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 

Abstract— Outpatient scheduling is considered as a complex 

problem. Efficient solutions to this problem are required by many 

health care facilities. Our previous work in Role-Based 

Collaboration (RBC) has shown that the group role assignment 

problems can be solved efficiently. Making connections between 

these two kinds of problems is meaningful. This paper proposes 

an efficient approach to outpatient scheduling by specifying a 

bidding method and converting it to a group role assignment 

problem. The proposed approach is validated by conducting 

simulations and experiments with randomly generated patient 

requests for available time slots. The major contribution of this 

paper is an efficient outpatient scheduling approach making 

automatic outpatient scheduling practical. The exciting result is 

due to the consideration of outpatient scheduling as a 

collaborative activity and the creation of a qualification matrix in 

order to apply the group role assignment algorithm. 

Note to practitioners -As the “Age Wave” approaches, health 

care facilities are becoming relatively scarce worldwide compared 

with what are demanded. The varying availability, requirements, 

and preferences of both facilities and outpatients make the 

problem of scheduling outpatient appointments on health care 

facilities extremely challenging. Traditional manually operated 

scheduling systems based on phone calls are out of date although 

they are still widely used due to lack of new effective scheduling 

systems. To solve such a problem requires an efficient Web-based 

system to schedule the appointments instantly in order to make 

full use of those expensive and critical facilities. It is able to 

optimize concerned performance objectives in a clinical 

environment. The proposed approach provides a technical 

foundation for efficient Web-based scheduling systems, which can 

be applied directly to not only outpatient scheduling in the health 

care sector, but also in some other real-world scheduling 

applications. 

Index Terms—Outpatient Scheduling, Roles, Agents, and Role 

Assignment 
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I. INTRODUCTION 

N health care management, some facilities, such as magnetic 

resonance imaging (MRI) scanning or computed 

tomography (CT) scanning, are expensive and critical for 

certain disease diagnoses [2, 19]. Normally expensive facilities 

must be pre-scheduled for unanticipated requirements of 

inpatients. Sometime later, pre-scheduled time slots may 

become available for outpatients to use. At the same time, 

outpatients may have different requests for the appointments 

and some appointments may not be available for some time 

slots, i.e., there are different constraints in assigning available 

time slots of an expensive device to available patients.  

Therefore, instant re-scheduling is required at such a 

moment in terms of volume and urgency. Because the problem 

of efficient scheduling of patient appointments on expensive 

resources is complex and dynamic, it must be solved with an 

efficient system to re-schedule the appointments to avoid 

wastes and make full use of the expensive and critical 

facilities, i.e., the objective of outpatient scheduling is to find 

an appointment system for which a particular measure of 

performance is optimized in a clinical environment - an 

application of resource scheduling under uncertainty [2]. 

In Role-Based Collaboration (RBC) [23], Group Role 

Assignment (GRA) [27] is a complex problem for which the 

exhaustive-search based algorithm has exponential complexity. 

An efficient algorithm for GRA has been developed based on 

the Hungarian algorithm, also called Kuhn-Munkres (K-M) 

algorithm [11, 14]. It is of polynomial complexity. This work 

builds a system that transfers outpatient scheduling into a GRA 

problem.  

II. RELATED WORK 

It is well accepted that scheduling problems in health care 

services are important and complex. Much research is 

conducted in the fields of operational research and industrial 

engineering [2, 5]. However, very few attempts have been 

made to solve them through the development of practical 

systems. Cayirli and Veral [2] present general problem 

formulation and modeling considerations for effective 

scheduling systems, and provide taxonomy of methodologies 

used in previous literature. Godin and Wang [5] propose to 

allocate available diagnostic services timeslots to outpatients 

through an iterative bidding procedure which is a trigger to the 

idea of Call-For-Collaboration (CFC) in this paper. Gul et al. 

[6] compare several heuristics for scheduling an outpatient 

procedure center with respect to the competing criteria of 
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expected patient waiting time and overtime. Guo et al. [7] 

present a simulation framework for the evaluation and 

optimization of scheduling rules. Gupta and Denton [8] state 

that many factors affect the performance of such systems 

including arrival and service time variability, patient and 

provider preferences, available information technology and the 

experience level of the scheduling staff. Kaandorp and Koole 

[10] model the outpatient appointment scheduling problem, 

and present a method to obtain optimal outpatient schedules in 

case of a finite number of possible arrivals. They do not 

mention the efficiency of their algorithms. Liu et al. [13] 

develop a framework and propose heuristic dynamic policies 

for scheduling patient appointments by considering that 

patients may cancel or not show up for their appointments. 

Their consideration is also another source of the problem 

presented in Section II, i.e., cancellation and no-show may 

release time slots for outpatients to reschedule. Patrick and 

Puterman [16] analyze the CT operations at Vancouver 

General Hospital, Canada and state that inpatient demands are 

fluctuating and the outpatient have priorities [2]. Our example 

is established based on this work [16]. Santibáñez et al. [19] 

develop a mixed integer programming model to schedule 

surgical blocks for each specialty into operating rooms and 

applied it to the hospitals in British Columbia Health 

Authority, considering operating room time availability and 

post-surgical resource constraints. Vermeulen et al. [20] 

present an adaptive approach to automatic optimization of 

resource calendars. The allocation of capacity to different 

patient groups is flexible and adaptive to the current and 

expected future situation. 

III. A REAL-WORLD OUTPATIENT SCHEDULING PROBLEM 

The MRI lab of a hospital has a future 2-week schedule 

from Monday to Friday. Because some pre-occupied slots are 

released by in-patients, the newly available hours (slots) are 

presented as the shaded cells in Table I. Note that the pre-

occupied slots cannot be freed earlier than a period of time, 

e.g., two weeks, because the slots must be prepared for the 

inpatients. Hence, a two-week schedule is usually adopted.   

Now, only one work day is left before the new schedule. 

The administration hopes to use as many unoccupied slots as 

possible. The question is how to assign the available slots to 

the most needed outpatients and instantly informs the 

outpatients the new scheduled time slots. 
TABLE I. AN EXAMPLE OF A 2-WEEK SCHEDULE. 

 
Conventionally, outpatient records in a database tell some 

outpatients’ pre-filled requirements and availability in 

choosing adjacent time slots (also called requested bundles of 

time slots, or simply, requested bundles). Those outpatients 

who can come to fill newly available slots in Table I are shown 

in Table III. Based on such a table, an outpatient scheduling 

problem is modeled as an optimization problem and proved as 

an NP-hard problem [5]. To formalize the questions in this 

paper, we use the symbols in Table II. 

 
TABLE II. THE SYMBOLS USED IN THIS PAPER 

Symbol Meaning 

A A set of agents. 

B A bundle of time slots. 

Ft(C, j)

 

The set formed by the elements of vector C[j]. 

N The set of non-negative integers, i.e., {0, 1, 2, …}.  

P An n-dimensional vector of vectors of the bidding 

blocks from outpatients. Pj is a vector with kj (1≤kj≤m) 

bidding blocks requested by patient j  Π. Pj also 

expresses the preferences of patient j (if l < k then 

patient j prefers the lth block Pj[l] to the kth one Pj[k], 

0≤l, k< kj, l≠k). 

P’ An n-dimensional vector of vectors of bidding sets (also 

called bundles) of time slots from outpatients, where P’j 

is a vector with kj (1≤kj≤m’) bidding sets (bundles) of 

time slots requested by patient j  Π.  

Q: A × R →  

[0, 1] 

A qualification matrix. Q[i, j] expresses the 

qualification value of agent I for role j.  

R A set of roles. 

S: Ω →N S[i] expresses the size of block I (I Ω). 

S′: Π→N S′[j] expresses the requested block size by patient j (j 

  Π). 

T: A × R →  

{0, 1} 

An assignment matrix. T[I, j] =1 means that agent I is 

assigned to role j, and T[I, j] =0 otherwise.  

T’ A vector of appointments for outpatients. 

V: R →A

 

V[j] expresses the original agent assigned to role j. 

W: R →N A vector to express the priority values of outpatients 

(roles), where Wj be the priority value assigned to 

patient j  Π or  j  R. 

g: Ω×Π→[0, 1] A preference scale to evaluate the relative preference 

among different patients and requested blocks. 

H: Ω×Π→[0, 

1] 

The fitness of the requested size of the requested block 

from j versus the available size of block i. 

I An element in Ω or A. 

J An element in Π or R. 

K max{m, n} 

m’ The number of elements in Ω’, i.e., |Ω’|. 

m The number of elements in Ω or A, i.e., |Ω| or |A|. 

n The number of elements in Π or R, i.e., |Π| or |R|. 

wmax The maximum number in W. 

X An assignment indicator. Xj(B)=1 if bundle B is 
allocated to patient j ( 'B , 0≤j<n), xj(B)=0 

otherwise.  

Δ  The sum of the priority values of the scheduled 

patients, i.e.,   


'
)(

PB j jj WBx . 

1Δ  
The sum of the priority values of on the scheduled time 

slots, i.e.,   


i j jj WjSix ][')( . 

*

1Δ  max {Δ1}. 

Π A set of the bidding outpatients. 

Ω A set of available time slot blocks, or simply blocks. 

Ω′, Ω″ A set of available time slots. 

δ  min{m, n} 

ζ(P, i, j) To express if agent i belongs to Ft(C, j). 

Ψ  


j jWjS ][' . 

 

 If each outpatient requires one bundle of time slots and we 

do not consider the preferences of patients among requested 

bundles, the problem can be formalized as [5]: 
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max Δ=  


'
)(

PB j jj WBx         … (1) 

subject to 

 


'
)(,

B j Bxj
 
≤1          … (2) 

  


iB j j Bxi )(,' ≤1         … (3) 

 


'
)(,

B j Bxj
 
=  '

)(
jPB j Bx       … (4) 

 jB ,'  xj(B) {0,1}
       

… (5) 

where constraint (2) ensures that each outpatient can be 

assigned at most one requested bundle of timeslots; (3) ensures 

that each time slot is assigned to only one patient; (4) ensures 

that the assigned bundle is requested by the patient; and (5) is 

a 0-1 constraint. Note that  iB
in (3) is read as “sum for all 

B that contains i”. 
TABLE III. THE AVAILABILITIES AND PREFERENCES OF OUTPATIENTS. 

ID Name Priority 

value 

Outpatients’ availabilities in a day 

P1 Tom 3 Monday: {7, 8}, Wednesday: {2, 3}, 

Thursday: {3, 4}  

P2 Chris 2 Monday and Tuesday: {7,8,9}  

P3 Ana 3 Wednesday and Thursday: {3} 

P4 Bob 2 Wednesday: {1,2}, Thursday: {3, 4} 

P5 Don 1 Any day: {0},…, {11} 

P6 Jane 3 Thursday: {7, 8} 

 

TABLE IV. AVAILABLE TIME SLOTS (34). 

 
To solve the problem described in (1)-(5), the available time 

slots are numbered from 0-33 (Table IV), outpatients are 

numbered from 0-5, and their availability is transferred to 

Table V. 
TABLE V. THE AVAILABILITIES AND PREFERENCES OF OUTPATIENTS. 

Patient 

ID 

Name Priority 

value 

Outpatients’ requested bundles 

P1 Tom 3 {2, 3},{9, 10},{19, 20}, {26, 27} 

P2 Chris 2 {2, 3, 4},{16, 17, 18}   

P3 Ana 3 {11}, {21}, {26} 

P4 Bob 2 {9, 10},{19, 20}, {26,27} 

P5 Don 1 {0},…, {33} 

P6 Jane 3 {13, 14}, {29, 30} 

TABLE VI. ASSIGNED TIME SLOTS (NAMED SLOTS). 

 
By using IBM ILOG CPLEX Optimization Studio V12.2 

(ILOG), the problem is solved (Table VI) in 130ms with the 

objective as 26 (Section V of the multimedia document). If the 

number of bundles and patients increases, the consumed time 

increases exponentially. Experiments also assert that such 

modeling could only work for relatively small size outpatient 

scheduling problems [5].  

IV. COLLABORATIVE OUTPATIENT SCHEDULING - OUR 

STRATEGY 

In fact, outpatient scheduling is dynamic. Available time 

slots, the outpatients’ availability and preference are changing. 

The information in Table III may not reflect the current states 

of all the outpatients. The model in (1)-(5) does not consider 

the preferences of outpatients.  

In our strategy, the outpatient scheduling problem is 

considered as a collaborative action, i.e., the patients are 

collaborating on this scheduling work. The operation scenario 

is that, upon a change in the available time slots, the facility 

office or clinic sends out a Call for Collaboration (CFC) 

message by emails or calls to all the already registered 

(scheduled or not yet scheduled) outpatients, and some or all 

of them respond to the CFC message by bidding for bundles of 

time slots. The scheduling algorithm then makes optimal re-

scheduling based on their responses.  

We assume that the time unit is in slot, and each outpatient 

has a priority value assigned by his/her doctor. The priority 

values of outpatients are taken as one indicator to express the 

ranking and competence on a time slot among outpatients. In 

this way, if a bundle of 2 time slots is assigned to a patient who 

has a priority value of 3, we collect 3×2 into the sum of the 

priority values on the assigned time slots. 

Then, the outpatient scheduling system is designed to find 

an assignment scheme for all patients such that the sum of 

priority values on the assigned slots is maximized and their 

preferences are satisfied.  

We assume that the bidding patients may have their original 

appointments when CFC is initiated, and they will contribute 

available slots when they are rescheduled. CFC is a process 

that is initiated manually or automatically according to a 

schedule or newly available information, such as, time slots 

become available and it is needed to reschedule. It ends when 

the iteration of rescheduling is done. The system process is 

described as follows, where Ω" ( Ω' ) is a new set of 

available time slots after one iteration of rescheduling, Ω'=Ω" 

expresses that no new slot is allocated in the rescheduling 

process. 

CallForCollaboration Process: 

Input: Ω' 

Output: T' 

Repeat  

Step 1: Receive: Π, W and P'; 

Until (time is due). 

Repeat 

Step 2: Rescheduling (Ω', Π, W, P', Ω", T'); 

Until (Π= Φ Ω'=Ω"); 

Send out or post new schedules T'; 

Rescheduling Process: 

Input: Ω', Π, W, P' 
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Output: T' and Ω". 

Step 1: Maximize Δ
 
while their preferences are satisfied; 

Step 2: Form and return T' and Ω". 

To decrease the search space in the re-scheduling process, 

we propose to introduce some restrictions in a bidding process:  

1) Each round of CFC considers a group of continuous 

time slots as a whole, called time slot block or simply 

block with a size attached (i.e., the number of continuous 

time slots). Now, we obtain a set of available blocks Ω. A 

size vector S: Ω →N ={0, 1, 2, …} is introduced, where 

S[i] expresses the size of block i (i Ω); 

2) Patients may choose some from these blocks (See 

Table VII, the available blocks have different number of 

slots) and specify how many slots they require. A size 

vector,   S′: Π→N is introduced, where S′[j] expresses the 

requested size of the requested block by patient j (j   Π);  

3) The sequence of the outpatients’ choices shows their 

preferences; and  

4) A patient is allocated at most one block with the 

requested size.  
TABLE VII. THE AVAILABLE TIME BLOCKS (10) FOR TABLE I. 

 
As for the problem in Table I, we may redraw it shown as in 

Table VII. Now, the problem can be re-specified. We 

introduce a function g: Ω
*
×Π→[0, 1], where Ω

*
 is the power 

set of Ω, as a preference scale to evaluate the relative 

preference among different patients and requested bundles, 

i.e., g(i, j) =  



 

.otherwise

[l]PiPi,-, …, k, l =   /k - lk jjjjj

0

; ,110)(

  …(6)

 

h(i, j) is introduced to evaluate the matching scales of the 

request, i.e., 

h(i, j) = 









  ])[][(                 0

])[][(    ][][

iSjS'

iSjS'i/SjS'
(0≤i<m, 0≤j<n) …(7) 

For example, suppose that other conditions are the same. If 

patient x bids for the 3
rd

 (i=2) choice in 5 choices (kx=5); and 

patient y bids for the 2
nd

 (i=1) in 3 choices (ky=3), we prefer 

the latter, i.e., y, because g(2, x)=3/5 < g(2, y)=2/3. If patient x 

requests 3 slots in a 5-slot block z, i.e., S[z]=5, S′[x]=3, and 

patient y requests 4 slots in the same block z, S′[y]=4, we 

prefer y, because h(z, x)=S′[x]/S[z]=3/5 < h(z, y) = 

S′[y]/S[z]=4/5. 

With this adjustment, the outpatient scheduling problem 

becomes to find an assignment scheme for all patients such 

that Δ1 is maximized; all patient preferences are best 

satisfied; and all patient requests are best matched. 

It can be re-formalized as a three-objective optimization 

problem: 

max Δ1=  


i j jj WjSix ][')(    …(8) 

max  


i j
j )j,i(g)i(x        …(9) 

max  


i j
j )j,i(h)i(x         …(10) 

subject to 

,j   i
j )i(x ≤1           … (11) 

,j   


jPi
j

i
j )i(x)i(x        … (12) 

,i   


j
j jSix ][')( ≤S[i]        … (13) 

,j,i  xj(i) {0,1}          … (14) 

where (11) ensures that any outpatient can only obtain one 

from the available time blocks; (12) ensures that if a timeslot 

block is assigned to an outpatient, it must belong to the block 

set the outpatient has requested; constraint (13) tells that each 

block can be allocated to more than one patient, however, the 

total requested sizes of the assigned patients should not be 

larger than the size of the original block; and (14) is a 0-1 

constraint. It is evident that the bundle requirement is removed 

and therefore the problem is simplified. 

Note that this is a typical multi-objective optimization 

problem to which a simple solution is weighted sum [16]. 

However, it is still time-consuming based on the model (6)-

(14). For example, a random case (m, n = 14) cost 54 minutes 

to be solved by a weighted sum method by using ILOG (The 

Model and Data I in Section VI of the multimedia document).  
TABLE VIII. AN EXAMPLE FOR OUTPATIENT SCHEDULING  

ID Name Priority 

value 

Patients’ 

biddings 

for 

blocks 

Block 

size 

Original appointment 

P1 Tom 3 1, 3, 6,  

8 

2 14 (8-9 of Thursday in 

the 3rd week) 

P2 Chris 2 1, 5 3 12 (12-14 of Monday 

in  the 4th week) 

P3 Ana 3 3, 6, 8 1 10 (10 of Thursday in  

the 3rd week) 

P4 Bob 2 3, 6, 8 2 13(10-11 of  Tuesday 

in the 4th week) 

P5 Don 1 0,…, 9 1 11(17 of Friday in the 

3rd week) 

P6 Jane 3 4, 9 2 15 ( 13-14 of Friday in 

the 4th week) 

Table VIII is the assumed information collected by one 

round of CFC similar to the requests from Table V. It is 

assumed that the responses to CFC are for the available blocks 

from 0 to 9. The blocks originally assigned to the 6 responded 

patients are 10 - 15. Please note that it is not hard to collect 

the information shown in Table VIII. For example, a group e-

mail can be sent out to all the outpatients. The interested ones 

can click on a link provided by the e-mail to provide their 

preferences among the available blocks. The priority values 

are found based on the electronic documents of outpatients in 

the health care office. So are the original appointments.  

To solve the problem expressed by formula (6-14) 

efficiently, the GRA algorithm must be iteratively called 

because it can only assign one available block to each patient 

in each iteration, i.e., it can only solve the problem by 

replacing (13) with (15): 
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i ,  j
j ix )( ≤1          … (15) 

After each GRA assignment, some available blocks may be 

still available for those outpatients who have not yet 

scheduled. We need more GRA processes until no available 

time slot blocks cover the requests of outpatients. This 

iteration may affect the global optimization as described by 

formula 6-14, but leads to an efficient solution. That the three 

optimization goals are synthesized to form one goal is another 

factor to affect the optimal solution. Note that, the major idea 

is to transfer some constraints to numbers in order to apply the 

optimization algorithm. We admit that not all the constraints 

can be transferred to proper numbers, but there are indeed 

some constraints that can be processed this way.  

V. GROUP ROLE ASSIGNMENT 

By E-CARGO [23-27], we mean Environments, Classes, 

Agents, Roles, Groups and Objects. To deal with the role 

assignment problems, we emphasize a role set denoted by A 

and an agent set denoted by R. Agents in A are numbered as 0, 

1, …, and m-1 (m =|A|); and roles in R are numbered as 0, 1, 

…, and n-1 (n = |R|).  

Definition 1: A role range vector is a vector of the lower 

ranges of roles denoted as L[j] N (0 ≤  j < n). 

Definition 2: A qualification matrix is defined as Q: A × R → 

[0, 1], where, Q[i, j] expresses the qualification value of 

agent i for role j.  

The improvement of the efficiency of the algorithm for the 

outpatient scheduling problem mainly comes from the 

formation of the Q matrix.  

Definition 3: A role assignment matrix is defined as T: A × R 

→ {0, 1}. If T[i, j] =1, agent i is assigned to role j and T[i, 

j] =0 otherwise (0 ≤ i < m; 0 ≤  j < n). Note that T also 

expresses a group.  

Definition 4: A group qualification is defined as the sum of 

the assigned agents’ qualifications, i.e., 










1

0

1

0

][][

m

i

n

j

j,iTj,iQ . 

Definition 5: A role r is workable if it is assigned enough 

current agents to play it, i.e., 




1

0

][

m

i

j,iT  ≥L[j] [23-27].  

Definition 6: A group expressed by T is workable if all its 

roles are workable. 

Definition 7: The group role assignment (GRA) problem. is to 

find an assignment matrix T that makes the group 

qualification is the largest, i.e., max{










1

0

1

0

][][

m

i

n

j

i,jTi,jQ } 

subject to  j(




1

0

][

m

i

i,jT  =L[j])(0 ≤  j < n).  

VI. FROM THE OUTPATIENT PROBLEM TO THE GROUP ROLE 

ASSIGNMENT PROBLEM 

In terms of GRA, we consider patients as roles and time 

slot blocks as agents. This consideration is explained next. 

Definition 8: An original agent vector V is an n-vector of the 

original agent assigned for a role, i.e., V: R →A, where V[j] 

means the agent originally assigned to role j.  

We use F
t
(P, i) to express the set formed by the elements of 

vector P[i]. If F
t
(P, j)F

t
(P, j') ≠Φ, we say that roles j and j' 

are competing on agents (blocks) expressed by F
t
(P, j)F

t
(P, 

j'). We keep other symbols as described in Sections III and IV.  

In solving the outpatient scheduling problem, the most 

important step is to build an appropriate Q to reflect the 

values required in the assignment process. The vectors W and 

P and functions g and h can be used to form Q with the 

following formula (0≤i<m, 0≤j<n): 

Q[i, j] = )]/[()()(×)(×) ,( maxwjWii, jhi, jgi, jP  ; 

...(16) 

where,  

ζ(P, i, j)= 










;),(    0

 ;),(   1

jPFi

jPF i

t

t

      …(17) 

γ(j)=S′[j] / max{S′[0], S′[1],…, S′[n-1]}  …(18) 

Note that, ζ(P, i, j) tells that time slot blocks (agents) are 

only qualified for the requested roles (patients), i.e., it is to 

prevent the situation that an agent (time slot block) is assigned 

a role (patient) who is not willing to accept; γ(j) considers the 

size of the assigned blocks to patient j and note that we do not 

use S′[j] directly in order to keep Q[i, j] [0, 1]; g(i, j) in (6) 

ensures that if two available blocks are patient j’s choices, the 

block with a better preference is assigned, and that if two 

patients are competing for one time block, the patients’ 

preferences are serialized, e.g., if time block z is patient x's 2
nd

 

preference (its index is 1) in 3 choices and is patient y's 2
nd

 

preference (its index is 1) in 5 choices then y is preferred (2/3 

< 4/5); and h(i, j) in (7) expresses that a time block (agent) has 

higher qualification if its size fits the time block size better. 







































0.1110.0020.0000.0000.0000.000

0.0000.0110.1480.0560.0000.167

0.0000.0080.0000.0000.0000.000

0.0000.0110.1480.0560.0000.167

0.0000.0140.0000.0000.2500.000

0.4440.0220.0000.0000.0000.000

0.0000.0260.2960.1110.0000.333

0.0000.0300.0000.0000.0000.000

0.0000.0250.0000.0000.5000.333

0.0000.0560.0000.0000.0000.000

 

Fig. 1. The Q matrix for Table VIII. 

From Table VIII, W = [3, 2, 3, 2, 1, 3], wmax = 3, P = [[1, 3, 

6,  8],[1, 5], [3, 6, 8], [3, 6,  8], [0, 1, 2, 3, 4, 5, 6,7, 8, 9], [4, 

9]], S′ = [2, 3, 1, 2, 1, 2], S= [2, 4, 3, 3, 3, 4, 4, 4, 2, 6], and V= 

[10, 11, 12, 13, 14, 15]. For example, Q[3, 2] = 1×(1/3)×(1/3) 

×[(3-0)/3]×(3/3)=0.111. 

By synthesizing all the above data, we get a qualification 

matrix Q shown in Fig. 1. 

Now, A is the set of m blocks available at the time of CFC; 

R  is the set of n patients who have responded to CFC; and Q 

is an m×n matrix obtained by formula (16-18). Then, the 

outpatient scheduling problem is in fact becoming a GRA 

problem to find an m×n assignment matrix T to  
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max{










1

0

1

0

][][

m

i

n

j

i,jTi,jQ }         …(19) 

subject to  






1

0

][

n

j

j,iT  ≤1 (0 ≤  i<m)                 …(20) 

 j (




1

0

][

m

i

i,jT  =L[j])(0 ≤  j < n)     …(21) 

In E-CARGO, that one agent can only play one role in GRA 

directly follows the above requirement of outpatient 

scheduling that one block (agent) can be assigned to only one 

outpatient (role), i.e., 




1

0

][

n

j

j,iT  ≤1 (0 ≤  i < m).  

In fact, we can even loosen the restriction in GRA, i.e., 

remove the requirement of  j,




1

0

][

m

i

i,jT  =L[j](0 ≤  j < n), 

because it is acceptable for some bidding outpatients to obtain 

no block in one round of CFC. 

Based on the GRA algorithm, we can obtain matrix T shown 

as in Fig. 2 for the Q matrix in Fig. 1.  







































000000

000100

000000

001000

000000

100000

000001

000000

000010

010000
 

Fig. 2. The Assignment Matrix T. 

Let xj(i) in (8) = T[i, j] (0 ≤ i < m; 0 ≤  j < n). We obtain Δ1
*
 

as 26.  We can translate the matrix T in Fig. 2 to a list of 

assignment tuples as the scheduling result of the 1
st
 round CFC 

(named slots in Table VIII). 
TABLE IX. THE ASSIGNED TIME SLOTS. 

 
TABLE X. THE NEW AVAILABLE TIME SLOTS. 

 
Combined with the original agent (time slot block) vector V, 

the new list of available time slot blocks becomes (shaded 

blocks Table X). Because all the patients are scheduled, no 

more iteration of GRA is required. The above list can be used 

for the 2
nd

 round of CFC. Note that block 10 is formed by 

combining two original appointments, i.e., (slots 8-9 and slot 

10 of Thursday in the 3
rd

 week). 

VII. THE ALGORITHM AND COMPLEXITY 

The complexity of the efficient GRA algorithm is 

polynomial [27]. If we transfer the outpatient scheduling 

problem into the GRA problem, the outpatient scheduling 

problem is solved in polynomial time. The following algorithm 

OutpatientRescheduling mainly describes the pre-process, 

the use of the GRA algorithm, and the post-process. 

Note: the following algorithm is described in a Java-like 

language; “a=b” means to check if a is equivalent to b and 

“a:=b” is to assign the value of b to a. 

Input: 

Π: A set of outpatients’ bidding <x, y, Z, v>, where x is the 

identification of the outpatient; y: the priority value of the 

outpatient; Z is the list of the bids of time slot blocks of the 

outpatient, where the position of a block in the list expresses 

the patient’s preference; u is the size of the requested block; 

and v is the original time slot block of the outpatient. 

Ω: A set of the available time slot blocks expressed as <c′, 

d′, e′, f′>, where c′ is the starting slot number; d′ is size of the 

block; e′ is the day number of the week; and f′ is the number of 

the week. 

Output: 

χ: A list of tuples <a, b> where a means a patient and b 

means a time slot block.  

Ω: a new set of available time slot blocks. 

OutpatientRescheduling(Π, Ω, χ) 

{m1 := m := |Ω|; 

n1 := n := |Π|; 

 while (m1>0 and n1< n); 

 {   Step 1:   

    Transfer Ω into a list Ώ, where Ώ[i] Ω; (0≤i≤m-1); 

  Step 2:   

    Transfer Π into 4 lists P, W, C, and V, i.e., P[j]:=c.x, 

W[j]:=c.y, C[j]:=c.Z, V[j]:=c.v (cΠ, 0≤j≤n-1); 

  Step 3: Note that h, g, Q, ζ, and γ are all m×n matrices 

corresponding to formula (6, 7, 16-18). 

    wmax: := max {c.y| (cΠ)}; 

    for (0≤i≤m-1, 0≤j≤n-1) { 

        if ( ][ jCi ) ζ[i, j] := 1; 

        else ζ[i, j] := 0; 

     if (S′[j]≤ S[i]) h[i, j]:= S′[j]/S[i]; 

        else h[i, j]:=0; 

        α[j]:= C[j].length; 

β[i, j]:= index of i in C[j]; 

        g[i, j]:= (α(C, j) – β(C, i, j))/α(C, j); 

     Q[i, j] := ζ[i, j]×h[i, j] ×g[i, j] ×γ [j]×W[j]/wmax;      

} 

  Step 4: Note T is an m×n matrix. 

    Initialize the assignment matrix T with {0}; 

    Call RatedAssignForOutpatients(Q, T, m, n); 

  Step 5: Form the new list of appointments in <patient, time 

slot block> and adjust the available time slot blocks.  

    Initialize χ[j] with NULL(0≤j≤n-1); 

    for (0≤i≤m-1, 0≤j≤n-1) 

 if (T[i, j]=1) { 
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χ[j] := <P[j], the first P[j].u slots of Ώ[i]>; 

if (P[j].u= Ώ[i].d′) Ώ[i]:=NULL; 

       else { Ώ[i].c′ := Ώ[i].c′+ P[j].u; 

       Ώ[i].d′ := Ώ[i].d′ - P[j].u; } } 

Step 6:  

Keep the unscheduled patients the original appointments.  

  Π := Φ; 

  for (0≤j≤n-1) 

if (χ[j]=NULL) { 

χ[j]:=<P[j], V[j]>; 

V[j]:=NULL; 

Π := Π {P[j]}; } 

Step 7: 

  Form the new set of available time slot blocks. 

  Ω := Φ; 

  for (0≤i≤m-1)  

if (Ώ[i] ≠ NULL) Ω := Ω { Ώ [i]}; 

  for (0≤j≤n-1) 

if (V[j]≠NULL) Ω := Ω {V[j]}; 

  m1 := |Ω|; 

  n1 := |Π|;  

  }; 

if (n1=0) every patient gets an assignment; 

  else some patients have no assignments; 

}//End of OutpatientRescheduling 

The algorithm RatedAssignForOutpatients is described as 

follows. 

Input: Q: an m×n rated qualification matrix. 

Output: T: an m×n assignment matrix. 

RatedAssignForOutpatients(Q, T, m, n) 

{Step 1: k = max{m, n}; 

Transfer the m×n matrix Q to a k×k matrix M [29];  

 Step 2: K-M (M); //Call the K-M algorithm; 

 Step 3: Form the assignment matrix T based on the result of 

K-M (M); 

 Step 4: return T;  

} 

Note that, in the above algorithm, the requirement of 

 j,




1

0

][

m

i

i,jT  =L[j](0 ≤  j < n) in the RatedAssign algorithm is 

removed, because it is acceptable for some bidding outpatients 

to obtain no block in one round of CFC. 

Theorem 1: Algorithm RatedAssignForOutpatients has the 

complexity of O(k
3
) (k = max{m, n}). 

Proof:  

Step 1 has the complexity of O(k
2
). 

Step 2 (K-M algorithm) has O(k
3
) [11, 14] 

Step 3 has O(k
2
). 

Step 4 has O(1). 

Therefore, the total complexity is O(k
3
).■ 

Theorem 2: Algorithm OutpatientRescheduling has the 

complexity between O(k
3
)(the best case) and O(δk

3
) (the worst 

case), where k = max{m, n} and δ = min{m, n}. 

Proof:  

Based on Theorem 1, Step 4 has the complexity of O(k
3
). 

Step 1 has O(m). 

Step 2 has O(n). 

Step 3 has O(m×n). 

Step 5 has O(m×n). 

Step 6 has O(n). 

Step 7 has O(m+n). 

Therefore, The total complexity inside the do loop is O(k
3
). 

As for the while loop, the complexity is mainly determined 

by three factors besides m and n: 

(1) the original appointments brought in by the bidding 

outpatients; 

(2) the conflict bidding for the same blocks; and 

(3) the requested blocks from patients.  

The worst situation is that the number of the do loops is δ = 

min{m, n}, i.e., all the patients are bidding for the same block 

that is large enough for all the patients, and each do loop 

satisfies one patient within this block. 

The best is within one loop: 

(1) All the patients bid for different blocks and are satisfied 

in one loop; or 

(2) All the blocks are assigned to patients in one loop.     

In summary, the complexity of algorithm 

OutpatientRescheduling is between O(k
3
) and O(δk

3
)■ 

VIII. VERIFICATIONS AND COMPARISONS 

To verify the proposed approach, we conducted simulations, 

performance experimentations, and performance comparisons. 

The simulations show that the optimality is satisfied. The times 

used by the proposed algorithm for some random problems are 

from 0.44 milliseconds (ms) to 2ms compared with that of 

ILOG from 280ms to more than 20 minutes. The performance 

experiments show that the time used for large groups (m = 80, 

n= 1000) is practical, i.e., at most 6.6 seconds and in average 

4.16 seconds. All the results are included in the supplemental 

multimedia document.   

IX. CONCLUSIONS AND FUTURE WORK 

This paper contributes an efficient approach to outpatient 

scheduling by a special treatment for collecting patients’ 

choices from available time slots. An exciting future task will 

be to generalize the proposed approach and to find a way to 

transform as many constraints as possible into a qualification 

matrix of GRA. If all the constraints of a general scheduling 

problem can be transformed into a qualification matrix of 

GRA in polynomial time, such a general scheduling problem 

will be solved within polynomial time. Such idea may be 

extended to other scheduling problems [1, 3, 12, 15, 19]. 

More interest future tasks include: 1) to implement an online 

service system in real health care environments; 2) to find out 

an algorithm if functions h and g are correlated; 3) to 

investigate if the abnormality in Figs. 3 and 4 of the 

supplement document is a determined phenomenon; 4) to 

introduce heuristics in solving such assignment problems; and 

5) to conduct empirical studies on the proposed approach of 

Call for Collaboration.  

REFERENCES 

[1] B. Alidaee, H. Wang, and F. Landram, “On the Flexible Demand 

Assignment Problems: Case of Unmanned Aerial Vehicles”, IEEE 

Trans. on Automation Sci. and Eng., 8(4), pp. 865-868, Oct. 2011. 



> T-ASE-2012-089.R1< 

 

8 

[2] T. Cayirli, and E. Veral, “Outpatient scheduling in health care: a review 

of literature”, Production and Operations Management, Jan. 1 2003, 

avail: http://www.allbusiness.com/health-care/health-care-facilities-

clinics/10619562-1.html . 

[3] C. F. Chu, M.  Zhou,  H. Chen, and Q. Shen, "A Polynomial Dynamic 

Programming Algorithm for Crude Oil Transportation Planning," IEEE 

Trans. on Automation Sci. and Eng., 9(1), pp. 42-55, Jan. 2012. 

[4] P. Cramton, Y. Shoham, and R. Steinberg. “Introduction to 

Combinatorial Auctions”, P. Cramton, et al. (Ed.), Combinatorial 

Auctions, Cambridge, MA: MIT Press, pp. 1-13, 2006. 

[5] P. Godin, C. Wang, “Agent-Based Outpatient Scheduling for Diagnostic 

Services”, Proc. of The IEEE Int’l Conf. on Systems, Man and 

Cybernetics (ICSMC), Istanbul, Turkey, pp. 1851-1856, 2010. 

[6] S. Gul, B. T. Denton, J. W. Fowler, and T. Huschka, “Bi-Criteria 

Scheduling of Surgical Services for an Outpatient Procedure Center,” 

Production and Operations Management, vol. 20, no. 3, May/June 

2011, pp. 406–417. 

[7] M. Guo, M. Wagner, and C. West, “Outpatient Clinic Scheduling – A 

Simulation Approach”, in Proc. of the 36th Winter Simulation 

Conference, Washington, DC, USA, pp. 1981-1987, 2004. 

[8] D. Gupta, and B. Denton, “Appointment scheduling in health care: 

Challenges and opportunities”, IIE Trans., vol. 40, 800–819, 2008. 

[9] IBM, ILOG CPLEX Optimizer, avail:  http://www-01.ibm.com/ 

software/integration/optimization/cplex-optimizer/ , April, 2011. 

[10] G. C. Kaandorp, and G. Koole, “Optimal outpatient appointment 

scheduling”, Health Care Manag. Sci., vol. 10, no. 3, pp. 217-229, 

2007.  

[11] H. W. Kuhn, “The Hungarian method for the assignment problem”, 

Naval Research Logistic Quarterly, vol. 2, 1955, pp. 83-97. 

[12] H. C. Lau, Z. J. Zhao, S. S. Ge, and T. H. Lee, “Allocating Resources in 

Multiagent Flowshops with Adaptive Auctions”, IEEE Trans. on 

Automation Sci. and Eng., vol. 8, no. 4, pp. 732-743, Oct. 2011. 

[13] N. Liu, S. Ziya, and V. G. Kulkarni, “Dynamic Scheduling of 

Outpatient Appointments Under Patient No-Shows and Cancellations”, 

Manufacturing & Service Operations Management, vol. 12, no. 2, 

Spring 2010, pp.  347-366. 

[14] J. Munkres, “Algorithms for the assignment and transportation 

problems”, Journal of the Society for Industrial and Applied 

Mathematics, vol. 5, no. 1, March 1957, pp. 32–38. 

[15] V. Ng and B. Chan, “Quality Assignments for WSDL-Based Services”, 

Proc. of Computer Supported Cooperative Work in Design II, Lecture 

Notes in Computer Science, 2006, vol. 3865, pp.163-173. 

[16] J. Patrick and M. L. Puterman, “Improving resource utilization for 

diagnostic services through flexible inpatient scheduling: A method for 

improving resource utilization,” Journal of the Operational Research 

Society, vol. 58, pp. 235-245, 2006. 

[17] A. Rais and A. Viana, “Operations Research in Healthcare: a survey”, 

Int’l Trans. in Operational Research, vol. 18, pp. 1-31, 2010. 

[18] R. L. Rardin, Optimization in Operations Research, Prentice Hall, 

Upper Saddle River, New Jersey, 1998. 

[19] P. Santibáñez, M. Begen, D. Atkins, “Surgical block scheduling in a 

system of hospitals: an application to resource and wait list management 

in a BC health authority,” Health Care Management Science, vol. 10, 

pp. 269-282, 2007. 

[20] I. B. Vermeulen, S. M. Bohte, S. G. Elkhuizen, J.S. Lameris, P.J.M. 

Bakker, and J.A. La Poutre, “Adaptive Resource Allocation for Efficient 

Patient Scheduling”, Artificial Intelligence in Medicine, vol. 46, no. 1, 

pp. 67-80, May 2009.  

[21] N. Wu, and M. C. Zhou, "Schedulability Analysis and Optimal 

Scheduling of Dual-Arm Cluster Tools with Residency Time Constraint 

and Activity Time Variation," IEEE Trans. on Automation Science and 

Engineering, vol. 9, no. 1, pp. 203-209, Jan. 2012. 

[22] M. B. Wright, “Speeding up the Hungarian algorithm”, Computers & 

Operations Research, vol. 17, no. 1, pp. 95-96, 1990. 

[23] H. Zhu and M.C. Zhou, “Role-Based Collaboration and its Kernel 

Mechanisms”, IEEE Trans. on SMC, Part C, vol. 36, no. 4, pp. 578-

589, July 2006. 

[24] H. Zhu and M.C. Zhou, “Role Transfer Problems and Algorithms”, 

IEEE Trans. on SMC, Part A, vol. 36, no. 6, pp. 1442-1450, Nov. 2008. 

[25] H. Zhu and M.C. Zhou, “M-M Role Transfer Problems and Solutions”, 

IEEE Trans. on SMC, Part A, vol. 39, no. 2, pp. 448-459, March 2009. 

[26] H. Zhu, and M. Zhou, “An Efficeint Solution to the Role Transfer 

Problem,” IEEE Trans. on SMC, Part A, vol.42, no.2, pp. 491-496, 

March 2012. 

[27] H. Zhu, M. Zhou, and R. Alkins, “Group Role Assignment via a Kuhn-

Munkres Algorithm-based Solution,” IEEE Trans. on SMC, Part A, 

vol.42, no. 3, 2012, pp. 739-750. 

 

Haibin Zhu (M’02-SM’04) is Full Professor of the Department of Computer 

Science and Mathematics, Director and Founder of Collaborative Systems 

Laboratory, Nipissing University, Canada. He has published 120+ research 

papers, four books and two book chapters. He is serving and served as co-

chair of the Technical Committee (TC) of Distributed Intelligent Systems of 

IEEE SMC Society, guest (co-) editor for 3 special issues of prestigious 

journals, and organization chairs for many IEEE conferences. He is a 

founding researcher of Role-Based Collaboration and Adaptive Collaboration. 

He is the receipt of many awards. His research interests include Collaboration 

Theory, Technologies, Systems, and Applications, Human-Machine Systems, 

Multi-Agent Systems, and Distributed Intelligent Systems. For more 

information please feel free to browse Dr. Zhu’s Website at 

http://faculty.nipissingu.ca/haibinz/. 

 

Ming Hou (M’05–SM’07) received the Ph.D. degree in human factors 

engineering from the University of Toronto, Toronto, ON, Canada, in 2002. 

He is currently a Defence Scientist and the Head of the Advanced Interface 

Group, Defence Research and Development Canada-Toronto, where he is 

responsible for providing informed decisions to the Canadian Forces on 

investment in and application of advanced technologies for operator machine 

interface requirements. His research interests include applied cognition, 

intelligent adaptive system design, virtual/mixed reality, supervisory control 

of uninhabited vehicles, and e-learning. Dr. Hou is a member of the Human 

Factors and Ergonomics Society and the Association of Computing 

Machinery. He was the Chair of the Symposium on Human Factors and 

Ergonomics at the 2009 IEEE Toronto International Conference Science and 

Technology for Humanity. He has been the Co-Chair of the International 

Symposium on Mixed and Virtual Reality since 2004. 
 

Chun Wang (M’06) received the B.Eng. degree in 1990 from Huazhong 

University of Science and Technology, China, and the M.E.Sc. and Ph.D. 

degrees in computer engineering in 2004 and 2008, respectively, from the 

University of Western Ontario, Canada.  He is currently an assistant professor 

at Concordia Institute for Information Systems Engineering, Concordia 

University, Montreal, Quebec, Canada. He worked as a software engineer and 

a project manager for The China National Petroleum Co. from 1990 to 2000. 

His research focuses on e-Supply Chain, e-Commerce, algorithmic 

mechanism design, and multi-agent systems. 

 

MengChu Zhou (S’88-M’90-SM’93-F’03) received his B.S. degree in 

Electrical Engineering  from Nanjing Univ. of Sci. and Tech., Nanjing, China 

in 1983, M.S. degree in Automatic Control from Beijing Inst. of Tech., 

Beijing, China in 1986, and Ph. D. degree in Computer and Systems 

Engineering from Rensselaer Polytechnic Inst., Troy, NY in 1990.  He joined 

New Jersey Inst. of Tech. (NJIT), Newark, NJ in 1990, and is currently a 

Professor of Electrical and Computer Engineering and the Director of 

Discrete-Event Systems Laboratory. He is presently a Professor at Tongji 

University, Shanghai, China. His research interests are in intelligent 

automation, lifecycle engineering and sustainability evaluation, Petri nets, 

wireless ad hoc and sensor networks, semiconductor manufacturing, Web 

service, workflow, and energy systems.  He has over 440 publications. He was 

invited to lecture in many countries and served as a plenary speaker for many 

int’l conferences.  He is a founding Editor of IEEE Press Book Series. He 

served as Associate Editor of IEEE Trans. on Robotics and Automation 

(1997-2000), and IEEE Trans. on Automation Sci. and Eng.(2004-2007), and 

is currently Editor of IEEE Trans. on Automation Sci. and Eng., and 

Associate Editor of IEEE Trans. on SMC-Part A and IEEE Trans. on 

Industrial Informatics. He served as Guest-Editor for many prestigious 

journals including IEEE Trans. on Industrial Electronics. He was General 

Chairs for many int’l conferences. Dr. Zhou has led or participated in projects 

with total budget over $10M. He was the recipient of many prestigious 

awards.  He was recently elevated to Fellow of American Association for the 

Advancement of Science (AAAS). For more information please feel free to 

browse Dr. Zhou’s Website at http://web.njit.edu/~zhou/. 

 

http://www-01.ibm.com/%20software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/%20software/integration/optimization/cplex-optimizer/
http://faculty.nipissingu.ca/haibinz/
http://web.njit.edu/~zhou/

