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In a series of recent papers, one of us has analyzed in some details a class of
elementary excitations called pseudo-bosons. They arise from a special defor-
mation of the canonical commutation relation [a, a†] = 11, which is replaced by
[a, b] = 11, with b not necessarily equal to a†. Here, after a two-dimensional exten-
sion of the general framework, we apply the theory to a generalized version of the
two-dimensional Hamiltonian describing Landau levels. Moreover, for this system,
we discuss coherent states and we deduce a resolution of the identity. We also con-
sider a different class of examples arising from a classical system, i.e., a damped
harmonic oscillator. C© 2010 American Institute of Physics. [doi:10.1063/1.3514196]

I. INTRODUCTION

In a series of recent papers1–4 one of us (FB) has investigated some mathematical aspects
of the so-called pseudo-bosons, originally introduced by Trifonov in Ref. 5. They arise from the
canonical commutation relation [a, a†] = 11 upon replacing a† by another (unbounded) operator
b not (in general) related to a: [a, b] = 11. We have shown that N = ba and N † = a†b† can be
both diagonalized and that their spectra coincide with the set of natural numbers (including 0),
N0. However, the sets of related eigenvectors are not orthonormal bases, but, nevertheless, they are
automatically biorthogonal. In all the examples considered so far, they are bases of the Hilbert space
of the system, H, and, in some cases, they turn out to be Riesz bases.

To our knowledge, not many physical consequences of this construction have been discussed up
to now. For this reason, extending what two of us (STA and FB) have already done in Ref. 6, we will
construct here a two-dimensional (2D) model which fits the main assumptions of the construction
given in Ref. 1 and which is physically motivated. We will further consider a second example, again
physically motivated, arising from the quantization of the damped harmonic oscillator.7

This paper is organized as follows. In Sec. II, we introduce and discuss 2D pseudo-bosons
analyzing some of their mathematical properties and their related coherent states. In Sec. III, we
introduce the generalized Landau levels (GLL) and we discuss them in the context of Sec. II.
Sec. IV is devoted to our analysis of the quantum damped harmonic oscillator, while Sec. V contains
our conclusions.

II. THE COMMUTATION RULES

In this section, we will construct a 2D version of what originally proposed in Ref. 1, to which
we refer for further comments on the 1D situation.

a)Electronic mail: bagarell@unipa.it.
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Let H be a given Hilbert space with scalar product 〈., .〉 and related norm ‖.‖. We introduce two
pairs of operators, a j and b j , j = 1, 2, acting on H and satisfying the following commutation rules:

[a j , b j ] = 11, and [a�

1, a�

2] = [a�

1, b�

2] = [b�

1, b�

2] = 0, (2.1)

where x� stands for x or x† (x = a j , b j ). Of course, they collapse to the canonical commutation rela-
tions for independent modes if b j = a†

j , j = 1, 2. It is well known that a j and b j are unbounded op-
erators, so they cannot be defined on all of H. Following Ref. 1, and writing D∞(X ) := ∩p≥0 D(X p)
(the common domain of all the powers of the operator X ), we consider the following:

Assumption 1. There exists a non-zero ϕ0,0 ∈ H such that a jϕ0,0 = 0, j = 1, 2, and
ϕ0,0 ∈ D∞(b1) ∩ D∞(b2).

Assumption 2. There exists a non-zero �0,0 ∈ H such that b†
j�0,0 = 0, j = 1, 2, and

�0,0 ∈ D∞(a†
1) ∩ D∞(a†

2).
Under these assumptions, we can introduce the following vectors in H:

ϕn,l = 1√
n!l!

bn
1 bl

2 ϕ0,0 and �n,l = 1√
n!l!

(a†
1)n(a†

2)l�0,0, n, l ≥ 0. (2.2)

Let us now define the unbounded operators N j := b j a j and N j := N †
j = a†

j b
†
j , j = 1, 2. It is

possible to check that ϕn,l belongs to the domain of N j , D(N j ), and �n,l ∈ D(N j ), for all n, l ≥ 0
and j = 1, 2. Moreover,

N1ϕn,l = nϕn,l , N2ϕn,l = lϕn,l , N1�n,l = n�n,l , N2�n,l = l�n,l . (2.3)

Under the above assumptions, it is easy to check that 〈�n,l , ϕm,k〉 = δn,mδl,k〈�0,0, ϕ0,0〉 for
all n, m, l, k ≥ 0, which, if we choose the normalization of �0,0 and ϕ0,0 in such a way that
〈�0,0, ϕ0,0〉 = 1, becomes

〈�n,l , ϕm,k〉 = δn,mδl,k, ∀n, m, l, k ≥ 0. (2.4)

This means that the sets F� = {�n,l , n, l ≥ 0} and Fϕ = {ϕn,l , n, l ≥ 0} are biorthogonal and,
because of this, the vectors of each set are linearly independent. If we now call Dϕ and D� ,
respectively, the linear span of Fϕ and F� , and Hϕ and H� their closures, then

f =
∞∑

n,l=0

〈�n,l , f 〉ϕn,l , ∀ f ∈ Hϕ, h =
∞∑

n,l=0

〈ϕn,l , h〉�n,l , ∀h ∈ H�. (2.5)

What is not in general ensured is that the Hilbert spaces introduced so far all coincide, i.e., that
Hϕ = H� = H. Indeed, we can only state that Hϕ ⊆ H and H� ⊆ H. However, motivated by the
examples already discussed in the literature and anticipating the discussion in Sec. III, we make the
following assumption.

Assumption 3. The above Hilbert spaces all coincide: Hϕ = H� = H,
which was introduced in Ref. 1. This means, in particular, that both Fϕ and F� are bases of H. Let
us now introduce the operators Sϕ and S� via their action, respectively, on F� and Fϕ :

Sϕ�n,k = ϕn,k, S�ϕn,k = �n,k, (2.6)

for all n, k ≥ 0, which also imply that �n,k = (S� Sϕ)�n,k and ϕn,k = (Sϕ S�)ϕn,k , for all n, k ≥ 0.
Hence,

S� Sϕ = Sϕ S� = 11 ⇒ S� = S−1
ϕ . (2.7)

In other words, both S� and Sϕ are invertible and one is the inverse of the other. Furthermore, we
can also check that they are both positive, well defined, and symmetric.1 Moreover, at least formally,
it is possible to write these operators in the bra-ket notation as

Sϕ =
∞∑

n,k=0

|ϕn,k >< ϕn,k |, S� =
∞∑

n,k=0

|�n,k >< �n,k |. (2.8)
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These expressions are only formal, at this stage, since the series may not converge in the uniform
topology and the operators Sϕ and S� could be unbounded. This aspect was exhaustively discussed
in Ref. 1, where the role of Riesz bases,19 in relation with the boundedness of Sϕ and S� , has been
discussed in detail. We shall come back to this aspect later. However, we shall not assume here,
except when explicitly stated, what has been called Assumption 4 in Ref. 1, since in most examples
considered so far, and in what we are going to discuss in Sec. III, this assumption is not satisfied.

It is interesting to remark that, as in Ref. 1, even these 2D pseudo-bosons give rise to interesting
intertwining relations among non-self-adjoint operators (see Ref. 3 and references therein). In
particular, it is easy to check that

S� N j = N j S� and N j Sϕ = Sϕ N j , (2.9)

j = 1, 2. This is related to the fact that the spectra of, say, N1 and N1 coincide and that their
eigenvectors are related by the operators Sϕ and S� , in agreement with the literature on intertwining
operators8, 9 and on pseudo-Hermitian quantum mechanics (see Ref. 10 and references therein).

A. Coherent states

As it is well known, there exist several different, and not always equivalent, ways to define
coherent states.11, 12 In this paper, we will adopt the following definition, generalizing Ref. 1. Let z1

and z2 be two complex variables, z1, z2 ∈ D (some domain in C), and let us introduce the following
operators:

U j (z j ) = ez j b j −z j a j = e−|z j |2/2 ez j b j e−z j a j , Vj (z j ) = ez j a†
j −z j b†

j = e−|z j |2/2 ez j a†
j e−z j b†

j ,

(2.10)
j = 1, 2, and

U (z1, z2) := U1(z1) U2(z2), V (z1, z2) := V1(z1) V2(z2), (2.11)

and the following vectors:

ϕ(z1, z2) = U (z1, z2)ϕ0,0, �(z1, z2) = V (z1, z2) �0,0. (2.12)

Remarks. (1) Due to the commutation rules for the operators b j and a j , we clearly have
[U1(z1), U2(z2)] = [V1(z1), V2(z2)] = 0.

(2) Since the operators U and V are, for generic z1 and z2, unbounded, definition (2.12) makes
sense only if ϕ0,0 ∈ D(U ) and �0,0 ∈ D(V ), a condition which will be assumed here. In Ref. 1, it
was proved that, for instance, this is so when Fϕ and F� are Riesz bases.

(3) The set D could, in principle, be a proper subset of C.
It is possible to write the vectors ϕ(z1, z2) and �(z1, z2) in terms of the vectors of F� and Fϕ as

ϕ(z1, z2) = e−(|z1|2+|z2|2)/2
∞∑

n,l=0

zn
1 zl

2√
n! l!

ϕn,l , �(z1, z2) = e−(|z1|2+|z2|2)/2
∞∑

n,l=0

zn
1 zl

2√
n! l!

�n,k .

(2.13)

These vectors are called coherent since they are eigenstates of the lowering operators. Indeed
we can check that

a jϕ(z1, z2) = z jϕ(z1, z2), b†
j�(z1, z2) = z j�(z1, z2), (2.14)

for j = 1, 2 and z j ∈ D. It is also a standard exercise, putting z j = r j eiθ j , to check that the following
operator equalities hold:

1

π2

∫
C

dz1

∫
C

dz2 |ϕ(z1, z2) >< ϕ(z1, z2)| = Sϕ,

1

π2

∫
C

dz1

∫
C

dz2 |�(z1, z2) >< �(z1, z2)| = S�, (2.15)
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as well as

1

π2

∫
C

dz1

∫
C

dz2 |ϕ(z1, z2) >< �(z1, z2)| = 1

π2

∫
C

dz1

∫
C

dz2 |�(z1, z2) >< ϕ(z1, z2)| = 11,

(2.16)
which are written in convenient bra-ket notation. It should be said that these equalities are, most of
the times, only formal results. Indeed it is not difficult to construct examples in which something goes
wrong and, for instance, the resolution of the identity for the pair ϕ(z1, z2) and �(z1, z2) does not
hold as expected. As the following theorem implies, this is a reflection of the fact that the operators
Sϕ and S� are unbounded, or, equivalently, of the fact that Fϕ and F� are not Riesz bases. Indeed
we have the following general result, which was essentially stated in Ref. 2 for a concrete example
of 1D pseudo-bosons, and which we extend here to the general setting.

Theorem 1. Let a j , b j , Fϕ , F� , ϕ(z1, z2) and �(z1, z2) be as above. Let us assume that (1)
Fϕ , F� are Riesz bases; (2) Fϕ , F� are biorthogonal. Then (2.16) holds true.

The proof of this theorem does not differ significantly from that given in Ref. 2, so that it
will not be repeated here. The meaning of the theorem is the following: suppose that following the
above construction the coherent states we get do not produce a resolution of the identity. Then, since
Fϕ and F� are automatically biorthogonal, they cannot be Riesz bases (neither one of them)!
However, this theorem does not hold in general for other types of coherent states. We will come
back on this point in the next section.

III. GENERALIZED LANDAU LEVELS

The Hamiltonian of a single electron, moving on a 2D plane and subject to a uniform magnetic
field along the z-direction, is given by the operator

H ′
0 = 1

2
(p + A(r ))2 = 1

2

(
px − y

2

)2
+ 1

2

(
py + x

2

)2
, (3.1)

where we have used minimal coupling and the symmetric gauge �A = 1
2 (−y, x, 0).

The spectrum of this Hamiltonian is easily obtained by first introducing the new variables

P ′
0 = px − y/2, Q′

0 = py + x/2. (3.2)

In terms of P ′
0 and Q′

0, the single electron Hamiltonian, H ′
0, can be rewritten as

H ′
0 = 1

2

(
Q′2

0 + P ′2
0

)
. (3.3)

On a classical level, the transformation (3.2) is part of a canonical map from the phase space variables
(x, y, px , py) to (Q0, P0, Q′

0, P ′
0), where

P0 = py − x/2, Q0 = px + y/2, (3.4)

which can be used to construct a second Hamiltonian H0 = 1
2 (Q2

0 + P2
0 ).

The corresponding quantized operators satisfy the commutation relations:

[x, px ] = [y, py] = i, [x, py] = [y, px ] = [x, y] = [px , py] = 0,

and

[Q0, P0] = [Q′
0, P ′

0] = i, [Q0, P ′
0] = [Q′

0, P0] = [Q0, Q′
0] = [P0, P ′

0] = 0, (3.5)

so that [H0, H ′
0] = 0.

We refer to Ref. 13 and references therein for a discussion on how the corresponding wave
functions look in different representations. In Ref. 6, two of us (STA and FB) have considered, in the
context of supersymmetric (SUSY) quantum mechanics, an extended version of H ′

0, an extension
needed due to the fact that for the Hamiltonian of the standard Landau levels (SLLs), there is
essentially no difference between H ′

0 and its SUSY partner Hamiltonian.

Downloaded 28 Jan 2013 to 132.205.7.55. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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The extension constructed in Ref. 6 is very natural and simple: introducing the vector valued
function �W0 = − 1

2 (x, y, 0) = (W0,1, W0,2, 0), we may rewrite the operators in (3.2) and (3.4) as

P ′
0 = px + W0,2, Q′

0 = py − W0,1, P0 = py + W0,1, Q0 = px − W0,2. (3.6)

This definition was extended in Ref. 6 as follows:

p′ = px + W2, q ′ = py − W1, p = py + W1, q = px − W2, (3.7)

introducing a vector superpotential �W = (W1, W2, 0).
Here, since we are interested in constructing 2D pseudo-bosons, it is convenient to introduce

two (in general) complex and different vector superpotentials (this is a slight abuse of language!)
�W = (W1, W2) and �V = (V1, V2), and we put

P ′ = px + W2, Q′ = py − W1, P = py + V1, Q = px − V2. (3.8)

Our notation is the following: all operators with suffix 0 are related to the SLL. The same operators,
without the 0, have to do with our generalized model, i.e., with the GLL. Notice that these operators
are, in general, not self-adjoint. Hence, while for example P0 = P†

0 , we may have P �= P†, depending
on the choice of V1. The superpotentials should also be chosen in such a way that, first of all,
Q, P , Q′, and P ′ satisfy the same commutation rules (3.5) as their 0-counterparts:

[Q, P] = [Q′, P ′] = i, [Q, P ′] = [Q′, P] = [Q, Q′] = [P, P ′] = 0. (3.9)

These impose certain conditions on �V and �W :

W1,x = V2,y, W2,x = −V2,x , W1,y = −V1,y, W2,y = V1,x , (3.10)

as well as

V1,x + V2,y = W1,x + W2,y = −1. (3.11)

The subscripts x, y denote differentiation with respect to that variable. Hence, as it was already clear
at the beginning, the two different vector superpotentials must be related to each other. Notice that
the standard choice trivially satisfies all these conditions. We now introduce the following operators:

A′ = α′(Q′ + i P ′), B ′ = γ ′(Q′ − i P ′), A = α(Q + i P), B = γ (Q − i P), (3.12)

where α γ = 1
2 and α′ γ ′ = 1

2 . Incidentally, we recall that for the SLL the same linear combinations
as in (3.12) are found with α = α′ = γ = γ ′ = 1√

2
and with the operators Q, P, Q′, and P ′ replaced,

respectively, by Q0, P0, Q′
0, and P ′

0. Thus, the operators generalizing the Landau Hamiltonians in
Ref. 6 are

h′ = 1

2
(px + W2)2 + 1

2
(py − W1)2, h = 1

2
(px − V2)2 + 1

2
(py + V1)2, (3.13)

which can be rewritten as

h′ = B ′ A′ − 1

2
11, h = B A − 1

2
11. (3.14)

The operators in (3.12) are pseudo-bosonic since they satisfy the following commutation rules:

[A, B] = [A′, B ′] = 11, (3.15)

while all the other commutators are trivial. It is important to observe that, since A† = α(Q† − i P†),
and since Q and P are not necessarily self-adjoint, in general B �= A†. Analogously, in general
B ′ �= A′†. Similar conclusions can be deduced starting from the pairs B†, A† and B ′†, A′†.

At this stage, it is interesting to say few words on the physical meaning of our model. In other
words: what is the physical meaning of going from the SLL to these GLLs? The answer is the
following: suppose we interpret �W and �V in (3.13) as two different (but related) vector potentials
describing two possibly different magnetic fields. These potentials are �A↑ = (W2,−W1, 0) for h′

Downloaded 28 Jan 2013 to 132.205.7.55. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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and �A↓ = (−V2, V1, 0) for h (the reason for this notation will be clear in a moment). Now, computing
the associated magnetic fields from these vectors, we get

�B↑ = �∇ ∧ �A↑ = −k̂(∂x W1 + ∂y W2) = k̂, �B↓ = �∇ ∧ �A↓ = k̂(∂x V1 + ∂y V2) = −k̂,

because of the equalities in (3.11). Hence, for any possible choice of superpotentials, h′ and h,
respectively, describe an electron in an up and in a down uniform magnetic field, as the original
Hamiltonians H ′

0 and H0. Incidentally, this suggests that we should further analyze this model in the
light of the modular structure, recently considered in Ref. 14 in the context of SLLs.

The following are some possible choices of �W and �V :
Choice 1 (SLL). Let us take V1(x, y) = W1(x, y) = − x

2 , V2(x, y) = W2(x, y) = − y
2 . If we

further take α = γ = α′ = γ ′ = 1√
2
, we recover exactly the usual situation.6 Moreover, we go back

to bosonic rather than pseudo-bosonic commutation relations.
Choice 2 (Perturbations of the SLL). First, we consider a symmetric perturbation. For that we

take V1(x, y) = − x
2 + v1(y), V2(x, y) = − y

2 + v2(x), where v1 and v2 are arbitrary (but sufficiently
regular) functions. Hence, we get, apart from inessential additive constants, W1(x, y) = − x

2 − v1(y),
W2(x, y) = − y

2 − v2(x). In order not to trivialize the situation, it is also necessary to take v1(y) and
v2(x) complex (at least one of them): this is the way to get pseudo-bosons rather than simple bosons.

A nonsymmetric version of this perturbation can be constructed by just taking V1(x, y) =
−a1 x + v1(y), V2(x, y) = −a2 y + v2(x), with a1 + a2 = 1.

Choice 3 (A general solution). We take V1(x, y) = −x + v1(y) + ∫
∂V2(x,y)

∂y dx , where V2(x, y)
is any function for which this definition makes sense. In particular, for instance, if we
take V2(x, y) = exy , then V1(x, y) = −x + v1(y) + 1

y2 (x y − 1) exy and, consequently, W1(x, y) =
−v1(y) − 1

y2 (x y − 1) exy and W2(x, y) = −y − exy .

If we rather take V2(x, y) = xn yk , n, k = 1, 2, 3, . . ., then V1(x, y) = −x + v1(y) −
k

n+1 xn+1 yk−1, and so on.

A. A perturbation of the SLL

We will now focus our attention on Choice 2 above, with an explicit choice of v1(y) and v2(x),
and apply the construction given in Sec. II. Let

W1(x, y) = − x

2
− ik1 y, W2(x, y) = − y

2
− ik2x, (3.16)

with k1 and k2 real and not both zero (not to go back to SLLs). In this case, the operators in (3.12)
assume the following differential expressions:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A′ = α′(∂x − i∂y + x
2 (1 + 2k2) − iy

2 (1 − 2k1)
)
,

B ′ = γ ′( − ∂x − i∂y + x
2 (1 − 2k2) + iy

2 (1 + 2k1)
)
,

A = α
( − i∂x + ∂y − i x

2 (1 + 2k2) + y
2 (1 − 2k1)

)
,

B = γ
( − i∂x − ∂y + i x

2 (1 − 2k2) + y
2 (1 + 2k1)

)
.

(3.17)

In order to check Assumptions 1 and 2 of the previous section, we first look for vectors ϕ0,0(x, y)
and �0,0(x, y) satisfying Aϕ0,0(x, y) = 0 and B†�0,0(x, y) = 0. We get⎧⎨

⎩
ϕ0,0(x, y) = Nϕ exp

{
− x2

4 (1 + 2k2) − y2

4 (1 − 2k1)
}

�0,0(x, y) = N� exp
{
− x2

4 (1 − 2k2) − y2

4 (1 + 2k1)
}

,
(3.18)

where Nϕ and N� are normalization constants, which are chosen in such a way that 〈ϕ0,0, �0,0〉 = 1.
Of course, in order for this result to make sense, the two functions must belong to the Hilbert space
H we are considering here, i.e., L2(R2). This imposes some constraints on k1 and k2: − 1

2 < k j < 1
2 ,

j = 1, 2.
It is possible to check that the same functions also satisfy A′ϕ0,0(x, y) = 0 and

B ′†�0,0(x, y) = 0. It is now evident that Assumptions 1 and 2 are satisfied. Indeed, the action of,
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say, Bn
1 on ϕ0,0(x, y) simply produces some polynomial [see (3.21) below] of the nth degree times

a Gaussian: this resulting function belongs clearly to L2(R2) for all n. This fact allows us to define
the following functions:

ϕn,l(x, y) = B ′n Bl

√
n! l!

ϕ0,0(x, y), and �n,l(x, y) = (A′†)n (A†)l

√
n! l!

�0,0(x, y), (3.19)

where n, l = 0, 1, 2, 3, . . .. As we have seen in the previous section, the sets F� = {�n,l(x, y), n,

l ≥ 0} and Fϕ = {ϕn,l(x, y), n, l ≥ 0} are biorthogonal. In fact, with our previous choice of the
normalization constants, we have

〈�n,l , ϕm,k〉 = δn,mδl,k, ∀n, m, l, k ≥ 0. (3.20)

Of course these vectors diagonalize the operators h = N − 1
2 11 and h′ = N ′ − 1

2 11, as well as their
adjoints h† = N − 1

2 11 and h′† = N′ − 1
2 11, where N = B A, N ′ = B ′ A′, N = N † and N′ = N ′†.

We find

h′ϕn,l =
(

n − 1

2

)
ϕn,l , h ϕn,l =

(
l − 1

2

)
ϕn,l ,

and

h′†�n,l =
(

n − 1

2

)
�n,l , h†�n,l =

(
l − 1

2

)
�n,l .

The next step consists in proving that the sets Fϕ and F� are complete in H. This is a consequence
of the fact that (i) the set Fh := {hn,m(x, y) := xn ym ϕ0,0(x, y), n, m ≥ 0} is complete in L2(R2);
(ii) each function of Fh can be written as a finite linear combination of some ϕi, j (x, y). Then it is
clear that, if by assumption f ∈ H is such that

〈
f, ϕi, j

〉 = 0 for all i and j , then
〈
f, hn,m

〉 = 0 for all
n and m, so that f = 0. Of course the same argument allows us to prove that F� is complete in H.

This result implies that also Assumption 3 of Sec. II is satisfied. Now we could introduce the
intertwining operators Sϕ and S� and check, among other properties, if they are bounded or not.
This is related to the fact that, as we will first show, the sets Fϕ and F� are not Riesz bases, except
when k1 = k2 = 0 [see (3.18)]. To check this claim, we introduce the orthonormal basis of L2(R2)
arising from the SLL,6

F (0)
ϕ :=

{
ϕ

(0)
n,l (x, y) := B ′n

0 Bl
0√

n! l!
ϕ

(0)
0,0(x, y), n, m ≥ 0

}
,

where ϕ
(0)
0,0(x, y) = 1√

2π
e−(x2+y2)/4 is the vacuum of A0 = 1√

2
(Q0 + i P0) and A′

0 = 1√
2
(Q′

0 + i P ′
0).

Recall that, for SLLs, B ′
0 = A′†

0 and B0 = A†
0.

To prove now that Fϕ is not a Riesz basis, we will show that an operator Tϕ exists mapping F (0)
ϕ

into Fϕ , that Tϕ is invertible, but Tϕ and/or T −1
ϕ are not bounded. Finding this operator is simple.

Indeed, it is easy to first check that

ϕ
(0)
n,0(x, y) = 1√

2n n!
(x + iy)n ϕ

(0)
0,0(x, y), ϕ

(0)
0,l (x, y) = i l

√
2l l!

(x − iy)l ϕ
(0)
0,0(x, y) (3.21)

and

ϕn,0(x, y) = γ ′n
√

n!
(x + iy)n ϕ0,0(x, y), ϕ0,l (x, y) = (iγ )l

√
l!

(x − iy)l ϕ0,0(x, y), (3.22)

for all n, l ≥ 0. Similar formulae are deduced for �n,0(x, y) and �0,l (x, y). From a comparison
between (3.21) and (3.22), it is clear that Tϕ can exist only if γ = γ ′ = 1√

2
. Assuming this to be so,

we have

ϕn,0(x, y)

ϕ
(0)
n,0(x, y)

= ϕ0,l (x, y)

ϕ
(0)
0,l (x, y)

= ϕ0,0(x, y)

ϕ
(0)
0,0(x, y)

, (3.23)
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for all n, l ≥ 0. This suggest that we define Tϕ as the ratio in the right-hand side of this equality:

Tϕ = ϕ0,0(x, y)

ϕ
(0)
0,0(x, y)

=
√

2π Nϕ e− x2

2 k2+ y2

2 k1 . (3.24)

Of course, we have still to check that with this definition ϕn,l(x, y) = Tϕϕ
(0)
n,l (x, y) holds also if both

n and l are not zero. This can be proved by observing that, for all n ≥ 0, the following intertwining
relation holds:

B ′nTϕ = Tϕ(A′†
0 )n. (3.25)

Therefore, since

ϕn,l (x, y) = Tϕϕ
(0)
n,l (x, y) ⇔ B ′nϕ0,l = Tϕ(A′†

0 )nϕ
(0)
0,l ⇔ B ′nTϕϕ

(0)
0,l = Tϕ(A′†

0 )nϕ
(0)
0,l ,

our claim immediately follows. Formula (3.25) can be proved by induction on n. The inverse of

Tϕ is T −1
ϕ = 1√

2π Nϕ

e
x2

2 k2− y2

2 k1 . It is clear that both Tϕ and/or T −1
ϕ are unbounded on L2(R2) for

all possible choices of k1 and k2 in (− 1
2 , 1

2 ), except when k1 = k2 = 0, i.e., in the case of the SLL.
Hence, for well known general reasons,15, 16 Fϕ cannot be a Riesz basis.

Essentially, the same arguments also show that F� is not a Riesz basis, either. Indeed, an
operator T� mapping F (0)

ϕ into F� can be found and it is

T� = �0,0(x, y)

ϕ
(0)
0,0(x, y)

=
√

2π N� e
x2

2 k2− y2

2 k1 . (3.26)

This operator satisfies �n,l(x, y) = T�ϕ
(0)
n,l (x, y) for all possible choices of n and l greater or equal

to zero. Therefore, since ϕn,l (x, y) = Tϕϕ
(0)
n,l (x, y) = (TϕT −1

� )�n,l(x, y), the operators Sϕ and S� in
(2.6) can be easily identified and look like

Sϕ = TϕT −1
� = Nϕ

N�

e−x2k2+y2k1 , S� = S−1
ϕ = T� T −1

ϕ = N�

Nϕ

ex2k2−y2k1 . (3.27)

Notice that for any choice of k1 and k2 in (− 1
2 , 1

2 ), other than when (k1, k2) = (0, 0), at least one of
these operators is unbounded.

We will now construct a set of bicoherent states for our GLL. However, rather than using the
definitions in (2.12), it is convenient to look for solutions in the (x, y)-space of the eigenvalue
equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Aϕ̃(x, y; z, z′) = zϕ̃(x, y; z, z′)
A′ϕ̃(x, y; z, z′) = z′ϕ̃(x, y; z, z′)
B†�̃(x, y; z, z′) = z�̃(x, y; z, z′)
B ′†�̃(x, y; z, z′) = z′�̃(x, y; z, z′)

(3.28)

where, as suggested by our previous results, we take α = α′ = γ = γ ′ = 1√
2

in (3.17). The square
integrable solutions of the differential equations in (3.28) are{

ϕ̃(x, y; z, z′) = NA(z, z′) e−[(1+2k2)x2−(1−2k1)y2]/4 e
1√
2

[(z′+i z)x+(z+i z′)y]

�̃(x, y; z, z′) = NB(z, z′) e−[(1−2k2)x2−(1+2k1)y2]/4 e
1√
2

[(z′+i z)x+(z+i z′)y]
, (3.29)

where z and z′ are complex parameters.
The normalization is fixed by requiring that

〈ϕ̃(x, y; z, z′), �̃(x, y; z, z′)〉L2(R2) = 〈ϕ(z, z′), �(z, z′)〉H,

where in the right-hand side the coherent states introduced in (2.12), and living in the Hilbert space
H, appear. Notice that 〈ϕ(z, z′), �(z, z′)〉H = 1 for all z and z′ in D. Then, we find, with a suitable
choice of phases,

NA(z, z′)NB(z, z′) = 1

2π
e−|z−i z′ |2 .
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Notice that these states reduce to the standard 2D Gaussian 1√
2π

e−(x2+y2)/4 when z = z′ = k1 =
k2 = 0, i.e., for the SLL and for eigenvalues of the lowering operators, both equal to zero. It is now
a straightforward computation to check the resolution of the identity for these states

1

π2

∫
C2

dzdz′|ϕ̃(x, y; z, z′) >< �̃(x, y; z, z′)| = 11 (3.30)

where 11 is the identity in L2(R2).
This result is by no means in disagreement with the theorem stated in Sec. II. The first reason is

that it is not clear that the functions ϕ̃(x, y; z, z′) and �̃(x, y; z, z′) coincide with ϕ(z, z′) and �(z, z′),
for which the theorem was stated. The second, and more important, reason is that the theorem gives
only a sufficient condition. Hence, if we would be able to prove that ϕ̃(x, y; z, z′) = ϕ(z, z′) and
�̃(x, y; z, z′) = �(z, z′), this computation will provide a nice counterexample showing that the
conditions of the theorem are, in fact, only sufficient and not necessary. This is work in progress.

IV. DAMPED HARMONIC OSCILLATOR

An interesting example of 2D pseudo-bosons is provided by the damped harmonic oscilla-
tor (DHO). In Ref. 7, the authors have discussed a possible approach to the quantization of the
DHO. This is a nonconservative system, so that a Hamiltonian approach requires a certain amount
of care. The approach, which was proposed already in 1977,17 is to consider the DHO as a part
of a larger system, involving also a second oscillator, which is forced and which takes the en-
ergy lost by the DHO, so that this larger system is conservative. The original equation of motion,
mẍ + γ ẋ + kx = 0, is therefore complemented by a second virtual equation, mÿ − γ ẏ + ky = 0,
and the classical lagrangian for the system looks like L = mẋ ẏ + γ

2 (x ẏ − ẋ y) − kxy, which cor-
responds to a classical Hamiltonian H = px ẋ + py ẏ − L = 1

m (px + γ
y
2 )(py − γ x

2 ) + kxy, where
px = ∂L

∂ ẋ and py = ∂L
∂ ẏ are the conjugate momenta. The introduction of pseudo-bosons is based on

two successive changes of variables and on a canonical quantization. First of all, we introduce the
new variables x1 and x2 via x = 1√

2
(x1 + x2), y = 1√

2
(x1 − x2). Then L = 1

2 m(ẋ2
1 − ẋ2

2 ) + γ

2 (x2 ẋ1 −
x1 ẋ2) − k

2 (x2
1 − x2

2 ) and H = 1
2m (p1 − γ x2

2 )2 + 1
2m (p2 + γ x1

2 )2 + k
2 (x2

1 − x2
2 ). The second change of

variable is the following: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p+ =
√

ω+
2m�

p1 + i
√

m�ω+
2 x2,

p− =
√

ω−
2m�

p1 − i
√

m�ω−
2 x2,

x+ =
√

m�
2ω+

x1 + i
√

1
2m�ω+

p2,

x− =
√

m�
2ω−

x1 − i
√

1
2m�ω−

p2,

(4.1)

where we have introduced � =
√

1
m (k − γ 2

4m ) and the two following complex quantities ω± =
� ± i γ

2m . In the rest of the section, we will assume that k ≥ γ 2

4m , so that � is real. Up to now, we are still
at a classical level, so that ω+ = ω−, p+ = p−, x+ = x−, and consequently, see below, H+ = H−
and H = H . Hence, H is a real Hamiltonian. Indeed, with these definitions, the Hamiltonian looks
like the Hamiltonian of a 2D harmonic oscillator

H = 1

2
(p2

+ + ω2
+x2

+) + 1

2
(p2

− + ω2
−x2

−) =: H+ + H−

at least formally.
At this stage, we quantize canonically the system7: we require that the following commutators

are satisfied:

[x+, p+] = [x−, p−] = i11, (4.2)

all the other commutators being trivial. We also have to require that p†
+ = p− and that x†

+ = x−,
which are the quantum version of the compatibility conditions above. The pseudo-bosons now
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appear: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a+ =
√

ω+
2

(
x+ + i p+

ω+

)
,

a− =
√

ω−
2

(
x− + i p−

ω−

)
,

b+ =
√

ω+
2

(
x+ − i p+

ω+

)
,

b− =
√

ω−
2

(
x− − i p−

ω−

)
,

(4.3)

and indeed we have [a+, b+] = [a−, b−] = 11, all the other commutators being zero. Notice also
that b+ = a†

− and b− = a†
+. Moreover, H can be written in term of the operators N± = b±a± as

H = ω+N+ + ω−N− + ω++ω−
2 11. So, the Hamiltonian of the quantum DHO is simply written in

terms of pseudo-bosonic operators.

A. About Assumptions 1–3

This system provides a nontrivial example of pseudo-bosonic operators, which do not satisfy
any of the Assumptions 1–3 of Sec. II. To show this, we first observe that a possible representation
of the operators in (4.2) is the following:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x+ = 1

 δ−δ 


(
 py + δ x),

x− = −1

 δ−δ 


(
 py + δ x),

p+ = 
 px + δ y,

p− = 
 px + δ y,

(4.4)

for all choices of 
 and δ such that 
 δ �= δ 
. Here, x , y, px and py are pairwise conjugate
self-adjoint operators: [x, px ] = [y, py] = i11. Notice that these operators also satisfy the compat-
ibility conditions p†

+ = p− and x†
+ = x−. Hence it is natural to represent x and y as the standard

multiplication operators and px and py as −i ∂
∂ x = −i ∂x and −i ∂

∂ y = −i ∂y . Then, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a+ =
√

ω+
2

{(
β x + i δ

ω+
y
)

+
(



ω+

∂x − i α ∂y

)}
,

a− =
√

ω−
2

{(
β x + i δ

ω−
y
)

+
(



ω−

∂x − i α ∂y

)}
,

b+ =
√

ω+
2

{(
β x − i δ

ω+
y
)

−
(



ω+

∂x + i α ∂y

)}
,

b− =
√

ω−
2

{(
β x − i δ

ω−
y
)

−
(



ω−

∂x + i α ∂y

)}
,

(4.5)

where, to simplify the notation, we have introduced α = 



 δ−δ 

and β = δ


 δ−δ 

.

Remark. a different representation of x± and p± could be deduced using the results of Sec. III.
However, while the pseudo-bosonic commutation rules would be easily recovered, the compatibility
conditions x†

+ = x− and p†
+ = p− would be lost. Hence, this choice is not compatible with our

requirements.
Assumption 1 of Sec. II requires the existence of a square-integrable function ϕ0,0(x, y) such

that, first of all, a+ϕ0,0(x, y) = a−ϕ0,0(x, y) = 0. Analogously, Assumption 2 requires the existence
of a (possibly different) square-integrable function �0,0(x, y) such that, first of all, b†

+�0,0(x, y) =
b†

−�0,0(x, y) = 0. However, since b+ = a†
− and b− = a†

+, these two functions, if they exist, satisfy
the same differential equations. Hence, apart from a normalization constant, we can chose them
to be coincident. It is possible to check that a solution of a+ϕ0,0(x, y) = a−ϕ0,0(x, y) = 0 is the
following:

ϕ0,0(x, y) = N0 exp

{
− β ω+

2 

x2 + δ

2 α ω+
y2

}
. (4.6)
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Notice that, in order for this function to be a solution of both a+ϕ0,0(x, y) = 0 and a−ϕ0,0(x, y) = 0,
it is necessary and sufficient to have the following identity satisfied: ω+

ω−
= − δ

δ






. This is not a big

requirement, clearly. What is crucial, on the other hand, is that the function ϕ0,0(x, y), and �0,0(x, y)
should consequently be square integrable. This is possible only if �( β ω+

2

) > 0 and if, at the same

time, �( δ
α ω+

) < 0. Now, it is not hard to check that these two conditions are incompatible: if one
is verified, the other is not. Therefore, the conclusion is that, following the procedure we have
considered so far, Assumptions 1 and 2 are violated and, of course, Assumption 3 cannot even
be considered since it is meaningless. Of course, this does not mean that for the quantum DHO,
the construction proposed in Sec. II cannot be considered. It only means that with the choices we
have considered here, this is not possible. It could be possible, however, to look for some different
representation of the operators, satisfying the compatibility condition, and see if it is possible to
satisfy Assumptions 1–3. This is work in progress.

V. CONCLUSIONS

In this paper, we have constructed a physically motivated 2D family of pseudo-bosons arising
from a generalized version of the Landau levels. This generalization has been shown to be essentially
a gauge transformation. Coherent states have been constructed and the resolution of the identity has
been proved.

We have also considered a quantum damped harmonic oscillator: this provides a nice example
of a pseudo-bosonic system for which all the assumptions of Sec. II are violated. In conclusion,
many examples exist, see Sec. III and Refs. 1, 2, 5, and 18 among the others, in which Assumptions
1–3, and sometimes Assumption 4, are satisfied. But other examples exist as well for which, even if
pseudo-bosonic commutation rules are recovered, none of the Assumptions hold true. This suggests
to take care explicitly of these Assumptions when dealing with pseudo-bosons.
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