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ABSTRACT 

Characterization AtST4c function in flowering in Arabidopsis thaliana 

 

Yao Zhang 

Concordia University, 2013 

 

A main interest of our laboratory is to characterize the function of the 17 

sulfotransferase-coding genes of Arabidopsis thaliana. The purpose of my project is to 

elucidate the biochemical and biological functions of AtST4c, a member of the AtST4 

subfamily (AtST4a, b and c). AtST4c knockout plants were found to exhibit a 

photoperiod-independent early flowering phenotype suggesting that AtST4c plays a 

negative role in flowering induction. In addition, AtST4c knockout plants produced 

shorter primary roots, a reduced number of lateral roots, slightly smaller rosettes, fewer 

seeds per silique and finally smaller seeds, suggesting that AtST4c plays a positive role 

in Arabidopsis growth. Transcript expression studies showed that AtST4c is mainly 

expressed in roots and is repressed by the cytokinin trans-zeatin suggesting that the 

positive effect of AtST4c on plant growth is repressed by the cytokinin signaling 

pathway in Arabidopsis.  

In order to further characterize the role of AtST4c in the control of flowering time, the 

expression of floral integrator genes such as LEAFY, SUPPRESSOR OF 



 

iv 

 

OVEREXPRESSION OF CO 1(SOC1) and APETALA 1 was studied in AtST4c mutant 

plants. Our results show up-regulation of LEAFY and APETALA 1 in the mutant plants 

suggesting that AtST4c acts upstream of these two important meristem identity genes. 

However, no changes in SUPPRESSOR OF OVEREXPRESSION OF CO 1(SOC1) 

expression were observed suggesting that the early flowering phenotype is independent 

of four of the five pathways that promote flowering in Arabidopsis. Taken together our 

results suggest that AtST4c participates in the control of flowering time via the aging 

pathway or by interfering with the repression mediated by the gene TERMINAL 

FLOWER 1. 

To characterize the biochemical function of AtST4c, we compared the sulfated 

meatbolome of AtST4c knockout mutant plants and wild-type plants using liquid 

chromatography-mass spectrometry. Using this approach we were able to propose a 

structure for the substrate of AtST4c.  
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Chapter 1- Introduction  

1.1 Sulfotransferases 

Sulfotransferases (SULTs) are enzymes which catalyze the transfer of a sulfuryl group 

(SO3
-
) from the universal donor 3’-phosphoadenosine 5’-phosphosulphate (PAPS) to 

the hydroxyl group of the substrate with the parallel formation of 3’-phosphoadenosine 

5’-phosphate (PAP)
 
. 

 

Members of the SULT super-family can be found in most organisms from bacteria to 

mammals. Their substratesand functions vary considerably from one organism to 

another (Baek et al., 2010). The sulfonation reaction can either activate or inactivate the 

biological response that is normally mediated by the substrate. SULTs have been shown 

to play crucial roles in cell growth, development and defense (Baek et al., 2010). 

SULTs have highly conserved domains and structural similarities, and based on their 

affinity for different classes of substrates, they can be classified into two main groups. 

One group is membrane-associated and accepts macromolecular substrates, such as 

proteins, peptides and gulcosaminoglycans (Niehrs et al., 1994). The second group 

comprises soluble proteins which sulfonate small organic molecules, such as 

flavonoids, steroids and xenobiotics. 

Mammalian SULTs catalyse the conjugation of many neurotransmitters and steroids 

hormones (Klein and Papenbrock, 2004). In addition, mammalian cytosolic SULTs 

play an important role in the phase II of the biotransformation and excretion of 
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xenobiotics in the liver (Yasuda et al., 2005).  The sulfonation reaction can be 

considered as a mechanism to protect cells against toxic chemicals (Negishi et al., 

2001).  

In the past 10 years, we have started to accumulate a lot of information about the 

biochemical functions of SULTs in plants (reviewed by Marsolais et al., 2007 ). 

However, the elucidation of their biological functions has proven difficult. The plant 

SULTs catalyze the sulfonation of a large number of substrates with very different 

structures ranging from flavonoid and phenolic acids to steroids and glucosinolates. In 

some cases, the sulfonation is required for biological activity (such as glucosinolates) 

while in others it seems to inactivate biological function (such as brassinosteroids and 

jasmonic acid) (Gidda et al., 2003, Marsolais et al., 2007, Rouleau et al., 1999). 

Amino acid sequence alignment of plant and animal cytosolic SULTs revealed four 

conserved regions named region I to region IV (Varin et al., 1992). The results of 

site-directed mutagenesis studies showed that the catalytic domain is composed of 

conserved histidine, serine and arginine residues from region II and a lysine residue 

from region I, which together are responsible for the formation of an unstable ternary 

enzyme-PAPS-substrate complex and for the transfer of the sulfonate group to the 

substrate (Varin et al., 1992). The comparison of human and Flaveria chloraefolia 

flavonol SULTs and the results of the specificity of chimaeric enzymes allowed 

mapping of the substrate binding region to regions 2 and 3. The 3-D structure 

determined by X-ray crystal of many soluble SULTs and one membrane-associated 
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SULT have been solved (Negishi et al., 2001). The structures confirmed the importance 

of the amino acid residues that were identified by site-directed mutagenesis.  

In an effort to elucidate the function of plant SULTs, our laboratory initiated a small 

scale functional genomics project using the plant Arabidopsis thaliana. Data mining of 

the sequenced genome of Arabidopsis indicated the presence of 17 putative ST coding 

genes. The phylogenic tree of the Arabidopsis SULTs is shown in Figure 1. The 

deduced protein sequences of the 17 SULT-coding genes were divided into seven 

groups according to their similarities. Among the 17 genes, seven have been 

characterized as following: flavonoid SULT (At3g45070) (Gidda and Varin,2006), 

desulfoglucosinolate SULTs (At1g74100, At1g74090, At1g18590) (Piotrowski et al., 

2004),  hydroxyjasmonate SULTs (At5g07010) (Gidda et al., 2003) and 

brassinosteroid SULTs (At2g03760 and At2g14920). There is also one locus 

(At3g51210) that codes for a truncated protein.  
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Figure 1. Phylogenic tree of Arabidopsis thaliana sulfotransferases. The amino 

acid sequences of 17 SULTs and one truncated protein were grouped using the Clustal 

W program (http://www.ebi.ac.uk/Tools/clustalw2). Seven groups are created 

according to their sequence similarities.  

1.2 AtST4 subfamily 

Based on the proposed guidelines for sulfotransferase nomenclature (Blanchard et al., 

2004), the AtST4 subfamily has three members: AtST4a (At2g14920),  AtST4b 

(At1g13420) and AtST4c (At1g13430). Molecular studies of the AtST4 subfamily 

have shown that the three genes are expressed mainly in roots (Marsolais et al., 2007). 

AtST4a (At2g14920) has 80% amino acid sequence identity with AtST4c (At1g13420) 

and 71% amino acid sequence identity with AtST4b (At1g13420).   

Efforts to identify the substrates of AtST4a, AtST4b, and AtST4c indicate that 

AtST4a was catalytically active with brassinosteroids in vitro. Although sulfated 

brassinostroids were not detected in plant extracts suggesting that in vivo the substrate 
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of AtST4a is not a brassinosteroid. Despite their high amino acid sequence identity, 

neither AtST4b nor AtST4c exhibited any activity with brassinosteroids (Marsolais et 

al., 2007). Analysis of microarray data showed that AtST4b specifically is expressed in 

roots of young seedlings and is up-regulated by cytokinins, these results were 

confirmed by transcript expression analysis that will be presented in the results 

section. A metabolite study of AtST4b knockout plants revealed that cadabicine is the 

substrate of AtST4b and that the formation of cadabicine sulfate is induced by the 

exogenous application of cytokinins (Kodashenas et al., 2010). AtST4b knockout 

plants exhibited a more robust growth than wild type plants with a better developed 

root system (Fig 2). They also exhibited a reduced sensitivity to the exogenous 

application of cytokinins (Kodashenas et al., 2010). 

AtST4c knockout plants were found to flower approximately 5 days earlier than wild- 

type when grown under long day photoperiod (Kodashenas et al., 2010). This result 

was not observed in AtST4a and AtST4b knockout plants (Fig 2). This phenotype was 

highly reproducible and observed both in soil and in vitro grown plants.  

In addition to the alteration of flowering time, AtST4c knockout plants exhibited 

abnormal root development with shorter primary roots and a reduction in the number of 

lateral roots. Several unsuccessful attempts were made to identify the substrate of 

AtSt4c. It was soon realized that AtST4a and AtST4c might generate the same product 

since the sufonated metabolomes of AtST4a knock out and AtST4c knock out mutant 

lines were identical to wild type plants (Kodashenas et al., 2010). There is much 
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experimental evidence suggesting that this might be the case.  First, their substrate 

co-elute during the HPLC purification of acid-hydrolyzed root extracts. Second, their 

radio-labeled products have the same retention time during reverse phase 

chromatography and finally, their product have the same relative mobility on TLC 

(Kodashenas et al., 2010). To test this hypothesis and further characterize the substrate 

of AtST4a and AtSt4c, AtST4ac double knockout line was generated by crossing 

homozygous AtST4a and AtST4c T-DNA insertion lines. 

It is well known that cytokinins mediate opposite effects on shoot (positive) and root 

(negative) growth (Werner et al., 2009). The analysis of the Genevestigator 

Arabidopsis Microarray database showed that AtST4c is slightly repressed following 

the exogenous application of the cytokinin t-zeatin (genevestigator.org), suggesting 

that AtST4c might play a positive role in root growth and that this effect is inhibited by 

cytokinins. 
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Figure 2. Flowering phenotype of Arabidiopsis thaliana wild-type and knockout 

lines  Wild-type (upper left) and AtST4c knockout (upper right), AtST4a knockout 

(lower left) and AtST4b knockout (lower right) plants 21 days after germination. Early 

flowering phenotype was observed in AtST4c knockout plants. 

1.3 Regulation of flowering time in Arabidopsis thaliana  

One objective of this research project was to characterize the relationship between 

AtST4c and the regulation of flowering time in Arabidopsis. A short review of the 

known mechanisms that regulate flowering time in Arabidopsis is presented to justify 

the choice of the Arabidopsis mutant lines used in this project. 

In annual plants, the timing of the transition from vegetative growth to reproductive 

development is crucial for reproductive success and it is tightly controlled by 

environmental and endogenous signals (Torti et al., 2012). Because of its importance, 
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the elucidation of the molecular mechanisms that control this transition has attracted a 

lot of interest. Studies on the regulation of flowering time have a history of more than 

100 years (Kobayashi and Weigel , 2007). The results of early pre-molecular studies 

indicated that the initiation of flowering is regulated by a “biological clock”, a 

concept that was first proposed by Bunning in the 1930s (Bunning et al., 1930). In this 

model, light was considered as an important external signal that could trigger the plant 

to flower. Apart from the length of the photoperiod, the quality of light and 

temperature were also proposed to play a significant role in the induction of flowering 

(Srikanth and Schmid , 2011). 

The molecular mechanisms of flowering time regulation have been studied mostly in 

Arabidopsis thaliana. In the last 10 years, tremendous progress has been made in our 

understanding of the molecular regulation of flowering time. Based on the analysis of 

transgenic plants and on the isolation of loss-of-function mutant plants, approximately 

180 genes have been implicated in flowering time control. Five major genetic 

pathways regulating the flowering transition were identified. The photoperiod and 

vernalization pathways control flowering in response to environmental stimuli such as 

day length and temperature. The gibberellin pathway induces flowering even in the 

absence of a favorable photoperiod. The autonomous pathway refers to endogenous 

regulators that are independent of the photoperiod and gibberellins pathways 

(Srikanth and Schmid, 2011). The age pathway which stimulates flowering in relation 

to the age of the plant has recently been added to the network. In order to control plant 



 

- 9 - 

 

flowering time properly, the signals from all of these pathways converge to regulate a 

small number of common targets, which have been referred to as floral integrator 

genes. The results of recent studies have shown that during floral induction, 

morphological changes of the meristem are associated with changes in the expression 

of the floral integrator genes (Fornara et al., 2010). So far, the mechanisms by which 

the different pathways communicate with the integrator genes are not well understood. 

Table 1 lists some of the integrator genes that are clearly playing a crucial role in floral 

induction. (Srikanth and Schmid, 2011) 
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Table 1. Some of the important floral integrator genes of Arabidopsis thaliana 

 Gene Name Function References Comments 

FT FLOWERING 

LOCUS T 

AT1G65480 

Activator (Kardailsky et al., 

1999),(Kobayashi et 

al., 1999) 

Activator of flowering; 

long distance signal from 

leaf to shoot apex  

LFY LEAFY 

AT5G61850 

Activator (Blazquez and Weigel, 

2000),(Weigel et al., 

1992) 

Integrates signals from the 

GA, photoperiod and age 

pathways.  Essential for 

floral organ formation 

SOC1 SUPPRESSOR OF 

OVEREXPRESSION 

OF CONSTANS 1 

AT2G45660 

Activator (Samach et al., 

2000),(Moon et al., 

2003) ,(Lee et al., 

2008) ,(Lee & Lee., 

2010) 

Integrates signals from  

photoperiod, vernalization 

and GA pathways.  

Following translocation to 

nucleus, SOC1 binds to the 

LFY promoter 

AP1 APETALA1 

AT1G69120 

Activator 

and 

repressor 

(Abe et al., 2005, 

Kaufmann et al., 2010, 

Wigge et al., 2005) 

Regulates genes required 

for organ formation in a 

tissue-specific manner 

while repressing the genes 

required for transition to 

flowering. 

 

 

 

CONSTANS (CO) is the key gene of the photoperiod dependent promotion pathway 

(An et al., 2004), It encodes a putative zinc finger transcription factor (Putterill et al., 

1995) and its expression is under the control of the circadian clock. Much evidences 
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shows that the FLOWERING LOCUS T (FT) (Table 1), one of the floral integrator 

genes, is a primary target of CO in leaves (Figure 3). For example, in the phloem of 

CO overexpressing plants, FT mRNA abundance is increased and the plants flower 

earlier. In contrast, ft mutations strongly suppress the early flowering of the CO 

overexpressor lines (An et al., 2004). Similarly, over-expression of CO in ft mutant 

plants does not rescue the late flowering phenotype, but when FT is overexpressed in 

co mutants, the late flowering phenotype of the latter is completely rescued (Yoo et al., 

2005). Interestingly, further analysis of the FT gene showed that it is not acting in 

leaves but might promote flowering at the shoot meristem (Srikanth and Schmid, 

2011). Several scenarios have been proposed to explain how FT might act far from its 

site of synthesis (Corbesier et al., 2007) (Jaeger and Wigge, 2007). FT interacts with 

the bZIP transcription factor FD in the meristem and fd mutations reduce the early 

flowering phenotype of plants overexpressing FT (Abe et al., 2005). CO is not the 

only gene to regulate FT expression and several repressors of FT such as APETALA2 

(AP2) have been identified. AP2 is best known for its role in the specification of 

flower organ identity as well as a negative regulator of SOC1 in the control of the 

establishment of flower meristem identity. (Okamuro et al., 1997).  

 

Besides AP2, FT is also a direct target of FLOWERING LOCUS C (FLC) which 

encodes a MADS box protein (Figure 3) (Searle et al., 2006)(Helliwell et al., 2006).  

FLC acts as a potent repressor of flowering, but the strength of its effect varies among 
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different Arabidopsis ecotypes. FLC expression is silenced by the vernalization 

pathway in response to lengthy exposure to low temperature (Fornara et al., 2010). 

Finally, genes such as FCA belonging to the autonomous pathway promote flowering 

by repressing FLC expression (Fornara et al., 2010). 

 

 

Figure 3. Integration of the flowering time pathways. The arrows indicate 

activation while the vertical bars indicate repression. The flowering pathways are 

indicated by the purple boxes. The floral integrators, such as FT, SOC1, LFY, AP1 are 

also shown in green. This figure is modified from (Fornara et al., 2010)  

 

Another target of FLC at the shoot meristem is SUPPRESSOR OF 

OVEREXPRESSION OF CONSTANS 1 (SOC1), which is also one of the known floral 

integrator genes (Table 1). SOC1 is a positive regulator of flowering at the shoot apex 

(Moon et al., 2003). SOC1 activation occurs rapidly when plants are shifted from short 

to long photoperiods, and this activation requires FT (Fornara et al., 2010). SOC1 is a 
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target not only for FT, but also for at least four different pathways as well (Figure 3). 

For example, it was reported that the expression of SOC1 is up-regulated by the GAs 

and aging pathways, and down-regulated by the autonomous pathway( Moon et al., 

2003). As shown in Figure 3, GA regulates SOC1 expression at several levels by 

promoting expression of SOC1 induced genes such as AGAMOUS LIKE 24 (AGL24) 

and at the same time down-regulating floral repressors such as SHORT VEGETATIVE 

PHASE (SVP) (Li et al., 2008). As plants grow, the aging pathway will be activated, 

resulting in increasing concentrations of the SQUAMOSA PROMOTER BINDING 

LIKE (SPL) protein, which promotes flowering by activating floral integrator genes 

such as SOC1 (Figure 3)(Srikanth and Schmid, 2011). In the autonomous pathway, the 

MADS box proteins encoded by FLOWERING LOCUS C (FLC) and SVP form a 

heterodimer which represses SOC1 transcription (Figure 3)(Fujiwara et al., 2008, Li et 

al., 2008). 

The activation of SOC1 in the meristem leads to changes in the expression of genes 

encoding other transcription factor genes, such as LEAFY (LFY) (Table 1). LFY was 

first recognized for its function in the flower meristem. lfy mutants show leaf-like 

structures replacing the floral organs, and transgenic plants overexpressing LFY flower 

earlier than wild-type plants (Weigel and Nilsson, 1995). LFY mRNA was detected in 

both the floral meristem and young leaf primordia suggesting that it plays a role in 

flower development and in the control of vegetative growth (Blazquez et al., 1997). 

LFY is not only a direct target of SOC1 (Lee et al., 2008), but also of multiple other 
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pathways. For example, part of the flower-stimulating activity of gibberellins is due to 

an activation of LFY expression (Blazquez et al., 1998). LFY is also activated by 

SQUAMOSA PROMOTER BINDING LIKE (SPL), a member of the aging pathway 

(Gou et al., 2011). 

Flowering induction mediated by the floral integrators ends with the initiation of 

flower development and does not require the maintenance of flowering signals for a 

long period of time. APETALA1 (AP1) is one of genes that can define the commitment 

to flowering, which means that by the time AP1 is expressed, floral determination has 

occurred (Hempel et al., 1997).  

In summary, floral transition is regulated by a precise genetic network consisting of 

different pathways responding to environmental stimuli and endogenous cues. To date, 

great advances have been made in our knowledge of the molecular mechanisms that 

control the floral transition and many genes in the network have been identified and 

characterized in detail (Figure 3).  

 

 

 

1.4 Purpose of the present study 

The three members of the AtST4 subfamily are expressed exclusively in roots, and are 

regulated by cytokinins. However, only AtST4c knockout plants show an early 

flowering phenotype suggesting that the AtST4c SULT might play a role in the switch 
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from vegetative to reproductive growth. The purpose of the present study is to identify 

the endogenous substrate of AtST4c and to characterize the biological functions of 

AtST4c in the control of flowering time. Several approaches were used to identify the 

substrate of AtST4c. The comparison of extracts from wild type and AtST4ac double 

knock out mutant plants allowed characterization of the substrate of AtST4c using 

Liquid Chromatography-Mass Spectrometry (LC-MS). The structure of the AtST4c 

sulfonated product was predicted by high resolution MS/MS from the analyses of the 

fragmentation pattern of the parent molecule. Finally, qRT-PCR was used to study the 

regulation of several crucial flowering integrator genes such as SOC1, APETALA 1, 

APETALA 2 and LFY in the AtST4c knockout plants. The expression of AtST4c was 

also studied in Arabidopsis plants harboring mutations in flowering integrator genes.  
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Chapter 2- Materials and Methods 

2.1 Materials 

Seeds of wild type A. thaliana, ecotype Columbia 0 (Col-0) were obtained from Lehle 

seeds (USA). The Arabidopsis lines carrying T-DNA insertions in the coding sequence 

of AtST4a (GABI_177E08) was obtained from Gabi-Kat (http://www.gabi-kat.de/), 

and AtST4c (FLAG_334F06) from INRA (http://www.inra.fr/). The two knockout 

mutant lines were generated in a Col-0 background. The AtST4a/AtST4c double mutant 

was obtained by crossing the homozygous AtST4a and AtST4c knockout lines.  

The Lfy mutant line (Stock number: CS6278) was obtained from the Arabidopsis 

Biological Resource Center (ABRC)  

2.2 Methods 

Plant growth conditions 

Arabidopsis plants were grown either in soil or on vertical Petri dishes containing 

full-strength Murashige and Skoog (MS) medium (1% sucrose, 0.4% Gelrite, 0.05% 

MES, PH 5.7). For long day photoperiod experiments, the plants were kept for 16 hours 

under light a light intensity of ~130 µmol m
-2

s
-1 

and 8 hours dark at. The temperature 

was kept at 20 °C during night-time and gradually increased to 22 °C during day-time. 

For short day conditions, the plants were kept for 8 hours under light at a light intensity 

of ~130 µmol m
-2

s
-1

and 16 hours dark 

http://www.biosci.ohio-state.edu/~plantbio/Facilities/abrc/abrchome.htm
http://www.biosci.ohio-state.edu/~plantbio/Facilities/abrc/abrchome.htm
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Seed sterilization 

The Arabidopsis seeds were sterilized by a 30 second immersion in 70% ethanol, 

followed by 5 minutes shaking in a mixture of 10% bleach and 0.02% SDS solution and 

several rinses with sterile distilled water. The seeds were then kept for 2-4 days at 4°C 

in dH2O before planting. 

Validation of the AtST4c T-DNA insertion knockout lines 

The loss of the AtST4c transcript in the AtST4c knockout line was confirmed using 

reverse transcription polymerase chain reaction (RT-PCR) using a pair of primers 

designed to anneal to the AtST4c coding sequence. Total RNA was extracted from 

20-day-old Arabidopsis root tissue using the RNeasy Plant Mini Kit (Qiagen). Before 

elution from the column, total RNA was treated with DNase I (Qiagen) for 15 minutes 

at room temperature to eliminate genomic DNA contamination. For the RT-PCR 

experiments, 2 µg of total RNA in RNase-free water was used. each reaction contains 

1µl of 100 µM Oligo dT (20 mers) and 1µl of 100mM dNTP mix (Biolab) with 

incubation for 10 minutes at 65°C and subsequent cold on ice for 2 minutes.  A mix of 

4 µl 5X First Strand Buffer (Invitrogen), 1 µl dTT (100 mM), 1 µl RNase Out and 1 µl 

Superscript III Reverse Transcriptase 50 U/µl (Invitrogen) was added to each reaction, 

followed by 60 minutes incubation at 50˚C. This procedure was followed by a 15 

minute incubation at 70 ˚C to deactivate the enzyme. The synthesized cDNAs were 

then used in PCR reactions. 
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In the PCR reactions, the ACTIN genes were used as internal controls for RNA 

calibration. The amplification of the ACTIN cDNAs was conducted using 30 cycles of 1) 

denaturation at 94°C for 45 seconds, 2) primer annealing at 60°C for 45 seconds and 3) 

elongation at 72°C for 1 minute. A final extension at 72°C for 7 minutes followed the 

30 cycles of amplification. The amount of cDNA, used as template for PCR, was 

adjusted after a preliminary calibration based on the level of the ACTIN PCR products. 

For AtST4c, we used 35 cycles of 1) denaturation at 94°C for 1 minute, 2) primer 

annealing at 56°C for 1 minute and 3) elongation at 72°C for 1 minute.  

The following primers were used in the amplification reactions:  

actin-Forward (5'-GCTGATGGTGAAGACATTCA-3')  

actin-Reverse (5'-CATAGCAGGGGCATTGAAAG-3')  

AtST4c-Forward (5'-CGCTTAAACTACCCTTGAAG-3')  

AtST4c-Reverse (5'-AGAACAAAAACCACACATCA-3') 

The primers were ordered from Integrated DNA Technologies (USA) and dissolved in 

DNase/RNase free water at a final concentration of 10 µM. 

Phenotype analysis of AtST4c-knockout plants 

Wild-type (Col-0) and AtST4c knockout plants were grown under long day and short 

day conditions in growth chambers. The flowering time was calculated once the bolting 

shoot had reached 1cm in length. The number of siliques was measured 36 and 46 days 

after germination. 
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Expression, purification and in vitro assays of the AtST4c recombinant enzyme 

Recombinant protein expression and purification: The coding sequence of AtST4c 

was cloned previously in a bacterial expression plasmid pQE30 (Qiagen) and 

transformed into the E. coli strain XL1-blue. A culture of E. coli carrying this plasmid 

was grown to an O.D600 = 0.6 and induced with 1mM Isopropyl 

β-D-1-thiogalactopyranoside (IPTG) for 10 hours at 22
0
C. Bacterial cells were 

collected by centrifugation and resuspended in lysis buffer (50 mM sodium 

phosphate, 0.3 M NaCl, 10 mM imidazole and 14 mM ß-mercaptoethanol) (pH 8.0). 

The cells were lysed by sonication, and the recombinant proteins were recovered in 

the soluble fraction by centrifugation at 13,000 rpm for 20 minutes at 4
0
C. The 

soluble recombinant proteins were purified by affinity chromatography onto a 

nickel-nitrolotriacetic acid agarose matrix (Qiagen) under native condition. Protein 

concentration was estimated using the Bradford Reagent (Bio Rad) with bovine serum 

albumin as a reference protein. To verify the solubility and evaluate the level of purity 

of the recombinant protein after chromatography, aliquots of the recombinant enzyme 

were subjected to 12% polyacrylamide gel electrophoresis according to the method of 

Laemmli (Laemmli, 1970)(Ossipow et al 1993). The proteins were visualized using 

Coomassie Blue staining.  

In vitro enzyme assays: Prior to enzyme assays, mild acid hydrolysis was performed 

on an aliquot of the extract to remove the sulfonate group from the extracted 

metabolites.5l of HCl was added to 50l of metabolite extract and incubated at 95 °C 
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for 5 minutes. The reaction was stopped by adding of 5 l of 1M NaOH. In order to 

track the AtST4c reaction product during purification, we used radiolabeled PAPS as 

sulfonate donor.   

Root metabolic extracts were used to purify the potential substrate of AtST4c and to 

later identify the reaction product. In a typical experiment, 500 mg of root tissue was 

extracted with an aqueous methanolic solution and the methanol evaporated under 

vacuum using a flash evaporator. 

The reaction mixture (50 l) contained 50 pmol 
35

S  PAPS (NEN Life science 

products, Boston, MA), 5µl of acid hydrolyzed plant metabolite extract (dissolved in 50% 

methanol) and approximately 2 g of recombinant enzymes (extracted in 50 mM 

Tris-Cl, pH 7.5).   

The reactions were incubated at room temperature for 10 minutes and then stopped by 

the addition of 10 µl of 2.5% acetic acid. The sulfonated reaction products were 

extracted with 2 ml ice-cold water saturated butanol and 100 µl was counted for 

radioactivity using a liquid scintillation counter.  

The butanolic layer was collected, lyophilized and re-suspended in 50% methanol for 

enzyme assays and for LC-MS experiments.  

Transcript expression study of AtST4c in response to cytokinins 

For transcript expression analysis, 20-day-old plants were sprayed with 20 µM 

trans-zeatin dissolved in 50% dimethylsulfoxide (DMSO) for1 hour, 2 hours, 4 hours 
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and 6 hours. RNA samples were extracted from root tissue using an RNeasy Plant Mini 

Kit (Qiagen). SuperScript III reverse transcriptase from Invitrogen was used to 

generate cDNAs by the method described previously.  

Quantitative RT-PCR 

Quantitative real-time RT-PCR was performed using the following gene-specific 

primers: 

Actin-F: 5’-GATTCAGATGCCCAGAAGTCTTG-3’  

Actin-R: 5’-TGG ATT CCA GCA GCT TCC AT-3’; 

FT-F: 5’-CTCAGGTTCAAAACAAGCCAAG-3’  

FT-R: 5’-GCAGGGATATCAGTCACCAAC-3’; 

SOC1-F: 5’-GTGCTGACTCGATCCTTAGTATG-3’  

SOC1-R: 5’- CAGTGCTTTGTGATGCTGAAG-3’; 

AP1-F: 5’-TTCCCCAAGATAATGCCTCTG-3’ 

AP1-R: 5’-CTTGAACGCTATGAGAGGTACTC-3’; 

Leafy-F: 5’-GCGAAGATAGCGGAGTTAGGTTT-3’; 

Leafy-R: 5’-CTTCAAGCTCCTCGTCCTTCA-3’; 

AP2-F: 5’- TCCACAAGATCACAACCT CG-3’  

AP2-R: 5’- TCCGGTTTGACCTAATCCAAG-3’; 

AtST4c-F: 5’-TCTCAACAGCTC AAAACCGG-3’  

AtST4c-R: 5’-TGCACACGTACACTACCT TG-3’; 
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AtST4b-F: 5’- GATGCGCTTAAAGTACCGTTG-3’;  

AtST4b-R: 5’- AAGACTCGAACAAAGCCTCG-3’. 

RT-PCR was performed using a MBI EVOlution 5* EvaGreen qPCR Mix (MBI). For 

each sample, three replicates were used. The MBI hotstart DNA polymerase was 

activated by a 15 min incubation step at 95°C. All PCR reactions were performed using 

the Eco Real-Time PCR system from Illumina. A denaturation step of 15 min at 95 °C 

was followed by 40 cycles consisting of 10 seconds denaturation at 95°C, 15 seconds 

primer annealing at 60°C, and 15 seconds elongation at an initial temperature of 72°C 

gradually increasing to 95°C to create the melt curve. 

The comparative (ΔΔCT) method was used to compare gene relative expression levels. 

The relative quantification value is expressed as 2
-ΔΔCt 

,  where ΔCT target gene = CT 

target gene- CT control (actin),  ΔCT reference gene = CT reference gene- CT control 

(actin),  ΔΔCT = ΔCT target gene - ΔCT reference gene. 

 

Mass spectrometry  

Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used for analysis 

of the metabolite extracts from wild type and T-DNA insertion mutant lines. The 

recombinant enzyme-catalyzed reaction products were analyzed using neutral loss scan 

in the negative and positive mode in search of a parent ion which gave a neutral loss of 

80 mass units (mass of the sulfuryl group). The analyses were preformed on the Quattro 
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triple quadrupole from Micromass using a cone voltage of 20 eV and collision-induced 

dissociation (CID) energy of 35 eV (2.5 mTorr argon). Data acquisition and analysis 

were performed using the Masslynx software from Micromass.  

To get structural information and accurate mass of the reaction products, we used the 

LTQ-Orbitrap from ThermoFisher. The analyses were performed using a cone voltage 

of 20 eV and a collision-induced dissociation (CID) energy from 28-35 eV, variable 

energy based on different parent compounds.  Data acquisition was performed at the 

highest level of mass accuracy of the instrument. Data analysis was performed using 

the Xcalibur software from Thermo Fisher. 
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Chapter 3- Results 

3.1 Introduction  

Preliminary results obtained in our laboratory indicated that AtST4a and AtST4c might 

have the same biochemical function. Their substrate and product co-eluted during 

HPLC purification and their sulfonated product co-chromatographed on TLC. However, 

our previous efforts to identify the structure of their product were unsuccessful. 

To elucidate the biochemical and biological function of AtST4c, we used several 

T-DNA insertion lines. The AtST4c (FLAG_334F06) knockout line was obtained from 

INRA (http://www.inra.fr/) while the AtST4a (GABI_177E08) knockout line was 

obtained from the Gabi-Kat collection (http://www.gabi-kat.de/), The AtST4ac double 

mutant was generated in our laboratory according to the method described by Higuchi 

et al., 2004.  

The results obtained will be discussed in three sections. The first section describes the 

phenotype of the AtST4c T-DNA insertion line. The second section describes the 

characterization of the endogenous substrate of AtST4c and finally, the third section 

describes the results of our studies of the regulation of AtST4a, AtST4b and AtST4c 

expression in different mutant backgrounds affected in flower development.  

http://www.inra.fr/
http://www.gabi-kat.de/
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3.2 Characterization of AtST4c biological function 

3.2.2 Identification of homozygous AtST4ac T-DNA insertion line 

The AtST4ac double knockout line was generated by crossing homozygous AtST4a and 

AtST4c T-DNA insertion lines. The AtST4ac mutant line carries T-DNA insertions 737 

and 870 bases downstream of the translation start sites of AtST4a and AtST4c, 

respectively. In both cases, the insertion separates the regions encoding the 

sulfotransferase catalytic domain (region I) from the region encoding the PAPS binding 

domain (region IV) (Figure 4A). RT-PCR analysis of mRNAs isolated from the 

homozygous line confirmed the absence of AtST4c expression. The AtST4c transcript 

could be detected in extracts from wild-type plants (col-0) but not in extracts from the 

AtST4ac double knockout line (Figure 4B). 
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A 

  

 

B 

 

Figure 4. Characterization of the AtST4ac double mutant line. 

(A) A schematic model representing the position of the T-DNA insertions in 

AtST4a and AtST4c. Black boxes: exons, white boxes: 5’ and 3’UTRs, triangles: 

T-DNA insertion sites, arrows: gene-specific primers, LB: T-DNA left border. The 

consensus sequence for region I (PKxGTTWLKAL) and region IV 

(FRKGxVGDWK) were used to identify the regions involving in catalysis and 

PAPS binding. 

(B) RT-PCR analysis of AtST4c transcription. RNA was extracted from roots of 

20-day-old wild-type (col-0) or AtST4ac homozygous knockout mutant plants. 

The ACTIN gene is used as an internal positive control.  

ATG

PKxGTTWLKAL

LB

TAA

FRKGxVGDWK

AtST4a

Region I Region IV

ATG

PKxGTTWLKAL

LB

TAA

FRKGxVGDWK

AtST4a

Region I Region IV

AtST4c ATG

PKxGTTWLKAL

LB

FRKGxVGDWK

TAG

100 bpRegion I Region IV

AtST4c ATG

PKxGTTWLKAL

LB

FRKGxVGDWK

TAG

100 bpRegion I Region IV



 

- 27 - 

 

3.2.3 Phenotype of the Arabidopsis AtST4ac double mutant line  

Flowering time 

It has been shown previously that under long day conditions, AtST4c knockout plants 

flowered earlier than wild type (Kodashenas et al., 2010). Wild type plants will start to 

flower 25 to 26 days after germination and will have 12 to 14 leaves at the unset of 

flowering. In contrast, the AtST4ac double knockout plants initiated flowering 21 days 

after germination and have 6 to 7 leaves at the onset of flowering (Fig 5,6). Flowering 

under long photoperiods is under the control of the photoperiod promotion pathway in 

which the transcriptional activator CONSTANS plays a key role (An et al., 2004). In 

order to characterize further the link between AtST4c and flowering initiation, we 

evaluated the flowering time of the AtST4ac double knockout plants grown under short 

photoperiods. The results of several experiments have shown that flowering under short 

photoperiods is independent of the photoperiod promotion pathway and does not 

require a functional CONSTANS gene (An et al., 2004).  

Under short day conditions, wild-type plants flowered approximately 92 days after 

germination, while AtST4ac double knockout plants flower after approximately 70 days 

(Fig 5). 
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Figure 5. Flowering time behavior of wild type and AtST4ac double knockout 

plants. LD: long day conditions, 16 hr light and 8 hr dark; SD: short day conditions, 8 

hr light and 16 hr dark. Analysis of significance between wild type and mutant lines 

was performed using the Student’s t-test.  

 

 

Figure 6. Early flowering phenotype of AtST4ac double knockout plants (right) 

compared to wild-type (left) plants grown under long day conditions.  
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Seed production 

The number of siliques on the inflorescences of wild-type and AtST4ac double 

knockout plants was evaluated 36 and 46 days after germination.  As expected for an 

early flowering mutant, the number of siliques(~360% and 76% more siliques at 36 and 

46 days, respectively) was higher in AtST4ac double knockout plants. (Fig.7). No 

apparent change was observed in the shape and length of the siliques between the two 

genotypes. However, analysis of mature siliques showed that there was a ~17% 

reduction in seed number in the siliques of AtST4ac double knockout plants as 

compared to siliques from wild-type plants.  

 

 

Figure 7.  Reproductive development of AtST4ac double knockout plants.  

Number of siliques per plant 36 and 46 days after germination. Analysis of significance 

between wild-type and mutant lines was performed using the Student’s t-test. 
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3.3 Biochemical characterization of AtST4c 

3.3.1 Introduction 

Several experimental strategies were used to characterize the substrate and product of 

AtST4c. First, we used the recombinant AtST4c enzyme expressed in E. coli to 

partially purify the endogenous substrate from total root metabolite extracts from wild- 

type plants. Then we defined the chromatographic behavior of the product of the 

reaction using HPLC. These initial experiments were followed by a thorough 

comparative analysis of the sulfonated metabolite profiles of wild-type, AtST4a, 

AtST4c and AtST4ac knockout mutant plants using LC-MS and LC-MS/MS.   

3.3.2 Expression and assay of the AtST4c recombinant enzyme 

To determine the biochemical function of the enzyme encoded by AtST4c, the coding 

sequence was cloned into the bacterial expression vector pQE30 (Qiagen). This 

plasmid generates a 6 His-tag fusion at the N-terminus of the recombinant protein. The 

his-tag was used for affinity purification of the enzyme on a Ni-agarose column. As 

expected, the partially purified recombinant enzyme migrated at a molecular weight of 

approximately 38 kDa on SDS-PAGE (Fig. 8).  
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Figure 8. SDS-PAGE of purified AtST4c recombinant enzyme.  

M: protein markers, NS: non-induced soluble proteins, IS: induced soluble proteins , 

P4c: NI-agarose purified AtST4c , ctl: pQE 30 empty vector.  

3.3.3 HPLC purification of the substrate and enzymatic reaction product of 

AtST4c 

To identify the elution time of the AtST4c substrate, the acid-hydrolyzed root extract 

was fractionated by High Performance Liquid Chromatography (HPLC). Individual 

fractions were collected and assayed with the recombinant AtST4c enzyme. The results 

show that highest enzymatic activity was detected with fraction 25 representing 

approximately 80% of the total (Fig. 9).  

The product of the enzymatic reaction with fraction 25 was further chromatographed 

on HPLC to find the elution time of the product. As previously mentioned, the 

availability of the radiolabeled product facilitates the tracking during purification by 
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reverse phase HPLC. Figure 10 shows that two peaks eluting at 24 and 33 minutes can 

be detected in the gradient (Fig 10).  

3.3.4 Neutral loss mass spectrometry of the AtST4c purified product 

Neutral loss mass spectrometry is a method that identifies, out of a complex mixture, 

parent molecules that lose a fragment of defined mass when the collision energy is 

increased. It is well known that sulfonated compounds can easily be detected using 

this experimental approach because of their tendency to lose an 80 dalton fragment 

corresponding to the sulfuryl group (SO3
-
). Figure 11 shows the spectrum of a neutral 

loss experiment conducted with crude root extacts from wild-type and AtST4ac 

double knockout plants.  A major ion (more than 98% of total ion count) having a 

mass-to-charge ratio (m/z) of 516 daltons in positive mode [M+H] is present in both 

extracts. This compound has previously been characterized in our laboratory as the 

product of the AtST4b enzymatic reaction.  Another ion having a m/z of 498 daltons 

[M+H] is present in the wild-type spectrum but absent from the AtST4ac double 

knockout extract (Fig.11, lower graph) suggesting that AtST4a, AtST4c or both 

enzymes are responsible for its synthesis. Figure 12 shows that the ion with the m/z of 

498 daltons elutes at 16 minutes during LC-MS. Interestingly, neutral loss 

experiments conducted with metabolite extracts of AtST4a and AtST4c single 

knockout plants generated spectra that were identical to the wild type ones supporting 
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the idea that AtST4a and AtST4c are sulfonating the same substrate in vivo (data not 

shown). 

3.3.5 LC-MS/MS analysis of the AtST4c purified product 

To elucidate the chemical structure of the compound having an m/z of 498 daltons 

[M+H], a wild-type root extract was subjected to reverse phase liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Initially, the 

fragmentation pattern was obtained using a nano LC coupled to an Orbitrap mass 

spectrometer at the Centre for Biological Applications of Mass Spectrometry 

(CBAMS, Concordia University). Figure 13 shows the fragmentation pattern of the 

putative AtST4c enzymatic product. In the negative electrospray mode, the compound 

produced a deprotonated molecular ion at m/z 496 daltons ([M-H]). The MS/MS 

fragmentation of this compound gave major fragment ions at m/z 416, 374 and 345 

daltons. The molecular ion at m/z 416 daltons is due to the cleavage of the sulfonate 

moiety from the parent ion (m/z 496). Further fragmentation of the 374 [M-H] ion 

produced ions at m/z of 294, 222, 164 and 150 daltons. Further fragmentation of the 

major ion having a m/z of 345 daltons resulted in ions with m/z of 222 and 121 

daltons. Figure 13 shows the structure of the individual fragments elucidated by Dr. 

Jurgen Schmidt from the Institute of Plant Biochemistry (Halle, Germany) using 

Fourier Transform Ion Mobility Spectrometry (FT-IMS). The predicted structure 

contains a 6 carbon sugar linked to benzoic acid and guanine. It is important to note 
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that the MS analyses are not providing sufficient information to establish the exact 

position of the linkage between the sugar and the other parts of the molecule. This 

compound has never been reported to occur in nature.
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Figure 9. Enzymatic activity profile of the HPLC fractionated acid hydrolyzed root extract. Fractions 25 and 33 showed the highest enzyme 

activity. 
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Figure 10.HPLC purification of the AtST4c radiolabeled enzymatic product. The highest radioactivity was recovered in fraction 24. 
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Figure 11. Mass spectrometry of wild-type and AtST4ac double knockout crude root extracts. Neutral loss spectra of root extracts from 

wild-type (lower graph) and AtST4ac double knockout (upper graph) plants in positive mode. The major peak at m/z 516 daltons corresponds to 

cadabicine sulfate.  The arrow points to a molecular ion having a m/z of 498 daltons [M+H] that is missing in the AtST4ac double knockout 

spectrum.  
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Figure 12.Chromatogram of the ion with an m/z of 498 daltons [M+H] from wild- type(bottom) and AtST4ac double knockout( top) root 

extracts.  
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Figure 13. LC-MS/MS spectrum of the AtST4c sulfated product in negative mode.  MS/MS of the product with a m/z of 496 daltons [M-H]. 

The structures of some of the fragments are shown. 
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3.4 Regulation of AtST4c expression 

3.4.1 AtST4a and AtST4c expression in different tissues of wild-type Arabidopsis 

at different development stages. 

The available microarray data from Genevestigator initially showed that the expression 

of AtST4a and AtST4c was predominantly taking place in the root system. To confirm 

this expression pattern and study the expression level at different growth stages, 

quantitative RT-PCR was performed (Fig.14). Our results show that AtST4a and AtST4c 

are mainly expressed in roots with the highest level of expression at the flowering stage. 

Very little expression is observed in the aerial tissue. However, AtST4c expression in 

the aerial tissues is higher before flowering time. AtST4a has a lower level of 

transcription than AtST4c in all tissues and at all development stages (Fig.14).  
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Figure 14. Expression profiles of AtST4a and AtST4c in aerial parts and roots of Arabidopsis at different developmental stages. Total 

RNA was extracted from different tissues of the plant. Quantitative RT-PCR was performed with gene-specific primers. ACTIN was used as 

internal constitutive control. The data represent the mean values of three independent biological replicates. 
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3.4.2 Transcript expression study of AtST4c response to cytokinins 

Cytokinins regulate many important aspects of plant development (Werner and 

Schmulling , 2009). In Arabidopsis, cytokinins mediate the responses to many extrinsic 

factors, such as light conditions and availablility of nutrients and water in the root 

system (Werner and Schmulling, 2009). Genome-wide microarray data showed that 

members of the AtST4 subfamily are regulated by cytokinins (Hoth et al., 2003, Kiba et 

al., 2005).  For example, it has been shown that AtST4b is strongly induced by 

cytokinins in seedlings of Arabidopsis. In contrast, AtST4a and AtST4c are slightly 

repressed by cytokinins. Quantitative RT-PCR was performed to further define the 

effect of cytokinins on the expression of the AtST4 family members. Total RNA was 

extracted from roots of 16-day-old plants that were treated with 10µM t-zeatin for 

various periods of time. The upper panel of Figure 15 shows that 1 hour after the 

treatment with t-zeatin, AtST4b transcript levels start to increase with a maximum 17 

fold induction after two hours. In contrast, AtST4a and AtST4c expression levels 

decreased in response to the treatment (Figure 15, lower panel).  
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Figure 15. Quantitative RT-PCR profiles of AtST4 subfamily members in 

response to cytokinins. Total RNA was extracted from roots of 16-day-old 

Arabidopsis (Col-0) vertically grown on MS media non-treated or treated with 20µM 

t-zeatin for 1, 2, 4 and 6 hours. ACTIN was used as an internal constitutive control. The 

data represent the mean value of three independent biological replicates.  
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3.4.3 AtST4c expression in wild-type and lfy mutant plants. 

The switch from vegetative to reproductive growth is a crucial developmental transition 

that significantly affects the reproductive success of flowering plants (Mockler et al., 

2004)
 
. In Arabidopsis, this transition is in large part controlled by the meristem identity 

regulator LEAFY (LFY). It has been reported that LFY is extensively expressed during 

the vegetative phase. Under long day conditions, there is an up-regulation of LFY at the 

onset of flowering. Under short-day conditions, Arabidopsis plants flower several 

weeks later than under long day conditions and LFY expression increases gradually 

until flowering starts (Blazquez et al., 1997). The exact mechanism by which LFY 

precisely controls the plant transition to flowering is not well understood yet. Since the 

AtST4c knockout mutant plants exhibit an early flowering phenotype, we tried to find 

out if there is a relationship between LFY and AtST4c expression. One possible 

hypothesis would be that LFY is a negative regulator of AtST4c expression. To test this 

hypothesis, we first used quantitative RT-PCR to measure the relative expression level 

of AtST4c and LFY in the aerial parts of wild-type plants.  
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Figure 16. Relative expression of LEAFY and AtST4c in wild-type Arabidopsis 

plants. Plants were grown on MS medium under long day condition. ACTIN was used 

as internal constitutive control. The data represent the mean values of three independent 

biological replicates. 
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AtST4c in the aerial parts and the root system of wild type and lfy mutant plants at 

different developmental stages. As shown previously, AtST4c expression decreases in 

wild-type aerial parts as the plants age (Fig. 17). In contrast, AtST4c expression 

increases in the root system as the plant ages. AtST4c expression is lower in the root 

system at all tested developmental stages of the lfy mutant as compared to wild-type 

plants. The same behavior is observed for the aerial parts up to day 25. However, there 

is a strong increase of AtST4c expression in the aerial parts of the lfy mutant plants at 

day 30. Based on these results, we cannot conclude that LFY is a negative regulator of 

AtST4c expression at least until day 25 which represents the stage when wild-type 

Arabidopsis plants would normally initiate flowering. The strong increase of AtST4c at 

day 30 in the lfy mutant is associated with the growth of the bolting structures that 

generate multiple scale-like leaves instead of the normal inflorescence (Fig 16). 
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Figure 17.  Relative expression levels of AtST4c in wild-type and lfy mutant of 

Arabidopsis as determined by quantitative RT-PCR. Plants were grown on MS 

medium under long day conditions.  ACTIN was used as an internal constitutive 

control. The data represent the mean values of three independent biological replicates. 
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3.4.4 Expression profile of genes regulating flowering time in the AtST4c 

knockout mutant. 

As we have seen in the introduction, the transition from vegetative growth to 

reproductive development in Arabidopsis is regulated by the photoperiod, the 

autonomous, vernalization, gibberellins and age pathways (Mockler et al., 2004). These 

pathways interact simultaneously to regulate the expression of a set of genes critical for 

floral initiation. Previous genetic and molecular studies demonstrated that 

APETALA1(AP1), APETALA2(AP2), LEAFY(LFY) and SUPPRESSOR OF 

OVEREXPRESSION OF CONSTANS 1 (SOC 1) play a key role in the establishment 

and maintenance of flower meristem indentity as integrators of the flowering pathways 

(Okamuro et al., 1997). To further characterize the role of AtST4c in the control of 

flowering time, we studied the expression of these key genes in the AtST4c knockout 

plants. 

 LEAFY 

In wild-type plants, the expression of LEAFY increases as the plant ages with a 

maximum expression observed at day 30. These results are in agreement with the 

results that can be retrieved from the Genevestigator database. A similar trend is 

observed in the AtST4c knockout plants. However, the level of expression of LEAFY is 

significantly higher at days 20, 25 and 30 in the mutant compared with the wild-type 

plans (Fig.18a).These results are in agreement with what would be predicted for mutant 

plants which are flowering earlier than wild-type. 

APETALA 1   

In wild-type plants, the expression of APETALA 1 increases with development with a 

maximum observed at day 30 (Fig.18a). A similar behavior is observed in the AtST4c 

mutant plants. However, the level of expression of APETALA 1 is significantly higher 



 

- 49 - 

 

in the knockout plants at all time points that were studied (Fig. 18a). Again, these 

results are in agreement with what would be predicted for mutant plants which are 

flowering earlier than wild-type plants. 

SOC 1 

SOC 1 expression increases gradually as the plants age in both wild-type and AtST4c 

knockout plants. Only minor differences in SOC 1 expression are observed between 

that wild-type and the mutant plants (Fig. 18b). This result is surprising considering the 

key role of SOC 1 in the integration of the flowering signal from all the pathways that 

promote flowering. We were expecting a higher level of expression of SOC 1 earlier in 

development in the early flowering AtST4c mutant plants.  

APETALA2 

APETALA2 expression increases sharply at day 25 in wild-type plants. The increase 

corresponds to the time of initiation of flowering in wild-type Arabidopsis. A similar 

increase is observed in the AtST4c knockout plant. However, a significant decrease in 

APETALA2 expression is observed at day 20 in the mutant plants. This growth stage 

coincides with the initiation of flowering in the AtST4c knockout plants (Fig.18b). It is 

important to note that the level of expression of APETALA2 is relatively low in 

Arabidopsis at all growth stages and that only minor differences are observed in the 

AtST4c knockout mutant (Fig. 18b). 
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Figure 18 (a). Relative expression patterns of the flowering genes LEAFY and APETALA1 in AtST4c knockout plants grown under long 

day condition. ACTIN was used as an internal constitutive control. The data represent the mean values of three independent biological replicates.   
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Figure 18 (b). Relative expression patterns of the flowering genes APETALA2 and SOC1 in AtST4c knockout plants grown under long 

day condition. ACTIN was used as an internal constitutive control. The data represent the mean values of three independent biological replicates.   
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Chapter 4- Discussion 

In Arabidopsis, the members of the AtST4 subfamily of sulfotransferases are expressed 

in the root system and are regulated by cytokinins. To try to elucidate their function, we 

used a combination of biochemical and molecular approaches. First, the three coding 

sequences were cloned in bacterial expression vectors and recombinant proteins were 

produced in E. coli. This work allowed the study their biochemical function in vitro to 

try to elucidate the structure of their substrates. We also took advantage of the T-DNA 

insertion library to isolate plants missing one or the other of the three genes and to 

analyze their phenotype. Previous analyses of a T-DNA insertion mutant of AtST4c 

revealed a distinct phenotype as compared to the other members of the AtST4 

subfamily (Kodashenas et al., 2010). AtST4c knockout mutant plants were found to 

flower 5-6 days earlier than wild type plants when grown under long photoperiod (Fig. 

2). This represents a reduction of approximately 20% in vegetative growth time and 

suggests that AtST4c plays a role in the repression of flowering. In addition, AtST4c 

knockout plants produce a smaller root system and have fewer leaves at the time of 

flowering indicating a more general role in the control of vegetative growth in all 

tissues of the plant. In contrast, a T-DNA insertion in AtST4a, the closest relative of 

AtST4c did not give rise to a visible phenotype (Kodashenas et al., 2010).  
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Biochemical function of AtST4c 

One of the most important objectives of this research project was to identify the 

substrate and product of the enzyme encoded by AtST4c.  Several experimental 

strategies were used to reach this objective. One of the most powerful approaches was 

to compare metabolite profiles between mutant and wild-type plants using LC-MS. 

This work is facilitated by the distinct signature of sulfonated molecules in mass 

spectrometry.using the neutral loss method. The loss of the sulfonate ion during 

fragmentation generates a daughter molecule that is 80 daltons lighter than the parent 

molecule. This method was used successfully for the identification of the substrate and 

product of AtST4b, another member of the AtST4 subfamily. A molecular ion 

corresponding to cadabicine sulfate was completely absent from root extracts of 

AtST4b mutant plants allowing the unambiguous identify of the substrate and product 

of this enzyme. The same approach was initially used to characterize the substrate and 

product of AtST4a and AtST4c. The AtST4ac double mutant line was found to exhibit 

the same early flowering phenotype previously observed in the AtST4c knockout line. 

Metabolite profiling of a root extract from the AtST4ac double mutant line revealed the 

absence of a molecular ion having a mass of 498 daltons in positive mode [M+H] 

(Figure 11 and 12). The structure of this molecule was analyzed by high resolution 

mass spectrometry and was found to correspond to a 1-guanine 3-benzoic acid 

glucoside 6-sulfate (Figure 13).  This molecule has never been reported to occur in 

nature.  Unfortunately, the results of the mass spectrometry experiments do not allow 

the position of the linkage between the guanine, the benzoic acid, the sulfonate and the 

glucose molecule to be defined.  However, the linkage positions proposed are based 

on the existence of other molecules containing part of the structure and having the 

linkages. For example, benzoic acid glucoside with a linkage at carbon 3 was found to 
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accumulate in the plant Pteris ensiformis (Chen et al., 2008). Although a guanine 

glucoside has never been reported to occur in nature, adenine linked to carbon 1 of 

glucose in the cytokinins benzyladenine-7-N-glucoside and 

isopentenyladenine-7-N-glucoside has been found in Arabidospis (Hou et al., 2004). 

Finally, several molecules containing a glucose 6-sulfate have been reported to occur in 

algae, plants and mammals (Ale et al., 2011). 

How can we reconcile that the two enzymes are probably sharing the same substrate in 

vivo with the differences observed in the phenotype of the AtST4a and AtST4c knockout 

lines? First, the metabolite profiling experiments were conducted with extracts of entire 

plants including roots and aerial parts. It will be important in future experiments to 

quantify the level of the AtST4c substrate and product in dissected tissues to see if there 

is an uneven distribution of the metabolites between the two knockout lines. Second, it 

also will be important to study the tissue localization of expression of the two genes in 

Arabidopsis. We cannot exclude the possibility that the control of flowering time is 

mediated by the substrate or product of AtST4c expressed in a very specific tissue or 

cell type during the maturation of the plant. It is also interesting to note that the level of 

expression of AtST4c is higher than that of AtST4a in Arabidopsis. This is especially 

true for the expression pattern of the two genes in the aerial parts of the plant (Fig. 14). 

It is possible that the higher level of expression of AtST4c in the aerial parts of the plant 

is crucial for the control of flowering time and is masked in the metabolite profiling 

experiments by the high level of accumulation of the sulfonated product in the root 

system. 

Function of AtST4c in the control of flowering time 

In addition to the early flowering phenotype, an AtST4c loss of function mutation 

resulted in plants with shorter primary roots, a reduced number of lateral roots and 
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slightly smaller rosettes suggesting that AtST4c regulates vegetative growth positively 

and flowering time negatively.  We also have shown that AtST4c is down regulated by 

the exogenous application of cytokinins (Fig.15). Interestingly, cytokinin-deficient 

plants show a late-flowering phenotype indicating that cytokinins play a positive role in 

plant flowering (Hoth et al., 2003).  Based on our results, we can expect a higher level 

of expression of AtST4c in cytokinin-deficient plants which would coincide with the 

late flowering phenotype that is observed in these plants.   

In order to understand how AtST4c participates in the control of flowering time, we 

have to learn how it affects genes that are known to regulate the switch from vegetative 

to reproductive growth. First, we analyzed the flowering time of AtST4c knockout 

plants grown under short photoperiods. Interestingly, the same early flowering 

phenotype was observed under long day and short day growth conditions (Fig.5). 

These results indicate that the effect of AtST4c on flowering time is not under the 

control of the photoperiod promotion pathway.  Then we looked at the expression of 

key genes involved in flowering time in the AtST4c knockout line (Fig.18). As we have 

seen in the introduction, there are four pathways other than the photoperiod promotion 

pathway that regulate flowering time.  The signals generated by all of these pathways 

converge at SOC1 (Fig.3). Once activated, SOC 1 positively regulates LEAFY which 

then activates APETALA1 expression. LEAFY plays a key role in the determination of 

the flowering meristem (Blazquez et al., 1997; Schultz and Haughn, 1991). lfy mutants 

show leaf-like structures replacing the floral organs, and transgenic plants 

overexpressing LFY flower early than wild type (Weigel and Nilsson, 1995).  The 

results shown in Figure 18 indicate that the absence of AtST4c has a strong positive 

impact on LEAFY expression at days 20, 25 and 30 after germination.  It is interesting 

to note that the strong induction of LEAFY coincides with the initiation of flowering in 
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the AtST4c knockout plants. The same pattern of induction is observed for the 

expression of APETALA 1(Fig.18a). This result is expected since APETALA 1 

expression is under the control of LEAFY (Kaufmann et al., 2010). APETALA 1 has 

two functions in reproductive development. First, it is a meristem identity gene 

required for the switch from a vegetative to reproductive meristems. Once established, 

APETALA1 expression is sufficient to maintain reproductive growth in absence of 

further stimulating signals. Second, it acts as an organ identity gene whose function is 

required for petal formation (Hempel et al., 1997)  The up-regulation of LEAFY and 

APETALA 1 in the AtST4c knockout background indicates that AtST4c acts upstream 

of the meristem identity genes in the control of flowering time. The fact that LEAFY 

and APETALA 1 expression are not increased at day 15 suggests that there is another 

mechanism that prevents their expression early after germination. TFL1 and TFL2 are 

two candidate genes that can fulfill this function (Larsson et al., 1998).   

We also looked at the expression of SOC 1 in the AtST4c mutant background. SOC 1 

plays a key role as an integrator of the different signals coming from the five pathways 

regulating LEAFY expression. Surprisingly, the expression of SOC I is not affected 

significantly by the loss of AtST4c function suggesting that the early flowering 

phenotype is not mediated by an increase in SOC1  expression (Fig.18b).  Finally, 

we also studied the expression of APETALA 2 in the AtST4c mutant background. 

APETALA 2 has a dual role as repressor of SOC1 expression before flowering and as 

floral identity gene in petal development (Yoo et al., 2005). The results of our studies 

show little difference in APATALA 2 expression between the AtST4c mutant and 

wild-type plants (Fig. 18b). Taken together, our results indicate that AtST4c 

participates in the negative regulation of LEAFY and APETALA 1 and that this 

repression does not depend on the photoperiod promotion, the autonomous or the 
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gibberellins pathways. Further work will be required to position AtST4c in the network 

of genes regulating flowering time. One possible target would be the aging pathway 

that can regulate LEAFY independently from SOC1 (Fig. 3). Alternatively, AtST4c 

might interfere with the repression of LEAFY mediated by TFL 1.  

Two models can be proposed for the mode of action of AtST4c. In the first one, the 

sulfated product of the enzyme-catalyzed reaction is acting as a repressor of flowering. 

In the second one, the substrate is acting as an activator of flowering and its 

sulfonation inhibits its activity. In order to find out which hypothesis is valid, we will 

need to synthesize both molecules to test their biological activity in vivo and their 

effect on flowering time. 
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Perspective for future work 

Biochemical function of AtST4c 

Further work will be required to elucidate the structure of the substrate of AtST4c. The 

technology that we used does not allow the assignment of the position of the benzoic 

acid, the guanine and the sulfonate group on the sugar backbone. We will have to use 

NMR and/or organic synthesis to define without ambiguity the final structure. This will 

be a challenging project considering the low abundance of the metabolite in vivo and 

the requirement for extensive purification before conducting NMR experiments. 

Much evidence indicates that AtST4a and AtST4c share the same substrate in-vivo. 

However, only the AtST4c knockout mutant flowers earlier than wild-type suggesting a 

different localization of the two enzymes. To address this question, it will be necessary 

to construct transgenic lines expressing a reporter gene under the control of the two 

different promoters. We should also quantity the sulfonated product in different tissues 

of the AtST4a and AtST4c knockout lines to see if it accumulates in different parts of the 

plant during development. 

Biological function of AtST4c, its substrate and its product 

Our results suggest that AtST4c or its associated metabolites (substrate and product) are 

playing a role in the control of flowering time and we have observed different 

regulation patterns for LEAFY and APETALA 1 in the AtST4c knockout plants. To refine 

our analyses, we have to be able to map the position of AtST4c in the network of genes 

controlling flowering. For example, it would be interesting to see if a mutation in the 

aging pathway influences AtST4c expression since this pathway can regulate directly 

the expression of LEAFY and APETALA 1. We could also conduct genome-wide 

transcription profiling experiments to have a complete picture of the genes having 

different expression patterns in the AtST4c knockout plants.  Finally, the organic 
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synthesis of the substrate and product of AtST4c would allow feeding experiments to 

see if genes in the flowering network are affected by their incorporation in plant tissues.   
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