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Abstract 
 
It is important to assure the reliability of a structural health monitoring system before interpreting the 
monitoring data for the detection of structural anomalies, Finding a malfunctioning component such as a sensor 
is an important step in that direction. Damage detection techniques in civil structures fall in the following two 
categories: data-driven and structural model-based. The data-driven methods provide a direct approach to 
damage assessment in a structure without creating any structural model (e.g. finite element model). Existence of 
damage and its location are interpreted by pattern matching of the data series of strain gauges, and temperature 
gauges at different time ranges. The objective of this study was to explore such methods, including the 
autoregressive exogenous (ARX) model, and based on that, develop new techniques to detect defective sensors. 
As a case study, the structural health monitoring data from the Portage Creek Bridge, located in the British 
Columbia, Canada was utilized to assess the conditions a set of sensors in of an instrumented pier, using 
methods developed based on the concepts of the sequential and binary search techniques. Continuous data sets 
of strain and temperature gauges were filtered and normalized. Defective sensors were detected by pattern 
matching of simulated and real data, using sensitivity analyses of the developed models. 
 
 
1. Introduction 
According to Mirza and Haider (2003), more than 40% of the bridges in service in Canada are over 30 years 
old. Some of these bridges are in urgent need of diagnosis, rehabilitation, or even partial re-construction in order 
to make them adequately safe for traffic and prevent sudden collapse and down time. Chase and Washer (1997) 
conducted a similar survey for the bridges in the U.S., and found that about 187,000 bridges – representing 
more than 25% of all bridges – were found deficient at that time; in addition, about 5,000 bridges were 
becoming deficient every year. The above estimate was an improvement over previous years because of 
increased federal funding for building and rehabilitation of bridges. 

A more recent statistics by the Research and Innovative Technology Administration (RITA 2007) put 
the number of deficient bridges to about 12% of the total national and state bridges in the U.S. Most of these 
bridges were built before 1970, and their health condition is yet to be determined by any instrumental and 
scientific approach. The reduction from 25% in 1997 to 12% in 2007 was perhaps due to the continued 
reconstruction and rehabilitation efforts, as mentioned earlier. 

A study by Dubin and Yanev (2001) funded by the Federal Highway Administration (FHWA) concluded 
that visual inspection of bridges was labour-intensive and cost-intensive, and Phares (2001) found that visual 
inspections were subjective and unreliable. Furthermore, the effectiveness of these periodic inspections was 
highly constrained by the limited ability for timely damage detection. Lu (2008) concluded that to maintain 
overall highway operational safety with current funding limitations, development of bridge structural health 
monitoring (SHM) systems that are continuous, automatic, and low cost was greatly and urgently needed. Due 
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to the rapid development of computing, sensing, and telecommunication technology during the last two 
decades, computer‐based, long-term SHM systems are becoming more widely utilized to provide timely 
information on a structure’s condition. An SHM system includes data acquisition, storage, and broadcasting; 
often, it is used to continuously evaluate the status of an entire structure or structural component. Hence, 
monitoring a structure can assist in assessing structural conditions and detecting damage in structures caused by 
such factors as cracking, corrosion, reduction in material properties, reinforcement rupture fractured welds, and 
loosened bolts.  

According to Sohn et al. (2000), sensors that measured strains and vibrations of a structure produced signals 
that always respond to changes in environmental and operational conditions. Each group of signals could be 
considered a pattern that has some relation to the structural and ambient conditions. These researchers proposed 
that if the effect of ambient conditions to the patterns was normalized, the strain and vibration measurements 
should be identical or close to one another for a similar vibration effect as long as the structural vibration 
property remained the same. Changes in physical properties, mainly stiffness, should reflect in the processed 
signal blocks or patterns.  

While the above studies indicate the use and development of the pattern recognition techniques for assessing 
damage in a structure, the main objective of this paper was to develop new pattern recognition techniques to 
detect malfunctioning sensors in an instrumented bridge pier. Although damage detection was not a goal of this 
paper, references to ‘damage detection’ were made frequently in the discussion on the existing pattern 
recognition techniques as they were developed for the purpose of damage detection.   

 
2. Pattern Recognition 

The ability of a computer to identify and classify patterns in order to make a decision is an important aspect of 
the machine learning process. The feature that makes it attractive to create an automated SHM system is pattern 
recognition. Fugate et al. (2001) proposed a generalized approach for SHM by statistical pattern recognition that 
involves five steps: operational evaluation, data acquisition, data cleansing, data normalization, and statistical 
model development. 
 
2.1 Operational Evaluation 
The first step, operational evaluation, defines damage for the system being monitored. It also determines the 
operational and environmental conditions under which the system structure functions. 
 
2.2 Data Acquisition 
The second step, data acquisition, involves selecting the types of sensors and their placement location. The 
optimal number of sensors to be used are determined as well as the setup of data acquisition, storage, or 
transmission hardware.  
 
2.3 Data Cleansing 
Non-structural conditions, such as temperature, always vary with time. Sources that affect the variation of data 
and the structure monitored need to be identified and minimized. Usually, signals are gathered continuously. 
Strain data is significantly influenced by temperature and external loading, and data needs to be corrected for all 
of the external noises affecting the signals.  
 
2.4 Data Normalization 
It is necessary to normalize the data to make it compatible damage detection analysis. In the case of varying 
environmental or operational conditions, normalized data can be compared at similar times during an 
environmental or operational cycle. Sohn et al. (2001) suggested normalizing and standardizing the time history 
data x(t) by means of the following equation: 

σ
μ−

=
xx  ,       (Eq. 1) 

where μ is the mean of the signal and σ is its standard deviation. 
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2.5. Model Development  
Statistical model development is concerned with the implementation of algorithms that analyze the distribution 
of the extracted features in an effort to determine the damage state of the structure. Appropriate algorithms to 
use depend on their ability to perform supervised and unsupervised learning. ‘Supervised learning’ refers to the 
case where examples of data from damaged and undamaged structures are available. ‘Unsupervised learning’ 
refers to the case where data is only available from the undamaged structure (Da Silva et al., 2007).  

For linear prediction of damage diagnosis in structural systems, unsupervised learning uses the 
following two models: a) a one-step auto-regressive (AR) model and b) a two-step prediction model that 
combines auto-regressive (AR) and auto-regressive with exogenous inputs (ARX) techniques. Sohn et al. 
(2000) used an approach that detects damage based on monitoring of residual error, which is the difference 
between the actual acceleration measurements for the new signal and the prediction obtained from the AR and 
ARX model developed from the selected reference signal.  

In this study, the ARX model for unsupervised learning was utilized. Further information on ARX 
modeling and applications in SHM can be found elsewhere (Erdoğan and Gülal, 2009; Fugate et al., 2001; Yang 
and Makis, 2010; Zhang, 2007; Yao and Pakzad, 2012).  
 

2.6. Autoregressive with Exogenous Inputs (ARX) Model 

The basic input-output configuration of the ARX model is shown in Figure 1. Assuming a unit sampling 
interval, there is an input quantity or signal and an output quantity or signal; the signals are related by a linear 
system. The model is designed to establish a relationship among the data pattern represented in the input and 
output signals by means of a statistical system identification process (Zhang, 2007). This model can be 
represented by the following equation: 

)()1()()()()(
11

nejknujinXinX
b

j

a

i
++−−+−= ∑∑

==

βα ,  (Eq. 2) 

where α(i) and β(j) are the ARX model coefficients; a and b are the auto-regressive order and the exogenous 
order, respectively; k is the pure time delay from input to output; e(n) is the residual term, modeling the 
disturbances that act on the input-output process and assumed to be white; and u(n) is prediction error of the 
linear prediction processor, assuming that the prediction error is caused mainly by unknown external inputs. 

ARX model must be trained with a set of known input and output data such that the difference between 
the model output and the actual output is minimized, using the Least Square method. The Least Square method 
is the most efficient polynomial estimation method because it solves linear regression equations analytically. 
For linear models, model estimation can be done using the time domain or the frequency domain data. For 
nonlinear models, only time-domain data can be used for both estimation and validation.  

Validation is the process by which a trained model is tested for its performance, using a set of input and 
output data not previously seen by the model during the training process. If the model output and the actual 
output from the validation set are close to each other, as determined using a predefined comparison norm (e.g., 
the parameter r in Eq. 3), the model is said to be validated. Otherwise, it must be retrained with an expanded set 
of data. Then, a validated model can be used for estimation or prediction of the output data at a future time 
when the input data is available.  

The parameter used for estimating the degree of closeness between the measured and simulated output 
data is: 
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where, y is the measured output, y1 is the simulated or predicted model output, and y2 is the mean of y. The 
value of 100% corresponds to a perfect fit, while 0% indicates that the fit is no better than guessing the output to 
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be a constant (y1 = y2). Because of the definition of Best Fit, it is possible for this value to be negative. A 
negative value of r is worse than 0% and can occur because the estimation algorithm failed to converge.  
 
3. Details of the Monitored Structure 
In this current study, the Portage Creek Bridge – located in the City of Victoria, British Columbia (BC), Canada 
– was used as a case study and SHM data source (Figure 2). The bridge is a 124-m (407-ft) long, three-span 
structure with a reinforced concrete deck supported on two reinforced concrete piers and having abutments on H 
piles. The deck has a roadway width of 16.2 m (53 ft) with two 1.98 m (6’-6”) sidewalks and aluminum railings. 
Eight bi-directional rosette type electrical strain gauges are located on each column, as shown in Figure 3. Also, 
a temperature sensor is located on Column 2 (Figure 3). Each bi-directional strain gauge has two channels, one 
for horizontal strain and another for vertical strain, producing a total of 16 sets of strain data for each column.  

As shown in Figure 3, for this study, each strain channel was referred to as a separate sensor, with 
Sensor 1 through 16 in Column 1 and Sensor 17 through 32 in Column 2. The strain data from the 16 sensors in 
Column 2 (#17 through #32), and the temperature sensor, T, were used in this study. The sensor data from the 
instrumented bridge was obtained from the Intelligent Sensing for Innovative Structure (ISIS) Canada Research 
Network. 

 
4. Methodology  
This section briefly describes the data harvesting procedure and introduces well-known sequential and binary 
search techniques, followed by a description of the methods that were developed using the previously 
mentioned search techniques. 
 
4.1. Data Harvesting  
For this study, the data available from the bridge site was recorded by ISIS Canada from 2004 to 2006. The 
sampling rate of the data was 32 Hz, and the length of each data segment was 256 points (8 s). The time 
duration of each block of data retrieved from the database was 8 seconds, since a vehicle passing on the bridge 
was never found to take more than this amount of time (Huffman, 2006).  
 
The following steps have been followed in this study to harvest data from the database: 

1. The time interval between points, the number of data points, and the data channels to query were 
selected. 

2. Data points were saved as comma-separated values. 
3. Data collected in every second was converted into ‘second’ data by averaging the 32 data points in a 

second; the ‘second’ data were converted into ‘minute’ data, and the ‘minute’ data were converted into 
hourly data (µε/hr).  

4. In order to train the statistical model for this study, the data from the months of December 2005, January 
2006, and February 2006 were utilized. The total number of data points for each strain gauge sensor was 
2160, out of which only 1738 were valid; the rest were Not a Number (NaN), and were removed from 
the data set. Then, the data was normalized using the method described earlier. 

5. The testing data were taken from the month of March 2006, due to the presence of novel events or heavy 
traffic volume during that period. 

 
4.2. Binary Search  
‘Binary search’ is an algorithm for locating the position of an element in a sorted list; this is done by checking 
the middle, eliminating half of the list from consideration, and then performing the search on the remaining half. 
If the middle element is equal to the sought value, then the position is considered to be found; otherwise, the 
upper half or lower half is chosen for a search, based on whether the element is greater than or less than the 
middle element. The method reduces the number of elements needed to be checked by a factor of two each 
time, and finds the target value. 
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4.3. Sequential Search  
‘Linear search’, also known as sequential search, is a search algorithm that is suitable for searching a list of data 
for a particular value. It operates by checking every element of a list one at a time in sequence until a match is 
found. The best case is that the value is equal to the first element tested, in which case only one comparison is 
needed. The worst case is that the value is not in the list or else it appears only once at the end of the list; in this 
case, n comparisons are needed, where n is the number of items in the list.  

If just a few elements are to be searched, the linear search method is less trouble than more complex 
methods that require preparation, such as sorting the list to be searched, or more complex data structures; this is 
especially true when entries may be subject to frequent revision. Also, when certain values are much more 
likely to be searched for than other values, a linear search can arrange such values to be among the first to be 
considered in the list. 

 
4.4 Analogy of the Sequential and Binary Search Methods as Applied in the Present Work 
When a statistical model, such as an ARX model, was constructed and trained with the input and output data 
from the sensors, the relationship among the data patterns in those sensors were represented in the model. In an 
immediate future when the data from these sensors are to be validated with the previously trained model, the 
model would ideally generate an output similar to what was actually observed, provided that the data patterns in 
any of the sensors were not changed. In the event of a sensor generating data that was not in line with the same 
pattern as it had before, there would be a large difference between the simulated output data and the actual 
output.  

In order to isolate the sensor responsible for such differences, it was necessary to construct a series of 
ARX models (i.e., sub-models) by omitting one of the sensors, in turn, from the input and then retraining the 
sub-models with the same data with which the original model was trained. All these sub-models were then 
validated with the same test data, which contained data from a potentially defective sensor. In that case, the sub-
model from which the input data from the defective sensor was omitted performed the best, and the sub-models 
containing the data from the defective sensor with performed poorly.  

This is a typical process of elimination of unknown variables, used in solving mathematical problems. 
While the ‘sequential search’ analogy was used here, the proposed method does not really seek to find a 
matching item, as in the regular sequential search method described earlier; rather, it seeks to isolate the item 
that does not match the pattern. When the analogy of a ‘binary search’ is used, rather than omitting one sensor 
in a sub-model, half of the sensors are omitted when the number of inputs is large. In this case, the sub-model 
containing the defective sensor will produce the worst result.  

The assumption here was that the target sensor was not defective. If the target sensor itself was 
defective, the above method would fail. In that case, a different target sensor would be chosen. It also was 
assumed that only one of the input sensors was defective. However, if multiple input sensors were defective, the 
comparison of the well performing and poorly performing sub-models would reveal the composition of the 
defective sensors. If the target was found to be not defective, and none of the input sensors could be held 
responsible for the change the data pattern, it was possible that the pattern of all sensors data were changed; and 
in that case, it is most likely that the structure had a change in its response due to damage or altered load 
patterns.  

The following sub-sections describe in detail the methods developed in this study. 
 
4.5. ARX Model Development Based on the Sequential Search Method 
Using the instrumented bridge column as an example, ARX model development based on the sequential search 
method involved a total of 17 sensors, including a temperature sensor were installed in Bridge Column 2 
(sensors 17 through 32, and T). For unsupervised learning, the sensor data were collected during three 
consecutive months – December 2005, January 2006, and February 2006 – to develop or train the ARX model. 
The data from Sensor 17 were fed to the system identification tool as the target data; and other 16 sensors, 
including the temperature sensor, provided input data into the system identification tool. In this way, the system 
was trained so that it could build a mathematical relationship among the data signals from the input and target 
sensors.  
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In the next step, data from the same 16 sensors from a different period, for example, the first half of 
March 2006, were used for validation purposes. The target data were simulated and compared with the actual or 
real data from Sensor 17 for the same period. The comparison norm, r, was calculated in percentage, using Eq. 
3. If the simulated and the real data for the target sensor did not match in good percentage, it would imply that 
there could be damage in the structure or there existed at least one defective sensor. A schematic diagram of 
ARX model development and testing sensor data is presented in Figure 4.  

To determine if a sensor was defective or producing an erroneous signal, the above procedure was 
repeated; however, during each repetition, one of the input sensors was removed – say, Sensor 18 – from the 
input to create a separate ARX model (i.e., sub-model) with 15 input signals (Figure 5). The sub-model was 
then trained and tested in the same way as the original model. After that, another sub-model was created by 
replacing the previously removed sensor (i.e., Sensor 18 in this example) with another sensor (say, Sensor 19) 
in the training data, and the training and testing was performed as before. Thus, 16 sub-models were created by 
removing the input sensors one at a time.  The simulated data produced by each model were then compared to 
the actual data or real data, using Eq. 3. In each particular case, the comparison of the simulated and original 
data for the target sensor indicated whether or not the sensor that was absent in the input data was the one 
responsible for the poor match in the original model. If the comparison was good only when a particular sensor 
was omitted from the input data, then that sensor was considered defective. If none of the cases produced a 
good match, this implied that damage was present in the structure. The target sensor could be changed, and the 
above process could be repeated for a more reliable prediction of a defective sensor or damage in the structure.  

 
4.6. ARX Model Development based on the Binary Search Method 
In order to accelerate the process of identifying a defective sensor, as outlined in the previous section, the 16 
input sensors, including the temperature sensor, were divided into two groups of 8 sensors (Figure 6); each 
group was used to create a sub-model by keeping the target the same as Sensor 17. The first sub-model 
contained Sensors 18 through 24 as input, and the second sub-model contained Sensors 25 through 32 as well as 
T as input.  

Data from December 2005, January 2006, and February 2006 were used for training the two sub-models. 
The sub-model then was validated with the corresponding sensors’ data for a different time frame, the first half 
of March 2006, for example. The simulated and the measured data from Sensor 17 were compared in order to 
find out which sub-model produced a better match. For example, if the second sub-model produced a better 
match than the first one, the defective sensor would be assumed to be in the first group of sensors. At that point, 
the first group would be further divided into two groups of four sensors (Figure 7), and the above procedure 
would be repeated to find the sub-group containing the defective sensor.  

When a subgroup size is small (e.g., less than four), a sequential method could be applied to the 
subgroup to identify the particular sensor responsible for altering the data pattern. 

 
5. Performance of the Proposed Methods  
 
5.1 Test 1: Sensitivity Analysis - Identification of a Known Defective Sensor 
In Test 1, Sensor 27 was made artificially defective by replacing the original data with random numbers. The 
approach presented in Section 4.5 was followed to find the defective sensor. When any other sensors – for 
instance, Sensor 19 – were removed from the input in an ARX sub-model, the measured and simulated target 
data matched -267%, as shown in Figure 8(a). All the 16 sub-models were tested the same way and the 
comparison metric r was calculated, as shown in Table 1. It is noted from Table 1 that when Sensor 27 was 
removed from the input, the simulated output had the best match with the measured output (r = 45%), indicating 
that the data from Sensor 27 had some problem, as shown in Figure 8 (b). While, r = 45% may not indicate a 
high degree of closeness between the simulated and measured data in the absolute term, for the given data sets it 
represents the best positive match considering the the model with the complete set of sensors as input and the 
reduced models with all the cases of sensor removal.  From Table 1, it is clear that when Sensor 27 was 
included in a model, it reduced the value of r to a level lower than 45%. Thus, Sensor 27 was interpreted as 
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being defective. A number of similar tests were conducted by making different sensors defective and choosing 
different target sensors. The current method had identified the defective sensor correctly in each case. 
 
5.2 Test 2: Identifying a Defective Sensor using the Sequential Method 
In Test 2, the sequential search method was employed, as discussed in Section 4.5. In this case, data from the 
second half of March 2006 were used as a test data set in which the presence of any defective sensor was not 
known beforehand. However, the test showed that the simulated and the real target data did not match well, 
indicating the presence of one or more defective sensors or else structural damage.  

As in the previous case, 16 sub-models were constructed by removing one input sensor at a time and 
training the model. The simulated target data produced by the sub-models with the test data sets and 
corresponding real target data were compared to see which sub-model produced the best match. Figure 9(a) 
shows that when Sensor 18 was removed from the input, the real or measured output match was 10.54%. Figure 
9(b) shows that when Sensor 24 was removed from the input, the measured and simulated output did not match 
well (-109.7%). In this way, all 16 sub-models were tested, and the best match was derived. Table 2 showed that 
when Sensor 24 was removed, the measured and simulated outputs indicated a maximum positive match 
(15.28%). Therefore, Sensor 24 was considered to be the defective sensor.  

 
5.3 Test 3: Identifying Defective Sensor using the Binary Method 
Sequential search can render the process tedious if the number of sensors is high. Taking this issue into 
consideration, a binary search was used in Test 3. In this case, the same test data set as used in Test 2 was 
utilised. Initially, the 16 input sensors were divided into 2 groups of 8 sensors each and two sub-models were 
constructed using the same target sensor (Sensor 17).  

The measured and simulated target data of the second group of 8 sensors matched well (Figures 10b) as 
compared to the first group of 8 sensors (Figure 10a). Therefore, the defective sensor was assumed to be 
contained in the first group of 8 sensors, as shown in Table 3(a). By further dividing the data from the first 
group into two subgroups of 4 sensors, and repeating the same procedure, the measured and simulated model 
output of the first group of 4 sensors were found not to match well as compared to the second group of 4 
sensors. Therefore, the defective sensor was assumed to be contained in the first 4 sensors (Sensors 18 through 
21) of the first group of 8 sensors, as shown in Table 3(b).  

Finally, a sequential search was performed on these 4 sensors to determine that Sensor 24 was defective. 
By comparing Tests 2 and 3, and by evaluating a few other similar tests conducted in the study, it was observed 
that both the full sequential method and the binary method produced the same results. However, the binary 
search method required less effort. 
 
6. Conclusions 
In this study, a pattern recognition approach was applied to analyze the strain and temperature data of an 
instrumented bridge column. The goal was to evaluate the feasibility of the approach developed in this study in 
order to determine the presence of a defective sensor using the concepts of sequential search and/or binary 
search techniques. Numerous tests were performed to identify the defective sensors. The following observations 
were made:  

• Removing a particular sensor at a time improved the pattern matches of the established relationship 
among the remaining sensors; the excluded sensors were identified as the ones responsible for the 
change in the relationship.  

• Both sequential and binary methods as proposed here yielded identical results in the cases considered 
here. In identifying a defective sensor the binary method is recommended as it is more efficient.  

 
While the current study showed success of the technique on the structure under study, using data collected for a 
certain period of time, further research should be performed to verify its general applicability under various 
conditions, such as seasonal changes in temperature or traffic loads. Also, further study is required to verify if 
the following interpretation of the change in data patterns were valid: 
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• Once the responsible sensor was identified, physical tests could be conducted to verify whether or not 
the sensor was actually defective. In case the sensor was not found to be defective, it was likely that the 
physical property of the structure had changed. However, appropriate inspection of the structure is 
required to ascertain that. 

• If a group of sensors was found to be defective, it was likely that damage existed in the structure.  
• In the absence of unusual patterns, in order to determine the rate of gradual change in the data pattern, 

which would indicate the rate of deterioration in the structure, the relationships simply were updated 
with new data and compared with the initial pattern of relationships.  
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     Table 1 Percentage match of measured and simulated output for each sensor removal. 

Sensor Removed Match (%) 

18 31.6 

19 -267 

20 36.9 

21 40.5 

22 35.5 

23 -26.5 

24 24.4 

25 21.7 

26 36 

27 45 

28 -32 

29 38 

30 43 

31 -59 

32 -36 

T 35 
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Table 2  Percentage match of measured and simulated output for each sensor removal.  

Sensor removed Match (%) 
18 10.54 
19 5.94 
20 -8.32 
21 7.98 
22 7.95 
23 8.53 
24 15.28 
25 11.2 
26 4.664 
27 -22.95 
28 -109.7 
29 8.22 
30 10.1 
31 7.89 
32 0.34 
T 10.48 

 
 
Table 3 Degree of matching of the simulated output with the measured response.  
 

Sensors Match (%) Comments 

1st 8 -94.34 Defective sensor group 

2nd 8 7.01 Non-defective sensor group 
(a) 

Sensors Match (%) Comments 

1st 4 of defective group -10.49 Defective sensor group 

2nd  4 of defective group 3.03 Non-defective sensor group 
(b) 
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Figure 1:  Basic Input-output configuration of the ARX model. 

 
 

Figure 2:  Plan and elevation of the Portage Creek Bridge [12]. 

 
Figure 3:  Sensor locations on columns of Pier 2 of the Portage Creek Bridge [12]. 
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Figure 4:  Schematic diagram for building the ARX model with Sensor 17 as the target. 

 

 
Figure 5: Schematic diagrams for comparing all simulated output with the measured output. 
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Figure 6:  Schematic diagram for identifying a defective sensor by the ARX model with a binary search method 
(first stage). 
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Figure 7:  Schematic diagram for identifying defective sensor by the ARX model with a binary search method. 

 

 

 

 
 

                                          (a)                                                                 (b) 

Figure 8: Measured and simulated output from March 2006 with (a) Sensor 19 removed and  
(b) Sensor 27 removed. 
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                                         (a)                                                                     (b) 
Figure 9:  Measured and simulated output from March 2006 with (a) Sensor 18 removed and  

(b) Sensor 24 removed. 
 

 

 
 

                                              (a)                                                             (b) 
Figure 10:  Measured and simulated output from March 2006 for (a) the first group of 8 sensors 

and (b) the second group of 8 sensors. 
 


