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Department of Mathematics and Statistics, Concordia University,
1455 de Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada
E-mail: pgora@mathstat.concordia.ca

Zhenyang Li
E-mail: zhenyangemail@gmail.com

Abraham Boyarsky
E-mail: boyar@alcor.concordia.ca

Harald Proppe
E-mail: proppe@alcor.concordia.ca



2

1 Introduction

Let I = [0, 1] and let P be a finite partition of I. Let T (I) denote the
class of piecewise expanding transformations on I with partition P. We
study statistical properties of the invariant probability density function (pdf)
associated with τ in T (I). We impose two conditions on τ : 1) weak covering,
which means there exists an integer K such that the union of forward images
of every element of P equals I, and 2) harmonic average of slopes condition,
which means that the harmonic average of the (inf of) slopes of every two
adjoint intervals (except for the first and last interval) is strictly larger than
2. We use these two conditions to derive explicit constants for the upper and
lower bounds of the invariant pdf as well as the constant that determines the
speed of convergence to the invariant pdf. Related results were obtained in [?],
but with the assumption that the magnitude of all slopes are strictly greater
than 2. Without this condition many different behaviors for approximating
maps can occur as shown in [?] for W maps. For example, the acims of
approximating maps can converge to a singular, absolutely continuous or a
mixed measure. By W map we mean any map with a graph in the shape of
letter W for which the middle vertex is a fixed point. More precisely it is a
map τ : [0, 1] → [0, 1], piecewise monotonic on the partition {I1, I2, I3, I4}
of [0, 1], Ii = [ai1 , ai], i = 1, 2, 3, 4, such that τ (a0) = τ (a4) = 1, τ (a1) =
τ (a3) = 0 and τ (a2) = a2. An example of a W map is shown in Figure ??.
W maps are continuous but our considerations do not depend on continuity
and we do not assume it.

It is one of the objectives of this paper to show that we can weaken the
slope 2 condition using the harmonic average slope condition and establish
stability of acim for some W maps.

In Section 2 we use the weak covering property and the harmonic average
of slopes condition to derive an explicit bound on the number of iterations
needed to obtain weak covering for any subinterval of a partition element.
In Section 3 we use this result and a generalized Lasota-Yorke inequality to
obtain explicit constants for the upper bound of the invariant pdf and from
this we derive an explicit lower bound for the invariant pdf. We then show
(Theorem ??) that we can extend our results to families of maps. We provide
an example to show that the harmonic average of slopes condition is essential.
For a W-shaped map example we calculate all the constants necessary to find
the lower bound. In Section 4 we assume weak mixing and use our derived
constants to find an explicit constant for the rate of convergence. Finding the
rate of convergence of initial densities to the invariant pdf of the map is an
important problem in many scientific fields. Our method depends on using
equipartitions rather than partitions of the inverse images of P and, as such,
in most situations, results in sharper constants. We work out an example
where the results of [?] do not apply.

2 Notation and Preliminary Results

Let I = [0, 1] and let m be Lebesgue measure on I. We present the usual
definition of a piecewise expanding map.
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Definition 1 Suppose there exists a partition P = {Ii := [ai−1, ai], i =
1, . . . , q} of I such that τ : I → I satisfies the following conditions:

1. τi := τ |Ii
is C1 and limx→a+

i−1
τ ′(x), limx→a−

i
τ ′(x) exist (can be infinite);

2. |τ ′
i(x)| ≥ si > 1 for any i and for all x ∈ (ai−1, ai).

If τ satisfies conditions 1-2, we say it is in T (I), the class of piecewise
expanding transformations.

We will also assume that τ is weakly covering, i.e.,

Definition 2 The map τ ∈ T (I) is called weakly covering if and only if
there exists a K ≥ 1 such that

K
⋃

n=0

τn(Ii) = [0, 1] , i = 1, . . . , q . (1)

Let
s := min

1≤i≤q
si > 1 . (2)

Suppose τ ∈ T (I) satisfies the following condition.

sH = max
i=1,...,q−1

{

1

si
+

1

si+1

}

< 1 . (3)

The number H(a, b) = 2
1
a
+ 1

b

is called the harmonic average of a and b. Con-

dition H(a, b) > 2 is equivalent to 1
a + 1

b < 1. If τ satisfies sH < 1 we say
that τ satisfies the harmonic average of slopes condition.

Now, we prove a very simple minimax lemma with important conse-
quences.

Lemma 1 Let z1, z2 > 1 and α + β = c, where α, β > 0. Assume

1

z1
+

1

z2
< 1 .

Then,

min
α,β

max{z1α, z2β} =
1

1
z1

+ 1
z2

c > c .

Proof We have

min
α,β

max{z1α, z2β} = min
α

max{z1α, z2(c − α)} .

The line f(α) = z1α is increasing while the line g(α) = z2(c−α) is decreasing.
The minα max{z1α, z2(c − α)} occurs where the lines intersect, i.e., at

α =
z2c

z1 + z2
,

which gives

min
α,β

max{z1α, z2β} =
z1z2c

z1 + z2
=

1
1
z1

+ 1
z2

c > c .

�
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Remark 1 If 1
z1

+ 1
z2

= 1, then, minα,β max{z1α, z2β} = c.

Lemma ?? implies

Proposition 1 If τ ∈ T (I) satisfies the harmonic average of slopes condi-
tion, then for any subinterval J ⊂ I which does not contain two endpoints of
partition P we have

m(τ (J)) ≥
1

sH
m(J) . (4)

Proof Note that

s = min
1≤i≤q

si ≥ min
1≤i≤q−1

1
1
si

+ 1
si+1

≥
1

sH
.

If J does not contain any endpoints of partition P, then J ⊂ Ii, for some
1 ≤ i ≤ q, and

m(τ (J)) ≥ sim(J) ≥
1

sH
m(J) .

If J contains exactly one endpoint of partition P, then let m(J) = α + β,
where α and β are the lengths of parts of J to the left and to the right of the
partition point, respectively. By Lemma ?? we obtain m(τ (J)) ≥ 1

sH
m(J).

�

Proposition 2 If τ ∈ T (I) satisfies the harmonic average of slopes condi-
tion, then for any subinterval J ⊂ I there exists a positive integer M(J) such
that at least one connected component of τM(J)(J) contains two endpoints of
partition P and, automatically, the interval between them. Moreover, M(J)
satisfies

0 ≤ M(J) ≤ max

{⌈

ln m(J)
δmax

ln(sH)

⌉

, 0

}

, (5)

where δmax = max{m(Ii

⋃

Ii+1) | i = 1, 2, . . . , q − 1} and dte is the smallest
integer equal or larger than t.

Proof Let J be a subinterval of I. Then,
Case (i): If J contains two or more endpoints of P, then M(J) = 0. In

particular, this happens when m(J) ≥ δmax.
Case (ii): We assume m(J) < δmax and that J contains at most one

endpoint of partition P. Let us assume that J contains exactly one endpoint
of P, and this endpoint divides J into two subintervals, J0,1 and J0,2. Lemma
?? implies

max{m(τ (J0,1)), m(τ (J0,2))} ≥
1

sH
m(J).

We can assume m(τ (J0,1)) ≥
1

sH
m(J). Notice that τ (J0,1) is also an interval

since τ ∈ T (I).
If J contains no endpoint of P, then τ (J) is again an interval, and

m(τ (J)) ≥ sm(J) ≥ 1
sH

m(J).
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Thus, for an interval J that contains at most one endpoint of P, we can
find an interval in τ (J), denoted by J1, such that m(J1) ≥ 1

sH
m(J). If J1

contains two endpoints of P, we stop the iteration. Otherwise, considering
τ (J1), we again find an interval in τ (J1), denoted by J2, such that m(J2) ≥
1

sH
m(J1) ≥

1
s2

H

m(J). Repeating this procedure, we can find an integer k such

that m(Jk) ≥ 1
sk

H

m(J) ≥ δmax, which implies that τk(J) contains at least

two endpoints of P. Therefore, we obtain

M(J) ≥
ln m(J)

δmax

ln(sH)
.

�

Corollary 1 If τ ∈ T (I) is weakly covering and satisfies the harmonic av-
erage of slopes condition, then for any subinterval J ⊂ I we have

K
⋃

n=0

τM(J)+n(J) = [0, 1] , (6)

where M(J) is defined in Proposition ??.

Remark 2 Note that the weak covering property plus sH < 1 does not imply
topological exactness. The simplest example would be the map τ such that
τ ([0, 1/2]) = [1/2, 1] and τ ([1/2, 1]) = [0, 1/2] and τ restricted to each of these
intervals is a tent map. An additional assumption is needed for topological
exactness. See Theorem ?? and Corollary ??.

We define P(n) = {Ii0 ∩ τ−1(Ii1 ) ∩ τ−2(Ii2) ∩ · · · ∩ τ−(n−1)(Iin−1 ) : 1 ≤

i0, i − 1, i − 2, . . . , in−1 ≤ q}. Partition P(n) is the partition of monotonicity
of τn. Note that P = P(1).

For any g : [0, 1] → R we define its variation

∨

[0,1]

g = sup
K

sup

K
∑

k=1

|g(sk−1) − g(sk)| ,

where the supremum is taken over all sequences 0 = s0 < s1 < · · · < sK = 1.
For more information about this notion, functions of bounded variation and
their uses in the theory of piecewise expending maps of an interval, we refer
the reader to [?].

Theorem 1 Let τ ∈ T (I) be piecewise C1+1 (see the definition at the be-
ginning of the next section) with sH < 1 and assume inf φ ≥ β > 0, where
φ is the τ -invariant density. If τ is weakly mixing (with respect to Lebesgue
measure), then there exists K1 such that

τK1(Ii) = [0, 1] , i = 1, 2, . . . , q .
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Proof We follow the proof of a similar theorem in [?]. For the maps we
consider weak mixing is equivalent to mixing and to exactness [?](all with
respect to Lebesgue measure). Let χ = χIi

/m(Ii) for some 1 ≤ i ≤ q. Since
τ is exact we have P n

τ χ → φ in L1, as n → ∞, where Pτ is the Perron-
Frobenius operator induced by τ [?]. Thus, for any n1 (which will be fixed
later) we can find an N(n1) such that for any n ≥ N(n1) in every interval
J of the partition P(n1) there is a point x ∈ J with P n

τ χ(x) ≥ β/2. On the
other hand, the Lasota-Yorke inequality implies that

∨

[0,1]

P k
τ χ ≤ C

for all k and some constant C. Let n ≥ N(n1) and

B = {J ∈ P(n1) : ∃ x∈J such that P n
τ χ(x) < β/4} .

If J ∈ B, then we have
∨

J P n
τ χ ≥ β/4 and

∨

[0,1]

P n
τ χ ≥ (β/4)#B .

Thus, #B ≤ 4C/β = L0.
The Perron-Frobenius operator Pτ induced by τ , can be viewed as an

operator on BV (I), the space of functions of bounded variation on I (or
more generally on L1(I)). For τ ∈ T (I) it has the following representation
[?]

Pτf =

q
∑

i=1

f(τ−1
i (x))

∣

∣τ ′(τ−1
i (x))

∣

∣

χτ[ai−1 ,ai](x) .

For more detailed information about the space BV (I), operator Pτ and its
properties we refer the reader to [?]. An important property of Pτ is that f
is an invariant pdf (or a τ -invariant density) if and only if Pτf = f .

Using the representation of Pτ , we have the following inequality for all
x ∈ [0, 1];

β ≤ φ(x) =
∑

y∈τ−n(x)

φ(y)

|(τn)′(y)|
≤ sup(φ)#(τ−n(x))s−n .

This shows that #(τ−n(x)) goes to infinity as n goes to infinity, uniformly
in x. In particular we can find an N1 such that for all x ∈ [0, 1]

#(τ−N1(x)) > L0.

Let us fix n1 = N1 and N2 ≥ N(N1). Then,

P N1+N2
τ χ(x) =

∑

y∈τ−N1 (x)

P N2
τ χ(y)

|(τN1)′(y)|
≥

β

4sN1
,

since at least one preimage y ∈ τ−N1(x) belongs to an interval J /∈ B.
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We have proved that τN1+N2 (Ii) = [0, 1]. Choosing K1 to be the maxi-
mum of constants N1 + N2 over all i = 1, 2, . . . , q completes the proof.

�

The following result is an immediate consequence.

Corollary 2 If τ ∈ T (I) is weakly covering, weakly mixing and satisfies the
harmonic average of slopes condition, then τ is topologically exact. For any
subinterval J ⊂ I we have

τM(J)+K1(J) = [0, 1] , (7)

where M(J) is the number from Proposition ?? and K1 is the constant from
Theorem ??.

3 Lower bound for the invariant density

From now on we assume that our τ ∈ T (I) is piecewise C1+1, i.e., each τ ′
i

satisfies Lipschitz condition with a constant Mi:

|τ ′
i(x) − τ ′

i (y)| ≤ Mi|x− y| , for all x, y ∈ Ii , i = 1, 2, . . . , q . (8)

This means τ is a piecewise expanding, piecewise C1+1 map of I. We intro-
duce the following notation

M := max
1≤i≤q

Mi,

and

δ±i := δ{τ(a±
i

)/∈{0,1}} =

{

0 if τ (a±
i ) ∈ {0, 1},

1 if τ (a±
i ) /∈ {0, 1},

where τ (a±
i ) means limx→a±

i
τ (ai). For example, δ+

i = 1 means that the left

endpoint of the (i + 1)-st branch of τ is hanging (does not touch 0 or 1).
Also, let

ηi :=



























max
{

δ+
0

s1
,

δ+
1

s2

}

if i = 1,

max

{

δ−
q−1

sq−1
,

δ−
q

sq

}

if i = q,

max

{

δ−
i−1

si−1
,

δ+
i

si+1

}

for i = 2 . . . q − 1.

Now, we present the following stronger version of the Lasota-Yorke in-
equality [?].

Proposition 3 Let τ ∈ T (I), and satisfy the Lipschitz condition (??). Then,
for every f ∈ BV ([0, 1]),

∨

I

Pτf ≤ η
∨

I

f + γ

∫

I

|f | dm, (9)

where η = max
1≤i≤q

{

1
si

+ ηi

}

, γ = M
s2 +

2 max
1≤i≤q

ηi

min
1≤i≤q

m(Ii)
.



8

Fig. 1 The extension of map τ to [0 − ε, 1 + ε].

Note that we always have max
1≤i≤q

ηi < 1
s .

As proved in Theorem 3.2 of [?], if τ (0), τ (1) ∈ {0, 1}, then η ≤ sH < 1.
If the condition τ (0), τ (1) ∈ {0, 1} is not satisfied one uses an extension
method to arrive at a similar conclusion, as done in Theorem 3.3 of [?]. For
completeness, we describe the method. Let Iε = [0− ε, 1 + ε] for some fixed
small positive ε and define τ ε on Iε as follows

τ ε(x) =











−ε + 1+ε
ε

(x + ε) , x ∈ [−ε, 0) ;

τ (x) , x ∈ [0, 1] ;

0 + 1+ε
ε (x − 1) , x ∈ (1, 1 + ε] .

See Figure ?? for an illustration. The interval [0, 1] is the attractor of τ ε.
We choose ε so small that the constants s and sH are the same for maps
τ and τ ε. We consider the subspace BV ε(Iε) = {f ∈ BV (Iε) : f(x) =
0 outside [0, 1]} of BV (Iε). It is easy to check that Pτε (BV ε(Iε)) ⊂ BV ε(Iε)
and (Pτεf)|[0,1] = Pτ(f|[0,1]) for f ∈ BV ε(Iε). Now, we obtain inequality (??)

for Pτε on BV (Iε). In particular it holds for f ∈ BV ε(Iε). The constants ηi

are different but by the choice of ε we still have η < sH and max
1≤i≤q

ηi < 1
s .

The additional partition subintervals I0 = [−ε, 0] and Iq+1 = [1, 1+ε] do not
appear in the min

1≤i≤q
m(Ii) because the integrals

∫

I0
fdm and

∫

Iq+1
fdm are 0
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for f ∈ BV ε(Iε). Thus, for f ∈ BV ε(Iε), we obtain the inequality

∨

Iε

Pτf ≤ η
∨

Iε

f + γ

∫

I

|f | dm, (10)

with η ≤ sH < 1 and γ = M
s2 + 2

s· min
1≤i≤q

m(Ii)
.

It is well known (see [?]) that (??) or (??) implies that τ admits an acim
with a pdf of bounded variation. We denote this invariant density by φ. It
follows from (??) or (??) that

∨

I

φ ≤
γ

1 − η
. (11)

We now consider the uniform partition Pu of [0, 1] into 2([ γ
1−η ] + 1) subin-

tervals, where [ γ
1−η ] is the integer part of γ

1−η . Thus, for each J ∈ Pu, we

have m(J) < 1−η
2γ . Now, we prove:

Lemma 2 There exists Ju ∈ Pu such that

φ(x) ≥
1

2
for all x ∈ Ju .

Proof Suppose the conclusion is not true. Then, for each J ∈ Pu, there exists
a point xJ ∈ J such that φ(xJ) < 1

2
. Using the inequality (??), we obtain

1 =

∫

I

φ dm =
∑

J∈Pu

∫

J

φ dm ≤
∑

J∈Pu

m(J)

(

φ(xJ) +
∨

J

φ

)

<
∑

J∈Pu

(

m(J)

2
+

1 − η

2γ

∨

J

φ

)

=
1

2
+

1 − η

2γ

∨

I

φ ≤
1

2
+

1 − η

2γ

γ

1 − η
= 1 .

The contradiction completes the proof.

�

Now, we can prove the existence of the lower bound for the invariant pdf
of τ . This result for individual maps is not new, see [?], [?] or [?]. What is new
are the explicit constants we obtain, which allows us to prove the existence
of the uniform lower bound for the invariant densities of a family of maps.

Theorem 2 Let τ ∈ T (I) be piecewise C1+1 and satisfy sH < 1. Then there
exists β > 0 such that inf φ ≥ β, where φ is the τ -invariant density.

Proof Let Smax denote the biggest value of |τ ′(x)| over I. Since φ is the
invariant density, P n

τ φ = φ for any natural number n. Lemma ?? implies
that there exists interval Ju ⊆ I with m(Ju) = 1

2([ γ
1−η

]+1)
such that

φ(y) ≥
1

2
for all y ∈ Ju .
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By Corollary (??), for each x ∈ I, we can find an integer nu ≤ M(Ju) + K
and yu ∈ Ju such that τnu(yu) = x. Therefore,

φ(x) = (P nu
τ φ) (x) =

∑

y∈τ−nu (x)

φ(y)

|(τnu)′(y)|
≥

φ(yu)

|(τnu)′(yu)|
≥

1

2Snu
max

.

Setting β = (2Snu
max)

−1 (or β =
(

2S
M(Ju)+K
max

)−1

for an explicit formula)

completes the proof.

�

The next theorem generalizes Theorem ?? to a family of maps uniformly
satisfying the assumptions.

Theorem 3 Let {τ (r)} ⊂ T (I) be a family of piecewise C1+1 maps. The

defining partition for τ (r) is P(r) = {I
(r)
1 , . . . , I

(r)
q(r)

}. We assume we can find

uniform constants sH < 1, K, δ > 0, δmax, M , s > 1, Smax such that

sH ≥ s
(r)
H = max{(min

I
(r)
i

|(τ (r))′−1 + (min
I
(r)
i+1

|(τ (r))′−1 : i = 1, 2, . . . , q(r) − 1} ;

K ≥ K(r), where ∪K(r)

n=0 (τ (r))n(I
(r)
i ) = [0, 1] , i = 1, 2, . . . , q(r) ;

δ ≤ δ(r) = min{m(I
(r)
i ) : i = 1, 2, . . . , q(r)} ;

δmax ≥ δ(r)
max = max{m(I

(r)
i ∪ I

(r)
i+1) : i = 1, 2, . . . , q(r) − 1} ;

M ≥ M (r), the common Lipschitz constant for (τ
(r)
i )′ , i = 1, 2, . . . , q(r) ;

s ≤ s(r) = min

{

min
I
(r)
i

|(τ
(r)
i )′| , i = 1, 2, . . . , q(r)

}

;

Smax ≥ S(r)
max = max

{

max
I
(r)
i

|(τ
(r)
i )′| , i = 1, 2, . . . , q(r)

}

.

(12)

Let us define

β =






2S

max

(&

− ln(2([
γ

1−sH
]+1))−ln(δmax)

ln(sH )

’

,0

)

+K

max







−1

, (13)

where γ = M
s2 + 2

s·δ . Then, for all r, inf φ(r) ≥ β, where φ(r) is the τ (r)-
invariant density.

Proof Combination of previous results in the paper.

�
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Below we refer to an example from [?] which shows that the condition
sH < 1 is necessary in Theorem ??. Another such example was constructed
in [?].

Example 1 In [?] there was constructed a family {τ (r)} of W-shaped maps
converging to the standard W-map τ0 with a turning fixed point at 1/2 and
slopes 2 to the left of 1/2 and −2 to the right of this point. The uniform
constants K, δ > 0, δmax, M , s > 1, Smax can be found for this family. The

constants s
(r)
H converge to 1, as τ (r) → τ0. Each τ (r) is exact on the whole

[0, 1], but the absolutely continuous invariant measures of τ (r) converge to
Dirac measure δ(1/2) as τ (r) → τ0. Thus, the uniform positive lower bound
cannot exist for the invariant densities of this family.

We now present an example of a non-linear W-shaped map and calculate
for it all the constants necessary to find the lower bound. The theoretical
bound is approximately 5.53×10−14, while the computer simulation indicates
that the lower bound is 0.54.

Fig. 2 Non piecewise linear W-shaped map.

Example 2 Let the map τ be defined as follows

τ (x) =



















τ1(x) := 1 − 40/9x, 0 ≤ x < 9/40,

τ2(x) := 2(x − 9/40), 9/40 ≤ x < 9/20,

τ3(x) := −4(x − 9/16), 9/20 ≤ x < 9/16,

τ4(x) := x2 + 81/112x− 81/112, 9/16 ≤ x < 1.
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The graph of τ is shown in Figure ??. We have

τ ′
1(x) = −40/9, τ ′

2(x) = 2, τ ′
3(x) = −4, τ ′

4(x) = 2x + 81/112 ;

s1 = 40/9, s2 = 2, s3 = 4, s4 = 207/112 ;

s = min{40/9, s2 = 2, s3 = 4, s4 = 207/112} = 207/112 ;

m(I1) = m([0, 9/40)) = 9/40, m(I2) = m([9/40, 9/20)) = 9/40 ,

m(I3) = m([9/20, 9/16)) = 9/80, m(I4) = m([9/16, 1]) = 7/16 ;

δ = min{m(I1), m(I2), m(I3), m(I4)} = 9/80 ;

δmax = max{m(I1) + m(I2), m(I2) + m(I3), m(I3) + m(I4)}

= max{9/20, 27/80, 11/20} = 11/20 ;

sH = max{9/40 + 1/2, 1/2 + 1/4, 1/4 + 112/207} = 655/828 ;

M1 = 0, M2 = 0, M3 = 0, M4 = 2 ;

M = max{0, 0, 0, 2} = 2 ;

γ =
M

s2
+

2

s · δ
= 437248/42849 ;

[γ/(1 − sH)] = [1748992/35811] = 48 ;

Smax = 40/9 ; m(Ju) =
1

98
; K = 2 .

The estimate for number Nu of iterations needed for any interval Ju to expand
to the whole [0, 1] comes from Corollary ?? and is

Nu ≥ max

{⌈

− ln(2([ γ
1−sH

] + 1)) − ln(δmax)

ln(sH)

⌉

, 0

}

+ K

=

[

ln(539/10)

ln(828/655)

]

+ 1 + 2 = 20 ,

which gives

β ≥
(

2SNu
max

)−1
=
(

2 (40/9)
20
)−1

≈ 5.53× 10−14 .

With the aid of a computer we found the actual value Nu = 8, which gives a
much better, although still perhaps unsatisfactory estimate β ≥ 3.28×10−6.

4 Explicit convergence constants

In this section we assume that τ ∈ T (I) is weakly covering, weakly mixing,
and piecewise of class C1+1 with sH < 1. In particular, this implies Theorem
??, Corollary ?? and Theorem ??. To obtain the exact convergence constant,
we follow the method of Liverani [?] with small improvements. For more
information on Hilbert metrics and the use of cones in the theory of piecewise
expanding maps we refer the reader to [?], [?] or [?].
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We consider the following cone:

Cκ =







g(x) ∈ BV (I) | g(x) 6= 0, g(x) ≥ 0 for all x ∈ [0, 1];
∨

[0,1]

g ≤ κ

∫

[0,1]

g dm







.

Let θ = η + γ
κ .

Lemma 3 If κ > γ
1−η , then θ < 1 and PτCκ ⊂ Cθκ.

Proof First, θ = η + γ
κ < η + γ 1−η

γ = 1.

If f ∈ Cκ, using (??), we obtain

∨

[0,1]

Pτf ≤ η
∨

[0,1]

f + γ

∫

[0,1]

|f |dm ≤ (ηκ + γ)

∫

[0,1]

|f |dm = κθ

∫

[0,1]

|f |dm.

�

Lemma ?? shows that the cone Cκ is invariant under the action of the op-
erator Pτ . We now define the Hilbert metric Θ(f, g) on Cκ. For f , g in Cκ

let

α(f, g) = sup {λ > 0|λf ≤ g} ,

β(f, g) = inf {µ > 0|g ≤ µf} ,

Θ(f, g) = ln

(

β(f, g)

α(f, g)

)

,

where we set α = 0 or β = ∞ when the corresponding sets are empty.
We recall the following lemma from [?].

Lemma 4 If Θκ is the Hilbert metric associated with the cone Cκ, then for
each ν < 1 and g ∈ Cκν

Θκ(g, 1) ≤ ln













max

{

(1 + ν)
∫

[0,1] g dm, sup
x∈[0,1]

g(x)

}

min

{

(1 − ν)
∫

[0,1]
g dm, inf

x∈[0,1]
g(x)

}













.

A slight change in Lemma ?? yields:

Lemma 5 Let Pu be the uniform partition of [0, 1] into 2([ γ
1−η

] + 1) subin-

tervals. For each g ∈ Cκ, there exists Ju∗ ∈ Pu such that

g(x) ≥
1

2

∫

[0,1]

g dm for all x ∈ Ju∗ .
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Proof Consider the normalized function, g(x)
R

[0,1]
g dm

, which is a density function

and also in Cκ. Lemma ?? implies that there exists Ju∗ ∈ Pu such that

g(x)
∫

[0,1] g dm
≥

1

2
for all x ∈ Ju∗ .

This completes the proof.

�

Let M(Ju∗) and K1 be as in Proposition ?? and Theorem ??. We now
prove

Lemma 6 For each κ > γ
1−η

, there exists Nu∗ ≥ M(Ju∗) + K1 and ∆ > 0

such that

diam
(

P Nu∗

τ (Cκ)
)

≤ ∆ < ∞ .

Proof Let g(x) ∈ Cκ, Lemma ?? implies that there exists Ju∗ ∈ Pu such that
g(x)

R

[0,1]
g dm

≥ 1
2 for all x ∈ Ju∗ . Corollary ?? implies that we can find an integer

Nu∗ ≤ M(Ju∗) + K1 and yu∗ ∈ Ju∗ such that τNu∗ (yu∗) = x. Therefore,

(

P Nu∗

τ g
)

(x) =
∑

y∈τ−Nu∗ (x)

g(y)

|(τNu∗ )′(y)|
≥

g(yu∗)

|(τNu∗ )′(yu∗)|
≥

∫

[0,1]
g dm

2SNu∗
max

.

Using Lemma ??, we obtain P Nu∗
τ Cκ ⊂ Cθ1κ, where

θ1 = ηNu∗ +
1 − ηNu∗

1 − η

γ

κ
. (14)

Let

ω(g) =

inf
x∈[0,1]

(

P Nu∗
τ g

)

(x)
∫

[0,1]
g dm

.

Then,

1

2SNu∗
max

≤ ω(g) ≤ 1 .

Note that
∨

I

P Nu∗

τ g ≤ ηNu∗
∨

I

g +
1 − ηNu∗

1 − η
γ

∫

[0,1]

g dm ,

which implies
∨

I P Nu∗
τ g

∫

[0,1] g dm
≤ κθ1 .
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Using Lemma ??, we obtain

diam
(

P Nu∗

τ (Cκ)
)

≤ sup
g∈P

Nu∗
τ (Cκ)

2 ln













max

{

(1 + θ1)
∫

[0,1] P
Nu∗

τ g dm, sup
x∈[0,1]

(

P Nu∗

τ g
)

(x)

}

min

{

(1 − θ1)
∫

[0,1]
P Nu∗

τ g dm, inf
x∈[0,1]

(

P Nu∗
τ g

)

(x)

}













≤ sup
g∈P

Nu∗
τ (Cκ)

2 ln









max

{

(1 + θ1)
∫

[0,1] g dm, inf
x∈[0,1]

(

P Nu∗

τ g
)

(x) +
∨

I P Nu∗

τ g

}

min

{

(1 − θ1)
∫

[0,1]
g dm, inf

x∈[0,1]

(

P Nu∗
τ g

)

(x)

}









≤ 2 ln







max{1 + θ1, 1 + κθ1}

min
{

1 − θ1,
1

2S
Nu∗
max

}






≡ ∆ .

�

Thus, exactly as in [?], we obtain the following theorem on the decay of
correlations.

Theorem 4 Let τ ∈ T (I) be weakly covering, weakly mixing and piecewise
of class C1+1 with sH < 1. Then, for each f ∈ L1([0, 1]) and a density
g ∈ BV ([0, 1]),

∣

∣

∣

∣

∣

∫

[0,1]

g · f ◦ τn dm−

∫

[0,1]

fdµ

∣

∣

∣

∣

∣

≤ KnΛn||f ||1



1 + b
∨

[0,1]

g



 ,

where

Λ = tanh (∆/4)
1

Nu∗ ,

Kn = exp
(

∆Λn−Nu∗
)

Λ−Nu∗ ∆||φ||∞ ,

b =

(

κ −
γ

1 − η

)−1

.

Note that |φ| ≤
∨

[0,1] φ +
||φ||1
1−0 ≤ γ/(1 − η) + 1 and since Λ < 1, we have

lim
n→∞

Kn ≤ Λ−Nu∗∆(κ + 1). Although we may not have an explicit formula

for Nu∗ , we can give a sufficient lower bound using Proposition ??.
In [?] the convergence constants are calculated for an example. We cal-

culated them for the same example and obtained the same numbers. For
maps with constant modulus of slope and without turning periodic points
our method does not offer any advantages over the methods of [?] or [?].
Below, we continue Example ?? to which the methods of [?] and [?] do not
apply.



16

Example ??. (continued) We use the directly calculated Nu∗ = 8. We
have γ/(1−η) = γ/(1−sH ) = 1748992/35811.We choose κ = 1748995/35811.
By equation (??), we have θ1 ∼ 0.9999985478 and

∆ = 2 ln
(

(1 + κθ1)2SNu∗

max

)

∼ 33.07038934 .

Then, Λ ∼ 0.9999999835, b = 11937 and

Kn ≤∼ 1648 exp(33 · 0.9999999835n−8) .

Since all the constants in Theorem ?? are explicit we obtain a similar
theorem for families.

Theorem 5 Let a family {τ (r)} satisfy the assumptions of Theorem ??. We
assume that all maps τ (r) are weakly mixing with uniform constant K1 of
Theorem ??. Then, Theorem ?? holds for family {τ (r)} with uniform con-
stants Λ, b and Kn.

Acknowledgment: The authors are grateful to anonymous reviewers for
detailed comments that improved the presentation of the paper.
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2. Boyarsky, A. and Góra, P., Laws of Chaos. Invariant Measures and Dynami-
cal Systems in One Dimension, Probability and its Applications, Birkhäuser,
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