHN 

0.557 x TV + 3.846 for GGHN* 

0.454 x N + 4.920 for GGHN** 

0.579 x TV + 3.811 for GGHN*** 

l(N) « ^ 

It is clear that, as N increases, in all cases 1{N) is less than N. Substituting N = 256 into 

the l(N) formula above indicates that the number of steps needed before GGHN enters 

weak state is about 2222 steps, instead of 2256 steps. The above estimates should be inter­

preted with care as it might be the case that GGHN does not behaves this way for N = 256. 
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Providing a theoretically sound argument for this claim seems to be difficult due to the fact 

that GGHN does not satisfy the Markovian assumption. 

It should also be noted that unlike variants of GGHN, it is not guaranteed for the original 

GGHN to enter the weak state. Instead, it can enter a cycle with respect to least significant 

bit. This kind of cycles occurs if all LSB internal state values at different i = 0 moments 

(close one to another) are equal and this repeats to infinity. Analysis of this type of behavior 

is out of the scope of this chapter, but we noted that the probability that this will happen 

drops dramatically when TV increases. According to experimental results, for TV = 16, this 

kind of cycle happens for around 5% of GGHN instantiations. For TV > 32, throughout our 

experiments, we did not observe any cycles and the GGHN always reaches the weak state. 
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Chapter 6 

Conclusion and future work 

In this thesis, we provided analysis of two block ciphers and two stream ciphers. In partic­

ular we have shown that: 

- The key scheduling of the TREYFER block cipher seems to be oversimplified and 

that yields several weaknesses. We presented a related-key attack requiring only 

2 n chosen plaintext encryptions. While it might be argued that it is unlikely that an 

attacker can persuade a human operator to encrypt plaintexts under the 8 related keys, 

modern cryptography is implemented using complex protocols, and in some cases a 

related-key attack can be made feasible. In these scenarios, our attack can recover 

the secret keys in few milliseconds. 

- PIFEA-M algorithm is still vulnerable to a the differential style attack that it was sup­

posedly designed to resist. Using only four plaintext ciphertext pairs, and by solving 

a set of linear equations over GF{2), all successive ciphertext can be deciphered 

even without explicitly recovering the secret key. On the other hand, one should note 
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that, while the given cryptanalysis is based on an explicit assumption from PIFEA-M 

algorithm specifications, the considered attack scenario is not a usual one. 

- The NGG key scheduling algorithm does not randomize its initial internal state table 

sufficiently. In particular, after the KSA, the cipher internal state is highly biased 

which allows us to distinguish NGG from a random stream based only on the first 

keystream word. Furthermore, the bias left by the KSA reveals information about 

the secret key. Since NGG PRGA sends the internal state elements to output with­

out masking, information about the secret key can be recovered by examining the 

first few kilobytes of the keystream. Our experimental results show that for approx­

imately 21 1 9 2 of the 128-bit keys, the secret key can be recovered with around 232 

steps. Based on the analysis above, it is clear that NGG is insecure. Designing an 

efficient and secure generalization of RC4 for 32/64-bit processors remains a chal­

lenging research problem. 

- Many variants of GGHN-like ciphers with table size N may need substantially less 

than 2N steps to enter a weak state. This was done by modelling an idealized 

GGHN^.m) by a Markov chain, and calculating chain's absorption time. We have 

also shown that, if the designers of GGHN kept the swap operation originally used 

by both RC4 and NGG for the S table scrambling during the pseudorandom genera­

tion algorithm, then the cipher would enter the weak state much faster than expected 

when treating the S table, during the PRGA update process, as a purely random table. 

To extend these results, further research can be conducted in the following directions: 
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- For TREYFER, it is interesting to investigate if there are other permutations of plain­

texts and keys that derive similar ciphertexts. It is also interesting to provide further 

analysis of TREYFER which employs an enhanced key scheduling algorithm (e.g., 

by adding some round dependent constants). 

- Since the original FEA-M cipher is inherently linear, it would be interesting to put 

more effort in the cryptanalysis of other FEA-M variants and test it with respect to 

other known cryptanalytic attacks listed in Chapter 2. 

- Since the amount of information about the secret key left by the NGG KSA procedure 

grows with increasing the word size from 32 to 64, it would be interesting to derive 

a full key recovery algorithm which succeeds with high probability when the word 

size is 64. 

- The question of how to exactly calculate the number of steps required for GGHN to 

enter a weak state is open. A new method for calculating absorption times of non-

Markovian chains is required, for the case when the computational complexity of 

experimentally finding these values is too high. 

- The design of light weight, yet secure, ciphers suitable for resource constrained en­

vironments still presents a challenging goal for cryptographers. 
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