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ABSTRACT

Spectral Geometric Methods for Deformable 3D Shape Retrieval

Chunyuan Li

As 3D applications ranging from medical imaging to industrial design continue to grow, so does the

importance of developing robust 3D shape retrieval systems. A key issue in developing an accurate shape

retrieval algorithm is to design an efficient shape descriptor for which an index can be built, and simi-

larity queries can be answered efficiently. While the overwhelming majority of prior work on 3D shape

analysis has concentrated primarily on rigid shape retrieval, many real objects such as articulated mo-

tions of humans are nonrigid and hence can exhibit a variety of poses and deformations.

In this thesis, we present novel spectral geometric methods for analyzing and distinguishing between

deformable 3D shapes. First, we comprehensively review recent shape descriptors based on the spec-

tral decomposition of the Laplace-Beltrami operator, which provides a rich set of eigenbases that are

invariant to intrinsic isometries. Then we provide a general and flexible framework for the analysis and

design of shape signatures from the spectral graph wavelet perspective. In a bid to capture the global

and local geometry, we propose a multiresolution shape signature based on a cubic spline wavelet gen-

erating kernel. This signature delivers best-in-class shape retrieval performance. Second, we investigate

the ambiguity modeling of codebook for the densely distributed low-level shape descriptors. Inspired

by the ability of spatial cues to improve discrimination between shapes, we also propose to adopt the

isocontours of the second eigenfunction of the Laplace-Beltrami operator to perform surface partition,

which can significantly ameliorate the retrieval performance of the time-scaled local descriptors. To

further enhance the shape retrieval accuracy, we introduce an intrinsic spatial pyramid matching ap-

proach. Extensive experiments are carried out on two 3D shape benchmarks to assess the performance

of the proposed spectral geometric approaches in comparison with state-of-the-art methods.
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1
INTRODUCTION

1.1 FRAMEWORK AND MOTIVATION

Recent advances in 3D imaging and processing, graphics hardware and networks have led to a whopping

increase in geometry models available freely or commercially on the Web. As a result, the task of effi-

ciently measuring the 3D object similarity to find and retrieve relevant objects for a given query and cat-

egorize an object into one of a set of classes has become of paramount importance in a wide range appli-

cations, including computer-aided design, video gaming, special effects and film production, medicine,

and archaeology. The main challenge in 3D object retrieval algorithms is to compute an invariant shape

descriptor that captures well the geometric and topological properties of a shape [1, 2, 3, 4, 5].

A 3D shape is usually represented as a volume or surface/mesh. Other effective representations meth-

ods are based on medial [8] or multiple views [37]. Content-based shape retrieval based on the com-

parison of shape properties is complicated by the fact that many 3D objects manifest rich variability,

and invariance to different classes of transformations and shape variations is often required. One of the

most challenging settings addressed is the case of nonrigid or deformable shapes, in which the shapes

undergoing changes that can be well approximated by intrinsic isometries, i.e. deformations that pre-

serve geodesic distances between all pairs of points. This class of deformations is much richer than

rigid motions and can approximate. Recently, various methods have been proposed to tackle non-

rigid 3D shape recognition problem, particularly with the isometric invariant representation. These

methods can be mainly categorized into two main classes: skeleton-based [6, 7, 8, 9, 10] and surface-
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based [11, 12, 13, 14, 15, 17, 18]. The former approaches usually capture the global topological structure

of the shape, and a dissimilarity is often determined as the cost function to match two or more shapes.

The latter methods, on the other hand, often represent a shape as a frequency histogram of deformation

invariant local distances or vertex signatures. Over the past decade, there has been a flurry of research ac-

tivity on surface based shape recognition due largely to two key reasons: First, surface-based 3D models

are more popular because of their highly-effective representation ability and less memory storage. Sec-

ond, humans are taught to differentiate between shapes mainly by surface features, and in many shape

applications only the surface is of interest. Therefore, in this paper, we focus on surface-based shape

recognition with local vertex descriptors. Research efforts on spectral shape analysis have recently re-

sulted in numerous spectral descriptors [11, 12, 13, 14, 15, 16], which are predominately based on the

LB operator [19, 20]. However, to date, no comprehensive comparison has been conducted in the lit-

erature, which often results in intractable situation when choosing appropriate descriptors for certain

applications.

In the field of image processing, an analogous problem is image retrieval which refers to finding im-

ages depicting similar scenes or objects. Like 3D shapes, images may manifest significant variability.

The computer vision and pattern recognition communities have recently witnessed a wide adoption

of feature-based methods in object recognition and image retrieval applications. One popular family

of feature-based techniques is the Scale-Invariant Feature Transform (SIFT) [21], which has shown a

good performance in various scenarios [33]. Feature-based methods also allow to represent images as

collections of “visual words” and treat them using text search approaches, such as the codebook model

paradigm. State-of-the-art recognition algorithms in image domain usually adopt this local patch based,

multiple-layer pipeline to obtain good representations. In this thesis, we follow such a pipeline for 3D

surface comparison. It can be viewed in two steps. The first step is to extract an informative local de-

scriptor, and the second step is to design a favorable aggregating comparison method. This thesis solves

the deformable 3D shape retrieval problem from both aspects within the popular framework of diffusion

geometry: (1) We comprehensively review and compare the recent spectral signatures, and propose the

Spectral Graph Wavelet Signature; (2) We investigate the ambiguity modeling of codebook for the densely

distributed low-level shape descriptors, and introduce Intrinsic Spatial Pyramid Matching.

1.2 LITERATURE REVIEW

Since the introduction of SIFT and the codebook model, image classification has witnessed a rapid and

fruitful development in recent years. By contrast, the overwhelming majority of 3D shape recognition

2



methods are ad-hoc, and the performance is usually limited due largely to two main reasons: (1) There

is no excellent descriptor like SIFT that is available for 3D shapes; (2) an appropriate codebook model

and its intrinsic spatial extension are challenging to find due to isometric shape transformation. In this

section, we discuss some previous works and current developments pertinent to shape analysis and the

codebook model.

1.2.1 SHAPE ANALYSIS

In recent years, considerable research efforts on shape analysis have been conducted in an effort to de-

sign an appropriate shape descriptor aimed at finding the most relevant shapes. In the literature, there

are several survey works [1, 2, 3, 4] that have keen interest in systematic shape retrieval and the taxonomy.

In the sequel, we present some developments on 3D shape analysis from early general shape description

to recent spectral shape analysis.

Shape Description

Early research works on 3D shape description have been centered primarily on invariance under global

Euclidean transformations (i.e. rigid transformations). These works include the Shape Context [38, 39],

Shape Distributions [40], and Spherical Harmonics [41]. Recently, significant efforts have been invested

in exploring the invariance properties of shapes to nonrigid deformations. An intuitive approach is to re-

place the Euclidean distance with the geodesic one. The primary motivation is that unlike the Euclidean

distance, which is basically a straight line between two points in 3D space, the geodesic distance captures

the global nonlinear structure and the intrinsic geometry of the data. For example, Elad et al. [42] com-

puted a bending invariant signature of a surface by applying the multidimensional scaling procedure

to the geodesic distance matrix. In [43], an information-theoretic framework using the geodesic shape

distributions was proposed. Also, Jain et al. constructed a shape descriptor for correspondence [44] and

retrieval [5] in the spectral domain of the geodesic distance matrix. The main drawback of the geodesic

distance is that it suffers from strong sensitivity to topological noise, which might heavily damage the

shape invariants.

Spectral Shape Analysis

The recently emerging field of diffusion geometry provides a generic framework for many methods in

the analysis of geometric shapes [45]. It formulates the heat diffusion processes on manifolds. Spectral

shape analysis is a methodology that relies on the eigensystem (eigenvalues and/or eigenfunctions) of

3



the Laplace-Beltrami operator to compare and analyze geometric shapes. Levy [46] showed that these

eigenfunctions can be well adapted to the geometry and the topology of an object. Coifman and La-

fon [45] constructed diffusion distances as the L2-norm difference of energy distribution between two

points initialized with unit impulse functions after a given time. Through the statistic of the distribution,

the spectral distances can also be used for nonrigid shape recognition [47]. Other similar spectral dis-

tances include the commute time distance [48] and the biharmonic distance [49]. Since the eigensystem

of the LB operator is isometric invariant, it is well suited for the analysis and retrieval of nonrigid shapes,

and it is more robust than the geodesic distance. By integrating the local distribution of features, the In-

trinsic Shape Context was proposed in [39] as a natural extension of the 2D Shape Context to 3D nonrigid

surfaces, and it was shown to outperform individual vertex descriptors in 3D shape matching.

A recent survey [50] on spectral mesh processing comprehensively reports the spectral methods de-

rived from certain appropriately defined mesh operators and their applications. In this paper, however,

we theoretically and experimentally review and compare spectral signatures based on the LB operator,

including the Heat Kernel Signature (HKS) [11], Scale Invariant Heat Kernel Signature (SIHKS) [12], Heat

Mean Signature [13], Wave Kernel Signature [14], Global Point Signature [15]. The details are provided in

Section 2.2.

More recently, the authors in [34] explored analogous codebook model approaches applied to the

problem of nonrigid 3D shape retrieval. They use the HKS and the SIHKS as “geometric words”, and

constructed shape descriptors by means of soft-assignment of visual words to the densely distributed

vertex signatures. Low-level features may have a considerable effect on the recognition performance.

Following the work in [34], we compare in Chapter 3 the recent spectral descriptors in the framework

of the codebook model, and thus comprehensively analyze and recommend the descriptor which plays

the same role as SIFT in the image domain. One inherent component of the codebook model is the

assignment of discrete codewords to continuous low-level features. Despite the clear mismatch of this

hard assignment with the nature of continuous features, the approach has been applied successfully to

images. We explicitly model the codeword assignment ambiguity for the densely described 3D shape,

which also provides an understanding of the different spectral descriptors.

1.2.2 CODEBOOK MODEL

The past decade has witnessed the surge in popularity of the codebook model in the image domain.

It was first introduced in text retrieval, and then later applied to image categorization in the seminal

paper [51]. Subsequent research has focused on overcoming its two intrinsic limitations to improve dis-
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crimination, namely (1) the information loss of the assignment of local features to visual words, and (2)

the lack of information on the spatial layout of the local features.

Quantization Issues

Increasing the size of the dictionary is often reported to be able to improve the performance of the code-

book model, but leads to a higher computational complexity for dictionary construction and feature

assignment. On the other hand, when the vocabularies are more compact, the information lost in the

quantization process becomes more important, in particular when using hard assignment [52]. By di-

rectly using the image-to-class distances without descriptor quantization, Boiman et al. [53] showed that

the discrimination ability is considerably decreased due to the rough quantization of the feature space.

But with the soft-assignment of descriptors to multiple visual words, the loss can be compensated as re-

ported in [54, 55]. Inspired by compressive sensing methodology, other approaches for assignment were

guided by sparsity constraints [56] and locality constraints [57].

Bag-of-Features (BoF) usually encodes the 0-order statistics of the distribution of descriptors. The

Fisher vector extends the BoF by encoding high-order statistics (first and, optionally, second order). This

description vector is the gradient of the sample’s likelihood with respect to the parameters of this dis-

tribution, scaled by the inverse square root of the Fisher information matrix [58]. A simplified version

of Fisher kernels, the Vector of Locally Aggregated Descriptors (VLAD) was also proposed in [59]. These

three different ways of aggregating local image descriptors into a vector were evaluated by Jegou et al.

in [60]. Also, Picard et al. [61] expanded the VLAD approach by adding an aggregation of the tensor

product of descriptors.

In Chapter 3, the description of 3D shapes is obtained by densely sampling salient points on the sur-

face of the shape. In other words, the spectral signatures on every mesh vertex are considered to obtain

the codebook representation. To shed some light on the feature space, we use the Laplacian and Gaus-

sian kernels. We also use different kinds of ambiguity modeling methods to help us understand the

information loss in quantization.

Spatial Information

Similar to the image domain, the codebook model representation for 3D surfaces is a frequency his-

togram of quantized local geometric appearance, where the spatial layout of the geometric appearance

is completely ignored [34]. Clearly, the spatial information may convey useful cues to improve the dis-

crimination between 3D shapes. Before modeling the spatial layout on surfaces, it is necessary to review
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the technique for images. In the literature, two different ways to encode spatial information have been

explored, which are based on local relative positions of pairwise features, and on global absolute posi-

tions.

Relative Spatial Relation. Modeling pairwise spatial features into the codebook model is an intuitive

way to incorporate spatial information. A spatially-sensitive affine-invariant image descriptor was con-

structed by Bronstein et al. [62] using canonical relation, in which both the features and their relation

are affine-invariant. They also generalize the pairwise spatially-sensitive descriptors called “Expression”

for 3D surface using the heat kernel as the relation [34]. Moreover, the relationship of visual words was

also considered. Saverese et al. [63] used correlograms of visual words to model the spatial correlations

between quantized local descriptors. Ling and Soatto [64] characterized the relative locations of visual

words. Their proximity distribution representation is a 3D structure which records the number of times

a visual word appears within a particular number of nearest neighbors of another word. Finally, besides

pairwise relation, more complex relation such as the graph manner layout of groups of quantized local

invariant descriptors was proposed by Behmo et al. [65], which can preserve translational relations be-

tween features. Liu et al. [66] calculated spatial histograms where the co-occurrences of local features

are computed in circular regions of varying distances.

Absolute Spatial Relation. The Spatial Pyramid Matching (SPM), proposed by Lazebnik et al. [35], was

one of the first works to address the lack of spatial information in the BoF representation. Their spa-

tial pyramid representation was motivated by an earlier work, termed pyramid matching by Grauman

and Darrell [67], on finding approximate correspondences between sets of points in high-dimensional

feature spaces. The fundamental idea behind pyramid matching is to partition the feature space into a

sequence of increasingly coarser grids and then compute a weighted sum over the number of matches

that occur at each level of resolution. However, SPM and relative spatial relation modeling are still too

weak. Recently, stronger spatially encoding methods include encoding geometric information of objects

within the images. Local features of an image are projected onto different directions or points to gener-

ate a series of ordered BoF, based on which families of spatial partitions can guarantee the invariance of

object translation, rotation, and scaling [68]. Additionally, there are some methods characterizing both

the absolute and relative spatial layout of an image. Spatial Pyramid Co-occurrence [69] computes lo-

cal co-occurrence with respect to spatial layout over a hierarchical spatial partitioning of an image. In

addition to co-occurrences, Geometry-Preserving Visual Phrases [70] can encode more spatial informa-

tion through capturing the local and long-range spatial layouts of the words. Unlike manually defined

spatial regions for pooling, Jia et al. [71] proposed to learn more adaptive receptive fields to increase the
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performance even with a significantly smaller codebook size at the coding layer. In [72], the Gaussian

mixture model was encoded with spatial layout to improve the performance of Fisher kernel for image

classification.

Local relative position was generalized to 3D surfaces as spatially-sensitive descriptor in [34], but mod-

eling the Absolute Spatial Positions is not straightforward as in the case of 2D images because of the

intrinsic deformation of nonrigid shapes. One contribution in this thesis is to introduce the intrinsic

partition to capture the global absolute spatial position, thus significantly improving the performance.

1.3 SPECTRAL GEOMETRY

Spectral geometry is concerned with the eigenvalue spectrum of the Laplace-Beltrami (LB) operator on a

compact Riemannian manifold, and aims at describing the relationships between such a spectrum and

the geometric structure of the manifold.

1.3.1 LAPLACE-BELTRAMI OPERATOR

Let M be a smooth orientable 2-manifold (surface) embedded in R
3. A global parametric representation

(embedding) of M is a smooth vector-valued map (also called surface patch) x defined from a connected

open set (parametrization domain) U ⊂R
2 to M⊂R

3 such that

x(u) =
(
x1(u), x2(u), x3(u)

)
(1.1)

where u = (u1,u2) ∈U , as shown in Figure 1.1.

FIGURE 1.1: Parametric representation of a surface.
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Given a twice-differentiable function f : M→ R, the LB operator [19] is a second-order partial differ-

ential operator defined as

ΔM f =−
1√
|g |

2∑
i , j=1

∂

∂u j

(√
|g |g i j ∂ f

∂ui

)

=−

2∑
i , j=1

g i j ∂

∂u j

∂ f

∂ui
+ (lower order terms)

(1.2)

where the matrix g = (gi j ) is referred to as a Riemannian metric tensor on M, g i j denote the elements of

the inverse of the metric tensor g−1, and |g | is the determinant of g . The functions gi j are sometimes

referred to as the metric coefficients. The Riemannian metric g is an intrinsic quantity in the sense that it

relates to measurements inside the surface. It is the analogous of the speed in the case of space curves,

and determines all the intrinsic properties of the surface M. These properties depend on the surface and

do not depend on its embedding in space. Additionally, the tensor g is invariant to rotation of the surface

in space because it is defined in terms of inner products that are rotation invariant.

1.3.2 DISCRETIZATION

Assume that the surface M is approximated by a triangular mesh. A triangle mesh M may be defined

as M = (V ,E ) or M = (V ,T ), where V = {v 1, . . . , vm} is the set of vertices, E = {ei j } is the set of edges,

and T = {t 1, . . . , t n} is the set of triangles. Each edge ei j (denoted by [vi , v j ] or simply [i , j ]) connects

a pair of vertices {v i , v j }. Two distinct vertices v i , v j ∈ V are adjacent (denoted by vi ∼ v j or simply

i ∼ j ) if they are connected by an edge, i.e. ei j ∈ E . The neighborhood (1-ring) of a vertex vi is the set

v�

i = {v j ∈ V : i ∼ j }. The neighborhood (1-ring) of a vertex vi is the set v�

i = {v j ∈ V : i ∼ j } as shown in

Figure 1.2(a). Consider a triangle t ∈ T with vertices vi , v j and v k , and sides a,b and c as illustrated in

Figure 1.2(b). Then, according to Heron’s formula, area(t) is equal to

1

4

√
(a + (b +c))(a + (b −c))(c + (a −b))(c − (a −b)), (1.3)

where the length of the sides are arranged such that a ≥ b ≥ c .

Several discretizations of the LB operator are available in the literature [16, 93, 74, 75, 76]. In this thesis,

we use the approach developed in [93], which employs a mixed finite element/finite volume method on

triangle meshes. Hence, the value of ΔM f at a vertex vi can be approximated using the cotangent weight

scheme as follows

ΔM f (vi ) =
1

ai

∑
v j∈v�

i

cotαi j +cotβi j

2

[
f (v j )− f (v i )

]
, (1.4)
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(a) (b)

FIGURE 1.2: (a) Vertex neighborhood v�

i . (b) Illustration of area(t).

where αi j and βi j are the angles ∠(v i vk1 v j ) and ∠(v i vk2 v j ) of two faces tα = {v i , v j , v k1 } and tβ =

{v i , v j , vk2 } that are adjacent to the edge [i , j ], and ai is the area of the voronoi cell (shaded polygon),

as shown in Figure 1.3. It is worth pointing out that the cotangent weight scheme is numerically consis-

tent and preserves several important properties of the continuous LB operator, including symmetry and

positive-definiteness [74].

FIGURE 1.3: Cotangent weight scheme: illustration of the angles αi j and βi j .

Define the weight function ω : V ×V →R as

ωi j =

⎧⎪⎨⎪⎩
cotαi j +cotβi j

2ai
if i ∼ j

0 o.w.
(1.5)

Then, for a function f : V →R that assigns to each vertex vi ∈ V a real value f (vi ) (we can view f as a

column vector of length m), we may write the LB operator given by Eq. (1.4) as

L f (vi ) =
∑

v j∈v�

i

ωi j ( f (v i )− f (v j )), (1.6)
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where the matrix L is given by

L =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d j if i = j

−ωi j if i ∼ j

0 o.w.

(1.7)

and d j =
∑m

i=1ωi j is the weighted degree of the vertex v i .

1.3.3 EIGENANALYSIS

Note that ωi j �= ω j i implies L is not a symmetric matrix. Thus, the spectrum (set of eigenvalues) of the

eigenvalue problem Lϕi =λiϕi may not be real [15]. Noting that ωi j = ci j /ai , where

ci j =

⎧⎪⎨⎪⎩
cotαi j +cotβi j

2
if i ∼ j

0 o.w.
(1.8)

we may factorize the matrix L as L = A−1C , where A = diag(ai ) is a positive-definite diagonal matrix and

C is a sparse symmetric matrix given by

C =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑m

i=1 ci j if i = j

−ci j if i ∼ j

0 o.w.

(1.9)

Therefore, we may write the eigenvalue problem Lϕi = λiϕi as a generalized eigenvalue problem

Cϕi = λi Aϕi , which can be solved efficiently using the Arnoldi method of ARPACK. Figure 1.4 shows

a 3D elephant model and the sparsity pattern of the cotangent matrix C . Recall that the sparsity pattern

(or support) of a matrix A = (ai j ) is the set of indices i j with ai j �= 0.

FIGURE 1.4: 3D elephant model and sparsity pattern plot of the associated cotan-
gent matrix C .
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1.4 THESIS OVERVIEW AND CONTRIBUTIONS

The organization of this thesis is as follows

❏ Chapter 1 contains a brief review of essential concepts and definitions which we refer to through-

out the thesis, provides a literature review, and presents a short summary of material relevant to

3D shape retrieval in the spectral geometric framework.

❏ In Chapter 2, we present a comprehensive review and analysis of recent spectral shape descrip-

tors for nonrigid 3D shape retrieval. More specifically, we compare the latest spectral descriptors

based on the LB operator, including shapeDNA, heat kernel signature, scale invariant heat kernel

signature, heat mean signature, wave kernel signature, and global point signature. We also include

the eigenvalue descriptor (EVD), which is a geodesic distance based shape signature. The global

descriptors ShapeDNA and EVD are compared via the chi-squared distance, while all local descrip-

tors are compared using the codebook model. Moreover, we investigate the ambiguity modeling of

codebook for the densely distributed low-level shape descriptors. Inspired by the ability of spatial

cues to improve discrimination between shapes, we also propose to adopt the isocontours of the

second eigenfunction of the LB operator to perform surface partition, which can significantly ame-

liorate the retrieval performance of the time-scaled local descriptors. In addition, we introduce an

intrinsic spatial pyramid matching approach in a bid to further enhance the retrieval accuracy. Ex-

tensive experiments are carried out on two 3D shape benchmarks to assess the performance of the

spectral descriptors.

❏ In Chapter 3, we a spectral graph wavelet framework for the analysis and design of efficient shape

signatures for nonrigid 3D shape retrieval. Although this work focuses primarily on shape retrieval,

our approach is, however, fairly general and can be used to address other 3D shape analysis prob-

lems. In a bid to capture the global and local geometry of 3D shapes, we propose a multiresolution

signature via a cubic spline wavelet generating kernel. The parameters of the proposed signature

can be easily determined as a tradeoff between effectiveness and compactness. Experimental re-

sults on two standard 3D shape benchmarks demonstrate the much better performance of the

proposed shape retrieval approach in comparison with three state-of-the-art methods.

❏ In Chapter 4, we summarize the contributions of this thesis, and propose several future research

directions that are directly or indirectly related to the ideas developed therein.
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2
INTRINSIC SPATIAL PARTITION MATCHING

This chapter presents a comprehensive review and analysis of recent spectral shape descriptors for non-

rigid 3D shape retrieval. More specifically, we compare the latest spectral descriptors based on the

Laplace-Beltrami (LB) operator, including shapeDNA, heat kernel signature, scale invariant heat ker-

nel signature, heat mean signature, wave kernel signature, and global point signature. We also include

the eigenvalue descriptor (EVD), which is a geodesic distance based shape signature. The global de-

scriptors ShapeDNA and EVD are compared via the chi-squared distance, while all local descriptors are

compared using the codebook model. Moreover, we investigate the ambiguity modeling of codebook

for the densely distributed low-level shape descriptors. Inspired by the ability of spatial cues to improve

discrimination between shapes, we also propose to adopt the isocontours of the second eigenfunction

of the LB operator to perform surface partition, which can significantly ameliorate the retrieval per-

formance of the time-scaled local descriptors. In addition, we introduce an intrinsic spatial pyramid

matching approach in a bid to further enhance the retrieval accuracy. Extensive experiments are carried

out on two 3D shape benchmarks to assess the performance of the spectral descriptors. Our proposed

approach is shown to provide the best performance.

2.1 INTRODUCTION

State-of-the-art recognition algorithms in image domain usually adopt a local patch based, multiple-

layer pipeline to obtain a good representation. These methods start from local image patches using

either normalized raw pixel density or descriptors such as SIFT [21] or HOG [22], and encode them into
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an overcomplete representation using various algorithms such as K-means or sparse coding. After cod-

ing, global image representations are formed by spatially pooling the coded local descriptors. Meth-

ods following such a pipeline have achieved competitive performance on image classification tasks [23].

During the whole procedure, the spatial pooling step brings a notable performance improvement. One

significant milestone in the construction of this arsenal of tools was the spatial pyramid matching (SPM)

introduced in [35]. It partitions the image into increasingly fine sub-regions and computes histograms

of local features found inside each sub-region. The empirical success of technique is the fact that the

spatial cue is integrated, and an approximate geometric matching is actually performed when multiple

resolutions are combined in a principled way.

Codebook model, as a simplified version of such pipeline without spatial pooling, has also been con-

sidered for 3D shapes and curved surfaces. Early research mainly deal with the global Euclidean transfor-

mations (rigid motion) [24] and multiple views [25]. Recent effort has also been invested in extending the

invariance properties to non-rigid deformations. One of the common ways is to replace the Euclidean

metric with its geodesic counterpart [26]. However, geodesic distances suffer from strong sensitivity to

topological noise, which limits its usefulness in real applications.

The emerging field of diffusion geometry provides a generic framework for many intrinsic methods in

the analysis of geometric shapes. It formulates the heat diffusion processes on manifolds. Based on the

theoretical works by [27], later Lévy [46] showed that the eigenfunctions of the Laplace-Beltrami operator

can be well adapted to the geometry and the topology of an object. Coifman and Lafon [45] introduced

invariant metrics known as diffusion distances, which is the L2-norm difference of energy distribution

between two points initialized with unit impulse functions after a given time. Finally, Shape Google al-

gorithm [34] was proposed as a classic method for deformable shape retrieval. It uses the multiscale

diffusion heat kernels as “geometric words”, and constructs compact and informative shape representa-

tion by means of the codebook approach.

Recently, there have been attempts to adapt 2D planar shape contexts [28], popular image feature

detectors [29] and descriptors [30] to 3D surfaces. This line of works partially inspires our paper. Another

inspiration is the great success of SPM in image domain. Spatially enhanced techniques for 3D shape

recognition were explored earlier in [31, 32]; but these works are not intrinsic, i.e. shape deformations

affect the descriptors. “Geometric expressions” [34] was an earlier work that explored the exploitation

of intrinsic geometry, but there the authors only deal with local relative spatial position, by considering

diffusion distance between pairwise vertices. Our approach models the global absolute spatial positions,

which allows us retain and exploit the information contained in the whole shape.
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For shape retrieval tasks, the codebook models, which represent a shape as an orderless collection of

local features, have demonstrated impressive levels of performance [34]. However, because these models

disregard all information about the spatial layout of the features, they have a limited descriptive ability.

Several spatial extensions in the image domain have been proposed recently, the most widely-used one

is spatial pyramid matching [35]. Unfortunately, overcoming the spatial limitations in 3D shape analy-

sis to build effective structural object descriptions is quite challenging, especially when the recognition

system must be designed to work in the presence of large deformation changes. The direct approaches

can use the existing consistent shape segmentation methods and geometric correspondence, but they

achieve a good performance at a relatively high computational cost in addition to the fact the number of

subregions cannot be fixed among different shape classes.

Inspired by the fact that the Reeb graph extracted from the second eigenfunction of the LB operator

is pose independent and captures the global profile of surface geometry [36], we propose to adopt the

level sets of this eigenfunction to intrinsically partition the surface. Since the construction of the sec-

ond eigenfunction is an inseparable step in calculating the spectral descriptors, the proposed partition

method is a natural ingredient of the current framework. Extensive experimental results show that the

intrinsic partition significantly improves the retrieval accuracy of all the time-scaled spectral descriptors

with varying codebook models. Moreover, the intrinsic spatial pyramid matching on surfaces is shown to

be robust and yields the best results. In addition, the intrinsic spatial partition framework offers further

insight into the success of these recently proposed spectral shape descriptors.

2.1.1 CONTRIBUTIONS

The contributions of this chapter may be summarized as follows:

(i) We present a comprehensive survey and analysis of recent spectral descriptors for nonrigid 3D

shape retrieval.

(ii) We investigate the ambiguity modeling of codebook for the densely distributed low-level shape

descriptors.

(iii) We introduce the intrinsic spatial partition, which yields a significant retrieval accuracy improve-

ment.

The rest of this paper is organized as follows. Section 2.2 briefly reviews the graph embedding and spec-

tral shape descriptors. In Section 2.3, we describe the codebook model with various ambiguity methods.
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In Section 2.4, we propose the intrinsic spatial partition. Experimental results on two standard datasets

are presented in Section 2.5.

2.2 GRAPH EMBEDDING AND SHAPE DESCRIPTORS

Based the the isometric invariant of the Laplace-Beltrami operator, several spectral shape descriptors

have been proposed recently. The Laplace-Beltrami operator over a compact manifold is bounded and

symmetric negative semi-definite. Hence it has an eigen-decomposition. The eigenvalues λi and as-

sociated eigenfunctions ϕi of the LB operator can be computed by solving the generalized eigenvalue

problem:

Cϕi =λi Aϕi , i = 1,2, . . . ,m (2.1)

where ϕi is the unknown eigenfunction evaluated at m mesh vertices. That is, ϕi is an m-dimensional

vector. We may sort the eigenvalues in ascending order as 0 = λ1 < λ2 ≤ ·· · ≤ λm with corre-

sponding eigenfunctions as ϕ1,ϕ2, . . . ,ϕm , where each eigenfunction ϕi = (ϕi (v 1), . . . ,ϕi (v m))′ is an m-

dimensional vector. Note that the eigensystem {λi ,ϕi }i is intrinsic to the manifold and enjoys a nice

property of being isometric invariant. It should also be noted that the meshes are assumed to be con-

nected.

2.2.1 SHAPEDNA AND EIGENVALUE DESCRIPTORS

The ShapeDNA [16] is one of the first spectral shape descriptors. It is a normalized sequence of the first

eigenvalues of the LB operator. Its main advantages are the simple representation (a vector of numbers)

and scale invariance. Despite its simplicity, the shapeDNA yields a very good performance for the shape

retrieval of nonrigid shapes. However, the eigenvalues are a global descriptor, therefore the shapeDNA

cannot be used for local or partial shape analysis. The Eigenvalue Descriptor (EVD) [5], on the other

hand, is a sequence of the eigenvalues of the geodesic distance matrix. Both ShapeDNA and EVD can be

normalized by the second eigenvalue.

2.2.2 GLOBAL POINT SIGNATURE

The global point signature (GPS) [15] at a surface point is a vector of scaled eigenfunctions of the LB

operator. The GPS is a global feature in the sense that it cannot be used for partial shape matching. It is

defined in terms of the eigenvalues and eigenfunctions of ΔM as follows:

GPS(x) =

(
ϕ2(x)√

λ2

,
ϕ3(x)√

λ3

, . . . ,
ϕi (x)√

λi

, . . .

)
(2.2)
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GPS is invariant under isometric deformations of the shape, but it suffers for the problem of eigenfunc-

tions switching whenever the associated eigenvalues are close to each other.

2.2.3 HEAT KERNEL SIGNATURE

The heat kernel pt (x, y) is a fundamental solution to the heat equation [77] at point x at time t with

initial distribution u0(x) = δ(x − y) at point y ∈ M, and it is defined in terms of the eigenvalues and

eigenfunctions of ΔM as follows:

pt (x, y) =
∞∑

i=1
e−λi tϕi (x)ϕi (y) (2.3)

Intuitively, pt (x, y) describes the amount of heat that is propagated or transferred from point x to point

y in time t . Therefore, pt (x, x) describes the amount of heat that remains at point x after time t . For each

point x ∈M, the Heat Kernel Signature (HKS) [11] is represented in the discrete temporal domain by a

n-dimensional feature vector

HKS(x) =
(
pt1 (x, x),pt2 (x, x), . . . ,ptn (x, x)

)
(2.4)

where t1, t2, . . . , tn are different time-scales.

2.2.4 SCALE INVARIANT HEAT KERNEL SIGNATURE

Let M andM
′ be a shape and its uniformly scaled version by a factor of a, respectively. Denote by pατ(x, y)

the heat kernel with scale logarithmically sampled using some basis α at each point x. Thus, the heat

kernel of the scaled shape becomes p′(τ) = a−2p(τ+2logα a). In order to remove the dependence on the

multiplicative constant a−2, the logarithm of the signal is taken and then differentiated with respect to

the scale variable [12]:

d

dτ
logp′(τ) =

d

dτ
(−2log a + logp(τ+2logα a)

=

d
dτp(τ+2logα a)

p(τ+2logα a)
·

(2.5)

Let p′ =
d

dτ p(τ)
p(τ) =

−
∑

i≥0λiα
τ logαe−λi α

τ
ϕ2

i (x)

−
∑

i≥0 e−λi α
τ
ϕ2

i (x)
then a new function p̃ which transforms p̃′(τ) = p̃(τ+2logα a)

as a result of scaling is obtained. The Fourier transform of p̃ and its absolute value are given by

F
[
p̃′

]
(ω) = H̃ ′(ω) = H̃(ω)e− jω2 logα a

|H̃ ′(ω)| = |H̃(ω)|.
(2.6)

Thus, the Scale-Invariant Heat Kernel Signature (SIHKS) is defined as

SIHKS(x) =
(
|H̃ (ω1)|, |H̃ (ω2)|, . . . , |H̃ (ωn)|

)
. (2.7)
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2.2.5 WAVE KERNEL SIGNATURE

The fundamental idea of the Wave Kernel Signature (WKS) [14] is to to represent a point x ∈ M by the

average probabilities of quantum particles of different energy levels to be measured in x. Assume a

quantum particle with unknown position is on the surface. Then the wave function of the particle is the

Schrödinger equation solution, which can expressed in the spectral domain as

ψE (x, t )=
∞∑

k=1
eiλk tϕk (x) fE (λk ) (2.8)

where E denotes the energy of the particle at time t = 0 and fE its initial distribution.

Since
∣∣ψE (x, t )

∣∣2 is the probability to measure the particle at a point x at time t , it follows that the

average probability (over time) to measure a particle in x is given by

PE (x) = lim
T→∞

1

T

∫T

0

∣∣ψE (x, t )
∣∣2
=

∞∑
k=1

ϕk (x)2 fE (λk )2 (2.9)

Let E1,E2, . . . ,En be n log-normal energy distributions. Then, each point x on the surface M is associ-

ated with a wave kernel signature, which can represented by a n-dimensional feature vector of average

probabilities as follows:

WKS(x) =
(
Pe1 (x),Pe2 (x), · · · ,Pen (x)

)
(2.10)

where ei = log Ei is the logarithmic energy scale. The WKS represents the average probability of mea-

suring a quantum particle at a specific surface point. Unlike the HKS, the WKS separates influences of

different frequencies, treating all frequencies equally. In other words, HKS uses low-pass filters, while

WKS uses band-pass filters.

2.2.6 HEAT MEAN SIGNATURE

The Heat Mean Signature (HMS) [13] quantitatively evaluate the temperature distribution resulting from

the heat flow process

HMSt (x) =
1

m

∑
y �=x

pt (x, y) (2.11)

which can be physically interpreted as the average temperature on the surface obtained by applying a

unit amount of heat on the vertex x and after a certain amount of time of heat dissipation. A relatively

smaller parameter t is often empirically chosen to preserve a higher resolution version of the original

surface [?]. Fang et al. also proposed the temperature distribution descriptor [17], which is based on

the distribution of the values of average temperature for all of the vertices on the mesh. We construct a

multi-scale HMS to compare temperature distribution with multiple diffusion times as follows:

HMS(x) =
(
HMSt1 ,HMSt2 , . . . ,HMStn

)
. (2.12)
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For the sake of notational simplicity, we use s(x) to represent the types of the above spectral signatures

evaluated at a surface point x, i.e. GPS, HKS, SIHKS, WKS, or HMS.

2.3 AGGREGATING LOCAL DESCRIPTORS WITH CODEBOOK MODELS

In this section, we focus on the methods for aggregating dense local spectral descriptors into a compact

representation of the whole shape. Bronstein et al. initiated the study of the nonrigid 3D shape retrieval

via BoF with soft-assignment [34]. In this paper, we comprehensively investigate some variants of the

codebook model for aggregating these local spectral descriptors in a dense signature space. In particular,

we propose an intrinsic spatial partition, which can be seen as the counterpart of the spatial extension

for the codebook model in image recognition; thus further enhancing the results.

Given a set of local point-wise signatures densely computed on each vertex on the mesh surface, we

quantize the signature space to obtain a compact histogram representation of the shape using the code-

book model approach. The visual word vocabulary in the codebook model may be constructed in various

ways. We use the k-means algorithm to generate the visual vocabulary. This is computationally expen-

sive, but as this step is performed off-line, it has no impact on the search time. Thus, the “geometric

words” of a vocabulary P = {pk , k = 1,2, . . . ,K } are obtained as the K centroid of k-means clustering in

the signature space. We can use various types of spectral descriptors. From any shape, we get a spe-

cific type of local spectral descriptors S = {st , t = 1,2, . . . ,T } for comparison. By a certain vector coding

technique, each shape will be described by a histogram H . Since the number of vertices is usually differ-

ent among different meshed shapes, an appropriate normalization technique is also important for the

codeword-cumulative histogram representation. We normalize P by the total number of vertices of each

shape.

Modeling the codeword ambiguity plays a crucial role on the performance of the codebook model. In

the literature, visual word ambiguity modeling is used occasionally, often ad-hoc motivated, and rarely

evaluated. However, a formal summarized work was recently proposed by Gemert et al. [55], who moti-

vated and evaluated several types of visual word ambiguity, and provided ample analysis. For complete-

ness, we introduce these types in the scenario of 3D geometric shapes:

• Lp norm Codebook: Each local descriptor st is associated with its nearest visual word N N (st ) in

the codebook. For each codeword pk , the differences of vector st assigned to pk are accumulated

by Lp norm as follows:

qi =
∑

st :N N(st )=i

∥∥st −pi
∥∥
p

, p= 0,1,2 (2.13)
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Note that L0 is the traditional codebook, which is the histogram of the number of local descriptors

assigned to each visual word.

• Kernel Codebook: The histogram estimator of the code words may be replaced by a kernel density

estimator. Moreover, a suitable kernel (such as the Gaussian) allows kernel density estimation

to become part of the codewords, rather than the data samples. A symmetric kernel allows for

transferring the kernel from the data samples to the codewords, yielding a kernel codebook

qi =

T∑
t=1

Kσ((st , pi )), (2.14)

In order to make it clear which distance is more fit for the descriptors, we use both the L1 and L2

norms as distance functions. The Euclidean distance (L2-norm) is paired with a Gaussian-shaped

kernel, while the L1-norm is paired with a Laplacian-shaped kernel. The latter assumes that the

variation between a local feature and a codeword is described by a sharper distribution. Both

distributions have a smoothing parameter σ which represents the size of the kernel. For simplicity,

we denote the kernels as Kσ((·, ·)), where (·, ·) is the L1-norm when it is the Laplacian kernel, and

L2-norm when it is the Gaussian kernel.

• Codeword Uncertainty: Codeword uncertainty indicates that one image region may distribute

probability mass to more than one codeword. It is modeled to normalize the amount of probability

mass to a total constant weight of 1 and is distributed over all relevant codewords. Relevancy is

determined by the ratio of the kernel values for all codewords pi in the vocabulary

qi =

T∑
t=1

Kσ((st , pi ))∑K
k=1 Kσ((st , pk ))

· (2.15)

• Codeword Plausibility: Codeword plausibility means that an image feature may not be close

enough to warrant representation by any relevant codeword in the vocabulary. For a given de-

scriptor st , it selects the best fitting codeword pi and assigns its probability mass proportional to

the kernel value of that codeword. Hence, codeword plausibility will give a higher weight to more

relevant data samples. However, it cannot select multiple codeword candidates

qi =
∑

st :N N(st )=i
Kσ((st , pi )). (2.16)

The four types of ambiguity modeling methods use different numbers of geometric words in their con-

struction. In the traditional codebook and codeword plausibility, the local descriptor only selects the
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best candidate geometric word. On the other hand, the kernel codebook and codeword uncertainty di-

vide the descriptor over multiple best fitting codewords. To formally compare the different ambiguity

ways, we summarize all the codebook models in Table 2.1 and we categorize them in terms of the L1-

and L2-norms.

TABLE 2.1: Codebook Model.

Clustering Norm Vector Assignment

L1

Traditional Codebook qi =
1
T

∑
st:NN(st)=i

‖st − pi‖0

L1-norm Codebook qi =
1
T

∑
st:NN(st)=i

‖st − pi‖1

L2-norm Codebook qi =
1
T

∑
st:NN(st)=i

‖st − pi‖2

Laplace Kernel Codebook qi =
1
T

∑
T

t=1
1
2be

− ‖st−pi‖1
b

Laplace Codeword Uncertainty qi =
1
T

∑
T

t=1

1

2b
e
−‖st−pi‖1

b

∑K
k=1

1

2b
e
−‖st−pk‖1

b

Laplace Codeword Plausibility qi =
1
T

∑
st:NN(st)=i

1
2be

− ‖st−pi‖1
b

L2

Traditional Codebook qi =
1
T

∑
st:NN(st)=i

‖st − pi‖0

L1-norm Codebook qi =
1
T

∑
st:NN(st)=i

‖st − pi‖1

L2-norm Codebook qi =
1
T

∑
st:NN(st)=i

‖st − pi‖2

Gaussian Kernel Codebook qi =
1
T

∑
T

t=1
1

σ
√
2π
e−

1

2

‖st−pi‖22
σ2

Gaussian Codeword Uncertainty qi =
1
T

∑
T

t=1

1

σ
√
2π

e
−1

2

‖st−pi‖22
σ2

∑K
k=1

1

σ
√
2π

e
−1

2

‖st−pk‖2
2

σ2

Gaussian Codeword Plausibility qi =
1
T

∑
st:NN(st)=i

1
σ
√
2π
e−

1

2

‖st−pi‖22
σ2

The kernel size determines the degree of coherence to assign geometric word to a descriptor, and it is

dependent on the descriptor dimensionality and the range of the descriptor values. Moreover, we only

consider the kernel size that is fixed for all codewords. The case of constructing the variable kernel den-

sity estimator for different codewords can also be considered, but we adhere to a homogenous feature

space by keeping the kernel size fixed for all codewords [55]. Note that we do not try to obtain the best fit

of the data. In contrast, we aim at finding the kernel size that discriminates well between classes. In the

experimental results section, we estimate the optimal kernel size in an interval inferred from the data

distribution.

Besides directly modeling ambiguity on individual geometric words, ambiguity might be addressed by

modeling geometric word co-occurrences. Co-occurrence modeling may address ambiguity because it
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is likely that similar geometric words with high ambiguity co-occur frequently. When these ambiguous

geometric words are grouped together, their intra-ambiguity is resolved. For 3D shapes, Bronstein et

al. [34] introduced the spatially-sensitive Bag-of-Words description, which accounts not only for the fre-

quency but also for the spatial relations between features. In this paper, since we are interested in ana-

lyzing different spectral descriptors and measuring ambiguity, we concentrate on single word ambiguity

modeling.

2.4 INTRINSIC SPATIAL PARTITION: BEYOND CODEBOOK MODEL

2.4.1 ISOCONTOURS

The eigenfunctions of the LB operator enjoy nice properties including isometry invariance and ro-

bustness to pose variations such as translation and rotation. These eigenfunctions are orthogonal

〈ϕi ,ϕ j 〉A = 0, ∀i �= j , where the orthogonality is defined in terms of the A-inner product. That is,

〈ϕi ,ϕ j 〉A = ϕ′
i Aϕ j . Moreover, any function f : V → R (viewed as a column-vector of length m) on the

triangle mesh M can be written in terms of the eigenfunctions as follows:

f =

m∑
i=1

αiϕi , where αi = 〈 f ,ϕi 〉. (2.17)

Note that since the sum of each row in the matrix C equals zero, the first eigenvalue λ1 is zero and the

corresponding eigenfunction ϕ1 is a constant m-dimensional vector. The top row of Figure 2.1 shows a

3D horse model colored by the second, third and fourth eigenfunctions, while the bottom row displays

the isocontours of these eigenfunctions.

We can use the variational characterizations of the eigenvalues in terms of the Rayleigh-Ritz quotient.

That is, the second eigenvalue is given by

λ2 = inf
f ⊥ϕ1

f ′C f

f ′A f
= inf

f ⊥ϕ1

∑
i∼ j ci j ( f (v i )− f (v j ))2∑

i f (v i )2ai
(2.18)

and ϕ2 = (ϕ2(v1), . . . ,ϕ2(v m))′ is its corresponding eigenvector.

The eigenvalues and eigenfunctions have a nice physical interpretation: the square roots of the eigen-

values
√

λi are the eigenfrequencies of the membrane, and ϕi (x) are the corresponding amplitudes at x.

In particular, the second eigenvalue λ2 corresponds to the sound we hear the best. On the other hand,

Uhlenbeck [78] showed that the eigenfunctions of the LB operator are Morse functions on the interior

of the domain of the operator. Consequently, this generic property of the eigenfunctions gives rise to

constructing the associated intrinsic isocurves.
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(a) (b) (c)

(d) (e) (f)

FIGURE 2.1: (a)-(c) 3D horse model colored by ϕ2,ϕ3,ϕ4. (d)-(f) Level sets of
ϕ2,ϕ3,ϕ4.

2.4.2 INTRINSIC SPATIAL PARTITION

Motivated by the isometric invariance property of the second eigenfunction of the LB operator and also

by its generic property as a Morse function, we propose to use the level sets (isocontours) of the second

eigenfunction as cuts to partition the surfaces. In Figure 2.2(a)-(c), we show some examples of the level

curves of ϕ2. In Figure 2.2(a) we can observe that the isocontours are consistent with global large defor-

mation (first column), local small bend (second column), and among the shapes from different classes,

but share similar topological structure (third column). The correspondence of isocontours on the shapes

from the same class are displayed in Figure 2.2(b), which shows models that include various topological

structures. Finally, the consistency of isocontours on the shapes from the different class are displayed

in Figure 2.2(c). Although the shapes are explicitly different, their isocontours can capture their intrinsic

correspondence well.
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(a)

(b)

(c)

FIGURE 2.2: (a) Isocontours are invariant under both global and local deformation.
(b) Proportionality correspondence of pairwise nonrigid shapes with varied topo-
logical structure. (c) Isocontours are consistent among different classes of shapes.

The level sets of the second eigenfunction have been used to extract curve skeletons of the nonrigid

shapes [10, 36], which is a vivid clue that these isocontours capture the global topological structure of

shapes. We visualize the procedure for extracting the curve skeleton in Figure 2.3.
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(a) (b) (c)

FIGURE 2.3: (a) 3D horse model colored by ϕ2; (b) level sets of ϕ2; (c) spectral Reeb
graph.

2.4.3 MATCHING BY INTRINSIC SPATIAL PARTITION

Instead of representing the whole shape by the codeword model without considering spatial layout of

local descriptors, we enhance the discrimination by integrating the distribution of local descriptors in

different spatial patches determined by the intrinsic spatial partition. For any shape cut by isocontours

at resolution R, its description H is the concatenation of R sub-histograms:

H = [h1,h2, . . . ,hi , . . . ,hR] (2.19)

where hi is the sub-histogram ordered in the i th position according to the intrinsic spatial partition from

one end to the other. Note that the isocontour sequence might start from either end, and the situations

are different from shape to shape. For example, in Figure 2.2(a), the heads of the first and third rabbit

are colored in blue, but tail of the second is colored in red and head in blue, whose order is exactly the

opposite. To guarantee that the semantic correspondent parts are matched in the comparison, we use

an order-insensitive strategy comparison method. First, we get a new histogram T by making the order

of the sub-histogram inverted in H :

T = [hR,h(R−1), · · · ,hi , · · · ,h1]. (2.20)

Secondly, to compare two shapes P and Q we define their dissimilarity under this feature as follows:

B
R(P ,Q) = min(A R(HP , HQ ),A R(HP ,TQ)) (2.21)

where HP and HQ denote the histograms of P and Q , respectively. In other words, there are two possible

matching schemes between the isocontour sequences of two shapes, head-to-head and head-to-end. We

consider the schemes with the minimum cost to be better matched. For each scheme, the dissimilarity
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measure A
R(·, ·) is defined as

A
R(HP , HQ) =

R∑
i=1

K∑
k=1

Ψ(hi
P (k),hi

Q(k)) (2.22)

where Ψ(·, ·) can be any histogram comparison metric. In this paper we use the chi-squared kernel so

that hi
P (k) and hi

Q(k) are the accumulations of the code of the local descriptors from P and Q that fall

into the kth codeword cell/channel of the i th patch.

The degree of resolution would affect the performance of the spatial partition based method. To fur-

ther improve the results, we proposed Intrinsic Spatial Pyramid Matching (ISPM) by extending the work

in [35], which has been shown to yield excellent performance in image analysis, to nonrigid 3D shapes.

The spatial pyramid divides an image into a multi-level pyramid of increasingly fine subregions and com-

putes a codebook descriptor for each subregion. We construct a sequence of histograms at resolutions

{R= 2�,�= 0, . . . ,L} such that the surface at level � has 2� patches, for a total of 2L −1 patches. Thus, the

final dissimilarity between the histograms of P and Q is given by

D
L(P ,Q) =B

L(P ,Q)+
L−1∑
�=0

1

2L−�
(B�(P ,Q)−B

�+1(P ,Q))

=
1

2L
B

0(P ,Q)+
L∑

�=1

1

2L−�+1
B

�(P ,Q)

(2.23)

Concerning the implementation, one issue that arises is that of normalization. To easily compare the

methods of single level partition and intrinsic spatial pyramid matching, we normalize the histogram of

each resolution using the L1-norm.

2.5 EXPERIMENTS

We experimentally compare different spectral descriptors and the codeword ambiguity modeling ap-

proaches on two standard datasets: SHREC 2010 [80] and SHREC 2011 [81]. We also show that the

proposed intrinsic partition approach can significantly improve the performance of the spectral shape

retrieval methods. We start our experiments with an in-depth analysis of the methods on a set of ten

3D nonrigid shape categories, after which we translate these findings into the experiments on a large

dataset. In our experimental setup we closely follow the original works theoretically, and we select the

optimal parameters that yield the best performance on these datasets. Thus, we do not bias any method

in order to provide a fair comparison.
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2.5.1 SETTINGS

Evaluation Measure: We evaluate the retrieval performance using the Discounted Cumulative Gain

(DCG) [79]. DCG is a statistic that weights correct results near the front of the list more than correct

results later in the ranked list, under the assumption that a user is less likely to consider elements near

the end of the list. For a given query shape, DCG is defined as

DCG =
DCGN

1+
τ∑

k=2

1

log2(k)

(2.24)

where N is the total number of shapes in the database, τ is the number of shapes in the query’s class (i.e.

size of the class), and DCGi is computed recursively as follows:

DCGi =

⎧⎪⎪⎨⎪⎪⎩
Gi if i = 1

DCGi−1 +
Gi

log2(i )
Otherwise.

(2.25)

where Gi is a gain value that depends on the relevance of the i th retrieved shape (1 if the shape that is the

i th closest match to the query shape in the query shape’s class, and 0 otherwise). Basically, DCGi repre-

sents the relevance of the top-i results. Thus, the DCG score reflects the performance of the algorithm

when correct results that are retrieved earlier are weighted higher than those retrieved later. All normal-

ized DCG calculations are relative values in the interval [0,1], and higher values imply better retrieval

performance.

To gain further insight into the strengths and weaknesses of each descriptor, we compared the shape

signatures in terms of four different properties: discriminative power, compactness, localization, and

ambiguity. Discriminative power describes the signature’s ability to distinguish between shapes belong-

ing to different classes. Since we used watertight meshes from different classes in our experiments, the

discounted cumulative gain (DCG) value reflects the discriminative power of the descriptors. Compact-

ness refers to the dimension that a signature has to achieve for its maximum discriminative power. A

lower dimension indicates higher compactness, and leads to simpler computation. We introduce lo-

calization as the ability of a signature to capture the local geometry around the mesh vertex. The DCG

improvement after spatial partition reflects localization, since the partition separates the signatures into

different patches. The finer is the partition, the more details can be captured if the DCG value further

improves. To describe the distribution of the signature in the feature space, we observe the clustering

centroid of the signature. The higher is the ambiguity between geometric words, the more kernel uncer-

tainty is beyond the L0-norm codebook. In Table 2.2, we rank the shape signatures in terms of different

properties on a scale from 1 to 5. A value of 1 means the strongest, while a value of 5 means the weakest.
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TABLE 2.2: Summary comparison of spectral signatures.

Property SIHKS HKS WKS HMS GPS

Discriminative Power 1 2 5 3 4

Compactness 5 1 2 3 4

Localization 4 3 1 2 5

Ambiguity 3 5 2 4 1

Descriptors: To compare the aforementioned spectral descriptors, we design a reasonable strategy to

choose the best parameters for each descriptor in our experiments. As pointed out in [34], the overall

performance of the dense descriptor computed for each point of the shape is superior than a sparse

descriptor computed for a set of points produced by a feature detection algorithm. So, we compute all

spectral descriptors on every vertex of the shape. Additionally, due to the different ways of discretizing

the LB operator, our implementation might generate slightly different results from the ones reported

in [34]. However, for fair comparison, we use the same implementation for all the spectral methods in

order to not favor any method.

Kernel Size: We choose the best kernel size according to the predefined range underlying the data, from

Local Kernel Size (σLocal ) to Global Kernel Size (σGlobal ). For each cluster, the distances from its cen-

troid to other points of this cluster are computed. Then, the median absolute deviation is adopted to

obtain the kernel size for each cluster. We use the median value as the local kernel size σLocal . Since

there is no explicit centroid for all the data points, we compute global “ghost centroid” in the same way

that the centroid of each cluster is obtained during clustering. Then, the global kernel size σGlobal is

estimated by treating the data space as a single cluster. σLocal and σGlobal can help us roughly estimate

the distribution of the data. Recall that our goal is to find the best smoothing parameters in order to

maximize the discrimination, not to fit the data best, we use them as the size markers of the data space,

and get the scale S = σGlobal /σLocal . Multiplying by an augmenting coefficient A, we set an interval

[σLocal /(AS),σLocal AS] as the candidate space. With a sampling step FA ∝ A to discretize the space, we

select the best σ̂ as the final kernel size. Note that in order to be consistent with the clustering stage,

when estimating the kernel size, we use the L1-norm for the dictionary learned by the cityblock distance,

and each centroid is the component-wise median of the points in that cluster. We use the L2-norm for

the one learned by the Euclidean distance, and each centroid is computed as the mean of the points in

that cluster. In Table 2.3, the parameters of different spectral descriptors are set for each dataset to get
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the interval of the kernel size.

TABLE 2.3: Parameters’ setting for kernel size interval estimation on SHREC 2010
and SHREC 2011 datasets.

SHREC 2010 SHREC 2011

HKS SIHKS HMS WKS GPS HKS SIHKS HMS WKS GPS

A 1 4 2 4 4 1 4 2 20 20

FA A A A 1 1 A A A A/4 A/2

Complexity: The codes were implemented in MATLAB 7.14 (R2012a). The experiments were performed

on a desktop computer with an Intel Core i3-2100 running at 3.1 GHz and 4 GB RAM. The computation

of the vocabulary is performed offline in advance. It depends on the number of the descriptors (number

of vertices), the dimension of the descriptor, and the vocabulary size (the number of clusters). Since we

simplify our mesh to 2000 faces for each shape, we have a set of approximately 2×105 descriptors. Since

the 3D models used in our experiments are watertight, simplifying a surface mesh by reducing its num-

ber of faces to 2000 would essentially preserve the shape semantically. Consequently, the discriminative

power of the descriptors would not change drastically after mesh simplification.

To confirm getting optimal results, the clustering is repeated 3 times, and each by a new set of initial

cluster centroid positions. The solution with the lowest value for the sum of distances is returned. In

Table 2.4, we list the runtime in seconds for various descriptor dimensions and vocabulary sizes.

TABLE 2.4: Runtime (in seconds) with different descriptor dimensions and vocabu-
lary sizes.

Runtime Vocabulary Size

Dimension 8 12 16 24 32 48 64 80

40 190 254 321 474 567 732 903 1351

100 522 617 774 1094 1461 1803 2054 2665

150 825 909 1193 1691 2002 2902 3645 4358

385 1725 2566 3347 4638 5702 8405 12285 15962
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2.5.2 RESULTS ON SHREC 2010 DATASET

In-Depth Analysis of Descriptors and Ambiguity

The first dataset we consider is SHREC 2010 [80], which is a standard dataset of nonrigid 3D models used

in the Shape Retrieval Contest, organized by National Institute of the Standards and Technology (NIST).

The dataset consists of 200 shapes spread over 10 categories with 20 shapes each, and range from human

body to man-made tools like glasses. Some of the deformations performed on the shapes are artificially

generated, which would result in misleading recognition. In Figure 2.4 we show 4 models of each class

in this dataset.

FIGURE 2.4: Sample shapes in SHREC 2010 dataset.

For the SHREC 2010 dataset, we analyze the types of spectral descriptors, vocabulary size and code-

word ambiguity. The vocabulary sizes we consider are 8,12,16,24,32,48,64 and 80. To gain further in-

sight into the performance variation between the various types of spectral descriptors, we show the re-

trieval results for different parameters in Tables 2.14-2.17. The L2-norm traditional codebook is used

in all the descriptors. The main goal of our parameter determination is to select the appropriate heat

diffusion time for each descriptor in order to maximally discriminate between the shapes. For HKS, we

formulate the diffusion time as t = t0α
τ, where τ is sampled from 0 to a given scale with a resolution 1/4

in our case. We highlight the best result for each factor t0, and notice that the largest diffusion times are
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tmax = t0α
maxτ = {343.44,131.84,74.08,238.15,139.57}. These times are obviously different from the best

parameters t = {1024,1351,1783,2353,3104,4096} used in [34]. Since we use a different dataset, the dif-

ference of best parameters is reasonable. If the confusion time is larger than tmax , i.e. the heat diffuses

for enough long time, then the heat distribution of the whole shape will be very similar, which tends to

degrade the discrimination. On the contrary, if the confusion time is smaller than tmax , then only local

patches of the shape are considered in the description, thus the global description of the whole shape

is deficient. In order to construct the SIHKS, we use t = ατ, where τ ranges from 1 to a given scale with

finer increments of 1/16. After applying the logarithm, derivative, and Fourier transform, the first sev-

eral discrete lowest frequencies are used as the local descriptor. In [34], the first 6 lowest frequencies are

adopted, which yield a satisfactory result on SHREC 2010 dataset as shown in Table 2.15. To guarantee

not to favor any method in our experiments, we test with various frequencies and find that the best result

can always be obtained when all the frequencies are used. One-dimensional HMS is used to construct

the temperature distribution descriptor [17]. For mesh segmentation, HMS prefers small time because

high resolution details are preserved at a small scale. Our goal is to discriminate between shapes, so we

construct a multi-scale HMS to compare the temperature distribution with multiple diffusion times. By

defining a universal time unit δ as in the computation of the TD descriptor, we use t = τδ with τ rang-

ing from 1 to a given scale to compute the descriptor. In Table 2.16, δ = 1 and t = [δ,2δ, · · · ,100δ] give

the best result for the multi-scale HMS. The WKS is associated with each vertex on the surface, and it

describes the energy distributions over a family of fixed energy scales. There are two parameters in this

descriptor, namely the increment δ and the varianceσ. Since the energy range [λmin,λmax] is determined

by the eigenvalues and it is fixed, we seek the best increment by dividing the interval by a scalar M . The

variance σ is also inferred as certain percentage of the interval. As shown in Table 2.17, the best parame-

ters are M = 50 and percentage equal to 0.2. Finally, the best parameters for each spectral descriptor are

summarized in Table 2.18 in the Appendix. SIHKS performs the best, and is slightly better than HKS since

the variance of the scale transformation is small in SHREC 2010. As expected, the worst performance is

obtained by WKS, which characterizes only local information of the small patch. We also considered a

200 vocabulary size for each signature, and the results remain virtually unchanged or go down slightly

compared to a smaller vocabulary size.

In Table 2.5, we list the DCG values for different spectral signatures and classes on SHREC 2010. It

should be noted that all of the signatures are good at retrieving the Teddy model. SIHKS yields the highest

accuracy on most of the classes, such as Ant, Crab, Hand, Human, Octopus, Plier, Spectacle, and Spider.

HKS is slightly lower than SIHKS. Surprisingly, HMS is the best one in retrieving the Teddy shape. Also,
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the comparison between WKS, HMS and GPS is inspiring. WKS performs well on Octopus, Snake and

Spectacle. These classes have a high percentage of thin-branch-like components. GPS gets a relatively

high accuracy on Ant, Hand, and Human.

TABLE 2.5: DCG values for different spectral signatures and classes on SHREC 2010.

Signature Ant Crab Hand Human Octopus Plier Snake Spectacle Spider Teddy

SIHKS 0.951 0.901 0.897 0.884 0.783 0.935 0.714 0.773 0.899 0.990

HKS 0.925 0.877 0.804 0.805 0.726 0.979 0.707 0.732 0.886 0.990

WKS 0.793 0.813 0.652 0.704 0.731 0.784 0.713 0.744 0.723 0.913

HMS 0.668 0.785 0.709 0.687 0.646 0.880 0.696 0.633 0.731 0.998

GPS 0.846 0.675 0.713 0.744 0.576 0.881 0.622 0.675 0.727 0.821

To study the influence of the vocabulary size, we use various local descriptors and change the vo-

cabulary size from 8 to 80 geometric words. Tables 2.7-2.10 show the resulting performance. As can be

observed, the overall performance improves with the increase of the vocabulary size, but at the expense

of the representation size (length of the BoF vector). However, for HKS and GPS, the best performance is

obtained when the vocabulary size is 32 and 12, respectively.

Tables 2.6-2.10 also show the retrieval results with the various types of codeword ambiguity. The re-

sults show that codeword uncertainty consistently outperforms other types of ambiguity for all kinds of

descriptors and all vocabulary sizes. Besides the 4 types of ambiguity modeling methods in [55], we also

include the accumulation of L1 and L2 norms from descriptor to codeword. The reason is two-fold: (1) To

keep coherent with the clustering stage, and (2) VLAD, which is the accumulation of vector from descrip-

tor to codeword, achieves better results as reported in the literature. Indeed, in our experiment, SIHKS,

HMS and WKS with distance accumulation outperform the traditional codebook, and even are superior

than the codebook uncertainty in certain cases. In addition, the L1 and L2-norms in the clustering stage

have a considerable effect on the performance. For GPS, the L1-norm based methods are much worse

than L2-norm based ones. But for WKS, the L1-norm based method is better than L2-norm based one.

As a result, we may conclude that the WKS descriptor is more discriminative than the L1-norm.

To examine the influence of the kernel size, we show the kernel size found as the statistic among the

five spectral descriptors. Following the technique of optimal kernel size estimation described in the

experimental setting (Subsection 3.5.1), σLocal is calculated first. Then, the optimal kernel size σ̂ is de-

termined experimentally inside the interval for each vocabulary size. To better visualize the results, we

obtain the relative σ̂ as the relative position in the interval. Thus, the relative σLocal is 0.5. Our goal is
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to compare σ̂ for different ambiguity types in both Laplacian and Gaussian kernels. So the five number

summary is computed on the set composed of the relative σ̂ of five descriptors in the same vocabulary

setting, and the results are shown in Figure 2.5. For both Laplacian and Gaussian kernels, the codeword

plausibility has the largest kernel size, followed by the kernel codebook; the smallest kernel size is held

by the codeword uncertainty. The Laplacian kernel has a larger kernel size than the Gaussian kernel for

each type of ambiguity methods. In our experiment, we also found that increasing the kernel size of the

codeword plausibility beyond a sufficiently large value does not significantly change the accuracy. The

kernel size of the Laplacian codeword plausibility remains the largest in the interval, but the kernel size

of the Gaussian codeword plausibility among different descriptors oscillates the most. Note that since we

plot the relative position of σ̂ compared to σLocal , the value of σLocal becomes smaller over the number

of vocabulary elements. In fact, it shows that a larger vocabulary leads to slightly smaller kernels. This

phenomenon is consistent with the image domain [55]. This may be expected since a larger vocabulary

is formed by a smaller radius between codewords.

TABLE 2.6: Performance (DCG) using different codebook models of varying size
based on SIHKS local descriptor.

Codebook Model Vocabulary Size

Clustering Coding 8 12 16 24 32 48 64 80 200

L1

Traditional Codebook 0.801 0.789 0.777 0.779 0.798 0.795 0.802 0.795 0.793

L1-norm Codebook 0.801 0.796 0.784 0.789 0.806 0.801 0.813 0.806 0.803

L2-norm Codebook 0.776 0.768 0.761 0.770 0.791 0.785 0.804 0.792 0.792

Laplace Kernel Codebook 0.797 0.795 0.796 0.796 0.798 0.801 0.803 0.810 0.812

Laplace Codeword Uncertainty 0.809 0.803 0.805 0.802 0.808 0.810 0.811 0.812 0.806

Laplace Codeword Plausibility 0.798 0.782 0.774 0.774 0.792 0.792 0.798 0.793 0.783

L2

Traditional Codebook 0.856 0.863 0.861 0.862 0.872 0.865 0.865 0.866 0.849

L1-norm Codebook 0.839 0.852 0.853 0.855 0.865 0.865 0.863 0.865 0.854

L2-norm Codebook 0.841 0.846 0.852 0.849 0.854 0.861 0.858 0.861 0.846

Gaussian Kernel Codebook 0.847 0.839 0.840 0.842 0.850 0.846 0.845 0.847 0.831

Gaussian Codeword Uncertainty 0.857 0.863 0.864 0.867 0.874 0.867 0.869 0.867 0.827

Gaussian Codeword Plausibility 0.856 0.863 0.861 0.863 0.872 0.865 0.866 0.866 0.841

Improvement with Intrinsic Partition

First, we examine the effect of integrating spatial cues on surfaces via the intrinsic partition. Figure 2.6

shows the performance improvement of the retrieval experiments by matching shapes directly using in-

trinsic partitions on SHREC 2010 dataset. With the increase of the number of intrinsic partitions, all the
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FIGURE 2.5: Illustration of relative kernel size of different ambiguity modeling
methods. Top: kernel codebook. Middle: codeword uncertainty. Bottom: codeword
plausibility.

spectral descriptors, except GPS, are improved substantially in a global fashion, even though the perfor-

mance drops down in certain numbers. For ShapeGoogle [34], its performance is plotted as points whose

partition number is one. Obviously, intrinsic spatial cues on shape surface proposed in our framework

significantly outperform ShapeGoogle. We conjecture that GPS is degraded because of its global nature.
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TABLE 2.7: Performance (DCG) using different codebook models of varying size
based on HKS local descriptor.

Codebook Model Vocabulary Size

Clustering Coding 8 12 16 24 32 48 64 80 200

L1

Traditional Codebook 0.827 0.841 0.852 0.846 0.854 0.836 0.828 0.837 0.834

L1-norm Codebook 0.812 0.825 0.839 0.808 0.848 0.794 0.776 0.823 0.813

L2-norm Codebook 0.784 0.793 0.812 0.765 0.808 0.746 0.726 0.774 0.755

Laplace Kernel Codebook 0.820 0.832 0.840 0.852 0.841 0.851 0.847 0.845 0.831

Laplace Codeword Uncertainty 0.829 0.843 0.853 0.849 0.857 0.840 0.839 0.848 0.834

Laplace Codeword Plausibility 0.829 0.840 0.849 0.851 0.852 0.844 0.843 0.836 0.834

L2

Traditional Codebook 0.826 0.851 0.843 0.845 0.845 0.834 0.831 0.828 0.834

L1-norm Codebook 0.804 0.838 0.823 0.837 0.825 0.791 0.806 0.785 0.820

L2-norm Codebook 0.776 0.807 0.788 0.813 0.794 0.748 0.770 0.741 0.789

Gaussian Kernel Codebook 0.826 0.846 0.847 0.845 0.851 0.852 0.848 0.849 0.829

Gaussian Codeword Uncertainty 0.828 0.845 0.845 0.852 0.851 0.836 0.834 0.833 0.829

Gaussian Codeword Plausibility 0.831 0.852 0.846 0.845 0.846 0.842 0.837 0.840 0.845

TABLE 2.8: Performance (DCG) using different codebook models of varying size
based on HMS local descriptor.

Codebook Model Vocabulary Size

Clustering Coding 8 12 16 24 32 48 64 80 200

L1

Traditional Codebook 0.683 0.717 0.729 0.749 0.747 0.733 0.745 0.746 0.725

L1-norm Codebook 0.693 0.721 0.752 0.760 0.759 0.711 0.766 0.751 0.723

L2-norm Codebook 0.680 0.695 0.695 0.698 0.702 0.675 0.726 0.728 0.673

Laplace Kernel Codebook 0.689 0.705 0.711 0.720 0.718 0.726 0.719 0.724 0.740

Laplace Codeword Uncertainty 0.691 0.722 0.736 0.751 0.754 0.735 0.755 0.745 0.741

Laplace Codeword Plausibility 0.680 0.709 0.719 0.738 0.740 0.733 0.734 0.740 0.724

L2

Traditional Codebook 0.696 0.726 0.737 0.746 0.743 0.743 0.749 0.753 0.748

L1-norm Codebook 0.713 0.743 0.763 0.766 0.771 0.740 0.773 0.780 0.740

L2-norm Codebook 0.712 0.730 0.752 0.763 0.761 0.718 0.765 0.759 0.727

Gaussian Kernel Codebook 0.699 0.721 0.731 0.732 0.732 0.733 0.732 0.724 0.722

Gaussian Codeword Uncertainty 0.707 0.740 0.759 0.768 0.771 0.753 0.767 0.771 0.733

Gaussian Codeword Plausibility 0.696 0.726 0.737 0.746 0.743 0.744 0.749 0.753 0.748

A crucial parameter is the number of partitions. Experimentally, we find that the accuracy remains stable

after 16 partitions for all the spectral descriptors.

Next, let us examine the behavior of intrinsic spatial pyramid matching. For completeness, Table 3.1

lists the performance achieved using just the highest level of the pyramid (the “single” columns) as well
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TABLE 2.9: Performance (DCG) using different codebook models of varying size
based on WKS local descriptor.

Codebook Model Vocabulary Size

Clustering Coding 8 12 16 24 32 48 64 80 200

L1

Traditional Codebook 0.691 0.711 0.720 0.727 0.726 0.741 0.737 0.737 0.748

L1-norm Codebook 0.697 0.718 0.726 0.733 0.730 0.742 0.737 0.737 0.751

L2-norm Codebook 0.694 0.711 0.712 0.721 0.719 0.731 0.725 0.725 0.733

Laplace Kernel Codebook 0.694 0.701 0.707 0.713 0.714 0.725 0.724 0.726 0.738

Laplace Codeword Uncertainty 0.697 0.716 0.721 0.725 0.727 0.740 0.736 0.737 0.741

Laplace Codeword Plausibility 0.695 0.706 0.718 0.724 0.723 0.740 0.736 0.737 0.739

L2

Traditional Codebook 0.659 0.689 0.703 0.718 0.728 0.722 0.716 0.718 0.743

L1-norm Codebook 0.666 0.704 0.710 0.724 0.730 0.728 0.721 0.722 0.738

L2-norm Codebook 0.672 0.701 0.704 0.716 0.727 0.727 0.720 0.719 0.731

Gaussian Kernel Codebook 0.666 0.667 0.667 0.666 0.666 0.666 0.667 0.667 0.651

Gaussian Codeword Uncertainty 0.667 0.666 0.665 0.666 0.665 0.666 0.667 0.667 0.651

Gaussian Codeword Plausibility 0.662 0.689 0.703 0.718 0.728 0.722 0.716 0.718 0.736

as the performance of the complete matching scheme using multiple levels (the “pyramid” columns).

For all kinds of features, except GPS, the results improve considerably as we go from L = 1 to a multi-

level setup. We do not display the results for L = 0 because its highest single level is the same as with

its pyramid. Although matching at the highest pyramid level seems to account for most of the improve-

TABLE 2.10: Performance (DCG) using different codebook models of varying size
based on GPS local descriptor.

Codebook Model Vocabulary Size

Clustering Coding 8 12 16 24 32 48 64 80 200

L1

Traditional Codebook 0.719 0.757 0.733 0.723 0.720 0.737 0.714 0.726 0.739

L1-norm Codebook 0.716 0.752 0.729 0.720 0.717 0.732 0.708 0.723 0.738

L2-norm Codebook 0.689 0.734 0.705 0.699 0.692 0.717 0.691 0.704 0.711

Laplace Kernel Codebook 0.764 0.789 0.785 0.796 0.799 0.811 0.817 0.822 0.738

Laplace Codeword Uncertainty 0.773 0.794 0.790 0.801 0.801 0.812 0.818 0.824 0.776

Laplace Codeword Plausibility 0.724 0.759 0.740 0.726 0.725 0.737 0.718 0.731 0.696

L2

Traditional Codebook 0.704 0.785 0.748 0.768 0.757 0.734 0.724 0.727 0.743

L1-norm Codebook 0.698 0.780 0.744 0.763 0.753 0.729 0.721 0.726 0.741

L2-norm Codebook 0.687 0.733 0.717 0.739 0.744 0.729 0.722 0.724 0.729

Gaussian Kernel Codebook 0.793 0.808 0.775 0.804 0.785 0.790 0.791 0.783 0.759

Gaussian Codeword Uncertainty 0.755 0.799 0.762 0.773 0.767 0.772 0.764 0.765 0.792

Gaussian Codeword Plausibility 0.705 0.805 0.764 0.776 0.771 0.735 0.722 0.727 0.746
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ment, using all the levels together yields a statistically significant benefit. For strong features, single-level

performance actually drops as we go from L = 3 to L = 4. This means that the highest level of the L = 3

pyramid is too finely subdivided, with individual bins yielding few matches. Despite the diminished dis-

criminative power of the highest level, the performance of the entire L = 4 pyramid remains essentially

identical to that of the L = 3 pyramid. Thus, the main advantage of the intrinsic spatial pyramid repre-

sentation stems from combining multiple resolutions in a principled fashion, and it is robust to failures

at individual levels.

It is also important to compare the performance of different spectral descriptor sets. As expected, weak

descriptors do not perform as well as strong descriptors, though in combination with the spatial pyra-

mid, they can also achieve acceptable levels of accuracy. Note that only descriptors with a much higher

density and much smaller spatial extent will continue to improve their performance as we increase L

from 3 to 4. Such kinds of descriptors in Table 3.1 include SIHKS and WKS. In this respect, ISPM provides

us with a way to analyze the spectral descriptors. On the other hand, the performances of HKS and HMS

drop when the pyramid level increases from 3 to 4. Moreover, the performance of GPS decreases immedi-

ately when the descriptors are aggregated in terms of local patches instead of the whole shape. Increasing

the visual vocabulary size from 8 to 80 might result in a small performance increase at L = 0, but this dif-

ference is eliminated at higher pyramid levels. Thus, we may conclude that the coarse-grained geometric

cues provided by the pyramid have more discriminative power than an enlarged geometric vocabulary.

Another explanation for the improvement is that the geometric cues eliminate the word ambiguity in a

spatial context, and its ambiguity modeling ability is also more discriminative than the ambiguity code-

book models. For example, HMS with L2-norm, the traditional codeword, achieves 0.743 on SHREC 2010

dataset, and the improvement brought by the codeword uncertainty is 0.771−0.743 = 0.028. However,

the improvement brought by ISPM is 0.792−0.743 = 0.049.

In Figure 2.7, we show two examples of top 9 retrieval results for different methods. There are plenty of

examples to demonstrate that our proposed intrinsic spatial pyramid matching (ISPM) method improves

the performance of the original codebook models with varied spectral descriptors. However, in order to

illustrate the merits of different descriptors, we choose the two exemplar queries that bring consistent

results with the conclusion we get for the spectral descriptors. For both queries, the ISPM method en-

hances the results by helping rank more relevant shapes higher as expected, and SIHKS combined with

ISPM achieves a more satisfactory result. For the first query spectacle, the primitive descriptors always

confuse it with lines, pliers, human body and octopus. This is because these objects also have several

long, thin pipe-like parts and flat globular parts, and the proportions are similar. The spatial partition
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integrates the intrinsic symmetry cue, and separates pipe-like parts and globular parts into different sub-

histograms, thus resulting in a more descriptive representation. The pipe-like parts attached to fringe of

shapes are almost similar among these classes, but the globular parts in the middle have different degree

and amount of flat, which is the key to distinguish the spectacles. For the second query octopus, mul-

tiple legs objects like spiders and ants are usually retrieved mistakenly by the descriptors SIHKS, HKS

and GPS. This is in fact understandable since even humans would consider these shapes as similar from

their appearance. HMS ranks some hands higher, and WKS ranks some pliers higher. This phenomenon

shows that the different spectral descriptors characterize different aspects of shape features.

It is worth pointing out that the intrinsic spatial partition helps measure the localization ability of the

signatures, meaning the ability of a signature to capture the local geometry around the mesh vertex. The

DCG improvement after applying spatial partition reflects localization due largely to the fact that the

partition separates the signature into different patches. The finer is the partition, the more details can

be captured if the DCG improves.

2.5.3 RESULTS ON SHREC 2011

Our second set of experiments is performed on a larger dataset, SHREC 2011 [81], which contains 600

watertight triangle meshes that are equally classified into 30 categories. SHREC 2011 is the most diverse

nonrigid 3D shape database available today in terms of object classes and deformations. In Figure 2.8

we show 2 models of each class in the dataset.

We follow the same experimental procedure on SHREC 2010 dataset. First, we find the best perfor-

mance of each spectral descriptor with its best parameters under the traditional codebook model, as

shown in Table 2.12. Then, using these parameters we conduct further experiments on various ambigu-

ity modeling models. In this way, we get the baseline result, which is actually the algorithm of Shape-

Google [34]. Finally, our spatially aggregating approach is tested against each type of descriptors. In

Figure 2.9, we display the performance improvement with the increasing number of partitions. For both

L1 and L2-norms, all types of descriptors, except GPS, show improved accuracy when spatially aggre-

gated. HKS and SIHKS are improved throughout all the number of partitions till 512 in our experiment.

But we only show the results from 1 to 20 for the sake of visualization. HMS and WKS remain unchanged

or become worse when 10 or more partitions are adopted. Note that an interesting phenomenon is that

GPS with traditional and plausibility ambiguity has a lower accuracy than kernel and uncertainty ambi-

guity when no global spatial is integrated. However, the results are completely the opposite after a certain

degree of partition is included. The traditional and plausibility ambiguity modeling methods go up, but
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kernel and uncertainty ambiguity modeling methods go down, even lower than the former approaches.

Table 2.13 gives a breakdown of retrieval accuracies for different pyramid levels and different spectral

descriptors with vocabulary size 32. On this large dataset, a major advantage of ISPM is shown to provide

a robust and stable performance by weightily combining multiple spatial levels, especially, for HMS and

WKS, and it consistently outperforms the single level approach. Although ISPM is not superior in all

cases, it is, however, practical since determining the level of partition is much easier than determining

the number of partitions to obtain satisfactory results.

In summary, our proposed shape retrieval approach is shown to outperform state-of-the-art order-

less descriptor aggregating methods. Because of the geometric stability and lack of damage of shapes in

SHREC 2011, dense descriptors combined with global spatial relations seem to capture more discrimi-

native information about the objects by providing an approximate correspondence.
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FIGURE 2.6: Performance improvement by increasing the number of intrinsic par-
titions on SHREC 2010 dataset. Top: L1-norm. Bottom: L2-norm.
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TABLE 2.11: Performance (DCG) of different spectral descriptors on SHREC 2010
dataset using intrinsic spatial pyramid matching with various codebook models.

Codebook Models

Spectral Clustering Level L Traditional Kernel Uncertainty Plausibility

Descriptor Norm (Partitions) Single Pyramid Single Pyramid Single Pyramid Single Pyramid

HKS

L1

1 (2) 0.851 0.855 0.829 0.835 0.848 0.853 0.847 0.852

2 (4) 0.856 0.863 0.843 0.849 0.858 0.862 0.855 0.860

3 (8) 0.863 0.867 0.8554 0.858 0.865 0.867 0.861 0.865

4 (16) 0.856 0.862 0.849 0.856 0.861 0.867 0.855 0.860

L2

1 (2) 0.837 0.842 0.845 0.849 0.845 0.849 0.847 0.842

2 (4) 0.848 0.851 0.8616 0.866 0.859 0.860 0.850 0.853

3 (8) 0.850 0.853 0.862 0.866 0.860 0.863 0.851 0.855

4 (16) 0.847 0.852 0.854 0.862 0.859 0.864 0.847 0.852

SIHKS

L1

1 (2) 0.799 0.798 0.7989 0.7992 0.8113 0.8107 0.7952 0.7951

2 (4) 0.813 0.800 0.817 0.814 0.829 0.821 0.810 0.807

3 (8) 0.818 0.810 0.823 0.821 0.829 0.828 0.815 0.812

4 (16) 0.831 0.8262 0.827 0.825 0.832 0.8313 0.830 0.824

L2

1 (2) 0.872 0.873 0.853 0.854 0.874 0.876 0.873 0.874

2 (4) 0.877 0.879 0.871 0.869 0.878 0.882 0.877 0.880

3 (8) 0.879 0.881 0.872 0.874 0.878 0.8830 0.879 0.882

4 (16) 0.883 0.884 0.876 0.877 0.884 0.885 0.883 0.884

HMS

L1

1 (2) 0.748 0.747 0.722 0.725 0.756 0.759 0.739 0.743

2 (4) 0.783 0.750 0.757 0.751 0.795 0.792 0.774 0.773

3 (8) 0.787 0.781 0.778 0.778 0.802 0.804 0.780 0.783

4 (16) 0.774 0.790 0.783 0.786 0.792 0.800 0.771 0.780

L2

1 (2) 0.749 0.752 0.737 0.740 0.776 0.780 0.749 0.752

2 (4) 0.787 0.786 0.777 0.775 0.813 0.812 0.787 0.786

3 (8) 0.793 0.7971 0.797 0.798 0.821 0.824 0.793 0.797

4 (16) 0.783 0.792 0.795 0.799 0.811 0.820 0.783 0.792

WKS

L1

1 (2) 0.725 0.726 0.711 0.711 0.725 0.727 0.724 0.725

2 (4) 0.750 0.747 0.739 0.734 0.751 0.745 0.749 0.746

3 (8) 0.759 0.757 0.748 0.745 0.759 0.756 0.758 0.757

4 (16) 0.759 0.760 0.754 0.751 0.760 0.761 0.758 0.760

L2

1 (2) 0.728 0.729 0.671 0.670 0.672 0.670 0.728 0.729

2 (4) 0.754 0.751 0.713 0.703 0.715 0.706 0.754 0.751

3 (8) 0.762 0.761 0.713 0.721 0.731 0.725 0.762 0.761

4 (16) 0.762 0.763 0.732 0.727 0.735 0.732 0.762 0.763

GPS

L1

1 (2) 0.722 0.722 0.778 0.789 0.780 0.790 0.726 0.726

2 (4) 0.717 0.720 0.735 0.747 0.735 0.745 0.717 0.721

3 (8) 0.732 0.729 0.734 0.739 0.733 0.739 0.733 0.730

4 (16) 0.736 0.734 0.726 0.731 0.726 0.731 0.737 0.736

L2

1 (2) 0.759 0.760 0.767 0.778 0.734 0.745 0.761 0.772

2 (4) 0.759 0.762 0.723 0.744 0.722 0.729 0.728 0.753

3 (8) 0.765 0.769 0.716 0.729 0.704 0.712 0.748 0.759

4 (16) 0.768 0.770 0.720 0.725 0.691 0.697 0.751 0.758
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(a) Query shape spectacle and its retrieval results

(b) Query shape octopus and its retrieval results

FIGURE 2.7: Retrieval results using different spectral descriptors and its spatial en-
hanced version. Error result is marked in the red dashed box. (a) In the left is the
query shape spectacle, and the ten rows in the right its top 9 retrieval results; (b) In
the left is the query shape octopus, and the ten rows in the right its top 9 retrieval
results.
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FIGURE 2.8: Sample shapes in SHREC 2011 dataset.

TABLE 2.12: Performance comparison of descriptors and their optimal parameters
on SHREC 2011 dataset.

Spectral Descriptors

HKS SIHKS HMS WKS GPS ShapeDNA EVD

Parameters

τ = 1/4 τ = 1/16 τ = 2 M = 100

T = 5 T = 25 T = 40 σ = 0.05

t0 = 0.01 F = 193 t0 = 4

α = 4 α = 2 α = 0.8

DCG 0.811 0.826 0.773 0.680 0.709 0.782 0.560
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FIGURE 2.9: Performance improvement by increasing the number of intrinsic par-
titions on SHREC 2011 dataset. Top: L1-norm. Bottom: L2-norm.
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TABLE 2.13: Performance (DCG) of different spectral descriptors on SHREC 2011
dataset using intrinsic spatial pyramid matching with varying codebook models.

Codebook Models

Spectral Clustering Level L Traditional Kernel Uncertainty Plausibility

Descriptor Norm (Partitions) Single Pyramid Single Pyramid Single Pyramid Single Pyramid

HKS

L1

1 (2) 0.829 0.822 0.811 0.806 0.831 0.824 0.808 0.802

4 (16) 0.878 0.872 0.871 0.866 0.883 0.878 0.874 0.867

7 (128) 0.890 0.888 0.880 0.879 0.892 0.891 0.887 0.885

9 (512) 0.893 0.892 0.879 0.880 0.894 0.893 0.890 0.889

L2

1 (2) 0.834 0.827 0.812 0.807 0.849 0.843 0.834 0.827

4 (16) 0.876 0.872 0.879 0.875 0.889 0.887 0.876 0.872

7 (128) 0.889 0.888 0.878 0.880 0.889 0.890 0.889 0.887

9 (512) 0.891 0.890 0.868 0.873 0.888 0.889 0.891 0.890

SIHKS

L1

1 (2) 0.853 0.849 0.873 0.870 0.861 0.857 0.852 0.850

4 (16) 0.878 0.876 0.888 0.888 0.887 0.884 0.878 0.876

7 (128) 0.889 0.888 0.895 0.894 0.890 0.895 0.889 0.887

9 (512) 0.891 0.890 0.896 0.896 0.898 0.897 0.891 0.890

L2

1 (2) 0.845 0.843 0.868 0.864 0.871 0.866 0.845 0.843

4 (16) 0.869 0.867 0.885 0.885 0.886 0.885 0.869 0.867

7 (128) 0.878 0.877 0.889 0.888 0.888 0.889 0.878 0.877

9 (512) 0.880 0.879 0.888 0.888 0.889 0.889 0.880 0.879

HMS

L1

1 (2) 0.780 0.784 0.759 0.764 0.801 0.804 0.777 0.781

4 (16) 0.823 0.828 0.833 0.837 0.845 0.850 0.821 0.826

7 (128) 0.815 0.819 0.819 0.814 0.831 0.835 0.814 0.818

9 (512) 0.825 0.823 0.804 0.803 0.836 0.836 0.825 0.822

L2

1 (2) 0.782 0.786 0.777 0.779 0.794 0.798 0.782 0.786

4 (16) 0.827 0.837 0.831 0.838 0.835 0.842 0.827 0.832

7 (128) 0.821 0.824 0.806 0.814 0.823 0.828 0.821 0.825

9 (512) 0.830 0.828 0.796 0.803 0.828 0.828 0.830 0.828

WKS

L1

1 (2) 0.757 0.746 0.777 0.738 0.765 0.755 0.751 0.741

4 (16) 0.829 0.824 0.834 0.828 0.841 0.838 0.828 0.723

7 (128) 0.839 0.8382 0.824 0.828 0.826 0.829 0.838 0.837

9 (512) 0.839 0.839 0.813 0.818 0.819 0.822 0.839 0.839

L2

1 (2) 0.718 0.709 0.761 0.754 0.781 0.776 0.678 0.707

4 (16) 0.797 0.793 0.813 0.823 0.822 0.830 0.797 0.792

7 (128) 0.804 0.804 0.779 0.789 0.787 0.796 0.803 0.804

9 (512) 0.800 0.803 0.756 0.764 0.776 0.782 0.800 0.802

GPS

L1

1 (2) 0.691 0.693 0.763 0.777 0.764 0.776 0.691 0.693

4 (16) 0.712 0.711 0.692 0.700 0.691 0.670 0.712 0.712

7 (128) 0.718 0.718 0.684 0.686 0.683 0.686 0.719 0.718

9 (512) 0.719 0.719 0.681 0.683 0.680 0.682 0.720 0.719

L2

1 (2) 0.705 0.708 0.752 0.759 0.751 0.757 0.705 0.708

4 (16) 0.726 0.725 0.705 0.716 0.705 0.715 0.726 0.725

7 (128) 0.728 0.729 0.678 0.683 0.678 0.683 0.729 0.729

9 (512) 0.729 0.729 0.671 0.675 0.670 0.674 0.729 0.729
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TABLE 2.14: The DCG measure of HKS based on different pairs of parameters.

HKS α

Factor t0 Scale 1.24 1.64 2 2.5 3

4.24

2 0.701 0.741 0.765 0.791 0.803

4 0.723 0.778 0.802 0.830 0.831

6 0.746 0.801 0.817 0.827 0.822

8 0.756 0.805 0.823 0.822 0.817

10 0.765 0.811 0.820 0.811 0.820

12 0.775 0.805 0.811 0.812 0.815

8.24

2 0.752 0.781 0.812 0.835 0.827

4 0.781 0.821 0.840 0.839 0.829

6 0.780 0.831 0.837 0.827 0.823

8 0.810 0.833 0.828 0.825 0.814

10 0.814 0.832 0.831 0.819 0.817

12 0.824 0.829 0.817 0.817 0.811

10.24

2 0.763 0.799 0.817 0.835 0.843

4 0.793 0.844 0.833 0.838 0.829

6 0.806 0.843 0.836 0.834 0.824

8 0.823 0.840 0.837 0.825 0.815

10 0.826 0.828 0.826 0.813 0.814

12 0.836 0.835 0.816 0.816 0.810

12.24

2 0.772 0.807 0.821 0.830 0.829

4 0.791 0.840 0.831 0.829 0.823

6 0.817 0.846 0.832 0.822 0.815

8 0.833 0.834 0.827 0.820 0.815

10 0.842 0.835 0.830 0.814 0.819

12 0.839 0.828 0.820 0.811 0.808

16.24

2 0.787 0.810 0.809 0.822 0.832

4 0.805 0.828 0.835 0.819 0.821

6 0.827 0.836 0.819 0.813 0.814

8 0.844 0.825 0.819 0.810 0.803

10 0.848 0.824 0.822 0.810 0.813

12 0.835 0.820 0.813 0.811 0.799
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TABLE 2.15: The DCG measure of SIHKS based on different pairs of parameters.

SIHKS α

Timescale Frequency 1.24 1.64 2 2.5 3

20

6 0.795 0.842 0.867 0.853 0.846

50 0.792 0.851 0.861 0.847 0.847

100 0.794 0.847 0.869 0.852 0.845

150 0.793 0.852 0.864 0.853 0.854

193 0.795 0.852 0.866 0.848 0.855

25

6 0.774 0.867 0.872 0.854 0.849

50 0.770 0.859 0.869 0.864 0.852

100 0.769 0.861 0.871 0.862 0.851

150 0.764 0.861 0.862 0.864 0.848

193 0.757 0.861 0.877 0.862 0.845

30

6 0.811 0.860 0.859 0.857 0.850

50 0.808 0.869 0.868 0.857 0.853

100 0.819 0.872 0.865 0.863 0.856

150 0.809 0.866 0.861 0.859 0.854

193 0.809 0.868 0.870 0.853 0.854

TABLE 2.16: The DCG measure of HMS based on different pairs of parameters.

HMS t

τ 40τ 60τ 80τ 100τ 120τ 140τ 160τ 180τ

0.005 0.676 0.692 0.697 0.690 0.734 0.712 0.729 0.740

0.01 0.702 0.722 0.744 0.714 0.708 0.734 0.712 0.714

0.02 0.713 0.726 0.712 0.742 0.719 0.720 0.722 0.723

0.05 0.724 0.734 0.729 0.744 0.736 0.733 0.727 0.737

0.1 0.744 0.739 0.742 0.717 0.712 0.729 0.713 0.705

0.2 0.723 0.716 0.712 0.718 0.749 0.753 0.751 0.753

0.4 0.739 0.744 0.744 0.753 0.749 0.753 0.745 0.752

0.6 0.735 0.747 0.752 0.750 0.747 0.754 0.747 0.742

1 0.751 0.751 0.753 0.754 0.744 0.744 0.739 0.738

2 0.739 0.744 0.729 0.733 0.723 0.736 0.731 0.725
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TABLE 2.17: The DCG measure of WKS based on different pairs of parameters.

WKS σ

M 0.12 0.16 0.20 0.24 0.28

20 0.708 0.720 0.718 0.724 0.697

50 0.722 0.724 0.727 0.725 0.703

80 0.713 0.720 0.725 0.724 0.706

100 0.717 0.712 0.726 0.720 0.708

120 0.720 0.720 0.718 0.715 0.713

150 0.716 0.724 0.723 0.713 0.714

TABLE 2.18: Performance comparison of descriptors and their optimal parameters
on SHREC 2010 dataset.

Spectral Descriptors

HKS SIHKS HMS WKS GPS ShapeDNA EVD

Parameters

τ = 1/4 τ = 1/16 τ = 2 M = 50

T = 10 T = 25 t = 100τ σ = 0.2

t0 = 16.24 F = 193

α = 1.24 α = 2

DCG 0.848 0.877 0.754 0.727 0.757 0.801 0.636
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SPECTRAL GRAPH WAVELET SIGNATURE

In this chapter, we present a spectral graph wavelet framework for the analysis and design of efficient

shape signatures for nonrigid 3D shape retrieval. Although this work focuses primarily on shape retrieval,

our approach is, however, fairly general and can be used to address other 3D shape analysis problems. In

a bid to capture the global and local geometry of 3D shapes, we propose a multiresolution signature via

a cubic spline wavelet generating kernel. The parameters of the proposed signature can be easily deter-

mined as a tradeoff between effectiveness and compactness. Experimental results on two standard 3D

shape benchmarks demonstrate the much better performance of the proposed shape retrieval approach

in comparison with three state-of-the-art methods. Additionally, our approach yields a higher retrieval

accuracy when used in conjunction with the intrinsic spatial partition matching.

3.1 INTRODUCTION

The content-based differentiation between 3D objects from different classes is being pursued in a num-

ber of established and emerging fields, including animation, molecular biology and medicine, computer-

aided design, multimedia entertainment, and mobile game development. With the increasing use of 3D

scanners and as a result of emerging multimedia computing technologies, large databases of 3D models

are distributed freely or commercially on the World Wide Web. The availability and widespread usage of

such databases, coupled with the need to explore 3D models in depth as well as in breadth, has sparked

the need to organize and search these vast repositories, and efficiently retrieve the most relevant selec-
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tions. The shape retrieval problem has been extensively investigated in the literature, from comprehen-

sive surveys [1, 2, 3, 4] to comparable benchmarks [82, 81, 83].

Recently, there has been a surge of interest in the spectral analysis of the Laplace-Beltrami (LB) oper-

ator, resulting in many applications to manifold learning [84], object recognition and deformable shape

analysis [46, 16, 85, 15, 34]. It is worth pointing out that spherical harmonics [86] are nothing but the LB

eigenfunctions on the sphere. The truncated sequence of the LB eigenvalues was proposed by Reuter et

al. as an isometry-invariant global shape descriptor, dubbed shape-DNA [16]. Reuter also introduced

a Morse-theoretic method for shape segmentation and registration using the topological features of the

eigenfunctions [85]. These eigenfunctions are computed via a cubic finite element method on triangular

meshes, and are arranged in increasing order of their associated eigenvalues. Rustamov [15] proposed a

feature descriptor referred to as the global point signature (GPS), which is a vector whose components

are scaled eigenfunctions of the LB operator evaluated at each surface point. GPS is invariant under iso-

metric deformations of the shape, but it suffers from the problem of eigenfunctions’ switching whenever

the associated eigenvalues are close to each other. This problem was lately well handled by the heat

kernel signature (HKS) [11], which is a temporal descriptor defined as an exponentially-weighted com-

bination of the eigenfunctions. It is a local shape descriptor that has a number of desirable properties,

including robustness to small perturbations of the shape, efficiency and invariance to isometric trans-

formations. The idea of HKS was also independently proposed by Gȩbal et al. [87] for 3D shape skele-

tonization and segmentation under the name of auto diffusion function. Using the Fourier transform’s

magnitude, Kokkinos et al. introduced the scale invariant heat kernel signature (SIHKS) [12], which is

constructed based on a logarithmically sampled scale-space. Also, by faithfully reflecting the tempera-

ture distribution during the heat process, the heat mean signature (HMS) was recently proposed by Fang

et al. for shape segmentation [13] and retrieval [17].

From the graph Fourier perspective, it can be seen that HKS is highly dominated by information from

low frequencies, which correspond to macroscopic properties of a shape. To give rise to substantially

more accurate matching than HKS, the wave kernel signature (WKS) [14] was proposed as an alternative

in an effort to allow access to high-frequency information. Despite being physically inspired, both WKS

and HKS can be regarded as filters. On the other hand, in order to construct a good task-specific spectral

descriptor, one has to be in the position of defining the spectral content of the geometric “signal” and

the “noise”. Bronstein [88] proposed to learn the signal and noise from examples in a way that resem-

bles the construction of a Wiener filter that passes frequencies containing more signal than noise, while

attenuating those where the noise covers the signal.
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In this chapter, we introduce a wavelet-based signature for nonrigid 3D shape retrieval. Wavelets are a

class of a functions used to localize a given function in both space and scaling [89]. The wavelet analysis

has some major advantages over Fourier transform, which makes it an interesting alternative for many

applications. In particular, unlike the Fourier transform, wavelet analysis is able to perform local analysis

and also makes it possible to perform a multiresolution analysis. Classical wavelets are constructed by

translating and scaling a mother wavelet, which is used to generate a set of functions through the scaling

and translation operations. The wavelet transform coefficients are then obtained by taking the inner

product of the input function with the translated and scaled waveforms. The application of wavelets to

graphs (or triangle meshes) is, however, problematic and not straightforward due in part to the fact that

it is unclear how to apply the scaling operation on a signal (or function) defined on the mesh vertices. To

tackle this problem, Coifman et al. [90] introduced the diffusion wavelets, which generalize the classical

wavelets by allowing for multiscale analysis on graphs. The construction of diffusion wavelets interacts

with the underlying graph through repeated applications of a diffusion operator, which induces a scaling

process. More recently, Hammond et al. [91] showed that the wavelet transform can be performed in the

graph Fourier domain, and proposed a spectral graph wavelet transform that is defined in terms of the

eigensystem of the graph Laplacian matrix. In the same vein, Kim et al. [92] introduced a wavelet-based

multiscale descriptor for the analysis of cortical surface signals (such as cortical thickness) using the

spectral graph wavelet transform. While building on earlier efforts, we take a rather different approach

in this chapter by proposing a novel multiresolution shape signature that is not only isometric invariant,

but also compact, easy to compute and combines the advantages of both band-pass and low-pass filters.

3.1.1 CONTRIBUTIONS

Our main contributions in this chapter may be summarized as follows:

(i) We present a general and flexible framework for the analysis and design of shape signatures from

the spectral graph wavelet perspective.

(ii) We propose a multiresolution shape signature for deformable 3D shape retrieval using a cubic

spline generating kernel. The main attractive properties of the proposed signature may be sum-

marized as follows: It can capture both global and local geometry of shapes in a multiresolution

fashion; its parameters can be automatically determined as a tradeoff between effectiveness and

compactness; it nicely fits the intrinsic spatial partition matching; and it yields the best retrieval
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accuracy on two standard 3D shape benchmarks compared to spectral signatures within the diffu-

sion geometric framework.

The rest of the chapter is organized as follows. In Section 3.2, we provide some background on the eige-

nanalysis of LB operator. Then, we briefly review two closely related spectral signatures to our proposed

shape descriptor. In Section 3.3, we propose a multiresolution shape signature in the spectral graph

wavelet framework. Using a cubic spline wavelet generating kernel, we introduce an efficient approach

for nonrigid 3D shape retrieval in Section 3.4. Experimental results on two standard 3D shape datasets

are provided in Section 3.5.

3.2 SPECTRAL GEOMETRIC SIGNATURES

3.2.1 EIGENANALYSIS

The eigenvalues λ� and the associated eigenfunctions χ� of the LB operator can be computed by solving

the following generalized eigenvalue problem:

Cχ� =λ�Rχ�, �= 1,2, . . . ,n (3.1)

Assuming that we have a connected triangle mesh, we may sort the eigenvalues in ascending order as

0 =λ1 <λ2 ≤ ·· · ≤λn =λmax with associated orthonormal eigenfunctions as χ1,χ2, . . . ,χn . The eigensys-

tem {λ�,χ�}�=1,...,n of the LB operator enjoys nice properties, including intrinsicness to the mesh surface

and isometry invariance.

3.2.2 SPECTRAL SHAPE SIGNATURES

Several shape descriptors based on the eigensystem of the LB operator have been proposed in the liter-

ature [16, 15, 11, 14, 13]. The spectral signature HKS and WKS are particularly the most closely related

to our work. Both HKS and WKS have an elegant physical interpretation: HKS describes the amount of

heat remaining at a mesh vertex j ∈ V after a certain time, whereas WKS is the probability of measuring

a quantum particle with the initial energy distribution at j . The HKS descriptor at a vertex j is defined

as:

stk ( j ) =
n∑

�=1
exp(−λ�tk)χ2

�( j ) (3.2)

and contains information mainly from low frequencies, which correspond to macroscopic features of

the shape; and thus exhibits a major discrimination ability in shape retrieval tasks. With multiple scaling
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factors tk , a collection of low-pass filters are established. The larger is tk , the more high frequencies are

suppressed. However, different frequencies are always mixed in HKS, and high-precision localization

task may fail due in part to the suppression of the high frequency information, which corresponds to

microscopic features. To circumvent these disadvantages, the WKS descriptor was introduced [14] and

it is defined as:

stk ( j ) =
n∑

�=1
Ctk exp

(
−(log tk − logλ�)2

σ2

)
χ2
�( j ) (3.3)

where Ctk is a normalization constant [14]. The WKS explicitly separates the influences of different fre-

quencies, treating all frequencies equally. Thus, different spatial scales are naturally separated, making

the high-precision feature localization possible. Given a range of discrete scales tk , a bank of filters is

constructed for each signature, and thus a vertex j on the mesh surface can be described by the follow-

ing signature vector:

s( j ) = {stk ( j ) | k = 1, . . . ,K }. (3.4)

3.2.3 GRAPH FOURIER TRANSFORM

The Fourier transform is a powerful mathematical tool for the analysis of non-periodic functions, and

defines a relationship between a function in the time domain and its representation in the frequency

domain. It basically maps a function defined on physical space to a function defined on the space of

frequencies, whose values quantify the “amount” of each periodic frequency contained in the original

function. The inverse Fourier transform then reconstructs the original function from its transformed

frequency components. The integrals defining the Fourier transform and its inverse are, remarkably,

almost identical. More precisely, the continuous Fourier transform is the expansion of a function f (de-

fined on the real line) in terms of the eigenfunctions eıωx of the 1D Laplacian operator d2

dx2 , and it is given

by

f̂ (ω) = 〈 f ,e−ıωx
〉 =

∫∞

−∞

f (x)e−ıωx d x, ∀ω ∈R (3.5)

where ı denotes the unit complex number (ı2 =−1). When the variable x represents time, the transform

variable ω represents angular frequency. The inverse Fourier transform is given by

f (x) =
1

2π

∫∞

−∞

f̂ (ω)eıωx dω, ∀x ∈R. (3.6)

The eigensystem {λ�,χ�} of the LB operator can be interpreted in the same vein as the Fourier basis: the

eigenvalues λ� act as the frequencies ω, while the eigenfunctions χ� play the role of the complex expo-

nentials (Fourier basis functions) eıωx . Analogously to (3.5) and (3.6), for any function f ∈R
n defined on
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the mesh vertex set V , the forward and inverse graph Fourier transforms are defined, respectively, by

f̂ (�) =
〈
χ�, f

〉
=

n∑
i=1

χ∗
�(i ) f (i ), �= 1, . . . ,n (3.7)

and

f ( j ) =
n∑

�=1
f̂ (�)χ�( j ), j ∈ V (3.8)

where ∗ denotes operation of complex conjugate. Notice that the graph Fourier transform is the expan-

sion of f in terms of the eigenfunctions, while the inverse Fourier transform provides a representation of

f as a superposition of the eigenfunctions.

Fourier analysis allows us to study the cyclical nature of a signal in the frequency domain. In spite of

its utility, however, under the Fourier transform, the time information of a signal is lost. Because of this

loss of information, it is hard to distinguish transient relations or to identify when structural changes do

occur. To circumvent these limitations, wavelet analysis performs the estimation of the spectral com-

ponents of a signal as a function of time, revealing how the different periodic components of the signal

change over time. A major advantage of using wavelet analysis over Fourier analysis is the possibility of

tracing transitional changes across time.

3.3 PROPOSED APPROACH

Similar to the Fourier transform which decomposes a signal into its constituent frequencies, the wavelet

transform is a powerful multiresolution analysis tool that enable decomposition of a signal into a wavelet

basis which allows simultaneous localization in space and frequency. Wavelet analysis provides a time-

scale representation and extends frequency analysis to scale, while Fourier analysis only gives the fre-

quency information [89]. The idea of wavelets is based on the use of two main operations on the signal,

namely shifting and scaling. Using these two operations, a signal f can be represented as the sum of

shifted and scaled versions of the so-called mother wavelet function, ψ, and shifted versions of the so-

called scaling function, φ. The mother wavelet and scaling functions act as band-pass and low-pass

functions, respectively.

3.3.1 CLASSICAL CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform maps the original signal, which is a function of just one variable (time)

into a function of two variables (time and frequency), providing highly redundant information. More

specifically, for a given mother wavelet ψ, a family ψt ,a of daughter wavelets can be obtained by simply
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scaling and translating ψ as follows:

ψt ,a(x) =
1

t
ψ

( x −a

t

)
, (3.9)

where t is a positive scaling parameter that controls the width of the wavelet, and a is a translation

parameter that controls the location of the wavelet. Scaling a wavelet simply means stretching it (if t > 1)

or compressing it (if t < 1), while translating a wavelet simply means shifting its position in time. Note

that the translation parameter does not have a counterpart in the Fourier basis functions, where the

position information is totally missing. It should also be noted that the scaling parameter in the wavelet

analysis is similar to the scale used in maps. As in the case of maps, high scales correspond to a non-

detailed global view of the signal, while low scales correspond to a detailed view.

Given a square-integrable signal f , the continuous wavelet transform (CWT) with respect to the mother

wavelet ψ is expressed by the following integral

Wf (t , a)= 〈ψt ,a , f 〉 =
1

t

∫∞

−∞

f (x)ψ∗
( x −a

t

)
d x, (3.10)

which is also referred to as the wavelet coefficient at scale t and location a. The position of the wavelet in

the time domain is given by the translational value a, while its position in the frequency domain is given

by the scale t . Thus, the CWT gives us information simultaneously on time and frequency. Unlike Fourier

transform, the CWT possesses the ability to construct a time-frequency representation of a signal that

offers very good time and frequency localization. The CWT may be invertible when the mother wavelet

ψ satisfies the admissibility condition, Cψ =
∫∞

0
|ψ̂(ω)|

2

ω
dω < ∞, where ψ̂ is the Fourier transform of ψ.

The inverse CWT is given by

f (x) =
1

Cψ

∫∞

0

∫∞

−∞

Wf (t , a)ψt ,a(x)
d a d t

t
· (3.11)

For a fixed scale t , the CWT may be interpreted as an operator taking a function f and returning the

function (T t f )(a) = Wf (t , a). In other words, the translation parameter can be considered as the inde-

pendent variable of the function returned by the operator T t . The CWT may also be expressed in the

Fourier domain as [91]:

(T t f )(x) =
1

2π

∫∞

−∞

ψ̂∗(tω) f̂ (ω)eıωx dω, (3.12)

where ψ̂∗(tω) is the complex conjugate of the Fourier transform of the wavelet ψ at scale t , and f̂ (ω) is

the Fourier transform of the signal f . The scaling parameter t appears only in the argument of ψ̂∗(tω),

showing that the scaling operation can be completely transferred to the Fourier domain. It is clear that

the wavelet transform at each scale can be viewed as a Fourier multiplier operator, determined by filters

that are derived from scaling a single filter ψ̂∗(ω). This idea was adopted by Hammond et al. [91] to

provide the analogue of the wavelet transform on weighted graphs via spectral graph theory.
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3.3.2 SPECTRAL GRAPH WAVELET TRANSFORM

Recall that the wavelet transform is based on the scaling and translation operations. It is, however, not

straightforward how to apply the scaling operation on a signal (or function) defined on the mesh vertices.

In other words, for a function f (i ) defined on a mesh vertex i ∈ V , it is meaningless to interpret f (t i ) on

its own domain for a scaling constant t . To tackle this problem, Hammond et al. [91] introduced the

spectral graph wavelet transform (SGWT). The idea is to cast the problem in the Fourier domain and

then define the required scaling in that domain. The SGWT is determined by the choice of a spectral

graph wavelet generating kernel g : R+ → R
+, which is analogous to the Fourier domain wavelet ψ̂∗ in

Eq. (3.12). To act as a band-pass filter, the kernel g should satisfy g (0) = 0 and limx→∞ g (x) = 0.

Wavelet Function: Let g be a given kernel function and denote by T t
g the wavelet operator at scale t . This

operator acts on a given function f by modulating its Fourier domain representation as follows:

T̂ t
g f (�) = g (tλ�) f̂ (�) (3.13)

Thus, the inverse graph Fourier transform is given by

(T t
g f )(i ) =

n∑
�=1

T̂ t
g f (�)χ�(i ) =

n∑
�=1

g (tλ�) f̂ (�)χ�(i ). (3.14)

Applying the wavelet operator T t
g to an impulse function, that is f (i ) = δ j (i ) on each mesh vertex i ∈ V

(i.e. δ j (i ) =δ(i − j )), and using the fact the graph Fourier transform of δ j is

δ̂ j (�) = 〈χ�,δ j 〉 =

n∑
i=1

χ∗
�(i )δ j (i )= χ∗

�( j ), (3.15)

it follows that the spectral graph wavelet ψt , j localized at vertex j and scale t is given by

ψt , j (i ) = �T t
gδ j (i ) =

n∑
�=1

g (tλ�)χ∗
�( j )χ�(i ). (3.16)

It should be noted that g (tλ�) is able to modulate the spectral waveletsψt , j only for λ� within the domain

of the spectrum of LB operator. Thus, an upper bound on the largest eigenvalue λmax is required to

provide knowledge on the spectrum in practical applications.

Hence, the spectral graph wavelet coefficients of a given function f can be generated from its inner

product with the spectral graph wavelets:

Wf (t , j ) = 〈ψt , j , f 〉 =
n∑

�=1
g (tλ�) f̂ (�)χ�( j ), (3.17)

which closely resembles Eq. (3.12). In other words, the LB eigenfunctions are the natural generalization

of Fourier modes on Euclidean spaces, which are the (generalized) eigenfunctions of the 1D Euclidean

Laplacian.
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Scaling Function: Similar to the low-pass scaling functions in the classical wavelet analysis, a second

class of waveforms h : R+ →R will be used as low-pass filters to better encode the low-frequency content

of a function f defined on the mesh vertices. To act as a low-pass filter, the function h should satisfy

h(0) > 0 and h(x) → 0 as x →∞. Similar to the wavelet kernels, the scaling functions are given by φ j =

Thδ j , and their spectral coefficients by

S f ( j )= 〈φ j , f 〉 =
n∑

�=1
h(λ�) f̂ (�)χ�( j ). (3.18)

A major advantage of using the scaling function is to ensure that the original signal f can be stably re-

covered when sampling scale parameter t with a discrete number of values tk . As demonstrated in [91],

given a set of scales {tk }K
k=1, the set F = {φ j }n

j=1 ∪ {ψtk , j }K n
k=1 j=1 forms a spectral graph wavelet frame with

bounds

A = min
λ∈[0,λmax]

G(λ) and B = max
λ∈[0,λmax]

G(λ), (3.19)

where

G(λ) =h(λ)2
+

∑
k

g (tkλ)2. (3.20)

The stable recovery of f is ensured when A and B are away from zero. Additionally, the crux of the scaling

function is to smoothly represent the low-frequency content of the signal on the mesh. Thus, the design

of the scaling function h is uncoupled from the choice of wavelet generating kernel g .

3.3.3 PROPOSED MULTIRESOLUTION SHAPE SIGNATURE

Wavelets are useful in describing functions at different levels of resolution. For example, an image can

be described at different levels of resolution. Understanding and characterizing the differences between

functions at different levels of resolution is what wavelets are all about. To characterize the localized

context around a mesh vertex j ∈ V , we assume that the signal on the mesh is a unit impulse function,

that is f (i ) = δ j (i ) at each mesh vertex i ∈ V . Thus, it follows from Eq. (3.14) that the spectral graph

wavelet coefficients are

Wδ j (t , j )= 〈ψt , j ,δ j 〉 =

n∑
�=1

g (tλ�)χ2
�( j ) (3.21)

and that the coefficients of the scaling function are

Sδ j ( j ) =
n∑

�=1
h(λ�)χ2

�( j ). (3.22)

Following the multiresolution analysis, the spectral graph wavelet and scaling function coefficients are

collected to form the following multiresolution shape signature:

SR ( j )= {sL( j ) | L = 1, . . . ,R}, (3.23)
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which we refer to as the spectral graph wavelet signature (SGWS), where R is the resolution parameter,

and sL( j ) is the shape signature at resolution level L given by

sL( j ) = {Wδ j (tk , j ) | k = 1, . . . ,L}∪ {Sδ j ( j )}. (3.24)

The wavelet scales tk (tk > tk+1) are selected to be logarithmically equispaced between maximum and

minimum scales t1 and tL, respectively. Thus, the resolution level L determines the resolution of scales

to modulate the spectrum. The proposed shape signature can be represented as a pyramid, as depicted

in Figure 3.1, which shows that at resolution level L = 1, the signature sL( j ) consists of two elements:

one element, Wδ j (t1, j ), of spectral graph wavelet function coefficients and another element, Sδ j ( j ), of

scaling function coefficients. And at level L = 4, the signature sL( j ) consists of five elements (four ele-

ments of spectral graph wavelet function coefficients and one element of scaling function coefficients).

Hence, if the resolution is set to R = 4, then the multiresolution signature SR ( j ) is composed of a total of

14 elements, as illustrated in Figure 3.1.

Wδj
(t1, j) Sδj

(j)L = 1

L = 4

L = 3

L = 2 Sδj
(j)

Sδj
(j)

Sδj
(j)

Wδj
(t1, j)

Wδj
(t1, j)

Wδj
(t1, j)

Wδj
(t2, j)

Wδj
(t2, j)

Wδj
(t2, j)

Wδj
(t3, j)

Wδj
(t3, j) Wδj

(t4, j)

FIGURE 3.1: Pyramid representation of the proposed spectral graph wavelet signa-
ture at various resolutions levels L = 1, . . . ,R , where R = 4.

The spectral graph wavelet coefficients, given by Eq. (3.21), yield a general form for spectral signatures,

which includes both HKS and WKS as particular cases, indicating the close relationship between these

two signatures and our proposed SGWG. Moreover, our approach provides a general and flexible frame-

work for the analysis and design of shape signatures from the wavelet viewpoint. Unlike HKS and WKS,

our proposed signature allows a multiresolution representation of shapes. The multiresolution analysis

using spectral graph wavelets model the shape content in different levels. These levels are used to cap-
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ture different details inherently found in different structures, as shown in Figure 3.2. Given any vertex j

on the mesh surface, we calculate the dissimilarity between j and a reference vertex jref (the yellow point

on the horse’s back left leg in Figure 3.2) at resolution level L, using the χ2-distance given by

d ( j , jref) =
L+1∑
k=1

(
sk( j )− sk ( jref)

)2

sk( j )+ sk ( jref)
, (3.25)

where sk denote the elements of the signature vector sL of length L +1. For visualization purposes, we

normalize all the χ2-distances to [0,1] (dividing by maxd ( j , jref) on the surface). As can be seen in Fig-

ure 3.2, the discriminative power from the reference point to other points on the horse surface is domi-

nated by the resolution level L = 2. By removing some local geometry, L = 1 exhibits the second discrim-

inative ability. For L = 3, a detailed geometry is included, which is suitable for distinguishing between

the reference point and the vertices around the horse feet. Moreover, compared with their dissimilarity

value, other points have a much smaller dissimilarity. From L = 3 to L = 6, more detailed geometry starts

to dominate the representation and it always maintains a large dissimilarity between the reference and

feet, resulting in relatively small dissimilarities for other points.

3.4 CUBIC SPLINE WAVELET FOR DEFORMABLE SHAPE RETRIEVAL

In this section, we discuss what a reasonable good descriptor is for shape retrieval [88], and how to design

a signature that satisfies the following three properties:

• Invariance: The descriptor should be invariant or at least insensitive to a certain class of trans-

formations that the shape may undergo. In this chapter, we consider shapes with only isometric

or near-isometric transformations. Since the eigensystem of LB operator is intrinsic, the spectral

signature is naturally isometry invariant.

• Efficiency: The descriptor should capture as much information as possible within as little number

of dimensions as possible. Additionally, a wavelet provides very compact support because of its

band-pass nature, and thus less redundant information is contained among different supports. To

guarantee the localization ability of the spectral graph wavelet in the limit of fine scale, the kernel

function g should behave as a monic power of a mesh vertex near the origin [91].

• Discriminative Power: The descriptor should be able to distinguish between shapes belonging to

different classes. First, shapes from different classes usually have different micro structures. We

use the multiresolution strategy to capture the micro structures at different resolution levels in a
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FIGURE 3.2: Normalized χ2-distance between a reference point (yellow colored
point on the horse’s back left leg) and other surface points using SGWS at differ-
ent resolution levels. From top to bottom and left to right, the resolution levels are
L = 1, 2, 3, 4, 5 and 6.

principled fashion. Second, low-frequency information represents the macro structures, which

are critical to shape comparison. Consequently, the scaling function h is an integral part of our

proposed shape signature. The guidance to design a proper h is not only to make up for the infor-

mation loss by the wavelet kernel g in low frequency, but also not to overlap with g .
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As suggested in [91], we choose the cubic spline wavelet and scaling function kernels given by

g (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x2 if x < 1

−5+11x −6x2 +x3 if 1≤ x ≤ 2

4x−2 if x > 2

(3.26)

and

h(x)= γexp

(
−

(
x

0.6λmin

)4)
, (3.27)

respectively, where λmin = λmax/20, γ is set such that h(0) has the same value as the maximum value of

g . The maximum and minimum scales are set to t1 = 2/λmin and tL = 2/λmax.

The geometry captured at each resolution level L of the SGWS can be viewed as the area under the

curve G shown in Figure 3.3. For a given resolution level L, we can understand the information from a

specific range of the spectrum as its associated areas under G . As the resolution level L increases, the

partition of spectrum becomes tighter, and thus a larger portion of the spectrum is highly weighted.

Relation to HKS: The kernel function gHKS = exp(−tλ) yields HKS. Since gHKS �= 0, it follows that gHKS

does not satisfy the admissibility condition. As can be seen in Figure 3.3(a), there is a rich redundance

along the spectrum between different scales. However, multiresolution analysis is not possible for HKS.

Since gHKS acts as a low-pass filter, HKS will fail to capture micro structures. Consequently, HKS is not

able to conduct high-precision feature localization. As can be observed in the top row of Figure 3.4,

the χ2-distance changes slowly along the surface. The same distance value remains with the isometric

transformation. When a human body (shape from a different class) compares with the reference, large

distances occupy most of the area.

Relation to WKS: The WKS is obtained using the kernel function gWKS = Ct exp
(
−(log t−logλ)2

σ2

)
, which is

a log-normal distribution function that forms a wavelet generating kernel, where Ctk is a normalization

constant and σ2 is the variance of the distribution [14]. Unlike our proposed shape signature, there

is, however, no scaling function for WKS. Therefore, less low-frequency information is used in WKS, as

illustrated in Figure 3.3(b), resulting in a substantial loss of global geometry of shapes. In the middle

row of Figure 3.4, small χ2-distances appear on a large percentage of the surface even when comparing

the reference to a body shape. The advantage of WKS is also vividly depicted in the sense that micro

structures that are different with the local geometry of the reference are detected.

Proposed Signature Revisited: Observed from the reconstruction perspective, the cubic spline kernel

is devised obeying the rules of the wavelet generating kernel function. Therefore, the signal defined on

the surface can be stably recovered, whereas neither HKS nor WKS allows stable recovery. Figure 3.3(c)-

(h) display the cubic wavelet spline kernels and their squared sum function G for different values of the
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resolution parameter R , ranging from 1 to 6. Each value of G indicates the energy contribution from each

frequency, and it also acts as a good tool to visualize the resolution oscillation for each resolution R . The

last row of Figure 3.4 shows our proposed signature with R = 2. As can be seen, the SGWS integrates

the advantages of both HKS (global geometry for discriminative power) and WKS (local geometry for

localization). The former is demonstrated by the body surface colored in red. The χ2-distances are larger

than the horse model. The latter is evidenced by sharply detected features close to the end of the four

legs of the horse. As a whole, that is why we observe that the proposed signature brings steeper color

change within a neighborhood and deeper red on a different shape.

3.5 EXPERIMENTAL RESULTS

To assess the performance of our proposed approach on 3D shape retrieval, we conducted experiments

on two standard benchmarks: SHREC 2010 [80] and SHREC 2011 [81]. Instead of adopting the Gaussian

kernel for the codeword ambiguity modeling [34], we use the traditional L0-norm codebook because

it can evaluate signatures without the effect of the kernel size. Shape comparison is then performed

via the proposed intrinsic spatial pyramid matching (ISPM) in Chapter 2. The key idea of ISPM is to

adopt the level sets of the second eigenfunction of LB operator as cuts to perform surface partition.

ISPM is largely motivated by spatial pyramid matching introduced in [35], which partitions an image

into increasingly fine sub-regions and then computes histograms of local features found inside each

sub-region. For the convenience of comparison, we evaluated the shape retrieval performance using the

Discounted Cumulative Gain (DCG) [79].

3.5.1 SETTINGS

Comparing Signatures: We compared the proposed method with classical spectral signatures, including

SIHKS, HKS and WKS. The SIHKS is chosen because of its excellent performance in the Shape Google

algorithm [34]. The first 150 eigenvalues and eigenvectors of the LB operator on each shape are used. We

experimentally select the best parameters for each signature as well as on each SHREC dataset.

Complexity: As the same settings as 2, We report the results on the simplified mesh dataset. For a set

of approximately 2×105 descriptors, the runtime (in seconds) for a vocabulary with size 32 ranges from

77s for R = 1 to 501s for R = 6. On the other hand, the runtimes for SIHKS, HKS and WKS with their best

parameters are 5702s, 340s and 725s, respectively.
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3.5.2 RESULTS ON SHREC 2010

First, we examine the performance of the SGWS with varying resolutions. In Table 3.1, the best DCG

value of the SGWS matched by bag-of-feature (BoF) is displayed in the row named “Level 0”, and it was

obtained using a resolution R = 2. Interestingly, for R = 2 the proposed shape signature has only 5 ele-

ments, but it achieves a comparably good result. The element represented by the scaling function cap-

tures the global features, whereas the element represented by the spectral graph wavelet function cap-

tures more detailed local features and gives evidence that macro structures dominate the deformable

shape retrieval. This argument is demonstrated again using R = 2, where the best result 0.8635 rises

when only the sub low-frequency band is added. In addition, it can be seen in Table 3.1 that the accuracy

is consistently better than HKS and WKS from R = 2 all the way up to R = 6. We stop at R = 6 for two

main reasons: (i) The higher is the resolution, the more expensive is the computational cost. However,

the performance remains relatively stable; (ii) In Figure 3.3, each value of G indicates the energy contri-

bution of each frequency. The first local minimum close to 0 becomes the global minimum since R = 6,

indicating the end of low-frequency domination.

To summarize, the proposed signature is highly efficient since it yields high accuracy with a very com-

pact representation. Additionally, it is practical due largely to its stable results and simple parameters’

selection.

Next, we examine the behavior of the SGWS with intrinsic spatial pyramid matching using different

pyramid levels ł and different surface partitions. The rows named “Level 1” to “Level 4”, in Table 3.1,

list the DCG performance achieved at different pyramid levels. The improvement of ISPM over BoF is

displayed in the last row of the table, where it can be seen that WKS has improved most significantly

by gaining 0.0354, while SIHKS and HKS are improved slightly by 0.0122 and 0.0083, respectively. This

can be understood as the potential of signatures, independently occupying the frequency band, is well

improved by ISPM. However, WKS still gives the worst result because of its low baseline. The problem

is well-balanced by the SGWS since the critical low-frequency is also incorporated independently. As

expected, the improvement as well as the accuracy of the SGSW are always higher than HKS. On the

other hand, all the signatures are improved considerably as we go from ł = 1 to a multi-level setup. The

proposed SGWS achieves the best result at ł= 2, while the other signatures at ł = 3 or higher.
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TABLE 3.1: Performance (DCG) of different spectral descriptors on SHREC 2010 with
intrinsic spatial pyramid matching.

Level l SIHKS HKS WKS Spectral Graph Wavelet Signature (R)
(Partitions) 1 2 3 4 5 6

0 (1) 0.8719 0.8448 0.7280 0.8124 0.8635 0.8541 0.8454 0.8547 0.8497
1 (2) 0.8734 0.8420 0.7290 0.8172 0.8593 0.8603 0.8498 0.8554 0.8527
2 (4) 0.8793 0.8509 0.7509 0.8789 0.8792 0.8732 0.8681 0.8665 0.8634
3 (8) 0.8817 0.8531 0.7612 0.8781 0.8737 0.8682 0.8651 0.8604 0.8615

4 (16) 0.8841 0.8520 0.7634 0.8687 0.8721 0.8636 0.8640 0.8563 0.8590

Improvement 0.0122 0.0083 0.0354 0.0665 0.0157 0.0191 0.0227 0.0118 0.0137

3.5.3 RESULTS ON SHREC 2011

Table 2.13 gives a breakdown of shape retrieval accuracy for different resolutions R and at different pyra-

mid levels ł. For ł = 0, our best result is 0.8948, which is achieved with resolution R = 2. This significantly

exceeds 0.8262 obtained by SIHKS. The proposed method with other resolutions are very convincing as

well, as shown in Table 3.2. The behavior with ISPM on this database is kind of surprising. The best ac-

curacy of the SGWS is obtained at ł = 4, and the performance rises to 0.9526, which is much higher than

all the signatures in the literature within the framework of diffusion geometry. It can also be observed

that the improvement gains of proposed shape signature via ISPM are also higher than SIHKS and HKS.

This is consistent with the results on SHREC 2010.

TABLE 3.2: Performance (DCG) of different spectral descriptors on SHREC 2011 with
intrinsic spatial pyramid matching.

Level l SIHKS HKS WKS Spectral Graph Wavelet Signature (R)
(Partitions) 1 2 3 4 5 6

0 (1) 0.8262 0.8114 0.6801 0.8043 0.8948 0.8536 0.8731 0.8613 0.8633
1 (2) 0.8436 0.8277 0.7097 0.8419 0.9208 0.8858 0.9002 0.8873 0.8911

4 (16) 0.8671 0.8721 0.7933 0.9203 0.9508 0.9443 0.9526 0.9471 0.9517
7 (128) 0.8771 0.8878 0.8042 0.9132 0.9427 0.9366 0.9383 0.9344 0.9359
9 (512) 0.8793 0.8902 0.8029 0.8982 0.9344 0.9241 0.9319 0.9277 0.9272

Improvement 0.0531 0.0788 0.1241 0.1160 0.0560 0.0907 0.0795 0.0858 0.0884

Figure 3.5 shows the object classes improved or confused by our proposed method. We compare our

shape signature with the state-of-the-art approaches under both BoF and ISPM. Our method succeeds

on most of the classes, such as Birds, Camel, Cat and Dinosaur, etc. The least successful or failed classes

include Ant, Hand, Horse and Flamingo, etc.
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(c) Cubic spline kernel for R = 1 (d) Cubic spline kernel for R = 2
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(e) Cubic spline kernel for R = 3 (f) Cubic spline kernel for R = 4
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(g) Cubic spline kernel for R = 5 (h) Cubic spline kernel for R = 6

FIGURE 3.3: Spectrum modulation using different kernel functions at various reso-
lutions. The dark line is the squared sum function G , while the dash-dotted and the
dotted lines are upper and lower bounds (B and A) of G , respectively.
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FIGURE 3.4: Normalized χ2-distance between a reference point (yellow colored on
the horse’s back left leg) and other surface points using different signatures. Top
row: heat kernel. Middle row: wave kernel. Bottom row: cubic spline wavelet kernel
with R = 2.
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(a) Comparison via BoF. Proposed SGWS (with R = 2) vs. SIHKS.

(b) Comparison via ISPM. Proposed SGSW (with R = 4 and ł = 4) vs. HKS (with ł = 9)

FIGURE 3.5: Improvement gain of the proposed shape signature over HKS and
SIHKS.
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CONCLUSIONS AND FUTURE WORK

This thesis has presented spectral geometric approaches for nonrigid 3D shape retrieval using the

Laplace-Beltrami operator and the graph wavelet transform. We have demonstrated through extensive

experiments the much better performance of the proposed methods in comparison with existing tech-

niques in the literature.

In Section 4.1, the contributions made in each of the previous chapters and the concluding results

drawn from the associated research work are presented. Suggestions for future research directions re-

lated to this thesis are also provided in Section 4.2.

4.1 CONTRIBUTIONS OF THE THESIS

4.1.1 INTRINSIC SPATIAL PARTITION MATCHING

We reviewed and compared five recent spectral descriptors and varied codebook ambiguity models for

nonrigid 3D shape retrieval. It turns out that SIHKS is the most discriminative spectral descriptor, and

that codeword uncertainty yields the best ambiguity modeling ability between codewords, without tak-

ing codeword plausibility into account. By integrating the spatial cues with our proposed intrinsic par-

tition approach, the retrieval performance was significantly improved. The intrinsic spatial pyramid

matching, which works by repeatedly partitioning the surface and computing histograms of spectral de-

scriptors over the resulting subpatches, showed promising results on two standard benchmarks of 3D

models.
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4.1.2 SPECTRAL GRAPH WAVELET SIGNATURE

We introduced a graph wavelet framework for generalized spectral shape signatures. Our proposed ap-

proach provides a general and flexible framework to design shape descriptors for specific applications.

By concentrating on finding informative spectrum for 3D shape retrieval, we devised a surface repre-

sentation that is multiresolution, compact, highly discriminative, and parameter-insensitive. We also

demonstrated through extensive experiments the effectiveness of the SGWS by achieving state-of-the-

art results on two standard repositories of 3D shapes.

4.2 FUTURE RESEARCH DIRECTIONS

Several interesting research directions, motivated by this thesis, are discussed below:

4.2.1 UNIFYING TOPOLOGY AND GEOMETRY

Viewed from the Morse-theoretic perspective, the eigenfunctions of LB operator capture the topological

features of shapes. One potential research direction is to extract the skeleton Reeb graph of a 3D shape

guided by these eigenfunctions. Additionally, integrating the surface geometry into the shape skeleton

would provide a unified intrinsic framework of both topology and geometry for deformable 3D shape

retrieval.

4.2.2 APPLICATIONS OF THE GLOBAL INTRINSIC COORDINATE SYSTEM

Using the second eigenfunction of the LB operator as a global intrinsic coordinate system, intrinsic

versions of many other aggregation-based compact representations popular in image analysis, such as

Fisher vector, can be designed. We intend to explore these constructions in our future work. Moreover,

other applications like texture transfer among isometric shapes can also be improved by the intrinsic

coordinate.

4.2.3 DESIGN OF WAVELET GENERATING KERNELS

In its current form, the proposed SGWS is generated using a cubic spline kernel, and it has been shown to

yield superior performance only with isometric or near-isometric transformations. In the future, we will

look more carefully into the optimal choice of other wavelet generating kernel functions, thus extending

the scope of the SGWS to more general classes of deformations. Additionally, designing appropriate
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signatures for other shape analysis applications such as surface denoising is a promising future work

direction that we plan to explore.

4.2.4 FROM IMAGE PROCESSING TO GEOMETRY PROCESSING

Generally speaking, this thesis provides two bridges to borrow ideas from image processing for geometry

processing, namely the intrinsic global coordinate system and the wavelet framework for shape descrip-

tors’ design. Abstractly, it generalizes methods in the Euclidean space to the weighted graph space, re-

sulting in a fruitful way to understand 3D shapes by extending sophisticated methods in image domain

via these tools. Our future plan is to explore other tools to link these two fields, such as finding a proper

generalization of sparse coding and low rank matrix recovery based methods in the image domain for

3D surfaces.
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