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Abstract

We consider the semiclassical (zero-dispersion) limit of the one-dimensional focusing Nonlinear Schrödinger

equation (NLS) with decaying potentials. If a potential is a simple rapidly oscillating wave (the period

has the order of the semiclassical parameter ε) with modulated amplitude and phase, the space-time plane

subdivides into regions of qualitatively different behavior, with the boundary between them consisting

typically of collection of piecewise smooth arcs (breaking curve(s)). In the first region the evolution of

the potential is ruled by modulation equations (Whitham equations), but for every value of the space

variable x there is a moment of transition (breaking), where the solution develops fast, quasi-periodic

behavior, i.e., the amplitude becomes also fastly oscillating at scales of order ε. The very first point of

such transition is called the point of gradient catastrophe. We study the detailed asymptotic behavior

of the left and right edges of the interface between these two regions at any time after the gradient

catastrophe. The main finding is that the first oscillations in the amplitude are of nonzero asymptotic

size even as ε tends to zero, and they display two separate natural scales; of order O(ε) in the parallel

direction to the breaking curve in the (x, t)-plane, and of order O(ε ln ε) in a transversal direction. The

study is based upon the inverse-scattering method and the nonlinear steepest descent method.
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1 Introduction and main results

The focusing Nonlinear Schrödinger (NLS) equation,

iε∂tq +
1

2
ε2∂2

xq + |q|2q = 0, (1-1)

where x ∈ R and t ≥ 0 are space-time variables, is a basic model for self-focusing and self-modulation e.g.

it governs nonlinear transmission in optical fibers; it can also be derived as a modulation equation for

general nonlinear systems. It was first integrated by Zakharov and Shabat [1] who produced a Lax pair for

it and used the inverse scattering procedure to describe general decaying solutions (lim|x|→0 q(x, 0) = 0)

in terms of radiation and solitons. Throughout this work, we will use the abbreviation NLS to mean

“focusing Nonlinear Schrödinger equation”.

Our interest in the semiclassical limit (ε→ 0) of NLS stems largely from its modulationally unstable

behavior, as shown by Forest and Lee [2], the modulation system for NLS can be expressed as a set of

nonlinear PDE with complex characteristics; thus, the system is ill posed as an initial value problem with

Cauchy data. As a result, initial data

q(x, 0, ε) = A(x)eiΦ(x)/ε, (1-2)

i.e. a plane wave with amplitude modulated by A(x) and phase modulated by Φ(x) are expected to break

immediately into some other, presumably more disordered, wave form when the functions A(x) and Φ(x)

possess no special properties.

However, in the case of an analytic initial data, the NLS evolution displays some ordered structure

instead of the disorder suggested by the modulational instability, as shown by Fig. 1, see [3], [4] and [5].

Fig. 1 from [5] clearly identifies regions where different types of behavior of the solution q(x, t, ε)

appear. These regions are separated by some independent of ε curves in the x, t plane that are called

breaking curves or nonlinear caustics. Within each region, the strong asymptotics of q(x, t, ε) can be

expressed in terms of Riemann Theta-functions to within an error term of order O(ε) that is uniform on

compact subsets of the region ([6] for the pure soliton case and [7] for the general case). In this context,

regions of different asymptotic behavior of q(x, t, ε) corresponds to the different genera of the hyperelliptic

Riemann surface whose Theta-functions enter in the asymptotic description. No error estimates for the

asymptotics on the breaking curve were studied so far, although it was expected that the accuracy should

be of the order O(ε
1
2 ) at any regular point on the breaking curve. A visual inspection of Fig. 1 suggests

that the behavior of q at the tip of the breaking curve is different from the behavior elsewhere on the

breaking curve.

The tip-point is called a point of gradient catastrophe, or elliptic umbilical singularity ([8]).)

The main goal of this paper is to analyze the leading order asymptotic behavior of the solution q(x, t, ε)

on and around the breaking curve except a vicinity of the gradient catastrophe point, and to obtain the

corresponding error estimate. More precisely, we will examine a strip around the breaking curve between

the genus zero and genus two regions, which has the width of order O(ε ln ε).
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Figure 1: Absolute value |q(x, t, ε)| of a solution q(x, t, ε) to the focusing NLS (1-1) versus x, t coordinates

(Reprinted from [5] with permission from Elsevier/North-Holland). Here A(x) = e−x
2

, Φ′(x) = − tanhx
and ε = 0.02.
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1.1 Description of results

The main goal of the paper is to provide a detailed asymptotic analysis in the zero-dispersion (or semi-

classical) limit (ε→ 0) in the neighborhood of the breaking curve, that is, the frontier in (x, t)-space that

separates the region of smooth behavior (genus zero region) from the region of fast oscillations (genus

two region), which is clearly seen on Fig. 1.

The main highlight is an “universal” expression for the behavior of the first oscillations as we egress

from the genus zero region into the genus two one. Here “universality” means that the expression does

not depend upon the details of the initial data, or rather, it depends on it only through a few parameters

that are explicitly computable. In order to give a taste of the expression in consideration we need to

present a minimum of background notation, with more details contained in the body of the paper.

The zero-dispersion limit of (1-1) can be addressed in terms of modulation equations involving one

pair of complex conjugate Riemann invariants, say α, α. The invariant α = α(x, t) (which we choose in

the upper half plane) depends on time/space according to the modulation equations (also called Whitham

equations). The asymptotic behavior for the solution of the NLS equation in the genus zero region is

then provided by [7]

q(x, t) ∼ −b(x, t)e iεΦ(x,t)(1 + o(1)), where (1-3)

α(x, t) = a(x, t) + ib(x, t)

∂xΦ(x, t) = −2a(x, t)

and o(1) denotes some infinitesimal quantity in ε. However, as we leave the genus-zero region, such

approximation breaks down: the term that was infinitesimal o(1) becomes suddenly of finite order and

a different approximation scheme must be employed. The modulation equations alone cannot detect

such sudden change of behavior, since they are equations that are obtained from a formal manipulation.

The modern approach to the problem requires the introduction of a special function, the g-function;

this is a locally analytic function in the complex spectral plane of the associated linear problem. It is

defined in terms of the scattering transform of the initial data: without entering the details we may say

that in our problem the initial data is encoded in a Schwarz-symmetrical analytic function f0(z) (=f0(z)

generically has a jump discontinuity along the real axis). Taking into account the time (t) evolution and

normalization with respect to x, one obtains

f(z) := f(z;x, t) = f0(z)− xz − 2tz2 . (1-4)

The g–function then is obtained as solution of a scalar Riemann–Hilbert problem (RHP) on a free

boundary with the jump f(z) 3.

3This means that the contour where the jump is has to be determined implicitly along the way of the construction of
the solution itself.
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For the reader unfamiliar with the method we may compare the determination of the free-boundary

to the determination of the steepest descent contour for Laplace-type integral. The main requirements

(but this is a severely shortened list, see Section 2 for the details) is that

g+(z) + g−(z) = f(z;x, t) , z ∈ γm (1-5)

where γm is an arc of the said free boundary and the sign in the subscript denotes the left/right boundary

value; moreover g is bounded at infinity and with some growth requirements at the endpoints (if any) of

γm. The function g(z) = g(z;x, t), defined through the above mentioned RHP, must be supplemented by

several inequalities that involve

h(z;x, t) := 2g(z;x, t)− f(z;x, t) , (1-6)

and the sign distribution of its imaginary part =(h). All the functions f, g, h are Schwartz-symmetrical,

in particular h(z;x, t) = h(z;x, t); this means that the sign-distribution requirements in the lower half-

plane are the opposite of those in the upper half, C+.

One of the main requirements is that =(h) in C+ must be positive along the complement γc of

γm within the above-mentioned free-boundary, and must be negative on both sides of γm, the latter

condition implying that =h = 0 on γm. What happens is that one of these particular requirements fails

in certain regions of the (x, t) plane; this is where the zero-dispersion asymptotic behavior of the solution

changes its behavior. The typical phase portrait is depicted in Fig. 4. The boundary between the two

regions consists of points (x, t), for which =(h(z;x, t) = 0 and simultaneously h′(z;x, t) = 0 at some point

z of the spectral plane; we denote by η(x, t) the value of z ∈ C+ satisfying h′(z;x, t) = 0 for all x, t in a

vicinity of the breaking curve. Because of the analyticity of h this point η must be a saddle–point for =h
and h can be written as

h(z;x, t) = S(x, t)− C(x, t)

2i
(z − η)2 +O((z − η)3) . (1-7)

(the factors are just for convenience). Note that the breaking curve is now given by =S(x, t) = 0.

Generically, the second derivative coefficient C(x, t) does not vanish: this corresponds to the smooth part

of the boundary between the two regions in the sketch of Fig. 4. The angular point of the boundary

(where C(x0, t0) = 0) is the so–called point of umbilical gradient catastrophe and will be dealt with

in a forthcoming publication.

The critical value S(x, t) ∈ C plays the first major role in our story: indeed we have

• The function S(x, t) is a local diffeomorphism for x ∈ R, t ∈ R+ with values in C ∼ R2 except at

the point of gradient catastrophe (Lemma 3.2).

• The function S(x, t) maps a tubular neighborhood of the breaking curve not containing the point

of gradient catastrophe diffeomorphically on a tubular neighborhood of the real S–axis (Thm. 3.1).
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This means that we can use =S as a parametrization in a transversal direction to the breaking curve,

while using <S as a parametrization in the parallel direction. The paper focuses on the analysis of such

a tubular neighborhood with a width of order O(ε ln ε); more precisely we introduce the exploration

parameter κ(x, t) (Def. 3.2) by

S(x, t) =
ϑ(x, t)

2
+
i

2
κ(x, t)ε ln ε . (1-8)

The parameter κ is positive on the left breaking curve (negative on the right one, respectively) as we

enter the oscillatory zone (in wavy lines in Fig. 4); a finite value of κ corresponds to an infinitesimal

exploration.

Figure 2: The relative amplitude of the corrected solution to the genus-0 solution. The plot is in the
variables θ,κ and the scale is not uniform. The parameters C, η, etc. were obtained from an explicit genus-
zero solution and are: α = 0.8120825800 + 1.251939783 i , η = −.5422408496 + 1.731859687 i , C =
.2387253889 − .4667042683 i , λ0 = −2.358599870 + 2.555370658 i , ε = 10−10 , x0 = 0.1 , t0 =
0.1570482549. It is actually necessary to set such a small epsilon because for κ ∈ N we have a discontinuity
of order

√
ε, to be expected since this is the order of our approximation and at the integers the correction

we have is of the exact same order of the error. Note that since κ measures distances in the scale
ε| ln ε| while θ in the scale ε, the distance between consecutive “ranges”, should be much longer than the
transversal separation of the peaks. Also the successive ranges are relatively very thin (of order 1/| ln ε|
relative to the longitudinal separation). Therefore the typical size of the hills is ε in all directions while
the separation in the longitudinal direction is ε| ln ε|. This picture is consistent with a full–blown genus-
two regime, where the solution is quasi-periodic at the scale ε: as we progress into the genus-2 region the
separation reduces to the natural scale ε. If we were to plot this in the (x, t) plane, the only difference
would be a linear change of coordinates and the “ranges” would be parallel to the breaking curve. Note
that the picture is strictly periodic in the ϑ direction but only quasi-periodic in the κ direction although
it is almost not discernible in the picture: in fact the subsequent ranges are actually slightly shifted.

The main finding of the paper is the fine structure of the “shock waves” along the breaking curve in

the x, t-plane, clearly visible on Fig. 1. They turn out to be not “uniform”, as one might erroneously
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conclude looking at Fig. 1. As shown on Fig. 2, each wave consists of the sequence of “peaks” or

“teeth” interlaced by “holes” or “depressions”. It is remarkable that the mathematical description of

this phenomenon is quite similar to the description of asymptotic of “colonization” of a new interval by

zeroes of certain orthogonal polynomials in [9, 10]. More precisely:

• the genus zero approximate solution (1-3), continued into the genus-two region, gets a finite order

correction (w.r.t. ε) only for (positive) half–integer values of κ, which correspond to the rows

of “teeth”;

• in between half-integers, the correction is of order O
(
ε

1
2 (dist(κ,Z)−1)

)
;

• the correction term exhibits fast oscillations only in the direction parallel to the breaking curve,

i.e., it depends on ei
ϑ(x,t)
ε and it is periodic in ϑ;

• all the remaining dependence of the correction is slow, namely, it depends on (x, t) at a O(1) scale;

• the formula for the correction term is valid with an error term of order O(
√
ε);

• the only dependence on ε in the correction terms is through the expressions e±i
ϑ(x,t)
ε and ε

1
2 (1−K),

where K = max(0, bκc) with bκc denoting the integer part of κ.

The picture getting painted is that the first oscillation is of finite amplitude and the oscillations form

“mountainous ranges” with flatlands in between of order ε ln ε and peaks separated longitudinally by

distances of order ε. Possibly the most descriptive explanation is contained in Fig. 2, plotted over the

(κ, ϑ) plane which, we remind, is diffeomorphic to a piece of the (x, t) plane around the breaking curve,

with κ growing in the transversal direction (κ and ϑ are not necessarily orthogonal; in fact one could

compute their relative angle easily from (3-3))

While the correction is strictly periodic in ϑ, it is not periodic in κ, despite a superficial inspection

of the picture: neither the formula for the correction nor the picture (at a careful inspection) are periodic

in κ.

The actual formula for the correction term is significantly complicated and it is inconvenient to write

it here: it is contained in Thm. 7.1 and -in quite explicit terms- in Thm. 7.2. The main point that we

observe at this stage is its universality, namely, the fact that it does not depend on the details of the

initial data. To be more specific, it is an expression that contains only C, ϑ,κ, α, η.

Organization of the paper

We start with Section 2 where the essentials about the inverse scattering transform are recalled following

[7]. In this section we summarily go through the transformation of the associated Riemann–Hilbert
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problem along the lines of the Deift–Zhou steepest descent method [11] by introducing the g–function

(Sect. 2.1) and the transformation of the RHP (Sect. 2.2).

Section 3 we analyze the differential geometry of the breaking curve and establish the result that

S(x, t) is a local diffeomorphism onto the spectral plane (Lemma 3.2). We also analyze the large-time

behavior of S(x, t) along such breaking curve (Sect. 3.1).

In Section 4 we start the detailed construction of the approximation to the RHP: the description

is made in two steps, mainly for pedagogical reasons. In the first step we provide a leading order

approximation to the problem and show that the error term fails necessarily to tend to zero as ε→ 0 for

positive half–integer values of κ (eq. 4-39). This prompts the necessity of a higher order approximation

scheme, contained in Sect. 5.

The analysis is done firs on the right branch of the breaking curve and hence should be repeated for

the left branch; this is done in Sect. 6. The finding is that the situation is different only in some setup,

but the essence of the formulas and of the phenomenon is identical.

The paper culminates in Sect. 7 where we provide the final formulæ for the leading and subleading

terms asymptotic behavior of the NLS solution (Thm. 7.1, Thm. 7.2). We also provide a short discussion

about the large-time behavior (along the breaking curve) of the solution.

2 A short review of the zero dispersion limit of the inverse scat-
tering transform

Given an initial data (potential) q(x, 0) for the (1-1) that is decaying as x → ±∞, the direct scattering

transform for the NLS ([1]) produces the scattering data, namely: the reflection coefficient r0(z, ε) and

the points of discrete spectrum together with their norming constants (solitons). The time evolution of

the scattering data is simple and well-known. Thus, to find the evolution of a given potential at some

time t, one needs to solve the inverse scattering problem at the time t. Equivalently, we can stipulate

that the initial data is assigned directly through the scattering data; thus, one can produce a solution

to the NLS (1-1) by choosing some scattering data and solving the inverse scattering problem for t = 0

(initial data) and for t > 0 (evolution of the initial data). The latter approach allows one to avoid solving

the direct scattering problem and addressing many delicate issues associated with it (see [12] for more

details). Since we are interested in studying the generic structure of solutions of the NLS in the transition

regions, it will be convenient for us to define a solution to the NLS (1-1) by its scattering, not by its

initial, data.

In considering the semiclassical limit of (1-1), one has to consider the semiclassical limit of the corre-

sponding scattering transform. For the case of decaying potentials of type (1-2), this limit was discussed

in [13] (inverse scattering) and [12] (direct scattering), where it was shown to be a correspondence between

α(x, t) = −1

2
Φx(x) + iA(x, t) (2-1)
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on the potential side and

f(z) = f0(z)− xz − 2tz2 (2-2)

on the scattering side. Here t ≥ 0 is fixed and f0(z) has the meaning of the “scaled” logarithm of the

reflection coefficient r0(z, ε) that corresponds to the initial data (1-2), that is,

f0(z) =
i

2
lim
ε→0

εr0(z, ε) . (2-3)

For example, the limiting f0(z) that corresponds to the potential cosh(x)e
2i
ε tanh x+iπ, is given by (see [7])

f0(z) = (1− z)
[
i
π

2
+ ln(1− z)

]
+ z ln z + ln 2 +

π

2
ε, when =z ≥ 0. (2-4)

Moreover, if x(α) denotes the inverse function to α(x, t), at t fixed, then x(α) and f0(z) are connected

through some Abel type linear integral transform, see details in [12].

Since we have taken the perspective that we are starting with the scattering data of the form r0(z, ε) :=

e−
2i
ε f0(z) we shall assume that ([13]):

• f0(z) is analytic in the upper half-plane and has a continuous limit on R;

• f0(z) = O(z) as z →∞;

• there exists an interval (µ−, µ+) ⊂ R such that =f0(z) > 0 for z ∈ (µ−, µ+) and =f0(z) < 0 for

z ∈ (−∞, µ−) ∪ (µ+,∞);

• =f0(z), z ∈ R, has simple zeroes at µ± and its values are separated from zero outside neighborhoods

of µ±.

Due to the Schwarz-symmetry of the scattering data for the NLS, f0(z) is also a Schwarz-symmetrical

function, i.e., f0(z̄) = f0(z); generically, =f0(z) has a jump across the real axis. The above assumptions

are not overly restrictive: it was shown that in the case of a solitonless potential the formula (2-3) yields

such an f0(z) after some process of analytic extension, or “folding” of certain logarithmic branch-cuts

onto the real axis. In fact, for our goals it is sufficient to replace the analyticity requirement by a weaker

condition: the contours of the RHP for the g-function (which will be introduced in the next section)

always lie within the domain of analyticity of f0(z) in C+. Generically, r0(z) has a jump discontinuity

along the real axis due to the discontinuity in =f0.

At any time t, the inverse scattering problem for (1-1) (in the solitonless case) with a fixed (not

infinitesimal) ε is reducible to the following matrix RHP.

Problem 2.1 Find a matrix Γ(z) analytic in C \ R such that

Γ+(z) = Γ−(z)

[
|r0|2 + 1 r0e−

2i
ε (2tz2+xz)

r0e
2i
ε (2tz2+xz) 1

]
, z ∈ R, (2-5)

Γ(z) = 1 +
1

z
Γ1 +O(z−2) , z →∞. (2-6)
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(In the case with solitons, there are additional jumps across small circles surrounding the points of discrete

spectrum.) Then

q(x, t, ε) := −2 (Γ1)12 (2-7)

is the solution of the initial value problem (1-1) for the NLS equation.

The jump matrix for the RHP admits the factorization[
|r|2 + 1 r

r 1

]
=

[
1 r
0 1

] [
1 0
r 1

]
, (2-8)

where r = r(z;x, t) = r0(z)e
2i
ε (2tz2+xz).

Inspection of the RHP shows that the matrix Γ(z)∗ (where ? stands for the complex–conjugated,

transposed matrix) solves the same RHP with the jump matrix M(z) replaced by M−1(z) and hence

Proposition 2.1 The solution Γ(z) of the RHP for NLS has the symmetry

Γ(z)(Γ(z))∗ ≡ 1 . (2-9)

In order to study the dispersionless limit ε→ 0, the RHP (2-5)-(2-6) undergoes a sequence of transfor-

mations (that are briefly recalled in Section 2.2) along the lines of the nonlinear steepest descent method

[14, 7], which reduce it to an RHP that allows for an approximation by the so-called model RHP. The

latter RHP has piece-wise constant jump matrices (parametrically dependent on x, t) and, in general, can

be solved explicitly in terms of the Riemann Theta functions, or, in simple cases, in terms of algebraic

functions. The g-function, defined below, is the key element of such a reduction.

2.1 The g-function

Given f0(z), we introduce the g-function g(z) = g(z;x, t) as the solution to the following scalar RHP:

1. g(z) is analytic (in z) in C̄ \ γm (including analyticity at ∞);

2. g(z) satisfies the jump condition

g+ + g− = f0 − xz − 2tz2 on γm, (2-10)

for x ∈ R and t ≥ 0, and;

3. g(z) has the endpoint behavior

g(z) = O(z − α)
3
2 + an analytic function in a vicinity of α. (2-11)

Here:
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• γm is a bounded Schwarz-symmetrical contour (called the main arc) with the endpoints ᾱ, α, ori-

ented from ᾱ to α and intersecting R only at µ+;

• g± denote the values of g on the positive (left) and negative (right) sides of γm;

• the function f0 = f0(z), representing the initial scattering data, is Schwarz-symmetrical and Hölder-

continuous on γm.

Taking into the account Schwarz symmetry, it is clear that behavior of g(z) at both endpoints α and ᾱ

should be the same.

Assuming f0 and γm are known, the solution g to the scalar RHP (2-10) without the endpoint condition

(2-11) can be obtained by the Plemelj formula

g(z) =
R(z)

2πi

∫
γm

f(ζ)

(ζ − z)R(ζ)+
dζ , (2-12)

where R(z) =
√

(z − α)(z − ᾱ). We fix the branch of R by requiring that limz→∞
R(z)
z = 1. If f0(z) is

analytic in some region S that contains γm \ {µ+}, the formula for g(z) can be rewritten as

g(z) =
R(z)

4πi

∫
γ̂m

f(ζ)

(ζ − z)R(ζ)+
dζ , (2-13)

where γ̂m ⊂ S is a negatively oriented loop around γm (which is “pinched” to γm in µ+, where f is not

analytic) that does not contain z. Introducing function h = 2g − f we obtain

h(z) =
R(z)

2πi

∫
γ̂m

f(ζ)

(ζ − z)R(ζ)+
dζ , (2-14)

where z is inside the loop γ̂m. The endpoint condition (2-11) can now be written as

h(z) = O(z − α)
3
2 as z → α, (2-15)

or, equivalently, ∫
γ̂m

f(ζ)

(ζ − α)R(ζ)+
dζ = 0 . (2-16)

The latter equation is known as a modulation equation. The function h plays a prominent role in this

paper. Using the fact that the Cauchy operator for the RHP (2-10) commutes with differentiation, we

have

h′(z) =
R(z)

2πi

∫
γ̂m

f ′(ζ)

(ζ − z)R(ζ)+
dζ , (2-17)

where z is inside the loop γ̂m.

In order to reduce the RHP (2-5)-(2-6) to the RHP with piece-wise jump matrices, called the model

RHP, the signs of =h(z) in the upper half-plane should satisfy the following conditions:
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• =h(z) is negative on both sides of the contour γm;

• there exists a continuous contour γc (complementary arc) in C+ that connects α and µ−, so that

=h(z) is positive along γc. Since =h(z) > 0 on the interval (−∞, µ−), the point µ− in γc can be

replaced by any other point of this interval, or by −∞.

Note that the first sign requirement, together with (2-10), imply that =h(z) = 0 along γm. Since the

signs of =h(z) play an important role in the following discussion, we call by “sea” and “land” the regions

in C+, where =h(z) is negative and positive respectively. In this language, the complementary arc γc

goes on “land”, whereas the main arc γm is a “bridge” or a “dam”, surrounded by the sea, see Fig. 3.

2.2 Reduction to the model RHP

We start the transformation of the RHP (2-5)-(2-6) by deforming (preserving the orientation) the interval

(−∞, µ+) , which is a part of its jump contour, into some contour γ+ in the upper half-plane C+, such

that µ+ ∈ γ+. Let γ− be the Schwarz symmetrical image of γ+. Using the factorization (2-8) the RHP

(2-5)-(2-6) can be reduced to and equivalent one where:

• the right factor of (2-8) is the jump matrix on γ+;

• the left factor of (2-8) is the jump matrix on γ−;

• the jump matrix on the remaining part of R is unchanged.

It will be convenient for us to change the orientation of γ+, which causes the change of sign in the off-

diagonal entry of the corresponding jump matrix. On the interval (µ+,∞) we have =f0(z) < 0 and it

appears that the jump is exponentially close to the identity jump and hence it is possible to prove that

it has no bearing on the leading order term of the solution (2-7) (as ε→ 0: see [7] for the case when f0

is given by (2-4) and [13] for the general case). Therefore the leading order contribution in (2-7) comes

from the contour γ = γ+ ∪ γ−. In the genus zero case, the contour γ contains points α, ᾱ, which divide it

into the main arc γm (contained between ᾱ and α, and the complementary arc γc = γ \γm. According to

the sign requirements (2.1), the contour γm is uniquely determined as an arc of the level curve =h(z) = 0

(bridge) that connects µ+ and α, whereas γc can be deformed arbitrarily “on the land”. Because of the

Schwarz symmetry 2.1, it is sufficient to consider γ only in the upper half-plane, i.e., it is sufficient to

consider γ+.

Having found the branch-point α, the g-function g(z) and the contour γm, we introduce additional

contours customarily called “lenses” that join α to µ+ on both sides of γm (and symmetrically down

under). These lenses are to be chosen rather freely with the only condition that =h must be negative

along them (positive in C−). This condition is guaranteed by (2.1).
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The two spindle-shaped regions between γm and the lenses are usually called upper/lower lips (relative

to the orientation of γm. At this point one introduces the auxiliary matrix-valued function Y (z) as follows

Y (z) = e−
2i
ε g(∞)σ3Γ(z)


e

2i
ε g(z)σ3 outside the lips,

e
2i
ε g(z)σ3

[
1 −e−

2i
ε h(z)

0 1

]
in the upper lip in C+,

e
2i
ε g(z)σ3

[
1 e−

2i
ε h(z)

0 1

]
in the lower lip in C+.

(2-18)

The definition of Y (z) in C− is done respecting the symmetry in Prop. 2.1, namely

Y (z) = (Y (z)?)−1, z ∈ C−. (2-19)

The jumps for the matrix Y (z) are reported in Fig. 3.

[
0 1
−1 0

]
[
1 −e− 2i

ε h

0 1

]

[
1 −e− 2i

ε h

0 1

][
1 0

−e 2i
ε h 1

]

α

1
η

Figure 3: The jumps for the RHP for Y . The shaded region is where =h < 0 (the “sea”). The blue
contour is the main arc γm, the black contour in C+ is the complementary arc γc and the red contours
are the lenses.

The model RHP. In the limit ε→ 0, according to the signs (2.1), the jump matrices on the comple-

mentary arc γc and on the lenses are approaching the identity matrix 1 exponentially fast. Removing

these contours from the RHP for Y (z), we will have only one remaining contour γm with the constant

jump matrix

[
0 1
−1 0

]
on it. This is the model RHP. Calculating the (1,2) entry of the residue at
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infinity (see (2-7)) of the solution to the model RHP, one obtains the leading order term of the genus

zero solution as follows ([7])

q0(x, t, ε) = =α(x, t)e−
2i
ε

∫ x
0
<α0(s,t)ds ; (2-20)

To justify removing contours with exponentially small jump matrices, one has to calculate the error

estimates coming from neighborhoods of points α, ᾱ and µ+ (for α and µ+, these neighborhoods are

shown as green circles in Fig. 3). This is often done through the local parametrices. We shall consider the

construction of the parametrices near these points as already done and known to the reader. We refer to

the literature [7, 14]. The only information that we need is that these parametrices allow to approximate

the exact solution to within an error term E(z) = 1 +O(ε).

3 The analysis near the right breaking curve for NLS

When x, t is on the breaking curve the asymptotic solution to NLS is about to change its genus. Although

the phenomenon described in this paper is typical for any increase of genus, we will focus on the first

break, i.e., on the transition from genus from 0 to genus 2. This happens by either:

• creating a new band (right breaking curve in Fig. 4);

• splitting an existing band (left breaking curve in Fig. 4).

Let (x0, t0) be on the (smooth part of the) breaking curve; this implies that there is η ∈ C+

=h(η, x0, t0) = 0 , h′(η(x0, t0), x0, t0) = 0 , C = C(x0, t0) := −ih′′(η(x0, t0), x0, t0) 6= 0, (3-1)

where prime denotes derivative with respect to the spectral parameter z; moreover, =h(z, x0, t0) has the

required signs (2.1) on both sides of main (bands) and complementary (gaps) arcs. We keep notation

h(z;x, t) for extension of h(z;x0, t0) in a small neighborhood of (x0, t0) even if the sign-distribution

requirements (2.1) are not satisfied.

Definition 3.1 We denote the critical value

S(x, t) := h(η(x, t), x, t), (3-2)

which satisfies =S(x0, t0) = 0.

We will now show that S(x, t) is locally a diffeomorphism from the (x, t) plane near the smooth part

of the breaking curve, into the complex S–plane. From [7], formula (4.46), we have

hx(z) = R(z) , ht(z) = 2(z + a)R(z) , R(z) =
√

(z − α)(z − α), (3-3)
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t

x

Figure 4: The typical zero-dispersion phase diagram for a one-hump initial data. Representative at
different points in the (x, t)–plane are the level-curves of =(h). The genus-zero region in the (x, t)–plane
is the lighter area, while the wedge–shaped area is the genus 2 region. Only the upper-half spectral plane
is depicted. The shape of the level curves was obtained numerically on a simple example.

where the square root is chosen to have the behavior R(z) ∼ z near infinity (this is the opposite branch

compared to the one used in [7]) and analytic off the main arc. Since (by definition of η) h′(η) = 0 we

have that the partial and total derivatives of S(x, t) = h(η(x, t), x, t) coincide and hence

Sx = R(η) , St = 2(η + <(α))R(η) . (3-4)

We also have

Lemma 3.1 (Lemma 4.5 in [7]) For t ≥ 0 and for any x ∈ R

• the function =hx(z) = =R(z) is strictly positive in the upper half-plane except for the finite region

enclosed between the main arc and the vertical segment [α, a].

• The inequality =ht(z) = 2=(z + a)R(z) holds for |z| large enough and to the left of the zero level

curve of =ht(z) that emanates from α. It changes sign when crossing this curve or the main arc.

In addition to this we will show that

Lemma 3.2 The function S(x, t) is a local diffeomorphism for x ∈ R, t ∈ R+ with values in C ∼ R2

except at the point of gradient catastrophe.
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Proof. The Jacobian of the map S(x, t) is

J(x, t) = det

[
<Sx <St
=Sx =St

]
= <Sx=St −<St=Sx = =

[
SxSt

]
= 2=(η + a)|R(η)|2 =

= 2=(η)|R(η)|2. (3-5)

Thus the Jacobian does not vanish on the upper half-plane and S is a diffeomorphism as long as η 6= α.

Q.E.D.

Theorem 3.1 Assume that on the breaking curve t(x) there is a unique gradient-catastrophe point

(x0, t0), i.e., η(x0, t0) = α(x0, t0). Then, outside of any (small) neighborhood of the gradient-catastrophe

point (x0, t0), the function S(x, t) maps a strip-like neighborhood of the left breaking curve diffeomorphi-

cally to a strip around the negative real S–axis with the genus 2 phase mapped to =S > 0, while it maps

a corresponding neighborhood of the right breaking curve to a strip around the positive real S–axis, with

the genus 2 phase mapped to =S < 0.

Proof. The full derivative of S along the breaking curve t(x) is

d

dx
S(x, t) =

d

dx
h(η(x, t), x, t(x)) = h′(η, x, t)ηx + hx(η, x, t) + ht(η, x, t)t

′(x) =

= hx(η, x, t) + ht(η, x, t)t
′(x) 6= 0. (3-6)

The vectors hx(z), ht(z) in C are not parallel to each other for any z ∈ C+ \ {α}. But S(x, t) is a real-

valued function along t(x), so d
dx<S(x, t) 6= 0. Since S(x0, t0) = 0 and S(x, t(x))→ +∞ as x→ +∞ (see

(3-18), the right branch of the breaking curve is mapped onto the positive real axis of S. Similarly, the

left branch of the breaking curve is mapped onto the positive real axis of S. The required sign distribution

of =S(x, t) in the genus two region follows from diagrams at Figure 4. Q.E.D.

According to Thm. 3.1, the real S-axis (up to a small neighborhood of the origin) is diffeomorphic to

the two branches of the first breaking curve.

We will consider mostly the right-breaking curve, leaving the (not too different) analysis of the left-

breaking curve to later: the genus 2 region corresponds to negative values of =S. We want to “explore”

the genus-two region within a scale ε| ln ε| and hence we introduce below a conveniently normalized

exploration parameter κ.

Definition 3.2 (Exploration parameter) We define the two functions ϑ(x, t), κ(x, t) by the relation

2S(x, t) = ϑ(x, t) + iκε ln ε (3-7)

This equation defines implicitly a foliation of the a neighborhood of (x0, t0). The breaking curve is defined

by the equation κ = 0 and ϑ serves as a parametrization of it, thanks to Lemma 3.2. The scaling in (3-7)
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means that κ parametrizes an infinitesimal strip-like neighborhood of the breaking curve with a width

of order ε ln ε.

We will write

2ih(z) = −C(z − η)2(1 +O(z − η)) + 2iS , η = η(x, t), S := S(x, t), C := C(x, t). (3-8)

The complementary arc γc that goes through η can be deformed so that – in a finite neighborhood of η –

<(h(z)− S) ≡ 0 when z ∈ γc. (3-9)

Definition 3.3 (Scaling local coordinate) Define

ζ :=

√
−2i

ε
(h(z)− S) (3-10)

where the root is chosen so that the complementary arc <(h − S) ≡ 0 is mapped to the real ζ–axis with

the natural orientation.

The jump on the gap (complementary arc) that goes through η0 is

Y+ = Y−

[
1 0

−e
2i
ε h(z) 1

]
= Y−

[
1 0

−e−ζ
2+ 2iS

ε 1

]
= Y−

[
1 0

−ε−κe−ζ
2− 2i<(S)

ε 1

]
=: Y−

[
1 0

−ε−κe−ζ
2+iϑε 1

]
(3-11)

Note that the oscillatory term eiϑ/ε is not problematic because it has constant modulus, but the term

ε−κ diverges for κ > 0.

3.1 Long time asymptotics of S(η) along the breaking curve

Let us recall that the scattering data f0(z) is analytic in C+ (solitonless case) and that the corresponding

w(z) = =f0(z)sign(z−µ+), restricted to z ∈ R, is admissible in the sense of [13]. We recall that the gist of

the notion of admissibility for w is that |r0(z)| has exponential growth on the interval (µ−, µ+) as ε→ 0,

exponential decay outside [µ−, µ+], and w is piece-wise continuously differentiable with w′(µ±) 6= 0. As

it was mentioned above, the condition of the absence of solitons is not essential if the contour γ of the

matrix RHP can be chosen so that it does not intersect singularities of f0(z).

Under the above assumptions and using (2-17), (2-14), the system of equations for the point η = η(x, t)

and the breaking curve t = t0(x) can be written as

4t+
1

π

∫ ∞
−∞

w′(ζ)dζ

(ζ − η)|R(ζ)|
= 0 (3-12)

=
{
R(η)

[
2t(η + a) + x+

1

π

∫ ∞
−∞

w(ζ)dζ

(ζ − η)|R(ζ)|

]}
= 0 . (3-13)
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According to [13], Sect. 3.4, this system implies that the right branch of the breaking curve has the

asymptotics

t(x) = − 1

4µ−
x+O(1) , x→ +∞ (3-14)

and correspondingly

η =
(
µ− +O(t−1)

)
+ i

(
w′(µ−)

4t
[1 + o(1)]

)
, t→∞. (3-15)

Moreover it was shown in Lemma 3.6 [13] that the branch-point α(x, t) approaches µ+ as x, t→∞ along

the right branch of the breaking curve according to the following asymptotic formula

b := =α = e
2πt(µ+−µ−)

w′(µ+)
+O(1)

. (3-16)

The two later equations, together with Proposition 4.3 from [15], applied to

h(η) = R(η)

[
2t(η + a) + x+

1

π

∫ ∞
−∞

w(ζ)dζ

(ζ − η)|R(ζ)|

]
(3-17)

yield

S(η) ∼ 4tµ−(µ− − µ+) (3-18)

as η →∞ along the right branch of the breaking curve. Using

h′′(η) =
R(η)

2πi

∫
γ̂m

f ′(ζ)

(ζ − η)2R(ζ)+
dζ , (3-19)

we can, in a similar way, calculate

C(x, t) ∼ −4it (3-20)

along the right branch of the breaking curve. Similar asymptotic analysis can be done for the left branch

of the breaking curve.

In the case of f0(z) given by (2-4), using the explicit expression for h′′(z) given in [7], Section 4.5, we

obtain

S(η) = −2tR(η) [η + a] + sinh−1 η − a
b
− iπ

2
. (3-21)

4 First approximation

4.1 Outer parametrix

The construction of the outer parametrix, namely, the solution of the model problem in Section 2.2, is

accomplished along the lines of [9]. The outer parametrix (aka model problem) is the unique solution of

the RHP

Ψ+(z) = Ψ−(z)

[
0 1
−1 0

]
on (α, α) (4-1)

Ψ(z) = O((z − α)−
1
4 ) Ψ(z) = O((z − α)−

1
4 ) (4-2)

Ψ(z) = 1 +O(z−1), z →∞. (4-3)
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Ψ(z) is explicitly given by (4-13) below. Following the ideas in [9] we introduce the so–called Schlesinger

transformation of the model problem

Problem 4.1 (Schlesinger-chain of model problems) Find a matrix Ψ
K

(z) analytic off [α, α] ∪
{η, η}, η 6∈ [α, α], such that

Ψ
K+(z) = Ψ

K−(z)

[
0 1
−1 0

]
on (α, α) (4-4)

Ψ
K

(z) = O((z − α)−
1
4 ) Ψ

K
(z) = O((z − α)−

1
4 ) (4-5)

Ψ
K

(z) = 1 +O(z−1) , z →∞ (4-6)

Ψ
K

(z) = O(1)(z − η)−Kσ3 , z → η (4-7)

Ψ
K

(z) = O(1)(z − η)Kσ3 , z → η. (4-8)

We have formulated the problem assuming that there is only one main arc (cut) but the modifications in

the case of multiple arcs is straightforward (see [9]); the main point is that we have modified the model

problem only by adding the behavior (4-7) and (4-8) near the points where a new cut is about to emerge.

Uniformization of the plane without the cut. Consider the complex z–plane with a slit on the

segment [α, α]. It is elementary to show that the map

z(λ) =
α− α

4i

(
λ− 1

λ

)
+
α+ α

2
=
b

2

(
λ− 1

λ

)
+ a, (4-9)

λ–plane

z–plane

α
η

η
α

λ0

λ0

1
λ0

1
λ0

i

−i

Figure 5: The uniformizing plane: the
shaded region is the unphysical sheet.

where α = a+ib, maps univalently and biholomorphically the

outside of the unit disk in the λ-plane {|λ| > 1} to C \ [α, α],

with the unit λ-circle being mapped onto the segment two-

to-one. The points λ = ±i are mapped to α, α respectively.

If we choose another (simple) curve joining α to α then its

counter-image in the λ-plane will be some deformed curve

passing through λ = ±i and encircling the λ–origin. Note

the symmetry

z(−λ−1) = z(λ). (4-10)

Therefore the outside and inside of |λ| = 1 are conformally

mapped to two copies of z ∈ C \ [α, α]. We will refer to

the region |λ| > 1 as the physical sheet, as opposed to the

unphysical sheet |λ| < 1.

The points z = η, η have unique pre-images λ0, λ0 on the

physical sheet

z(λ0) = η , z(λ0) = η , |λ0| > 1. (4-11)

We then have
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Proposition 4.1 The solution of the RHP (4.1) exists (unique) for any K ∈ Z and it is given by

Ψ
K

=

(
λ0

λ0

)Kσ3

Ψ
0
(z)

(
λ− λ0

λλ0 + 1

)−Kσ3
(
λ− λ0

λλ0 + 1

)Kσ3 ∣∣∣
λ=λ(z)

, (4-12)

where λ(z) is the determination on the physical sheet of z ∈ C \ [α, α] and λ0 (defined in (4-11)) is the

counter-image of η on the physical sheet. The matrix Ψ
0

is given by

Ψ
0
(z) :=

1

2

[
−i −1
1 i

](
z − α
z − α

)σ3/4 [ i 1
−1 −i

]
=

(
z − α
z − α

)σ2/4

. (4-13)

Proof. It is well known that the matrix Ψ
0

solves the RHP

for K = 0. Since the interchange of sheets corresponds to the map λ 7→ − 1
λ one immediately verifies that

the Szegö function

D(z) :=
λλ0 + 1

λ− λ0

λ− λ0

λλ0 + 1
(4-14)

satisfies D+(z)D−(z) = 1 on the cut, and limz→∞D(z) = λ0

λ0
. This is the reason for the left normalization

in eq. 4-12. Q.E.D.

In terms of λ = λ(z), the matrix Ψ
0

is given by

Ψ0(z) =
1√

λ2 + 1
(λ1− iσ2) =

1√
λ2 + 1

[
λ −1
1 λ

]
(4-15)

Remark 4.1 Since z−a
b =

(
λ− 1

λ

)
, the uniformizing variable λ is related with the hyperbolic variable v,

defined by sinh v = z−a
b from Sect. 4.5, [7],through λ = ev. Thus,

λ(z) = ev =
z − a+R(z)

b
, (4-16)

where the square root R is chosen so that λ(z) is on the physical sheet.

Lemma 4.1 The matrices Ψ
K

are related by

Ψ
K+1

(z) = R
K

(z)Ψ
K

(z) , R
K

(z) = 1− CK
z − η

− ĈK
z − η

, R−1
K = 1− QK

z − η
− Q̂K
z − η

(4-17)

Proof. The matrices ΨK all have the same jumps and the same asymptotic behavior at the branch-

points α, α and at infinity. Thus RK := Ψ
K+1

Ψ−1
K

is a holomorphic matrix (without jumps) with possibly

isolated singularities only at η, η. The asymptotic behaviours of Ψ
K+1

and Ψ
K

at these two points imply

that RK may have at most simple poles there. The same reasoning can be applied to Ψ
K

Ψ−1
K+1

, whence

the formula for R−1
K . Q.E.D.

It is possible to give explicit formulæ for the matrices CK , ĈK , QK , Q̂K in terms of the columns of

ΨK but they are of no immediate interest.
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4.1.1 Reality

The matrices ΨK(z) can be written as

Ψ
K

(z) = ΦK(z)(z−η)−Kσ3 =

[
AK(z),BK(z)

]
(z−η)−Kσ3 = Φ̂K(z)(z−η)Kσ3 =

[
ÂK(z), B̂K(z)

]
(z−η)Kσ3

(4-18)

where the columns AK ,BK are analytic at z = η and, respectively, the columns ÂK , B̂K are analytic at

z = η.

Note that, since det ΨK ≡ 1, we have

det

[
AK(z),BK(z)

]
≡ 1 ≡ det

[
ÂK(z), B̂K(z)

]
. (4-19)

Due to the symmetry of Prop. 2.1 we have

ΨK(z)(ΨK(z))† ≡ 1 , (4-20)

which implies ΦK(z)(ΦK(z))† ≡ 1 or

[AK(z),BK(z)] ≡
([

ÂK(z), B̂K(z)
]†)−1

. (4-21)

This is promptly shown to translate into the relations

AK(z) ≡
(

0 1
−1 0

)
B̂K(z) , BK(z) ≡

(
0 −1
1 0

)
ÂK(z) , (4-22)

or

ΦK(z) = σ2Φ̂K(z)σ2, (4-23)

which is equivalent to ΦK(z)(ΦK(z))† ≡ 1. Similar considerations lead to

Φ′K(z) = σ2Φ̂′K(z)σ2 , σ2 :=

[
0 −i
i 0

]
(4-24)

We will denote by AK the value AK(η), and similarly

AK := AK(η) , BK := BK(η) , A′K := A′K(z)|z=η , B′K := B′K(z)|z=η , (4-25)

ÂK := ÂK(η) , B̂K := B̂K(η) , Â′K := Â′K(z)|z=η , B̂′K := B̂′K(z)|z=η . (4-26)

This implies the following relations, which will be of use at a later stage in the paper

det [A′K ,AK ] = det
[
B̂′K , B̂K

]
det [B′K ,BK ] = det

[
Â′K , ÂK

]
,

det
[
ÂK ,BK

]
= B†KBK > 0 det

[
AK , B̂K

]
= A†KAK > 0 . (4-27)

These quantities are computed explicitly in App. A

21



4.2 Local parametrices near η, η and first approximation to the solution

We only consider the point η, with similar considerations being repeated for η. The local parametrix

must solve the following mixed RHP where the adjective “mixed” means that the requirements are for

both columns and rows:

H
K+(z) = H

K−(z)

[
1 0

−ε−κeiθ/εe−ζ
2

1

]
; (4-28)

H
K

(z) = (z − η)Kσ3O(1) ; (4-29)

H
K

(z) = 1 + o(1) , z ∈ ∂D , (4-30)

where o(1) above means an infinitesimal in ε, uniform w.r.t. z when z belongs to the boundary of the

disk. When necessary to specify the values of the parameters κ, ϑ we will write

H
K+(z) = H

K+(z;κ, ϑ) . (4-31)

4.3 Approximate solution and error analysis

Suppose that we are able to solve the mixed RHP in (4-30) and define the following matrix

Ỹ (z) :=


ΨK(z) outside of the local disks ,

ΨK(z)HK(z) within the disks at η, η ,

ΨK(z)A(z) within the disks at α, α ,

(4-32)

where A(z) is the usual Airy-parametrix [14]. Note that the matrix ΨK(z)HK(z) is bounded in a

neighborhood of η because the singular behavior of the columns of ΨK (4-7) is exactly canceled by the

singular behavior (4-29) of the rows of HK . In order to evaluate how close the matrix Ỹ (z) is to the

matrix Y (z) we take their ratio

E(z) := Y (z)Ỹ (z)−1 (4-33)

and consider the RHP it solves:

E(z) ∼ 1 +O(z−1), E+(z) = E−(z)W (z) , (4-34)

Figure 6: The con-
tours for the RHP
of the error term (in
C+).

where W (z) is a matrix supported on the contours indicated in Fig. 6. In

particular, on the boundary of the disk D centered at η we have

E+(z) = E−(z)ΨKHK(z)Ψ−1
K (z) , z ∈ ∂D . (4-35)

Since ΨK are uniformly bounded for z ∈ ∂D as ε→ 0 (in fact they are independent

of ε), it follows that the jump of E on ∂D is 1 + o(1), where this is the same
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infinitesimal that appears in eq. (4-30) (and we will promptly see below that this desired infinitesimal

is not such when κ is a half–integer, thus requiring a more refined approach). The usual theorem about

Riemann–Hilbert problems with small-norm jumps imply that E(z) is uniformly close to the identity to

within the same infinitesimal.

We will see in Section 4.4 that it is possible to solve the local problem for HK formulated above with

o(1) = O(ε
1
2−|κ−K|) and hence:

• the integer K must be chosen as the nearest positive integer to κ;

• it is impossible to solve the problem as formulated for a half-integer κ = 1
2 +N , where N ∈ N.

We will show below how to solve the problem as formulated, why it is impossible to solve in those

exceptional situation and how to circumvent the problem.

4.4 Solution of the local RHP for HK (4-28).

Let H`(s) be the monic Hermite polynomials of degree `:∫
R
H`(s)H`′(s)e

−s2ds =
`!
√
π

2`
δ``′ =: µ`δ``′ , H`(s) := (−2)−`es

2 d`

ds`
e−s

2

. (4-36)

We define the local parametrix as

HK(ζ) := e−i
ϑ
2εσ3ε

κ
2 σ3ζKσ3


−1

µK−1

∫
R

HK−1(s)e−s
2

s− ζ
−2iπ

µK−1
HK−1(ζ)

1

2iπ

∫
R

HK(s)e−s
2

ds

s− ζ
HK(ζ)

 ε−κ
2 σ3ei

ϑ
2εσ3

=e−i
ϑ
2εσ3


−ζK

µK−1

∫
R

HK−1(s)e−s
2

ds

s− ζ
−2iπζKεκ

µK−1
HK−1(ζ)

ζ−Kε−κ

2iπ

∫
R

HK(s)e−s
2

ds

s− ζ
HK(ζ)

ζK

 ei
ϑ
2εσ3 (4-37)

(4-38)

Boundedness. The matrix ΨKHK is bounded in D, because of the ζKσ3 factor in (4-37) cancels out

the singularity of ΨK (4-7).

Error estimate. Recall that for z ∈ ∂D the zooming coordinate ζ scales like 1√
ε
. Therefore the

matrix HK on the boundary of the disk D has the following behavior uniformly w.r.t. z

HK =

[
1 +O(ε) O(ε

1
2 +κ−K)

O(ε
1
2−κ+K) 1 +O(ε)

]
= 1 +O(ε

1
2−|κ−K|), z ∈ ∂D. (4-39)

Note that the diagonal estimates are 1 +O(ε) and not just 1 +O(
√
ε) due to the fact that the Hermite

polynomials are even/odd functions according to the parity of their degrees. For example, for the (1, 2)

element in (4-37): HK−1(ζ) = ζK−1(1 +O(ζ−1)) and on ∂D we have ζ = O(1/
√
ε) and

2iπζKe−i
ϑ
ε εκ

µK−1
HK−1 =

2iπζ2K−1e−i
ϑ
ε εκ

µK−1
(1 +O(

√
ε)) = O(εκ−K+ 1

2 ) . (4-40)
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Similarly, for the (2, 1) element, using the orthogonality, we have that the Cauchy transform is O(ζ−K−1)

and hence

− ζ−Kei
ϑ
ε ε−κ

2iπ

∫
HK(s)e−s

2

s− ζ
ds =

µK
2iπ

ζ−2K−1ei
ϑ
ε ε−κ(1 +O(ζ−1)) = O(εK+ 1

2−κ) . (4-41)

We immediately see that –in order to meet the requirement about the decay on the boundary of the disk

D (4-30)– we must have

Proposition 4.2 The integer K must be the closest integer to κ.

The important observation is that if κ ∈ 1
2 +Z then the error term in (4-39) does not tend to zero (it

is O(1)). It is understandable as these values separate regimes where the value of K jumps by one unit

and the whole strong asymptotic must changes its form.

5 Improved approximation

5.1 Next order improved local parametrix

Inspecting directly and a bit closer the expression (4-37) we see that

HK =

 1 +O(ε)
−2iπζ2K−1e−i

ϑ
ε εκ

µK−1
+O(ε

3
2 +κ−K)

−µK
2iπζ2K+1e−i

ϑ
ε εκ

+O(ε
3
2−κ+K) 1 +O(ε)

 = 1+O(ε
1
2−|κ−K|), z ∈ ∂D.

(5-1)

and the terms that are responsible for the loss in the error term (4-39) are the off–diagonal ones. In

particular:

• for K < κ < K + 1
2 the leading term in the error is the lower triangular one;

• for K − 1
2 < κ < K the leading term in the error is the upper triangular one.

For this reason we re-define

Definition 5.1 The local parametrix Hκ, κ ∈ R+ is defined as

Hκ =



 1 0
µK

2iπζ2K+1e−i
ϑ
ε εκ

1

HK K < κ ≤ K + 1
2

HK κ = K

 1
2iπζ2K−1e−i

ϑ
ε εκ

µK−1

0 1

HK K − 1
2 < κ < K .

(5-2)
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Parametrix on the disk around η. Because of the symmetry of Prop. 2.1 we have

Ĥκ(ζ) :=
(
Hκ(ζ)†

)−1
. (5-3)

In the formulæ below, we will use ζ̂(z) := ζ(z).

5.2 Improved outer parametrix

Corresponding to the definition of Hκ (Def. 5.1) we need to define the outer parametrix Ψκ with the

requirements

Ψκ(z)+ = Ψκ(z)−

[
0 1
−1 0

]
, (5-4)

Ψκ(z) = O((z − α)−
1
4 ) Ψκ(z) = O((z − α)−

1
4 ), (5-5)

Ψκ(z) = 1 +O(z−1), (5-6)

Ψκ(z)Hκ(ζ) = O(1) , z ∈ D, (5-7)

Ψκ(z)Ĥκ(ζ̂) = O(1) , z ∈ D̂. (5-8)

In correspondence with Def. 5.1 we will pose the following Ansatz for Ψκ .

Theorem 5.1 The solution of the Riemann–Hilbert problem (5-4)-(5-8) always exists and is given by

Ψκ(z) =


TK,κ(z)ΨK(z) =

(
1− GK,κ

z − η
− ĜK,κ
z − η

)
ΨK(z) K < κ ≤ K + 1

2

Ψ
K

(z) κ = K ∈ N

UK,κ(z)ΨK(z) =

(
1− FK,κ

z − η
− F̂K,κ
z − η

)
ΨK(z) K − 1

2 < κ < K,

(5-9)

where

GK,κ(•) =
uK det[•,BK ]∣∣∣1 + uK det[B′K ,BK ]

∣∣∣2 +
|uK |2‖BK ‖4

4=(η)2

((
1 + uKdet[B′K ,BK ]

)
BK −

uK‖BK‖2

2=(η)
σ2BK

)
,(5-10)

FK,κ(•) =
`K det[AK , •]∣∣∣1− `K det[A′K ,AK ]

∣∣∣2 + |`K |2‖AK‖4
4=(η)2

((
1− `Kdet[A′K ,AK ]

)
AK −

`K‖AK‖2

2=(η)
σ2AK

)
,(5-11)

ĜK,κ = σ2GK,κσ2, F̂K,κ = σ2FK,κσ2, (5-12)

uK :=
K!
√
πC−K−

1
2

2K+1iπ
ε

1
2−κ+Kei

ϑ
ε , `K :=

2iπe−i
ϑ
ε εκ−K+ 1

2

µK−1C−K+ 1
2

. . (5-13)

The proof can be found in App. B.
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Remark 5.1 The idea behind this Ansatz is the following: the outer parametrices ΨK and ΨK+1 are

related by a finite Schlesinger transformation of the form (4-17) and we know that they provide the correct

leading behavior for κ ∈ (K − 1
2 ,K + 1

2 ) and κ ∈ (K + 1
2 ,K + 3

2 ), respectively. The discontinuity in this

leading-order asymptotic behavior occurs at κ = K + 1
2 , where the error term as per (4-39) becomes of

order 1; the idea is thus to introduce some sort of interpolation between the two outer parametrices of the

same form of a finite Schlesinger transformation, letting the coefficients matrices be dependent on κ in

such a way that their order becomes 1 as κ crosses the critical value.

Suppose κ > K + 1
2 in the formula (5-10) for GK,κ (ĜK,κ); then one sees that uK diverges as ε→ 0.

The matrix GK,κ (ĜK,κ), however, has a regular limit GK,κ → CK , (ĜK,κ → ĈK), while for κ < K− 1
2

we have FK,κ → QK , (F̂K,κ → Q̂K) where CK , ĈK , QK , Q̂K have been introduced in (4-17); indeed the

defining equations for G, ĜK,κ turn into those of CK , ĈK (ditto for FK,κ , F̂K,κ versus QK , Q̂K). This

means that GK,κ , FK,κ are some sort of interpolation between Schlesinger transformations.

Continuity at κ = K + 1
2 . We must check that the matrix Ψκ as defined in eq. (5-9) is continuous

as κ = K + 1
2 , at least within the error O(

√
ε). In fact we are going to see below (Prop. 5.1) that this

continuity holds exactly, namely,

lim
κ→K+ 1

2−0
Ψκ = lim

κ→K+ 1
2 +0

Ψκ (5-14)

or, equivalently,(
1− GK,κ

z − η
− ĜK,κ
z − η

)
κ=K+ 1

2

ΨK(z) =

(
1− FK+1,κ

z − η
− F̂K+1,κ

z − η

)
κ=K+ 1

2

ΨK+1(z). (5-15)

Even more is true as eq. (5-15) holds for any value of κ. To show this we recall that ΨK+1 = RKΨK

(as per eq. 4-17). Thus, we prove the following

Proposition 5.1 For any value of κ ∈ R, the matrices GK,κ , ĜK,κ , FK+1,κ , F̂K+1,κ are related with

the CK , ĈK+1 by

1− GK,κ
z − η

− ĜK,κ
z − η

=

(
1− FK+1,κ

z − η
− F̂K+1,κ

z − η

)(
1− CK

z − η
− ĈK
z − η

)
. (5-16)

In particular, we have

GK,κ + ĜK,κ = FK+1,κ + F̂K+1,κ + CK + ĈK . (5-17)

The proof can be found in Appendix B.

Thanks to Proposition 5.1 we conclude also that in Theorem 5.1

TK,κ(z)ΨK(z) ≡ UK+1,κ(z)ΨK+1(z) , ∀κ, z, ε, (5-18)

which allows us to dispose of the necessity for the FK altogether and rewrite Theorem 5.1 as
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Corollary 5.1 The solution to the RHP (5-4)-(5-8) given by Theorem 5.1 can be equivalently written as

Ψκ(z) =

(
1− GK,κ

z − η
− ĜK,κ
z − η

)
ΨK(z) , K = max(0, bκc) , (5-19)

with the matrices being defined in (5-10).

We remind the reader that ΨK (with integer subscript) had been defined independently in Proposition

4.1.

Remark 5.2 We also remark that the new definition in Cor. 5.1 is not continuous in κ at the integers

(but continuous at the half-integer). However the discontinuity is to within O(
√
ε). More precisely,

lim
κ→K−

Ψκ(z) =

(
1 +O(

√
ε)

(
1

z − η
+

1

z − η

))
lim

κ→K+
Ψκ(z) (5-20)

with the O(
√
ε) factor being independent of z. This discontinuity is of no concern because the correction

to the final approximation is within our overall error estimate.

6 The left breaking curve

The situation at the left breaking curve (Fig. 4) is at first sight quite different because it is the main arc

that it is splitting into two, rather than the complementary arc. However, as we will presently see, the

phenomenon is essentially identical: the informal reason is that the choice of main and complementary

arcs in the construction of the function h is somewhat conventional, depending on the overall sign of h at

infinity and the placement of the cuts of the g–function. The difference is nevertheless sufficiently stark

to grant a separate analysis.

Figure 8: The main arc has split into two and we are
forced to introduce a new main arc on the zero-level
set of =(h).

At the exact point of break the function h near

the point η (where the arc is about to split) can

be written

2ih(z) =

{
−C(z − η)2(1 +O(z − η)), z ∈ D1,
C(z − η)2(1 +O(z − η)), z ∈ D0,

(6-1)

where the region D1 is the region (within the lo-

cal disk) to the right of the two main arcs and D0

its complement. If we let evolve the level curves

according to the modulation equations while re-

specting the branch-cuts we would have the situa-

tion depicted on Fig. 8, with two pairs of close cuts

running off to infinity (i.e. a new main arc appears

to compensate the split of the original one).
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[
1 −e− 2i

ε h

0 1

]

[
1 −e− 2i

ε h

0 1

]
[

0 1
−1 0

]
[

1 0

−e 2i
ε h 1

]

Figure 7: The typical shape of the main, complementary arcs and lens contours at the precise point on
the left breaking curve.

We then must re-define the function h by introducing a small main arc within the local disk D
according to Fig. 9

The difference between the two pictures on Fig. 8 and Fig. 9 is that we have changed the sign of h

within the region that has changed color; the result is a function that we still denote by h(z), which is

harmonic analytic on the upper complex plane minus the main arc (marked by the thick line). In the

sequel we will denote by h(z) the function defined this way: it has the property that it is now analytic

in a small neighborhood of z = η and behaves

2ih(z) = −C(z − η)2(1 +O(z − η)) + 2iS, (6-2)

C = C(x, t) , η = η(x, t) , S := S(x, t) . (6-3)

The arc made by the two lenses can be deformed to pass through the level-curve <(h − S) = 0 and the

zooming coordinate ζ can be defined as the conformal change of coordinate

ζ2 =

{
2i
ε (h(z)− S) , z ∈ D1,

− 2i
ε (h(z)− S) , z ∈ D0.

(6-4)

We note that now we have =(S) > 0 and hence it is convenient to parametrize it by

S := 2ϑ+ i2κε ln ε, (6-5)

where –contrary to the case of the right breaking curve– negative values of κ correspond to the explo-

ration into the genus–two region. In Fig. 10 we have shown the jumps and contours for the solution Y (z)

in the local disk D. The model problem solves the usual jump Ψ+ =

(
0 1
−1 0

)
Ψ−.
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D1

(
0 1
−1 0

)D0

(
1 −e−ζ2−2i

ε
S

0 1

)

Figure 9: [On the left] The main arc has split into two and we are modifying the function h by introducing
a small “artificial” main arc connecting the two pieces of the broken one.

Figure 10: [On the right] The exact jumps of Y in terms of the conformal coordinate ζ near the point η.

6.1 Outer parametrix

The situation from this point on is quite similar to the previous; the outer parametrix Ψ
J

will be taken

as defined by the same Riemann–Hilbert Problem 4.1, with the only difference that the jump condition

now runs on the piecewise-smooth arc. Note that the point η (by our construction) lies to the right of the

main arc; worth mentioning is also that this time we will have to use the formula for Ψ
J

for the closest

negative integer to κ. The formulæ for Ψ
J

are identical.

6.2 Local parametrix

Due to the different shape of the jumps within the local disk D, the relationship between the present case

and the previous ones are less immediate than for the model problem.

Problem 6.1 The local parametrix is a matrix–valued function P
J
(ζ) = P

J
(ζ;κ, ϑ) of the zooming

coordinate ζ satisfying the following mixed RHP (J ∈ −N).

P
J+(ζ) =

[
1 −εκe−ζ

2− iεϑ

0 1

]
P
J−(ζ) , ζ ∈ R, (6-6)

P
J+(ζ) =

[
0 −1
1 0

]
P
J−(ζ)

[
0 1
−1 0

]
, ζ ∈ main arc, (6-7)

P
J
(ζ) = ζJσ3O(1) , ζ → 0, (6-8)

P
J
(ζ) = 1 + o(1) , ζ ∈ ∂D. (6-9)
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We anticipate that we will need this problem for negative integer K. If we disregard the condition (6-7)

then this problem is essentially (up to the triangularity of the jump) the same problem as for H
K

; more

precisely, let K ∈ −N and κ ∈ −R+ and consider

H
(−J)

(ζ;−κ,−ϑ) (6-10)

is the solution of (4-28), (4-29), (4-30) with K = −J and κ, ϑ replaced by −κ,−ϑ. Then the solution of

the RHP 6.1 is

P
J
(ζ;κ, ϑ) :=

[
0 1
1 0

]
H

(−J)
(ζ;−κ,−ϑ)

[
0 1
1 0

]
, ζ ∈ D1, (6-11)

P
J
(ζ;κ, ϑ) := e

iπ
2 σ3H

(−J)
(ζ;−κ,−ϑ)e−

iπ
2 σ3 , ζ ∈ D0. (6-12)

It is promptly seen that P
J

solves the jump on the real axis and –on the boundary between D0,D1– is

satisfies the condition (6-7).

It should be apparent now that the sequel of the analysis is quite parallel to the previous case; the

parametrices Ψκ and Pκ will be constructed by the same methods. The explicit formulæ for the matrices

GJ , ĜJ etc. have only minor cosmetic differences.

7 Corrections to the NLS solution

Theorem 7.1 The solution of the NLS (1-1) defined by the scattering data f0(z) behaves as

q(x, t, ε) =
(
−b(x, t)e2iKψ(x,t) − 2

(
GK,κ(x, t, ε) + ĜK,κ(x, t, ε)

)
12

+O(
√
ε)
)

e
4i
ε g(∞,x,t) (7-1)

as ε→ 0. Here (x, t) are such that

= (S(x, t)) =
κ
2
ε ln ε , κ ∈ R, (7-2)

where K = max(0, bκc), eiψ := λ0

λ0
(for λ0 see (4-11)), GK,κ , ĜK,κ have been defined in (5-10). The

term (GK,κ + ĜK,κ)12 has the following behavior

2(GK,κ + ĜK,κ)12 =

{
O(ε

1
2 +K−κ), κ ∈ [K,K + 1

2 ],

−b(x, t)
[
e2iKψ − e−2i(K+1)ψ

]
+O(εκ−K−

1
2 ), κ ∈ (K + 1

2 ,K + 1).
(7-3)

In particular the correction is of the order O(1) one as ε→ 0 only for κ ∈ 1
2 + N.

The proof can be found in Appendix B.

Remark 7.1 Considering κ as a parameter in a direction transversal to the breaking curve, we notice

that centers of adjacent ripples are at unit κ-distance from each other. On the other hand, according to

(7-3), the “support” of each ripple is of the order O( 1
ln ε ) in terms of the exploration parameter κ. Since

the order of κ is O(ε ln ε), this means that the support of each ripple is of order O(ε), exactly as in the

bulk of the genus 2 region. However their spacing is of the same order as κ, so that they look like ranges

of mountains/valleys separated by vast flatlands (see Fig. 2).
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While Theorem 7.1 contains the substantial qualitative information about the relevant features of the

behavior, the reader may wish for a slightly more concrete formula. It is possible to write the correction

term in full detail and –for example– use some computer algebra software to achieve the plot in Fig. 2.

We restate the theorem with some more explicit expressions.

Theorem 7.2 The solution of the NLS (1-1) defined by the scattering data f0(z) behaves as

q(x, t) = −b(x, t)e
4ig(∞)
ε +2iKψ

(
1− 2e−2iKψ

b(x, t)∆K

{
|u
K
|2χ

K
+ u

K
B
K ,1

2 + u
K

B
K ,2

2
}

+O(
√
ε)

)
, (7-4)

where

BK,1 =
τKeiKψ√

1 + λ2
0

, BK,2 =
τKe−iKψλ0√

1 + λ2
0

, (7-5)

τ := |τ |eiφ =
λ2

0(1 + |λ0|2)

ib=(λ0)(1 + λ2
0)2

, (7-6)

u
K

= −i K!
√
π2K+1CK+ 1

2

exp

(
i
ϑ

ε

)
ε

1
2−κ+K , (7-7)

∆K = 1 + 4<
(
u
K
λ0τ

2K

b(1 + λ2
0)2

)
+

4|u
K
|2|λ0|4|τ |4k

b2 |1 + λ2
0|

4

(
1 +
|1 + λ2

0|2

4=(λ0)2

)
, (7-8)

χK =
e2iKψ

b|1 + λ2
0|2

(
2λ

2

0τ
2K

1 + λ
2

0

+
2|λ0|4τ2K

1 + λ2
0

− ibλ0|1 + λ2
0|

=η

)
. (7-9)

The proof can be found in App. B.

7.1 Discussion

Universality. The correction depends only on ΨK , η and the constant C that appears in uK ; in

particular, ΨK depends only on the branch-point α and the integer K which counts the number of first

ripples. Thus, universality here is taken to mean that no details of f0(z), that defines a particular solution

to the NLS (1-1), enter into the formula.

Since the gradient of =S(x, t) does not vanish, the natural scale of modulation of q(x, t) in the direction

transversal to the breaking curve is ε ln 1
ε‖∇=S‖ and κ serves as exploration parameter in this scale.

Consider the case κ = K + 1
2 ∈

1
2 + N, i.e. on the “crest” of the K-th ripple; for this value of the

parameter the correction to q(x, t) is of order O(1). In this case uK is a fast oscillatory function: if

we fix a small ε then the correction term to the amplitude has a slow modulation in (x, t) due to the

dependence of C, η, α etc. and a fast change along the direction parallel to the breaking curve due to the

fast oscillation of u
K

.
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Large time limit of the profile. According to [15], [13], together with (4-16), we have the following

asymptotics along the right breaking curve as t→∞:

α = a+ ib ∼ µ+ + ie
2π(µ+−µ−)t

w′(µ+) , (7-10)

η ∼ µ− + iw
′(µ−)
4t , (7-11)

λ0 = λ(η) ∼ −2(µ+−µ−)
b + iw

′(µ−)
2tb , (7-12)

τ ∼ −2i eiψt
w′(µ−) . , w(x) := = (f0(x)+) sign(x− µ+) (7-13)

Then

B
2

K1 ∼ e2iKψi2K
(

2t

w′(µ−)

)2K

, (7-14)

whereas det[B′K ,BK ] and BK1 are decaying exponentially as t→∞. Thus

rK = ∆K ∼ 1 + |uK |2
(

2t

w′(µ−)

)4K+2

(7-15)

and, according to (3-20) and (7-7),

uK ∼ e−
iπ
4 e−i

θ
ε
εK+ 1

2−κiKK!
√
π23K+2tK+ 1

2

. (7-16)

In order to gain some insight on the profile and relative height of the ripples for large time we take κ a half–

integer (similar consideration hold in a double-scaling approach as long as the expression εK+ 1
2−κtK+ 1

2

approaches infinity). Then we obtain (κ = K + 1
2 )

(
GK,K+ 1

2
−GK,K+ 1

2

)
12
∼ −
√
πe−

iπ
4 iKe2iKψei

θ
ε

2Kw′(µ−)2K+2

K! tK+ 3
2

. (7-17)

In the particular example, considered in the paper for numerical computations, w′(µ−) = 1
2π. Notice

that the ripples has algebraic decay as t → ∞ whereas the amplitude of the corresponding genus zero

solution decays exponentially fast. Thus, Fripple is the main contribution to the solution along the ripples

for large t. Expression (7-17) also shows that the rate of decay for large t increases with the number K;

however, it may be offset by the K! growth of the coefficient in front of t−K−
3
2 . That is consistent with

O(t−
1
2 ) magnitude of the solution in the bulk of the genus two region, see [15].

Remark 7.2 Similar results are true for transition through any breaking curve separating regions of

genus 2N and 2N + 2.

Remark 7.3 This type of scales are to be expected from the similarities with random matrix models [16].
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A Explicit formulæ

Using (4-13), the expression for ΦK(z) can be written as

Φ
K

(z) =

(
λ0

λ0

)Kσ3

Ψ
0
(z) [(z − η)D(z)]

Kσ3 . (A.1)

To express it in terms of λ, we calculate

(z − η)D(z) =
b(λ− λ0)(1 + λλ0)2

2λλ0(1 + λλ0)
, (A.2)

so that (A.1) becomes

Φ
K

=
1√

λ2 + 1

(
λ0

λ0

)Kσ3 [
λ −1
1 λ

](
b(λ− λ0)(1 + λλ0)2

2λλ0(1 + λλ0)

)Kσ3

. (A.3)

The quantities involved in (4-27) require the computation of Φ′
K

(z), which is given by

Φ′
K

(z) =

(
λ0

λ0

)Kσ3 (
z − α
z − α

)σ2
4
[
ibσ2

2R2(z)
+Kσ3 (ln(z − η) + lnD(z))

′
]

((z − η)D(z))
Kσ3 . (A.4)

The expression in the square brackets is

2λ2

b(1 + λ2)

[
i

1 + λ2
σ2 +Kν(λ)σ3

]
, (A.5)

where

ν(λ) =

(
2λ0

1 + λλ0
− λ0

1 + λλ0

+
1

λ− λ0

− 1

λ

)
. (A.6)

Thus,

Φ′
K

(z) =
2λ2

b(1 + λ2)
3
2

(
λ0

λ0

)Kσ3 [
Kλν(λ) + 1

1+λ2 Kν(λ) + λ
1+λ2

Kν(λ)− λ
1+λ2 −Kλν(λ) + 1

1+λ2

](
b(λ− λ0)(1 + λλ0)2

2λλ0(1 + λλ0)

)Kσ3

.

(A.7)

B Proofs

B.1 Proof of Prop. 5.1.

Equation (5-17) follows immediately from (5-16) by comparing the behavior of both sides of the equation

as z →∞. To verify this we recall that the matrices GK,κ , ĜK,κ , FK+1,κ , F̂K+1,κ , CK , ĈK are uniquely

characterized by the equations (5-7, 5-8) that can be written as

(
1− GK,κ

z−η −
ĜK,κ
z−η

)
[AK(z),BK(z)]

[
1 0
uK
z − η

1

]
= O(1) z → η

(
1− GK,κ

z−η −
ĜK,κ
z−η

) [
ÂK(z), B̂K(z)

] 1
ûK
z − η

0 1

 = O(1), z → η,

(B.1)
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

(
1− FK+1,κ

z−η − F̂K+1,κ
z−η

)
[AK+1(z),BK+1(z)]

 1
`K+1

z − η
0 1

 = O(1) z → η

(
1− FK+1,κ

z−η − F̂K+1,κ
z−η

) [
ÂK+1(z), B̂K+1(z)

] 1 0̂̀
K+1

z − η
1

 = O(1), z → η,

(B.2)

`K :=
2iπe−i

ϑ
ε εκ−K+ 1

2

µK−1C−K+ 1
2

, ̂̀
K :=

2iπei
ϑ
ε εκ−K+ 1

2

µK−1Ĉ−K+ 1
2

(B.3)


(
1− CK

z−η −
ĈK
z−η

)
[AK(z),BK(z)] = [AK+1(z),BK+1(z)] (z − η)−σ3(

1− CK
z−η −

ĈK
z−η

) [
ÂK(z), B̂K(z)

]
=
[
ÂK+1(z), B̂K+1(z)

]
(z − η)σ3 .

(B.4)

We note that from (5-13,B.3) it follows

uK`K+1 = 1 = ûK ̂̀K+1. (B.5)

So the check consists in verifying that the matrix

M(z) :=

(
1− FK+1,κ

z − η
− F̂K+1,κ

z − η

)(
1− CK

z − η
− ĈK
z − η

)
(B.6)

solves 
M(z) [AK(z),BK(z)]

[
1 0
uK
z − η

1

]
= O(1)

M(z)
[
ÂK(z), B̂K(z)

] 1
ûK
z − η

0 1

 = O(1).

(B.7)

Indeed we have

M(z) [AK(z),BK(z)]

[
1 0
uK
z − η

1

]
=

=

(
1− FK+1,κ

z − η
− F̂K+1,κ

z − η

) (
1− CK

z − η
− ĈK
z − η

)
[AK(z),BK(z)]

[
1 0
uK
z − η

1

]
=

[From (B.4)] =

(
1− FK+1,κ

z − η
− F̂K+1,κ

z − η

)
[AK+1(z),BK+1(z)] (z − η)−σ3

[
1 0
uK
z − η

1

]
=

[From (B.2)] = O(1)

 1 − `K+1

z − η
0 1

 (z − η)−σ3

[
1 0
uK
z − η

1

]
=

= O(1)

[ 1−`K+1uK
z−η −`K+1

uK (z − η).

]
(B.8)

This last expression is analytic because `K+1uK = 1. This proves the identity (5-16). One should repeat

the verification near η but it is completely parallel. This proves the continuity. Q.E.D.
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B.2 Proof of Thm. 5.1.

The existence of the solution will be implied by the formula and by noticing that all denominators are

strictly positive. The symmetries (5-12) are obtained from the symmetries (4-23), (4-24).

The conditions that determine uniquely GK,κ , ĜK,κ , FK,κ , F̂K,κ are to be read off (5-7,5-8): we will

show the details only for the pair GK,κ , ĜK,κ , the computation for FK,κ , F̂K,κ being completely similar.

Case K < κ < K + 1
2 . The conditions (5-7, 5-8) translate into(

1− GK,κ
z − η

− ĜK,κ
z − η

)
[AK(z),BK(z)] (z − η)−Kσ3

 1 0
µK

2iπζ2K+1e−i
ϑ
ε εκ

1

 (z − η)Kσ3 = O(1), (B.9)

(
1− GK,κ

z − η
− ĜK,κ
z − η

)[
ÂK(z), B̂K(z)

]
(z − η)Kσ3

 1
µK

2iπζ̂2K+1ei
ϑ
ε εκ

0 1

 (z − η)−Kσ3 = O(1).(B.10)

This can be rewritten(
1− GK,κ

z − η
− ĜK,κ
z − η

)
[AK(z),BK(z)]

 1 0(
z − η
ζ
√
ε

)2K
µK

2iπζe−i
ϑ
ε εκ−K

1

 = O(1), (B.11)

(
1− GK,κ

z − η
− ĜK,κ
z − η

)[
ÂK(z), B̂K(z)

] 1

(
z − η
ζ̂
√
ε

)2K
µK

2iπζ̂ei
ϑ
ε εκ−K

0 1

 = O(1). (B.12)

From (3-8) it follows that

√
εζ =

√
C(z − η)(1 +O(z − η)) ,

√
εζ̂ =

√
Ĉ(z − η)(1 +O(z − η)). (B.13)

In particular, we have

lim
z→η

z − η
ζ
√
ε

=
1√
C
, lim

z→η

z − η
ζ̂
√
ε

=
1√
Ĉ

(B.14)

and that one can replace the above condition by the following(
1− GK,κ

z − η
− ĜK,κ
z − η

)
[AK(z),BK(z)]

[
1 0
uK
z − η

1

]
= O(1),(

1− GK,κ
z − η

− ĜK,κ
z − η

)[
ÂK(z), B̂K(z)

] 1
ûK
z − η

0 1

 = O(1), (B.15)

uK :=
µKC

−K− 1
2

2iπe−i
ϑ
ε εκ−K−

1
2

, ûK :=
µKĈ

−K− 1
2

2iπei
ϑ
ε εκ−K−

1
2

, µK :=
K!
√
π

2K
. (B.16)

We remark that

ûK = −uK . (B.17)
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This implies the following system of equations

GK,κBK = 0

ĜK,κÂK = 0

−GK,κAK + uK

(
BK −GKB′K −

ĜK,κBK

η − η

)
= 0

−ĜK,κB̂K + ûK

(
ÂK −

GK,κÂK

η − η
− ĜK,κÂ′K

)
= 0 ,

(B.18)

where –for brevity– AK := AK(η),A′K := A′K(η) etc. The solution is

GK,κ(•) =
uK det[•,BK ](η − η)2

(1 + uK det[B′K ,BK ])
(

1− ûK det[Â′K , ÂK ]
)

(η − η)2 + uK ûK det[ÂK ,BK ]2
× (B.19)

×

((
1− ûK det[Â′K , ÂK ]

)
BK +

ûK det[BK , ÂK ]

(η − η)
ÂK

)
, (B.20)

ĜK,κ(•) =
−ûK det[•, ÂK ](η − η)2

(1 + uK det[B′K ,BK ])
(

1− ûK det[Â′K , ÂK ]
)

(η − η)2 + ûKuK det[ÂK ,BK ]2
× (B.21)

×

(
(1 + uK det[B′K ,BK ])ÂK −

uK det[ÂK ,BK ]

(η − η)
BK

)
, (B.22)

where we have used that

det[AK(z),BK(z)] ≡ det[ÂK(z), B̂K(z)] ≡ 1. (B.23)

Using the reality relations (4-27) and (B.17) we can rewrite them in the slightly simpler form which

is in the statement of the theorem.

Case K − 1
2 < κ < K. The derivation is completely analog. In particular we will see below that the

formulæ for FK,κ , F̂K,κ are not necessary for our purposes if we have those for GK,κ , ĜK,κ . Q.E.D.

B.3 Proof of Thm. 7.1.

According to (2-7), the solution to NLS is recovered from the solution Γ(z) of the original RHP as

q(x, t, ε) = −2 lim
z→∞

zΓ12(z). (B.24)

Away from the cuts the approximation is such that

e−
2i
ε g(∞)σ3Γ(z)e

2i
ε g(z)σ3 = E(z)Ψκ(z) , (B.25)
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where E(z) is the error term matrix which is (uniformly) E(z) = 1 +O(
√
ε) and, according to (2-12),

g(z;x, t) = g(∞;x, t) +O(z−1) , φ ∈ R. (B.26)

Thus we have

q(x, t, ε) = −2e
4i
ε g(∞;x,t) lim

z→∞
zΨκ,12(z). (B.27)

According to Thm. 5.1, Cor. 5.1 and Proposition 4.1,

Ψκ(z) = TK,κ(z)

(
λ0

λ(z)

)Kσ3

Ψ0(z) (D(z))
Kσ3 K = max(0, bκc). (B.28)

Then

− 2 lim
z→∞

z[Ψκ ]12 = −2

(
λ0

λ0

)2K

lim
z→∞

z[Ψ0]12 + 2(GK,κ + ĜK,κ)12 =

= −b(x, t)e2iKψ + 2(GK,κ − ĜK,κ)12

eiψ :=
λ0

λ0
. (B.29)

where α(x, t) = a(x, t) + ib(x, t). This is the leading order in the approximation: the correction to the

amplitude b(x, t) of the solution q(x, t, ε) is purely a phase-shift in units of ψ, where eiψ = λ0

λ0
; the integer

K counts the number of “ripples” as we explore the genus two region. So, finally,

q(x, t, ε) = −2e
4i
ε g(∞) lim

z→∞
z (E(z)Ψκ(z))12 =

=
(
−b(x, t)e2iKψ + 2(GK,κ + ĜK,κ)12 +O(

√
ε)
)

e
2i
ε g(∞) K ≤ κ < K + 1 (B.30)

This proves formula (7-1). To verify the assertion regarding the different behaviors (7-3) we recall here

equation (5-17)

GK,κ + ĜK,κ = FK+1,κ + F̂K+1,κ + CK + ĈK . (B.31)

We know that the matrices FK+1,κ , F̂K+1,κ both are of order O(εκ−K−
1
2 ) (by inspection of (5-11) and

(5-13)). On the other hand

CK + ĈK = lim
z→∞

z
(
ΨKΨ−1

K+1

)
=
−b(x, t)

2

[
ei2Kψ − e−2(K+1)ψ

]
. (B.32)

And this concludes the proof. Q.E.D.

B.4 Proof of Thm. 7.2.

Looking at the formulæ (5-10) and recalling formulæ (4-27) and ûK = −uK we find

(GK,κ + ĜK,κ)12 =
−1

∆K

{
|u
K
|2χ

K
+ u

K
B
K ,1

2 + u
K

B
K ,2

2
}
, (B.33)

χ
K

:=

(
det[B′

K
,B

K
]B

K ,1
2 + det[B′

K
,B

K
]B

K ,2
2 − 2

‖B
K
‖2B

K ,2BK ,1

η − η

)
, (B.34)

∆K :=
∣∣∣1 + u

K
det[B′

K
,B

K
]
∣∣∣2 +

|u
K
|2‖B

K
‖4

4(=(η))2
> 0. (B.35)
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At this point one needs to use (A.3) (which defines the column vectors AK ,BK) and (A.7) (which gives

A′K ,B
′
K), which produce (7-5). Plugging into the various object we obtain

det[B′K ,BK ] =
2λ2

0

b(1 + λ2
0)2

τ2K ‖ BK ‖2=
1 + |λ0|2

|1 + λ2
0|
|τ |2K (B.36)

The rest is simply an algebraic manipulation which is as straightforward as uninteresting. Q.E.D.
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