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ON THE ASYMPTOTICS OF DETERMINANT OF LAPLACIAN

AT THE PRINCIPAL BOUNDARY

OF THE PRINCIPAL STRATUM

OF THE MODULI SPACE OF ABELIAN DIFFERENTIALS

A. KOKOTOV

Abstract. Let X be a translation surface of genus g > 1 with 2g − 2 conical
points of angle 4π and let γ, γ′ be two homologous saddle connections of
length s joining two conical points of X and bounding two surfaces S+ and
S− with boundaries ∂S+ = γ − γ′ and ∂S− = γ′ − γ. Gluing the opposite
sides of the boundary of each surface S+, S− one gets two (closed) translation
surfaces X+, X− of genera g+, g−; g+ + g− = g. Let Δ, Δ+ and Δ− be
the Friedrichs extensions of the Laplacians corresponding to the (flat conical)
metrics on X , X+ and X− respectively. We study the asymptotical behavior
of the (modified, i.e. with zero modes excluded) zeta-regularized determinant
det∗ Δ as γ and γ′ shrink. We find the asymptotics

det∗ Δ ∼ κs1/2
Area (X )

Area (X+)Area (X−)
det∗ Δ+det∗ Δ−

as s → 0; here κ is a certain absolute constant admitting an explicit expression
through spectral characteristics of some model operators. We use the obtained
result to fix an undetermined constant in the explicit formula for det∗ Δ found

in an earlier work by the author and D. Korotkin.

1. Introduction

Let Hg(1, . . . , 1) (2g − 2 units) be the principal stratum of the moduli space
of Abelian differentials over compact Riemann surfaces of genus g. One defines
Hg(1, . . . , 1) as the moduli space of pairs (X , ω), where X is a compact Riemann
surface of genus g and ω is a holomorphic one-form (an Abelian differential) on
X with 2g − 2 zeros of multiplicity one. It is known ([13]) that Hg(1, . . . , 1) is a
connected complex orbifold of (complex) dimension 4g − 3.

Let a pair (X , ω) belong to Hg(1, . . . , 1). The holomorphic differential ω defines
the conformal flat conical metric |ω|2 on X . This metric has conical points of
angle 4π at the zeros of ω and trivial monodromy along any closed loop in X \
{conical points}. Thus, the 2-d manifold X equipped with metric |ω|2 becomes a
so-called translation surface.

To the metric |ω|2 one can associate the (positive) Laplace operator Δ|ω|2 (often
denoted below simply by Δ) with domain C∞

c (X \{conical points}). The Friedrichs
extension of Δ (from now on the notation Δ refers only to this selfadjoint operator
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5646 A. KOKOTOV

in the Hilbert space L2(X , |ω|2)) is known to have a discrete spectrum 0 = λ0 <
λ1 ≤ λ2 ≤ . . . of finite multiplicity. The operator zeta-function, defined for �t > 1
as

ζΔ(t) =
∞∑
j=1

λ−t
j ,

admits analytic continuation to C as a meromorphic function with the only pole
t = 1. The (modified) zeta-regularized determinant of the operator Δ is defined
via the relation log det∗ Δ = −ζ ′Δ(0).

If X is an elliptic curve, the Abelian differentials on X have no zeros; the moduli
space of Abelian differentials on Riemann surfaces of genus one is denoted by H1(∅).
Introduce the real-valued function F1 on H1(∅) via

H1(∅) � (X , ω) �→ F1(X , ω) = det∗ Δ|ω|2 .

In genus one the spectrum of the operator Δ is known explicitly and the direct
calculation of the value ζ ′Δ(0) (which essentially reduces to making use of the first
Kronecker limit formula) leads to the following expression (found in [20]; see also
[19]):

(1.1) F1(X , ω) = �(B/A)Area(X , |ω|2)|η(B/A)|4 ,

where A =
∮
a
ω, B =

∮
b
ω with {a, b} being a canonical basis of cycles on X ,

Area(X , |w|2) = |�(AB̄)|, and η is the Dedekind eta-function

η(σ) = exp

(
πiσ

12

)∏
n∈N

(
1− exp(2πinσ)

)
.

In [11] this classical result was generalized to the case of an arbitrary genus and an
explicit expression for the function

Hg(1, . . . , 1) � (X , ω) �→ Fg(X , ω) = det∗ Δ|ω|2

was found. To formulate this result we need to introduce some auxiliary objects.

Let {aα, bα}α=1,...,g be a canonical basis of cycles on X . Denote by X̂ a fundamental
polygon obtained via cutting the surface X along a system of 2g loops starting at
some chosen point of X and homologous to the basic cycles.

Introduce the basis of normalized Abelian differentials {vα} on X , the matrix of
corresponding b-periods B = (

∮
βα

vβ) and the vector of Riemann constants:

(1.2) KP
α =

1

2
+

1

2
Bαα −

g∑
β=1,β �=α

∮
aβ

(
vβ

∫ x

P

vα

)
,

where the interior integral is taken along a path which does not intersect ∂X̂ . Let
E(P,Q) be the Schottky-Klein prime form (see [7]).

As in [8] introduce

• the following holomorphic multi-valued (g/2,−g/2)-differential σ(P,Q):

(1.3) σ(P,Q) = exp

{
−

g∑
α=1

∮
aα

vα(R) log
E(R,P )

E(R,Q)

}
;

Licensed to Concordia Univ. Prepared on Mon Jan 28 15:15:39 EST 2013 for download from IP 132.205.7.55.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DETERMINANT OF LAPLACIAN AT THE PRINCIPAL BOUNDARY 5647

the right-hand side of (1.3) is a nonvanishing holomorphic g/2-differential

on X̂ with respect to P and a nonvanishing holomorphic (−g/2)-differential
with respect to Q;

• the following holomorphic multi-valued g(1− g)/2-differential on X :

(1.4) C(P ) =
1

W [v1, . . . , vg](P )

g∑
α1,...,αg=1

∂gΘ(KP )

∂zα1
. . . ∂zαg

vα1
. . . vαg

(P ) ,

where

(1.5) W(P ) := det1≤α,β≤g||v(α−1)
β (P )||

is the Wronskian determinant of holomorphic differentials at the point P .

Let (ω) =
∑2g−2

k=1 Pk be the divisor of the holomorphic differential ω and denote
by AP (·) the Abel map with the base point P . Then one has the relation

(1.6) A((ω)) + 2KP + Br+ q = 0

with some integer vectors r and q. Let us emphasize that vectors r, q as well as the
prime form and the differentials C and σ depend on the choice of the fundamental

polygon X̂ .
Now we are able to formulate the result from [11]. One has the relation

(1.7) Fg(X , ω) = δgdet�BArea(X , |ω|2)|τg(X , ω, {aα, bα})|2,
where δg is a constant depending only on genus g and τg(X , ω, {aα, bα}) is defined
up to a unitary multiplicative factor (and not a choice of the fundamental polygon!)
by the formula

(1.8) τ−6
g (X , ω, {aα, bα}) = e2πi〈r,K

P 〉C−4(P )

2g−2∏
k=1

σ(Pk, P ) {E(Pk, P )}(g−1) .

Here P is an arbitrary point of X and the integer vector r is defined by (1.6), the
values of the prime form and σ at the zeros Pk of the differential ω are calculated

in the local parameter xk(Q) =
√∫ Q

Pk
ω , and the values of the prime form and σ

at the point P are taken in the local parameter z(Q) =
∫ Q

ω; the expression (1.8)
is independent of the choice of P .

Remark 1. In case g = 1, using (1.1), the formula

C(P ) = 2πiη3(B/A)e−πi B
4A

from ([8], p. 21) and the relation KP = 1
2 +

B
2A (implying r = −1 in (1.6)) together

with (1.7) and (1.8), one gets the relation

(1.9) δ1 = (2π)−4/3 .

One of the main motivations of this paper is to fix the undetermined constant δg
in (1.7) for g > 1. To this end we are to study the asymptotics of det∗ Δ when two
zeros of the differential collide and the surface X degenerates to a nodal surface
with two irreducible components X+ and X−.

In the terminology of [6] we approach the principal boundary of Hg(1, . . . , 1),
shrinking two homologous saddle connections (i.e. geodesics, joining two colliding
zeros). One can think about this situation as follows. Let g+, g− ≥ 1 be integers
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5648 A. KOKOTOV

such that g+ + g− = g and let (X±, ω±) ∈ Hg±(1, . . . , 1) (2g± − 2 units). In-
troduce two straight cuts, [P+, P+(s)] and [P−, P−(s)], of equal length s: one on
the translation surface X+ and another on the translation surface X− (these cuts
should not contain the conical points). Identifying each shore of the cut on the
surface X+ with the corresponding shore of the cut on the surface X−, one gets a
translation surface X (s) of genus g = g++g− with 2g−2 = (2g+−2)+(2g−−2)+2
conical points of angle 4π: 2g+ − 2 of them, P+

1 , . . . , P+
g+ come from the surface

X+, the 2g−−2 points, P−
1 , . . . , P+

g− , come from the surface X− and the remaining

two conical points, Pr and Pl, are the endpoints of the cuts. One can see that the
points Pr and Pl are joined by two homologous saddle connections of length s on the
surface X (s); these saddle connections are just the former shores of the cuts. The
translation surface X (s) comes with the holomorphic one-form ω(s) having simple
zeros at conical points of X (s) and coinciding with ω± in X± \ [P±, P±(s)] ⊂ X (s).

So our goal is to study the asymptotics of det∗ Δ|ω(s)|2 as s → 0.
As we see, the degeneration scheme we encounter here is slightly different from

the usual one (see, e.g., [7], [17], [27]), where the family of degenerating Riemann
surfaces is obtained from two surfaces X+ and X− via the well-known plumbing
construction (one glues not the shores of the cuts as we do here but the annuli
A± = {s ≤ |z±| ≤ 1} ⊂ X± identifying the points z+ and z− such that z+z− = s).
Thus, one has to modify the results from ([7], [27]) concerning the asymptotical
behavior of basic holomorphic objects on the degenerating Riemann surface (in
particular those entering (1.8)) in order to serve a different degeneration scheme.
We do that in Section 2 where we closely follow Fay and Yamada (in fact we use a
certain hybrid of their approaches). After this task is completed it becomes possible
to calculate the asymptotics of τg(X (s), ω(s), {αα, bα}) from (1.8) as s → 0. The
result (obtained in subsection 2.4) looks as follows:
(1.10)

τg(X (s), ω(s), {αα, bα}) ∼
1√
2
s1/4τg+(X+, ω+, {α+

α , b
+
α})τg−(X−, ω−, {α−

α , b
−
α }) ;

here the canonical basis {αα, bα} on the surface X (s) is the union of the canonical
basis {α+

α , b
+
α} on X+ and the canonical basis {α−

α , b
−
α } on X−.

This result implies the asymptotics

(1.11) det∗ Δ|ω(s)|2 ∼ δg
2δg+δg−

s1/2
Area (X )

Area (X+)Area (X−)
det∗ Δ+det∗ Δ−

and in order to fix the constant δg it is sufficient to obtain the asymptotics of

det∗ Δ|ω(s)|2 for some special elements (X±
0 , ω±

0 ) of Hg±(1, . . . , 1) using another
method and then compare the coefficients in the two asymptotics. (It should be
noted that a similar program was recently realized by R. Wentworth for the deter-
minants of the Laplacian in the Arakelov metric in order to calculate the so-called
bosonization constants (see [22]).) This is done in Section 3. The key idea (picked
up by the author in a conversation with L. Hillairet) is the following: one can start
(in the case of even genus g = 2g0) with a translation surface X0 of genus g0 with
a cut [P, P (s)] of length s and glue two copies of X0 together along the cut. (So,
one takes X+ = X− = X0 in the above construction.) In this symmetric situation
the Laplacian Δ on the translation surface X (s) is unitarily equivalent to the direct
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DETERMINANT OF LAPLACIAN AT THE PRINCIPAL BOUNDARY 5649

sum of the two operators, ΔD and ΔN , of Neumann and Dirichlet homogeneous
boundary value problems in X0 \ [P, P (s)]. Thus, one has the relation

(1.12) det∗ Δ = detΔD det∗ ΔN

(notice that the Dirichlet Laplacian has no zero modes and one does not modify
its determinant here). It turns out that the asymptotics of detΔD and det∗ ΔN as
s → 0 can be found if one makes use of a certain variant of the BFK surgery formula
(see [3]), the Wentworth lemma on the asymptotics of the Dirichlet-to-Neumann
operator on a shrinking contour ([22]) and a simple idea based on the rescaling
properties of the determinant of the Laplacian. So, one can find the asymptotics
det∗Δ for a symmetric translation surface (and, therefore, for an arbitrary trans-
lation surface of genus which is an integer power of 2); a simple trick based on the
BFK surgery formula reduces the general case to this symmetric one.

Beyond the scope of the present paper remains the case of another possible
collision of conical points (in other words we consider here the asymptotical behavior
of det∗Δ only near a part of the principal boundary of the stratum): one can shrink
a saddle connection of length s → 0 which has no saddle connection homologous
to it. In this case the underlying Riemann surface X (s) does not degenerate (and
tends to a nonsingular Riemann surface X (0); we denote by Δ0 the Laplacian on the
translation surface X (0)) but the colliding zeros form a single zero of multiplicity
two (a conical point of the angle 6π). It is relatively easy to show that in this case
the asymptotical behavior of τg has the form

τg(X (s), ω(s), {αα, bα}) ∼ s1/36τ̃g(X (0), ω0, {αα, bα}),

where τ̃g is an analog of the function τg for the stratum Hg(2, 1, . . . , 1) (2g − 4
units; see [11] for definitions). This (together with results from [11]) leads to the
asymptotics det∗Δ ∼ Cgs

1/18det∗Δ0 with the unknown constant Cg. Finding this
constant presents an interesting open problem. Even more complicated looks the
problem of finding the asymptotics of det∗Δ at the boundary of a general stratum
Hg(k1, . . . , kM ); at the moment we see no reasonable approach to it.

Finally we notice that similar problems for a hyperbolic metric of constant cur-
vature were studied by S. Wolpert ([26]) and R. Lundelius ([16]), and the case of
the Arakelov metric (with curvature given by the Bergman 2-form) was considered
in [10] and [24, 25] (the complete results were recently obtained by R. Wentworth
in [22]).

The author is grateful to R. Wentworth for explaining to him some details from
[22] and clarification of the reason for the divergence between the results of [7] and
[27]; the author also thanks L. Hillairet for generous sharing of his ideas on the
spectral theory of translation surfaces, D. Korotkin for numerous useful discussions
and the anonymous referee for very useful comments and, in particular, for finding
an extraneous factor in formula (3.33). The main part of this work was done during
the stay of the author at the Max Planck Institute for Mathematics. The author
thanks the institute for the hospitality and support. The research of the author
was also supported by NSERC.

2. Families of degenerating surfaces and asymptotical formulas

We construct several one-parameter families of Riemann surfaces degenerating
as the parameter tends to zero.
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5650 A. KOKOTOV

Let X+ and X− be two compact Riemann surfaces of genus g+ and g−, g± ≥ 0.
Choose points P± ∈ X± and their open neighborhoods D± ⊂ X± such that for
a certain choice of holomorphic local parameters z± on X± one has D± = {P ∈
X± : |z±(P )| < 1} and z±(P±) = 0. Define the map z : D+ ∪ D− → C setting
z(P ) = z±(P ) if P ∈ D±.

Using these data we construct three families of degenerating Riemann surfaces
of genus g− + g+.

Case I. Let s be a complex number, |s| < 1 and let P±(s) be the points in D±

such that z(P±(s)) = s.
Cut the discs D± along the (oriented) straight segments [P±, P±(s)] and glue

the surfaces X+ and X− along these cuts identifying a point P on the left shore
of the “+”-cut with the point Q (z+(P ) = z−(Q)) on the right shore of the “−”-
cut and vice versa; the resulting topological real 2-d surface can be turned into a
compact Riemann surface Xs of genus g = g− + g+ in a usual way (one chooses

the local parameter near the left endpoint P of the cut as ζ(Q) =
√
z(Q), near

the right endpoint P (s) the local parameter is ζ(Q) =
√
z(Q)− z(P (s)), and the

choice of the local parameter at other points of Xs is obvious).
Case Ia. This family is constructed similarly to Case I, the only difference being

the position of cuts inside the disks D±: choose a complex number t, |t| < 1 and
introduce the cuts inside the discs D± connecting the points z =

√
t and z = −

√
t;

after the same gluing of the shores of these cuts as in Case I we get the family Xt

of degenerating compact Riemann surfaces.
Case Ib. This family is obtained similarly to Cases I and Ia, but instead of

gluing the disks along the cuts we use the standard “plumbing construction” (see
[7]). Choose t, |t| < 1, delete from the discs D± the smaller discs |z±| ≤ |t| and
glue the obtained annuli, A±, identifying points P ∈ A+ and Q ∈ A− such that
z+(P )z−(Q) = t. After this gluing the surfaces X± turn into a single Riemann
surface X ′

t of genus g− + g+.
In what follows we derive asymptotical formulas (as s → 0) for basic holomor-

phic objects (the normalized holomorphic differentials, the canonical meromorphic
differential, the prime-form, etc.) on the Riemann surfaces constructed in case I.

The asymptotical formulas (as t → 0) for case Ib were first derived in [7]. In
[27] it was claimed that all the formulas from [7] are incorrect and new ones were
proved. Our analysis (in particular, see Example 1 below) shows that formulas from
[7] (as well as Fay’s proofs of these formulas) are applicable in Case Ia. As was
explained to us by Richard Wentworth (private communication), Fay in fact makes
a mistake when considering Case Ib: his “pinching parameter” depends in its turn
on the deformation parameter and this results in additional terms in asymptotical
expansions which were lost in [7]. In Case Ia the pinching parameter is independent
of the deformation parameter and Fay’s scheme works perfectly.

The case of our concern, I, is essentially the same as Case Ia (the pinching
parameter, z in equation (2.22) below, is independent of the deformation parameter
s) and we give here the proofs of all the asymptotical formulas for it. Mainly we
use the methods similar to those of Fay (where they are applicable), although we
have chosen to follow the elementary analytical methods of Yamada (and not those
of [7], [17]) when introducing a holomorphic family of Abelian differentials on Xs

and studying the analytical properties of the coefficients in the Laurent expansions
in the pinching zone.
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DETERMINANT OF LAPLACIAN AT THE PRINCIPAL BOUNDARY 5651

2.1. Two examples in genus 0. Canonical meromorphic bidifferential W .
Recall that to any compact Riemann surface X of genus g with a chosen canonical
basis of cycles {aα, bα} on it one associates the so-called canonical meromorphic
bidifferential W ( · , · ), which

• is a meromorphic one-form with respect to each argument,
• is symmetric, i.e. W (P,Q) = W (Q,P ),
• has a single pole at the diagonal P = Q and

W (z(P ), z(Q)) ∼ dz(P )dz(Q)

(z(P )− z(Q))2
+

1

6
SB(z(Q))dz(P )dz(Q) + o(1)

as P → Q, where SB is the Bergman projective connection (see [7]),
• satisfies

∮
aα

W (P, · ) = 0 for any P ∈ X and α = 1, . . . , g.

(In case g = 0 the last condition is void.) The canonical meromorphic bidifferential
is related to the prime form via the equation W (P,Q) = dP dQ logE(P,Q) (see [7]).

Example 1: Case Ia. We start with the following simple statement. Let X be
the two-fold branched covering of the Riemann sphere P1 with branch points z1,
z2. Let P ∈ X and z be the projection of P on P1. Then the map

P �→ δ =

√
z − z1
z − z2

is the biholomorphic isomorphism of X and P1. Applying to δ the fractional linear
transformation δ �→ γ = z2−z1

δ−1 + z2, we get the isomorphism

(2.1) P �→ γ = z +
√
(z − z1)(z − z2)

of X and P1 which is more convenient for our future purposes.
Now let t > 0 and z1 = −

√
t, z2 =

√
t. When t → 0 the Riemann sphere

Xt degenerates to the singular Riemann surface with two components, Riemann
spheres S+ and S−, attached to each other at the point 0. So, our situation is
exactly the one described in Case Ia.

Let Wt(·, ·), W−(·, ·) and W+(·, ·) be the canonical meromorphic bidifferentials
on Xt, S

− and S+ respectively.
Then the following asymptotics holds:

Wt(z(P ), z(Q))

=

{
W±(z(P ), z(Q)) + t

4W±(z(P ), 0±)W±(z(Q), 0±) +O(t2) if P,Q ∈ S±

− t
4W±(z(P ), 0±)W∓(z(Q), 0∓) +O(t2) if P ∈ S±, Q ∈ S∓.

(2.2)

(This asymptotics (with the minus sign in the last line lost) was mistakenly
stated in ([7], formula (49), p. 41) for two Riemann surfaces glued via plumbing
construction (Case Ib); however, being false in Case Ib, it is true in Case Ia.)

Let P,Q be two points of the covering Xt lying on the same sheet (say S+) with
projections z and ζ; assume for simplicity that z and ζ are real and positive.
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5652 A. KOKOTOV

Using the uniformization map (2.1), one can write the following asymptotics for
the canonical meromorphic bidifferential on Xt:

Wt(z, ζ) =
dγ(z)dγ(ζ)

(γ(z)− γ(ζ))2
=

(1 + z√
z2−t

)(1 + ζ√
ζ2−t

)

[z − ζ +
√
z2 − t−

√
ζ2 − t]2

dz dζ

=
dz dζ

(z − ζ)2
+

t

4z2ζ2
dz dζ +O(t2)dz dζ

(2.3)

as t → 0+, which agrees with Fay’s formula (49).
(We remind the reader that the canonical bidifferential W+ on S+ (as well as on

S−) is
dz dζ
(z−ζ)2 and, therefore, W±(z(P ), 0±)W±(z(Q), 0±) = 1

z2ζ2 dzdζ.)

If P ∈ S+, Q ∈ S−, then all the “ζ”- square roots in (2.3) change their sign and
we arrive at the second case of Fay’s expansion (2.2).

Example 2: Case Ib. This is a rather elementary simplification of Yamada’s
Example 1 ([27], pp. 140-142). The author thanks D. Korotkin for pointing it out
to him.

Let S+ = Sv and S− = Sw be two Riemann spheres with standard coordinates
v and w in Sv,w \ {∞}. Also let ζ = 1/w be the local parameter near the point
at infinity of Sw. Glue Sv \ {|v| < t} and Sw \ {|ζ| < t} together, identifying the
points v ∈ {t ≤ |v| ≤ 1} ⊂ Sv and ζ ∈ {t ≤ |ζ| ≤ 1} ⊂ Sw such that vζ = v/w = t.
We get a Riemann surface Xt of genus 0. It is easy to write the uniformization map
Xt → Sz, where Sz is the Riemann sphere with standard coordinate z in Sz \ {∞}.

Namely, define the map z : Sv \ {|v| < t} ∪ Sw \ {|ζ| < t} → Sz via z(v) = v for
v ∈ Sv \ {|v| < t} and z(w) = tw for w ∈ Sw \ {|ζ| < t}. Obviously, the relation
v/w = t implies that z(v) = z(w); therefore, the map z gives rise to a biholomorphic
map Xt → Sz.

One has the following obvious relations for the canonical meromorphic bidiffer-
entials Wt, W± on Xt and X±:

(2.4) Wt(z1, z2) =
dz1dz2

(z1 − z2)2
=

dv1dv2
(v1 − v2)2

= W+(v1, v2)

if v1, v2 ∈ S+ \ {|v| ≤ 1};

(2.5) Wt(z1, z2) =
dz1dz2

(z1 − z2)2
=

d(tw1)d(tw2)

(tw1 − tw2)2
=

dw1dw2

(w1 − w2)2
= W−(w1, w2)

if w1, w2 ∈ S− \ {|ζ| ≤ 1};

(2.6) Wt(z1, z2) =
dz1dz2

(z1 − z2)2
=

dvd(tw)

(v − tw)2
= t

dvdw

v2
+ O(t2)

as t → 0 if v ∈ S+ \ {|w| ≤ 1} and w ∈ S− \ {|ζ| ≤ 1} in complete agreement with
Yamada’s asymptotical formulas for Case Ib:

(2.7) Wt(z1, z2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

W+(v1, v2) + t2SB(ζ)|ζ=0W+(v1, 0)W+(v2, 0) +O(t3)

for v1, v2 ∈ S+ \ {|v| ≤ 1};
W−(w1, w2) + t2SB(v)|v=0W−(w1,∞)W−(w2,∞) +O(t3)

for w1, w2 ∈ S− \ {|ζ| ≤ 1};
−tW+(v, 0)W−(w,∞) + O(t2)

for v ∈ S+ \ {|v| ≤ 1}, w ∈ S− \ {|ζ| ≤ 1}
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(see [27], formula (15) on p. 122; it should be noted that for coordinates v and ζ
on the Riemann sphere one has SB(v) = SB(ζ) ≡ 0).

2.2. Asymptotical formulas. Here we deal with Case I, assuming that the genera
of the surfaces X± are greater than zero.

Denote the part of the Riemann surface Xs which came from the discs D± after
the gluing procedure by U . The domain U is an open (topological) annulus and the
map z can be considered as defined on U . The map

(2.8) z : U → {z ∈ C : |z| < 1}
defines a two-sheeted covering of the disc {|z| < 1} ramified over z = 0 and z = s,
whereas the map

(2.9) U � P �→ X = z − s

2
+
√
z(z − s)

is a well-defined biholomorphic bijection (of course, the value of the square root
depends on which disk, D+ or D−, the point P belongs; one also has to fix a
branch of the square root, say, for the disk D+ with the cut between 0 and s; there
are two choices and we make one once and forever).

(It should be noted that map (2.9) (being appropriately extended) uniformizes
the two-sheeted covering of the Riemann sphere branched over the points 0 and s.
The image of the point at infinity of the first sheet is ∞; the image of the point at
infinity of the second one is 0.)

For sufficiently small s the annulus

As = {P :
|s|2
4

< |X| < 1}

belongs to U . Moreover, the boundary curve |X| = 1 lies in a small vicinity of the
circle |z| = 1/2 of the “+”-sheet of the covering (2.8), whereas the boundary curve
|X| = |s|2/4 lies in a small vicinity of the circle |z| = 1/2 of the “−”-sheet.

The following two lemmas are analogs of Yamada’s Theorem 1 and Lemma 1
([27], p. 116) for the family Xs. We follow the proofs of Yamada, making necessary
(in fact, rather minor) modifications.

Lemma 1. Let v± be holomorphic differentials on X±. There exists a holomorphic

differential ws on Xs such that for any ρ,
√
|s| < ρ < 1, the inequality

(2.10) ||ws − v+||Ω+
ρ
+ ||ws − v−||Ω−

ρ
≤ C(ρ)|s|

holds, where

Ω+
ρ = X+ \ {P ∈ D+ : |X(P )| ≤ ρ} ,

Ω−
ρ = X− \ {P ∈ D− : |X(P )| ≥ |s|2/(4ρ)} .

Here, as usual, the L2-norm of a one-form in a subdomain Ω of a Riemann surface
is defined via

||u||Ω =

∫ ∫
Ω

u ∧ ∗u .

Remark. The curves |X| =
√
|s| and |X| = |s|3/2/4 belong to small vicinities of

the circles |z| =
√
|s|/2 lying on the “+” and “-” sheets of the covering (2.8)

respectively.
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Proof. Let
∫ z

0
u+ =

∑∞
n=1 αnz

n near P+; after passing to coordinate X,

z =
X

2
+

s

2
+

s2

8X
,

we get

f+(z) =

∫ z

0

u+ =
∞∑

n=1

a+n (s)X
n + a0(s) +

−1∑
n=−∞

a−n (s)X
n,

where

a+n (s) = αn(1/2
n +O(s)), a0(s) = O(s), a−n (s) = O(s2|n|) ,

as s → 0.
Analogously, from the expansion f−(z) =

∫ z

0
u− =

∑∞
n=1 βnz

n near P− one gets∫ z

0

u− =

∞∑
n=1

b+n (s)X
n + b0(s) +

−1∑
n=−∞

b−n (s)X
n,

where

b+n (s) = βn(1/2
n +O(s)), b0(s) = O(s), b−n (s) = O(s2|n|) ,

as s → 0.
Now, [27], we are to construct a sequence, Φ

(k)
s , of C1-forms on Xs coinciding

with v± in Ω±
ρ and such that

(2.11) ||Φ(k)
s − i ∗ Φ(k)

s ||2 ≤ O(s2) + 1/k .

For a harmonic function hs in the annulus {|s|2/(4ρ) ≤ |X| ≤ ρ} with boundary
values f− and f+ one has the relation

1

2π

∫ ∫
|s|2/(4ρ)≤|X|≤ρ

(|∂Xhs|2 + |∂X̄hs|2)
|dX ∧ dX|

2
(2.12)

=
∞∑

n=1

n|b−−n − a−−n|2

ρ2n − ( |s|
2

4ρ )2n
+

∞∑
n=1

n|b+n − a+n |2

ρ−2n − ( |s|
2

4ρ )−2n
+

|b0 − a0|2

2 log( ρ2

|s|2/4 )
= O(s2) .

It can be shown (say, via polynomial interpolation along radial directions) that
one can change the function hs in small vicinities of the boundary circles |X| = ρ

and |X| = |s2|/(4ρ) obtaining the function h
(k)
s such that

(2.13)

∫ ∫
|s|2/(4ρ)≤|X|≤ρ

(|∂X(hs − h(k)
s )|2 + |∂X̄(hs − h(k)

s )|2) |dX ∧ dX|
2

≤ 1

k

and the 1-form

(2.14) Φ(k)
s =

{
v± in Ω±

ρ ,

d(h
(k)
s ) in Xs \ (Ω+

ρ ∪ Ω−
ρ )

is C1-smooth. Since the operator Id− i∗ kills the (1, 0)-forms, the inequality (2.11)
follows from (2.12) and (2.13).

Decomposing (Id−i∗)Φ(k)
s into the (L2-orthogonal!) sum of a harmonic one-form

ωh, an exact form ωe and a co-exact form ω∗
e (see [1], Chapter V; here “exact form”

means a form belonging to the L2-closure of the space of smooth exact forms), we
observe that the left part of the equation

Φ(k)
s − ωe = i ∗ Φ(k)

s + ωh + ω∗
e
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is a closed form, whereas its left part is co-closed; therefore, both are harmonic by
virtue of Weyl’s Lemma (see [1], Chapter V).

Now, applying to the harmonic form Φ
(k)
s − ωe the operator 1

2 (Id + i∗) one gets
a holomorphic one-form

Ψ(k)
s =

1

2
(Id + i∗)[Φ(k)

s − ωe] ,

which coincides with v± + 1
2 (Id + i∗)ωe in Ω±

ρ . Therefore,
(2.15)

||Ψ(k)
s − v+||2Ω+

ρ
+ ||Ψ(k)

s − v−||2Ω−
ρ
≤ 1

4
||ωe + i ∗ ωe|| ≤

1

2
||ωe|| ≤

1

2
||Φ(k)

s − i ∗ Φ(k)
s ||

and

||Ψ(k)
s − v+||2Ω+

ρ
+ ||Ψ(k)

s − v−||2Ω−
ρ
≤ O(s2) +

1

k

by virtue of (2.11).

Choosing from the sequence {Ψ(k)
s }k≥1 a converging subsequence (uniform L2-

boundedness of holomorphic forms on a compact Riemann surface implies uniform
boundedness of their coefficients) and passing to the limit k → ∞, we get a holo-
morphic 1-form ws with all the needed properties. �

Remark 2. Actually a stronger variant of Lemma 1 is true: the differentials v± can
be meromorphic with poles lying outside of D±. In this case the differential ws is
also meromorphic and has the same singularities as v±.

Now choose on X± a canonical basis of cycles {a±α , b±α }α=1,...,g± such that none
of the cycles intersects the disk D±. Also let {u±

α }α=1,...,g± be the corresponding
basis of normalized differentials.

The set of cycles

{aα, βα}α=1,...,g++g− = {a+1 , . . . , a+g+ , a
−
1 , . . . , a

−
g− ; b

+
1 , . . . , b

+
g+ , b

−
1 , . . . , b

−
g−}

forms a canonical basis on the Riemann surface Xs. Let {v(s)α }α=1,...,g−+g+ be the
corresponding basis of normalized holomorphic differentials on Xs.

Also let w
(s)
α be a holomorphic one-form on Xs which is constructed in Lemma 1

when one takes (v+, v−) = (v+α , 0) for α = 1, . . . , g+ and (v+, v−) = (0, v−α−g+) for

α = g+ + 1, . . . , g+ + g−.

The corresponding matrix of a-periods P = ||
∮
aα

w
(s)
β ||α,β=1,...,g++g− satisfies

P = Ig++g− +O(s)

as s → 0 due to Lemma 1. This immediately implies the following lemma.

Lemma 2. The basis {v(s)α }α=1,...,g++g− of normalized holomorphic differentials
on Xs satisfies

(2.16) (v
(s)
1 , . . . , v

(s)
g++g−) = (Ig−+g+ +O(s))(w

(s)
1 , . . . , w

(s)
g++g−);

in particular, all the differentials v
(s)
α are uniformly (with respect to s) bounded in,

say, Xs \ {P ∈ Xs, |z(P )| < 1/4}.
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Laurent expansion for basic holomorphic differentials. Writing the dif-

ferential v
(s)
α as v

(s)
α (X)dX in the local parameter X = z − s

2 +
√
z(z − s) and ex-

panding the coefficient v
(s)
α (·) in the Laurent series in the annulus |s|2/4 < |X| < 1,

one gets

(2.17) v(s)α (X)dX = (
∑
n>o

γ−n(s)X
−n +

∑
n≥0

γn(s)X
n)dX .

Observe that dX = Xdz√
z(z−s)

and for n ≥ 0 one has

XndX =

(
z − s/2 +

√
z(z − s)

)n+1

√
z(z − s)

dz

=

{
n+1∑
k=0

pk(s)z
k +

1√
(z(z − s)

n+1∑
k=0

qk(s)z
k

}
dz

(2.18)

with some polynomials pk(s), qk(s). On the other hand, since

(z − s/2 +
√
z(z − s))(z − s/2−

√
z(z − s)) = s2/4 ,

for n > 0 one has

X−ndX =
4n

s2n

(
z − s/2−

√
z(z − s)

)n (
z − s/2 +

√
z(z − s)

)
√
z(z − s)

dz

=
1

s2n−2

{
n−1∑
k=0

p̃k(s)z
k +

1√
z(z − s)

n−1∑
k=0

q̃k(s)z
k

}
dz

(2.19)

with some polynomials p̃k(s), q̃k(s).
For n > 0 one has

γ−n(s) =
1

2πi

∫
|X|=|s|2/4

v(s)α (X)Xn−1dX

=
1

2πi

∫
Γ−

v(s)α (z)
(
z − s/2 +

√
z(z − s)

)n−1

dz

=

∫
Γ−

O(1)×O(s2n−2)dz = O(s2n−2)

(2.20)

as s → 0 (the contour Γ− over which goes the last integration lies in a small vicinity

of the circle |z| = 1/2 of the “−”-sheet; the factor v
(s)
α (z) is uniformly bounded on

this contour with respect to s by virtue of Lemma 2).
In the same manner for n ≥ 0 one has

(2.21)

γn(s) =
1

2πi

∫
|X|=1

v
(s)
α (X)

Xn+1
dX =

1

2πi

∫
Γ+

v
(s)
α (z)dz(

z − s/2 +
√
z(z − s)

)n+1 = O(1).

(The contour Γ+ lies in a small vicinity of the circle |z| = 1/2 of the “+”-sheet, the

factor v
(s)
α (z) is uniformly bounded by virtue of Lemma 2, and the denominator of

the integrand is close to 1.)
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Now from (2.17), (2.18) and (2.19) together with the estimates (2.21) and (2.20)
one gets the expansion

(2.22) v(s)α (z)dz =
∞∑
k=0

ak(s)z
k dz +

1√
z(z − s)

∞∑
k=o

bk(s)z
k dz,

where the coefficients ak, bk are analytic near s = 0. This expansion is valid in the
zone {|s|2/4 < |X| < 1} (the latter for small s is close to the set {P ∈ Xs : |z(P )| ≤
1/2}).
Remark 3. Expansion (2.22) is a complete analog of Fay’s expansion stated on page
40 of [7] for the deformation family in Case Ib. However, it is important here that
in (2.22) the parameter z is s-independent whereas in the expansion from [7] the
pinching parameter χ depends on the deformation parameter. The latter fact was
missed in [7] (in particular, the last formula on page 40 of [7] should contain more
terms on the right-hand side) ([23]).

Main asymptotical formulas for basic holomorphic differentials and
the canonical meromorphic bidifferential. Let W,W± be the canonical mero-
morphic bidifferentials on Xs and X± respectively.

Theorem 1. For α = 1, . . . , g+, one has the asymptotics as s → 0,
(2.23)

v(s)α (P ) =

{
u+
α (P ) + s2

16u
+
α (P+)W+(P, P+) + o(s2) if P ∈ L+ \D+ ⊂ Xs

− s2

16u
+
α (P+)W−(P, P−) + o(s2) if P ∈ X− \D− ⊂ Xs .

For α = g+ + k, k = 1, . . . , g−, one has
(2.24)

v(s)α (P ) =

{
u−
k (P ) + s2

16u
−
k (P−)W−(P, P−) + o(s2) if P ∈ L− \D− ⊂ Xs

− s2

16u
−
k (P−)W+(P, P+) + o(s2) if P ∈ X+ \D+ ⊂ Xs .

Here the values of the differentials at the points P± are calculated in the local
parameter z, and the values of the differentials at P ∈ X± \D± ⊂ Xs are calculated
in an arbitrary local parameter inherited from X± (of course, the same for the l.
h. s. and the r. h. s.).

Theorem 2. For the canonical meromorphic bidifferential on Xs one has the fol-
lowing asymptotics as s → 0:
(2.25)

W (R,S)=

⎧⎪⎨⎪⎩
W+(R,S) + s2

16W+(R,P+)W+(S, P+) if R,S ∈ X+ \D+ ⊂ Xs,

− s2

16W+(R,P+)W−(S, P−) if R ∈ X+ \D+ ⊂ Xs; S ∈ X− \D− ⊂ Xs,

W−(R,S) + s2

16W−(R,P−)W−(S, P−) if R,S ∈ X− \D− ⊂ Xs .

Proof. Observe that lims→0

√
z(P )(z(P )− s) = ±z(P ) if P ∈ D± \ [0, s] ⊂ Xs. Let

α = 1, . . . , g+. Taking two points in U with z(P ) = z and sending s → 0 in (2.22),
one gets

u+
α (z)dz =

( ∞∑
k=0

ak(0)z
k +

∞∑
k=0

bk(0)z
k−1

)
dz

for the point on the “+”-sheet and

0 =
∞∑
k=0

ak(0)z
k −

∞∑
k=o

bk(0)z
k−1
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for the point on the “−”-sheet. This implies the relations

(2.26) b0(0) = 0

and

(2.27)
u+
α (P+)

2
= a0(0) = b1(0).

For P ∈ D+ one has

1

s
(v(s)α − v(0)α ) =

∞∑
k≥0

ak(s)− ak(0)

s
zk dz

=
∑
k≥0

⎧⎨⎩bk(s)− bk(0)

s

zk√
z(z − s)

+ bk(0)z
k−1

z√
z(z−s)

− 1

s

⎫⎬⎭ dz

=

{ ∞∑
k=0

a′k(0)z
k +

∞∑
k=0

b′k(0)z
k−1 +

1

2

∞∑
k=0

bk(0)z
k−2 +O(s)

}
dz .

(2.28)

Since b0(0) = 0, the limit of the left-hand side of (2.28) as s → 0 is a meromorphic
differential on X+ with a single pole at P+; therefore, it is a holomorphic differential,
i.e.

(2.29) b′0(0) +
1

2
b1(0) = 0 .

Moreover, since all the a-periods of this differential vanish, it equals zero.
Then, again for a point on the “+”-sheet, we have

1

s2
(v(s)α − v(0)α ) =

1

s2

⎡⎣∑
k≥0

(ak(0) + sa′k(0) +
s2

2
a′′k(0) +O(s3))zk

+
∑
k≥0

(bk(0) + sb′k(0) +
s2

2
b′′k(0) +O(s3))zk−1(1 +

s

2z
+

3

8

s2

z2
+O(s3))

−
∑
k≥0

ak(0)z
k −

∑
k≥0

bk(0)z
k−1

⎤⎦ dz.

Since the s-linear term in the braces vanishes, the limit of this expression as
s → 0 equals[ ∞∑

k=0

a′′k(0)

2
zk +

b′′k(0)

2
zk−1 +

3

8
bk(0)z

k−3 +
b′k(0)

2
zk−2

]
dz.

Thus the limit is a meromorphic differential on X+ with a single pole of the second
order (b0(0) = 0!); the corresponding Laurent coefficient is

3

8
b1(0) +

b′0(0)

2
=

b1(0)

8
=

1

16
u+
α (P+)

due to (2.27) and (2.29). All the a-periods of this differential vanish; therefore, it
coincides with

1

16
u+
α (P+)W+( · , P+)

and the first asymptotics in (2.23) is proved.
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The other asymptotics of Theorem 1 can be proved in a similar way. Theorem 2
follows from Theorem 1 (see [7], p. 41 for a short explanation of this implication).

�

It is also possible to prove Theorem 2 independently. One starts from the gener-
alization of Lemma 1 given in Remark 2. Using this generalization with, say, v− = 0
and v+ = W+( · , Q) with Q ∈ X+ \ D+, one establishes expansion (2.22) for the
one-form W ( · , Q) exactly in the same manner as was done for a basic holomorphic

differential. Repeating the proof of Theorem 1 with W ( · , Q) instead of v
(s)
α we

arrive at the asymtotics stated in Theorem 2.
The following proposition gives the asymptotics of a type other than that given

in Theorem 2: now one of the arguments of the canonical meromorphic bidifferential
lies inside the pinching zone (being one of the two endpoints of the cut).

Proposition 1. Let a point P lie on the surface X± far from the pinching zone
and let Pr = z−1(s) and Pl = z−1(0) be the critical points of the map z : U → {z :
|z| < 1}. Then

W (P, Pr) =

√
s

2
W±(P±, P ) +O(s3/2),(2.30)

W (P, Pl) = −i

√
s

2
W±(P±, P ) +O(s3/2),(2.31)

as s → 0. Here the differentials are calculated in the local parameters related to the
corresponding branched coverings: i.e.,

√
z(·)− s at Pr,

√
z(·) at Pl, z

±(·) at P±
and an arbitrary local parameter inherited from X± at P .

Proof. For the 1-form W ( · , P ) one has the expansion (2.22) with b0(0) = 0, b′0(0)+
1
2b1(0) = 0 and b1(0) = a0(0) =

1
2W±(P±, P ).

Now substituting in this expansion z = s+ t2, dz = 2t dt, setting t = 0 and then
sending s → 0, we get (2.30). Substituting z = t2, dz = 2t dt, setting t = 0 and
sending s → 0, we get (2.31). �

2.3. Asymptotics of E(P,Q), σ(P,Q), C(P ) and KP . First recall the following
expression, relating the prime form, E(x, y), to the canonical meromorphic bidif-
ferential on an arbitrary compact Riemann surface of genus g (see [7], p. 26):

(2.32)
θ(
∫ y

x
�v − e)θ(

∫ y

x
�v + e)

θ2(e)E2(x, y)
= W (x, y) +

g∑
i,j=1

∂2 log θ(e)

∂zi∂zj
vi(x)vj(y),

where �v = (v1, . . . , vg)
t is a column of basic holomorphic differentials, and e is an

arbitrary vector from Cn.
From this expression, taken together with the asymptotics for the basic holomor-

phic differentials and the canonical meromorphic bidifferential, one easily derives
the following asymptotics for the prime form on the family Xs:

•

(2.33) E2(P,Q) = E2
±(P,Q) + o(1)

as s → 0; here the points P,Q belong to X± and are far from the pinching
zone, E±(P,Q) is the prime form on X±, and all the prime forms are
calculated in local parameters near P and Q inherited from X±;
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•

(2.34) E2(P,Q) = −16

s2
E2

±(P, P±)E
2
∓(Q,P∓) +O(

1

s
)

if P ∈ X± and Q ∈ X∓;
•

(2.35) E2(P, Pr) =
2√
s
E2

±(P, P±)+O(
√
s), E2(P, Pl) =

2i√
s
E2

±(P, P±)+O(
√
s),

if P ∈ X±, the local parameter at Pl is
√
z, and the local parameter near

Pr is
√
z − s.

From now on we use the following notation, Δ(s) = 4
s , and denote by a single

letter ε different unitary constants (“phase factors”, |ε| = 1) which may appear as
additional factors in some of our formulas; the concrete values of these factors are
of no interest for us.

The next two quantities whose asymptotics we need are defined as follows (see
[8], (1.13) and (1.17)):

(2.36) σ(P,Q) = exp

{
−

g∑
k=1

∫
ak

vk(x) log
E(x, P )

E(x,Q)

}

and

(2.37) C(P ) =
θ(
∫Q1

P
�v + · · ·+

∫ Qg

P
�v +KP )

∏g
i<j E(Qi, Qj)

∏g
i=1 σ(Qi, P )

det(vi(Qj))
∏g

i=1 E(P,Qi)
,

where Q1, . . . , Qg are arbitrary points of X (expression (2.37) is independent of the
choice of these points) and KP is the vector of Riemann constants.

Using asymptotics for the prime-form (2.33–2.35) and the basic holomorphic
differentials, one easily obtains from (2.36) the following asymptotics as s → 0:

(2.38) σ(P,Q) ∼ σ±(P,Q)

[
E±(Q,P±)

E±(P, P±)

]g∓

,

for P,Q ∈ X±;

(2.39) σ(P,Q) ∼ εσ±(P, P±)σ∓(P∓, Q)
[E∓(P∓, Q)]g

±

[E±(P, P±)]
g∓ [Δ(s)]

g±−g∓
,

if P ∈ X±, Q ∈ X∓;

(2.40) σ(Pr, Q) ∼ εσ(Pl, Q) ∼ εσ±(P±, Q) [E±(P±, Q)]
g∓

[Δ(s)]
(3g∓−g±)/4

if Q ∈ X±.
The asymptotics of (2.37) is a bit more tricky to obtain and we give more details.

First choose the points {Qi} in such a way that g+ of them, R1, . . . , Rg+ belong
to X+ and the other g− points, S1, . . . , Sg− , belong to X−. Then, assuming for
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definiteness P ∈ X+, one has as s → 0,

θ(

∫ Q1

P

�v + · · ·+
∫ Qg

P

�v +KP |B)

∼ θ

(∫ R1

P

(
	v+
	0

)
+ · · ·+

∫ Rg+

P

(
	v+
	0

)
+ g−

∫ P+

P

(
	v+
0

)
+

∫ S1

P−

(
	0
	v−

)
+ . . .

+

∫ Sg−

P−

(
	0
	v−

)
+

(
K+

P −g− ∫ P+
P 	v+

K−
P−

) ∣∣∣diag(B+,B−)

)
= θ+(

∫ R1

P

�v+ + · · ·+
∫ Rg+

P

�v+ +K+
P ) θ−(

∫ S1

P−

�v− + · · ·+
∫ Sg−

P−

�v− +K−
P−

) .

(2.41)

Now using the asymptotics for the prime-form and σ, we see that the numerator of
(2.37) (with the just made choice of Q1, . . . , Qg) is equivalent to

ε θ+(

∫ R1

P

�v+ + · · ·+
∫ Rg+

P

�v+ +K+
P ) θ−(

∫ S1

P−

�v− + · · ·+
∫ Sg−

P−

�v− +K−
P−

)

×
∏
i<j

E+(Ri, Rj)
∏
i<j

E−(Si, Sj)

×

⎧⎨⎩
g+∏
i=1

g−∏
j=1

E+(Ri, P+)E−(Sj , P−)

⎫⎬⎭[Δ(s)]g
+g−

g+∏
i=1

σ+(Ri, P )
{E+(P, P+)}g

+g−{∏g+

j=1E+(Rj , P+)
}g−

× [σ+(P+, P )]g
−
[E+(P+, P )](g

−)2 [Δ(s)]g
−(g−−g+)

g−∏
j=1

σ−(Sj , P−)

{E−(Sj , P−)}g+ ,

whereas the denominator of (2.37) is equivalent to

ε

⎧⎨⎩
g+∏
i=1

E+(P,Ri)

⎫⎬⎭[E+(P, P+)]
g−

⎧⎨⎩
g−∏
j=1

E−(P−, Sj)

⎫⎬⎭[Δ(s)]g
−
det(v+i (Rj))det(v

−
i (Sj)) .

So, after rearranging the terms and numerous cancelations, one gets the asymptotics
(2.42)

C(P ) ∼ εC±(P )C∓(P∓) {E±(P, P±)}g
∓(g±+g∓−1) {σ±(P±, P )}g∓ Δ(s)[g

∓]2−g∓

if P ∈ X±.

Remark 4. Let us emphasize that in order to define the vectorKP and the Abel map
AP (as well as the prime-form and the left-hand side of expression (2.32)) one has
to introduce the system of cuts on the surface X in such a way that the integration∫ y

x
�v is well-defined for any x, y belonging to the surface X = Xs dissected along

the cuts. We choose the usual symplectic basis of homologies {a±α , b±α }α=1,...,g±

on X±, take curves representing this basis and dissect the X± along these curves.
The resulting dissected surface X± is homeomorphic to a sphere with g± holes,
whereas the surface Xs dissected along the same curves is homeomorphic to a
sphere with g holes. Notice that the boundary of any hole is the trivial cycle
(a±α + b±α − a±α − b±α = 0) and, therefore, the

∫ y

x
�v± and

∫ y

x
�v are well-defined on the

corresponding dissected surfaces.
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The following lemma immediately follows from the definition of the vector of the
Riemann constants and Theorem 1:

KP
β =

1

2
+

Bββ

2
−

g∑
α=1,α�=β

∫
aα

(
vα

∫ x

P

vβ

)
.

Lemma 3. One has the asymptotics

(2.43) KP ∼
(

KP
+−g− ∫ P+

P 	v+

K
P−
−

)
,

as s → 0, where KP
+ and K

P−
− are the vectors of Riemann constants for the surfaces

X+ and X− with the base points P and P− respectively.

2.4. Asymptotics of τg. Now we are able to prove the asymptotics (1.10) from

the Introduction. Let M± = 2g± − 2 and let (ω±) =
∑M±

k=1 D
±
k be the divisor of

the holomorphic differential ω± on X±.
Assume that the point P lies on the component X+. Using Lemma 3, one can

pass to the limit s → 0 in the equation (1.6). This results in the relations

(2.44) A+
P ((ω

+)) = 2KP
+ + B

+r+ + q+

and

(2.45) A−
P−

((ω−)) = 2K
P−
− + B

−r− + q+ ,

where r = (r+, r−), q = (q+,q−) and A± is the Abel map on X±.
Now one has

τ−6(X , z) ∼ εe2πi〈r
+, KP

+ 〉e2πi〈r
−, K

P−
− 〉e−2πig−〈r+,

∫ P+
P 	v+〉

×{C+(P )}−4{C−(P−)}−4{E+(P, P+)}4g
−(1−g){σ+(P+, P )}−4g−

[Δ(s)]4(g
−−(g−)2)

×
M+∏
k=1

σ+(D
+
k , P )

[
E+(P, P+)

E+(D
+
k , P+)

]g−

×
[
σ+(P+, P ){E+(P+, P )}g−

[Δ(s)](3g
−−g+)/4

]2
×

M−∏
k=1

{
σ−(D

−
k , P−)σ+(P+, P )

[E+(P+, P )]g
−

[E−(D
−
k , P−)]g

+
[Δ(s)]g

−−g+

}

×
M+∏
k=1

{E+(D
+
k , P )}(g−1)

[
[Δ(s)]1/4E(P, P+)

]2(g−1)

×
M−∏
k=1

{Δ(s)E+(P, P+)E−(D
−
k , P−)}(g−1)

with g = g+ + g−. Observe that Δ(s) enters the above expression with power

4(g− − (g−)2) +
3g− − g+

2
+ (g− − g+)(2g− − 2) +

g − 1

2
+ (g − 1)(2g− − 2) =

3

2
,

all the factors E+(P, P+) cancel out (4g
−(1− g) + g−(2g+ − 2) + 2g− + g−(2g− −

2) + 2(g − 1) + (g − 1)(2g− − 2) = 0) and the remaining terms can be rearranged
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into the product of

e2πi〈r
+, KP

+ 〉C−4
+ (P )

M+∏
k=1

σ+(D
+
k , P )

{
E+(D

+
k , P )

}(g+−1)
,(2.46)

e2πi〈r
−, K

P−
− 〉C−4

− (P−)

M−∏
k=1

σ−(D
−
k , P−)

{
E−(D

−
k , P−)

}(g−−1)
,(2.47)

and

(2.48) e−2πig−〈r+,
∫ P+
P 	v+〉

{
[σ+(P+, P )]−2

∏M+

k=1 E+(D
+
k , P )∏M+

k=1E+(D
+
k , P+)

}g−

.

According to [11] (see Theorem 2 on page 47), the expression in the braces in (2.48)

is nothing but e2πi〈r
+, A+

P (P+)〉 and, therefore, the expression (2.48) equals one;
expressions (2.46) and (2.47) coincide with τ−6

g+ (X+, ω+, {a+α , b+α}) and τ−6
g− (X−, ω−,

{a−α , b−α }) respectively. �

3. Surgery and asymptotics

3.1. Wentworth lemma. The following important lemma essentially coincides
with the statement proved in §3 of [22]. We formulate the Wentworth result, adapt-
ing it for our needs.

Lemma 4. Let X be a translation surface, Δ the Friedrichs extension of the Lapla-
cian on X . Let z be a local parameter near a (nonsingular) point P ∈ X such that
z(P ) = 0 and Δ = −4∂z∂z̄ in the unit ball B(1) = {|z| ≤ 1} ⊂ X . For 0 < ε ≤ 1,
set B(ε) = {|z| ≤ ε} and Xε = X \ B(ε). Denote by Nε the Dirichlet-to-Neumann
operator for Xε:

Nε : C
∞(∂Xε) → C∞(∂Xε) ,

Nε(f) = ∂nu
∣∣∣
∂Xε

,

where the function u satisfies

(3.1)

⎧⎨⎩Δu = 0 in Xε

u
∣∣∣
∂Xε

= f

and n is the unit outer normal to ∂Xε. (Actually, Nε is a pseudodifferential operator
of order 1 on ∂Xε.)

Let z = reiφ. Then φ is the angular coordinate on the circle {r = ε} = ∂Xε. Let
f ∈ L2(∂Xε, dφ), f(φ) =

∑
k∈Z

ake
ikφ. Define the (unbounded) operators ν and |ν|

in L2(∂Xε, dφ) via

νf(φ) =
∑
k∈Z

kake
ikφ

and

|ν|f(φ) =
∑
k∈Z

|k|akeikφ .

Then one has the following relation:

(3.2) εNε = |ν|+O(ε) ,
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where O(ε) is the operator of trace class in L2(∂Xε, dφ) with the trace norm which
is asymptotically O(ε) as ε → 0.

For completeness we give the proof here (it differs from the one given in [22] by
insignificant changes). Introduce the operator Rε : L2(S

1, dφ) → L2(S
1, dφ) via

Rεf = g = u|{|z|=1}, where u and f are from (3.1). Using Green’s formula for the
Friedrichs extension of the Laplacian, it is easy to check the identity∫

|z|=ε

|f |2dφ−
∫
|z|=1

|g|2dφ = 2

∫ 1

ε

dr

r

∫∫
Xr

|∇u|2,

which implies the norm estimate

(3.3) ||Rε|| ≤ 1 .

(It is important here that Δ is the Friedrichs extension; for other extensions the
above double integral may be infinite!)

The function u from (3.1) is harmonic in the annulus {ε ≤ |z| ≤ 1} and, therefore,
admits there the standard representation

u(r, φ) =
∑
k∈Z

ake
ikφrk + c0 log r +

∑
k∈Z\0

(r|k| − r−|k|)bke
ikφ .

On the other hand the Green formula implies the relation
∫
∂Xε

∂u
∂r = 0 and, there-

fore, one has c0 = 0 in the previous representation. Thus, the function u from (3.1)
is representable inside the annulus {ε ≤ |z| ≤ 1} as

(3.4) u = a0 +
∑
k �=0

akr
keikφ +

∑
k �=0

bkr
−keikφ .

Now notice that the operators εNε and Rε map the boundary value of the function
u from (3.1) and (3.4) at the circle |z| = ε to the functions∑

k �=0

k(bkε
−k − akε

k)eikφ

and

a0 +
∑
k �=0

(ak + bk)e
ikφ

respectively. For a sequence of complex numbers {αk}k∈Z, introduce the operator
(may be unbounded) Op(αk) in L2(S

1, dφ) via

Op(αk)f(φ) =
∑
k∈Z

αkake
ikφ ,

where f ∈ L2(S
1, dφ), u =

∑
k∈Z

ake
ikφ. (In this notation, ν = Op(k) and |ν| =

Op(|k|).)
Now one has

Op(εk − ε−k)(εNε)(u||z|=ε) =
∑
k �=0

k(bk + ak − akε
2k − bkε

−2k)eikφ

=
∑
k �=0

(kak + kbk)e
ikφ −

∑
k �=o

{k(akεk + bkε
−k)(εk + ε−k)− k(ak + bk)}eikφ

= 2
∑
k �=0

(kak + kbk)e
ikφ −

∑
k �=0

(εk + ε−k)k(akε
k + bkε

−k)eikφ ,
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which implies the relation

(3.5) εNε = Op(
2

εk − ε−k
)νRε −Op(

εk + ε−k

εk − ε−k
)ν .

(Notice that functions from the image of the operator ν are orthogonal to 1 and,
therefore, the right-hand side of (3.5) is correctly defined.) Clearly, the operator
Op( 2

εk−ε−k )ν is of trace class with the trace norm |||Op( 2
εk−ε−k )ν||| = O(ε); due to

(3.3), the same is true for the first term on the right-hand side of (3.5). For k �= 0

one has εk+ε−k

εk−ε−k → −sgn k as ε → 0, and a simple estimate shows that

−Op(
εk + ε−k

εk − ε−k
)ν = |ν|+ r(ε) ,

where |||r(ε)||| = O(ε2), which proves the lemma.

3.2. Analytic surgery for translation surfaces. The following proposition is a
variant of Theorem B* from [3]. The presence of conical points does not lead to
significant difficulties, and the proof remains essentially the same (see discussion in
[12]; one can also find a proof of a more general result in [15]).

Proposition 2. Let Γ be a smooth closed curve on a translation surface X con-
taining no conical points and dividing X into two parts X1 and X2 with common
boundary Γ. Let (Δ,X1,2) be the operators of the Dirichlet boundary value problems
in X1,2. Then one has the relation

det∗Δ =
Area(X)

length(Γ)
det(Δ,X1)det(Δ,X2)det

∗(N1 +N2),

where Nk is the Dirichlet-to-Neumann operator C∞(Γ) → C∞(Γ), Nk(f) =
∂nk

uk|Γ with Δuk = 0 in Xk, u|Γ = f and nk being the outer unit normal to
∂Xk, k = 1, 2.

The following proposition (see [22]) is a consequence of the Wentworth lemma.

Proposition 3. Let X1 = X \B(ε), X2 = B(ε), Γ = {|z| = ε}. Then

(3.6) lim
ε→0

det∗(N1 +N2)

length (Γ)
=

1

2
.

We give a proof of this proposition following [22]. Representing the function u2

harmonic in the disk X2 = {|z| ≤ ε} in the form

u2 =
∑
k∈Z

akr
|k|eikφ ,

one immediately gets the relation

εN2 = |ν| .
One now has

(3.7) ε(N1 +N2) = 2|ν|+O(ε)

and, therefore,

(3.8) log det∗{ε(N1 +N2)} = log det∗{2|ν|}+ o(1),

which implies that

(3.9) log
det∗(N1 +N2)

ε
= log

det∗|ν|
2

+ o(1)
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5666 A. KOKOTOV

or, what is the same,

(3.10) log
det∗(N1 +N2)

2πε
= − log 2 + log det∗|ν| − log 2π + o(1).

Using the known properties of the Riemann zeta-function, −2ζ ′(0) = log 2π and
ζ(0) = −1/2, one gets the relation det∗|ν| = 2π, which (together with (3.10))
implies (3.6).

Remark 5. The implication (3.7)⇒(3.8) is a consequence of the following estimate:

| log det∗(2|ν|+O(ε))− log det∗(2|ν|)| =
∣∣∣∣∫ 1

0

d

dt
log det∗(2|ν|+ tO(ε))dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∣tr((2|ν|+ tO(ε))
∣∣∣−1

{1}⊥
O(ε)

)∣∣∣∣ dt ≤ C1|trO(ε)| ≤ C2ε

(cf. [14], Lemma 4.1).

Remark 6. The implication (3.8)⇒(3.9) is a consequence of the standard relations

det∗(εA) = εζA(0)det∗A,(3.11)

ζN1+N2
(0) = h0 − dimKer(N1 +N2) = h0 − 1,(3.12)

where h0 is the constant term in the asymptotical expansion of tr e−t(N1+N2) as
t → 0+, the relation ζ|ν|(0) = −1 and the result from [5]:

(3.13) h0 = 0 .

Corollary 1. One has the asymptotics

(3.14) det(Δ,X \B(ε)) ∼ 27/6
√
πe2ζ

′(−1)+5/12det∗Δ

Area(X )
ε1/3

as ε → 0.

Proof. This immediately follows from Proposition 2, (3.6) and the relation

det(Δ, B(ε)) = 2−1/6π−1/2ε−1/3e−2ζ′(−1)−5/12

found in [21]. �
Remark 7. It is interesting to compare (3.14) with the asymptotics of the first
eigenvalue of the operator of the Dirichlet boundary value problem in X \B(ε),

λ1(Δ,X \B(ε)) ∼ − 2π

Area(X )
(log ε)−1

as ε → 0, which was found in [18].

3.3. Symmetric case. Let X be a translation surface of genus g ≥ 1, z a local
coordinate in the vicinity of a nonsingular point P of X , such that z(P ) = 0 and
in the ball {|z| ≤ ε} the operator Δ acts as −4∂z∂z̄. Introduce a straight cut
I(ε/2) connecting the points z = 0 and z = ε/2 and glue two copies of X \ I(ε/2)
along the cut in a usual way. One gets a translation surface X̂ of genus 2g and

the area Area(X̂ ) = 2Area(X ). The endpoints of the cut give rise to two conical

points, P1, P2, of conical angles 4π on X̂ . Let Δ̂ be the (Friedrichs extension of)

the Laplacian on X̂ . The following statement is a very special case of (1.11) proved
in an alternative way in order to get information about the unknown constants δg
in (1.11).
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Proposition 4. One has the asymptotics

(3.15) det∗Δ̂ ∼ 2κ0

Area(X )
{det∗Δ}2 ε1/2,

as ε → 0, where the constant κ0 is the same for all translation surfaces X (and for
all g ≥ 1) and is defined via formula (3.27) below.

Remark 8. The factor 2/Area(X ) is nothing but Area(X̂ )/[Area(X )Area(X )]. That
is why we are not attaching the factor 2 to the constant κ0 in (3.15).

Proof. First, notice that the surface X̂ is provided with a natural involution ∗, and
the shores of the cut I(ε) (two homologous saddle connections, γ and γ′ on X̂ )

are fixed by this involution. One has the standard (Δ̂-invariant) decomposition

L2(X̂ ) = Lsymm
2 (X̂ ) ⊕ Lantisymm

2 (X̂ ) and the functions u from the domain of Δ̂

which enter Lantisymm
2 (X̂ ) satisfy u|γ∪γ′ = 0, whereas the functions u from the

domain of Δ̂ which enter Lsymm
2 (X̂ ) satisfy un|γ∪γ′ = 0. This shows that the

operator Δ̂ is unitarily equivalent to the direct sum of the operators ΔD and ΔN
of the homogeneous Dirichlet and Neumann boundary value problems in X \ I(ε)
(cf., e.g., [9], p. 79) and, therefore,

(3.16) det∗Δ̂ = detΔDdet
∗ΔN .

We are to study the asymptotics of detΔD and det∗ΔN as ε → 0. �

Asymptotics of detΔD. We will be using the generalizations of the BFK formula
(Theorems B and B* from [3]) to the case of Laplacians on 2d manifolds with
boundary with Dirichlet (and Neumann) boundary conditions. Such generalizations
are straightforward and are mentioned in [14] (see Remark on page 326). Their
proofs differ from the standard proof of Theorem B* from [3] insignificantly. For
the operator ΔD the following surgery formula holds true:

(3.17) detΔD = det(Δ,X \B(ε))det(Δ, B(ε) \ I(ε))det(Nε +N int,D
ε ) ,

where Nε is the Dirichlet-to-Neumann operator from Lemma 4; the operator
N int,D

ε : C∞(∂B(ε)) → C∞(∂B(ε)) is defined via N int,D
ε (f) = un|∂B(ε), with u

subject to

(3.18)

⎧⎪⎨⎪⎩
Δu = 0 in B(ε) \ I(ε)
u|∂B(ε) = f

u|I(ε) = 0

and (Δ, B(ε) \ I(ε)) is the operator of the homogeneous Dirichlet boundary value
problem in B(ε)\I(ε). (Notice that there are no coefficients of the type Area/length
on the right-hand side of (3.17): all the operators there are invertible and (3.17) is
an analog of Theorem B from [3].) The asymptotic formula for the first factor in
(3.17) is given in (3.14); the asymptotic formulas for the other two factors can be
obtained as consequences of homogeneity properties. Due to (3.11) one has

(3.19) det(Δ, B(ε) \ I(ε)) = ε−2ζ(Δ,B(ε)\I(ε))(0)det(Δ, B(1) \ I(1)),

where the value of ζ(Δ,B(ε)\I(ε))(0) coincides with the term h0 of the corresponding
heat asymptotics (cf. (3.12); clearly, dimKer(Δ, B(ε) \ I(ε)) = 0). The term h0 is
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easy to find; namely, one has

(3.20) h0 =
1

6
+ 2

π2 − (2π)2

24π(2π)
=

1

24
,

where the term 1
6 comes from the part ∂B(ε) of ∂[B(ε)\I(ε)] and two terms π2−(2π)2

24π(2π)

come from two angle points of opening β = 2π at the endpoints of the cut I(ε) (see
[4], formula (4.41) or [2], formula (37); the straight part, int(I(ε)) of the boundary
makes no input in h0). Thus, one has

(3.21) det(Δ, B(ε) \ I(ε)) = ε−
1
12 det(Δ, B(1) \ I(1)) .

Moreover, from (3.13) and the relation dimKer(Nε + N int,D
ε ) = 0 one gets the

equality

ζNε+N int,D
ε

(0) = 0

and, therefore,

det(Nε +N int,D
ε ) = det(εNε + εN int,D

ε )

= det(|ν|+O(ε) +N int,D
1 ) ∼ det(|ν|+N int,D

1 ),

as ε → 0 due to Lemma 4. Summarizing, one arrives at the asymptotic formula
(3.22)

detΔD ∼ 27/6
√
πe2ζ

′(−1)+5/12det∗Δdet(|ν|+N int,D
1 )det(Δ, B(1) \ I(1))

Area(X )
ε

1
4

as ε → 0.
Asymptotics of detΔN . For the operator ΔN the analog of Theorem B* from

[3] looks as follows:
(3.23)

det∗ΔN =
Area(X )

2πε
det(Δ,X \B(ε))det(Δ, B(ε) \ I(ε);D,N)det∗(Nε +N int,N

ε ) ,

where Nε is the Dirichlet-to-Neumann operator from Lemma 4; the operator
N int,N

ε : C∞(∂B(ε)) → C∞(∂B(ε)) is defined via N int,N
ε (f) = un|∂B(ε), with u

subject to

(3.24)

⎧⎪⎨⎪⎩
Δu = 0 in B(ε) \ I(ε)
u|∂B(ε) = f

un|I(ε) = 0

and (Δ, B(ε)\I(ε);D,N) is the operator of the homogeneous boundary value prob-
lem in B(ε) \ I(ε) with Dirichlet conditions on ∂B(ε) and Neumann conditions on
I(ε). As above, the asymptotic formula of the first factor in (3.24) is given in (3.14);
the asymptotic formulas of the other two factors can be obtained as consequences
of homogeneity properties. Due to (3.11) one has

det(Δ, B(ε) \ I(ε)) = ε−2ζ(Δ,B(ε)\I(ε);D,N)(0)det(Δ, B(1) \ I(1);D,N)

= ε−
1
12 det(Δ, B(1) \ I(1);D,N) .

(3.25)

(The inputs from the angle points to the h0 are the same for Dirichlet and Neumann
problems.) Since dimKer(Nε +N int,N

ε ) = 1, one gets the equality

ζNε+N int,N
ε

(0) = −1
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and, therefore,

det∗(Nε +N int,N
ε ) = εdet∗(εNε + εN int,N

ε )

= εdet∗(|ν|+O(ε) +N int,N
1 ) ∼ εdet∗(|ν|+N int,N

1 ),

as ε → 0 due to Lemma 4. Summarizing, one arrives at the asymptotic formula
(3.26)

det∗ΔN ∼21/6π−1/2e2ζ
′(−1)+5/12det∗Δdet∗(|ν|+N int,N

1 )det(Δ, B(1)\I(1);D,N)ε
1
4

as ε → 0. Now from (3.26), (3.22) and (3.16) one gets (3.15) with

κ0 = 21/3e4ζ
′(−1)+5/6det(|ν|+N int,D

1 )det(Δ, B(1) \ I(1)) det∗(|ν|+N int,N
1 )

× det(Δ, B(1) \ I(1);D,N) .

(3.27)

�
Now from (1.11) (with s = ε/2) and (3.15) one gets the relation

δ2g = 2
√
2κ0(δg)

2

for the constant δg from (1.7). This implies that

(3.28) δN = (2
√
2κ0)

N−1δN1 ,

with δ1 from (1.9) for any N of the form N = 2n. In the next subsection we show
that (3.28) holds for any natural number N .

3.4. General case. Let Y be a translation surface of genus g − 1 and also let T
be a translation surface of genus one (a flat torus). Take two disks, DY and DT ,
of radius ε in Y and T with centers P and Q and introduce two straight cuts of
length ε/2 starting at points P ∈ Y and Q ∈ T . Gluing the surfaces Y and T along
the cuts one gets the translation surface X of genus g. The shores of the cuts give
rise to the saddle connections γ and γ′ on X . The boundary ∂B(ε) = ∂DY of the
disk in Y gives rise to the contour Γ on X . Let Yε = Y \ DY and Zε = X \ Yε.
Let Wε = T \DT . Gluing Wε and Zε along the boundary ∂DT = Γ one gets the
symmetric translation surface S of genus two.

By virtue of Proposition 2, one has

det∗ΔX =
Area(X )

length(Γ)
det(Δ,Yε)det(Δ,Zε)det

∗(NYε
+NZε

) ,(3.29)

det∗ΔS =
2Area(T )

length(Γ)
det(Δ,Wε)det(Δ,Zε)det

∗(NWε
+NZε

)(3.30)

and, therefore,

(3.31) det∗ΔX =
Area(X )

2Area(T )

det∗(NYε
+NZε

)

det∗(NWε
+NZε

)

det(Δ,Yε)

det(Δ,Wε)
det∗ΔS .

Using Lemma 4, we have

log
det∗(NYε

+NZε
)

det∗(NWε
+NZε

)
= log

det∗(|ν|+O1(ε) +NZε
)

det∗(|ν|+O2(ε) +NZε
)

=

∫ 1

0

d

dt
log det∗(|ν|+ tO1(ε) + (1− t)O2(ε) +NZε

)dt

=

∫ 1

0

tr
[
(|ν|+ tO1(ε) + (1− t)O2(ε) +NZε

)−1
{1}⊥(O1(ε)−O2(ε))

]
dt = O(ε)
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and, therefore,
det∗(NYε

+NZε
)

det∗(NWε
+NZε

)
∼ 1

as ε → 0. Due to (3.14) we get

det(Δ,Yε)

det(Δ,Wε)
∼ det∗ΔY

det∗ΔT

Area(T )

Area(Y)
.

Finally, from (3.15) it follows that

det∗ΔS ∼ 2κ0

Area(T )
{det∗ΔT }2ε

1
2 .

Thus, we conclude from (3.31) that

(3.32) det∗ΔX ∼ Area(X )

Area(Y)Area(T )
κ0det

∗ΔYdet
∗ΔT ε

1
2

as ε → 0. Comparing (3.32) and (1.11) (with s := ε/2), one arrives at the following
proposition.

Proposition 5. The following expression for the constant δg in the formula (1.7)
for the determinant of the Laplacian on the stratum Hg(1, . . . , 1) holds true:

(3.33) δg =
1

2
√
2

(
21/6π−4/3

)g
κg−1
0 ,

where κ0 is given by (3.27).
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L’Institut Fourier, Grenoble, 2002.

[10] J. Jorgenson, Asymptotic behavior of Faltings’s delta function. Duke Math. J., 61 (1990),
N1, 221–254. MR1068387 (91m:14042)

[11] Kokotov A., Korotkin D., Tau-functions on spaces of Abelian differentials and higher genus
generalizations of Ray-Singer formula, Journal of Differential Geometry, 82 (2009), 35–100.
MR2504770 (2010c:58041)

[12] Kokotov A., Korotkin D., Tau-functions on the spaces of Abelian and quadratic differentials
and determinants of Laplacians in Strebel metrics of finite volume, preprint of Max-Planck
Institute for Mathematics in the Sciences, Leipzig, 46/2004; math.SP/0405042.

[13] Kontsevich, M., Zorich, A., Connected components of the moduli spaces of holomorphic
differentials with prescribed singularities, Invent. Math. 153 631–678 (2003). MR2000471
(2005b:32030)

Licensed to Concordia Univ. Prepared on Mon Jan 28 15:15:39 EST 2013 for download from IP 132.205.7.55.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0114911
http://www.ams.org/mathscinet-getitem?mr=0114911
http://www.ams.org/mathscinet-getitem?mr=1301847
http://www.ams.org/mathscinet-getitem?mr=1301847
http://www.ams.org/mathscinet-getitem?mr=1165865
http://www.ams.org/mathscinet-getitem?mr=1165865
http://www.ams.org/mathscinet-getitem?mr=730920
http://www.ams.org/mathscinet-getitem?mr=730920
http://www.ams.org/mathscinet-getitem?mr=1031662
http://www.ams.org/mathscinet-getitem?mr=1031662
http://www.ams.org/mathscinet-getitem?mr=0335789
http://www.ams.org/mathscinet-getitem?mr=0335789
http://www.ams.org/mathscinet-getitem?mr=1146600
http://www.ams.org/mathscinet-getitem?mr=1146600
http://www.ams.org/mathscinet-getitem?mr=1068387
http://www.ams.org/mathscinet-getitem?mr=1068387
http://www.ams.org/mathscinet-getitem?mr=2504770
http://www.ams.org/mathscinet-getitem?mr=2504770
http://www.ams.org/mathscinet-getitem?mr=2000471
http://www.ams.org/mathscinet-getitem?mr=2000471


DETERMINANT OF LAPLACIAN AT THE PRINCIPAL BOUNDARY 5671

[14] Yoonweon Lee, Burghelea-Friedlander-Kappeler’s gluing formula for the zeta-determinant
and its applications to the adiabatic decompositions of the zeta-determinant and analytic
torsion, Transactions of the American Mathematical Society, Vol. 355, N10, pp. 4093–4110.
MR1990576 (2004e:58058)

[15] Loya P., McDonald P., Park J., Zeta regularized determinants for conic manifolds, Journal
of Functional Analysis (2007), 242, N1, 195–229. MR2274020 (2007g:58036)

[16] R. Lundelius, Asymptotics of the determinant of the Laplacian on hyperbolic surfaces of finite

volume, Duke Math. J. 71 (1993), no. 1, 211–242. MR1230291 (94j:58178)
[17] Masur H., The extension of the Weil-Peterson metric to the boundary of Teichmuller space,

Duke Mathematical Journal, Vol. 43(1976), N3, pp. 623–635. MR0417456 (54:5506)
[18] Ozawa S., The first eigenvalue of the Laplacian on two-dimensional Riemannian manifolds,

Tohoku Math. Journ., 34(1982), 7–14. MR651702 (83g:58073)
[19] Polchinski J., Evaluation of the one loop string path integral, Commun. Math. Phys., 104

(1986) 37–47. MR834480 (87j:81223)
[20] Ray D. B., Singer I. M., Analytic torsion for complex manifolds. Ann. of Math. (2) 98 154-177

(1973), MR383463, Zbl 0267.32014.
[21] Weisberger W., Conformal Invariants for determinants of Laplacians on Riemann surfaces,

Commun. Math. Phys., 112, 633–638 (1987). MR910583 (89c:58135)
[22] Wentworth R., Precise constants in bosonization formulas on Riemann surfaces, Commun.

Math. Phys. 282 (2) (2008), 339–355. MR2421480 (2009f:58054)
[23] Wentworth R., private communication.
[24] Wentworth R., Asymptotics of determinants from functional integration, J. Math. Phys.,

32(7), 1991, 1767–1773. MR1112704 (92k:58271)
[25] Wentworth R., The asymptotics of the Arakelov-Green’s function and Faltings’ delta invari-

ant, Commun. Math. Phys. 137, (1991), 427–459. MR1105425 (92g:14019)
[26] Wolpert S., Asymptotics of the spectrum and the Selberg zeta function on the space of

Riemann surfaces, Comm. Math. Phys. 112 (1987), no. 2, 283–315. MR905169 (89c:58136)
[27] Yamada A., Precise variational formulas for abelian differentials, Kodai Math. J., 3 (1980),

114–143. MR569537 (81i:30078)

Department of Mathematics and Statistics, Concordia University, 1455 de Maison-

neuve Blvd. West, Montreal, Quebec, Canada H3G 1M8

E-mail address: alexey@mathstat.concordia.ca

Licensed to Concordia Univ. Prepared on Mon Jan 28 15:15:39 EST 2013 for download from IP 132.205.7.55.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1990576
http://www.ams.org/mathscinet-getitem?mr=1990576
http://www.ams.org/mathscinet-getitem?mr=2274020
http://www.ams.org/mathscinet-getitem?mr=2274020
http://www.ams.org/mathscinet-getitem?mr=1230291
http://www.ams.org/mathscinet-getitem?mr=1230291
http://www.ams.org/mathscinet-getitem?mr=0417456
http://www.ams.org/mathscinet-getitem?mr=0417456
http://www.ams.org/mathscinet-getitem?mr=651702
http://www.ams.org/mathscinet-getitem?mr=651702
http://www.ams.org/mathscinet-getitem?mr=834480
http://www.ams.org/mathscinet-getitem?mr=834480
http://www.ams.org/mathscinet-getitem?mr=383463
http://www.ams.org/mathscinet-getitem?mr=910583
http://www.ams.org/mathscinet-getitem?mr=910583
http://www.ams.org/mathscinet-getitem?mr=2421480
http://www.ams.org/mathscinet-getitem?mr=2421480
http://www.ams.org/mathscinet-getitem?mr=1112704
http://www.ams.org/mathscinet-getitem?mr=1112704
http://www.ams.org/mathscinet-getitem?mr=1105425
http://www.ams.org/mathscinet-getitem?mr=1105425
http://www.ams.org/mathscinet-getitem?mr=905169
http://www.ams.org/mathscinet-getitem?mr=905169
http://www.ams.org/mathscinet-getitem?mr=569537
http://www.ams.org/mathscinet-getitem?mr=569537

	1. Introduction
	2. Families of degenerating surfaces and asymptotical formulas
	2.1. Two examples in genus 0
	2.2. Asymptotical formulas
	2.3. Asymptotics of 𝐸(𝑃,𝑄),𝜎(𝑃,𝑄), 𝐶(𝑃) and 𝐾^{𝑃}
	2.4. Asymptotics of 𝜏_{𝑔}

	3. Surgery and asymptotics
	3.1. Wentworth lemma
	3.2. Analytic surgery for translation surfaces
	3.3. Symmetric case
	Asymptotics of 𝑑𝑒𝑡Δ_{𝒟}
	3.4. General case

	References

