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Abstract. In recent years an idea has emerged that a system in a 3 dimen-
sional space can be described from an information point of view by a system

on its 2 dimensional boundary. This mysterious correspondence is called the
Holographic Principle and has had profound effects in string theory and our

perception of space-time. In this note we describe a purely mathematical model
of the Holographic Principle using ideas from nonlinear dynamical systems the-

ory. We show that a random map on the surface S2 of a three dimensional open
ball B has a natural counterpart in B, and the two maps acting in different

dimensional spaces have the same entropy. We can reverse this construction
if we start with a special 3 dimensional map in B called a skew product. The

key idea is to use the randomness, as imbedded in the parameter of the 2

dimensional random map, to define a third dimension. The main result shows
that if we start with an arbitrary dynamical system in B with entropy E we

can construct a random map on S2 whose entropy is arbitrarily close to E.

1. Introduction

The Holographic Principle originated in the study of black holes through the
work of Bekenstein and Hawking in the 1970s. It claims that all the information
contained in some region of space can be represented as a “hologram” − a theory
defined on the boundary of that region. Equivalence means that the information
or entropic content of these two apparently different descriptions of nature is the
same.

In this note we use the tools of nonlinear dynamical systems theory to consider a
possible approach to a mathematical model of the Holographic Principle in a setting
in which the underlying space is a (punctured) ball B ⊂ R

3 and its boundary sphere
S2. This choice is relatively simple but also appears to be reasonably natural (the
missing centre of the ball can be thought of as corresponding to the singularity of
a black hole).

In Section 2 we consider a 2 dimensional discrete time dynamical system on the
boundary sphere S2. We want to model fluctuations analogous to quantum effects
near a black hole and we do this by starting with a deterministic map and adding
random perturbations of this process, that is, by a random map [5], all of whose
members are close to some central map. A random map is a family of maps selected
randomly at each time iteration with probability ν. Random maps can be used to
model a wide range of dynamical behavior, from deterministic, to chaotic, to truly
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random behavior. Indeed, any stationary discrete time process can be represented
probabilistically by a deterministic chaotic map [4].

Our main construction shows that the random map on S2 has a natural coun-
terpart in the 3 dimensional system in B, namely a skew product map. Although
the random map on the surface of B and the skew product map in the interior act
on different dimensional spaces they have the same measure-theoretic entropy. We
describe the key construction which utilizes the randomness embedded in the pa-
rameter labeling the family of maps in the 2 dimensional random map to define an
additional third dimension. This correspondence between randomness on S2 and
the emergence of a third dimension via the skew product construction is the main
idea of our dynamical systems model of the Holographic Principle in this context.
The key connection between the two dynamical systems is carried by the measure
ν which describes probabilistically the family of maps that constitutes the random
map and also defines the dynamics in B.

We then show that if we start with an arbitrary 3 dimensional dynamical system
in B with entropy E we can construct a skew product map in B and the associated
random map on S2 whose entropies are arbitrarily close to E. We consider a special
dynamical system in B characterized by a snap back repeller [8]. Such a repeller has
the property that orbits are attracted to it then pushed away if they get too close.
Such behavior may serve as a model for gravitational singularities in a black hole
where at some small distance from the singularity the attractive effect of gravity is
reversed and becomes repulsive.

In Section 3 we present a detailed example. In Section 4 we conclude with a few
additional remarks of a more speculative nature linking these results to physics and
the Holographic Principle.

2. Fundamental Constructions

We consider the three dimensional ball B, without the centre, represented as
a product (0, 1] × S2 , where {1} × S2 will simply be referred to as S2, the two
dimensional unit sphere .

Now, we describe the random map construction motivated in part by the be-
haviour of subatomic particles near the event horizon of a black hole. Let {τc,
c ∈ (0, 1]}, be a family of maps where τc : S2 → S2 and let µ be a common
τc-invariant measure equivalent to the Lebesgue measure on S2 and where the pa-
rameter c ∈ [0, 1] is chosen randomly with probability ν , equivalent to Lebesgue
measure on [0, 1]. In the usual formulation the parameter family is a finite set of
maps but for our purposes the family can be considered to be a continuum as in
[11]. We may think of this family as consisting of a central map with all the other
maps representing minor perturbations of this central member, providing a model
for quantum perturbations. The random map is the process in which on each step
one of the maps {τc} is chosen at random (according to ν) and applied to the
current state of the system.

Under suitable conditions on the maps, the random map admits an invariant
measure which is absolutely continuous with respect to Lebesgue measure on S2 .
This measure provides a description of the long term statistical behavior of the
dynamics on the boundary (which represents the horizon of a black hole).

Our objective now is to relate the dynamics on the horizon S2 to a corresponding
three dimensional motion inside B. To that end we define a map g : [0, 1] → [0, 1]
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such that g(0) 6= 0 and g(1) = 1 and preserves measure ν. Note that g is a chaotic
map that preserves the same measure which defines the random map on the surface
of B. The pair(g, ν) conveys the nonlocal correlation between the horizon photons
and their partners inside the sphere.

Our objective is to define a map F such that the entropy of the dynamics inside
B is the same as the entropy of the dynamics on S2. Let us define F : B → B as
follows:

1) For 0 < c < 1 we define F as a skew product [1]:

F (c, z) = (g(c), τc(z)) ;

2) For c = 1, F is a random map

F (1, z) = (1, τd(z)) ,

where d ∈ [0, 1] is chosen randomly according to the probability measure ν .
The definition of F implies that the projection of the interior dynamics onto this

surface of B is statistically identical to the random map dynamics which acts there.
But actually more is implied, namely, that the randomness of the dynamics on the
horizon is equivalent to the additional dimension which we have for the interior
dynamics. Alternatively, the third dimension of the dynamics in B is imbedded
in the randomness of the dynamics on S2. Our first objective is to prove that the
entropy of the three dimension dynamical system inside B is the same as the entropy
of the two dimensional system on S2.

We consider the entropy of the skew product map in the interior of B. For any
finite measurable partition η of S2 we define partition

ηn
c =

n−1
∨

k=0

τ−1
c τ−1

g(c) . . . τ−1
gk(c)

(η) .

Let

hg(F, η) = inf
n≥1

1

n

∫

(0,1)

H(ηn
c )dν(c) ,

and

hg(F ) = sup
η

h(F, η) .

The entropy of F is [1]

hinterior(F ) = hν(g) + hg(F ) .

To determine the entropy of the random map on S2 , let C = (0, 1]N = {c̄ =
(c1, c2, . . .) : ci ∈ (0, 1]} and let σ be the left shift on C:

σ((c1, c2, c3, . . . )) = (c2, c3, . . . ) .

The random map F (1, z) can be understood as a skew product

F (1, (c̄, z)) = (1, (σ(c̄), τc1
(z)).

To find the entropy we proceed as above. For any finite measurable partition η of
S2 we define the partition

ηn
c̄ =

n−1
∨

k=0

τ−1
c1

τ−1
c2

. . . τ−1
ck

(η) ,
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and let

hσ(F, η) = inf
n≥1

1

n

∫

(0,1)

H(ηn
c̄ )dν̄(c̄) ,

where ν̄ = νN. We put

hσ(F ) = sup
η

h(F, η) .

The entropy of F is now defined [6] as:

hsurface(F ) = hσ(F ) .

Using the Kifer-Liu generalization [6] of Pesin’s formula, we obtain:

Theorem 1. For the maps τc = TN,c defined below, we have

hσ(F ) ' hg(F ) ,

with the difference less than or equal to

2(ln sup |f ′
N,c,ε| − ln inf |f ′

N,c,ε|).

Proof. To find the entropy hg(F ) we consider the random map Fg on the S2 , which

for every c ∈ (0, 1] and z ∈ S2 produces the trajectory t
(g)
(c,z)

= z → τc(z) →

τg(c)(τc(z)) → . . . . All maps τc preserve the same measure µ and g preserves
measure ν which are both absolutely continuous with respect to Lebesgue measure.
By Theorem 3.1.3 of [6] the entropy of Fg (which is equal to hg(F )) can be calculated
as

∫

(0,1]

∫

S2

(λ(1)
g (c, z) + λ(2)

g (c, z))dµ(z)dν(c) ,

where λ
(i)
g (c, z) are the Lyapunov exponent calculated on the trajectory

t
(g)
(c,z)

= (z0, z1, z2, . . . ). If zj = (z
(1)
j , z

(2)
j ), j = 0, 1, 2, . . . , then

λ(i)
g (c, z) = lim

n→∞

1

n

n−1
∑

j=0

ln |f ′
N,c,ε(z

(i)
j )| , i = 1, 2 ,

exists for ν × µ almost every trajectory t(c,z) and obviously

(2.1) ln inf |f ′
N,c,ε| ≤ λ(i)

g (c, z) ≤ ln sup |f ′
N,c,ε| .

Quite similarly, the entropy hσ(F ) can be calculated as
∫

(0,1]

∫

S2

(λ(1)
σ (c̄, z) + λ(2)

σ (c̄, z))dµ(z)dν̄(c̄) ,

where λ
(i)
σ (c̄, z) is defined as above but using the trajectory

t
(σ)
(c̄,z) = z → τ(c̄)(z) → τσ(c̄)(τ(c̄)(z)) → . . . .

As before λ
(i)
σ (c̄, z), i = 1, 2, satisfy the inequalities (2.1). This shows that

|hσ(F ) − hg(F )| ≤ 2(ln sup |f ′
N,c,ε| − ln inf |f ′

N,c,ε|) .

�
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Figure 1. Maps fc,ε for c = 0, 1/2, 1 and ε = 0.25.

Using the above framework we now change our perspective. We consider a
general 3 dimensional dynamical system inside S3 with entropy E. Our objective is
to construct a 2 dimensional system on S2 which has the same entropy. Since the
entropy E is enormously large (of order 1066) it can be accurately approximated
by a number of the form 2 ln(N) for some even N . We consider the maps

Tc(z) = fc,ε(x) × fc,ε(y) ,

on S2 represented as the square (0, 1)× (0, 1), where

(2.2) fc,ε(x) =

{

x
1/2+ε(c−1/2) , for 0 ≤ x ≤ 1/2 + ε(c − 1/2) ,

1 − x−1/2−ε(c−1/2)
1/2−ε(c−1/2)

, for 1/2 + ε(c − 1/2) < x ≤ 1 .

More generally, let us take an even number N and define the map

fN,c,ε(x) = fc,ε

(

N

2
x − Int(

N

2
x)

)

, x ∈ [0, 1] .

fN,c,ε preserves Lebesgue measure. Manipulating ε, we can make the entropy of
fN,c,ε arbitrarily close to lnN . Then, the map

(2.3) TN,c = fN,c,ε × fN,c,ε ,

preserves Lebesgue measure on [0, 1] × [0, 1] and has entropy arbitrarily close to
2 lnN .
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Figure 2. Maps f8,c,ε for c = 0, 1/2, 1 and ε = 0.25.

Although the gravitational singularity inside a black hole acts as a global at-
tractor for the dynamics inside the horizon, it is also true that once the space at
the singularity is packed too heavily with mass and energy it has a repulsive effect.
This effect is well known and may be the cause of the big bang [10]. A way to
represent this behavior is by the dynamical notion of a ”snap-back” repeller [8],
where almost every orbit approaches the point 0 and when it gets close enough it is
repulsed from this point. We therefore define a map g that captures this behavior.
Let g be defined as follows:

(2.4) g(c) =

{

1 − (1−2δ)c
δ , for 0 ≤ c ≤ δ ,

c−δ
1−δ , for δ < c ≤ 1 .

It can be shown that g preserves a measure equivalent to the Lebesgue measure.
Furthermore, careful choice of g allows us to make the entropy hν(g) arbitrarily
close to 0. Then we have

hinterior(F ) ' hsurface(F ) ,

with error arbitrary close to 2(ln sup |f ′
N,c,ε|− ln inf |f ′

N,c,ε|), where F in the interior
of B is defined as a skew product

F (c, z) = (g(c), τc(z)) ,

τc are maps of S2 corresponding to maps TN,c = fN,c,ε × fN,c,ε on [0, 1]× [0, 1] (see
next section for the details).
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Figure 3. Map g for δ = 0.1.

Figure 4. g-invariant density.

3. Detailed Example

We consider the Jab loński maps Tc,ε (z) of the previous section which can be
written in a simpler form as Tĉ (z) with ĉ = ε (c − 1/2) + 1/2. We write Tc (x, y)
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instead of Tĉ (z) ; i.e. Tc (x, y) = (fc (x) , fc (y)) on the unit square where

fc (x) =















x

c
0 ≤ x ≤ c; c ∈ (0, 1)

x − 1

c − 1
c ≤ x ≤ 1; c ∈ (0, 1)

(we may consider the fc to be perturbations of the standard tent map about c0 =
1/2) and note that if Ri, i = 1, · · · , 4 is one of the rectangles J × L where each of
J, L is either [0, c] or [c, 1] then Tc maps Ri homeomorphically onto I×I. According

to Theorem 3 of [2], Lebesgue measure is invariant under Tc. Moreover, if T̂c is
any other transformation mapping each of the Ri homeomorphically onto I and
mapping {0, 1}× I into {0}× I and I ×{0, 1} into I ×{0} (and therefore mapping

the boundary of the square into the boundary) then T and T̂ are topologically

conjugate and Lebesgue measure is also invariant under T̂ .
Now let k : (0, 1) → R be any homeomorphism, e.g. x 7→ tan (π (x − 1/2)) , and

extend to I → R∪ {∞} . Define K : I × I → R
2∪{∞} by K (x, y) = (k (x) , k (y)) .

Denote by σ : S2 → R
2∪{∞} the stereographic projection from the unit sphere

onto the extended plane.

σ (X, Y, Z) =

(

X

1 − Z
,

Y

1 − Z

)

; X2 + Y 2 + Z2 = 1,

where the north pole (0, 0, 1) corresponds to ∞. Then

σ−1 ◦ K : I × I → S2

is a homeomorphism on the interior of the square and maps the boundary of the
square to (0, 0, 1) . We have the commutative diagram

I × I
σ−1

◦K
−−−−−→ S2

Tc





y





y

τc

I × I
σ−1◦K
−−−−−→ S2

where each map τc is a 4 to 1 transformation on S2\ {(0, 0, 1)} with an absolutely

continuous invariant measure induced by the Lebesgue measure on the unit square,
and (0, 0, 1) is a fixed point. If we use the specific example of Tc and K above it
is possible to write an explicit expression for τc :

τc (X, Y, Z) =















(

2α

1 + α2 + β2
,

2β

1 + α2 + β2
,
−1 + α2 + β2

1 + α2 + β2

)

Z 6= 1

(0, 0, 1) Z = 1

where

α = tan

(

πfc

(

1

π
tan−1 X

1 − Z
+

π

2

)

−
π

2

)

β = tan

(

πfc

(

1

π
tan−1 Y

1 − Z
+

π

2

)

−
π

2

)
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We note that this also applies mutatis mutandis to the more general maps TN,c =
fN,c × fN,c of the previous section (with N2 rectangles; N even), for which the
entropy can be made arbitrarily close to 2 lnN.

4. Concluding Remarks

Do these results have any bearing on the Holographic Principle in physics? To
be sure, the holographic paradigm is now being applied in a wide context, such as a
superstring theory in an anti-de Sitter spacetime which is equivalent to a quantum
field theory on its boundary. Malcadena [7] first conjectured such a relationship
in 1997 and there are now similar examples of such correspondence in various di-
mensions. However, the Holographic Principle proposed by G. ’t Hooft [14] and
developed by Susskind [13] and others is based on the idea that the combination
of quantum mechanics and gravity requires the three dimensional world to be an
image of data that can be stored on a two dimensional projection much like a holo-
graphic image. It came about in a logical way as a resolution to several conundra,
such as quantum decoherence, in quantum field theory when applied to fields in the
black hole metric (Hawking radiation) [15].

This note could be a way to look at the Holographic Principle from a macroscopic
statistical point of view, without considering the complex details of the underlying
physics. Our setting can be interpreted as that of a black hole with a random
map on the horizon S2 representing the fluctuating quantum effects of Hawking
radiation. For the dynamical system in the interior B we have made no attempt
to model the (unknown and possibly unknowable) details of the dynamics inside a
black hole, with one exception: the snap back repeller keeps the process away from
the singularity at the centre; this seems to be a reasonable condition.

Our constructions arguably mimick longer-term quantum effects and lead to
results that are intriguingly similar to what is claimed by the Holographic Princi-
ple: all the information (in the form of entropy) about the dynamics in the three-
dimensional space is captured in the two dimensional boundary. In particular, the
main result states that if we start with an arbitrary dynamical system in B with
entropy E we can construct a random map on S2 related in a natural way to the
given dynamical system, with entropy that is mathematically arbitrarily close to
E. But in the real world, once we are below the Planck scale (or whatever order
of magnitude is needed), the two entropies become physically equal.
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